DirectX®, RDX, RSX,
and MMX™ Technology

A Jumpstart Guide to
High Performance APIs

Rohan Coelho and Maher Hawash

DIRECTX®, RDX, RSX,
AND MMX" TECHNOLOGY

DIRECTX®, RDX, RSX,
AND MMX" TECHNOLOGY

A JUMPSTART GUIDE TO
HiGH PERFORMANCE APIs

Rohan Coelho
and
Maher Hawash

A
vv
ADDISON-WESLEY DEVELOPERS PRESS
An imprint of Addison Wesley Longman, Inc.

Reading, Massachusetts « Harlow, England * Menlo Park, California
Berkeley, California * Don Mills, Ontario * Sydney
Bonn « Amsterdam * Tokyo « Mexico City

Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed in
initial capital letters or all capital letters.

MMX™ Technology, Pentium®, Pentium® II, Pentium® Pro, and Pentium® with MMX
technology are registered trademarks of Intel Corporation.
* Other brands and names are the property of their respective owners.

The authors and publisher have taken care in preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connec-
tion with or arising out of the use of the information or programs contained herein.

Library of Congress Cataloging-in-Publication Data

Coelho, Rohan.
DirectX®, RDX, RSX, and MMX™ technology : a jumpstart guide to high
performance APIs / Rohan Coelho and Maher Hawash.
p. cm.
Includes index.
ISBN 0-201-30944-0
1. Multimedia systems. 2. DirectX. 3. Intel Realistic display
mixer. 4. RSX (CompComputer file : Digital Equipment Corporation)
5. MMX technology. 1. Hawash, Maher. II Title.
QA76.575.C64 1998
006.7'768--dc21 97-33102
CIp

Copyright © 1998 by Intel Corporation

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

Sponsoring Editor: Mary Treseler

Project Manager: John Fuller

Cover design: Chris Norum

Text design: Vicki Hochstedler

Set in 11-point Minion by Octal Publishing

12345678 9—MA—0100999897
First printing, December 1997

Addison-Wesley books are available for bulk purchases by corporations, institutions,
and other organizations. For more information please contact the Corporate, Govern-
ment, and Special Sales Department at (800) 238-9682.

Find us on the World-Wide Web at:
http://www.awl.com

To my parents, Mofeed and Sameeha;
To my wife Lisa, my son Jared, and baby on its way;
To my nephew Ahmad and the rest of my family;
I dedicate this book. —Maher

To my immediate family: Dad, Mom, Gail, Carmen, and Sarah;
To my extended family, blood relatives and others;
And to several others, significant but unnamed;
Thanks for touching my life. —Rohan

Special thanks to
Emilie Lengel and Gerald Holzhammer
For believing in us.

PART |

PART 11

Contents

Preface xvii
Introduction: Organization and Conventions — xxi

SURVEYING MULTIMEDIA 1

CHAPTER 1 OVERVIEW OF MEDIA ON THE PC 3

1.1 Background 3

1.2 Graphics Device Independence 4

1.3 Motion Video under Windows 5

1.4 Multimedia Gaming under Windows 95 6
1.5 . 3DVideo Architectures on the PC 7

1.6 Audio Architectures on the PC 8

CHAPTER 2 PROCESSOR ARCHITECTURE OVERVIEW 11

2.1 Processor Architecture 12
2.2 System Overview 14

ANIMATED GRAPHICS, SPRITES, AND BACKGROUNDS

CHAPTER 3 SIMPLE SPRITES IN GDI 19

3.1 Graphics Device Interface (GDI) Overview 19
3.2 Animation Objects 20

3.2.1 Sprites 20

3.22 Backgrounds 21

B VIl =m

17

VIII

e CONTENTS

3.3
3.4
3.5
3.6
3.7

Transparent Blts with GDI 22

Drawing a Sprite Using GDI 22

Backgrounds 24

Demo Time 25

How Fast Does GDI Draw Sprites and Backgrounds 26

CHAPTER 4 SPRITES WITH DIRECTDRAW PRIMARY SURFACES 27

4.1
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Introduction to Microsoft’s DirectDraw 27

Features of DirectDraw 29

Before You Get Overly Excited 30

Instantiating a DirectDraw Object 31

Querying and Creating a Primary Surface 32
Implementing a Simple Sprite Class 34

Drawing a Sprite on the DirectDraw Primary Surface 35
Demo Time 35

Redrawing Backgrounds on a DirectDraw Primary Surface 36
How Fast Can We Draw Sprites and Backgrounds? 37
Compositing Objects on a DirectDraw Primary Surface 37

CHAPTER 5 HARDWARE ACCELERATION VIA DIRECTDRAW 39

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

5.9
5.10
5.11

Creating an Offscreen Surface 39

Drawing a Sprite on the DirectDraw Offscreen Surface 41
Demo Time 42

How Fast Is OffScreen Surface Drawing? 43

Finding Hardware Acceleration 43

Setting Up for Hardware Acceleration 44

How Fast Is CSurfaceVidMem Drawing? 46

Accelerating Offscreen to Primary Transfers by Page Flips 47
5.8.1 What Is Graphics Page Flipping? 47

5.8.2 DirectDraw Page Flipping Model 48

5.8.3 Does the Hardware Support Page Flipping? 48
5.8.4 Setting Up DirectDraw to Use Page Flipping 49
5.8.5 . “Rendering” Flippable Surfaces 50

How Fast Is CSurfaceBackBuffer Drawing? 50
Hardware Acceleration to Blt Sprites 51
How Fast Is CSpriteGrfx (and CBackgroundGrfx) Drawing? 53

CHAPTER 6 RDX: HIGH-PERFORMANCE MIXING WITH A

6.1

6.2

HiGH-LEVEL APl 55

Introduction to Intel’s RDX Animation Library 55
6.1.1 Features of RDX 56
6.1.2 Before You Get Overly Excited 58

Using RDX 58
6.2.1 Generic Objects with RDX 59
6.2.2 The Programming Model 60

6.3

6.4

6.5

CONTENTS =

Working with RDX 60

6.3.1 Creating an RDX Surface 60
6.3.2 An RDX Sprite Class 61
6.3.3 Drawing the RDX Sprite 62

DemoTime 62
6.4.1 How Fast Does CSurfaceRdx Draw? 62

Hardware Acceleration with RDX 63

6.5.1 Full Screen Mode with RDX 63

6.5.2 How Fast Does CSurfaceRdx Draw in Full Screen Mode?
6.5.3 Accelerating Objects with RDX 64

ParT Il MAKING THE MEDIA MIX 67

CHAPTER 7 VIDEO UNDER WINDOWS 71

7.1
7.2
7.3
7.4

Concepts of Motion Video 71
Capturing and Compressing Video 72
Windows Multimedia Architectures 74
Overview of Video Codecs 76

CHAPTER 8 DIRECTSHOW FILTERS 79

8.1
8.2
8.3
8.4
8.5

8.6
8.7
8.8
8.9

8.10

DirectShow Components 79
What's a Filter Graph? 81
Understanding the Mighty Filter 82
An Overview on the Samples 83
Creating a Source Filter 83

8.5.1 The Source Filter Class 84
8.5.2 Create an Instance of the Source Filter 85
8.5.3 The Source Stream Class 88
8.5.4 The Connection Process 89
8.5.5 Starting and Stopping 91
8.5.6 Moving the Data 92

Creating a Transform Filter 93

Creating a Rendering Filter 96

Adding Your Own Interface 98

Adding Property Pages to Filters 100

8.9.1 Adding the Property Interface to the Filter 101
8.9.2 Implementing the Property Page Interface 103

Adding a Filter to the Registry 105
8.10.1 Using a Registry File Is Not Recommended 105
8.10.2 Using Filter Self-Registration Is Recommended 106

CHAPTER 9 DIRECTSHOW APPLICATIONS 109

9.1
9.2

DirectShow Mechanisms for Working on Filter Graphs 110
COM: Automatic Construction of Filter Graphs 112

64

IX

X m CONTENTS

9.3

9.4
9.5
9.6
9.7

9.8

COM: Manual Construction of Filter Graphs 115
9.3.1 Adding Source Filters 116

9.3.2 Adding Transform and Rendering Filters 118
9.3.3 Connecting the Two Pins 118

COM: Accessing Custom Interfaces 119

COM: Showing Filter Property Pages 121

Creating Events under DirectShow 122

ActiveX: A Simple Way to Control DirectShow 124

9.7.1 Playing a File Using the ActiveX Interface 124

972 Controlling the ActiveX Control from Your Application 126

ActiveX: Handling Events 128

CHAPTER 10 MIXING SPRITES, BACKGROUNDS, AND VIDEOS 131

10.1

10.2

Introduction to Mixing 131

10.1.1 Mixing Sprites with Video 132

10.1.2 Mixing Animation with Video 132

Mixing with RDX 133

10.2.1 Playing Video with the RDX DirectShow Interface 134
10.2.2 Mixing a Sprite on Top of Video 136

10.2.3 Mixing Video on Video 137

CHAPTER 11 STREAMING DOWN THE SUPERHIGHWAY WITH

11.1
11.2
11.3
11.4

11.5
11.6
11.7

11.8
11.9

REALMEDIA 139

Overview of RealMedia 140

The RealMedia Plug-in Architecture 141

Data Flows: Server to Client 143

Data Management Objects 144

11.4.1 ITRMABuffer: Dynamic Memory Allocation Object 144
11.4.2 TRMAValues: Indexed List Object 145

11.4.3 IRMAPacket: Packet Transport Object 147

RealMedia Asynchronous Interfaces 147
Common Requirements for All Plug-ins 148
Building a File-Format Plug-in 150

11.7.1 Initializing the File-Format Plug-in 150
11.7.2 File and Stream Headers 153

11.7.3 Let the Streaming Begin! 156

Building a Rendering Plug-in 157

RealMedia Audio Services 162

11.9.1 Playing a Simple Pulse Coded Modulation (PCM)
Audio File 163

11.9.2 Pump Up the Volume 165

CONTENTS & XI

PART IV - PLAYING AND MIXING SOUND WITH DIRECTSOUND
AND RSX 3D 169

CHAPTER 12 AuDIO MIXING WITH DIRECTSOUND 171

12.1 Overview of Audio under Windows 95 171

12.2 DirectSound Features 172

12.3 DirectSound Architecture 173

124 Playing a WAV File Using DirectSound 175
12.4.1 Initializing DirectSound 175
12.4.2 DirectSound Structures 176
12.4.3 Creating Sound Buffers 177
12.44 Playing the Sound 178
12.4.5 Demo Time 178
12.4.6 Mixing Two WAV Files 178

12.5 Controlling the Primary Sound Buffer 179
12.5.1 Initializing to Get Control of the Output Format 179
12.5.2 Creating a Primary DirectSound Buffer 179
12.5.3 Demo Time 181

CHAPTER 13 REALISTIC 3D SOUND EXPERIENCE: RSX 3D 183

13.1 RSX 3D Features 184

132 Creating an RSX 3D Object 185

13.3 Play One WAV File 186

13.4 Play Another WAV File 187

13.5 Mixing Many WAV Files 188

13.6 RSX Goes 3D—True 3D Sound 188

13.7 Setting Up 3D Sound with RSX 3D 190

13.8 Adding Special Sound Effects with RSX 3D 192
13.8.1 The Doppler Effect 192
13.8.2 The Reverberation Effect 193

13.9 Audio Streaming in RSX 3D 194

PARTV WELCOME TO THE THIRD DIMENSION 195

CHAPTER 14 AN INTRODUCTION TO DIRECT3D 197

14.1 Some Background on 3D on the PC 197

142 Introduction to Direct3D 199
14.2.1 A Taste of Direct3D’s Retained Mode 200
14.2.2 Direct3D’s Immediate Mode 201
14.2.3 Before You Get Overly Excited 202

14.3 Inside Direct3D 203
14.3.1 Direct3D and DirectDraw 203
14.3.2 Direct3D Rendering Engine 203

Xll m CONTENTS

14.4 Revving Up Direct3D 204

14.5

14.4.1 The Starting Point: IDirect3D Object 205

14.4.2 Enumerating IDirect3DDevices 206

14.4.3 Creating an IDirect3DDevice 208

14.4.4 Preparinga Palette 210

14.4.5 Extending the Surface for 3D 210

14.4.6 Mapping from a 3D Model to the 2D Surface Using
Viewports 212

14.4.7 Talking to 3D Devices Through Execute Buffers 214

14.4.8 Execute Operations 217

14.49 Operations Used to Render a Simple Triangle 218

14.4.10 Executing the Execute Buffers 222

14.4.11 Seeing Results from 3D Devices 223

Demo Time 224

CHAPTER 15 EMBELLISHING OUR TRIANGLE WITH BACKGROUNDS,

15.1
15.2

15.3

15.4

SHADING, AND TEXTURES 225

Continuing Our Look into Direct3D 225
Repainting the Background Using Direct3D 226
15.2.1 Looking at Direct3D Materials 227
15.2.2 Creating a Direct3D Background 228
15.2.3 Bltting a Direct3D Background 229

Controlling Shading Options 230

15.3.1 Looking at Some Render States and Their Default Values = 230
15.3.2 Coloring a Pixel in Direct3D 231

15.3.3 Shading with the RGB Color Model = 233

15.3.4 Shading with the Ramp Color Model = 233

15.3.5 Changing Default Render States 234

Texture Mapping with Direct3D 235

15.4.1 Creating a Texture Map 235

15.4.2 Setting Up Triangle Vertices for Texture Mapping 238
15.4.3 Setting Up Render Operations for Texture Mapping 239
15.4.4 Handling “Lit” Texture Maps 240

Z-Buffering with Direct3D 241
15.5.1 Why Bother with Z-Buffering? 241
15.5.2 Setting Up for Z-Buffering 242

CHAPTER 16 UNDERSTANDING AND ENHANCING DIRECT3D

16.1

PERFORMANCE 247

How Fast Does Our Triangle Run? 247

16.1.1 Stages of Rendering Our Triangle 248

16.1.2 Measuring the Rendering Stages of Our Triangle 249
16.1.3 Trimming Some Fat from the Rendering Stages 250

CONTENTS & XIII

16.2 Measuring Shading Options 251
16.2.1 Measuring the Performance of Shading Options in Our
Triangle 251
16.2.2 Measuring the Performance of Texture-Mapping in Our
Triangle 253
16.2.3 Adding a Z-Buffer to the Recipe 254
16.2.4 Getting Perspective: Comparing 3D (RGB Mode) to 2D 255

16.3 Improving Performance Using the Ramp Driver 256
16.3.1 Loading the Ramp Color Model Driver 256
16.3.2 Using the Ramp Driver—The First Try 257
16.3.3 Creating Materials for the Ramp Driver 257
16.3.4 Rendering a Triangle with the Ramp Driver 259
16.3.5 How Does the Ramp Driver Perform? 261

16.4 Optimizing Texture Mapping 261

CHAPTER 17 MIXING 3D WITH SPRITES, BACKGROUNDS, AND
VIDEOS 263

17.1 Mixing a 3D Object on a 2D Background 263
17.1.1 Our 3D Surface Is Also a 2D Surface 264
17.1.2 Measuring Background Performance 266

17.2 Mixing in Sprites 266
17.2.1 Using RDX to Mix in Sprites 267
30 17.2.2 Adding RDX Objects at Front and Back 269

17.3 Mixing in Video 270
17.3.1 Handling Palettes 270
17.3.2 Using Video as a Texture Map 271

PART VI PROCESSORS AND PERFORMANCE OPTIMIZATION 273

CHAPTER 18 THE PENTIUM PROCESSOR FAMILY 277

18.1 Basic Concepts and Terms 278
18.2 The Pentium Processors 281
18.2.1 The Pentium Processor 281
18.2.2 The Pentium Pro Processor 282
18.2.3 The Pentium Processor with MMX Technology 283
18.2.4 The Pentium II Processor 284

18.3 Identifying Processor Models 285

CHAPTER 19 THE PENTIUM PROCESSOR 289

19.1 Architectural Overview 290

19.2 Instruction and Data L1 Caches 291
19.2.1 Operational Overview 291
19.2.2 Performance Considerations 291

XIv 8 CONTERNTS

19.3 Instruction Prefetch 293
19.3.1 Operational Overview 293
19.3.2 Performance Considerations 294

19.4 Branch Prediction and the Branch Target Buffer 294
19.4.1 Operational Overview 294
19.4.2 A Closer Look at the BTB 295
19.4.3 Performance Considerations 296

19.5 Dual Pipelined Execution 297
19.5.1 Operational Overview 297
19.5.2 Performance Considerations 298
19.5.3 Pentium Integer Pairing Rules 298
19.5.4 Address Generation Interlock (AGI) 299

19.6 Write Buffers 300
19.6.1 Operational Overview 300
19.6.2 Performance Considerations 301

19.7 Revisiting Our Sprite Sample 302
19.7.1 Overview of the Assembly Version of CSprite 302
19.7.2 Analyzing the Performance of Our Sprite Sample 306
19.7.3 Do I Really Need to Schedule My Code? 308

CHAPTER 20 THE PENTIUM PROCESSOR WITH MMX TECHNOLOGY 311

20.1 A Look at MMX Technology 311
20.2 SIMD 312
20.3 Architectural Overview 313
20.3.1 The Pool of Four Write Buffers 313
20.3.2 MMX Uses Floating-Point Registers 314
20.3.3 EMMS to the Rescue: How to Mix MMX and FP
Instructions 315

20.4 MMX Technology Data Types 316

20.5 The MMX Instruction Set 317

20.6 Using MMX Technology to Render Our Sprite Sample 319

20.7 MMX Technology Optimization Rules and Penalties 323
20.7.1 MMX Exceptions to General Pentium Rules 323
20.7.2 MMX Instruction Pairing Rules 324
20.7.3 MMX Instruction Scheduling Rules 325

20.8 Performance Analysis of Our Sprite 327
20.8.1 MMX versus Integer Implementation of the Sprite 330

CHAPTER 21 VTUNE AND OTHER PERFORMANCE OPTIMIZATION
TooLs 333

21.1 Overview of Performance Counters 334
21.2 Introducing VTune 335

11

21.2.1
21.2.2
21.2.3

CONTENTS ® XV

VTune Static Analysis 336

Tune Dynamic Analysis 340

Systemwide Monitoring—Time-and Event-Based
Sampling 340

21.3 Read Time Stamp Counter 343
21.4 The PMonitor Event Counter Library 345

THE PENTIUM Il PROCESSOR 349

Architectural Overview 350

The Life Cycle of an Instruction on the Pentium I 351
Comparing the Pentium II with the Pentium Pro Processor 352
Comparing the Pentium II with the Pentium with MMX
Technology Processor 353

Instruction and Data Caches 353

Operational Overview 354
Performance Considerations 355

Instruction Fetch Unit 355

Operational Overview 355
Performance Considerations 356

22.3.3 Fetch Performance with Event Counters 357

Branch Prediction and the Branch Target Buffer 359

Operational Overview 359
Performance Considerations 359
Branch Performance with Event Counters 361

Instruction Decoders 361

Operational Overview 361

22.5.2 Performance Considerations 362

Register Alias Table Unit 362

Operational Overview 362
Performance Considerations 364

Reorder Buffer and Execution Units 365

Operational Overview 365
Performance Considerations 366

Retirement Unit 367

Rendering Our Sprite on the Pentium II 367

Speed Up Graphics Writes with Write Combining 369
22.10.1 Operational Overview 369

22.10.2 Performance Considerations 371

MEMORY OPTIMIZATION: KNOW YOUR DATA 373

Overview of the Memory Subsystem 374
Architectural Overview 374

CHAPTER 22
22.1
22.1.1
22.1.2
22.1.3
22.2
22.2.1
22.2.2
22.3
22.3.1
22.3.2
22.4
22.4.1
22.4.2
22.4.3
22.5
22.5.1
22.6
22.6.1
22.6.2
22.7
22.7.1
22.7.2
22.8
22.9
22.10
CHAPTER 23
23.1
23.1.1
23.1.2

Memory Pages and Memory Access Patterns 375

XVI

e CONTENTS

23.3

23.4
23.5

23.1.3 Memory Timing 377
23.1.4 Performance Considerations 378

Architectural Differences among the Pentium and Pentium Pro
Processors 379

23.2.1 Architectural Cache Differences 380

23.2.2 Write Buffer Differences 380

23.2.3 Data Controlled Unit Splits on the Pentium Pro Processor
232.4 Partial Memory Stalls 382

Maximizing Aligned Data and MMX Stack Accesses - 383
23.3.1 The Pitfalls of Unaligned MMX Stack Access 384

Accessing Cached Memory 384

Writing to Video Memory 385

23.5.1 Using Aligned Accesses to Video Memory 385

23.5.2 Spacing Out Writes to Video Memory with Write Buffers

EPILOGUE: THE FINALE 389

E.1

E2

E.3

E.4
E.5
E.6

INDEX

The Spiral Continues 389
E.1.1 The Hardware Spiral 389
E.1.2 The Software Spiral 390

Remote Multimedia (a.k.a. Internet Multimedia) 390
E.2.1 Internet Languages 390

E.2.2 Multimedia on the Internet 391

E.2.3 Evolving Hardware for the Internet 392
E24 Multimedia Conferencing 392

Better, Faster, Cheaper 3D 392

E.3.1 3D Hardware Spiral 393

E.3.2 3D Software Spiral 393

E.3.3 3D Scalability 394

E.3.4 Emerging Application Areas 394

Multimedia in the Home 394
Demo Time 395
Some Web Sites for Further Reading 395

397

CD-ROM LICENSE AGREEMENT NOTICE 418

382

386

382

Preface

386

Why Read This Book?

There’s Lots of New Stuff to Learn

In the past few years, the pace of technology growth has been exhilarating.
Microsoft launched Windows 95. Intel debuted the Pentium, Pentium Pro,
and MMX technology processors. Netscape burst the Internet pipe with a
new class of applications and architectures. These companies and others
paraded out a slew of new multimedia architectures. And you've never
before felt so lost in space.

Maybe you're familiar with programming for Windows 95 and now want to
deliver Windows 95 multimedia applications, and you're wondering where
to start. Or maybe you've programmed multimedia for DOS/Windows 3.1,
and now you’re scrambling to learn Windows 95, learn the new computing
environment, and then learn to deliver high-performance multimedia in
this environment.

Well, several new architectures have been introduced to help you deliver
high-performance multimedia under Windows 9x," such as DirectDraw

1. Windows 9x stands for both Windows 95 and the upcoming Windows 98.

B XVil &

XVI

B PREFACE

DirectSound*, Direct3D*, DirectShow™, RealMedia*, Realistic Sound Expe-
rience (3D RSX), Realistic Display Mixer (RDX), and so forth. But now
you've got to learn these new architectures, and you’ve got this steep learn-
ing curve on your hands.

On the hardware frontier, the power of personal computers has increased at
a dramatic pace—both in processor and peripheral power. The Pentium,
Pentium Pro, Pentium II, and MMX technology processors, the accelerated
graphics port (AGP) bus, and the various graphics hardware accelerators are
recent hardware advancements that affect multimedia performance. Surely
your applications would sizzle if you mastered these advancements. But
mastering these advancements only increases the learning curve.

And, of course, the Internet adds yet another dimension to the puzzle. The
new programming space includes Internet browsers and their plug-ins;
programming languages such as Java, HTML, and VRML; Internet archi-
tectures such as ActiveX, RealMedia, and a huge list of applications such as
Internet Phones and Chat Worlds. More to learn, more to wade through,
more time to spend.

Lightening the Learning Burden

As multimedia developers, we constantly investigate, evaluate, or learn
these new technologies. Our typical sources are technical reference manuals
and sample applications. With so many recent products, we’ve got a huge
quantity of material to wade through. When time is precious, as it invari-
ably is, just getting started can be an overwhelming problem. Spending
time getting started eats away from time allocated for finishing touches and
product testing. And overall quality suffers when we’ve spent too much
time just getting up to speed.

Wouldn’t it be nice if there were a simple way to just get started? To grasp
the bare essentials and leave the esoteric stuff for on-the-job training (those
need-to-know moments)? To steer clear of performance pitfalls? Well, do
we have a deal for you. We, the authors, have been involved in various
aspects of multimedia development on the PC for five long years. Through
our employment at Intel and through our relationships with Microsoft and
other key players, we've had the privilege to influence the architectures of
processors, peripherals, platforms, and software components toward the
betterment of multimedia on the PC. During that time, we’ve done our fair
share of defining, reviewing, and implementing numerous multimedia
architectures, both software and hardware.

PREFACE =® XIX

Xpe- With this book, we hope to use our internal vantage point to give you a
7 jump start to high-performance multimedia development for Windows 9x. “ ’
arn- We'd like to help you cut to the chase; focus on the bare necessities; stick to ‘

the essentials; and jump-start a variety of offerings. What’s more, we’re hop-
ing to take you a step beyond getting started—to extracting performance.

od at

1 We hope to provide you with a quick start to a wide spectrum of multi-

ited media advancements for Windows 9x. We hope to answer questions like

sare Where do I start? What do I really need? How little can I get away with? How

rely do I get it to run faster? :

t
A dose of caution: there’s more than one way to get jump-started and more
than one way to extract performance. We'll share our experiences with you,

The show you “a” way. We hope you’ll come away with some tricks, of course,

S ‘ but more important, we hope you’ll come away with a thought process—an

hi- approach.

ch as .

zh, We’ve tried to maintain a light flavor. We hope you’'ll have some fun along
the way.

L

nuals

uge

ari-

g

s and

h

asp

those

,do

ough

tand

s of

the

ir fair

la

INTRODUCTION |
= |

Organization
and Conventions

WHY READ Since we're talking about the organization of the chapters, it's only appropriate to note that
THIS CHAPTER? all chapters start with the question above: “Why Read This Chapter?” Our purpose is to
present you with a summary of what we intend to cover in the chapter. We recommend

that you read the segment to see if what you will get is what you want.

This chapter shows you how we arranged the book, to help you get the most benefit out
of it. In the following pages, we

describe who we wrote the book for,

show you how we present our material,

outline the organization of the book, providing overviews of each chapter,
show some conventions we use to highlight information, and

list the tools that you'll need when working with the companion CD.

1.1 About the Book

When we started to outline the material for this book, we quickly recog-
nized that we would be covering a lot of ground. We struggled with what to
present and what to ignore. We asked ourselves, “What kind of a book
would we have wanted when we started doing whatever we started?”

B XXI ®

XXl & ORGANIZATION AND CONVENTIONS

1.1.1

L.i.2

Where We're Coming From

Because of our roles at Intel, we’ve had the good fortune to work on Win-
dows multimedia architectures right from their infancy. In our work we
applied both our architectural and our CPU optimization skills, and we used
them across a wide range of multimedia avenues.

Of late, we’d been called upon to help a number of software companies
with their multimedia problems. Intel funded and continues to fund these
software activities, in the interest of encouraging overall PC sales by pro-
moting new uses for the PC; and in the interest of boosting demand for
newer, higher-performance PCs, by promoting CPU-intensive applications.

To address multimedia performance issues, we would typically optimize
critical sections of the assembly code. However, when the performance bot-
tlenecks are at the system level, we would have to demonstrate the use of (or
even develop) appropriate Windows multimedia architectures.

And this led us to think that we could write a book to offer the same thing
to a larger audience, to help others get started on a number of different
multimedia architectures, to help others extract a lot of performance from
the PC multimedia architecture.

Where We're Not Venturing

We can’t claim to be The Experts in PC multimedia. The field is too big, and
there are too many excellent software engineers out there for us to presume
such a status. Nonetheless we feel we've been down some paths before and
can share that experience with you, to get you started.

We didn’t want to delve deeply into the gory details of any single architec-
ture; that’s what the reference documents are for. Instead, we decided it
would be better to get you started with the architectures, and we’re sure that
your application needs will steer your further learning.

On the flip side, with the breadth of architectures we wanted to cover, we
knew we would have to skip basic concepts to do the architectures any jus-
tice. So we've presumed some prerequisite knowledge and targeted the book
to reasonably experienced programmers. We also narrowed our selections to
focus on recent/emerging advancements so as to avoid merely putting a
fresh spin on previously published information.

