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Why Read This Book?

There's Lots of New Stuff to Learn

In the past few years, the pace of technology growth has been exhilarating.
Microsoft launched VN/indows 95. Intel debuted the Pentium, Pentium Pro,

and MMX technology processors. Netscape burst the Internet pipe with a
new class of applications and architectures. These companies and others

paraded out a slew of new multimedia architectures. And you’ve never

before felt so lost in space.

Maybe you’re familiar with programming for V/Vindows 95 and now want to

deliver Windows 95 multimedia applications, and you’re wondering where

to start. Or maybe you’ve programmed multimedia for DOS/\/Vindows 3.1,

and now you’re scrambling to learn Windows 95, learn the new computing

environment, and then learn to deliver high—performance multimedia in
this environment.

Well, several new architectures have been introduced to help you deliver

high—performance multimedia under \Vindows 9x,] such as DirectDraw

1. Windows 9x stands for both Windows 95 and the upcoming Windows 98.
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DirectSound*, Direct3D*, DirectShow*, RealMedia* , Realistic Sound Expe-
rience (3D RSX), Realistic Display Mixer (RDX), and so forth. But now
you’ve got to learn these new architectures, and you’ve got this steep learn-
ing curve on your hands.

On the hardware frontier, the power of personal computers has increased at

a dramatic pace~—both in processor and peripheral power. The Pentium,
Pentium Pro, Pentium II, and MMX technology processors, the accelerated
graphics port (AGP) bus, and the various graphics hardware accelerators are
recent hardware advancements that affect multimedia performance. Surely

your applications would sizzle if you mastered these advancements. But
mastering these advancements only increases the learning curve.

And, of course, the Internet adds yet another dimension to the puzzle. The
new programming space includes Internet browsers and their plug—ins;
programming languages such as Java, HTML, and VRML; Internet archi-
tectures such as ActiveX, RealMedia, and a huge list of applications such as
Internet Phones and Chat VVorlds. More to learn, more to wade through,

more time to spend.

Lightening the Learning Burden
As multimedia developers, we constantly investigate, evaluate, or learn
these new technologies. Our typical sources are technical reference manuals
and sample applications. I/Vith so many recent products, we’ve got a huge
quantity of material to wade through. VVhen time is precious, as it invari-
ably is, just getting started can be an overwhelming problem. Spending
time getting started eats away from time allocated for finishing touches and
product testing. And overall quality suffers when we’ve spent too much
time just getting up to speed.

VVouldn’t it be nice if there were a simple way to just get started? To grasp
the bare essentials and leave the esoteric stuff for on-the—job training (those
need—to-know moments)? To steer clear of performance pitfalls? I/Vell, do

we have a deal for you. We, the authors, have been involved in various
aspects of multimedia development on the PC for five long years. Through
our employment at Intel and through our relationships with Microsoft and
other key players, we’ve had the privilege to influence the architectures of
processors, peripherals, platforms, and software components toward the
betterment of multimedia on the PC. During that time, we’ve done our fair

share of defining, reviewing, and implementing numerous multimedia
architectures, both software and hardware.
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With this book, we hope to use our internal vantage point to give you a

jump start to high—perfor1nance multimedia development for VVindows 9x.
We’d like to help you cut to the chase; focus on the bare necessities; stick to

the essentials; and jump—start a variety of offerings. What’s more, we're hop-

ing to take you a step beyond getting started-—to extracting performance.

VVe hope to provide you with a quick start to a wide spectrum of multi-
media advancements for \/Vindows 9x. VVe hope to answer questions like

Where do I start? Mflzat do I really need? How little can I get away w1'tl1?How
do I get it to runfaster? '

A dose of caution: there’s more than one way to get jump—started and more

than one Way to extract performance. We’ll share our experiences with you,

show you “a” way. VVe hope you’ll come away with some tricks, of course,
but more important, we hope you’ll come away with a thought process—an

approach.

VVe’ve tried to maintain a light flavor. \/Ve hope you’ll have some fun along
the way.
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INTRODUCTION

 

Organization
and Conventions

W]-[Y READ Since we're talking about the organization of the chapters, it's only appropriate to note that

THIS CHAPTER? all chapters start with the question above: "Why Read This Chapter?" Our purpose is to
present you with a summary of what we intend to cover in the chapter. We recommend
that you read the segment to see if what you will get is what you want.

This chapter shows you how we arranged the book, to help you get the most benefit out
of it. In the following pages, we

describe who we wrote the book for,

show you how we present our material,

outline the organization of the book, providing overviews of each chapter,

show some conventions we use to highlight information, and

list the tools that you'll need when working with the companion CD.

I.l About the Book

When we started to outline the material for this book, we quickly recog-

nized that we would be covering a lot of ground. We struggled with what to

present and what to ignore. We asked ourselves, “What kind of a book
would We have wanted when we started doing whatever we started?”
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XXII ORGANIZATION AND CONVENTIONS

I.I.I Where We're Coming From

Because of our roles at Intel, we’ve had the good fortune to work on Win-

dows multimedia architectures right from their infancy. In our work we

applied both our architectural and our CPU optimization skills, and we used
them across a wide range of multimedia avenues.

Of late, we’d been called upon to help a number of software companies
with their multimedia problems. Intel funded and continues to fund these
software activities, in the interest of encouraging overall PC sales by pro-

moting new uses for the PC; and in the interest of boosting demand for ‘
newer, higher—perfor1nance PCs, by promoting CPU—intensive applications.

To address multimedia performance issues, we would typically optimize
critical sections of the assembly code. However, when the performance bot-

tlenecks are at the system level, we would have to demonstrate the use of (or
even develop) appropriate Windows multimedia architectures.

And this led us to think that we could write a book to offer the same thing

to a larger audience, to help others get started on a number of different
multimedia architectures, to help others extract a lot of performance from
the PC multimedia architecture.

Where We're Not Venturing

VVe can’t claim to be The Experts in PC multimedia. The field is too big, and
there are too many excellent software engineers out there for us to presume
such a status. Nonetheless we feel we’ve been down some paths before and

can share that experience with you, to get you started.

I/Ve didn’t want to delve deeply into the gory details of any single architec-
ture; that’s what the reference documents are for. Instead, we decided it

would be better to get you started with the architectures, and we’re sure that
your application needs will steer your further learning.

On the flip side, with the breadth of architectures we wanted to cover, we
knew we would have to skip basic concepts to do the architectures any jus-
tice. So we’ve presumed some prerequisite knowledge and targeted the book
to reasonably experienced programmers. V/Ve also narrowed our selections to
focus on recent/emerging advancements so as to avoid merely putting a
fresh spin on previously published information.
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CHAPTER ORGANIZATION I XXIII

l.1.3 Who Should Read This Book

OK, so who did we think we could help? It was clear to us that our readers
would

already know how to program under Windows,

understand multimedia concepts and terminology,

be familiar with programming with C, C++, and for some sections, even

assembly language (Intel Architecture), and

appreciate, or even prefer, a hands—on learning approach (like to learn by
being pointed in the right direction and then be free to find their own

way around).

l.2 Chapter Organization

Armed with a clearer picture of our identity and our readers, we were able

to outline our approach. On the one hand, we wanted to get our readers

started quickly on the latest multimedia architectures. On the other hand,

we wanted to show them how to extract high performance on Intel Archi-

tecture multimedia PCs. Ergo, we have decided to provide simple samples!

We have partitioned the book into six major parts. Each part focuses on a

specific area of multimedia, with its chapters sequentially building on each

other. We specifically tried to use the same or similar samples within each

part. There are a total of twenty~three chapters in the book. VVe concen-

trated on making each chapter brief, less than thirty pages each, so that

wordiness wouldn’t dilute our subject matter. We deliberately chose the

compact format to improve retention (make it less likely for readers to for-
get what was said before).

Let’s take a closer look at what we cover in each of the parts/chapters.

Part I: Surveying Multimedia

Chapter 1 Overview of Media on the PC. This chapter gives just a small

overview of current multimedia architectures on the PC. We give a brief

pass on the Graphics Device Interface (GDI), DirectDraw, DirectSo und,

Direct3D, DirectShow, Realistic Display Mixer (RDX), and Realistic Sound
Experience (3D RSX).

Chapter 2 Processor Architecture Overview. Here we approach media

from a hardware perspective. We give a high—level architectural overview of
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the Pentium, Pentium Pro, the Pentium processor with MMX technology,

and the Pentium 11 processors. We also touch on the system point of view
and why it is essential to optimize for the system as well as for the processor.

Part II: Sprites, Backgrounds, and Primary Surfaces

Chapter 3 Simple Sprites in GDI. This chapter introduces the concept of
transparent sprites and backgrounds under Windo ws. V\7e show you how to
draw backgrounds and transparent sprites using GDI.

Chapter 4 Sprites with DirectDraw Primary Surfaces. We take our sprite
to the next level with a DirectDraw Primary surface. We show you how to

create a Primary surface to get direct access to the display screen. V\7e then
rewrite the sprite to be drawn onto a Primary surface and compare its per-
formance with the GDI implementation.

Chapter 5 Hardware Acceleration via DirectDraw. Here we show you how
to implement our beloved sprite using hardware Bltters on graphics adapt-
ers. We then show you how to use Page Flipping hardware to minimize the
cost of double—buffering incurred in the Primary surface implementation.
Finally, we compare the performance gain of this implementation with the
Primary surface implementation.

Chapter 6 RDX: High-Performance Mixing with a High-Level API. Realistic
Display Mixer (RDX) provides a high—level mixing interface without sacri-
ficing performance. RDX uses hardware acceleration if available; otherwise
it uses assembly code tuned for various processor flavors. VVe show you how
to implement sprites with RDX, and we compare the performance of this
implementation to GDI and DirectDraw implementations.

Part III: Making the Media Mix

Chapter 7 Video under Windows. This chapter introduces current multi-
media architectures under Windows, including Multimedia Command

Interface (MCI), Video for Windows (VFW), QuickTime for V\7indows
(QTW), and ActiVeMovie.

Chapter 8 DirectSh0w Filters. VVe start with an overview of the Direct-
Show filter graph architecture and show you how to use the graph editor to
manipulate filters. VVe then show you how to build source, transform, and
rendering filters, and explain how the connection mechanism works. Next
We discuss filter registration, custom interfaces, and filter property pages.
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Chapter 9 DirectShowApplications. Building on the previous chapter, we
show you how to use filters from an application. We show you how to build
a filter graph directly using the DirectShow COM interface and the Direct-

Show control interface. 'We then show you how to access custom interfaces
and property pages.

Chapter 10 Mixing Sprites, Backgrounds, and Videos. In this chapter we
show you how to use RDX to access Directshow filters. We also explain how
simple it can be to overlay a sprite on top of a video and even a video on top
of another video.

Chapter 11 Streaming down the Superhighway with RealMedia. In this
chapter we look at the latest architecture from RealNetworks, which is a

cross—platform architecture. We’ll show you how to build custom File-For-

mat and Rendering plug—ins, which allow you to stream custom data types
over the Internet. \/Ve’ll also show you how to use RealMedia audio services.

Part IV: Playing and Mixing Sound with Directsound
and RSX 3D

Chapter 12 Audio Mixing with DirectSound. VVe start the chapter with an

overview of Microsoft’s DirectSound. Then we show you how to play a sim-
ple WAV file. VVe then teach you how to mix two sound files and how to

control the format of the final output——after mixing.

Chapter 13 Realistic 3D Sound Experience: RSX 3D. RSX provides a

high—leVel programming model optimized for the Intel Architecture. V\7e
start the chapter with an overview of lntel’s RSX 3D audio, and then we

show you how to play one or more I/VAV files with it. VVe then give you an
overview of RSX’s 31) sound model and show you how to achieve a realistic
sound experience with it.

Part V: Welcome to the Third Dimension

Chapter 14 An Introduction to Direct3D. VVe kick off our 3D section with

background on 3D on the PC and an overview of Microsoft’s Direct3D.
Then we discuss Direct3D’s modes and its Immediate mode architecture.

The main purpose of this chapter is to give you the bare minimum code

needed to render a triangle in Direct3D’s Immediate mode.
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Chapter 15 Embellishing Our Triangle with Backgrounds, Shading, and
Textures. In this chapter we add some bells and whistles to the default triangle
we helped you create in the previous chapter. We work through shading
options, texture mapping, and Z—Buffering, and we also render Direct3D-
based backgrounds.

Chapter 16 Understanding and Enhancing Direct3D Performance. In
previous chapters we focused on getting our application running. In this
chapter we focus on how fast Direct3D performs. We then use the Ramp
driver to increase render performance and measure our improvements.

Chapter 17 Mixing 3D with Sprites, Backgrounds, and Videos. We next
look at integrating 3D with the media we worked with in previous parts
(sprites, backgrounds, and videos). We walk you through displaying a 3D
object in a 2D world, and we render a texture—mapped triangle with a video
as a texture source.

Part VI: Processors and Performance Optimization

Chapter 18 The Pentium Family. In the first chapter of this part we give
you an architectural overview of the Pentium, Pentium Pro, and MMX
technology processors. But first we define some of the terms and concepts
that are used throughout Part VI. ‘Ne then give you the 10,000—foot View of
these processors so that you will begin to see how they differ from one
another. Finally, we show you how to distinguish between the different flavors
of these processors.

Chapter 19 The Pentium Processor. This chapter gives you a detailed View
of the internal components of the Pentium processor and shows you what’s
important so that each component can attain optimal performance. We
then analyze the assembly sprite from Part II for performance problems
and sh ow you how to fix them.

Chapter 20 The Pentium Processor with MMX Technology. Here we
introduce the MMX technology instruction set, registers, and data types.
We also outline the MMX scheduling rules and show you how to use them.

We rewrite the sprite sample using MMX technology instructions and ana-
lyze it for performance bottlenecks.

Chapter 21 VTune and Other Performance Optimization Tools. Since
hand tuning is a tedious and time—consuming process, we introduce VTune,
a tool to help you analyze your code and pinpoint performance issues with
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ease. VVe show you how to use VTune to analyze the MMX sprite sample
from the previous chapter. Then we show you how to use the hot-spot sys-
tem monitor and the static and dynamic analyzers. We also teach you how
to use the Time Stamp Counter (TSC) and the internal Pentium event

counters, and the PMonitor event counter library.

Chapter 22 The Pentium II Processor. In this chapter you’ll get some
exposure to the Pentium II processor, the latest processor from Intel. We list

new processor features and point out optimization issues specific to this

processor. We introduce you to the use of the VVrite Combining memory
type so that you can achieve better graphics performance.

Chapter 23 Memory Optimization: Know Your Data. We dedicate this

chapter to system issues. Knowing where your data comes from and where
it goes to is essential for achieving overall application performance and
multimedia throughput. In this chapter we discuss the L1 and L2 caches,

the PCI bus, and how to organize your writes to memory in the most effi-
cient manner.

Epilogue: The Finale. In the last pages of the book we describe what we

will see in the future in terms of faster processors, tighter multimedia archi-
tectures, the Internet, advances in 3D, and multimedia.

Web Site: The Annex. Two additional chapters on the latest technologies
from Microsoft, DirectShow Capture and Direct3D Draw Primitives, are

available on our Web Site. Access it with the following URL:

http://www.awl.com/cseng/titles/0-201-30944-0

L3 Conventions Used in This Book

l.3.l

When we started writing the book, we experimented with :1 few ideas of
how to convey our material without being too detailed. VVe decided to settle
on a few conventions based on feedback that we received from our reviewers.

Even though these conventions might seem obvious when you read the rest
of this chapter, it might still be advantageous to browse through the next
couple of pages.

Part Map

At the beginning of each part, we have inserted a part listing that shows the
highlights of each chapter in the part. »
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|.3.2 Chapter Prologue and Epilogue
As we mentioned before, at the beginning of each chapter, we ask and
answer the question “Why read this chapter?”by summarizing the material
covered in that chapter. At the end of each chapter we reiterate what we
have covered and what you should have learned from the chapter.

|.3.3 Code Listings

5,-de Note; A note All our code is inserted between a thick and a thin rule and appears in a dif-
about the text next ferent font, as shown below. We use bubbles and side comments to high-
to it light key points in the code and to present our material compactly. Extra

special information merits a gray—shaded background.

CI odeText: :SubHm1'nalMessage()
{

it (YouHaveNotRead'hi'sBook) CI Side comment.
BuyThisBook();

'9‘ Se \ Bubble: Highlights information about the line pointed to.
3uy1tForSomeoneElse();

1

Notice also that if we have to repeat a portion of the code, we use the bold
font for the newly added code.

DOLLAR CCOdeTe><t: :Subl i'rnI‘nalMessage()
l

if IYouHaveNotReadThisBook)
Bu‘/Thi sBook( );

else

BL.yitForSomeoweHse( 1;

return SomeDoHarVa1ue;
)

1

We also use plenty of icons to emphasize a point or to point out something
that’s not obvious. We use a star to point out the best result from a proce-
dure and a CD icon to alert readers to when they might want to experiment

/\ with the CD that accompanies this book. Notes, and cautions are also set
/ \\ apart from regular text for emphasis.L___§_:

Finally, notice that the code listings in the book lack a lot of the error check-
ing code, but the code on the companion CD has all the error checking
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code. We decided to do this for better clarity when we describe the material

in this book, and leaving out error checking code reduces clutter.

l.3.4 Coding Style

With reference to our coding style, for the code in the companion CD,

I We decided to use C++ to implement our code since it allows us to easily

build the code of one chapter on the code of a previous chapter.

For better performance, we avoid using local class declarations within
our functions. Class variables declared on the stack are allocated and ini-

tialized every time the function is called, which could result in a negative
impact on performance.

We use macros for error checking so that we can easily change error

reporting schemes while still retaining source file and line information.

We use assembly language when we discuss performance optimization
issues for the processor.

Material on the CD

To make it easier to browse through the material on the CD, we use a web

browser approach similar to what you use on the Internet. Once you insert

the CD in the CD ROM drive, the AutoPlay feature of Windows 95 and

Windows NT launches your default Internet browser1 and displays the
home page of the CD.

If the web page is not automatically displayed when you insert the CD, you
can manually run the batch file AutoRLm.Bat from the root directory of the
CD. Make sure that you have a web browser installed.

Material on the Internet

From the homepage of the CD, you can go to our web site on Addison

Wesley’s web server. On that server, you’ll:

I Find two more chapters of the latest technologies from Microsoft,

~ DirectShow Capture and Direct3D Draw Primitives.
nething .

proce- I See the latest feedback and discussions of issues related to our book.
eriment
so set

1. Internet Explorer 3.01 or Netscape 3.0 or later are required.
pr check-

(mg
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I.4 On Our Measurements

\ “N“”“5:\\
igaxw \
lpxxirjiX
ix

We have designed the book with a strong performance overtone. We’re con-
stantly measuring the performance of implementation path and looking for
better options. Our measurements were performed on a machine equipped
with a Pentium processor with MMX technology, an S3 Trio64V+ graphics
adapter with 24 MB of VRAM, and 32 MB of EDO memory.

The performance of any implementation is extremely data sensitive, A particular
implementation may outweigh other options given an input data set, but change
the data set or vary the output configuration and the option may not do quite as
well. Over the course of this book, you will be shown comparisons of different
implementation choices. We hope to give you a flavor of various costs as well.
But ultimately you should use your application, with its own algorithms, data sets,
and target configurations, as your decision—mal<ing yardstick.
 

l.5 Tools Used in This Book

Finally, here is a list of the tools that you’ll need to build the sample code on
the CD:

Tool Version Where to Find It

Visual C++ Compiler 5.0 Buy it
Macro Assembler 6.11d Buy it

DirectDraw SDK 3.0 MSDN (or with compiler)

Direct3D SDK 3.0 MSDN (or with compiler)

DirectSoundl SDK 3.0 MSDN (or with compiler)

DirectShow SDK 2.0 DirectShow SDK

Intel VTune 2.4 Evaluation copy on CD

Realistic 3D Sound 2.1 on CD and http://www.intel.com

Experience

Realistic Display 3 .0
Mixer

RealMedia SDK

on CD and http://wWw.intel.com

at http://WWW.real.com
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Chapter I Overview of Media on the PC

I Current rnuitimedia architectures (GDI, MCI, VFW, QTW, Directx, and so forth)

I New multimedia architectures (DirectShow, Rea|Media, RDX, Direct3D, RSX)

Chapter 2 Processor Architecture Overview

I Pentium and Pentium Pro processors

I MMX technology and the Pentium II processor

I System overview
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Overview of Media on the PC

WHY READ

THIS CHAPTER?

This chapter introduces the current multimedia software architectures available on the PC.

In this book we're only concerned with media architectures running on Windows 98 and
Windows NT. We'll give you an overview of the following architectures and show you how
they relate to each other:

I GDI, DirectDraw, and RDX;

I MCI, VFW, QiW, DirectShow, and Rea|Media;

I WAVE, DirectSound, and RSX; and
I Direct3D

Ll Background

Graphics hardware on the PC has evolved from monochrome CGA graph-
ics standards through EGA, VGA, and Super VGA to the graphics cards of
today, which offer custom display formats and custom graphics accelera-
tion hardware.

Similarly, audio hardware on the PC has evolved from the lowly PC speaker
through separate 8-bit, ll-kHz Mono audio cards to today’s audio chip
sets; chip sets integrated right on the motherboard offering 16-bit, 44-kHz,

stereo formats and possibly some audio digital signal processor features.



31

4 I CHAPTER ‘I OVERVIEW or MEDIA ON THE PC

Multimedia software developers have had to keep pace with this evolution by
writing individual software modules for each device that they wanted to sup-
port. These applications had total control over the PC from the keyboard to
the monitor. This “closeness” to the hardware allowed software developers to

be in total control of the overall performance of their multimedia applica-
tions. But this device dependence imposed an expensive development and
maintenance burden on multimedia software developers. It also slowed the

adoption of advances in graphics and audio hardware.

1.2 Graphics Device Independence»
\/Vith the introduction of windowed operating systems like Microsoft V\Iin-

dows and IBM OS/2, software developers were given a uniform programming

interface that abstracted their applications from graphics hardware. Their

applications could paint the screen, within a dedicated window boundary,
without directly accessing the graphics hardware. Instead, the operating sys-
tem accessed the hardware through device drivers. The hardware—indepen—
dcnt interface under Microsoft Windows is known as the Graphics Device

Interface (GDI); see Figure 14.

GDI relieved software developers of the burden of catering to each of the var

ious graphics adapters. It also enabled hardware graphics vendors to provide
hardware acceleration (such as Block Transfers, or Bltters) and to seamlessly

provide the acceleration to applications through device drivers.

Although the GDI library provided a host of 2D drawing and windowing
commands, it did not provide support for multimedia applications.

FIGURE ‘I -1 Graphics device independence via Microsoft Windows GDI.
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1.3 Motion Video under Windows

In their first attempt at multimedia architectures, Microsoft defined the
Media Control Interface (MCI) as the first multimedia interface for ‘Win-

dows. MCI provided a VCR—like command interface (Play, Stop, Pause, Seek,

and so forth) to enable the playback of motion video, digitized audio, VCRs

and audio CD players. MCI also defined an installable device interface to

allow multimedia devices to be integrated into the Windows environment.

MCI, however, did not provide any means for capturing and editing motion
video. So Microsoft introduced the Video for Windows (VFW) architecture,

which included tools for video capture and editing and provided an architec-

ture for capture and compression hardware, for installable codecs (compres-

sion-decompression), and for full—motion Video playback (see Figure 1-2).

VFW was a significant step forward and was a launching pad for Windows

multimedia applications. It spurred the development of codecs such as Intel’s

Indeo Video and Radius’s Cinepak. The weaknesses of the initial VFW release

were inadequate synchronization between audio and video tracks and poor

overall graphics performance.

Around the same time, Apple ported part of its QuickTime development

environment from the Macintosh to Windows, creating QuickTime for Win—

dows (QTW). QTW supported only audio —video playback; capture, compres-

sion, and editing were supported only on the Macintosh. Yet QTW won some

favor because it had better overall performance and better synchronization
mechanisms than did VFVV.

FIGURE 1 -2 Video architecture under Windows 3.1.
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The overhead of GDl’s device-independent layer was proving too costly for

graphics-intensive multimedia applications. Apple’s QTW improved video
performance by developing custom device drivers for various graphics
devices, essentially ignoring GDI. Simultaneously, Microsoft and lntel
jointly published a standard interface for graphics intensive applications—
the Display Control Interface (DCI). ‘Nith DCI applications could write
directly to the video screen. DC] also gave users access to some video accel-
eration features that had not been adequately supported by GDI, namely

arbitrary stretching and video-friendly YUV color formats. With DCI, full-
screen, full-motion video became a reality.

At the end of 1996, Microsoft introduced the first release of ActiveMovie,

targeted as a replacement for VFXV. ActiveMovie addressed VFW’s synchro-
nization issues and added support for the Motion Picture Encoding Group

(MPEG) class of algorithms}

By the time this book is published, Microsoft will have introduced the next
generation of ActiveMovie called DirectShow, which adds support for cap-
ture and compression and is integrated into the DirectX Software Develop-
ment Kit (SDK). Around the same time, Apple will have released QTVV
Version 3.0, adding capture and compression. RealNetworks will also join
the fray of multimedia architecture providers by introducing their Real
Media Architecture (RMA), a multimedia streaming architecture for

remote playback environments (primarily the Internet).

1.4 Multimedia Gaming under Windows 95
Although DCI accelerated motion video provided direct access to video
memory, it did not offer direct access to graphics hardware for 2D opera-
tions (primarily Page Flips and Transparent Blts). Additionally, Windows
lacked a DCI equivalent for audio devices. As a result of these shortcomings
games developers could not achieve the levels of performance under Win-
dows that they could under DOS.

Shortly after the release of V/Vindows 95, Microsoft introduced the DirectX
Software Development Kit (SDK), containing DirectDraw, the successor to
DCI; DirectSound, which provides direct access to audio hardware devices;
along with other components such as Directlnput and DirectPlay. With
DirectX and V/Vindows 95’s AutoPlay features, games developers now had a

device—independent platform that was more powerful than DOS. With

1. MPEG uses bidirectional prediction techniques for video compression.
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FIGURE ‘I-3 2D graphics and video architectures under Windows 95.

these improvements, the VVindows 95 PC established itself as a powerful

gaming platform. (See Figure 1-3.)

DirectDraw is a low device-level interface. With it developers can go back to

working with some amount of device dependence. Intel introduced Realis-

tic Display Mixer (RDX), a higher-level interface that abstracts a set of mul-

timedia objects. RDX uses hardware acceleration for these objects
whenever it is available. In the absence of acceleration, RDX executes

assembly code, which is hand tuned for various flavors of Intel processors.

As a result, the high-level interface offers high performance video and 2D

while still providing device independence.

1.5 3D Video Architectures on the PC

With the release of Windows NT, Microsoft launched their own port of

OpenGL to the Windows NT platform. Windows NT was targeted as 21

high—end workstation—similar to Silicon Graphics’ and Sun Microsystems’.

But OpenGL was extremely slow under Windows NT since it required a

huge number of calculations to determine object geometry, lighting, and

shading.

Later, other companies introduced general~purpose 3D solutions specifically

tailored for the PC, including Reality Labs by Rendermorphics, BRender by
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FIGURE 1-4 Video and 2D/3D graphics architecture under Windows 95.

Argonaut, Render\/Vare by Criterion, and 3DR by Intel. Even though these

architectures were not fast enough for realistic 3D, they were fast enough to

enable the development of simple 3D applications. (See Figure 1-4.)

To reduce confusion in the marketplace, Microsoft bought Reality Labs

from RenderMorphics and introduced Direct3D as the single uniform

solution for 3D on the PC. Some 3D games were released using Direct3D,

but the general feedback has been that the performance needs to be

improved and that the interface needs to be simpler, and more reliable.

By the time this book is published, Microsoft will have introduced, as part
of DirectX foundation 5, the next revision of 3D for the PC, called the

DrawPrimitive interface. This interface is intended to address the perfor-

mance deficits and the interface complexity that was identified by previous
users.

1.6 Audio Architectures on the PC

I remember writing my first program to meddle with the speaker on the

PC. It was a police siren program that sent a periodic signal to the speaker

and varied the frequency up and down. Boy, that was a long time ago.

Microsoft introduced the VVAVE and MIDI interfaces to Windows around

the same time that MCI was introduced. Both of these interfaces are still
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widely used today. To allow for mixing of multiple audio streams, Microsoft

introduced DirectSound as part of the DirectX SDK. Since the Directsound

interface is a low—level interface, Intel introduced its own high—level audio

interface, Realistic Sound Experience (RSX). RSX allows developers to eas-
ily mix multiple audio streams and control the output of these streams.

RSX also models the real—World environment and provides support for a
realistic 3D sound model.

