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9.3 Activex: Handling Events

The ActiveX control provides an abstracted list of events to handle. These

1 events do not map directly to the events generated by the filter or the filter

graph manager, but they are important events at such a high—level interface.

For example, you receive events when the state of the movie changes or

when the position of the movie changes.

To handle such events, you can use the Microsoft Visual C++ class wizard

to add a handler for each event. Notice that you have to select the Direct-

Show ActiveX control ID that you specified in the resource editor in order

to display its events. Figure 9-7 shows how to add a handler for the

StLzteChcmge event.

‘ta ta: "

Activ-3XF‘ia er

‘. v Posiiionfihange
’ pa Displayiviodefihange
. iDC_F’ause Timer
iDC__F'iay Readyslatefihange
iDCu’Stup Elpanflomplete

UnQueryDraglcon DN__‘w"M_EtUEFIYDHAGiCUN
D nfleadyfitalethangei Elflfl N_1UUO:FieadySta!eChange
El nfieady-S tateEhangafisctiDN_i [J_Ao(ivaM cxvialiontroi: R eadys tatailhange

E If! r'oE3t;-atefihartge.éu:ti¢et51fi~,0 I"-J._i [‘:_>“4.x:ti*<.-‘eis*| ox!ire):-3ntr-:>i;S.tata-Change V ’ ’

FIGURE 9-7 Handling Directshow ActiveX control events
using the Microsoft Visual C++ class wizard.
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By the end of the chapter, you should have learned how to build Directshow filter graphs
from within your application in one of three ways: with the ActiveX controls, the automatic
COM interface, or the manual COM interface.

You should also know how to access your filter's custom interface and its property pages.
You should be able to handle filter events and control the running state of the Dire<:tShow
filter.

Lastly, you should be able to enumerate all the registered DireCtSl'1oW filters, loaded filters,
arid pins in a filter.

PARTIII
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CHAPTER 10

in

Mixing Sprites,

Backgrounds, and Videos

It was certainly nice to play a video clip with DirectShow, but wouldn’t it be even better if

you could use video as part of your game or application? Surely, video is not the only thing
moving on the screen; you probably have some moving sprites, backgrounds, and anima-
tion bouncing around the screen at the same time.

In this chapter we'll show you how to

I mix multiple objects together and how to place them relative to each other—in the
front, middle, or the back of the viewing area, and

I use RDX to mix video, backgrounds, and sprites.

l0.l Introduction to Mixing

You’ve seen how mixing works throughout Part II when We showed you
how to superimpose a static sprite on top of a static background using GDI
DirectDraW, and RDX. That was nice, but it can get boring fast.

7

Typically, multimedia applications have multiple sprites, backgrounds, ani-
mation, and video clips moving around on the screen all at the same time—

sometimes with music playing in the background. For example, you could
play a video clip with animation moving in the front and a moving back-
ground.

I 131 I
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10.1.1 Mixing Sprites with Video

First let’s review how we draw a static sprite on top of a static background.

As you recall, some of the pixels in the sprite are transparent and should not
be drawn on top of the background. For optimal performance, we typically

mix the two objects in system memory and then write the mixed result to
the screen.  As you can see in Figure 10-1, you can first copy the background to the
mixing buffer, then overlay the sprite on top of it. Actually, you can overlay

many sprites on top of the background at this stage. Finally, you can write
the mixed result to video memory to make it visible on the screen. Notice

that you only have to update the display whenever the sprite or the back-
ground moves around the screen.

With motion video, you display so many frames per second (fps) to give
the illusion of motion. Now, if you treat every frame in the video as if it

were a static background, you can apply the same technique we just dis-
cussed, mixing sprites with a background, for mixing sprites over video. In
this case, however, you need to update the display screen whenever the

sprite or the video moves on the screen and whenever a new video frame is
displayed. '

10.2 1

10.1.2 Mixing Animation with Video

Suppose you want to mix an animation sequence on top of video—an ani- 4.
mation clip is a sequence of sprites with transparent pixels, which gives the ‘
effect of a moving picture. Similar to motion video, animation clips are dis-

played at a specific rate measured in frames per second. To mix an anima-
tion on top of a video, you can use the same concept as when you mix a
sprite over video.

background sprite over_
bitmap backg round

 

On—screen  
Trasnpar - 

FIGURE '1 0-1 Mixing a static sprite with a static background.
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At any given moment, you only need to deal with one sprite from the ani-

mation and one frame from the video. This is exactly the case when we dis-

played a sprite over a static background. In this case, however, you need Lo
update the display whenever a new frame is displayed from either the ani-

mation or the video and whenever the animation or the video hops around
the screen.

Of course, you can apply this same technique for mixing a video on top of
another video. The same technique is used on TV shows and in the movies

when there is a scene inside a car and the back window shows some video
clip giving the illusion that the car is moving. To do that, you typically film
the car in front of a blue background——blue is your transparency color.
Then you mix this video clip, with the blue background, with another video
clip exactly the same way you mixed animation over video.

10.2 Mixing with RDX

In Part II you’ve learned how to use RDX for mixing static sprites on top of

static backgrounds. Here we’ll show you how to use RDX to mix a static

sprite over Video. You can use the same technique to superimpose video
over video or animation over video.

Before we go into that, let’s first review some of the techniques RDX uses to

perform object mixing. RDX uses a draw order to decide which object
should be rendered first on the screen. For example, if you want to give the
illusion that a background is “behind” a sprite, you would assign the back-

ground a high er draw order number than the sprite. RDX in turn paints the

background first, then overlays the sprite on top of it (Figure 10-2).

Background
* Video

Draw Order

High Low

FIGURE 1 O-2 RDX draw order. Higher order objects are
displayed behind lower order objects.

PARTIII
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10.2.1
Playing Video with the RDX Directshow Interface

First let’s show you how to play a video clip using RDX. RDX supports mul-

tiple architectures for Video playback, such as DirectShow and VFW. Since

we’ve been discussing DirectShow, we will show you how to play a Video

clip using that interface. In this example, we’ll use an MPEG file as the

Video clip.

To display an MPEG file, we first ask RDX to create a filter graph object and
associate the MPEG file with it. RDIX in turn creates a DirectShow filter

graph for the input file and returns a handle to an RDX video object that
represents that file.

FgCreate(&m_hAM);
fgAssoc1'ateF1".e(m,hAM, "biastoff.mpg");
fgGetV‘»'deoObject(nI_h.AM, 0, Knghvid):

Create a DirectShow filter graph “fg” object and set the MPEG file as the source. If suc—
cessful, get a pointer to the RDX Video object for later use.

1

Now you can instruct DirectShow to place the final output to the RDX sur-

face, hSurf (refer to Chapter 6 to learn how to create an RDX surface). You
can then set the draw order for the video such that it would be drawn

behind the sprite. As an example, we use 100 for the sprite and 150 for the

video clip. Finally, we declare that this object is visible.

objSetDest1'nati'on (rr,hAM, rsurt);
objSetDrawOrder (m_hAM, 150);
objSet\/isibi‘Hty(m_hAM, TRUE);

1

When DirectShow renders the MPEG file, it writes the final image not to

the screen but to the RDX surface, which is typically in system memory or

offscreen video memory. To display each frame to the screen, you must call

the 5rfDrczw() function, which copies the contents of the RDX surface to the

appropriate location on the screen.

Alternatively, you can request that RDX automatically call the 5rfDmw()

function to render each frame to the screen. To do that, you can use RDX’s

timers and events to schedule a draw event every frame. A timer is an object

that counts user~defined time periods. An event is an object that defines an

activity that you want to perform on an episodic or periodic basis.
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To create a timer, you must call the TimerCreate () function with a handle to

the video object and the timer sampling rate. You can then activate the

timer with the TimerStart() function. Even though the timer is generating

so many ticks per second, the timer tick does not generate any callback or

event. So what use is this timer anyway?

 

fqGetvi:iIrito(m_,h/\M, m_hVid, FG_INFU_SAMPLER/\TE, &dwFP3);
timecCreate((iriORD)dwFPS, HTIMER *)phTi‘mer);
time "Start(*phTimer):
m_hT 1‘ me r = *phTi me r ; CAUTION: Make sure to stop phTimerbef0re you destroy

the RDX objects. Use Timerstop {) or Tir/:erDestroy().

To make it worthwhile, you must associate the timer with a draw event—a

draw event informs RDX to call the srfDraw() function. VVhen the timer

ticks, it sends RDX a draw event advising it that it is time to render the

frame. To create a draw event, you must call the eventCreate () function with

Ev £NT_DRAw as a parameter. You must then associate the event with the timer
that will raise that event.

 

EI-'
n:
<
n.

it (bAutoDraw) i
eventCreate(m_10bj, E\1ENT_DRAw, O, 0, Zim_rDrawEventI>;
eventScheduie(m hTi'mer. m,,hDrawEvent, 1, RELATIVEJIME, 1, Oxffff);

l ¢
The third paramater, wPeriod, in eve11tSchedule allows you to specify the number of
timer ticks per event period, for example, if the timer generates 30 ticks/sec and the
event wPeriod is 3, then an event is generated every 3 timer ticks.

 

Even though DirectShow decodes the video clip according to its frame rate, the
number of frames rendered to the screen depends on the timer’s sampling rate
and the event's period.
 

Now that you have everything set up, you can call the fgPlay() function to

put the DirectShow filter graph in run state.

 

ob;Prepare(m_hAM);
i°gPiay(rr_hAM, P_AWODE_REPEAT, 0, U):

i e _____mi
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At this stage, DirectShow decodes every frame into an RDX surface, the

timer generates a draw event on every decoded frame, and RDX calls the

5rfDraw() function to copy the image from the RDX surface to the screen.

Why don’t you fire up the sample application on the CD and select the

option for this chapter from the menu. You should see a video clip playing
on the screen.

Mixing a Sprite on Top of Video

Now that you have the video playing, let’s see how We can overlay a sprite

on top of it. As in Chapter 6, you must first load the sprite bitmap into

memory and create an RDX sprite object. Once the sprite object is created,

you can associate it with the RDX surface, hSurf

bitmap bm;
bttmap.Ge:Bi'tmap(&bm):
m_dwwi'_dtw = hm.hmNi'dt.h;
m,dwHe"gw: — 3m.bmHei'ght;
nLbyTransp Jykeytiolor;

Create and set 11 J an hbrnp (Source Data Object).

-BMPHEADER bm3Header;
hbmpCroatc(m,dv/width,m,d\»/Height,RGB_CLLT8,&m_hBmp);
BYTE *pDa:a;
hbmpCetLackedBuffer(m_hEmp, &pData, &bmp+eader):
t1‘tmap.Ge:B1'tmapBits(m_d\«/N1d:h*m_dwHeight, pData):
hbmp’<eleaseBu‘fe“tm,hBmp);
l‘l)HlDSeLTV‘drI§|JdT'EIICyCUlOTWLWBWD, (DwORD)byKe_yCo or);

Create sprite; associate data to it; associate sprite to surface.

sprcreatettwn, Sp");
sprSetData(m_ Sp", m_hBmp);
objSetDesti‘na iontmjispr, m,hSur-“J;

Finally, you need to set the draw order and visibility of the sprite. Notice

that we set the draw order to be lower than that of the video clip so that the

sprite is drawn in front of the video clip.

:bjSe:DrawOrder(m_hSpr, 100):
:bjSe:\/isibil 1’ty(m_rSpr, TRUE);
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10.2.3 Mixing Video on Video

As we’ve mentioned earlier, you should be able to mix an animation or a

Video on top of another Video. Let’s see how you can overlay a video clip
with a transparency color on top of another Video.

 
You can actually use the same code from section 10.2.1 to start the Video

clip in the foreground—with a couple of modifications. First, you must

inform RDX about the transparent color of the Video. To do that, you must

call the fgvidSetTran5parencyC0lor() function. o

 

fgvidsetwansparencycolnr(rn_hA‘/IE, (Dl.«lORD')byl<eyCo1or);

As with the sprite, you should set the draw order of the video clip to be in

front of the background video clip. Notice that in our example we posi-

tioned this Video clip between the background Video (150) clip and the
sprite (100).

 PARTIII
objSetDrawOrder (ni_hAM2, 120):

l t l

At this stage, you’ll have two Video clips playing, one on top of another with

21 sprite in front of both of them. Notice that since the two video clips could

have different frame rates, you need to use the higher frame rate when you
create the timer for the draw event. This way, you’re drawing at the rate of
the faster Video clip.

 
WHAT HAVE By now you should be familiar with mixing different objects on top of each other. In this

You LEARNED? chapter you learned

about mixing sprites, video, and animation together,

about draw order and how to position objects relative to each other,

about RDX timers and events and how to create them,

how to use RDX to mix a sprite on top of video, and

how to mix video or animation on top of another video,
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Streaminlg Downthe Super ighway
with RealMedia

The Internet! You must have heard of it by now. Yes, and while cruising the Net you must
have been struck by all of these RealAudio icons "To Listen, Click Here ‘ .” Real-
Audio has become THE audio streaming solution on the Internet.  
With its success, RealNetworks released a similar technology for video on the Internet-
Realvideo. In 1997 the company is building on its success with streaming on the Internet
and is releasing a new streaming architecture, which allows for installable media types to
be streamed on the Internet. This technology is called Rea|l\/ledia.

In this chapter, you will

I get an overview of Reall\/ledia and learn about its plug—in model,

I be introduced to the concept of a RealMedia plug-in and how to build File-Format and
Rendering plug—ins,

I learn about Audio Sen/ices and how to use them within a plug—in, and
I learn about metafiles and how to use them.

In the past few years, the number of people connected to the Internet has

grown astronomically. Similar to television, radio, and newspaper, the

Internet has become the information medium of choice for millions of peo-

ple. The Internet, however, offers an additional quality that does not exist

in any of the earlier mediums: interactivity. Televisions and radios allow you
to select between a preset number of local or cable channels; the Internet, on

I'l39I

PARTIll’
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the other hand, opens the gate to millions of information servers, games,

and music archives throughout the world.

RealNetworks (RN) seized the opportunity and established itself as THE

Internet audio streaming technology on the Internet. Its RealAudio tech-

nology is specifically designed for real—time audio streaming on the Inter-

net. With real-time audio streaming, you don’t have to download an audio

file first and then play it back; rather, you play the data as you retrieve it

from the Internet server. Building on their success with RealAudio, RN

introduced a similar streaming technology for Video called RealVideo, and
then RealMedia.

RealMedia is a real—time streaming technology specifically designed for the
Internet. RealMedia includes both the RealVideo and RealAudio technolo-

gies as part of its core. VVith the plug—in mechanism that it provides, you

can stream and synchronize the playback of any data type, in real time, over

the Internet. For example, you can stream a new file format like MPEG,
text, animation, MIDI, financial data, weather information, industrial

information, or VRML.1

In our effort to present only technologies of the future, we wrote this chapter
while the Reall\/ledia SDK was still in its late beta cycle. Therefore some of the
APIS might have changed slightly by the time this book is published. Nonetheless,
the material in this chapter should be relevant and reflect the Reallvledia archi-
tecture accurately. Use this chapter for the concept, but use the Reall\/ledia SDK
for the actual API definitions.

ll.l Overview of ReaIMedia

RealMedia is an open, cross-platform technology for streaming multimedia

presentations over the Internet—~or networks in general. (See Figure 11-1.)

It uses the Real Time Streaming Protocol (RTSP) for communicating over

the Internetz and the Real Time Session Language (RTSL) to define presen-
tations. What does all of this mean?

1. VRML: Virtual Reality Modeling Language.
2. RTSP supports multicasting, unicasting, and RTP protocols.
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RealMedia Server RealMedia Client
‘ MetaFile (FlTSL protocol)<FlTSL><SEOUE\lCE>

<TFlACK SRC:"itspIi/Serve'.:om:554/FiAuClo.ra‘ ><TFl/«CK SRC:'rl:.p./‘/serve ..:uln.554/Fil\1udia.rm"><lSEQUENCE>g/HTS.) 
FIGURE ‘I ‘I -‘I The roles of the RTSP protocol and RTSL session language.

RealMedia uses the RTSP protocol to transport data across networks—both

the Internet and Intranets.1 RTSP defines an application interface for con-
trolling the delivery of real-time data. It allows for delivery of multiple

streams simultaneously, such as video and audio and time—stamped data

packets. For a reliable delivery, the RealMedia client uses the RTSP protocol

to acknowledge the server when a packet is received; otherwise, the client

resends another request for the packet or decides to throw it away. This

decision depends on the quality setting of the application.

RTSL is a presentation language that is similar in form to the HyperText

Markup Language (HTML). I-ITMI. is used to create \/Veb documents on

the Internet. RTSL allows you to define a presentation sequence that con-

sists of multiple audio, video, and other data streams. With RTSL, the Real-

Media server and client can negotiate the type of content delivered based on

the information in the RTSL file (a.k.a. a metafile) and the settings of the

player. For example, in the metafile, you can specify different media files

(audio, video) depending on the bandwidth of the Internet pipe (28.8K,

ISDN, and so forth) and on the language (English, French, and so forth).

For a 28.8K pipe you can deliver a file with low quality and a low rate of

.» data; for ISDN, you can deliver a better quality file with a higher rate
of data. (See the RTSL definition in the RealMedia SDK for more details.)

:...t
I-
D:
<
LL

: We won’t go into all the details of RTSP and RTSL in this book. Since Real-

ia Media handles all the communication between the client and the server

internally, you never have to deal directly with the RTSP protocol. However,
as a content developer (someone who designs metafiles), you will need to

learn more about the RTSL protocol and l1ow to use it. Refer to RealMedia
SDK for more details.

 
.

11.2 The RealMedia Plug-in Architecture
RealMedia is a simple plug—in architecture for adding custom data types.

Figure 11-2 shows three RealMedia plug—in interfaces: File-System, File-

Format, and Rendering plug—ins.
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Supported
Datatypes

Text Text
AVI
MOV

Audio/video
QuickTime

WAV Audio
SND
AIFF

Audio
Audio

AU Audio

RealMedia server RealMedia Client

Fire system i File Format’
Plug—|n Plugdn

FIGURE ‘I ‘I-2 RealMedia plug-in architecture.

The File-System plug-in is only responsible for reading “raw” data from a

source. The source could be a prerecorded audio/video file, a satellite feed,

or a database server. This plug-in is typically loaded by the RealMedia

server. The File—System plug-in does not know, or care, how the data will be

parsed; it only knows how to read, write, and seek through a file. Since the

RealMedia binaries come with a slew of File-System plug-ins, you typically

don’t have to implement a File-System plug-in to stream custom data types.

The File-Format plug-in is responsible for parsing the data, splitting it into

multiple streams, and breaking it into smaller packets for delivery over the

Internet. This plug—in is typically loaded by the RealMedia server. The File-

Format plug-in does not know how to read the data from the source, and

it does not know how to send the data over the Internet. Currently, Real-

Media supports AVI, WAV, AU, SND, AIFF, RealAudio, RealVideo, RealMedia,
and Re alTeXt file formats.

The Rerzderingpl ug—in understands the contents of the data and knows how
to render it to its final destination——screen, audio device, and so forth. This

plug-in is typically loaded by the RealMedia player or client.

In Figure 1 1-2, we show that the File—System and Fi|e—Format plug—ins are loaded
by the RealMedia server. It you're playing a RealMedia tile on a local machine,
the Reallvledla player loads the Fi|e—System, Fl|e—Format, and the Rendering plug-
lns on the same PC.

Notice that none of the plug—ins we’ve discussed so far deal with data deliv-

ery over the Internet. They only worry about reading the data, breaking it

into smaller packets, and rendering the final result. The RealMedia server

and client handle all the necessary communication over the Internet. Real-

Media allows for streaming any data type and synchronizing the playback

of multiple data types.

80 what do you really need to do to stream your own custom data type? Typ-

ically, you only need to implement a File—Format plug-in and a Rendering
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plug—in, since they both have to understand the new data type. The File-

System plug—in, on the other hand, is only required if you have to read data

from a source not supported by the RealMedia binaries, for example, from a
database server.

in this chapter, you'll learn how to build a File-Format and a Rendering

plug—in. You’ll also learn about RealMedia metafiles and how to use them to

configure the Web server.

Let’s go over some of the basic RealMedia concepts and interfaces. First
we’ll describe the data flow model between the server and client. Then we’ll

glance over some of the basic RealMedia interfaces that are used in the sam-
ple code in this Chapter.

11.3 Data Flows: Server to Client

For the purposes of this discussion, we’re assuming that you know how to

use a Web browser such as Internet Explorer or Netscape Navigator. When

you select a hot link in the browser, it takes you to a new Web page or down-

loads a file to your local drive. If the hot link points to an audio or a video file,

the browser first downloads the file to your local machine and then launches

the media player to play it. Web browsers allow you to associate any file exten-

sion with an application that will be launched when such a file is down-

loaded. For example, ’‘.doc is associated with launching Wi11W0rd.

To perform realtime streaming, RealMedia adds another step to this pro-

cess. Instead of pointing the hot link to the RealMedia file on the server, you

point it to a metafile. Metafiles hold configuration information that allows

the client (RealPlayer) to communicate directly with the server. They also

hold the list of media files to play when the metafile hot link is selected.

VVe’ll discuss metafiles in more detail later in this chapter.

So what really happens when you select a metafile hot link? Since the meta-

file file extension *.rt5 is associated with the RealMedia player, the player is

launched when the metafile hot link is activated. The player parses the

metafile to find the streams that it should request from the RealMedia
server. Notice that once the metafile is downloaded, the player makes the

connection directly to the RealMedia server and bypasses both the Web
browser and the Web server.

On the server side, the server loads the appropriate plug—ins and starts

delivering data packets to the player (Figure 11-2). The RealMedia server
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loads a File-System plug—in to read the raw data from a file. It then loads the

appropriate File—Format plug-in based on the file extension of the media

file. The File~Format plug-in parses the media file and determinesithe
MIME type of each stream in the file.3 The server sends the MIME type of
each stream to the client, over the Internet, and the RealMedia client, in

turn, loads the appropriate Rendering plug—in for that MIME type.

Once the plug-ins are loaded, the RealMedia server requests a data packet

from the File—Format plug—in. The File-System plug-in reads the raw data

from the file, the File-Format plug-in parses it and breaks it into smaller

packets. The RealMedia server sends the packet over the Internet to the cli-

ent where it is rendered by the Rendering plug-in,

In a nutshell, File-Format plug-ins make the packets, Rendering plug—ins
receive the packets and play them, and the RealMedia engine handles all the

underlying communication and timing of shuttling the packets from the

server to the player.

ll.4 Data Management Objects
RealMedia defines a set of data objects to transport the data from the server

to the client. These objects include dynamic memory allocation, indexed

lists, and data packet objects.

Although all the RealMedia objects are COM interfaces, they are not specific to
the Windows environment. Even though COM was defined for Windows, the
COM architecture does not require Windows.

lRMABuffer: Dynamic Memory Allocation Object

The IRMA4 Buffer object allows you to allocate a memory buffer at runtime.
Typically, the buffer is used to transport data over the Internet. To allocate a

memory buffer in RealMedia, you need to create an instance of the IRMA-

Buffer object, set the size of the buffer, and then request a pointer to it. And

you thought mulled) was hard to use!

3. A MIME type specifies the type of data in the message. MIME, or Multipurpose Internet Mail Exten-
sion, allows for transporting mail messages with binary data and many parts such as attachments and
such,
4. IRMA: Interface Real.\/Iedla Architecture.
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To create an instance of the IRMABuffer object,'you need to call the IMM-

CommonCla5sFact0ry::CreateIr15tar1ce() function using C LS I D_I RMABU FF E R as a
parameter. You’ll soon learn how to request a pointer to an IRMACom—

monClassFactory object. To set the size of the buffer, you must call the
IRMABufi‘er::SetSize() member function; the actual memory allocation

happens here. If successful, you can then call the IRMABufi‘er::GetBufi’er()

function to obtain a pointer to the data buffer. When you’re done with the

buffer, you should release the object to avoid any memory leaks.

 
m_pC I assFactory—>Cre-ateInstance(CLSID_IRMABuffer,(voic**)&pTi:Ie):
pfiitl e->SetS‘ zei INFO_SIZE+1):
p'itleData~ (char*)pTitle->GetBuf‘Fer(); |RMABufierf“n°fi°'3S3
stmcpy(pTi't'e:~ata .pBufferData,INFO,SIZE); Get()
p’itIe~>ReIease(); 5910

SetSize()GetSize() I
GetBufie7'()

IRMAValues: Indexed List Object

The IRMAValues object allows you to build an indexed list at runtime and
send it off to other plug-ins over the Internet. The index is an ASCII string

that specifies some special property. The Value is either an IRMABuffer

object or an unsigned long. For instance, you could use the IRMAValues

object to build the following indexed list.

Index "Title” "Author" ”Copyright” ”Count"

Va|ue ”Carrots” ”Bugs Bunny" ”BigEars/nc” 3
 

As with the IRMABuffer object, you must first create an instance of the

‘ IRMAValues object with the IRMAC0mm0r1Cla5sFact0ry::CreateIn5tcmce()

function. You can then call the member function SetPr0pertyULONG32()

or SetPropertyBufi‘er() to add an unsigned long or an IRMABuffer object to

the list, respectively. Notice that the string index, for example, “title,” is
specified in the first parameter.

I-
D:
<
CL
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m_p(1lassractory—>Create:ns:ance(CLSIDVZRM/Avai Lies, (void**)&pHeader))
pHeader->SetProper:yBufter ("Tit1e", p’1'tlc); . _
plleader‘->SetProper:yULONG32("StreamC:unt", 1); lRMAVa|Ue5fim°u°“S'SetPrapertyULONG32 ()

pHeader~>GetPropertyBJffer ( “Ti tl e”, :Ti fl e) ; GetPT°F'e”7ULONG320 /
pTitleData = pt=tic->»3ctsi-'re~::>,- G“’F”5’P"’P”‘VULON,G32l)
PT1-tk-jg , > R5196 Se (: ); GelNextPropertyUI.OIVG320
ptcad:r~>Re'ease(): SetPmPe"7B“ficeTO

GetPropertyBuffer()
GetFirstPropertyBu_6‘er()
GerNextProperZyBufi'er{)

To retrieve an item from the list, you can call the GetPropertyBufj‘er() or the

GetPropertyULONG32() function for an IRMABuffer object or an unsigned
long, respectively. In addition," you can enumerate the entire indexed list

with the GetFirstXyz() and GetNextXyz() member functions. Refer to the

Include file in the RealMedia SDK for prototypes of these functions.

The following rules describe when to use the AddRefO and Re/ease0 functions
with RealMedia objects:

- if an object is passed to your code as a parameter of a function call, you must
use Add/?efO to reference the object. When your code is finished with the
object, you must use Re/easeO to release the object.

Void Furctiuri (IRMAOl)jec: “p0bject> (
pObject—>AddRef();
...Lse Dbjec: Here...
P0bject—>Release();

For objects returned by functions, use Add/?efO to reference the object in-
side the function. You must use Re/easeO to release the object when you're
done with it. The following functions use the Add/?efO function to increment
the reference count of the objects before returning them:

RM/lCreate/nstance

/RMAF//eSystem.':CreateH/e

/RM/lCommon C/assFactor)/.'.'Crec7te/nstance

/Unknown .':Queryln terface

/RMAF/'/eSj/stem:.'CreateDir

If your code creates an object using the C++ new operator, your code must
use the AddRefO function to reference the object. When your code is finished
with the object, it must use Re/easeo to release the object.
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11.4.3 1RMAPacket: Packet Transport Object

The IRMAPacket object is used to transport data packets from the File-

Format plug-in on the server side to the Rendering Plug-in on the client side.

Again, you must first call the IRMAC0mmrmCla5sFact0ry::CreateInstcmce()

function to create an instance of the lRMAPacket object. You can then call

the Set() member function to specify the lRMABuffer object that holds the

data of each packet. \/Vith the Set() function you can also set a time stamp

for the packet and a priority flag indicating the importance of the packet—
Can it be dropped or not?

m_pC1assFactory~>Create1nstance(CLSID,1?MAPacK:t.(voio**3&pPacket))
pPacket->Set(pBuffer,m_ulCurrentT1me,O,H.PN_RELIABLE NORMAL)
pPacket—>Release():

15
11.5 Rea|Media Asynchronous Interfaces

File-Format plug—ins are responsible for parsing the data and splitting it

into multiple streams. They’re also responsible for breaking the data in each

stream into smaller packets before sending it over the Internet.

in addition to the IRMAPlugin interface, File-Format plug—ins implement

both the IRMAFileFormatObject and IRMAFileResponse interfaces. The

IRMAFileFormatObject interface defines the functionality of the DLL as a
File Format plug-in. The RealMedia server uses this interface to retrieve
header information from the source file and the header for each stream. It

also uses this interface to request data packets to send out over the Internet.

IRMAFileResponse is a callback interface used to notify the plug-in when

an asynchronous operation is complete. As you recall, the File-Format

plug-in uses the services of the File—System plug-in to read raw data from

the input source. Since all the File-System plug-in’s operations are asyn-

chrono us, the File-Format plug-in exposes the IRMAFileResponse interface

in order to receive notification when these operations are complete.

RealMedia defines nonblocking interfaces for the File-Format and the File-

System plug-ins. These asynchronous interfaces allow the server to process

requests from the clients while the plug-ins are busy preparing data packets

from the input source.

CLS1
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File~System p!IJg—in File-Format plug-in RealMedia Server or Player

ReadPacket()

|FtMAFileObject lFtMAF\IeFormatObject

|FlMAForrnatF{esponsa
lFlMAFi|eResp0nse

FIGURE 1 1-3 RealMedia asynchronous interfaces.

