128 @8 CHAPTER © DIRECTSHOW APPLICATIONS

9.8 ActiveX: Handling Events

The ActiveX control provides an abstracted list of events to handle. These

© events do not map directly to the events generated by the filter or the filter
graph manager, but they are important events at such a high-level interface,
For example, you receive events when the state of the movie changes or
when the position of the movie changes.

To handle such events, you can use the Microsoft Visual C++ class wizard
to add a handler for each event. Notice that you have to select the Direct-
Show ActiveX control ID that you specified in the resource editor in order
to display its events. Figure 9-7 shows how to add a handler for the
StateChange event.

IMFC Classwizard

ActivexPlayer CactiveXPlayeiDlg

5 e
PasitionChangs
DisplayModeChange
Timer
ReadyStateChange
{DpenComplete

OnQueryDraglcon DN_WM_GUERYDRAGICON
DnReadyStateChange1000N_1000:ReadyStateChange
OnReadyStateChangefctiON_ID_ActiveMovieContiolReadyStateChange

elhiange

FIGURE 9-7 Handling DirectShow ActiveX control events
using the Microsoft Visual C++ class wizard.

151

WHAT
You LEAI

ACTIVEX: HANDLING EVENTS ® 129

T HAVE By the end of the chapter, you should have learned how to build DirectShow filter graphs

WHA y p grap

YOU LEARNED? from within your application in one of three ways: with the ActiveX controls, the automatic
COM interface, or the manual COM interface.

You should also know how to access your filter's custom interface and its property pages.
You should be able to handle filter events and control the running state of the DirectShow
filter.

Lastly, you should be able to enumerate all the registered DirectShow filters, loaded filters,
and pins in a filter.

PART III

SO e

CHAPTER 10
===

| Mixing Sprites,
Backgrounds, and Videos

WHY READ It was certainly nice to play a video clip with DirectShow, but wouldn't it be even better if

THIS CHAPTER? You could use video as part of your game or application? Surely, video is not the only thing

~ moving on the screen; you probably have some moving sprites, backgrounds, and anima-
tion bouncing around the screen at the same time.

In this chapter we'll show you how to

m mix multiple objects together and how to place them relative to each other—in the
front, middle, or the back of the viewing area, and

m use RDX to mix video, backgrounds, and sprites.

10.1 Introduction to Mixing

You've seen how mixing works throughout Part IT when we showed you
how to superimpose a static sprite on top of a static background using GDI,
DirectDraw, and RDX. That was nice, but it can get boring fast.

Typically, multimedia applications have multiple sprites, backgrounds, ani-
mation, and video clips moving around on the screen all at the same time—
sometimes with music playing in the background. For example, you could
play a video clip with animation moving in the front and a moving back-
ground.

PART 111

132 8 CHAPTER 10 MiXING SPRITES, BACKGROUNDS, AND VIDEOS

10.1.1 Mixing Sprites with Video
First let’s review how we draw a static sprite on top of a static background.
As you recall, some of the pixels in the sprite are transparent and should not
L be drawn on top of the background. For optimal performance, we typically
mix the two objects in system memory and then write the mixed result to
the screen.

g L : As you can see in Figure 10-1, you can first copy the background to the

‘ mixing buffer, then overlay the sprite on top of it. Actually, you can overlay
many sprites on top of the background at this stage. Finally, you can write
the mixed result to video memory to make it visible on the screen. Notice
that you only have to update the display whenever the sprite or the back-
ground moves around the screen.

With motion video, you display so many frames per second (fps) to give
the illusion of motion. Now, if you treat every frame in the video as if it
were a static background, you can apply the same technique we just dis-
cussed, mixing sprites with a background, for mixing sprites over video. In
this case, however, you need to update the display screen whenever the
sprite or the video moves on the screen and whenever a new video frame is
displayed. '

10.2 |

L 10.1.2 Mixing Animation with Video

Suppose you want to mix an animation sequence on top of video—an ani-
mation clip is a sequence of sprites with transparent pixels, which gives the
effect of a moving picture. Similar to motion video, animation clips are dis-
played at a specific rate measured in frames per second. To mix an anima-
tion on top of a video, you can use the same concept as when you mix a

sprite over video.
background sprite over.
bitmap background

On-screen

Trasnparen
Pixels

sprite

bitmap System
Memory

FIGURE 10-1 Mixing a static sprite with a static background.

154

MIXING WITH RDX =& 133

At any given moment, you only need to deal with one sprite from the ani-
mation and one frame from the video. This is exactly the case when we dis-
played a sprite over a static background. In this case, however, you need to
update the display whenever a new frame is displayed from either the ani-
mation or the video and whenever the animation or the video hops around
the screen.

Of course, you can apply this same technique for mixing a video on top of
another video. The same technique is used on TV shows and in the movies
when there is a scene inside a car and the back window shows some video
clip giving the illusion that the car is moving. To do that, you typically film
the car in front of a blue background—blue is your transparency color.
Then you mix this video clip, with the blue background, with another video
clip exactly the same way you mixed animation over video.

10.2 Mixing with RDX

In Part I you've learned how to use RDX for mixing static sprites on top of
static backgrounds. Here we’ll show you how to use RDX to mix a static
sprite over video. You can use the same technique to superimpose video
over video or animation over video.

Before we go into that, let’s first review some of the techniques RDX uses to
perform object mixing. RDX uses a draw order to decide which object
should be rendered first on the screen. For example, if you want to give the
illusion that a background is “behind” a sprite, you would assign the back-
ground a higher draw order number than the sprite. RDX in turn paints the
background first, then overlays the sprite on top of it (Figure 10-2).

Background
j Video

Draw Order

High Low

FIGURE 10-2 RDX draw order. Higher order objects are
displayed behind lower order objects.

PART I

134 8 CHAPTER 10 MIXING SPRITES, BACKGROUNDS, AND VIDEOS

10.2.1 Playing Video with the RDX DirectShow Interface

First let’s show you how to play a video clip using RDX. RDX supports mul-
tiple architectures for video playback, such as DirectShow and VEW. Since
we’ve been discussing DirectShow, we will show you how to play a video
clip using that interface. In this example, we’ll use an MPEG file as the
video clip.

To display an MPEG file, we first ask RDX to create a filter graph object and
associate the MPEG file with it. RDX in turn creates a DirectShow filter
graph for the input file and returns a handle to an RDX video object that
represents that file.

fgCreate(&m_hAM);
| fgAssociateFile(m_hAM, "blastoff.mpg");
! fgGetVideoObject(m_hAM, 0, &m_hVid);

‘ o Create a DirectShow filter graph “fg” object and set the MPEG file as the source. If suc-
cessful, get a pointer to the RDX video object for later use.

\ |

Now you can instruct DirectShow to place the final output to the RDX sur-
face, hSurf (refer to Chapter 6 to learn how to create an RDX surface). You
can then set the draw order for the video such that it would be drawn
behind the sprite. As an example, we use 100 for the sprite and 150 for the
video clip. Finally, we declare that this object is visible.

objSetDestination (m_hAM, hSurf);
objSetDrawOrder (m_hAM, 150);
objSetVisibility(m_hAM, TRUE);

e 1 |

z=
=

-

=

23333

When DirectShow renders the MPEG file, it writes the final image not to
the screen but to the RDX surface, which is typically in system memory or
offscreen video memory. To display each frame to the screen, you must call
the srfDraw() function, which copies the contents of the RDX surface to the
appropriate location on the screen.

Alternatively, you can request that RDX automatically call the srfDraw()
function to render each frame to the screen. To do that, you can use RDX’s
timers and events to schedule a draw event every frame. A timer is an object
that counts user-defined time periods. An event is an object that defines an
activity that you want to perform on an episodic or periodic basis.

156

w

R

MIXING WITH RDX & 135

To create a timer, you must call the TimerCreate() function with a handle to
the video object and the timer sampling rate. You can then activate the
timer with the TimerStart() function. Even though the timer is generating
so many ticks per second, the timer tick does not generate any callback or
event. So what use is this timer anyway ¢

fgGetVidInfo(m_hAM, m_hVid, FG_INFO_SAMPLERATE, &dwFPS);
timerCreate((WORD)dwFPS, (HTIMER *)phTimer);

timerStart(*phTimer);
m_hTimer = *phTimer; CAUTION: Make sure to stop phTimer before you destroy
the RDX objects. Use TimerStop() or TimerDestroy().

To make it worthwhile, you must associate the timer with a draw event—a
draw event informs RDX to call the srfDraw() function. When the timer
ticks, it sends RDX a draw event advising it that it is time to render the
frame. To create a draw event, you must call the eventCreate() function with
EVENT_DRAW as a parameter. You must then associate the event with the timer
that will raise that event.

if (bAutoDraw) |

eventCreate(m_hObj, EVENT_DRAW, O, 0, &m_hDrawkvent);

eventSchedule(m_hTimer, m_hDrawEvent, 1, RELATIVE_TIME, 1, Oxffff);
A

The third paramater, wPeriod, in eventSchedule allows you to specify the number of
timer ticks per event period, for example, if the timer generates 30 ticks/sec and the
event wPeriod is 3, then an event is generated every 3 timer ticks.

Even though DirectShow decodes the video clip according to its frame rate, the
number of frames rendered to the screen depends on the timer's sampling rate
and the event's period.

Now that you have everything set up, you can call the fgPlay() function to
put the DirectShow filter graph in run state.

objPrepare(m_hAM);
fgPlay(m_hAM, PLAYMODE_REPEAT, O, 0);

!

PART Il

136 8 CHAPTER 10 MIXING SPRITES, BACKGROUNDS, AND VIDEOS

At this stage, DirectShow decodes every frame into an RDX surface, the
timer generates a draw event on every decoded frame, and RDX calls the
| srfDraw() function to copy the image from the RDX surface to the screen.

Why don’t you fire up the sample application on the CD and select the
option for this chapter from the menu. You should see a video clip playing
on the screen.

; | 10.2.2 Mixing a Sprite on Top of Video

Now that you have the video playing, let’s see how we can overlay a sprite
on top of it. As in Chapter 6, you must first load the sprite bitmap into
memory and create an RDX sprite object. Once the sprite object is created,
you can associate it with the RDX surface, hSurf.

Lok bitmap bm;
bitmap.GetBitmap(&bm);
m_dwWidth = bm.bmWidth;
m_dwHeight = bm.bmHeight;
m_byTransp = byKeyColor;

Create and set up an hbmp (Source Data Object).

HBMPHEADER bmpHeader;

| hbmpCreate(m_dwWidth,m_dwHeight,RGB_CLUT8,&m_hBmp);
| BYTE *pData;

! hbmpGetLockedBuffer(m_hBmp, &pData, &bmpHeader);
bitmap.GetBitmapBits(m_dwWidth*m_dwHeight, pData);
hbmpReleaseBuffer(m_hBmp);
hbmpSetTransparencyColor{m_hBmp, (DWORD)byKeyColor);

b Create sprite; associate data to it; associate sprite to surface.

sprCreate(&m_hSpr);
sprSetData(m_hSpr, m_hBmp);
objSetDestination(m_hSpr, m_hSurf);

WHA
You LE;

Finally, you need to set the draw order and visibility of the sprite. Notice
‘ that we set the draw order to be lower than that of the video clip so that the
I sprite is drawn in front of the video clip.

objSetDrawOrder(m_hSpr, 100);
objSetVisibility(m_hSpr, TRUE);

| : |

158

10.2.3

s

e WHAT HAVE
~ YOU LEARNED?

MIXING WITH RDX =& 137

Mixing Video on Video

As we’ve mentioned earlier, you should be able to mix an animation or a
video on top of another video. Let’s see how you can ovetlay a video clip
with a transparency color on top of another video.

You can actually use the same code from section 10.2.1 to start the video
clip in the foreground—with a couple of modifications. First, you must
inform RDX about the transparent color of the video. To do that, you must
call the fgvidSetTransparencyColor() function.

fgvidSetTransparencyColor(m_hAM2, (DWORD)byKeyColor);

l |

As with the sprite, you should set the draw order of the video clip to be in
front of the background video clip. Notice that in our example we posi-
tioned this video clip between the background video (150) clip and the
sprite (100).

objSetDrawOrder (m_hAM2, 120);

\ |

At this stage, you'll have two video clips playing, one on top of another with
a sprite in front of both of them. Notice that since the two video clips could
have different frame rates, you need to use the higher frame rate when you
create the timer for the draw event. This way, you're drawing at the rate of
the faster video clip.

By now you should be familiar with mixing different objects on top of each other. In this
chapter you leared

about mixing sprites, video, and animation together,

about draw order and how to position objects relative to each other,

about RDX timers and events and how to create them,

how to use RDX to mix a sprite on top of video, and

how to mix video or animation on top of another video.

PART 1

-
.

AR

WHY READ
THIS CHAPTER?

CHAPTER 11
e

Streaminﬁ Down
the Superhighway
with RealMedia

The Internet! You must have heard of it by now. Yes, and while cruising the Net; you must
have been struck by all of these RealAudio icons “To Listen, Click Here ." Real-
Audio has become THE audio streaming solution on the Internet.

With its success, RealNetworks released a similar technology for video on the Internet—
RealVideo. In 1997 the company is building on its success with streaming on the Internet
and is releasing a new streaming architecture, which allows for installable media types to
be streamed on the Internet. This technology is called RealMedia.

In this chapter, you will

® get an overview of RealMedia and leam about its plug-in model,

m be introduced to the concept of a RealMedia plug-in and how to build File-Format and
Rendering plug-ins,

m learn about Audio Services and how to use them within a plug-in, and

® learn about metafiles and how to use them.

In the past few years, the number of people connected to the Internet has
grown astronomically. Similar to television, radio, and newspaper, the
Internet has become the information medium of choice for millions of peo-
ple. The Internet, however, offers an additional quality that does not exist
in any of the earlier mediums: interactivity. Televisions and radios allow you
to select between a preset number of local or cable channels; the Internet, on

m 139 =

160

PARTIII

- 3
R R RO
e e T
SRR S S S
. e e
P e

140 @ CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

the other hand, opens the gate to millions of information servers, games,
and music archives throughout the world.

RealNetworks (RN) seized the opportunity and established itself as THE
Internet audio streaming technology on the Internet. Its RealAudio tech-
nology is specifically designed for real-time audio streaming on the Inter-
net. With real-time audio streaming, you don’t have to download an audio
file first and then play it back; rather, you play the data as you retrieve it
from the Internet server. Building on their success with RealAudio, RN

introduced a similar streaming technology for video called RealVideo, and
then RealMedia. '

RealMedia is a real-time streaming technology specifically designed for the
Internet. RealMedia includes both the RealVideo and RealAudio technolo-
gies as part of its core. With the plug-in mechanism that it provides, you
can stream and synchronize the playback of any data type, in real time, over
the Internet. For example, you can stream a new file format like MPEG,
text, animation, MID], financial data, weather information, industrial
information, or VRML.

In our effort to present only technologies of the future, we wrote this chapter
while the RealMedia SDK was still in its late beta cycle. Therefore some of the
APIs might have changed slightly by the time this book is published. Nonetheless,
the material in this chapter should be relevant and reflect the RealMedia archi-
tecture accurately. Use this chapter for the concept, but use the RealMedia SDK
for the actual API definitions.

11.1 Overview of RealMedia

RealMedia is an open, cross-platform technology for streaming multimedia
presentations over the Internet—or networks in general. (See Figure 11-1.)
It uses the Real Time Streaming Protocol (RTSP) for communicating over
the Internet? and the Real Time Session Language (RTSL) to define presen-
tations. What does all of this mean?

1. VRML: Virtual Reality Modeling Language.
2. RTSP supports multicasting, unicasting, and RTP protocols.

161

e

11.2 7

the
lo-

ver

255,
hi-
DK

dia
1.)
er

en-

B P AP S AT

11.2 The RealMedia Plug-in Architecture

THE REALMEDIA PLUG-IN ARCHITECTURE =m 141

RealMedia Server RealMedia Client
MetaFile (RTSL protocol)
<RTSL>

<SEQUENCE> . 7 ‘ e

<TRACK SRC="rtsp//server.com:554/RAudio.ra"> " }
<TAACK SRC="rtsp//server.com:554/AMedia.m"> RTSP RTSP \!/ fl
</SEQUENCE>) SN

SRTSL> protocol protocol

FIGURE 11-1 The roles of the RTSP protocol and RTSL session language.

RealMedia uses the RTSP protocol to transport data across networks—both
the Internet and Intranets.! RTSP defines an application interface for con-
trolling the delivery of real-time data. It allows for delivery of multiple
streams simultaneously, such as video and audio and time-stamped data
packets. For a reliable delivery, the RealMedia client uses the RTSP protocol

to acknowledge the server when a packet is received; otherwise, the client |
resends another request for the packet or decides to throw it away. This i
decision depends on the quality setting of the application. ' i

RTSL is a presentation language that is similar in form to the HyperText
Markup Language (HTML). HTML is used to create Web documents on
the Internet. RTSL allows you to define a presentation sequence that con-
sists of multiple audio, video, and other data streams. With RTSL, the Real-
Media server and client can negotiate the type of content delivered based on
the information in the RTSL file (a.k.a. a metafile) and the settings of the
player. For example, in the metafile, you can specify different media files
(audio, video) depending on the bandwidth of the Internet pipe (28.8K,
ISDN, and so forth) and on the language (English, French, and so forth).
For a 28.8K pipe you can deliver a file with low quality and a low rate of
data; for ISDN, you can deliver a better quality file with a higher rate |
of data. (See the RTSL definition in the RealMedia SDK for more details.) ‘,‘\ ‘

PART 111

We won’t go into all the details of RTSP and RTSL in this book. Since Real- | .
Media handles all the communication between the client and the server ‘ £

I

internally, you never have to deal directly with the RTSP protocol. However,
as a content developer (someone who designs metafiles), you will need to
learn more about the RTSL protocol and how to use it. Refer to RealMedia
SDK for more details.

RealMedia is a simple plug-in architecture for adding custom data types.
Figure 11-2 shows three RealMedia plug-in interfaces: File-System, File-
Format, and Rendering plug-ins.

162

142 = CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

Supported
Datatypes

Text Text

AVI Audio/video

MOV QuickTime

WAV Audio
SND Audio
AIFF Audio
AU Audio

RealMedia Client

RealMedia Server

File Format
Plug-in

Rendering
Plugin

File System
Plug-in

FIGURE 11-2 RealMedia plug-in architecture.

The File-System plug-in is only responsible for reading “raw” data from a
source. The source could be a prerecorded audio/video file, a satellite feed,
or a database server. This plug-in is typically loaded by the RealMedia
server. The File-System plug-in does not know; or care, how the data will be
parsed; it only knows how to read, write, and seek through a file. Since the
RealMedia binaries come with a slew of File-System plug-ins, you typically
don’t have to implement a File-System plug-in to stream custom data types,

The File-Format plug-in is responsible for parsing the data, splitting it into
multiple streams, and breaking it into smaller packets for delivery over the
Internet. This plug-in is typically loaded by the RealMedia server. The File-
Format plug-in does not know how to read the data from the source, and
it does not know how to send the data over the Internet. Currently, Real-
Media supports AVI, WAV, AU, SND, AIFF, RealAudio, RealVideo, RealMedia,
and RealText file formats.

The Rendering plug-in understands the contents of the data and knows how
to render it to its final destination—screen, audio device, and so forth. This
plug-in is typically loaded by the RealMedia player or client.

In Figure 11-2, we show that the File-System and File-Format plug-ins are loaded
by the RealMedia server. If you're playing a RealMedia file on a local machine,

the RealMedia player loads the File-System, File-Format, and the Rendering plug-
ins on the same PC.

-
]
i

Notice that none of the plug-ins we’ve discussed so far deal with data deliv-
ery over the Internet. They only worry about reading the data, breaking it .
into smaller packets, and rendering the final result. The RealMedia server
and client handle all the necessary communication over the Internet. Real-
Media allows for streaming any data type and synchronizing the playback
of multiple data types.

So what do you really need to do to stream your own custom data type? Typ- |
ically, you only need to implement a File-Format plug-in and a Rendering

163

11.3

DATA FLOWS: SERVER TO CLIENT & 143

plug-in, since they both have to understand the new data type. The File-
System plug-in, on the other hand, is only required if you have to read data
from a source not supported by the RealMedia binaries, for example, from a
database server.

In this chapter, you'll learn how to build a File-Format and a Rendering
plug-in. You’ll also learn about RealMedia metafiles and how to use them to
configure the Web server.

Let’s go over some of the basic RealMedia concepts and interfaces. First
we'll describe the data flow model between the server and client. Then we’ll
glance over some of the basic RealMedia interfaces that are used in the sam-
ple code in this chapter.

ypes.

11.3 Data Flows: Server to Client

into
‘the
File- For the purposes of this discussion, we’re assuming that you know how to
nd use a Web browser such as Internet Explorer or Netscape Navigator. When =
il- you select a hot link in the browser, it takes you to a new Web page or down- E
edia, loads a file to your local drive. If the hot link points to an audio or a video file, =
the browser first downloads the file to your local machine and then launches
the media player to play it. Web browsers allow you to associate any file exten-
how sion with an application that will be launched when such a file is down-
This

loaded. For example, *.doc is associated with launching WinWord.

To perform realtime streaming, RealMedia adds another step to this pro-
cess. Instead of pointing the hot link to the RealMedia file on the server, you

aded point it to a metafile. Metafiles hold configuration information that allows
ine, the client (RealPlayer) to communicate directly with the server. They also
plug- hold the list of media files to play when the metafile hot link is selected.

We'll discuss metafiles in more detail later in this chapter.

So what really happens when you select a metafile hot link? Since the meta-

162‘,_ ; file file extension *.rts is associated with the RealMedia player, the player is ‘

‘felr E launched when the metafile hot link is activated. The player parses the |

\eal- . metafile to find the streams that it should request from the RealMedia ;

2ck server. Notice that once the metafile is downloaded, the player makes the ,
connection directly to the RealMedia server and bypasses both the Web
5 browser and the Web server.

:YP— E On the server side, the server loads the appropriate plug-ins and starts

& delivering data packets to the player (Figure 11-2). The RealMedia server

164

144 8 CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

loads a File-System plug-in to read the raw data from a file. It then loads the
appropriate File-Format plug-in based on the file extension of the media
file. The File-Format plug-in parses the media file and determines the
MIME type of each stream in the file.” The server sends the MIME type of
each stream to the client, over the Internet, and the RealMedia client, in
turn, loads the appropriate Rendering plug-in for that MIME type.

Once the plug-ins are loaded, the RealMedia server requests a data packet
from the File-Format plug-in. The File-System plug-in reads the raw data
from the file, the File-Format plug-in parses it and breaks it into smaller
packets. The RealMedia server sends the packet over the Internet to the cli-
ent where it is rendered by the Rendering plug-in.

In a nutshell, File-Format plug-ins make the packets, Rendering plug-ins
receive the packets and play them, and the RealMedia engine handles all the
underlying communication and timing of shuttling the packets from the
server to the player.

11.4 Data Management Objects

RealMedia defines a set of data objects to transport the data from the server
to the client. These objects include dynamic memory allocation, indexed
lists, and data packet objects.

Although all the RealMedia objects are COM interfaces, they are not specific to
the Windows environment. Even though COM was defined for Windows, the
COM architecture does not require Windows.

11.4.1 IRMABuffer: Dynamic Memory Allocation Object

The IRMA* Buffer object allows you to allocate a memory buffer at runtime.
Typically, the buffer is used to transport data over the Internet. To allocate a
memory buffer in RealMedia, you need to create an instance of the IRMA-
Buffer object, set the size of the buffer, and then request a pointer to it. And
you thought malloc() was hard to use!

3. A MIME type specifies the type of data in the message. MIME, or Multipurpose Internet Mail Exten-
sion, allows for transporting mail messages with binary data and many parts such as attachments and
such.

4. IRMA: Interface RealMedia Architecture.

.
.
-

165

e

1€

0]

.
:
|

|

11.4.2

DATA MANAGEMENT OBJECTS = 145

To create an instance of the IRMABuffer object, you need to call the IRMA-
CommonClassFactory::Createlnstance() function using CLSID_IRMABUFFER as a
parameter. You'll soon learn how to request a pointer to an IRMACom-
monClassFactory object. To set the size of the buffer, you must call the
IRMABuffer::SetSize() member function; the actual memory allocation
happens here. If successful, you can then call the IRMABuffer::GetBuffer()
function to obtain a pointer to the data buffer. When you're done with the
buffer, you should release the object to avoid any memory leaks.

m_pC1 aSsFactory~>Create[nstance(CLSID_IRMABuf'Fer,(void**)&bﬁﬂe);

pTitle->SetSize(INFO_SIZE+1);
pTitleData= (char*)pTitle->GetBuffer(); IRMABuUffer functions:
strncpy(pTitleData,pBufferData, INFO_SIZE); Get()
pTitle->Release(); Set()

SetSize()

GetSize()

GetBuffer()

IRMAValues: Indexed List Object

The IRMAValues object allows you to build an indexed list at runtime and
send it off to other plug-ins over the Internet. The index is an ASCII string
that specifies some special property. The value is either an IRMABuffer
object or an unsigned long. For instance, you could use the IRMAValues
object to build the following indexed list.

Index | ‘Title" "Author” “Copyright” | “Count”

Value | ‘Carrots”| “Bugs Bunny” | “Bigkars Inc”| 3

As with the IRMABuffer object, you must first create an instance of the

- IRMAValues object with the IRMACommonClassFactory::Createlnstance()

function. You can then call the member function SetPropertyULONG32()
or SetPropertyBuffer() to add an unsigned long or an IRMABuffer object to
the list, respectively. Notice that the string index, for example, “title,” is
specified in the first parameter.

PART IlI

146 8 CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

m_pClassFactory->Createlnstance(CLSID_IRMAValues, (void**)&pHeader))

pHeader->SetPropertyBuffer ("Title", pTitle); .

pHeader->SetPropertyULONG32("StreamCount”, 1); IRMAValues functions:
SetPropertyULONG32 ()

B TiE e ; . GetPropertyULONG32()

pHeader->GetPropertyBuffer(“Title”, pTitle);

pTitleData = pTitle->GetBuffer(); GetFirstPropertyULONG32()

pTitle->Release(); GetNextPropertyULONG32()

pHeader->Release(); SetPropertyBuffer()
GetPropertyBuffer()
GetFirstPropertyBuffer()
GetNextPropertyBuffer()

L : —

To retrieve an item from the list, you can call the GetPropertyBuffer() or the
GetPropertyULONG32() function for an IRMABuffer object or an unsigned
long, respectively. In addition, you can enumerate the entire indexed list
with the GetFirstXyz() and GetNextXyz() member functions. Refer to the
Include file in the RealMedia SDK for prototypes of these functions.

The following rules describe when to use the AddRef() and Release() functions
with RealMedia objects:

m Ifan object is passed to your code as a parameter of a function call, you must
use AddRef() to reference the object. When your code is finished with the
object, you must use Release() to release the object. .

Void Function' (IRMAObject “pObject) (
pObject->AddRef();
...Use Object Here...
PObject->Release();

= For objects returned by functions, use AddRef() to reference the object in-
side the function. You must use Release() to release the object when you're
done with it. The following functions use the AddRef() function to increment
the reference count of the objects before returning them:
RMACreatelnstance
IRMAFileSystem.:Createfile
IRMACommonClassFactory::Createlnstance .
IUnknown::Queryinterface
IRMAFileSystem.:CreateDir

= If your code creates an object using the C++ new operator, your code must
use the AddRef() function to reference the object. When your code is finished
with the object, it must use Release() to release the object.

11.5

167

11.43

S

Ist
he

in-
re
:nt

REALMEDIA ASYNCHRONOUS INTERFACES = 147

IRMAPacket: Packet Transport Object

The IRMAPacket object is used to transport data packets from the File-
Format plug-in on the server side to the Rendering Plug-in on the client side.

Again, you must first call the IRMACommonClassFactory;:Createlnstance()
function to create an instance of the IRMAPacket object. You can then call
the Set() member function to specify the IRMABuffer object that holds the
data of each packet. With the Se#() function you can also set a time stamp
for the packet and a priority flag indicating the importance of the packet—
Can it be dropped or not?

m_pClassFactory->Createlnstance(CLSID_IRMAPacket, (void**)&pPacket))
pPacket->Set(pBuffer,m_ulCurrentTime,0,0,PN_RELIABLE_NQRMAL);
pPacket->Release();

| | |

11.5 RealMedia Asynchronous Interfaces

File-Format plug-ins are responsible for parsing the data and splitting it
into multiple streams. They’re also responsible for breaking the data in each
stream into smaller packets before sending it over the Internet.

In addition to the JIRMAPIlugin interface, File-Format plug-ins implement
both the IRMAFileFormatObject and IRMAFileResponse interfaces. The
IRMAFileFormatObject interface defines the functionality of the DLL as a
File Format plug-in. The RealMedia server uses this interface to retrieve
header information from the source file and the header for each stream. It
also uses this interface to request data packets to send out over the Internet.

IRMAFileResponse is a callback interface used to notify the plug-in when
an asynchronous operation is complete. As you recall, the File-Format
plug-in uses the services of the File-System plug-in to read raw data from
the input source. Since all the File-System plug-in’s operations are asyn-
chronous, the File-Format plug-in exposes the IRMAFileResponse interface
in order to receive notification when these operations are complete.

RealMedia defines nonblocking interfaces for the File-Format and the File-
System plug-ins. These asynchronous interfaces allow the server to process
requests from the clients while the plug-ins are busy preparing data packets
from the input source.

148 a CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

File-System plug-in File-Format plug-in RealMedia Server or Player

Read()
ReadPacket(}

iRMAFileObject IRMAFileFormatObject

A, N
ee‘roo
Z, IRMAFormatResponse
IRMAFileResponse

PacketReady(

FIGURE 11-3 RealMedia asynchronous interfaces.