After reading this chapter you are more familiar, perhaps, with

I GDI, DirectDraw, and RDX;

I MCI, VFW, QTW, DirectShow, and ReaiMedia;

I WAVE, DirectSourid, and RSX; and
I Direct3D
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Processor Architecture

Overview

WHY READ

THIS CHAPTER?

In this book we're only concerned with Intel Architecture processors running Windows 95
and Windows NT. This chapter provides an introduction to the current multimedia hard—
ware architectures on the PC.

We'll give you an overview of the following technologies:

a the Pentium processor and the architecture of its pipeline,

I the Pentium Pro processor and its internal architecture, and

I MMX technology and the Pentium II processor.

In the early days of multimedia, dedicated hardware was necessary to play

back video, audio, and 3D. But with the giant leaps in processor and mem-
ory technologies, software—only decoders are now able to decode and ren-

der multimedia content on the PC easily. As a result, multimedia authoring

and playback have become commonplace on today’s PCs.

To attain such performance, developers of these software decoders had to

use some of the software architectures discussed in the previous chapter,

such as DirectDraw and DirectSound. In addition, they had to optimize

their application for the processors that they’re targeting the decoder for. In

general, multimedia developers dedicate some of their development time

for processor-specific optimization so that they can get the best perfor-

mance out of their application.
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With multimedia applications, it’s not enough to just optimize for the proces-

sor; you have to optimize your application for the system that you’re running
on—cacl1e, bus, and memory. “Then you optimize for the processor, you typi-

cally assume that the data is in the L1 cache or in a register. But this is not the
case with multimedia applications, since you typically deal with a huge

amount of data, and usually the data is in either the L2 cache or main memory

In this chapter, we’ll give you an overview of the current breadth of Intel pro-
cessors and compare their features. VVe’ll also touch on issues related to the

system as a whole. You can find a detailed analysis of both topics in Part VI of
the book.

2.1 Processor Architecture

In the following overview, we’ll only be concerned with the Pentium family of
processors including the original Pentium, the Pentium Pro, the Pentium II,
and the Pentium processor with MMX technology. (See Figure 2-1.)

The Pentium processor is built with two integer execution units (U andV
i es), which allow the rocessor to execute u to two inte er instructionsP P P P g

I psantium

FIGURE 2-’! The Pentium processor family.
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FIGURE 2-2 Pentium processor pipeline.

every clock cycle. Each execution pipeline has five distinct execution stages:

Prefetch, Decode 1, Decode 2, Execute, and VVriteback (see Figure 2-2). At

any moment, the Pentium processor could be processing up to five instruc-

tions in each of the two pipelines. In addition, the Pentium processor

includes two separate L1 instruction and data caches of 8K each, which

allow the processor to access instructions and data in the same clock cycle.

Typically, applications cannot achieve an optimal instruction rate because

of external data/address dependencies or unpaired instructions. Two

instructions can execute simultaneously only if they adhere to the Pentium

instruction pairing rules; otherwise only one instruction is executed in the

U pipe. You can learn how to optimize your application and about instruc-

tion pairing rules in Part VI.

The Pentium with MMX technology processor is the first processor that

provides Intel’s MMX technology. MMX technology is the largest addition
to the Intel Architecture since Protected mode was introduced in the Intel

386 processor. Intel added fifty-seven new MMX instructions and eight
MMX registers to its Pentium processor. It also doubled the size of the L1
instruction and data caches to 16K each.

In the Pentium Pro processor, Intel moved to a twelve-stage pipeline (com—

pared to a five-stage pipeline in the Pentium processor) with out—of—order

execution. The deeper pipeline allows different processor units to operate on

multiple instructions at the same time. Such deep pipelining, however, is
very expensive in terms of overhead in the case of branch misprediction. To

remedy that, the Pentium Pro processor includes a sophisticated branch pre-

diction mechanism to better predict the outcome of branches before theyoccur.
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The Pentium Pro processor has an out—of—order execution unit consisting

of five parallel execution ports: two Arithmetic Logic Unit (ALU) ports, an
address generation port, a Load port, and a Store port. The out-of—order
nature of the execution unit allows the processor to execute future instruc-

tions while older instructions are waiting for their data or address to be
resolved. You’ll learn more about the benefits of out-of-order execution in
Part VI.

The core of the Pentium II processor is based on the Pentium Pro processor

core, with the addition of MMX technology. The Pentium II processor dou-
bled the size of the L1 code and data caches to 16K each.

2.2 System Overview
Typically, it is not enough to just optimize your application for a certain
processor. You should also be concerned with the other components in the
system that can affect performance—system memory, cache, and video
memory. if

When you optimize for the processor, you assume that you’re dealing with
data that exists in the L] cache. However, with multimedia applications,

you typically deal with a huge amount of data that does not fit in the L1
cache—and sometimes not even in the L2 cache. Consequently, you should

pay special attention to the access pattern of your data and optimize for a
high L1 cache hit rate (see Figure 2-3).

To do that, you can use special techniques in prefetching the data to the L1
and L2 cache. You can also break down your tasks into smaller tasks that

can use a smaller amount of data—and probably fit in the L1 cache. See
Part VT for more details.

System Memory

FIGURE 2-3 Memory architecture of the Pentium processor.



41

cessor

r dou-

WHAT HAVE

You LEARNED?

SYSTEM OVERVIEW I 15

Finally, you should pay special attention when you write the final image to

the Video screen. Since you’re dealing with a huge amount of data, this

operation can be Very time consuming. You can use DirectDraw to access

the Video screen directly and write your image to it, bypassing GDI’s over-

head. You can also oftlload some operations to the graphics adapter, such

as zooming and color space conversion, and in turn you will be able to do

more on the CPU. With the Pentium ll processor, you can use the VVrite

Combining memory type to achieve a higher transfer rate when writing to

Video memory. You can learn more about these topics in Parts 11 and VI.

After getting through this chapter, you should know something about

I the Pentium processor and its architecture

I the Pentium Pro processor and its architecture

I lV|l\/IX technology and the Pentium II processor
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Animated Graphics,
Sprites, and Backgrounds

WE’D LIKE TO EXTEND AN ACKNOWLEDGEMENT TO JACK AND GLENNA RYAN, WENDY AND DAWSON YEE, PAM LUSARDI, DOUG BRUCKS,
DEBBIE BURKE, SARAH NAHUM, GREG SCHWENDINGER, TERRI DEGROAT, MICHELLE CAUDILLO, JANET RASH, BLAKE AND NIKKI BENDER,
BEN AND JUDY ECHOLS, JERRY ORLECK, LEORA GREGORY, CYNDI YOUNG, ROHIT AND NIDHI AGARWAL, ROGER AND SUSAN TAIT, GARY
AND MARY BALDES, .lUDI GOLDSTEIN, AND TOM CRONIN.

Chapter 3 Simple Sprites in GDI

I Define sprites and backgrounds

I Blt sprites and backgrounds with GDl

I How fast does GDI draw sprites and backgrounds?

Sprites with Directnraw Primary Surfaces
I Overview of Microsoft's DirectDraw

I What is a Primary surface?

I Render sprites directly to the display

I Measure C and ASM sprites drawn to the display

Chapter 5 Hardware Acceleration via Directnraw
I How do you find out wha the hardware can do?
I What is an Otfscreen surface?

I Use hardware Bitters and Page Flippers

I Measure accelerated rencering

Chapter 6 RDX: Animation Object Management

I Overview of Intel's Realistc Display Mixer (RDX)

Use RDX to render sprites and backgrounds
I

I Access hardware accelera ion via RDX
I

Measure performance of a device—independent interface

Part ll consists of four chapte‘s that cover rendering 2D graphics images under
Windows9x.

lI7I
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The Microsoft Windows Graphics Device Interface (CD1) is a feature-rich library that pro-
vides all sorts of primitives to Block Transfer (Blt) graphifi images and to draw common
2D objects (such as lines or rectangles). So why bother spending four chapters on 2D
graphics? Well, because we are going to focus specifically on the sort of rendering used
for composition and animation.

Although the images used for compositions are typically rectangular, the actual contents
are irregularly shaped. Some ofthe data within the rectangle is defined as transparent and
is not meant to be seen. In Chapter 3, the first chapter of this part, we will define the an-
imation objects that we use throughout the part—-specifically features that can bring po-
tential benefits to performance.

Animation objects are composed using transparent Blt routines. in Chapter 3, we will also
work through examples of renderingtransparent images using GDI, and then we will mea-
sure the performance of rendering with GDI.

in Chapter 4, we examine Microsoft’s DirectDraw architecture, which was designed for
multimedia developers who want to render animation objects with higher performance
than what is offered by CDI. In this chapter, we touch upon the first aspect of higher per-
formance through DirectDraw—bypassing GDI and using custom routines to render direct-
ly to the display screen.

Chapter 4 will give you a good starting point for using DirectDraw, but it is by no means a
complete guide. in Chapter 5, we study the second aspect of higher performance through
DirectDraw—accessing hardware acceleration features. The chapter also examines mecha-
nisms to reduce the sundry, but expensive cost of refreshing the screen.

DirectDraw is a low-level API that enables high performance at the cost of some device
dependence. |ntel’s Realistic Display Mixer (RDX) sits on top of DirectDraw and provides
high-performance animation with a higher level device—independent API. Chapter 6 will
show you how to get going quickly with RDX.

Some recommendations:

I Chapter 3 contains fairly introductory material. If you are familiarwith terms like sprites
and backgrounds and are not interested in how to render them with GDI, you need
not read this chapter.

If you don't want to botherwith the details of a low-level API like DirectDraw, then RDX
in Chapter 6 is a good alternative. Chapter 6 is also a good chapter if you don't want
to implement a mixing subsystem or if you want to use RDX's assembly-tuned routines
as a complement to your own work.

If you intend to work with Direct3D, you will need to know DirectDraw, and both Chap-
ters 4 and 5 are important for you.

If you have your own graphics objects with their own render routines, or if you enjoy
high—performance assembly programming, you will want‘ to know DirectDraw in
enough detail that, again, you should read both Chapters 4 and 5.
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Simple Sprites in GDI

WHY READ

THIS CHAPTER?

Consider this chapter as a short introduction to animation terms and concepts.

Here we define sprites and backgrounds. To visibly illustrate the concepts, we walk you
through working examples of sprites and backgrounds drawn using Microsoft Windows
GDI. Read the code to understand our definitions, Run the demos to visualize these
definitions.

Later we use the working examples to measure just how fast we can draw sprites and
backgrounds using GDI. With these measurements in hand, we'll be in a better position
to assess the performance of alternate options in subsequent chapters of this part.

3.1 Graphics Device Interface (GDI) Overview

We expect that most of you (our readers) are very familiar with Microsoft’s

Graphics Device Interface (GDI). Still, let’s not forget GDI’s features while

on our quest for higher performance options.

Windows GDI handles all graphic 0utput—to the display screen as well as

to other graphics output devices such as printers, plotters, and metafiles. In

handling graphics output, GDI must handle the various forms of these
devices (such as EGA versus VGA and laser printers versus d0t—matrix

printers). GDI’s device drivers shield us, application developers, from many

of the complexities of deVice—deper1dent issues.
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N/Vith GDI’s device driver model, hardware vendors can provide different

levels of hardware acceleration at different price points.

GDI also acts as a sharing agent for graphics output devices. It manages

multitasked output to devices through device drivers and device contexts.

These management responsibilities include memory ranges, clipping
regions, color palettes, and print spoolers.

As a graphics library, GDI provides a variety of objects (brushes, pens, bit-

maps, pixels, text); provides attributes for these objects (fills, thickness,

font, color); provides commands for manipulating objects a11d attributes

(Create, Load, Select); and offers some other drawing functions (PolyLine,

TextOut, Rectangle, BitBlt).

GDI also controls the look and feel of images on graphics devices via the

definition of a standard interface for default objects (standard colors, cur—

sors, icons, and base fonts); the definition of sizing attributes (coordinate

spaces, text metrics); a11d the definition of control functions (coordinate

mapping, font enumeration, font mapping). In short, GDI does a lot.

Bypassing GDI for higher—performance options means bypassing all these

capabilities. Choose your path carefully.

3.2 Animation Objects
When we mention sprites, you’re probably thinking of pixies, and nymphs, and

elves, and wood fairies. Toss in a few gnomes, ogres, trolls, and goblins and we’d

have quite a fairy tale on our hands. But, it’s time to rein in these flights of fancy.

Sprites

For this book, let’s define sprite in a multimedia context. Let’s use the term

sprite to refer to regular bitmap images that are superimposed on top of

other graphics images. What’s more, the superimposition of sprites is not a

simple block copy. Instead, sprites contain both visible and transparent pix-

els, and the superimposition must only render the visible pixels.

We expect—and may optimize for—

I sprites being drawn repeatedly, so that some of the time spent preparing
them can be recovered during drawing;

sprites being fairly small images so that whatever memory they require
can be traded off for performance; and

partial sprites being rarely drawn, and routines to draw partial sprites may

be separate and slower than equivalent routines to draw sprites wholly.
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Figure 3-1 shows a sprite that we use in our demo applications.

FIGURE 3-‘! Sprite image.

The sprites we use in our demo applications are of varying sizes. You might

also say that they are of odd sizes: that is, they are not square; they are not

powers of two; they are not even DVVORD or QWORD multiples. We chose

these odd sizes deliberately, to provide you with Lhe opportunity to study
the performance impact of different sprite sizes.

Backgrounds

Let’s also define the term background in a multimedia context. Let’s use

background to refer to images without transparency. Can a background be

drawn on top of another? Sure it can! But we expect that images without

transparency are probably going to be behind objects with transparency~

hence the term backgrounds.

We expect that backgrounds are large images on top of which one or many

sprites will be superimposed. They take up a lot of memory, and more

memory cannot be used to improve performance. Also a background may

be much larger than the displayed image, and moving a source rectangle

around within the background is one way of creating an illusion of

motion——scrolling backgrounds. Figure 3-2 depicts the background that we
use in our demo applications.

FIGURE 3-2 Sample background.
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Again, the background is of an odd size. VVe chose this size because we want

to point out the special code that needs to be written to handle odd-sized
backgrounds.

3.3 Transparent Blts with GDI
GDI does not contain any single function to “transparently” Blt images.

Therefore our Transparent Blt algorithm uses a combination of RasterOp Bit-

Blts. Our approach involves the following steps:

1. Zero out the pixels from the destination that are to be painted with “visi—

ble” sprite pixels. (To do so, we create an inverted Mask from the original
source at Init—Time. And at run time, we BitBlt the mask with a SRCANDl

RasterOp onto the destination.)

OR-In sprite pixels into the zeroed-out space. (RasterOps operate at the
bit level, and a nonzero transparency color in the source could OR-In spu-

rious bits into the “transparent” space. Therefore at lnit-Time, we zero out

the transparent pixels from the original image.)

3.4 Drawing a Sprite Using GDI
OK, now let’s take a look at some sample code that implements sprites and scroll-

ing backgrounds using GDI. Here is the base class definition for sprites, CSprite.

class Csprite {

p ubi 1‘ c :
dword m_dww1' dth; C1 width ofsprite
dwor d m_dwHei' ght; {J height nfsprite
by t E * m_pDa t a : {J internal sprite data storage
by Le n‘_by T r a n s p ; {J transparency pixel

CSD r1‘te( ) ; (J constructor —- Cannot err

booi Im't(ui'nt nResID, byLe by<ey, cdc &:cNnd);<jJ lnit-—Canret11rnerrors
~CSprite(): C] destructor
void Blt(BLTPAR/WIS *pDst, CPOiat Stpuint); {J bltroutine

1. SRCAND is a parameter for the BitBlt function. It performs a logical AND of the source bitmap with
the destination bitmap.
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The Blt algorithm we use is based on an approach recommended by

Microsoft on their Developer Network (MSDN) CDs. The recommended

algorithm uses a three-Blt approach, but we improved the algorithm to pre-

process the sprite at init-time to allow us to use a two—Blt approach.

; Following are the Init and Blt routines. Note that since Windows BitInaplnfo—
.s_ V Headers do not allow for transparency colors, we are specifying transparency

Op Bib . as a parameter to the sprite Irzit() load function.

1‘‘Vi5i_ _: CSprl-eGD1::1rr‘:(U1\lT nP.es1D, BYTE t>_vColorKey, CDC tpcdcwnd)
. . {

Hgmal . // load bitmap from resource int: a ma bmp ready for preparation
SAND] (',lJ(j cdelmp;

cdcTmp.CreateCompa:‘§bleDC(pcdclrlnd>:
Cléitmap cbnflmp;
etmTmp.LoadE1tmap(nRes1D);

at the i cdeTmp.Sele:tObjec:(cbnTflp);BITMAP bm:
c:mTmp.GetB1'tmap(&t2m);
DWORD dwwt ~ rn_dwwr’dtr = t>m.bmw1dth;
DMORD dwHt = rLdwHe'lgl‘L = bm.bmHeight;

// get transparent color and set DC backgrzund (we use system palette)
FALETTEENTRY pefl“;
Ge,SysLernPaletteEntriestpcccwnd->m_nDC, (UINT)b_yCo1orKe_y, 1, &peCo1or);
edc’mp.SetB<Color(PA|tTltR[;B{pe[‘lr.peRed, “.e(Ilr.pe(ireen, peClr.peHlpe));

// create a monochrome mask For run-time clearing of foreground pixels
CDC cd:Masl<;
edcMa.<l<.Crea:eCompat1'zle-DC(cDcwnd);
m_pcbmNask = new CB1'tmap:
m_pcbnMask->CreateBw'tn’ap(m_dwl«Hdth, n_dwHet'ght, 1, 1, NULL));
Cbitmap *pct>m0ldNasl< = cdcMasl<.SelectObject(m,p:bmMask):

———————>:dcMasl<.BitBlt(O, O, dwwt, dwHt, &cdcTmp, O, O, SRCCOPY);

BitB1tfrom colonbitmap to mono—bitrnap sets pixels with background=1
and foregrour1d:0. We previously SetB/(Color of cdcTn1p to the transpar-
ency color. The result here is an inverted mask.

// process src so tlldl. t¥'d'l5LJdV'EIlL pixels are 0
CDC cdcsrc;
cdcSrt.CreateCompatr'bleDC(3cdcwnd);
rrvpcbmsrc = new CR"tmap;
n'_pcbmSrc—>CreateB‘?tmap([m_dwNidth, m_dwHe1'qht, 1, 8, NULL);
»:dcSr:.Select0bject(m_pcbnSrcZ;
cdcSrc.Br'tBlt<O, O. dwwt. dwHt. &cdcMasl<. 0. 0. NOTSRCCOPYM
cdcSr:.BitBlt(O, O, dwldt, dwHt, &cdcTmp, D, O, SRCAVD);

Preprocess Source. Zero out pixels of transparent color by
-NOTCOPYing inverted mask to result bitmap
- and then ANl)iI1g in the actual source data

retsrn TQUE;
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CSpr1:eGDI::B1t(CDC &cDc, CPoint &pt)
i

static CDC cdcsrc. cdcMask:
static CBitmap *pcbrn01dSrc, *pcbmO1dMask ;

// setup 2 D25 with bmps prepared during sprite init
cdcSrc.lIreat:=(Iompat1'b1eDC(&cDc);
cdcMask.CreateCompatib1eDC(8eDc};
pehm0idSrc == cdcSrc.Select0bject(m,pcbmSrc};
pc:m0ldMask = cdcMask.Se1ectObject(m_p:bmMasK;

// bit: clear away foreground pixe s using iiono mask (bk=1, fg=O)
cDc.BitB1t(pt.x, pt.y, rr_dww1'dth, rgdwieight, &cecMask. 0. O. SRCANDJ;
// second bit: or preprocessed src intcf anded dest
cDc.BitBit(pt.x, pt.y, m_dww1’dth, rr_dw»\eight, Xmccsrc, 0, D, SRCPAINT):

CdCMaSl<-59leCt0bJeCt(PC3m0ldM3$l<}: ReleasetheseDCs,sincetheyarenotlocalto
cdcMask. Del eteDC( J ; 4-——-1=v"% this routine’s scope and will not get automati-
Cd C S r c . S e1 e CtO 133' e ct C pcbmOl d S r C ) : cally released until Il1e application terminates.cdcSre.De1eteDC();

3.5 Backgrounds

The code for backgrounds is similar to that used for sprites.

CBackgroundGDl::Init(UINT nResID, CDC *pcdcNnd)
(

// load bitmap for background from resource file
CDC cdcsrc;
cdcsrc.CreaLeCempatibleDC(pcdtwnd);
m_pchmSrc = new CBitmap;
m_pc3mSrc->LoadBitmap(nResID);
Cbitmap *pcbmOidSrc = cdcSrc.Se1ectHbject(m_pcbnSr:):
BZTMAP bn;
m_pc:mSrc->GetBitmap(&bm);
m dwwidth = bm.bnwidtn:
m_dwieight = bm.bmHeignt;

The Blt routine is straightforward, especially since, in this case, we do not

have to worry about transparency. However, note that a sub-rectangle
parameter can be specified to draw only a portion of a background.
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CbackgrCund::Blt(CDC &:Dc. CPO*nt &cPt, CRecL &crView)
l

// setup DC objects
static CDC cdcSrc;
szatic CBitmap *pcbmCldSrc;
cdcSrc.CreateCompatitleDC(cDc);
pcbmoldsrc = cd:Src.SelectObject(m pcbmsrc);

// add coce to esror check v‘ew :0 within image boundary
lwt 4 crView.right - crView.7eft;
lHt = crView.bott0m - crView.top:

// straightforwasd blt
cDc.BitBlt(cPt.x, cPt.y, lwt, lH:,
&cdcSrc, crView.left, crV1ew.top, SRCCOPY):

// release DC
cdcSr:.SelectObjecL(pebmOldSrc);
cdcSr:.DeleteDC();

3.6 Demo Time

Run the demo that corresponds to this chapterz. You should see a sprite
being drawn on the screen. Move the mouse around a11d the sprite will fol-
low the mouse.

The sprite leaves sprite trails because on startup we have set the application

to “not refresh” the background. Turn Background Refresh on and the

sprite trails will disappear.

A difficulty of overlaying sprites on backgrounds directly onto the screen is

that refreshing the background is followed by the transparent overlay of the

sprite, which results in a noticeable flicker. For flicker—free results, the back-

ground needs to be refreshed and the sprite overlayed into a nonvisible

buffer (memory DC), and then the resulting image in the nonvisible buffer

must be transferred to the screen. “Compositing” in nonvisible buffers will

be discussed shortly in Chapter 5. For now, treat this as an exercise for you
the reader.

2. See the Introduction if you need instructions.
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3.1 How Fast Does GDI Draw Sprites and Backgrounds?

WHAT HAVE

YOU LEARNED?

Table 3-1 measures the speed of drawing sprites and backgrounds with
GDI. These measurements were taken on our base platform described in

the Introduction and will definitely Vary with different configurations. We

have included the application for measuring the speed of drawing sprites
and its source code on our Internet site that we mentioned in the Introduc-

tion; it is called Timing App. Run the application on your platform and see
what results you get. The source code for the timing application is also
included on the CD. We have separated out the timing source code from the

source for the chapter demos to simplify reading the base code.

TABLE 3-1 How Fast Does GDI Draw Sprites and Backgrounds?

l6_sprites
(width: 84; height: 63)
back round

(widt : 734; height: 475)

By this time, you know what we mean by sprites and backgrounds, you've seen them
work, and you also know how long it takes to mix a sprite on a background. Since this was
only an introductory chapter, if you've read this far, you've got to be itching to move on to
the next chapters, which introduce you to the meat of this section. Well, what are you wait-
ing tor?
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Sprites with DirectDraw
Primary Surfaces

WHY READ in the previous chapter, you were introduced to drawing a transparent sprite on a back-
THIS CHAPTER? ground using GDI. But you may not have been satisfied with the performance of sprites

under GDI. This chapter will introduce you to faster sprites via the Microsoft DirectDraw
interface. Read on and decide if DirectDraw worls better for you.

efllllem In the previous chapter you were also introduced to graphics rendering objects (and prim-
9 This W55 itives) provided by GDI. But you may have your own graphics rendering objects that are
0V9 0” lo _. not convenient to render through GDI. In this chapter we will show you how to render
YOU Wall‘ 1 your own sprites using DirectDraw. Read on and decide if our sprite example forms an

appropriate foundation for rendering your objects.

By reading this chapter, you will

I get an overview of DirectDraw and what it offers,

I learn how to access the display screen and write directly to it,

I use routines to render faster sprites, and

I be exposed to some limitations of writing directly to the display screen.

4.1 Introduction to Microsoft's DirectDraw

The Graphics Device Interface (GUI) library within Microsoft Windows

provides software developers with image display functions. The library
abstracts graphics devices and provides a device—independent interface that

developers can write to. Device independence allows developers to use a

standard set of functions without having to worry about device specifics or
even device capabilities.

I27I
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1'-‘IGURE4-‘I Display architecture under Windows 95.

Unfortunately, the overhead of GDI’s device independence was too expen—

sive for graphics intensive applications. In 1994 Intel and Microsoft jointly

released the Display Control Interface (DCI) as an extension of GDI. DCI

allowed direct access to graphics device memory and to device acceleration
features under \/Vindows 3.1 and Windows 95.

In 1995 Microsoft released DirectDraw for Windows 95 as a successor to

DCI. Similar to DCI, DirectDraw provides direct access to graphics device

memory and to device acceleration features. DirectDraw enhances device

acceleration by providing access to hardware Blters and hardware palettes.

Figure 4-1 diagrams the current display architecture under Windows 95.

Although Figure 4-1 shows the entire display architecture under Windows

95, in this chapter we are primarily concerned with the thick arrow that

points directly from the application to the DirectDraw Hardware Ernula~

tion Layer (HEL).

Think of DirectDraw as an extension to GDI that allows you to use custom
drawing routines or allows you to access custom device—specific accelera-

tion. DirectDraw is part of Microsoft’s DirectX Software Development Kit

(SDK) and is the lowest level API available for display devices.
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4.2 Features of DirectDraw

Figure 4-2 shows a graphics card laid out as a block diagram showing typi-

cal components.

Optional Additional Video
Memory Available for:

Icons, Cursors,
Text Font Caching,
Offsreen Buffers,
3D Textures . . .

Graphics
_ A Accelerator

Directly Visible

— Display Memory Area ‘1 - (this is what you
see on screen)

1'
I
I
I
I
I
I
I
I

(not visible on screen)

expen— K

jointly fi FIGURE 4-2 Block diagram of components on a typical graphics card.

I. DCI ;

lefation 1 All graphics cards have some video memory, so whatever you see on the
‘ screen is stored in memory on the graphics card in a place specifically

reserved for that purpose. RGB data from this primary screen area is con-

verted via a digital to analog converter (DAC) to analog signals that are sent

out to the monitor. DACs support palette lookups during conversion in a

palettized graphics mode.

sor to

; device

device

alettes.

Today’s graphics cards typically have an optional graphics accelerator to

support standard GDI acceleration, and they are configured with enough

memory to support high-resolution (24 or 32 bits per pixel, or bpp) graph-

ics modes. If you’re operating in low-resolution graphics modes, this addi-

tional memory may be used for other purposes. DirectDraw gives you direct

access to the graphics card to both its video memory and its acceleration
hardware.

ws 95.

iindows

that

Emula-

DirectDraw gives you access to the video memory through a surface object.

Device memory exists in many forms and, therefore, there are many types

of surfaces to allow you to access the various forms of device memory.

A PR1 MARYSURFACE gives you direct access to the main display memory area.

Anything you write to this memory area is immediately visible on the dis-

play screen. ln fact you get access to the entire display screen and can write

anywhere on the screen. Note that you access the screen in the user’s display

configuration, which can vary both in screen size (640 X 480 or 1024 X 768)
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and in color format (8, 16, 24, 32 bpp). Under special circumstances,

DirectDraw allows you to reconfigure the display for the duration of your
application.

DirectDraw’s OFFSCREENSURFACE allows you to allocate and access any addi-

tional “behind-the-screen” device memory. Why is this useful? Graphics

cards have acceleration features like Transparent Blts, non—RGB color for-

mats, fast screen refreshes by Page Flipping, and even 3D graphics primi-
tives. Offscreen surfaces are the mechanism by which you access hardware

acceleration features that are not accessible through GDI. There is one

caveat, however: the source and destination images for these acceleration
features must live in device memory.

Beyond access to device memory and hardware acceleration, DirectDraw
also supports additional features such as direct access to the primary pal-
ette, support for multiple palettes with DirectDraw Palettes, and support
for window management with DirectDraw Clippers. Given that surface
types and device features vary, DirectDraw supports a capabilities model,
which can be used to query the DirectDraw driver for its capabilities before
you use any specific feature.