Suppose that the RealMedia server wants to get a data packet to transmit

over the Internet. The server calls the File—Format plug-in function IRMA-

FileFormatObject::GetPacket() to obtain a data packet. The GetPacket()

function, in turn, calls the File—System function IRMAFileObject::Read() to

read a block of raw data from the input source. Now, since both the IRlV1A-

FileFormatObject and the IRMAFileObject interfaces are asynchronous,

both the Read() and the GetPacIcet() functions return before the packet is

created. At this stage, the server could process previous packets in the
queue.

\/Vhen the raw data is read from the input source, the File—System plug—in

calls the File—Format plug—in function IRA/IAFileRespo21se::ReadDone() to

notify it that the raw data read is done. The File-Format plug-in, in turn,

calls the server back at the IRMA F0rmatRespzmse::PacketReady() function

to notify it that the packet is ready to send.

11.6 Common Requirements for All Plug-ins
Although we’re only dealing with Windows 95 in this book, it’s worth
mentioning that RealMedia is a cross—platform architecture. Nonetheless,

writing a File-Format or a Rendering plug—in should require little or no

operating system services. The File—System plugein, on the other hand, is

platform dependent since it requires direct access to the input devices——file,
satellite, and so forth.

To create RealMedia plug—in, you must keep the following in mind:

I The plug-in you create must export the C—style function RMACreate—

1nstomce(), which is used to create an instance of the plug—in. This func-

tion must be exported externally in the DEF file.

I The plug—in must implement the base IRMAPlugin interface. RealMedia

applications use this interface to retrieve information about the plug-in.
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n Each plug—in must implement at least one additional plug—in object that

defines the functionality of the plug—in. For example, Rendering plug-ins

implement the lRMARenderer object, and File—Format p|ug—ins imple-

ment the IRMAFileForrnatObject.

VVhen a RealMedia application loads a plug-in, it calls the RMACreate-

Ir1stLmce() function, which creates an instance of that plug—in and then
returns a pointer to it.

Make sure to Export this _
function in the DEF file.

*ppIUrknown : CZUnknown*)(IRMAPltgin*)new CExampleFfleFormat();
‘f (*ppIUN<nown) {

<*ppIUnkno\~m)—>AddRef();
returr" 8 OK:

STDAP1 RM/>.('1reateMst.ance(lUnknown** pplunknown) (JJ

returr E UUTOFMEMDRY:

Once the plug-in is created, RealMedia calls the IRMAPZugin:.'Im'tPlugin()

function to initialize it. This function accepts only one parameter,

PC DNTEXT, Which allows you to retrieve a pointer to the common class fac-

tory. Remember, this is the lRMAComrnonClassFactory object We used to

create the buffers earlier in the chapter,

PARTII]

T»STZMETHODIMP CE><arrpleFfleFormat::In1tP' ug1n(IUnknown* pContext)4

m,pCcmte><t — pContext; ]RMAPlP9,m tunmons:
m_pConte><tA>AddRef(); I“1tPl”-9”!) ,
FLPC0flt'3Xt">QU€WIntertace(IlD_1RMACcmm0riClassFaCtory G"tPl“«$’”“"f"')

(voi‘d**)&m,pClassFactory):
return S;C‘K;

,~o.~«««.'««w««—/am

IRI\lACOrnmonClassFactory provides a CreuleI71slzmL'e() func lion, which serves tl1e same purpose as the
COM COCreateInstcmcc() function‘

The IRMAPlugir1::GetPluginInf0 () function is then called to retrieve filter-

specific configuration information. The BLOADMULI lPLE parameter specifics

whether multiple instances of this plug-in could be created at the same

time—this must always be true for a File~Format plug—in. The other three

parameters are self-explanatory.
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STDMETIIODIM

 

REFicsr
#riefine PCCHAR const char* Rpflmr‘

3 PCCHAR Ctxamp1eF1'1eFormat::zm_pDescr"iption = "Example File Forrrat Piugin“; REF(cor
JCCHAR CExampieH1eForma:::zm_pCopy“'ight = "Your Company, All riqhts )
reserved"; ( r
PCCHAR CExampleFi1eFormat::zm,pMoreInfoURL '— "http://www.yourcom3any.com"; pF11er~11‘~ Fi1eEx

’ STDMETHODIVIP CExamp1eFfleFormat::GeL>iUg*nIm‘o ( EF1'leUpRtF(BOOL) bLoadMuiti‘p1e. return
REF(Const ctar*) pDcscr1pt1':n, ;
REF(const char*) pcopyriqht, f
REF(const char*) pMoreInfoURL ‘
)

(
bLoadMuit1’ple = TRUE;
pDeseri'pt1'on = zm_;Descr'iptior;
ocopyriqwt =~ znppcopyright;
pMoreInfoURL = zm_pMoreInt0UR1_;
return S_OK;

All plug—ins go through the same initialization up to this point. Other ini-

tialization is done based on the type of plug-in you’re writing. Let’s start

with the File-Format plug-in and then move on to the Rendering plug-in.

11.1 Building a File-Format Plug-in

11.7.1 Initializing the File-Format Plug-in

Once the IRMAPlugin interface is initialized, the File-Format plug—in func—

tion GetFileF0rmatInfo() is called. This function returns a list of the sup-

ported MIME types along with the default file extensions of the supported

input files. This is it! This is Where you declare that this plug-in can support
the list of file extensions.

#define PCCHAR const ctar*
PCCHAR CExampleFHeFormat.::zm_pFileMimelypes[] = 1"appl1cation/X-yourfi1ef:r'mat". NULL);
PCCHAR CExamp1eFfleFormat::zm_pHieE><tersiors[] = {"etf", NUH};
PCCH/«R CE><amp1eFiieF:r‘mat::zm_pFiieCpen\Jamesi] »= ("Example File Format (*.eff)", NULL};

To support multiple streams and file formats, add the second, third, and so forth, stream information here.
Make sure to‘ terminate the list with NU , L.

L
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STDNETHODIMP CExam3leFi'1eFormat::EetFi1sFormatIm°0 (

REF(con5t char**) pF1'leMi‘weTypes,
REF(const char“)
REF(con5t char"**}
>

pFfleMimeTypes
pFileExtens1' ens =
pF‘l le0penNames
return S_OK;

‘ , IRMAFileFormat-
pFlleEXtenSl Om ' Objectfunctions:
DH l eopemlames GetFileFormatInfo()

Init1’ile1"armat()
A _ GetFileHeader{)

Zm—pFl, l eMllleUPeS‘ GetStrerm11Ieader()
zm_pFfleExtensi0ns; Getpackgty)

= zm_pFfle0penNemes: Seek” ’
Cl0se()

BUILDINGAFILE-FORMAT PLUG-IN I 15']

“Then the server receives a URL to load, it calls the Im'tFileFormat() funcv

tion with that URL and two other object pointers: IRMAFileObject and

lRMAFormatResponse. As we mentioned earlier, IRMAFileObject is an

asynchronous interface used for reading, writing, or seeking a file. IRMA-

FormatRe5p0n5e is used to notify the RealMedia server when an operation is

complete.

In order for IRMAFileObject to notify us when an operation is complete, it

needs to obtain a pointer to the File—Format plug—in’s IRMAFileResponse

interface. To do so, we must pass the pointer to “this” plug—in to the IRMA-

FileObject interface. IRMAFileObject, in turn, calls our QueryInterface()

function to retrieve a pointer to the lRMAl:'ileResponse interface.

 

STDMETHODIMP CE><amploFflcFormat::InitFfle‘or11at(
coast chart pLRL,
IRNAFormatResponse* pForrnatRe5ponse,
IRNAF I l e0bjecL’*'
)

pflleobject

Copy the URL to a member variable. Make sure to allocate enough space.
if (m_:1URL) (

delete m,pURL;
m,:URL — NULL;

l
if (pURLl {

m,3URL = row char[strlen<pURL)+1]:
‘f (lm_pURt) return E_OUTUFMENORY;

strcpy(m_pURL,DURL):
9

Save the File Object to readjseek data from the input source; save the File Response to notify the
server when the operation is complete. We AddRef() these objects to keep them around for later use.

m_pFFRespmse = pFnrmat.Response:
rn_pF"1eObject = pF1'1e0bject;

T"if in pFFRssponse) (
r”(if (fl_pF"leObject)

m pFFResponse'>AddR
m_pFi l eflbject->AddR

) :
>

PARTlll
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Due to the asynchronous nature of the File Object, We use the Variable m_state, to build a simple
state machine to determine when an operations completes. Also, notice that We pass the file obj ect
a pointer to thisplug»-in so it could retrieve our callback interface, IRMAFi1cR<:sponsc.

fl_state = InitPendiug;
fl_3File0bject->Zn1t4fm_pURL, PLFILEJEAD | PN_HLt_b[NARY, this);
return S,O<;

Notice that you must expose the IRM_AFileResponse interface by respond-

ing to the Global Unique Identifier (GUID), HD__IRMAFileResponse, in

the Queryfrzterfacd) function.

5TDMt’|HODlMP Ilxarrpleflletorrnats:()uerylntertace(RUT[D r1"d, void“ ppx/Obj)
I

it (lsEqualilU<Ir1'1‘d, TlD,lRMA\”ileResU0ns.e)3 l
AddRef();
*ppvObj = (lP.MAFile-Resporse*)this;
return SJJK;

l

*ppvOtj + NULL;
returw ENOINTERFACE:

Now, since the IRMAFileObject::Init() function is asynchronous, it returns

before it initializes the object. Once the initialization is complete, IRMA-

FileObject calls the callback function IRMAFiZeRe5pon5e::Ir1itD0rze() with

the status of the operation. In turn, the InitD0ne() function calls the

serVer’s notification function IRMAF0rmatRe5p0n5e::InitDor1e() to inform

it that the File—Forn1at plug-in initialization is complete. Remember that

both the IRMAFileObject and lRMAFileFormatObject interfaces are asyn-
chronous in nature.

STDMETHODIMP CExampleFile:ormat::IuELDore(PN_STATUS sLdLus)
l

if ('u_sLcLe I= lr‘itPendiWgIl
return E__UNtXPECTED;

m,st.at<= = Ready;
. rn_pFFResp0nse~>1m'tDone‘(status):

return S_UK;
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Pay special attention to the m_state member variable; we’ve used it to build

a simple state machine to handle the asynchroneity of the IRMAFileObject
interface.

File and Stream Headers

Once the plug-in is initialized and the file is ready for reading, the Real-
Media server calls the GetFileHeader() function to retrieve the media file

header. In this example, we seek to zero since the file header is located at the

beginning of the file.

STZMETHODIMP CExampleFiTeFormat::GetF1‘eHeader(>
4

if (m,state I= Ready)
return E_UNEXPECTED;

m_state = GetFileHeaderSeekPendimg;
m,pFileObject~>SeeK(O.FALSE?;
return S_CK;

Since the Seek() function is an asynchronous function, you have to wait for

the SeekD0ne() callback before you can start reading from the file. When the

seek is done, you can call the IRMAFileObject::Read() function to read the
header from the file.

STDMETHODIMP CE><amp'eFi'e:0r'rnat..SeekDone(PN_STATUS status)

‘t (m_state == GetF’1eHeaierSeekPending) I
rnfistate : GetFi eHeaderReadPending;
m pFile0bject->Read(FILE,HEADER_SIZE);

}

I

Again, since the Read() function is an asynchronous function, the function
ReczdD0ne() will be called when the data is read. The ReadD0ne() function

receives a status flag indicating the outcome of the read. If successful, the

raw data is returned in the IRMABuffer object. You can then extract the

data from the buffer and call the IRMAF0rmatRe5pon5e::FiZeHec1derReady()

function to notify the server that the file header is ready.

PARTIH
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STBMETHODIMP
CExampleF‘IleFo“mat::ReadDone(3iLSTATUS status, IRMAEutfer* :Buffer)
{ .

it (I‘Lstate == GetF"1eHeaderReadPending) I
rn_state = Ready;

lRMAValue3* pHeader;
IRMABnfter“' pT1tle = NULL, *pAut'Ior = NLLL;
char *pT1t1eData, *pAuthorData, *pBufferData;

Create an indexed list to l1old the header, IRMAValues, and two buffers to hold the ‘header data,
pTit1e 8r pAuthor. Set the buffer size appropriately and get a pointer to the buffer.

rn,pClassFactory—>Createlr5tance(CLSID_IRMA\/31ues, (void**)&pHeader);
m_pClassFactory~>Create1rstance(CLS1D_IRMABJFfer, (vo1'd**)&pTit1e);
rn,pClassFactor“y~>Create1r5tance(CLS1D_IRMABJffer. (void**)&pAuthor);

:>T1‘t1c—>SetSize(l\JFO_SIZE+l}:
3Auth:r->SetSize<1NFO_SIZE+1):

)TiLlEDdLd = (c'Idr"")pTiLle->GetButfer'();
3Auth:rDatap = (c'war*)pAuthor—>CetBuf‘er(J:
:>3ufferData = (c1ar*)pBuf'fer->GetBufter(I1;

strncpy(pT1' 1eData,pButferData,INFO,SIZE);
3T1't|eDataL NFO_SIZ[J = ‘\O';

strncpy(pAu horData , pBufferData+INFD_SIZE, lNFO_SIZE):
:>Auth:rData ’INFO,SIZE1 - '\O‘:

Set the indexed list properties and inform the server that the file header is ready. Make sure to
release wh atever you’ve created to avoid memory leakage.

)Hea<Jer'->Se Proper't§/Buffer ("T1'tle", pTitle];
3Header—>SetI—‘ropertyButfer ("Author“, pAuthor):
:>Hea<Jer—>Se Pro ertyLLON”32("StrearnCount", 1);(—— H

p J Speicify the number
m,pFFResponse—>Fi1eHeaderRead3/(status, pHeader); qfmeanls inthehlehere.
:>Header->Re ease():

-3T1't1e—>Release();
:>Authcr->Rc easc():

Notice that we specified the number of streams in the input file in the
StreamCount index. For each stream, the server calls the GetStream—

Headed) function to retrieve the specific header for the stream. As when we

were working with the file header] you would look for the stream header————

asynchronously—and read the data at that location.
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STDMETHODIMP CExaripi eFi1eFor'mdt: :GetStreamHeade°(UINT16 LmStreamNumber)
{ .

// Seek Lo the stream header“
if (m_state == Heady) i

mgstdte = Ge:StreamHeacerSeekPend1mg:
m_pFi \eObjec:~>Seek(F1LE,HEADER_OFFSET+F1LE,HEADER_SIZE,FALSE):

}

STDMETHODZMF CE><amp1eFiTeF0rmat::SeekDune(PILSTATUS sLdLus)
1

// read the stream heacer
it (m,state ~—~ GetStreamHeaderSeek+'end1mg)(

m,state = GetstreaiiHeader'ReddPendinq;
m_pFiieUb;ect—>Rea:(5iHrAM_H[AiER§SIZE);

When the read is done, the ReadD0ne() function is called with the data in

the IRMABuffer object. As with the file header, you can retrieve the data

from the buffer and pass it on as an indexed list.

 
5\DVU|\UDU’P

CExamp1eF1‘1eF0rmat::ReadD0ne(PN_STATUS status. IRV|ABufi’er* pBuffer3I
if (m,s:ate == GetStreamHeadcrRca:Pcndi'ng) I

n_s:ate = Ready;

IP.MAVa1ues* pHeade“;
m_pCiassFactory->C>*eateInstance((LLSID#lRMAva1ues, {voi'd**)&p ieader);

This is where you specify the output type of the stream; this MIME type also specifies what
kind of rendering p1ug—in must be loaded to render this stream.

IRMABuf'"er* pMi'rneT_vpe = NULL:
char s7M"meType[] = "appi1cation/x-yo.irRenderF0rmat";
m,pC1assFactory->Create nstance(C_S1D IRM+\Bu1”er,(vo’d**)&pMime ype:
a\4i'meType~>Set((ccnst UCHAR*)szM1'meType,str1en(szMimeTy:e)+l);

This is the stream header information‘ I includes the data buffer, pBuffer, bit rate, packet size
information, timing, and stream type.

Jteader->SetPropertyButfe" ("OpaqueData", printer);
Jseader->SetPropertyL_O|\G32< "SLr'edmN.unber", 0);
Head:r~>SetProper“tyLLONG32( "Max31'tP.a:e", MAXJHTRATT);
“reader->SetPropertyLLO|\G32( "AvgBitRa:e", AVGJSITRATE);

p%eader*—>SetPropertyLt()I\lh32("MaxPacke:Size", MA><_PACKETSIZE);
piedder->SetPr0pert;/JLO S32("AvgPacketSi‘ze", AVG PACKETSIZE):
pHeader >SetProperty.H,0hG3?(“StarfTirre", I;
JHed(.iET">SEtPV‘OD€"i2_)’JL0 G3Z("PreroH", 0);
Header >SetPeope”tyJLOhG32("Duration", 2000);

3Header—>SetPrope"t3/Buffer ("StreamName". NULL):
weader->SetPropeht;/Suffer <"Mi'meType", pM1'meType>;
3HeaderA>SetP“ope“tyUL0 G3Z( "Popupw11ndow", 1);
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Notify the server that the stream header is ready and release memory objects.

m_p:FRespoflse >StreamH»:aderReady(status, pHeader):
pHeader'>Re1ease( ll
pM1'meType—>?elease( )2

Let the Streaming Begin!

At this stage the File—Format plug—in is ready to generate data packets for
delivery over the Internet. The server calls the GetPacket() function to read
one data packet. The File—Format plug—in requests a read of the data, and _
when ready, inserts it into an IRMAPacket object along with the time stamp.
It also informs the server that the packet is ready through the IRl\/IAFormat-

Re5p0nse::PacketReady() function.

STDMETHODIMP CExaInpleF*'leFormat::(%etPac<et(UINT16 mStreanNumber)
{

it (n,state == Ready) 1
m_state = GetPacketReadPend1'ng;
m,pF1'1eobject->Read(PACKET_SIZ| );

vI

PN_RELIABLE_: specifies the priority level of the packet.
REQUIRED must be sent or the entire stream will be aborted; for example, rendererinitialization information.

HIGH must arrive or there will be serious problems in the presentation; for example,
Key Frames.

NORMAL normal priority; for example, Audio packets.
LOW lower priority; for example, Images.
VERYJDW can be sent only if there is enough resources available (Server load, networkbandwidth, etc).

STDMETHODIMP

CExampleFileFormat::F.eadDone(PN4ST/JUS status, IRMAButfer *pBm”er){

If the read failed, notify the server that we reached end of stream.

if (status I= PN_STATJS_0K) {
m_flCurrerutTi‘me = 0;
flApFFResponse->StreamD0ne(O)1

t

it m4state == tjetPacketReadPending) {
mfistate = Ready;
IRMAPact<et.* pPae1<et:

Create an IRMAPacl<et and attach the packet data to it along with the priority level and the l
time stamp. llicn increment the time stamp. (Continued nextpage) |

«~——————>
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Create an IRMA Packet and attach the packet data to it along with the priority level and the
time stamp. Then increment the time stamp.

m_LflCurrentTime += TIME_PER_PACKET;
In_pFFResponse->PacketReddy(status, pPacket);
pPacket. >H.=lease(};

The server calls the GetPacket() function repeatedly until the end of file or
stream is reached.

11.8 Building a Rendering Plug-in
Rendering plug—ins are responsible for decoding the data, if compressed,

and sending it to its final destination-—screen, audio device, and so forth.

Rendering plug-ins run on the client side and accept data from the Internet

in small packets--IRMAPackets.

After the base plug—in interface IRMAPlugin is initialized, the client appli-

cation calls the GetRendererIrzfo () function to retrieve a list of the supported

MIME types. In order to render a stream, the MIME stream type must match

one of the supported renderer MIME types (see the File—Format plug-in

function GetStreamHeader() to learn how to set the MIME type of a stream).

PARTlll

In addition to the MIME types, the GetRendererInf0 () function returns the

rendering refresh rate. This specifies how often you Want to render the final
data to its destination—screen, audio device, and so forth.

PCCHAR CE><ampleRenderer::zm,pStreamMimeTypes:] = ("a3plication/x-ycurRenderIormat",
NULL);

STDMEHODIMP CExa'npleRenderer::GetRendererInfo(
REF(cowst :har**1 pStrcamMimt:Typc5.
REHUINT32) unIn"tiaIGranular1'ty
)

pStrearnM"rneTypes = zm_pStreamWimeTypes:
LmIn"tia'Granular'ity = 103; (~-—————-
return S_0K;

Causes the OnTz'mcSync() function
to be called every 100 milliseconds.
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The StartStream () function is then called to initialize the stream. The func-

tion receives a pointer to the stream, IRMAStream, and a pointer to the

player, IRMAPlayer. IRl\/1AStream allows you to retrieve information about

the stream such as the stream number, type, and input source file. It also

allows you to set the quality of the playback, request additional buffered

packets, and adjust the refresh granularity. IRMAPlayer,,gives access to

player—related information. It also allows you to start, stop, and seek the
stream.

STDMETHODIMP IRMAStrea.m functions:
CExdIn:l eRender'er': : Sta rtSt“eam( Ggtsguycef)

1RMAStrearr* p3tream, Ge;5¢7eamNum1;e,()
1RMAPlayer"*' pPl aye“ _ Get5;reamType()
) Rep0rtQualit)/OfService{)

RepnrtRebufferSmtus()
"LP5t”9a”' PSUEBWE SetGrar1ularitj/(J

m ”p Pl W e r ‘ D Pl ay e in l IRMAPlayer functions:
GetClz'erztEngz'ne()
IsDorze()
FetCurrentPlayTime()
OpenURL()
Begin(), Stop(), Pau5e()
Seek 0

if (mpstream ) rn pstream->/\ddRef();
if (LpP1ayer ) m_pPlayer'>AddRef();

return S_OK;

The O11Header() function receives the indexed list prepared earlier by

the OnStreamHeader() function of the File-Format plug—in. You can use the

GetPr0pertyBufi‘er() and GetPropertyULONG32() functions to retrieve
the information from the indexed list.

STDMETHODIMP CExampleRenderer::OaHeader(lRMAValues* pHeader)
l

// Keep twis for later use...
m,pHeader = pHeader;
mApHeader—>AcdRef();

// Get the packet data buffer. 0‘ course you can get more packet info.
lRMAB.lffer *pBufter;
preader->GetPropertyBuffer ("0paqueData", p3uffer);
LPBYTE pBJf — pBuffer‘>GetBuffer();

return S_CK;

Once the stream is initialized, the Rendering plug—in receives data packets

through the OnPacket() function. You can choose to render the data in the

packet or wait for the next refresh timer ticl<—in OrLTimeSynch () discussed

later. In our case, we just save a reference to the packet.
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STDMETHUDIMP CExampl eRenderer: :0nPacl<et(_ l RMAPacket* pPacket)
l

out // Release the last packet if we had one...
0 if (n1_pLdstPacket)

m_pLastPacket—>Re1ease( ) ;

// Keep this one for later use...
m_pLastPacket = pPacKet:

if (m,p_astPacl<ct)
m_p-astPacket—>AdcRef( J:

return S,OK;
)

l l

When the user starts playing for the first time or resumes playing after a

pause, the OnBegin() function is called with the stream’s time stamp for
the next packet. v

STDMETHUDIMP Ctxampl elleridererz :0nEeg1n(ULONG32 U |Ti me) E{ I-

return S_OK; g
y D.

l l

the To maintain a smooth playback, the RealMedia engine pre—1oads extra pack-
ets just in case the network gets congested. The RealMedia engine requests

additional buffers when the stream starts playing, when the position of the

stream is changed (when you seek forward/backwards), or when the number

of reserved packets becomes very low. Of course, this action requires CPU

{ cycles both on the server and the client. The client can relinquish CPU cycles

by dropping frames or reducing the quality of the final output. This is exactly
jf Why the renderer function OnBujj‘ering() is called—~so that the renderer can

adjust the amount of CPU cycles it uses accordingly.

E. STDMETHODIMP
CExampl eRenderer: :0nButferi‘ ng(ULUNG3Z ulF1ags. JINT16 u'1PercentComol etc)
l

re tu r '1 SJ K ;

}
E

ets :

the p
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When the user pauses playback, the OrzPause() function is called. This

function is typically used to display a static video frame when the movie is
paused.

STDVETIODTMP Ctxam3leRenderer::OnPauseEULONG3Z ulT‘me)
l

return S_0K;
)

l _. W? A

When the user decides to seek forward or backward into the stream, the

O11PreSeek(), OnP0stSeek() functions are called. Both pass the time stamp

of the packet before and after the seek.

STDWE'HOD1M3
CExamp1eRenderer::UnPreSeek(ULCNG32 ulOldTime, Ul0NG3P u1NewTime)
(

retarn S_OK;
}

SFDMETHUDIMP

CExampleRenderer::0HPosLSeek(ULONG32 ul0l:Time, ULONG32 ulNewTime)
{

return S_0K;
l

l

The OnT1'meSync(} function is periodically called according to the granu-

larity set in the GetRendererInfo(} function. Notice that when the player is

handling multiple streams, the refresh rate is the same for all streams, and it

is equal to the lowest granularity rate of all the streams. The OnTimeSync()

function is called to update the screen or send data to the audio device.

STDMFIHUHIMP Ctxamp1eRerderer::0nTimeSync(JLONG32 ulTime)
(

// Here's a goo: time t: actually render the cata!
m ulLastTime = u1Time:

// Redraw the window. DamageRe::() is similar to the wrnaz
InvalidateRect()

CPNxRect rect(0.0,400,100);
m_pwindow->DamageRect(rect);

reLuHiS_0h



182

BUILDING A RENDERING PLUG-IN I 161

The UseWindow() function is called to inform the renderer that it should

use a particular window to draw its data, for example, the broWser’s win-

dow. Since RealMedia-supports multiple platforms, you should use the
platform-independent window interface IRMASimpleW’indow. This inter-

face provides platform—independent functions to perform common opera-
tions on a window. To get access to the window handler routine, you need

to subclass the window and hook into its windows procedure. To simplify
cross~platform development, you can use the class PNXSubclassing-

VN/indow, which handles platform—independent window subclassing and
painting to the window (you can find the definition of this class in RealMedia’s

sample directory).

In our case, we only set the size of the window and make it visible.

STDMETHODIMP CExampleRenderer::Usewind0w(lRNASimpleWind0w* pwiadow)l

HRESULT hRes = PNxSubelasstnqw1rdow::UseNtndow(pwtndow);

// Set the size and v1's1‘bil1'ty of the window
it (rRes == $,UK) l

CPNxS1‘ze sizet/100,100):
hRes = pwindow->SetSize(s’ze);
pN‘'ndow->SetV1's1’bflity(TRUE):

}
return Mes:

The window procedure handler of the PNxSubclassingWindow calls the

member function Dmw() to do the painting on the screen. You must over-

ride this function to render the output to the window. Since our packets are
simple text, we use the TextOut() function to display the text in the window.

void CE><amp1eRenderer: :DrawZ 1
l

IRMABufter*pBufter = NULL;

if (m,pLastPacket.1 l
pBuffer = m_pLastPacket4>GetBttter():
::Te><tt'}ut(m_hDC,0,0,pButte"->SetBtfter( J ,pBufFer->GetSi‘ze());

mg;

Finally, when the player closes the file, you must release the subclassing
window, which in turn destroys the window.

PARTIII



183

 162 I CHAPTER 11 STREAMING Down THE SUPERHIGHWAY WITH REALMEDIA

STDMETHODNP CE><ampleRenderer::Re1easeWIndow(TRMAS1mplewindow* pwindaw)
{

return PNxSubc|assi'ngwindow::Releasewindow(pWindow);
}

J

11.9 ReaIMedia Audio Services

As part of the goal of platform independence, RealMedia defines a hard-

ware-independent interface that provides the necessary methods to deliver

audio data to the audio device and to control that device’s components»-

volume, sample bit rate, mono versus stereo, and so forth. This interface is
called the Audio Services interface.

In addition to hardware independence, the Audio Services interface pro-

vides audio mixing capabilities so that multiple audio streams can be mixed

together before they’re sent out to the audio hardware. It also allows Ren-

dering plug—ins to process the output data of each stream before mixing

and to process the final audio data after mixing (see “Touching the Audio

Data Before and After Mixing”).

Notice that RealMedia comes with a few built-in renderers that can handle

RealAudio, WAVE, AU, AIFF, and SND audio file formats. So, you wonder,

“W'hy should 1 care about Audio Services?” Typically, if you’re only dealing

with RealAudio or any of the audio formats we have mentioned previously,

you don’t have to worry about Audio Services. But if you need to handle a

new audio format, MPEG audio for example, you will need to use the
Audio Services interface to write your data to the audio device.

.1’.,;;v.a»w._

“VVell, why not use DirectSound or RSX?” For one, the Audio Services

interface is easy to use. Although DirectSound and RSX provide mixing
capabilities, RealMedia’s Audio Services interface does its own mixing to

maintain platform independence. As 21 result, if you use RSX or Direct-

Sound, your audio stream will not be mixed with other RealMedia audio
streams. Moreover, since the Audio Services interface is platform indepen-

dent, you can easily provide versions of your custom plug—ins on multiple

platforms.5

4‘3
A:

5. DirectSound and RSX are audio technologies from Microsoft and Intel. They are discussed in a later
section. i
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Built—in HealAudio
Rendering P|LJg~in

Custom MPEG
Audio

Rendering Plug-in

FIGURE ‘I ‘I-4 The RealMedia Audio Services interfacein highlightedrblocks.

In Figure 11-4, you can see two Rendering plug-ins: the built—in RealAudio
Rendering plug—in, which handles RealAudio streams, and a custom MPEG

audio Rendering plug-in, which could handle MPEG audio streams. Notice

that the Audio Services are shown in the highlighted blocks. The Audio Ser-

vices consist of one audio player, one audio device, and “multiple” audio
streams—one for each active audio stream.