Nin-
we
> used

es
these
)ro-
or
tions.

ize
:e bot-
of (or

thing
nt
from

g and
esume
e and

1tec-
Lit
re that

, We
y jus-
e book
ions to
za

CHAPTER ORGANIZATION ® XXIII

Who Should Read This Book

OK, so who did we think we could help? It was clear to us that our readers
would

m already know how to program under Windows,
s understand multimedia concepts and terminology,

De familiar with programming with C, C++, and for some sections, even
assembly language (Intel Architecture), and

® appreciate, or even prefer, a hands-on learning approach (like to learn by
being pointed in the right direction and then be free to find their own
way around).

.2 Chapter Organization

Armed with a clearer picture of our identity and our readers, we were able
to outline our approach. On the one hand, we wanted to get our readers
started quickly on the latest multimedia architectures. On the other hand,
we wanted to show them how to extract high performance on Intel Archi-
tecture multimedia PCs. Ergo, we have decided to provide simple samples!

We have partitioned the book into six major parts. Each part focuses on a
specific area of multimedia, with its chapters sequentially building on each
other. We specifically tried to use the same or similar samples within each
part. There are a total of twenty-three chapters in the book. We concen-
trated on making each chapter brief, less than thirty pages each, so that
wordiness wouldn’t dilute our subject matter. We deliberately chose the
compact format to improve retention (make it less likely for readers to for-
get what was said before).

Let’s take a closer look at what we cover in each of the parts/chapters.

Part I: Surveying Multimedia

Chapter 1 Overview of Media on the PC. This chapter gives just a small
overview of current multimedia architectures on the PC. We give a brief
pass on the Graphics Device Interface (GDI), DirectDraw, DirectSound,
Direct3D, DirectShow, Realistic Display Mixer (RDX), and Realistic Sound
Experience (3D RSX).

Chapter 2 Processor Architecture Overview. Here we approach media
from a hardware perspective. We give a high-level architectural overview of

XXV = ORGANIZATION AND CONVENTIONS

the Pentium, Pentium Pro, the Pentium processor with MMX technology,
and the Pentium II processors. We also touch on the system point of view
and why it is essential to optimize for the system as well as for the processor.

Part Il: Sprites, Backgrounds, and Primary Surfaces

Chapter 3 Simple Sprites in GDI. This chapter introduces the concept of
transparent sprites and backgrounds under Windows. We show you how to
draw backgrounds and transparent sprites using GDL.

Chapter 4 Sprites with DirectDraw Primary Surfaces. We take our sprite
to the next level with a DirectDraw Primary surface. We show you how to
create a Primary surface to get direct access to the display screen. We then
rewrite the sprite to be drawn onto a Primary surface and compare its per-
formance with the GDI implementation.

Chapter 5 Hardware Acceleration via DirectDraw. Here we show you how
to implement our beloved sprite using hardware Bltters on graphics adapt-
ers. We then show you how to use Page Flipping hardware to minimize the
cost of double-buffering incurred in the Primary surface implementation.
Finally, we compare the performance gain of this implementation with the
Primary surface implementation.

Chapter 6 RDX: High-Performance Mixing with a High-Level API. Realistic
Display Mixer (RDX) provides a high-level mixing interface without sacri-
ficing performance. RDX uses hardware acceleration if available; otherwise
it uses assembly code tuned for various processor flavors. We show you how
to implement sprites with RDX, and we compare the performance of this
implementation to GDI and DirectDraw implementations.

Part IlI: Making the Media Mix

Chapter 7 Video under Windows. This chapter introduces current multi-
media architectures under Windows, including Multimedia Command
Interface (MCI), Video for Windows (VEW), QuickTime for Windows
(QTW), and ActiveMovie.

Chapter 8 DirectShow Filters. We start with an overview of the Direct-
Show filter graph architecture and show you how to use the graph editor to
manipulate filters. We then show you how to build source, transform, and
rendering filters, and explain how the connection mechanism works. Next
we discuss filter registration, custom interfaces, and filter property pages.

ZYs
iew
2SSOT.

it of
W to

prite
vto
hen
per-

thow
apt-
'the
on.

| the

alistic
sacri-
wise
1how
this

nulti-
id
7s

act-
itor to
,and
Next
\ges.

CHAPTER ORGANIZATION ® XXV

Chapter 9 DirectShow Applications. Building on the previous chapter, we
show you how to use filters from an application. We show you how to build
a filter graph directly using the DirectShow COM interface and the Direct-
Show control interface. We then show you how to access custom interfaces
and property pages.

Chapter 10 Mixing Sprites, Backgrounds, and Videos. In this chapter we
show you how to use RDX to access DirectShow filters. We also explain how
simple it can be to overlay a sprite on top of a video and even a video on top
of another video.

Chapter 11 Streaming down the Superhighway with RealMedia. In this
chapter we look at the latest architecture from RealNetworks, which is a
cross-platform architecture. We’ll show you how to build custom File-For-
mat and Rendering plug-ins, which allow you to stream custom data types
over the Internet. We’ll also show you how to use RealMedia audio services.

Part IV: Playing and Mixing Sound with DirectSound
and RSX 3D

Chapter 12 Audio Mixing with DirectSound. We start the chapter with an
overview of Microsoft’s DirectSound. Then we show you how to play a sim-
ple WAV file. We then teach you how to mix two sound files and how to
control the format of the final output—after mixing.

Chapter 13 Realistic 3D Sound Experience: RSX 3D. RSX provides a
high-level programming model optimized for the Intel Architecture. We
start the chapter with an overview of Intel’s RSX 3D audio, and then we
show you how to play one or more WAV files with it. We then give you an
overview of RSX’s 3D sound model and show you how to achieve a realistic
sound experience with it.

Part V: Welcome to the Third Dimension

Chapter 14 An Introduction to Direct3D. We kick off our 3D section with
background on 3D on the PC and an overview of Microsoft’s Direct3D.
Then we discuss Direct3D’s modes and its Immediate mode architecture.
The main purpose of this chapter is to give you the bare minimum code
needed to render a triangle in Direct3D’s Immediate mode.

XXVl = ORGANIZATION AND CONVENTIONS

Chapter 15 Embellishing Our Triangle with Backgrounds, Shading, and
Textures. In this chapter we add some bells and whistles to the default triangle
we helped you create in the previous chapter. We work through shading
options, texture mapping, and Z-Buffering, and we also render Direct3D-
based backgrounds.

Chapter 16 Understanding and Enhancing Direct3D Performance. In
previous chapters we focused on getting our application running. In this
chapter we focus on how fast Direct3D performs. We then use the Ramp
driver to increase render performance and measure our improvements.

Chapter 17 Mixing 3D with Sprites, Backgrounds, and Videos. We next
look at integrating 3D with the media we worked with in previous parts
(sprites, backgrounds, and videos). We walk you through displaying a 3D
object in a 2D world, and we render a texture-mapped triangle with a video
as a texture source.

Part VI: Processors and Performance Optimization

Chapter 18 The Pentium Family. In the first chapter of this part we give
you an architectural overview of the Pentium, Pentium Pro, and MMX
technology processors. But first we define some of the terms and concepts
that are used throughout Part VI. We then give you the 10,000-foot view of
these processors so that you will begin to see how they differ from one
another. Finally, we show you how to distinguish between the different flavors
of these processors.

Chapter 19 The Pentium Processor. This chapter gives youa detailed view
of the internal components of the Pentium processor and shows you what’s
important so that each component can attain optimal performance. We
then analyze the assembly sprite from Part II for performance problems
and show you how to fix them.

Chapter 20 The Pentium Processor with MMX Technology. Here we
introduce the MMX technology instruction set, registers, and data types.
We also outline the MMX scheduling rules and show you how to use them.
We rewrite the sprite sample using MMX technology instructions and ana-
lyze it for performance bottlenecks.

Chapter 21 VTune and Other Performance Optimization Tools. Since
hand tuning is a tedious and time-consuming process, we introduce VTune,
a tool to help you analyze your code and pinpoint performance issues with

and
angle
18
3D-

In
his

give
X
cepts
w of

lavors

d view
what’s
We
ms

ve
pes.

them.
d ana-

ince
/Tune,
:s with

CONVENTIONS USED IN THIS BOOK & XXVil

case. We show you how to use VTune to analyze the MMX sprite sample
from the previous chapter. Then we show you how to use the hot-spot sys-
tem monitor and the static and dynamic analyzers. We also teach you how
to use the Time Stamp Counter (TSC) and the internal Pentium event
counters, and the PMonitor event counter library.

Chapter 22 The Pentium II Processor. In this chapter you'll get some ;]
exposure to the Pentium IT processor, the latest processor from Intel. We list ‘ ‘
new processor features and point out optimization issues specific to this

processor. We introduce you to the use of the Write Combining memory

type so that you can achieve better graphics performance.

Chapter 23 Memory Optimization: Know Your Data. We dedicate this
chapter to system issues. Knowing where your data comes from and where
it goes to is essential for achieving overall application performance and
multimedia throughput. In this chapter we discuss the L1 and L2 caches,
the PCI bus, and how to organize your writes to memory in the most effi-
cient manner.

Epilogue: The Finale. In the last pages of the book we describe what we
will see in the future in terms of faster processors, tighter multimedia archi-
tectures, the Internet, advances in 3D, and multimedia.

Web Site: The Annex. Two additional chapters on the latest technologies
from Microsoft, DirectShow Capture and Direct3D Draw Primitives, are
available on our Web Site. Access it with the following URL:

http://www.awl.com/cseng/titles/0-201-30944-0

I.3 Conventions Used in This Book

I.3.1

When we started writing the book, we experimented with a few ideas of
how to convey our material without being too detailed. We decided to settle
on a few conventions based on feedback that we received from our reviewers.
Even though these conventions might seem obvious when you read the rest
of this chapter, it might still be advantageous to browse through the next
couple of pages.

Part Map

At the beginning of each part, we have inserted a part listing that shows the
highlights of each chapter in the part. -

XXVIII & ORGANIZATION AND CONVENTIONS

1.3.2 Chapter Prologue and Epilogue
As we mentioned before, at the beginning of each chapter, we ask and
answer the question “Why read this chapter?” by summarizing the material
covered in that chapter. At the end of each chapter we reiterate what we
have covered and what you should have Jearned from the chapter.

1.3.3 Code Listings

Side Note: A note All our code is inserted between a thick and a thin rule and appears in a dif-
about the text next ferent font, as shown below. We use bubbles and side comments to high-
to it

light key points in the code and to present our material compactly. Extra
special information merits a gray-shaded background.

CCodeText::SubliminalMessage()

{

if (YouHaveNotReadThisBook) ¢ Side comment.
BuyThisBook();

else ‘\{}ubble: Highlights information about the line pointed to. J
BuyItForSomeoneElse();

\)]

Notice also that if we have to repeat a portion of the code, we use the bold
font for the newly added code.

DOLLAR CCodeText::SubliminalMessage()
{

if (YouHaveNotReadThisBook)
BuyThisBaook();

else
BuyItForSomeoneklse();

return SomeDollarValue;
)

| N

We also use plenty of icons to emphasize a point or to point out something
that’s not obvious. We use a star to point out the best result from a proce-
dure and a CD icon to alert readers to when they might want to experiment

. with the CD that accompanies this book. Notes, and cautions are also set
(oo apart from regular text for emphasis.

Finally, notice that the code listings in the book lack a lot of the error check-
ing code, but the code on the companion CD has all the error checking

;terial
we

1 a dif-
igh-

xtra

1
e bold

B

nething
proce-
eriment
$0 set

i check-
<ing

1.3.4

1.3.5

1.3.6

CONVENTIONS USED IN THIS BOOK m XXIX

code. We decided to do this for better clarity when we describe the material
in this book, and leaving out error checking code reduces clutter.

Coding Style

With reference to our coding style, for the code in the companion CD,

m Wedecided to use C++ to implement our code since it allows us to easily
build the code of one chapter on the code of a previous chapter.

m For better performance, we avoid using local class declarations within
our functions. Class variables declared on the stack are allocated and ini-
tialized every time the function is called, which could resultin a negative
impact on performance.

m We use macros for error checking so that we can easily change error
reporting schemes while still retaining source file and line information.

s We use assembly language when we discuss performance optimization
issues for the processor.

Material on the CD

To make it easier to browse through the material on the CD, we use a web
browser approach similar to what you use on the Internet. Once you insert
the CD in the CD ROM drive, the AutoPlay feature of Windows 95 and
Windows NT launches your default Internet browser' and displays the
home page of the CD.

If the web page is not automatically displayed when you insert the CD, you
can manually run the batch file AutoRun.Bat from the root directory of the
CD. Make sure that you have a web browser installed.

Material on the Internet

From the homepage of the CD, you can go to our web site on Addison
Wesley’s web server. On that server, you'll:

m Find two more chapters of the latest technologies from Microsoft,
DirectShow Capture and Direct3D Draw Primitives.

m See the latest feedback and discussions of issues related to our book.

1. Internet Explorer 3.01 or Netscape 3.0 or later are required.

XXX B ORGANIZATION AND CONVENTIONS

i.4 On Our Measurements

We have designed the book with a strong performance overtone. We’re con-
stantly measuring the performance of implementation path and looking for
better options. Our measurements were performed on a machine equipped
with a Pentium processor with MMX technology, an S3 Trio64V+ graphics
adapter with 24 MB of VRAM, and 32 MB of EDO memory.

The performance of any implementation is extremely data sensitive. A particular
implementation may outweigh other options given an input data set, but change
the data set or vary the output configuration and the option may not do quite as
well. Over the course of this book, you will be shown comparisons of different

implementation choices. We hope to give you a flavor of various costs as well.

But ultimately you should use your application, with its own algorithms, data sets,
and target configurations, as your decision-making yardstick.

1.5 Tools Used in This Book

Finally, here is a list of the tools that you'll need to build the sample code on

the CD:

Tool Version Where to Find It

Visual C++ Compiler 5.0 Buy it

Macro Assembler 6.11d Buy it

DirectDraw SDK 3.0 MSDN (or with compiler)

Direct3D SDK 3.0 MSDN (or with compiler)

DirectSound SDK 3.0 MSDN (or with compiler)

DirectShow SDK 2.0 DirectShow SDK

Intel VIune 2.4 Evaluation copy on CD

Realistic 3D Sound 2.1 on CD and http://www.intel.com
Experience

Realistic Display 3.0 on CD and http://www.intel.com
Mixer

RealMedia SDK beta 6.0 at http://www.real.com

PART I
re con- $

ing for
nipped

aphics Surveying Multimedia

articular
change
Juite as
fferent
is well.
ata sets,

WE’D LIKE TO EXTEND AN ACKNOWLEDGEMENT TO TOM’S PANCAKE HOUSE WHERE THE FIRST SPARK OF THIS BOOK WAS LIT. DARLA, CHRISTA,
DIANE AND GREG. THE SERVICE IS FRIENDLY, THE FOOD 1S SUPERB, AND YOU’RE GUARANTEED TO GET SOME LIP; To LE JOI CAFE WHERE
Hsu LI WHIPS UP SOME DELICIOUS MOCHAS; AND TO PATRICIA MOORE, ANITA, ANN BRYANT, SUSAN REICHERT, NAVEEN SACHDEV, NAJI
HAMDAN, DONALD FROOM, A FEW OF THE SAINTS AT SAINT VINCENT’S HOSPITAL OF PORTLAND.

Chapter 1 Overview of Media on the PC

:ode on
m Current multimedia architectures (GDI, MCl, VFW, QTW, DirectX, and so forth)
a New multimedia architectures (DirectShow, RealMedia, RDX, Direct3D, RSX)
Chapter 2 Processor Architecture Overview
& Pentium and Pentium Pro processors
® MMX technology and the Pentium Il processor
m System overview
.com
.com

CHAPTER 1
==

Overview of Media on the PC

WHY READ
THIS CHAPTER?

This chapter introduces the current multimedia software architectures available on the PC.
In this book we're only concerned with media architectures running on Windows 98 and
Windows NT. We'll give you an overview of the following architectures and show you how
they relate to each other:

m GD|, DirectDraw, and RDX;

a MCl, VFW, QTW, DirectShow, and RealMedia;

m WAVE, DirectSound, and RSX; and

m Direct3D

1.1 Background

Graphics hardware on the PC has evolved from monochrome CGA graph-
ics standards through EGA, VGA, and Super VGA to the graphics cards of
today, which offer custom display formats and custom graphics accelera-
tion hardware.

Similarly, audio hardware on the PC has evolved from the lowly PC speaker
through separate 8-bit, 11-kHz Mono audio cards to today’s audio chip

sets; chip sets integrated right on the motherboard offering 16-bit, 44-kHz,
stereo formats and possibly some audio digital signal processor features.

4 s CHAPTER 1 OVERVIEW OF MEDIA ON THE PC

Multimedia software developers have had to keep pace with this evolution by
writing individual software modules for each device that they wanted to sup-
port. These applications had total control over the PC from the keyboard to
the monitor. This “closeness” to the hardware allowed software developers to
be in total control of the overall performance of their multimedia applica-
tions. But this device dependence imposed an expensive development and
maintenance burden on multimedia software developers. It also slowed the
adoption of advances in graphics and audio hardware.

1.2 Graphics Device Independence

With the introduction of windowed operating systems like Microsoft Win-
dows and IBM OS2, software developers were given a uniform programming
interface that abstracted their applications from graphics hardware. Their
applications could paint the screen, within a dedicated window boundary,
without directly accessing the graphics hardware. Instead, the operating sys-
tem accessed the hardware through device drivers. The hardware-indepen-
dent interface under Microsoft Windows is known as the Graphics Device
Interface (GDI); see Figure 1-1.

GDI relieved software developers of the burden of catering to each of the var-
ious graphics adapters. It also enabled hardware graphics vendors to provide
hardware acceleration (such as Block Transfers, or Bltters) and to seamlessly
provide the acceleration to applications through device drivers.

Although the GDI library provided a host of 2D drawing and windowing
commands, it did not provide support for multimedia applications.

FIGURE 1-1 Graphics device independence via Microsoft Windows GDL.

m by
sup-

dto

:rs to

nd
the

7in-
iming
eir
iy,

3 Sys-
en-
ice

he var-
‘ovide
lessly

ng

GDL.

. MOTION VIDEO UNDER WINDOWS ® 5

1.3 Motion Video under Windows

In their first attempt at multimedia architectures, Microsoft defined the
Media Control Interface (MCI) as the first multimedia interface for Win-
dows. MCI provided a VCR-like command interface (Play, Stop, Pause, Seek,
and so forth) to enable the playback of motion video, digitized audio, VCRs
and audio CD players. MCI also defined an installable device interface to
allow multimedia devices to be integrated into the Windows environment.

MCI, however, did not provide any means for capturing and editing motion

video. So Microsoft introduced the Video for Windows (VFW) architecture,

which included tools for video capture and editing and provided an architec-
ture for capture and compression hardware, for installable codecs (compres-

sion-decompression), and for full-motion video playback (see Figure 1-2).

VFW was a significant step forward and was a launching pad for Windows
multimedia applications. It spurred the development of codecs such as Intel’s
Indeo Video and Radius’s Cinepak. The weaknesses of the initial VFW release
were inadequate synchronization between audio and video tracks and poor
overall graphics performance.

Around the same time, Apple ported part of its QuickTime development
environment from the Macintosh to Windows, creating QuickTime for Win-
dows (QTW). QTW supported only audio-video playback; capture, compres-
sion, and editing were supported only on the Macintosh. Yet QTW won some
favor because it had better overall performance and better synchronization
mechanisms than did VFW.

FIGURE 1-2 Video architecture under Windows 3.1.

6 m CHAPTER 1 OVERVIEW OF MEDIA ON THE PC

The overhead of GDT’s device-independent layer was proving too costly for
graphics-intensive multimedia applications. Apple’s QTW improved video
L performance by developing custom device drivers for various graphics
devices, essentially ignoring GDI. Simultaneously, Microsoft and Intel
jointly published a standard interface for graphics intensive applications—
the Display Control Interface (DCI). With DCI applications could write
i : directly to the video screen. DCI also gave users access to some video accel-
eration features that had not been adequately supported by GDI, namely
! arbitrary stretching and video-friendly YUV color formats. With DCI, full-
screen, full-motion video became a reality.

At the end of 1996, Microsoft introduced the first release of ActiveMovie,
targeted as a replacement for VEW. ActiveMovie addressed VFW’s synchro-
nization issues and added support for the Motion Picture Encoding Group
(MPEG) class of algorithms."

By the time this book is published, Microsoft will have introduced the next
generation of ActiveMovie called DirectShow, which adds support for cap-
ture and compression and is integrated into the DirectX Software Develop-
ment Kit (SDK). Around the same time, Apple will have released QTW
Version 3.0, adding capture and compression. RealNetworks will also join
the fray of multimedia architecture providers by introducing their Real
Media Architecture (RMA), a multimedia streaming architecture for
remote playback environments (primarily the Internet).

1.4 Multimedia Gaming under Windows 95

Although DCI accelerated motion video provided direct access to video

memory, it did not offer direct access to graphics hardware for 2D opera-

tions (primarily Page Flips and Transparent Blts). Additionally, Windows

lacked a DCI equivalent for audio devices. As a result of these shortcomings

games developers could not achieve the levels of performance under Win- |
dows that they could under DOS.

Shortly after the release of Windows 95, Microsoft introduced the DirectX
Software Development Kit (SDK), containing DirectDraw, the successor to
DCI; DirectSound, which provides direct access to audio hardware devices;
along with other components such as DirectInput and DirectPlay. With
DirectX and Windows 95’s AutoPlay features, games developers now had a
device-independent platform that was more powerful than DOS. With

1. MPEG uses bidirectional prediction techniques for video compression.

wvie,
ichro-
iroup

> next
r cap-
velop-

join
al

leo
yera-
lows
mings
Win-

rectX
ssor to
evices;
ith
‘had a
th

3D VIDEO ARCHITECTURES ONTHEPC ® 7

. Graphics Device

FIGURE 1-3 2D graphics and video architectures under Windows 95.

these improvements, the Windows 95 PC established itself as a powerful
gaming platform. (See Figure 1-3.)

DirectDraw is a low device-level interface. With it developers can go back to
working with some amount of device dependence. Intel introduced Realis-
tic Display Mixer (RDX), a higher-level interface that abstracts a set of mul-
timedia objects. RDX uses hardware acceleration for these objects
whenever it is available. In the absence of acceleration, RDX executes
assembly code, which is hand tuned for various flavors of Intel processors.
As a result, the high-level interface offers high performance video and 2D
while still providing device independence.

1.5 3D Video Architectures on the PC

With the release of Windows NT, Microsoft launched their own port of
OpenGL to the Windows NT platform. Windows NT was targeted as a
high-end workstation—similar to Silicon Graphics’ and Sun Microsystems’.
But OpenGL was extremely slow under Windows NT since it required a
huge number of calculations to determine object geometry, lighting, and
shading.

Later, other companies introduced general-purpose 3D solutions specifically
tailored for the PC, including Reality Labs by Rendermorphics, BRender by

8 @ CHAPTER 1 OVERVIEW OF MEDIA ON THE PC

FIGURE 1-4 Video and 2D/3D graphics architecture under Windows 95.

Argonaut, RenderWare by Criterion, and 3DR by Intel. Even though these
architectures were not fast enough for realistic 3D, they were fast enough to
enable the development of simple 3D applications. (See Figure 1-4.)

To reduce confusion in the marketplace, Microsoft bought Reality Labs
from RenderMorphics and introduced Direct3D as the single uniform
solution for 3D on the PC. Some 3D games were released using Direct3D,
but the general feedback has been that the performance needs to be
improved and that the interface needs to be simpler, and more reliable.

By the time this book is published, Microsoft will have introduced, as part
of DirectX foundation 5, the next revision of 3D for the PC, called the
DrawPrimitive interface. This interface is intended to address the perfor-
mance deficits and the interface complexity that was identified by previous
users.

1.6 Audio Architectures on the PC

I remember writing my first program to meddle with the speaker on the
PC. It was a police siren program that sent a periodic signal to the speaker
and varied the frequency up and down. Boy, that was a long time ago.

Microsoft introduced the WAVE and MIDI interfaces to Windows around
the same time that MCI was introduced. Both of these interfaces are still

these
yugh to

Labs
rm
rect3D,
e

able.

.as part
the
rerfor-
orevious

n the
speaker

go.

around
re still

WHAT HAVE
You LEARNED?

AUDIO ARCHITECTURES ONTHE PC = 9

widely used today. To allow for mixing of multiple audio streams, Microsoft
introduced DirectSound as part of the DirectX SDK. Since the DirectSound
interface is a low-level interface, Intel introduced its own high-level audio
interface, Realistic Sound Experience (RSX). RSX allows developers to eas-
ily mix multiple audio streams and control the output of these streams.
RSX also models the real-world environment and provides support for a
realistic 3D sound model.

After reading this chapter you are more familiar, perhaps, with

® GDI, DirectDraw, and RDX;

m MCl, VFW, QTW, DirectShow, and RealMedia;
m WAVE, DirectSound, and RSX; and

& Direct3D

PART |

CHAPTER 2
e

PART |

Processor Architecture

WHY READ
THIS CHAPTER?

Overview

In this book we're only concerned with Intel Architecture processors runriing Windows 95
and Windows NT. This chapter provides an introduction to the current multimedia hard-
ware architectures on the PC.

We'll give you an overview of the following technologies:

® the Pentium processor and the architecture of its pipeline,
@ the Pentium Pro processor and its internal architecture, and
s MMX technology and the Pentium Ii processor.

In the early days of multimedia, dedicated hardware was necessary to play
back video, audio, and 3D. But with the giant leaps in processor and mem-
ory technologies, software-only decoders are now able to decode and ren-
der multimedia content on the PC easily. As a result, multimedia authoring
and playback have become commonplace on today’s PCs.

To attain such performance, developers of these software decoders had to
use some of the software architectures discussed in the previous chapter,
such as DirectDraw and DirectSound. In addition, they had to optimize
their application for the processors that they’re targeting the decoder for. In
general, multimedia developers dedicate some of their development time
for processor-specific optimization so that they can get the best perfor-
mance out of their application.

12 @ CHAPTER 2 PROCESSOR ARCHITECTURE OVERVIEW

With multimedia applications, it’s not enough to just optimize for the proces-
sor; you have to optimize your application for the system that you're running
on—cache, bus, and memory. When you optimize for the processor, you typi-
cally assume that the data is in the L1 cache or in a register. But this is not the
case with multimedia applications, since you typically deal with a huge
amount of data, and usually the data is in either the L2 cache or main memory.

In this chapter, we’ll give you an overview of the current breadth of Intel pro-
cessors and compare their features. We'll also touch on issues related to the
system as a whole. You can find a detailed analysis of both topics in Part VI of
the book.

2.1 Processor Architecture

In the following overview, we’ll only be concerned with the Pentium family of
processors including the original Pentium, the Pentium Pro, the Pentium II,
and the Pentium processor with MMX technology. (See Figure 2-1.)

The Pentium processor is built with two integer execution units (U and V
pipes), which allow the processor to execute up to two integer instructions

FIGURE 2-1 The Pentium processor family.

)roces-
nning
u typi-
ot the

emory.

el pro-
> the
t VI of

mily of
im II,

dv
ions

PROCESSOR ARCHITECTURE & 13

1 2 3 4 5
Clock —t+—t—+—t+—+—

PF

Dt |PF

D2 [D1 | PF

EX|D2 | D1 |PF
instgfugic?ns E’E__ ;
in pipeline

WB| EX

FIGURE 2-2 Pentium processor pipeline.

every clock cycle. Each execution pipeline has five distinct execution stages:
Prefetch, Decode 1, Decode 2, Execute, and Writeback (see Figure 2-2). At
any moment, the Pentium processor could be processing up to five instruc-
tions in each of the two pipelines. In addition, the Pentium processor
includes two separate L1 instruction and data caches of 8K each, which
allow the processor to access instructions and data in the same clock cycle.