Suppose that the RealMedia server wants to get a data packet to transmit
over the Internet. The server calls the File-Format plug-in function IRMA-
FileFormatObject::GetPacket() to obtain a data packet. The GetPacket()
function, in turn, calls the File-System function IRMAFileObject::Read() to
read a block of raw data from the input source. Now, since both the IRMA-
FileFormatObject and the IRMAFileObject interfaces are asynchronous,
both the Read() and the GetPacket() functions return before the packet is
created. At this stage, the server could process previous packets in the
queue.

When the raw data is read from the input source, the File-System plug-in
calls the File-Format plug-in function IRMAFileResponse::ReadDone() to
notify it that the raw data read is done. The File-Format plug-in, in turn,
calls the server back at the IRMAFormatResponse::PacketReady() function
to notify it that the packet is ready to send.

.
i
.
.
o

11.6 Common Requirements for All Plug-ins

Although we’re only dealing with Windows 95 in this book, it’s worth
mentioning that RealMedia is a cross-platform architecture. Nonetheless,
writing a File-Format or a Rendering plug-in should require little or no
operating system services. The File-System plug-in, on the other hand, is
platform dependent since it requires direct access to the input devices—file,
satellite, and so forth.

To create RealMedia plug-in, you must keep the following in mind:

m The plug-in you create must export the C-style function RMACreate-
Instance(), which is used to create an instance of the plug-in. This func-
tion must be exported externally in the DEF file.

The plug-in must implement the base IRMAPlugin interface. RealMedia
applications use this interface to retrieve information about the plug-in.

169

COMMON REQUIREMENTS FOR ALL PLUG-INS ® 149

& Each plug-in must implement at least one additional plug-in object that
defines the functionality of the plug-in. For example, Rendering plug-ins
implement the IRMARenderer object, and File-Format plug-ins imple- ‘
ment the IRMAFileFormatObject. |

When a RealMedia application loads a plug-in, it calls the RMACreate-
Instance() function, which creates an instance of that plug-in and then
returns a pointer to it.

Make sure to EX})OI't thlS
MA t t ** .
? DAPI RMACreatelnstance(IUnknown DPIUHKHOWH) / function in the DEF file.

pplUnknown = (IUnknown)(IRMAPTugin*)new CExamplefileFormat();
if (*ppIUnknown) {
(*ppIUnknown)->AddRef();
return S_0K;
}
return E_OUTOFMEMORY;

Once the plug-in is created, RealMedia calls the IRMA Plugin::InitPlugin()
function to initialize it. This function accepts only one parameter,
PCONTEXT, which allows you to retrieve a pointer to the common class fac-
tory. Remember, this is the IRMACommonClassFactory object we used to
create the buffers earlier in the chapter.

PART lII

——» STOMETHODIMP CExampleFileFormat::InitPlugin(IUnknown* pContext)
{

m_pContext = pContext; IRMAPIlugin functions:
m_pContext->AddRef(); InitPlugin ()
m_pContext->QuerylInterface(IID_IRMACommonClassFactory GetPlugininfo()

- (void**)&m_pClassFactory);
: return S_OK;

R AR i

iS, 5 !
j IRMACommonClassFactory provides a Createlnstance() function, which serves the same purpose as the
S % COM CoCreatelnstance() function.
file, |
1 : |
E The IRMAPlugin::GetPluginlnfo() function is then called to retrieve filter-
specific configuration information. The BLOADMULTIPLE parameter specifies
ate- i whether multiple instances of this plug-in could be created at the same
me- | time—this must always be true for a File-Format plug-in. The other three
i parameters are self-explanatory.

150 = CHAPTER

11.7.1

11.7 Building a File-Format Plug-in

11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

ffdefine PCCHAR const char*

PCCHAR CExampleFileFormat::zm_pDescription = "Example File Format Plugin";
PCCHAR CExampleFileFormat::zm_pCopyright = "Your Company, A1l rights
reserved";

PCCHAR CExampleFileFormat::zm_pMoreInfolURL = "http://www.yourcompany.com";

STDMETHODIMP CExampleFilteFormat::GetPlugininfo (
REF(BOOL) blLoadMultiple,
REF(const char*) pDescriptiEn, REF():parametersarepaSSEdbyreferencej
REF(const char*) pCopyright,
REF(const char*) pMoreInfolURL
)

blLoadMultiple = TRUE;

pDescription = zm_pDescription;
pCopyright = zm_pCopyright;
pMoreInfoURL = zm_pMorelInfoURL;
return S_QOK;

]

All plug-ins go through the same initialization up to this point. Other ini-
tialization is done based on the type of plug-in you're writing. Let’s start
with the File-Format plug-in and then move on to the Rendering plug-in.

Initializing the File-Format Plug-in

Once the IRMAPlugin interface is initialized, the File-Format plug-in func-
tion GetFileFormatInfo() is called. This function returns a list of the sup-
ported MIME types along with the default file extensions of the supported
input files. This is it/ This is where you declare that this plug-in can support
the list of file extensions.

jdefine PCCHAR const char*
PCCHAR CExampleFileFormat
PCCHAR CExampleFileFormat
PCCHAR CExampleFileFormat

rizm_pFileMimeTypes(]
r:zm_pFileExtensions([]
c:rzm_pFileOpenNames[]

{"application/x-yourfileformat”, NULL); ¢——--—"
{"eff", NULL};
{"Example File Format (*.eff)", NULL};

To support multiple streams and file formats, add the second, third, and so forth, stream information here.
Make sure to terminate the list with NULL.

171

STOMETHODIM
REF(cor
REF(cor

REF(cor

) i

pFileMi
pFilekx
pFilelp
return

L.__—i

BUILDING A FILE-FORMAT PLUG-IN & 151 i

STDMETHODIMP CExampleFileFormat::GetFileFormatInfo (

REF(const char**) ij]eMﬁmeTyPes, IRMAFileFormat-
REF(const char**) pFileExtensions, Object functions:
" t char**) pFileOpenNames e o
1 REF(cons GetFileFormatInfo()
) . InitFileFormat()
{)) .) GetFileHeader()
e pFﬂeMmeTypes = zm_pFileMimeTypes; GetStrearnHeader()
pFileExtensions = zm pFileExtensions; GetPacket()
pFileOpenNames = zm_pFileOpenNames; Seek()
] return S_0K; Close() |
| |

- | |

When the server receives a URL to load, it calls the InitFileFormat() func-
tion with that URL and two other object pointers: IRMAFileObject and
IRMAFormatResponse. As we mentioned earlier, IRMAFileObject is an
asynchronous interface used for reading, writing, or seeking a file. IRMA- !
FormatResponse is used to notify the RealMedia server when an operation is |
complete. |

In order for IRMAFileObject to notify us when an operation is complete, it
needs to obtain a pointer to the File-Format plug-in’s IRMAFileResponse

interface. To do so, we must pass the pointer to “this” plug-in to the IRMA-
FileObject interface. IRMAFileObject, in turn, calls our Querylnterface() |
function to retrieve a pointer to the IRMAFileResponse interface. |

PART lII

STDMETHODIMP CExampleFileFormat::InitFileFormat(
const char* pURL,
IRMAFormatResponse* pFormatResponse,
IRMAFileObject* pFileObject
)

nc-
P.—
ted

yort

Copy the URL to a member variable. Make sure to allocate enough space.

if (m_pURL) {
delete m_pURL;
m_pURL = NULL;
} |
if (pURL) | ii
m_pURL = new char[strlen(pURL)+17; |
if (Im_pURL) return E_OUTOFMEMORY; |
strepy (m_pURL,pURL);

|
.

!

Save the File Object to read/seek data from the input source; save the File Response to notify the A
server when the operation is complete. We AddRef() these objects to keep them around for later use. i l)

m_pFFResponse = pFormatResponse;
m_pFileObject = pFileObject;

if (m_pFFResponse) m_pFFResponse->AddRef();
if (m_pFileObject) m_pFileObject->AddRef();

172

152 @ CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

Due to the asynchronous nature of the File Object, we use the variable m_state, to build a simple
I state machine to determine when an operations completes. Also, notice that we pass the file object
i a pointer to this plug-in so it could retrieve our callback interface, IRMAFileResponse.

; m_state = InitPending;
i m_pFileObject->Init(m_pURL, PN_FILE_READ | PN_FILE_BINARY, this);
return S_0K;

\ N

:[Notice that you must expose the IRMAFileResponse interface by respond-
ing to the Global Unique Identifier (GUID), IID_IRMAFileResponse, in
i the QuerylInterface() function.

STDMETHODIMP CExampleFileFormat::QueryInterface(REFIID riid, void** ppv0bj)
{

| e if (IstquallID(riid, IID_IRMAFileResponse)) {
e AddRef () ;

ppv0Obj = (IRMAFileResponse)this;

return S_OK;

}

*ppvObj = NULL;
return E_NOINTERFACE;

Now, since the IRMAFileObject::Init() function is asynchronous, it returns
before it initializes the object. Once the initialization is complete, IRMA-
FileObject calls the callback function IRMAFileResponse::InitDone() with
the status of the operation. In turn, the InitDone() function calls the
server’s notification function IRMAFormatResponse::InitDone() to inform
it that the File-Format plug-in initialization is complete. Remember that
both the IRMAFileObject and IRMAFileFormatObject interfaces are asyn-
chronous in nature.

STDMETHODIMP CExampleFileFormat::InitDone(PN_STATUS status)
{
if (m_state != InitPending)
return E_UNEXPECTED;

m_state = Ready;
. m_pFFResponse->InitDone(status);
return S_OK;

173

11.7.2

rm i
it |

%

BUILDING A FILE-FFORMAT PLUG-IN = 153

Pay special attention to the m_state member variable; we've used it to build
a simple state machine to handle the asynchroneity of the IRMAFileObject
interface.

File and Stream Headers

Once the plug-in is initialized and the file is ready for reading, the Real-
Media server calls the GetFileHeader() function to retrieve the media file
header. In this example, we seek to zero since the file header is located at the
beginning of the file.

STOMETHODIMP CExampleFileFormat::GetFileHeader()
{

if (m_state I= Ready)
return E_UNEXPECTED;

m_state = GetFileHeaderSeekPending;
m_pFileObject->Seek(0,FALSE);
return S_OK;

Since the Seek() function is an asynchronous function, you have to wait for
the SeekDone() callback before you can start reading from the file. When the
seek is done, you can call the IRMAFileObject::Read() function to read the

header from the file.

STDMETHODIMP CExampleFileFormat::SeekDone(PN_STATUS status)
{

if (m_state == GetFileHeaderSeekPending) {
m_state = GetFileHeaderReadPending;
m_pFileObject->Read (FILE_HEADER _SIZE);
}

Again, since the Read() function is an asynchronous function, the function
ReadDone() will be called when the data is read. The ReadDone() function
receives a status flag indicating the outcome of the read. If successful, the
raw data is returned in the IRMABuffer object. You can then extract the
data from the buffer and call the IRMAFormatResponse::FileHeaderReady()
function to notify the server that the file header is ready.

PART IlI

154 @ CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

STOMETHODIMP
CExampleFileFormat::ReadDone(PN_STATUS status, IRMABuffer=* pBuffer)
{ .
if (m_state == GetFileHeaderReadPending) {
m_state = Ready;

IRMAValues* pHeader;
IRMABuffer* pTitle = NULL, *pAuthor = NULL;
char *pTitleData, *pAuthorData, *pBufferData;

Create an indexed list to hold the header, IRMAValues, and two buffers to hold the header data,
pTitle & pAuthor. Set the buffer size appropriately and get a pointer to the buffer.

L

’ ‘ m_pClassFactory->Createlnstance(CLSID_IRMAValues, (void**)&pHeader);
} i m_pClassFactory->Createlnstance(CLSID_IRMABuffer, (void**)&pTitle);

\ m_pClassFactory->CreateInstance(CLSID_IRMABuffer, (void**)&pAuthor);
1 pTitle->SetSize(INFO_SIZE+1);

pAuthor->SetSize(INFO_SIZE+1);

| pTitleData = (char*)pTitle->GetBuffer();
I pAuthorData = (char*)pAuthor->GetBuffer();
pBufferData = (char*)pBuffer->GetBuffer();

| strncpy (pTitleData,pBufferData, INFO_SIZE);
pTitleDatalINFO_SIZE] = '\0";

strncpy{(pAuthorData,pBufferData+INFO_SIZE, INFO_SIZE);
pAuthorData[INFO_SIZE] = "\0';

|
i Set the indexed list properties and inform the server that the file header is ready. Make sure to
‘ release whatever you've created to avoid memory leakage.

L pHeader->SetPropertyBuffer ("Title", pTitle);
‘ pHeader->SetPropertyBuffer ("Author", pAuthor);
: pHeader->SetPropertyULONG32("StreamCount™, 1);<€—] .
Speicify the number -
m_pFFResponse->FileHeaderReady(status, pHeader); of streams in the .
. file here, .

. pHeader->Release();
L .pTitle->Release();
pAuthor->Release();

Notice that we specified the number of streams in the input file in the
StreamCount index. For each stream, the server calls the GetStream-
Header() function to retrieve the specific header for the stream. As when we
were working with the file header, you would look for the stream header—
asynchronously—and read the data at that location.

175

we

=
:
o

BUILDING A FILE-FORMAT PLUG-IN =& 155

STDMETHODIMP CExampleFileFormat::GetStreamHeader(UINT16 unStreamNumber)
{

// Seek to the stream header

if (m_state == Ready) {
m_state = GetStreamHeaderSeekPending;
m_pFiTeObject->Seek(FILE_HEADER_OFFSET+FILE HEADER_SIZE,FALSE);

}

STDMETHODIMP CExampleFileFormat::SeekDone(PN_STATUS status)
{
// read the stream header
if (m_state == GetStreamHeaderSeekPending){
m_state = GetStreamHeaderReadPending;
m_pFileObject->Read(STREAM_HEADER_SIZE);

When the read is done, the ReadDone() function is called with the data in
the IRMABuffer object. As with the file header, you can retrieve the data
from the buffer and pass it on as an indexed list.

STDMETHODIMP

CExampleFileFormat::ReadDone(PN_STATUS status, IRMABuffer* pBuffer)
{
if (m_state == GetStreamHeaderReadPending) {
m_state = Ready;

IRMAValues* pHeader;
m_pClassFactory->CreateInstance(CLSID_IRMAValues, (void**)&pHeader);

This is where you specify the output type of the stream; this MIME type also specifies what
kind of rendering plug-in must be loaded to render this stream.

IRMABufferx pMimeType = NULL;

char szMimeTypel] = "application/x-yourRenderFormat";
m_pClassFactory->CreateInstance(CLSID_IRMABUffer, (void**)&pMimeType;
pMimeType->Set((const UCHAR*)szMimeType,strlen(szMimeType)+1);

This is the stream header information. It includes the data buffer, pBuffer, bit rate, packet size
information, timing, and stream type.

pHeader->SetPropertyBuffer ("OpaqueData", pBuffer);
pHeader->SetPropertyULONG32("StreamNumber", 0);
pHeader->SetPropertyULONG32("MaxBitRate", MAX_BITRATE);
pHeader->SetPropertyULONG32("AvgBitRate", AVG_BITRATE);

pHeader->SetPropertyULONG32("MaxPacketSize", MAX_PACKETSIZE);
pHeader->SetPropertyULONG32("AvgPacketSize", AVG_PACKETSIZE);

pHeader->SetPropertyULONG32("StartTime", 0);
pHeader->SetPropertyULONG32("Preroll™, 0);
pHeader->SetPropertyULONG32("Duration”, 2000);
pHeader->SetPropertyBuffer ("StreamName", NULLY;
pHeader->SetPropertyBuffer ("MimeType", pMimeType);

pHeader->SetPropertyULONG32("PopupWindow", 1);

PART 111

156 8 CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

11.7.3

Notify the server that the stream header is ready and release memory objects.4|

}

.

Let the Streaming Begin!

At this stage the File-Format plug-in is ready to generate data packets for
delivery over the Internet. The server calls the GetPacket() function to read
one data packet. The File-Format plug-in requests a read of the data, and
when ready, inserts it into an IRMAPacket object along with the time stamp.
It also informs the server that the packet is ready through the IRMAFormat-
Response::PacketReady() function.

STOMETHODIMP CExampleFileFormat::GetPacket(UINTL6 unStreamNumber)

{

}

if (m_state == Ready) {
m_state = GetPacketReadPending;
m,pFﬂeObject->Read(PACKET,SIZE):

m_pFFResponsef>StreamHeaderReady(Status, pHeader);
pHeader->Release();
pMimeType->Release();

11.8 |

PN_RELIABLE_: specifies the priority level of the packet.
REQUIRED must be sent or the entire stream will be aborted; for example, renderer

HIGH

NORMAL

LOW

VERY_LOW can be sent only if there is enough resources available (Server load, network J

initialization information.

must arrive or there will be serious problems in the presentation; for example,
Key Frames.

normal priority; for example, Audio packets. .
lower priority; for example, Images. .

bandwidth, etc).

STOMETHODIMP
CExampWeFﬂeFormat::ReadDone(PN;STATUS status, IRMABuffer *pBuffer)

{

If the read failed, notify the server that we reached end of stream. J

if (status = PN_STATUS_OK) |

m_ulCurrentTime = 0;
m;pFFResponse»>StreamDone(O);

m_state == GetPacketReadPending) {
m_state = Ready;
TRMAPacket* pPacket;

Create an TRMAPacket and attach the packet data to it along with the priority level and the
time stamp. Then increment the time stamp. (Continued next page)

BUILDING A RENDERING PLUG-IN & 157

Create an IRMAPacket and attach the packet data to it along with the priority level and the
time stamp. Then increment the time stamp.

m_ulCurrentTime += TIME_PER_PACKET;
m_pFFResponse->PacketReady(status, pPacket);
» PPacket->Release();

)

)
\

The server calls the GetPacket() function repeatedly until the end of file or
stream is reached.

11.8 Building a Rendering Plug-in

Rendering plug-ins are responsible for decoding the data, if compressed,
and sending it to its final destination—screen, audio device, and so forth.
Rendering plug-ins run on the client side and accept data from the Internet
in small packets—IRMAPackets.

After the base plug-in interface IRMAPIlugin is initialized, the client appli-
cation calls the GetRendererInfo() function to retrieve a list of the supported
MIME types. In order to render a stream, the MIME stream type must match
one of the supported renderer MIME types (se¢ the File-Format plug-in
function GetStreamHeader() to learn how to set the MIME type of a stream).

In addition to the MIME types, the GetRendererInfo() function returns the
rendering refresh rate. This specifies how often you want to render the final
| data to its destination—screen, audio device, and so forth.

PCCHAR CExampTeRenderer::zm pStreamMimeTypes[] = {"application/x-yourRenderFormat",
NULL};

STDMETHODIMP CExampleRenderer::GetRendererInfo(
REF(const char**) pStreamMimeTypes,
REF(UINT32) unIinitialGranularity
)

pStreamMimeTypes = zm_pStreamMimeTypes;
unInitialGranularity = 100;
return S_OK;

Causes the OnTimeSync() function
to be called every 100 milliseconds.

PART HI

158 &8 CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

P The StartStream() function is then called to initialize the stream. The func-
! tion receives a pointer to the stream, IRMAStream, and a pointer to the
player, IRMAPlayer. IRMAStream allows you to retrieve information about
the stream such as the stream number, type, and input source file. It also
L allows you to set the quality of the playback, request additional buffered
packets, and adjust the refresh granularity. IRMAPlayer gives access to
player-related information. It also allows you to start, stop, and seek the
stream.

STDMETHODIMP IRMAStream functions:

CExampleRenderer::StartStream(GetSoutrce()
IRMAStream* pStream, GetStreamNumber()
IRMAPTayer* pPlayer . GetStreamType()
) ReportQualityOfService()
{ ReportRebufferStatus()
m_pStream = pStream; SetGranularity()
! m_pPlayer = pPlayer: IRMAPIlayer functions:
if (m_pStream) m_pStream->AddRef(); §§§§Z§3ﬂﬂuyn80
if (m_pPlayer) m_pPlayer->AddRef(); GetCurrentPlayTime()
) OpenURL()
‘ | return 5_OK; Begin(), Stop(), Pause()
Seek()

The OnHeader() function receives the indexed list prepared earlier by

the OnStreamHeader() function of the File-Format plug-in. You can use the
GetPropertyBuffer() and GetPropertyULONG32() functions to retrieve

the information from the indexed list.

i STDMETHODIMP CtxampleRenderer::OnHeader(IRMAValues* pHeader)
|
{

// Keep this for later use...
m_pHeader = pHeader;
L m_pHeader->AddRef();

// Get the packet data buffer. Of course you can get more packet info.
| ; IRMABuffer *pBuffer;

| pHeader->GetPropertyBuffer ("OpagueData", pBuffer);
LPBYTE pBuf = pBuffer->GetBuffer();

return S_OK;

Once the stream is initialized, the Rendering plug-in receives data packets
through the OnPacket() function. You can choose to render the data in the
packet or wait for the next refresh timer tick—in OnTimeSynch() discussed
later. In our case, we just save a reference to the packet.

179

:the

BUILDING A RENDERING PLUG-IN = 159

STDMETHODIMP CExampleRenderer::0nPacket(IRMAPacket* pPacket)
({

// Release the last packet if we had one...
if (m_plastPacket)
m_plastPacket->Release();

// Keep this one for later use...
m_plastPacket = pPacket;

if (m_plLastPacket)
m_plastPacket->AddRef();

return S_0K;

When the user starts playing for the first time or resumes playing after a
pause, the OnBegin() function is called with the stream’s time stamp for
the next packet. .

STDMETHODIMP CExampleRenderer::0nBegin(ULONG32 ulTime)
{

return S_0K;
}

| , |

To maintain a smooth playback, the RealMedia engine pre-loads extra pack-
ets just in case the network gets congested. The RealMedia engine requests
additional buffers when the stream starts playing, when the position of the
stream is changed (when you seek forward/backwards), or when the number
of reserved packets becomes very low. Of course, this action requires CPU
cycles both on the server and the client. The client can relinquish CPU cycles
by dropping frames or reducing the quality of the final output. This is exactly
why the renderer function OnBuffering() is called—so that the renderer can
adjust the amount of CPU cycles it uses accordingly.

STOMETHODIMP
CExampleRenderer::0nBuffering(ULONG32 ulFlags, UINT16 unPercentComplete)

{
return S_OK;
}

PART IlI

160 @ CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

| When the user pauses playback, the OnPause() function is called. This
: function is typically used to display a static video frame when the movie is
I paused.

STDMETHODIMP CtxampleRenderer::0nPause(ULONG32 ulTime)
{

return S_0K;
}

\ N

| When the user decides to seek forward or backward into the stream, the

E OnPreSeek(), OnPostSeek() functions are called. Both pass the time stamp
E v of the packet before and after the seek.
E

|

L

!

|

STOMETHODIMP
‘ CExampleRenderer::OnPreSeek(ULONG32 ul01dTime, ULONG32 ulNewTime)
| {
I

return S_OK;
}

L ! - STOMETHODIMP
! CExampleRenderer::OnPostSeek (ULONG32 ul01dTime, ULONG32 ulNewTime)
| {
return S_OK;
}

\ l

The OnTimeSync() function is periodically called according to the granu-

; larity set in the GetRendererInfo() function. Notice that when the player is
C handling multiple streams, the refresh rate is the same for all streams, and it
‘ k is equal to the lowest granularity rate of all the streams. The OnTimeSync()
function is called to update the screen or send data to the audio device.

STDMETHODIMP CExampleRenderer::0OnTimeSync(ULONG32 ulTime)
{

// Here's a good time to actually render the data!
m_ullastTime = ulTime;

// Redraw the window. DamageRect() is similar to the Win3z
InvalidateRect()

CPNxRect rect(0,0,400,100);

m_pWindow->DamageRect(rect);

return S_OK;

181

is
wie is

BUILDING A RENDERING PLUG-IN m 161

The UseWindow() function is called to inform the renderer that it should
use a particular window to draw its data, for example, the browser’s win-
dow. Since RealMedia supports multiple platforms, you should use the
platform-independent window interface IRMASimpleWindow. This inter-
face provides platform-independent functions to perform common opera-
tions on a window. To get access to the window handler routine, you need
to subclass the window and hook into its windows procedure. To simplify
cross-platform development, you can use the class PNxSubclassing-
Window, which handles platform-independent window subclassing and
painting to the window (you can find the definition of this class in RealMedia’s
sample directory).

In our case, we only set the size of the window and make it visible.

STOMETHODIMP CExampleRenderer::UseWindow(IRMASimpleWindow* pWindow)
{

HRESULT hRes = PNxSubclassingWindow::UseWindow(pWindow);

// Set the size and visibility of the window
if (hRes == S_0K) {
CPNxSize size(400,100);
hRes = pWindow->SetSize(size);
pWindow->SetVisibility (TRUE);
b
return hRes;

The window procedure handler of the PNxSubclassingWindow calls the
member function Draw() to do the painting on the screen. You must over-
ride this function to render the output to the window. Since our packets are
simple text, we use the TextOut() function to display the text in the window.

void CExampleRenderer::Draw()
{

IRMABuffer*pBuffer = NULL;
if (m_plastPacket) {
pBuffer = m_plLastPacket->GetBuffer();
c:TextOut(m_hDC,0,0,pBuffer->GetBuffer(),pBuffer->GetSize());
}

L |

Finally, when the player closes the file, you must release the subclassing
window, which in turn destroys the window.

182

PART 111

162 @ CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

STOMETHODIMP CExampleRenderer::ReleaseWindow(IRMASimpleWindow* pWindow)
{

return PNxSubclassingWindow: :ReleaseWindow(pWindow);
}

J

11.9 RealMedia Audio Services

As part of the goal of platform independence, RealMedia defines a hard-
ware-independent interface that provides the necessary methods to deliver
audio data to the audio device and to control that device’s components—
volume, sample bit rate, mono versus stereo, and so forth. This interface is
called the Audio Services interface.

In addition to hardware independence, the Audio Services interface pro-
vides audio mixing capabilities so that multiple audio streams can be mixed
together before they’re sent out to the audio hardware. It also allows Ren-
dering plug-ins to process the output data of each stream before mixing
and to process the final audio data after mixing (see “Touching the Audio
Data Before and After Mixing”).

Notice that RealMedia comes with a few built-in renderers that can handle
RealAudio, WAVE, AU, AIFF and SND audio file formats. So, you wonder,
“Why should T care about Audio Services?” Typically, if you're only dealing
with RealAudio or any of the audio formats we have mentioned previously,
you don’t have to worry about Audio Services. But if you need to handle a
new audio format, MPEG audio for example, you will need to use the
Audio Services interface to write your data to the audio device.

“Well, why not use DirectSound or RSX?” For one, the Audio Services
interface is easy to use. Although DirectSound and RSX provide mixing
capabilities, RealMedia’s Audio Services interface does its own mixing to
maintain platform independence. As a result, if you use RSX or Direct-
Sound, your audio stream will not be mixed with other RealMedia audio
streams. Moreover, since the Audio Services interface is platform indepen-
dent, you can easily provide versions of your custom plug-ins on multiple
platforms.’

5. DirectSound and RSX are audio technologies from Microsoft and Intel. They are discussed in a later
section. ‘

183

lle
I,

1g
ily,

>a

.

REALMEDIA AUDIO SERVICES m 163

File1.RA]
Built-in RealAudio
File2.RA —=g—| Rendering Plug-in

Player
Core

1)

FIGURE 11-4 The RealMedia Audio Services interface in highlighted: blocks.

Custom MPEG
Audio.Mpg g8~ Audio
Rendering Plug-in

In Figure 11-4, you can see two Rendering plug-ins: the built-in RealAudio
Rendering plug-in, which handles RealAudio streams, and a custom MPEG
audio Rendering plug-in, which could handle MPEG audio streams. Notice
that the Audio Services are shown in the highlighted blocks. The Audio Ser-
vices consist of one audio player, one audio device, and “multiple” audio
streams—one for each active audio stream.

The audio player exposes the IRMAAudioPlayer interface, which allows you
to create an audio stream, IRMAAudioStream. The audio stream interface
allows you to write the data to the audio device. When you’re playing multiple
audio streams, the Audio Services mixes them together, including sample
rate conversion, and sends the mixed result to the audio device. Finally, the
audio device object writes the data to the audio hardware. This is where
the platform independence happens.

Playing a Simple Pulse Coded Modulation (PCM) Audio File

Now, let’s see how you can use the Audio Services to play an audio file from
your custom Rendering plug-in. In this example, we’ll only show you how
to play a PCM file locally. PCM is the audio format that is typically sent to
the audio device. We'll play the audio file whenever the mouse is clicked
within the client window. This is a good time to run the demo correspond-
ing to this chapter on the CD.

For the sake of simplicity (or our laziness) let’s build on the Rendering
plug-in that we’ve discussed earlier in this chapter. In addition to the text
stream, we’ll play an audio file, frog.pcm, whenever the user clicks the
mouse in the client window. Youw'll know what we’re talking about if you've
run the demo. :

PART IHI

164 8 CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

We start by reading the entire PCM file into memory; it is small enough in
this case. Since we'll always use the same PCM file, we might as well read it
up front in InitPlugin(). We allocate an IRMABuffer big enough to hold the
entire file and then read the file into it. You learned how to allocate buffers
earlier in the chapter.