The audio player exposes the IRMAAudioPlayer interface, which allows you
to create an audio stream, IRMAAudioStream. The audio stream interface

allows you to write the data to the audio device. When you’re playing multiple
audio streams, the Audio Services mixes them together, including sample

rate conversion, and sends the mixed result to the audio device. Finally, the
audio device object writes the data to the audio hardware. This is where

the platform independence happens.

Playing a Simple Pulse Coded Modulation (PCM) Audio File

Now, let’s see how you can use the Audio Services to play an audio file from
your custom Rendering plug-in. In this example, we’ll only show you how

to play a PCM file locally. PCM is the audio format that is typically sent to
the audio device. We’ll play the audio file whenever the mouse is clicked

within the client window. This is a good time to run the demo correspond-
ing to this chapter on the CD.

For the sake of simplicity (or our laziness) let’s build on the Rendering
plug-in that we’ve discussed earlier in this chapter. In addition to the text

stream, we’ll play an audio file, fr0g.pcm, whenever the user clicks the

mouse in the client window. You’ll know what we’re talking about if you’ve
run the demo. 1

PARTlll
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We start by reading the entire PCM file into memory; it is small enough in
this case. Since we’ll always use the same PCM file, we might as well read it
up front in Im'tPlugin(). VVe allocate an lRMABuffer big enough to hold the
entire file and then read the file into it. You learned how to allocate buffers

earlier in the chapter.

STDMETHDDIMP CExanpleRehderer::Init3lugin(IUnkaowr* pfiohtextil
m_pContex: = pcohtext:
m_pC:nte><t->AddRef( J;
pContext->0ueryIhterface(I1D_lRMACOmmonClassFactory, &pClassFactory);
ULONGSZ actual = O;
lRMACommohClassFactory* pCTassFa:tory = NULL

// allocate ah IRMABuffer big enough to hold the entire PCM file
pClassFacLory->CreateInstance(CLSID,IRMABuffer,(v0id**)&m_pButferJ
m_pBuffer~>SetSize(LENGTH);

// Read the file into the hutfe“ and re-adjust ‘ts size to the length
// of the file

m_p:ile = ::fnpen(FcmF1leName, "rb");
actual = ::fread(m_pBufFer->GetHuffer(), 1. LENGTH. m_pFile);
m_pBufferv>SetSize(actualD:

:ClassFactory->Re'ease():
::fclose(m pFile);

l

1

You should then create the audio stream when you receive the header infor-
mation of the stream. If the stream were coming over the lnternet, the header

would tell you about the streams properties. Before you can create an audio
stream, you must first retrieve a pointer to the audio player interface IRMA-
AudioPlayer. To do that, you must call the IRMAPlayer::QueryInte1face()
function to get that pointer. Now, you can call the IRMAAudioPlayer::
CreateAudioStream () function to create the audio stream. If it is successful,

you must call the IRMAAudi0Stream::Init() function to initialize the audio
stream, specifying mono/stereo, the sampling rate, and the maximum
sample size.

STDMETHODIMP CExampleRencerer::0nHeader(IRMAValues* pHeader)
l

// Keep this for later use...
m_pHeader = pHeader
m_pHeader->AddRef();
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// NOTE: we got a pointer to m_pP1dyer ih the StartStream() function
// Get a reference to the lRMAAud1oP1ayer interface
m_pP1ayer->OueryInterFace(ll3,lRMAAudioP1ayer, &m_pAudioPlayer ))

// Now create an audio stream and iritialize itm
RMAAudioForma: Aud otmt;

mApAudioFlayer >CreateAudioStream(&mApAud*oStreamJ;
AJdiuFmt.uChanne1s = 1;
AJdintht.uB1tsPerSample + 16;
AudiuFht.u’Samp1esPerSec = 22050;
AudinFht.uMaxBlockS1ze = (UINT16)LENGTH;
m_pAud‘oStream->Init( &AudioFmt, pHeader)

The OnMou5eClick() function will be called whenever the mouse is clicked

within the client window. It’s time to play the file. Since the audio data is in

PCM format, we can just write it to the audio device. To do that, we must
call the IRMAAudi0Stream::Write() function to send the data to the audio

device. Remember: we’re actually handing the data over to Reallvledia

Audio Services, not to the audio hardware. Behind your back, the Audio
Services mixes the data with other streams before it sends it out to the

audio device object, which sends it out to the audio hardware.

Notice that we set the ul Au d i 0Ti me to a value returned by GetIr1stant-

Time(). This allows us to play the file instantaneously, so we don’t have to

wait for it. If you’d rather have the sample be delayed before it is played, just
set the time to a relative number in milliseconds. Refer to the RealMedja

SDK for more details about instant time and midstream playback.

STDMETHDDIMP CExamp1eRenderer::0nMauseClick()
l

RMAAudioData Aid‘nData;

// Jill the AudioDa:a structure with a pointer to the data and
// when it should Je playedm In our case, ihstartaneousiy.
AucioData.eData = m_pButfer;
Auc1oData.u1Aud1oTime = m,pAudioPlayer->Get1hstartTime();
m_pAudiostream->write(&AucioData);

Pump Up the Volume

With RealMedia you can also adjust the audio volume at three data points:
the output of individual streams, the output of the mixed streams, and the

audio device hardware. As you can see in Figure 11-5, each individual

PARTIH
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IRMAVolume functions:
Im't()
SetVolume(),
GetVolume()
GetI.evel()
SetMute O
GetMute()
AddAdv1'seSink()
Rem0veAdviseSir1k()

Rea|Audio
Rendering Plug-in

Player Core

Rendering Plug-in

W Represents an IRMA Volume Interface
FIGURE ‘I ‘I-5 Volume control for indiviual streams, mixed streams,

and audio hardware.

stream has its own Volume control. The audio player controls the audio

level of the mixed stream, and the audio device object controls the volume
of the audio device.

To adjust the volume of an individual stream, you must first call the
IRMA/ludioStream::GetStreamW)lume() function, which returns a pointer

to a volume interface, IRMAVolume. You can call the IRMAV0lume::

SetV0lume() and GetV0lume() functions to set/get the volume of individual
audio streams. A volume setting of 100 means 100 percent of the input sig-

nal; values less than 100 reduce the volume, and values greater than 100
increase the Volume.

STDWFTHODIMP CE><ampleRendercr:zonstreaml/olume()
{

IRMAVolsme *pVo1ume = mpAudt'oStream ->GetStr"—:anVc1ume();
pVo1umeA>SetVolume(90); // Decrease the volume
ovoluem->GetVo|um«=(l10); // Increase the volume
pvolume~>Re1ease();

}

l,

Similarly, you can adjust the audio level after the streams have been mixed.
You must first call the IRMAAudi0PZayer::GetAudi0Volume() function to

retrieve a pointer to the IRMAVolume interface. Again, you can call the
IRlW‘lVolume::SetV0lume() and GetVolume() functions to set/get the Volume

of individual audio streams. A Volume setting of 100 means 100 percent of

the input signal; values less than 100 reduce the volume, and Values greater
than 100 increase the volume.
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STDMETHODIMP CExamp1:R0nd0rer: :0nr/|"><ed0utputVo1ume()l
1RMAVo1urne *pVo1um0 —~ m_pAud1"oPlayer->GetAudto\’:lume();
p\/olume->SetV0'ume(9U); // Decrease the v0’ume
p\/o“tuem»>Cet\/0’ume(ll0); // Increase the v0‘ume
p\/olume->?eledse():

The audio device Volume is also controlled by an IRMAVolume object, yet

here the volume values have a slightly different meaning. In this case, a Vol-

ume setting of 0 means no sound, and a volume setting of 100 is the maxi-
mum Volume for the audio hardware. "

 

STDMETHODIMP CExamp1eRen:er'er‘: :OwAudi‘oDev1’ceVolume<)
{

1RMA\/olume *pVolume = mVpAud1'oP1dyer-->GeLDevice\/0'ume();
p\/o'ume—>SetVolume(9U); ’/ Decrease the volume
pVo'uem->EetVolume(110): // Increase Lhe volume
p\/o’urne->Release():

Post»Mi>< data

Rendering Plug-in

Player Core
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WHAT HAVE

YOU LEARNED?

In this chapter you've learned about the Reallvledia technology for real—time streaming of

data over the Internet The data is not limited to audio and video. Rea|Media is easily
adaptable to stream any custom data type.

At this stage, you should

I be familiar with the concept of RealMedia plug»ins'and the different types of plugins
(File—System, File-Format, and Rendering),

be familiar with the plug—in interfaces,

be able to build File-Format and Rendering plug—ins,

understand the Audio Services interface and howto use it to play additional local audio
streams, and

know how to use Audio Services to adjust the volume of individual streams, mixed
streams, and the audio device.

WE’D LIKE TO

BARRETT, CHR

Ch
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Playing and Mixing
Sound with Directsound

and RSX 3D.
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Chapter 12

Chapter I3

Audio Mixing with Directsound
I Overview of Microsoft's Directsound

I Play and mix WAV files with DirectSound

I Control final output format and final volume

Realistic 3|) Sound Experience: RSX 3D
I Overview of Intel's RSX 3D

Play and mix audio files with RSX 3D
I

I Use RSX 3D for real—time 3D sound experience
I

Apply reverberation and Doppler effects

Part IV contains quick chapters on two audio architectures for Windows 9x: Microsoft's Di-
rectSound and lntel’s 3D Realistic Sound Experience (3D RSX).

Microsoft's Directsound was designed to address two key performance problems that
arose with high—performance multimedia applications running under Windows 95: First,
the per-channel overhead for mixing audio channels can be high. Second, there is a
noticeable lag between when you request a sound to be played and when it is actually
delivered through the speakers. in Chapter 12, we introduce you to Microsoft's Dired—
Sound architedure and show you how to program with it. We show you how to mix and
play WAV files and how to control output volume and formats.

lntel's 3D RSX is an architecture that lets listeners perceive sound in all directions, not only
to the front and sides, but also above, below, and to the rear. 3D RSX uses just two speakers
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(or a set of headphones) to produce a surround sound experience. The system creates
sounds based on simulations of how the human brain hears sounds and is based on a

Head Related Transfer Function (HRTF) technology. ln Chapter 13, we will give you an
overview of 3D RSX, show you how to play audio files with it, and how to add special
effects to your sounds, such as reverberation or Doppler etlects.
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Audio Mixing
with Directsound

WHY READ Microsott’s DirectSound was designed to address two key performance problems with

THIS CHAPTER? standard audio for high-performance multimedia applications running on Windows 95:
First, the CPU usage for mixing audio channels is high. Second, there is a noticeable lag
bet\/veen when you request a sound to be played and when it is actually delivered through
the speakers.

if you've been facing either of these performance problems with your multimedia appli-
cation and would like to understand DirectSound’s solutions, or if you expect the audio

component of your application to be demanding and instinctively know that you will need
a high-performance audio solution, read on.

By the time you have worked through this chapter, you will

I have a good idea of how Directsound works and what it offers,

I understand how DirectSound reduces audio latency under Windows 95,

I have learned how to play a WAV file and mix WAV files using DirectSound, and

I have learned how to control output volume and formats through Directsound.

12.] Overview of Audio under Windows 95

The standard Microsoft multimedia library (previously called mmsystem. lib

and now called winmmlila) provides developers with a Wide range of func-

tions for interacting with audio devices and performing audio functions.

These functions range from high-level interfaces for basic audio tasks to

low-level interfaces that provide more control of task and audio devices.

I171:
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The PlayS0und() function, for example, is a simple high-level way to play
audio files or to play audio sounds from the system registry. The MCIWnd

class, on the other hand, supplied as part of Video for Windows (VFWI1),

provides multimedia extensions for Windows. The audio services in MCI-

Wnd provide input, output, and recording control of a variety of devices

including CD audio, WAV audio, MIDI, and audio-video devices.

Table 12-1 lists the categories of audio services provided in the standard
Windows multimedia library.

TABLE 1 2-‘! Range of Audio Senrices Available in Standard Windows
Multimedia Library

Prefix Service

i/i/cii/e Works with sounds in the PCM waveform audio format. In addition to pla -
ing audio sounds, WCIVQ functions provide for audio input, for audio recor ,and for waveform audio device control.

midi Plays and records Musical Instrument Digital lnteriace (MIDI) sound repre-T
sentations. _The Midilvlapper (with channel maps, patch _maps, and key
maps) provides a device—independent interface for playing MIDI files.

mixer Provides runtime mixing of multiple MlDl or multiple WAV audio streams
within a single application.

mci Media Control Interface controls a variety of multimedia devices including
audio devices such as CD Audio, WAV audio, i\/llD|, and audio—video.

The Audio Compression_l\/lanager is an extension of the basic_ multimediasystem that ena les runtime audio compression, decompression, and filterservices.

12.2 Directsound Features

There are two performance problems with the audio services in winmm.lib:

I The performance overhead of mixing audio streams is high. On baseline

90 MHz Pentium platforms, mixing eight audio sounds consumes at

least 40 percent of the CPU, leaving very little capacity for even more

performance intensive tasks such as running graphics. The overhead in-

creases when audio formats differ and format conversion is necessary.

The latency between when an application plays a sound and when the

sound is delivered through the speakers can be between 100 to 150 mil-

liseconds. Consider comparing an audio sound to a graphics event like
crashing into a wall. With a latency of 100 milliseconds and a frame rate

of 30 frames per second, at least 3 frames have gone by before the sound

is heard. The graphics actually seen would probably have no bearing on
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t0 Play the sound. For adequate synchronization, the audio sound must be
CIW11d heard before the next frame is drawn (less than 33 milliseconds at 30
FW.h),

n MCI- In Microsoft's words: “The overriding design goal in DirectX is speed.” The

eviceg Microsoft DirectSound audio library provides high-performance, low-

overhead, low—latency audio mixing. DirectSound accesses hardware accel-

eration whenever possible. In addition, the DirectSound architecture gives

dafd VVindows applications direct access to the sound device.

In addition to solving performance problems, the DirectSound component

CW5 of the Directx SDK adds a notable feature: It can mix audio streams from
multiple applications. You can design your DirectSound—based application

to allow mixing sounds from other DirectSound applications. V\’ith this

feature, for example, a DirectSound—based Internet—audio—phone can share

n to P]? audio output with your DirectSound application.10 recor ,

gd repre_ 12.3 Drrectsound Architecture
filekfy Figure 12-1 shows how DirectSound fits into the VVindows 95 audio frame-
Streams work. As part of the DirectSound architecture, Microsoft defined exten-

sions to the standard V/Vindows 95 audio device driver. The extended

including interface is known as the DirectSound Hardware Abstraction Layer (HAL)

30' interface. DirectSound provides its enhanced performance and features via
ltimedia
and filter

Application

n.mm.l1'b:

baseline
sumes at
en more

rhead in-

essary.

hen the

150 mil-

vent like

ame rate Audio Device

he sound

aring on FIGURE ‘I 2-1 DirectSound architecture within the Windows 95 framework.

E  
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the DirectSound HAL. The DirectSound path and the WAV audio path are

two mutually exclusive paths to the audio hardware. They cannot be used

simultaneously.

If a DirectSound driver is not available, DirectSound will use the standard

Windows 95 audio device driver. In this case, DirectSound provides neither

low—latency audio nor device access; but it can still provide low—overhead

mixing.

To us application developers, DirectSound provides D T. RFCTSOUN D objects as

representatives of audio cards in the system. We access all further Direct-
Sound functionality through these D1 R E CT 5 0 J N D objects. Our applications

can only instantiate one DirectSound object per device. But multiple
applications can each instantiate their own DirectSound objects, and the

application in focus will have principal control of the audio output. (Direct-
Sour1dCreate() and DirectSoundEnumerate() are the only two functions that

can be called without having instantiated a D1 RECTS DU ND object.)

To create and play sounds, DirectSound provides two types of DI RECTSOUND»

BUFFER objects: secondary and primary. Secondary D1 RECTSOUNDBUFFER

objects represent individual sounds or sound streams. DirectSound mixes

individual secondary buffers into the primary DI RECTSOUNDBU FFER, and this
mixed data is sent to the audio device.

Secondary buffers can be either hardware or software. Hardware buffers are
created and used if the audio device supports hardware mixing. Hardware

mixing reduces system overhead cost. In the absence of hardware mixing, sys-

tem buffers and software mixing are used with some CPU overhead required

for the mixing. Data in secondary buffers can be ofvarying audio formats. All

data is converted to the format of the primary buffer during mixing.

The primary buffer holds data that is being played by the audio device and
is invariably in the hardware. The most common model used for accessing

the primary buffer is to set a desired output format or to control total out-

put volume. Additionally, applications can write directly to the primary

buffer, but by doing so they disable all DirectSound mixing}

1. We suggest that you avoid writing directly to the primary buffers. The size of audio buffers
is dictated by DirectSound device drivers. Buffers must be filled on time, as gaps in audio
buffers are heard as annoying audio clicks. Timer and thread management becomes fairly
complex with small buffers, and on the other hand, latency is high with large buffers.
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Through an esoteric but not atypical way of using primary buffers you can

reduce latency when you are playing individual short sounds. It works as

follows. Null data in the primary buffer is played in L00 P_M03 E, which forces
data to be sent to the audio device constantly. When sound in a secondary

buffer is played, data is merely mixed into the already playing buffer, and
there is no initialization latency delay.

12.4 Playing a WAV File Using Directsound

Initializing Directsound

First, we need to initialize DirectSound. The starting point for using Direct-

Sound is the DirectS0undCreate() function call. M/e get access to all Direct-

Sound functions through the D1 RECTSO U A D object that D1'rectSoundCreate()
instantiates. ‘

Right after initializing the DI RECTSOUN D object, we’Ve got to establish how we

plan on using DirectSound by using IDirectSo1md::SetC00pemtiveLevel().
DirectS0und has four cooperative levels: DS sc L_\l0 RMA L, DSSCL_PR1OR1TY,
DSSC L_EXCLUSlVE, and DSSCL~W|-JJTEPRIMARY.

The DSSCL_NORMAL cooperative level is sufficient for our current example of

simply playing a WAV file with DirectSound. DSSCL_NORMAL sets up our use
of DirectSound for smooth audio sharing with other applications; note that

the final output format is automatically fixed to 8-bit, 22-kHz STEREO for-

mat, and no format conversions are required when the focus switches.

Here’s the code to initialize access to the audio device through Direct-
Sound:

 

  
 
 
 

  

 DirectSoundCreme_/) is the stalling
point in using DirectSound. The
D 1 RLU I suunu structure returned from
this function provides access to the
next level of functionality, such as
CreateSoundBufier, GetCap5, and soforth.

BOOL CSharedHardware::1a1tHwND hwnd) l
LPDIRECTSOUND pDSound:
HRESULT err;

// create a 3irectSound instance
[)1rectSoundCreate<iNULL. &pDSound. NULL);
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// Setup to use as normal windowed app
err = pDSound >SetCooperativeLevel(hwnd. D5SCL_NORMAL);
1'f(err != DD_DK) l

pDSotmd~>Release();
return FALSE;1

// store away
m_pDScund = pDSoLmd;
// returr success code
return TRUE;

)

SetCo0pemtiveLevel() sets how we plan to use DirectSound. Direc’tSound permits four different levels of
usage:
DSSCL_NORMAL Most cooperative, smoothest resource sharing with other applications. However,

output format is fixed to 8-bit, 22—KHz, mono.
DSSCL_PRIORl'l"{ At this priority level, the application can change the output format.
DDsCI._EXCLUSIVE At this level, sounds from other apps are not heard when this app has the input focus.

Output format can be set.
DDS(‘.l._WRlTEPRIMARY Application gets direct access to the primary output buffers. However, secondary

L buffers cannot be played and application must do its own mixing.

Directsound Structures

To play sounds using DirectSound, we need to set up the sound in a Direct-
Sound format. DirectSound’s D S B U F F E RD E S (3 structure defines the format for

sound buffers. The actual format of the sound data is defined using the stan-

dard WAVEFO RMATEX structure from mmreg. h. Let’s take a look at these structures.

typedef struct _dsbuffcroesc(
DWORD dwS1‘ze;

——-—-y DWORD dwFl ags; _ , , _
WORD dwguffergyteg ; -dwBuflei'Byles should indicate the size ofthe sound
Dwo R D dw R E 5 5 ,~ V ed ; bL1ffer.The application sets this field for secondary
LPWAV E F 3 RMAT EX '|pwfX F0 ma t; buffers, and DLrectSound sets this field for primary

} DSBUFFERDESC. *LPDSBUFFERDESC; bUff€rS- , _-Actual sound format is defined using the standard
typ E def 5 t ,« U Ct { WAVE FORMAT ix structure defined in irimreg.h. 'We’ve

No R D W F0 rm 3 LT d 9 ; included the definition here for quick reference.
WORD wchannels; ‘
DWORD nSanplesPerSec:
DWGRD nAvgBytesPerSee;
WORD nB1ockAlign:
WORD wB1tsPe“Sample;
WORD cbSize;

) WAVEFORMATEX;

The dwFlags field is used both to establish type of sound buffer being created as well as to describe attributes upon
return. Refer to the Directsound documentation for more details. Some interesting flags are
_DSBCAPS__PRIMARYBUFFER Request a primary buffer. If this flag is not set, a Secondary buffer will be created.
_DsBCAPs_sTATIC Sound will be used repeatedly. Designate as good candidate for hardware acceleration.
_DSBCAPS_LOL'HARDWARE Forces the buffer to be in hardware memory.
,DSBCAPS_LOCsOFTWARE Forces the buffer to be in system memory.

Some additional flags to control special effects that we leave for extra credit exploration are _DsBCAPs_CTRLALL,
_DSBCAPS (JTRLDEFAULT, _DSBCAPS_CTRLFRJ£QUENCY, _DSH(‘APS_CTRLPAN and __DSBCAPS_CTRLVOLUME. We will use
_DSBCAPS_CTRLVOLUME later in this Chapter.
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12.4.3 Creating Sound Buffers

We’ve successfully initialized DirectSound. Let’s create a simple secondary
DI RECTSOUNDBUFFER.

 

BOOL CSound::lniHLPDIRECTSOUND pDSound, LPSTR lpszFileName)
I

We wrote a simple W'avFile Load routine based on standard mmia calls in
the winmm multimedia library. Upon return, this function will load
WAVE1=ORMATEX,bufferSize, and buffer-Data into member variables.

HRESULT err
// irst try 'oad wave file into memory
if (!Loadwa‘/File(lpszFilehame)) return tAISE;  
 // Create a device sound buffer

m,dsDesc.dwFlags = DSBCAPS STICKYFOCUS;
m_dsDesc.dwBufferBytes = m_dwS1'zeData;
m_dsDesc.lpwtxFormat ~ m_pwavFmt;

pDSounc—>CreateSoundBuffer(&m_dsDesc, &n_pBufferFns, NULL); (———————|

21.15.  
I CreateSoundBuffer() takes LPDSBUFFERDESC and (LPDIRECTSOUNDBUFFER ”) as parameters. We describe the sur-
face that we’re requesting in LPDSBUFFERDESC. If the Create is successful LPD1 RECTSOJNDBU FFER points to the memberfunctions of the created Sound Buffer.

-The only flag we specified was DSBCAPS_STICKYFOCUS, which will let our sounds be played even if we’re not the
application with the input focus. However, if we lose focus to another Dircctsound application, we will lose our

)1reCt' audio output.
mat for I DSBCAPS_GLOBALFOCUS in DirecD( allows our sounds to continue playing even if we lose focus to another Direct-

Sound application. However, cooperative levels of DDscL_axcLus1va will override even the DSBCAPS_GLOBALFOCUS
be stan- setting-_
;truCtu1.€s_ -WaveFormat and BufferLength are set to the values returned by the LoadWavFile() routine.

M.‘“s.m..a.:.‘.L1' //////'/// tran5‘er data from memory to ds3uffer.
// frst lock the entire buffer. 

 
LPVUID pB'k1, pBlkZ: // dsound maw'nta"ns sp11't~buffers >
DNORD dwsizel, dwSiLe2; // size of each buffer :
m_pb'ufferFns—>Lock(0,m_dwS17e[)ata,&pBl<l,&dwS1Ze1,&pBlk2,8-dv/Size2,0): ac

fthesound // wr"te data into possibly 2 buffers that Directsound returns E
ecorldary CopyMemory(pBlk1, m_pSrcData, dwSize1):’TP“ma"Y if (dwS1ze2 > O) 4-——

CopyMemory(pBlk2, m_pSrcData+dwSi'ze1, dwSize2);
Standafd // unlock both buffers and return
.h.Weve m_pBufferFns->Unloc<(pBlkl, dv/Sizel, p3lk2, dwS1'ze2);"’TenC9« return TRUE;

}

 
Directsound sees sound buffers with a circular reference pattern. Circular views enables “infi-
nite” streaming buffers: as the front of the buffer is being consumed, the rear of the buffer can
be refilled. Circular views also make it easy to implement looped sounds for “static” fixed size
biffers. Locksf), Unlocks(), and data access with circular views use two buffer access descriptors,
where a buffer access descriptor is a (pointer, size) combination.  
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I 2.4.4

l2.4.5

Playing the Sound

Now that we’ve created our sound buffer, playing the sound is as simple as

invoking the IDirectSoundBufi‘er::Play() member function.

BOOL CSound: :Play()
(

m_:Bu‘FterFns‘>P“a_v(O, 0, DSBPLALLOOPING); (————;————;
return TRUE;

Directsound requires the first two parameters to lD1'rectSoundBuffer::P1uyO to be 0. The third
parameter allows for flags to control the Play mode. Currently the only flag defined is
DSBPLAYJOOPING; therefore, DircctSound permits sounds to be either PlayedOnce or Played»
Forever. Playing a secondary buffer will mix the data from the sound buffer into the primary
buffer. IDirectS0undBujjér::St0p() can be used to stop sound buffers that are playing.

Demo Time

Run the demo that corresponds to this chapter. Since we have set the sound

to be played in tOD?_MODE, you should hear the sound play continuously.

Try switching to another application such as the Calculator. You should still

hear the sound even though our application has lost the input focus. This is

the result of creating the buffer with the DSBCAF‘S_STICKY FOCUS flag. Try

invoking a second instance of our sound application. You will hear only one

sound being played.

Mixing Two WAV Files

Mixing two WAV files is as simple as creating another secondary buffer and

playing it. DirectSound will automatically mix playing sounds together.

It seems ridiculous to show this code, but we’ll do it anyway. Run the demo

that corresponds to this chapter and create a second sound to invoke audio
mixing.
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BOOL 0nNewSound(LPSTR lpszFi' leNam.e)
(

// create new sound
Csourd *3NewS0uncl = new Csound;
if (!pNewSound->Init('pszFileName)J return FALSE:

// start the sound playing
pNewS0und~>Play(DSBP_AY_LO0FING):

// and store handle in list
gS0unds[gnSounds] = pNewSourd;
gnSounds++;

\4 12.5 Controlling the Primary Sound Buffer
So far we’Ve played a WAV‘file with DirectSound using the system’s default
audio format. \I\7hat if we want to change this output format to work with

gush,‘ sound samples of higher (or even lower) quality? To change the output for-
,u1d Sn-11 mat, or to change the total output Volume, we would need to control the
_ This is i’ primary sound buffer.
Try

unly one

e sound

Initializing to Get Control of the Output Format

V\7hile initializing DirectSound, we need to set the CooperativeLeVel to

allow us to change output format privileges:

BOOL CSnaredHardware: :Ini't(HwND nwnd)
l

E+-
n:
<n.

LPDIRECTSOUND pDSound;
HRESULT err;
// create a D1rectE0und instance
DirectSaundCreate(NULL, &pDSounr1, NULL):

// Setuz to use as prionity ap:

. A err = plsolmd->SetC0ope“ati'veL:ve1(hwnd. DSSCL_PRIOR1TY);
iferand if (err != 3D_0<) (
V V pDSound—>Release(7‘:
her‘ 5 return FALSE:‘ l

m_pDSourd = pDSuund; yreturn TRUE;

SetCa0perativeLe1/el().t0 DSSCL_PRIORI’[")’. At this
priority level, the application can change the out-
put format.

e demo

e audio

Creating a Primary Directsound Buffer

Now let’s create a primary DirectSoundBuffer object so that we can get
access to the IDirectSoundBufi‘er::SetFormat() function.
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BOOL CSouhdPr1'ma>"y::In1t(LPD1RECTSOUND pDSouhd)
(

// Create a primary sound bltter
m_dsDesc.dwF‘ags = DSBCAPS_PR1MAR‘w BUFHR l DSBCAPS#CTRLVOLUME;
m_dsDesc.dwBuft'erBytes = O;
m d5Desc.Tpwf><Format = NULL;
3DSouh:1—>CreateSouhdBut:er(Em_dsDesc, &m_pBufterFns, NULL):

I Set flags to DSBCAPS__PRIMARYBUFFF.R to request access to the primary buffer. Also set
DSBCAPS__CTRLVOLUME flag to allow volume control to be queried and set.

-W'e cannot specify the size of the primary sound buffer and must set the size to O.
' Similarly, we cannot specify output format during creation, but can change it using the

SetFormat(,l function call; therefore set the waveformat pointer to NULL.

// fihd out the format of the primary butter
DHFJRD dwS1'zeToA7 ‘oc; 4
m_pBUt‘erl‘ns->GetFormat(NULL, C, &dwS1‘7eToAHoc);
m_pFht = (NAVEWJRMATEX *)(hew RYTE[dwSizeToAHocJ>;
m_pBUtterFss->GetFormat(&m_pFmt, dwS17eToAHoc, NULL);

IDirectSoundBu_fi‘er::GetFurmat() must be called twice. Once with a
NULL pointer to find out the size of the buffer to allocate and then
with a valid pointer to the buffer just allocated.