In this chapter, we will introduce you to initializing and querying the
DirectDraw driver and using DirectDraw Primary surfaces. OffScreen sur-
faces and device acceleration will be discussed in the next chapter.

4.3 Before You Get Overly Excited
VVriting directly to device memory or accessing device-specific acceleration
defeats the device-independence benefits of GDI. Once you access device-
specific features using DirectDraw, you must respond gracefully to varia-
tions in graphics devices.

For example, memory layouts differ based on the display configuration
selected by the user. Variations in configurations include pixel format (such
as RGB24, RGB16, or palletized RGB8) and screen size (such as 640 X 480,
800 X 600, 1024 X 768). Memory layouts may also differ based on manufac-

turers’ design choices. There is, for example, more than one format for the
size of the color components with RGB16—5:6:5 and 52525 being two pop-
ular formats. Similarly RGB24 can be either in a compact 3 bits per pixel

1. The emerging Advanced Graphics Port (AGP) specification will allow graphics cards to provide
acceleration using system rnemory—based source images. DirectDraw Offscreen surfaces will continue
to be the mechanism to access AGP-based graphics hardware acceleration.
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format or in a DVVORD-sized format with the most significant byte
ignored. If you write directly to memory, you need to understand what for-
mat is currently being used and be able to write your pixels in that format.

Similarly, there is no standard set of acceleration features that all graphics
devices must provide. If you use a device-specific feature, you will also need
a fallback mechanism to work with devices that do not support that partic-
ular feature. DirectVideo, for example, has many code paths to use various
color—conversion and stretching features.

Choosing a device—specific development option places a development burden
on you. But choosing this option can give you significant performance gain.

Some graphics cards are still banked memory devices. We would need to switch
to a new bank before accessing its memory. However, Microsoft now provides a
mechanism (VFlatD) to disguise banked access as linear access. VFlatD traps
page faults on specific memory ranges and automatically switches banks as
needed. The disguise does add a noticeable performance cost.

Use the DDTEST tool that comes with the DirectX SDK to get information about
your display device. Some devices, such as some 83 Trio 64 graphics cards, are
incorrectly identified as banked devices. Contact the maker of your graphics card
for updated DirectDraw drivers.

4.4 Instantiating a DirectDraw Object
Let’s get dirty. First, let’s initialize DirectDraw by in stantiating, or creating
an instance of, a DirectDraw object:

BOOL CSharedHardwar.=.:1n‘t(HwND hwnd) (
LPDIRECTDR/5.Np3Draw;
FRESULTerr;

// create a DirectDraw instance

3irect3r:wCreate(NULL, &plJl)raw, NULL);

DirectDraw/Crecite is the starting point in usingDirectDraw. The n i RFCTDRAN structure returned
from this function provides access to the entire
next level of functionality, such as CreateSurface,

// Setup to use as normal windowed ap:
EnumDz'splayModes, and so forth.

err = pDDraw->SetCooper'ative_evel(hwnd, 3l)SiiJl_NORV|AL);if (err == DD(0<) l
p}Draw->Release();
return FALSE;

l

// store into iiiernber variable
m_ppDDraw -— pDQraw;
return TRUE;

SztCnaperuzfivzLevzl{) sets how we plan to use DirectDraw. The settings can beH DSC L_N(l RWA L
DDSCLKEXCLUSIVE
DDSL LiFL LLSCRCN

App will work as a regular Windows app.
App wants exclusive access to display area.
App wants responsibility for the entire display area.
GDI will be ignored.
App can deal with nnn-Windows modes
Allow CTR L_A LT_D E L to work while in fullscreen
exclusive mode.

Don’t let user change position or minimize application '

JDSC L_ALLOWMODEX
DDSCl__ALLOL«‘REBOOT

DDSCL__NOWINDOWCH/\NGES
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4.5 Querying and Creating a Primary Surface
Now that DirectDraw has been initialized, let’s get access to DirectDraw sur-

faces. Let’s start by examining D D S U R ?AC E D E SC, :1 basic DirectDraw structure
that describes all forms of surfaces in DirectDraw.

typedet struct __DDSURFACEDESC(
DMORD dwSize;
DMORD dwFlags;
DMORD dwHeiqht;
DHORD dwwidtr;
LON; ]Pjtch; NhtdlfiddsofaD3SURFACEDESCsuucuueam
um‘ ;. n { Valid all the time. The DDColorKey fields, for exam-

WORD dwga C <BuffQ rcou n 1;; pie, are not needed to create a simple Primary surface.
0 W 0 R D d WW [3 M a pa 0 U n t ; Therefore, whenever fields are used, equivalent bits in
} ; the dwlflags field indicate that the field is valid.urion
DwORD dwZBuftcrBitDcpth:
DWORD <JwRet"reshRate;

l;
DWORDdwAlphaBitDepLh;
Dw0R3dwRe3er\/ed;
LPVOID lpsurface;
DDCOLORKEYddcl<Cl<DestlJ\/erlay;
DDCOLORKEYddChCKDeStBlt;
DDCOLORKEYddCkCKSrcSverlay;
DDCOLORKEYddCkC‘<Sr‘CElt:
DDPlXEl_FORMATd:pfPi><elFormat;
DDSCAPSddsCap5:

l DDSUIFACEDESC, FAR* LPDDSLRFACEDESC;

And now here’s how to create a Primary surface:

CPrimarySurtace::f3rima”ySurface(void)
l

// zero out the memory or the 5u"‘ace descriptor
memset(&m4EurfDesc, 0, sizeot(m_SurfDesc));
// init surface descriptor si7e
m,SurfDesc.dwSize = s1zeot(m_SurfDesc);

) .
BOCL CPrimarySurfa:e::Iait(LPDIRECTDRAw pdDraw)
l

// set :ype of suetacc w‘th1n the surface caps structure
———«4~w_e> m_SurfDesc.ddsCaps.dwCaps = DDSCAPSfiP?lMAP.YSURFAC.E;

The dwCaps field is used both to establish the type of surface requested and to set up attributes upon return. Refer to the DirectDraw documen
tation for more details. Some surface types to note are:
_PRIMARYSUR:ACE Access to primary display area

0 FFSCREEN P -A ZV Access to off—screen memory
_F,IP ‘Set up for instantaneous surface swap
_SVS'EMMEt«O1Y Surface is in system memory,
_\l I D EDMEMCRY Surface is in Video memory. Currently, TRUE for Primary surfaces.
_V [S i BLE W1 ites are immediately visible. TRUE for Primary surfaces.
AL»RI'EO N J Data cannot be read from these surfaces.

MOD EX Setup for 320x200 or 320x240 resolutions. Typically used with SetCooperativeLevel of E XC LUS I VE, FU LLSC R E EN and MODEX

Other types that we will experience later include ,3 D , _TEXTUREMA’, AFRONTBUFFER, and _BACKRU FFFR,
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// fell driver that tae caps field is valid
m,StrfDesc,dwHags = DDSD_C/«PS:

// ca‘? Di'rectDraw member functioa to create pr1'mar_y surfaceHRESULT err;

err = pdDraw >CreateSurface(&m,SurfDes2, &m_pSurfFns, VULL);if (err l= DDKOK) l
handletrrzriierr);
return FALSE;

} CrcateSurfacetakes LPDDSURFACEDESL and (LPDIRECTERAMIJRFACE *) as
parameters. DDSUW/«CEDESC is used to describe the surface requestcd/

net L, F H i Rip 3 . got. DIRECTDFAWSURFACE holds pointers to the member functions ofthecreated surface.

l

If CreateSurface() was successful, DirectDraw drivers should set relevant fields
in the DDSURFACEDESC structure to describe the surface that was created. In
particular, dwl-leight, dWVVidth, and dclpfPiXelForrnat should be valid. To
really make sure that the structure gets filled, use IDirectDrawSurface.'.'Get-
SurfaceDe5c(). However, even GetSurfaceDe5c() will not return a valid pointer
to surface memory (_lpSurface). This field will only become valid after you
lock the surface. More on L0ck() shortly.

Note that we have written our libraries for an RGB8 pixel format. V/Vhat hap-
pens if the Primary surface display configuration is not in RGB8 display
mode? We could merely “Release” the newly created surface and flag an error.
An alternate method is to check the display configuration, before creating a
Primary surface:

boo‘ CD7’rcctDraw::[sDispTayNodeOK(voia)l

//’1'm't‘alize a surface descristor
ddsurfacedesc ddSurf:
mem5ct(&ddSurf, 0, sl;e:fL’ddSurf3);// 7ero out mem
ddSurf.awSlze = si'zeof(ddSurf);// set size field

// get Lhe primary diszlay mode
hrcsult err ~ m_pdDraw->GotD1’sp1ayMode(&ddSur'fl;

// if ca l was successful, check returned descriptorif (<e"r =: dd_o<) K8.

(ddSurf.ddpfFi’><elFormat.dwl lags == ddpffpaletteindexectillreturn true

e SSN, : -S bwdjs MW, EXTRA CREDIT: Explorechangingthe displayforrnatif
} J “ G‘ p “’ it’s not oneyou like. Look at SetDz'5pZay1VI0de() and Set-Cuuperati1'eLevel().

/ /' w a s e r ro r , f l a g a n d r e t. u r ri SetDi5playM0de() is provided by the IDirectDraw2 inter-
ha '1 dl e E r “O r ( 9 " I") ; face. Our Primary surface sample code on the IS CD shows
7” E ‘E U N1 fd 7 S 9 ; the use of the IDirectDraw2 and IDirectSurface2 interfaces.Check it out.
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Let’s move forward, and write directly to the display screen using the Pri-

mary surface that we just created.

4.6 Implementing a Simple Sprite Class
We use the same class definition for sprites as in the previous chapter. Here

is a simple sprite class implementation where we control the drawing.

BOQL CSprite::Init(CBitmap &bitnap, Bifi bykeycoior)
I " V

// get access to BITMA3 to get size: aiioc space for data; copy dataBITMAP bm:
bitmap.GetBitmap(&bm);
m_pData = new BYTE[bm.bmNidtnInBytes * bm bnHeigrt];
bitmap.GetBitmapBits(bm.bmwidih1nBytes * bm.bmHeiqht, m_pData);// init member variabies
m_dwwidth = bn.bnwidth;
m_dwHeignt = bm.bmHe‘ght:
m,byTransp = byKeyCo7or;
return TRUE;

i

l

The sprite Blt function is extremely simple. It takes in a destination pointer
and pitch and draws the sprite at the specified point. The function is writ-
ten in C and relies entirely on the compiler for optimization.

void CS3r‘te::Bit(LPVOID "pDst, long l3itch, CPoint &point)
(

// compute address dst and src pixeis. nnte pitch can be negative
DBYTE pDst = (PBYT[Z((1ong)1pDst + psint.x + puint.y * lPitch);
FBYTE pSrc = m plata;

// bit the sprite on a row by row basis
for (DNORD row — 0; row < n#dwHeight; row++) (

for (DHORD coi = 0: col < m4dwWidth; col++, pSrc++, pDst++I K
// Lest pixel for 1on—transp and w"ite it so
‘f {*pSrc 1= m,byTransp)

‘pDst = *pSrc:
}
// burp dst pLr forward to start of next row
pDst += iPitch - m_dwwidth;v1

}

1
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4.1 Drawing a Sprite on the Directbraw Primary Surface
So far we’Ve initialized DirectDraw, established that our preferred format

was supported, and created a Primary surface. Now let’s draw a sprite on

the Primary surface—-we will be writing directly to the screen.

CPrimam/Surface::E1tSprite(CSprite &spr, CPoint &;Joint)
I

// first lock surface, using "wa"t until lock"
'ITLpSLH"fF’lS*>LCCl<(NJ_L, &rn_SurfDes.c, DDLCCKJJAIT, NULL}
// invoke sprite bl: rouiiny
spr—>Blt{m,SurrDesc.lpSurtace, m_SurfDesc.lP1‘tch, poin

pointer Z ' // release the lock_ _ , m,pSurfFns~>Unlock(NLLL);
SW1'1‘[— l

Blt writes directly tothe screen.

- Graphics memory is shared by many applications. The surface must be locked to manage
access to this common memory. Locking the surface returns a usable pointer in the Surface
Descriptor.

I Memory in surfaces is arranged in blocks. lPitch need not equal Surfacewidth.
I Unlock before you leave. Surface locks can lock out all GDI access.

4.8 Demo Time

At this point, you should be seeing sprites drawn directly to the display

screen Via DirectDraw Primary surfaces. Run the demo that corresponds to

this chapter. You should see a sprite appear on the screen. Move the mouse

around and the sprite will follow the mouse.
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How do you know we’re writing directly to the display screen? Move the
mouse to the white border areas along the right or bottom edges of the clip-

ping window. You will notice that the sprite writes data outside the clipping
window. GDI would not let this happen. VVe have written directly to the
screen without GDI.

Mfhy can’t we write anywhere on the screen? Our application tracks Mouse
Move messages a11d draws the sprite based on mouse position. Our applica-
tion stops receiving Mouse Move messages once the mouse cursor has left the
main VVindow area. You can alter this application to write anywhere if you
wish.

To be a well—behaved Windows application, your program should respect

window overlaps, boundaries, and movements. You will also notice that mov-
ing the sprite leaves sprite trails. This is because the application is not set to
refresh the background.

4.9 Redrawing Backgrounds on a DirectDraw
Primary Surface

Here is a quick background Blt routine. Again, this version is extremely sim~
ple. It takes in a destination pointer and pitch and draws the background at
the specified point. The only subtlety about Bltting backgrounds is that the
rows in graphics memory are not necessarily contiguous, and therefore the
Blt routine must handle a pitch.

void CBacKground::B1L(LPEYTE lpDst, long iPit:h, CPoint &point)r

PBYTEpDst, pSrc;
DwU?Drow, dwteft, dwwidtn, dwTop, dwRows:

// compute address dst and src pixels. note pitcr can be neqative
pD5t e (3BVTE)(i'onq)ipDst + p0int.x + point.y * 13itcr)

// code removed that clamps ViewReeL within background
// dimensions; generates dwLeft, dwwidtr, dwTop, dwRows
// to define sxb-region being bitted

psrc = m_pDat: + dwLe‘t + dwTop * m_dwwidth;

// bit the sprite or a row by row basis
for ("ow = 0; row < dwRows; row++) (

mem:py(pDst, psrc, dwwidth);// use simple memory copy
pDst += iPitcr;// bump ds. ptr "orward
pSrc +— m_dwwidth; // bump sre ptr forward

)
}
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4.10 How Fast Can We Draw Sprites and Backgrounds?
Table 4~1 shows the speed at which sprites and backgrounds are drawn to Pri-
mary surfaces, and it presents a comparison with the GDI measurements
from the previous chapter.

TABLE 4-1 How Fast Can We Draw Sprites and Backgrounds?

CSurfacePrimary, . height. 63)

background (width: 734; height: 475)CSpriteCCode,
CBackground

CSurfacePrimary, 16 sprites (width: 84; height: 63)

C5pritep5 background (width: 734; height: 475)
CBackground

CSurfaceGD| 16 sprites (width: 84; height: 63’)

CSpriteGD| Lbackground (width: 734; height: 475)
CBackground GDI

Some observations on the measurements:

The sprite routine written in Pentium—optimized assembly language is al-
most 10 times faster than the C code version. There are two measurements

noted for this routine as it is sensitive to alignment of destination writes.
The faster time reflects writing sprites to DWORD—aligned start addresses.

We did write an assembly routine for background Blts (CBacl<groundP5)
that maximized DWORD—aligned writes per scan line. But we found that

any performance gains detected were negligible, indicating that memcpy
may already be similarly optimized.

4.11 Compositing Objects on a DirectDraw
Primary Surface

Aaah, life would be simple if there were just one background and one sprite to
worry about. We could be sipping iced teas in some tropical country; or
maybe oh—nee-on soup in a Lu-wee—zee—ahna bayou. But . . .

2. Again, these measurements were taken on the base platform described in the Introduction and will def-
initely vary with different configurations. ‘Ne have included the application and its source code on the
Internet site. Run the application on your platform and see what results you get. We have separated out the
timing code from the basic demo applications to simplify reading the base coder
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OBJECTS NON-VISIBLE BUFFER WINDOW ON SCREEN

ifs

FIGURE 4-3 Compositing using a nonvisible buffer.

A difficulty of compositing sprites directly onto the Primary surface is that

the compositing process is visible, so there is a noticeable flicker on the

screen. You can obtain better results when you composite images on a non-
visible buffer and then make this buffer visible.

The Timing Application has a menu selection for Compositing. Take a look

at both the Visible—buffer compositing and nonvisible-buffer conipositing

options. The nonVisible~buffer compositing is implemented by rendering

all the graphics objects in back—to—front order in a system buffer and then

Bltting this nonvisible buffer to the Primary surface as shown in Figure 4-3.

VVith this method we’Ve solved a quality problem, but at the cost of a Blt.

Bltting an 800 X 600 image from system memory to Video memory costs

about 10 milliseconds on the platform we’re using (see Table 4-2). In the

next chapter we will look at mechanisms to reduce the Blt cost.

TABLE 4-2 Composited Drawing to a Primary Surface

CSpriteP5 times are
faster when Bltting to
system memory. See
details in Part VI.

0.6-0.9 7.9

Note: Times in milliseconds.

WHAT HAVE By this time you've had an overview of DirectDraw and a taste of device dependence. You

YOU LEARNED? know that DirectDraw provides you with a lot more freedom than GD| does, but that there
.is a development burden associated with this freedom.

If you worked through the code samples, you have handled code and had direct access
to the display surface using DirectDraw Primary surfaces. And if you did your extra credit
work and perused the CD, you have seen Primary surface sprite demos and fast Sprite Blt
code written in Pentium optimized assembly language.

And if you are still reading, you are probably ready and eager to move on to the next chap-
ter and learn about hardware acceleration, and to later chapters where you'll read about
processor optimization. Are you ready?
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nthe Hardware Acceleration
via DirectDraw

H1 Cl HOD"

ke a look
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ndering
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gure 4-3.

p WHY READ In the previous chapter you were introduced to rendering faster sprites directly to the dis-
)f a BIL THIS CHAPTER? play screen via l\/licrosoft’s DirectDraw interface. You were also introduced to the use of a
Y Costs second bufferto remove flicl<erwith composited images. But making data visible by Bltting
I fl ; from the second buffer to the primary screen carries with it an expensive performance. n 1e f

penalty. This section demonstrates how hardware acceleration features can reduce the
cost of double—buffering.

In the previous chapter you were also introduced to rendering faster sprites directly to the
display screen using custom rendering routines. In this chapter you will explore rendering
sprites using hardware acceleration features.

in this chapter you will learn how to query for, set up, and use

I hardware Bitters to reduce the cost of doublebuffering,

I page flipping hardware to further reduce the doublebuffering cost, and

I transparency Blt hardware to reduce the cost of Bltting sprites.dence. You
Jtthatthere

_ 5.1 Creating an Offscreen Surfaceirect access

extra credit OK, roll up your sleeves. First, initialize the DirectDraw driver as in
rst Sprite Blt : Chapter 4.

3 next Chap- Once DirectDraw has been initialized, let’s get access to an Offscreen sur-
read about face. Let’s create a CSurface object as usual (code follows).
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CSurface0ffscreen::CSurfaceOtfscreen(void)
l

// zero out tre memory of the surface descriptor‘
memset{&m_SurfDes:, O, s1'zeot(m_SurfDesc)):
// init surface descriptor size
m_Sur‘FDes:.dv/Size = s1'zeof(m_SurfDesr);

}

l

Now let’s look at making some changes. In creating a Primary surface, we

were getting access to the primary display surface. We took what we got—

the dwWidth, the dwHeight, and the ddpfPixelFormat were all specified by

the DirectDraw driver to match the user’s display configuration. With Off-

screen surfaces, though, we’ve got to specify what we want, and the driver

will tell us whether or not our request can be satisfied.

DirectDraw drivers can be asked to enumerate the realm of their possibili-

ties. If you can accept a variety of formats, you may want to use

IDirectDmw::EnumSurfuce5O to enumerate the available surfaces, and then

you can choose your preference based on your personal criteria (better per—

formance, better picture quality, or some other trade-off).

Our code only accepts RGB8, which is a very basic format and is supported

by nearly all DirectDraw drivers. So We will take the easy Way out and try to

create an RGB8 surface and react to the errors if there are any.

Let°s initialize the D D S U R :AC E D E S C structure to our specifications and try to
create an Offscreen surface.

EOOL Csurtaceoffscreenz:Init(LPDIRECTDRAw pdDraw. Cwnd *pcwnd)

( REC]. rm. H ; ' / Need to specify the size of offscreen
pCMd_>GEtC] 1tEntRECt(&_w1m , surface. Get the size ofthe client area
m_dww1‘dth = (DwORD)(rwin.right - rw-'r.m=t>: ”“h”PP“°“‘“°“'
m_dwHeight = (DNORD)(rNin.b0ttom - rW1'n.t0p§‘;

Specify size, ype, and pixel format of surface. Notethat DDP F 31X E L FORMAT is a structure and therefore
dwSize must be set.

// set desired fieidsee
m_SurfDesc.dwHeight, = m_dwHeight;
m_SurfDesc.dwwidth = m_dwwidtw;
m_SurfDesc.ddpfPixeiFormat.dwS1Ze = si7eot(DJPTXEtFURMAT):
m_,SurfDesc.ddpfP1'><.eiFormat.dwRGBBi:Count : 8;
m_SurfDesc.ddpfP1'xeiFormat.dwFlags = DDPF_PA_ETTEINDE><ED8 l DDPF_RG3;
m SurfDesc.ddsCaps.dwCaps = DDSCAPSJFFSCREENPLAIN; (————————————————————V
m_SurfDesc.dwFlags =DDSD_wIDTH l DDSDVHEIGHT 1 DDSDJIXELFORMAT | DDSD§CAPS;

// try creaje su Specify which fieldsin descriptor were set.HRESULT err;
err = :dDraw~>CreateSurtace(&m_SurfDesc, &m_pSurf, NULL);
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if (err 1= DD_0K) l
handleEi*r'ur(err}‘;
returri FALSE;

l
return TRUF;

Exactly how to specify the color format has never been clearly documented, and
face, we we have found that techniques that work with previous versions of DirectDraw
V6 g0t_ do not work with current versions. To reach a resolution, we set our primary dis-
ecified by play format to the color format we wanted, created a primary surface, got the sur~
with Off_ face descriptor with GetSurfaCeDesCO, and looked at how the color format was

, specified there.e driver

ossibili— 5.2 Drawing a Sprite on the DirectDraw
andthen Offscreen Surface
etter per- We created an Offscreen surface based on our preferred format. Now let’s

draw a sprite on this Offscreen surface. We can use the same sprite and
background Blt classes (and routines) we used in the previous chapter.

upported

nd try to

CSurtaceDffscreen::BltSprite(CSprite &spr, CPoint Krpointjl

m_pSurf->Locl<.(NULL, &m,Sur""Desc, DDLOCK_l.IAIT, NULL); // first luck surface
dtrYt0 sp“—>Elt(m,5urfDesc.lpsurface, rn_SurfDesc.lPitCh, point): // ir»vol<r= bl"

m_pSurf->Unlocl<(NULL); // release the lockl

Bltting sprites to an offscreen surface is pretty much the same as Bltting sprites to a
Primary surface. Lock to get access to the surface, invoke the SpriteBll routine with
the newly Obtained surface pointer and surface pitch, and then Unlock the surface.L

offscreen

‘hm are“ When you Blt to an Offscreen surface, the results are not immediately
Visible. We have to Blt data from the Offscreen surface to the Primary sur—
face to see the results.

On occasions when Offscreen surfaces are used for overlays or for texture maps,
results may be immediately visible—look up the DDSCAPSQ/ISIBLE flag in the

_ _ DirectDraw documentation on DDSCAPS.DDSDVCAPS:

Following is the code to transfer data to the Visible surface.
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CSurfaceOffsereen:2Read-er'(LPDIRECTDRANSURFACE pPr'imar'y, Cwnd *pcwnd)
l

CPOINT ptTopLeft(0,0,l;
prNnd—>(jlientToScree1{&ptfnplett);
lsnq 1Ri'grt = ptTopLeft.x + m_dwwi'dth;
lzng lBottom = ptTopLeft.y + rr_dwHe-fight;
RECT rDst{ptTopLeft.x, ptTopLeft.y, lR1'ght, lBottom):
RECT rSrc(O, O, m_dw‘~idth, m_dwHeight);

// bit entire offscreen surface to subrect on primary surface
err = pPrimary->Blt(&rDst, m_pSurf. &rSre. DDBLTJJAIT, NULL): ta:

1

I IDirectDmwSm;face::Blt uses a BltFrom convention. The Blt function is invoked from the destination object;
that is, the object that will get modified, pPrirm1ry. This convention is consistent with the convention in
MFC’s CDC::Blt.

I The Blt operation can be further controlled by flags in the fourth parameter. There are over twenty—five
controls, which include RasterOps, ColorFills, AlphaBlending, ChromaKeying, Z-Buffering, Rotation,
other special effects, and more. VVe will use DDBLTJQY SRC later in this chapter.

I Blt can be invoked asynchronously with the [DB LLASY NC flag. In Async mode, a successful return indicates
no paranieter errors were detected and the operation was successfully posted. See IDirectDrawSurface::Gei‘—
BltStatu5 to check for completion/errors.

I We use DDB LT_wAIT to tell the Bltter to wait in case the Bltter hardware was already in use. The alternate
option is for the Bltter to send us a DDERLHASSTI LLDRANING error message if the Bltter was busy.

I Blt permits specifying a sub—rectangle of the source. By moving the sub-rectangle around you can scroll a
view vfindow within the source image. Setting Source and Dest rects to be of different sizes invokes a stretch
(or shrink).
Blt can return a DnFRR_SHRFACF , CST error message. Surfaces can he lost because the display card’s mode was
changed or because a.n application used an exclusive access mode. See IDirectDmwSurface::Re5tore to deal withlost surfaces.

I

5.3 Demo Time

At this point, you should be seeing sprites on the Primary surface. These

sprites were drawn to an Offscreen surface, and the composited image was

transferred to the Primary surface. Select the Primary Surface option from

the sample application on the CD. You should see a sprite appear on the

screen. Move the mouse around, and the sprite will follow the mouse.

How do you know we’re using Offscreen surfaces? Move the mouse to the

white border areas along the right or left edges. You may notice that the

sprite seems to “wrap around” to the other edge. If this artifact occurs, it is

because the rows of the Offscreen surface memory are packed contiguously.

When we write beyond an edge, we “happen” to write into the adjacent col-

umn. This artifact may not occur if the DirectDraw driver allocated an Off-

screen surface with noncontiguous rows (that is, lPitch > dwWidth).

Move the mouse to the bottom edge. You will notice that the sprite disappears

before the mouse reaches the border. Ifwe were to draw past the bottom bor-

der, we would write into unallocated memory and would generate a General
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Protection Fault (GPF). Therefore, for this demo, we have deliberately chosen

not to draw the sprite if it is going to extend past the bottom edge.

Don't search for Csurface Offscreen on our sample CD. Instead we use two
variants, CSurfaceVidl\/lem and CSurfaceSysl\/lem, which you can search for.

5.4 How Fast ls Offscreen Surface Drawing?

Table 5-1 measures the speed of drawing sprites and backgrounds to Off-

Screen surfacesl merely to furnish a preliminary insight. More meaningful

measurements, comparisons, and discussions are upcoming in this chapter.

TABLE 5-‘! Preliminary Measurements for Offscreen Surface Drawing

0.6-0.9

All times are in milliseconds.

These measurements look the same as the measurements for composited

These . drawing to a Primary surface. So how about some acceleration? I/Vhere’s the

age was hardware?
on from

n the
me. 5.5 Finding Hardware Acceleration

E to the We used PrimarySurface::Blt to transfer data from the Offscreen surface to
[t the the Primary surface. Was this a hardware accelerated transfer? It’s hard to

I say. DirectDraw has a Hardware Emulation Layer (HEL) that will emulate

_gu0us1Y_ DirectDraw functionality in software. The purpose of the HEL is to always
‘Cent COL provide key DirectDraw features, even if the graphics hardware doesn’t sup-
d an Off- port them?
1). I

'urs, it is

sappears
tom bop 1. Again, these measurements were taken on the base platform described in the Introduction and will

Genera1 definitely vary with different configurations.
‘ 2. Unfortunately, the DirectDraw HEI. does not emulate all the features exposed by the DirectDraw

interface. Therefore, you cannot rely on software emulation always being available. DirectDraw::GetC¢zp5
returns the capabilities of the hardware and the HEI. independently.



69

44 I CHAPTERS HARDWARE ACCELERATION VIA DIRECTDRAW

So between the hardware and the HEL, we can’t really say who did the

P7‘imarySurface::BZt. Do you really need to know whether it was a hardware

Blt? Yes. You may want to know for a couple of reasons.