' STDMETHODIMP CExamp]eRenderer::InitP]ugin(IUnknown* pContext)
{
m_pContext = pContext;
m_pContext->AddRef();
pContext~>OueryInterface(IID,IRMACommonNassFactory, &pClassFactory);

ULONG32 actual = 0;
IRMACommonClassFactory* pClassFactory = NULL:

// allocate an IRMABuffer big enough to hold the entire PCM file
[pC]assFactory->CreateInstance(CLSID,IRMABuffer,(void**)&m_pauffer);
! m_pBuffer->SetSize(LENGTH);

// Read the file into the buffer and re-adjust its size to the length
i // of the file
m_pFile = ::fopen(PcmFileName, "rb");
actual = ::fread(m_pBuffer->GetBuffer(), 1, LENGTH, m_pFile);
m_pBuffer->SetSize(actual);

pClassFactory->Release();

;:fclose(m_pFile);
}

L

i You should then create the audio stream when you receive the header infor-
‘ rmation of the stream. If the stream were coming over the Internet, the header
| would tell you about the stream’s properties. Before you can create an audio
: stream, you must first retrieve a pointer to the audio player interface IRMA-
AudioPlayer. To do that, you must call the IRMAPIlayer::QuerylInterface()
function to get that pointer. Now, you can call the IRMAAudioPlayer::
CreateAudioStream() function to create the audio stream. If it is successful,
il you must call the IRMAAudioStream::Init() function to initialize the audio

: stream, specifying mono/stereo, the sampling rate, and the maximum
sample size.

|
]
1
g
1

STDMETHODIMP CExamp‘IeRenderer::OnHeader(IRMAVaWues* pHeader)
{
Sl // Keep this for later use...
| m_pHeader = pHeader;
m_pHeader->AddRef(};

185

11.9.2

REALMEDIA AUDIO SERVICES & 165

// NOTE: we got a pointer to m_pPlayer in the StartStream() function
// Get a reference to the IRMAAudioPlayer interface
m_pPlayer->QueryInterface(IID_IRMAAudioPlayer, &m_pAudioPlayer))

// Now create an audio stream and initialize it.
RMAAudioFormat Audiofmt;

m_pAudioPlayer->CreateAudioStream(&m_pAudioStream);
AudioFmt.uChannels = 1;

AudioFmt.uBitsPerSample = 16;
AudioFmt.ulSamplesPerSec = 22050;
AudioFmt.uMaxBlockSize = (UINT16)LENGTH;
m_pAudioStream->Init(&AudioFmt, pHeader)

The OnMouseClick() function will be called whenever the mouse is clicked
within the client window. It’s time to play the file. Since the audio data is in
PCM format, we can just write it to the audio device. To do that, we must
call the IRMAAudioStream::Write() function to send the data to the audio
device. Remember: we’re actually handing the data over to RealMedia
Audio Services, not to the audio hardware. Behind your back, the Audio
Services mixes the data with other streams before it sends it out to the
audio device object, which sends it out to the audio hardware.

Notice that we set the uTAudioTime to a value returned by GetInstant-
Time(). This allows us to play the file instantaneously, so we don’t have to
wait for it. If you'd rather have the sample be delayed before it is played, just
set the time to a relative number in milliseconds. Refer to the RealMedia
SDK for more details about instant time and midstream playback.

STDMETHODIMP CExampleRenderer::0nMouseClick{)
{

RMAAudioData AudioData;

// Fill the AudioData structure with a pointer to the data and
// when it should be played.. In our case, instantaneously.
AudioData.pData = m_pBuffer;

AudioData.ulAudioTime = m_pAudioPlayer->GetInstantTime();
m_pAudioStream->Write(&AudioData);

Pump Up the Volume

With RealMedia you can also adjust the audio volume at three data points:
the output of individual streams, the output of the mixed streams, and the
audio device hardware. As you can see in Figure 11-5, each individual

186

PART 11

166 8 CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

i IRMAVolume functions:

Init()

SetVolume(),
GetVolurme()
GetLevel()
SetMute()
GetMute()
AddAdviseSink()
RemoveAdviseSink()

RealAudio
Rendering Plug-in

Player Core

Custom
Rendering Plug-in

ﬁ Represents an IRMA Volume Interface

FIGURE 11-5 Volume control for indiviual streams, mixed streams,
and audio hardware.

stream has its own volume control. The audio player controls the audio
level of the mixed stream, and the audio device object controls the volume
of the audio device.

To adjust the volume of an individual stream, you must first call the
TRMAAudioStream::GetStreamVolume() function, which returns a pointer
to a volume interface, IRMAVolume. You can call the IRMAVolume::
SetVolume() and GetVolume() functions to set/get the volume of individual
audio streams. A volume setting of 100 means 100 percent of the input sig-
nal; values less than 100 reduce the volume, and values greater than 100
increase the volume.

STDMETHODIMP CExampleRenderer::0nStreamVolume()

{
IRMAVolume *pVolume = m_pAudioStream ->GetStreamVolume();
pVolume->SetVolume(90); // Decrease the volume
pVoluem->GetVolume(110); // Increase the volume
pVolume->Release();

}

l _

Similarly, you can adjust the audio level after the streams have been mixed.
You must first call the IRMAAudioPlayer::GetAudioVolume() function to
retrieve a pointer to the IRMAVolume interface. Again, you can call the
IRMAVolume::SetVolume() and GetVolume() functions to set/get the volume
of individual audio streams. A volume setting of 100 means 100 percent of
the input signal; values less than 100 reduce the volume, and values greater
than 100 increase the volume.

187

pvolume->SetVolume(90);
pVoluem->GetVolume(110);
pVolume->Release();

STDMETHODIMP CExampleRenderer::0nMixedQutputVoTume()
{

IRMAVolume *pVolume = m_pAudioPlayer->GetAudioVolume();

REALMEDIA AUDIO SERVICES m 167

// Decrease the volume
// Increase the volume

pVolume->SetVolume(90);
pVoluem->GetVolume(110);
pVolume->Release();

The audio device volume is also controlled by an IRMAVolume object, yet
here the volume values have a slightly different meaning. In this case, a vol-
ume setting of 0 means no sound, and a volume setting of 100 is the maxi-
mum volume for the audio hardware. ‘

STDMETHODIMP CExampleRenderer::0nAudioDeviceVolume()
{

IRMAVoTume *pVolume = m_pAudioPlayer->GetDeviceVolume();

// Decrease the volume
// Increase the volume

Post-Mix data

4

Rendering Plug-in

A

Player Core

168 m CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH REALMEDIA

i WHAT HAVE
i YOU LEARNED?

In this chapter you've learned about the RealMedia technology for realtime streaming of
data over the Internet. The data is not limited to audio and video. RealMedia is easily
adaptable to stream any custom data type.

At this stage, you should

& be familiar with the concept of RealMedia plug-ins and the different types of plug-ing
(File-System, File-Format, and Rendering),

& be familiar with the plug-in interfaces,
m be able to build File-Format and Rendering plug-ins,

® understand the Audio Services interface and how to use it to play additional local audio
streams, and

& know how to use Audio Semvices to adjust the volume of individual streams, mixed
streams, and the audio device.

WE’D LIKE TO
BARRETT, CHR

Ck

Ch

189

ime streaming of
alMedia is easily.

types of plug-ins

itional local audig

Il streams, mixed

PART IV
= e]

Playing and Mixing
Sound with DirectSound

and RSX 3D

WE’D LIKE TO EXTEND AN ACKNOWLEDGEMENT TO JANICE CLEARY, KEVIN O’CONNELL, MICHELLE MCNEIL, RACHEL TILLMAN, CAROL

:BARRETT, CHRIS ROTVIK, AND TIM ROPER.

Chapter 12

Chapter 13

Audio Mixing with DirectSound

m Overview of Microsoft's DirectSound

m Play and mix WAV files with DirectSound

m Control final output format and final volume

Realistic 3D Sound Experience: RSX 3D

m Overview of Intel's RSX 3D

Play and mix audio files with RSX 3D

Use RSX 3D for realtime 3D sound experience

Apply reverberation and Doppler effects

Part IVV contains quick chapters on two audio architectures for Windows 9x: Microsoft's Di-
rectSound and Intel's 3D Realistic Sound Experience (3D RSX).

Microsoft's DirectSound was designed to address two key performance problems that
arose with high-performance multimedia applications running under Windows 95: First,
the per-channel overhead for mixing audio channels can be high. Second, there is a
noticeable lag between when you request a sound to be played and when it is actually
delivered through the speakers. In Chapter 12, we introduce you to Microsoft's Direct-
Sound architecture and show you how to program with it. We show you how to mix and
play WAV files and how to control output volume and formats.

Intel's 3D RSX is an architecture that lets listeners perceive sound in all directions, not only
to the front and sides, but also above, below, and to the rear. 3D RSX uses just two speakers

B 169 m

190

170 = PLAYING AND MIXING SOUND WITH DIRECTSOUND AND RSX 3D

(or a set of headphones) to produce a surround sound experience. The system creates

| sounds based on simulations of how the human brain hears sounds and is based on 4
Head Related Transfer Function (HRTF) technology. In Chapter 13, we will give you an
overview of 3D RSX, show you how to play audio files with it, and how to add special
effects to your sounds, such as reverberation or Doppler effects.

THIS (

12.]

191

tem creates
based on a
jive you an
1d special

WHY READ
THIS CHAPTER?

CHAPTER 12
e

Audio Mixing

with DirectSound

Microsoft's DirectSound was designed to address two key performance problems with
standard audio for high-performance multimedia applications running on Windows 95:
First, the CPU usage for mixing audio channels is high. Second, there is a noticeable lag
between when you request a sound to be played and when it is actually delivered through
the speakers.

if you've been facing either of these performance problems with your multimedia appli-
cation and would like to understand DirectSound's solutions, or if you expect the audio
component of your application to be demanding and instinctively know that you will need
a high-performance audio solution, read on.

By the time you have worked through this chapter, you will

have a good idea of how DirectSound works and what it offers,

understand how DirectSound reduces audio latency under Windows 95,

have learned how to play a WAV file and mix WAV files using DirectSound, and
have learned how to control output volume and formats through DirectSound.

~ 12.1 Overview of Audio under Windows 95

The standard Microsoft multimedia library (previously called mmsystem.lib
and now called winmm.lib) provides developers with a wide range of func-
tions for interacting with audio devices and performing audio functions.
These functions range from high-level interfaces for basic audio tasks to
low-level interfaces that provide more control of task and audio devices.

PART IV

192

172 m CHAPTER 12 AUDIO MIXING WITH DIRECTSOUND

| The PlaySound() function, for example, is a simple high-level way to play
audio files or to play audio sounds from the system registry. The MCIWnd
class, on the other hand, supplied as part of Video for Windows (VFW.h),
provides multimedia extensions for Windows. The audio services in MCI-
Wnd provide input, output, and recording control of a variety of devices
including CD audio, WAV audio, MIDI, and audio-video devices.

Table 12-1 lists the categories of audio services provided in the standard
Windows multimedia library.

TABLE 12-1 Range of Audio Services Available in Standard Windows
Multimedia Library

Prefix Service

wave Works with sounds in the PCM waveform audio format. In addition to play-
ing audio sounds, wave functions provide for audio input, for audio record,
and for waveform audio device control.

12.3

midi Plays and records Musical Instrument Digital Interface (MIDI) sound repre-
sentations. The MidiMapper (with channel maps, patch maps, and key
maps) provides a device-independent interface for playing MIDI files.

| mixer Provides runtime mixing of multiple MIDI or multiple WAV audio streams
{ within a single application.
mci Media Control Interface controls a variety of multimedia devices including
audio devices such as CD Audio, WAV audio, MIDI, and audio-video. .
acm The Audio Comgression Manager is an extension of the basic multimedia
system that enables runtime audio compression, decompression, and filter

services.

12.2 DirectSound Features

There are two performance problems with the audio services in winmm.lib:

m The performance overhead of mixing audio streams is high. On baseline
‘ 90 MHz Pentium platforms, mixing eight audio sounds consumes at
P least 40 percent of the CPU, leaving very little capacity for even more
i performance intensive tasks such as running graphics. The overhead in- -
| creases when audio formats differ and format conversion is necessary.

m The latency between when an application plays a sound and when the
sound is delivered through the speakers can be between 100 to 150 mil-
liseconds. Consider comparing an audio sound to a graphics event like
crashing into a wall. With a latency of 100 milliseconds and a frame rate
of 30 frames per second, at least 3 frames have gone by before the sound
is heard. The graphics actually seen would probably have no bearing on

193

to play
ACTWnd
/FW.h),
in MCI-
levices

ndard

dows

on to play-
lio record,

nd repre-

1d key
files.

streams
including
feo.
ultimedia
, and filter

nmm.lib:

1 baseline
sumes at
ven more
rhead in-
cessary.
when the
150 mil-
avent like i
-

rame rate
he sound
earing on

DIRECTSOUND ARCHITECTURE & 173

the sound. For adequate synchronization, the audio sound must be
heard before the next frame is drawn (less than 33 milliseconds at 30 fps).

In Microsoft’s words: “The overriding design goal in DirectX is speed.” The
Microsoft DirectSound audio library provides high-performance, low-
overhead, low-latency audio mixing. DirectSound accesses hardware accel-
eration whenever possible. In addition, the DirectSound architecture gives
Windows applications direct access to the sound device.

In addition to solving performance problems, the DirectSound component
of the DirectX SDK adds a notable feature: It can mix audio streams from
multiple applications. You can design your DirectSound-based application
to allow mixing sounds from other DirectSound applications. With this
feature, for example, a DirectSound-based Internet-audio-phone can share
audio output with your DirectSound application.

12 3 DirectSound Architecture

Figure 12-1 shows how DirectSound fits into the Windows 95 audio frame-
work. As part of the DirectSound architecture, Microsoft defined exten-
sions to the standard Windows 95 audio device driver. The extended
interface is known as the DirectSound Hardware Abstraction Layer (HAL)
interface. DirectSound provides its enhanced performance and features via

Application

Audio Device

FIGURE 12-1 DirectSound architecture within the Windows 95 framework.

194

PART IV

174 8 CHAPTER 12 AuDIO MIXING WITH DIRECTSOUND

the DirectSound HAL. The DirectSound path and the WAV audio path are
two mutually exclusive paths to the audio hardware. They cannot be used
simultaneously.

If a DirectSound driver is not available, DirectSound will use the standard
e Windows 95 audio device driver. In this case, DirectSound provides neither
. low-latency audio nor device access; but it can still provide low-overhead

| mixing.

12.
To us application developers, DirectSound provides DIRECTSOUND objects as
representatives of audio cards in the system. We access all further Direct-
Sound functionality through these DIRECTSOUND objects. Our applications
can only instantiate one DirectSound object per device. But multiple
applications can each instantiate their own DirectSound objects, and the
application in focus will have principal control of the audio output. (Direct-
SoundCreate() and DirectSoundEnumerate() are the only two functions that
can be called without having instantiated a DIRECTSOUND object.)

To create and play sounds, DirectSound provides two types of DIRECTSOUND-
BUFFER objects: secondary and primary. Secondary DIRECTSOUNDBUFFER
objects represent individual sounds or sound streams. DirectSound mixes
individual secondary buffers into the primary DIRECTSOUNDBUFFER, and this
mixed data is sent to the audio device.

Secondary buffers can be either hardware or software. Hardware buffers are
created and used if the audio device supports hardware mixing. Hardware
mixing reduces system overhead cost. In the absence of hardware mixing, sys-
tem buffers and software mixing are used with some CPU overhead required
for the mixing. Data in secondary buffers can be of varying audio formats. All
data is converted to the format of the primary buffer during mixing.

; The primary buffer holds data that is being played by the audio device and
i is invariably in the hardware. The most common model used for accessing
the primary buffer is to set a desired output format or to control total out-
put volume. Additionally, applications can write directly to the primary
buffer, but by doing so they disable all DirectSound mixing.*

1. We suggest that you avoid writing directly to the primary buffers. The size of audio buffers
is dictated by DirectSound device drivers. Buffers must be filled on time, as gaps in audio
buffers are heard as annoying audio clicks. Timer and thread management becomes fairly
complex with small buffers, and on the other hand, latency is high with large buffers.

195

PLAYING A WAV FILE USING DIRECTSOUND m 175

vath are
e used

Through an esoteric but not atypical way of using primary buffers you can
reduce latency when you are playing individual short sounds. It works as
follows. Null data in the primary buffer is played in LooP_M0DE, which forces
data to be sent to the audio device constantly. When sound in a secondary
buffer is played, data is merely mixed into the already playing buffer, and
there is no initialization latency delay.

andard
neither
rhead

12.4 Playing a WAV File Using DirectSound

IS.

jects as I .
grect_ 12.4.1 Initializing DirectSound
itions First, we need to initialize DirectSound. The starting point for using Direct-
le Sound is the DirectSoundCreate() function call. We get access to all Direct-
Sound functions through the DIRECTSOUND object that DirectSoundCreate()
d the g)
(Direct- instantiates.
s that i . . , :
, Right after initializing the DIRECTSOUND object, we've got to establish how we
plan on using DirectSound by using IDirectSound::SetCooperativeLevel().
TSOUND- DirectSound has four cooperative levels: DSSCL_NORMAL, DSSCL_PRIORITY,
IR DSSCL_EXCLUSIVE, and DSSCL_WRITEPRIMARY.
mixes . . .
nd this The DSSCL_NORMAL cooperative level is sufficient for our current example of
simply playing a WAV file with DirectSound. DSSCL_NORMAL sets up our use
of DirectSound for smooth audio sharing with other applications; note that
ers are the final output format is automatically fixed to 8-bit, 22-kHz STEREO for-
ware mat, and no format conversions are required when the focus switches.
ing, sys- | \ N L —
equired | Here’s the code to initialize access to the audio device through Direct-
nats. All 1 Sound:
?
. CoTnid L DirectSoundCreate() is the starting
ice and BOOLLES?;EE.?_QSG:E]ME'béQLE;WND ind) point in using DirectSound. The
~e6q] P K ! DIRECTSOUND structure returned from
cessing HRESULT err
! this function provides access to the
:al out- /7 create a DirectSound instance next level of functionality, such as
rary DirectSoundCreate(NULL, &pbSound, NULL); | CreateSoundBuffer, GetCaps,and so
g forth.
i
io buffers 1r
1 audio
2s fairly |

196

PART IV

176 m CHAPTER 12 AUDIO MIXING WITH DIRECTSOUND

// Setup to use as normal windowed app
err = pDSound->SetCooperativelevel(hWnd, DSSCL_NORMAL);
if (err != DD_OK) f
pDSound->Release();
return FALSE;
}

// store away
m_pDSound = pDSound;
// return success code
return TRUE;

§

SetCooperativeLevel() sets how we plan to use DirectSound. DirectSound permits four different levels of

usage:
5} i DSSCL_NORMAL Most cooperative, smoothest resource sharing with other applications. However,
S output format is fixed to 8-bit, 22-KHz, mono.
%X ; DSSCL_PRIORITY At this priority level, the application can change the output format.
‘ DDSCL_EXCLUSIVE At this level, sounds from other apps are not heard when this app has the input focus.

Output format can be set.
DDSCL_WRITEPRIMARY Application gets direct access to the primary output buffers. However, secondary
buffers cannot be played and application must do its own mixing.

\]

12.4.2 DirectSound Structures

To play sounds using DirectSound, we need to set up the sound in a Direct-
Sound format. DirectSound’s DSBUFFERDESC structure defines the format for
sound buffers. The actual format of the sound data is defined using the stan-
dard WAYEFORMATEX structure from mimreg.h. Let’s take a look at these structures.

L typedef struct _dsbufferdesci
o DWORD dwSize;
! —————3 DWORD dwFlags; . .
| DWORD dwBufferBytes;|| =dwBufferBytes should indicate the size of the sound
i DWORD dwReserved: buffer.The application sets this field for secondary
1 ; A . . .
i LPWAVEFORMATEX 1pwfxFormat; buffers, and DirectSound sets this field for primary
} DSBUFFERDESC, *LPDSBUFFERDESC; buffers.))
= Actual sound format is defined using the standard
typedef struct | WAVEFORMATEX structure defined in mmreg.h. We've
WORD wFormatTag; included the definition here for quick reference.

i WORD -nChannels;

HEN DWORD nSamplesPerSec;
i DWORD nAvgBytesPerSec;
WORD nBlockATlign;

WORD wBitsPerSample;
WORD cbSize;
} WAVEFORMATEX;

The dwFlags field is used both to establish type of sound buffer being created as well as to describe attributes upon
return. Refer to the DirectSound documentation for more details. Some interesting flags are

_DSBCAPS_PRIMARYBUFFER Request a primary buffer. If this flag is not set, a Secondary buffer will be created.
_DSBCAPS_STATIC Sound will be used repeatedly. Designate as good candidate for hardware acceleration.
_DSBCAPS_LOCHARDWARE Forces the buffer to be in hardware memory.

_DSBCAPS_LOCSOFTWARE Forces the buffer to be in system memory.

Some additional flags to control special effects that we leave for extra credit exploration are _DSBCAPS_CTRLALL,
_DSBCAPS_CTRLDEFAULT, _DSBCAPS_CTRLFREQUENCY, _DSBCAPS_CTRLPAN and _DSBCAPS_CTRLVOLUME. We will use
__DSBCAPS_CTRLVOLUME later in this chapter.

1

197

PLAYING A WAV FILE USING DIRECTSOUND m 177

12.4.3 Creating Sound Buffers

We’ve successfully initialized DirectSound. Let’s create a simple secondary
DIRECTSOUNDBUFFER.

BOOL CSound::Init(LPDIRECTSOUND pDSound, LPSTR 1pszFileName)

{

‘We wrote a simple WavFile Load routine based on standard mmio calls in
the winmm multimedia library. Upon return, this function will load
WAVEFORMATEX, bufferSize, and bufferData into member variables,

HRESULT err
// first try Toad wave file into memory
if (!lLoadWavFile(ipszFileName)) return FALSE;

// Create a device sound buffer

m_dsDesc.dwFlags = DSBCAPS_STICKYFOCUS;

m_dsDesc.dwBufferBytes = m_dwSizeData;

m_dsDesc.lpwfxFormat = m_pWavFmt;

pDSound->CreateSoundBuffer(&m_dsDesc, &m_pBufferfns, NULL); (———-———I

Jus.

* CreateSoundBuffer() takes LPDSBUFFERDESC and (LPDIRECTSOUNDBUEEER *) as parameters. We describe the sur-
face that we’re requesting in LPDSBUFFERDESC. If the Create is successful LPDIRECTSOUNDBUFFER points to the member
functions of the created Sound Buffer.

= The only flag we specified was DSBCAPS_STICKYFOCUS, which will let our sounds be played even if we’re not the
application with the input focus. However, if we lose focus to another DirectSound application, we will lose our
audio output.

=DSBCAPS_6LOBALFOCUS in DirectX allows our sounds to continue playing even if we lose focus to another Direct-
Sound application. However, cooperative levels of DDSCL_EXCLUSIVE will override even the DSBCAPS_GLOBALFOCUS
setting.

»WaveFormat and BufferLength are set to the values returned by the Load WavFile() routine.

Jirect-
nat for
he stan-
structures.

A

/11117711 transfer data from memory to dsBuffer.

// first Tock the entire buffer.

LPYOID pBTk1l, pB1k2; // dsound maintains split-buffers =

DWORD dwSizel, dwSize2; /] size of each buffer :
T m_pBufferfns->Lock(0, m_dwSizeData,&pBlkl,&dwSizel,&pBlk2,&dwSize2,0); @
f the sound // write data into possibly 2 buffers that DirectSound returns E
eCOI{darY CopyMemory(pB1kl, m_pSrcData, dwSizel);
)r primary if (dwSizez > 0) <

CopyMemory (pB1k2, m_pSrcDatat+dwSizel, dwSize2);
standard // unlock both buffers and return
:h.Weve m_pBufferfFns->Unlock(pBikl, dwSizel, pBik2, dwSize2);
erence. return TRUE;
}

DirectSound sees sound buffers with a circular reference pattern. Circular views enables “infi-

nite” streaming buffers: as the front of the buffer is being consumed, the rear of the buffer can

be refilled. Circular views also make it easy to implement looped sounds for “static” fixed size

buffers. Locks(), Unlocks(), and data access with circular views use two buffer access descriptors,

where a buffer access descriptor is a (pointer, size) combination.
1pon

i

:d.
ration.
L,
ill use

]

178 = CHAPTER 12 AUDIO MIXING WITH DIRECTSOUND

12.4.4 Playing the Sound

| Now that we’ve created our sound buffer, playing the sound is as simple as
V_ i invoking the IDirectSoundBuffer::Play() member function.

BooL CSound::Play()
{

m_pBufferFns->Play(0, 0, DSBPLAY_LOOPING); 4——_—'
return TRUE;
i

DirectSound requires the first two parameters to IDirectSoundBuffer::Play() to be 0. The third
parameter allows for flags to control the Play mode. Currently the only flag defined is
DSBPLAY_LOOPING; therefore, DirectSound permits sounds to be either PlayedOnce or Played-
! Forever. Playing a secondary buffer will mix the data from the sound buffer into the primary
. | buffer. IDirectSoundBuffer::Stop() can be used to stop sound buffers that are playing.

L — 12.5

12.4.5 Demo Time

Run the demo that corresponds to this chapter. Since we have set the sound
to be played in L00P_MODE, you should hear the sound play continuously.
Try switching to another application such as the Calculator. You should still
hear the sound even though our application has lost the input focus. This is
the result of creating the buffer with the psgcaps_stickyrocus flag. Try
invoking a second instance of our sound application. You will hear only one
sound being played.

12.4.6 Mixing Two WAV Files

Mixing two WAV files is as simple as creating another secondary buffer and
playing it. DirectSound will automatically mix playing sounds together.

It seems ridiculous to show this code, but we’ll do it anyway. Run the demo
that corresponds to this chapter and create a second sound to invoke audio
mixing.

199

CONTROLLING THE PRIMARY SOUND BUFFER m 179

gooL OnNewSound(LPSTR TpszFileName)
{

// create new sound
CSound *pNewSound = new CSound;
if (IpNewSound->Init(IpszFileName)) return FALSE;

1
|
// start the sound playing ¥
pNewSound->PTay (DSBPLAY_LOOPING); |
|
|

gSounds[gnSounds] = pNewSound;

// and store handle in 1ist ‘
gnSounds++;

e third

’layed-
mary

B 125 Controlling the Primary Sound Buffer
So far we've played a WAV file with DirectSound using the system’s default
e sound audio format. What if we want to change this output format to work with
susly. sound samples of higher (or even lower) quality? To change the output for-
wld still mat, or to change the total output volume, we would need to control the
_This is primary sound buffer.
Try
12.5.1 Initializing to Get Control of the Output Format
While initializing DirectSound, we need to set the CooperativeLevel to _ |
allow us to change output format privileges: }
=
™
BOOL CSharedHardware::Init(HWND hind) ﬁ
{ o
LPDIRECTSOUND pDSound;
HRESULT err;
// create a DirectSound instance
DirectSoundCreate(NULL, &pDSound, NULL);
// Setup to use as priority app “
. | err = pDSound->SetCooperativelevel (hind, DSSCL_PRIORITY);
fer and - if (err 1= DD_OK) {
; : N
her. . Eziiﬁ:dFZ E?E?as 0 SetCooperativeLevel().to DSSCL_PRIORITY. At this
} ’ priority level, the application can change the out- [
e demo | m_pDSound = pDSound;] put format.] ‘
) ‘ return TRUE; ‘ ‘
e audio)
| | | |
} 12.5.2 Creating a Primary DirectSound Buffer
} Now let’s create a primary DirectSoundBuffer object so that we can get ' 1
access to the IDirectSoundBuffer::SetFormat() function. ‘
i

200

180 m CHAPTER 12 AuUDIO MIXING WITH DIRECTSOUND

BOOL CSoundPrimary::Init(LPDIRECTSOUND pDSound)

{
// Create a primary sound buffer
m_dsDesc.dwFlags = DSBCAPS_PRIMARYBUFFER | DSBCAPS_CTRLVOLUME;
m_dsDesc.dwBufferBytes = 0; <
m_dsDesc.IpwfxFormat = NULL;
pDSound->CreateSoundBuffer(&m_dsDesc, &m_pBufferfns, NULL);

= Set flags to DSBCAPS_PRIMARYBUFFER to request access to the primary buffer. Also set
DSBCAPS_CTRLVOLUME flag to allow volume control to be queried and set.

= We cannot specify the size of the primary sound buffer-and must set the size to 0.

= Similarly, we cannot specify output format during creation, but can change it using the
SetFormat() function call; therefore set the waveformat pointer to NULL.

// find out the format of the primary buffer

DWORD dwSizeToAlloc; <«
m_pBufferfns->GetFormat (NULL, 0, &dwSizeToAlloc);
m_pFmt = (WAYEFORMATEX *)(new BYTE[dwSizeToAllocl);
m_pBufferFns->GetFormat(&m_pFmt, dwSizeToAlloc, NULL);

J , IDirectSoundBuffer::GetFormat() must be called twice. Once with a
NULL pointer to find out the size of the buffer to allocate and then
with a valid pointer to the buffer just allocated.

\ : _ |

Now that we have created a primary DirectSoundBuffer object, we have
control over the output format and the total output volume. (Note that the
DSBCAPS_CTRLVOLUME must be set to allow the volume control to be modi-
‘ fied.) Here is sample code that changes the volume and the output format
i of the primary buffer.

} // change the format of the primary buffer

[m_pFmt->nSamplesPerSec *= 2;

| m_pFmt->nAvgBytesPerSec = m_pFmt->nSamplesPerSec * m_pFmt->nBlockAlign;
pBufferfFns->SetFormat(m_pFmt);

For a valid WAVE-FORMAT specification, AverageBytesPerSec must
be a product of the SamplesPerSec and the BlockAlignment.

// get & set total audio volume

Tong 1Volume;

err = m_pBufferfns->GetVolume(&1Volume);
1Wolume = 2 * 1Volume; <
err = m_pBufferFns->SetVolume(TVolume);

DirectSound does not currently support making sounds louder. The volume returned will be
the current attenuation level of total volume. Doubling this already negative value will cause
the sound volume to be greatly reduced. If the DSBCAPS_CTRLVOLUME flag was not set, both
these calls would have returned a DSERR__CONTROLUNAVALL error indicating that volume con-
trol was not set up during buffer creation.

201

CONTROLLING THE PRIMARY SOUND BUFFER a 181

12.5.3 Demo Time

Run the demo that corresponds to this chapter. Check the primary Direct-
SoundBuffer option to enable the format and volume controls. Play around
with the volume and sample rate controls. In particular, try reducing the
sample rate of the output format and see if you can detect a quality degrada-
tion. Switch to another application with DirectSound audio RSXDemoApp
and see if the format/volume changes persist.