Now that we have created a primary DirectSoundBuffer object, we have

control over the output format and the total output volume. (Note that the
DSBCAPS_CTRLVOLUME must be set to allow the volume control to be modi—

fied.) Here is sample code that changes the volume and the output form at

of the primary buffer.

// change the fzrrnat of the pri'mar_y butter
m_oFmt->r"SaTIp'.esPecSec *= Z:

m_pFmt->hAvgBytesPerSec = m_pFmt->nSamp1esPerSee * m_ptrnt~>nB1ocl<A11’gh; (:7pEutferFhs->Settormat(m_pFht);

For a valid WAVE-FORMAT specification, AverageBytesPerSec must
be a product of the SamplesPerSec and the BlockAlignnient.

// get & set tota1 audio volume
long Woiumec
err = h_pBufT’eeFns—>set\/o'uume(&Wo'ure);
1\/oMme—:*1Volume; (
err = rn_pButterFhs—>SetVo1ume(‘Vmume);

DirectSound does not currently support making sounds louder. The Volume returned will be
the current attenuation level of total Volume. Doubling this already negative Value wil cause
the sound Volume to be greatly reduced‘ If the DSBCAPS_CTRJ_VOLUME flag was not set. both
these calls would have returned a DSERRMCONTROLUNAVAIL error indicating that volume con-
trol was not set up during buffer creation.
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Demo Time

Run the demo that corresponds to this chapter. Check the primary Direct-

SoundBuffer option to enable the format and Volume controls. Play around

with the Volume and sample rate controls. In particular, try reducing the

sample rate ofthe output format and see ifyou can detect a quality degrada-
tion. Switch to another application with DirectSound audio RSXDemaApp

and see if the format/Volume changes persist.

By this time, you've had an overview of DirectSound and what it does for you. if you
worked through the code samples, you have

I played a WAV file using DirectSound,

I mixed two WAV files using Directsound, and

I controlled the final output format and volume while your application was in focus.

In the next audio chapter you will be introduced to 3D sounds and special effects using
lntel’s RSX SD.
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CHAPTER '13

=%—:-

Realistic 3D Sound

Experience: RSX 3D

WHY READ Now that you've looked at Directsound, you might be wondering if there is a simple way
THIS CHAPTER? of playing just a generic sound file without taxing application performance. Intel's Realistic

ED Sound Experience (RSX 3D) library helps you do just that. It also gives you a 3D sound
model that mimics the real world environment.

To get the most out of this chapter, we recommend that you run the audio demos on the
companion CD while you are reading this chapter or beforehand.

In this chapter you will

2i"
n:
<:
0.

get an overview of RSX 3D features,

see how simple it is to play and mix two or more audio files,
learn how to use the RSX ED sound model to achieve a realistic sound experience, and

learn how to add reverberation and Doppler effects to your application.

Microsoft’s DirectSound provides direct access to audio devices under

Windows and allows developers to implement low latency audio applica-

tions. Even though Directsound provides some level of abstraction from
the hardware, developers must still handle the intricacies of various devices.

Intel’s Realistic 3D Sound Experience (RSX 3D) library provides a simple

high-level interface for rendering audio under Windows. It implements an
abstraction layer above the Directsound and WAV APIs without sacrificing
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audio performance. In addition, RSX 3D introduces a new 3D environment

that models the sounds physical properties, making for an immersive
experience.

In this chapter, Well first show you how easy it is to play one or more VVAV

files using RSX 3D. We’ll then give you an overview of the RSX 3D environ-

ment and show you how to provide realistic 3D sound in your application.

Finally, we’ll glance over RSX 3D support for streaming audio data.

13.1 RSX 3D Features

RSX 3D is a high-performance audio library that provides developers with

a simple interface for rendering audio without taxing application perfor-

mance. Depending on the configuration of your system, RSX 3D uses either

the DirectSound or WAV API to access the audio device. Depending on the

power of you processor, RSX 3D automatically scales the output to sound

better on high-end processors.

RSX 3D’s simple interface allows developers to play audio files from either
local drives, networked drives, or even across the Internet. The files them-

selves can be of different formats (WAV or MIDI) and different sample
rates.

One of RSX 3D’s most exciting features is its new 3D audio environment,

which models real 3D graphics environments. RSX 3D can position sounds

anywhere in 3D space. The sound may be above your head, below your feet,

behind you, in front of you, and so forth.

Say, for example, you are standing in a hallway and a door slams shut to

your right. The sound will reach your right ear earlier than it will reach

your left ear (this phenomenon is called Interaural Time Delay, ITD). The

sound will also be louder in your right ear than in your left ear (this is

known as Interaural Intensity Difference, IID). With these cues your brain

is able to correctly locate the sound as originating from your right and not

from your left. RSX 3D uses these and other cues to produce realistic sounds

as objects move around a scene.1 RSX 3D also supports modifying sounds for

special effects including Doppler, reverberation, and pitch calculations. In

1. lTDs and IIDs are combined with other cues to form Head Related Transfer Functions (HRTFS).
Clinical probe microphones are inserted into the ears of volunteers to record HRTF measurements. RSX
3D uses HRTF technology and HRTF measurements to simulate 3D sound on PCs.



205

CREATING AN RSX 3D OBJECT I I85

this chapter, we will work through examples of using RSX 3D’s sound posi-

   
ironment
fgive tioning capabilities and its special effects capabilities.

I I

Ore WAV 13.2 Creating an RSX 3D Object
’ €I1VifOn- The RSX 3D audio library uses Microsoft’s Component Object Model

plication. (COM) interface to export its features. In order to use any COM module

3- and the COM functions you must initialize the COM libraries at start-up

time. You can initialize the COM libraries by calling the C0Ir1itialize() func-

tion. In addition, you need to release any COM objects used by your appli—

cation and then call C0Um'm't1'czlize() when your application terminates. } i‘
>ers with ‘ 1

perf0r_ To use RSX 3D, you must first create an RSX 3D object within your applica-
' h tion rocess s ace. You can use C0Create1nstance() to create this ob'ect, ;f Ises eit er P P _ *

1g on the specifying C L8 1 D_RSX2O in the Class ID field. RSX 3D only supports this in- ;
3 sound process creation model where RSX objects are created within the applica-

tion memory context. "

tn either I 1

3 them— // rm ial 1 ze we COM librahi es. _ (T... When using C0MII1ake sure to

m 16 w_co2esu1t = CoIm‘ti'al1'ze(NULL): 'f1°fiH°1N1TGUTDbCf°IC
P i‘ (=A LED(rn_coResult)) { ;¥1C1ll%<1€Of1£=§52LIB dA-'><Message3cx("Fa1‘1ed to lead COM l1'bhah1'e"") '1“ 1“ - :33

re U M .1 ; D -turn off automatic use of
) precompiled headers.

nment,
// Create the ?SX2O object and get an Iunkhowh poihtcr to :he object

nsoufnds HRESUL' hr = COCr‘eateIr‘stahce(tour eet CLSID_RSXZO, <1 GUID for RSXZO. De fined in rsx.h.
, NU ,L, {J Create object within processes (only supported mode).

C LS(';TX_I NP C ('L_Sl RV E R , (1 Only need to create object and don’t care about its methods.
I I ,1 Unknown , (1 Holds the IUnknown instance of the object.

lut to (void ** ) &m_l:Uhl<);

"€3Ch // Make sure at everything is fihe..
D)_ The If he app : i zaticn tails here, Just get out..
isis 1't( (FAILED(hrZ) | (!'n_lpUhl<) > <,' At><MessageBs><( "Failed to Create RSX Object.\h”
"U brdln "CoChcateZh5tahce Failed — Please run RSX SetLp\H" ):
and not Postr«essage<wM_cL0s:>;

csounds } “tum *1:
.unds for

ions. In I e * 9

»lRTFs).
ments. RSX



206

186 I CHAPTER ‘I3 REALISTIC 3D souno EXPERIENCE: RSX 3D

13.3 Play one WAV file

Once you have created the RSX 3D object, it is a very simple process to play
any WAV or MIDI audio file. But before we go into the details, let’s first

introduce the environment that RSX 3D uses to describe its objects.

To play an audio file with RSX 3D, you need to create only two objects: an

emitter and a listener. I tend to think of an emitter as a jukebox, and a lis-

tener as my own ears—just like in the real world. In RSX 3D a cached emit.

ter is an object that handles reading and decompressing an audio file, and 3

direct listener is an object that handles sample rate conversion and mixing
and writing the output data to the audio device.

So let’s create the direct listener first. As with any good COM object, you

must use the CoCreateInstrmce() function to create the listener object and

pass the CLS1 D_RS><|3IRECTLISTENER for the Class ID parameter. Once the

object is created, you call the I11itialize() function to initialize the listener. In

all of the initialize calls, noticethat you must also pass in an IUnknown
pointer to the main RSX object. Also notice that you can only have one lis-

tener active within an application and that you can call the initialize func-

tion only once throughout the life of a listener.

 

HRESULT Cttsxsampleviewz :CreateDf rectL1'stener()
l

// First, we need to create an "nstan:e of tte listener object
HRESULT‘hr = COCreateInstance(

CLSID_?SXDIRECTLISTENER,
NULL,
CLSCT><AINP¥OC_SER\/ER,
,l)_lRSXl)irect_istener,
(void "‘”*' ) &m,lpDL>;

// If all is fine, you must initialize
// the Direct Listener ''nterface
// before you do anything else.
"f(SUCCEEDED(h") && rn_lpDL) {

RSXDIRECTLISTENERJESC rsxDL ;
ZeroMcmory(&rsxDL, 5izeoi‘(r5><DL);

rs><DL.cbSize = sizeot(rsxDL);
rsxDL.hMainNn' = mmwwu;
rsxnl .dwlJser = 0;
r's><DL.lpwf : NULL;

{I GUID for Direct Listener object. Defined in rsx.h

C Create object within process context.
C Direct Listener Interface identifier
0 Holds the listener instance

 

 

hMainWnd: DirectS-ound requires a win-
dow handle. You can set the Registry Key
Device Type to DIRECTSOUND.

lpwfi Points to WAVEFORMATEX structure
which specifies the format of output data.
If NULL, RSX uses the default format in
the RSX configuration, or in the Registry.
Follow the Registry Settings link in Lhe
RSX online help for more details.

I3.«
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hr = m_1pDL—>In"t1'a‘ize(&r5><DL. m_lpUn|<I*;
l
return hr;

ss to play
’s first
ts.

Similarly, you call the CoCreateInstzmce() function to create the cached emitter

jects: an i With CLSID_RS><CACHEDEMITTER in the Class ID field. Before you can call any
d a 115- ‘ other method within the emitter, you need to initialize the object by calling the

hed emit_ ’ 1nitialize() function.
I e, and a -

* mixing ‘ Notice that, for a cached emitter, you can specify an audio file that exists on
a local drive, network drive, or even on a URL, a Web site, or an FTP site.

(Note: To use URL-based emitters, Microsoffs Internet Explorer 3.0 or later

ct, you 7 must be installed and configured on your computer.)
ject and ‘
ce the

stener.In
_ HRESULT CRs><SarrpleV1'ew::CreateCac1edErrttter(

OWI1 LPCTSTR pszFfle,
eons 115- IRS)(CachedEm1‘tter** 1ppCE)

Z9 [1130 HRESULT hr = Co(7reatelnstanCe(
CLSID_RS)(CACHEDEMITTE?,
NULL,
CLSCT>(_iNPROC_SERVER,
llD,lRSXCa<:hedEmitter,
(void ** )lppCE):

1'f(SUCCEEDED(hr) && *1ppCE) (
RSXCACHEDEMITTERDESC rs><CE:
Zcr“oMcmory(&rsxCE, s1'zcof(rs><CE)):

EI-'
L:
<
n.rs><CE.cbS1"ze ~ si‘ze0f("s><CE);

rs><CE.dwF1ags = RSXEMITTERDESC_PODOPP-ER [
RSXEMITTERDESCJOREVERB l
RS><EMITTE?<DESC_POATTENUATE l
RSXEMITTERDESCJOSPATIIALIZE:

r'sxCE.dwU:er = 0;
strcpy(rsxtII .s7Fi"|enarne, ns7H’le);
hr = (*lppCEJ"5In1’ti'al1ze(,&rs><CE, m_lpUnk):

V
return hr;

. 13.4 Play One WAV File
Once the emitter is initialized, you can call the Contf0lMedia () function

with RS><_P LAY in order to play the file. All set? So play it, maestro! Put on

your headphones, or crank up your speakers, and enjoy.
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void CRs><Samp1e\I1'ew: :OnPl ay0'ieF1'1e( )
l flnitialStartTime: starting position in seconds.tlreateni rectl istener();

Cr'eateCachedEm1'Lter(“file1.wdv", &‘H_‘pCE);
m_lp(‘.F'>ControlMedia(?SXWPIAY, U, U

/ .Of);
nLoops: Number of loops to play. 0: infinite

l3.5 Mixing Many WAV Files

That was simple, wasn’t it? Now let’s see what it takes to mix two different

audio files together. In real life you only need to put another jukebox in the

same room, and you would hear both of them together. Well, the process is

very similar in RSX 3D. If you add another emitter to the set, then you’ll

have two audio files playing at the same time. RSX 3-D takes care of mixing
them for you and delivering the mixed output to the listener object. That’s
all it takes!

\/Olt; CRs><Sample\/lew::OnPlayMi><twoaud‘ofiles()
I

CreateD1‘rectListener(I*; CJOnlyonelistener.
CreateCachedEmit:er("filel.wav", &m_lpCF); <jJSoundsourcel.
CreateCachedEm7't:er("fileZ.wav", &m_lpCEZl; CJSOundsource2.
m_|pCE*>C0ntr0lMed'ia(RSX,PLAY, 0, 3.01‘); C11’-’laysourcel.
mjpCE2->Con:rolMedia(RSX PLAY, 0, 0.01‘): CJPlays0urce2.

13.6 RSX Goes 3D—True 3D Sound

Well, let’s pause a11d think about the model that RSX 3D uses to represent

its objects. Recall that RSX 3D mimics the real—world environment, using a

sound emitter and a listener to represent its objects. Why not take this a bit

further and add positional attributes to these objects (emitter and listener)?

That’s exactly what RSX 3D does (see Figure 13-1).

Similar to 3-D graphics objects, RSX 3D objects can possess positional 3D

attributes based on x,y,z coordinates. RSX 3D uses the relative 3D position
between the listener and emitter(s) to calculate the audio volume for the

left and right speaker channels. For example, if you position the emitter
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Hears in left ear
Hears in both ears

FIGURE 13-‘! Physical sound properties.

exactly to the left of the listener, you would hear the sound predominantly
from the left speaker channel and in your left ear—just like in real life.

Before we delve into the tiny details, let’s look at the model that RSX 3D

uses for the emitter. As you know, sound travels the farthest in the direction

in which it is pointing, less to the sides, and even less in the opposite direc-
tion. You also know that sound volume decreases as you move away from
the sound source.

The RSX 3D sound emitter mimics real-world conditions. As you can see in

Figure 13-2, RSX 3D defines two ellipses for the emitter, one inside the

other. The inner ellipse represents the ambient region where the sound

retains maximum intensity and contains no directional information. The

outer ellipse defines the region where the sound intensity decreases loga—

rithmically as you move away from the emitter. The emitter does not con-

tribute any of its audio outside the outer ellipse.

Ambient region

Minimum back
range

/9
Maximum back
range

“P32? 1

FIGURE 1 3-2 RSX elliptical sound model.
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You define the ellipses by the distance of the front and back ranges from the
emitter. Different emitters on the scene could have different sound charac-

teristics; for example, louder emitters would have larger ellipses.

As the relative position of the emitter and the listener changes, the sound

characteristics change to mimic the real-world situation. The picture in

Figure 3-2 shows 2D ellipses; in RSX 3D the ellipses are actually 3D
ellipsoids,

13.7 Setting Up 3D Sound with RSX 3D‘

Now let’s see how we can use RSX 3D to define the 3D position of the

objects, emitter and listener, and allow it to deliver a realistic 3D sound expe-
rience. If you go back to where we created the emitter, you’ll notice that we
disabled the special effects such as sound attenuation, Doppler effect, and
so forth. At that point, we only wanted to play some generic audio file. Now

we need these cool effects, so let’s go back in and enable them. The boldface

line in the following block of code enables all 3D sound effects.

HRESLHT CRsxSarnpleV"'ew::CreateCached[mitte"(
LPCTSTR pszfile.
IRSXCachedEm1'tter** |ppCE)

l
HRESULI hr — COCrcatclnstaace( CLSID_RS)(CACHEDEMITTE?, NULL. C-SCTX_INPRDC_SERVER, llD__IRSXCarhedErfitter,lppCEl:
'If(SUCCEEDED(hr) M *lppCE) (

RSXCACHEDENITTERDESC FSXCE2
ZeroMemory(&rs><CE, s1‘zeof(rs><CE‘;);
rsxCE.cbSi‘ze = sizeuf(rsxCE);

rs)-.CE.dwFlags = 0;

rsxCE.dwUser = 0;
strcpy('s><CE.szF1'lename, pszF1'|e):
h“ =(*1ppCE)->lnit1aHze(&rsxCE, m_1pUnl<);

1

return hr;

VVe can now specify the model that describes the behavior of the emitter.

The inner ellipse is specified by the fMi n F r O H t and fM1' n B a C K parame-

ters, and the outer ellipse is specified by the M a X F r" 0 n t and M a x B a c k

parameters as shown in Figure 13-2. Finally, you specify the maximum

intensity of the ambient region and then call the SetM0del() function to
register the model with RSX 3D.
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void casxsampleview::SetEmi:terPosition(1RSXCachedEmit:er* 1pCE, int x, int y, in: z)

// Now we should set the emitter model
RSXVECTORSD v3d;
RSXEMITTERMUDEL rsxEModel:
rsxEM0dEl
rsxEMode1

cbSize = 5ize0f(RSXEMITTERMCDEL);
.fNinFront = l00.0t;

rsxEMOdeli
rsxEMOdel.
rsxEModel.
rsxEMode1

fNihBack = 100.0f;
fMaxF“ont = 800.0t;
fMaxBack = 200.0f:
flntensity = 1.0f:

1pCE->Se:M0de1(&rsxEM0de1);

Finally, we need to position the emitter in the 3D scene and specify where in

space it is pointing. You can call the SetPosi1ion() function to set the x,y,z coor-
dinates of the emitter and call the SetOriem‘ation () function to define the direc-

tion in which the emitter is pointing.

// P7ace the emitter at the origin
v3d.x = (foat)x;
v3d.y = (foat)y;
v3d.z = (fioat)z:
lpCE->SetPosition(&v3d);

// Point the em‘tter along the Z axis —
// into the computer screen.
v3d.x = 0.0f;
v3d.y = 0.0f;
v3d.z = 1.0f;
1pCE—>Set0riehtation(&v3c);

Similarly, let’s position the direct listener object in terms of the 3D world

coordinates. The direct listener has three properties: its x,y,z position in the

3D world, the direction in which the listener is facing, and the up direction

of the listener. Notice that the up vector is always perpendicular to the ori-
entation vector. You can use the SetPosition() member function to set the

x,y,z position of the listener. You can use the SetOrientation () function to

set both the orientation and up vectors.
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rRESULT CRsxSampleView::SetListeher3osition(int X, int y, int z)

{
QSXVECTORSD v3d;
QSXVECTORBD v3dUrieni;
¥SXVECTOR3D v3dLpOrient;

// Se: the DirectLis:ener’s posiiion (yemmmn.x = (float)x;
.y = (floatbyz
.z = (float)z;
pDL»>SetPosition(&v3d):

// Listener orientation settings
// Tais vector is the direction the listener is facing
v3cOrient.x : . ’;
v3cOrient.y = ,
v3cOrient.z = l ;

// "Jp" vector — This vector points to which direction is up for the
// listener - it can not be parallel to the ‘is:ener orientation vector
v3rUw0rient.x = 0.0+;
v3cU30rient.y = l.Of;
v3cU3Orient.z = 0.0f;

// : tne oriertatioh of the listener
mw L—>SetOricrtation(&v3dOrien:. &v3dUpOrient);
re n 0

By now you’ve positioned the listener and emitter as if they were objects in
the real world. RSX 3D uses this information to calculate the correct inten-

sity for the left and right speakers in order to deliver a more realistic listening

experience. As you move the listener and emitter objects around (by chang-

ing their position or orientation), RSX 3D automatically recalculates the

correct output for both speakers.

From a 3D graphics programmers point of vi ew, you only need to attach an

RSX 3D sound object to your current 3D graphics objects and just move it

around as part of the 3D graphics object. In turn RSX 3D figures out the

audio output based on the position of this object.

l3.8 Adding Special Sound Effects with RSX 3D
13.8.1 The Doppler Effect

Just in case the Doppler phenomenon is new to you, the Doppler effect is

the apparent change in a sound when there is relative motion between

the emitter and the listener. For example, as an airplane travels toward a
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listener, sound waves are compressed, effectively increasing the pitch. As the
airplane travels away from the listener, the sound waves are rarefied, corre-

spondingly decreasing the pitch. In both cases, the listener “hears” sound at

a different pitch than what the emitter produced.

To enable the Doppler effect with RSX 3D, you only need to assure that the

RSX M I TTERDESC_NODO P P LER flag is not set when you initialize the emitter.

The Reverberation Effect

Just in case reverberation is new to you, reverberation is the “slight echo”
effect heard when sounds are generated in enclosed areas (from small

chambers to wide canyons). Sound waves travel directly from the sound
source to our ears. But in enclosed areas these waves also bounce off the

surrounding walls and return to our ears many times. Reverberation is the
collective effect of these indirect sound waves.

To enable the reverberation effect with RSX 3D, make sure that the

R S x EM; TT E RD ES C_\l O R E V E RB flag is not set when you initialize the emitter. You

then use the SetRe1/erb0 function to set the reverberation model parameters.

RSX 3D uses two parameters to define reverberation: decay time and inten-
sity. The decay time models reverberation decay (in seconds), and the inten-
sity models sound absorption.

// Must firs: get a pointer to an IIDJSXZ object to use the
// SetReverb() function.

HRESULT hr = mjpUnk’>QueryIntertace(IIDJRSXZ. (v0i’d**1&m_lpRSX);
if (FAI_ED(hr) |l !m_IpRS><) (

AfxMessageB0><(“Er“ror getting IRSX2 1nter“face\n”);
return 0;

l
Common reverberation parajnetersi

// Now set the reverb model R°°mTYPe Decay Intensity
RSXREVERBMODEL rsxRvb; RPOM - 0-2
rszRvb.cbSize = sizeofl’rsxR\/D): (’H’lMBER ‘ 02
rs><R\'b.bUseReverb TRUE; STAGE ' 02
rsxRvb.t"DecayTime 1.5t; HALL ' 0'?
rs><Rvb.fIn:ensity 0.11‘; PLATE ' 0'2

rn_l pRSX->SetRever‘b(&r‘s><Rvb);
rnlpRS1<~>Re1ease():
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13.9 Audio Streaming in RSX 3D

RSX 3D supports two more objects for audio streaming—streaming emit-
ter and streaming listener——where the application can examine or modify

the output of the emitter on its way to the listener. Streaming emitters are
great if you dynamically generate audio input (instead of reading a file), or
if you want to stream audio from a network or want to add additional
effects to the data before handing it to RSX 3D. Streaming listeners are use

ful for mixing RSX 3D output with other audio output or writing the data
to a file instead of to the audio device.

Audio streaming with RSX 3D also provides for callback mechanisms and

multiple stream synchronization.

Since the streaming sound model is exactly the same as we’Ve used for 3D
sounds earlier, we prefer that you refer to the RSX 3D documentation for
more details.

WHAT HAVE This is a good time to run the RSX 3D samples for this chapter on the CD to get the most

You LEARNED? out of this chapter.

In this chapter, you learned how easy it is to play and mix multiple audio files with RSX 3D.
You were then introduced to the RSX 3D audio environment, where you learned how to

set up the position and orientation of the audio objects and how to change their sound
characteristics with the Doppler effect, attenuation, and reverberation. Finally, we briefly
looked at the streaming objects supported by RSX 3D,
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Chapter 14 An Introduction to Direct3D

Swim Rgx 3D_ I I Understand Direr:t3 D's target

earned how to I Look at Direct3D architecture and modes
ge their sound. I Use Direct3D to draw a simple triangle with default states
ally, we briefly

Chapter 15 Embellishing Our Triangle with Backgrounds, Shading, and Textures

I Add bells and whistles to the simple triangle including shading, texture mapping
and Z-Buffering

I Repaint the background with Direct3D

Chapter 16 Understanding and Enhancing Direct3D Performance

I Measure performance of the simple triangle samples

I Use Ramp model driver to get better performance

I Measure improvements

Chapter 17 Mixing 3D with Sprites, Backgrounds, and Videos

I Mix 3D objects on top of 2D background

I Mix 3D objects on top of 2D sprites and video

I Use video as a texture map source

Part V deals with 3D graphics for Windows 95. We'll start in Chapter 14 with a short con-
textual background to BD on the PC. That should fill you in on how 3D evolved on the PC.
Then we'll dive into an overview of Microsoft's Direct3D architecture.
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Next we will get you started with Direct3D programming. There is a lot to be learned be-
fore you can see results with Direct3 D, so Chapter 14 has simple ambitions~to show you
how to render a single triangle with Direct3D.

Once you have learned how to render the simplest triangle, you will be in a position t0
understand how to enable various features in Direct3D. Chapter 15 shows you how to

access features such as coloring, shading, texture mapping, Z—Buffering, and repainting
backgrounds. Chapters T4 and 15 show you how to get your code running; they do rm
worry about performance.

In Chapter 16, we return to our performance—oriented angle of rendering. First we meg-
sure the performance of the code from the previous chapters. Then we focus on the high.
performance rendering path in Direct3D—the Ramp model. The Ramp model offers a
significant performance boost, but the model is not straightforward. That is why we delibt
erately delayed introducing this performance option until after we described the basics of
Direct3D rendering.

Once you know how to render high-performance SD triangles, how about mixing in 2D
graphics and video, that is, mixing in the output from the previous parts of the book? We
have dedicated Chapter 17 to mixing. In keeping with the previous parts, we use the list
management features of RDX to mix sprites and video objects. All the Direct3D code in
Chapters 14 through 17 is based on the Direct3D ExecuteBuffer model that was released
as part of Microsoft's DirectX 3.0 SDK. The ExecuteBuffer API model is hard to debug, so
Microsoft is releasing a new API model (the DrawPrimitive API model), with Version 5.0
of DirectX. Version 5.0 will be released in 1998 along with Windows 98. THIS 1

Why didn’t we use the upcoming API? The DrawPrimitive API was still under development
when we wrote the book. We decided to present you with the latest information possible.

We have also ”printed" this chapter in electronic form on our companion CD. This CD-
based chapter will show you how to get going quickly with DrawPrimitives. The perfor-
mance of DrawPrimitives will continue to improve, and we recommend that you perform

your own measurements of the released version.

;,2
§:
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By the time you have worked through this chapter, you will

understand the problem space that Direct3D is targeted at,

get a glimpse of the architecture of Direct3D and its different modes, and

see how Direct3D works with DirectDraw,

learn how to get access to 3D functionality and 3D devices,

learn how to connect DirectDraw’s surfaces and palettes to equivalent Direct3D
objects, and

I learn how to use execute buffers and viewports to render a triangle using Direct3D.

g 14.] Some Background on 3D on the PC

l
l

i

l Standards for 3D (such as OpenGL and PHIGS1) were developed on work-
l stations and provide powerful capabilities for 3D application developers.
§ But these rich 3D libraries on the PC offered unacceptably poor perfor-

y mance when they were implemented. Developers using 3D on the PC relied
l

1. PHIGS stands for PrograIn1ner’s Hierarchical Interactive Graphics Systems.

I197:
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heavily on high-end graphics accelerators to deliver acceptable applications,
These expensive 3D graphics solutions were targeted to serious users

(Computer-Aided Design, CAD, for example). As a result, 3D on a PC was
out of reach for the casual user.

Then enterprising game software developers invented creative techniques

for reducing the computational cost of 3D (primarily by constraining the

3D models). These approximated 3D solutions still provided a compelling
illusion of 3D and triggered a wave of excitement for the PC as a platform

capable of delivering 3D.

Prominent vendors introduced general—purpose 3D solutions tailored

specifically for the PC, including Reality Labs by Rendermorphics, BRender

by Argonaut, RenderWare by Criterion, and 3DR by Intel. These general-

purpose 3D libraries were not as fast as in-house solutions tailored for

application—specific needs, but they were fast enough to work with undemand.

ing 3D applications. They were also designed to use hardware accelerators
when available.

Encouraged by the emergence of 3D libraries and applications, graphics
vendors started building low—cost 3D hardware accelerators. Unfortunately

the multitude of software solutions did not offer graphics vendors a stable

target to deliver cost~reduced accelerators. Similarly, because of the nu1ner—
ous variations in hardware acceleration features, developers had to custom-

ize their products to each individual accelerator.

In an attempt to move toward a ubiquitous 3D solution, Microsoft started
work on Direct3D, intended as an interface to 3D hardware devices. Since

the feature sets of the hardware offerings differed, Microsoft realized the

need for software emulation to provide developers with a minimum base-

line of functionality. In 1995 Microsoft bought Rendermorphics to inte-

grate Reality Labs into their universal 3D solution. In working toward a
universal 3D solution, Microsoft aimed at providing hardware vendors with

a single driver model at which they could target their accelerators.