Typically, applications cannot achieve an optimal instruction rate because
of external data/address dependencies or unpaired instructions. Two
instructions can execute simultaneously only if they adhere to the Pentium
instruction pairing rules; otherwise only one instruction is executed in the
U pipe. You can learn how to optimize your application and about instruc-
tion pairing rules in Part VI.

The Pentium with MMX technology processor is the first processor that
provides Intel’s MMX technology. MMX technology is the largest addition
to the Intel Architecture since Protected mode was introduced in the Intel
386 processor. Intel added fifty-seven new MMX instructions and eight
MMX registers to its Pentium processor. It also doubled the size of the L1
instruction and data caches to 16K each.

In the Pentium Pro processor, Intel moved to a twelve-stage pipeline (com-
pared to a five-stage pipeline in the Pentium processor) with out-of-order
execution. The deeper pipeline allows different processor units to operate on
multiple instructions at the same time. Such deep pipelining, however, is
very expensive in terms of overhead in the case of branch misprediction. To
remedy that, the Pentium Pro processor includes a sophisticated branch pre-
diction mechanism to better predict the outcome of branches before they
occur.

14 8 CHAPTER 2 PROCESSOR ARCHITECTURE OVERVIEW

The Pentium Pro processor has an out-of-order execution unit consisting
of five parallel execution ports: two Arithmetic Logic Unit (ALU) ports, an
address generation port, a Load port, and a Store port. The out-of-order
nature of the execution unit allows the processor to execute future instruc-
tions while older instructions are waiting for their data or address to be
resolved. You'll learn more about the benefits of out-of-order execution in
Part VL

The core of the Pentium II processor is based on the Pentium Pro processor
core, with the addition of MMX technology. The Pentium II processor dou-
bled the size of the L1 code and data caches to 16K each.

Y
2.2 System Overview

Typically, it is not enough to just optimize your application for a certain

processor. You should also be concerned with the other components in the

system that can affect performance—system memory, cache, and video
memory.

When you optimize for the processor, you assume that you're dealing with
data that exists in the L1 cache. However, with multimedia applications,
you typically deal with a huge amount of data that does not fit in the L1
cache—and sometimes not even in the L2 cache. Consequently, you should
pay special attention to the access pattern of your data and optimize for a
high L1 cache hit rate (see Figure 2-3).

To do that, you can use special techniques in prefetching the data to the L1
and L2 cache. You can also break down your tasks into smaller tasks that
can use a smaller amount of data—and probably fit in the L1 cache. See
Part VI for more details.

CPU

L1 data L1 code
cache cache

L2 cache

Sy stem Memory

FIGURE 2-3 Memory architecture of the Pentium processor.

sting
rts, an
‘der
struc-
be

on in

cessor
it dou-

ain
in the
£0

ywith
mns,
:L1
should
fora

the L1
that
See

WHAT HAVE
You LEARNED?

SYSTEM OVERVIEW = 15

Finally, you should pay special attention when you write the final image to
the video screen. Since you're dealing with a huge amount of data, this
operation can be very time consuming. You can use DirectDraw to access
the video screen directly and write your image to it, bypassing GDI’s over-
head. You can also off-load some operations to the graphics adapter, such
as zooming and color space conversion, and in turn you will be able to do
more on the CPU. With the Pentium II processor, you can use the Write
Combining memory type to achieve a higher transfer rate when writing to
video memory. You can learn more about these topics in Parts II and VI.

After getting through this chapter, you should know something about

@ the Pentium processor and its architecture
® the Pentium Pro processor and its architecture
B MMX technology and the Pentium Il processor

PART I1
=

Animated Graphics,
Sprites, and Backgrounds

WE’D LIKE TO EXTEND AN ACKNOWLEDGEMENT TO JACK AND GLENNA RYAN, WENDY AND DAWSON YEE, PAM LUSARDI, DOUG BRUCKS,
DEBBIE BURKE, SARAH NAHUM, GREG SCHWENDINGER, TERRI DEGROAT, MICHELLE CAUDILLO, JANET RASH, BLAKE AND NIKKI BENDER,
BEN AND JUDY ECHOLS, JERRY ORLECK, LEORA GREGORY, CYNDI YOUNG, ROHIT AND NIDHI AGARWAL, ROGER AND SUSAN TAIT, GARY
AND MARY BALDES, JUDI GOLDSTEIN, AND TOM CRONIN.

Chapter3 Simple Sprites in GDI
m Define sprites and backgrounds
m Blt sprites and backgrounds with GDI
® How fast does GDI draw sprites and backgrounds?

Chapter 4 Sprites with DirectDraw Primary Surfaces
m Overview of Microsoft's DirectDraw
m Whatis a Primary surface?
m Render sprites directly to the display
® Measure C and ASM sprites drawn to the display

Chapter 5 Hardware Acceleration via DirectDraw
& How do you find out what the hardware can do?
B \What is an OffScreen surface?
@ Use hardware Bltters and Page Flippers

m Measure accelerated rendering

Chapter 6 RDX: Animation Object Management
m Overview of Intel's Realistic Display Mixer (RDX)
& Use RDX to render sprites and backgrounds
® Access hardware acceleration via RDX
m Measure performance of a device-independent interface

Part It consists of four chapters that cover rendering 2D graphics images under
Windows9x.

s 17 =

18 = ANIMATED GRAPHICS, SPRITES, AND BACKGROUNDS

The Microsoft Windows Graphics Device Interface (GDI) is a feature-rich library that pro-
vides all sorts of primitives to Block Transfer (Blt) graphics images and to draw common
2D objects (such as lines or rectangles). So why bother spending four chapters on 2D
graphics? Well, because we are going to focus specifically on the sort of rendering used
for composition and animation.

Although the images used for compositions are typically rectangular, the actual contents
are irregularly shaped. Some of the data within the rectangle is defined as transparent and
is not meant to be seen. In Chapter 3, the first chapter of this part, we will define the an-
imation objects that we use throughout the part—specifically features that can bring po-
tential benefits to performance.

Animation objects are composed using transparent Blt routines. In Chapter 3, we will also
work through examples of rendering transparent images using CDI, and then we will mea-
sure the performance of rendering with GDI.

In Chapter 4, we examine Microsoft's DirectDraw architecture, which was designed for
multimedia developers who want to render animation objects with higher performance
than what is offered by GDI. In this chapter, we touch upon the first aspect of higher per-
formance through DirectDraw—bypassing GDI and using custom routines to render direct-
ly to the display screen.

Chapter 4 will give you a good starting point for using DirectDraw, but it is by no means a

complete guide. In Chapter 5, we study the second aspect of higher performance through
DirectDraw—accessing hardware acceleration features. The chapter also examines mecha- T
nisms to reduce the sundry, but expensive cost of refreshing the screen.

DirectDraw is a low-level API that enables high performance at the cost of some device
dependence. Intel's Realistic Display Mixer (RDX) sits on top of DirectDraw and provides
high-performance animation with a higher level device-independent API. Chapter 6 will

show you how to get going quickly with RDX.

Some recommendations:

m Chapter 3 contains fairly introductory material. If you are familiar with terms like sprites
and backgrounds and are not interested in how to render them with GDI, you need 3
not read this chapter.
m If you don't want to bother with the details of a low-level AP! like DirectDraw, then RDX
in Chapter 6 is a good alternative. Chapter 6 is also a good chapter if you don't want
to implement a mixing subsystem or if you want to use RDX's assembly-tuned routines
as a complement to your own work.

m If you intend to work with Direct3D, you will need to know DirectDraw, and both Chap-
ters 4 and 5 are important for you.

m If you have your own graphics objects with their own render routines, or if you enjoy
high-performance assembly programming, you will want to know DirectDraw in
enough detail that, again, you should read both Chapters 4 and 5.

1at pro-

ymmon

n 2D

sused CHAPTER 3

ntents e

ent and

the an-

ng po-

j o I w o

ilaso Simple Sprites in GDI

dill mea-

2d for

mance

her per-

o direct-

leans a o

‘hrough WHY READ Consider this chapter as a short introduction to animation terms and concepts,

mecha- THIS CHAPTER? Here we define sprites and backgrounds. To visibly illustrate the concepts, we walk you
through working examples of sprites and backgrounds drawn using Microsoft Windows
GDI. Read the code to understand our definitions. Run the demos to visualize these

device 5;\ definitions.

rovides . , .

-6 wil Later we use th‘e working gxamples to measure just how fast we can draw sprites _a_nd
backgrounds using GDI. With these measurements in hand, we'll be in a better position
to assess the performance of alternate options in subsequent chapters of this part.

1sprites " - @

s need 3.1 Graphics Device Interface (GDI) Overview

en RDX We expect that most of you (our readers) are very familiar with Microsoft’s

't want Graphics Device Interface (GDI). Still, let’s not forget GDI’s features while

outines on our quest for higher performance options.

h Chap- Windows GDI handles all graphic output—to the display screen as well as

: to other graphics output devices such as printers, plotters, and metafiles. In

Jenjoy handling graphics output, GDI must handle the various forms of these

in devices (such as EGA versus VGA and laser printers versus dot-matrix
printers). GDI’s device drivers shield us, application developers, from many

of the complexities of device-dependent issues.

20 8 CHAPTER 3 SIMPLE SPRITES IN GDI

With GDI’s device driver model, hardware vendors can provide different
levels of hardware acceleration at different price points.

GDI also acts as a sharing agent for graphics output devices. It manages
multitasked output to devices through device drivers and device contexts.
These management responsibilities include memory ranges, clipping
regions, color palettes, and print spoolers.

As a graphics library, GDI provides a variety of objects (brushes, pens, bit-
maps, pixels, text); provides attributes for these objects (fills, thickness,
font, color); provides commands for manipulating objects and attributes
(Create, Load, Select); and offers some other drawing functions (PolyLine,
TextOut, Rectangle, BitBIt).

GDI also controls the look and feel of images on graphics devices via the
definition of a standard interface for default objects (standard colors, cur-
sors, icons, and base fonts); the definition of sizing attributes (coordinate
spaces, text metrics); and the definition of control functions (coordinate
mapping, font enumeration, font mapping). In short, GDI does a lot.
Bypassing GDI for higher-performance options means bypassing all these
capabilities. Choose your path carefully.

3.2 Animation Objects

3.2.1

‘When we mention sprites, you're probably thinking of pixies, and nymphs, and
elves, and wood fairies. Toss in a few gnomes, ogres, trolls, and goblins and we'd
have quite a fairy tale on our hands. But, it’s time to rein in these flights of fancy.

Sprites

For this book, let’s define sprite in a multimedia context. Let’s use the term
sprite to refer to regular bitmap images that are superimposed on top of
other graphics images. What’s more, the superimposition of sprites is not a
simple block copy. Instead, sprites contain both visible and transparent pix-
els, and the superimposition must only render the visible pixels.

We expect—and may optimize for—
B sprites being drawn repeatedly, so that some of the time spent preparing
them can be recovered during drawing;

s sprites being fairly small images so that whatever memory they require
can be traded off for performance; and

® partial sprites being rarely drawn, and routines to draw partial sprites may
be separate and slower than equivalent routines to draw sprites wholly.

ANIMATION OBJECTS & 21

ferent Figure 3-1 shows a sprite that we use in our demo applications.

lages

ntexts.

1g

. FIGURE 3-1 Spritei .

.15, bil- prite image

less, . . L o .

butes The sprites we use in our demo applications are of varying sizes. You might

JIvLine also say that they are of odd sizes: that is, they are not square; they are not

4 ’ powers of two; they are not even DWORD or QWORD multiples. We chose

these odd sizes deliberately, to provide you with the opportunity to study

ia the the performance impact of different sprite sizes.

s, cur-

dinate 3.2.2 Backgrounds

linate Let’s also define the term background in a multimedia context. Let’s use

o’. background to refer to images without transparency. Can a background be

Il these drawn on top of another? Sure it can! But we expect that images without
transparency are probably going to be behind objects with transparency—
hence the term backgrounds.
We expect that backgrounds are large images on top of which one or many

phs, and sprites will be superimposed. They take up a lot of memory, and more

nd we'd memory cannot be used to improve performance. Also a background may

of fancy. be much larger than the displayed image, and moving a source rectangle
around within the background is one way of creating an illusion of
motion—scrolling backgrounds. Figure 3-2 depicts the background that we
use in our demo applications.

1e term

p of

isnota

rent pix-

reparing

7 require

fites may

holly.

FIGURE 3-2 Sample background.

22 8 CHAPTER 3 SIMPLE SPRITES IN GDI

Again, the background is of an odd size. We chose this size because we want
to point out the special code that needs to be written to handle odd-sized
backgrounds.

3.3 Transparent Blts with GDI

GDI does not contain any single function to “transparently” Blt images.
Therefore our Transparent Blt algorithm uses a combination of RasterOp Bit-
Blts. Our approach involves the following steps:

1. Zero out the pixels from the destination that are to be painted with “visi-

* ble” sprite pixels. (To do so, we create an inverted Mask from the original
source at Init-Time. And at run time, we BitBlt the mask with a SRCAND!
RasterOp onto the destination.)

2. OR-In sprite pixels into the zeroed-out space. (RasterOps operate at the
bit level, and a nonzero transparency color in the source could OR-In spu-
rious bits into the “transparent” space. Therefore at Init-Time, we zero out
the transparent pixels from the original image.)

3.4 Drawing a Sprite Using GDI

OK, now let’s take a look at some sample code that implements sprites and scroll-
ing backgrounds using GDI. Here is the base class definition for sprites, CSprite.

class CSprite {

public:
dword m_dwWidth; ¢ width of sprite
dword m_dwHeight; ¢ height of sprite
byte * m_pData; ¢ internal sprite data storage
byte m_byTransp; ¢ transparency pixel
CSprite(); @ constructor -- Cannot err

bool Init(uint nResID, byte byKey, cdc &pcWnd); ¢ Init-- Can return errors
~CSprite(); ¢ destructor
void BTt(BLTPARAMS *pDst, CPoint &point); ¢ blt routine

1. SRCAND is a parameter for the BitBIt function. It performs a logical AND of the source bitmap with
the destination bitmap.

> want
zed

’S

‘Op Bit-

1 “visi-
riginal
CAND!

at the
-In spu-
ero out

d scroll-
Sprite.

DRAWING A SPRITE USING GDI = 23

The Blt algorithm we use is based on an approach recommended by
Microsoft on their Developer Network (MSDN) CDs. The recommended
algorithm uses a three-Blt approach, but we improved the algorithm to pre-
process the sprite at init-time to allow us to use a two-Blt approach.

Following are the Init and Blt routines. Note that since Windows BitmapInfo-
Headers do not allow for transparency colors, we are specifying transparency
as a parameter to the sprite Init() load function.

CSpriteGDI::Init(UINT nResID, BYTE byColorKey, CDC *pcdchnd)
{

// load bitmap from resource into a tmp bmp ready for preparation

CDC cdcTmp;

cdcTmp.CreateCompatibleDC(pcdcnd);

CBitmap cbmTmp;

cbmTmp.LoadBitmap(nResID);

cdcTmp.SelectObject(cbmTmp);

BITMAP bm;

cbmTmp.GetBitmap(&bm);

DWORD dwWt = m_dwWidth = bm.bmWidth;

DWORD dwHt = m_dwHeight = bm.bmHeight;

// get transparent color and set DC background (we use system palette)

PALETTEENTRY peClr;

GetSystemPaletteEntries{pcdcWnd->m_hDC, (UINT)byColorKey, 1, &peColor};
cdcTmp.SetBkColor (PALETTERGB(peClr.peRed, peClr.peGreen, peCir.peBlue));

// create a monochrome mask for run-time clearing of foreground pixels
CDC cdcMask;

cdcMask.CreateCompatibleDC(cDchnd);

m_pcbmMask = new CBitmap;

m_pcbmMask->CreateBitmap(m_dwWidth, m_dwHeight, 1, 1, nLL));

Cbitmap *pcbmOldMask = cdcMask.SelectObject(m_pcbmMask);

chcMask.BitBlt(O, 0, dwWt, dwHt, &cdcTmp, 0, O, SRCCOPY);

BitBlt from color-bitmap to mono-bitmap sets pixels with background=1
and foreground=0. We previously SetBkColor of cdcTmp to the transpar-
ency color. The result here is an inverted mask.

// process src so that transparent pixels are 0

CDC cdcSre;

cdcSrc.CreateCompatibleDC(pedcind);

m_pcbmSrc = new CBitmap;

m_pcbmSrc->CreateBitmap(m_dwWidth, m_dwHeight, 1, 8, NULL);
cdcSrc.SelectObject(m_pcbmSrc);

cdcSrc.BitB1t(0, 0, dwWt, dwHt, &cdcMask, 0, 0, NOTSRCCOPY);
cdcSrc.BitBI1t(0, 0, dwWt, dwHt, &cdcTmp, 0, 0, SRCAND);

Preprocess Source. Zero out pixels of transparent color by
=NOTCOPYing inverted mask to result bitmap
=and then ANDing in the actual source data

return TRUE;

24 m CHAPTER 3 SIMPLE SPRITES IN GDI

V CSpriteGDI::B1t(CDC &cDc, CPoint &pt)
(
static CDC cdcSrc, cdcMask;
static CBitmap *pcbm01dSrc, *pcbmOldMask ;

// setup 2 DCs with bmps prepared during sprite init
cdcSrc.CreateCompatibleDC(&che);
cdcMask.CreateCompatibleDC(&cDc);

pcbm01dSrc = cdeSrc.SelectObject(m_pcbmSrc);
pcbm0ldMask = cdcMask.SelectObject(m_pcbmMask

il // blt: clear away foreground pixels using mono mask (bk=1, fg=0)
cDc.BitBlt(pt.x, pt.y, m_dwWidth, m_dwHeight, &cdcMask, O, O, SRCAND):
// second blt: or preprocessed src into anded dest

cDc.BitBIt(pt.x, pt.y, m_dwWidth, m_dwHeight, &cdcSrc, 0, 0, SRCPAINT);

! cdcMask.SelectObject (pchbmOldMask) ;| Release these DCs, since they are not local to

! cdcMask.DeleteDC(); €————————— thisroutine’s scope and will not get automati-
cdcSre.SelectObject(pcbm01dSre); cally released until the application terminates.
cdcSrc.DeleteDC();

3.5 Backgrounds

The code for backgrounds is similar to that used for sprites.

CBackgroundGDI::Init(UINT nResID, CDC *pcdcWnd)
{
// load bitmap for background from resource file
CDC cdeSrc;
cdeSrc.CreateCompatibleDC(pcdcind);
m_pcbmSrc = new CBitmap;
m_pcbmSrc->LoadBitmap(nResID);
Cbitmap *pcbm0idSrc = cdcSrc.SelectObject(m_pcbmSrc);
BITMAP bm;
[l m_pcbmSrc->GetBitmap(&bm);
e m_dwWidth = bm.bmWidth;
: m_dwHeight = bm.bmHeight;
}

The Blt routine is straightforward, especially since, in this case, we do not
have to worry about transparency. However, note that a sub-rectangle
parameter can be specified to draw only a portion of a background.

DEMO TIME & 25

Cbackground::B1t(CDC &cDc, CPoint &cPt, CRect &crView)
{
// setup DC objects
static CDC cdceSrc;
static CBitmap *pcbmO1dSrc;
cdeSrc.CreateCompatibleDC(cDe);
pcbm01dSrc = cdcSrc.Selectdbject(m_pcbmSrc);

// add code to error check view to within image boundary
TWt = crView.right - crView.left;
THt = crView.bottom - crView.top;

AND) // straightforward b1t
SATNT) : cDc.BitBIt(cPt.x, cPt.y, TWt, 1H“:,
’ &cdcSrc, crview.left, crView.top, SRCCOPY);
alto_ // release DC
rr:ligs cdeSrc.SelectObject (pebmoldSre);
. cdcSrc.DeleteDC();
— 1

3.6 Demo Time

Run the demo that corresponds to this chapter?. You should see a sprite
being drawn on the screen. Move the mouse around and the sprite will fol-
low the mouse.

The sprite leaves sprite trails because on startup we have set the application
to “not refresh” the background. Turn Background Refresh on and the
sprite trails will disappear.

A difficulty of overlaying sprites on backgrounds directly onto the screen is
that refreshing the background is followed by the transparent overlay of the
sprite, which results in a noticeable flicker. For flicker-free results, the back-
ground needs to be refreshed and the sprite overlayed into a nonvisible

buffer (memory DC), and then the resulting image in the nonvisible buffer

BN must be transferred to the screen. “Compositing” in nonvisible buffers will
be discussed shortly in Chapter 5. For now, treat this as an exercise for you

do not the reader.

igle

L

2. See the Introduction if you need instructions.

26 m CHAPTER 3 SIMPLE SPRITES IN GDI

3.7 How Fast Does GDI Draw Sprites and Backgrounds?

WHAT HAVE
YOU LEARNED?

Table 3-1 measures the speed of drawing sprites and backgrounds with
GDI. These measurements were taken on our base platform described in
the Introduction and will definitely vary with different configurations. We
have included the application for measuring the speed of drawing sprites
and its source code on our Internet site that we mentioned in the Introduc-
tion; it is called Timing App. Run the application on your platform and see
what results you get. The source code for the timing application is also
included on the CD. We have separated out the timing source code from the
source for the chapter demos to simplify reading the base code.

TABLE 3-1 How Fast Does GDI Draw Sprites and Backgrounds?

14.2

(widtph: 84, height: 63)

background 8.8
(width: 734; height: 475) ‘

By this time, you know what we mean by sprites and backgrounds, you've seen them
work, and you also know how long it takes to mix a sprite on a background. Since this was
only an introductory chapter, if you've read this far, you've got to be itching to move on to
the next chapters, which introduce you to the meat of this section. Well, what are you wait-
ing for?

Ti

nds?

rith
edin CHAPTER 4
ms. We
prites $
troduc-
ind see
lso

‘om the

Sprites with DirectDraw
;] Primary Surfaces

WHY READ In the previous chapter, you were introduced to drawing a transparent sprite on a back-
THIS CHAPTER? g&ound using GDL. But you may not have been satisfied with the performance of sprites
under GDI. This chapter will introduce you to faster sprites via the Microsoft DirectDraw

interface. Read on and decide if DirectDraw works better for you.
een them

. In the previous chapter you were also introduced to graphics rendering objects (and prim-
e this was

; itives) provided by GDI. But you may have your own graphics rendering objects that are
loveonto not convenient to render through GDI. In this chapter we will show you how to render
}you wait- your own sprites using DirectDraw. Read on and decide if our sprite example forms an
appropriate foundation for rendering your objects.

By reading this chapter, you will

m get an overview of DirectDraw and what it offers,

m leamn how to access the display screen and write directly to it,

B use routines to render faster sprites, and

a be exposed to some limitations of writing directly to the display screen.

4.1 Introduction to Microsoft’s DirectDraw

The Graphics Device Interface (GDI) library within Microsoft Windows
provides software developers with image display functions. The library
abstracts graphics devices and provides a device-independent interface that
developers can write to. Device independence allows developers to use a
standard set of functions without having to worry about device specifics or
even device capabilities.

B 27 =

28 8 CHAPTER 4 SPRITES WITH DIRECTDRAW PRIMARY SURFACES

. Graphics Device

FIGURE 4-1 Display architecture under Windows 95.

Unfortunately, the overhead of GDI’s device independence was too expen-
sive for graphics intensive applications. In 1994 Intel and Microsoft jointly
released the Display Control Interface (DCI) as an extension of GDI. DCI
allowed direct access to graphics device memory and to device acceleration
features under Windows 3.1 and Windows 95.

In 1995 Microsoft released DirectDraw for Windows 95 as a successor to

DCI. Similar to DCI, DirectDraw provides direct access to graphics device
memory and to device acceleration features. DirectDraw enhances device
acceleration by providing access to hardware Blters and hardware palettes.

Figure 4-1 diagrams the current display architecture under Windows 95.
Although Figure 4-1 shows the entire display architecture under Windows
95, in this chapter we are primarily concerned with the thick arrow that
points directly from the application to the DirectDraw Hardware Emula-
tion Layer (HEL).

Think of DirectDraw as an extension to GDI that allows you to use custom
drawing routines or allows you to access custom device-specific accelera-
tion. DirectDraw is part of Microsoft’s DirectX Software Development Kit
(SDK) and is the lowest level APT available for display devices.

expen-
t jointly
)I. DCI

Jeration

sor to

s device
device
ralettes.

ws 95.
indows
r that
imula-

» custom
celera-
1ent Kit

FEATURES OF DIRECTDRAW m 29

4.2 Features of DirectDraw

Figure 4-2 shows a graphics card laid out as a block diagram showing typi-
cal components.

gital to Analog overté i
DAC

! Optional Additional Video
A Memory Available for:
1 Icons, Cursors,

| Text Font Caching,
1

1

Optional
Graphics

OffSreen Buffers,

Directly Visible
3D Textures . . .

Display Memory Areal

(this is what you

see on screen)
e

(not visible on screen)

FIGURE 4-2 Block diagram of components on a typical graphics card.

All graphics cards have some video memory, so whatever you see on the
screen is stored in memory on the graphics card in a place specifically
reserved for that purpose. RGB data from this primary screen area is con-
verted via a digital to analog converter (DAC) to analog signals that are sent
out to the monitor. DACs support palette lookups during conversion in a
palettized graphics mode.

Today’s graphics cards typically have an optional graphics accelerator to
support standard GDI acceleration, and they are configured with enough
memory to support high-resolution (24 or 32 bits per pixel, or bpp) graph-
ics modes. If you're operating in low-resolution graphics modes, this addi-
tional memory may be used for other purposes. DirectDraw gives you direct
access to the graphics card to both its video memory and its acceleration
hardware.

DirectDraw gives you access to the video memory through a surface object.
Device memory exists in many forms and, therefore, there are many types
of surfaces to allow you to access the various forms of device memory.

A PRIMARYSURFACE gives you direct access to the main display memory area.
Anything you write to this memory area is immediately visible on the dis-

play screen. In fact you get access to the entire display screen and can write
anywhere on the screen. Note that you access the screen in the user’s display
configuration, which can vary both in screen size (640 x 480 or 1024 X 768)

30 8 CHAPTER 4 SPRITES WITH DIRECTDRAW PRIMARY SURFACES

and in color format (8, 16, 24, 32 bpp). Under special circumstances,
DirectDraw allows you to reconfigure the display for the duration of your
application.

DirectDraw’s 0FFSCREENSURFACE allows you to allocate and access any addi-
tional “behind-the-screen” device memory. Why is this useful? Graphics
cards have acceleration features like Transparent Blts, non-RGB color for-
mats, fast screen refreshes by Page Flipping, and even 3D graphics primi-
tives. Offscreen surfaces are the mechanism by which you access hardware
acceleration features that are not accessible through GDI. There is one
caveat, however: the source and destination images for these acceleration
features must live in device memory.

Beyond access to device memory and hardware acceleration, DirectDraw
also supports additional features such as direct access to the primary pal-
ette, support for multiple palettes with DirectDraw Palettes, and support
for window management with DirectDraw Clippers. Given that surface
types and device features vary, DirectDraw supports a capabilities model,
which can be used to query the DirectDraw driver for its capabilities before
you use any specific feature.

In this chapter, we will introduce you to initializing and querying the
DirectDraw driver and using DirectDraw Primary surfaces. OffScreen sur-
faces and device acceleration will be discussed in the next chapter.

4.3 Before You Get Overly Excited

Writing directly to device memory or accessing device-specific acceleration
defeats the device-independence benefits of GDI. Once you access device-
specific features using DirectDraw, you must respond gracefully to varia-
tions in graphics devices.

For example, memory layouts differ based on the display configuration
selected by the user. Variations in configurations include pixel format (such
as RGB24, RGB16, or palletized RGB8) and screen size (such as 640 x 480,
800 x 600, 1024 x 768). Memory layouts may also differ based on manufac-
turers’ design choices. There is, for example, more than one format for the
size of the color components with RGB16—5:6:5 and 5:5:5 being two pop-
ular formats. Similarly RGB24 can be either in a compact 3 bits per pixel

1. The emerging Advanced Graphics Port (AGP) specification will allow graphics cards to provide
acceleration using system memory-based source images. DirectDraw Offscreen surfaces will continue
to be the mechanism to access AGP-based graphics hardware acceleration.

