
SAMSUNG 10061

|||
US006061692A

United States Patent [19] [11] Patent Number: 6,061,692

Thomas et al. [45] Date of Patent: May 9, 2000

[S4] SYSTENI AND MICTHOD FOR 5,878,415 M1999 Olds 70'.-',r'6
li.I"lq99 Momoh Cl Eli. 't'0‘?i’20S

AN INTEGRAL COMPONENT OF AN OTHER 1.UB,_,CA-HONSINFORMATION SERVER

“Exploring the Windows ‘)5 Registry: the new way of
[75] Inventors: Michael W. Thomas, Bellevue; James storing system and application pt't:ft.:t‘t.:r1t:t:.‘s,” Jeff Prosise, PC

E, Allard, Seattle; Michael Howard; Magazine, V14, n20, pp. 277-280, Nov. 1995.
Sophia Chung, both of Redrnondg
Cnmemn Fe.-rmni, Seattle; Dtruglas C.
Hcrthcnthztl. Redmond; John

Primr1r_i-' ExaHtirter—l insain T. Alan‘:
Arrorrtey, Agent, or Ft‘m:—Workman, Nydcgger & Seeley

Ludemun, Redmond; Kim Slebhcns, i57l ABSTRACT

Redmond; Henry L. Sztndcr.-5,11, An . I-. ‘ . _ _ ,d 11 H ._ ‘ V _1. . l.
Kirkland; David R. .n_cadwe"’ HI, tn 0l‘lT]d.ll0l'l server a aptc to service requests or in or-i aie (2i.C')ii «aimat on has n nt gral dwtab -3 (.(1‘tla 11 ng configur ten

infrtrmation, application inl'orn'tation, andior content infor-

I-Bl Aqsignccz Microsoft Corporation‘ Rcdmmlda rnalton. '1i‘lt:.ll1i"(3fITl£lI‘lUl't tn the database is stored 1n a
wash hterarclucal iashlon with elements that corrcsponcl, In some

degree, with physical storage structure or individual infor-
mation objects on the information server. Path names
received in information requests are broken into constituent

Woodinville, all of Wash.

[211 App}. No; 08/963,394

[221 Filed: Nnv.4,1997 components and are userl to retrieve configuration

[51] I C] 7 G06]: 172,30 information, application information, atndior content infor-nt. m.l‘0n from [h\ databas. and "n1-‘0].ma1‘01 obucls fmm

U.S. Ci. Slgragg: In [he properlligi at 011g
[58] Field of Search 7{J7_t’1—2, 10, 102, hierarchical level may he inherited by lower hierarchical

'i"(J7.r'103, 200-204; 345E356 levels. The database is preferably provided with a program-
" rnatic interface that allows concurrent access to and admin-

i55l R"~‘f'~‘l'*3"C'3-‘5 Uwd istration of the database. Mechanisms to notify registered

U_S_ l,M_l_;N.I. DOCUMENTS users of changes or events that occur WI[i'| respect to the
database are implemented.

5,745,752 4,.-'t9t.J8 Ilurvig etal. vtrurznn
5.?:'s8,154 :‘-£1998 Qurcshi ’.tttw.3tJ2 38 Claims, 15 Drawing Sheets

"""""x 17!

Q__ t__,f"'1'

/ \ S212
|JEFMILT.HTI |}EFltiJl.T.HTl

1 SAMSUNG 1006

2

U.S. Patent May 9, 2000 Sheet 101-"15 6,061,692

£._<$2___

m.5;

3a:3m$._=8_._§._§2_._
2__E__.a

SE.52..._:_§..$_._.5.s=3=___:
$52.8~55:

.s_=.,__E¢

._§Ez<323;

5.3

§$_E__§_E=._§§E__§£E___.52..3:52..:22......5.3:2._§E..2.5”:a=.s.m_:_=.a..§.:_.2_.
._§E._$5:39.

m35.3.._§_§._Es

.o”_a2.32:
.s_=a:__._._3.3;:2.25.5

.3§__§.

82>ES._o.:zoagangs...
2.

3

295,1160.,

6.
N2.

H.m

.7...55m§_=._§,__5..II.....
\%

_,n,3T..\3.

tl2. 3$.23_.\.I.:32.§___m_,__[m._:§3.3._2
m3

P2CM:2;
U

4

Y.