The initial response to Microsoft’s software emulator was a consistent

demand for more performance. Microsoft responded by providing
Direct3D with two modes——Retained mode and Immediate mode—offering

different feature and performance capabilities. In addition, Microsoft pro-

vided two different implementations of the software emulation pipeline-
RGB a11d Mono. The various combinations of modes and drivers offer a

variety ofAPI abstractions, feature sets, and quality and performance levels.
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PPliCation5_ So 3D on the PC has become a reality, although it is still in its fledgling  

 

  

users state; whereas video, audio, and 2D have had a few years and several iterations

11 E1 PC was to mature. Therefore we will continue to see evolutions in performance,
quality, functionality, and API abstractions in future offerings for 3D.

_ Nonetheless, Microsoft’s Direct3D has established itself as the foundation ‘,1

e.Ch.mqu;S for further iterations.aimngt e
com ellin

apiftronf 14.2 Introduction to Direct3D
Figure 14—l shows the current display architecture available under Win-

afloredp clows 95. In this chapter we are concerned with the interfaces within the
S’ BRender ellipse outlining the Direct3D boxes.

ge1}eral— Direct3D is part of Microsoft’s DirectX SDK. To application developers,
ed for Direct3D provides APIs and services for 3D manipulations. To hardware .
undemand‘ vendors Direct3D provides a single driver model to enable hardware accel—
elerators eration. Most significantly, Direct3D guarantees 3D functionality to software pg

developers with a software-based emulation layer. Hardware vendors can 3‘

graphics accelerate those features that they feel fit their price/performance budget. ‘

fortunately Direct3D is closely integrated with DirectDraw. Direct3D makes extensive
Ors 3 Stable use of the DirectDraw surface model to access hardware acceleration features
the numep such as Bltters and Page Flippers. This integration with DirectDraw makes it y _
to Customl possible for Direct3D to use advanced features such as video textures and 2D E

overlays. ‘ i
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FIGURE 1 4-‘! Display architecture under Windows 95.
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Direct3D offers 3D features with two distinctively different flavors:
Retained mode and Immediate mode.

I Retained mode offers high—|evel abstraction of 3D objects and manipulations,
It has a sophisticated geometry engine that allows entire scenes to be manipulat.
ed with high~leve| API calls. But the functionality comes at a performance cost

Immediate mode offers a very thin layer of software functionality with high
performance. It also offers direct access to hardware acceleration features. But
Immediate mode does not have a geometry engine, and object transforma-
tions must be computed by the application itself.

The two Direct3D modes offer different levels of API abstractions. In addj-

tion, multiple implementations of Direct3D drivers can be installed on a

system to offer different combinations of features, levels of performance,

and quality.

The DirectX SDK ships with two implementations: RGB and Mono. The

RGB driver offers truer color quality at a performance cost. The Mono

driver makes color approximations and delivers higher performance at a

cost in quality. In addition, hardware vendors make available additional
Direct3D drivers to offer acceleration features.

A Taste of Direct3D’s Retained Mode

Direct3D’s Retained mode API is designed for managing entire 3D scenes.

In this mode you can load predefined 3D objects from files and manipulate

these objects without having to explicitly perform any matrix computa-

tions. When you integrate Retained mode with Direct3D authoring tools,

you can generate entire 3D applications with minimal explicit program-

ming effort.

Retained mode provides object abstractions and methods on these objects

to free you from creating and managing the details of internal object data-

bases. Some of the objects available through the Direct3D Retained mode
API are listed in Table 14-1.

Although you can manipulate entire scenes, the Retained mode does not as

yet offer compelling performance. So our use of Direct3D will focus on
Direct3D’s Immediate mode.
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TABLE 1 4-1 Objects Abstracted by Direct3D's Retained Mode Interface  

 

D rect3DR Device Ren erer estination
ance Cost D'rect3DRMFace Represents a single polygon

ith high D'rect3 DR Mesh . Grouping of polygonal faces and vertices
tUre5_ But D’rect3DR MeshBuilder Build vertices and faces into a mesh ‘

nsforma— D'rect3'3R Frame Positions objects within a scene
Direct} DRMLight Five options of lights to illuminate objects in a scene

In addi_ D'rect3 DR Material Properties describing how faces reflect light
Cl On a D’rect3'DR Shadow Define shadows on objects

anCe> D'rect3DRMTe><ture Rectangular image to be rendered onto polygons

Direct3 DR Viewport Define how a 3D scene is rendered into a 2D window

0' The D'rect3DR PickedArray Choose an object corresponding to a 2D point M
one Direct3DR Visual Placeholder for anything that can be rendered in a scene

e at a D'rect3DRMAnimati0n Series of transformations that can be applied to a scene__J i
ionfll Direct3DRl\/lAnimationSet i Allows animation objects to be grouped together

l4.2.2 Direct3D's Immediate Mode M

scenes. Direct3D’s Immediate mode is targeted for developers of high-performance l
nipulate 3D applications for the Microsoft \/Vindows operating system. In designing

uta— this mode, Microsoft expected that developers using Immediate mode would

tools, be experienced in high—performance programming issues as well as 3D ‘

am— graphics. 1 T

Table 14-2 lists the objects (and methods) offered by the Direct3D Immedi-

objects ate mode API. Immediate mode offers direct access to the rendering pipe—

ct data— line. At its essence, Immediate mode is a device-independent way for

mode , applications to access low—leVel hardware acceleration. Direct3D’s Retained

j mode is built on top of Immediate mode.

s not as Low-level hardware accelerators are typically designed to accelerate the
s on K pixel-rendering stage, and they rely on the host CPU to compute geometry

7‘ or lighting factors. But several factors from the geometry and lighting .

stages can affect rendering results, and some graphics accelerators offer
advanced capabilities to render these influences. The Immediate mode

pipeline contains objects such as viewports, materials, and lights to enable

even lighting and geometry stages to be accelerated.  



222

202 I CHAPTER ‘I4 AN INTRODUCTION TO DlRECT3D

TABLE 14-2 Objects Offered via the Direct3D Immediate Mode Interface

Device Hardwareid vice (equivale tto DirectDravi/ su e)
ExecuteBuffer List of vertex data and render instructions

Texture DirectDraw surface containing a texture map image

Light Light sources

Matrix Four—by—four homogeneous transformation matrix

Material Coloring options, such as color and texture

Viewport Screen region to draw to

14.2.3 Before You Get Overly Excited

As we mentioned before, today’s PCs are not yet capable of manipulating entire

scenes at compelling performance levels. Hence, you’ll have to approximate the

complexity ofyour 3D models so that you can obtain an illusion of 3D at a low

performance cost. Following are some examples of approximations:

Using only rectangular walls within a building reduces geometry calcu-

lations to entire wall faces, even though you may want to subdivide the
wall for better textural and rendering quality.

Similarly, maintaining simple angles of intersection (30°, 45°, 60°, and

90°) among the walls can reduce the cost of computing lighting values

and marking hidden surfaces.

Using multiple versions of textures (“pre-lit”) to simulate various light-

ing shades can eliminate the cost of rendering using other more cosfly

lighting options.

Approximations like these are very application specific. The gains are only

obtained when the application handles its own geometry and lighting calcu-

lations, so Direct3D’s Immediate mode was designed to be used by this type

of application. If you want high-performance 3D results using Direct3D’s

Immediate mode, you will need to have (or develop) your own geometry and

lighting modules in your application.

Given that many users of Direct3D’s Immediate mode are capable of devel-

oping their own geometry and lighting modules, the API and objects of the

Immediate mode interface have been designed for developers with an advanced

knowledge of 3D. If you are new to 3D, we strongly recommend that you read

up on material about 3D geometry and lighting before attempting to develop

any significant applications using Direct3D’s Immediate mode.



223

INSIDE DIRECTSD I 203

14.3 Inside Direct3D
Before starting to use Direct3D, let’s look at how Direct3D interacts with

DirectDraw and sneak a peek inside Direct3D’s architecture.

Direct3D and DirectDraw

Direct3D is very closely connected with DirectDraw. So much so that
Direct3D is almost an extension of DirectDraw. This close connection is

deliberate, because it lets you incorporate cool features such as texture

mapping with video rendered into DirectDraw surfaces, or to overlay 3D
scenes on 2D compositions.

There are four points of connection between Direct3D and DirectDraw

involve interface objects and buffers.

ing en ire . /Direa‘3D. The primary interface to Direct3D, lDirect3D is derived by creating
mate the . an lDirectDraw object and querying (via Query/nterface) for a |lD_|Direct3D
D atalow . in interface,

/Direct3DDev/Ce. This interface gives you access to low—level Direct3D rendering
functions. lDirect3DDevice is similarto using lDirectDrawSurface in DirectDraw to

try Calm" access |0w—level 2D functions. An |Direct3DDevice is ”created” by creating an
iivide the lDirectDrawSurface and ue in for a 3D device GUID. The 3D device will render. ‘l “V. .8 . .

I pixels to the 2D surface. In addition, you can use all standard DirectDraw functions

) 600) and 1 : on the 2D surface.

ng values 1%, ey /Di'rect3DTexz‘ure. This interface manages textures in Direct3D. lDirect3DTexture,
like lDirect3DDevice, is an extension of |DirectDrawSurface and is "created” by

1. h creating a |DirectDrawSurface and querying for an l|D_|Direct3DTexture interface.
Gus 1g t" .. . The 3D device will use the surface as a source texture during texture—mapped ren-
Ofe C05tlY dering. In addition, you can access all normal DirectDraw surface functions on the

T 2D surface.

1 Z—Buffers. In Direct3D Z—Buffers are DirectDraw surfaces created with a
re on Y . DDSCAPS_ZBUFFER flag. The Z—Buffer therefore is easily visible by all modules.
11% C3101‘ ; With Z—Buffers you can use normal 2D functions for carrying out simple oper-
this type ations on the Z—Buffer (such as clear).
2ct3D’s

uetryand : Direct3D Rendering Engine

Figure 14-2 looks inside the Rendering engine of Direct3D. The rendering

engine consists of three modules: the Transform module, the Lighting mod-
‘Of develi ule, and the Raster module.
cts of the

adwmced I The Transform module converts input vertices from model coordinates
Y0“ mad to render coordinates via a transform matrix created from world, view,

) d€Vel0P and projection matrices. The Transform module also culls objects to fit
within a specified viewport.
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Vertices Commands

 
 
 

 

 

 
 
 

 
 

 
 
 

 

  

Projection Matrix
World Matrix

View Matrix

Viewport Descriptor

Transformed Vertices

Lighting States

Lights
Materials

Transformed, Lit Vertices

Raster States

Textures

Transparency

Pixels

FIGURE ‘I 4-2 Direct3D Rendering engine.

I The Lighting module supports ambient, point, spotlight, or directional

light sources and adds color information to the Vertices provided by the
Transform module.

I Based on raster options, such as wire—frame, solid—fill, or teXture—map,

the Raster module renders pixels conforming to the Vertices and color

values passed on.

All three modules are replaceable. Direct3D comes with one transformation

module but with a choice of two lighting and two rasterization modules

(RGB or mono). Graphics hardware vendors can provide additional replace-
ment modules that support their 3D accelerators.

14.4 Rewing Up Direct3D

Roll up your sleeves, it’s coding time again. Yeehal Over the course of work—

ing with Direct3D we will come across the objects listed in Table 14-3. We

will describe each one as we get to it.
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TABLE 14-3 Direct3D Objects Used in This Chapter

 
|Direct3D Primary interface to Direct3D

|Direct3DDevice ED device (equivalent to DirectDraw surface)

lDirect3DViewport Screen region to draw to
lDirect3DExecutel3utfer List of vertex data and render instructions

The Starting Point: lDirect3D Object

IDirect3D, as we mentioned above, is the primary interface for Direct3D.

Objects such as lights, materials, and viewports are created using the
IDirect3D interface. lDirect3D also has functions to enumerate (or find)

3D devices, since there can be multiple Direct3D device modules installed
on a system.

Let’s initialize DirectDraw and get access to Direct3D:

 

H(')SL CSharedHardwa"e::lniL(Hl/ilND hwndl l m "
Invoking IUrzkrL0wn::QueryInterfclce (')
on the IDirect1)raw object with the
predefined GUID IID_IlJ1rect3D returns
a pointer to anlDi1‘cCt3D object in the

l_PDlR[CT3D pD3D;

// create a D"rectDraw instance
Dire::DrawCreat.e(NULL, &m_pDDraw. NULL);

second parameter.
// “create” D3D object K
ri_jJDDraw—>DueryInLeri‘ace(HD lDir'ect3D, (void *)&pD3D):

// remember to set DDraw cooperative level
rr_pIJDraw->SetCo:perativetevel(rwnd, DDSCLANORMAI Ii;

// assign into member variable and return
rn,pD3B = 3D3ll;
return TRUE;

 
  
QuerylnterfaceO does not create a new object; instead it provides a second in-
terface to the DirectDraw object and increments its reference count. You must
call both /DlrecrDravv.':Re/easeO and ID/rect3D.'.'Re/easeO to fully release the ob
ject. If you only release the |Direct3D interface and then query for it again, the
original |Direct3D state might be restored.
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14.4.2 Enumerating lDirect3DDevices

We have access to the first level of Direct3D. You would think that the next

step would be to ask for access to an IDirect3DDevice. But wait! To ask for

access to a new interface, we’ve got to know the new interface’s GUID. So

how do we get the GUID of an lDirect3DDevice?

Direct3D was built to allow multiple 3D devices to be installed in a system

\Ve could get the GUID from our vendor of choice and hard code it into our

application. An alternate approach would be to use IDirect3D::EnumDevice3

to search among installed devices and pick a device of our choosing.

extern “C” static HRESULT MINAPI enurDeviceFunc(
LPGUID lpGb1d, LPSTR lp3e\/iceDescr’ption. LPSTR lpDeviceName,
LDD3DDE\/ICEDESC lpHwDesc, LPD3DDEViCEDESC lpHELDesc, LFVOID ipcookie

);

IDirect3D::ErzumDevices will call a callback function of this form for each driver installed in the system.
Note that “C” calling convention is used. The parameters passed to the callback function are
LPGUID lpGuid Pointer to the GUID for this driver
LPSTR lpDeviceDescription String describing the driver. (For example: “Microsoft Direct3D

Mono (Ramp) Software Emulation”)
LPSTR lpDeviceName String name of the driver. (For example: “Ramp Emulation”)
LPD3DDEVICEE ESC lpHWDesc If this descriptor is valid, then driver is hardware based.
LPD3DDEVICEEESC lpHELDesc If this descriptor is valid, then driver is software emulation.
LPVOID lpCookie LPVO ID sized data passed on from the main application.

BOOL CSharedHardv/are: : initDi rect3D(D‘»lORD dwCool<‘:'e>

// ewum drivers and p’ck one
// Ask 33D to call our callback
vn_pD3D->EnumDevices(emimDeviceFunc, (LPVOID)dwCookie);

/ / rv E 1;“ pm Invoke IDirect3D::EnumDevice3{) with the address of our
rem rn mug; callback function.

dwCool<ie, an LPVOID sized object, can be anything we want.
It will be passed on unchanged to our callback function.

IDirect3D::EnumDevice5 will call our callback function once for each driver

installed in the system, giving us the driver’s GUID, a couple of text strings

identifying the driver, and two D 3 D D E V I C E D E S C descriptors to tell us about

the capabilities of each driver.

Only one of the two 33 DDEV I C ED ESC descriptors is valid. Browsing through

Direct3D’s sample code, we found that the prescribed method of checking

the validity of a D 3 D D E V I C E D E SC descriptor is to check whether the dcmColor-

Model field is set to a valid value (currently it can be either D3DCO LOR_MDNO
or D3 DCO LO 3{_RGB).
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We get information for a single 3T) device on each call of our callback. If
this device matches our selection criterion, we can tell Direct3D to stop

calling us by returning D3 0 ENU MRET_CANC E L. Otherwise, our callback is sup-

posed to return D3DENUMRET_O K—and Direct3T) will continue to call us for
any remaining un-enumerated choices.

We designed our callback function to choose the first driver that matched
an input criterion. Our input criterion can be:

USEWHARDWARE Reject any software emulation drivers. Specifying both USE_HARDwARE *and USE_SOFTwARE is illegal; neither is ok, the irst one will be chosen.

LSLSOFTWARE Reject any ha_rd\_ivare drivers. Specifying both iisE_ii._ARuiiARE and
USE_SOFTli.lARE is illegal; neither is ok, the first one Will be chosen.*

LEE RGB Use the higherduality RGB model. Specifying both USE_RGB andUSE_R/\MP is illega ; neither is ok, the first one will be chosen?‘

USLRMP Use the lower-quality, higher-performance Mono/Ramp model.
Specifying both USE_PGB arid USE_RAMP is illegal; neither is ok,
the first one will be chosen.*

USE_ANY Use the first 3D driver enumerated by Direct3D

* if you don't specify a choice, then the choice will be made on a first—come basis. If you
specify a choice, then your choice will be honored.

Here is the code for our callback function:

cxtcrn “C" static HRESULT WINAPI enuniDeviceFunc(
LPGUID lpeuid, LPSTR lpDevi‘ceDescr‘1ption. LPSTP. ipDe\/icellarre,
LPD3DDEVICEDESC ipHwDesc, LPD3DDEV1CEDESC l3HELBesc, LPVO13 ipcookie

DWORD dwFlags = (DlilORD)li:Coo<1'e;
CSharedHardv/are *pGrfx = gpAppwi'de—>m_pGrfxCard;

Pick the Valid driver from the two device descriptors.

LPD3DDE‘/ICEDESC P‘3li0lCe = lDil‘lD€SCi ThemethodtocheckwhetheraD3DDEvIcEDEsc
if ‘: lPCh0lC€'>dCfTlf30l““M0dEl3 4"? isvalid~—as approvedinDirect3D sample

DC fl Oi 3 9 = l DH E LD9 5 53 codc—is to check dcmColorModel for a
Validvalue.
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Check our option flags for hardware/software force. l
if (dwflags & USE_HARDHARE) I

if (llpH«IDesc~>dcmColorModel3 . - T .

return D3DENUMRET_O(: Retuigung-3DENUMREl_uKgels us the
pChoice = lpH‘w‘Desc; next nver‘l
if (dwFlags 8. USE_SOF'wARE) (

if (!l:HFLDesc—>rlcmCo|crModel)
return DBDENUMRETVCK;

ptrmice = lplll LDesc;

Our application only works in 8 bpp mode. Check supported Render modes for this format. Devices may
support multiple output formats. DiIect3D uses a packed format to specify all the formats that a device can
support. DDBD_x bit flags define the output formats that can be returned.

if (!pChoi:e~>dwDeviceRenderBitDepth 2. DDBD_8)
return D3DENUMRET_O<;

Check our option flags for RGB/Mono color model force.
if ((dv/Hags 8. llSlVHl3I%) 8.8.

<pChoi:e->dc11ColorMode1 != D3DCQLOR_RGB))
return D3DENUMRETfi0l<;

if <(dv/Flaqs 8. USE_RAMP) &&
(pChoi:e«>dc'nColorModel != D3DCULOR_MONO))
return D3DENUMRET 0%:

Got what we wanted. Copy the GUID aI1d set some descriptive flags.
m,bFcunc3Ddriver —~ TRUE;
memcpj/((‘/oid *)&pGrfx->rr_3dGuid, lpGLI"d, sizeot"(GUI3));
if (zchoice -- lpHw3esc> pG.rf><—>mnb1sHardware3d = TRUE:
return (D33ENLMRET,CANCEL);

\—2 Returning D3DENUMRET__CANCEL tells D3D to stop enumerating.

When control returns from Direct3D to the original function that invoked

IDirect3D::EnumDevices, our callback function would have copied a GUID

for a Direct3D device that matched our specification (if there was one). We

can now use this GUID to query for a lDirect3Ddevice object.

Creating an IDirect3DDevice

Now we’re really getting down! An lDirect3DDevice interface provides loW—
level access to Direct3D rendering functions. lDirect3DDevice is not an

object in its own right; it is an extension to an IDirectDrawSurface object.

To get an IDirect3DDevice object, We’ve got to first create an

IDirectDrawSurface and then “extend” the surface by querying for 3D

capabilities.



229

REVVING UP DlRECT3D I 209

To extend an lDirectDrawSurface into an |Direct3DDeviCe, the surface needs

to have been created using DDSCAPS_3DDEViCE set in the surface caps
(ddsCaps.dwCaps) field.

Let’s create a suitable IDirectDraWSurface. \Ve don’t want to see the flicker

that results from cornpositing directly onto the display screen, so we’re

using an Offscreen surface (although tests showed that We could success-

fully extend the Primary surface for 3D). The code for creating an

vicesrlnay IDirectDrawSurface is pretty much the same as the code we used in Chap-
a device can ter 5, except for the addition of the DDSCAPS_3 DD Ev I C E flag:

CSurtaceS_vsMem:rlnitifjwnd *pcwnd, LPDI52ECi'DRA‘w‘2 pDDraw)
i

// qet size of client to create simiiar offlscreen window
RECT rwin;
pciiirid—>GetCiientRect(&rNir);
n_dwNidth = (dw:rd)(rwin,right — rwirmieft);
m_dwHeight, = (dword)(rwin.b:ttorr - rNir.top);

// ini surface descriptor and create oitscreeii surf
iiLSu"i‘)esc.dwHeight = m_dwHeighL is i_~OxO3);
ii_Suri°)esc.dwNi*;h 4 mudwwidth Kr (~0x03);

// specify desired Bbpp co‘or format
m_SurfDesc.ddpFPixe1Format.dwSize = sizeof(DDP,'XELFORMAT):
m#SLmi‘)esc.ddpf°ixeiFormat.dwRGBBitCount = 8;
m,_Suri)esc.ddpiPixeiFormat.dwFiaqs = DDPRPALETTEINDEXED8 | D3PF_RGB;

// ask for offscreensurface, in system memory, with 3d capasiiities
if mesurflesc.ddsijaps.dv/Caps ~— D3SCAPS_OFFSC?E[i\DL/«IN;

E 4 _ m_Sm7')esc.ddsCaps.dwCaps |= DDSC/\PS_SY5TEMMEMOR‘i; Add the DJSCAPS_3DDEvIcE flag to tell DirectDraw
m4SurfDesc.ddsCaps.dwCaps |= DDSCAPS_3DDEVICE; (j thatwe Wm extendthiSSurfi1CefOr3D.

ed // specify which fieids in Suri°Desc are valid
m_SJrfZ>esc.dwFiags — DDSD_CAPS i DDSD_NIDIH | DDSLHEIGHT i DDSDJIXEIFDRMAT;

t invoked
' s 7 i // create the surface

daL7UID ‘ pDDraw—>Creai;eSurface(&mVSurfDesc, &m_pSuri‘Fns, NULL);
sQne)_VVe return TRUE;

‘d . 1 - , .

Illzteq OW \ Even though we’ve created a suitable DirectDraw surface, we are not yet ready
_an N/N/fi,“V¢’J: \ to extend it for 3D. When using Direct3D to write into a palletized surface, we

' Obie“ ‘ r\/‘/V‘/‘J must attach a palette to the surface before extending the surface for 3D.
* NW

r 3D
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1 4.4.4
Preparing a DirectDraw Palette

Following is the code for creating a palette using DirectDraw’s Palette func-

tions. We’ve initialized the new palette to the system palette and attached it

to both the Primary and the Offscreen surfaces.

The Direct3D RGB driver operates in a high—quality RGB color model. It

must then reduce the colors in the scene to appropriate palette entries.

Direct3D needs to be able to select these palette entries. So we’ve “pre-

pared” the palette for Direct3D by setting flags that tell Direct3D which Va]-

ues it can modify.

BOOL CSllareclHardware::1nitPalette(vo’d)
I

// Get the current system palette.
PALFTTEENTRY ppeS_vsPall256l;
EDC Wdc = GetDC(NULL)
GetSystemPaletteEntries(hd:, O,
ReleaseDC(NULL, hdc);

(1 << 8). ppesg/sPal.l;

Allow DCSD to change middle entries. For windowed case, preserve top ten and bottom ten
colors. In Full Screen mode we could allow all but The top and bottom color to be changed.
int i;
for (i = 0; 1’ <10; l++l

ppeSysPal[i].peFlags = D3DPAL_READUNLY;
for (i =10; i < 246:1‘I«+) V

ppeSysPal[1‘].peFlags - D3DPAL_FREF I PC_RESFR\/ED ;
(1'= 246;1’< 256: i++)
ppeSysPal["].peFlags = D3DPAL_ READOMY;

create palette and init with above values
DDDraw~>CreatePalette(DDPCAFS_B3IT | DDPCAPS_INITlALlZE

ppeSysPal. &rr,pPalctte, NULL);
return TRUE; V , . . .

Create a DirectDraw palette. A pointer to an IDirectDrawPalette ob]ect is
returned in the third parameter.

BOOI CSharcdHardware::SetPalette(LPDIRECTDRANSURFACF2 pSurfFns)
(

// set created palette on specified surface
pSuri‘Fr:s->SetPalette(m_pPal ette);
returr ‘RUE;

Extending the Surface for 3D

Now we’re ready to extend the DirectDraw surface and get an

lDirect3DDevice object:
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BOOL CSL."taCe3d::lm't(CNnd *pc‘Nnd. LPDIRECTDRAWSURFACEZ p2dFnS)

4; p2dFhs—>Query l nterface(gpAppN1'de>>m_pGr‘xCard—>o#3dGuid. &m_p3dFas);

VV'e’re invoking 1L/rrknnwm:Queryinterface () on the lDirectDrawSurface object with the GUID
that we chose earlier in our ErmmDe1/ices callback function. We get back a pointer to the

p IDirecL3DDevice object in the second parameter.

Get the 2D surface descriptors and copy some info about 2D surface.
DLJSUPFACEDESC ddsdTrp;
memset(&ddsdTmp, O, sizeor'(DDSlH<'FACEDESC));
.ddsd|'mp.:‘wSize — siZc0f(DDSURFACEDESC);
err = p2c3ns->GetSurface3esc(&dcsdTrp); // get surface descriptor
m,dwwidt.h = ddsdTmp.dwwidth: // ge' width of Ed surface
m_dwHe1'ght = ddsdTmp.dwHeight; // ge’ height of Ed surface
if (dd|sdTmp.dds(‘,aps.dwCaps 8. DDSC«\PS_V1DEOMEMORY) m4b1sVi’dMem = TRIH;
m pZdFns = p2dFns; // remember Ed surface fns

return “RLE;

Voila! Pardon my French, but I am happy to announce that the
IDirectT)rawSurface has now been extended to allow for 3D capabilities.

Also allow me to point out again that QueryIrzterface() does not create a

new object. Instead, it provides a second interface in addition to the origi-
nal IDirectDrawSurface object and increments its reference count. You
must call both IDirectDrawSurface::ReZease() and

IDirect3DDevice::Relea5e() to fully release the object.

Note that only this surface has been “extended” for 3D capabilities. As such
we could say that this surface is a ‘‘3D surface.” If you browse our code for
this chapter on the CD, you will notice that we use Surface3D to refer to
IDirect3DDevice, because as we said before, it’s only this surface that has
been 3D enabled.

Just as with 2D surfaces, 3DDevices are described by a descriptor,
D 3 D DEVICE D FS C. You can use IDirect3DDevice:.'GetCap5 to get the descriptor

of the device. In this chapter we are mainly concerned with getting a trian-

gle rendered through Direct3D without adding any bells and whistles-—yet.
So we don’t really need to look at the device capabilities and the D3LJUtv I CEDESC
structure at this point. VVe’ll leave that for our later chapter on accelerating
Direct3D, Chapter 15.
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1 4.4.6
Mapping from a 3D Model to the 2D Surface Using Viewports

We’ve got our 3D surface (3DDevice), and pretty soon we’ll want to render

some 3D objects. 3D objects are represented with 3D coordinates in a 3D

model. We will have to tell Direct3D how to project 3D objects onto a 2D

screen. Direct3D provides an IDirect3DViewport object to control this

mapping.

A viewport defines a visible 3D volume and the projection of this 3D vol-

ume onto a 2D screen area. For perspective viewing, the visible 3D volume

is a portion of a pyramid between a front clipping plane and a back clipping
plane. For orthographic viewing, the visible 3D volume is cuboid.

For perspective projection, the viewing position is at the tip of the pyramid

as in Figure 14-3. The z-axis runs from the tip of the pyramid to the center

of the pyramids base. The front clipping plane is at a distance P, the back

clipping plane is at a distance Q from the front clipping plane. The height of
the front clipping plane is 2H, and it defines the field of view.

With Direct3D’s Retained mode, you could use IDirect3DRMViewp0rt
::SetFr0nL(), ::SetBczck(), and ::SetField() functions to set the values of P, Q,

and H, respectively. But with Direct3D’s Immediate mode you’ve got to
compute equivalent values for P, Q, and H and fill these values into a
I:3DV 1 FWPORT structure.

Back Clipping Plane,/’

Front Clipping Plane

FIGURE 1 4-3 Using a viewport for perspective projection.
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Wports Let’s take a look at the D3 DV 1 ENPO RT structure:

t to render

es in a 3D

Onto a2D :_ypedigR%truc§‘FEE?/IEW ORT (A Q ; ,:
t - 1 h‘ ~ - l V . J
10 t lb ‘ DVO RD : Coordinates of the top—left corner of the Viewport and dimensions of

We RD d A K V th " t These ar d fi d relative to the to left of the deviceWORD dwwsdth; ewiewpur, e e me p .
JNORD dwHeight;

is 3D V01- 33 DVA LU E d V 3C3 l ex? Scale parameters can be used to maximize the window area i 3 1, }
BDVA LU E d V Scal EV 3 *—’— occupied by the 3D scene. For example, Di1'ect3D suggests ‘ ‘E; W

3D Volulne BDVA LU E d V M3 X X I that the scale parameters be set such that the larger dimension ‘ K

Ck dipping _ ~ ’—> 33DVA WE d V M?” 3 (width or height) of the front plane fills the window. ‘ ‘ Z_ 33DVALU; dvMWflZ: 5 if
1d. a )3DVALUE dvMaxZ; 3 V

;. l D3)VlENPOVT, *LP33DVlENPCR(; t l
. l i

he PYT3II11d dvMaxX, dvMaxY, dvMin7., and dVMaxZ describe the maximum and minimum homo eneous. _ ‘ g t
the Center coordinates of x, y, and z. Use tiese coordinates to describe the viewing Volume.