3

f your

y addi-
»hics
or for-
yrimi-
rdware
me
-ation

Draw

'y pal-
oport
face
a0del,

s before

ac
€1l sur-

ration
evice-
varia-

tion

at (such
) X 480,
nanufac-
. for the
WO pop-
- pixel

rovide
1 continue

// create a DirectDraw instance
DirectDr;wCreate(NULL, &pDDraw, NULL)

INSTANTIATING A DIRECTDRAW OBJECT = 31

format or in a DWORD-sized format with the most significant byte
ignored. If you write directly to memory, you need to understand what for-
mat is currently being used and be able to write your pixels in that format.

Similarly, there is no standard set of acceleration features that all graphics
devices must provide. If you use a device-specific feature, you will also need
a fallback mechanism to work with devices that do not support that partic-
ular feature. DirectVideo, for example, has many code paths to use various
color-conversion and stretching features.

Choosing a device-specific development option plates adevelopment burden
on you. But choosing this option can give you significant performance gain.

Some graphics cards are still banked memory devices. We would need to switch
to a new bank before accessing its memory. However, Microsoft now provides a
mechanism (VFlatD) to disguise banked access as linear access. VFlatD traps
page faults on specific memory ranges and automnatically switches banks as
needed. The disguise does add a noticeable performance cost.

Use the DDTEST tool that comes with the DirectX SDK to get information about
your display device. Some devices, such as some S3 Trio 64 graphics cards, are

incorrectly identified as banked devices. Contact the maker of your graphics card
for updated DirectDraw drivers,

4.4 Instantiating a DirectDraw Object

Let’s get dirty. First, let’s initialize DirectDraw by Instantiating, or creating
an instance of, a DirectDraw object:

BOOL CSharedHardware::Init(HWND hWnd) {
LPDIRECTDRAWPDDraw;
HRESULTerr;

DirectDrawCreate is the starting point in using
DirectDraw. The DIRECTDRAW structure returned
from this function provides access to the entire
H next level of functionality, such as CreateSurface,

// Setup to use as normal windowed app

EnumDisplayModes, and so forth.

err = pbDraw->SetCooperativelevel (hWnd, DDSCL_NORMAL);

if (err == DD_OK) {
pbDraw->Release();

return FALSE;
)

// store into member variable
m_ppDDraw = pDDraw;

return TRUE;

SetCooperativeLevel() sets how we plan to use DirectDraw. The settings can be

DDSCL_NORMAL App will work as a regular Windows app.
DDSCL_EXCLUSIVE App wants exclusive access to display area.
DDSCL_FULLSCREEN App wants responsibility for the entire display area.
GDI will be ignored.

App can deal with non-Windows modes

Allow CTRL_ALT_DEL to work while in fullscreen
exclusive mode.

Don't let user change position or minimize application

DDSCL_ALLOWMODEX
ODSCL_ALLOWREBOOT

DOSCL_NOWINDOWCHANGES

32 @ CHAPTER 4 SPRITES WITH DIRECTDRAW PRIMARY SURFACES

4.5 Querying and Creating a Primary Surface

Now that DirectDraw has been initialized, let’s get access to DirectDraw sur-
faces. Let’s start by examining DDSURFACEDESC, a basic DirectDraw structure
that describes all forms of surfaces in DirectDraw.

typedef struct _DDSURFACEDESC{

DWORD dwSize;
DWORD dwFlags;
DWORD dwHeight;

DWORD dwWidth;

LONG 1Pitch: Not all fields of a DDSURFACEDESC structure are

union { valid all the time. The DDColorKey fields, for exam-
DWORD dwBackBufferCount; ple, are not needed to create a simple Primary surface.
DWORD dwMipMapCount; Therefore, whenever fields are used, equivalent bits in
1 the dwFlags field indicate that the field is valid.
union {
DWORD dwZBufferBitDepth;
DWORD dwRefreshRate;

b
DWORDdwAlphaBitDepth;
DWORDdwReserved;
LPVOID 1pSurface;
DDCOLORKEYddckCKDestOverlay;
DDCOLORKEYddckCKDestB1t;
DDCOLORKEYddckCKSrcOverlay;
DDCOLORKEYddckCKSreB1t;
DDPIXELFORMATddpfPixelFormat;
DDSCAPSddsCaps;

} DDSURFACEDESC, FAR* LPDDSURFACEDESC;

And now here’s how to create a Primary surface:

CPrimarySurface: :CPrimarySurface(void)
{
// zero out the memory of the surface descriptor
memset (&m_Surfbesc, 0, sizeof(m_SurfDesc));
// init surface descriptor size
m_SurfDesc.dwSize = sizeof(m_SurfDesc);
} .
BOOL CPrimarySurface::Init(LPDIRECTDRAW pdDraw)
{
// set type of surface within the surface caps structure
m_SurfDesc.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

The dwCaps field is used both to establish the type of surface requested and to set up attributes upon return. Refer to the DirectDraw documen-
tation for more details. Some surface types to note are:

__PRIMARYSURFACE Access to primary display area

__OFFSCREENPLAIN Access to off-screen memory

_FLIP Set up for instantaneous surface swap
__SYSTEMMEMORY Surface is in system memory.
__VIDEOMEMORY Surface is in video memory. Currently, TRUE for Primary surfaces.
_VISIBLE Writes are immediately visible. TRUE for Primary surfaces.
_ WRITEONLY Data cannot be read from these surfaces.
MODEX Setup for 320x200 or 320x240 resolutions. Typically used with SetCooperativeLevel of EXCLUSIVE, FULLSCREEN and MODEX

Other types that we will experience later include 3D, _TEXTUREMAP, _FRONTBUFFER, and __BACKBUFFER.

Jraw sur-
ructure

s are
texam-
surface.
1t bits in
1.

'raw documen-

\EEN and MODEX

QUERYING AND CREATING A PRIMARY SURFACE ® 33

// tell driver that the caps field is valid
m_SurfDesc.dwFlags = DDSD_CAPS;

// call DirectDraw member
HRESULT err;
err = pdDraw'>CreateSurface(&m;SurfDesc, &m_pSurfFns, NULL);
if (err = DD_0K) {
handlefrror(err)
return FALSE;
} CreateSurface takes LPDDSURFACEDESC and (LPDIRECTDRAWSURFACE *) as
parameters. DDSURFACEDESC is used to describe the surface requested/
return TRUE: 8Ot DIRECTDRANSURFACE holds pointers to the member functions of the
} created surface.

L

function to create primary surface

]

If CreateSurface() was successful, DirectDraw drivers should set relevant fields
in the DDSURFACEDESC structure to describe the surface that was created, In
particular, dwHeight, dwWidth, and ddpfPixelFormat should be valid. To
really make sure that the structure gets filled, use IDirectDrawSurface:: Get-
SurfaceDesc(). However, even GetSurfaceDesc() will not return a valid pointer

to surface memory (IpSurface). This field will only become valid after you
lock the surface. More on Lock() shortly.

Note that we have written our libraries for an RGBS pixel format. What hap-
pens if the Primary surface display configuration is not in RGBS display
mode? We could merely “Release” the newly created surface and flag an error.

An alternate method is to check the display configuration, before creating a
Primary surface:

bool CDirectDraw: : IsDisplayModeOK(void)
{

//initialize a surface descriptor

ddsurfacedesc ddSurf:

memset (&ddSurf, 0, sizeof(ddSurf));// zero out mem
ddSurf.dwSize = sizeof(ddSurf):// set size field

// get the primary display mode

firesult err = m_pdDraw->GetDisplayMode (&ddSurf):
/7 if call was successful, check returned descriptor
if (Cerr == dd_ok) &&

(ddSurf.ddprixe1Format.dwﬂags == ddpf_paletteindexeds))
return true

else . . .
err = js_baddisplay; EXTRA CREDIT: Explore changing the display format if
| - o it’s not one you like. Look at SetDisplayMode() and Set-
CooperativeLevel().

// was error, flag and return SetDisplayMode() is provided by the IDirectDraw? inter-

handlekrror(err); face. Our Primary surface sample code on the JS CD shows

return false; the use of the IDirectDraw? and IDirectSurface2 interfaces,
} Check it out.

- -]

34 m CHAPTER 4 SPRITES WITH DIRECTDRAW PRIMARY SURFACES

Let’s move forward, and write directly to the display screen using the Pri-
mary surface that we just created.

4.6 Implementing a Simple Sprite Class

We use the same class definition for sprites as in the previous chapter. Here
is a simple sprite class implementation where we control the drawing.

BOOL CSprite::Init(CBitmap &bitmap, BYTE byKeyColor)
; .

1

// get access to BITMAP to get size; alloc space for data; copy data
BITMAP bm;

bitmap.GetBitmap(&bm);

m_pData = new BYTE[bm.bmWidthInBytes * bm.bmHeightl;
bitmap.GetBitmapBits(bm.bmWidthInBytes * bm.bmHeight, m_pData);
// init member variables

m_dwWidth = bm.bmWidth;

m_dwHeight = bm.bmHeight;

m_byTransp = byKeyColor;

return TRUE;

}

l \

The sprite Blt function is extremely simple. It takes in a destination pointer
and pitch and draws the sprite at the specified point. The function is writ-
ten in C and relies entirely on the compiler for optimization.

void CSprite::B1L(LPYOID 1pDst, long 1Pitch, CPoint &point)

{
// compute address dst and src pixels. note pitch can be negative
PRYTE pDst = (PBYTE)((long)IpDst + point.x + point.y * 1Pitch);
PBYTE pSrc = m_pData;

// b1t the sprite on a row by row basis
for (DWORD row = 0; row < m_dwHeight:; row++) {
for (DWORD col = 0; col < m_dwWidth; col++, pSrc++, pDstt) |
// test pixel for non-transp and write if so
if (*pSrc = m_byTransp)
*pDst = *pSrc;
}
// bump dst ptr forward to start of next row
pDst += 1Pitch - m_dwWidth;

> Pri-

ita

il

pointer
is writ-

4.7 Drawing a Sprite on the DirectDraw Primary Surface

4.8 Demo Time

DEMO TIME =& 35

So far we’ve initialized DirectDraw, established that our preferred format
was supported, and created a Primary surface. Now let’s draw a sprite on
the Primary surface—we will be writing directly to the screen.

CPrimarySurface::B1tSprite(CSprite &spr, CPoint &point)
{

// first lock surface, using "wait until Tock”
m_pSurffns->Lock(NULL, &m_SurfDesc, DDLOCK_WAIT, NULL) Blt writes directly to

// invoke sprite b1t routing” the screen.
spr->Blt(m_SurfDesc.TpSurface, m_SurfDesc.1Pitch, poin
// release the lock

m_pSurffns->UnTock(NULL);

= Graphics memory is shared by many applications. The surface must be locked to manage
access to this common memory. Locking the surface returns a usable pointer in the Surface
Descriptor.

=Memory in surfaces is arranged in blocks. IPitch need not equal SurfaceWidth.

= Unlock before you leave. Surface locks can lock out all GDI access.

At this point, you should be seeing sprites drawn directly to the display

screen via DirectDraw Primary surfaces. Run the demo that corresponds to
this chapter. You should see a sprite appear on the screen. Move the mouse
around and the sprite will follow the mouse.

36 8 CHAPTER 4 SPRITES WITH DIRECTDRAW PRIMARY SURFACES

How do you know we’re writing directly to the display screen? Move the
mouse to the white border areas along the right or bottom edges of the clip-
ping window. You will notice that the sprite writes data outside the clipping
window. GDI would not let this happen. We have written directly to the
screen without GDI.

Why can’t we write anywhere on the screen? Our application tracks Mouse
Move messages and draws the sprite based on mouse position. Our applica-
tion stops receiving Mouse Move messages once the mouse cursor has left the
main Window area. You can alter this application to write anywhere if you
wish.

To be a well-behaved Windows application, your program should respect
window overlaps, boundaries, and movements. You will also notice that mov-
ing the sprite leaves sprite trails. This is because the application is not set to
refresh the background.

4.9 Redrawing Backgrounds on a DirectDraw
Primary Surface

Here is a quick background Blt routine. Again, this version is extremely sim-
ple. It takes in a destination pointer and pitch and draws the background at
the specified point. The only subtlety about Bltting backgrounds is that the
rows in graphics memory are not necessarily contiguous, and therefore the
Blt routine must handle a pitch.

void CBackground::B1t(LPBYTE 1pDst, long 1Pitch, CPoint &point)
{

PBYTEpDst, pSrc;

DWORDrow, dwLeft, dwWidth, dwTop, dwRows;

// compute address dst and src pixels. note pitch can be negative
pDst = (PBYTE)((Tong)1pDst + point.x + point.y * 1Pitch);

// code removed that clamps ViewRect within background
// dimensions; generates dwlLeft, dwWidth, dwTop, dwRows
// to define sub-region being bltted

pSrc = m_pData + dwlLeft + dwlop * m_dwWidth;

// b1t the sprite on a row by row basis
for (row = 0; row < dwRows; row+t)
memcpy (pDst, pSrc, dwWidth);// use simple memory copy
pDst += 1Pitch;// bump dst ptr forward
pSrc += m_dwWidth; // bump src ptr forward
}
}

o e

the
he clip-
lipping
the

viouse
pplica-
s left the
if you

sjpect
hat mov-
t set to

ely sim-
yund at
hat the

sre the

COMPOSITING OBJECTS ON A DIRECTDRAW PRIMARY SURFACE = 37

4.10 How Fast Can We Draw Sprites and Backgrounds?

Table 4-1 shows the speed at which sprites and backgrounds are drawn to Pri-

mary surfaces, and it presents a comparison with the GDI measurements
from the previous chapter.

TABLE 4-1 How Fast Can We Draw Sprites and Backgrounds?

CSurfacePrimary, 16 sprites (width: 84; height: 63) 11.9
CSpriteCCade, background (width: 734; height: 475) 77

CBackground

CSurfacePrimary, 16 sprites (width: 84; height: 63)

CSpritePs background (width: 734; height: 475)

CBackground

CSurfaceGDlI 16 sprites (width: 84; height: 63) 14.2
CSpriteGDI background (width: 734; height: 475) 8.8

CBackground GDI

Some observations on the measurements:

s The sprite routine written in Pentium-optimized assembly language is al-
most 10 times faster than the C code version. There are two measurements
noted for this routine as it is sensitive to alignment of destination writes.
The faster time reflects writing sprites to DWORD-aligned start addresses.

w We did write an assembly routine for background Blts (CBackgroundP5)
that maximized DWORD-aligned writes per scan line. But we found that

any performance gains detected were negligible, indicating that memcpy
may already be similarly optimized.

4.11 Compositing Objects on a DirectDraw
Primary Surface

Aaah, life would be simple if there were just one background and one sprite to
worry about. We could be sipping iced teas in some tropical country; or
maybe oh-nee-on soup in a Lu-wee-zee-ahna bayou. But . . .

2. Again, these measurements were taken on the base platform described in the Introduction and will def-
initely vary with different configurations. We have included the application and its source code on the
Internet site. Run the application on your platform and see what results you get. We have separated out the
timing code from the basic demo applications to simplify reading the base code.

38 8 CHAPTER 4 SPRITES WITH DIRECTDRAW PRIMARY SURFACES

OBJECTS NON-VISIBLE BUFFER WINDOW ON SCREEN

W
44

FIGURE 4-3 Compositing using a nonvisible buffer.

A difficulty of compositing sprites directly onto the Primary surface is that
the compositing process is visible, so there is a noticeable flicker on the
screen. You can obtain better results when you composite images on a non-
visible buffer and then make this buffer visible.

The Timing Application has a menu selection for Compositing. Take a look
at both the visible-buffer compositing and nonvisible-buffer compositing
options. The nonvisible-buffer compositing is implemented by rendering
all the graphics objects in back-to-front order in a system buffer and then
Bltting this nonvisible buffer to the Primary surface as shown in Figure 4-3.

With this method we’ve solved a quality problem, but at the cost of a Blt. Tk
Bltting an 800 X 600 image from system memory to video memory costs

about 10 milliseconds on the platform we’re using (see Table 4-2). In the

next chapter we will look at mechanisms to reduce the Blt cost.

TABLE 4-2 Composited Drawing to a Primary Surface

CSpriteP5 times are
faster when Bltting to
system memory. See
details in Part V.

0.6-0.9 79 10.5
Note: Times in milliseconds.

i ‘ WHAT HAVE By this time you've had an overview of DirectDraw and a taste of device dependence. You
YOU LEARNED? know that DirectDraw provides you with a lot more freedom than GDI does, but that there
is a development burden associated with this freedom. 5

If you worked through the code samples, you have handled code and had direct access
to the display surface using DirectDraw Primary surfaces. And if you did your extra credit
work and perused the CD, you have seen Primary surface sprite demos and fast Sprite Blt
code written in Pentium optimized assembly language.

And if you are still reading, you are probably ready and eager to move on to the next chap-
ter and learn about hardware acceleration, and to later chapters where you'll read about
processor optimization. Are you ready?

ce is that
n the
1 a hon-

ke alook
»ositing
adering
nd then
gure 4-3.

f a Blt.
y costs
.In the

dence. You
1t that there

irect access
extra credit
1st Sprite Bt

2 next chap-
read about

CHAPTER 5
===

Hardware Acceleration
via DirectDraw

WHY READ In the previous chapter you were introduced to rendering faster sprites directly to the dis-
THIS CHAPTER? play screen via Microsoft's DirectDraw interface. You were also introduced to the use of a
second buffer to remove flicker with composited images. But making data visible by Bltting

from the second buffer to the primary screen carries with it an expensive performance

penalty. This section demonstrates how hardware acceleration features can reduce the
cost of double-buffering,

In the previous chapter you were also introduced to rendering faster sprites directly to the
display screen using custom rendering routines. In this chapter you will explore rendering
sprites using hardware acceleration features.

In this chapter you will leamn how to query for, set up, and use
® hardware Bltters to reduce the cost of double-buffering,

m page flipping hardware to further reduce the double-buffering cost, and
® fransparency Bt hardware to reduce the cost of Bltting sprites.

5.1 Creating an Offscreen Surface

OK, roll up your sleeves. First, initialize the DirectDraw driver as in
Chapter 4.

Once DirectDraw has been initialized, let’s get access to an Offscreen sur-
face. Let’s create a CSurface object as usual (code follows).

40 m CHAPTER 5 HARDWARE ACCELERATION VIA DIRECTDRAW

CSurfaceOffscreen::CSurface0ffscreen(void)

{
// zero out the memory of the surface descriptor
memset (&m_Surflesc, 0, sizeof(m_SurfDesc));
// init surface descriptor size
m_SurfDesc.dwSize = sizeof(m_Surflesc);

\ |

Now let’s look at making some changes. In creating a Primary surface, we
were getting access to the primary display surface. We took what we got—
the dwWidth, the dwHeight, and the ddpfPixelFormat were all specified by
the DirectDraw driver to match the user’s display configuration. With Off-
screen surfaces, though, we’ve got to specify what we want, and the driver
will tell us whether or not our request can be satisfied.

DirectDraw drivers can be asked to enumerate the realm of their possibili-
ties. If you can accept a variety of formats, you may want to use
IDirectDraw::EnumSurfaces() to enumerate the available surfaces, and then
you can choose your preference based on your personal criteria (better per-
formance, better picture quality, or some other trade-off).

Our code only accepts RGB8, which is a very basic format and is supported
by nearly all DirectDraw drivers. So we will take the easy way out and try to
create an RGBS surface and react to the errors if there are any.

Let’s initialize the DDSURFACEDESC structure to our specifications and try to
create an Offscreen surface.

BOOL CSurfaceOffscreen::Init(LPOIRECTDRAW pdDraw, CWnd *pcWnd)

! RECT riin: e Need to specify the size of offscreen

peHnd->GetClientRect (&riin) ; surface. Get the size of the client area

m_dwhidth = (DWORD)(rWin.right - riin.left);| of theapplication.
m_dwHeight = (DWORD)(rWin.bottom - rWin.top);

/] set desired fields S};l)ecifysi]ze, type, and_pixel format of(iu;faoef, Note
n_SurfDesc. dwHei ght =E m_dwHeight; that DpPFPIXELFORMAT is a structure and therefore
m_Surfbesc.dwhidth = m_dwWidth; | 9WSizemustbe st
m_SurfDesc.ddpfPixelFormat.dwSize = sizeof (DDPIXELFORMAT);
m_SurfDesc.ddpfPixelFormat.dwRGBBitCount = 8;
m_SurfDesc.ddpfPixelFormat.dwFlags = DDPF_PALETTEINDEXEDS | DDPF_RGB;
m_SurfDesc.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN; <
m_SurfDesc.dwFlags =DDSD_WIDTH | DDSD_HEIGHT | DDSD_PIXELFORMAT | DDSD_CAPS;

// try create surface Specify which fields in descriptor were set.
HRESULT err;
err = pdDraw->CreateSurface(&m_SurfDesc

W]

1

face, we
Ne got—
ecified by
Nith Oft-
1e driver

possibili-
,and then

setter per-

supported
and try to

nd try to

offscreen
client area

face. Note
erefore

DDSD_CAPS;

]

DRAWING A SPRITE ON THE DIRECTDRAW OFFSCREEN SURFACE ® 41

if (err I= pp_ok) {
handleError(err);
return FALSE;
}
return TRUE;
}

L _ |

Exactly how to specify the color format has never been clearly documented, and
we have found that techniques that work with previous versions of DirectDraw

e do not work with current versions. To reach a resolution, we set our primary dis-
% play format to the color format we wanted, created a primary surface, got the sur-
/\/\/\Nmr,\\f\')/_) face descriptor with GetSurfaceDesc(), and looked at how the color format was

specified there.

5.2 Drawing a Sprite on the DirectDraw
Offscreen Surface

We created an Offscreen surface based on our preferred format. Now let’s
draw a sprite on this Offscreen surface. We can use the same sprite and
background Bt classes (and routines) we used in the previous chapter.

CSurfaceOffscreen::B1tSprite(CSprite &spr, CPoint &point)

{
m_pSurf->Lock(NULL, &m_SurfDesc, DDLOCK_WAIT, NULL); // first lock surface
spr->Blt(m_SurfDesc.1pSurface, m_SurfDesc.IPitch, point); // invoke blt
m_pSurf->Unlock(NULL); // release the Tock

}

Bltting sprites to an offscreen surface is pretty much the same as Bltting sprites to a
Primary surface. Lock to get access to the surface, invoke the SpriteBlt routine with
the newly obtained surface pointer and surface pitch, and then Unlock the surface.

L |

When you Blt to an Offscreen surface, the results are not immediately
visible. We have to Blt data from the Offscreen surface to the Primary sur-
face to see the results.

On occasions when Offscreen surfaces are used for overlays or for texture maps,
results may be immediately visible—look up the boscaps_y1sisLe flag in the
DirectDraw documentation on DDSCAPS.

Following is the code to transfer data to the visible surface.

42 m CHAPTER 5 HARDWARE ACCELERATION VIA DIRECTDRAW

R

CSurfaceOffscreen::Render(LPDIRECTDRAWSURFACE pPrimary, CWnd *pcWnd)
{

CPOINT ptTopLeft(0,0);

pchind->ClientToScreen(&ptTopleft);

long 1Right = ptTopleft.x + m_dwWidth;

long 1Bottom = ptToplLeft.y + m_dwHeight;

RECT rDst(ptTopLeft.x, ptTopLeft.y, 1Right, T1Bottom);

RECT rSrc(0, 0, m_dwWidth, m_dwHeight); -

// blt entire offscreen surface to subrect on primary surface
err = pPrimary->B1t(&rDst, m_pSurf, &rSrc, DDBLT_WAIT, NULL); ¢——u—r
}

=« IDjrectDrawSurface::Blt uses a BltFrom convention. The Blt function is invoked from the destination object; ;
that is, the object that will get modified, pPrimary. This convention is consistent with the convention in
MEC’s CDC::Blt. 5

=The Blt operation can be further controlled by flags in the fourth parameter. There are over twenty-five
controls, which include RasterOps, ColorFills, AlphaBlending, ChromaKeying, Z-Buffering, Rotation,
other special effects, and more. We will use ppBLT_keYSRC later in this chapter.

= Blt can be invoked asynchronously with the boeLT_asYNC flag. In Async mode, a successful return indicates
no parameter errors were detected and the operation was successfully posted. See IDirectDrawSurface::Get-
BltStatus to check for completion/errors.

= We use DDBLT_WATT to tell the Bltter to wait in case the Bltter hardware was already in use. The alternate
option is for the Bltter to send us a DDERR_WASSTILLDRAWING error message if the Bltter was busy.

= Blt permits specifying a sub-rectangle of the source. By moving the sub-rectangle around you can scroll a

| view window within the source image. Setting Source and Dest rects to be of different sizes invokes a stretch

| (or shrink).

Blt can return a DDERR_SURFACELOST error message. Surfaces can be lost because the display card’s mode was

changed or because an application used an exclusive access mode. See IDirectDrawSurface::Restore to deal with

lost surfaces. _—

l

5.3 Demo Time

At this point, you should be seeing sprites on the Primary surface. These

sprites were drawn to an Offscreen surface, and the composited image was

transferred to the Primary surface. Select the Primary Surface option from

the sample application on the CD. You should see a sprite appear on the 5
screen. Move the mouse around, and the sprite will follow the mouse.

How do you know we’re using Offscreen surfaces? Move the mouse to the
white border areas along the right or left edges. You may notice that the
sprite seems to “wrap around” to the other edge. If this artifact occurs, it is
because the rows of the Offscreen surface memory are packed contiguously.
When we write beyond an edge, we “happen” to write into the adjacent col-
umn. This artifact may not occur if the DirectDraw driver allocated an Off-
screen surface with noncontiguous rows (that is, [Pitch > dwWidth).

Move the mouse to the bottom edge. You will notice that the sprite disappears
before the mouse reaches the border. If we were to draw past the bottom bor-
der, we would write into unallocated memory and would generate a General

FINDING HARDWARE ACCELERATION a 43

Protection Fault (GPE). Therefore, for this demo, we have deliberately chosen
not to draw the sprite if it is going to extend past the bottom edge.

Don't search for CSurface Offscreen on our sample CD. Instead we use two
variants, CSurfaceVidMem and CSurfaceSysMem, which you can search for.

2ct;

5.4 How Fast Is OffScreen Surface Drawing?

Table 5-1 measures the speed of drawing sprites and backgrounds to Off-
Screen surfaces! merely to furnish a preliminary insight. More meaningful
measurements, comparisons, and discussions are upcoming in this chapter.

tes
iet-

a : TABLE 5-1 Preliminary Measurements for Offscreen Surface Drawing
tch
rith
— \
— 0.6-0.9 79 10.5
Al times are in milliseconds.
, These measurements look the same as the measurements for composited
p
These ; drawing to a Primary surface. So how about some acceleration? Where’s the
lage was ; hardware?
on from
m the H H -
o 5.5 Finding Hardware Acceleration
e to the ' We used PrimarySurface::Blt to transfer data from the Offscreen surface to
it the the Primary surface. Was this a hardware accelerated transfer? It’s hard to
urs, it is say. DirectDraw has a Hardware Emulation Layer (HEL) that will emulate
‘ b4 »
guously. DirectDraw functionality in software. The purpose of the HEL is to always
cent col- provide key DirectDraw features, even if the graphics hardware doesn’t sup-
2
dan Off- port them.
1).
sappears
tom bor- 1. Again, these measurements were taken on the base platform described in the Introduction and will
General definitely vary with different configurations.
2. Unfortunately, the DirectDraw HEL does not emulate all the features exposed by the DirectDraw
interface. Therefore, you cannot rely on software emulation always being available. DirectDraw::GetCaps
returns the capabilities of the hardware and the HEL independently.