WHAT HAVE By this time, you've had an overview of DirectSound and what it does for you. If you
YOou LEARNED? worked through the code samples, you have

m played a WAV file using DirectSound,
® mixed two WAV files using DirectSound, and
m controlled the final output format and volume while your application was in focus.

In the next audio chapter you will be introduced to 3D sounds and special effects using |
Intel's RSX 3D. o

]

1ave
‘hat the
e modi-
ormat

PART IV

A S L

1

ec must
at.

|

rill be o
ause - |
yoth : i
con-

202

CHAPTER 13
==

Realistic 3D Sound
Experience: RSX 3D

WHY READ Now that you've looked at DirectSound, you might be wondering if there is a simple way
THIS CHAPTER? ©f playing just a generic sound file without taxing application performance. Intel's Realistic
3D Sound Experience (RSX 3D) library helps you do just that. It also gives you a 3D sound
model that mimics the real world environment.

To get the most out of this chapter, we recommend that you run the audio demos on the
companion CD while you are reading this chapter or beforehand.

In this chapter you will

. n"
-

get an overview of RSX 3D features,

see how simple it is to play and mix two or more audio files,

learn how to use the RSX 3D sound model to achieve a realistic sound experience, and
learn how to add reverberation and Doppler effects to your application.

Microsoft’s DirectSound provides direct access to audio devices under
Windows and allows developers to implement low latency audio applica-
tions. Even though DirectSound provides some level of abstraction from
the hardware, developers must still handle the intricacies of various devices.

Intel’s Realistic 3D Sound Experience (RSX 3D) library provides a simple
high-level interface for rendering audio under Windows. It implements an
abstraction layer above the DirectSound and WAV APIs without sacrificing

ma 183 =m

PART IV

203

184 m CHAPTER 13 REALISTIC 3D SOUND EXPERIENCE: RSX 3D

audio performance. In addition, RSX 3D introduces a new 3D environment
that models the sound’s physical properties, making for an immersive
experience.

In this chapter, we'll first show you how easy it is to play one or more WAV
files using RSX 3D. We'll then give you an overview of the RSX 3D environ-
ment and show you how to provide realistic 3D sound in your application,
Finally, we’ll glance over RSX 3D support for streaming audio data.

13.1 RSX 3D Features

RSX 3D is a high-performance audio library that provides developers with
a simple interface for rendering audio without taxing application perfor-
mance. Depending on the configuration of your system, RSX 3D uses either
the DirectSound or WAV API to access the audio device. Depending on the
power of you processor, RSX 3D automatically scales the output to sound
better on high-end processors.

RSX 3D’s simple interface allows developers to play audio files from either
local drives, networked drives, or even across the Internet. The files them-
selves can be of different formats (WAV or MIDI) and different sample
rates.

-
1
|
|

One of RSX 3D’s most exciting features is its new 3D audio environment,
which models real 3D graphics environments. RSX 3D can position sounds
anywhere in 3D space. The sound may be above your head, below your feet,
behind you, in front of you, and so forth.

Say, for example, you are standing in a hallway and a door slams shut to
your right. The sound will reach your right ear earlier than it will reach
your left ear (this phenomenon is called Interaural Time Delay, ITD). The
sound will also be louder in your right ear than in your left ear (this is
known as Interaural Intensity Difference, IID). With these cues your brain
is able to correctly locate the sound as originating from your right and not
from your left. RSX 3D uses these and other cues to produce realistic sounds
as objects move around a scene.! RSX 3D also supports modifying sounds for
special effects including Doppler, reverberation, and pitch calculations. In

1. ITDs and IIDs are combined with other cues to form Head Related Transfer Functions (HRTFs).
Clinical probe microphones are inserted into the ears of volunteers to record HRTF measurements. RSX
3D uses HRTF technology and HRTF measurements to simulate 3D sound on PCs.

204

ironment
rsive

ore WAV
) environ-
olication,
a.

sers with
perfor-
ses either
1g on the
1 sound

m either
s them-
mple

nment,
n sounds
rour feet,

1ut to
‘each
D). The
is is

Jr brain
and not
¢ sounds
unds for
ions. In

IRTFs).
ments. RSX

CREATING AN RSX 3D OBJECT s 185

this chapter, we will work through examples of using RSX 3D’s sound posi-
tioning capabilities and its special effects capabilities.

13.2 Creating an RSX 3D Object

The RSX 3D audio library uses Microsoft’s Component Object Model
(COM) interface to export its features. In order to use any COM module
and the COM functions you must initialize the COM libraries at start-up
time. You can initialize the COM libraries by calling the Colnitialize() func-
tion. In addition, you need to release any COM objects used by your appli-
cation and then call CoUninitialize() when your application terminates.

To use RSX 3D, you must first create an RSX 3D object within your applica-
tion process space. You can use CoCreatelnstance() to create this object,
specifying ¢1S10_Rr$x20 in the Class ID field. RSX 3D only supports this in-
process creation model where RSX objects are created within the applica-
tion memory context.

// Initialize the COM libraries.. ¢—— | Whenusing COM, make sure to

m_coResult = CoInitialize(NULL); = define INITGUID before

if (FAILED(m_coResult)) | ipclqdeﬁles,
AfxMessageBox("Failed to load COM libraries")| *linkin OLE32.LIB, and
return -1; = turn off automatic use of

} precompiled headers.

// Create the RSX20 object and get an IUnknown pointer to the object
HRESULT hr = CoCreatelnstance(

CLSID_RSX20, ¢ GUID for RSX20. Defined in rsx.h.

NULL, @ Create object within processes (only supported mode).
CLSCTX_INPROC_SERVER, @ Only need to create object and don’t care about its methods.
IID_IUnknown, & Holds the IlUnknown instance of the object.

(void **) &m_lpUnk);

// Make sure that everything is fine..

// If the appliication fails here, just get out..

/1

if((FAILEDChr)) |} CIm_TpUnk)) |
AfxMessageBox("Failed to Create RSX Object.\n”

"CoCreatelnstance Failed - Please run RSX Setup\n");

PostMessage(WM_CLOSE);
return -1;

PART IV

mu

205

186 @ CHAPTER 13 REALISTIC 3D SOUND EXPERIENCE: RSX 3D

13.3 Play one WAV file

Once you have created the RSX 3D object, it is a very simple process to play
any WAV or MIDI audio file. But before we go into the details, let’s first
introduce the environment that RSX 3D uses to describe its objects.

To play an audio file with RSX 3D, you need to create only two objects: an
emitter and a listener. I tend to think of an emitter as a jukebox, and a lis-
tener as my own ears—just like in the real world. In RSX 3D a cached emit-
ter is an object that handles reading and decompressing an audio file, and 5
direct listener is an object that handles sample rate conversion and mixing
and writing the output data to the audio device.

So let’s create the direct listener first. As with any good COM object, you
must use the CoCreatelnstance() function to create the listener object and
pass the CLSID_RSXDIRECTLISTENER for the Class ID parameter. Once the
object is created, you call the Initialize() function to initialize the listener. In
all of the initialize calls, notice that you must also pass in an TUnknown
pointer to the main RSX object. Also notice that you can only have one lis-
tener active within an application and that you can call the initialize func-
tion only once throughout the life of a listener.

HRESULT CRsxSampleView::CreateDirectListener()
{

// First, we need to create an instance of the listener object
HRESULT "hr = CoCreateInstance(

CLSTD_RSXDIRECTLISTENER, @ GUID for Direct Listener object. Defined in rsx.h
NULL,

CLSCTX_INPROC_SERVER, @ Create object within process context.
IID_IRSXDirectlListener, ¢ Direct Listener Interface identifier

(void **) &m_1pDL); @ Holds the listener instance

hMainWnd: DirectSound requires a win-
// If all is fine, you must initialize | dow handle. You can set the Registry Key

// the Direct Listener interface Device Type to DIRECTSOUND.

// before you do anything else. Ipwf: Points to WAVEFORMATEX structure

1f(SUCCEEDEDChr) && m_1pDL) { which specifies the format of output data.
RSXDIRECTLISTENERDESC rsxDL ; If NULL, RSX uses the default format in

ZeroMemory (&rsxDL, sizeof(rsxDL); | the RSX configuration, or in the Registry.

i Follow the Registry Settings link in the
Y.
! ;emgs xOL)s RSX online help for more details.

S
16; 13‘
L

Ls

rsxDL.cbSize =
rsxDL.hMainWnd
rsxDL.dwlser =
rsxDL. Tpwf = NU

206

285 to play
’s first
ts.

yjects: an
ad a lis-
“hed emit-
file, and 3
I mixing

'ct, you
ject and
ce the
istener. In
nown

e one lis-
ize func-

ed in rsx.h

2§ & win-
stry Key

put data.
yrmat in
Registry.

i
§
|
-
-
‘ture f §
|
in the §

PLAY ONE WAV FILE = 187

hr = m_1pDL->Initialize(&rsxDL, m_TpUnk);
}
return hr;
i

Similarly, you call the CoCreatelnstance() function to create the cached emitter
with CLSID_RSXCACHEDEMITTER in the Class ID field. Before you can call any
other method within the emitter, you need to initialize the object by calling the
Initialize() function.

Notice that, for a cached emitter, you can specify an audio file that exists on
a local drive, network drive, or even on a URL, a Web site, or an FIP site.
(Note: To use URL-based emitters, Microsoft’s Internet Explorer 3.0 or later
must be installed and configured on your computer.)

HRESULT CRsxSampleView::CreateCachedEmitter(
LPCTSTR pszFile,
IRSXCachedEmitter** 1ppCE)

HRESULT hr = CoCreatelnstance(
CLSID_RSXCACHEDEMITTER,
NULL,
CLSCTX_INPROC_SERVER,
TID_IRSXCachedEmitter,
(void **)1ppCE);

1f(SUCCEEDED(Chr) && *1ppCE) {
RSXCACHEDEMITTERDESC rsxCE;
ZeroMemory (&rsxCE, sizeof(rsxCE));

rsxCE.chSize = sizeof(rsxCE);
rsxCE.dwFlags = RSXEMITTERDESC_NODOPPLER |
RSXEMITTERDESC_NOREVERB |
RSXEMITTERDESC_NOATTENUATE |
RSXEMITTERDESC_NOSPATIIALIZE;
rsxCE.dwlser = 0;
strepy(rsxCE.szFilename, pszFile);
hr = (*1ppCE)~>Initialize(&rsxCE, m_1pUnk);
}
return hr;

- 13.4 Play One WAV File

Once the emitter is initialized, you can call the ControlMedia() function
with RSX_PLAY in order to play the file. All set? So play it, maestro! Put on
your headphones, or crank up your speakers, and enjoy.

207

PART IV

lllll

188 8 CHAPTER 13 REALISTIC 3D SOUND EXPERIENCE: RSX 3D

13.5 Mixing Many WAV Files

13.6 RSX Goes 3D-True 3D Sound

void CRsxSampleView::0nPlayOneFile()

{ ‘ fInitialStartTime: starting position in seconds,
CreateDirectListener();

CreateCachedEmitter(“filel.wav”, &m_1pCE);
m_1pCE->ControiMedia(RSX_PLAY, 0, 0.0f);

r

' nLoops: Number of loops to play. 0: infinite ‘

L |

)

That was simple, wasn’t it? Now let’s see what it takes to. mix two different
audio files together. In real life you only need to put another jukebox in the
same room, and you would hear both of them together. Well, the process is
very similar in RSX 3D. If you add another emitter to the set, then you’ll
have two audio files playing at the same time. RSX 3D takes care of mixing
them for you and delivering the mixed output to the listener object. That’s
all it takes!

void CRsxSamplieView::0nPlayMixtwoaudiofiles()
{

CreateDirectlistener(); Q Only one listener.
CreateCachedEmitter("filel.wav", &m_1pCE); @ Sound source 1.
CreateCachedEmitter("file2.wav", &m_1pCE2); @ Sound source 2.
m_1pCE->ControlMedia(RSX_PLAY, 0, 0.0f); @ Play source 1.
m_1pCEZ->ControlMedia(RSX_PLAY, 0, 0.0f): Q Play source 2.

Well, let’s pause and think about the model that RSX 3D uses to represent
its objects. Recall that RSX 3D mimics the real-world environment, using a
sound emitter and a listener to represent its objects. Why not take this a bit
further and add positional attributes to these objects (emitter and listener)?
That’s exactly what RSX 3D does (see Figure 13-1).

Similar to 3D graphics objects, RSX 3D objects can possess positional 3D
attributes based on x,z coordinates. RSX 3D uses the relative 3D position
between the listener and emitter(s) to calculate the audio volume for the
left and right speaker channels. For example, if you position the emitter

208

nin seconds,

v different
sbox in the
2 process is
n you'll

of mixing
ect. That’s

represent

nt, using a
e this a bit
1listener)?

ional 3D
) position
: for the
amitter

RSX GOES 3D——TRUE 3D SOUND m 189

Hears in left ear
Hears in both ears

Listener

FIGURE 13-1 Physical sound properties.

exactly to the left of the listener, you would hear the sound predominantly
from the left speaker channel and in your left ear—just like in real life.

Before we delve into the tiny details, let’s look at the model that RSX 3D
uses for the emitter. As you know, sound travels the farthest in the direction
in which it is pointing, less to the sides, and even less in the opposite direc-
tion. You also know that sound volume decreases as you move away from
the sound source.

The RSX 3D sound emitter mimics real-world conditions. As you can see in
Figure 13-2, RSX 3D defines two ellipses for the emitter, one inside the
other. The inner ellipse represents the ambient region where the sound
retains maximum intensity and contains no directional information. The
outer ellipse defines the region where the sound intensity decreases loga-
rithmically as you move away from the emitter. The emitter does not con-
tribute any of its audio outside the outer ellipse.

Attenuation
Ambient region region

Minimum back
range

Maximum back ™
range

FIGURE 13-2 RSX elliptical sound model.

209

PART IV

190 8 CHAPTER 13 REALISTIC 3D SOUND EXPERIENCE: RSX 3D

You define the ellipses by the distance of the front and back ranges from the
emitter. Different emitters on the scene could have different sound charac-
teristics; for example, louder emitters would have larger ellipses.

i
L ; y
i As the relative position of the emitter and the listener changes, the sound Eg;E
j characteristics change to mimic the real-world situation. The picture in ' rSXE
! - rsx

‘ Figure 3-2 shows 2D ellipses; in RSX 3D the ellipses are actually 3D rsxE

ellipsoids. A rsxt

13.7 Setting Up 3D Sound with RSX 3D

Now let’s see how we can use RSX 3D to define the 3D position of the
objects, emitter and listener, and allow it to deliver a realistic 3D sound expe-
rience. If you go back to where we created the emitter, youw'll notice that we
disabled the special effects such as sound attenuation, Doppler effect, and

| so forth. At that point, we only wanted to play some generic audio file. Now
we need these cool effects, so let’s go back in and enable them. The boldface
line in the following block of code enables all 3D sound effects.

HRESULT CRsxSampleView::CreateCachedEmitter(
LPCTSTR pszFile,
IRSXCachedEmitter** 1ppCE)

HRESULT hr = CoCreatelnstance(CLSID_RSXCACHEDEMITTER, NULL, CLSCTX_INPROC_SERVER, IID_IRSXCachedEmitter,1ppCE);
f(SUCCEEDED(hr) && *1ppCE) |

RSXCACHEDEMITTERDESC rsxCE;

ZeroMemory (&rsxCE, sizeof(rsxCE));

rsxCE.cbSize = sizeof(rsxCE);

rsxCE.dwFiags = 0;

rsxCE.dwlser = 0;

strcpy(rsxCE.szFilename, pszFile);

hr = (*1ppCE)->Initialize(&rsxCE, m_1pUnk);
}

return hr;

We can now specify the model that describes the behavior of the emitter.

The inner ellipse is specified by the fMinFront and fMinBack parame-
ters, and the outer ellipse is specified by the fMaxFront and fMaxBack
parameters as shown in Figure 13-2. Finally, you specify the maximum
intensity of the ambient region and then call the SetModel() function to
register the model with RSX 3D.

210

SETTING UP 3D SOUND WITH RSX 3D = 191

from the

lcharac- yoid CRsxSampleView::SetEmitterPosition(IRSXCachedEmitter* 1pCE, int x, int y, int z)
. 7/ Now we should set the emitter model

RSXVECTOR3D v3d;

sound RSXEMITTERMODEL rsxEModel;
; rsxEModel.cbSize = sizeof(RSXEMITTERMODEL);
1re 1in rsxEModel . fMinfront = 100.0f;

D) rsxEModel . fMinBack = 100.0f;
rsxEModel.fMaxFront = 800.0f;
rsxEModel.fMaxBack = 200.0f;
rsxEModel . fIntensity = 1.0f;
1pCE->SetModel (&rsxEModel);

| B
the Finally, we need to position the emitter in the 3D scene and specify where in
und expe- space it is pointing. You can call the SetPosition() function to set the x,3;z coor-
: that we dinates of the emitter and call the SetOrientation() function to define the direc-
ect, and tion in which the emitter is pointing.

file. Now
boldface

// Place the emitter at the origin
v3d.x = (float)x;

v3d.y = (float)y;

v3d.z = (float)z;
TpCE->SetPosition(&v3d);

Orientation

// Point the emitter along the Z axis -
// into the computer screen.

v3d.x = 0.0f;

v3d.y = 0.0f;

v3d.z = 1.0f;
1pCE->SetOrientation(&v3d);

Similarly, let’s position the direct listener object in terms of the 3D world
coordinates. The direct listener has three properties: its x,y,z position in the
T 3D world, the direction in which the listener is facing, and the up direction
—_ of the listener. Notice that the up vector is always perpendicular to the ori-

- entation vector. You can use the SetPosition() member function to set the
x,%,z position of the listener. You can use the SetOrientation() function to
set both the orientation and up vectors.

mitter.

arame-
xBack
num
ion to

192 @ CHAPTER 13 REALISTIC 3D SOUND EXPERIENCE: RSX 3D

HRESULT CRsxSampleView::SetlListenerPosition(int x, int y, int z)

{
RSXVECTOR3D v3d; fvgp
. clor
RSXVECTOR3D v3dOrient;
RSXVECTOR3D v3dUpOrient;

Orientation

// Set the DirectlListener's position Vector
v3d.x = (float)x;
v3d.y = (float)y; Position

v3d.z = (float)z; (xy.2)
m_1pDL->SetPosition(&v3d); .

// Listener orientation settings

// This vector is the direction the listener is facing
v3dOrient.x = 0.0f;

v3dOrient.y = 0.0f;

v3dOrient.z = 1.0f;

// "up" vector - This vector points to which direction is up for the

// Tistener - it can not be parallel to the listener orientation vector
v3dUpOrient.x = 0.0f;

v3dUpOrient.y = 1.0f;

v3dUpOrient.z = 0.0f;

// Set the orientation of the listener
m_1pDL->SetOrientation(&v3dOrient, &v3dUpOrient);
return 0;

By now you’ve positioned the listener and emitter as if they were objects in
the real world. RSX 3D uses this information to calculate the correct inten-
sity for the left and right speakers in order to deliver a more realistic listening
experience. As you move the listener and emitter objects around (by chang-
ing their position or orientation), RSX 3D automatically recalculates the
correct output for both speakers.

From a 3D graphics programmer’s point of view, you only need to attach an
RSX 3D sound object to your current 3D graphics objects and just move it
around as part of the 3D graphics object. In turn RSX 3D figures out the
audio output based on the position of this object.

13.8 Adding Special Sound Effects with RSX 3D

13.8.1 The Doppler Effect

Just in case the Doppler phenomenon is new to you, the Doppler effect is
the apparent change in a sound when there is relative motion between
the emitter and the listener. For example, as an airplane travels toward a

212

ADDING SPECIAL SOUND EFFECTS WITH RSX 3D = 193

listener, sound waves are compressed, effectively increasing the pitch. As the
airplane travels away from the listener, the sound waves are rarefied, corre-
spondingly decreasing the pitch. In both cases, the listener “hears” sound at
a different pitch than what the emitter produced.

To enable the Doppler effect with RSX 3D, you only need to assure that the
RSXEMITTERDESC_NODOPPLER flag is not set when you initialize the emitter.

13.8.2 The Reverberation Effect

Just in case reverberation is new to you, reverberation is the “slight echo”
effect heard when sounds are generated in enclosed areas (from small
chambers to wide canyons). Sound waves travel directly from the sound
source to our ears. But in enclosed areas these waves also bounce off the
surrounding walls and return to our ears many times. Reverberation is the

oy git or collective effect of these indirect sound waves.
To enable the reverberation effect with RSX 3D, make sure that the
RSXEMITTERDESC_NOREVERB flag is not set when you initialize the emitter. You
then use the SetReverb() function to set the reverberation model parameters.
RSX 3D uses two parameters to define reverberation: decay time and inten-
sity. The decay time models reverberation decay (in seconds), and the inten-
sity models sound absorption.
objects in
rect inten-
C listening // Must first get a pointer to an IID_RSX2 object to use the
// SetReverb() function.
(by chang- HRESULT hr = m_TpUnk->QueryInterface(1I1D_IRSX2, (void**)&m_1pRSK);
ates the if (FAILEDChr) || !m_TpRSX) {
. AfxMessageBox(“Error getting IRSX2 interface\n”);
return 0;
} Common reverberation parameters:
» attach a.n j // Now set the reverb model RoomType Decay Intensity
stmoveit RSXREVERBMODEL rsxRvb; ROOM 0.5 0.2
out the | rszRvb.cbSize = sizeof(rsxRvb); CHAMBER Lo 02
} rsxRvb.bUseReverb = TRUE; STAGE L5 0.2
% rsxRvb.fDecayTime = 1.5f; HALL 2.0 02
rsxRvb.flntensity = 0.1f; PLATE 25 02
| m_l1pRSX->SetReverb(&rsxRvb):
i m_1pRSX->Release();
“effect is
‘ween ‘
yward a

213

194 8 CHAPTER 13 REALIsTIC 3D SOUND EXPERIENCE: RSX 3D

13.9 Audio Streaming in RSX 3D

WHAT HAVE
YOU LEARNED?

RSX 3D supports two more objects for audio streaming—streaming emit-
ter and streaming listener—where the application can examine or modify
the output of the emitter on its way to the listener. Streaming emitters are
great if you dynamically generate audio input (instead of reading a file), or
if you want to stream audio from a network or want to add additional
effects to the data before handing it to RSX 3D. Streaming listeners are use-
ful for mixing RSX 3D output with other audio output or writing the data
to a file instead of to the audio device.

Audio streaming with RSX 3D also provides for callback mechanisms and
multiple stream synchronization.

Since the streaming sound model is exactly the same as we’ve used for 3D
sounds earlier, we prefer that you refer to the RSX 3D documentation for
more details.

WE’D L
BROWN

This is a good time to run the RSX 3D samples for this chapter on the CD to get the most
out of this chapter.

In this chapter, you learned how easy it is to play and mix multiple audio files with RSX 3D,
You were then introduced to the RSX 3D audio environment, where you learned how to
set up the position and orientation of the audio objects and how to change their sound
characteristics with the Doppler effect, attenuation, and reverberation. Finally, we briefly
looked at the streaming objects supported by RSX 3D.

214

ing emit- PART V

or modify

11tters are $

ga ﬁle), or

[tional

Welcome to the

e Third Dimension

nisms and |
ied for 3D
tation f()r WE’D LIKE TO EXTEND AN ACKNOWLEDGEMENT TO JACKIE COLLUM, SUSAN DULIS-RINNE, SALLY BROWN (NOT RELATED TO CHARLIE ‘

BROWN), JEANNETTE MADDOX, MONICA PARDY, CHARING RIOLO WITHOUT WHOM THE WORLD WOULD NOT GO AROUND.

) get the most
Chapter 14 An Introduction to Direct3D

e Understand Direct3D's target
m Look at Direct3D architecture and modes

5 with RSX 3D.
sarned how to
se their sound
ally, we briefly

m Use Direct3D to draw a simple triangle with default states

Chapter 15 Embellishing Our Triangle with Backgrounds, Shading, and Textures

® Add bells and whistles to the simple triangle including shading, texture mapping
and Z-Buffering

m Repaint the background with Direct3D

Chapter 16 Understanding and Enhancing Direct3D Performance
@ Measure performance of the simple triangle samples
m Use Ramp model driver to get better performance
m Measure improvements

| Chapter 17 Mixing 3D with Sprites, Backgrounds, and Videos

} m Mix 3D objects on top of 2D background

: m Mix 3D objects on top of 2D sprites and video

% m Use video as a texture map source
.

:

g . .

* Part V deals with 3D graphics for Windows 95. We'll start in Chapter 14 with a short con-
i textual background to 3D on the PC. That should fill you in-on how 3D evolved on the PC.
E Then we'll dive into an overview of Microsoft's Direct3D architecture.

|

. s 195 =

.

215

196 = WELCOME TO THE THIRD DIMENSION

Next we will get you started with Direct3D programming. There is a lot to be learned be.
fore you can see results with Direct3D, so Chapter 14 has simple ambitions—to show yqy
how to render a single triangle with Direct3D.

Once you have learned how to render the simplest triangle, you will be in a position to
understand how to enable various features in Direct3D. Chapter 15 shows you how to
access features such as coloring, shading, texture mapping, Z-Buffering, and repainting
backgrounds. Chapters 14 and 15 show you how to get your code running; they do not
worry about performance.

In Chapter 16, we return to our performance-oriented angle of rendering. First we mea-
sure the performance of the code from the previous chapters. Then we focus on the high-
performance rendering path in Direct3D—the Ramp model. The Ramp model offers a
significant performance boost, but the model is not straightforward. That is why we delib-
erately delayed introducing this performance option until after we described the basics of
Direct3D rendering.

Once you know how to render high-performance 3D triangles, how about mixing in 2D
graphics and video, that is, mixing in the output from the previous parts of the book? We
have dedicated Chapter 17 to mixing. In keeping with the previous parts, we use the st
management features of RDX to mix sprites and video objects. All the Direct3D code in
; Chapters 14 through 17 is based on the Direct3D ExecuteBuffer model that was released
‘ as part of Microsoft's DirectX 3.0 SDK. The ExecuteBuffer API model is hard to debug, so
| Microsoft is releasing a new APl model (the DrawPrimitive APl modef), with Version 5.0
of DirectX. Version 5.0 will be released in 1998 along with Windows 98.

Why didn't we use the upcoming API? The DrawPrimitive AP was still under development
when we wrote the book. We decided to present you with the latest information possible.
We have also “printed” this chapter in electronic form on our companion CD. This CD-
based chapter will show you how to get going quickly with DrawPrimitives. The perfor-

| mance of DrawPrimitives will continue to improve, and we recommend that you perform
| your own measurements of the released version.

|

14.1

216

2amed be.
show yoy

asition to
u how to
painting
iey do not

we mea-
n the high-
offers a
y we delib-
2 basics of

ing in 2D
book? We
1se the list
D code in
is released
debug, so
ersion 5.0

WHY READ
 THIS CHAPTER?

selopment
n possible.
This CD-
e perfor-
u perform

CHAPTER 14
R

An Introduction to Direct3D

We'll start this chapter with a short contextual background on 3D on the PC, and then we'll
jump to an overview of Microsoft's Direct3D. Next we'll get to the main purpose of this
chapter: giving you the bare bones minimum information to render a triangle using
Direct3D. :

By the time you have worked through this chapter, you will

m understand the problem space that Direct3D is targeted at,
m get a glimpse of the architecture of Direct3D and its different modes, and
m see how Direct3D works with DirectDraw,

= learn how to get access to 3D functionality and 3D devices,

B

learn how to connect DirectDraw's surfaces and palettes to equivalent Direct3D
objects, and

® learn how to use execute buffers and viewports to render a triangle using Direct3D.

14.1 Some Background on 3D on the PC

Standards for 3D (such as OpenGL and PHIGS') were developed on work-
stations and provide powerful capabilities for 3D application developers.
But these rich 3D libraries on the PC offered unacceptably poor perfor-
mance when they were implemented. Developers using 3D on the PC relied

1. PHIGS stands for Programmer’s Hierarchical Interactive Graphics Systems.

m 197 =

198 8 CHAPTER 14 AN INTRODUCTION TO DIRECT3D

heavily on high-end graphics accelerators to deliver acceptable applicationg,
These expensive 3D graphics solutions were targeted to serious users
(Computer-Aided Design, CAD, for example). As a result, 3D on a PC wag
out of reach for the casual user.

i Then enterprising game software developers invented creative techniques

for reducing the computational cost of 3D (primarily by constraining the

3D models). These approximated 3D solutions still provided a compelling
illusion of 3D and triggered a wave of excitement for the PC as a platform
capable of delivering 3D.

14..

Prominent vendors introduced general-purpose 3D solutions tailored
specifically for the PC, including Reality Labs by Rendermorphics, BRender
by Argonaut, RenderWare by Criterion, and 3DR by Intel. These general-
purpose 3D libraries were not as fast as in-house solutions tailored for
application-specific needs, but they were fast enough to work with undemand-
ing 3D applications. They were also designed to use hardware accelerators
when available.

Encouraged by the emergence of 3D libraries and applications, graphics
vendors started building low-cost 3D hardware accelerators. Unfortunately
the multitude of software solutions did not offer graphics vendors a stable
target to deliver cost-reduced accelerators. Similarly, because of the numer-
ous variations in hardware acceleration features, developers had to custom-
il ize their products to each individual accelerator.

L In an attempt to move toward a ubiquitous 3D solution, Microsoft started
‘ work on Direct3D, intended as an interface to 3D hardware devices. Since
' the feature sets of the hardware offerings differed, Microsoft realized the
need for software emulation to provide developers with a minimum base-
line of functionality. In 1995 Microsoft bought Rendermorphics to inte-
grate Reality Labs into their universal 3D solution. In working toward a
universal 3D solution, Microsoft aimed at providing hardware vendors with
a single driver model at which they could target their accelerators.