, the back 1 __ _ l ‘

he height of t " ‘ f

V V i We create an lDirect3DViewport object by using IDirect3D::Createl/3ewport(), 1 ‘L,

L and we set the Viewport’s parameters using IDirect3DViewp0rt::SetWewport().

eWP0” V Once we’Ve created an IDirect3DViewport object we’Ve got to associate it to our 1:

105 0f B Q: ‘ p 3D surface using ID1'rect3DDevice::AddViewpart(). Heres the code for doing
3 got to i that: ‘ la

nto a - V. 3
 

BOOL CSur‘face3d::Ini:Viewpo"t(1pdirect3d pD3D) 3
l 1:

3D3D->Cr‘eaLEV}ewpor‘L(&n_p3;1Viewport, rull) ; ClCseIDirect3D to createtheviewport. 3
m_p3dFns >AddVi'ewpor‘t<m_p3d‘/‘ewport); <1 Once created, attach the Viewportto 3D surface.

// Se:up viewport to be equivalent :0 wincnw
33DVIEwPORT viewData;
memset(&viewData, O, sizeot(D3DVZEwPORT)};
v1ew3ate.dwS1ze = sizeof(D3DV1EwPORT);
v1ew3ata.dwX = C;
v1cwData.dwY = D;
viewData.dwWidtt = m_dwWidth;
v1ewData.dwHeight = m_dwHeight;
viewData.dvSca1eX = (floa:)1.0;
viewData.dvSca1eY = (floa:)1.0 ;
vIewDuLa.dvMaxX = (float)viewData,dwwidLh;
viewData.dvMaxY = (float)v*ewData.dwHeight;
m-p3dV‘ewport'>SetViewp:rt(&viewData);

 
Our purpose in this chapter is merely to render a triangle. So we’Ve set up the simplest possible
viewport, where the viewport is the same size as the drawing window, and Lhere’s no scaling
and projection,

return true:

on. it  
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Based on our viewport parameters, the driver builds a transformation

matrix to convert incoming vertices from a 3D model space to a projected
2D space.

D1rect3D lets us create multiple vrevvports. We tell Drrect3D Wl'lICl'l vlewport to V
use only when we're rendering an object. In this way we could, if we wanted, mix
objects rendered with different perspectives onto the same surface.

Talking to 3D Devices Through Execute Buffers

Okay, we’ve got our 3D device called Surface3D on the CD, and we’ve

described our viewport. Now let’s render some triangles, which brings up
our next step—talking to the 3D device.

'We send instructions to 3D devices in lists called Execute Bufiers. Figure 14-4
is a picture of an Execute Buffer. Data items sent to 3D devices via Execute

Buffers are usually either triangle vertices or render operations.

FIGURE 1 4-4 Sample Execute Buffer.
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A vertex is typically sent using a D3 DV ERTE): structure. A vertex processed by
the Transform module and Lighting modules is converted into a 3 3 DT LV E RT E x

structure, which occupies the same data space as a D3 Dv ERTEX structure.

This process allows transformation and lighting to be performed in place.
To make in-place transformation and lighting convenient, 3D devices
expect vertices to precede all operations.

3D devices can be commanded to perform operations using a set of opcodes

defined by Direct3D. We will examine the opcodes in more detail shortly
(in 14.4.8). In general, there are opcodes to load data (such as matrices or
textures) into device memory; opcodes to set state values in the Transfor-
mation, Lighting, or Render modules; and opcodes to process data.

IDirect3DDevice has a CreateExecutcBufl‘er() method to create an Execute

Buffer object. The IDirect3DExecuteBuffer object returned is only an inter-
face object and does not yet provide the actual buffer space into which you
can insert commands.

X/Vhen we’re asking an IDirect3DDevice object to create an Execute

Buffer, we’ve got to describe the buffer we’d like created. I-lere’s the
D3DEXECUTEBUt t ERDI-_SC structure used to describe our needs:

 

Lypeoe: strut: _13DExect.teBct'terDesc 1

 

DWORD dwS‘ze:
—-———:—>DwORD dwflags ;

DNORD dwCaps;
DWORD dwBufferSize;
LFVOID lpDat€;

l D3DE')(ECc‘TEBUFFE¥DESC;

Hardware devices prefer their data (including vertices) to reside
in video memory. Software emulators, on the other hand, prefer
that their data reside in system memory. Specify Lhe memory type
in the dwCaps field based on the 3!) device created. SystemMemory
is the default if the field is left unspecified, The field can be
E 3 D DE BCAPS_SY STE!‘/M tMURV The Execute Buffer data must reside

in system memory.
The Execute Buffer data must reside
in video memory.
A logical OR of
DCDDEBCAFS_S¥STEMM[MDR‘/ and
D3JDtBCAFS__VIDEOMEMORY.

 D3DDEBCAPS_Vl)EOlVEMURY

D3DDFBCAPS_MEM

In the same lines as the DirectDraw convention, not all fields in descriptor structures are valid. dwFlags speci-
fies which fields in the descriptor have been set. For D3DE)< ECUTEBUFFERDESC the flags are
D3DDEE_BUFS 1 ZE The dwBufferSize member is valid.
)3DD[E_CAPS The dwCaps member is valid. [See above}.
33DDEB__LPDATA The lpData member is valid. The 3D device returns a pointer to Execute Bu “er data space

in this field. Could be used to provide the driver with a pre—initiali2ed buffer, but this
doesn’t always work.
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Here’s code that demonstrates the creation of an Execute Buffer:

// compnie size of execute buffer needed to render one triangle
si'ze_L sztE>< —r O:
sztE>< = si'zeot(D3n“tvr+ni><> * 3;
sztEx += si‘zco‘(D3m~sTRuc*roN>*3;
sztEx += SizeoF(D3DFROCESS\’ERTICES};
sztE;< += sizeot(n3nrRrANeLE) * 1;

We need to tell the device how large a buffer we will need. For our example we are requesting
enough buffer space to contain commands to render one triangle. Don’t worry about the
actual sizes and instructions in the Execute Buffer—we’ll be looking at this sh ortly.

// Describe txecuteBuHer' to be created
D3DEXECUTEBUFFERIJESC cebDesC; ' s . . _
memse (&debDesc, O, si4e0t(debDesc)): S°mE3D d°V1°eShm1tth°51ZC”f"h“
debgescflwgize = Sw'ZeOf(detDeSC:i; ExecuteBufferthatcanbe created.
debDesc.dv/F} ags = D3DDEB_BUFSIZE; C’9“‘€EM“feB“flW) H137‘ fall W0“
debDeSC _ dwguflcergi Z6 ; Szt EX; (......____ request too large a buffer.You can find

out the allowed limit by using GerCups().

// Create ExecuLeBufter

[:Iii,p3dFns->Create|><ecuteBuffer(&Jeb3esc, & m_pE><Buf:ns, NULL) ;Create the Execute Buffer according to description passed in first parameter.
An interface object pointer (LPD1I2EcT3DE:<Ecinrsu:FER} is returned in the
second parameter.

As we mentioned before, the lDirect3DEXecuteBuffer object we just created is only

an interface object and does not yet provide buffer space for inserting commands.

We get access to usable buffer space by using the IDirect3DExecuteBufi%r::Lock

function. The lock returns a buffer pointer into which we can enter our com-

mands. Once we finish entering our commands, we must use the :: Unlock() func-

tion to unlock the buffer. Here’s a quick example:

Copy the triangle into the Execute Buffer space. Assume that the commands were in a preset
buffer. Don’t worry about the actual instructions—We’ll examine these in detail shortly.

m_pExButFns»>Loci<(&m,ExDesc); / lock butter
PVUID pTmp = m_ExDesc.l:Data; // get. returned ptr
rnern:py(pTnp, pSomeBJtfer, sztE><); // copy data over
rn pExButFns—>Un1ock(); // uniock buffer

After entering the commands, we tell the 3D device that we’ve given it new

instructions by invoking ::SetExecuteData 0. At this point were also describ— ‘
ing to the 3D device the makeup of our Execute Buffer——where the Vertices

start, how many Vertices there are, where the instructions start and end.
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This information is provided to the 3D device using a D3DFXECUTEDATA

structure. The structure is simple, and its use is demonstrated in the follow-

ing code:

 

// describe make-up of recently copied execute buffer
D3DtXECUTEDATA ExecData;
memset(&txecData, 0, sIzeof(D3DEXECUTEDATA)>;
ExecUata.dwSi7e e sizeof(D3DEXECJTEDATA);
ExecData.dwVertexDftset = 0;
ExecData.dwVertexCount = 3;
LxecData.dwInstructionOffset = sizeof(D3DTLVERTEX) * 3;
ExecData.dwInstructIenLength = sizSomeBuffer — (sizeof(D3DTLVERILX)*3);
pExecCmds->SetExe:uteData(&ExeeData);

After transferring an Execute Buffer to the 3D device using the Lock]Copy/Unlock sequence,
we need to describe the makeup of the recently copied Execute Buffer, using SetExecut.zData()
and a D3DE>. ECUTEDATA structure. Here are the fields in the structure:
dwVertexOffset Where do vertices start within the Execute Buffer?
dwVertexCount Number of vertices in vertex list.
dwInstructionOffset Where do instructions start within the Execute Buffer?
dwInstructionLengtl1 Where do vertices end? This need not be the end of the buffer.
dsstatus D3 DSTATUS structure used to return the screen extents needed after

vertex transformations.

OK, we’ve waited long enough. Let’s see what operations we can perform
with Direct3D.

Execute Operations

Operands are passed to the 3D device using a _D3E I NSTRUCT I ON structure:

 

typedef struct _D3DINSTRUCTION (
BYTE bflpcone;
3YTE bSize;
WORD wcobnt;

I D3DINSTRUCTION, *LPD3DINSTP.UCTION;

l _ I

The first field in the _D3D I NSTRUCT I ON structure is the opcode. Opcodes

available in Direct3D are listed in Table 14-4. With the exception of

D3 DOP_E>( I T and D3 DOP_NDP, all operations are followed by an operand.

Operands are specified with a structure format unique to the operation.

D3DOP_P0 I NT, for example uses a n3DPO I NT structure. The sizes of operand

structures Vary, and they must be entered in the bSize field. The sizes are

used to advance pointers while parsing instructions in an instruction
stream.
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TABLE 14-4 Direct3D Execute Opcodes

Zi0P_TEXTURELOAD Causes device to load a texture into device data space

=03,MArR1:<Li3AD Causes device to load a texture into device data space

. ?0P_MATRi‘,(MUl rrPLV Causes matrix to multiply via the rendering pipeline

*0 _srArErRAiisroRM Sets value of specified transformation module state variable

CSTATELIGHT Sets value of specified lighting module state variable

STATERENDER Sets value of specified render module state variable

_POINT Renders a point via the renderer

CSPAN Spans a list of points with the same y value
_-INE Renders a line via the renderer

P TRIANGLE Renders a triangle via the renderer

i_iriwcEssvEi2rr<:Es p Causes vertices to be transformed, lit, and copied
to device space

3_BRANCHFOR‘wARD Enables a branching mechanism within an Execute Buffer

NNOP Used for optimization to align data on QWORD boundaries

LEXIT Signals that the end of the list has been reached

LSET STATUS Resets the status of the Execute Buffer

In a typical usage scenario, operations are quite often repeated with differ-

ent parameters. For example, let’s look at rendering multiple triangles. The

wCount field in the _D3DINSTRUCT: ON structure allows the repetition to be

optimized and specifies that the operation will be followed by NCOUNT

operands.

Operations Used to Render a Simple Triangle

Let’s set up an Execute Buffer to render a simple triangle. For a simple tri-

angle we will need three vertices in the Vertex list. We will also need at least

three operations. Two of the operations—D3 D O P_TR I A N 6 LE and D3 D0 P_EX IT—

are straightforward. The third, D3DOP_PROCESSi/ERTICES, is needed to tell the

3D driver that we will provide Vertices that don’t need transformation or

lighting. Both the D3DOP_TRIAl\GLE and D3D0P_3RCiCESSVERTICES operations

are followed by operand structures.
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Figure 145 shows a picture of the Execute Buffer we need to render our

simple triangle. Now let’s create this Execute Buffer. Our code will build the
instruction stream in system memory. We will then create an Execute

Buffer and copy the system memory buffer into the Execute Buffer using
the code that we showed in 14.4.5.

FIGURE ‘I 4-5 An Execute Buffer to render our simple triangle.

Here’s the code that computes the size of the Execute Buffer needed and

then allocates a system memory, or sysmem, buffer of this size:

// Create an execute but"er in system memory to render 1 triang1e
s1'ze,t sztEx = 0; ‘
szLEx = sizeof(D3DTL\/ERTEX) * 3; // 3 vertices for a t.r1arg1e
s7t.!x = s1zeofll)3I)1NSTHUCTION)*3: // proccssverts. tri, exit
sztE>< += sizeoflD3DPROCESS\/ERTICES); // 1 process‘/erts operand
sztfx >= si'7eof(I)3mRlANC.LE) * 1; // 1 triangle operand
m_pSysE><Buffer = new BYTE [szLE><]; // setup exec buffer in sysiiem first

Let’s insert three vertices into our sysmem buffer.

We’ve picked a triangle of an arbitrary size and decided to color it green.

In addition, to keep our example simple, We will instruct the driver not to

transform or light the vertices. Our code provides pre—lit vertices in screen

coordinates using 21 D3 W! V F RTEX structure (instead of a standard D3 DV E RTEX
structure):
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// get ready to ‘nsert vertices
D3DTL\/ERTEX *p\/erts = (DBDTLVERTEX *)m_pSysExBut"fer;

// V 0
p\/ertS[0].CVS>< = D3D\//’\l_(l0.0)
pVerts[O].dvSY 4 D3D
pVer"ts[0].dvSZ = D3D

In a D3 DT Lv E RT Ex structure, dVSX, dVSY and dVSZ
specify screen coordinates of the Vertex. Note that
the fields are in floating point.

VAL(10.0)
VAL(O.1);

p\/erts[C‘].d‘/RH!/J‘: D3D\/AL(1.0);
p\/ertS[O].dCCOlOr = RGBA_MAKE(128, 255, 128, 0);

pVerts[0].dcSpecu1ar = 0;
pV:rt5[0].dvTU - O:
pVerts[0].dvTV = O; dvRHW is the reciprocal of homogeneous w. You can compute

this value as 1 divided by the distance from origin to Vertex
along the z—axis.

// V 1
pVertsL1].dvS>< ‘
pVerts[1].dvSY

n3nvAL(3O0.O);
D3DVAL(50.0):

pl/erts[1] .dvSZ — D3D\IAL(0.1);

dcColor sets the color of a Vertex. With flat
shading, all pixels in a triangle are set to
the first Vertex color, and the other two
colors are ignored. With Gouraud shading,
pixel colors are interpolated from thethree Vertex colors.

pVerts[1].dvR%N ~ D3DvALZ1.0);
pl/erts[1].dcC:‘lo = 3ZGBA_MAKE(12E, 255, 128, 0);

pVertsf11,d:Sp«:cular ' 0;
p\/erts[1].dvTU = 3;
pVerts[11.d»/TV =3

// V 2’
pVer'Ls[2].dvS>< "
pVertsl2J.dvSY —
pVerts[2].dvSZ =

dcSpccular sets the rcflcctivcncss ofthc material. You can use
this field to add a metallic look to objects. VVe will experiment
with it in Chapter 15.

DEDV/\L( 50.0);
D3nvAL( 80.0);
D3DvAL(0.1):

pVerts[2].dvRHw — D3DvAL[1.O);
pVerts[2].dcCo1or —~ RGEA MAK[(lZ8. 255. 128, 0):

pVerts[2] .dcSpecu1ar '— O;
W em 5 [2] ‘mm = 0 : ‘_____ dvTU and dvTV are used to map a vertex into texture
p\/erts[2] .dvTV = O, coordinates. Here again, we will use these fields in

Chapter 15.

__ .1

Now let’s enter our three operations after the Vertices. The Direct3D SDK

has a helper file (d3dmacs. 71) with macros for inserting operations into an

Execute Buffer. These macros do a decent job, and we have used them in

our examples. We recommend that you take some time to look at these
Direct3D macros.

e——>

p1nsStartDTmp=

The OP_
macros
wCnur11
the corr‘
other pe

// ma‘0F_PRI
P

The firs?
cessed. I
D3DPROCl

D3DPROCl
D3DPROC\
D3UPRO(:

Process‘
Vertex is

// FE!
0P,T<.(

E<
<

pTmp :

In addit
how edgan extra

// ex
OP_E><

l___



241

REVVING UP DlRECT3D I 221

Starr, - m pSysE)<Bufter + 3*sizeof(D3DTLVERTEX); {J Rememberwhereinstructionsstart.
prmp = (PVSID pins): {J Gonverttovoidpointer for d3d macros.

‘pins

The OP_X}\'X macros below take both a count and a void pointer as parameters. Once used, the
macros increment the void pointer to point to the next valid location. Count is used to set the
wcount Field of the D3DIl\STP.UCTlGN as explained earlier. Remember to follow each opcode with
the correct number of operands. Also note that macros for more complex opcodes require
Qther parameters in addition.

// Tiake sure ve"Liees are Copied to device memory
CP_PROCESS_VlRllC|Sll, pimp);

PR0CESSVERTlCES,DATA(DBDPROCESSVEQTICESACOPY, 0, 3, :Tmp);
compute
'ertex The First parameter passed to OP PRCCESS VERTICES indicates how the Vertices should be pro» ’

cessed. Four important options are
DEDPROC ESSVERUCELCOFV Vertices should simply be copied~—they have been trans-formed and lit.

ex. With flat ' DEDPROC ESSVERTlCES__T?AN3FORM Vertices should be transformed.
are set to , D3 DPROC ESSVERTICES TIANSFORMLI em Vertices should be transformed and lit.
tber two i . _ D3DPROCESSVERTICES_NDCOLOR Vertices should not be colored. ‘

ud fading’ ProcessVertices needs to know where to start and the number of Vertices to process. The startIn t 6 vertex is specified by its index position.
// render triangle
CiP_T¥IANGLE_L:ST(l, pT'np);

(H FWD‘ R’ ANC'LE)pT7lpl ' >Vl ’ Vertices ofatriangle are specified as a
0

(‘:LPD3DTR:ANGLE)pTllpl ’>V2 15 Word—sizedindeX into the Vertexlisl.
ClLPD3DTRlAl\GLE)pTT1p)’>V3 Z;
(ILPD3DTRl/xNGLE>pTmp)->wFlaqs = O‘

oucanuse ii: : W . _ 1, '. ‘
experiment V. pTmp ((cha *,rTmp) + s1zeof(,.3DTR ANt1L| ),

In addition to the Vertices, triangle opcodes take a wtl a g s parameter that can be used to control
how edges are drawn in wire—frarne, strip, and fan modes. This is an advanced topic and is left asan extra credit exercise.

// exit operation _
gp_| x lT(3Tmp) ; (‘,1 Terminate Execute Buffer list with OPEXIT.
pmg End = (me u ) pmp; (1 Remember where instructions end.

The following code is the same as what we listed in 14.4.5 to create an

Execute Buffer and copy over an instruction from a system memory buffer.

Ct3D SDK e, V\7e’Ve copied it here for your convenience:
ns into an

themin

at these ‘_ // Describe Executeliuffer to be created" l)3|JI )<‘.l'CllTl'BlJl H RU] SC riebllesc;
memset(&:JebDese, 0, size0i°(debDesc>);
debDesc.cwSize = sizeot(debDese);
debDese.cwFlags 2 D33DEB BUFSIZE;
debDesc.:wBufferSize = sztEx;

// Create ExecuteBuffer and copy system buffer 3‘/er
m_p3dFns->CreateE><eeuteBuffer(&debDese. &n,pE><BufFrs, NULL);
m,pExBut‘Fns->Lock(&m_ExDesc>: // lock buffer
pTmp = m_ExDese.lpData: H get returned ptr
memcpy(pTmp, m_pSysExBui°fer, sztEx); // copy data over
m_pE>'.Bui‘F*is*>‘.lnloCl<(); // unlock buffer
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14.4.10

// describe make—up of recently copied execute buffer
D3DEXECU I EDAT/-\ ExecData:
memsct(&ExecData, O, sizeoF(D3D|XECUTEDATA));
ExecData.dwS1ze = sjzeot(D3DEXECUTEDATA);
ExecData.dwVer:exUtfset = O;
ExecData.dwVertexCount = 3;
Exe:Data.dwInstructionCffset = plrsstart — m_3SysExBuffer;
ExecDdta.dwInstruct1onLength * pInsEnd — pInsStart;
n_pExBufFns->SetExecuteData(&ExecData):

Whew! We’re done setting up. Now we are ready to run.

Executing the Execute Buffers

3D graphics accelerators are often integrally linked to the systems standard graphics
card. Hardware resources can be shared between 2D and 3D drivers. The device drjV_

ers may like to “context-swap,” ifyou will, between the 2D and 3D tasks. To enable

this context—swapping, Direct3D requires that the IDirecr3DDevice::Execute()

function be bracketed by IDirect3DDe1/ice:.'BeginScene() and IDirect3DDevice::End—
SceneO calls.

Let’s execute!

// “execute” the execute buffer
m_p3dtn5‘>BeqinScene();
m_p3cFns~>Execute(pE><ecCmds, m_p3clV1'ewport, D3DE)(ECUTE_UNCL1FPED);
m,p3c1Fns—>EridScene():

IDirect3DDevice::Execute() takes three parameters: an IDirecL5DExecuteBuffer object, an
IDirect3DExecuteBuFfer object, and a DWORD with modifier flags. VV'ith the Execute function
being defined as a member of the IDirect3DDevice object, you can create multiple Execute Buffers
to represent multiple objects and render objects selectively within a scene.
Similarly, since the viewport must be specified with each Execute() call, you could use a single
Execute Buffer with different viewports to get different views of the object; alternatively, you could
also render objects with differing Viewing positions within a single scene.
The only modifier flags supported on Executef) are D3DEXCCUT£_C-IPPED or D3D[XECUTE_UNCL1PPED.
If you know that all objects in the Execute Buffer will fit within the 2D screen coordinates, you can
improve performance by setting the flags to D3DE>< ECUTE_UNCLI|‘PtD.

Be careful when executing Execute Buffers: They are hard to debug. If your

application crashes while executing a set of instructions, all you know is

that there was an error. The best that you can hope for is that the error

didn’t lock your machine into an unrecoverable state. Save often! Set your—

self up for trial-and-error debugging. Start with small Execute Buffers and

increase the size and complexity in small steps.



243

ig. If your
now is
error

Set your-
ffers and

REVVING UP DlRECT3D I 223

Seeing Results from 3D Devices

At this point, our Execute Buffer should render a triangle———we debugged it,
so we know it is error—free. The 3D device will render the triangle into the

2D surface that it was “extended from.” To actually see the triangle, we’ve

got to make the 2D surface visible. This step requires standard DirectDraw

programming that we learned in Part 11. Here’s the code to do it:

BOCL CSurface3d::tpdateScreen(LPDIRECTDRANSURFACEZ pPr1pary)v1

// offset dst "ect for client area pos’tion on primary surtace
Wong 1R1ght = m4ptZeroZer:.x + m,dwwtdth;
long l3ottom = m_::ZeroZero.y + r_dwHe’ght;
Rttl rjst = (m_ptZeroZero.x, m,ptZeroZero.y. 1Right, 1Bottom);
RECT rSrc = t0, 0, n_dwNidth, m_dwHe1ghtl;

// Blt with WAIT-JN‘1L~BLITTE¥ IS READY and re effects
pPr1mary'>R1t(&rDst, m_p2drns, &rSrc, DDBLT_wAIT, NULL)
return TRUE;

Oh! Iust one more thing, our display is in an RGB palette mode, and we’ll
need to realize the colors used to render our 3D object. If you remember

the code way back in Section 14.4.3—we were forced to create a palette and
attach it to the 2D surface before Direct3D would allow us to successfully

create a 3D device. We even arranged the palette to permit the 3D device to

modify palette colors. But this palette is attached to our Offscreen surface
and does not automatically get realized.

Here’s the code that realizes the palette by invoking SetPa1ette() on the Pri-

mary surface:

V01: CView::0nAc:ivateview( J
{

// reset palette or primary surface
LPDIRECTDRAWSURFACEZ pPr1mary = gpAppwide->m_pGrfxCard~>m_pSu"tFus;
LPDIQECTDRAWPALETTE pPa1ette = gpAppwide->m_pGrtxCard—>m_pPa1ette;
it (pPrimary && pPalette) pPrimary->SetPalette(pPalette);
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l4.5 Demo Time

WHAT HAVE

YOU LEARNED?

Try running the demo for this chapter on the CD. You should see a triangle
appear on the screen. Move the mouse around and the triangle will follow the
mouse. You have now worked through enough code to have an idea ofhow to
get a triangle rendered using Direct3D’s Immediate rnode. Congratulations!

We spent some time filling you in on the background of 3D on the PC, primarily to dem
onstrate that the field is still in its infancy: The evolution has begun, the pace will be fur
ous, the best is yet to come, and Direct3D is the foundation for the evolution. Within this
foundation, we saw the two 3D modes that Direct3D offers; Retained mode for high—level
abstraction, and Immediate mode for high performance.

If you worked through the code samples, you have

I handled code to get access to Direct3D functionality and 3D devices,

I linked Direct3D devices to DirectDraw surfaces and DirectDraw,

I set up a simple viewport to map a 3D world to 2D screen coordinates, and

I finally, you have created an Execute Bufer to render a triangle with a 3D device to a
2D surface (using the viewport and palete).

And now you're prepared . . . prepared for he next chapter on how to extend our simple
triangle with texture mapping.
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CHAPTER 15

-T

Embellishing Our Triangle
with Backgrounds, Shading,

and Textures

WHY READ In the previous chapter, we walked you through the bare minimum code needed to ren—

ii THIS CHAPTER? der a triangle with Direct3D. Our triangle from that chapterwas solid filled, with a flat shad-
ed color. What's more, we didn't redraw the background, and moving the triangle around
left "triangle trails.” Let's add some bells and whistles to our simple triangle.

In this chapter, you will

I learn how to use Direct3D to repaint the background and get rid of the ”triangle trails"
(we could have used a 2D background from Part l|—but you'll need to understand how
to use 3D backgrounds when you add lighting to your 3D scenes);

play around with shading options and vary the coloring of triangles;

load and use a texture to render the triangle with texture mapping; and

understand the benefits of Z-Buffering and learn how to use Z—Butiering while render-
ing triangles.

. 15.1 Continuing Our Look into Direct3D

Over the course of this chapter, we will come across the Direct3D objects listed

below ir1 Table 15-]. We will describe the objects and the structures they use as

we get to them.

Structures in Direct3D often contain unions of two namirig conventions.

Let’s take, for example, the D3 DTRIANG LE structure that we used as an oper-

and in the last chapter. (See code on the next page.)
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TABLE I5-1 Direct3D Objects Used in This Chapter

ilDIrect3DMaterial Coloring options, such as color and texture
lDire<:t3DTexrure DirectDraw surface containing a texture map image

typedef struct _D3DTRIAN(:‘H {
union l

WORD vl;
WORD wvl;

l;
union (

MORD v2;
WORD wVZ:

}:
union l

NORD v3;
WORD wv3;

l;
WORD wrlags;

} D3DTRIANG_E

Notice that each Vertex in the structure is a union of two Word fields with

different names for both Hungarian and non—Hungarian naming conven-

tions. To simplify our discussions of structures, we will only show the Hun-
arian Version and dro the unions.8 P

The simplified D3 DTRIANGLF structure would therefore be:

typedef struct _D3DTRIANG|— {
NOR? wV1;
NURZ wV2;
NOR} wV3;
NOR3 wFl ags;

l D3DTRIANGLE

15.2 Repainting the Background Using Direct3D
Let’s continue where we left off in the previous chapter: Backgrounds

weren’t redrawn, and moving our triangle around left “triangle trails.” Let’s

use Direct3D to repaint the background and get rid of the “triangle trails.”
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Why use Direct3D and why not use a 2D background from Part II? At some

later stage you may want to add a spotlight into your 3D model. Moving the
spotlight around might cause it to shine past 3D objects and onto some

backdrop. Direct3D needs to know about this background to be able to illu—

minate it correctly. VVe’ll use Direct3D to redraw this background.

Unlike triangles, backgrounds in Direct3D are not individual objects.

Instead they are controlled as a method of an lDirect3DViewport object.
The lDirect3DViewport::SetBackground() method takes a material handle as
a parameter. So let’s learn about materials.

Looking at Direct3D Materials

Even though lighting is computed by the Lighting module, some rendering
methods are influenced by lighting factors. Lighting options in the Render—

ing module are controlled by the D 3 DO P_STATE _ I GHT opcode. Light state

options that can be changed with this opcode are Fog, Ambient, and Material
(defined as |33D1_lGHTSTATETYPE).