44 s CHAPTER 5 HARDWARE ACCELERATION VIA DIRECTDRAW

So between the hardware and the HEL, we can’t really say who did the
PrimarySurface::Blt. Do you really need to know whether it was a hardware
BIt? Yes. You may want to know for a couple of reasons.

1. Hardware Bltters are faster than software emulated Blts, and you may
want to alter your application’s logic to respond to the performance
difference.

2. A Hardware Bltter may be available only under constraints, and you
may want to constrain the environment to get hardware-accelerated
performance. For example, hardware Bltting may only be available if
both the source and the destination are located in video memory—
therefore you may want to deliberately place objects in video memory.
Similarly, the hardware might only be able to stretch in integer multi-
ples, and you may want to disable arbitrary resizing to use hardware
stretches. (Look up the DirectDraw documentation on DOCAPS, DDFXCAPS,
and look for DDCAPS_CANBLTSYSMEM, DDFXCAPS_BLTSTRETCHXN, and
DDFXCAPS_BLTSTRETCHYN flags for more details on these examples.)

5.6 Setting Up for Hardware Acceleration

Here’s some code we can use to find out some of the hardware’s capabilities.

CHardware: :GetCaps(LPDIRECTDRAW pdDraw)
{

DDCAPS hwCaps = {0}, helCaps = (0};

hwCaps.dwSize = sizeof(DDCAPS);

helCaps.dwSize = sizeof (DDCAPS)

pDOraw->GetCaps(&hwCaps, &helCaps); €

if (hwCaps.dwCaps & DDCAPS_BLT) ¢ Can the h/w BIt?
m_bCanB1tVidMem = TRUE;

if (hwCaps.dwCaps & DDCAPS_CANBLTSYSMEM) ¢ Can it Blt from/to system memory?
m_bCanB1tSysMem = TRUE;

}

=Two DDCAPS structures are passed to IDirectDraw::GetCaps in which we get back descriptions of both the
hardware device and the Hardware Emulation Layer.

=DDCAPS structures are huge and allow for a wide variety of features to be described. In our code we are
mainly interested in DDCAPS_BLT and DOCAPS_CANBLTSYSMEM. Later in this chapter we will look for
DDCAPS_COLORKEY.

=Take a look at the documentation for bpcaps (and its contained structures) to get a feel for the breadth of
hardware features that can be exposed via DirectDraw. DDCAPS_GDI, DDCAPS_VBI, and
DDCAPS_ PALETTEVSYNC are features that might be useful. dcAPS_STEREOVIEW and DDCAPS_READSCANLINE at the
very least attract attention.

=DDCAPS contains within it a bpscaPs structure that during GetCaps will be filled by the kinds of DirectDraw
surfaces that can be created.
Not all features may be available simultaneously. For instance, by using one feature, another may become
unavailable.

SETTING UP FOR HARDWARE ACCELERATION = 45

the Of course, a lot more information is returned in the DDSCAPS structure.
rardware We’ve only highlighted the capabilities we’re looking for. And now, here’s
code to situate an Offscreen surface in video memory.
u may
ance BOOL CSurfaceVidMem::Init(LPDIRECTDRAW pdDraw, CHnd *pcwnd) |
{ RECT riin: The IDirectDraw b
1you . pcind->GetClientRect (&riin); 2b}ectthasaﬁilnc»
: m_dwiidth = (DWORD)(rWin.right - rMin.left); “’nh"query ow
rated . m_dwHeight = (DWORD)(rWin.bottom - rWin.top); m“ij bllnem"g“
ible if // check if there's enough memory for vidMem based surface| 2V2 }31. egn. ¢
DWORD dwTotal, dwFree; : graphics device.
ry— DDSCAPS ddsCaps; chourse,youcould
\emory. ddsCaps.dwCaps = DDSCAPS WPLAIN; Y o ot
K ~ pDDraw->GetAvailableVidMem(&ddsCaps, &dwTotal, &dwFree); iﬁracean ?104;1
multi- ; DWORD dwSurfSize = m_dwhidth * m_dwHeight; teremrfnﬁod‘” the
lware if (dwFree < dwSurfSize) { attempt faled.
handleError (DDERR_OUTQFVIDEOMEMORY) ;
IDFXCAPS, return FALSE; -
. T 1n DOCAPS_VIDEOMEMORY flag to force surface to
1 ‘ } 0 flag to fa face t
be created with video memory. The HEL will
's.) // set desired fields not allocate an emulated offscreen surface if the
' m_SurfDesc.dwHeight = m_dwHeight; device failed the request.

m_SurfDesc.dwhidth = m_dwiidth;

m_SurfDesc.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIIi/

m_SurfDesc.ddsCaps.dwCaps |= DDSCAPS_VIDEOMEMORY;

m_SurfDesc.ddpfPixelFormat.dwSize = sizeof(DDPIXELFORMAT);

pabilities. m_SurfDesc.ddpfPixelFormat.dwRGBBitCount = 8;
m_SurfDesc.ddpfPixelFormat.dwFlags = DDPF_PALETTEINDEXED8 | DDPF_RGB;

m_SurfDesc.dwFlags =DDSD_WIDTH|DDSD_HEIGHT |DDSD_PIXELFORMAT |DDSD_CAPS;

// try create surface
HRESULT err;
—» err = pdDraw->CreateSurface(&m_SurfDesc, &m_pSurf, NULL);
if (err I=DD_0K) {
handleError(err);
return FALSE;
}
return TRUE;

lemory?

Despite a successful negotiation of GetAvailableVidMem, the CreateSurface call can still
return DDERR_OUTOFVIDEOMEMORY. This is because we calculated dwSurfSize as
dwWidth*dwHeight. However, the graphics card may use an IPitch (allocated row width)
larger than dwWidth and there may not be enough memory for IPitch*dwHeight.

L For the times when there isn’t enough memory on the video card to create a
video memory surface, our code uses a CSurfaceSysMem surface. The code
w for this option is similar to the code we have used to situate an Offscreen
surface in video memory. In this case, the DDSCAPS_SYSTEMMEMORY is used
instead of the DDSCAPS_VIDEOMEMORY. Also the check for memory is not
needed, since the surface will be allocated in system memory.

46 m CHAPTER 5 HARDWARE ACCELERATION VIA DIRECTDRAW

Following is the code that uses the hardware Bltter. Looks just like
CSurfaceOffscreen::Render—doesn’t it? Except now we know we’re using the
hardware Bltter, because we checked that the graphics card did indeed have a
hardware Bltter, and when we created the surface we forced it to reside in
video memory.

CSurfaceVidMem: : Render (LPDIRECTDRAWSURFACE pPrimary, CWnd *pciind)
{

CPOINT ptTopleft(0,0);
pcnd->ClientToScreen(&ptTopleft);
! Tong TRight = ptTopleft.x + m_dwWidth;
| Tong 1Bottom = ptToplLeft.y + m_dwHeight;
| RECT rDst(ptTopLeft.x, ptTopLeft.y, TRight, 1Bottom);
RECT rSrc(0, 0, m_dwWidth, m_dwHeight};

// b1t entire offscreen surface to subrect on primary surface
err = pPrimary->B1t(&rDst, m_pSurf, &rSrc, DDBLT_WAIT, NULL);
}

0 |

5.7 How Fast Is CSurfaceVidMem Drawing?

Table 5-2 measures the speed at which objects can be drawn when using a
hardware-accelerated Offscreen surface.

TABLE 5-2 Measurements for Offscreen Surface Drawing

CSysviem 0.6-0.9 7.9 10.5 0.0 19.3
CVidMiem 0.7-1.8 7.7 0.1

All times are in milliseconds.

Wow! Refresh Screen is a minuscule 0.1 millisecond. The total time seems
halved. Wow! But what’s this new column for Post Refresh? Well, when we
invoke pPrimary->Blt, the hardware Bltter returns as soon as it has started
the Blt. We can use the main processor, while the graphics processor does
the Blt in the background. This is in effect a form of parallel processing.
(Maybe one day there will be many of these little processors working in par-
allel. Oh wait, isn’t that what’s in them “soopah computahs”? Never mind.)

sing the
lhavea
lein

1sing a

seems
aen we
started
r does
sing.
gin par-
mind.)

ACCELERATING OFFSCREEN TO PRIMARY TRANSFERS BY PAGE FLIPS m 47

Parallel processing is functional as long as we don’t want to use the same
memory that the graphics processor is using. In other words, we would be
denied access to the Primary surface while the graphics processor was still
working. In this case we would have to wait until the Blt was complete. Post
Refresh is a measurement of the worst-case scenario for wait time—we
tried to lock the surface immediately after the Blt, and then we measured
how long we had to wait.

The gist of all this is

1. We can, indeed, increase overall application speed as long as the applica-
tion can work on something else while the graphics processor is Bltting
in the background. This seems like a fairly workable situation.

2. We have not gained much benefit in the overall “Composite and Ren-
der” time. Time is gained only by parallel processing and not by reduc-
ing the length of the graphics rendering steps.

5.8 Accelerating Offscreen to Pi'imary Transfers
by Page Flips

5.8.1

We've used the hardware Bltter to transfer data from Offscreen surfaces to
the Primary surface. On timing these data transfers, we find that despite
using a hardware Bltter, the actual Blt cost is still about 9 milliseconds. Let’s
look at Page Flipping hardware in graphics devices to tap into an even faster
mechanism for making background data visible.

What Is Graphics Page Flipping?

Consider that the display screen is being constantly refreshed at the moni-
tor refresh rate (anywhere between 30 and 90 times per second). Pixel data
to be displayed on the screen is retrieved from somewhere in graphics card
memory.

What if the location of the data was specified by a pointer; that is, what if
the monitor refresh hardware used an indirect reference to access pixel data.
Change the value of the pointer and an entirely new image is being dis-
played on the screen. This in effect is Page Flipping.

48 m CHAPTER 5 HARDWARE ACCELERATION VIA DIRECTDRAW

5.8.2

5.8.3

TABLE 5-3 Constraints on Using Page Flipping

Page Flipping hardware, in general, is designed to get
the pointer value and then de-reference the pointer to
refresh the entire image.

Therefore, on[Y the entire screen
can be Page Flipped (not inde-
pendent windows).

The screen area of the display can be reconfigured to
different shapes. But once configured, graphics cards
are designed for constant screen areas.

Therefore, all buffers used for
Page Flipping must be of the
same size.

With two buffers, data written into the invisible buffer
is not written into the visible buffer. Data will be miss-
ing from alternate buffers unless it is written into both,
and the result will be an annoying flicker.

Therefore, either the entire scene
must be redrawn, or some intelli-
gent logic must be used to make

ata continue to exist across
buffers.

Similarly, GDI does not know that we are in Pa%? Flip
mode, and the data that GDI drew into one buffer
would "vanish” when we Page Flipped. (it would reap-
pear when we Page Flipped again, producing an

apparent flicker.)

Therefore Page Flipping can only
be used in “Exclusive” mode,
and other applications cannot
share the display while Page Flip-
ping is in use.

DirectDraw Page Flipping Model

Let’s say we set up two buffers. One buffer is the visible buffer and is called
the front buffer. The second buffer is invisible and is called the back buffer.
When the graphics card Page Flips, it makes the back buffer visible; that is,

the back buffer becomes the front buffer.

Now, let’s suppose we wanted to render the next image into what was previ-
ously the front buffer. Which surface do we Lock to get back a usable
pointer? The code that follows in the next subsection will show that after a
Page Flip, DirectDraw makes the front buffer into the back buffer and vice
versa, and therefore all we need to do is to Lock() what was our back buffer.

Does the Hardware Support Page Flipping?
Let’s find out whether the hardware supports Page Flipping.

CHardware::CanTransparentB1t()
{

DDCAPS hwCaps = {0}, helCaps = {0};
hwCaps.dwSize = sizeof(DDCAPS);
helCaps.dwSize = sizeof(DDCAPS);
pODraw->GetCaps (&hwCaps, &helCaps);

DirectDraw indicates support
for Page Flipping by indicating
that Flip surfaces can be created.

BOOL bCanPageFlip = FALSE;
if (hwCaps.ddsCaps.dwCaps & DDSCAPS_FLIP)
bCanPageFlip = TRUE;

/

ACCELERATING OFFSCREEN TO PRIMARY TRANSFERS BY PAGE FLIPS & 49
5.8.4 Setting Up DirectDraw to Use Page Flipping |
screen There are two ways to set up Page Flipping. The first is to have DirectDraw '
inde- create a complex surface that automatically creates and connects multiple ‘
= buffers. The second approach is to create a Primary surface, create Offscreen
Jor Surfaces, and then to Attach the Offscreen surfaces to the Primary Surface. '
he Y I
ecene | We will demonstrate the second path, because it gives us the opportunity to ,
2 intelli- help you past some tough problems that you would experience if you i ;
:Srsnake needed to use this path. 1
in only
de, BOOL CSurfaceBackBuffer::Init(LPDIRECTDRAW pdDraw, CWnd *pcWnd)
inot {
ge Flip- pDDraw->SetCooperativelevel (pchnd->hknd,
DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN); «
First we’ve got to set up DirectDraw to be in FullScreen mode to do Page Flipping.
=FullScreen mode can only be setup, if we have Exclusive access to the screen.
= DirectDraw will return an error if you SetCooperativeLevel while you have any surfaces
lled created. Shut down any surfaces prior to using this function.
ffer.
tis, The documentation states that IDirectDrawSurface::Flip can only be invoked on a buffer marked as the DDSCAPS_FRONTBUFFER
surface from among a group of buffers that have been marked as DDSCAPS_FLIP. But if you tried to set the
DDSCAPS_FRONTBUFFER, DirectDraw will return an error stating that DDOSCAPS_FRONTBUFFER is not a settable flag, therefore !
. this code has been commented out. We found that Flips work when you don’t set these flags. *
revi-

// create a primary surface

- memset(&m_PrimDesc, 0, sizeof(DDSURFACEDESC));
era m_PrimDesc.dwSize = sizeof (DDSURFACEDESC);
. m_PrimDesc.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
vice m_PrimDesc.dwFlags = DDSD_CAPS;
1ffer. ‘ // m_PrimDesc.ddsCaps.dwCaps |= (DDSCAPS_COMPLEX);

] // m_PrimDesc.ddsCaps.dwCaps |= (DDSCAPS_FRONTBUFFER{DDSCAPS_FLIP);]
pDDraw->CreateSurface(&m_PrimDesc, &m_PrimSurf, NULL); i

= The back buffer must be pretty much identical to the front buffer. So tell DirectDraw to
describe the primary surface and copy it over.

= Create the back buffer as a plain Offscreen surface. Force it to reside in video memory,
so that graphics hardware can Flip the surface. Also, see note above on Flip flags.

m_PrimSurf.GetSurfaceDesc(&m_SurfDesc);

memcpy (&m_SurfDesc, &m_PrimDesc, sizeof(DDSURFACEDESC));
m_SurfDesc.ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN|DDSCAPS_VIDEOMEMORY ;
// m_PrimDesc.ddsCaps.dwCaps |= (DDSCAPS_COMPLEX); [
d // m_SurfDesc.ddsCaps.dwCaps |= (DDSCAPS_BACKBUFFER|DDSCAPS_FLIP);

- m_SurfDesc.dwFlags = DDSD_WIDTH | DDSD_HEIGHT|DDSD_PIXELFORMAT|DDSD_CAPS;

Attach the Offscreen surface to the Primary surface. A chain of multiple buffers can be attachedAJ
L.

// create the offscreen surface and attach it to the primary surface
~ pdDraw->CreateSurface(&m_SurfDesc, &m_pSurf, NULL);
] m_pPrimSurf->AddAttachedSurface(m_pSurf); <

return TRUE;

50 8 CHAPTER S5

5.8.5

HARDWARE ACCELERATION VIA DIRECTDRAW

“Rendering” Flippable Surfaces

A back buffer is just like any other Offscreen surface, and the code to draw

objects to CSurfaceBackBulffer is just like the code to draw objects to CSur-
faceVidMem. However, the code to make the data in the back buffer visible
is different. We use Flip instead of Blt to “transfer” the data to the Primary

surface. '

CSurfaceBackBuffer: :Render()
{

// Flip with WAIT-UNTIL-READY
m_pPrimSurf.F1ip(NULL, (DWORD)DDFLIP_WAIT);

5.9 How Fast Is CSurfaceBackBuffer Drawing?

Table 5-4 measures the speed of drawing objects with a hardware acceler-
ated Offscreen surface.

TABLE 5-4 Measurements for Offscreen Surface Drawing

CSysMem "06-09 ‘ 79 105 00 | 193
CVidMiem 0.7-18 77 0.1 89 17.4/185
CBackBuffer 0.7-1.8 77 0.1 0

All times are in milliseconds.

The variability in the Post Refresh for back buffers is the glaring figure.
IDirectDrawSurface2::Flip() is always synchronized with the Vertical Blank
Interval® (VBI) of the monitor. So if you invoked Flip() function just before
the VBI, then the Flip() function would be instantaneous. But if you
invoked Flip() function just after the VB, then you would have to wait for
VBI for the flip to occur.

3. Vertical Blank Interval is the time interval when no monitor refresh is occurring, because the moni-
tor’s beam is returning from the end position (bottom right corner) to the start position (top left cor-
ner) after having refreshed the screen.

to draw
to CSur-
er visible
Primary

icceler-

7.4/18.5

gure.
al Blank
ist before
u

wait for

e the moni-
op left cor-

HARDWARE ACCELERATION TO BLT SPRITES & 51

DirectDraw will not let you lock a back buffer surface that is waiting to be
flipped. However, in contrast to the use of the Bltter, a “Wait for VBI” does
not consume hardware resources, and DirectDraw will allow you to use
other surfaces. So what if you had a second back buffer that you could ren-
der to, while the other one was waiting to be flipped? This is known as triple
buffering. Post Refresh cost is negligible with triple buffering, and the only
practical limit to the frame refresh rate is the refresh rate of the monitor.

5.10 Hardware Acceleration to Bit Sprites

We used hardware to Blt from Offscreen surface to Primary surface. Why
not use hardware to render objects too? Sprites are transparent objects. To
accelerate sprite Bltting with hardware, we must find out whether the hard-
ware can handle data with transparency.

CHardware::CanTransparentB1t()

{
DDCAPS hwCaps = {0}, helCaps = {0};
hwCaps.dwSize = sizeof(DDCAPS);
helCaps.dwSize = sizeof (DDCAPS);
pDDraw->GetCaps(&hwCaps, &helCaps);

DDCAPS_COLORKEY says that some form of colorkey is supported. DbCAPS_COLORKEYHHASSIST says that the color-
keying is done by hardware. We would have preferred to check only for the second flag, but we found some
graphics cards that only set the first flag. Graphics card vendors are not supposed to provide software emula-
tion. You may want to test the performance of color-key implementations.

BOOL bCanKey = FALSE;

if ((hwCaps.dwCaps & DDCAPS_COLORKEY) ||
(hwCaps.dwCaps & DDCAPS_COLORKEYHWASSIST)) <€
bCanKey = TRUE;

if (bCanKey && (hwCaps.dwCKeyCaps & DDCKEYCAPS_SRCBLT)) #-———
m_bCanTranspB1t = TRUE;

}

Color-keying can take many forms—there are about eighteen different flags defined in the DirectDraw docu-
mentation. The dwCKeyCaps field in the 00cAps structure describes supported color-keying forms. Once we
know that some form of color key is supported, we've got to check if it’s a form we can use. For our defini-
tion of sprites, our sample application looks for DDCKEYCAPS_SRCBLT color-keying. -

BITMAP bm;

pData

52 8 CHAPTER 5 HARDWARE ACCELERATION VIA DIRECTDRAW

Once we've found that the hardware is indeed capable of Bltting sprites, we
can look at code to set up sprites for hardware Bltting and to Blt the sprites.

BOOL CSpriteGrfx::Init(LPDIRECTDRAW pdDraw,
CBitmap &bitmap, BYTE byKeyColor)
{

// load data from bitmap and init member variables

bitmap.GetBitmap(&bm);
new BYTE[bm.bmWidth * bm.bmHeight];
bitmap.GetBitmapBits(bm.bmWidth * bm.bmHeight, pData);

m_dwWidth = bm.bmWidth;
m_dwHeight = bm.bmHeight;
m_byTransp = byKeyColor;

We start out just like we were creating a hardware-accelerated Offscreen surface.

if (dwFree

return

m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.
m_SurfDesc.

DWORD dwTotal, dwfree;
DDSCAPS ddsCaps;

ddsCaps.dwCaps
pDDraw->GetAvailableVidMem(&ddsCaps, &dwTotal, &dwFree);
DWORD dwSurfSize

DDSCAPS_OFFSCREENPLAIN;

m_dwHeight * m_dwWidth;
< dwSurfSize) {

handleError (DDERR_OUTOFVIDEOMEMORY) ;

FALSE;

dwHeight = m_dwHeight;

dwhidth = m_dwWidth:

ddsCaps.dwCaps = DDSCAPS_OFFSCREENPLAIN ;

ddsCaps.dwCaps |= DDSCAPS_VIDEOMEMORY ;
ddpfPixelFormat.dwSize = sizeof (DDPIXELFORMAT);
ddpfPixelFormat.dwFlags = DDPF_PALETTEINDEXEDS;

dwFlags =DDSD_WIDTH|DDSD_HEIGHT |DDSD_PIXELFORMAT|DDSD_CAPS;

Add in specification of color key and set dwFlags to indicate that this field is valid. The Color key
can be a range. Our sample only uses a single color and sets high and low to be the same.

DWORD dwKey = (DWORD)byKeyColor;
m_SurfDesc.ddckCKSrcB1t.dwColorSpacelowValue
m_SurfDesc.ddckCKSrcB1t.dwColorSpaceHighValue
m_SurfDesc.dwFlags |= DDSD_CKSRCBLT;

dwKey;
dwKey;

// try create the surface
HRESULT err pdDraw->CreateSurface(&m_SurfDesc,&m_pSurf, NULL);
if (err != DD_0OK) {
handleError(err);
return FALSE;

77

rites, we
e sprites.

PS;

Color key

Drawing?

How FAST Is CSPRITEGRFX (AND CBACKGROUNDGRFX) DRAWING? & 53

Set up the sprite, by transferring data to the Offscreen surface at Init-Time. Remember to lock surface to get
access and unlock surface after use.

m_pSurf->Lock(NULL, &m_SurfDesc, DDLOCK_WAIT, NULL);
PBYTE pDst = (PBYTE)m_SurfDesc.lpSurface;
PBYTE pSrc = m_pData;
for (DWORD dwRow = 0; dwRow < m_dwHeight; dwRowt++) |
memcpy (pDst, pSrc, m_dwWidth);
pDst += m_SurfDesc.1Pitch;
pSrc += m_dwWidth;
H
m_pSurf->Unlock(NULL);
return TRUE;

Next we'll check out the code that Blts sprites with the hardware Bltter. It’s
pretty much like CSurfaceVidMem, except for the boBLT_KFYSRC added into
the Blt control flag.

CSpriteGrfx: :B1t(LPDIRECTDRAWSURFACE pDstSurf, CPoint &ptDst)
{

long 1Right = ptDst.x + m_dwWidth;

long 1Bottom = ptDst.y + m_dwHeight;

RECTrDst(ptDst.x, ptDst.y, 1Right, 1Bottom);

RECTrSrc(0, 0, m_dwWidth, m_dwHeight);

// blt entire sprite surface to subrect on dest surface
pDstSurf->B1t(&rDst,m_pSurf,&rSrc,DDBLT_WAIT|DDBLT_KEYSRC,NULL);

}
Blt sprite to destination surface. Specify that the sprite has

transparency and that it is keyed on the source.

5.11 How Fast Is CSpriteGrfx (and CBackgroundGrfx)

Table 5-5 on the next page records the speed of drawing sprites and back-
grounds with and without hardware acceleration. Following the table are

some observations on the measurements.

54 @ CHAPTER 5 HARDWARE ACCELERATION VIA DIRECTDRAW

WHAT HAVE
You LEARNED?

TABLE 5-5 Measurement of Hardware-Accelerated Object Drawing

0.7-1.8 2.4-2.7

All times are in milliseconds.

m CSpriteGrfx is not as sensitive to unaligned writes as is CSpriteP5. But on
the platform we’re using the CPU-based sprite drawing routine is faster
than the graphics hardware-based routine. Note that CSpriteP5’s time
will vary with CPU speed, while CSpriteGrfx’s time probably won’t.

m Non-transparency Blts run faster when you use hardware acceleration.
The benefit is especially noticeable for large backgrounds. The CPU in
general is faster at Transparent Blts, with the performance difference in-
creasing with faster CPU speeds.

CPU-based rendering needs surfaces to be locked, but hardware-accelerated
sprites do not—so you would need to do constant Locks and Unlocks. Lock/
Unlock costs may be comparatively large when you are rendering small sprites.
Our surface-rendering code adds logic to avoid unnecessary locks and unlocks.
Based on your sprite sizes, it may be worth making this effort to minimize locks
and unlocks.

By this time, you've got a taste of accessing device features to accelerate multimedia per-
formance under Windows. If you worked through the code samples, you would have han-
dled code to create and accelerate offscreen buffers, set the display into full-screen mode;
and performed Page Flipping. You would also have worked through code to draw sprites
and backgrounds using hardware acceleration.

You should also have gotten a taste for the performance costs of various options. As a
result you have some experience of how important it is to apportion device memory re-
sources thoughtfully. Our acceleration strategy for the multimedia objects in this section
would be to give triple buffering the highest priority, to give background Bltting the second
highest priority, and to try to use the CPU for Transparent Blts. We hope we have sparked
some ideas on what memory allocation strategy would serve your application best.

Device dependence can be burdensome. There's a lot of code to be written, debugged,
profiled for performance, and optimized. In the next chapter you will learn of software
libraries with higher-level APIs that work to provide high-performance multimedia without
the burden of device dependence—sort of like a “GDI for Multimedia.”

/ing

. Buton
is faster
'5’s time
m’t.

leration.
CPU in
‘ence in-

ated
_ock/
| sprites.
unlocks.
ize locks

nedia per-
have han-
:en mode;
aw sprites

ions. As a
emory re-
lis section
1e second
e sparked
dest.

lebugged,
f software
lia without

CHAPTER 6
e =]

RDX: High-Performance
Mixing with a High-Level API

WHY READ In the previous chapters, you were introduced to several device-dependent paths for
THIS CHAPTER? achieving higher-performance sprites using Microsoft DirectDraw. But for routine multi-
media, wouldn't it be nice to have the multimedia equivalent of GDI—to be able to pro-
gram with multimedia objects like sprites, backgrounds, and video streams without having

to worry about the idiosyncrasies of device implementations?

This chapter will introduce you to Intel's Realistic Display Mixer (RDX), which offers a
device-independent interface for multimedia objects. RDX has hand tuned assembly code
for accomplishing high performance on unaccelerated platforms, and it accesses hard-
ware features whenever available for further acceleration. Read on and decide whether
the ease of programming makes up for having to leamn a new interface. Decide whether the
features and performance make up for any reduced flexibility. As you work through this
chapter, you will

m get an overview of what RDX is and what it offers,

®m learn how to use RDX to render fast sprites and backgrounds, and
m learn how to direct RDX's use of DirectDraw.

6.1 Introduction to Intel’s RDX Animation Library

Direct access to device features, through interfaces like DCI and Direct-
Draw, is one way of addressing performance problems for multimedia
under Windows. The downside of direct access is device dependence.
Direct access also forces the programmer to learn how a variety of graphics
devices work.

s 55 =

56 m CHAPTER 6 RDX: HIGH-PERFORMANCE MIXING WITH A HIGH-LEVEL API

Intel developed the Realistic Display Mixer (RDX) system to provide devel-
opers with a high-level interface to manage multimedia objects and multi-
media devices. Since multimedia applications are performance sensitive,
Intel’s RDX system has been engineered to provide its high-level abstrac-
tion without sacrificing performance.

Figure 6-1 shows RDX within the context of the Windows 95 display archi-
tecture. The system can be considered as “middle-ware,” providing abstrac-
tions above Microsoft’s DirectDraw and Direct Video, and interacting with
Video for Windows (VFW), RDX can also interface with Microsoft’s
Direct3D and ActiveMovie components.