1. Hardware Bltters are faster than software emulated Blts, a11d you may

want to alter your application’s logic to respond to the performance
difference.

2. A Hardware Bltter may be available only under constraints, and you

may want to constrain the environment to get hardware—accelcrated

performance. For example, hardware Bltting may only be available if

both the source and the destination are located in video memory——

therefore you may want to deliberately place objects in video memory.

Similarly, the hardware might only be able to stretch in integer multi-

ples, and you may want to disable arbitrary resizing to use hardware

stretches. (Look up the DirectDraw documentation on D D CA P S , D D E X CA PS,
and look for DDCAPS¥CA|\lBLTSYSMEM, DDF><cAPs_Bt*s7 RETCHXN, and

DDFXCAPSJ LTSTRETCHYN flags for more details on these examples.)

5.6 Setting Up for Hardware Acceleration
Here’s some code we can use to find out some of the hardware’s capabilities.

CHardware::GetCaps(LPDIRECTDRAw pdDraw>
(

DDCAPS hwcaps = {O}, helcaps = (U);
hv/Caps.dwSi’ze = si'zeof(DDCAPS);
helCaps.dwSlze = s1'zeof(DDCAPS) ,
pDDraw->Get.l)aps(&hwCaps, &helCaps);<
if (hw(2aps.dwCaps & DDCAPS_BLT ) <:1Cantheh/wB1t?

rn__bCanBltVidMem = TRUE;
if (hwCaps.dwCaps & DDCAPS_(,‘ANBLTSYSMEM) (jJCanitB1tfrom/to systeinmerrrory?

m,bCanBltSy5Mem = TRUE;
l

- Two DDCAPS structures are passed to lDirectDraw.':GetCaps in which we get back descriptions ofboth the
hardware device and the Hardware Emulation Layer.

- DDCAUS structures are huge and allow for a wide variety of features to be described. In our code we are
mainly interested in DDCAPLBLT and D)C/\PS_CANBLTSVSMEM. Later in this Chapter we will look forDDCAPLCC LORKFY.

I Take a look at the documentation for CDC/\PS (and its contained structures) to get a feel for the breadth of
hardware features that can be exposed via DirectDraw. 3DCAP3_GDI, DECAPS_vBI, and
DDCA3S_ PALETTEVSYNC are features that might be useful. DCCAPS_STEREOV1EN and ED2APS_RFADSC/\.\lLlNE at the
very least attract attention.

' DECAPS contains within it a DDBCAPS structure that during GetCaps will be filled by the kinds of DirectDrawsurfaces that can be created.
Not all features may be available simultaneously. llor instance. by using one feature, another may becomeunavailable.



70

the

ardware

you
ated

ble if

ry——

emory.
multi-
ware

D F X C A P S ,

s.)

abilities.

SETTING UP FOR HARDWARE ACCELERATION I 45

Of course, a lot more information is returned in the DDSCAPS structure.

We’ve only highlighted the capabilities we’re looking for. And now, here’s

code to situate an Offscreen surface in video memory.

BOOL CS.1r'faCe\’idMeH::Init(LPDIRECTDRAw pduraw, Cwnd *pcWrid)

( RECT NH H I The IDirectDn1w
3cWnd—>QetCiientRect(turwin); Qblecthasafilnc‘
Mwwiatii = £DwORD)(rw1'n,r1'qht - rwin.1eft); “°““"1”“‘Yh°.‘”
m_dwHeight. = (DNORD)(rwin.bott:m — rwin.to:); m“.“hm5m°’Y“
// check *1’ :here‘s enough memzry for v1'dMem basec surface ‘"*V“W€°“‘.h€
DNORI) mrorai, dv/Free; ’ 5"‘Ph1°5de"1C“-
DDSCAPS ddsCaps; .OfC°““"’Y°“°°“1d
ddsCaps.dwCaps = DDSCAPS NPLAIN: J““‘”Y‘°“"““‘a
pDDraw->GetAva1‘iab1eVidMcm(&ddsCaps. sdwtotai, &dwFree); 5“’f“C”“‘“°°1‘.‘“
DWORD dwSurfSize = m_dwWidth * ni_dwHeight; ”‘“e“"“.°°“°‘“h€
it (dwFree < dwsurtsize) { ““emP‘fa‘]ed'

hand]eError(DDERLOUTOFVIDEOMEMORY):
return FALSE; .

} or III DDCAPS_VID[OM[MORY flag to force surface to
be created with video memory. The HEL will

// 5 E; d 951 red rei d 5 not allocate an emulated offscreen surface ifthe
mASurfl)esc.dwHe1'ght = m_dwHe1'grt; d<=ViC6fai1edth€requeSt-
m_SurfDesc.Lwwi;th = m_dwwi'dth;

m_SurtDesc.r.dsCaps.dwCaps = DDSCAPS_0FFSCREENPLA1Mm_SurfDesc.cdsCaps.di~/Caps ]= DDSCAPSJIDEOMEMORY;
rn,Surt’Desc.cdpfPixeiForrrat.dwSize = s1'zeof(DDPIXELF0RMAT>;
rn_SurtDesc.:dpfP1’><elForIrat.dwRSBBitCoun: = 8;
m_Sur‘ c.jdpfPixelForIrat.dwFlags = DDPF_PALETTEINDEXED8 | D3PF_RGB;
rr_Sur’"DesC.3‘wFlag3 =DDSD_w1DTH|DDSD_HEIGHT|DDSD_PIXELFORMAI \DDSD_CAPS;

// try create surface
HRESULT err;
err = pdDraw—>CreateSurtace{&m_SurtDesc, &ir_pSurt', NULL);
i‘ (err I= DD,0K) {

rarid1eError(err);
return FALSE;

)
"eturn TRUE;

Despite a successful negotiation of GetAvailableVdMem, the Createsurface call can stillreturn DD[RR_0UT0FVIDEOMEM0RV. This is because we calculated dwSuIfSize as

dwWidlh"dwHeight. However, the graphics card may use an lPitch [allocated row width)
larger than dw\Vidth and there may not be enough memory for lPitch*dwHeight.

For the times when there isn’t enough memory on the video card to create a

video memory surface, our code uses a CSurfaccSysMem surface. The code
for this option is similar to the code we have used to situate an Offscreen

surface in Video memory. In this case, the DDSCAPS_SYST EMMEMO RY is used

instead of the D )5CAPE_V I D EOMEMO RY. Also the check for memory is not

needed, since the surface will be allocated in system memory.
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Following is the code that uses the hardware Bltter. Looks just like

CS14rfr1ce()flscreen::Render—doesn’t it? Except now we know we’re using the

hardware Bltter, because we checked that the graphics card did indeed have a
hardware Bltter, and when we created the surface we forced it to reside in

Video memory.

Csurfacei/ioMem::Render(LPn1RECIDRAwsuRFI\cE pPr1'rrary, Cwnd *pcwndi
{

CPOINT ptTopI,eft(D,O);
pcwnd->Ci1entT:Screen(&ptTopLeft);
long iRigi1t = DtTor>Left.>< + rn_dww1‘dth;
iong iBot.torn = ptTopLeft.y + m_dwHeight':
RECT rDst(ptTopLeft.:<, D:TopLeft.y, iRight, iButtorr);
RECT rSrc(0. O, Inudwwidth, m_dwHeight);

// bit entire offscreen surface :0 subrect on primary surface
err = pPr1'mary->Hit(&r'Dst, m_pSurr", Emsrc. DDBLTJJAIT, NULL);

}

i

5.1 How Fast Is CSurfaceVidMem Drawing?

Table 5-2 measures the speed at which objects can be drawn when using a
hardware-accelerated Offscreen surface.

TABLE 5-2 Measurements for Offscreen Surface Drawing

CVidMem 0.7-1.8

All times are in milliseconds.
CSysi\/Iem +7 O.6~O.9

Wow! Refresh Screen is a minuscule 0.1 millisecond. The total time seems

halved. Wow! But what’s this new column for Post Refresh? Well, when we

invoke pPrimary->Blt, the hardware Bltter returns as soon as it has started

the Blt. We can use the main processor, while the graphics processor does

the Blt in the background. This is in effect a form of parallel processing.

(Maybe one day there will be many of these little processors working in par-

allel. Oh wait, isn’t that what’s in them “soopah computahs”? Never mind.)
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Parallel processing is functional as long as we don’t want to use the same

memory that the graphics processor is using. In other words, we would be

denied access to the Primary surface while the graphics processor was still

working. In this case we would have to wait until the Blt was complete. Post
Refresh is a measurement of the worst-case scenario for wait time——we

tried to lock the surface immediately after the Blt, and then we measured

how long we had to wait.

The gist of all this is

1. We can, indeed, increase overall application speed as long as the applica-

tion can work on something else while the graphics processor is Bltting

in the background. This seems like a fairly workable situation.

2. We have not gained much benefit in the overall “Composite and Ren-

der” time. Time is gained only by parallel processing and not by reduc-

ing the length of the graphics rendering steps.

5.8 Accelerating Offscreen to Primary Transfers
by Page Flips

W'e’ve used the hardware Bltter to transfer data from Offscreen surfaces to

the Primary surface. On timing these data transfers, we find that despite

using a hardware Bltter, the actual Blt cost is still about 9 milliseconds. Letis

look at Page Flipping hardware in graphics devices to tap into an even faster

mechanism for making background data visible.

What Is Graphics Page Flipping?

Consider that the display screen is being constantly refreshed at the moni-

tor refresh rate (anywhere between 30 and 90 times per second). Pixel data

to be displayed on the screen is retrieved from somewhere in graphics card
memory.

What if the location of the data was specified by a pointer; that is, what if

the monitor refresh hardware used an indirect reference to access pixel data.

Change the value of the pointer and an entirely new image is being dis-

played on the screen. This in effect is Page Flipping.

seems

en we

started

» does

in g.

; in par-
mind.)
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TABLE 5-3 Constraints on Using Page Flipping

Page Flipping hardware, in general, is designedgto get 'herefore, onl the entire screen
the pointer value and then de—reference the pointer to can be Page F ipped (not inde-
refresh the entire image. pendent windows).

The screen area of the display can be reconfigured to 'herefo4re,‘al| buffers used for
different sha es. But once configured, graphics cards Page Flipping must be of the
are designe for constant screen areas. same size.

With two. buffers, data written into the invisible buffer herefore, eitherthe entire scene
_is not written into the visible buffer. Data will be miss— must be_ redrawn, or some inte|li~

ing from alternate buffers unless it is written into both, Sent logic must be used to makeand the result will be an annoying flicker. ata continue to exist across
F buffers.

Similarly, GDI does not know that we are in Pag? Flip Therefore Page Flipping can onlymode, and the data that GDl drew into one bu er be used in ”E><clusive” mode,
would "vanish" when we Page Flipped. (it would reap- and other applications cannot
pear when we Page Flipped again, producing an share the display while Page Flip-
apparent flicker.) ping is in use.

DirectDraw Page Flipping Model

Let’s say we set up two buffers. One buffer is the visible buffer and is called

the front buffer. The second buffer is invisible and is called the back buffer.

W'hen the graphics card Page Flips, it makes the back buffer visible; that is,
the back buffer becomes the front buffer.

Now, let’s suppose we wanted to render the next image into what was previ-

ously the front buffer. Which surface do we Lock to get back a usable

pointer? The code that follows in the next subsection will show that after a

Page Flip, DirectDraw makes the front buffer into the back buffer and vice
Versa, and therefore all we need to do is to L0ck() what was our back buffer.

Does the Hardware Support Page Flipping?

Let’s find out whether the hardware supports Page Flipping.

CFdrdware::CanTranspacentBlt()
l

DDCAPS hwcaps = {Ol. helcaps = i0): _ I _
hwCaps.dwSize ; sizeof(DDCAPS); D‘“’“D“‘Wmd1°*1te5Support
helCaps.dwSize = si'zeof(DDCAPS>: for PageF1ippmgbY1ndicating
pDDraw->GetCapsi&hwCacs. &helCaps); ‘ha1FhP5“TfiF€5C3nb€CY9m9¢

BOOL bCanPageFlip = FALSE;
it (hwCaps.ddsCaps.dwCaps & DDSCAPS_FLIP)

bCanPageFlip = TRUE;
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Setting Up DirectDraw to Use Page Flipping

There are two ways to set up Page Flipping. The first is to have DirectDraw

create a complex surface that automatically creates and connects multiple

buffers. The second approach is to create a Primary surface, create Offscreen

Surfaces, and then to Attach the Offscreen surfaces to the Primary Surface.

VVe will demonstrate the second path, because it gives us the opportunity to

1nte|li- help you past some tough problems that you would experience if you
make needed to use this path.

BOOL CSL.rfaceBackBufter::1nit(| PDIRECTDRAW pdDraw. Cwrd *pcwnd)
{

pDDraw~>SetCoo:erat1’vetevel (pcwnd->hwnd,
DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN); 4444———————————————————

First we’ve got to set up DirectDraw to be in FullScreen mode to do Page Flippi_ng.
- FullScreen mode can only be setup, if we have Exclusive access to the screen.
I DirectDraw will return an error if you SetCooperativeLevel while you have any surfaces
created. Shut down any surfaces prior to using this function.

The documentation states that IDirectDmwSurface::Flip can only be invoked on a buffer marked as the DD 8 CA P S_ F RC NTE U F F E R
surface from among a group of buffers that have been marked as DDSC/\PS_F Ll P. But if you tried to set the
DDSCAPS_FF'.ON 1 E U F FE R, DirectDraw will return an error stating that DDSCAPS_F RON W U F FE R is not a settable flag, therefore
this code has been commented out. We found that Flips work when you don’t set these flags.

// create a primary surface
menset(&rr,Pr1'mDesc, O, s1'zeot(DDSURFACEDESC)>;
m_Pr1‘mDesc.:wS1'ze — s1‘zeof(DDSURFACEDESC);
mWPr1mDesc,ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
m_Pr1'mDesc.dwFlags = DDSD,CAPS;
// W_PrimDesc.:dsCaps.dwCapS \= (DDSCAPS_C0MPLEX);
// m_Pr1'mDesc.udsCaps.dwCaps = (DDSCAPSJRONTBUFFERIDDSCAPS_FLIP)2
pDD"aw—>CreateSurface(&m,Primfiesc, &m,Pr1'wSurf, NULL);

- The back buffer must be pretty much identical to the front buffer. So tell DirectDraw to
describe the primary surface and copy it over.

- Create the back buffer as a plain Offscreen surface. Force it to reside in video memory,
so that graphics hardware can Flip the surface. Also, see note above on Flip flags.

m,PrimSurt.GetsurfaceDese(&n;SurtDesc):
rremcpy(&rr_SurfDesc, &m_F’Fl”iIDCSC, s1’7eof(DDSURFACEDESC)):
w_SurFDesC.ddsCaps.dwCaps — DDSCAPS_0FFSCREENPLAIN|DDSCAPS_V1DEOMEMORY:
// m_Pr1’mDesc.ddsCaps.dwCap5 \= (DDSCAPS_COMPLEX);
// w_SurtDesc.dds(‘,aps.dwCaps \= (DDSCAPS,BACKBUFFER|DDSCAPS_FL1P);
m4SurtDesc.dwF1ags = DDSDJJIDTH | DDSD_HEIGHT|DDSD_P1XELFORMAT\DDSD_CAPS;

i Attach the Oftscreen surface to the Primary surface. A chain of multiple buffers can be attached.
I l

// create zhe oftscreen surface and attach it to the primary surface ‘
pdDraw->C**edteSurface(&m‘SurfDesc, &rr_pSurf, NULL"):
m_pPr1‘mSuat—>AddA:techedSurface(m_pSurf); '

return TRUE;
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5.8.5
"Rendering" Flippable Surfaces

A back buffer is just like any other Offscreen surface, and the code to draw

objects to CSurfaceBackBuffer is just like the code to draw objects to CSur-
faceVidMem. However, the code to make the data in the back buffer visible

is different. We use Flip instead of Blt to “transfer” the data to the Primary
surface.

CSuri°ace3aci<3uffer::2encer“()
(

// Flip with NAIPUNTILVREADY ’
Ti_pPr“imSurf.Fii]:r(NULL, (DwORD)DDFL1P_wAIT);

5.9 How Fast Is CSurfaceBackBuffer Drawing?

Table 5-4 measures the speed of drawing objects with a hardware acceler-
ated Offscreen surface.

TABLE 5-4 Measurements for Offscreen Surface Drawing

CSysMem 06-09 19.3

CVidMem 0.7-1.8 l 7.4/18.5

CBackButier 0.7-1.8

All times are in milliseconds.

The variability in the Post Refresh for back buffers is the glaring figure.

IDirectDrawSurface2::Flip O is always synchronized with the Vertical Blank

Interval3 (VBI) of the monitor. So if you invoked Elipf) function just before

the VBI, then the Flip() function would be instantaneous. But if you

invoked Flip() function just after the VBI, then you would have to wait for

VBI for the flip to occur.

3. Vertical Blank Interval is the time interval when no monitor refresh is occurring, because the moni-
tor’s beam is returning from the end position (bottom right corner) to the start position (top left cor~
ner) after having refreshed the screen.
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DirectDraw will not let you lock a back buffer surface that is waiting to be

to draw V flipped. However, in contrast to the use of the Bltter, a “VVait for VBI” does
to C5ur_ not consume hardware resources, and DirectDraw will allow you to use

I Visible other surfaces. So what if you had a second back buffer that you could ren-

U-mary der to, while the other one was waiting to be flipped? This is known as triple
bufiferirig. Post Refresh cost is negligible with triple bufifering, and the only

practical limit to the frame refresh rate is the refresh rate of the monitor.

5.10 Hardware Acceleration to Blt Sprites

V/\7e used hardware to Blt from Offscreen surface to Primary surface. Why

not use hardware to render objects too? Sprites are transparent objects. To

accelerate sprite Bltting with hardware, we must find out whether the hard-
ware can handle data with transparency.

l9.3

74/185 CHardware: :CanTransparertBlt()' ' (
‘ DDCAPS hwcaps = {OM helcaps = (3):

hwCdps.dwSize = sizeot(DDCAPS);
he|[japs.dwS1‘7e = s1‘7ent(DD[jAPS);
pDDraw»>GetCaps(&hwCaps, &helCaps);

DECAPS_COLDRKEY says that some form of cnlorkey is supported,DDCA3SAC0L0Rt1[YHNA5S1ST says that the color—
‘ keying is done by hardware. We would have preferred to check only for the second flag, but we found some

graphics cards that only set the first flag. Graphics card vendors are not supposed to provide software emLLla— —l
tion. You may want to test the performance of color-key implementations,

BOOL bCanl<1ey = FALSE; ‘
if (thwCaps.dwCaps & DDCAPLCOLORKEY) ll ‘;

thwCaps.dwCaps St DDCAPS_COLORKEYHWASSIST))mm
bCanKey = TRUE;

if (bCanKey && (hwCaps.dwCKeyCaps & DDCKEYCAPS_SRCBLT)> 4-—--T
m_btjanl'anspBlt, = TRUE;

l

Color-keying can take many forms—there are about eighteen different flags defined in the Directl)raw docu-
mentation. The dwCKeyCaps field in the DDCAP3 structure describes supported color«keying forms. Once we
know that some form of color key is supported, we’ve got to check if it’s a form we can use. For our defini-
tion of sprites, our sample application looks for DDC)<.EYCAPS_5RCBLT color—kcying.
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Once we’Ve found that the hardware is indeed capable of Bltting sprites, we

can look at code to set up sprites for hardware Bltting and to Blt the sprites.

BOOL ('JEipr"i’tei:rf><::lmt(LPDIRECIDRAW pdDraw,
CBltTlaD &bi‘tmap, BYTE b.yKe_yColor)
(

// load data from bitmap and init memser variables
BITMAP hm;
b1'tmap.GetB1’tmap(&t>m>;
pData' — new BYTE[bm.bmN1'dth * br'I.bmHe1'ghtl;
bitmap.GctBitmapBtts<bm.b71w‘dth * bm.amHe1‘ght, pData):
m4:ww1'd:h — bm.bmw1‘dtl*;
m av/Height = bm.tmHe1‘ght:
m4by'ransp = b;/KeyC0lo“;

We start out just like we were creating a hardw21re—accelerated Offscreen surface.
DNDRD dwlotal, dwwee;
DDSCAPS dcsCaps;
dds('Japs,dw(2ap.< = DDSCAPS_UFFSCREENPLAIN;
pDDraw->GetAvai'1ableVidMem(&ddsCa:s, &dv/Total, &du/Free);
DNCRD dwSu"*"S1'ze > rLd\«/Height * mgdwwidthg
‘f (dwFree < dwsurfsize) {

handleErroe(DDERR_0UTDFVIDEOMEMORYJ;
returr FALSE:

m_SurfDesc.dv/Height ‘ rrLdwHe1"ght:
m_SurfDesc.dv/Width = m_dv/‘Mdtn;
m_SurfDesc.ddsCaps.dwCap5 * DDSCAPLOFFSCREENPLAIN :
H_SurfDesc.ddsCaps.dwCaps |= DDSCAPS_VIDEOMEMORY;
m_SurfDesc.ddpfP1'><e‘Fcrmat.dwS1ze = s1zeoflDDPIXELFORMAT):
ILSurfDest;.ddpfPixe'For‘naL.dwFlags = DDPF_PALETTEINDEXED8;
m_SurfDesc.dwF1ags =DDSD__WIDTH|DDSD,HElGHTlDDSD_PIXELFORMATlDDSD_CAPS;

Add in specification of color key and set dwFlags to indicate that this field is Valid. The Color key
can be a range. Our sample only uses a single color and sets high and low to he the same.

DNORD dwKey '- (D1/J»3RD)33/Ke;/Color;
m SurfDesc.ddcl<CKSrcB1:.dwCoTorSpaccLowVa1ue = dwKey:
mfiSurtDeS:.ddCl<CKSrcBl:.dwColorSpaceHighVa'ue — du/Key;
m SurfDesc.dv/Flags \= DDSLCKSRCBLT;

// try create the surface
HRESULT err = pdDr‘aw—>Cv‘ed.eSur'fd«:e(&m_Sur'tDesc,&m_pSur~f,NULLZv;
if {err != DD,OKZ I

hand‘eEr'r'or(er'r‘);
return FALSE;
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vrites, we

.6 sprites. ii‘ Set up the sprite, by transferring data Lo the Offscreen surface at Init—Time. Remember to lock surface to get" access and unlock surface after use.

rrrpsurf >Lo:k(NULL, &m_SurfDes:, DDLOCK_wAIT, NULL);
PBYTE pist = (PBYTE)m_SurfDesc.ipsurfaceg
PBYTE piirc = m_pData;
for (DNORD d\~/Row = O; av/Row < m dw+e"ght; dwRow++) {

memcag/(pist, psrc, m_dv/widtw);
pDst += m,SuW‘Desc.1Pitch:
pSrc += m_dwW1‘dth;

}
m__pSurf->Un1ock(NULL);
return TRUE:

1

Next we’ll check out the code that Blts sprites with the hardware Bltter. It’s

pretty much like CSurfaceVidMem, except for the DDB LT_KEY 8 RC added into

the Bit control flag.

CSpPiteGv‘f><::BlMLPDIRECTDRAWSURFACE pDstSurf, CP01'nt &ptDst)
{

long lR1'ght = ptDst.>< + mwdwwidth;
long 7B0t.t.om = pt.F]st.y + m_dwHe1'ght;
RECTrDst(ptDst.><, ptDst.y, iRight, 1B0tt0m);
RECTrSrc(), 0, m_dwN1'dth, m_dwHe1'ghtJ;

// blt entire sprite surfaze to subrect on dest surface
pDstSurf->B1t(8PDst.m,3Surf.&rSI“c,DDBLT_WAIT|DDBLT,_KEYSRC,NULL):

Blt sprite to destination surface. Specify that the sprite has
transparency and that it is keyed on the source‘

K)”

5.11 How Fast ls CSpriteGrfx (and CBackgroundGrfx)
Drawing?

Table 5~5 on the next page records the speed of drawing sprites and back—

grounds with and without hardware acceleration. Following the table are
some observations on the measurements.
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WHAT HAVE

YOU LEARNED?

TABLE 5-5 Measurement of Hardware-Accelerated Object Drawing

 
O.7—l .8 2.4-2. 7 7.9

 

All times are in milliseconds.

I CSpriteGrfx is not as sensitive to unaligned writes as is CSpriteP5. But on
the platform We’re using the CPU—based sprite drawing routine is faster

than the graphics hardware—based’ routine. Note that CSpriteP5’s time

will vary with CPU speed, while CSpriteGrfX’s time probably won’t.

n Non-transparency Blts run faster when you use hardware acceleration.

The benefit is especially noticeable for large backgrounds. The CPU in

general is faster at Transparent Blts, with the performance difference in-

creasing with faster CPU speeds.

 

CPU-based rendering needs surfaces to be locked, but hardware-accelerated
sprites do not—so you would need to do constant Locks and Unlocks. Lock/
Unlock costs may be comparatively large when you are rendering small sprites.
Our surface—rendering code adds logic to avoid unnecessary locks and unlocks.
Based on your sprite sizes, it may be worth making this effort to minimize locks
and unlocks.

 

By this time, you've got a taste of accessing device features to accelerate multimedia per-
formance under Windows. If you worked through the code samples, you would have han-
dled code to create and accelerate offscreen buffers, set the display into tul|—screen mode,
and performed Page Flipp 'ng. You would also have worked through code to draw sprites
and backgrounds using hardware acceleration.

You should also have go
result you have some exp
sources thoughtfully. Our

en a taste for the performance costs of various options. As a
erience of how important it is to apportion device memory re»
acceleration strategy for the multimedia objects in this section

would be to give triple bu ering the highest priority, to give background Bltting the second
highest priority, and to try to use the CPU for Transparent Blts. We hope we have sparked
some ideas on what memory allocation strategy would sen/e your application best.

Device dependence can be burdensome. There's a lot of code to be written, debugged,
profiled for performance, and optimized. in the next chapter you will learn of software
libraries with higher—level APls that work to provide high-performance multimedia without
the burden of device dependence—sort of like a "GDI for Multimedia."
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_a(;[:|(<j/ WHY READ In tlheprevious chapters, you were introduced to several device-dependent paths for
i Sprites‘ THIS CHAPTER? achieving higher-performance sprites using Microsoft DirectDraw. But for routine multi-
Unlocks media, wouldn't it be nice to have the multimedia equivalent of GDl—to be able to pro-
yze locks gram with multimedia objects like sprites, backgrounds, and video streams without having

to worry about the idiosyncrasies of device implementations?

This chapter will introduce you to |nte|’s Realistic Display Mixer (RDX), which offers a
device-independent interface for multimedia objects. RDX has hand tuned assembly code

nedia per— for accomplishing high performance on unaccelerated platforms, and it accesses hard-
have han- 5 ware features whenever available for further acceleration. Read on and decide whether
zen mode; the ease of programming makes up for having to learn a new interface. Decide whether the
aw sprites features and performance make up for any reduced flexibility. As you work through this

chapter, you will

l0”'5- A5 a u get an overview of what RDX is and what it offers,
fsnqsoez/tiger; _ I learn how to use RDX to render fast sprites and backgrounds, and
~,e Second I learn how to direct RDX’s use of DirectDraw.
ie sparked it
Jest. \

mugged 6.1 Introduction to Intel's RDX Animation Library
1‘ S0fiWaF€ Direct access to device features, through interfaces like DCI and Direct-
lla Wlthoul Draw, is one way of addressing performance problems for multimedia

under Windows. The downside of direct access is device dependence.
Direct access also forces the programmer to learn how a Variety of graphics
devices Work. 

I55:
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Intel developed the Realistic Display Mixer (RDX) system to provide devel-

opers with a high-level interface to manage multimedia objects and multi-
media devices. Since multimedia applications are performance sensitive,

Intel’s RDX system has been engineered to provide its high-level abstrac-

tion without sacrificing performance.

Figure 6-1 shows RDX within the context of the Windows 95 display archi-

tecture. The system can be considered as “middle—ware,” providing abstrac-

tions above Microsoft’s DirectDraw and Direct Video, and interacting with
Video for Windows (VFW). RDX can also interface with Microsoft’s

Direct3D and ActiveMovie components.

FIGURE 6-! RDX within the Windows 95 display architecture.

Features of RDX

RDX is a high-performance inultimedia object management system that

allows developers to program at a higher level without a performance pen-

alty. The RDX system makes extensive use of hand-tuned assembly code to

obtain high performance even on un accelerated platforms. RDX can use .
hardware acceleration when available and can also be upgraded with

assembly code modules tuned to future processors.