In the Rendering module, Fog and Ambient controls apply globally to all

objects. The material control, on the other hand, controls lighting proper-
ties of specific objects. Lighting controls are specified using a D3DMATERIAL

structure. Let’s look at the simplified version of this structure:

typedef struct _,,D3DMATERIA_ l
ZNORD CwSize;

BDCOLURVALUE ccvfliffuse; F d.ff t 1 tBDCOLURVALUE ucvAmb'lent ; °“‘ ‘em ‘°°”°mP°“°“5‘
D3DCOLURVALUE acvSpecula“:
D3DCOLORVALUE dcvEm'sslve;
D3D\/ALUE dvPower ; C] Specify sharpness ofspecular reflections.
D3DTE>,'TUREHAl\DLE hTe><ture; (1 Combine atexture with specified coloring.
DWO RD dwRampSi ze; C] Shading gradient of colors in Ramp/Mono model.

) D3DMATERIAL, *LPD3DMATERIAL;

The D3DNATERIAL structure provides dcvDiffuse, dcvAmbient, dcvEmissive,

and dcvSpecular/dvPower to control four different color components of

rendered objects. The D3 DTLV E RTEX structure also has dcColor and dcSpecular
fields to control colors of rendered objects. The dual controls are combined

during rendering. We will look at controlling colors later in this chapter.

Other fields in the D3 DMATERIAL structure are: hTexture, through which we

apply texture maps to a rendered object (discussed later in this chapter);
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and dwRampSize, used by the Ramp/Mono driver to control fineness of

shading in its approximated color model (to be seen in Chapter 16).

The D3DMATERIAL structure uses e3Dc0LrHvALut type to define colors as Opposed
to the D3DCOLOR type used by D3DTLVERTEX structures. RGB values in
D3DCOl_CRVALUE are floating point fields within a structure (normally ranging from
0.0 to 1.0); RGB values in D3l3COLOR are byte—sized values packed into a DWORD
(ranging from O to 255).

Creating a Direct3D Background

Again, since backgrounds in Direct3D are not individually rendered

objects, we cannot set the color of backgrounds with D3 UT LV 2 RTEX.dcColor

[as we did for triangles). Instead, we set the color of backgrounds with the
color fields of a )3 DMATERIAL structure. (Given that materials ca11 also con-

tain a texture, we can render an image as a background using textures—but

we’re getting ahead of ourselves! VVe will get to texture mapping shortly.)

The field of interest presently is D3 DMATER I AL.dcvDiffuse. It is diffuse reflec-

tions of light that give objects their basic color; such as a blue ball or a red
box. With Direct3D materials we use dcvD1fi‘use to set the basic color of the
material.

Let’s use Direct3D to implement a CBackground3d class with a single color.

We start by first creating and setting up a material and then associating the
material with our viewport.

In Direct3D, materials are managed through an IDirect3DMaterial interface

object. Here is the code to create an IDirect3DMaterial object and to set its
properties with a D3 DMATERIAL structure and the IDirect3DMaterial::Set-
Material() method:

BOOL CBackgroL.nd3d: zlnitll l-‘|llRFCT3D pD3D)

{ TDirrxt3D::CreateMaterialOreturns an IDirect3DMaterial
interface object.

// create a material fer the background
pD3D->CreateMaterial(&m_pMate~ialFns, \lULL); 4:

// in"t material descriptor
rnemset(&m_MaterialDesc, O, sizeot(m_Materialllesc));
rrLMatcrialDcsc.dwSize = sizeof(rn\MaterialDesc);

// set diffuse coloring (“pinl<‘sh color”)
'n_MeteridlDes:.dcvDiffuse.d\/R D3D\/AL‘cE(C.85);
'n_MaterialDesc.dcvDiftuse.dvG D3D\/AL‘cE(C.1El) ; 5°‘F010r0fb=tC1{gr0undbY
iI_MaLer‘ialDe5c.dcvDifi‘use.d\/B D3D\/ALL‘E(C.50); S€ttmsfl1edCVD1ffus§
rn_Mat.erialllesr.dcvl)itfuse.dvA D3DvALUE(3.0): Componentofmateml»
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// set material with above description

TIL pMaterial Fns >SetMateri al (&m_Materi al Desc); <— [Di,ec,3DA,[me,,‘,1[,5e,Mute,ia1O : l
retum TRUE; actually sets material properties. ‘‘

And now we will set up our background with this material: J l

 

BODL CBa:1<ground3c::Attacn(_PDIRECT3DDE\/ICE p3dSunr”Fns, LPJIRICTEDVIEWPORT p\/iew)
{ .

// need rratsrial nancle
mfiptlaterialFns->GetHandle(p3dSurfFns, &m_ ntvlaterial);

 
 
 

ed

,d‘ // set oackgrourd of Newport‘- "C010T pV" ew->SetBackground(m_hMa:erial );
with the return IRUE:. l

also con‘ l___j For hardware acceleration devices, source data might have to reside in video memory. Video
11-e5__but memory is limited, and I)irect3D occasionally uses “handles” for memory allocation. The

GetHcmdle() method loads an object onto the specified device and returns a handle to the
Ortly.) loaded object.

.136 reflec- ‘

. or a red . . ‘

_1 Or Ofthe 15.2.3 Blttmg a DIrect3D Background
\/\7e have set u our View ort to have a back round. View ort back rounds

P P g P 8 _
are not automatically drawn. The IDirect3DViewport::Clear() method 1S g

igle color. used to control the drawing of backgrounds. By using Clear(), we can con—

iating the trol when the background gets redrawn. In addition, Clear() uses an array L

of rectangles to specify how much of the background gets redrawn, helping

us reduce the cost of repainting backgrounds with appropriate “dirty rect-

lmterface angle” 10gjc_
to set its

1l::Set— Here’s our code to Blt backgrounds. VVe have not implemented any “dirty 
rectangle” logic. But in keeping with the CBackground class from Part II,

we can specify a sub-rectangle to the Bit method to implement moving

backgrounds.
 

  

 

%

mrmz()DM 'al
at“ BOOL Cfidckgroundlfidz:Blt(LPDZRECT3DVIEWPORT pt/iew. POINT *pptDst. RECT *prSrc)(

// dnaw specified su:—rect of background at specified pt
DWORD dwwidth = prSrc—>m‘ght - prsrc >1ef:;
DWORD dwHeight = prSrc—>bot‘:om — pl“S"c->t0D;

//create a d3dF:ect to clear background (needs to be clipped)
D3DRE”T cl D t; . .

undby dr.DSt‘:X1 = pE:SSt_>K_ ID1re«:t3DVzewport::Clear() expectsanarrayofD3DRFCTs.
, drDs:.y1=pptDst—>y;ial. _

{is
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drDst.><2 = drDst.xL + dwllidth ;
drl)st.y2 = <‘lrl)st..yL + <iwHe1ght,;
#defiwe HRECTS 1

// Clear \/iewport to “d“aw" background
pView—>Clear(nR[CTS, lidcDst, D3DC|,FAR,TARGF’);
return TRUE:

The first two parameters specify an array of rectangles to control “how much” gets cleared by
IDi'reLT3DViewpart::Clear( The third parameter to AIDirecl3Dl/iewpurt::Cle11r() specifies flags to
control “what” gets cleared—optior1s are the rendering target or the Z—Buffer or both.

l 4

Mia are now all set to have the3DDevice clear our background. As we men.
tioned in the previous chapter, 3DDevices may batch rendering operations

and the actual clear (redraw) is only guaranteed to have been completed on
return from the IDirect3DDe1/ice::EndScene() call.

Try running the demo for this chapter on the CD. Voila! No more triangle
trails!

15.3 Controlling Shading Options
In the last chapter, we worked through the bare minimum code needed to

render a triangle. VVe pretty much left the Rendering module in its default

state. The Immediate mode Rendering module in Direct3D offers a lot of

rendering options. Let’s take a look at how to control these options and

then play around with some of them.

Looking at Some Render States and Their Default Values

With Direct3D lmmediate mode’s D3 3DP_STATERENDER Opcode we can con-

trol various states of the Rendering module. Some of the straightforward
Render states are listed in Table 15—2.

TABLE 1 5-2 Direct3D Render State Types

D3DRE\lDERSTATE_FlLLMODE F1 triange, rawe ges, raw vertices

D§DRE\lDERSTATE_SHADEMODE Flat, Gouraudffiuturez Phong)

D3DRENDFRSTATF_T[)<TURFHANDLF Set mode to texture mapping and specify texture

D3DRE\lDERSTATE_DlTHEREl\l/-\BLE Enable/disable dithered coloring

D3DRE\lDERSTATE_SPECULARENABLE Enable/disable specular highlights

D3DRENDERSTATE_ZENABLE Enable/disable Z-Butlering
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Now let’s look at the default state of these render states and examine their

impact on our simple triangle render example:

__FIcLl’0Dl£ i The default value is mm t_sotin, which is what we want for our
simple triangle.

_SHADEl’ULiE The default is D3DSHADE_i3OL‘RAUD. The implication is that the colors of
the vertices wou d have been interpolated across the inten/ening
space. But if you look at the code, you'll see that we set all the verti-
ces to the sarre color and got a f|at—shaded effect.

_ TEXTUREHANDLE The default is Nuswhich is ho\N we turn off texture mapping and
render shadec triangles. Note that there is no equivalent SHADEMUUL
setting to turn off shading.

_DIT-lERENABLE The default is FA_SE. If we'd opted for differin colors at the triangle
vertices, we m'ght have ended up with a ban ed picture on our low-
resolution 8 bpp screen. Dithering improves the picture quality of
Gouraud interpo ation but reduces rendering performance.

nsi~Ecii_ARENAB LE The default is ‘RUE. But we deliberately disabled specular highlights
by setting dcSpecular of all vertices to O.

_Zl:N/ABLE The default is FA.SE, which means that triangles will be rendered
sequentially. Z_—Bufferin does notreallylaffect our single triangle
example. But i we ren ered multi le trian les without Z—Buffering,
we would have to order the triang es from ack to front,

There are too many states to list here (three Transform states; seven Lighting
states; and about seventy—tvvo Render states including thirty—tvvo stipple pat-
terns). We strongly recommend that you look through the Direct3D documenta-
tion and familiarize yourself with the various states and their default values.

Coloring a Pixel in Direct3D

Direct3D drivers combine Vertex components (such as color, specularity,

and alpha blending) and render effects (such as fog, dither, anti—alias) to

compute the final value of a pixel. Vertex components are specified at each

Vertex, and values at intervening pixels are computed from Vertex compo-

nents based on a shade mode. Shade modes currently permitted are flat and

Gouraud. No interpolation is done with flat shading, and the component

Values at the first vertex of a triangle are applied across the entire triangle.

With Gouraud shading, component values from the three triangle vertices

are linearly interpolated to get the Values at intervening pixels. Phong
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shading, where all lighting is reevaluated for each pixel of a triangle, is not

currently supported, but it has been defined for possible future support.

Based on the shade mode, an intervening pixel’s color is computed from the

RGB color values specified at the triangle’s verticesi The meaning of the

color values and the result of the interpolation varies with the color model

used (RGB or Ramp). We’ll examine this factor in more detail shortly.

A shaded pixel is further modified by adding its specular component. Spec.

ularity is specified as an RGB color value at each vertex. The specularity of

intervening pixels is computed using the shade mode in effect. Once again,

the approach to computing specularity and its result varies with the color
model used. VVe’ll look at this in more detail too.

V/Vhen alpha blending is enabled the alpha component of a color is also

interpolated according to the shade mode. However, pixel values are 11ot

affected by alpha interpolation if blending is implemented by stippling.

Alternatively, pixel values are effected by alpha interpolation, if alpha

blending is implemented by texture blending. (Note: When alpha compo-

nents are not supported in a given mode, the alpha value of colors is implic-

itly 255. This is the maximum possible alpha; that is, alpha is at full

intensity.)

VV’hen texture mapping is enabled, the source “texel” value also contributes

to the pixel’s value. As we mentioned earlier, shading cannot be turned off;

therefore, the texel value is only a partial contributor. This contribution is

“blended” with the value of the color and the specular components. Blend-

ing is controlled by D3DRENDERSTATE_TE)<TU REMAI-‘BLEND. The default value is

D3DTB LEND_MUDL LATE, Where RGB values of the texture are multiplied with

the computed RGB values. (Alpha values in the texture supersede com-

puted alpha values.)

One of the values that we can set D3DRENDERSTATE_TEXTUREMAPBl,END to is

D3DTBLEND_COPY. ln Copy mode, the renderer ignores color computations and
simply copies texels to the screen; therefore, textures must have the same pixel
format and the same palette as the primary surface. Copy mode effectively turns
off shading and typically offers a significant performance boost. This is often a
good technique to attain higher performance with pre—lit textured scenes.
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Shading with the RGB Color Model

Direct3D offers two different color models: RGB and Ramp (Mono). The

two models treat pixel coloring differently, offering varying quality versus

performance options. Let’s take a quick look at how shading is treated by
the RGB color models.

The RGB model operates in true color space using 24 bits to combine red,

green, and blue light. With Gouraud shading in the RGB color model, each

of the red, blue, and green components is individually interpolated and
then recombined to produce the shaded pixel. Specular values are similarly

computed. The alpha component is independently interpolated to allow

the driver to choose the interpolation technique that matches the imple-

mented alpha blending approach.

We can use the 24-bit RGB driver to render to 8-, 16-, 24-, and 32-bit dis-

plays. However, banding artifacts are sometimes apparent when the RGB

driver has to render a scene down to less than 24 bits. Turning on dithered

rendering helps us reduce the apparent effects of banding artifacts.

Shading with the Ramp Color Model

Our code samples from both the previous chapter and the current one use

the RGB color model. Programming with the Ramp model requires a little

more explanation, and we will look at it in Chapter 16. But while we’re on

the subject of pixel coloring and shading models, why don’t we take a quick

look at how pixels are colored by the Ramp model.

The Ramp model operates through lookup tables. Colors have no real

meaning. In fact, the Ramp driver uses only the blue component of an RGB

color specification. When interpolating between two vertices, the Ramp

driver interpolates this blue component with no regard to the actual color.

The driver then accesses “a lookup table” to interpret the final result.

The Ramp driver builds lookup tables from material definitions. For mate-

rials with no specularity, the driver builds a “color ramp” ranging from the
ambient color to the maximum diffuse color. For materials with specular-

ity, the driver builds a two-stage color ramp; the first stage ranges from the

ambient color to the maximum diffuse color, and the second stage ranges

from maximum diffuse color light to the maximum specular color. For

materials with textures, the Ramp driver builds a color ramp for each color
in the texture.
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We can control the size of the ramp with the dwRampSize field in the

material definition. In a pallctized display mode, each ramp entry equates

to a palette entry. Increasing ramp sizes will increase shading resolution,

but this method will consume Valuable palette space. After all free palette

entries are used up, the Direct3D system will find colors that most closely
match the intended colors. Huge ramps or a large Variety of colors can also

cause poor caching and therefore degrade rendering performance.

Changing Default Render States

Let’s play around with shading and changing render states. First, We will
revisit our simple triangle and change Vertex colors to see the effect of

Gouraud shading.

// modify colors of ver:i:es
DEDTLVERTEX *pVe“ts ~ (D33TL\/ERTEX *)m_pSysExBufter;
pl/erts[0].dcColos RGBA_MAl<E(128, 255, 128, O);
pl/erts[1].dcCol0“ RGBA_MAKE(lZ8, 0, 1P8, U):
pl/erts[2].dcColo*' RGBA_MAKE(O, 255, 128, 0);

dcCol0r sets the color of each Vertex. With Gouraud shading, pixel
colors are interpolated from the three vertex colors. With flat shading,
all pixels in a triangle are set to the first vertex color, and the other two
colors are ignored.

Now run the demo for this chapter and check the Gouraud shading option.

You should see the colors Varying throughout our triangle. Do you see wh at
we mean by banding artifacts?

Next we enable dithering, that is, set D3DRENDERsTATE_LJi I HERENABLE to TRUE.

l/Ve change render states by using the D3 DOLSTATERENDER operation. A
single D3 D0 P~ST/«TERENDER instruction controls one state Variable and is

followed by the state to be changed and its new Value. (Use

D3DOP _ST/NTETRANSFORM to change transform states and D3DOP__STATELIGHT
to change lighting states.)

Here’s code that adds the D3 D0 P_S TATE R E N D E R instruction into our previous
execute buffer:
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the

equates Compute size of Execute Buffer needed for trian le and state cha11 e.. s s
lution, ,

alt szLE>«. = s1‘zeof(D3DTL\/ERTEX) * 3; // 3 verttces for a triangle r tp etc sztE>< += s1zeof[D3Dl\lSfRlJ(‘.Tl0N) * 4; // staze, processvcrts, tri. exit ‘ 3

tclosely SZLEX += s1'ze0f(D3DSTATE) * 1; // 1 texture render state 3.
S szt[x += 51'zeot£D3DPR0CESS\l[RTlCES); // 1 process Vertice operand 353113180 sztE>< += s1'zeof(D3DTRI/\NGLE) * 1; // 1 triangle operand

n_pSysExBm"ter = new BYTE Lszttxjg // setup ex buffer in sysmem first
flemset(m,pS,vsE><Bufter, O, sztEx); // zero out sys men lutfer

Modify operations from last chapter to add render slate operation.

re will LPEYTE lplnsstart = m_pSy5E>:Butfer + s“‘zeof(D3DTvL\/ERTEX)*3;

ct f LPVOID l|JTWp = (LPVOID)lplnsStart;0 0P_STATE_RENDER(l, lpTmp): < jSTATE_DATA(D3DRENDERSTATE_D1THEREVABLE, TRUE, 1pTwp1; ;
OP_PROCESS_VERTlCES(l, lpTmp): »

PROCESSVERTICES_DATA(D3DPROCESS\/ERTICESVCOPY, 0, 3, lpTmp);
OP_lRJAN(1‘|t_llS|(1, lplmpj; .

((LPD3DTR[ANELE)lpTmp)->vL = 0; InsertD3D0I’_STATERENDERusmgthe
1“ ;|)3mR]ANm t)1p}mp) N2 = 1, OP_STATE_RE.\IDERn1acr0fT0n1d3d7naC$}1
I(L3D3DTRIANGLE)‘pTmp)->v3 = 2;
I<L>D3DTR1ANGLE>’pTmp:»>wHags = U;
1pTIrp = ((char*)‘pTmp) + s1'zeof(D3DTRIANGLE);

OP_EX1T(1pTrrp‘,s;

wixel -PBYTE lpInsEnd = (LPBYTE>lpTmp:

tshading, ‘ ‘othertwo

RLII the demo for this chapter and toggle the Dither option. HoW’s the

quality? We’ll measure performance in Chapter 16.

0 tion.

ieepwh t I ; Well, now you know how to change render states. Why don’t you try somea

7 If out for yourself?

Em TRUE lg,’ Try setting D3DRENDERSTATE_SHADEMODE to D3DSHADE_FLAT and see how only
n A ' . H the first Vertex color is used. Other options we’re sure you can handle are

n'diS { D3DRENDERSTATE_,7ANTIA;IAS and D3DRENDERSTATE_FILLMODE. Have at it!3 I I I

mm i . l5.4 Texture Mapping with D|rect3D2 .
1 . .

st OK! How about we whip up a batch of some texture mapping?

previous _
s L 15.4.1 Creating a Texture Map

To start out, texture ma 3 like IDirect3DDeVices, are “converted” Direct-P 7

Draw surfaces. So to create an ID1rect3DTeXture oh}ect, we first create an

IDirectDrawSurface and then use Querylmferface to retrieve an
IID_IDirect3DTexture interface.

%
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Pixel format allowed for texture surfaces varies based on the Direct3D p

driver being used. With the RGB HEL driver, we can create textures of vari_

ous bit depths (including 1-, 2-, 4-, 8-, 16-, 24-, and 32-bit textures) and
variousforn1ats(such.asDDPF_RGB, DDPF,PALETTElNDEXED8).Cflleckthe

Direct3D documentation for a complete list of formats supported for tex-

ture maps.

With the MonolRamp HEL driver, textures must either be palletized tex-
tures or be textures of the same format as those of the primary display sur.

face. Hardware acceleration devices can also support a variety of formats

for texture maps. Surfaces must be enumerated to find out the supported
formats.

We will work with the Ramp HEL driver in Section 18.3. For now let’s continue

using the RGB HEL driver with 8 bpp surfaces. Here’s code that demonstrates
how to create a surface suitable for texture mapping. The code then “converts”

the surface to create an IDirect3DTexture object, and finally it loads a bitmap

image into the texture.

BCOL CTrianqleTex::1nit(LPDIRECTDRAN2 pDDraw, LPDIRECTDRANPALETTE 3PalettE, UIN' WRe:)
{ . lmzaaeol

Standard GDI code to load bitmap data from resource.

CBitmap c3mp;
cBmp.LoadBitmap(wRes):
BITMA9 bm;
cBmp.CetBitmap(&:m);
pData = new 3YTE[bm.bmHeight '* bm.bmNidtlI];
cBmp.CetB1’tmapBits(bm.bmNidth * bm.hmHe1'ght, pflata);

Setup to create a structure suitable for texture maps.

m_SurtDesc,dwHeight = roundUpPowerOfTwo(bm.bmHeight):
m_SurfDcsc.dww"'dth - roundUpPowerOfTwo(bmbmwidth):
m_SurfDesc,ddpFPi'xelFor‘nat.:wRGBB’tCount = 8;
m_SurfD0sc.ddpfPixelFomat.dwF1ags — DDPFVPALETTEINDEXED8 l DDPF RGB;
m_SurfDesc.ddpfPixelFor‘nat.dwS1ze = sizeof(DDPIXELFO2MA.T",>;
m SurfDesc.ddsCa ‘s.dwCa 5 = DDSCAPS TEXTURE; , _ _ _ _ ,

m_Sw.fDe§C'dWFvdgS = DDQDJHDTH [ D3SD_%E:GH-F? Specifythatthis surtacewrllbeusedfortexturemappmg.
m,SurfDesc.dwF'ags [= DDSD_C/RPS I D3SL)_PIXELFORMAT;
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Standard DirectDraw code to create a surface and load an image into the surface’s data space.

LPDIRECTDRANSUQFACE pDD'iSurt;
pDDraw~>CreateSurface(Sim,Surtiesc, &pDD1Surf, NULL);
pDIJ1Surt >Lnek(NllLL, Xninsurtuesc, DDL(jiCl<,‘wJAiT, NULL);
p5Y*[ pDst = ‘IPBYTE)m_SurfDesc,lpsurtaze:
PBYTE osrc = pData;
for (WORD dwRow = 0; dwRow < m_dwHeight; dwRovI++) i

mernset(DDst, O, n Sur'tDesc.lPi-ch);
menc9y(pDst, psrc, m_dwwidth);
pist i—= m_Surr"Desc.lPitcn;
psrc += bnbmllidtli;

l K Our texture map surface has a I7DPF_PALETTEIliDExED8 pixel format. DiIect3D
P‘DD1§”l"f ‘ > M 0C kl‘ N J L ) 5 requires us to set the palette before getting an IDirect3DTexture interface. Our
PDD15 ” fl ' > 5“ Pal ett E l‘ l) P all e t tel 5 4* application has been designed to use the same palette on all objects.
// Convert to Textureobject and get iLs handle
pDD1Surf—>Queryintertace(IILLIDirect3D*e><ture, &rr_pSurtFns);
;vDD1Surf->P.eiease();
mnpsurttns->GetHandle(p3dFns, &m_nTe><t.ure);

// free temporary memory, return
delete DData;
return TRUE:

Querylnterface on the IDireetDrawSurface gives us an IDirect3DTexture interface to the same object. We now
have two separate interfaces to the same object. Both interfaces must be released for the object to be completely
freed. In this simple example, we will not use any DirectDraw functionality on the texture surface; therefore, we
have used a local Variable for temporary access to the IDirectDrawSurface, and we are releasing the interface
before we exit. In later examples we will use DirectDraw functionality on the texture surface and then even the
IDirectDrawSurface will be part of the CSpriteTex object.

 

The Height and Width of texture map surfaces used fortexture mapping must be
a power of two. CreateSurfaceO will successfully create a surface with non—"power-
of—two" dimensions. But later at Executeo time, the rendering engine will crash,
and there will be no indication of the nature of the error.

ID1'recL3DTexture::GetHcmdle() loads a texture into device memory and

returns a handle to the object. To provide more control of device memory
use, IDirect3DTexture has Load() and Unload() methods. These methods

will work only with surfaces created with the D D SCA P S_A L L0 C 0 N LUA D flag set

in the ddsCaps.dwCaps field of the surface descriptor.
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15.4.2 Setting Up Triangle Vertices for Texture Mapping
So far we’ve created and loaded a texture. Now using code that We’ve mostly
seen in the previous chapter, let’s set up an Execute Buffer to render a
texture-mapped triangle:

, CTriang]eTex::Init(LPD1RECTDRAWE pDDraw, LPDIRECT3DDEVICE p3dfns, UINT nResID)

Compute size of Execute Buffer needed to render simple textureqnapped triangle.

s4tEx = sizeof(D3DltVERTEX) * 3: // 3 vertices for a triang]e
sztEx +~ sizeof(D3DlNSTRUCTION) * 4; // state, prscessverts, tri, exit
sztEx += sizeof(D3DSiAfE) * 1; // 1 texture render state
sztEx —— sizeof(D3DPROCESSVERTICES); // 1 process vertice operanc
sztEx += s‘zeof(D3DTR\AVGLE) * 1; // L Lriang1e operand
m4pSysExBuffer = new BYTE [sztEx]; // setup ex butter in sysmem first
memset[m_pSysExBJ"fer, Z, sztEx): // zero out sys mem butter

Set up vertex info for texture-mapped triangle.

D3DT_VERTEX *3Ver‘s = (D3D‘LVFRFEX *)m,pSysExBuffer;
// V 0
pver s[0].dvSX = D3DVAL(0.0);
p\'er :O].d\/SY ‘— ]3DVAL(CI.0]; Fornow,setcolorValuetowhite.Wewill
p\‘er [0].dvSZ ~ 33DVAL(Q.1); explainthislaterinthechapter.
pVer _0]. D3DVAL(1.0):
pVer ,0]. ' = RGBA4WAKE(25E, P55. 255. 255)
pvert O]. ' )3DVAL(0.0)?
pver :3]. ' )3DVAL(O.D);// V
fiver"
pVerL
pveri
pvert
pVer.
pver
pver
// V
pver
pver
pVer
pver
pVEr
pver
pVer

Uv

n+. mamen
:1]. VerLsC0].sx + D3DVAL(30Q.0)
1]. " 3Verts[0].Sy + D3DVAL(lO0.0I;

:11. D3DV/\L<0.1):
1]. D3DVAL[1.U);

.1]. * RGBA_MAKE(255, 255, 255, 255];
1]. ' 33DVAL(1 O);

_1]. ]3DVAL(1.0);

[2]. J . = pVerts[0].sx + D3DVAL(15D O);
[2]. " = pVerts:0:.sy I D3DVAL(l80.0}:
:2]. ' . = D3DVAL(O.1):
72]. = D3DVAL(l.O);
:2].dCCO]OF = RGBA#VAKE(255. 255, 255, 255):
[2].dVTU = D3DVAL(0.0);
2].dvTV = D3DVAL(l.0);

(/i(n(/imL/1mL/1I\Jt/1Ui’.nU1L/7(/‘Ln>—‘L/
The difference in setting up the vertices is the setting of texture coordinates
in the dvTU and dvTV fields of the DBDTLV ERTEX structure. For each vertex,

We need to specify how it maps to the texture. All textures, no matter their
size, are defined to range from 0.0 to 1.0. Values for dvTU and dvTV need
not lie within the “0.0 to 1.0” range. We can specify any legal floating point

value, either negative or positive.
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How the rendering engine reacts to texture addresses outside the “0.0 to

1.0” range depends on the DSDRENDERSTATE _TEXTUREADDRESS state variable.
Valid values are D3DT/-\DDRESS_wRAP, D3DTADDRESS_MlRROR, and

D3DTADDRF.SS_, CLAMP. The default state is D3DTADDRESS_wP.AP. Refer to the

Direct3D documentation for a deeper understanding of each state.

Setting Up Render Operations for Texture Mapping

Now we will set up the operations to render our texture—1napped triangle.

The code for this procedure again is pretty much the same as that from the

previous chapter. The significant difference is that we’ve now got to tell the

rendering engine to use texture mapping while rendering, and we need to
tell it which texture to use.

Loo king through the various render states, we come across the

D3DRENDERSTATE__TEXTUREHANDLE state type. The TEXTUREHANDLE state type

with a D3 DOP_STATtRENDER opcode tells the rendering engine to use texture

mapping, and the operand specifies which texture to use:

Modify operations from the last chapter to render texture—mapped triangle.

LPBYTE lplnsSt,art = m_pSy5ExBu‘ter + si'zeot(D3DTLVERTE>()*3;
LPVOID lnTmp = (LPVOlD)lplr,sSta"t;
OP_STATE_RENDtR(l, lpTmp):

STATF,DATA(DBDRILNDERSTATI#TEXTUREHAl\DLE, m_rTe>«ture, lpTmp):(—j—
0P,PROCESS_VER|lCES(1, ‘pTmp);

PROCESSVERTlCE3_DATA(D3DPROCESSVERTlCES_COPY, 0,
OP,TRlANGLE_‘_ISl"(1. lpTmpi:

((LPD3DTRlANGLE)1pTmp)->vf
((LPD3D*RlANC.tE)lpTmp)~>\/Z
((LPD3DTRlf\NGLE)lpTmD)t>v3 — ;
(H PD3DTRlANGLE)lpTmp)'>wFlags = U:
lpTm3 = [(Chav'*)lpTrt.p) + sizeof(D3DTRlANGLE);

op_exit.(lpTmp);
lpbyte lplnstad = iLPBYTE)ipTmp;

Tell the rendering engine to render all of the following triangles using texture mapping with the
texture specified in the pararneter. Once again, our code sets up Execute Buffer operations with
the macros in d3dmac5.h.