FIGURE 6-1 RDX within the Windows 95 display architecture.

Features of RDX

RDX is a high-performance multimedia object management system that
allows developers to program at a higher level without a performance pen-
alty. The RDX system makes extensive use of hand-tuned assembly code to
obtain high performance even on unaccelerated platforms. RDX can use
hardware acceleration when available and can also be upgraded with
assembly code modules tuned to future processors.

Figure 6-2 shows the RDX object management system architecture. The
architecture allows multimedia objects like sprites, backgrounds, video, or
3D to be mixed with one another. The system can handle even complex
mixing scenarios such as video on video with differing frame rates.

INTRODUCTION TO INTEL’S RDX ANIMATION LIBRARY = 57
le devel- —

i Application J cfivelovie |
| multi- |
itive, |
strac- |

VFW ‘
i Video |
y archi- Codecs |
abstrac-
ng with
H
s

Direct Draw or DCI DirectSound

FIGURE 6-2 RDX object management system architecture.

The RDX system consists of a mixer module and some other object modules:

m The Mixer module defines generic mixable objects, object attributes, and
attribute management functions. Objects that follow the rules of the
mixer module can be mixed with one another without knowing about
one another. The Mixer module interfaces with DirectDraw and accesses
suitable hardware acceleration.

s The RDX Audio-Video (AV) module supports video tracks, audio tracks,
and AV streams as mixable objects. It interfaces with the Video for Win-
dows Audio-Video Interleaved (AVI) file format and VFW-based codecs.
The AV module supports sources of transparent video such as Indeo Video
Interactive.

m The RDX Animation module contains hand-tuned assembly code to sup-
port sprites, backgrounds, and tiled grids as mixable objects. The RDX
Animation module also exports effects that can be applied on objects from
both the Animation module and the AV module. Examples of effects
include shearing and horizontal or vertical flipping.

n that

1ce pen-
“code to
n use

th

In addition to the mixing and the predefined objects, RDX offers a fairly
straightforward interface based on all objects having generic attributes.
RDX uses simple function calls for various DirectDraw display modes to
hide underlying device dependence.

. The
ideo, or
plex

58 @ CHAPTER 6 RDX: HIGH-PERFORMANCE MIXING WITH A HIGH-LEVEL API

RDX offers grouping to easily manipulate the attributes of many objects. It
offers effects to transform the image data of an object at draw-time. Timers
and events in RDX allow activities to be scheduled and allow the synchro-
nizing of time-stamped material such as video streams. Collision and hot
spots detect interactions between objects.

This chapter deals primarily with the Animation module and the Mixer
module.

| 6.1.2 Before You Get Overly Excited

RDX offers high performance without the programming burden or device
dependence, but the ease of use may come at the expense of reduced flexi-
} bility. For example, for practical reasons RDX will only use a subset of the
| features that are offered by DirectDraw and Video for Windows. Similarly,
RDX will only tap into a subset of the acceleration features offered by hard-
i ware devices.

Just as when we were evaluating GDI, we must measure the strengths of
RDX’s device independence against the possibility of reduced flexibility.
RDX does not prevent simultaneous use of DirectX, but in that case, the
benefits of programming ease are defeated. And! Having to learn more than
one set of APIs and debugging more than one system component are added
burdens.

6.2 Using RDX

RDX is an object-based system. The object hierarchy in RDX contains
generic objects, render objects, and source data objects.

s All displayable RDX objects are derived from a generic objects base class.
The generic objects base class defines a set of generic attributes and a set
of attribute management functions.

e Displayable objects derive from the base class and can be called render
objects. Sprites, backgrounds, grids/tiles, and videotracks are examples of
render objects. In addition to the inherited functions, render objects also
define object-specific functions, which work only on objects of that par-
ticular kind.

m Render objects inherently do not contain image data; rather they maintain
links to data objects called source data objects (for example, bitmaps,
avFiles). A single source data object can be shared by several render objects.

bjects. It
. Timers
mchro-
nd hot

vixer

r device
ed flexi-
t of the
smilarly,
by hard-

ths of
bility.
se, the

jore than
re added

ains

yase class.
.and a set

ed render
amples of
djects also
“that par-

‘maintain
bitmaps,
er objects.

6.2.1

UsiNG RDX ® 59

The RDX system also provides support objects and support functions,
which operate on groups, effects, timers, events, and so forth.

Generic Objects with RDX

All displayable RDX objects are derived from a base class and inherit a set of
generic attributes from the base class. The system provides a set of attribute
functions, which an application can use to set, get, and change attribute
values.

Table 6-1 lists the generic attributes that are inherited by all RDX objects.
Functions to manipulate these generic attributes all begin with the

obj mnemonic. For example, the functions to modify destination are
objSetDestination, objGetDestination, and objAdjDestination.

TABLE 6-1 Generic Attributes Inherited by RDX Objects

View Application-defined subset of an object’s source image area

Visibility Toggle on/off whether an object should be rendered

Draw Order Priority order of objects drawn on top of each other

Current Image Index to image to be rendered from within a sequence

Destination Surface to which the object is mapped; surface destinations
can themselves be mapped to windows, memory, or other
surfaces

Destination Rectangle | Application-defined subset of destination area

Position Location of object on its destination; modifying the position
also modifies the Destination Rectangle and vice versa

60 8 CHAPTER 6 RDX: HIGH-PERFORMANCE MIXiNG WITH A HIGH-LEVEL API

The nature of some objects forces minor variations in the generic attribute
semantics. For example, an audio track has the visibility attribute, but its
meaning is undefined. Similarly, the current image attribute is ambiguous
for nonsequenced objects. The exceptions are fairly minor.

6.2.2 The Programming Model

The general model for building an RDX render object can be broken into
three parts:

1. Create a Source Data Object (SDO) and load its data, or reference a
created SDO.

2. Create the render object itself and associate it to the SDO.

3. Set any appropriate object attributes to nondefault values.

The general model for preparing render objects for display has two parts:

1. Create a surface, or reference an already created surface. Map the surface
to a window or a memory buffer. This defines where the surface will be
drawn at draw time.

2. Map render objects to the surface. Each time you map an object to a

surface, the system uses the object’s draw order to place it in an ordered
display list associated with the surface.

Now draw the surface. When you do this, the system traverses the display
list, drawing each object in the list into a buffer, and then the system “trans-
mits” the buffer to the final destination. (The system will use the appropri-
ate DirectDraw Primary or Offscreen buffers if the final destination is a
window.)

6.3 Working with RDX

6.3.1 Creating an RDX Surface

Enough reading! Time to work. Here’s the code for creating an RDX
surface.

: attribute
, but its
1biguous

ken into

ence a

VO parts:

‘he surface
wce will be

actto a
in ordered

e display
tem “trans-
appropri-

ionisa

(DX

WORKING WITH RDX =& 61

CSurfaceRdx::Init(Chnd *pcWnd)
{

RECT rWin;

pchind->GetClientRect (&rWin);

DWORD dwWidth = (DWORD) (rWin.right - rWin.left);
DWORD dwHeight = (DWORD)(rWin.bottom - rWin.top);
srfCreate(dwWidth, dwHeight, RGB_CLUT8, &m_hSurf); <

1. Create a surface with same size as the client area. The size does not have to match since RDX will clip to destination if
needed. Create the smallest surface needed—reducing size increases performance by reducing the area to be redrawn and
also makes it easier to fit the surface onto graphics memory.

2. Specify the color format of the surface. Objects will be mixed in this color format. We could insert color converters, but
our example is simple and is designed for everything to be set up in RGB 8-bit mode.

3. RDX returns a handle to the surface in the space we pointed to in the last parameter, M_HSURF.

6.3.2

L

srfSetDestWindow(m_hSurf, pcWnd->m_hWnd);
return TRUE;

Map the surface to the destination window. RDX will watch
for window movements or size changes and will clip the image
if needed.

An RDX Sprite Class
And here’s the code for initializing an RDX-based CSprite.

BOOL CSpriteRDX::Init(HOBJ hSurf, UINT nResID, BYTE byKeyColor)
i R

BITMAP bm;
bitmap.GetBitmap(&bm);
m_dwWidth = bm.bmWidth;
m_dwHeight = bm.bmHeight;
m_byTransp = byKeyColor;

Create and set up an hbmp (SDO)‘J

HBMPHEADER bmpHeader;
hbmpCreate(m_dwiWidth,m_dwHeight,RGB_CLUT8,&m_hBmp); @ Create RDX hbmp object.
BYTE *pData;

hbmpGetLockedBuffer(m‘HBmp, &pData, &bmpHeader); { Get access to RDX
space.

bitmap.GetBitmapBits(m_dwWidth*m_dwHeight, pData); ¢ Load datainto RDX
space.

hbmpReleaseBuffer(m_hBmp); § Release access.

hbmpSetTransparencyColor(m_hBmp, (DWORD)byKeyColor);qQ Specify that bitmap is

Create sprite; associate data to it; associate transparant.
sprite to surface.

sprCreate(&m_hSpr);
sprSetData(m_hSpr, m_hBmp);
objSetDestination(m_hSpr, m_hSurf);

return TRUE; Pass sprite handle to Obj function call. The
generic object (Obj) will be manipulated from the
actual object.

PART Il

62 8 CHAPTER 6 RDX: HIGH-PERFORMANCE MIXING WITH A HIGH-LEVEL API

6.3.3 Drawing the RDX Sprite
With RDX, we don’t have to actually draw the sprite. We merely adjust any
relevant attributes (such as position and/or draw order) and “draw” the
surface to which the sprite was connected.

CSysMen
CVidMerr:

|
: CSurfaceRdx::B1tSprite(CSprite &spr, CPoint &point)
I { - - :
objSetPosition(m_hSpr, point); // set location in surface L All times a
objSetDrawOrder(m_hSpr, 1); // smaller number means in front - ;

}

SrfDraw invokes, in back-to-front order, render routines of all
CSurfaceRdx: :Render() objects mapped to the surface. This call then transfers the resulting

’] { composited image to the destination window using the appropriate

i srfDraw(m_hSurf): IDirectDraw method.

| }

l |

6.4 Demo Time

At this point, select the RDX option in the sample application on the CD.
You should be seeing sprites on the application window. These sprites were
drawn using an RDX surface and an RDX sprite.

How do you know we’re using RDX? Move the mouse to the white border
areas along the right or left edges. The sprite is clipped to the boundaries of 6.5 |
the clipping window. Move the window to a different position, and now :
move the mouse over the clipping window. The mouse is drawn at the win-
dow’s new position. The Clipper code within the RDX library is automati-
cally handling window moves.

6.4.1 How Fast Does CSurfaceRdx Draw?

Table 6-2 shows the speed at which objects are drawn with RDX in compar-
ison to the methods used in the previous chapter. Some observations on the
measurements:

s RDX’s drawing time is as good or better than our optimized routines
from the previous chapter. RDX automatically senses the MMX technol-
ogy capabilities of the platform we are using. The improved performance
can be attributed to more finely optimized Pentium code or to benefits
from MMX technology enhancements.

P1

adjust any
aw” the

front

sof all
he resulting
appropriate

]

n the CD.
sprites were

rite border
undaries of
and now

| at the win-
; automati-

.in compar-
tions on the

red routines
VIX technol-
yerformance
r to benefits

HARDWARE ACCELERATION WITH RDX = 63

TABLE 6-2 Measurements for CSurfaceRdx Drawing

CSysMem 0.6-0.9 7.9 10.5 0.0 19.3
CvidMem 0.7-1.8 77 0.1 8.9 16.7/18.5
CRdx 43 1.7 0.0 17.3

All imes are in milliseconds.

® Independently separating sprite, background, and screen refresh time
when using RDX is not straightforward, since RDX always draws the entire
surface. Sprite draw times were obtained by the following equation:

t t t

spr = surf+sprites — “surf

and backgrounds were measured by

tokg = tsurfbkg ~ Lsurf

Refresh Screen still takes the most time. So how about asking RDX to use
hardware acceleration if it’s available?

6.5 Hardware Acceleration with RDX

6.5.1

With RDX we can apply effects on objects. An effect modifies the way that
data is rendered, but it does not modify the original data. For example, we
could render a sprite upside down by applying a vertical flip effect on it.
RDX provides a variety of effects. Some of these effects can be applied on all
objects; others can be applied only to specific objects. Refer to the RDX
documentation for more detail on effects.

Let’s start with asking RDX to set up the application in Full Screen mode
and use Page Flip hardware if it’s available.

Full Screen Mode with RDX

Full Screen mode is an effect that can be applied to surfaces. Here is some
code to apply the Full Screen effect on our CSurfaceRdx.

PART Il

EXTRA CREDIT: Explore
inserting color conver-
sion effects on our
RGBS surface to han-
dle non-RGB8 display
modes.

6.5.2

6.5.3

64 m CHAPTER 6 RDX: HIGH-PERFORMANCE MIXING WITH A HIGH-LEVEL API

class CSurfaceRdx : public CSurface
{
// add these two member variables into class structure
FULL_SCREEN_PARAMS m_fxParams;

AFX m_hFx; \ Effect parameters are not copied but are used
by reference. Therefore, effect parameters must
not be declared in local (temporary) scope;
they must be declared with lasting scope.

}

CSurfaceRdx::MakeFullScreen()
{

fxParams.dwidth = 640;
fxParams.dwHeight = 480;

fxParams.iColorType = RGB_CLUT8: | Specify the size and ColorType of the full screen
window desired. If these are different from the
current display mode, RDX will change the dis-
play mode to suit the parameters.

err = objApplyEffect(m_hObj, FX_FULL_SCREEN, &fxParams, &hFx);

Apply the effect on the surface using the surface handle returned
during srfCreate(). ObjApplyEffect() returns a handle to the newly
“created” effect. Use this handle to manage the effect or to modify
its parameters.

L

How Fast Does CSurfaceRdx Draw in Full Screen Mode?

Table 6-3 on the next page compares CSurfaceRDX drawing in Full Screen

mode with our previous measurements.

e Notice how the Refresh Screen and the Post Refresh Screen times are
negligible for CRdxFullScreen. The CRdxFullScreen surface times are as
good as the CBackBuffer surface times. Remember in Section 5.8.5 that
CBackBuffer was set up to use Page Flipping. RDX automatically sets the
system up to use Page Flipping, as soon as we request Full Screen mode.

We don’t have to do anything special to turn on Page Flipping.

m Also, notice how the variance is low for the Post Refresh Screen times for
CRdxFullScreen. The variance for CRdxFullScreen is lower than the
variance for CBackBuffer. RDX automatically sets up for triple buffering,

if the graphics card can support it

The results are in! This is a simple interface with high performance.

Accelerating Objects with RDX
But what about accelerating objects like sprites and backgrounds?

CSYéMen
CvidMen
CBackBu

CRdxFulls

All times a

Software
Software
Hardware

All times a

‘reen
the
dis-

urned
: newly
modify

I

[Screen

imes are
1es are as
).8.5 that
y sets the
:n mode.

times for
than the

buffering,

HARDWARE ACCELERATION WITH RDX =& 65

TABLE 6-3 CSurfaceRdx Drawing in Full Screen Mode

CSysMem 0.6-0.9 79 10.5 0.0 19.3
CvidMem 0.7-1.8 77 0.1 8.9 8.5/18.5
CBackBuffer 0.7-1.8 77 0.1 0.5-76 9.0-17.2
CRdx 1.3 43 11.7 0.0 17.3
CRdxFullScreen 1.7 73 0.0 0.0-4.0 9.0-13.0

All times are in milliseconds.

Well, it’s really quite simple. RDX supports sprSetFlags() and bkgSetFlags()

calls that turn on special features of these objects. Looking at the documen-
tation for these calls, we find that both of these objects support a HWBLIT
special feature (currently this is the only special feature supported).

Here’s the code that turns on and off sprite acceleration.

// To HW-B1t a sprite
sprSetFlags (m_hObj, SPR_FLAG_HWBLIT) ; <«

You must describe source and destination (that is, objSetData, objSetDestination) before you J
use the HuBLIT special flag. Add this line after you have completely initialized the sprite.

// To turn off HW-Bltting
sprClearfFlags (m_hObJ, SPR_FLAG_HWBLIT);

L]

Table 6-4 measures the speed of hardware-accelerated objects and shows
them in comparison with other RDX objects.

TABLE 6-4 Measuring Hardware-Accelerated RDX Objects

Software bbjé&s in éyétem rﬁemory

4.3

Software objects in video

memory 73

Hardware objects in video memory

Out of Video Memory

Al times are in milliseconds.

PART II

66 m CHAPTER 6 RDX: HIGH-PERFORMANCE MIXING WITH A HIGH-LEVEL API

WHAT HAVE
You LEARNED?

Some observations based on the results:

m RDX’s software-based spriting is actually faster than hardware-accelerated
sprites. So with this configuration there is no real benefit to using
HWBLIT.

@ To use hardware acceleration you (or RDX) must place the source objects
into video memory. Video memory is a scarce resource. After RDX set up
the system for triple buffering, we did not have any memory left for our
background.

m Aswe mentioned in the Introduction, timings are configuration depen-
dent, and you may see different results on different configurations. With
faster CPUs the software may be even faster. With faster hardware, the
graphics card could be faster.

Video memory is a scarce resource, and in general you will get the best
results by setting up for triple buffering before you accelerate individual
objects. In the future, AGP-based graphics cards may offer Bltting from sys-
tem memory, and then the scarcity of video memory will not be an issue.
Although you still might not see any performance boosts with Transparent
Blts, you will most probably see performance boosts with non-Transparent
Bits—that is, your backgrounds will run faster. And when that time comes,
you will be armed with the knowledge of how to accelerate your back-
grounds with RDX.

By this time, you've had an overview of RDX and gotten a taste of what it is like to use a
high-level interface to manage multimedia objects. You've also gotten a feel for RDX's per-
formance capabilities. You should have an idea of how the interface provides device in-
dependence and how to control RDX's usage of DirectDraw. In short, you should have a
good starting point for using RDX and for deciding whether it will work for you.

We've come to the end of this part. Hope you had a pleasant trip.

WE’D LIKE
GRIFFIN FR
MICHAEL C!
CoMPCORE

celerated
to using

;e objects
)X set up
1 for our

n depen-
ms. With

ware, the

best
-idual
Tom sys-
1issue.
asparent
nsparent
e comes,

ack-

e to use a
"RDX's per-
; device in-
uld have a

PART 111
e

"Making the
Media Mix

WE’D LIKE TO EXTEND AN ACKNOWLEDGEMENT TO ROGER HURWITZ, TODD SCHWARTZ, TIMOTHY STRELCHUN, MARK LEAVY, BYRON
GRIFFIN FROM INTEL; PAT BOYLE FROM REAL NETWORKS; DANNY MILLER, JASON WHITE AND RALPH LIPE FROM MICROSOFT CORP.; DR.
MICHAEL CHWIALKOWSKI FROM THE UNIVERSITY OF TEXAS AT ARLINGTON; CHRIS EDDIE FROM XING TECHNOLOGIES, GEORGE HABER FROM
COMPCORE MULTIMEDIA.

Chapter7 Video Under Windows
m Overview of motion video under Windows
B Principles of video compression and decompression

Chapter 8 DirectShow Filters
m DirectShow architecture and filter graphs
m Building source, transform, and render filters
m How to use a registry file
® Adding custom interfaces and property pages

Chapter9 DirectShow Applications
m Access filter graph using COM, ActiveX, and GRF files interface and the ActiveX control
m Build custom filter from application
m Display filter property pages
m Controlling DirectShow with ActiveX control

Chapter 10 Mixing Sprites, Backgrounds, and Videos
m Understand the concept of mixing different objects
m How to use RDX's DirectShow Interface to play an MPEG file
® How to overlay a sprite over video and video over video

B 67 ®

68

MAKING THE MEDIA MIX

Chapter 11

Streaming Down the Superhighway with RealMedia
B Real-time Internet streaming

m Data flows and data management interfaces

® File-Format plug-in and rendering plug-in

B RealMedia Audio Services

In the past few years, the PC has become powerful enough to handle both the capture
and the playback of motion video under Windows. In the process, Microsoft has defined
a few multimedia architectures on the Windows platform, including the Multimedia Com-
mand Interface (MCI), Video for Windows (VFW), and, lately, DirectShow (a.k.a. Active-
Movie). Apple, on the other hand, defined a multimedia architecture for both the
Macintosh OS and Windows “QuickTime.” Recently, with the explosion of the Internet,
RealNetworks defined RealAudio, RealVideo, and, later, RealMedia.

In this part of the book we'll address a few of these multimedia architectures; namely, Di-
rectShow from Microsoft, RealMedia from RealNetworks, and RDX from Intel. DirectShow
is a streaming media architecture that supports multi-stream synchronization and MPEG-
style video. The first release of DirectShow, known as ActiveMovie 1.0, lacked support for
capture and compression. DirectShow, however, includes both capture and compression
interfaces.

To understand the DirectShow architecture, it’s best to first understand the filter graph
model. To do that, you should first launch the graph editor application that comes with
the DirectShow SDK and construct a filter graph. After doing so, you should be ready to
delve into the details of the internals of filters—Chapter 8. You'll learn how to create a filter
and pins and how to connect filters together. You'll also learn about how to add property
pages to a filter, as well as custom interfaces.

You can then jump to Chapter 9, where you'll learn how to build filter graphs from an ap-
plication using the DirectShow ActiveX control, the COM interface, or the GRF file. The
ActiveX control is the easiest way to render a media file using the DirectShow filters. The
ActiveX control provides all the necessary GUI interfaces to play, stop, and pause a media
file. To have more control over the creation of a filter, you can use the COM interface or
a GRF file to create and manipulate the filter. In this case, you have to provide the GUI
interface and manage the events of the filters. Finally, in this chapter you'll leam how to
expose a filter's property page and how to hook into a filter's custom interface.

Nowy, if you don't necessarily want to understand the internal architecture of DirectShow
and its filters, or if you want to mix multiple video, audio, or animation objects together,
you can use Intel's Realistic Display Mixer (RDX) to do that. RDX is a high-level interface
that uses DirectShow to play and mix multiple video and audio objects.

Finally, since the Intemet has been exerting a huge force on the computing environment,
we thought it only appropriate to discuss one of the major architecture advancements for
multimedia delivery on the Intemet—the RealMedia Architecture (RMA). RMA is a modular
extendible version of the RealAudio architecture. It uses a combination of a RealMedia

server and client to deliver real-time multimedia content (audio, video, stock quotes, and

the capture

t has defined
timedia Com-
1.k.a. Active-

th the

he Internet,

s; namely, Di-
|. DirectShow
n and MPEG-
d support for
compression

filter graph
comes with
be ready to
create a filter

add property

is from an ap-
RF file. The
w filters. The
ause a media
A interface or
ide the GUI
learn how to
ace.

f DirectShow
icts together,
el interface

environment,

ncements for

\is a modular
RealMedia

< quotes, and

MAKING THE MEDIA MIX m 69

so forth) over the Internet. With RMA you can stream any media type by adding a custom
plug-in on both the server and the client sides.

To help you understand the RealMedia architecture, we will first focus on the topology of
the architecture and then delve into the details of the plug-ins. To deliver custom data us-
ing RMA, you must first learn how to build File-Format and Rendering plug-ins. To play
audio data on the client, you should use the RMA Audio Services, since it supports multiple
platforms and performs the mixing of multiple audio streams. It also allows for pre- and
post-processing of the audio streams.

PART III

WHY READ
THIS CHAPTER?

CHAPTER 7
=

Video under Windows

This chapter gives a brief introduction to motion video and discusses the supporting architec-
tures under Windows. It is meant to give background on the topics that are discussed in the
rest of Part Ill.

If you feel comfortable with

m motion video on the personal computer,
m multimedia architectures under Windows (MCl, VFW, QTW, and ActiveMovie), and
m the principles of video compression and decompression,

you may wish to skip this chapter.

7.1 Concepts of Motion Video

I'am sure you've watched a few cartoons in your life; my all-time favorite is
Bugs Bunny. As you know, these cartoons, as well as real movies, are made
up of a series of pictures displayed at a rate fast enough that it looks like
motion video to the human eye. Throughout the world there are three
dominant standards for television: NTSC, PAL, and SECAM. NTSC is pri-
marily used in North America and specifies an interlaced refresh rate of
59.94 fields per second’ (approximately 30 frames per second, fps). Both of
the European standards, PAL and SECAM, specify an interlaced refresh rate
of 50 fields per second (25 fps).

1. Interlaced display rate specifies the rate of displaying both the odd and even fields in a frame.

B 71 =

95

-
o
<
o.

72 8 CHAPTER 7 VIDEO UNDER WINDOWS

7.2 Capturing and Compressing Video

In the past few years, personal computers have become powerful enough to be
able to play back motion video at the specified frame rates, and even faster. To
play back a visual sequence on the PC, you must first digitize it with a video
capture adapter and store the digitized clip on your hard disk or a CD-ROM.
Typical video capture adapters can digitize an NTSC clip up to a 640 X 480 in
size. If our memory serves us right, this results in a huge file if the video cap-
tured spans a few seconds or minutes. Let’s calculate the amount of space

" required to store a video clip. To achieve the best quality, each pixel should con-
tain a 24-bit RGB color quantity. (RGB stands for the red, green, and blue
color format used in computers.)

Size of 1 Frame = 640 (width) x 480 (height) X 3 bytes/pixel = 900 K
To store 1 full second (30 frames) requires

Size of a 1-second clip = 900 K/frame x 30 frames/second = 27 MB

CAPTURING AND COMPRESSING VIDEO @ 73

27 MB/second ! Even the fastest CD-ROM today cannot sustain such a high data
rate. For example, a 10X CD-ROM can only sustain, at best, a transfer rate of
1.5 MB/second. So that the video file will be usable, we must reduce the size of
the video clip before storing it on a CD-ROM.

To enable motion video on such media, the digitized video clip must go
through a few compression steps:

1. You could sacrifice some of the image quality by capturing a smaller size of
the image (for example, 320 x 240 or 352 X 288). As a result, the data trans-
fer rate is reduced by 75 percent to about 6.5 MB/sec for a 24-bit color clip.

2. Depending on the type of application, you could capture the video clip in
either RGB or YUV color format. Typically, the YUV color space is more
suitable for applications with motion video. The YUV color space contains
one luminance (black-and-white) component and two chrominance
(color) components (U and V). Naturally, there is a direct relationship
between the RGB color space and the YUV color space.

PART I

The YUV color space is a good choice for motion video because it sepa-
rates the black-and-white contents of the picture from its color compo-
nents. This is very useful since the human eye cannot easily detect
degradation in the color of an image, but it is extremely sensitive to any
loss in luminance. Hence, the color information can be easily reduced
without any noticeable degradation in video quality.

74 8 CHAPTER 7 VIDEO UNDER WINDOWS

Y, U and V components

D Y component only

In 4x 4 block
.
yuvip > QXL IULINTE 1) e pixel
16pixels

(16Y+1U+1N)*8 . N
YUV = L6pinels 9 bits | pixel

Yuvi2 Yuve

| ‘ FIGURE 7-2 UV color subsampling for motion video.

Figure 7-2 shows two UV subsampling formats, YUV12 and YUV9. On
average, each pixel requires 12 bits to represent in the YUV12 format,
and 9 bits in the YUV9 format. To reconstruct the color information for
the “white” pixels, two or more neighboring U and V components are
linearly interpolated to generate the appropriate color information.

Notice that the size of the final YUV12 image (Figure 7-2) is reduced by 50
percent since it only requires 12 bits to represent each pixel rather than 24.
Similarly, the size of the final YUV9 image is reduced even further by 62.5
percent because it only requires 9 bits to represent each pixel.

3. The final YUV12 or YUV9 image is compressed even further using some
of the well-known compression algorithms such as MPEG or Intel’s
Indeo. Even though these algorithms are lossy in nature, they can reduce
the size of the image dramatically while maintaining superb image qual-
ity. Such algorithms can produce motion video clips suitable for a 1X
CD-ROM at 150Kps.