Figure 6-2 shows the RDX object management system architecture. The

architecture allows multimedia objects like sprites, backgrounds, video, or

3D to be mixed with one another. The system can handle even complex
mixing scenarios such as video on video with differing frame rates.
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Application ACE’-jfixgvie

_—
Direct Draw or DC! Directsound

FIGURE 6-2 RDX object management system architecture.

The RDX system consists of a mixer module and some other object modules:

The Mixermodule defines generic mixable objects, object attributes, and

attribute management functions. Objects that follow the rules of the
mixer module can be mixed with one another without knowing about
one another. The Mixer module interfaces with DirectDraw and accesses

suitable hardware acceleration.

The RDX Audio—Video (AV) module supports video tracks, audio tracks,

and AV streams as mixable objects. It interfaces with the Video for Win—
dows Audio—Video Interleaved (AVI) file format and VFW—based codecs.

The AV module supports sources oftransparent video such as Indeo Video
Interactive.

The RDX Animation module contains hand—tuned assembly code to sup-

port sprites, backgrounds, and tiled grids as mixable objects. The RDX

Animation module also exports effects that can be applied on objects from

both the Animation module and the AV module. Examples of effects

include shearing and horizontal or vertical flipping.

In addition to the mixing and the predefined objects, RDX offers a fairly

straightforward interface based on all objects having generic attributes.

RDX uses simple function calls for various DirectDraw display modes to

hide underlying device dependence.
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RDX offers grouping to easily manipulate the attributes of many objects. It

offers effects to transform the image data of an object at draw-time. Timers

and events in RDX allow activities to be scheduled and allow the synchro-

nizing of time-stamped material such as video streams. Collision and hot

spots detect interactions between objects.

This chapter deals primarily with the Animation module and the Mixer
module.

Before You Get Overly Excited

RDX offers high performance without the programming burden or device

dependence, but the ease of use may come at the expense of reduced flexi-

bility. For example, for practical reasons RDX will only use a subset of the

features that are offered by DirectDraw and Video for Windows. Similarly,

RDX will only tap into a subset of the acceleration features offered by hard-
ware devices.

Just as when we were evaluating GDI, we must measure the strengths of

RDX’s device independence against the possibility of reduced flexibility.

RDX does not prevent simultaneous use of DirectX, but in that case, the

benefits of programming ease are defeated. And! Having to learn more than

one set ofAPIs and debugging more than one system component are added
burdens.

6.2 Using RDX

RDX is an object—based system. The object hierarchy in RDX contains

generic objects, render objects, and source data objects.

n All displayable RDX objects are derived from a generic objects base class.

The generic objects base class defines a set of generic attributes and a set

of attribute management functions.

Displayable objects derive from the base class and can be called render

objects. Sprites, backgrounds, grids/tiles, and videotracks are examples of

render objects. In addition to the inherited functions, render objects also

define object-specific functions, which work only on objects of that par-
ticular kind.

Render objects inherently do not contain image data; rather they maintain

links to data objects called source data objects (for example, bitmaps,

avFiles). A single source data object can be shared by several render objects.
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The RDX system also provides support objects and support functions,

which operate on groups, effects, timers, events, and so forth.

Generic Objects with RDX

All displayable RDX objects are derived from a base class and inherit a set of

generic attributes from the base class. The system provides a set of attribute

functions, which an application can use to set, get, and change attribute
values.

Table 6-1 lists the generic attributes that are inherited by all RDX objects.

Functions to manipulate these generic attributes all begin with the

obj mnemonic. For example, the functions to modify destination are

ol1jSetDestination, 0bjGetDeslinr1tion, and objAdjDestination.

TABLE 6-1 Generic Attributes Inherited by RDX Objects

View l—Application-defined subset of an object's source image area

Visibility Toggle on/off whether an object should be rendered

Draw Order Priority order of objects drawn on top of each other

Current Image Index to image to be rendered from within a sequence

Destination Surface to which the object is mapped; surface destinations
can themselves be mapped to WlI’IClOWS, memory, or othersurfaces

Destination Rectangle Application-defined subset of destination area

Position Location of object on its destination; modifying the position
also modifies the Destination Rectangle and vice versa
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The nature of some objects forces minor Variations in the generic attribute

semantics. For example, an audio track has the Visibility attribute, but its

meaning is undefined. Similarly, the current image attribute is ambiguous
for nonsequenced objects. The exceptions are fairly minor.

The Programming Model

The general model for building an RDX render object can be broken into
three parts:

1. Create a Source Data Object (SDO) and load its data, or reference a
created SDO.

2. Create the render object itself and associate it to the SDO.

3. Set any appropriate object attributes to nondefault Values. C

The general model for preparing render objects for display has two parts:

1. Create a surface, or reference an already created surface. Map the surface

to a window or a memory buffer. This defines where the surface will be
drawn at draw time.

. Map render objects to the surface. Each time you map an object to a
surface, the system uses the object’s draw order to place it in an ordered

display list associated with the surface.

Now draw the surface. When you do this, the system traverses the display

list, drawing each object in the list into a buffer, and then the system “trans-
mits” the buffer to the final destination. (The system will use the appropri-

ate DirectDraw Primary or Offscreen buffers if the final destination is a
window.)

6.3 Working with RDX

6.3.1 Creating an RDX Surface

Enough reading! Time to work. Here’s the code for creating an RDX
surface.
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attribute

, but its a 5

biguous l

SurfaceRdx: : Ini't(C‘~'nd *pcwndL>

RECT twin;
pcwnd->Gett.TientRect(&eN1fi):
DNORD dwwidth = (DNORD)(rwi'n.r“gtt - rwmfeftll;
DWORD dw“ei'ght = iDL\‘ORD)(r|rHn.bottom — r\~J*'n.top):
srt‘Create(dww"dth, dwHei'ght, RGB_(1T.UT8, &TTTAl'1S|.lI'f;'§

ken into C . Create a surface with same size as the client area. The size does not have to match since RDX will clip to destination if
needed. Create the smallest surface needed——~reducing size increases performance by reducing the area to be redrawn and
also makes it easier to fit the surface onto graphics memory.

. Specify the color format of the surface. Objects will be mixed in this color format. We could insert color converters, but
our example is simple and is designed for everything to be set up in RGB 8-bit mode.

. RDX returns a handle to the surface in the space we pointed to in the last parameter, M_FSURF,

S”T°SEtDeStl/H ndow(mJiSurt, pcNnd—>m_h\~Jnd):
return TRUE; _

Map the surface to the destination window. RDX will watch
for window movements or size changes and will clip the image
if needed.

0 parts:
L

he surface . _
Ce W111 be An RDX Sprite Class

And here’s the code for initializing an RDX-based CSprite.
Ct t0 3.

ordered
BOOL CSpr1teRDX::Im't(HOBJ hStirt", UENT nResID, BYTE by|<eyCoTo.")

BHMAP hm;

edisplay V ‘ hitmap.GetBitmap(&bm):“ in,dwvJi'dt"i = bm.bmbJic‘th;
em trans‘ 4* rr_dwHe1ght ~' bm.bmHei‘ght;

appl-0prj_ m b)/Transp = hyKeyCoi0r:

‘On is a Create and set up an hbmp (SDO).

HBMPHEADER bmpHeddeF:
hbmpCreate(n1_dwNidth,Tn_dw“eigtt,RGB_CLUT8,&m ,hBmp); <1 Create RDXhbrnp object.
BYTE *pData; .
hbmpGet.LockeaButfer(ILhBmp, &pData, &bmpHeacer}; <jJGetaccesstoRDX

space.
L>i'tmap.GetBitmapBits(m,dwwidth*m_dwHeight, pData); <jLoaddataintoRDX

space.
hbrnpReTeaseBufter(m_hBmp); {J Release access.
hbmpSetTrans:are'icyt'.oTor'(m,hBmp, (DWORD)byKe_‘/CoTor);<J Specifythalbitmap is

Create sprite; associate data to it; associate tm“3P3r3m~
sprite to surface.

5;rCreate(&m_hSpr):
sprSetData(in_hSpr, rn_hBrnp);
objSetDesti‘natitm(mAhS:r, m, hsarf);

Y‘ e t u r H ‘R U E ; Pass sprite handle to Obj function call. The
generic object (Obj) will be manipulated from the
actual object.
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6.3.3 Drawing the RDX Sprite

With RDX, we don’t have to actually draw the sprite. We merely adjust any
relevant attributes (such as position and/or draw order) and “draw” the

surface to which the sprite was connected.

CSurfa.:eRd><::B1tSp"ite(CSprite &sp", CPoi'it &point)
I

// seL location in surface
// smaller number means to front

ob;'SetPosi'tion(rr_hSpr, poirt):
objSetDraw0rder(mJuSpr, 1);

} ,

S1'_fDraw invokes, in back—to—front order, render routines of all
C S U V T3 C 9 Rd X3 I R9 ml 9 V 3 l objects mapped to the surface. This call then transfers the resulting
l 4/ composited image to the destination window using the appropriate5l‘fDraW(m—h5“'"fl? IDirectDmwmethod.
l

6.4 Demo Time

At this point, select the RDX option in the sample application on the CD.
You should be seeing sprites on the application window. These sprites were
drawn using an RDX surface and an RDX sprite.

How do you know we’re using RDX? Move the mouse to the white border
areas along the right or left edges. The sprite is clipped to the boundaries of
the clipping window. Move the window to a different position, and now
move the mouse over the clipping window. The mouse is drawn at the win-

dow’s new position. The Clipper code within the RDX library is automati-
cally handling window moves.

How Fast Does CSurfaceRdx Draw?

Table 6-2 shows the speed at which objects are drawn with RDX in compar—
ison to the methods used in the previous chapter. Some observations on the
measurements:

I RDX’s drawing time is as good or better than our optimized routines
from the previous chapter. RDX automatically senses the MMX technol-
ogy capabilities of the platform we are using. The improved performance
can be attributed to more finely optimized Pentium code or to benefits

from MMX technology enhancements.

CSysMeir

l CVidMerT
lcladx

All times a:
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TABLE 6-2 Measurements for CSurfaceRdx Drawing

CSysI\/Iem
O. 6—O.9 19.3

CVidMem O.7—l .8 16.7/18.5

CRdx 1.3 17.3

All times are in milliseconds.

Independently separating sprite, background, and screen refresh time

when using RDX is not straightforward, since RDX always draws the entire

surface. Sprite draw times were obtained by the following equation:

tspr : tsurf+sp1‘ites — tsurf

and backgrounds were measured by

tbkg : tsurf+bkg _ tsurf

Refresh Screen still takes the most time. So how about asking RDX to use
hardware acceleration if it’s available?

6.5 Hardware Acceleration with RDX

VVith RDX we can apply effects on objects. An effect modifies the way that

data is rendered, but it does not modify the original data. For example, we

could render a sprite upside down by applying a vertical flip effect on it.

RDX provides a variety of effects. Some of these effects can be applied on all

objects; others can be applied only to specific objects. Refer to the RDX
documentation for more detail on effects.

Let's start with asking RDX to set up the application in Full Screen mode

and use Page Flip hardware if it’s available.

Full Screen Mode with RDX

Full Screen mode is an effect that can be applied to surfaces. Here is some

code to apply the Full Screen effect on our CSurfaceRdx.
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class CSurfaceRdx : public Csurtace
l

// add these two member variables into class structure
FULL,SCREENhPARAMS m_f;<Par'ams;

H FX mi N ; \ Effect parameters are not copied but are used CSysl\/[en
by reference. Therefore, effect parameters must ——_—
not be declared in local (temporary) scope; CVlCllVl€Fl

CBackBu‘

l

CSurtaceRdx: :Mal<eFullScreen()

{ they must be declared with lasting scope.fxParams.dwwidtw = 640;

f><Pdrams.dwHe‘7g'i: = 480; L CRd><
fxpafams-lccloflype = RGBJJLUTS3 Specifythe size andColorType ofthe fullscreen Em

\ window desired‘ lf these are different from the 5‘
current display mode, RDX will change the dis- All times a
play mode to suit the parameters. .3:__J

EXTRA CREDIT: Explore err = 0bjApplyEffecL(m_n0bj, FX_FULL_SCREEl\, &fxParams, &hFx);
inserting color conver-

Sion effects on our .3.pply thef(e:ffect an 5l1be:ur§a%efii1sir(i)g the surfaie hffiidle rfiturnetliRG88 Surface to han_ “unng 5; reale . ]' ppy err returns a an e to t enewy

dle nOn_RGBB display jt(3b1‘:J’:1itr6ineetfgesct. Use this handle to manage the effect or to modifymodes.

How Fast Does CSurfaceRdx Draw in Full Screen Mode?

Table 6-3 on the next page compares CSurfaceRDX drawing in Full Screen

mode with our previous measurements.

Notice how the Refresh Screen and the Post Refresh Screen times are

negligible for CRdXFullScreen. The CRdxFullScreen surface times are as

good as the CBackBuffer surface times. Remember in Section 5.8.5 that

CBackBuffer was set up to use Page Flipping. RDX automatically sets the

system up to use Page Flipping, as soon as we request Full Screen mode.

We don’t have to do anything special to turn on Page Flipping.

Also, notice how the variance is low for the Post Refresh Screen times for
CRdxFullScreen. The Variance for CRdXFullScreen is lower than the

Variance for CBackBuffer. RDX automatically sets ap for triple buffering,

if the graphics card can support it

The results are in! This is a simple interface with high performance.

Accelerating Objects with RDX

But what about accelerating objects like sprites and backgrounds?

All times a
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6-3 CSurfaceRdx Drawing in Full Screen Mode

CSysMem
CVidMem

CBackBuffer

CRdX 1.3

CRd><Fu|IScreen 1.7

All times are in milliseconds.

\/Vell, it’s really quite simple. RDX supports sprSetFlags() and bkgSetFla.g5()

calls that turn on special features of these objects. Looking at the documen-

tation for these calls, we find that both of these objects support a HWBLIT

special feature (currently this is the only special feature supported).

Here’s the code that turns on and off sprite acceleration.

// To Hw—H‘it a ssrite
spi“SetFl:iqS (m_tOb_", SPR,_FLAG,H‘~BLlT) ;(

You must describe source and destination (that is, objSetData, 0bjSetDestim1tion) before you
use the HHBLIT special flag. Add this line after you have completely initialized the sprite.

H To turn off HW-Bittiiig
scrCleai‘FlagS {,iTi__liOb,'i, S3R_FLAG__HNBLlTI‘;

Table 6-4 measures the speed of hardWare—accelerated objects and shows

them in comparison with other RDX objects.

TABLE 6-4 Measuring Hardware-Accelerated RDX Objects

éoftiiirare cts system memory A A .

Software objects in video memoiy . 7.3 p

Hardware objects in video memory Out of Video Memory
All times are in milliseconds.
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WHAT HAVE

YOU LEARNED?

Some observations based on the results:

RDX’s software—based spriting is actually faster than hardware—accelerated

sprites. So with this configuration there is no real benefit to using
HVVBLIT.

To use hardware acceleration you (or RDX) must place the source objects

into Video memory. Video memory is a scarce resource. After RDX set up

the system for triple buffering, we did not have any memory left for our
background.

As we mentioned in the Introduction, timings are configuration depen-

dent, and you may see different results on different configurations. VVith
faster CPUS the software may be even faster. With faster hardware, the

graphics card could be faster.

Video memory is a scarce resource, and in general you will get the best

results by setting up for triple buffering before you accelerate individual

objects. In the future, AGP—based graphics cards may offer Bltting from sys-

tem memory, and then the scarcity of video memory will not be an issue.

Although you still might not see any performance boosts with Transparent

Blts, you will most probably see performance boosts with non-Transparent

Blts#that is, your backgrounds will run faster. And when that time comes,

you will be armed with the knowledge of how to accelerate your back-

grounds with RDX.

By this time, you've had an overview ol RDX and gotten a taste of what it is like to use a
high—level interface to manage multimedia objects. You've also gotten a feel for RDX’s per»
tormance capabilities. You should have an idea of how the interface provides device in-
dependence and how to control RDX's usage of DirectDraw. In short, you should have a
good starting point for using RDX and for deciding whether it will work tor you.

We've come to the end of this part. Hope you had a pleasant trip.

WE’D LIKE
GRIFFIN FR
MICHAEL C:
COMPCORE
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 Making the
Media Mix

WE’D LIKE TO EXTEND AN ACKNOWLEDGEMENT T0 ROGER HuRwITz, TODD ScHwARTz, TIMOTHY STRELcHuN. MARK LEAVY, BYRON
GRIFFIN FROM INTEL; PAT BOYLE FROM REAL NETWORKS; DANNY MILLER, JASON WHITE AND RALPH LIFE FROM MICROSOFT CORP.; DR.
MICHAEL CHwIALKowsKI FROM THE UNIVERSITY OF TEXAS AT ARLINGTON; CHRIS EDDIE FROM XING TECHNOLOGIES, GEORGE HABER FROM
COMPCORE MULTIMEDIA.

Chapter 1 Video Under Windows
I Overview of motion video under Windows

I Principles of video compression and decompression

Chapter 8 Directshow Filters

I DirectShow architecture and filter graphs

I Building source, transform, and render filters

I How to use a registry file

I Adding custom interfaces and property pages

Chapter 9 Directshow Applications

I Access filter graph using COM, ActiveX, and GRF files interface and the ActiveX control

I Build custom filter from application

I Display filter property pages

I Controlling DireCtShovv with ActiveX control

Chapter 10 Mixing Sprites. Backgrounds, and Videos

I Understand the concept of mixing different objects

I How to use RDX's DirectShow Interface to play an MPEG file

I How to overlay a sprite over video and video over video

I67l
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Chapter 11 Streaming Down the Superhighway with RealMedia

I Real—time Internet streaming

I Data flows and data management interfaces

I File—Format plug—in and rendering plugin
I RealMedia Audio Services

n the past fewyyears, the PC has become powerful enough to handle both the capture
and the playback of motion video under Windows. in the process, Microsoft has defined
a few multimedia architectures on the Windows platform, includingthe Multimedia Com»

and interface (MCI), Video for Windows (VFW), and, lately, DirectShow (a.l<.a. Active-
ovie). Apple, on the other hand, defined a multimedia architecture for both the
acintosh OS and Windows "Quicl<Time." Recently, with the explosion of the Internet,

RealNetworks defined RealAudio, Rea|Video, and, later, RealMedia.

n this part of the book we'll address a few of these multimedia architectures; namely, Di—
ectShow from Microsoft, RealMediafrom RealNetworl<s, and RDX from lntel. DirectShow

‘s a streaming media architecture that supports multi—stream synchronization and MPEG
style video. The first release of DirectShow, known as ActiveMovie l.O, lacked support for
capture and compression. DirectShow, however, includes both capture and compression
nterfaces.

To understand the DirectShow architecture, it's best to first understand the filter graph
model. To do that, you should first launch the graph editor application that comes with
he DirectShow SDK and construct a filter graph, After doing so, you should be ready to

delve into the details of the internals of filters—Chapter 8. You'll learn how to create a filter
and pins and how to connect filters together. You'll also learn about how to add property
pages to a filter, as well as custom interfaces.

You can then jump to Chapter 9, where you'll learn how to build filter graphs from an ap-
plica ion using the DirectShow ActiveX control, the COM interface, or the GRF file. The
ActiveX control is the easiest way to render a media file using the DirectShow filters. The
ActiveX control provides all the necessary GUI interfaces to play, stop, and pause a media
file. ”o have more control over the creation of a filter, you can use the COM interface or
a GRF file to create and manipulate the filter. in this case, you have to provide the GUI
inter ace and manage the events of the filters. Finally, in this chapter you'll learn how to
expose a filter's property page and how to hook into a filter's custom 'nterface.

Now, ifyou don't necessarily want to understand the internal architecure of DirectShow
and "ts filters, or if you want to mix multiple video, audio, or animation objects together,
you can use Intel's Realistic Display Mixer (RDX) to do that. RDX is a high—level interface
that uses DirectShow to play and mix multiple video and audio objecs.

Final y, since the Internet has been exerting a huge force on the computing environment,
we thought it only appropriate to discuss one ofthe major architecture advancements for
multmedia delivery on the lnternet—the RealMedia Architecture (RMA). RMA is a modular
extendible version of the RealAudio architecture. It uses a combination of a RealMedia

server and client to deliver real—time multimedia content (audio, video, stock quotes, and
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so forth) over the Internet. With RMA you can stream any media type by adding a custom
plug—in on both the server and the client sides.

To help you understand the Reallvledia architecture, we will first focus on the topology of
the architecture and then delve into the details of the plug—ins. To deliver custom data us-
ing RMA, you must first learn how to build File—Forrnat and Rendering plug—ins. To play
audio data on the client, you should use the RMA Audio Services, since it supports multiple
platforms and performs the mixing of multiple audio streams. It also allows for pre— and
post—processing of the audio streams.
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CHAPTER 7

=cE‘%=

Video under Windows

WHY READ

THIS CHAPTER?
This chapter gives a brief introduction to motion video and discusses the supporting architec-
tures under Windows. It is meant to give background on the topics that are discussed in the
rest of Part Ill.

If you feel comfortable with

I motion video on the personal computer,

I multimedia architectures under Windows (MCI, VFW, QiW, and ActiveMovie), and

I the principles of video compression and decompression,

you may wish to skip this chapter.

1.] Concepts of Motion Video
I am sure you've watched a few cartoons in your life; my all-time favorite is
Bugs Bunny. As you know, these cartoons, as well as real movies, are made

up of a series of pictures displayed at a rate fast enough that it looks like
motion video to the human eye. Throughout the world there are three

dominant standards for television: NTSC, PAL, and SECAM. NTSC is pri-
marily used in North America and specifies an interlaced refresh rate of

59.94 fields per second1 (approximately 30 frames per second, fps). Both of
the European standards, PAL and SECAM, specify an interlaced refresh rate
of 50 fields per second (25 fps).

1. Interlaced display rate specifies the rate of displaying both the odd and even fields in a frame.

I71:

PARTIII
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7.2 Capturing and Compressing Video
In the past few years, personal computers have become powerful enough to be

able to play back motion VlCl€O at the specified frame rates, and even faster. To

play back a Visual sequence on the PC, you must first digitize it with a video

capture adapter and store the digitized clip on your hard disk or a CD-ROM.

Typical Video capture adapters can digitize an NTSC clip up to a 640 X 480 in

size. If our memory serves us right, this results in a huge file if the Video cap-

tured spans a few seconds or minutes. Let’s calculate the amount of space

i required to store a Video clip. To achieve the best quality, each pixel should con-

tain a 24-bit RGB color quantity. (RGB stands for the red, green, and blue
color format used in computers.)

Size ofl Frame = 640 (width) X 480 (height) X 3 bytes/pixel = 900 K

To store 1 full second (30 frames) requires

Size ofa 1—second clip = 900 K/frame X 30 frames/second : 27 MB
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27 MB/second ! Even the fastest CD—ROM today cannot sustain such a high data

rate. For example, a 10x CD—ROM can only sustain, at best, a transfer rate of
1.5 MB/second. So that the Video file will be usable, we must reduce the size of

the video clip before storing it on a CD-ROM.

To enable motion video on such media, the digitized Video clip must go

through a few compression steps:

1. You could sacrifice some of the image quality by capturing a smaller size of

the image (for example, 320 X 240 or 352 X 288). As a result, the data trans—

fer rate is reduced by 75 percent to about 6.5 MB/sec for a 24-bit color clip.

2. Depending on the type of application, you could capture the Video clip in
either RGB or YUV color format. Typically, the YUV color space is more

suitable for applications with motion Video. The YUV color space contains

one luminance (black-and—white) component and two chrominance

(color) components (U and V). Naturally, there is a direct relationship
between the RGB color space and the YUV color space.

The YUV color space is a good choice for motion Video because it sepa-
rates the black—and-white contents of the picture from its color compo-

nents. This is Very useful since the human eye cannot easily detect

degradation in the color of an image, but it is extremely sensitive to any

loss in luminance. Hence, the color information can be easily reduced

without any noticeable degradation in video quality.
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Y, U and V components

D Y component only
In 4x 4 block

m 12 =:» <15“ 411* 4 *3 =12 bits/pixel16pLx5lJ
I X . .

YUV9==* 16Y+1U+1 *8 =9b1ts/pixel
IIIIIIII “”""“

YUV12

FIGURE 7-2 UV color subsampling for motion video.

Figure 7-2 shows two UV subsampling formats, YUV12 and YUV9. On
average, each pixel requires 12 bits to represent in the YUV12 format,
and 9 bits in the YUV9 format. To reconstruct the color information for

the “white” pixels, two or more neighboring U and V components are

linearly interpolated to generate the appropriate color information.

Notice that the size of the final YUV12 image (Figure 7—2) is reduced by 50

percent since it only requires 12 bits to represent each pixel rather than 24.

Similarly, the size of the final YUV9 image is reduced even further by 62.5

percent because it only requires 9 bits to represent each pixel.

. The final YUV12 or YUV9 image is compressed even further using some

of the well~known compression algorithms such as MPEG or Intel’s

Indeo. Even though these algorithms are lossy in nature, they can reduce

the size of the image dramatically while maintaining superb image qual-

ity. Such algorithms can produce motion video clips suitable for a 1X
CD—ROM at 15OKps.

As you can see, using these compression techniques allows you to smoothly

integrate motion video with the PC. In 1997 a new breed of CD-ROMS and

processors will allow for even better multimedia experience on the PC.
DVD—ROM is a new CD—ROM media that can hold up to 17 GB of data on

a single platter and can sustain up to 1.5MB per second. The Pentium II

processor will be capable of playing back MPEG2 video clips as large as
720 x 576 at 25 to 30 fps.

1.3 Windows Multimedia Architectures

Microsoft’s first attempt at multimedia came through the Multimedia

Command Interface (MCI). MCI is a simple VCR-like interface with useful

commands such as Play, Pause, Stop, Rewind, Seek, and so forth. In fact,

MCI is an integral part of Windows and is still used by a certain class of

applications such as audio CD players. But as a compromise to simplicity,

MCI lacks many of the basic features required for multimedia recording

and editing.
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In 1993 Microsoft introduced Video for Windows (VFVV) as an answer to the

missing features in MCI. VFW defines interfaces for recording and editing
both audio and video clips. As part of the standard, VFW also defined the

Audio Video Interleaved (AVI) file format, which allows for interleaving mul-
tiple video, audio, or text streams in the same file. VFW also defined an inter-

face for installable codecs to enable installation of custom compression and
conversion algorithms. (Codecs are compression/decompression drivers.)

Even though Video for Windows was a great step for multimedia under

V\/indows, it lacks some essential features. For example, even though VFW
allows for multiple streams in an AVI file, it does not provide any means of
synchronizing these streams together. In addition, VFW lacks the necessary
features to support certain classes of algorithms such as MPEG videoz.

Around the same time, Apple moved its Quicl<Time architecture from the

Macintosh environment to Windows and called it QuickTime for Windows

(QTW). QTW only allowed for video playback in the VVindows environ-

ment and did not allow for video capture or editing. All the video produc-
tion remained on the Macintosh.

Back to Microsoft. To resolve some of the deficiencies in VFW, Microsoft
introduced the first release of its latest multimedia architecture, Active-

Movie, at the end of 1996. ActiveMovie is targeted specifically for Windows
95 and Windows NT. The first release supports video and audio streaming
and provides synchronization mechanisms between multiple streams. The
first release, however, lacksrcapture and compression support.

As a follow-up to their commitment, Microsoft is releasing a follow-up
technology, DirectShow, which is basically ActiveMovie with a name
change and added support for capture and compression. We’ve dedicated
the next three chapters to showing you how to use DirectShow.

Intel, on the other hand, released a graphics and video mixing architecture
called Realistic Sound Experience (RDX). We’Ve dedicated a chapter to
showing you how easy it is to use RDX to mix multiple video and graphics
objects.

Finally, RealNetworl<s is releasing their RealMedia Architecture, which

allows for real-time streaming ofvideo, audio, or any other media type over

2. VFW lacks support for future frame prediction techniques required by MPEG. Refer to
the section “Overview ofVideo Codes” later in this chapter.

PARTIII
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the Internet. 'We’ve dedicated one chapter to discussing the RealMedia

plug—in architecture.

1.4 Overview of Video Codecs

Regardless of the multimedia architecture used, most video codecs apply
similar methods to compress and decompress video. Let’s have the ten-
thousand-foot View of what a video codec does.

As we’ve mentioned earlier, Video capture hardware produces an image

composed of three color planes: Y, U, and V. Typically, the codec uses the

same algorithm to compress each of the planes separately.