The initial response to Microsoft’s software emulator was a consistent
demand for more performance. Microsoft responded by providing
Direct3D with two modes—Retained mode and Immediate mode—offering
different feature and performance capabilities. In addition, Microsoft pro-
vided two different implementations of the software emulation pipeline—
RGB and Mono. The various combinations of modes and drivers offer a V
variety of API abstractions, feature sets, and quality and performance levels. ‘

218

applicationg,
s users

m a PC wag

techniques
raining the
compelling
ia platform

-ailored

cs, BRender
general-

ed for

1 undemand-
celerators

.graphics
afortunately
.ors a stable
f the numer-
d to custom-

soft started
7ices. Since
alized the
mum base-
s to inte-
oward a
endors with
IS,

sistent

ing
le—offering
rosoft pro-
pipeline—
rs offer a
ance levels.

INTRODUCTION TO DIRECT3D = 199

So 3D on the PC has become a reality, although it is still in its fledgling
state; whereas video, audio, and 2D have had a few years and several iterations
to mature. Therefore we will continue to see evolutions in performance,
quality, functionality, and APT abstractions in future offerings for 3D.
Nonetheless, Microsoft’s Direct3D has established itself as the foundation
for further iterations.

14.2 Introduction to Direct3D

Figure 14-1 shows the current display architecture available under Win-
dows 95. In this chapter we are concerned with the interfaces within the
ellipse outlining the Direct3D boxes.

Direct3D is part of Microsoft’s DirectX SDK. To application developers,
Direct3D provides APIs and services for 3D manipulations. To hardware
vendors Direct3D provides a single driver model to enable hardware accel-
eration. Most significantly, Direct3D guarantees 3D functionality to software
developers with a software-based emulation layer. Hardware vendors can
accelerate those features that they feel fit their price/performance budget.

Direct3D is closely integrated with DirectDraw. Direct3D makes extensive
use of the DirectDraw surface model to access hardware acceleration features
such as Bltters and Page Flippers. This integration with DirectDraw makes it
possible for Direct3D to use advanced features such as video textures and 2D
overlays.

FIGURE 14~1 Display architecture under Windows 95.

219

PART V

200 2 CHAPTER 14 AN INTRODUCTION TO DIRECT3D

Direct3D offers 3D features with two distinctively different flavors:
Retained mode and Immediate mode.

m Retained mode offers high-level abstraction of 3D objects and manipulations,
It has a sophisticated geometry engine that allows entire scenes to be manipulat.
i ed with high-level API calls. But the functionality comes at a performance cost,

® /mmediate mode offers a very thin layer of software functionality with high
performance. It also offers direct access to hardware acceleration features. Byt
Immediate mode does not have a geometry engine, and object transforma-
tions must be computed by the application itself.

[The two Direct3D modes offer different levels of API abstractions. In addi-
Lo tion, multiple implementations of Direct3D drivers can be installed on a
system to offer different combinations of features, levels of performance,
and quality.

Ll The DirectX SDK ships with two implementations: RGB and Mono. The
RGB driver offers truer color quality at a performance cost. The Mono
driver makes color approximations and delivers higher performance at a
cost in quality. In addition, hardware vendors make available additional
Direct3D drivers to offer acceleration features.

14.2.1 A Taste of Direct3D’s Retained Mode

Direct3D’s Retained mode API is designed for managing entire 3D scenes.
In this mode you can load predefined 3D objects from files and manipulate
, these objects without having to explicitly perform any matrix computa-
§ , tions. When you integrate Retained mode with Direct3D authoring tools,
you can generate entire 3D applications with minimal explicit program-
ming effort.

Retained mode provides object abstractions and methods on these objects
‘ to free you from creating and managing the details of internal object data-
L bases. Some of the objects available through the Direct3D Retained mode

APT are listed in Table 14-1.

| Although you can manipulate entire scenes, the Retained mode does not as
yet offer compelling performance. So our use of Direct3D will focus on
Direct3D’s Immediate mode.

220

pulations,
manipulat.
ance cost.

fith high
tures, Byt
insforma-

. In addi-
:dona
nance,

0. The
ono
ceata
ional

scenes.
nipulate
puta-

g tools,
Jram-

objects ,
ct data- -
I mode

:s not as
1S Oon

14.2.2

INTRODUCTION TO DIRECT3D = 201

TABLE 14-1 Objects Abstracted by Direct3D’s Retained Mode Interface

Direct3DRMDevice Renderer destination
Direct3DRMFace Represents a single polygon
Direct3DRMMesh Grouping of polygonal faces and vertices

Direct3DRMMeshBuilder | Build vertices and faces into a mesh
Direct3DRMFrame

Positions objects within a scene

Direct3DRMLight Five options of lights to illuminate objects in a scene
Direct3DRMMaterial Properties describing how faces reflect light
Direct3DRMShadow Define shadows on objects

Direct3DRMTexture Rectangular image to be rendered onto polygons
Direct3DRMViewport Define how a 3D scene is rendered into a 2D window
Direct3DRMPickedArray | Choose an object corresponding to a 2D point
Direct3DRMVisual Placeholder for anything that can be rendered in a scene
Direct3DRMAnimation Series of transformations that can be applied to a scene

Direct3DRMAnimationSet | Allows animation objects to be grouped together

Direct3D’s Immediate Mode

Direct3D’s Immediate mode is targeted for developers of high-performance
3D applications for the Microsoft Windows operating system. In designing
this mode, Microsoft expected that developers using Immediate mode would
be experienced in high-performance programming issues as well as 3D
graphics.

Table 14-2 lists the objects (and methods) offered by the Direct3D Immedi-
ate mode API. Immediate mode offers direct access to the rendering pipe-
line. At its essence, Immediate mode is a device-independent way for
applications to access low-level hardware acceleration. Direct3D’s Retained
mode is built on top of Immediate mode.

Low-level hardware accelerators are typically designed to accelerate the
pixel-rendering stage, and they rely on the host CPU to compute geometry
or lighting factors. But several factors from the geometry and lighting .
stages can affect rendering results, and some graphics accelerators offer
advanced capabilities to render these influences. The Immediate mode
pipeline contains objects such as viewports, materials, and lights to enable
even lighting and geometry stages to be accelerated.

202 8 CHAPTER 14 AN INTRODUCTION TO DIRECT3D

14.2.3

TABLE 14-2 Objects Offered via the Direct3D Immediate Mode Interface

Hardware device
ExecuteBuffer List of vertex data and render instructions
Texture DirectDraw surface containing a texture map image
Light Light sources \4
Matrix Four-by-four homogeneous transformation matrix
Material Coloring options, such as color and texture
Viewport Screen region to draw to

Before You Get Overly Excited

As we mentioned before, today’s PCs are not yet capable of manipulating entire
scenes at compelling performance levels. Hence, you'll have to approximate the
complexity of your 3D models so that you can obtain an illusion of 3D at a low
performance cost. Following are some examples of approximations:

m Using only rectangular walls within a building reduces geometry calcu-
lations to entire wall faces, even though you may want to subdivide the
wall for better textural and rendering quality.

m Similarly, maintaining simple angles of intersection (30°, 45°, 60°, and
90°) among the walls can reduce the cost of computing lighting values
and marking hidden surfaces.

e Using multiple versions of textures (“pre-lit”) to simulate various light-
ing shades can eliminate the cost of rendering using other more costly
lighting options.

Approximations like these are very application specific. The gains are only
obtained when the application handles its own geometry and lighting calcu-
lations, so Direct3D’s Immediate mode was designed to be used by this type
of application. If you want high-performance 3D results using Direct3D’s
Immediate mode, you will need to have (or develop) your own geometry and
lighting modules in your application.

Given that many users of Direct3D’s Immediate mode are capable of devel-
oping their own geometry and lighting modules, the API and objects of the
Immediate mode interface have been designed for developers with an advanced
knowledge of 3D. If you are new to 3D, we strongly recommend that you read
up on material about 3D geometry and lighting before attempting to develop
any significant applications using Direct3D’s Immediate mode.

222

14.3

INSIDE DIRECT3D = 203

t ‘ =]
nterface 14.3 Inside Direct3D
‘ Before starting to use Direct3D, let’s look at how Direct3D interacts with
DirectDraw and sneak a peek inside Direct3D’s architecture.

14.3.1 Direct3D and DirectDraw

Direct3D is very closely connected with DirectDraw. So much so that
Direct3D is almost an extension of DirectDraw. This close connection is
deliberate, because it lets you incorporate cool features such as texture
mapping with video rendered into DirectDraw surfaces, or to overlay 3D
scenes on 2D compositions.

There are four points of connection between Direct3D and DirectDraw
involve interface objects and buffers.

ing entire
imate the = [Direct3D. The primary interface to Direct3D, IDirect3D is derived by creating
an IDirectDraw object and querying (via Queryinterface) for a lID_IDirect3D
Datalow interface.
w [Direct3DDevice. This interface gives you access to low-level Direct3D rendering
trv calcu- functions. IDirect3DDevice is similar to using IDirectDrawSurface in DirectDraw to
nf access low-level 2D functions. An IDirect3DDevice is “created” by creating an
livide the IDirectDrawSurface and querying for a 3D device GUID. The 3D device will render
. pixels to the 2D surface. In addition, you can use all standard DirectDraw functions
1 60°, and i : on the 2D surface.
ng values m [Direct3DTexture. This interface manages textures in Direct3D. IDirect3DTexture,
like IDirect3DDevice, is an extension of IDirectDrawSurface and is “created” by
lich creating a IDirectDrawSurface and querying for an 1ID_|Direct3 DTexture interface.
ous light- The 3D device will use the surface as a source texture during texture-mapped ren-
ore costly | dering. In addition, you can access all normal DirectDraw surface functions on the
‘ 2D surface.

I ; a Z-Buffers. In Direct3D Z-Buffers are DirectDraw surfaces created with a
reonty | DDSCAPS_ZBUFFER flag. The Z-Buffer therefore is easily visible by all modules.
ng calcu- % With Z-Buffers you can use normal 2D functions for carrying out simple oper-
this type | ations on the Z-Buffer (such as clear).

:ct3D’s |
netry and s 14.3.2 Direct3D Rendering Engine
Figure 14-2 looks inside the Rendering engine of Direct3D. The rendering
engine consists of three modules: the Transform module, the Lighting mod-
‘of devel- ule, and the Raster module
cts of the ’ '
advanced s The Transform module converts input vertices from model coordinates
you read to render coordinates via a transform matrix created from world, view,
> develop and projection matrices. The Transform module also culls objects to fit

within a specified viewport.

204 8 CHAPTER 14 AN INTRODUCTION TO DIRECT3D

Vertices Commands

Projection Matrix
World Matrix
View Matrix
Viewport Descriptor-

Transformed Vertices

Raster States
Textures
Transparency

Pixels

FIGURE 14-2 Direct3D Rendering engine.

m The Lighting module supports ambient, point, spotlight, or directional
light sources and adds color information to the vertices provided by the
Transform module.

= Based on raster options, such as wire-frame, solid-fill, or texture-map,
the Raster module renders pixels conforming to the vertices and color
values passed on.

All three modules are replaceable. Direct3D comes with one transformation
module but with a choice of two lighting and two rasterization modules
(RGB or mono). Graphics hardware vendors can provide additional replace-
ment modules that support their 3D accelerators.

3%

o~

14.4 Revving Up Direct3D

Roll up your sleeves, it’s coding time again. Yeeha! Over the course of work-
ing with Direct3D we will come across the objects listed in Table 14-3. We
will describe each one as we get to it.

S

224

REVVING UP DIRECT3D = 205

"TABLE 14-3 Direct3D Objects Used in This Chapter

IDirect3D Primary interface to Direct3D
IDirect3DDevice 3D device (equivalent to DirectDraw surface)
IDirect3DViewport Screen region to draw to
IDirect3DExecuteBuffer | List of vertex data and render instructions

14.4.1 The Starting Point: IDirect3D Object

IDirect3D, as we mentioned above, is the primary interface for Direct3D.
Objects such as lights, materials, and viewports are created using the
IDirect3D interface. IDirect3D also has functions to enumerate (or find)
3D devices, since there can be multiple Direct3D device modules installed
on a system.

Let’s initialize DirectDraw and get access to Direct3D:

BOOL CSharedHardware::Init(HWND hWnd R
LPDIRESUD pD3D: b . Invoking IUnknown::Querylnterface()

on the IDirectDraw object with the
predefined GUID IID_IDirect3D returns

DirectDrawCreate(NULL, &m_pDDraw, NULL); | pointertoan IDirect3D objectin the

// create a DirectDraw instance

second parameter.

directional
ided by the

// “create” D3D object &

m_pDDraw->QueryInterface(IID_IDirect3D, (void *)&pD3D);

// remember to set DDraw cooperative level
m_pDDraw->SetCooperativelevel (hWnd, DDSCL_NORMAL);

// assign into member variable and return
m_pD3D = pD3D;
return TRUE;

xture-map,
sand color
!

sformation \

10dules

nal replace-
Queryinterface() does not create a new object; instead it provides a second in-
terface to the DirectDraw object and increments its reference count. You must
call both IDirectDraw::Release() and IDirect3D::Release() to fully release the ob-
ject. If you only release the IDirect3D interface and then query for it again, the
original IDirect3D state might be restored.

se of work-

14-3. We

206 8 CHAPTER 14 AN INTRODUCTION TO DIRECT3D

14.42 Enumerating IDirect3DDevices

We have access to the first level of Direct3D. You would think that the next
step would be to ask for access to an IDirect3DDevice. But wait! To ask for
access to a new interface, we've got to know the new interface’s GUID. So
how do we get the GUID of an IDirect3DDevice?

Direct3D was built to allow multiple 3D devices to be installed in a system,
We could get the GUID from our vendor of choice and hard code it into oy
application. An alternate approach would be to use IDirect3D::EnumDevices
to search among installed devices and pick a device of our choosing.

———» extern “C” static HRESULT WINAPI enumDeviceFunc(

e . LPGUID 1pGuid, LPSTR 1pDeviceDescription, LPSTR TpDeviceName,

| LPD3DDEVICEDESC TpHWDesc, LPD3DDEVICEDESC 1pHELDesc, LPVOID 1pCookie
)

I

‘ IDirect3D::EnumDevices will call a callback function of this form for each driver installed in the system,
Note that “C” calling convention is used. The parameters passed to the callback function are
LPaUID IpGuid Pointer to the GUID for this driver
LPSTR IpDeviceDescription String describing the driver. (For example: “Microsoft Direct3D

Mono (Ramp) Software Emulation”)

LPSTR IpDeviceName String name of the driver. (For example: “Ramp Emulation”)
LPD3DDEVICEDESC IpHWDesc If this descriptor is valid, then driver is hardware based.
LPD3poEvICEDESC IpHELDesc If this descriptor is valid, then driver is software emulation.
Lpvo1p IpCookie Lpvo1D sized data passed on from the main application.

BOOL CSharedHardware::InitDirect3D(DWORD dwCookie)
! {
| ‘ // enum drivers and pick one
‘ // Ask D3D to call our “C” callback
m_pD3D->EnumDevices(enumbeviceFunc, (LPVOID)dwCookie);

// return Invoke IDirect3D::EnumDevices() with the address of our
return TRUE; callback function.
} dwCookie, an LPvo10 sized object, can be anything we want.

It will be passed on unchanged to our callback function.

L |

F
2
)
|
i

IDirect3D::EnumDevices will call our callback function once for each driver
installed in the system, giving us the driver’s GUID, a couple of text strings
identifying the driver, and two D3DDEVICEDESC descriptors to tell us about
the capabilities of each driver.

Only one of the two D3DDEVICEDESC descriptors is valid. Browsing through
Direct3D’s sample code, we found that the prescribed method of checking
the validity of a D3DDEVICEDESC descriptor is to check whether the demColor-
Model field is set to a valid value (currently it can be either b3DCOLOR_MONO
or D3DCOLOR_RGB).

226

he next
ask for
D. So

ystem.,
nto our
'Devices

1driver
strings i
ibout

rough
ecking
nColor-
R_MONO

REVVING UP DIRECT3D = 207

We get information for a single 3D device on each call of our callback. If
this device matches our selection criterion, we can tell Direct3D to stop
calling us by returning D3DENUMRET_CANCEL. Otherwise, our callback is sup-
posed to return D3DENUMRET_0k—and Direct3D will continue to call us for
any remaining un-enumerated choices.

We designed our callback function to choose the first driver that matched
an input criterion. Our input criterion can be:

USE_HARDWARE Reject any software emulation drivers. Speciffying both USE_HARDUARE
and use_sorTware is illegal; neither is ok, the first one will be chosen.

USE_SOFTWARE Reject any hardware drivers. Specifying both use_warousre and
ust_soFTuaRE is illegal; neither Is ok, the first one will be chosen*

USE_RGB Use the higher-ﬂuality RGB model. Specifying both use_ras and

use_ranp is illegal; neither is ok, the first one will be chosen*

USE_RAMP Use the lower-quality, higher-performance Mono/Ramp model.
Specifying both use_ree and use_rawp is illegal; neither is ok,
the first one will be chosen*

USE_ANY Use the first 3D driver enumerated by Direct3D

* If you don't specify a choice, then the choice will be made on a first-come basis. If you
specify a choice, then your choice will be honored.

Here is the code for our callback function:

extern “C” static HRESULT WINAPI enumDeviceFunc(
LPGUID 1pGuid, LPSTR lpDeviceDescription, LPSTR 1pDeviceName,
LPD3DDEVICEDESC 1pHWDesc, LPD3DDEVICEDESC 1pHELDesc, LPVOID TpCookie

DWORD dwFlags = (DWORD)IpCookie;
CSharedHardware *pGrfx = gpAppWide->m_pGrfxCard;

Pick the valid driver from the two device descriptors.

LPD3DDEVICEDESC pChoice = 1pHWDesc; | The method to check whether a D3DDEVICEDESC
if (!pChoice->demColorModel) €——— isvalid—as approved in Direct3D sample

pChoice = TpHELDesc; code—is to check dcmColorModel for a
valid value.

208 8 CHAPTER 14 AN INTRODUCTION TO DIRECT3D

Check our option flags for hardware/software force.

if (dwFlags & USE_HARDWARE) |
if (!1pHWDesc->dcmColorModel)
il return D3DENUMRET_OK; <£&————o
i pChoice = 1pHWDesc;
H }
| if (dwFlags & USE_SOFTWARE) {
‘ if (!1pHELDesc->dcmColorModel)
bl return D3DENUMRET_OK;
pChoice = TpHELDesc;

Returning D3DENUMRET_OK gets us the
next driver.

Our application only works in 8 bpp mode. Check supported Render modes for this format. Devices may
support multiple output formats. Direct3D uses a packed format to specify all the formats that a device can
support. DDBD_x bit flags define the output formats that can be returned.

! if (!pChoice->dwDeviceRenderBitDepth & DDBO_8) <
: ‘\ ! return D3DENUMRET_OK;

P CSurfac
8] {
| Check our option flags for RGB/Mono color model force. 7/
i if ((dwFlags & USE_RGB) && REC
(pChoice->dcmColorModel 1= D3DCOLOR_RGB)) pe
return D3DENUMRET OK: m.d
, 1f ((dwFlags & USE_RAMP) & m.d
. i (pChoice->dcmColorModel != D3DCOLOR_MONO))
| return D3DENUMRET OK; //5
m_.
m_S
Got what we wanted. Copy the GUID and set some descriptive flags.
i m_bFound3Ddriver = TRUE; !
memepy ((void *)&pGrfx->m_3dGuid, 1pGuid, sizeof(GUID)); m{
{ if (pChoice == 1pHWDesc) pGrfx->m_bIsHardware3d = TRUE; m,;
| return (D3DENUMRET CANCEL); ms
/1
: m_<
i Returning D3DENUMRET_CANCEL tells D3D to stop enumerating. m_$
i <
“ m_<
‘ |
l | /)
; m_<
[When control returns from Direct3D to the original function that invoked)
IDirect3D::EnumDevices, our callback function would have copied a GUID Pl
for a Direct3D device that matched our specification (if there was one). We } ret
| can now use this GUID to query for a IDirect3Ddevice object. 3
| 1[‘11 ; L
14.43 Creating an IDirect3DDevice |
L | Now we’re really getting down! An IDirect3DDevice interface provides low- ”
i . q 1}
level access to Direct3D rendering functions. IDirect3DDevice is not an ~
object in its own right; it is an extension to an IDirectDrawSurface object. -
P

il To get an IDirect3DDevice object, we've got to first create an
| IDirectDrawSurface and then “extend” the surface by querying for 3D
capabilities.

228

REVVING UP DIRECT3D = 209

To extend an IDirectDrawSurface into an IDirect3DDevice, the surface needs

e . .
% to have been created using boscaps_3ppevICE set in the surface caps
E 7:\;/:) (ddsCaps.dwCaps) field.
Let’s create a suitable IDirectDrawSurface. We don’t want to see the flicker
that results from compositing directly onto the display screen, so we’re
using an Offscreen surface (although tests showed that we could success-
fully extend the Primary surface for 3D). The code for creating an
eV(iiCeS'may IDirectDrawSurface is pretty much the same as the code we used in Chap-
a .
cvicecan ter 5, except for the addition of the bpscaps_3npevice flag:
csurfaceSysMem: : Tnit(CWnd *pckind, LPDIRECTDRAW2 pDDraw)
{
// get size of client to create similar off.screen window
RECT riin;
pcind->GetClientRect(&rWin);
m_dwWidth = (dword)(rWin.right - rWin.left);
m_dwHeight = (dword)(rWin.bottom - rWin.top);
// init surface descriptor and create offscreen surf
m_SurfDesc.dwHeight = m_dwHeight & (~0x03);
m_SurfDesc.dwWidth = m_dwWidth & (~0x03);
// specify desired 8bpp color format
m_SurfDesc.ddpfPixelFormat.dwSize = sizeof (DDPIXELFORMAT);
m_SurfDesc.ddpfPixelFormat.dwRGBBitCount = 8;
m_SurfDesc.ddpfPixelFormat.dwFlags = DDPF_PALETTEINDEXED8 | DDPF_RGB;
// ask for offScreenSurface, in system memory, with 3d capabilities
: ‘ m_SurfDesc.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN;
ng. - m_SurfDesc.ddsCaps.dwCaps |= DDSCAPS_SYSTEMMEMORY ; :
~ m_SurfDesc.ddsCaps.dwCaps |- DDSCAPS 3DDEVICE; ¢—— fh‘i‘fvtieﬁfﬁi’;féﬁfﬁiilsigige}‘;EZHD].)““DMW
- // specify which fields in SurfDesc are valid
_ m_SurfDesc.dwFlags = DDSD_CAPS | DDSD_WIDTH | DDSD_HEIGHT | DDSD_PIXELFORMAT;
it invoked
' i // create the surface
:da GUID ’ pDDraw->CreateSurface(&m_SurfDesc, &m_pSurffns, NULL);
s one). We . return TRUE; =
. ! =
- 24
? =
. | | 0.
wideslow- . .
not an Even though we've created a suitable DirectDraw surface, we are not yet ready g
; | to extend it for 3D. When using Direct3D to write into a palletized surface, we
> object. must attach a palette to the surface before extending the surface for 3D.
r 3D ‘
i

229

210 8 CHAPTER 14 AN INTRODUCTION TO DIRECT3D

14.4.4

14.4.5

Preparing a DirectDraw Palette

Following is the code for creating a palette using DirectDraw’s Palette func.
tions. We've initialized the new palette to the system palette and attached it
to both the Primary and the Offscreen surfaces.

The Direct3D RGB driver operates in a high-quality RGB color model. It
must then reduce the colors in the scene to appropriate palette entries.
Direct3D needs to be able to select these palette entries. So we've “pre-
pared” the palette for Direct3D by setting flags that tell Direct3D which val-
ues it can modify.

BOOL CSharedHardware::InitPalette(void)
{
// Get the current system palette.
PALETTEENTRY ppeSysPall256];
HDC hdc = GetDC(NULL);
GetSystemPalettekEntries(hdc, 0, (1 << 8), ppeSysPal);
ReleaseDC(NULL, hdc);

Allow D3D to change middle entries. For windowed case, preserve top ten and bottom ten
colors. In Full Screen mode we could allow all but the top and bottom color to be changed.

int 1;
for (i =0; i < 10; i++)
ppeSysPall(i].peFlags = D3DPAL_READONLY;
for (i =10; i < 246; i++)
ppeSysPallil.peFlags = D3DPAL_FREE | PC_RESERVED ;
for (i = 246; i < 256; i++)
ppeSysPallil.peFlags = D3DPAL_READONLY;

// create palette and init with above values
m_pDDraw->CreatePalette(DDPCAPS_8BIT | DDPCAPS_INITIALIZE,
ppeSysPal, &m_pPalette, NULL);

return TRUE; - . . -
} Create a DirectDraw palette. A pointer to an IDirectDrawPalette object is .

returned in the third parameter.

BOOL CSharedHardware::SetPalette(LPDIRECTDRAWSURFACEZ pSurfFns)
{
// set created palette on specified surface
pSurfFns->SetPalette(m_pPalette);
return TRUE;

Extending the Surface for 3D

Now we're ready to extend the DirectDraw surface and get an
IDirect3DDevice object:

230

lette func.
ittached it

10del. Tt
itries,
“pre-
which val-

ten
zed.

tte object is

REVVING Up DIRECT3D = 211

BOOL CSurface3d::Init(CWnd *pcWnd, LPDIRECTDRAWSURFACEZ p2dFns)
{

pZans->0uery1nterface(gp/—\ppw1de»m_pGrr”xCard—)mjdGuid, &m_p3dFns);

We're invoking IUnknown::QueryInterface() on the IDirectDrawSurface object with the GUID
that we chose earlier in our EnumDevices callback function. We get back a pointer to the
IDirect3DDevice object in the second parameter.

Get the 2D surface descriptors and copy some info about 2D surface.J

DDSURFACEDESC ddsdTmp;
memset (&ddsdTmp, 0, sizeof(DDSURFACEDESC));
ddsdTmp.dwSize = sizeof(DDSURFACEDESC)

err = p2dFns->GetSurfaceDesc(&ddsdTmp); // get surface descriptor
m_dwidth = ddsdTmp.dwWidth; // get width of 2d surface
m_dwHeight = ddsdTmp.dwHeight; // get height of 2d surface
if (ddsdTmp.ddsCaps.dwCaps & DDSCAPS_VIDEOMEMORY) m_bIsVidMem = TRUE;
m_p2dFns = p2dFns; // remember 2d surface fns
return TRUE;

}
\

Voila! Pardon my French, but I am happy to announce that the
IDirectDrawSurface has now been extended to allow for 3D capabilities.
Also allow me to point out again that QueryInterface() does not create a
new object. Instead, it provides a second interface in addition to the origi-
nal IDirectDrawSurface object and increments its reference count. You
must call both IDirectDrawSurface::Release() and
IDirect3DDevice::Release() to fully release the object.

Note that only this surface has been “extended” for 3D capabilities. As such
we could say that this surface is a “3D surface” If you browse our code for
this chapter on the CD, you will notice that we use Surface3D to refer to
IDirect3DDevice, because as we said before, it’s only this surface that has
been 3D enabled.

Just as with 2D surfaces, 3DDevices are described by a descriptor,
D3DDEVICEDESC. You can use IDirect3DDevice:GetCaps to get the descriptor
of the device. In this chapter we are mainly concerned with getting a trian-
gle rendered through Direct3D without adding any bells and whistles—yet.
So we don’t really need to look at the device capabilities and the D3DDEVICEDESC
structure at this point. We'll leave that for our later chapter on accelerating
Direct3D, Chapter 15.

212 m CHAPTER 14 AN INTRODUCTION TO DIRECT3D

14.4.6

Mapping from a 3D Model to the 2D Surface Using Viewports

We’ve got our 3D surface (3DDevice), and pretty soon we’ll want to render
some 3D objects. 3D objects are represented with 3D coordinates in a 3D
model. We will have to tell Direct3D how to project 3D objects onto a 2D
screen. Direct3D provides an IDirect3DViewport object to control this

mapping.

A viewport defines a visible 3D volume and the projection of this 3D vol-
ume onto a 2D screen area. For perspective viewing, the visible 3D volume
is a portion of a pyramid between a front clipping plane and a back clipping
plane. For orthographic viewing, the visible 3D volume is cuboid.

For perspective projection, the viewing position is at the tip of the pyramid
as in Figure 14-3. The z-axis runs from the tip of the pyramid to the center
of the pyramid’s base. The front clipping plane is at a distance B, the back
clipping plane is at a distance Q from the front clipping plane. The height of
the front clipping plane is 2H,and it defines the field of view.

With Direct3D’s Retained mode, you could use IDirect3DRM Viewport
:SetFront(), ::SetBack(), and ::SetField() functions to set the values of P, Q,
and H, respectively. But with Direct3D’s Immediate mode you’ve got to
compute equivalent values for P, Q, and H and fill these values into a
D3DVIEWPORT structure.

Back Clipping Plane —

Front Clipping Plane

Viewing
Position

“a

FIGURE 14-3 Using a viewport for perspective projection.

BOOL CSu

pD3C
m_p:

/1<
D3D\
mems
viev
viey
viev
viey
viey
viey
viey
viel
vie
m_p:

Ouw
viev
and

reti

232

REVVING UP DIRECT3D =m 213

ewports Let’s take a look at the D3DVIEWPORT structure:
nt to render
:esina 3D
typedef struct _D3DVIEWPORT {
onitoha. D DWORD dwSize:
tro S RD WX
this Bmg RD gxé . Coordinates of the top-left corner of the viewport and dimensions of
DWORD deWZ dth: the viewport. These are defined relative to the top left of the device.
DWORD dwHeight;
is 3D vol- D3DVALUE dvScaleX; Scale parameters can be used to maximize the window area
3D vol D3DVALUE dvScaleY; €«—— occupied by the 3D scene. For example, Direct3D suggests
Volume D3DVALUE dvMaxX; that the scale parameters be set such that the larger dimension
ack clippin > [D3DVALUE dvMaxY; (width or height) of the front plane fills the window.
° g D3DVALUE dvMinZ; - ' i ?
id. D3DVALUE dvMaxZ; | ‘
} D3DVIEWPORT, *LPD3DVIEWPORT; [
. i :
he pyramld dvMaxX, dvMaxY, dvMinZ, and dvMaxZ describe the maximum and minimum homogeneous ;
o the center coordinates of x, ; and z. Use these coordinates to describe the viewing volume. i
P, the back l | |
he height of
' We create an IDirect3DViewport object by using IDirect3D::CreateViewport(),
and we set the viewport’s parameters using IDirect3DViewport::SetViewport().
rewport Once we've created an IDirect3DViewport object we've got to associate it to our
ues of B Q, 3D surface using IDirect3DDevice:AddViewport(). Here’s the code for doing
7e got to that:
Into a

BOOL CSurface3d::InitViewport(ipdirect3d pD3D)
{

pD3D->CreateViewport(&m_p3dViewport, null) ; ¢ UseIDirect3D to create the viewport.
m_p3dFns->AddViewport(m_p3dViewport); ¢ Once created, attach the viewport to 3D surface.