As you can see, using these compression techniques allows you to smoothly
integrate motion video with the PC. In 1997 a new breed of CD-ROMs and
processors will allow for even better multimedia experierice on the PC.
DVD-ROM is a new CD-ROM media that can hold up to 17 GB of data on
a single platter and can sustain up to 1.5MB per second. The Pentium II
processor will be capable of playing back MPEG?2 video clips as large as
720 X 576 at 25 to 30 fps.

7.3 Windows Multimedia Architectures

Microsoft’s first attempt at multimedia came through the Multimedia
Command Interface (MCI). MCI is a simple VCR-like interface with useful
commands such as Play, Pause, Stop, Rewind, Seek, and so forth. In fact,
MCI is an integral part of Windows and is still used by a certain class of
applications such as audio CD players. But as a compromise to simplicity,
MCI lacks many of the basic features required for multimedia recording
and editing.

! pixel

pixel

V9. On
rmat,
tion for
ts are
on.

:d by 50
:han 24.
by 62.5

1g some

tel’s

1 reduce
ge qual-
alX

noothly
'Ms and
PC.
data on
im II

re as

WINDOWS MULTIMEDIA ARCHITECTURES B 75

In 1993 Microsoft introduced Video for Windows (VFW) as an answer to the
missing features in MCI. VFW defines interfaces for recording and editing
both audio and video clips. As part of the standard, VFW also defined the
Audio Video Interleaved (AVI) file format, which allows for interleaving mul-
tiple video, audio, or text streams in the same file. VEW also defined an inter-
face for installable codecs to enable installation of custom compression and
conversion algorithms. (Codecs are compression/decompression drivers.)

Even though Video for Windows was a great step for multimedia under
Windows, it lacks some essential features. For example, even though VFW
allows for multiple streams in an AV1 file, it does not provide any means of
synchronizing these streams together. In addition, VFW lacks the necessary
features to support certain classes of algorithms such as MPEG video?.

Around the same time, Apple moved its QuickTime architecture from the
Macintosh environment to Windows and called it QuickTime for Windows
(QTW). QTW only allowed for video playback in the Windows environ-
ment and did not allow for video capture or editing. All the video produc-
tion remained on the Macintosh.

Back to Microsoft. To resolve some of the deficiencies in VFW, Microsoft
introduced the first release of its latest multimedia architecture, Active-
Movie, at the end of 1996. ActiveMovie is targeted specifically for Windows
95 and Windows NT. The first release supports video and audio streaming
and provides synchronization mechanisms between multiple streams. The
first release, however, lacks capture and compression support.

As a follow-up to their commitment, Microsoft is releasing a follow-up
technology, DirectShow, which is basically ActiveMovie with a name
change and added support for capture and compression. We've dedicated
the next three chapters to showing you how to use DirectShow.

Intel, on the other hand, released a graphics and video mixing architecture
called Realistic Sound Experience (RDX). We've dedicated a chapter to
showing you how easy it is to use RDX to mix multiple video and graphics
objects.

Finally, RealNetworks is releasing their RealMedia Architecture, which
allows for real-time streaming of video, audio, or any other media type over

2. VEW lacks support for future frame prediction techniques required by MPEG. Refer to
the section “Overview of Video Codes” later in this chapter.

PART 1l

76 m CHAPTER 7 VIDEO UNDER WINDOWS

the Internet. We've dedicated one chapter to discussing the RealMedia
plug-in architecture.

7.4 Overview of Video Codecs

Regardless of the multimedia architecture used, most video codecs apply
similar methods to compress and decompress video. Let’s have the ten-
thousand-foot view of what a video codec does.

As we’ve mentioned earlier, video capture hardware produces an image
composed of three color planes: Y, U, and V. Typically, the codec uses the
same algorithm to compress each of the planes separately.

Typically, each plane is subdivided into 8 x 8 blocks, and each block is pro-
cessed separately. The blocks are then transformed into a frequency domain
using one of the well-known transformation processes (DCT, HAAR,
SLANT, and so forth). The frequency domain block represents the amount
of change in color from one pixel to the entire 8 x 8 pixel grid. Typically,
video images don’t change that drastically within an 8 x 8 block, and there-
fore, the high-frequency components of the frequency domain end up
being mostly zeros. In fact, this is why the frequency domain is most suit-
able for video compression since consecutive zeros are easily represented
with a small number of bits using the run length encoding (RLE) algo-
rithm. Finally, the frequency domain block is quantized and encoded using
the Huffman coding algorithm.

To decompress a frame, the exact opposite process is used. First the inverse
Huffman algorithm is applied on the input bit stream generating 8 X 8 WHA
quantized blocks. These blocks are then dequantized using the same quan- YOU LE
tization matrix used when the frame was compressed. The Inverse fre-
quency transformation is then applied on the dequantized block in order to
produce the corresponding 8 X 8 Y, U, or V block. Finally, the Y, U, and V
blocks are converted to RGB either by the application software or by spe-
cialized color conversion hardware on the graphics adapter (see Chapter 5,
“Hardware Acceleration via DirectDraw”).

The method that we’ve described so far is called intra-frame compression,
and the frame is called the I-frame or Key frame. Intra-frames are com-
pressed and decompressed independently from any other frames in the
video sequence.

100

ge
the

s pro-
»main

>
nount
ally,
there-
p .
suit-
ited
o-
using

nverse
8
quan-

a

«der to
idV
spe-
oter 5,

WHAT HAVE
You LEARNED?

OVERVIEW OF VIDEO CODEcs ® 77

Inter-frames, on the other hand, can only be compressed or decompressed
using data from other frames in the video sequence. Typically, at 25 or 30
fps, changes from one frame to the next are small enough that you can use
the information from previous or future frames to predict the contents of
the current frame. In fact, this type of a frame is called the Predicted frame
or P-frame.

When compressing inter-frames, the difference between this frame and the
reference frame is found first, then the difference information is trans-
formed into the frequency domain. This technique is very useful in com-
pressing motion video where some of the blocks end up being zero because
the change between the two frames is insignificant.

The Bi-directional frame type is an extension of the P-frame. Here a previ-
ous and a future frame are used for reference at the same time. Typically,
B-frames, as they’re also called, produce higher compression than P- or
I-frames, but they require more computational bandwidth and more mem-
ory to hold the reference frames.

m“@m

FIGURE 7-3 MPEG frame types.

After making your way through this chapter you probably have a good sense of

® motion video on the PC,
@ multimedia architectures under Windows,
& video compression and decompression.

PART I}

CHAPTER 8
=

DirectShow Filters

WHY READ You must have heard of or even tried the latest release of Microsoft's DirectShow (former-
THIS CHAPTER? v known as ActiveMovie), but you're not sure what it has to offer. You're ready to move
your current drivers from VFW or MCl to DirectShow, but you don't know where to start.

This chapter helps you

m understand the architecture of DirectShow and filter graphs,

m- build source, transform, and rendering filters,

m understand the connection mechanism between filters,

® know how to use a registry file to add a filter to the registry or do filter self-registration,
m add custom interfaces to your filter, and

® add property pages to a filter.

To help you along the way, you can use the following articles on the CD:

m debugging hints for filters,
m adding a custom file type,
® how to build and run the sample files.

8.1 DirectShow Components

Figure 8-1 shows a high-level block diagram of the current multimedia archi-
tectures under Windows 95/NT. The DirectShow components are shown inside
the dotted line.

g 79 =m

102

b 80 m CHAPTER 8 DIRECTSHOW FILTERS

Application

-) VTN
ActiveX ° ! VIW/QTW
Control

8.2 Wi

VIW/ QTW a‘/
Driver
‘i\(‘;i/\/\r
ol
Media Media L
cdid ek
Source Destination f w
FIGURE 8-1 Multimedia architectures under Windows }

(DirectShow components fall within dotted line).

As you can see, you can access the DirectShow components in one of three
ways:

s directly through the COM interface and the Filter Graph Manager
(FGM),

using the MCI command set where the MCI layer has been updated to
communicate with the DirectShow FGM, or

s through the ActiveX control interface, which is part of the DirectShow SDK.
The ActiveX interface provides a high-level interface that gives applications
a simple method for controlling DirectShow and its components. It also acts
as an easy plug-in for the Internet Explorer.

We'll show you how to use the COM interface and the ActiveX control to
access the DirectShow filter in the next chapter.

The Filter Graph Manager and the associated filters are the crux of Direct-
Show. The Filter Graph Manager provides applications with interfaces
through the COM layer. (Applications cannot access the filters directly.
They have to go through the FGM.) The EGM orchestrates the connection
of the filters with the applications and the allocation of the shared buffers
between them. It also controls the streaming of data and provides synchro-

103

WHAT’S A FILTER GRAPH? =& 81

nization services (clock) so that filters can synchronize the delivery of mul-
tiple time-stamped data samples at the right time.

8.2 What's a Filter Graph?

Before we delve into the details of filters and filter graphs, it might be a
good idea to go ahead and play with the Filter Graph Editor (FGE) applet
that comes with the DirectShow SDK. The Filter Graph Editor is a tool that
comes with the DirectShow SDK. Typically, applications will interact with
the filter graph directly using the COM interface or the ActiveX control,
discussed later.
B A

- =

You can use the Filter Graph Editor to build a custom filter graph and save itin a
* grf file. The * grf file can then be used to construct the exact same filter graph—
without using DirectShow's automatic filter graph construction methods.
S =

We're assuming that you’ve installed the FGE on your PC by now—NO?
What are you waiting for? Once you've installed the SDK, launch the FGE
applet and select the File->RenderMediaFile option from the menu. At the
prompt, select the name of the sample MPEG file that comes with the
DirectShow SDK (Blastoff.Mpg) and press OK. You should see something
similar to what is shown in Figure 8-2.

Each individual rectangle in the figure represents a filter that performs a
specific function. The arrows between the filters indicate that the output
pin of one filter is connected to the input pin on the filter to its right. Notice
that the media flows in the direction indicated by the arrows. The entire

FIGURE 8-2 Filter graph for an MPEG-1 file.

PART 111

82 8 CHAPTER 8 DIRECTSHOW FILTERS

mesh of connected filters is called the filter graph. You'll learn more about
filters, pins, and the connection between them in the remainder of this
chapter.

of the filters without even touching the remainder of the graph. For exam-
ple, you can easily replace the source filter that reads the MPEG file from a
hard disk or a CD-ROM with another source filter that reads it off the
Internet or from a digital satellite link. This is a big win for developers since
4 they only need to implement and distribute one filter rather than the entire
filter graph or an entire VEW driver. ‘

i
11 ‘What’s nice about the filter graph model is that you can easily replace one
|

|

|

8.4 A

You can also insert other filters between any two filters and change the
behavior of the filter graph—again, without touching any of the other fil-
ters. For example, you can insert a contrast filter in between the MPEG-1
video codec and the MPEG-1 video renderer. The contrast filter allows you
to change the contrast of the video data on its way to the renderer. Try it/

8.3 Understanding the Mighty Filter

The filter is the basic building block of a DirectShow filter graph. A filter is
basically a COM object with its own Global Unique Identifier (GUID).
Typically, each filter comes with one or more input/output pins, which are
used to move the data from one filter to the next. In order to connect two
filters, the pins have to go through a simple process of negotiation.

At connection time, under the direction of the filter graph manager (FGM),
the two pins negotiate on a media type that is common between them.
Once the two pins agree on a media type, they negotiate on the allocation
of the shared memory buffer used to transport the data between the two fil-
ters. Once the two pins settle their differences, they are joined in holy mat- :
rimony till death do them part. 8.5 C

In addition to the pins, filters may expose a set of property pages, which are
used to display the filter-specific status or configuration. To see the prop-
erty page of a filter, right-click the mouse on the filter and select Properties.

DirectShow defines three major types of filters: source, transform, and ren-
dering. A source filter has no input pins and has one or more output pins.
Typically a source filter is responsible for reading the raw data from a
source file, network, or any other media.

105

CREATING A SOURCE FILTER ® 83

A transform filter has one or more input pins and one or more output pins.
Typically, a transform filter accepts data from an input pin or pins and con-
verts it to another format before sending it out to the downstream filter.

A rendering filter has one input pin and no output pins. A rendering filter
accepts data on the input pin and delivers it to its final destination (screen,
audio card, file, and so forth).

An Overview of the Samples

Let’s have an overview of the samples and explain what they do before we

jump into the code. In this chapter, we’ll show you how to create the three
types of filters: source, transform, and rendering filters. To make it simple,
we’ve chosen “simple text” as the media type to transport (see Figure 8-3),

Fruit.ftf

Apple

Orange
Banana
Grapes

ClnvertFilter B CTextOutFitter

CFruitFilter

FIGURE 8-3 Overview of the sample filters covered in this chapter.

The source filter CFruitFilter' reads one line at a time from the text file
Fruit.ftf and passes it to the next filter. The ClnvertFilter is a transform filter
that accepts a string on the input pin and delivers an inverted string to its
output pin. Finally, the CTextOutFilter is a rendering filter that displays the
string presented at the input pin to a text window. This is a good time to
run the sample application for this chapter on the companion CD.

8.5 Creating a Source Filter

Our source filter, CFruitFilter, prompts the user for a filename, opens the
selected file, and reads it one line at a time. It delivers each line to the filter
connected to its output pin for further processing. '

1. We used the name CFruitFilter merely because each line in the input file is a name of a piece of fruit.

106

PART 11

84 m CHAPTER 8 DIRECTSHOW FILTERS

(CSource) (IFifeSourceFilter)

CSourceStream

CFruitFilter

CFruitStreamText

FIGURE 8-4 Source filter.

For a better understanding of the code below, it might be useful to install
the filter and see how it works before you go on. You can find detailed
instructions on how to install and run this filter on the companion CD.

Notice that, before you can use any of these filters, you must first add them
to the system registry. We'll show you how to do this at the end of the chap-
ter (see “Section 8.10 Adding a Filter to the Registry”).

It’s actually pretty simple to create a source filter. DirectShow provides a
couple of built-in classes that you can use to derive your source filter: The
CSource and CSourceStream. CSource is the base class for all source filters.
CSourceStream represents the output pin of a source filter. It handles mov-
ing the data from the file to the downstream filter. Notice in Figure 8-4 that
our CFruitFilter also derives from the IFileSourceFilter, which is necessary
to manage the filename of the input file. You'll see how this works later.

In our discussion, we’ll first step through the CFruitFilter class where we’ll
show you how to create an instance of the filter, how to attach the source
stream to it, and how to handle the IFileSourceFilter interface. We'll then
step through the CFruitStreamText class, which handles the connection of
the output pin, opening the input file, and transporting the data from the
source file to the next filter down the stream.

8.5.1 The Source Filter Class

To create your own source filter, you need only derive a filter from the
CSource base class, then override and implement a few of the base class
member functions. As we've mentioned earlier, you can also derive a filter
from the IFileSourceFilter to manage the input filename.

107

all

hem

hap-

(he
ters.
nov-
that
ary

ve'll
ce
en

10f
the

lter

CREATING A SOURCE FILTER &= 85

class CFruitFilter:
public Csource, // Base source filter
public IFileSourceFilter // This is for accepting input file

{

Must be static since it is called before the class is created.

public :
static CUnknown * WINAPI Createlnstance(LPUNKNOWN Tpunk, HRESULT *phr);

private:

The following lines are required for iFlleSourceFilter support.

DECLARE_TUNKNOWN .

STDMETHODIMP GetCurFile(LPOLESTR * ppszFileName,AM_MEDIA_TYPE *pmt);
STDMETHODIMP Load(LPCOLESTR pszFileName, const AM_MEDIA_TYPE *pmt);
STDMETHODIMP NonDelegatingQueryInterface(REFIID riid, void ** ppv);

Notice that the constructor is in the private section; therefore you can only
create this object from within the only static function, Createlnstance().

CFruitFilter(LPUNKNOWN Tpunk, HRESULT *phr);
OLECHAR m_szFileName[_MAX_PATHI;

8.5.2 Create an Instance of the Source Filter

Looking closely at the class declaration, you can see that the Createlnstance()
function is the only public member of the class—even the constructor is
private. As a result, you can only create an instance of the filter from within
the Createlnstance() member function. In addition, notice that Createlnstance()
must be declared as a static function so that it can be called even before the
filter is created.

When the filter graph manager (FGM) loads a filter, it looks for the vari-
ables g_Templates[] and g_cTemplates in the executable file of the filter.
The FGM uses these variables to figure out which objects exist and how to
create them. For example, FGM uses the third element of the g_Templates
to retrieve a pointer to the Createlnstance() function, which is called to cre-
ate an instance of the filter. The function returns the address of the newly
created instance.

CFactoryTemplate g_Templates[] = {
A L"Fruit Source Filter"”
, &CLSID_FruitFilter
, CFruitFilter::Createlnstance
, NULL
, NULL}

86 m CHAPTER 8 DIRECTSHOW FILTERS

int g_cTemplates = sizeof(g_Templates) / sizeof(g_Templates[0]);

CUnknown * WINAPI
ChruitFilter::CreateInstance (LPUNKNOWN Tpunk, HRESULT *phr)
{

// Create and return an instance of the filter

CUnknown *punk = new CFruitFilter(Ipunk, phr);

if (punk == NULL) {

*phr = E_OUTOFMEMORY ;
}
return punk;

)
\ |

\‘ When you create a new instance of the filter, the CFruitFilter constructor is

} called. The constructor creates the streams supported by the filter and adds

“ these streams’ output pins to the m_paStreams member variable. DirectShow
uses this list to keep track of the streams attached to the source filter. In our
case, we only create the CFruitStreamText stream and add it to the
m_paStreams list.

The sample source filters in the DirectShow SDK show the following code to cre-
ate each of the source streams (pins) in the source filter constructor;

m_paStreams = (CSourceStream **) new CSourceStream[1];
if (m_paStreams == NULL) {
*phr = E_OUTOFMEMORY;
return;

}

m_paStreams[0] = new CFruitStreamText(phr, this, L"Text!");
if (m_paStreams[0] == NULL) {

*phr = E_OUTOFMEMORY ;

return;
}

However, we found that the source filter was leaking memory. After tracing
through the CSource and CSourceStream classes, we found that both filters are
properly handling the m_paStreams array. Therefore, we don't have to assign
anything to the m_paStreams variable. So the above “erroneous” code should be
replaced as shown in our example below.

CrruitFilter::CFruitFilter (LPUNKNOWN Tpunk, HRESULT *phr)
CSource(NAME("Fruit Source Filter"),

Tpunk, CLSID_FruitFilter) AN NAME() is used in debug builds for object
{ tracing. See the DirectShow SDK for more
CAutolock cAutolock(&m_cStatelock); details.

109

wa

Oow

y are

2n
dbe

o =

CREATING A SOURCE FILTER m 87

// The CSourceStream constructor handles the allocation and assignment
// of the m_paStreams(] array. On return from the constructor, the
// m_paStreams(0] would have the right value.
/!
new CFruitStreamText(phr, this, L"Text!");
if (m_paStreams[0] == NULL) {
*phr = E_OUTOFMEMORY;

} At ‘ This is the name of the output pin.

Once you've created the filter and its pins, the FGE interrogates the filter for the
interfaces that it wants to use. As shown in the code below, the filter responds to
the IUnKnown::NonDelegatingQueryInterface() member function to expose its
own interfaces. In our case, the source filter supports all the interfaces of the
base CSource class plus the IFileSourceFilter interface. '

STDMETHODIMP
CFruitFilter::NonDelegatingQuerylInterface(REFIID riid, void ** ppv)
{

CheckPointer(ppv,E_POINTER);

// We support the IFileSourceFilter interface and whatever
// the base CSource supports..
if (riid == IID_IFileSourceFilter)

return GetInterface((IFileSourceFilter *) this, ppv);

return CSource::NonDelegatingQueryInterface(riid, ppv):

Now that we've indicated that we support the IFileSourceFilter interface, the
FGE prompts the user for the input filename and then calls the Load() function
using that filename and the media type associated with that file. For example,
an MPEG file is of MEDIATYPE_MPEGVideo type. Typically, the Load() func-
tion saves the filename and media type so that the filter can supply them when
the GetCurFile() function is called. DirectShow or another application could
request the active filename and media type anytime throughout the life of the
filter.

STDMETHODIMP
CFruitFilter::Load(LPCOLESTR pszFileName,const AM_MEDIA_TYPE *pmt)
{

TstrcpyW(m_szFileName, pszFileName); // This is a UNICODE name
return NOERROR;

PART 111

88 8 CHAPTER 8 DIRECTSHOW FILTERS

8.5.3

STDMETHODIMP
CFruitFilter::GetCurFile(LPOLESTR * ppszFileName,AM_MEDIA_TYPE *pmt)
{

CheckPointer(ppszFileName, E_POINTER);

// Allocate an instance specific buffer to hold the filename.
*ppszFileName = (LPOLESTR)

CoTaskMemAlloc(sizeof (WCHAR) * (1+1strienW(m_szFiteName)));
if (*ppszFileName != NULL) {

IstrcpyW(*ppszFileName, m_szFileName);
}

// we didn't save the media type, since we always return a NULL type.
if(pmt) {
ZeroMemory(pmt, sizeof(*pmt));
pmt->majortype = MEDIATYPE_NULL;
pmt->subtype = MEDIASUBTYPE_NULL
)
return S_OK;

The Source Stream Class

As mentioned earlier, the CFruitStreamText class represents the output pin
of the source filter (see Figure 8-4 on page 84). As a descendant of
CSourceStream, the CFruitStreamText handles the connection process with
the downstream filter, buffer allocation, and the movement of data from
the input file to the downstream filter. In addition, CFruitStreamText is
responsible for processing the Start, Stop, Pause, and other commands
coming from the application through the filter graph manager.

class CFruitStreamText: public CSourceStream

{

public:
CFruitStreamText(HRESULT *phr, CFruitFilter *pParent, LPCWSTR pPinName);
~CFruitStreamText();

HRESULT Fil1Buffer(IMediaSample *pms) ; ¢ Called to fill the buffer with data.

HRESULT GetMediaType(int iPos, CMediaType *pmt){ Returns all media types supported

HRESULT CheckMediaType(const CMediaType *pmt); { Verifies if media type is acceptable.

HRESULT SetMediaType(const CMediaType *pmt); Q Accepts media type.

HRESULT DecideBufferSize(IMemAllocator *pima, @ Decides how big the buffer needs
ALLOCATOR_PROPERTIES *pProperties); to be for data movernent.

// Called when the stream is started and stopped

HRESULT OnThreadCreate(void);

HRESULT OnThreadDestroy();

8.5.4

ta.

-ted.
able.

«ds

CREATING A SOURCE FILTER = 89

The Connection Process

The filter graph manager starts the connection process by retrieving the
output pin of one filter and trying to connect it to an input pin of another
filter. In order to do that, the FGM calls upon the output pin of the source
filter to connect to the input pin of the downstream filter. This is where the
negotiation begins.

The output pin queries the input pin for a list of the media types that it
supports—it repeatedly calls the input pin’s GetMediaType() function to get
the media type list. For each of these media types, the output pin calls its
own CheckMediaType() function to see if it supports this media type. If the
output pin can handle one of the media types, it returns s_0kK, and the
negotiation continues for the shared buffer; otherwise, CheckMediaType()

returns an error.

HRESULT
CFruitStreamText::CheckMediaType(const CMediaType *pMediaType)
{

CAutolock cAutolock(m_pFilter->pStatelock());

if (*(pMediaType->Type()) != MEDIATYPE_Text)
return E_INVALIDARG;
return S_0K;
}

| -

Of course, it is possible that the output pin could reject all the input pin media
types. In that case, the output pin tries its preferred list of media types on the
input pin. To do so, the output pin first calls its own GetMediaType() function
to retrieve its own list of media types. Again, for each media type, the output
pin calls the CheckMediaType() function of the input pin, of the downstream
filter, to qualify that media type. In the case where the input pin rejects all the
media types suggested by the output pin, the connection process is aborted and

. anerror is returned to the application; otherwise, the negotiation continues for

the shared memory buffer.

Notice that the default connection process tries the media types in the same
order as GetMediaType() returns them. Therefore, the first media type
returned by the function has the highest priority over any consequent
media types. For example, if your filter supports RGB 8-, 15-, and 24-bit
video but prefers the RGB24 format, then you should return the RGB24
format first.

CHAPTER 8 DIRECTSHOW FILTERS

HRESULT CFruitStreamText::GetMediaType(int iPosition, CMediaType *pmt)

CAutolLock cAutolock(m_pFilter->pStatelock());
if (iPosition < 0) ¢ Index must start with 0.
return E_INVALIDARG ;

if (iPosition > 0) ¢ Only support 1 media type.
return VFW_S_NO_MORE_ITEMS;

pmt->SetType (&MEDIATYPE_JS97Text); § Here it is, “Simple Text.”

return NOERROR;
}

i |

Once the two pins agree on media types, the SetMediaType() is called to con-
firm that selection. Typically, the output pin saves the media type in order to
use it later to calculate the size of the shared buffer. This is simply done by call-
ing the corresponding function in the base class.

HRESULT CFruitStreamText::SetMediaType(const CMediaType *pMediaType)
{

CAutolock cAutolock(m_pFilter->pStatelock());

return CSourceStream::SetMediaType(pMediaType);
}

L |

To allocate the shared buffer, the output pin determines the size of the shared
buffer by calling its member function DecideBufferSize(). This function calcu-
lates the amount of memory required based on the media type and the header
information of the input file (for example, the picture width and height). After
determining what size the buffer should be, DecideBufferSize() calls the allo-
cator function, SetProperties(), to verify that there is enough memory to
allocate this buffer—the actual buffer is allocated later.

Typically, you don’t have to worry about who allocates the buffer or when it
gets allocated; you only have to assure that you calculate the size of the
buffer correctly.

HRESULT

CFruitStreamText::DecideBufferSize(
IMemAlTocator *pAlloc, // Allocator object
ALLOCATOR_PROPERTIES *pProperties // Allocator properties
)

8.5.5

CREATING A SOURCE FILTER & 91

HRESULT hr = NOERROR;
ALLOCATOR_PROPERTIES Actual;
CAutolock cAutolock(m_pFilter->pStatelock());

// Request the allocation of one buffer of size 1024 bytes
pProperties->cBuffers = 1;
pProperties->cbBuffer = 1024;

[}

hr = pAlloc->SetProperties(pProperties,&Actual);
if (FAILEDChr)) |

return hr;
}

// Verify that the allocator is able to allocate what we requested.
if (Actual.cbBuffer < pProperties->cbBuffer) {

return E_FAIL;
}

return NOERROR;

\ ‘ |

Starting and Stopping

All set and ready to roll—well, at least these two filters are. To complete the
filter graph, the remaining filters down the stream follow the same negotia-
tion process to connect their output pins with the appropriate input pins.

Once the remaining filters are connected, the filter graph is ready to rumba.

At this stage, an application can start the filter graph, causing the source
stream to read data from the file and send it downstream for further pro-
cessing. When the filter graph is started, DirectShow creates a new thread
for each CSourceStream in the filter graph, that is, a new thread for each
output pin in the source filter. For example, if you have two output pins on
the source filter, the FGM creates two additional threads to handle each of
these pins. This allows the two pins to pump their data independent from
one another.

When the thread is first created, the FGM calls the OnThreadCreate() func-
tion on the output pin, to initialize the state of the source stream—in our
case, we open the source file. When you stop the filter graph, the FGM calls
the OnThreadDestroy() function before it destroys the thread—in our case,
we close the input file.

Notice that these functions are called every time the filter is started and
stopped.

114

92 m CHAPTER 8 DIRECTSHOW FILTERS

HRESULT CFruitStreamText::OnThreadCreate()

{
CAutolLock cAutolLockShared(&m_cSharedState);

// Convert file name from UNICODE to single byte char..

char szTmp[2561;

WideCharToMultiByte(CP_ACP, O,
((CFruitFilter*)m_pFilter)->m_szFileName, -1,
szTmp, sizeof(szTmp), NULL, NULL)

m_inFile.open(szTmp);

8.6 C

return NOERROR;
}

HRESULT CFruitStreamText::0nThreadDestroy()
{

m_inFile.close();

return NOERROR;

Moving the Data

As long as the filter graph is running, each of the threads repeatedly calls
the FillBuffer() function to fill the shared buffer with raw data from the
input file. FillBuffer() then calls the SetActualDataLength() function in
order to set the size of valid bytes in the shared buffer. The data buffer
(media sample object) is automatically delivered to the downstream filter
when the FillBuffer() function returns successfully.