Typically, each plane is subdivided into 8 X 8 blocks, and each block is pro-

cessed separately. The blocks are then transformed into a frequency domain

using one of the well-known transformation processes (DCT, HAAR,

SLANT, and so forth). The frequency domain block represents the amount

of change in color from one pixel to the entire 8 X 8 pixel grid. Typically,

Video images don’t change that drastically within an 8 X 8 block, and there-

fore, the high—frequency components of the frequency domain end up

being mostly zeros. In fact, this is why the frequency domain is most suit-

able for video compression since consecutive zeros are easily represented

with a small number of bits using the run length encoding (RLE) algo-

rithm. Finally, the frequency domain block is quantized and encoded using
the Huffman coding algorithm.

To decompress a frame, the exact opposite process is used. First the inverse

Huffman algorithm is applied on the input bit stream generating 8 X 8

quantized blocks. These blocks are then dequantized using the same quan-

tization matrix used when the frame was compressed. The Inverse fre-

quency transformation is then applied on the dequantized block in order to

produce the corresponding 8 X 8 Y, U, or V block. Finally, the Y, U, andV

blocks are converted to RGB either by the application software or by spe-

cialized color conversion hardware on the graphics adapter (see Chapter 5,
“Hardware Acceleration Via DirectDraw”).

The method that we’Ve described so far is called intrafrczme compression,

and the frame is called the I-frame or Key frame. Intra-frames are com-

pressed and decompressed independently from any other frames in the

video sequence.

 

WH/3

YOU LE



101

s pro—
0 n1ain

r ount

: lly,
there-

p .suit-

uted
, _

using

WHAT HAVE

YOU LEARNED?

OVERVIEW OF VIDEO CODECS I 77

Inter-frames, on the other hand, can only be compressed or decompressed

using data from other frames in the Video sequence. Typically, at 25 or 30

fps, changes from one frame to the next are small enough that you can use

the information from previous or future frames to predict the contents of

the current frame. ln fact, this type of a frame is called the Predictedframe
or P-frame.

When compressing inter-frames, the difference between this frame and the
reference frame is found first, then the difference information is trans-

formed into the frequency domain. This technique is Very useful in com-

pressing motion Video where some of the blocks end up being zero because
the change between the two frames is insignificant.

The Bidirectional frame type is an extension of the P—frame. Here a previ-

ous and a future frame are used for reference at the same time. Typically,
B-frames, as they’re also called, produce higher compression than P— or

l—frames, but they require more computational bandwidth and more mem-
ory to hold the reference frames.

ifnn
FIGURE 7-3 MPEG frame types.

After making your way through this chapter you probably have a good sense of

I motion video on the PC,

I multimedia architectures under Windovvs,

I video compression and decompression.

PARTIll
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CHAPTER 8

in

Directshow Filters

W]-[Y READ You must have heard of or even tried the latest release of Microsoft's DirectShow (former-

THIS CHAPTER? ly known as Activelvlovie), but you're not sure what it has to offer. You're ready to move
your current drivers from VFW or MCI to DirectShow, but you don't know where to start.

This chapter helps you

I understand the architecture of Direc‘tShow and filter graphs,

I-’ build source, transform, and rendering filters,

I understand the connection mechanism between filters,

I know how to use a registry file to add a filter to the registry or do filter self-registration,

I add custom interfaces to your filter, and

I add property pages to a filter.

To help you along the way, you can use the following articles on the CD:

I debugging hints for filters,

I adding a custom file type,

I how to build and run the sample files.

8.] Directshow Components
Figure 8-1 shows a high-level block diagram of the current multimedia archi—

tectures under Windows 95/NT. The Directshow components are shown inside
the dotted line.
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VfW/QTW

VfW/ QTW
Driver

Media Media
Source Destination

FIGURE 8-‘! Multimedia architectures under Windows

(Directshow components fall within dotted line).

As you can see, you can access the Directshow components in one of three
ways:

I directly through the COM interface and the Filter Graph Manager
(FGM),

using the MCI command set where the MCI layer has been updated to
communicate with the DirectShow FGM, or

through the ActiveX control interface, which is part ofthe DirectShow SDK.

The ActiveX interface provides a high-level interface that gives applications

a simple method for controlling DirectShow and its components. It also acts

as an easy plugin for the Internet Explorer.

We’ll show you how to use the COM interface and the ActiveX control to

access the DirectSh0w filter in the next chapter.

The Filter Graph Manager and the associated filters are the crux of Direct-

Show. The Filter Graph Manager provides applications with interfaces

through the COM layer. (Applications cannot access the filters directly.
They have to go through the FGM.) The FGM orchestrates the connection

of the filters with the applications and the allocation of the shared buffers

between them. It also controls the streaming of data and provides synchro-
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nization services (clock) so that filters can synchronize the delivery of mul-

tiple time—stamped data samples at the right time.

8.2 What's a Filter Graph?
Before we delve into the details of filters and filter graphs, it might be a

good idea to go ahead and play with the Filter Graph Editor (FGE) applet
that comes with the DirectShow SDK. The Filter Graph Editor is a tool that

comes with the DirectShow SDK. Typically, applications will interact with

the filter graph directly using the COM interface or the ActiVeX control,
discussed later.

z;.Lé'37fi“

 

\M}e\NJu\\ You can use the Filter Graph Editor to build a custom filter graph aridflsave it in a
\//«\/\/V9; \ *.grfti|e. The *.g_rfi‘ile can then be usedto construct the exact same filter graph——
\Nvv§/f‘j,\ without using DirectShow’s automatic filter graph construction methods.

VVe’re assuming that you’ve installed the FGE on your PC by now——NO?

What are you waiting for? Once you’ve installed the SDK, launch the FGE

applet and select the File~>RenderMediaFile option from the menu. At the

prompt, select the name of the sample MPEG file that comes with the

DirectShow SDK (Bla5to_fj‘.Mpg) and press OK. You should see something

similar to what is shown in Figure 8-2.

Each individual rectangle in the figure represents a filter that performs a

specific function. The arrows between the filters indicate that the output

pin of one filter is connected to the input pin on the filter to its right. Notice

that the nedia flows in the direction indicated by the arrows. The entire

 
FIGURE 8-2 Filter graph for an MPEG-1 file.

.‘,
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mesh of connected filters is called the filter graph. You’ll learn more about W

filters, pins, and the connection between them in the remainder of this

chapter.

VVhat’s nice about the filter graphmodel is that you can easily replace one

of the filters without even touching the remainder of the graph. For exam-

ple, you can easily replace the source filter that reads the MPEG file from a
hard disk or a CD—ROM with another source filter that reads it off the

Internet or from a digital satellite link. This is a big win for developers since

they only need to implement and distribute one filter rather than the entire

filter graph or an entire VFW driver. I

You ca11 also insert other filters between any two filters and change the

behavior of the filter graph——again, without touching any of the other fil-

ters. For example, you can insert a contrast filter in between the MPEG-1

video codec and the MPEG-1 video renderer. The contrast filter allows you

to change the contrast of the video data on its way to the renderer. Try it!

8.3 Understanding the Mighty Filter

The filter is the basic building block of a DirectShow filter graph. A filter is

basically a COM object with its own Global Unique Identifier (GUID).

Typically, each filter comes with one or more input/output pins, which are
used to move the data from one filter to the next. In order to connect two

filters, the pins have to go through a simple process of negotiation.

At connection time, under the direction of the filter graph manager (FGM),
the two pins negotiate on a media type that is common between them.

Once the two pins agree on a media type, they negotiate on the allocation

of the shared memory buffer used to transport the data between the two fil-

ters. Once the two pins settle their differences, they are joined in holy mat-

rimony till death do them part.

In addition to the pins, filters may expose a set of property pages, which are

used to display the filter-specific status or configuration. To see the prop-

erty page of a filter, right-click the mouse on the filter and select Properties.

DirectShow defines three major types of filters: source, transform, and ren-

dering. A source filter has no input pins and has one or more output pins.

Typically a source filter is responsible for reading the raw data from a

source file, network, or any other media.
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A transform filter has one or more input pins and one or more output pins.

Typically, a transform filter accepts data from an input pin or pins and con-

verts it to another format before sending it out to the downstream filter.

A rendering_filter has one input pin and no outp ut pins. A rendering filter

accepts data on the input pin and delivers it to its final destination (screen,
audio card, file, and so forth).

8.4 An Overview of the Samples
Let’s have an overview of the samples and explain what they do before we

jump into the code. In this chapter, we’ll show you how to create the three

types of filters: source, transform, and rendering filters. To make it simple,

we’ve chosen “simple text” as the media type to transport (see Figure 8-3).

, A Actsve.. RE

cFrui(Fmer % CInvertFilter cTextOutFmer
PARTlll

FIGURE 8-3 Overview of the sample filters covered in this chapter.

The source filter CFruitFilter1 reads one line at a time from the text file

Fruit.ftfand passes it to the next filter. The CInvertFilter is a transform filter
that accepts a string on the input pin and delivers an inverted string to its

output pin. Finally, the CTeXtOutFilter is a rendering filter that displays the

string presented at the input pin to a text window. This is a good time to

run the sample application for this chapter on the companion CD.

8.5 Creating a Source Filter

Our source filter, CFruitFilter, prompts the user for a filenarne, opens the
selected file, and reads it one line at a time. It delivers each line to the filter

connected to its output pin for further processing. '

1. We used the name CFruitFiltcr merely because each line in the input file is a name of a piece of fruit,
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|FileSource Filter

Csourceslream

CFruitFi|ter CFruitStreamText

FIGURE 8-4 Source filter.

For a better understanding of the code below, it might be useful to install

the filter and see how it works before you go on. You can find detailed
instructions on how to install and run this filter on the companion Cl).

Notice that, before you can use any of these filters, you must first add them

to the system registry. V\7e’ll show you how to do this at the end of the chap-
ter (see “Section 8.10 Adding a Filter to the Registry”).

It’s actually pretty simple to create a source filter. l)irectShoW provides a

couple of built—in classes that you can use to derive your source filter: The
CSource and CSourceStream. CSource is the base class for all source filters.

CSourceStream represents the output pin of a source filter. It handles 1nov—

ing the data from the file to the downstream filter. Notice in Figure 8-4 that
our CFruitFilter also derives from the lFileSourceFilter, which is necessary

to manage the filename of the input file. You’ll see how this works later.

In our discussion, we’ll first step through the CFruitFilter class wh ere we’ll

show you how to create an instance of the filter, how to attach the source
stream to it, and how to handle the IFileSourceFi|ter interface. Well then

step through the CFruitStreamTeXt class, which handles the connection of
the output pin, opening the input file, and transporting the data from the
source file to the next filter down the stream.

The Source Filter Class

To create your own source filter, you need only derive a filter from the

CSource base class, then override and implement a few of the base class

member functions. As we’ve mentioned earlier, you can also derive a filter

from the IFileSourceFilter to manage the input filename.
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class Ctruittflter:
public Csource,
public Ni leSohrceFi lter

// Base source filter
// Ttis is for accepting input file

(

r— Must be static since it is called before the class is created.public :
static Cllnknown * WINA3I Createlnstance(PUNKNONN lpunk, HRESULT *plir‘):

private:

The following lines are required for iFIleSourceFilter support.

DEC,ARE_IUVKNOWN y
STDMETHODINP Ge:CurH‘le<iLPOLESTR * pps7H1eName,AM_M[I)iA_ YPF *prrtZ~;
STDMETtOD1t’P L:ad(LPCU_ESTR pszFileName, const AM_ME3IA_TYPE *pmt);
Sifllfll H HDWP NcnneIegatingOueryinterface(REFIID ri‘d, void ** ppv);

Notice that the constructor is in the private section; therefore you can only
create this object from within the only static function, Crer1teI115tu11ce().

CFruitFi“:ter(LPUNKNOwl\ lpunk, HRESULT *ph“):
OLECHAR m4szFileNaireLMA)[_PATH];

Create an Instance of the Source Filter

Looking closely at the class declaration, you can see that the Crec1teIn5ta11ce()

function is the only public member of the class—even the constructor is

private. As a result, you can only create an instance of the filter from Within
the CreateInsta11ce() member function. In addition, notice that CreateI11stcmce()
must be declared as a static function so that it can be called even before the

filter is created.

'\/Vhen the filter graph manager (FGM) loads a filter, it looks for the vari-

ables g_Templates[] and g_cTemplates in the executable file of the filter.

The FGM uses these variables to figure out which objects exist and how to

create them. For example, FGM uses the third element of the g_Templates

to retrieve a pointer to the CreateI11$tance() function, which is called to cre-

ate an instance of the filter. The function returns the address of the newly
created instance.

(ltactorflemplate g,Tenplates[] = (
.( L"Fruit Source Filter"

, &CL.‘3lDAFruitFilter
, CFru‘tFilter:zcreatelnstance
, NULL
, NULL}

PARTIII
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int g_cTemp1ates = sizeofigjernplates) / s1’zeot(g_Tenpiates[0]);

Cunkrown * WINAPI

CFrui'tFi'l:er::Createinstance’LPUNKNCNN ipurk, HRESULT *phr)l
// Create and returr an instance of tn: filter
Cunknown *punk = new CFrui’t=1'iter(ipunl<, phr);
it (punk == NULL) l

*phr = E_OUTOFMEMORY;
l
return punk;

l

When you create a new instance of the filter, the CFruitFilter constructor is

called. The constructor creates the streams supported by the filter and adds
these streams’ output pins to the m_paStreams member variable. DirectShow

uses this list to keep track of the streams attached to the source filter. In our

case, we only create the CFruitStreamTeXt stream and add it to the

m_paStreams list.

The sample source filters in the DirectSh0w SDK show the following code to cre-
ate each of the source streams (pins) in the source filter constructor:

m_paStrearns = (CSourceStream **) new CSourceStream[1];
if (m_paStrearns == NULL) L

*phr = E_OUTOFMEMORY;
return;

1

m_paStreams[O] = new CFruitStreainTe><t(phr, th"s, L"Te><t!");
if <m,paStrearns[O] == NULL) l

tpwr —- LOUTOFMEMORV;
return;

i

However, we found that the source filter was leaking memory. After tracing
through the CSource and CSourceStream classes, we found that both filters are
properly handling the m_paStreams array. Therefore, we don't have to assign
anything to the m_paStreams variable. So the above ”erroneous" code should be
replaced as shown in our example below.

CFruitF1lter::CFru1tl‘lter(LPUNKNONN lpunk, HRESULT *pl1I":‘
CSource(NAME(“Fru"t Source illter"),

lDUV l<- C ¥5llLl’l”~ll til i tel‘) I\’AJ\/IEO is used in debugbuilds for object
tracing. See the DirectShow SDK for more

CAutoLocl< cA.utoLoCl<(&m_cStateLocl<); dctafi5_
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// TWG CSourceStrean constructor handles the allocation and assigrmeht
// of the m paStreans[I array. On return from the constructor, the
// m_paStreams[Ul would have the right value.
//
new CFrui:St"eanText(phr, this, L"Text!");
it (rn_pa5treams[0] or NULL) {

*phr = E_OUTOFMEMORY;
return;  This is the name of the output pin.

Once you’Ve created the filter and its pins, the FGE interrogates the filter for the

interfaces that it wants to use. As shown in the code below,‘ the filter responds to

the IUrLKnown::NonDelegatingQueryInterface() member function to expose its

own interfaces. In our case, the source filter supports all the interfaces of the

base CSource class plus the lFileSourceFilter interfacei

 

STDMETHODIMP
CFruiLFilLer::NonDe1egatingQuerylnterface(REFIID riid, void ** ppv)
l

CheckPuinLer(ppV,E_P0:NTER);

// We support the IFi‘eSourceF1l:er interface and whatever
// the base CSource supports.‘
if (ri‘d == IlD_IFi1eSourceFilter)

return Getlnterface ilfilescurcefilter *) this, ppv);

return CSource :NonDelegatirgQuery1nterface(riid, ppv);

Now that we’ve indicated that we support the IFileSourceFi1ter interface, the

FGE prompts the user for the input filename and then calls the Load() function

using that filename and the media type associated with that file. For example,

an MPEG file is of MEDIATYPE_MPEGVideo type. Typically, the Load() func-

tion saves the filename and media type so that the filter can supply them when
the GetCurFile() function is called. DirectShow or another application could

request the active filename and media type anytime throughout the life of the
filter.

 
STDMETHODIMP
CFruitF1lLer::L0ad(LFCOLESTR pSZFileName,C0rst AM_MEDIA_TYFE *pmt)
l

1strcpyW(nVszFileName. ps4Fi1eName); // This is a UNICODE name
return NOERROR:

I-
Di
<
D.
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STDMETHODZMP
CFrui'tF1‘1ter::GetCurFfle(LPCLESTR * ppszFi'1eName./AM MEDIA TYPE *pmC)
(

Checl<Pointer{ppszFi1eName. E_PC\INTER);

// A1‘ocate an instance specific buffer to 101: the filcnamc.
*ppszFileName = ELPOLESTRJ

CoTaskMemA11oc(sizect(wCHAR) * I1+1str1enw(m_szFfleName)J):
it (*ppszFileNane != NULL} {

lstrcp)/w{*ppszF1leName, m_szF1IeNeme];
)

// we didn't save tee media type, since we always “eturn a NULL type.
iflpmt) l

ZerdMemc~ry(pmt, s"zeof(*pmt));
pmt-‘zmajortype = ME3lATYPE_NULL;
pmt—>sLIbtype = NEDIASUETVPE NULL:

l
return S,OK;

The Source Stream Class

As mentioned earlier, the CFruitStreamTeXt class represents the output pin

of the source filter (see Figure 8-4 on page 84). As a descendant of

CSourceStream, the CFruitStreamTeXt handles the connection process with
the downstream filter, buffer allocation, and the movement of data from

the input file to the downstream filter. In addition, CFruitStreamText is

responsible for processing the Start, Stop, Pause, and other commands

coming from the application through the filter graph manager.

class CFru1'tStreamText: public Csourcestream
l
public:

CFr"u1'tSt"eamTe><t«IHRESULT tphr, CFruitFilter *pParent, cPCwS'R pPinName):
~CFrui'tStreamTe><t();

HRESULT F1”TBuffer(IMedi'aSamp1e *prrs) ; <3 Calledtofillthebufferwithdata.

HRESULT Getvledi 3T3/pefint WPOS, CMediaType *DT'lt)(j Returns allmediatypes supported,
HRESULT CheCkMed1'aType(const CMediaType *pmtl; <jVerifiesifmediatypeis acceptable.
HRESULT SetVIedi'aTg/pefconst CMedi'aType *pmt): (jAcceptsmediatype.
HRESULT Dec1'deBJfferSize’lMeInAll0cator‘ *p1'ma, <1 ljecidgghowbjgthebufferneeds

ALL['JCATCR_PROPEP.TIES *p>ropem'es:; to be for dammovemem

// Called when the stream is started and stopped
dRESULT OnTh"eadCreate(v0id):
%R[SULT UnTh"ead|)estroy();
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The Connection Process

The filter graph manager starts the connection process by retrieving the

output pin of one filter and trying to connect it to an input pin of another

filter. In order to do that, the FGM calls upon the output pin of the source

filter to connect to the input pin of the downstream filter. This is where the

negotiation begins.

The output pin queries the input pin for a list of the media types that it

supports—it repeatedly calls the input pins Get]\/IediaType() function to get

the media typelist. For each of these media types, the output pin calls its
own CheckMedia T)/pe() function to see if it supports this media type. If the

output pin can handle one of the media types, it returns S_O K, and the

negotiation continues for the shared buffer; otherwise, CheckMediaType()
returns an error.

HRESULT
CFru1tStreamText::CheekMediaType(const CMedia‘ype *pMedidType)
{

CAutoLock cAutoLock(m_p:i'1ter—>pStateL5ck( ) J;

11‘ (*(:MediaType—>Type()) != Ml'DIATYPE_Te><:)
return E_INVALIDAE€G;

return S_OK;
l

Of course, it is possible that the output pin could reject all the input pin media

types. In that case, the output pin tries its preferred list of media types on the

input pin. To do so, the output pin first calls its own Get]\/IediaType() function

to retrieve its own list of media types. Again, for each media type, the output

pin calls the Check]\/IediaType() function of the input pin, of the downstream

filter, to qualify that media type. In the case where the input pin rejects all the

media types suggested by the output pin, the connection process is aborted and

, an error is returned to the application; otherwise, the negotiation continues for

the shared memory buffer.

Notice that the default connection process tries the media types in the same

order as GetMediaType() returns them. Therefore, the first media type

returned by the function has the highest priority over any consequent

media types. For example, if your filter supports RGB 8-, 15-, and 24-bit
Video but prefers the RGB24 format, then you should return the RGB24
format first.

PARTIII
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HRESULT CFrui‘tSLreamTe><t::GetMediaType(1nt 1'Pos1't1on, CMedi'aType *pmt)

CAu:oL:ck :AutoLocK(m,3F1lter->pStateLock());
if {'1Posit1'on < 0) Cllndexmuststartwitho.

return E_lVVALlDARS ;

if (iPoSit1'0n > O} {JOnlysupport1mediaty'pe.
return VFWAS_NO_MORE_lTEMS;

pmte>SetType(&MEDI/\TYPE_JS97*ext): C1 Here it is, “Simple Text.”return NOERROR;
l

l

Once the two pins agree on media types, the SetMediaType() is called to con-
firm that selection. Typically, the output pin saves the media type in order to
use it later to calculate the size of the shared buffer. This is simply done by call-

ing the corresponding function in the base class.

HRESULT CFru1'tStreamText::SetMediaIype(csnst CMedi'aType *|I)MEtlldTyp€)
{

C/\utoLock cAutoLocl<(m_pFi'lter—>pStatsLock()1:

return Csourcestream: :SetMed1’aType(pMediaType);
}

l

To allocate the shared buffer, the output pin determines the size of the shared

buffer by calling its member function DecideBufi‘erSize(). This function calcu-
lates the amount of memory required based on the media type and the header
information of the input file (for example, the picture width and height). After
determining what size the buffer should be, DecideBufferSize() calls the allo-
cator function, SetPr0pertie5(), to Verify that there is enough memory to
allocate this buffer——-the actual buffer is allocated later.

Typically, you don’t have to worry about who allocates the buffer or when it
gets allocated; you only have to assure that you calculate the size of the
buffer correctly.

HRESULT
CFru‘tStreamTe><t.::Dec1deBufferSize(

ZMemAHocator *pAHoc, // Allocator object
ALLOCATOR_PROP[RTI;S *pPr:perties // Allocazor properties
)
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HRESULT hi" = NOERROR:
ALLOCATORAPROPERTIES Actual;
CAJCOLOCK C/\utoLock(m_pFi1ter"—>pStata=-1ock()I:

// Request the allocation of one butter of size 1024 bytes
pPropert1‘es->cBufFers ~ 1;
pP“oper‘ties~>cbBm‘ter 1074;

hr" = pA110c~>SetPr*op-erties(pProperties,&Actua7J;
1‘f(FA1LED(hr)I! l

return hr;
)

// Verify that the allocator is able to a11ocate what we. requestec.
if (Actual.c3Buffer < pPropErties->cbBufter') l

return E_F/iIL;
}

return NOERROR;

Starting and Stopping

All set and ready to roll——well, at least these two filters are. To complete the
filter graph, the remaining filters down the stream follow the same negotia-
tion process to connect their output pins with the appropriate input pins.
Once the remaining filters are connected, the filter graph is ready to rumba.

At this stage, an application can start the filter graph, causing the source

stream to read data from the file and send it downstream for further pro-
cessing. When the filter graph is started, DirectShow creates a new thread

for each CS0 urceStream in the filter graph, that is, a new thread for each

output pin in the source filter. For example, if you have two output pins on
the source filter, the FGM creates two additional threads to handle each of

these pins. This allows the two pins to pump their data independent from
one another.

When the thread is first created, the FGM calls the OnThreadCreate() func-
tion on the output pin, to initialize the state of the source stream———in our

case, we open the source file. When you stop the filter graph, the FGM calls
the OnThreadDestroy() function before it destroys the thread—in our case,
we close the input file.

Notice that these functions are called every time the filter is started and
stopped.
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HRESULT CFruitStreamText::0nTnreadCreate()
l

CAutoLock cAutoLockSharec(&m_cSnaredS:ate):

// Convert file name from UN1COD£ to single byte cnar..
char szTmp[256];
wideCnarTOMultiByte(CP_ACP, O,

((CFruitFilter*)m_pFilter)>>m,szF1lename, -1,
szlmp. sizeof(szTnp). NULL, NULL)

m_inFlle.open(szTmp);

return NOERROR;
l

HRESULT CFrultStreamText::0nThreadDestroy()
l

m_irFi|e.close();
return NOERROR;

Moving the Data

As long as the filter graph is running, each of the threads repeatedly calls
the FillBufi‘er() function to fill the shared buffer with raw data from the
input file. FillBufi"er() then calls the SetActualDataLength() function in
order to set the size of Valid bytes in the shared buffer. The data buffer
(media sample object) is automatically delivered to the downstream filter
when the FillBufi‘er() function returns successfully.

HRFSULT CFru1tStreawText::FillEuffer(IMediaSample *pms)
l

BYTF *pData;
long lDatdLen;

pms->GetPolrter(&pData); // letrieve a po‘nter to the buffer
lDataLen = pws~>GetSizc(): // How big is the buffer — should be 1024

// Read one line at a tine till end of file..
if (m,1nF1le.getline(pData, lDataLer))

pms»>SetActualDataLength(strlen<(char*)uData)+1);else l
return S_FALSE;

l

return S_OK:
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When the input file runs out of data, F1'llBufi‘er() returns an error, S_FA LS E,

which marks the end of the stream, and, as a result, the filter graph stops, and,
finally, the threads are terminated.

8.6 Creating a Transform Filter

Now, let’s see how you can create a transform filter. As you recall, a trans-

form filter accepts data from its input pin, applies some transformation on

the data, and then sends it out to the filter connected to its output pin (see
Figure 85). In our sample, the transform filter, CInvertFilter, inverts a text

string before sending it out to the next downstream filter.

CTransforn'|Fi|ter

m'®§mr-..

output 
FIGURE 8-5 Transform filter.

I-
D:<
D.

As with the source filter, you can easily create a transform filter by deriving
it from the base CTransformFilter. As shown in Figure 8-5, the
CTransformFilter defines one input pin and one output pin connected to

an upstream and a downstream filter respectively. Notice that you can add

additional pins to the transform filter; for example, the MPEG-1 stream

splitter in Figure 8-2 has one input pin and two output pins.

 

class CInvertFilter : public CTransformF‘lter
l
zublicz

// Input Pin override functionsm
HRESUlT Check1nputType(const CWediaType* mtln);
HRESULT Che:kTransform(CMcdiaType* pmtIn,CMedialype* 1mtUut);
HRESULT Receive(IMediaSample *pSam3le);

CInvertFilte"(TCHAR *pl\ame, LPLNl<\lOlrlN pUn<, HRESU_T *p‘ll‘};~C1avertF’lter();

// Necessary COM functions”
static CUnknowH * WINAPI CreatelnstancelLPUNKVOWN. HRESULT *):
S‘DVETH0D1M3 NonDelegatingUuerylnterface(REFIID riid, void ** ppv);
DECLARE_IUNl<N0‘w‘N;
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// Output pin datatype and buffer size functions
HRESULT GetMediaType(int iPos, CMediaType tpmt);
HRESULT CheckMediafype(const CMediaType *pmtJ;
HRESUL’ SetMediaType(const CMediaFy:e *3mt);
HRESULT DecideBufferSize(IMemAllacator *pimd, AtL0CAT0R4PROPERTIES

*pPropert1es);

Notice that the output pin of a transform filter overrides the same functions as

the output pin of the source filter discussed in the previous section, namely

GetIVIediaType(), CheckMediaType(), SetMedial3/pe(), and Decz'deBuflerSize().

Therefore, we’re going to skip these functions and only discuss the new ones:

CheckIrzputType(), CheckTran5form(), and Receive(). Now, when the output pin

of an upstream filter tries to connect to the input pin of a transform filter, the

upstream filter verifies its media types against the transform filter’s by calling

the CheckIr1putType() function2 of the transform filter. If the transform filter
supports the media type, it returns S_0 K; otherwise, it returns an error.

FRESULT CInvertFilt.er‘::CheckInput*ype(const CMed'?aType* pmtln)
(

DbgLog((LOG,TRACE, 2, TEXT["CIm'e“tF1lter::CheckInput*ype“)));
if ( (*pmtIn->Type() != MEDIATYPE_Text ) )

retqrn E_lNVALlD/\RG;
return S_0K;

DbgL0g(l is a useful debug macro. See article on CD.

Typically, the input pin of the transform filter is connected before its output

pins. But it is possible for an input pin of a transform filter to connect to an

upstream filter after one of the output pins has already established a con-
nection with a downstream filter. In such a case the transform filter calls the

CheckTransf0rm () function to assure that the transform filter can convert

the input media type to the output media type.