Finally let’s create our Execute Buffer, copy our instruction stream into

device data space, and then describe our buffer to the 3D device. This code
is identical to code we’ve seen before:
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Same code as in the last chapter to set up an Execute Buffer on a 3D device.
m_ExDesc.jwFlags = D3DDEB_BUFSlZE
m ExDcsc.jwBufferS1ze = m_sztEx;
:3dFns—>CreateExecuLeBuffer(&m_ExDesc, &m_pExBufFns, AULL);

// copy Lridngle ‘nto execute butter space
n‘_pE><Butl-ns—>Lock(&m_l'xDesC};
lpTmp = (LPBYTE)m_ExDesc.lpData;
memcpy(lp|mp, m_pSysExBuffer, lplnsEnd-m_pSysExBufFer);
m_pExBufFhse>Unlock():

// describe execute buffer to Eddevice
m,YxData.dwVertex0tfset = 0;
m_ExData.dwVertexC:unt — 3:
m_ExData.dwlnstructionOffset = lplnsstdrt A m_pSysExEuffer;
m_ExData.dwlnstructTonLeugtr = lplnsEnd — lplnsfitart;
m_pExBufFn5~>SetExecuteData(&m_ExDaL¢);

return TRUE;

Run the demo for this chapter and check the Texture Mapping option. You
should see a texture-mapped triangle chasing the mouse around.

Handling "Lit" Texture Maps

We’d like to get back to something that we brought up earlier but left for

later. Remember when we were setting up Vertices for texture mapping (in
15.4.2), we set the dcColor field of all the Vertices to MHTTE and said that we

would explain it later.

We mentioned earlier that

I the texel contribution is “blended” with the computed pixel Value;

I blending is controlled by D3DRENDERSTAT[_TEXTURl:MAPBLtND; and

u the default blending state is D3DTBLEND__MODU LATE.

D3 D T B E E N D_MODU LAT E multiplies source texels by computed Values. Colors

within the Rendering module are treated as Values from 0 to 1. Multiplying
Values in these ranges will produce smaller results (unless either value is 1).

Therefore modulation reduces the brightness of color components unless

one of the source components is 1. The simplest way to ensure that the col-

ors of a texture do not change during texture mapping is to set dcColor to
WHITE (255, 255,255) and to set dcSpecular to EsLAC< (O, 0, 0).
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An alternate way to ensure that the colors of a texture do not change during
texture mapping is to change the RE N D E RSTATE JEXTU REMAPB LLN D render state
to D3 DTBLEND, COPY. In Copy mode, the renderer ignores color computa-

tions and simply copies texels to the screen. But the textures must have the
same pixel format as the Primary surface, and they also must also use the
same palette. Our simple triangle application has been set up this way.

You should find changing render states to be pretty trivial by now. Here’s
the code that we insert into our Execute Buffer to use Copy mode:

// Don’t forget to increase thc size 0’ execute buffer needed
// change render state to use Copy mode
0P#STATExRENDfR(1, 1pTmp):

STATE,DATA<DSDRENDERSTATEJEXTUREMAP3LEM), DEUTBLENDJOPV. 1pTmp);

Run the demo for this chapter and turn on the Copy mode option. Toggling
Gouraud shading should have no effect. Turn Copy mode off then toggle
Gouraud shading. Notice how the texture map colors have become duller?

One last point before we move on from texture mapping. Since a texture is
also a DirectDraw surface, we can render into the texture using DirectDraw

tlefi for surface functions, such as Lock() and Unlock(), and then texture map this

Pping (in data onto a 3D object.
aid that we .

15.5 Z-Buffering with Direct3D

15.5.1 Why Bother with Z-Buffering?

Take a look at the two triangles in Figure 15- 1. Let’s assume we have an Exe-
cute Buffer that has triangle 1 inserted first and triangle 2 inserted second.
Without Z-Buffering, the triangles are rendered in the order that they are

encountered. Triangle 2 will be drawn after triangle 1, and therefore it will
_ Colors be drawn on top of triangle 1 as shown in the figure.
ultiplying

alue is 1). (0.0, 20.0, 0.3) (170.0, 0.0, 0.5)
ts unless 1

at the col— —

Ccolor to (20.0,150_0,0.5) (17010, 150.0. 0-5) 2
(0.0, 1700, 0.3) (150.0.170.0.0v3)

FIGU RE 15- 1 Triangles rendered from back to front regardless of Z—values.
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Now let’s take a look at the Z-Values of the triangles. All the Z—Values in

triangle 1 are 0.3, and all the Z-values in triangle 2 are 0.5. But Viewport

coordinates are defined to go from 0.0 in front to 1.0 in the back, so by
this definition triangle 1 should have been drawn in front of triangle 2,
Instead, the renderer ignored the Z—values to render the triangles. (Without
Z—Buffering, Z—Values are only used to correct perspective while texture
mapping.)

Without Z-Buffering, it is our responsibility to sort the triangles and insert

them in the correct order. The compute expense to re—sort triangles maybe
very expensive for some application scenarios. (For instance, for 3D models

with many overlapping objects and complete freedom of movement. In

these scenarios it may be preferable to use Z-Buffering, so that the triangles
will be rendered according to their Z-Values and regardless of the sort order.)

Let’s take a look at a second example as shown in Figure 15-2.

(0.0. 200, 0.3) (170-0. 0.0. 05)

(2o.o.150.o,o.5) (
(o.o,17o.0,o.a) (150.0, 170.0, 0.3)

FIGURE 1 5-2 lntersecting triangles rendered with Z-Buffering.

The ellipse highlights the Z—value of the second vertex in triangle 2. We’ve
changed this Z-value from the previous Valueof 0.5 to a new Value of 0.1.

This vertex is now in front of the Vertices of triangle 1. As a result, triangle 2
now partially overlaps triangle 1.

Once again, without Z—Buffering the renderer ignores Z—values, and it will

render the triangles without any overlap. Without Z—Bufi‘ering, it is our

responsibility to split up intersecting triangles. With complex models, we may
want to opt for Z-Buffering, because the renderer will test the Z~Value of

each pixel that it draws, and intersecting triangles will be correctly rendered.

Setting Up for Z-Buffering

Let’s look at the code needed to set up and use Z-Buffering. Z-Buffers in
Direct3D are merely another form of DirectDraw surfaces. Unlike with 3D

devices and texture maps, there is no functionality applicable directly to
Z—Buffers, so there is no need to create a new interface object.
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es in So creating a Z-Buffer is as simple as creating a DirectDraw surface. The only

ort point worth mentioning is that we don’t get to choose the Z-Buffer pixel

‘o by depth——this choice is made by the 3D driver. Well, how do we find out about

gle 2. the 3D device’s choice? There are two ways: use IDirect3DDevice::GetCaps()
V/Vithout or remember it from section 14.4.2, when we enumerated device drivers. 2;
xture i ‘

In the oode for this chapter, we’Ve inserted our Z-Buffer analysis into our ? gj

device enumeration callback. Here’s the snippet of code that was inserted:

d insert }

‘maybe M l
models Examine the chosen LPD3DDEVTCED[SC structure for Z—Buffering support. ‘l

t'_In pGrf><~>m,bCanZbuf = FALSE; * ;
rlangles 1f tDepth I= 0) { Testfor Z»Bu‘ffer.lngSuPP'0rtbY109kmg : ; 3
It Order‘) H bi t dgptr is 1, r DDBD gomat e at the dwDev1ceZBufferB1tDepth held. _

nwman ddbd = pCho1'ce->dwDe\/1' ceZBufferB1’tDepth; “
// convert to bpp format
perfx->m ,dwZBuFferF%PP — cx/tTnBPF‘(ddbd); ‘:1

l '3

Even though dwDeviceZBufferBitDepth is specified using the packed DDBD format, the ‘
documentation for USDDEVICEDESC states that this field can only be one ofthese formats: I
DEBL8, DDBD_16, DDEL24, or DDBD_32. Packed DDBD format are #defines that need to be 5‘
converted to get pixel depth.

L _ t _ t I

g_ Now that we know that our device can Z—Buffer (and we know the depth of
its Z—Buffer), we can go on to create a Z~Buffer using straightforward
DirectDraw code:

. We’ve

of 0.]. I

riangle 2 BGOL CSurtace3d: : Im'tZbuffer( LPDIRECTDRANZ pDDr-aw, DNORD dwZBuffer3PP)1

Setup descri tor for Z~Buffer ( a s ccial form of DircctDraw surface).
it will P P

//use same width and he i ght as 3d surface; use specified bpp
“T m_ZSurfDesc.dwHeight : m(dwde"qhL;
we may m_ZSur'r’Desc.dww1'd:h = m_dww1' dth; Request Z,Buffe1-_
e of m#ZSurfDesc.dwZBufferBituepth = dwZBur’ferBPP;// set caps flag

m_ZSurfDesc.ddsCaps.dwCaps = JDSC/\PS_ZBUFFER:
DWORD dwMem = (m_bIsVidMem) 7 DDs.".APs_\4IDEoME\1oRY : DDsCAPs_s\'3TErvMFMOR¥:

m_ZSurfDese.ddsCaps.dwCaps l= dwMem; 4————;— Putzfiuffcrmsame
// setfiwhich fields in structure were valid memmYaS3DSurfaCe_m,_,ZSur’Desc.dm/Flags = DDSD_w1DTrl I‘ DDSDJEIGHT;
m_ZSurfDeSC.dwFlags |= DDSDACAPS | DDSD,ZBUFFEREI"DEP*H;

ndered. l

l

ers in Q
ith 3D ,§

tly to

i
i
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// Create Z buffer using ‘M'rectDr-aw create sur?"ace
pDDraw~>CreateSurtace(&rn_ZSurfDesc, &m_pZSurfFns, NULL);
r et u r n TRUt ; K

Create the Z-Buffer!

We’ve created our Z-Buffer, but as of yet it’s floating around freely, single

and unattached. We’Ve got to marry it to our 3D" surface. It so happens that

we cannot attach the Z—Buffer directly to the 3D surface. Instead we’Ve got to
use a rnatchrnaker——the 2D surface that was “converted” to the 3D surface.

\I

300L CSurface3d::AttachZbfiter(LPDIRECTDRANSURFACE pZdFns>
l

// Attach the Z—bat-'ter to the Zdsurface so D3D will find it
p2dFns»>AddAttachedSurtace(m_3ZSurtFh5>; ‘
// set ihterna‘ state and return
n‘_bI5ZEnahled = TRUE;
return TRUE;

One more task: we’ve got to tell the tenderer to use Z-Buffering. As usual,

we cornmunicate with the tenderer through an Execute Buffer. Here are

the state variables that we’Ve got to toggle to let the tenderer know about

Z—Buffering:

Turn on Z—Buffering by setting the D3DFENUERSTATE,7ENABLE to TRUE. i———
// Don’t forget to "increase tre size of execute buffer needed
or STATE_RENDER(1, ‘pTmp>:

stmeDA*A(BJRENDERSTATLZENABLE, m_bIsZEnabled, lpEuffer): <——
ST/3TE_DATA(D3Dl?ENDFRSTATE__ZwFJTEEN/M3.F, m_bIsZEnabled, lpBuffer‘):
STAIE_DATA(D3DRENDERSTAT[_7FllNC, D3DCMP_LESSEf]UAL, lpBut”fer): "‘—:‘

Although their default values are adequate for our purposes, you may also want to look at
the states of the additional two Z—Buffering control states:
D3DRENDERS’ATF_ZWRITEENABLE Default is TRUF. lf set to FALSE, the tenderer will continue

to examine the Z—Buffer while rendering (as specified by
_ZENABLE); but it will not update the Z»Buffer with newz-Values.

D3]RtNDERSTATE_ZFLNC Default is h3tcMP_L:ssEuuAL. With the z—c0mparison
V function, you can change the way the renderer interprets

z—distance. For instance, you can reverse z—ordering by
setting the state to 73DcMP_GREATER[0uAl.

Refer to Direct3D documentation for more information.
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Run the demo for this chapter; check both the Z—Buffer option and the

intersecting triangles option. Play around with toggling Z-Buffering on and

off and see how the intersecting portion of the triangle 2 is and isn’t ren-
dered. You should also notice that the render order of the triangles changes

as you switch between Z-Buffered and non-Z—Buffered rendering.

It’s time to conclude this chapter. We proclaim you to be proficient with
Direct3D—that is, as long as you actually worked with the code!

Wovvl Our triangle has come a long way, baby! We started the chapter with a plain old
triangle with a single color that left triangle trails. Here's what we have accomplished since
then:

I T76 first thing we covered was removing those annoying triangle trails through
Direct3D backgrounds. Along the way we learned about and worked with Direct3D
materials.

I ext we looked at how Direct3D dealt with coloring and shading triangles. Then we
p ayed around with vertex colors to see how Gouraud shading looked.

I Gouraud shading produced banding artifacts, so we learned about render states and
improved the quality of Gouraud shading by changing a render state to turn on
dthering.

I With ever increasing confidence in navigating through Direct3D, we tackled texture map-
p'ng—"converting" a DirectDraw surface to a texture object, and rendering triangles with
our texture map.

I Fnally, we tried our hand at some true 3D rendering—turning on Z—Buffering and even
rendering intersecting triangles correctly.

We wave come a long way from where we started. We're sure you're pretty handy with
Direct3D programming by now. Let's turn our attention to performance in the next chapter.
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Understanding and Enhancing
Direct3D Performance

WHY READ

THIS CHAPTER?

Previous chapters showed rendering a simple triangle with Direct} D, adding various shad-
ing options, and then adding texture mapping to the triangle. But we were mainly con-
cerned with getting the basic application running, so we didn't really pay much attention
to how fast it ran. In this chapter we'll take our measuring microscope out and measure
the performance of our previous examples. Then we'll look at ways to accelerate these
samples.

By working through this chapter you will

I get a feel for the performance of various rendering options with the RGB model driver,

I learn how to use the Ramp model driver to get better performance, and

I measure the results of rendering using the Ramp model driver.

16.1 How Fast Does Our Triangle Run?

We’ve been drawing triangles with various options through Direct3D. So
far we’ve focused on getting things to work and on exploring possibilities. '
But for serious multimedia application development, we’ve also got to

focus on performance.

Direct3D’s Immediate mode API is a Very low level API. But it was designed

this way to offer high performance. In which case, why measure perfor-
mance? Sho uldn’t the fact that we’re using Immediate mode be sufficient?

Sadly, no. Not all performance paths are equal (some are more equal than
others).
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Le t’s measure the performance of our triangle on Direct3D and then look at
performance enhancement opportunities. But first a word about our mea-
surements:

All measurements were taken on our base platform described in Section 25'
Results will definitely Vary on different platforms or even on the same
platform with different display configurations.

We have included the timing application and its source code on the CD_
Use it to profile your platform and see how it performs.

We have separated the timing source code from the source for the basic

demos, to simplify reading the base code and to give you a performance

tool to measure various configurations.

Stages of Rendering Our Triangle

Let's start by looking at what it takes to render a scene. VVe have broken the

scene rendering into the following stages:

n /nit, This stage occurs once while the entire application is being initialized. We
put all our one-time initialization activities into this stage. This stage is typically
not time critical, and we do not measure this stage.

Prepare Scene. This stage occurs at the start of every scene render. We invoke
/Direct3DDevice::BeginScene() in this stage. If we used Z—Buffers, we would
typically clear them in this stage (prior to objects being rendered).

Draw background If a background was created, then we would invoke
the Bac/<ground:.'B/t0 function in this stage, which translates to
/D/rect3DV/evi/ponf.'.'C/ear(...target. . .) in Direct3D. We are not measuring
a background for our base case triangle.

Edit Execute Buffer. Typically, objects in a 3D scene are moving around. (If we
were only going to draw a stationary object, then we might as well Blt a bit-
map.) This is the stage when we edit the Execute Buffer. We then need to
transfer the edited data to the Direct3D driver, using the hopefully familiar
Lock, Copy, and Unlock sequence.

Set Execute Buffer. In the code from the previous chapters, we saw that after
transferring Execute Buffer data, we described the makeup of the new Execute
Buffer to the Direct3D device.

Execute. Here's where we get the device to execute our Execute Buffer (or
Buffers, if we had many).

End Scene. This stage occurs at the end of every stage render. First we invoke
/D/rect3DDei/ice::EndSceneO. Next we set our palette and refresh the win-
dow with the newly rendered scene.
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16.1.2 Measuring the Rendering Stages of Our Triangle

Table 16-] measures the time taken in the various rendering stages to ren-

der our triangle. We are using the Direct3D RGB color model driver with

no hardware acceleration. (The default Rendering state is Gouraud shaded,

solid fills with specularity enabled, and dithering disabled.)

TABLE 16-‘! Timing Render Stages for Our Base Triangle

 
Prepare scene 0.0 0.0
Edit Execute Buffer 10.9 0.4

Set Execute Buffer 3.3 0.1

Execute 75.1 60.6

End scene 7.5 7.5
,'l'7~

 

V/Ve measured two scenes: The first scene had 625 small triangles. For this

initial test, we invoked Blt for every triangle. All the triangles were of the

same shape—with reference vertices of (0,0), (16, 16), and (0,16)—for a

size of 128 pixels per triangle and 80,000 pixels per scene. We chose this

configuration based on experience as representative of medium complexity

3D applications.

 though the total pixels in both scenes were the same, the render time for
the second scene was much faster than the first scene. This indicates that

you would increase performance by using, wherever possible, larger tri-

angles instead of a bunch of smaller triangles.

(If we vi The second scene had 16 large triangles. Again, we used triangles of the
3 bit‘ 3 i same shape and invoked Blt for each one. Reference vcrtices were (0,0),
.d.lO T‘ (100, 100), and (O,100)—for triangles of 5,000 pixels each and 80,000 pixels
mar . per scene. \/Ve measured this configuration to demonstrate the impact that

polygon size can have on render performance.
t after I —g
ecute ~i. VVe varied the positions of the triangles in each scene to study the effect of

alignment. The tabulated values are the averaged results.
r (or g;

Following are some observations on the results:nvoke
' _ u Lar e trian les rendered si ificantlv faster than small trian les. Even

v\/In g 8 g S11 . S
0 E
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I The cost of invoking BeginScene() and EndScene() in this €XaInp]e is
imperceptible.

I Editing the Execute Buffer to reposition Vertices consumes a significant
amount of time in scene 1. (The cost is not noticeable in scene 2, since
there aren’t too many triangles in that scene.)

Trimming Some Fat from the Rendering Stages

Let’s make changes to our Render stages to see if there’s some easy perfor\
mance pickin’s to be had:

I Set Execute Buffer (I). If our only changes to an Execute Buffer are data re.
lated, and we do not change the makeup of the Execute Buffer, then do we
really need to ”redescribe” the Execute Buffer to the Direct3D device? The
Direct3D documentation does not specify what's correct behavior. We ran

tests and found that we do not need to ”redescribe” if only the data changes_
(In fact, as long as the four fields of the D3DEXECUTEDATA structure do not
change, then we can even change instruction opcodes and operands without
"re—describing” the Execute Bufier.)*

I Set Execute Buffer (2). If we only wanted to change a couple of vertices, do
we really have to recopy the entire buffer to the Direct3D device? In other
words, can we see our previous data with the pointer returned by LockO? We
ran tests and found that yes, indeed we do get access to our previous data,
and we can edit in place if we wish. *

I End Scene. Our initial code reset the palette on every scene render. Again, we
ran some tests and found that the Direct3D RGB color model driver does not

change the palette from frame to frame. We rewrote our code to set up the
palette only when our application gets focus and removed this work from the
End Scene stage.*

I Execute. Our initial code invoked B/t0 on each triangle. We were executing an
Execute Buffer with only one triangle. We rewrote this code to execute all our
triangles (625 or 16) via single Execute Buffers (using only one buffer per list
of triangles).*

* You may wish to reverify the results and rerun these tests with any hard-
ware accelerator driyers you choose to use.

Table 16-2 lists new measurements based on the edited code:
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TABLE 1 6-2 Trimming Some Fat from the Render Stages

yepare scene

. Edit Execute Buffer

P€Tf0f- Set Execute Buffer 3.3

Execute

data re_ 1 End scene 7.5
FiClOwe

We ran ‘We used pre~iriitialized Execute Buffers, while testing Long Execute Buffers, and we have listed only the time taken to copy

Changes . f the butters to the 3D device space. For a fair apple5—to—app|es comparison, you would need 0 add the time taken to edit
do not ' the vertex positions in the pre~initialized Execute Butters.
5 without

t. d Following are some conclusions based on our code rearrangement:r ices, 0

rg/S3’-l,e\lVe ‘ . - Not “redescribing” the Execute Buffer and using Long Execute Buffers
OUS data saved 16 milliseconds in scene 1. While the savings are low relative to the

V Execute cost, we will find that the savings are significant when we find

gain We faster Execute methods (as we will see later in this chapter).
does not _ None of the changes produced any significant tangible benefit for scene 2,
t UP the a which indicates that overhead in Direct3D has been minimized, and it
from the — would only become significant over a large number of invocations.

Not setting the palette only saved 0.3 milliseconds. This is a useful mea—

surement to remember, since you can retain the code to constantly

change palettes in case a Direct3D driver does change palettes frequently.

cuting an
te all our

r per list

ny hard- 16.2 Measuring Shading Options
Over the course of the previous two chapters, we have rendered our triangle

with a variety of options, including Gouraud shading, flat shading, dither-

ing, texture mapping, and Z-Buffering. Let’s look at how these options

affect our render performance.

Measuring the Performance of Shading Options in Our Triangle

Table 16-3 measures the time taken to draw triangles with various shading

options. We are using the Direct3D RGB color model driver with no hard-

ware acceleration. We are only measuring one of the two scenes from the
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previous tests—the scene with sixteen triangles of 5,000 pixels each. Once

again, we drew the triangles at various alignments and have tabulated aver_
aged results. The timings listed are only those taken to render the sprites.

Redrawing backgrounds and refreshing the screen are additional costs.

TABLE I 6-3 Timing Sixteen Triangles with the Direct3D RGB Color Model Drive,

Gouraud 55.3 milliseconds

Gouraud (with constant colors) 55.3 milliseconds
Flat shaded

Gouraud and dither

55.3 milliseconds

55.3 milliseconds

Two glaring observations leap out at us:

Flat shading does not perform better than Gouraud shading. You would

expect that not computing shaded colors would result in better perfor-
mance. But it doesn’t.

Enabling dithering does not reduce rendering performance. This is a rare

occasion—you can add an improvement at no performance cost.

Since varying shading options didn’t make any difference whatsoever to

rendering performance, we decided to see whether this constant perfor—

mance persisted after we added some specular highlights.

Table 16-4 compares the performance of the shading options with and

without specular highlights. We found that adding specular highlights cost

us a 9 percent performance penalty.

TABLE 1 6-4 Measuring the Impact of Adding Specular Highlights

OUFGU 55.3 mi Isecon s 60.3 mi Isecorids

Gouraud (with constant colors) 55.3 milliseconds 60.3 milliseconds

Flat shaded 55.3 milliseconds 602 milliseconds

Gouraud and dither 55.3 milliseconds 60.0 milliseconds
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Note that all these measurements were taken with the RGB color model

driver rendering to a11 8 bpp palletized target surface. Since shading options

and specular highlighting modify individual RGB components, you can bet

that performance on 16-, 24-, and 32-bpp targets will be very different.

Measuring the Performance of Texture-Mapping in Our Triangle

Next We move on to measuring texture-mapped triangles. Remember from

our discussion of rendering options in Section 15.3.3 that

I texture mapping ca11 be disabled, but shading cannot;

I the default texture mapping mode combines texels with shading values;
and

I texture mapping needs to be set to Copy mode to turn shading off.

Table 16-5 tabulates measurements of rendering our triangles with a tex-

ture map of 64 X 32 pixels. For good measure, we’ve included the impact of

adding specular highlights to our texture-mapped triangles.

TABLE 1 6-5 Texture-Mapped Triangle with and without Specular Highlights

Texture and
Gouraud

Texture and Flat
Shaded

Texture and
Gouraud and
Dither

Copy Mode
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Wow! CopyMode gives us more than four times better performance over

Modulated mode texture mapping (with shading options turned on), An

obvious conclusion is that making an effort to use pre-lit textures will defi_ 6

nitely reap significant performance benefits. You could even use texture

mapping with flat—shaded textures to get high—performance flat shading

Adding a Z-Buffer to the Recipe

There was one other option that we looked at in the previous chapter:

Z—Buffering. Without Z—Buffers, your application must send triangles to

the renderer sorted in back—to—front order, and your application must also

subdivide intersecting triangles.

With Z-Buffers, the driver correctly renders both unsorted and intersecting
triangles, saving your application the cost of sorting and subdividing. So
how much does Z—Buffered rendering cost?

TABLE 1 6-6 Rendering Cost of Z—Buffering (Direct3D RGB Driver)

Gouraud 55.3 milliseconds 60.8 milliseconds

Ciouraud and Specular 60.3 milliseconds 66.6 milliseconds

Texture Map and Gouraud 62.5 milliseconds 69.5 milliseconds

Texture Map Copylvlode i4.4 milliseconds 30.1 milliseconds

Table 16-6 compares the cost of rendering our triangle with and without

Z—Buffering. And the verdicts are in:

Rendering with Z—Buffering is more expensive than rendering without.

No surprises here, since Z—Buffering increases memory traffic.

The cost of Z—Buffering is only in the 10 percent range for the expensive

rendering options, suggesting that Z—Buffering is a viable option in cases

where performance isn’t supercritical.

Rendering with Z-Buffering severely impacts CopyMode. This is unfortu-

nate, since CopyMode is our fastest mode. Therefore, for high—performance

3D, you really need to measure the cost of sorting and segmenting triangles

and compare this cost against the cost of Z—Buffering.

Our Timing Application gives you an opportunity to measure how much

Z—Buffering will cost yo u. We hope that measurements (or measurement tools)

like these will help you decide whether the performance of Z—Buffering is ade-

quate or whether it’s worth investing the effort on the non—Z—Buffered path.
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in addition to rendering options, other factors also affect rendering performance.
Both the size and the shape of a triangle can have effects on performance. Simi-
larly, with texture—mapped rendering, the size and shape of textures also have an
impact on rendering performance.
 

Getting Perspective: Comparing 3D (RGB Mode) to 2D

OK, we’ve bandied around numbers from 14 milliseconds to 70 milli-

seconds. But we’ve been comparing various options within the 3D realm.
How do we know whether these numbers are acceptable? What if we com-

pare our 3D rendering throughput against the 2D throughput we have seen

when we worked with sprites in Part 11?

Of course, 3D rendering will probably be slower. But how much slower——

let’s get some perspective. Table 16-7 compares Sprite render times from

Part II to our measurements from this chapter. Note that the sprites in Part

II were also about 5,000 pixels, and each was rendered sixteen times. In

terms of speed, the comparison puts our best 3D render mode on an even

par with spriting through GDI. Talk about backwards! We need to get better.\
1

TABLE ‘I6-7 Comparing 3D Throughput to 2D Sprite Throughput

  
 DI 121.2 mi isecon s 0 5.969‘

CSpriteCCode 1 1.9 milliseconds 7.12*

CSpriteP5 ~15 milliseconds 56.5*

CSpriteGrfx ~15 milliseconds 565*

CTriang|e3D (Gouraud) 55.3 millisecondsl 1.45

CTriang|eTex(Copy mode) 14.4 millisecondsl 5.56

* Some pixels are transparent, and throughput is somewhat less than what these figures
indicate.

lMwwmmmmwmmmbmmwmnGmmmkmsmmwwdmwwomwmbwam
video memory surface.

Why is it so important to get better performance? Let’s assume

I that we’d like a real-time feel with a frame rate of around 30 fps. At this

frame rate we get 33 milliseconds per frame to work with; typically about
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half this time is consumed on peripheral activities such as responding to
the user and carrying out geometry and lighting computations a11d audio
and 2D graphics activities;

a best-case scenario where the graphics device has enough memgry to p
support triple buffering, and screen refreshes are occurring at no Cost,, .
and

that we’d like our application to occupy a screen resolution of about
640 X 480; a 640 X 480 background gets drawn to the triple—buffered v1d_ 0
eo surface at a cost of 5 milliseconds.

We’re left with about 12 milliseconds for 3D rendering. Our best perfor-

niance mode will render in that time about 65,000 pixels to a system mem.

ory buffer. Even if no pixel was rendered more than once, we would be

painting an area of about 320 X 200 with 3D pixels——less than one quarter

of the screen area. With more realistic assumptions that pixels are touched
about 1.5 times on average, our 3D coverage reduces to about 240 X 180~a
postage—stamp—sized field of action.\

5
Better performance means covering more of the screen area with 3D pixels

or alternately it means being able to run richer multimedia applications with

for example, full-motion video being used as texture map sources. So let’s

look at Direct3D’s high—performance option—the Ramp (Mono) color

model driver—to see if we can get better 3D rendering performance on a PC.

)

16.3 Improving Performance Using the Ramp Driver

16.3.1

VVe’ve mentioned before that the DirectX SDK ships with two implementa-

tions: an RGB color model driver and a Ramp (Mono) color model driver.

The RGB driver offers truer color quality but runs more slowly. The Ramp

(Mono) driver makes color approximations that degrade overall quality,

but it offers higher performance. Let’s start using the Ramp color model
driver.

Loading the Ramp Color Model Driver

Right after we started using Direct3D in Section 14.4.2, we looked at code
to enumerate available device drivers. With the code listed there we selected

a driver based on a selection criteria that we passed down. Among the pos-

sible selection criteria was U S E,RAM P. At the initialization level, loading the
Ramp driver is simple, as shown in the code.