// Setup viewport to be equivalent to window
D3DVIEWPORT viewData;

memset (&viewData, 0, sizeof(D3DVIEWPORT));
viewData.dwSize = sizeof(D3DVIEWPORT);
viewData.dwX = 0;

viewData.dwY = 0;

viewData.dwWidth = m_dwWidth;
viewData.dwHeight = m_dwHeight;
viewData.dvScaleX = (float)1.0;
viewData.dvScaleY = (float)1.0 ;
viewData.dvMaxX = (float)viewData.dwWidth;
viewData.dvMaxY = (float)viewData.dwHeight;
m_p3dViewport->SetViewport(&viewData);

Our purpose in this chapter is merely to render a triangle. So we've set up the simplest possible
viewport, where the viewport is the same size as the drawing window, and there’s no scaling
and projection.

return true;

|
.
|
|
g

233

214 = CHAPTER 14 AN INTRODUCTION TO DIRECT3D

Based on our viewport parameters, the driver builds a transformation
matrix to convert incoming vertices from a 3D model space to a projected
2D space.

A Direct3D lets us create multiple viewports. We tell Direct3D which viewport to -
use only when we're rendering an object. In this way we could, if we wanted, mix
objects rendered with different perspectives onto the same surface.

14.4.7 Talking to 3D Devices Through Execute Buffers

Okay, we've got our 3D device called Surface3D on the CD, and we’ve
described our viewport. Now let’s render some triangles, which brings up
our next step—talking to the 3D device.

We send instructions to 3D devices in lists called Execute Buffers. Figure 14-4
is a picture of an Execute Buffer. Data items sent to 3D devices via Execute
Buffers are usually either triangle vertices or render operations.

FIGURE 14-4 Sample Execute Buffer.

234

tion
rojected

)
Yve
Ings up

ure 14-4
Execute

—————>»DWORD dwFlags ;

REVVING UP DIRECT3D = 215

A vertex is typically sent using a D3DVERTEX structure. A vertex processed by
the Transform module and Lighting modules is converted into a D3DTLVERTEX
structure, which occupies the same data space as a D3DVERTEX structure.
This process allows transformation and lighting to be performed in place.
To make in-place transformation and lighting convenient, 3D devices
expect vertices to precede all operations.

3D devices can be commanded to perform operations using a set of opcodes
defined by Direct3D. We will examine the opcodes in more detail shortly
(in 14.4.8). In general, there are opcodes to load data (such as matrices or
textures) into device memory; opcodes to set state values in the Transfor-
mation, Lighting, or Render modules; and opcodes to process data.

IDirect3DDevice has a CreateExecuteBuffer() method to create an Execute
Buffer object. The IDirect3DExecuteBuffer object returned is only an inter-
face object and does not yet provide the actual buffer space into which you
can insert commands.

When we're asking an IDirect3DDevice object to create an Execute
Buffer, we've got to describe the buffer we'd like created. Here’s the
D3DEXECUTEBUFFERDESC structure used to describe our needs:

typedef struct _D3DExecuteBufferDesc {

DWORD dwSize;
Hardware devices prefer their data (including vertices) to reside
DWORD dwCaps; «—— in video memory. Software emulators, on the other hand, prefer
DWORD dwBufferSize;| that their data reside in system memory. Specify the memory type
LPVOID TpData; in the dwCaps field based on the 3D device created. SystemMemory
} D3DEXFCUTEBUFFERDESC; | is the default if the field is left unspecified. The field can be

D3DDEBCAPS_SYSTEMMEMORY The Execute Buffer data must reside
in system memory.

The Execute Buffer data must reside
in video memory.

Alogical OR of
D3DDEBCAPS_SYSTEMMEMORY and
D3DDEBCAPS_VIDEOMEMORY.

D3DDEBCAPS_VIDEOMEMORY

D3DDEBCAPS_MEM

D3DDEB_BUFSIZE
D3DDEB_CAPS
D3DDEB_LPDATA

The dwBufferSize member is valid.

The dwCaps member is valid. [See above].

In the same lines as the DirectDraw convention, not all fields in descriptor structures are valid. dwFlags speci-
fies which fields in the descriptor have been set. For D3DEXECUTEBUFFERDESC the flags are

The IpData member is valid. The 3D device returns a pointer to Execute Buffer data space
in this field. Could be used to provide the driver with a pre-initialized buffer, but this

doesn’t always work.

216 m CHAPTER 14 AN INTRODUCTION TO DIRECT3D

Here’s code that demonstrates the creation of an Execute Buffer:

// compute size of execute buffer needed to render one triangle
size_t sztkx = O0;

sZLEX = sizeof(D3DTLVERTEX) * 3;

SZtEX 4= sizeof(D3DINSTRUCTION)*3;

szEtEx += sizeof(D3DPROCESSVERTICES) ;

SztEX += sizeof(D3DTRIANGLE) * 1;

We need to tell the device how large a buffer we will need. For our example we are requesting
enough buffer space to contain commands to render one triangle. Don’t worry about the
actual sizes and instructions in the Execute Buffer—we’ll be looking at this shortly.

// Describe ExecuteBuffer to be created
D3DEXECUTEBUFFERDESC debDesc;

Some 3D devices limit the size of the

| TAIE memset (&deblesc, 0, sizeof(debDesc));
Ll debDesc.dwSize = sizeof(debDesc); Execute Buffer that can be crga?ed.
debDesc.dwFlags = D3DDEB_BUFSIZE; CreateExecuteBuffer() may fail if you

debDesc.dwBufferSize = sztix: €1 Tequesttoo largea buffer. You can find
out the allowed limit by using GetCaps().

// Create ExecuteBuffer
Em_deFns~>CreateExecuteBuffer(&debDesc, & m_pExBuffFns, NULL) ;

Create the Execute Buffer according to description passed in first parameter.
An interface object pointer (LPDIRECT3DEXECUTEBUFFER) is returned in the
second parameter.

]

As we mentioned before, the IDirect3DExecuteBuffer object we just created is only

| an interface object and does not yet provide buffer space for inserting commands.
We get access to usable buffer space by using the IDirect3DExecuteBuffer::Lock
function. The lock returns a buffer pointer into which we can enter our com-

: mands. Once we finish entering our commands, we must use the :: Unlock() func-

tion to unlock the buffer. Here’s a quick example:

Copy the triangle into the Execute Buffer space. Assume that the commands were in a preset
buffer. Don’t worry about the actual instructions—we’ll examine these in detail shortly.

F m_pExBuffns->Lock(&m_ExDesc); // Yock buffer
i PVoID pTmp = m_ExDesc.IpData; // get returned ptr
i memcpy (pTmp, pSomeBuffer, sztkEx); // copy data over
g“i m_pExBuffns->Unlock(); // unlock buffer
i .
i L]

il After entering the commands, we tell the 3D device that we’ve given it new
| | instructions by invoking ::SetExecuteData(). At this point we're also describ-
ing to the 3D device the makeup of our Execute Buffer—where the vertices
start, how many vertices there are, where the instructions start and end.

236

:d.
you
m find
etCaps().

S

eated is only
commands.
fer:Lock

Ir com-

lock() func-

reset

ven it new
so describ-
he vertices

g

|

i

|
] 2
|

|

1d end. }
|

14.4.8

REVVING UP DIRECT3D =® 217

This information is provided to the 3D device using a D3DEXECUTEDATA
structure. The structure is simple, and its use is demonstrated in the follow-
ing code:

// describe make-up of recently copied execute buffer

D3DEXECUTEDATA ExecData;

memset(&ExecData, 0, sizeof(D3DEXECUTEDATA));

ExecData.dwSize = sizeof (D3DEXECUTEDATA);

ExecData.dwVertexCffset = 0;

ExecData.dwVertexCount = 3;

ExecData.dwInstruction0ffset = sizeof (D3DTLVERTEX) * 3;
ExecData.dwlnstructionlLength = sizSomeBuffer - (sizeof(D3DTLYERTEX)*3);
pExecCmds->SetExecuteData(&ExecData);

After transferring an Execute Buffer to the 3D device using the Lock/Copy/Unlock sequence,
we need to describe the makeup of the recently copied Execute Buffer, using SetExecuteData()
and a D3DEXECUTEDATA structure. Here are the fields in the structure:

dwVertexOffset ‘Where do vertices start within the Execute Buffer?

dwVertexCount Number of vertices in vertex list.

dwlnstructionOffset Where do instructions start within the Execute Buffer?

dwinstructionLength ~ Where do vertices end? This need not be the end of the buffer.

dsStatus D3DSTATUS structure used to return the screen extents needed after
vertex transformations.

OK, we’ve waited long enough. Let’s see what operations we can perform
with Direct3D.

Execute Operations
Operands are passed to the 3D device using a _D3DINSTRUCTION structure:

typedef struct _D3DINSTRUCTION {
BYTE bOpcode;
BYTE bSize;
WORD wCount;

} D3DINSTRUCTION, *LPD3DINSTRUCTION;

L |

The first field in the _D3DINSTRUCTION structure is the opcode. Opcodes
available in Direct3D are listed in Table 14-4. With the exception of
D3DOP_EXIT and p3D0P_NOP, all operations are followed by an operand.
Operands are specified with a structure format unique to the operation.
D3DOP_POINT, for example uses a B30POINT structure. The sizes of operand
structures vary, and they must be entered in the bSize field. The sizes are
used to advance pointers while parsing instructions in an instruction
stream.

218 m CHAPTER 14 AN INTRODUCTION TO DIRECT3D

TABLE 14-4 Direct3D Execute Opcodes

D3DOP_TEXTURELOAD

Causes device to load a texture into device data space

D3DOP_MATRIXLOAD Causes device to load a texture into device data space

D3DOP_MATRIXMULTIPLY | Causes matrix to multiply via the rendering pipeline

D3DOP_STATETRANSFORM Sets value of specified transformation module state variable
D3DOP_STATELIGHT Sets value of specified lighting module state variable
D3DOP_STATERENDER Sets value of specified render module state variable
D3DOP_POINT Renders a point via the renderer
D3DOP_SPAN Spans a list of points with the same y value
D3DOP_LINE Renders a line via the renderer
D3DOP_TRIANGLE Renders a triangle via the renderer
D3DOP_PROCESSVERTICES | Causes vertices to be transformed, lit, and copied
| to device space

D3DOP_BRANCHFORHARD Enables a branching mechanism within an Execute Buffer
D3DOP_NoP Used for optimization to align data on QWORD boundaries
D3DOP_EXIT Signals that the end of the list has been reached
D3DOP_SETSTATUS Resets the status of the Execute Buffer

In a typical usage scenario, operations are quite often repeated with differ-
ent parameters. For example, let’s look at rendering multiple triangles. The
wCount field in the _Dp3DINSTRUCTION structure allows the repetition to be
optimized and specifies that the operation will be followed by WCOUNT
operands.

14.4.9 Operations Used to Render a Simple Triangle

Let’s set up an Execute Buffer to render a simple triangle. For a simple tri-
angle we will need three vertices in the vertex list. We will also need at least
three operations. Two of the operations—D300P_TRIANGLE and D300P_EXIT—
are straightforward. The third, D3D0P_PROCESSVERTICES, is needed to tell the
3D driver that we will provide vertices that don’t need transformation or
lighting. Both the 03p0P_TRIANGLE and D3DOP_PROCESSVERTICES operations
are followed by operand structures.

space
space
Ee\
ate variable |
ble]
ble]

tte Buffer
oundaries

ith differ-
ngles. The
ion to be
JOUNT

imple tri-
'ed at least
JOP_EXIT—
[to tell the
ation or
perations

REVVING UP DIRECT3D m 219

Figure 14-5 shows a picture of the Execute Buffer we need to render our
simple triangle. Now let’s create this Execute Buffer. Our code will build the
instruction stream in system memory. We will then create an Execute
Buffer and copy the system memory buffer into the Execute Buffer using
the code that we showed in 14.4.5.

FIGURE 14-5 An Execute Buffer to render our simple triangle.

Here’s the code that computes the size of the Execute Buffer needed and
then allocates a system memory, or sysmem, buffer of this size:

// Create an execute buffer in system memory to render 1 triangle
size_t sztbx = 0; .

sztEx = sizeof (D3DTLVERTEX) * 3; // 3 vertices for a triangle
sztEx 4= sizeof(D3DINSTRUCTION)*3; // processVerts, tri, exit
sztEx += sizeof(D3DPROCESSVERTICES); // 1 processVerts operand
sztEx += sizeof (D3DTRIANGLE) * 1; // 1 triangle operand

m_pSysExBuffer = new BYTE [sztExl; // setup exec buffer in sysmem first

l

Let’s insert three vertices into our sysmem buffer.

We've picked a triangle of an arbitrary size and decided to color it green.
In addition, to keep our example simple, we will instruct the driver not to
transform or light the vertices. Our code provides pre-lit vertices in screen
coordinates using a D3DTLVERTEX structure (instead of a standard D3DVERTEX
structure):

220 a CHAPTER 14 AN INTRODUCTION TO DIRECT3D

// get ready to insert vertices

- Start
D3DTLVERTEX *pVerts = (D3DTLVERTEX *)m_pSysExBuffer; pIns

pTmp *

In a D3DTLVERTEX structure, dvSX, dvSY and dvSZ
// V0 specify screen coordinates of the vertex. Note that
pVerts[0].dvSX = D3DVAL(10.0) | thefieldsarein floating point.

p¥erts[0]1.dvSY = D3DVAL(10.0)[3
pVerts[0].dvSZ = D3DVAL(Q.1);
pVerts[0] .dvRHWt D3DVAL(1.0);

The OP_
Macros :
wCounl
the corr:
other p¢

pVerts[0].dcColor = RGBA_MAKE(128, 255, 128, 0); // ma:
pVerts[0].dcSpecular = 0; L—» 0P PRI
t TU = 0; - . ;
Exg:tig% gt# - 8 dvRHW is the reciprocal of homogeneous w. You can compute "
’ this value as 1 divided by the distance from origin to vertex - The firs:
along the z-axis. . cessed. |
z , 03DPROC
dcColor sets the color of a vertex. With flat D3DPROCI
1 shading, all pixels in a triangle are set to p3pPROCI
i the first vertex color, and the other two , D3DPROC!
! /) V1 colors are ignored. With Gouraud shading, Y processt
I3 . .
pVerts[1].dvSX = p3ovaL(300.0); pixel colors are interpolated from the vertex i
pverts[1].dvSY = p3pvAL(50.0); three vertex colors. . L
pVerts[1].dvSZ = p3pvaL(0. 1) . /7] ret
pVerts[1].dvRHW = D3pyaL(l - OP_TR
pVerts[1].dcCol &% = RGBA_ MAKE(IZB 255, 128, 0); ‘ (
pYerts[1].dcSpecular = 0; (
pVerts[1].dvTU = 0; (
pverts[ll.aviv = 0; dcSpecular sets the reflectiveness of the material. You can use mep\:
this field to add a metallic look to objects. We will experiment i
1 with it in Chapter 15. . In addit
DT /N2) how edg
il pVerts[2].dvSX = 030vAL(150.0); ; an extra
L pVerts[2].dvSY = 03ovaL(180.0); —
|1 pVerts[2].dvSZ = bp3pvAL(0.1); : /1 ex
pVerts[2].dvRHW = p3pvaL(1.0); OP_EX
pVerts[2].dcColor = ReBA_MAKE(128, 255, 128, 0); ~ pInst
Verts[2].dcS lar = 0; R
EVertz EZ% dSTSein? :____~ dvTU and dvTV are used to map a vertex into texture
pVerts[Z]:dvT\/ - O: coordinates. Here again, we will use these fields in —
' Chapter 15.
L |
i
[Now let’s enter our three operations after the vertices. The Direct3D SDK

; has a helper file (d3dmacs.h) with macros for inserting operations into an

‘ Execute Buffer. These macros do a decent job, and we have used them in

Hk our examples. We recommend that you take some time to look at these
Sl Direct3D macros.

240

ind dvSz
Note that

compute
rertex

ex. With flat
are set to
ther two
aud shading,
>m the

You can use
| experiment

(ture
1

_— |

:ct3D SDK
ons into an
d them in
at these

InsStart = m_pSyskxBuffer + 3*sizeof(D3DTLVERTEX);

pTmp = (PVOID plns);

REVVING UP DIRECT3D = 221

¢ Remember where instructions start.
¢ Convert to void pointer for d3d macros.

The OP_XXX macros below take both a count and a void pointer as parameters. Once used, the
macros increment the void pointer to point to the next valid location. Count is used to set the
wCount field of the D3DINSTRUCTION as explained earlier. Remember to follow each opcode with
the correct number of operands. Also note that macros for more complex opcodes require

other parameters in addition.

QP_PROCESS_VERTICES(1,

// make sure vertices are copied to device memory

PROCESSYERTICES _DATA(D3DPROCESSVERTICES_COPY, 0, 3, pTmp);

pTmp);

D3DPROCESSVERTICES_COPY

D3DPROCESSYERTICES__TRANSFORM

D3DPROCESSVERTICES_TRANSFORMLIGHT ~ Vertices should be transformed and lit.

D3DPROCESSYERTICES_NOCOLOR

ProcessVertices needs to know where to start and the number of vertices to process. The start
vertex is specified by its index position.

The first parameter passed to 0p_PROCESS_VERTICES indicates how the vertices should be pro- -
cessed. Four important options are

Vertices should simply be copied—they have been trans-
formed and lit.
Vertices should be transformed.

Vertices should not be colored.

// render triangle

pTmp ((char*)pTmp) +

OP_TRIANGLE_LIST(1, pTmp):

((LPD3DTRIANGLE)pTmp) ->vl
((LPD3DTRIANGLE)pTmp)->v2 = 1;
((LPD3DTRIANGLE)pTmD)->v3 = 2;
((LPD3DTRIANGLE)pTmp)->wFlags = 0;

Vertices of a triangle are specified as a
Word-sized index into the vertex list.

i

sizeof (D3DTRIANGLE);

In addition to the vertices, triangle opcodes take a wF1ags parameter that can be used to control
how edges are drawn in wire-frame, strip, and fan modes. This is an advanced topic and is left as

an extra credit exercise.

// exit operation
OP_EXIT(pTmp);
pInsktnd = (char*)pTmp;

& Terminate Execute Buffer list with OpEXIT.
¢ Remember where instructions end.

The following code is the same as what we listed in 14.4.5 to create an
Execute Buffer and copy over an instruction from a system memory buffer.
We've copied it here for your convenience:

// Describe ExecuteBuffer to be created
D3DEXECUTEBUFFERDESC debDesc;
memset(&debDesc, 0, sizeof(debDesc));
debDesc.dwSize = sizeof(debDesc);
debDesc.dwFlags = D3DDEB_BUFSIZE;
debDesc.dwBufferSize = sztEx;

// Create ExecuteBuffer and copy system buffer over
m_p3dFns->CreateExecuteBuffer(&debDesc, &m_pExBuffns, NULL);

m_pExBuffns->Lock(&m_ExDesc);

pTmp = m_ExDesc.1pData;

memcpy (pTmp, m_pSysExBuffer, sztEx);
m_pExBuffns->Unlock();

// Tock buffer

// get returned ptr
// copy data over
// unlock buffer

241

222 m CHAPTER 14 AN INTRODUCTION TO DIRECT3D

// describe make-up of recently copied execute buffer
D3DEXECUTEDATA ExecData;

memset (&ExecData, 0, sizeof(D3DEXECUTEDATA));
ExecData.dwSize = sizeof (D3DEXECUTEDATA);
ExecData.dwVertexOffset = 0;

ExecData.dwVertexCount = 3;

ExecData.dwinstructionOffset = pInsStart - m_pSysExBuffer;
ExecData.dwinstructionLength = pInstnd - pInsStart;
m_pExBufFns->SetExecuteData(&ExecData);

|

L

Whew! We're done setting up. Now we are ready to run.

14.4.10 Executing the Execute Buffers

3D graphics accelerators are often integrally linked to the system’s standard graphics
card. Hardware resources can be shared between 2D and 3D drivers. The device driy-
ers may like to “context-swap,” if you will, between the 2D and 3D tasks. To enable
this context-swapping, Direct3D requires that the IDirect3DDevice::Execute()
function be bracketed by IDirect3DDevice::BeginScene() and IDirect3DDevice::End-
Scene() calls.

Let’s execute!

// “execute” the execute buffer

m_p3dFns->BeginScene();
m_p3dFns->Execute(pExecCmds, m_p3dViewport, D3DEXECUTE_UNCLIPPED);
m_p3dfns->EndScene();

IDirect3DDevice::Execute() takes three parameters: an IDirect3DExecuteBuffer object, an
IDirect3DExecuteBuffer object, and a DWORD with modifier flags. With the Execute function
being defined as a member of the IDirect3DDevice object, you can create multiple Execute Buffers
to represent multiple objects and render objects selectively within a scene.

Similarly, since the viewport must be specified with each Execute() call, you could use a single
Execute Buffer with different viewports to get different views of the object; alternatively, you could
also render objects with differing viewing positions within a single scene.

The only modifier flags supported on Execute() are D3DEXECUTE_CLIPPED Or D3DEXECUTE_UNCLIPPED.
If you know that all objects in the Execute Buffer will fit within the 2D screen coordinates, you can
improve performance by setting the flags to D3DEXECUTE_UNCLIPPED.

L .

Be careful when executing Execute Buffers: They are hard to debug. If your
application crashes while executing a set of instructions, all you know is
that there was an error. The best that you can hope for is that the error
didn’t lock your machine into an unrecoverable state. Save often! Set your-
self up for trial-and-error debugging. Start with small Execute Buffers and
increase the size and complexity in small steps.

td graphics
device driy-
.. To enable
ecute()

zvice::End-

m
Buffers

gle
yu could

’PED.
b can

S

ig. If your
now is
error

Set your-
ffers and

? :
-
?
1
|
z
|
|
|
|
3

REVVING UP DIRECT3D & 223

Seeing Results from 3D Devices

At this point, our Execute Buffer should render a triangle—we debugged it,
so we know it is error-free. The 3D device will render the triangle into the
2D surface that it was “extended from.” To actually see the triangle, we’ve
got to make the 2D surface visible. This step requires standard DirectDraw
programming that we learned in Part II. Here’s the code to do it:

BOOL CSurface3d::UpdateScreen(LPOIRECTDRAWSURFACEZ pPrimary)
{

// offset dst rect for client area position on primary surface
Tong 1Right = m_ptZeroZero.x + m_dwWidth;

lTong 1Bottom = m_ptZeroZero.y + m_dwHeight;

RECT rDst = {m_ptZeroZero.x, m_ptZeroZero.y, TRight, TBottom};
RECT rSrc = {0, 0, m_dwWidth, m_dwHeight};

// Bt with WAIT-UNTIL-BLITTER IS READY and no effects
pPrimary->81t(&rDst, m_p2dFns, &rSrc, ODBLT_WAIT, NULL)

return TRUE;

Oh! Just one more thing, our display is in an RGB palette mode, and we’ll
need to realize the colors used to render our 3D object. If you remember
the code way back in Section 14.4.3—we were forced to create a palette and
attach it to the 2D surface before Direct3D would allow us to successfully
create a 3D device. We even arranged the palette to permit the 3D device to
modify palette colors. But this palette is attached to our Offscreen surface
and does not automatically get realized.

Here’s the code that realizes the palette by invoking SetPalette() on the Pri-
mary surface:

void CView::OnActivateView(..)
{

// reset palette on primary surface

LPDIRECTDRAWSURFACE? pPrimary = gpAppWide->m_pGrfxCard->m_pSurffns;
LPDIRECTDRAWPALETTE pPalette = gpAppWide->m_pGrfxCard->m_pPalette;
if (pPrimary && pPalette) pPrimary->SetPalette(pPalette);

224 v CHAPTER 14 AN INTRODUCTION TO DIRECT3D

| 14.5 Demo Time

Try running the demo for this chapter on the CD. You should see a triang]e
v appear on the screen. Move the mouse around and the triangle will follow the
P h mouse. You have now worked through enough code to have an idea of how to
‘ get a triangle rendered using Direct3D’s Immediate mode. Congratulationg|

WHAT HAVE We spent some time filling you in on the background of 3D on the PC, primarily to der,
YOU LEARNED? Onstrate that the field is still in its infancy: The evolution has begun, the pace will be fy
ous, the best is yet to come, and Direct3D is the foundation for the evolution. Within ths
foundation, we saw the two 3D modes that Direct3D offers: Retained mode for high-leye|

abstraction, and Immediate mode for high performance.

If you worked through the code samples, you have

handled code to get access to Direct3D functionality and 3D devices,
linked Direct3D devices to DirectDraw surfaces and DirectDraw,
set up a simple viewport to map a 3D world to 2D screen coordinates, and

finally, you have created an Execute Buffer to render a triangle with a 3D device to 3
2D surface (using the viewport and palette).

And now you're prepared . . . prepared for the next chapter on how to extend our simple
triangle with texture mapping.

15.1

244

1 triangle
[follow the
aof how to
itulations!

CHAPTER 15
===

arily to dem- |

e will be furi-

n. Within this
for high-leve]

Embellishing Our Triangle
with Backgrounds, Shading,
and Textures

ind
D devicetoa

'd our simple WHY READ In the previous chapter, we walked you through the bare minimum code needed to ren-

THIS CHAPTER? der a triangle with Direct3D. Our triangle from that chapter was solid filled, with a flat shad-
. ed color. What's more, we didn't redraw the background, and moving the triangle around
left “triangle trails.” Let's add some bells and whistles to our simple triangle.

In this chapter, you will

m learn how to use Direct3D to repaint the background and get rid of the “triangle trails”
(we could have used a 2D background from Part Il—but you'll need to understand how
to use 3D backgrounds when you add lighting to your 3D scenes);

e play around with shading options and vary the coloring of triangles;
m load and use a texture to render the triangle with texture mapping; and

m understand the benefits of Z-Buffering and learn how to use Z-Buffering while render-
ing triangles.

15.1 Continuing Our Look into Direct3D

Over the course of this chapter, we will come across the Direct3D objects listed
below in Table 15-1. We will describe the objects and the structures they use as
we get to them.

Structures in Direct3D often contain unions of two naming conventions.

Let’s take, for example, the D3DTRIANGLE structure that we used as an oper-
and in the last chapter. (See code on the next page.)

m 225 =

-
|
|
|
|
|
|
.

PART V

245

226 s CHAPTER 15 EMBELLISHING OUR TRIANGLE

TABLE 15-1 Direct3D Objects Used in This Chapter

[IDirect3DMateral
IDirect3DTexture | DirectDraw surface containing a texture map image

Coloring options, such as color and texture

typedef struct _D3DTRIANGLE {
unfon {
WORD v1;
WORD wV1;
s
union {
WORD v2;
WORD wV2;
b
unfon {
WORD v3;
WORD wV3;
b
WORD wFlags;
} D3DTRIANGLE

l |

Notice that each vertex in the structure is a union of two Word fields with
different names for both Hungarian and non-Hungarian naming conven-
tions. To simplify our discussions of structures, we will only show the Hun-
garian version and drop the unions.

The simplified D3DTRIANGLE structure would therefore be:

typedef struct _D3DTRIANGLE {
WORD wVl;
WORD wV2;
WORD wV3;
WORD wFlags;
} D3DTRIANGLE

\ |

15.2 Repainting the Background Using Direct3D

Let’s continue where we left off in the previous chapter: Backgrounds
weren’t redrawn, and moving our triangle around left “triangle trails” Let’s
use Direct3D to repaint the background and get rid of the “triangle trails.”

246

REPAINTING THE BACKGROUND USING DIRECT3D = 227

Why use Direct3D and why not use a 2D background from Part I1? At some
later stage you may want to add a spotlight into your 3D model. Moving the
spotlight around might cause it to shine past 3D objects and onto some
backdrop. Direct3D needs to know about this background to be able to illu-
minate it correctly. We’ll use Direct3D to redraw this background.

Unlike triangles, backgrounds in Direct3D are not individual objects.
Instead they are controlled as a method of an IDirect3DViewport object.
The IDirect3DViewport::SetBackground() method takes a material handle as
a parameter. So let’s learn about materials.

15.2.1 Looking at Direct3D Materials

Even though lighting is computed by the Lighting module, some rendering
methods are influenced by lighting factors. Lighting options in the Render-
ing module are controlled by the D3D0P_STATELIGHT opcode. Light state
options that can be changed with this opcode are Fog, Ambient, and Material
(defined as D3DLIGHTSTATETYPE).

In the Rendering module, Fog and Ambient controls apply globally to all
objects. The material control, on the other hand, controls lighting proper-
ties of specific objects. Lighting controls are specified using a D3DMATERTAL

S

fields with structure. Let’s look at the simplified version of this structure:
Ig conven-
w the Hun-
typedef struct _D3DMATERIAL |
DHORD dwSize;
D3DCOLORVALUE devDiffuse; [et
D3DCOLORVALUE devAmbient ; | MOUT ifterent color components.

D3DCOLORVALUE dcvSpecular;
D3DCOLORVALUE devEmissive;

D3DVALUE dvPower ; Q Specify sharpness of specular reflections.
D3DTEXTUREHANDLE hTexture; @ Combine a texture with specified coloring. ‘
DWORD dwRampSize; @ Shading gradient of colors in Ramp/Mono model.