HRESULT Clriverttflterz:Che:kTranstorm(CMed1aType* pmtIn,CMediaType* Dmtoutl
i

return S_0K;
>

l

2. Actually, the output pin of the upstream filter calls the Checkll/Ied1'aType{) of the input pin of the
transform filter, which in turn calls our transform filter, which is a member of the CTransformFilter.
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The transform filter is ready to run once both input and output pins are con-
nected to their respective filters. When the filter graph is started, the upstream
filter calls the Receii/e() function to deliver data to the transform filter. In our

case, the transform filter inverts the string before delivering it to the down-

stream filter. The Receii/e() function accepts an IMed.iaSample as an input,
which is the interface used to transport the data.

The Receii/e() function calls the IMediaSample::GetP0inter() function to

retrieve a pointer to the input buffer. It then calls the output pin’s

GetDeli1/eryBufi‘er() function in order to retrieve a pointer to the shared

output buffer. The Receii/e() function inverts the input string and inserts it
in the output buffer. Finally, it calls the output pin’s Delii/er() function in
order to deliver the data to the downstream filter.

HRESULT CInvertFilter::Receive(IMediaSample *pSample)
L

LPBYTE pData;
HRESULT hr:
CAuto-ock lck(&m__CsReceive);

// Ge painter to input buffer and size of valid data
hr = wSamp'e—>GetPointer(&pData);
int l)ataLen = pSample~>GetActualDataLengtn();

if (FAILED(hr))
return nr;

// Ge tie outpr. pin sample buffer
Ilvlediasamplc *pOutSample:
if ( :Al-ED(ll'l_pOLAtp.JZ">GeLDI:‘llVEl”yBUl:‘fEr‘(&DOUtSa|'|lplE, NULL. NULL, 0)) )return LPOINTER;

LPBYTI plst:
ii’( :AI_ED(p0utSa7iple->GetP0inter(&pDst)) )

retarn [_POINTER;

// [my inverted string to outsut buffer
CopyMernory(pDst, pData, ‘DataLen):
strrev((_PTSTR)pDst);

// deliver data to downstream filter
e->SetActJalDataLengtn(lDataLen);
A>Deliver(p0utSample);
e->ReleaseiI);

return S_0K;

PART[II



119

96 I CHAPTER8 DIRECTSHOW FILTERS

8.1 Creating a Rendering Filter

Finally, let’s create a rendering filter. As you recall, a renderingfilter supports

one input pin and no output pins. It accepts data from an upstream filter

and renders it to a dump file, the screen, an audio device, or the Internet.

The rendering filter is the last stop. for the data in the filter graph. In our

sample renderer, the input pin accepts a text string and displays it to a text

window on the screen (see Figure 8-3 on page 83).

DirectShow implements a base renderer, CBaseRenderer, which makes it

easy to derive our text-rendering filter. Again, we’ll discuss only the new

functions that are relevant to the rendering filter: CompleteConnect(),

BreakC01mect(), OnReceiveFirstSample(), and DoRenderSample().

class CTex Outfilter : public CBaseRenderer
t

CTextGutwindow m_Textwincow;

public:
HRESUL' Camp1eteConnect(IPin *pRecoivePin>
HRESUL’ BreakConnect();
void OnRece‘veFirs:Scmp1e(IMediaSamp1e *pMeciaSamp1e);
HRESUL' DuRenderSdmpie(I%ediaSumple *pMediaSamp1e);

C’extOuLFi1Ler(LPUNKNOwN pUnk,HRESULT *phF)
~CText0utFi'ter();
static Cunknown * NINAP1 CreateIrsta1ce(LPUNKNOwN ptnk, HRESULT *pt");
STDMETIODIMP NonDeiegatirgQue“yIrterface(RFFTID, void **);
DECLARE,1LNKNONN
HRESUL' CreckMediaType(const CMeciaType *pmt);

Notice that in the code we’ve also defined the member variable

m§TextWindow, which handles the output window. CTextOutWindow is

based on the CBaseControlWindow class, which is part of the DirectShow class

library. CBaseControlWindow simplifies the creating and handling of output

to the client window. VVe’re not going to discuss the CBaseControlWindow

interface in detail here; Well just initialize the m_TeXtWindow variable in the

constructor of the filter and respond to the query of the interface as follows:

CTextOutFilter::CTextCutFilter(LPUNKNONN pUnk,HRESULT tphr)
CHaseRende"er(CLS1U#lextRender, NAME(”TextOut Filter”), pUnk, phr}.
m_TextWinc0w(VAME("Text0ut”J, GetOwner(),Dhr, &m_InLertaceLcck, Lhis)

STDMETHODIMP
CTextOutFilter::N:nDe1egatingOueryInterface(REFIID riid,void **3pv)
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CheckPointer(ppv.E_C01NTER>:
it (riid == I1W_iV1deowindcw) {

returr m_Textwindow.N:nDelegctingHueryInterface(riid,ppv):
1
return C%aseRenderer::NcnDe1egaLingDueryInterface(ri*d,ppv):

As with the transform filter, the input pin of the rendering filter connects to an

upstream filter when both filters agree on the media type and the shared buffer

size. Consequently, the CompleteCon11ect() function of the rendering filter is

called to affirm the connection between the two pins. This is the last chance for

the rendering filter to reject the connection between the two pins.

When the input pin is disconnected from the upstream filter, the

BreakConnect() function is called, which typically hides and destroys the output
window.

HRESULT CTextCutF1lter::C0mpleteConneCt(IPin *pReceivePTfl)
(

// It's a gcod time to create the window
retlrn S_UK;

?

HQESULT CText0utEiIter::BreaKCornect(J
{

m4TextwIndow.InacLivateN1ndow():
m_Textwindow.DoSh:ww1adow(Sw_mIDE);
return S_OK:

At this stage, the rendering filter is ready to run. The filter exposes two

functions to handle the rendering of the data: OrzReceiveFirstScm1ple() and

DORerzderSample(). The OrzReceiveFir5tSample() function is always called to

render the first sample of data. Typically, this function handles the first sample
of data that arrives after the Pause or Start commands are issued to the filter

graph. In motion Video, it is necessary to display the last video frame when the

Video clip is paused.

void CTextOutF*1ter::OnRece1veFirstSample(lMediaSample *pMediaSample)
{

1t(IsStreaming(> == FALSE) (
ASSERT(pMediaSample);
DrawText<pMediaSamp1e):

PARTIII
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The D0RerzderSample() function is repeatedly called when the upstream filter
delivers the samples to the rendering filter. This function handles rendering the
data to the screen, file, audio device, or the Internet. Typically, you only need

to implement this function; you don’t have to worry about the
OnReceiveFir5tSample() function.

+RES‘JLT CTextOutFi'lter::DoRender5ample(IMediaSampl: *pMed1‘aSample)
l

ASSE¥T(pl/ediasample);
DrawIe><t(pMed1'aSamp1e):
return NUERROR;

8.8 Adding Your Own Interface
Now you know how to create a source filter, a transform filter, and a render-
ing filter. As you can see, Directshow defines the necessary interfaces to
build a filter graph and control the state of this graph. It allows you to start,

stop, and pause the filter graph. All fine and dandy, but what if you have a
cool feature th at’s not supported by one of the DirectShow interfaces? This

is when you have to add your own interface. As it turns out, adding a new
interface is easily supported by the COM paradigm.

Suppose you’d like to retrieve the statistics of the stream received by
CTextOutFilter. For example, you’d like to figure out how many characters

and how many words the renderer handles from start to stop. To do this,
you must add your own interface to CTeXtOutFilter.

To create a custom interface, you must first create an interface template,
declare its name and methods, and assign a unique GUID for it——in this

case, we’ll call it the ITextStat interface. A template only declares the mem-

ber functions of the interface; it does not define or implement the body of
these functions. The function bodies must be defined in the class that
derives from this interface. '
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/j Use (?uidGe11.Exe to generate unique GUIDs.
DEFINE_GLID(IID,ITextStat.

O><48(l?5?44, Gx2d3a, Oxllce, 0x87, 0><5d, OX0, 0x60, O><8r, U><h7, 0x80, 0x66);

UtCLARE_INTE?FACE_(ITextStat, Iunknown )
l

STDMETHUD(get_Number0fC1ars) CHIS, int *pNumChar) PUQE; 4-—-—
STDME*HQD(get_NumherOf|/lords) ( HlS_ M. *:Nu'nworcs) PURE;l :

l
The deriving class must implement all pure interfaces.

Next you need to include the ITeXtStat interface as one of the base classes of
the CTeXtOutFilter class.

class CTe><t0utF*lter :
puol I: CBaseRende"er,
public ITextStat

CTe><tOutw1' ndow m_TexLw ‘ ndow;

public:
CTextOutF1‘ter(LPUNKN0lrJN pUfll<,HRESULT *',JlH‘);
~CTe><t0utF'.'lter();

static Clmknown * WTNAPI CreatelnstancefiLPUNKNONN :Unk. HRESULT *phFI;
STDMETHODIMP No1DelegatingwerylnteefaretRUN], void **>;DECLARE,llJNl<NOW\l

// T1658 are the custom ”unctions

STDMETHCDIMP get Number07"Chars(i'nt *pNumChar);
STDWHHUDIMD get_NumberOfwor‘ds(int *pNumw0rds):int m_nChar5:
int m_nWords;

}:

In addition, you must implement all the functions of the lTextStat interface.

Notice on the CD that the n1_nChars and m_nWords fields are incremented in

the D0RenderSample() function of the rendering filter (not shown here).

STDMETHODIMP CTe><tOutF'{1ter::get_NumberOfChars(int *pChars)l

*pChars = mmchars; // number of chars receive: so far.
return NCERRCR;

}

STDMETHODIMP C|e><t0_l:F1‘lter::get_|‘Jun'berO'fwords(int *p|/lords)l
*pwords = m_nWords; // number’ of weeds received so far..
returru NOERROR;

PARTIll.
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Finally, you need to respond to the NonDelagatingQueryInterface() func-
tion of the filter in order to satisfy queries for the ITextStat interface.

STDMETrOD1NP CText0uLF%1ter::NonDe1egatingQuery1nterfacelREF'In ri1d,void **ppv)
(

it (riid == 1ID_1TextSLaL) 1
return GetIntertace((llextStat *)th‘s. ppv):

else if (riid == IID4lvideowindow) {
return m_Tex:w1ndow.NonDelegat1ngOUeryInter‘aCC(riid.ppv);

}
return CBaseRenderer::VonDe1egat1rgQue*ylnterrace(riid.ppv):

i

l

Well, now that we’Ve arrived at this point, you’re ready to use your custom

interface in your application. You can access your custom interface by first call-

ing the Query1nterface() function of the CTextOutFilter-—specifying your cus-
tom GUID, IID_ITextStat, as the first parameter. QueryInterface() returns a

pointer to the custom interface in the second parameter of the function. You
can use that pointer to call the appropriate member function in the custom

interface, for example, Get_NumberOfChars(), Get_NumberOfW0rd5().

ITextS.aL *pTextStat;
hr = wunknowr—>OueryInterfaceII1D_1TextStat.{void **)&pTextStaL);
if (FAILE3(nr))

return l,N0lNTERFACE:

m_p'extStat~>get_Numhsr0tChars(&m,Chars):
m4p‘extStat->get_Number0fworcs(&m_words);

8.9 Adding Property Pages to Filters

As we’ve mentioned earlier, a filter can expose one or more property pages

that are specific to that filter. Typically, you would use a property page to

display the status or configuration of your filter. You can access property

pages either from the graph editor or from your application. VVe’ll show you
how to access property pages from an application in the following chapter.

To View the property pages for CTextOutFilter in the graph editor, right—
click the mouse on the filter and select Properties. You should see some-

thing similar to what is shown in Figure 8-6.
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FIGURE 8-6 Property pages for CTextOutFi|ter.

Oooh, your fingers must be tingling at the thought of adding a property
page to your ow11 filter. It’s actually pretty simple. To add one or more

property pages to your filter you need to take the following steps:

1. Add the property page interface to the filter.

2. Implement the property page interface.

—.
:1
I-
L:

_ <D.

We break down these two steps in more detail in the following subsections.

8.9.] Adding the Property Interface to the Filter

Actually, adding a property page is Very similar to adding a custom inter-

face. First, you must add the ISpecifyPropertyPage property interface as a
base class to the CTeXtOutFilter declaration.

 
class Clextoutlrilter :

public CBaseRender"er,
public ll.=xtStat,
public ISpec1fyPr0pert_vPages

Clextoutwi adow m Textwi‘ ndcw;

public:
CTextCutF1'lter(LPUNl<NOwN pUnk,HRESULl *phr):
~CTe>:t0utF1‘ltcr():

static CUnl<nown * w1l\API Cr*ea:elastance(_PUNKNOWN pUnk, HRESULT *parIl:
STDMETHODIMP Norrie’egatingouerg/1n:ertace(REFIZD, void **);
DECLAQEJUNKNONN

STDMETHODIMP qet_Numt:erOfChaes(1’nt *pNumChal");
STDMElH()I)lMP get_NumberOfwords(1'nt *pNum‘xlords);

l'lE rn_nCtars;
Mt mmllords;
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// required for ISpecifyPropertyPages
STDMETHODIMP GetPageS(CAUUlD *pPages):

J

You must then respond to the N0nDelegatingQueryInterfaceO in order to

expose the property page interface to the application as follows:

STDMETHODIMP CText0utFilter::NonDelegatingDperylnterface(RE:I1D riid void
**ppV)
l

if (riid == IID_ISpec1fyPropertyPages) {
return GetInterface((ISpecifyPropertyPages *) this, ppv);

} else if Eriid =7 IlD_ITextStat> l
return GetInterface((1TextStat tlthis, ppv);

} else if iriid == IID_Jv1deswindow) l
return m_Textwindow.NunDelegatingQueryInterface(riid,ppv);

l
return CBaseRenderer::NouDe1egatingQueryInterta:e(riid,3pv);

Since the property page is actually a separate COM object, you must inform
DirectShow of how to create an instance of that object. To do that, you must

add the property page template to the factory template list, g_Templates[].

DEFINE_GUID(CLSID_TextOutPropertyPage,
0x48025243, Ox2d39, Oxllce. 0x87, Oxfid, OX0, 0x60, 0x8c, 0xb7, Dx80, 0x66);

CractoryTemplate g,Templates[] = (
' L"ABC - TextOut Display fi‘ter"
, &CLSID_TextRender
, CTextOutFilLerzzflreatelnstance
. NULL
, &sudText:utAx}

{ L"ABC - Text0ut Property Page"
, &CLSID_TextOutPropertyPage
, CText0utProperties:zcreatelnstance ]

Finally, you must implement the GetPages() function of the filter. \/Vhen an

application displays the property page, DirectShow calls this function to

retrieve the GUIDS of the property pages exposed by this filter. GetPage5()

returns a list of the property pages supported by this filter. In CTextOutFilter

we’re exposing the same property page twice just to show you how to support

more than one property page in a filter.
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STZMETHODIMP CText0utF1lten::GetPages{CAUUID *pPages)l
pPages->cElems

// allocate enough memory to nold their CUlUS
pPages->pElens = (GUID *) CoTaskMemAll0c(slzeot(GU13>l:

if (pPages->pE'ems == NULL) l
return E_0UTCFMEMORY;

l .

pFages—>pElems[0] = ClS1D_TextOutPropertyPage; // 1“ aroperty page
pPage5->pElens[1] = CLSIDVTextOutPropertyPage; // 2” zroperty page

return NCERROR;

Implementing the Property Page Interface

To implement the property page, you must first derive an interface from the

base CBasePropertyPage class and implement a couple of its member
functions.

class CTextCutPropert1es : public CBasePropertyPage
l
public:

static Cunknown * NINAFI CreateInsLance(LPUNKNONN lpunk, HRESULT *phr);

private:
CTextOutPr0pert1es(LPUNKNOWN lwunk, HRESULT *:hr);
HRESULT 0nC0nnect(IUnknown *pUnkn0wn);
HRESULT 0nlJ1scanne:t(_ J;
HRESULT OnActivate();

ITextStat *m,pTextS:at:
int m_Chars;
int m_w0rds;

l;

DirectSh0w then calls the CreateIn5tcmce() function, which creates an instance

of the specified property page. Notice that the property page resource ID and
name is specified when the base constructor is called.

Cunknown * NIKAPI

CTextOJtPr0pert*e3::CreateInstance(LPUNKVONN 1pUnk, HRESULT *phr)l
return new CTextUutProperties{lptnk, phr);1l

PARTIH
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CTe><tOutPropcrtios::CTcxt0utPropert1'es(LDUNKNOWN pUnk,H¥ESULT *phr') .
CBase3ropertyPage(NAME("TextCut Prop Page" Z», pUnk, lDD,»‘R()P‘r‘AGE, IDS_NAMEJ (-5
( l

ASSERT(phr>;
J IDD_PRPPAG[ Property page resource ID.

Before the property page is displayed, DirectShow calls the OnConneCt() func-

tion of the property page interface, using the address ofthe filter as a parameter.

At this stage, you must retrieve any information that your property page needs

from the filter. The property page retrieves the custom interface that we defined

earlier, ITeXtStat, from CTeXtOutFilter in order to figure out the number of

characters and words that the filter has processed already.

HRESULT CTextOutProperties::OnCon'iect{iUnl<nnwn *pUnl<nowr)
l

HRESULT hr;

// get a pointer to the iTestStat interface.
hr = punknown->OLIery1n:erfacC(I1D_ITe»<tStat.(void **)&m_p'e><tSta:i:
if (FAILED(nr))

return EANOINTERFACE;

// get the statistics or‘ ilcnars & Words from filter
m_3TextSLaL->geL_NuInber‘OfChars(&m_Chars);
m_:Te><tStat >get_Numbe"0f‘n‘ords£&m_words);
return NOEQROR;

When the property page is displayed, the O11Activate() function is called to

update the fields of the property page.

HRESULT CTextOutProp(:rt1'es : :0nActivate()
l

HJHAR bui‘[EO]:

wsprinttibuf, "%d", rr_Cnar3);
SendD‘gI:e1iMessdge(n‘_Dlg, IDC_\lumberCnar5, NM_SETTEXT,0, (DWCRD) buf);
wspr1'ntf£hut,"%d", rr_wrrrds);
SendD’gI:e7iMessage(m,D1g, IDC_\lumberwords, NIVLSETTEXT, O, (DWORD) buf);

return NOEPROR:

Finally, when the property page is dismissed, the FGM calls the
OnDi5cormect() function in order to release any interfaces or memory.
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HRESULT CTextOutPrcpert1es::OnDisconnect()
l

‘f (m,p“extSta: =r NULL)
return E_UNEXPECTED:

rn _pTextStat~>Release( );
m_pTextStat = NJLL;
return NOERROR;

8.10 Adding a Filter to the Registry
DirectShow uses the system registry to hold its configuration information,

filter list, and media types. When you create your own filter, you must add

it to the appropriate part of the registry so that DirectShow can recognize

and load your filter. Here is a list of the registry keys used by DirectShow

with a brief description of each key:

\\ Hkey4Class_Root Directshow looks here for a list of filter lDs (GUIDS).
\Filter

\\ Hkey_C|ass_Root This is where all COM objects live. Holds the settings for each 5
\CLSlD CUID (for example, the filename of executable). Directshow

loole up filter GU|Ds here to get information about the filter.

\\Hkey_C|ass,Root ‘ List of media types (for example, MPEG l Stream) and
\Media Type V V the associated source filter that can handle this media

' ’ type. This is used for automatic rendering of source
files, You can find more information on the CD under “Adding
Custom File Types.”

PARTIH

\\Hkey_Loca|__l\/|achine ‘ This area holds useful debug configuration for each
\Software\Debug . . filter. You can find more information on the CD under

"DirectShow Debugging Hints.”

You can easily add the necessary entries for your filter in the registry in one

of two ways. You can build a registry file with all the necessary entries and

add it to the registry with the RegEdit.EXe. Or you can embed the registry

information in the filter and use the RegSvr32.EXe command to add the infor-

mation to the registry.

Using a Registry File Is Not Recommended

Windows registry editor, RegEdit.EXe, supports a command line option, -5,

which allows you to specify a registry file in order to add information to the

registry. Here is the registry file for CTeXtOutFilter:
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; FileName: Text0ut.Reg
[lKEY CLASSES,RCO'\Filtct\lCCO1B761~A537~l1dO~9C71»OOAAOO58A735I] O RegEmrfiherG1HI)and

name with DirectShow.
@="ABC - Text Display Fi'ter"

[lKEY_CLASSES_RCOT\ClS1d\lCC0l376l*A537*lld0~}C7l*DOAA005EA735ll G AddfihcrG1HDt0
@="TexL Display Filter” CLSlDsedknL
”Mer1t"=dword:0D80OD00

lKtY,ClASSFS_ROOT\C|sid\tCC0lR761—A537—11d0*9C71—00AAOO58A735l\lflprOcSerVer3Zl O Pathandtflenanm
="<::\\flter'\\textoJt.ax“ offilter.
ThreadingModel"="Both"

lKEY,CLASSES_RO0T\Clsid\(CC0lB76l-A537-l1d0-3C7l‘0OAAOO5BA735l\Plns] Q Supponedpinsandtheh
+KEY CLASSES RO0T\Clsid\tCC01B761-A537-11d0-9C71-00AA0058A735l\Pins\TextOut] properfies
Al1owedMany"=dword:0OD000O0
A11owedZero"=dword:00O00000
)1rection”=dword:0DO0D000
IsRendered"—dword:O0OO000l

lKEY_CLASSES_HU0l\ClSld\lCCUlB/bl*A53/*lldU~9C/l‘UUAAU058A/35]\P1flS\TeXt0Ut\lypeS: O hdqorandnunor
lKEY_CLASSES,ROOT\Clsid\{CC0lB76l-A537-lldO-9C71-O0AAO0E8A735l\PiHs\TextOut\Types\ Inedhtypwflhat
73747874*0UOU UUlU BUUU UUAAUUEBBB/lll theoutputpm
lKEY,CLASSES_RO0T\ClS1d\(CC0lB76l-A537-1ldO—9C7l-O0AAO0E8A735!\P1ns\Text0ut\Types\ suppons
73747874—0D00*001O*80U0*00AA00389B7l)\1OD000DOO~0000*OOO0~OO0O*0O0O0OOO0OODll

To add the information in the file to the registry, run:

RegEdit.Exe as Text0ut.Reg

The problem with this method is that the information in the registry file is

static and may not reflect the current state of the filter. For example, the

path to the filter is hard coded and must be manually updated if the path

changes.

Using Filter Self-Registration ls Recommended
DirectShow supports the COM self-registration procedure, which allows a

filter to automatically add its information to the registry. To use self-

registration, you must embed the information in the filter and then run

the RegSVr32.Exe command. This command retrieves the embedded infor-

mation from the filter and adds it to the system registry.

First you must add the DirectShow setup information, 5udTextOutAx, in

the factory template m_gTemplate5[]. The DirectShow setup information
allows you to specify the filter name, the number ofpins, and the supported

media types for each pin.
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nonst. AVOVI ESETlJP_‘lEDIATVPE sudlpP1'nTypes =[
&MEDI/\TY PE Text, (I Major and minor media types supported
&MELlIASUBTYPE_NULL bythispin.l:

Pin information array. If there is more
const AMOVIESETUP_PIN 5udl3F’1'l’lS L] = l (1 than one pin,just add its iiiformation here.

I L"Te><tOut", <3 Pin name.
FALSE , (1 Does the pin render the data it receives?
FALS :, (j Is it an output pin?
FALS :, I (J Is filter allowed to have zero pins ofthis type?
FA LSE , (3 Does the filter have more than one instance ofthis pin?
&C L .8 |)_NU LL , O The pin connects to the pin with this CLSID.
NU L L, (j The pin connects to the pin with this, name.
1, C Number ofsupported media types.
&std p31'nTypes > C Address ofmedia type list,l ;

Filter information that is inserted in the
const AMOV I ESElUP_FI LTER SUClT€XtOlJl’,AX = l (j registry.

&CLS D_Pl ainText, C] GUID ofthis filter.
L"ABC Text Display Filter", <jFiltername.
ME RI‘ _NORMAL , (3 Filter merit. This is used for automatic connection
1 . (J Number ofpins.
8.5 ud p P ' n S (3 Address oflist ofpins.v.A.

CFactnry'emplate g_Templates[] = {
l L"/\BC - Te><tOut Display filter"

. &CLSID_3la1’nText
, Cle><t0utF1'lter:zcrcatclnstance
, NULL

, 8: S Ll dTC X t O U t AX } (J Pointer to filter self—registrati0n information (optional).) ;

l

Finally, you must implement and export two fun ctions: DllRegisterSer1/er() and
DllUnregi5terServer(). DllRegi5terServer() is called to add the filter information

to the registry, and DllUnregisterServer() is called to remove that in formation

from the registry. Both functions call the appropriate DirectShow function to

do the actual registration and de-registration. Of course, you can add your own
code here to add information to or remove information from the registry.

STD/\Pl DllReglsterScrver()
(

retuen AMov1'cDllReglsterserl/erE( ll<'llt );
l

STDAPI Dl'Unr'eglsterServer()
l

return Ar/|ovieDllRegisteeserverfii F/\LSE );
}

PARTIII
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You can export the functions in the Definition (DEF) file as follows:

EXPORTS
DliRegisterServer
Dilunregisterserver

Once you’Ve built the filter successfully, you can register the filter by running:

RegSvr32.Exe Textuut Ax

(TextOut.Ax is the filter filename), and you can unregister the filter by
running:

RegSvr3Z.Exc -u TextOut.Ax

WHAT HAVE By the end of this chapter, you should

You LEARNED? have an understanding of the filter graph model of Directshow;
understand the connection between input and output pins;

know how to create your own source, transform, and rendering filters and know the
difference between them;

be able to add custom interfaces to your filter;

I know how to add property pages to a filter; and

I understand how to either create a registry file or embed the registry information in the
filter.

In the following chapter, we'll show you how to access these filters from the application
point of view. After all, you wrote these filters for a reason.
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Directshow Applications

WHY READ

THIS CHAPTER?
Now that you've created your own DirectShow filters, you probably want to use them with-
in your application. What a coincidence! This is exactly what we’re covering in this chapter.

We'll show you how to access DirectShow filters using your application by one of two
methods: direct low-level access using the COM interfaces, and high—level access using
the DirectShow ActiveX control.

For the COM interface, we'll show you how to

I use the automatic method for building filter graphs,

use a preprepared filter graph file (*.grf) for building filter graphs,

use a manual method for building filter graphs,

control the state of the filter graph (Start/Stop/Pause),

access custom interfaces within a specific filter,

display lilter—specific property pages from within your application, and

handle events posted by the filters and the filter graph manager.

As for the /-\ctiveX interface, we'll show you how to

I add the DirectShow ActiveX control to your application and then access it,

I control the state of the filter graph (Start/Stop/Pause), and

I handle events posted by ActiveX control.
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9.1 DirectShow Mechanisms for Working on

Filter Graphs
In the previous chapter, you learned how to build your own DirectShow fil-
ters—source, transform, and rendering. You also learned how to add prop-

erty pages and custom interfaces to your filters. To test your filter, you used
the Graph Editor graphical applet, which allows you to add individual filters
and connect their pins together. The applet also allows you to run the filter
graph, save the filter graph into a *.grffile for later use, and display that
slick property page that you embedded in your filter.

In this chapter, you’ll learn how to manipulate filters in the same manner as
you did using the graph editor. As you recall from the previous chapter,
DirectShow provides three ways to access the filter graph (see Figure 9-1):

I directly through the Filter Graph Manager (FGM) COM interfaces;

I through the DirectShow ActiveX control, which is part of the
DirectShow SDK; and

I indirectly through the MCI interface.

In this chapter, we’ll only discuss the first two methods: the COM interface
and the ActiveX control.

Application

AM Filter‘\%fl 

% Filter i Filterii
Media

Source Destination

FIGURE 9-1 Interfaces that provide applications access to the
DirectShow filter graph.
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DirectShow provides various levels of application support. At the high level,
ActiveX, you only need to embed the ActiveX control in your application,
and ActiveX control will handle the rest. It opens the media file, builds the

filter graph, and even provides the user interface for controlling the filter
graph (Run, Stop, Pause, and so forth).

ActiveX Control Interface

Automatic Rendering COM Interface
(FienderFi|e)—inc|uding *.GRF files

Manual Rendering COM interface
(AddFi|ter, AddSourceFi|ter,

EnumPins, Connect)

FIGURE 9-2 Various levels of DirectShow application interfaces.