HRESULT CFruitStreamText::FillBuffer(IMediaSample *pms)
{

BYTE *pData;
Tong 1Datalen;

pms->GetPointer(&pData); // Retrieve a pointer to the buffer
TDatalen = pms->GetSize(); // How big is the buffer - should be 1024

// Read one line at a time ti1l end of file..
if (m_inFile.getline(pData, 1Datalen))
pms»>SetActua1DataLength(str1en((char*)pData)+1);
eise |
return S_FALSE;
}

return S_OK;

CREATING A TRANSFORM FILTER ® 93

When the input file runs out of data, FillBuffer() returns an error, S_FALSE,
which marks the end of the stream, and, as a result, the filter graph stops, and,
finally, the threads are terminated.

8.6 Creating a Transform Filter

Now, let’s see how you can create a transform filter. As you recall, a trans-

form filter accepts data from its input pin, applies some transformation on
the data, and then sends it out to the filter connected to its output pin (see
Figure 8-5). In our sample, the transform filter, CInvertFilter, inverts a text

string before sending it out to the next downstream filter.
|
_
LN
output
Is =
. b
FIGURE 8-5 Transform filter. =
0.
t As with the source filter, you can easily create a transform filter by deriving
er

it from the base CTransformFilter. As shown in Figure 8-5, the
CTransformFilter defines one input pin and one output pin connected to
an upstream and a downstream filter respectively. Notice that you can add
additional pins to the transform filter; for example, the MPEG-1 stream
splitter in Figure 8-2 has one input pin and two output pins.

class CInvertFilter : public CTransformFilter
{
pubtic:
// Input Pin override functions..
HRESULT CheckInputType(const CMediaType* mtIn);
HRESULT CheckTransform(CMediaType* pmtIn,CMediaType* pmtOut);
HRESULT Receive(IMediaSample *pSample);

CInvertFilter(TCHAR *pName, LPUNKNOWN punk, HRESULT #*pHr);
~CInvertFilter();

. // Necessary COM functions..

. static Clnknown * WINAPI Createlnstance(LPUNKNOWN, HRESULT *);
AAAAJ . STDMETHODIMP NonDelegatingQuerylInterface(REFIID riid, void ** ppv);
DECLARE_TUNKNOQWN;

116

94 m CHAPTER 8 DIRECTSHOW FILTERS

// Output pin datatype and buffer size functions

HRESULT GetMediaType(int iPos, CMediaType *pmt);

HRESULT CheckMediaType(const CMediaType *pmt);

HRESULT SetMediaType(const CMediaType *pmt);

HRESULT DecideBufferSize(IMemAllocator *pima, ALLOCATOR_PROPERTIES
*pProperties);

1 _

a Notice that the output pin of a transform filter overrides the same functions as
‘ the output pin of the source filter discussed in the previous section, namely
GetMediaType(), CheckMediaType(), SetMediaType(), and DecideBufferSize().
Therefore, we're going to skip these functions and only discuss the new ones:
CheckInputType(), CheckTransform(), and Receive(). Now, when the output pin
of an upstream filter tries to connect to the input pin of a transform filter, the
upstream filter verifies its media types against the transform filter’s by calling
the CheckInputType() function® of the transform filter. If the transform filter
supports the media type, it returns S_0x; otherwise, it returns an error.

HRESULT CInvertFilter::CheckInputType(const CMediaType* pmtIn)
{

DbgLo‘g(((LOGfTRACE, 2, TEXT("CInvertFilter::CheckInputType")));
if ((*pmtIn->Type() = MEDIATYPE Text))

return E_INVALIDARG;
return S_0K;

LDbgLog() is a useful debug macro. See article on CD.

Typically, the input pin of the transform filter is connected before its output
pins. But it is possible for an input pin of a transform filter to connect to an
upstream filter after one of the output pins has already established a con-
nection with a downstream filter. In such a case the transform filter calls the
CheckTransform() function to assure that the transform filter can convert
the input media type to the output media type.

HRESULT ClnvertFilter::CheckTransform(CMediaType* pmtIn,CMediaType* pmtOut)
{

return S_OK;
}

\

2. Actually, the output pin of the upstream filter calls the CheckMediaType() of the input pin of the
transform filter, which in turn calls our transform filter, which is a member of the CTransformFilter.

as

~

- o g

ut

CREATING A TRANSFORM FILTER m 95

The transform filter is ready to run once both input and output pins are con-
nected to their respective filters. When the filter graph is started, the upstream
filter calls the Receive() function to deliver data to the transform filter. In our
case, the transform filter inverts the string before delivering it to the down-
stream filter. The Receive() function accepts an IMediaSample as an input,
which is the interface used to transport the data.

The Receive() function calls the IMediaSample::GetPointer() function to
retrieve a pointer to the input buffer. It then calls the output pin’s
GetDeliveryBuffer() function in order to retrieve a pointer to the shared
output buffer. The Receive() function inverts the input string and inserts it
in the output buffer. Finally, it calls the output pin’s Deliver() function in
order to deliver the data to the downstream filter.

HRESULT CInvertFilter::Receive(IMediaSample *pSample)
{

LPBYTE pData;
HRESULT hr;
CAutolock Tck(&m_csReceive);

// Get pointer to input buffer and size of valid data
hr = pSample->GetPointer(&pData);
int TDatalen = pSample->GetActualDatalength():

if (FAILED(hr))
return hr;

// Get the output pin sample buffer

IMediaSample *pQutSample;

if (FAILED(m_pOutput->GetDeliveryBuffer(&pOutSample, NULL, NULL, 0)))
return E_POINTER;

LPBYTE pDst;
if (FAILED(pOutSample->GetPointer(&pDst)))
return E_POINTER;

// Copy inverted string to output buffer
CopyMemory(pDst, pData, 1Datalen);
strrev((LPTSTR)pDst);

// deliver data to downstream filter
pOutSample->SetActualDatalength(1Datalen);
m_pOutput->Deliver(pOutSample);
pOutSample->Release();

return S_0K;

PART Il

96 m CHAPTER 8 DIRECTSHOW FILTERS

8.7 Creating a Rendering Filter

Finally, let’s create a rendering filter. As you recall, a rendering filter supports
one input pin and no output pins. It accepts data from an upstream filter
and renders it to a dump file, the screen, an audio device, or the Internet.
The rendering filter is the last stop for the data in the filter graph. In our
sample renderer, the input pin accepts a text string and displays it to a text
window on the screen (see Figure 8-3 on page 83).

DirectShow implements a base renderer, CBaseRenderer, which makes it
easy to derive our text-rendering filter. Again, we’ll discuss only the new
functions that are relevant to the rendering filter: CompleteConnect(),

BreakConnect(), OnReceiveFirstSample(), and DoRenderSample().

class CTextOutFilter : public CBaseRenderer
{
CTextOutWindow m_TextWindow;

public:
HRESULT CompleteConnect(IPin *pReceivePin)
HRESULT BreakConnect();
void OnReceiveFirstSample(IMediaSample *pMediaSample);
HRESULT DoRenderSample(IMediaSample *pMediaSampie);

CTextOutFilter (LPUNKNOWN pUnk,HRESULT *phr);

~CTextOutFilter();

static CUnknown * WINAPI CreatelInstance(LPUNKNOWN pUnk, HRESULT *phr)
STDMETHODIMP NonDelegatingQueryInterface(REFIID, void **);
DECLARE_TUNKNOWN

HRESULT CheckMediaType(const CMediaType *pmt);

Notice that in the code we’ve also defined the member variable
m_TextWindow, which handles the output window. CTextOutWindow is
based on the CBaseControlWindow class, which is part of the DirectShow class
library. CBaseControlWindow simplifies the creating and handling of output
to the client window. We're not going to discuss the CBaseControlWindow
interface in detail here; we'll just initialize the m_TextWindow variable in the
constructor of the filter and respond to the query of the interface as follows:

CTextOutFitter::CTextOutFilter(LPUNKNOWN pUnk,HRESULT *phr) :
CBaseRenderer(CLSID_TextRender, NAME("TextOut Filter"), pUnk, phr),
m_TextWindow(NAME("TextOut"), GetOwner(),phr, &m_Interfacelock, this)

STDMETHODIMP
CTextOutFilter::NonDelegatingQueryInterface(REFIID riid,veid **ppv)

Jass
ut

1€

CREATING A RENDERING FILTER = 97

CheckPointer(ppv,E_POINTER);
if (riid == IID_IVidecWindow) {
return m_TextWindow.NonDelegatingQueryInterface(riid,ppv);
}
return CBaseRenderer::NonDelegatingQueryInterface(riid,ppv); :
)

L l

As with the transform filter, the input pin of the rendering filter connects to an
upstream filter when both filters agree on the media type and the shared buffer i
size. Consequently, the CompleteConnect() function of the rendering filter is ;
called to affirm the connection between the two pins. This is the last chance for
the rendering filter to reject the connection between the two pins.

When the input pin is disconnected from the upstream filter, the
BreakConnect() function is called, which typically hides and destroys the output
window.

HRESULT CTextOutFilter::CompleteConnect(IPin *pReceivePin)
{

// It’s a good time to create the window
return S_0K;

PART 111

}

HRESULT CTextOutFilter::BreakConnect()
1
m_TextWindow.InactivateWindow();
m_TextWindow.DoShowWindow(SW_HIDE);
return S_OK;

At this stage, the rendering filter is ready to run. The filter exposes two
functions to handle the rendering of the data: OnReceiveFirstSample() and
DoRenderSample(). The OnReceiveFirstSample() function is always called to Il
render the first sample of data. Typically, this function handles the first sample |
of data that arrives after the Pause or Start commands are issued to the filter
graph. In motion video, it is necessary to display the last video frame when the
video clip is paused.

void CTextOutFilter::0nReceiveFirstSample(IMediaSample *pMediaSample)
{

if(IsStreaming() == FALSE) {
ASSERT(pMediaSample);
DrawText(pMediaSampie);

98 m CHAPTER 8 DIRECTSHOW FILTERS

8.8 Adding Your Own Interface

The DoRenderSample() function is repeatedly called when the upstream filter
delivers the samples to the rendering filter. This function handles rendering the
data to the screen, file, audio device, or the Internet. Typically, you only need
to implement this function; you don’t have to worry about the
OnReceiveFirstSample() function.

HRESULT CTextOutFilter::DoRenderSample(IMediaSample *pMediaSampie)
{

ASSERT(pMediaSample);

DrawText(pMediaSample);

return NOERROR;

Now you know how to create a source filter, a transform filter, and a render-
ing filter. As you can see, DirectShow defines the necessary interfaces to
build a filter graph and control the state of this graph. It allows you to start,
stop, and pause the filter graph. All fine and dandy, but what if you have a
cool feature that’s not supported by one of the DirectShow interfaces? This
is when you have to add your own interface. As it turns out, adding a new
interface is easily supported by the COM paradigm.

Suppose youd like to retrieve the statistics of the stream received by
CTextOutFilter. For example, you'd like to figure out how many characters
and how many words the renderer handles from start to stop. To do this,
you must add your own interface to CTextOutFilter.

To create a custom interface, you must first create an interface template,
declare its name and methods, and assign a unique GUID for it—in this
case, we'll call it the ITextStat interface. A template only declares the mem-
ber functions of the interface; it does not define or implement the body of
these functions. The function bodies must be defined in the class that
derives from this interface.

121

ADDING YOUR OWN INTERFACE m 99

Use GuidGen.Exe to generate unique GUIDs.

DEFINE_GUID(IID _ITextStat,
0x48025244, 0x2d3a, Oxllce, 0x87, Ox5d, 0x0, 0x60, 0Ox8c, 0xb7, 0x80, 0x66);

DECLARE_INTERFACE_(ITextStat, IUnknown)
{

STDMETHOD(get_NumberOfChars) (THIS int *pNumChar) PURE;
STDMETHOD(get_NumberOfWords) (THIS_ int *pNumWords) PURE;

I

L

tThe deriving class must implement all pure interfaces.—l

Next you need to include the ITextStat interface as one of the base classes of -
the CTextOutFilter class. i

class CTextOutFilter :
public CBaseRenderer,
public ITextStat

CTextOutWindow m_TextWindow;

pubiic:
CTextOutFilter (LPUNKNOWN pUnk,HRESULT *phr);
~CTextOutFilter();
static CUnknown * WINAPI Createlnstance(LPUNKNOWN pUnk, HRESULT *phr);
STDMETHODIMP NonDelegatingQueryInterface(REFIID, void **):
DECLARE_TUNKNOWN

=
x
<L
o,

// These are the custom functions |
STDMETHODIMP get_NumberOfChars(int *pNumChar); Hl
STDMETHODIMP get_NumberOfWords(int *pNumiords):
int m_nChars;
int m_nWords;

L | |

In addition, you must implement all the functions of the ITextStat interface. I
Notice on the CD that the m_nChars and m_nWords fields are incremented in
the DoRenderSample() function of the rendering filter (not shown here).

STOMETHODIMP CTextOutFilter::get_NumberOfChars(int *pChars)
{

*pChars = m_nChars; // number of chars received so far. |
return NOERROR; by
}

. STOMETHODIMP CTextOutFilter::get_NumberOfWords(int *pWords)
. {
*pWords = m_nWords; // number of words received so far..
return NOERROR;

122

100 8 CHAPTER 8 DIRECTSHOW FILTERS

8.9 Adding Property Pages to Filters

Finally, you need to respond to the NonDelagatingQuerylInterface() func-
tion of the filter in order to satisfy queries for the ITextStat interface.

STDMETHODIMP CTextOutFilter::NonDelegatingQueryInterface(REFIID riid,void **ppy)
{

if (rijd == IID_ITextStat) {

return Getlnterface((ITextStat *)this, ppv);
else if (rifd == IID_IVideoWindow) {
return m_TextWindow.NonDelegatingQuerylInterface(riid,ppv);

}

return CBaseRenderer::NonDelegatingQuerylnterface(riid,ppv);
}

\ |

Well, now that we’ve arrived at this point, you're ready to use your custom
interface in your application. You can access your custom interface by first call-
ing the QueryInterface() function of the CTextOutFilter—specifying your cus-
tom GUID, IID_ITextStat, as the first parameter. Querylnterface() returns a
pointer to the custom interface in the second parameter of the function. You
can use that pointer to call the appropriate member function in the custom
interface, for example, Get_NumberOfChars(), Get_NumberOfWords().

ITextStat *pTextStat;
hr = pUnknown->QueryInterface(I1ID_ITextStat,(void **)&pTextStat);
if (FAILED(hr))

return E_NOINTERFACE;

m_pTextStat->get_NumberOfChars(&m_Chars);
m_pTextStat->get_NumberOfWords(&m_Words);

As we’ve mentioned earlier, a filter can expose one or more property pages
that are specific to that filter. Typically, you would use a property page to
display the status or configuration of your filter. You can access property
pages either from the graph editor or from your application. We’ll show you
how to access property pages from an application in the following chapter.

To view the property pages for CTextOutFilter in the graph editor, right-
click the mouse on the filter and select Properties. You should see some-
thing similar to what is shown in Figure 8-6.

123

8.9.1

ADDING PROPERTY PAGES TO FILTERS = 101

/ TexO iplay ﬁlti'P‘opeﬂies

FIGURE 8-6 Property pages for CTextOutFilter.

Oooh, your fingers must be tingling at the thought of adding a property
page to your own filter. It’s actually pretty simple. To add one or more
property pages to your filter you need to take the following steps:

1. Add the property page interface to the filter.
2. Implement the property page interface.

We break down these two steps in more detail in the following subsections.

Adding the Property Interface to the Filter

Actually, adding a property page is very similar to adding a custom inter-
face. First, you must add the ISpecifyPropertyPage property interface as a
base class to the CTextOutFilter declaration.

class CTextOutFiTter :
public CBaseRenderer,
public ITextStat,
public ISpecifyPropertyPages

CTextOutWindow m_TextWindow;

public:
CTextOutFilter(LPUNKNOWN pUnk,HRESULT *phr);
~CTextOutFilter();
static CUnknown * WINAPI Createlnstance(LPUNKNOWN pUnk, HRESULT *phr);
STDMETHODIMP NonDelegatingQueryInterface(REFIID, void **);
DECLARE_TUNKNOWN

STDMETHODIMP get_NumberOfChars(int *pNumChar);
STOMETHODIMP get_NumberOfWords(int *pNumWords);
int m_nChars;
int m_nWords;

PART III

102 @ CHAPTER 8 DIRECTSHOW FILTERS

// required for ISpecifyPropertyPages
STDMETHODIMP GetPages(CAUUID *pPages):

\ _—

You must then respond to the NonDelegatingQuerylInterface() in order to
expose the property page interface to the application as follows:

STDMETHODIMP CTextOutfilter::NonDelegatingQueryInterface(REFIID riid,void
**DDV)
{

if (riid == IID_ISpecifyPropertyPages) {

return GetInterface((ISpecifyPropertyPages *) this, ppv);
} else if (rifid == IID_ITextStat) {

return GetInterface((ITextStat *)this, ppv);
} else if (riid == IID_IVideoWindow) {
return m_TextWindow.NonDelegatingQueryInterface(riid,ppv);

J
return CBaseRenderer::NonDelegatingQueryInterface(riid,ppv);

_

Since the property page is actually a separate COM object, you must inform
DirectShow of how to create an instance of that object. To do that, you must
add the property page template to the factory template list, g Templates].

DEFINE_GUID(CLSID_TextOutPropertyPage,
0x48025243, 0x2d39, Oxllce, 0x87, 0x5d, 0x0, 0x60, Ox8c, 0xb7, 0x80, 0x66);

CFactoryTemplate g_Templates[] = {
{ L"ABC - TextOut Display filter"
, &CLSID_TextRender
, CTextOutFilter::Createlnstance
, NULL
, &sudTextoutAx}

{ L"ABC - TextOut Property Page"

, &CLSID_TextOutPropertyPage
, CTextOutProperties::Createlnstance }

| |

Finally, you must implement the GetPages() function of the filter. When an
application displays the property page, DirectShow calls this function to
retrieve the GUIDs of the property pages exposed by this filter. GetPages()
returns a list of the property pages supported by this filter. In CTextOutFilter
were exposing the same property page twice just to show you how to support
more than one property page in a filter.

125

ADDING PROPERTY PAGES TO FILTERS & 103

STDMETHODIMP CTextOutFiTter::GetPages(CAUUID *pPages)
{

pPages->cElems = 2;

// allocate enough memory to hold their GUIDs
pPages->pElems = (GUID *) CoTaskMemAlloc(sizeof(GUID));

if (pPages->pElems == NULL) {
return E_OUTOFMEMORY;
} .
pPages->pElems[0] = CLSID_TextOutPropertyPage; // 1 property page
pPages->pElems[1] = CLSID TextOutPropertyPage; // 2" property page

return NOERROR

8.9.2 Implementing the Property Page Interface

To implement the property page, you must first derive an interface from the
base CBasePropertyPage class and implement a couple of its member
functions.

class CTextOutProperties : public CBasePropertyPage
{
public:
static CUnknown * WINAPI CreateInstance(LPUNKNOWN Tpunk, HRESULT *phr);

private:
CTextQutProperties(LPUNKNOWN Tpunk, HRESULT *phr);
HRESULT OnConnect(IUnknown *pUnknown);
HRESULT OnDisconnect();
HRESULT OnActivate();

[TextStat *m_pTextStat;
int m_Chars;
int m_Words;

DirectShow then calls the Createlnstance() function, which creates an instance
of the specified property page. Notice that the property page resource ID and
name is specified when the base constructor is called.

CUnknown * WINAPI

CTextOutProperties::CreateInstance(LPUNKNOWN TpUnk, HRESULT *phr)
{

return new CTextOutProperties(1pUnk, phr);

}

PART 111

104 8 CHAPTER 8 DIRECTSHOW FILTERS

CTextOutProperties::CTextOutProperties(LPUNKNOWN pUnk,HRESULT *phr) :
CBasePropertyPage(NAME("TextOut Prop Page"), pUnk, IDD_PROPPAGE, IDS_NAME)

ASSERT(phr)
) 10D_PRPPAGE Property page resource ID.

L -

Before the property page is displayed, DirectShow calls the OnConnect() func-
tion of the property page interface, using the address of the filter as a parameter,
At this stage, you must retrieve any information that your property page needs
from the filter. The property page retrieves the custom interface that we defined
earlier, ITextStat, from CTextOutFilter in order to figure out the number of
characters and words that the filter has processed already.

HRESULT CTextOutProperties::0OnConnect(IUnknown *pUnknown)
{
HRESULT hr;

// get a pointer to the ITestStat interface..
hr = pUnknown->QueryInterface(I11D_ITextStat, (void **)&m_pTextStat);
if (FAILEDChr))

return E_NOINTERFACE;

// get the statistics of ffchars & fwords from filter
m_pTextStat->get_NumberOfChars(&m_Chars);
m_pTextStat->get_NumberOfWords(&m_Words);

return NOERROR;

\ _J

When the property page is displayed, the OnActivate() function is called to
update the fields of the property page.

HRESULT CTextOutProperties::OnActivate()
{

TCHAR buf[501;

wsprintf(buf,"%d", m_Chars);
SendDlgltemMessage(m_DTg, IDC_NumberChars, WM_SETTEXT,0, (DWORD) buf);
wsprintf(buf,"%d", m_Words);
SendDlgltemMessage(m_Dlg, IDC_NumberWords, WM_SETTEXT, 0, (DWORD) buf);

return NOERROR;

Finally, when the property page is dismissed, the FGM calls the
OnDisconnect() function in order to release any interfaces or memory.

127

ADDING A FILTER TO THE REGISTRY =m 105

HRESULT CTextOutProperties::0OnDisconnect()
{

if (m_pTextStat == NULL)

return E_UNEXPECTED;
m_pTextStat->Release();
m_pTextStat = NULL;
return NOERROR;

8.10 Adding a Filter to the Registry

DirectShow uses the system registry to hold its configuration information,
filter list, and media types. When you create your own filter, you must add
it to the appropriate part of the registry so that DirectShow can recognize
and load your filter. Here is a list of the registry keys used by DirectShow
with a brief description of each key:

\\ Hkey Class_Root DirectShow looks here for a list of filter IDs (GUIDs).
\Filter

\\ Hkey_Class_Root This is where all COM objects live. Holds the settings for each
\CLSID GUID (for example, the filename of executable). DirectShow

looks up filter GUIDs here to get information about the filter.

, List of media types (for example, MPEG1Stream) and
1) the associated source filter that can handle this media
" type. This is used for automatic rendering of source
files. You can find more information on the CD under "Adding
) Custom File Types.'

\\Hkey_Local_Machine
\Software\Debug

\\Hkey_Class_Root
\Media Type

This area holds useful debug configuration for each
filter. You can find more information on the CD under
“DirectShow Debugging Hints"

You can easily add the necessary entries for your filter in the registry in one
of two ways. You can build a registry file with all the necessary entries and
add it to the registry with the RegEdit.Exe. Or you can embed the registry
information in the filter and use the RegSvr32.Exe command to add the infor-
mation to the registry.

8.10.1 Using a Registry File Is Not Recommended

Windows registry editor, RegEdit.Exe, supports a command line option, -s,
which allows you to specify a registry file in order to add information to the
registry. Here is the registry file for CTextOutFilter:

PART 111

106 8 CHAPTER 8 DIRECTSHOW FILTERS

; FileName: TextOut.Reg

[HKEY_CLASSES_ROOT\Filter\{CCO1B761-A537-11d0-9C71-00AA0058A735}] & Register filter GUID and
name with DirectShow.,

@="ABC - Text Display Filter”

[HKEY_CLASSES_ROOTAC1sid\{CCO1B761-A537-11d0-9C71-00AA0058A7351}] ¢ Add filter GUID to
@="Text Display Filter" CLSID section.
"Merit"=dword:00800000

[HKEY_CLASSES_ROOT\C1sid\{CCO1B761-A537-11d0-9C71-00AA0058A735}\InprocServer32] @ Path and filename
@="c:\\filter\\textout.ax" of filter.
"ThreadingModel"="Both"

[HKEY_CLASSES_ROOTAC1si1d\{CCOL1B761-A537-11d0-9C71-00AA0058A7351\Pins] & Supported pins and their
[HKEY_CLASSES_ROOTA\C1s1d\{CCO1B761-A537-11d0-9C71-00AA0058A735} \Pins\Text0ut] properties.
"AllowedMany"=dword:00000000

"AllowedZero"=dword: 00000000

"Direction"=dword:00000000

"IsRendered"=dword:00000001

[HKEY_CLASSES_ROOTA\CTs1d\{CCO1B761-A537-11d0-9C71-00AA0058A735}1\Pins\TextOut\Types] { Major and minor
[HKEY_CLASSES_ROOTA\CTsid\{CCO1B761-A537-11d0-9C71-00AA0058A735}\Pins\TextOut\Types\ media types that
{73747874-0000-0010-8000-00AA00389871}] the output pin
[HKEY_CLASSES_ROOTAC1sid\{CCO1B761-A537-11d0-9C71-00AA0058A735}\Pins\TextOut\Types\ supports.
{73747874-0000-0010-8000-00AA00389B71}\{00000000-0000-0000-0000-000000000000}]

To add the information in the file to the registry, run:

RegEdit.Exe -s TextOut.Reg

\ |

The problem with this method is that the information in the registry file is
static and may not reflect the current state of the filter. For example, the
path to the filter is hard coded and must be manually updated if the path
changes.

8.10.2 Using Filter Self-Registration Is Recommended

DirectShow supports the COM self-registration procedure, which allows a
filter to automatically add its information to the registry. To use self-
registration, you must embed the information in the filter and then run
the RegSvr32.Exe command. This command retrieves the embedded infor-
mation from the filter and adds it to the system registry.

First you must add the DirectShow setup information, sudTextOutAx, in
the factory template m_gTemplates[]. The DirectShow setup information
allows you to specify the filter name, the number of pins, and the supported
media types for each pin.

129

ADDING A FILTER TO THE REGISTRY =® 107

const AMOVIESETUP_MEDIATYPE sudIpPinTypes ={

MEDIATYPE Text, Q1 Major and minor media types supported

&MEDTIASUBTYPE_NULL by this pin.
b

Pin information array. If there is more
const AMOVIESETUP_PIN sudIpPins [] = [¢ than one pin, just add its information here.
{ L"TextOut", @ Pin name.

FALSE, @ Does the pin render the data it receives?

FALSE, Q Is it an output pin?

FALSE, ' @ Is filter allowed to have zero pins of this type?

FALSE, @ Does the filter have more than one instance of this pin?

&CLSID_NULL, @ The pin connects to the pin with this CLSID.

NULL, @ The pin connects to the pin with this name.

1, Q Number of supported media types.

&sudIpPinTypes } Q Address of media type list.

s

Filter information that is inserted in the
const AMOVIESETUP_FILTER sudTextoutAx = { { registry.

&CLSID_PlainText, & GUID of this filter.

L"ABC Text Display Filter", ¢ Filter name.

MERIT_NORMAL, @ Filter merit. This is used for automatic connection
1, @ Number of pins.

&sudIpPins Q Address of list of pins.

1

CFactoryTemplate g_Templates[] = {
{ L"ABC - TextOut Display filter”
, &CLSID_PlainText
, CTextQutFilter::Createlnstance
, NULL
, &sudTextoutAx |} @ Pointer to filter self-registration information (optional).
};

L |

Finally, you must implement and export two functions: DIIRegisterServer() and
DllUnregisterServer(). DlIRegisterServer() is called to add the filter information
to the registry, and DIllUnregisterServer() is called to remove that information
from the registry. Both functions call the appropriate DirectShow function to
do the actual registr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>