} D3DMATERIAL, *LPD3DMATERIAL;

\ I

|
|

|
!

The D3DMATERIAL structure provides devDiffuse, dcvAmbient, dcvEmissive,
and dcvSpecular/dvPower to control four different color components of
rendered objects. The D3DTLVERTEX structure also has dcColor and dcSpecular
fields to control colors of rendered objects. The dual controls are combined
yunds during rendering. We will look at controlling colors later in this chapter.

rails” Let’s

gle trails” Other fields in the D3DMATERIAL structure are: hTexture, through which we

apply texture maps to a rendered object (discussed later in this chapter);

247

228 m CHAPTER 15 EMBELLISHING OUR TRIANGLE

15.2.2

and dwRampSize, used by the Ramp/Mono driver to control fineness of
shading in its approximated color model (to be seen in Chapter 16).

The p3DMATERIAL Structure uses p3ncoLorvALUE type to define colors as opposeq
to the p3pcoLor type used by p3pTLvERTEX Structures. RGB values in

D30COLORVALUE are floating point fields within a structure (normally ranging from
0.0 to 1.0); RGB values in n3ncoLor are byte-sized values packed into a DWORD
(ranging from O to 255).

Creating a Direct3D Background

Again, since backgrounds in Direct3D are not individually rendered
objects, we cannot set the color of backgrounds with p3pTLVE RTEX.dcColor
(as we did for triangles). Instead, we set the color of backgrounds with the
color fields of a D3DMATERIAL structure. (Given that materials can also con-
tain a texture, we can render an image as a background using textures—but
we’re getting ahead of ourselves! We will get to texture mapping shortly.)

The field of interest presently is D3pMATERIAL.devDiffuse. It is diffuse reflec-
tions of light that give objects their basic color; such as a blue ball or a red
box. With Direct3D materials we use devDiffuse to set the basic color of the
material.

Let’s use Direct3D to implement a CBackground3d class with a single color.
We start by first creating and setting up a material and then associating the
material with our viewport.

In Direct3D, materials are managed through an IDirect3DMaterial interface
object. Here is the code to create an IDirect3DMaterial object and to set its
properties with a D3DMATERIAL structure and the IDirect3DMaterial::Set-
Material() method:

BOOL CBackground3d::Init(LPDIRECT3D pD3D) !
{ .

IDirect3D::CreateMaterial()
returns an IDirect3DMaterial
interface object.

// create a material for the background
pD3D->CreateMaterial (&m_pMaterialfns, NULL); €—

// init material descriptor
memset(&m_MaterialDesc, 0, sizeof(m_MaterialDesc));
m_MaterialDesc.dwSize = sizeof(m_MaterialDesc);

//-set diffuse coloring (“pinkish color”)
m_MaterialDesc.dcvDiffuse.dvR = D3DVALUE(D.85);
m_MaterialDesc.dcvDiffuse.dvG = D3DVALUE(O.15) ; || Setcolor of background by
m MaterialDesc.dcvDiffuse.dvd = D3DVALUE(0.50); || setting the devDiffuse
m_MaterialDesc.dcvDiffuse.dvA = D3DVALUE(0.0); component of material.

oo

248

ness of
6).

> Opposeq

1ging from
a DWORD

ed
t.dcColor
with the
also con-
ires—but
hortly.)

1se reflec-
.orared
lor of the

1gle color.
iating the

linterface
| to set its
al::Set-

Taterial()
yDMaterial

REPAINTING THE BACKGROUND USING DIRECT3D =® 229

// set material with above description
m_pMaterialFns->SetMaterial(&m_MaterialDesc); <«— IDirect3DMaterial::SetMaterial()
return TRUE; actually sets material properties.

And now we will set up our background with this material:

BOOL CBackground3d::Attach(LPDIRECT3DDEVICE p3dSurffns, LPDIRECT3DVIEWPORT pView)
{ .

// need material handle

(3 M_pMaterialFns->GetHandle(p3dSurffns, &m_hMaterial);

// set background of viewport
pView->SetBackground{m_hMaterial);
return TRUE;

15.2.3

For hardware acceleration devices, source data might have to reside in video memory. Video
memory is limited, and Direct3D occasionally uses “handles” for memory allocation. The
GetHandle() method loads an object onto the specified device and returns a handle to the
loaded object.

Bltting a Direct3D Background

We have set up our viewport to have a background. Viewport backgrounds
are not automatically drawn. The IDirect3DViewport::Clear() method is
used to control the drawing of backgrounds. By using Clear(), we can con-
trol when the background gets redrawn. In addition, Clear() uses an array
of rectangles to specify how much of the background gets redrawn, helping
us reduce the cost of repainting backgrounds with appropriate “dirty rect-
angle” logic.

Here’s our code to Blt backgrounds. We have not implemented any “dirty
rectangle” logic. But in keeping with the CBackground class from Part II,
we can specify a sub-rectangle to the Blt method to implement moving
backgrounds.

BOOL CBackground3d::B1t(LPDIRECT3DVIEWPORT pView, POINT #*pptDst, RECT *prSrc)
{

// draw specified sub-rect of background at specified pt

DWORD dwWidth = prSrc->right - prSrc->left;

DWORD dwHeight = prSrc->bottom - prSrc->top;

//create a d3dRect to clear background (needs to be clipped)
D3DRECT drDst;

drbst.xl = ppthst->x;
drDst.yl = pptDst->y;

IDirect3DViewport::Clear() expects an array of D3DRECTS.

|

230 m CHAPTER 15 EMBELLISHING OUR TRIANGLE

———p pView->Clear(nRECTS, &drDst, D3DCLEAR_TARGET);

drDst.x2 = drDst.x1 + dwWidth ;
drDst.y2 drDst.yl + dwHeight;
fidefine nRECTS 1

// clear viewport to “draw” background

return TRUE;

The first two parameters specify an array of rectangles to control “how much” gets cleared by
IDirect3DViewport::Clear(). The third parameter to IDirect3DViewport::Clear() specifies flags to
control “what” gets cleared—options are the rendering target or the Z-Buffer or both.

‘]

We are now all set to have the 3DDevice clear our background. As we men-

tioned in the previous chapter, 3DDevices may batch rendering operations

and the actual clear (redraw) is only guaranteed to have been completed on

return from the IDirect3DDevice::EndScene() call.

Try running the demo for this chapter on the CD. Voila! No more triangle
trails!

15.3 Controlling Shading Options

15.3.1

In the last chapter, we worked through the bare minimum code needed to
render a triangle. We pretty much left the Rendering module in its default
state. The Immediate mode Rendering module in Direct3D offers a lot of
rendering options. Let’s take a look at how to control these options and
then play around with some of them.

Looking at Some Render States and Their Default Values

With Direct3D Immediate mode’s D300P_STATERENDER opcode we can con-
trol various states of the Rendering module. Some of the straightforward
Render states are listed in Table 15-2.

TABLE 15-2 Direct3D Render State Types

D3DRENDERSTATE_FILLMODE Fill triangle, draw edges, draw vertices

D3DRENDERSTATE_SHADEMODE Flat, Gouraud, (future: Phong)

D3DRENDERSTATE_TEXTUREHANDLE | Set mode to texture mapping and specify texture

D3DRENDERSTATE_DITHERENABLE | Enable/disable dithered coloring

D3DRENDERSTATE_SPECULARENABLE | Enable/disable specular highlights

D3DRENDERSTATE_ZENABLE Enable/disable Z-Buffering

-
:

-
.

EERSE

250

red by
s flags to

—_—]

$ we men-
yperations
1pleted on

e triangle

1eeded to
ts default
salot of
ns and

'S
> can con-
forward

texture

15.3.2

CONTROLLING SHADING OPTIONS & 231

Now let’s look at the default state of these render states and examine their
impact on our simple triangle render example:

_FILLMODE The default value is b3oF1LL_soLrn, which is what we want for our
simple triangle.

_SHADEMODE The default is 03psHadE_couraup. The implication is that the colors of
the vertices would have been interpolated across the intervening
space. But if you look at the code, you'll see that we set all the verti-
ces to the same color and got a flat-shaded effect.

_TEXTUREHANDLE | The default is nuL—which is how we turn off texture mapping and
render shaded triangles. Note that there is no equivalent skabemooe
setting to turn off shading.

_DITHERENABLE The default is raLse. If we'd opted for differing colors at the triangle
vertices, we might have ended up with a banded picture on our low-
resolution 8 bpp screen. Dithering improves the picture quality of

Gouraud interpolation but reduces rendering performance.

_SPECULARENABLE | The default is Trut. But we deliberately disabled specular highlights
by setting dcSpecular of all vertices to 0.

_7ZENABLE The default is FaLsE, which means that triangles will be rendered
sequentially. Z-Buffering does not really affect our single triangle
example. But if we rendered multiple triangles without Z-Buffering,
we would have to order the triangles from back to front.

There are too many states to list here (three Transform states; seven Lighting
states; and about seventy-two Render states including thirty-two stipple pat-
terns). We strongly recommend that you look through the Direct3D documenta-
tion and familiarize yourself with the various states and their default values.

Coloring a Pixel in Direct3D

Direct3D drivers combine vertex components (such as color, specularity,
and alpha blending) and render effects (such as fog, dither, anti-alias) to
compute the final value of a pixel. Vertex components are specified at each
vertex, and values at intervening pixels are computed from vertex compo-
nents based on a shade mode. Shade modes currently permitted are flat and
Gouraud. No interpolation is done with flat shading, and the component
values at the first vertex of a triangle are applied across the entire triangle.
With Gouraud shading, component values from the three triangle vertices
are linearly interpolated to get the values at intervening pixels. Phong

\ 232 8 CHAPTER 15 EMBELLISHING OUR TRIANGLE

shading, where all lighting is reevaluated for each pixel of a triangle, is not
currently supported, but it has been defined for possible future support.

Based on the shade mode, an intervening pixel’s color is computed from the
RGB color values specified at the triangle’s vertices. The meaning of the
color values and the result of the interpolation varies with the color mode]
used (RGB or Ramp). We'll examine this factor in more detail shortly.

A shaded pixel is further modified by adding its specular component. Spec.
ularity is specified as an RGB color value at each vertex. The specularity of
intervening pixels is computed using the shade mode in effect. Once again,
the approach to computing specularity and its result varies with the color
model used. We'll look at this in more detail too.

When alpha blending is enabled the alpha component of a color is also
interpolated according to the shade mode. However, pixel values are not
affected by alpha interpolation if blending is implemented by stippling.
Alternatively, pixel values are effected by alpha interpolation, if alpha
blending is implemented by texture blending. (Note: When alpha compo-
nents are not supported in a given mode, the alpha value of colors is implic-
itly 255. This is the maximum possible alpha; that is, alpha is at full
| intensity.)

When texture mapping is enabled, the source “texel” value also contributes
to the pixel’s value. As we mentioned earlier, shading cannot be turned off;
therefore, the texel value is only a partial contributor. This contribution is
“blended” with the value of the color and the specular components. Blend-
‘ ing is controlled by D3DRENDERSTATE_TEXTUREMAPBLEND. The default value is

I D3DTBLEND_MODULATE, where RGB values of the texture are multiplied with
: the computed RGB values. (Alpha values in the texture supersede com-
puted alpha values.)

One of the values that we can set D3DRENDERSTATE_TEXTUREMAPBLEND tO IS
p3nTBLEND_COPY. In Copy mode, the renderer ignores color computations and
simply copies texels to the screen; therefore, textures must have the same pixel
format and the same palette as the primary surface. Copy mode effectively turns
off shading and typically offers a significant performance boost. This is often a
good technique to attain higher performance with pre-lit textured scenes.

252

igle, is not 15.3.3

jupport.

d from the
g of the
lor mode]
wortly.

nent. Spec-
cularity of
)nce again,
the color

is also
-are not
ppling.
Ipha
a compo-
s 1s implic-

full 15.3.4

ntributes
urned off;
ibution is
nts. Blend-
1t value is
lied with
e com-

s

tions and
same pixel
tively turns
is often a
2nes.

i
|
.

CONTROLLING SHADING OPTIONS = 233

Shading with the RGB Color Model

Direct3D offers two different color models: RGB and Ramp (Mono). The
two models treat pixel coloring differently, offering varying quality versus
performance options. Let’s take a quick look at how shading is treated by
the RGB color models.

The RGB model operates in true color space using 24 bits to combine red,
green, and blue light. With Gouraud shading in the RGB color model, each
of the red, blue, and green components is individually interpolated and
then recombined to produce the shaded pixel. Specular values are similarly
computed. The alpha component is independently interpolated to allow
the driver to choose the interpolation technique that matches the imple-
mented alpha blending approach.

We can use the 24-bit RGB driver to render to 8-, 16-, 24-, and 32-bit dis-
plays. However, banding artifacts are sometimes apparent when the RGB
driver has to render a scene down to less than 24 bits. Turning on dithered
rendering helps us reduce the apparent effects of banding artifacts.

Shading with the Ramp Color Model

Our code samples from both the previous chapter and the current one use
the RGB color model. Programming with the Ramp model requires a little
more explanation, and we will look at it in Chapter 16. But while we’re on
the subject of pixel coloring and shading models, why don’t we take a quick
look at how pixels are colored by the Ramp model.

The Ramp model operates through lookup tables. Colors have no real
meaning. In fact, the Ramp driver uses only the blue component of an RGB
color specification. When interpolating between two vertices, the Ramp
driver interpolates this blue component with no regard to the actual color.
The driver then accesses “a lookup table” to interpret the final result.

The Ramp driver builds lookup tables from material definitions. For mate-
rials with no specularity, the driver builds a “color ramp” ranging from the
ambient color to the maximum diffuse color. For materials with specular-
ity, the driver builds a two-stage color ramp; the first stage ranges from the
ambient color to the maximum diffuse color, and the second stage ranges
from maximum diffuse color light to the maximum specular color. For
materials with textures, the Ramp driver builds a color ramp for each color
in the texture.

234 s CHAPTER 15 EMBELLISHING OUR TRIANGLE

We can control the size of the ramp with the dwRampSize field in the

material definition. In a palletized display mode, each ramp entry equates

to a palette entry. Increasing ramp sizes will increase shading resolution,

but this method will consume valuable palette space. After all free palette

entries are used up, the Direct3D system will find colors that most closely

match the intended colors. Huge ramps or a large variety of colors can alsg
1 cause poor caching and therefore degrade rendering performance.

15.3.5 Changing Default Render States

. e Let’s play around with shading and changing render states. First, we will
. - revisit our simple triangle and change vertex colors to see the effect of
Gouraud shading.

// modify colors of vertices

D3DTLVERTEX *pVerts = (D3DTLVERTEX *)m_pSysExBuffer;
pVertsf0].dcColor = RGBA_MAKE(128, 255, 128, 0);
pVerts[1].dcColor = RGBA_MAKE(128, 0, 128, 0);
pVerts[2].dcColor = RGBA_MAKE(O, 255, 128, 0);

dcColor sets the color of each vertex. With Gouraud shading, pixel
colors are interpolated from the three vertex colors. With flat shading,
all pixels in a triangle are set to the first vertex color, and the other two
colors are ignored.

L N

Now run the demo for this chapter and check the Gouraud shading option.
You should see the colors varying throughout our triangle. Do you see what
we mean by banding artifacts?

Next we enable dithering, that is, set D3DRENDERSTATE_DITHERENABLE to TRUE.
We change render states by using the D3D0P__STATFRENDER operation. A
single D3D0P_STATERENDER instruction controls one state variable and is
followed by the state to be changed and its new value. (Use

% ‘ D3DOP_STATETRANSFORM to change transform states and D3D0P_STATELIGHT =" 15.4
. ' to change lighting states.) ‘

.
o
|
.
i
.
i
:

Here’s code that adds the D3D0P_STATERENDER instruction into our previous
execute buffer:

254

TEXTURE MAPPING WITH DIRECT3D m 235

n the
¥ €quates

Compute size of Execute Buffer needed for triangle and state change.

dlution
e pal ’ sztEx = sizeof(D3DTLVERTEX) * 3; // 3 vertices for a triangle
palette sztEx += sizeof (D3DINSTRUCTION) * 4; // state, processVerts, tri, exit
5t ClOSely sztEx += sizeof (D3DSTATE) * 1: // 1 texture render state
sztEx += sizeof (D3DPROCESSVERTICES); // 1 process vertice operand
£s can also SztEX += sizeof (D3DTRIANGLE) * 1; // 1 triangle operand
e. m_pSysExBuffer = new BYTE [sztExl: // setup ex buffer in sysmem first
memset (m_pSysExBuffer, 0, sztEx); // zero out sys mem buffer

Modify operations from last chapter to add render state operation. ‘

LPBYTE TpInsStart = m_pSysExBuffer + sizeof(D3DTLVERTEX)*3;
LPVOID 1pTmp = (LPVOID)IpInsStart;
OP_STATE_RENDER(1, TpTmp); <
STATE_DATA(D3DRENDERSTATE_DITHERENABLE, TRUE, TpTmp);
OP_PROCESS_VERTICES(L, TpTmp);
PROCESSVERTICES_DATA(D3DPROCESSVERTICES_COPY, O, 3, 1pTmp);
OP_TRIANGLE_LIST(1, 1pTmp);
((LPD3DTRIANGLE)1pTmp)->vl = 0; Insert D3DOP_STATERENDER using the
((LPD3DTRIANGLE) 1pTmp)->v2 = 1; OP_STATE_RENDER macro from d3dmacs.h
((LPD3DTRIANGLE)1pTmp)->v3 = 2;
(CLPD3DTRIANGLE) TpTmp)->wFlags = 0;
1pTmp = ((char*)1pTmp) + sizeof(D3DTRIANGLE);
OP_EXIT(1pTmp);
LPBYTE 1pInsEnd = (LPBYTE)1pTmp;

g, pixel
it shading,
» other two

Run the demo for this chapter and toggle the Dither option. How’s the
quality? We’ll measure performance in Chapter 16.

N

igoption. | ;
1gseepxirllgnt - Well, now you know how to change render states. Why don’t you try some
a . out for yourself?
E to TRUE f ; Try setting D3DRENDERSTATE_SHADEMODE to D3DSHADE_FLAT and see how only
;n A T the first vertex color is used. Other options we're sure you can handle are
m'd s f . D3DRENDERSTATE_ANTIALIAS and D3DRENDERSTATE_FILLMODE. Have at it!
. . - = "
euer | 15.4 Texture Mapping with Direct3D
| . .
| OK! How about we whip up a batch of some texture mapping?
previous §

15.4.1 Creating a Texture Map

To start out, texture maps, like IDirect3DDevices, are “converted” Direct-
Draw surfaces. So to create an IDirect3DTexture object, we first create an
[DirectDrawSurface and then use Querylnterface to retrieve an

IID_IDirect3DTexture interface.

236 8 CHAPTER 15 EMBELLISHING OUR TRIANGLE

BOOL CTriangleTex:

{

:Init(LPDIRECTDRAWZ pDDraw, LPDIRECTDRAWPALETTE pPalette, UINT nRes)

Pixel format allowed for texture surfaces varies based on the Direct3D ;
driver being used. With the RGB HEL driver, we can create textures of va;.
ous bit depths (including -, 2-, 4-, 8-, 16-, 24-, and 32-bit textures) and
various formats (such as DDPF_RGB, DDPF_PALETTEINDEXEDB). Check the
Direct3D documentation for a complete list of formats supported for tex-
ture maps.

Stan,

With the Mono/Ramp HEL driver, textures must either be palletized tex-
tures or be textures of the same format as those of the primary display sur-
face. Hardware acceleration devices can also support a variety of formats
for texture maps. Surfaces must be enumerated to find out the supported
formats.

‘We will work with the Ramp HEL driver in Section 18.3. For now let’s continue
using the RGB HEL driver with 8 bpp surfaces. Here’s code that demonstrates
how to create a surface suitable for texture mapping. The code then “converts”
the surface to create an IDirect3DTexture object, and finally it loads a bitmap
image into the texture.

Standard GDI code to load bitmap data from resource.

CBitmap

cBmp. LoadBitmap(nRes);

BITMAP bm;

cBmp.GetBitmap(&bm);
pData = new BYTE[bm.bmHeight * bm.bmWidthl; |
cBmp.GetBitmapBits(bm.bmWidth * bm.bmHeight, pData);

Setup to create a structure suitable for texture maps. J

m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.

dwHeight = roundUpPowerOfTwo(bm.bmHeight);

dwWidth = roundUpPowerOfTwo(bm.bmWidth);
ddpfPixelFormat.dwRGBBitCount = 8;

ddpfPixelformat.dwFlags = DDPF_PALETTEINDEXED8 | DDPF_RGB;
ddpfPixelFormat.dwSize = sizeof (DDPIXELFORMAT);
ddsCaps.dwCaps = DDSCAPS_TEXTURE;

dwFlags |= DDSD_CAPS | DDSD_PIXELFORMAT;

= DDSD_WIDTH | DDSD_HEIG HM Specify that this surface will be used for texture mappingJ

256

TEXTURE MAPPING WITH DIRECT3D m 237

rect3D standard DirectDraw code to create a surface and load an image into the surface’s data space.
tures of Vari.
UICS) and LPDIRECTDRAWSURFACE pbD1Surf;
~ pDDraw»>CreateSurface(&mWSurfDesc, &pDD1Surf, NULL);
,heckthe pDDlSWf-)LOCk(NULL, &m_SurfDesc, DDLOCK_WAIT, NULL);
E pBYTE pDst = (PBYTE)m_SurfDesc.lpSurface;
ted fOI‘teX- pBYTE pSrc = pData;

for (DWORD dwRow = 0; dwRow < m_dwHeight; dwRow++) {

memset(pDst, 0, m_SurfDesc.1Pitch);
. memcpy (pDst, pSrc, m_dwWidth);
etized tex- pDst += m_SurfDesc.1Pitch;
display sur- pSre += bm.bnidth;
»f format. } i ‘) Our texture map surface has a bOPF_PALETTEINDEXEDS pixel format. Direct3D
ats pDD1Surf->UnTock(NULL); requires us to set the palette before getting an IDirect3DTexture interface. Our

supported ppplsurf->SetPalette(pPalette): ¢—— application has been designed to use the same palette on all objects.

// Convert to TextureObject and get its handle
pDD1Surf->QueryInterface(IID_IDirect3DTexture, &m_pSurffns);
pbD1Surf->Release();

k) .
et’s continue m_pSurfFns->GetHandle(p3dins, &m_hTexture):

‘monstrates
1 “converts”
s a bitmap

// free temporary memory, return
delete pData;
return TRUE;

Querylnterface on the IDirectDrawSurface gives us an IDirect3DTexture interface to the same object. We now
have two separate interfaces to the same object. Both interfaces must be released for the object to be completely
freed. In this simple example, we will not use any DirectDraw functionality on the texture surface; therefore, we
have used a local variable for temporary access to the IDirectDrawSurface, and we are releasing the interface
before we exit. In later examples we will use DirectDraw functionality on the texture surface and then even the
IDirectDrawSurface will be part of the CSpriteTex object.

The Height and Width of texture map surfaces used for texture mapping must be
a power of two. CreateSurface() will successfully create a surface with non-"power-
of-two" dimensions. But later at Execute() time, the rendering engine will crash,
and there will be no indication of the nature of the error.

IDirect3DTexture::GetHandle() loads a texture into device memory and
returns a handle to the object. To provide more control of device memory
use, IDirect3DTexture has Load() and Unload() methods. These methods
ture mapping. . will work only with surfaces created with the bpSCAPS_ALLOCONLOAD flag set
in the ddsCaps.dwCaps field of the surface descriptor.

. ..

238 § CHAPTER 15 EMBELLISHING OUR TRIANGLE

15.42 Setting Up Triangle Vertices for Texture Mapping
So far we've created and loaded a texture. Now using code that we've mostly
seen in the previous chapter, let’s set up an Execute Buffer to render a
texture-mapped triangle:

BOOL CTriangleTex::Init(LPDIRECTDRAWZ pDDraw, LPDIRECT3DDEVICE p3dFns, UINT nResID)
{

Compute size of Execute Buffer needed to render simple texture-mapped triangle.

sztEx = sizeof(D3DTLVERTEX) * 33 /7 3 vertices for a triangle
sztEx += sizeof(D3DINSTRUCTION) * 4; // state, processVerts, tri, exit
sztEx += sizeof(D3DSTATE) * 1; // 1 texture render state

sztEx += sizeof(D3DPROCESSVERTICES); // 1 process vertice operand
sztEx += sizeof (D3DTRIANGLE) * 1; // 1 triangle operand
m_pSysExBuffer = new BYTE [sztEx]; // setup ex buffer in sysmem first
memset (m_pSysExBuffer, 0, sztix); // zero out sys mem buffer

Set up vertex info for texture-mapped triangle.

D3DTLVERTEX *pYerts = (D3DTLVERTEX *ym_pSysExBuffer;

/7N 0

pVerts[0].dvSX = D3DVAL(0.0);

pVerts[0].dvSY = D3DVAL(0.0); For now, set color value to white. We will
pVerts[01.dvSZ = D3DVAL(0.1); explain this later in the chapter.

pVerts[0].dvRHW = D3DVAL(1.0);
pVerts[0].dcColor = RGBA_MAKE(Z55,
pVerts[0].dvTU = D3DVAL(0.0);
pVerts[03.dvTV = D3DVAL(0.0);
/1 V1

pVerts[1].dvSX = pVerts[0].sx + D3DVAL(300.0);
pVerts[13.dvSY = pVerts[0].sy + D3DVAL(100.0);
pVerts[11.dvSZ = D3DVAL(0.1);

pVerts[1].dvRHW = D3DVAL(1.0);

pVerts[1].dcColor = RGRA_MAKE (255, 255, 255, 255);
pVerts[11.dvTU = D3DVAL(1.0);

pVerts[1].dvTV = D3DVAL(L1.0);

/1N 2

pVerts[21.dvSXsx = pVerts[0].sx + D3DVAL(150.0);
pVerts[2].dvSYsy = pVerts[Ol.sy + D3DVAL(180.0);
pVerts[2].dvSZsz = D3DVAL(0.1); :
pVerts[2].dvRHrhw = D3DVAL(1.0); 5
pVerts[2].dcColor = RGBA_MAKE(255, 255, 255, 255);
pVerts[2].dvTU = D3DVAL(0.0);

pYerts[2].dvTV = D3DVAL(1.0);

255, 255, 255)

The difference in setting up the vertices is the setting of texture coordinates

in the dvTU and dvTV fields of the D3DTLVERTEX structure. For each vertex, Z
we need to specify how it maps to the texture. All textures, no matter their
size, are defined to range from 0.0 to 1.0. Values for dvIU and dvTV need
not lie within the “0.0 to 1.0” range. We can specify any legal floating point
value, either negative or positive.

TEXTURE MAPPING WITH DIRECT3D = 239

How the rendering engine reacts to texture addresses outside the “0.0 to
1.0” range depends on the D3DRENDERSTATE_TEXTUREADDRESS state variable.
Valid values are D3DTADDRESS_WRAP, D3DTADDRESS_MIRROR, and
D3DTADDRESS_CLAMP. The default state is D3DTADDRESS_WRAP. Refer to the
Direct3D documentation for a deeper understanding of each state.

e’ve mostly
1der a

15.4.3 Setting Up Render Operations for Texture Mapping

Now we will set up the operations to render our texture-mapped triangle.
The code for this procedure again is pretty much the same as that from the
previous chapter. The significant difference is that we’ve now got to tell the
rendering engine to use texture mapping while rendering, and we need to
tell it which texture to use.

Looking through the various render states, we come across the
D3DRENDERSTATE_TEXTUREHANDLE state type. The TEXTUREHANDLE state type
with a D300P_STATERENDER opcode tells the rendering engine to use texture
mapping, and the operand specifies which texture to use:

Modify operations from the last chapter to render texture-mapped triangle.

LPBYTE 1pInsStart = m_pSysExBuffer + sizeof(D3DTLVERTEX)*3;
LPYOID 1pTmp = (LPVOID)IpInsStart;
OP_STATE_RENDER(1, 1pTmp);
STATE_DATA(D3DRENDERSTATE_TEXTUREHANDLE, m_hTexture, 1pTmp); €————
OP_PROCESS_VERTICES(L, 1pTmp);
PROCESSVERTICES_DATA(D3DPROCESSYERTICES_COPY, 0, 3, 1pTmp);
OP_TRIANGLE_LIST(1, 1pTmp);
((LPD3DTRIANGLE)TpTmp)->vl = 0;
((LPD3DTRIANGLE) TpTmp)->v2 = 1
((LPD3DTRIANGLE) TpTmp)->v3 = 2;
((LPD3DTRIANGLE) 1pTmp)->wFlags = 0;
TpTmp = ((char*)1pTmp) + sizeof(D3DTRIANGLE);
op_exit{1pTmp);
Tpbyte TpInstnd = (LPBYTE)1pTmp;

[l

o

Tell the rendering engine to render all of the following triangles using texture mapping with the
texture specified in the parameter. Once again, our code sets up Execute Buffer operations with ||
the macros in d3dmacs.h.

O A e G S i

oordinates Finally let’s create our Execute Buffer, copy our instruction stream into | |
ach vertex, device data space, and then describe our buffer to the 3D device. This code ‘
itter their is identical to code we’ve seen before:

TV need ;

ting point ‘

GO

240 m CHAPTER 15 EMBELLISHING OUR TRIANGLE

15.4.4

Same code as in the last chapter to set up an Execute Buffer on a 3D device.

m_ExDesc.dwFlags = D3DDEB_BUFSIZE;
m_ExDesc.dwBufferSize = m_sztkx;
p3dFns->CreatekxecuteBuffer(&m_ExDesc, &m_pExBuffns, NULL);

// copy triangle into execute buffer space
m_pExBufFns->Lock(&m_ExDesc);

1pTmp = (LPBYTE)m_ExDesc.lpbata;

memcpy (TpTmp, m_pSysExBuffer, TpInsEnd-m_pSysExBuffer);
m_pExBufFns->Unlock();

// describe execute buffer to 3ddevice
m_ExData.dwVertexOffset = 0;

m_ExData.dwVertexCount = 3;

m_ExData.dwInstructionOffset = IpInsStart - m_pSysExBuffer;
m_ExData.dwinstructionlength = TpInsEnd - TplnsStart;
m_pExBufFns->SetExecuteData(&m_ExData);

return TRUE;
}

L —

Run the demo for this chapter and check the Texture Mapping option. You
should see a texture-mapped triangle chasing the mouse around.