For mid—level control, DirectShow offers an automatic rendering method
using its COM interfaces. At this level, you can construct the entire filter

graph with a simple function call, IFilterGm._ph::Rer1derFileO, and Direct-
Show determines the appropriate filters to load and how to connect their

pins. You can also use the RenderFile() function to re—create a preconfigured
filter graph from a GRF file—GRF files can be created with the Filter Graph
Editor (FGE). When you use the mid-level method, you have direct access
to your custom interfaces and property pages. In addition, you can receive
and handle filter graph notification events.

At the lowest level, DirectShow offers a wide range of manual rendering
COM interfaces that allow you to have total control over your filters. You

can manuallyload each filter and connect its pins together. You can use this
low-level method when you want to bypass DirectShow automatic render-

ing techniques and assure that you are loading the correct filters.
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9.2 COM: Automatic Construction of Filter Graphs

tGraphBuilderfuncti0ns:
Add!-7/terO,
AddSourceFi/terO,
Removefi/re-r0,
EnumFi/tersO,
F/ndFi/terByNameO,
Connecto,
RenderO,
Render!-7/e O,
Scttog/-7/e O, andmore

Let’s start at this level, in the middle, because it offers the best of both

worlds. At this level, you can construct a filter graph easily and still main-
tain full access to the filters and their events.

DirectShow defines the graph builder interface, IGraphBuilder, which

allows you to build filter graphs from within your application. To do this,

the graph builder interface uses the settings in the system registry to deter~

mine the appropriate filters to load and connect in order to construct the

filter graph.1

Before you create the graph builder object, you must first initialize the
COM libraries with the CoIm'tialize() function. You can then call the

CoCreateInstance() function to create an instance of the IGraphBuilder

interface. The function looks up the CLSID_FilterGraph in the system reg-

istry and loads the appropriate Dynamic Link Library (DLL) associated
with this class ID. It creates an instance of the IGraphBui|der object and

returns it in the m_p G I“ a p h parameter.

if(FAILED(CuIniLiaiiAe()) // ‘nitialize the COV intreface
retmn tAI St;

// Create a Graph B_n"der object
IGra3hBm'ider * m_pGraph;
HRESULT hr = CoCreateInstanCe(

ECLSID FflterGraph. (J CLSID for Directshow graph builder (Quartz.Dll)
VULL , (1 Created standalone—not aggregated
C LSCTX_I NPROC_S ERV ER, (3 Created within the same process space ofthe app
Eu I I D#IGraphBu" l der, (1 GUID ofrequested interface
&m_pGraph) : (3 Holds a pointer to IGraphBuilder interface onreturn

Once you’ve obtained an instance of the filter graph builder, you can call its

RenderFile() function to create the entire filter graph. This function accepts

the input filename as a parameter.

if (FAILEDUH) H FAILED( m_pGr'aph->RenderFi1e(wPath, VULL) 1)
netmn |—A|5t,-

1. You can find our more about the system registry setting on the CD under “Adding Your Own Custom
File l'brrnat.”
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The RenderFiZe() function first determines which source filter to load based

on the contents of the input file. Notice that DirectShow does not use the

file extension (*.mpg, *.avi, and so forth) to determine the type of media in

the file; rather, it searches the input file for certain byte values residing at cer-

tain byte locations, and, based on what it finds, it determines What type of

media the file represents. The source filter that handles that type of file typi-

cally knows those byte locations and their Values. For more information,

refer to “Adding Your Own Custom File Format” on the CD.

Once RenderFile() determines and loads the source filter, it enumerates the

filter pins and determines the media types that they support. For each of

the media types, the graph builder searches the system registry for a filter

EI‘O1
<
n.
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ll\/lediaControl functions:

Run 0,
Pause-O,
Stopo,
StopWhenReadyO,
GetState(),
RenderF//e0,
AddSourceF//ter0,
ge-t_Fl/terCo//ect/'on O,
and more

|MediaPosition functions:

get,DL/rat/'0nO,
get_Currern‘Po5iz‘/onO,
put_Curren tPosit/'on O,
get_5top Tfmeo,
put_5'topT/me(),
get_Prero//T/'me0,
set_PreRoI/T/'meO,
get_RateO,
put_RateO, andmore

that accepts that media type as an input. If such a filter is found, Render-

File() loads that filter and connects its pin to the output pin of the source

filter. From there on, the same process is repeated for each output pin until

the entire filter graph is assembled.

Now that the filter graph is built, you can start, pause, or stop the filter graph

at will. To do that, you must first obtain a pointer to the media control inter-

face, IMediaControl, of the filter graph. You can simply call the ]Graph—

BuiZder::Que1'yInterface() function to retrieve a pointer to the media control

interface using I IDWI M E DIACO NTROL as a parameter. The Querylnterfacd)

function returns the media control interface in the second parameter,
&m_pMC, which you can use to call the appropriate function to run, stop, or

pause the filter graph.

// Obtain the ‘nterface to our filter graph
i'f(F/\ILED(m,pGraph->0ueryInterface(IID,IMediaContrci.(void**) &iLpMC)))
return FALSE;

m,pl/C—>Run():
rn_pl/C->Stop( );

V1 m_pl/C->Pause();

‘Z Make sure to Release the interface when you’re done with it.in_pMC->Release();

Notice that the Stop command exposed by the media control interface

stops the video clip at the last key frame, or intra-frame.2 However, you

could choose to modify the behavior of the Stop command so that after the

Video stopped the video clip would always rewind to the beginning of the
S€qL1€I1C€.

To do that, you must first acquire a pointer to the media position interface,

lMediaP0sition, which manages the position of the stream. As with the

media control, you must first call the IGraphBuilder::Quer)/Interface() to

retrieve a pointer to the media position interface. You can then use that

pointer to call the IMediaPosition::put_CurrentPosition{) function and set

the position of the stream to zero.

2. A key or intra—frame is a frame that can be decoded independent of any other frame in the sequence.
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   ’

hr = m,pNC—>Pause(); // Ask the filter qraph to pause

// Rewind the stream to the beg‘nn1ng when the user issues the STOP
// command or when the EC_COMPLETE event is received.
IMediaPosition * pMP:
hr = m_pGraph->Ouery1rterface(1lD_IMed1aPosition, <vc1d**J &pMP);

it (SUCCEEDED(hF)) {
pMP—>put_CurrentPosition(D);
pMP4>Release();

l

// wait for pause to complete
OAFilterState state; AZ
m_pMC—>GetState(IKFINITE, hstaie);

 
// now really do the stop
m pMC->Stop();

e 9.3 COM: Manual Construction of Filter Graphs

9.3.]

That was surprisingly easy! So why would you want to create a filter graph

manually anyway? We’re sure you have your own reason for doing this, but

it usually boils down to this: you don’t want to rely on the setting of the reg

istry, and you want to guarantee that your filter is always loaded. After all,

you spent your heart and soul writing it.

Adding Filters to the Filter Graph

DirectShow defines two methods for adding filters to the filter graph: one for

adding source filters and the other for adding transform and rendering filters.

To add a source filter, you can call either the IMediaControl::AddS0urceFilter()

function or the IGrczphBuilder::AddS0urceFilter() function. To add a trans-

form or rendering filter, you can call either the IGmphBuilder::AddFilL'er()

function or the IRegFilterI11for::Filter() function.

For simplicity’s sake, we’ll use CFruitFilter and the CTeXtOut filter from the

example of Chapter 8 to demonstrate how to construct a filter graph manu-

ally. First we’ll show you how to add the CFruitFilter source filter and then

how to add the CTeXtOut rendering filter. We’ll then enumerate their pins
and connect the two filters together.

I-
D:
<
D.
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9.3.2 Adding Source Filters

The DirectShow SDK only describes how to use the AddS0urceF1'lter() func-

tion to add a source filter to a filter graph. But this function behaves in a

similar manner to the RerzderFile() function in that it uses the system regis-

try to determine the source filter associated with an input file. Unlike the

RenderF1'le() function, the AddSourceFilter() only loads the source filter; it

does not build the entire graph. As a result, you have full control when it

comes to loading the remaining filters in the graph. (Pssst . . .Do you really
want to have full control over loading your source filter? Read on below.)

OK, here is how you would use the IFilterGraph::AddSourceFilter() function

to add a source filter to the filter graph. It’s pretty simple!

// Load the szurce file associate: w1'thtaetrm't.FTF file
m—‘->1/JIZHAR wFtleNaue[] = L"FrL.1't.FTf";

m_pGraph~>AddSnurceF7‘1ter*(wFfleName. wFfleName, &pSrcFi1ter);

The Fruitftffile has the string FRUIT TEXT at the beginning of the file (the ftffile extension stands for
“fruit text file"). The registry associates any file starting with that string with CFruitFilter. See “Adding Your
Custom File Types” on the CD.

VVhat actually happens when you call the AddS0urceFz'lter() function?

DirectShow associates the specified filename with a source filter through

the mapping specified in the registry. In this case, any file that starts with
“FRUIT TEX ” is associated with CFruitFilter. In turn, the AddSource-

Filter() function loads CFruitFilter into the filter graph. DirectShow then
queries the filter for the IFileSourceFilter interface. The IFileSourceFilter

interface is used to pass the filename and media type information to/from
the filter. If the interface exists, DirectShow calls the IFileS0urceFilter::L0c1d()

function, using the input filename and media type as parameters.

You could ask the question, “\/Vell, can I mimic this behavior if I don’t want

to rely on the registry mapping to load my source filter?” The answer is,
“Yes you can.”

To do this, you must first find your source filter in the registry and then add it
to the filter graph (see our LoadFilter() function below). To find the source

filter in the registry, you must call the IMediaC0ntrol::get_RegFilter-

C0llecL‘i0n() function to enumerate all the DirectShow filters in the registry.

The function returns an IAMCollection interface, which you can use to

retrieve information about each of the filters, IRegFilterInfo. You can then
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use the IRegFilterInfo::get_Name() function to retrieve the filter name and

match it against the name of your filter.

Once you have found your source filter, you can call the IRegFilterInfo::Fil~

ter() function to load the filter into the filter graph. Notice that the Filter()

function returns a pointer to an IFilterInfo interface rather than the filter

itself; you should call the IFilterInfi)::get_Filter() function to retrieve a

pointer to the newly added filter.

HRESULT
CCustomF1lterGra3h::LoadFllter (

WCHAR *pszName, // Filter Name to match against registry
l3aseF’lter **pFilter) // or return holds a pointer to added filter

HSIR p mp;
LONG lcount;
HRFSl.l' hr;
lAMCol’ect‘0d *pMCollectlon=NULL;
lRegFi’terZnfo *pRegInfo=NULL
lFllter1nfo *pF1lterInfa=NULL

// Get a list of all registered Dlrectshow filters
m_pMC->get_RegFilterColleCt1on((lD1spatch**)&pMCollection);
pNCollectlon—>get_Count(&lCount);

// For each filter, find out if its name matches the name 0‘ our filter
for (int i=0; i<lCount; i++) {

RetOnErr( pMCollect1on—>ltem(‘, {lHfiknown**)(&pReglnf0)) J;
pRegInt0—>get,Nahe(Xlplmp);

// Once found, add Flter to the graph and get a pointer to lt.
if (|5trcmpW(pSzName, plmpll == 3) l

pReqInf0->Fllter((1Dispatch**)&pF‘lterInfo);
pFilterlnto~>get_Filter((IUnknown**)pFilteI'):
break:

}

pRegInFo—>Release(I';
pR0gIhfo~NULL:

l

pMCollection->Release( ):
pReg[n~o~>Release{);
return hr;

So far we’Ve loaded the source filter without using the automatic mapping

of the registry. To mimic the exact behavior of the AddSourceFilter() func-

tion, you need to query the source filter for its IFileSourceFi|ter interface. If

you find it, you must call the Load() function of that interface, using the

input filenalne as a parameter. That’s it!

PARTIH
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LoadFflter (L"/\,BC - Fruit Source Filter", &pF1'iter);

hr = pF*‘1ter~>Quer_vInterfaCe(IID IF11eSoJrceFiiter,(void**)&pFSF11ter}:
if «fSHCCFFDFD(hr) i

pFSF1'i:er->Load<wPath, NL_L);
pFSFw'Iter~>Re1ease();

Adding Transform and Rendering Filters

That wasn’t too complex, was it? Let’s keep going. To add a transform or a
rendering filter, you only have to call the same L0adFilter() function with

the filter name as a parameter. And, Voila!

// load the Renderirg Filter.
LoadF1"ter° (L"/\BC - Text D1sp‘ay Filter", &pRerderFflterJ:

Connecting the Two Pins

Once the two filters are loaded, you need to connect the output pin of

CFruitFilter with the input pin of the CTeXtOut filter. Well, first you need to

find the pins before you can connect them together.

Once you have a pointer to a filter, you can enumerate a list of its pins by
calling the member function IBa5eFilter::EnumPin5(). which returns an

IEnumPins object. You can then call the IEnumPin5::Next() function to

retrieve a pointer to the pin interface, IPin. Once you have a pointer to the

pin, you can get the pin name by calling the IPin.'.'QueryPi11I11fo() function,
which returns the pin name in a P 1 NJ N FO structure.

HRESULT CCJstomFflterGraph::FindPin(
IBa5eF1'iter *pFHter, // Fflter to search far pins
WC}-AR *psz\lame, // Ndl'I|':‘ of pin
IP1‘n **ppP1n) // returns the [Pin interface

Notice that the IBaseFilter::FindPin() method exposed
by the filter does not find the pin based on the actual
pin name. This function works in conjunction with the
Quer;/Id() function to implement graph persistency
(Save/Restore). Refer to the SDK for more information
about persistence.

iEnumPins *pEnumP1‘ns=NULL;
iPin *pP1‘n=NULL;
PIN_1NFOPi'n1r¢'o;
HRESULT hr;
ULUNG nFetched;

// Get an enumerated '15‘: of the pins in th"s fiiter
pFi'1ter~>EnurnP1ns(&pEwumPins);
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while (SUCCEEDEDUH = pEflUfTPlflS'>NC><t(l., &pP1n, &nFetchea)) ) {
pP*n->QJoryP1'nInfo(&P‘Hnfo);

// S"H_v, out we have to release this since QueryPinInfo() adds
// a reference to the filter.
if (P1'nInfo.pH“ter')

P1‘nInfo.pFflter->Re‘ease();

// Return the IP7‘n irterface when you find a match..
if (1strcrrpN(PinInfo.ach\lane, pszName) == 0) {

*ppP1‘n = pP1'n;
tweak;

l
pP‘n~>Release();

}

pEnumP1'rs~>P.el ease( J:
return tr;

You can call our FindPin() function to find the output pin of the source fil-
ter, Text!, and the input pin of the rendering filter, In, as follows:

F1"udPin(pSrcFfll.er, L"Te><t!". &pTe><tPinZ;
FindP1'n(pF<'enderHlter, L“In", &pRend':‘rP1'n); PARTIII

Finally, you can call the IGraphBuilder::C(mnect() function to connect the

two pins together. Then the media type negotiation starts. Once that phase
is done, you will have the complete filter graph.

m_pG"apt~>Connect(pTextP‘n, pDisp1a_yP1'n);

9.4 COM: Accessing Custom Interfaces

In the previous chapter you learned how to add the custom interface IText~

Stat to CTextOutFilter. As you recall, the ITextStat interface exposes two
functions that return the number of characters and the number of words

processed by the CTeXtO utFilter. You also learned how to access this custom

interface and retrieve this data from the property page of the filter.

Now, suppose that you want to find out the same information from within

your application so you could log it to a file or display it in some other for-
mat, in a chart, for example. Actually, the process is a bit similar to what we
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did in the previous chapter except that you must first obtain a pointer to
the CTextOutFilter and then get a pointer to the custom interface.

Assuming that you’ve already loaded the filter in the filter graph, you can

call the IFilterGmph::Fi11dFilterByName() function to get a pointer to the

filter. The function accepts the filter name as a parameter and returns a

pointer to the filter.

#1’ nc' udc <1m'tgu1'd.h> <1 Must have this here for proper COMinitialization.
#1‘nc' Ude " . . \\ii1ters\\Frender\1TextStat . h " (:1 TTextStat custom interface definition.
void CActiveFI1terD‘g:zonltextstdtt)
[ .

HRESULT hr;
JHasetilte" *pt‘lter;
IFiltehGraph *pFGraph;

// First, find the fi'ter in the filter gra3h..
mVpMC—>QuehyInterface(IZD_IFi1terGraph, (void**)&pFGrap1)
hr = pFGraph->FindF‘1terEyNane(L”ABC - Text Display F‘1tcr”, &pFiltcr)
pFGraph—>Release():

if (FAILED(hr))
return;

Once you have a pointer to the filter, you can call the IBa5eFilter::Query—

Interface() function to get a pointer to the custom interface. Now you

can call the appropriate functions exposed by the custom interface,

get_Nz1mberOfChars() and get_NumberOfT/Vords(), to retrieve the number

of characters and words processed by the CText()utFilter.

// Get a reference to the custom ITextStat 1nterface..
ITextS:at *pTextStat;
int nchars, nwords:
hr = pFi'ter->QueryInte"tace(IID“ITextStat, (void**)&pTextStatM

if (SUCCEEDED(hr)) i
// Call tae ceclared interface methods..
pTextStat->geL_NunberOtChars(&nChars);
pTextS:at—>get_NunberOtw:rds(&nwords);
wsprintf (szTmp, "Numwords: Zd, NumChars: %d", nwords, nchars);
AfXMessageBox[s7lnpJ;
pTextStat—>Release();

)

pFi\ter—>?elease();
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9.5 COM: Showing Filter Property Pages
Typically, filters display their status and configuration information in their

own property pages. In the previous Chapter, you learned how to add a

property page to the CTextOutFilter and used the graph editor to display it.
Let’s see how you would display property pages from within your own
application.

As when you worked with the custom interface, you must first retrieve a

pointer to the TextOut filter. You must then call the IBaseFilter::Quer)/Inter-
face() function to retrieve a reference to the property page interface, ISpeci-
fyPropertyPages. If the filter exposes a property page, you can then call the
‘ISpeczfi/Propert)/Pages:.'GetPages() function to obtain a list of the property
pages exposed by the filter. This function actually returns the CLSIDS of
the property pages. Finally, you can call the standard COM function Ole-

Crea.tePropertyFrame() to display the property pages.

void CActiveFilterDlg::OnPr'opertypaqe(}l
HRESLLT tr;
I3aseFilter *ptilter; PARTIII
// Find the lextout filter
I:ilter'Graph *pFGraph:
n_pMi.': >()ueryIntertace(1ID_IFi"tei*Gr'aph, (void**)&pFGraph7:
in : pFGraph->FindFilter‘ByName(L"ABC — Text Display Filter", &pFilter);pFGraph >Release();

// Get a reference to the 1Specii°y3r0pertyPage interface from the
// filter. It will fail it the ii ter does not contain any prop pages
ISpeci'”yPropert;/Pages *pPropertyPaqe;
CAUJID Pages:

hr = pFilter—><]uer1/lnterfacetf1ID_ISpeci fyPr‘operLyPages,
ivuid**')&pPr“opentyPage>;

// Now get the property page information and
// call the (ll l’ function to display the prop sage...
if (SUCCEEDED(hI") .3 l

pProper:yF‘age—>GetPages(&Pages);
OleCreateF‘ropentyFramei -

m_nNnd, C] Handle ofparcnt window
0 , (]Xposilion ofWindow
O, {J Yposition ofWindow
L“Hel l 0". (3 Title ofproperty sheet dialogbox
1, (3 Number of objects in next parameter
(LPUNKNOWN *)z<.pFi lter, <jJ Objectthatholdstheprop sheet
Pages.cEl ems, (3 Number ofprnpertypages
Pages . pEl ems, <3 Pointer to their CLSIDs (or GUIDS)
NULL, (:1 local identifier (ignore)
0, <3 reserved
NULL (] reserved);
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CcTaskMen:ree(Pages.pETem5l;

pPropertyPage»>Release( 7; L) Free this pointer to avoid memory leaks.
pFil Lev->Release():

Notice that the GetPages() function allocates a task specific memory to hold

the list of property pages. Make sure to free that memory to avoid memory
leaks.

9.6 Creating Events under Directshow

Filters and the Filter Graph Manager (FGM) send messages, also known

as events, to alert the application of special conditions. For example, there

are events that inform the application when an error occurs, when the end

of a stream is reached, or when the video size has changed.

DirectShow uses the Win32 CreateEverzt() function to create a manual—reset

event, which is used for signaling the application. On one side, the filter sets

the Win32 event when it needs to post a message, and it inserts the message

in an internal queue. On the other side, the application waits for the event

to be signaled, retrieves the message from the internal queue, and resets the
Win32 event.

From an application, you can call the IMediaEvent::GetEventHcmdle() func-
tion to retrieve a handle to the V\/in32 event. You can then call the

Wa1'tForSingleObject() or A/IsgWaitForMultip1eObjects() function to Wait for

that event to be signaled. The latter function returns when a VVindows mes-

sage is posted to the application message queue or when the \/Vin32 event is
signaled. Refer to the sample applications on the Directshow SDK to learn

how to use this function for event handling.

In our example, we choose to use the WaitF0rSingleObject() function run—

ning in a separate thread. \/Ve choose to do so because we are using a dialog

box as the main window and could not hook into the message pump. Also

this implementation turned out to be a bit simpler.

// This is callec when the thnead is running
int CF1'ltcrGraph::Run()
{

// get hold of the event notification handle so we can wait for
// comp"etion
1Wed1‘aEvent *pME:
HANDLE hGrdpl‘:NoLifl/EvenL;
HRtSULl hr = rr_pGraph >Qnerylntertace(lILLlMed1aEveht, (void **> XCJME):
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‘f (FA[LED(hr)>
return FALSl;

hr = pMl >HetEventHand"e((0AEVENT*) &hGraphhotlfyEvenLH
pME—>Re7ease(>;

if (FAILED(hr))
return FALSE;

DNORD result;

while (TRUE) l
// Block until an event arrives from tre filter graph
result = NaltForSlngleObject (hErapnNot1tyEvent, INFINITE);
CnGraphNotify(J;

}

return FALSE;

The WaitForSingleObject() function returns only when the Win32 event is
set, so there is an infinite timeout. At that point, you can call IMediaE1/entz:

GetE1/ent() to retrieve the pending DirectShow event from the internal queue.

This function returns the event code sent by the filter or the filter graph man-
ager and resets the Win32 event. Notice that you must call the IMediaEvent::

FreeEventParams () function in order to free any memory allocated when the
GetEvent() was called.

void CF1lterGraph::0nGraphNotify<)
l

IMediaEvent *pMl; .
long lEventCo:e. lParhl, lParm2;

// Get a reference to the IMedlaEvent interface
HRESULT hr = m_pGraph~>QueryIntertace(IID_IMed'aEvent, (void **)&pME);

// Now, get the event and handle it accordingly.
lf( SUCCEEDED(hr))l

lffi SUCCEEDED(pME—>GetEvent(&lEventcude, &lParm1, &lParm2. 0)) ) l
switcn (lEventCoce) l

case EC_COMPLETE:
Stop():
break;

case tC_USERABORT:
case EC*ERRORABORl:

Stop();
)

)
// frees.memory used for GetEvent(}
pME—>FreeEventParams(lEventC:de, lParm1, 7Parm2);
pME—>Release(>:
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9.7 ActiveX: A Simple Way to Control Directshow
The DirectShow SDK includes an ActiveX control, which communicates

directly with the DirectShow COM interface discussed above. It is a high-
level interface that includes its own user interface for controlling the media

stream. We’ll show you how to disable this user interface if you so desire.

Notice that with the ActiveX control you have less control over the filter

graph. For example, you cannot access any of your custom filter interfaces
or display the filter property pages as you can with the COM interface.

Playing a File Using the ActiveX Interface

Let’s see how you can load and play a file with the ActiveX control interface

using the Microsoft Visual C++ development environment. We’re assuming
that you’re using Microsoft Foundation Classes (MFC) to implement a
dialog~based application.

Similar to any OLE/COM component, you can insert the DirectShow Con-
trol Object into your project from the Microsoft Visual C++ compiler. The
compiler creates a new MFC class, which serves as a wrapper to the ActiveX
control. The default class name is CActiveMovie.

At this stage you can either use the Create‘() member function of the class to
create an instance of the DirectShow control, or you can embed it in a dia—

log box. In the interests of simplicity, let’s see how we can do this within a
dialog box. You should be able to figure out the Create() function easily.

Notice that when you add an ActiveX control to your project, you automat-

ically add a new icon for that control in the control toolbar (Figure 9-3).
Now you can add the DirectShow ActiveX control in the same fashion as
you would add a push button or an edit box.

Directshow ActiveX
control icon

FIGURE 9-3 Visual C++ dialog editor template.
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C.€¥.ctwe><PlayerDlg

FIGURE 9-4 Associate the DirectShow control with a member variable.

To access this control from your application, you must first associate the

newly added control with a member Variable in the dialog box class. To do

so, launch the class wizard (available on the Microsoft compiler) and add a

Variable for the ActiVeX control ID as shown in Figure 9-4. Note that we
used the name m_AMControl.

Now you’re ready to play the file. To play a file, you need only call the

CDirectShow::SetFileName() and pass the filename as a parameter. In turn,

the ActiVeX control communicates directly with the DirectShow COM

interface and uses the automatic method to build the entire filter graph.

5§@%%@@%%%%%% a£%%%“

V01‘ d CA::1veXPl ayernlgz :OnOpen F‘ l /at’) You can add your Own file extensions

l 5 here; .ftfis the Fruit textfile extension.// “mmpt the .156!’ for a file name”
static char cszFi'lter[l =

"Mult1'medi'a Fi'lesl*.mpg; *.av1'; *.mov; *.:l'F | All Files (*.*)l*."|l";

CFileDial0g cFi'e(TRUE, NJLL, NULL,
OFN HIDEREADOALY | OlN,OV[RlrJRlTFPROMPT, CszFilteFl;

if (cFilc.DoModal() == lDl.'Jl<I‘ l
CStr1'rg st“ = cFlle.GetPathName():
m4AMControl.SetF1leName(str); // Set Act1‘veX control filename...

,,u,,u,,,____u.,u,,___J

Whenever the ActiVeX control is used, it displays the standard user interface

shown in Figure 9-5. You can use this interface to Start/Stop/Pause or navi-
gate through the movie.

PARTlH_
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7ActiveX‘Pl'aye‘i.

FIGURE 9-5 ActiveMovie ActiveX control interface.

Controlling the Activex Control from Your Application
Suppose that the supplied user interface does not match your application
look and feel, or you just don’t like it. Luckily, with the ActiVeX control you
can disable the user interface and instead control the movie from within

your own application.

Figure 9-6 shows the default user interface of the ActiVeX control with the
controls grouped according to their functionality. You can enable/disable or
show/hide each of these groups separately.

/‘
All Controls Positioning Selection TrackerControls C0l'1l"3l$

FIGURE 9-6 Activex control default user interface components.
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You can use the SetShowC0m‘r0l5() function to either show or hide all the

controls. The setting of the master control takes precedence over the indi-

Vidual group settings described below. For example, if you call this function

with PM SE as a parameter, none of the individual controls will be shown

regardless of their individual settings.

m_AMContr':l .S:tShowContr'o1s(TRU[);
m_AMControl .SetSn0wContra1s(“ALSE>;

l 7

<1 Controls are shown per group setting.
C] All controls are hidden regardless of group setting.

Assuming that the master control is enabled, you can use the SetSh0wP05iti0n—

Contr0ls() function to show/hide the positioning buttons and the
SetEnableP0sz'tionC0ntr0lsO function to enable/disable the same buttons.

m_N'1Con:rol.SetShswPositionContro1s(RUE);
m_AMCcntro1.SetStowPusitionContrc1s(F/\LSE):
m,,AMControl .SetEnab1ePosit'ionContro1s(TRUE) ;
m_AMContro1.Se-tEnab1ePos1t1:nContr‘ols(FALSF);

Similar functions are used to show/hide and enable/disable the selection

controls, the tracker bar, display, and the context menu.

// Show/Hide functions
m_AMCont.ro1.SetShowSe1ectionContr"0Ts({RUE or FALSE};
m_AMConLro‘.SetSnov/Tracker (TRUE or FALSE):
rn_AMControl.SetSnowDisp1a3/(TRUE or FALSE);

// Enable/Disable functions
m_AMContro1.S:=tEnableSele::tionContr0ls(TRhF or FALSE);
m_AMContro1.SetEnableTracker(TRUE or FALSE);
m_AMContro1.SetEnableContextMenu(TRUE or FALSE);

L

In addition to controlling which part of the user interface to show, you can

also control the running state of the movie. For example, you can call the

Run 0, Stop(), and Pause() functions to perform the specified operation.

lrI__/\MCO|’\l'.t“Ol .Ru*i();
m_AMContr01.Stop();
m_/\MContr:1 .Pause( >:

I

PARTIII