Handling “Lit” Texture Maps

We'd like to get back to something that we brought up earlier but left for
later. Remember when we were setting up vertices for texture mapping (in
15.4.2), we set the dcColor field of all the vertices to WHITE and said that we
would explain it later.

‘We mentioned earlier that

m the texel contribution is “blended” with the computed pixel value;
w blending is controlled by D3DRENDERSTATE _TEXTUREMAPBLEND; and
w the default blending state is D3DTBLEND_MODULATE.

D3DTBLEND_MODULATE multiplies source texels by computed values. Colors
within the Rendering module are treated as values from 0 to 1. Multiplying
values in these ranges will produce smaller results (unless either value is 1).
Therefore modulation reduces the brightness of color components unless
one of the source components is 1. The simplest way to ensure that the col-
ors of a texture do not change during texture mapping is to set dcColor to
WHITE (255, 255, 255) and to set dcSpecular to BLACK (0, 0, 0).

260

.

15.

Z-BUFFERING WITH DIRECT3D = 241

An alternate way to ensure that the colors of a texture do not change during
texture mapping is to change the RENDERSTATE_TEXTUREMAPBLEND render state
to D3DTBLEND_COPY. In Copy mode, the renderer ignores color computa-
tions and simply copies texels to the screen. But the textures must have the
same pixel format as the Primary surface, and they also must also use the
same palette. Our simple triangle application has been set up this way.

You should find changing render states to be pretty trivial by now. Here’s
the code that we insert into our Execute Buffer to use Copy mode:

// Don’t forget to increase the size of execute buffer needed
// change render state to use Copy mode
OP_STATE_RENDER(1, TpTmp);
STATE_DATA(D3DRENDERSTATE_TEXTUREMAPBLEND, D3DTBLEND_COPY, TpTmp);

l |

Run the demo for this chapter and turn on the Copy mode option. Toggling
Gouraud shading should have no effect. Turn Copy mode off then toggle

ption. You . .

1 Gouraud shading. Notice how the texture map colors have become duller?
One last point before we move on from texture mapping. Since a texture is
also a DirectDraw surface, we can render into the texture using DirectDraw

1t left for. surface functions, such as Lock() and Unlock(), and then texture map this

apping (in data onto a 3D object.

aid that we

] o L]
15.5 Z-Buffering with Direct3D
15.5.1 Why Bother with Z-Buffering?

value; Take a look at the two triangles in Figure 15-1. Let’s assume we have an Exe-

ind cute Buffer that has triangle 1 inserted first and triangle 2 inserted second.
Without Z-Buffering, the triangles are rendered in the order that they are
encountered. Triangle 2 will be drawn after triangle 1, and therefore it will

Colors be drawn on top of triangle 1 as shown in the figure.

Tultiplying

valueis 1). (0.0, 20,0, 0.3) (170.0, 0.0, 0.5)

ats unless

1at the col- ~+- [>

cColor to (20.0,150.0,0.5) (170.0, 150.0, 0.5) :

(0.0, 170.0,0.3) (150.0, 170.0, 0.3)

FIGURE 15-1 Triangles rendered from back to front regardless of Z-values.

242 m CHAPTER 15 EMBELLISHING OUR TRIANGLE

Now let’s take a look at the Z-values of the triangles. All the Z-values in
triangle 1 are 0.3, and all the Z-values in triangle 2 are 0.5. But viewport
coordinates are defined to go from 0.0 in front to 1.0 in the back, so by
this definition triangle 1 should have been drawn in front of triangle 2.
Instead, the renderer ignored the Z-values to render the triangles. (Withouyt
Z-Buffering, Z-values are only used to correct perspective while texture

mapping.)

Without Z-Buffering, it is our responsibility to sort the triangles and insert
them in the correct order. The compute expense to re-sort triangles may be
very expensive for some application scenarios. (For instance, for 3D models
j with many overlapping objects and complete freedom of movement. In
these scenarios it may be preferable to use Z-Buffering, so that the triangles
will be rendered according to their Z-values and regardless of the sort order,)

Let’s take a look at a second example as shown in Figure 15-2.

(0.0, 20.0, 0.3) (170.0, 0.0, 0.5)

(20.0, 150.0, 0.5) (170.0, 150.0

it
ﬁ;i ‘ (0.0,170.0,0.3) (150.0, 170.0, 0.3)

H FIGURE 15-2 Intersecting triangles rendered with Z-Buffering.

The ellipse highlights the Z-value of the second vertex in triangle 2. We've |

changed this Z-value from the previous value of 0.5 to a new value of 0.1. |
‘ This vertex is now in front of the vertices of triangle 1. As a result, triangle 2
{ i now partially overlaps triangle 1.

Once again, without Z-Buffering the renderer ignores Z-values, and it will
render the triangles without any overlap. Without Z-Buffering, it is our

responsibility to split up intersecting triangles. With complex models, we may .
want to opt for Z-Buffering, because the renderer will test the Z-value of
each pixel that it draws, and intersecting triangles will be correctly rendered.

155.2 Setting Up for Z-Buffering

Let’s look at the code needed to set up and use Z-Buffering. Z-Buffers in

| Direct3D are merely another form of DirectDraw surfaces. Unlike with 3D
devices and texture maps, there is no functionality applicable directly to
Z-Buffers, so there is no need to create a new interface object.

262

Z-BUFFERING WITH DIRECT3D = 243

ues in So creating a Z-Buffer is as simple as creating a DirectDraw surface. The only

wport point worth mentioning is that we don’t get to choose the Z-Buffer pixel
so by depth—this choice is made by the 3D driver. Well, how do we find out about
gle 2. the 3D device’s choice? There are two ways: use IDirect3DDevice::GetCaps()
(Withoyt or remember it from section 14.4.2, when we enumerated device drivers.
xture 5
In the code for this chapter, we've inserted our Z-Buffer analysis into our
device enumeration callback. Here’s the snippet of code that was inserted:
1d insert
s may be
) models Examine the chosen LPD3DDEVICEDESC structure for Z-Buffering support. :
1t In PGrFx->M_bCanZbuf = FALSE;
tl‘langles it pé cgcixgggﬁ;;ﬁﬁziuxigm thepth t=0) { Test for Z-Buffering support by looking
wt Order.) 5)/ bit dgpth s in DDBD %ormat at the dwDeviceZBufferBitDepth field.
DWORD ddbd = pChoice->dwDeviceZBufferBitDepth;

// convert to bpp format
pGrfx->m_dwZBufferBPP = cvtToBPP(ddbd);

Even though dwDeviceZBufferBitDepth is specified using the packed DDBD format, the
documentation for D30DEVICEDESC states that this field can only be one of these formats: |
DDBD_8, DDBD_16, DOBD_24, or 0DBD_32. Packed DDBD format are #defines that need to be i i
converted to get pixel depth.

L |
g Now that we know that our device can Z-Buffer (and we know the depth of
its Z-Buffer), we can go on to create a Z-Buffer using straightforward
DirectDraw code:
2. We've
rof 0.1. |
riangle 2 BOOL CSurface3d::InitZbuffer(LPDIRECTDRAWZ pDDraw, DWORD dwZBufferBPP)
{
it will Setup descriptor for Z-Buffer (a special form of DirectDraw surfaced
1t wi
, //use same width and height as 3d surface; use specified bpp >
ur m_ZSurfDesc.dwHeight = m_dwHeight; E
we may , m_ZSurfDesc.dwWidth = m_dwWidth; Request Z-Buffer. <
£ - m_ZSurfDesc.dwZBufferBitDepth = dwZBufferBPP; o
ue o . // set caps flag
endered. - m_ZSurfDesc.ddsCaps.dwCaps = DDSCAPS_ZBUFFER;
’ § . DWORD dwMem = (m_bIsVidMem) ? DDSCAPS_VIDEGMEMORY : DDSCAPS_SYSTEMMEMORY ;]
L m_zSurfDesc.ddsCaps.dwCaps |= dwMem; €————— pui 7 Bufferi |
i // set which fields in structure were valid Iémorfafgglfff’ﬁi&
z ; m_ZSurfDesc.dwFlags = DDSD_WIDTH | DDSD_HEIGHT; .
ers in :"i m_ZSurfDesc.dwFlags |= DDSD_CAPS | DDSD_ZBUFFERBITDEPTH;
with3D
tly to § ;
i

263

244 v CHAPTER 15 EMBELLISHING OUR TRIANGLE

// Create Z-buffer using DirectDraw create surface
pDDraw->CreateSurface(&m_ZSurfDesc, &m_pZSurffns, NULL);

return TRUE;
! Create the Z-Buffer!

’ N

We've created our Z-Buffer, but as of yet it’s floating around freely, single
and unattached. We’ve got to marry it to our 3D surface. It so happens that
we cannot attach the Z-Buffer directly to the 3D surface. Instead we’ve got to
use a matchmaker—the 2D surface that was “converted” to the 3D surface,

BOOL CSurface3d::AttachZbuffer(LPDIRECTDRAWSURFACE p2dFns)
{
// Attach the Z-buffer to the 2dSurface so D3D will find it
p2dFns->AddAttachedSurface(m_pZSurffns); :
// set internal state and return
m_bIsZEnabled = TRUE;
return TRUE;
}

L :]

One more task: we’ve got to tell the renderer to use Z-Buffering. As usual,
we communicate with the renderer through an Execute Buffer. Here are
the state variables that we’ve got to toggle to let the renderer know about
Z-Buffering:

LTurn on Z-Buffering by setting the D30RENDERSTATE_ZENABLE to TRUE.

// Don’t forget to increase the size of execute buffer needed
OP_STATE_RENDER(L, TpTmp);
STATE_DATA{D3DRENDERSTATE_ZENABLE, m_bIsZEnabled, TpBuffer); €«—
STATE_DATA(D3DRENDERSTATE_ZWRITEENABLE, m_bIsZEnabled, TpBuffer); :
STATE_DATA(D3DRENDERSTATE_ZFUNC, D3DCMP_LESSEQUAL, 1pBuffer); D E—)

Although their default values are adequate for our purposes, you may also want to look at
the states of the additional two Z-Buffering control states:

D3DRENDERSTATE_ZWRITEENABLE Default is TRUE. If set to FALSE, the renderer will continue

D3DRENDERSTATE_ZFUNC Default is 03pcMP_LESSEQUAL. With the z-comparison

Refer to Direct3D documentation for more information.

to examine the Z-Buffer while rendering (as specified by
__ZENABLE); but it will not update the Z-Buffer with new
z-values.

function, you can change the way the renderer interprets
z-distance. For instance, you can reverse z-ordering by
setting the state to D3DCHP_GREATEREQUAL.

L |

264

]

single
ens that
ve got to
surface,

~ WHAT HAVE
_ You LEARNED?

usual,
e are
about

Z-BUFFERING WITH DIRECT3D = 245

Run the demo for this chapter; check both the Z-Buffer option and the
intersecting triangles option. Play around with toggling Z-Buffering on and
off and see how the intersecting portion of the triangle 2 is and isn’t ren-
dered. You should also notice that the render order of the triangles changes
as you switch between Z-Buffered and non-Z-Buffered rendering.

It’s time to conclude this chapter. We proclaim you to be proficient with
Direct3D—that is, as long as you actually worked with the code!

Wow! Our triangle has come a long way, baby! We started the chapter with a plain old
triangle with a single color that left triangle trails. Here's what we have accomplished since
then:

s The first thing we covered was removing those annoying triangle trails through
Direct3D backgrounds. Along the way we learned about and worked with Direct3D
materials.

m Next we looked at how Direct3D dealt with coloring and shading triangles. Then we
played around with vertex colors to see how Gouraud shading looked.

m Gouraud shading produced banding artifacts, so we leamed about render states and
improved the quality of Gouraud shading by changing a render state to turn on
dithering.

® With ever increasing confidence in navigating through Direct3D, we tackled texture map-
ping—"converting” a DirectDraw surface to a texture object, and rendering triangles with
our texture map.

& Finally, we tried our hand at some true 3D rendering—turning on Z-Buffering and even
rendering intersecting triangles correctly.

We have come a long way from where we started. We're sure you're pretty handy with
Direct3D programming by now. Let's turn our attention to performance in the next chapter.

~ WHY READ
- THIS CHAPTER?

CHAPTER 16
===

Understanding and Enhancing
Direct3D Performance

Previous chapters showed rendering a simple triangle with Direct3D, adding various shad-
ing options, and then adding texture mapping to the triangle. But we were mainly con-
cerned with getting the basic application running, so we didn't really pay much attention
to how fast it ran. In this chapter we'll take our measuring microscope out and measure
the performance of our previous examples. Then we'll look at ways to accelerate these
samples.

By working through this chapter you will
m get afeel for the performance of various rendering options with the RGB model driver,

@ leam how to use the Ramp model driver to get better performance, and
® measure the results of rendering using the Ramp model driver.

16.1 How Fast Does Our Triangle Run?

We've been drawing triangles with various options through Direct3D. So
far we've focused on getting things to work and on exploring possibilities. -
But for serious multimedia application development, we’ve also got to
focus on performance.

Direct3D’s Immediate mode API is a very low level APL But it was designed
this way to offer high performance. In which case, why measure perfor-
mance? Shouldn’t the fact that we're using Immediate mode be sufficient?
Sadly, no. Not all performance paths are equal (some are more equal than
others).

B 247 =

266

PART V

|

248 m CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D PERFORMANCE

16.1.1

Let’s measure the performance of our triangle on Direct3D and then look at
performance enhancement opportunities. But first a word about our me.
surements:

m All measurements were taken on our base platform described in Section 2.5,
Results will definitely vary on different platforms or even on the same
platform with different display configurations.

We have included the timing application and its source code on the D,
Use it to profile your platform and see how it performs.

We have separated the timing source code from the source for the basic
demos, to simplify reading the base code and to give you a performance
tool to measure various configurations.

Stages of Rendering Our Triangle

Let’s start by looking at what it takes to render a scene. We have broken the
scene rendering into the following stages:

m Init. This stage occurs once while the entire application is being initialized. We
put all our one-time initialization activities into this stage. This stage is typically
not time critical, and we do not measure this stage.

m Prepare Scene. This stage occurs at the start of every scene render. We invoke
IDirect3DDevice::BeginScene() in this stage. If we used Z-Buffers, we would
typically clear them in this stage (prior to objects being rendered).

® Draw background. If a background was created, then we would invoke
the Background::Blt() function in this stage, which translates to
IDirect3DViewport::Clear(...target...) in Direct3D. We are not measuring
a background for our base case triangle.

m Edit Execute Buffer. Typically, objects in a 3D scene are moving around. (If we
were only going to draw a stationary object, then we might as well Blt a bit-
map.) This is the stage when we edit the Execute Buffer. We then need to
transfer the edited data to the Direct3D driver, using the hopefully familiar
Lock, Copy, and Unlock sequence.

& Set Execute Buffer. In the code from the previous chapters, we saw that after
transferring Execute Buffer data, we described the makeup of the new Execute
Buffer to the Direct3D device.

m Execute. Here's where we get the device to execute our Execute Buffer (or
Buffers, if we had many).

= End Scene. This stage occurs at the end of every stage render. First we invoke

IDirect3DDevice::EndScene(). Next we set our palette and refresh the win-
dow with the newly rendered scene.

267

2n the

2d. We
ipically

invoke
would

e
ing

(If we
a bit-
d to

viliar

it after
xecute

r (or

win-

i
nvoke :;
|

16.1.2

How FAST DOES OUR TRIANGLE RUN? =& 249

Measuring the Rendering Stages of Our Triangle

Table 16-1 measures the time taken in the various rendering stages to ren-
der our triangle. We are using the Direct3D RGB color model driver with
no hardware acceleration. (The default Rendering state is Gouraud shaded,
solid fills with specularity enabled, and dithering disabled.)

TABLE 16-1 Timing Render Stages for Our Base Triangle

Prepare scene 0.0 0.0
Edit Execute Buffer 10.9 0.4
Set Execute Buffer 3.3 0.1
Execute 75.1 60.6
End scene 75 75

We measured two scenes: The first scene had 625 small triangles. For this
initial test, we invoked Blt for every triangle. All the triangles were of the
same shape—with reference vertices of (0,0), (16, 16), and (0,16)—for a
size of 128 pixels per triangle and 80,000 pixels per scene. We chose this
configuration based on experience as representative of medium complexity
3D applications.

The second scene had 16 large triangles. Again, we used triangles of the
same shape and invoked Blt for each one. Reference vertices were (0,0),
(100, 100), and (0,100)—for triangles of 5,000 pixels each and 80,000 pixels
per scene. We measured this configuration to demonstrate the impact that
polygon size can have on render performance.

We varied the positions of the triangles in each scene to study the effect of
alignment. The tabulated values are the averaged results.

Following are some observations on the results:

m Large triangles rendered significantly faster than small triangles. Even
though the total pixels in both scenes were the same, the render time for
the second scene was much faster than the first scene. This indicates that
you would increase performance by using, wherever possible, larger tri-
angles instead of a bunch of smaller triangles.

268

250 m CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D PERFORMANCE

m The cost of invoking BeginScene() and EndScene() in this example j
imperceptible.

= Editing the Execute Buffer to reposition vertices consumes a significant
amount of time in scene 1. (The cost is not noticeable in scene 2, since
there aren’t too many triangles in that scene.)

Prepar:
16.1.3 Trimming Some Fat from the Rendering Stages
Let’s make changes to our Render stages to see if there’s some easy perfor.
mance pickin’s to be had:

m Set Execute Buffer (7). If our only changes to an Execute Buffer are data re.
lated, and we do not change the makeup of the Execute Buffer, then do we
really need to “redescribe” the Execute Buffer to the Direct3D device? The

Direct3D documentation does not specify what's correct behavior. We ran

tests and found that we do not need to “redescribe” if only the data changes.

(In fact, as long as the four fields of the D3DEXECUTEDATA structure do not

change, then we can even change instruction opcodes and operands without

“re-describing” the Execute Buffer.)*

m Set Execute Buffer (2). If we only wanted to change a couple of vertices, do
we really have to recopy the entire buffer to the Direct3D device? In other
words, can we see our previous data with the pointer returned by Lock()? We
ran tests and found that yes, indeed, we do get access to our previous data,
and we can edit in place if we wish. *

® £nd Scene. Our initial code reset the palette on every scene render. Again, we
ran some tests and found that the Direct3D RGB color mode| driver does not
change the palette from frame to frame. We rewrote our code to set up the
palette only when our application gets focus and removed this work from the
End Scene stage*

m Execute. Ourinitial code invoked Bft() on each triangle. We were executing an
Execute Buffer with only one triangle. We rewrote this code to execute all our

triangles (625 or 16) via single Execute Buffers (using only one buffer per list
of triangles)*

* You may wish to reverify the results and rerun these tests with any hard- 16..
ware accelerator drivers you choose to use.

Table 16-2 lists new measurements based on the edited code:

269

NCE MEASURING SHADING OPTIONS m 251

xample j TABLE 16-2 Trimming Some Fat from the Render Stages

;igniﬁ(:ant
1€ 2, SinCe -

' ‘prepare scene
dit Execute Buffer 109 0.4 (Al 0.0* 10.4
[Set Execute Buffer 33 0.1 0.0 0.0 0.0
’ Execute 75.1 60.6 72.4 60.7 - 754 60.7

r perfor_

e data re- [End scene

en do we

We ran “We used pre-initialized Execute Buffers, while testing Long Execute Buffers, and we have listed only the time taken to copy
Changes the buffers to the 3D device space. For a fair apples-to-apples comparison, you would need to add the time taken to edit

do not ' the vertex positions in the pre-initialized Execute Buffers.

Is without

rices. d Following are some conclusions based on our code rearrangement:

rtices, do

)réko g}’e\;Ve = Not “redescribing” the Execute Buffer and using Long Execute Buffers

ous data saved 16 milliseconds in scene 1. While the savings are low relative to the

Execute cost, we will find that the savings are significant when we find

Again, we faster Execute methods (as we will see later in this chapter).

does not m None of the changes produced any significant tangible benefit for scene 2,

st up the which indicates that overhead in Direct3D has been minimized, and it
from the would only become significant over a large number of invocations.

, m Not setting the palette only saved 0.3 milliseconds. This is a useful mea-
cuting an surement to remember, since you can retain the code to constantly
er per list change palettes in case a Direct3D driver does change palettes frequently.

L) -)
ny hard- 16.2 Measuring Shading Options

Over the course of the previous two chapters, we have rendered our triangle
with a variety of options, including Gouraud shading, flat shading, dither-
ing, texture mapping, and Z-Buffering. Let’s look at how these options
affect our render performance.

16.2.1 Measuring the Performance of Shading Options in Our Triangle

Table 16-3 measures the time taken to draw triangles with various shading
options. We are using the Direct3D RGB color model driver with no hard-
ware acceleration. We are only measuring one of the two scenes from the

3

§

.

|

.

ite all our E
i

i

z

252 @ CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D PERFORMANCE

previous tests—the scene with sixteen triangles of 5,000 pixels each. Once
again, we drew the triangles at various alignments and have tabulated ave;.
aged results. The timings listed are only those taken to render the sprites,
Redrawing backgrounds and refreshing the screen are additional costs,

TABLE 16-3 Timing Sixteen Triangles with the Direct3D RGB Color Model Driye,

Gouraud 55.3 milliseconds

Gouraud (with constant colors) 55.3 milliseconds 1.45
Flat shaded 55.3 milliseconds 1.45
Gouraud and dither 55.3 milliseconds 1.45

Two glaring observations leap out at us:

s Flat shading does not perform better than Gouraud shading. You would
expect that not computing shaded colors would result in better perfor-
mance. But it doesn’t.

® Enabling dithering does not reduce rendering performance. This is a rare
occasion—you can add an improvement at no performance cost.

Since varying shading options didn’t make any difference whatsoever to
rendering performance, we decided to see whether this constant perfor-
mance persisted after we added some specular highlights.

Table 16-4 compares the performance of the shading options with and
without specular highlights. We found that adding specular highlights cost
us a 9 percent performance penalty.

TABLE 16-4 Measuring the Impact of Adding Specular Highlights

Gourau

55.3 milliseconds

60.3 milliseconds

Gouraud (with constant colors)

55.3 milliseconds

60.3 milliseconds

Flat shaded

55.3 milliseconds

60.2 milliseconds

Gouraud and dither

55.3 milliseconds

60.0 milliseconds

271

MEASURING SHADING OPTIONS = 253

h. Ongce Note that all these measurements were taken with the RGB color model
ited aver. driver rendering to an 8 bpp palletized target surface. Since shading options
sprites. and specular highlighting modify individual RGB components, you can bet

‘0sts,

that performance on 16-, 24-, and 32-bpp targets will be very different.

odel Driver

16.2.2 Measuring the Performance of Texture-Mapping in Our Triangle

Next we move on to measuring texture-mapped triangles. Remember from
our discussion of rendering options in Section 15.3.3 that

m texture mapping can be disabled, but shading cannot;

Su would B the;i default texture mapping mode combines texels with shading values;
r perfor- an
m texture mapping needs to be set to Copy mode to turn shading off.
;ls arare Table 16-5 tabulates measurements of rendering our triangles with a tex-
’ ture map of 64 X 32 pixels. For good measure, we've included the impact of
ver to adding specular highlights to our texture-mapped triangles.
arfor-
TABLE 16-5 Texture-Mapped Triangle with and without Specular Highlights
and - ?[‘
thtscost |
ats * Texture and 62.5 128 68.2 118 -
':3 ~ Gouraud E
. Texture and Flat 625 1.28 67.9 1.18 &
! Shaded
eco | Texture and 62.7 1.28 67.9 1.18
1 Gouraud and
econds Dither
econds | Copy Mode 5.56 14.4 5.56
econds |

272

254 8 CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D PERFORMANCE

16.2.3

Wow! CopyMode gives us more than four times better performance over
Modulated mode texture mapping (with shading options turned on). Ay
obvious conclusion is that making an effort to use pre-lit textures will def.
nitely reap significant performance benefits. You could even use texture
mapping with flat-shaded textures to get high-performance flat shading,

Adding a Z-Buffer to the Recipe

There was one other option that we looked at in the previous chapter:
Z-Buffering. Without Z-Buffers, your application must send triangles to
the renderer sorted in back-to-front order, and your application must alsq
subdivide intersecting triangles.

With Z-Buffers, the driver correctly renders both unsorted and intersectin

triangles, saving your application the cost of sorting and subdividing. So
how much does Z-Buffered rendering cost?

TABLE 16-6 Rendering Cost of Z-Buffering (Direct3D RGB Driver)

Gourau Iseconds 60.8 milliseconds

553 mi

Gouraud and Specular 60.3 milliseconds 66.6 milliseconds
Texture Map and Gouraud 62.5 milliseconds 69.5 milliseconds
Texture Map CopyMode 14.4 milliseconds 30.1 milliseconds

Table 16-6 compares the cost of rendering our triangle with and without
Z-Buffering. And the verdicts are in:

e Rendering with Z-Buffering is more expensive than rendering without.
No surprises here, since Z-Buffering increases memory traffic.

m The cost of Z-Buffering is only in the 10 percent range for the expensive
rendering options, suggesting that Z-Buffering is a viable option in cases
where performance isn’t supercritical.

s Rendering with Z-Buffering severely impacts CopyMode. This is unfortu-
nate, since CopyMode is our fastest mode. Therefore, for high-performance
3D, you really need to measure the cost of sorting and segmenting triangles
and compare this cost against the cost of Z-Buffering.

Our Timing Application gives you an opportunity to measure how much
7-Buffering will cost you. We hope that measurements (or measurement tools)
like these will help you decide whether the performance of Z-Buffering is ade-
quate or whether it’s worth investing the effort on the non-Z-Buffered path.

273

>?21%§

MEASURING SHADING OPTIONS = 255

Nate In addition to rendering options, other factors also affect rendering performance.
/\N/\/\/‘\’/\‘NN Both the size and the shape of a triangle can have effects on performance. Simi-

). An

lllllr;leﬂ % larly, with texture-mapped rendering, the size and shape of textures also have an
impact on rendering performance.
fing, SPO s P gp
16.2.4 Getting Perspective: Comparing 3D (RGB Mode) to 2D
T OK, we've bandied around numbers from 14 milliseconds to 70 milli-
s to seconds. But we’ve been comparing various options within the 3D realm.
st also How do we know whether these numbers are acceptable? What if we com-

pare our 3D rendering throughput against the 2D throughput we have seen
when we worked with sprites in Part II?

secting
2.So

Of course, 3D rendering will probably be slower. But how much slower—
let’s get some perspective. Table 16-7 compares Sprite render times from
Part IT to our measurements from this chapter. Note that the sprites in Part
I were also about 5,000 pixels, and each was rendered sixteen times. In
terms of speed, the comparison puts our best 3D render mode on an even
par W\ith spriting through GDI. Talk about backwards! We need to get better.

TABLE 16-7 Comparing 3D Throughput *o 2D Sprite Throughput

GDI 14.2 milliseconds 5:96*
CSpriteCCode 11.9 milliseconds 7.12%
CSpriteP5 ~1.5 milliseconds 56.5*
CSpriteGrix ~1.5 milliseconds 56.5*
CTriangle3D (Gouraud) 55.3 milliseconds! 1.45
CTriangleTex(Copy mode) 14.4 milliseconds! 5.56

* Some pixels are transparent, and throughput is somewhat less than what these figures
indicate.

1 Measurements will take longer when ClriangleTex is rendered directly to a triple-buffered
video memory surface.

nfortu-

|

rmance
riangles Why is it so important to get better performance? Let’s assume

m that we’d like a real-time feel with a frame rate of around 30 fps. At this
nuchl) frame rate we get 33 milliseconds per frame to work with; typically about
ttools
is ade-
ath.

274

256 @ CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D PERFORMANCE

half this time is consumed on peripheral activities such as responding

the user and carrying out geometry and lighting computations and audi,

and 2D graphics activities; 1
B a best-case scenario where the graphics device has enough memory t,

support triple buffering, and screen refreshes are occurring at no cost:
o
and

m that we'd like our application to occupy a screen resolution of abgy;
640 X 480; a 640 X 480 background gets drawn to the triple-buffered viq.
eo surface at a cost of 5 milliseconds.

We're left with about 12 milliseconds for 3D rendering. Our best perfor-
mance mode will render in that time about 65,000 pixels to a system mem-
ory buffer. Even if no pixel was rendered more than once, we would be
painting an area of about 320 X 200 with 3D pixels—Iess than one quarter
of the screen area. With more realistic assumptions that pixels are touched
about 1.5 times on average, our 3D coverage reduces to about 240 X 180——
postage-stamp-sized field of action.

Better perfom}ance means covering more of the screen area with 3D pixels
or alternately it means being able to run richer multimedia applications with,
for example, full-motion video being used as texture map sources. So let’s
look at Direct3D’s high-performance option—the Ramp (Mono) color
model driver—to see if we can get better 3D rendering performance on a PC,

| 16.3 Improving Performance Using the Ramp Driver

We've mentioned before that the DirectX SDK ships with two implementa-
tions: an RGB color model driver and a Ramp (Mono) color model driver.
The RGB driver offers truer color quality but runs more slowly. The Ramp
(Mono) driver makes color approximations that degrade overall quality,
but it offers higher performance. Let’s start using the Ramp color model
driver.

16.3.1 Loading the Ramp Color Model Driver

Right after we started using Direct3D in Section 14.4.2, we looked at code
to enumerate available device drivers. With the code listed there we selected
a driver based on a selection criteria that we passed down. Among the pos-
sible selection criteria was USE_RAMP. At the initialization level, loading the
Ramp driver is simple, as shown in the code.

275