2__.§=_;.=_..__2s_E_==_..8__=_2.Ez

‘E1E322z
5...”...3.3..33$....55..

Sheet 3 of 15

m.9”.

.28..
E0

m...=E._
2:

May 9, 2000LlpnCLlum

._=._e.2.
SU

5

m

L,V.o_u_

M,Fl3Fl%62..2.2I§§2,__I559%.._U9VI%2;I%_r-6_U%N:mEIaEI.=._=.§_lI§%M2I9IgEgmE2;
S

__._§s2__ugEF2;an.I—_E233I:E§m.25
mEFbf__IIIEMFr.9.2__IIIE.W.EI%EFI5333I52393rfl3

2.

:a_.__3s

__u.I0.IgrI%
t

mI3Ima,_...Eg4....:2.E—nm2.EECM3__IIIE
U

6

U.S. Patent May 9, 2000 Sheet 5 of 15 6,061,692

150

152

154

156

158

—K

IS PARTIAL mam no'""‘“" mueansn mu “"E"'5"°‘ V°”‘"*5 mu ATTRIBUTES
152 154 me 153 no 112 114 we

FIG. 5

7

2

9.M,.:...E..mg___:v:_.§_~mu:igM,EM2.;:2:2EasI
6<\

S232VI9:8Na/\2:.Km.__...........--N2an\.2.3‘:

May 9, 2000 ‘sheet 6 of 15

i

r.

Ii 2

t

ME umS2_.\;....w..\..
U.

8

U.S. Patent May 9, 2000 Sheet 7 of 15

,.._._.,__§a_$.._x.

9

U.S. Patent May 9, 2000 Sheet 3 of 15 6,061,692

274 FIG.8

10

U.S. Patent May 9, 2000 Sheet 9 M15 6,061,692

REQUEST 273 9“

RL unease

‘ Request
00 28 ‘ 290

RELEA E"9 WI. on PWL m A39
AOLIVE cmumsu RL

RELEASE 292
PARENT

PRL

282

ASSIGN RL

T0 KEY AND

CHILDREN

284

ASSIGH

PRL T0

PAREHT5

286

10

11

U.S. Patent

PIIL, Ill on

PIIIL gchve

 FOR NO

RL, PRL, WL
AND PIVL

298

ASSIGN VIL

TO KEY AND

CHILDREN

1
ASSIGII

PWI. TO

ANGESTORS

1

E

FIG. IDA

300

 302

May 9, 2000

11

Sheet 10 of 15 6,061,692

 WL 304

RELEASE

REQUEST

I
RELEASE

KEY AND

CHILDREN WL

I
RELEASE

ANGESTOR

PIIIL

I
SEND

NOTIFICATION

OF CHANGES

TO REGISTERED

CLIENTS

306

308

310

FIG. 108

12

U.S. Patent May 9, 2000 Sheet 11 of 15 6,061,692

312

314EVENT

REGISTER

324

 315
NOTIFICATION6

318 322

IIETABASE

SYSTEII

ca
320

FIG. 11

12

13

U.S. Patent May 9, 2000 Sheet 12 of 15 6,061,692

REGISTRATION

RECEIVED

PERIISSIOIIS

TO REGISTER FOR

330

13

14

U.S. Patent May 9, 2000 Sheet 13 of 15 6,061,692

344 345
FIG.13

IT‘
-i

an
346

338 i“!

the
‘li-

a’ I ff :0.. -r

" at

. ¢..-,3 "? wu-
cr: I

14

15

M.5,2E
11{O0.,/05

m_mas.masmEasamg.»m

 /

M._..2::¢ma;
M

53:...N3:..._wasm2»mEEanP:2:=2::34'cmE
U

16

May 9, 2000 Sheet 15 of 15 6,061,692..lH84|.3PSU

s:o_§<

an

2.3

0

E53...

3......_s_E_:.:ll
3»

2;

3.552.=§._o_s_=a__._:

16

17

6,061 ,692

1
SYSTEM AND METHOD FOR

ADM INISTERING A META I)ATABASE AS
AN IN'l'l*IGRAI. COM l’()Nl*IN'l‘ 01*‘ AN

INFORMATION SERVER

BACKGROUND OF THE INVENTION

1. The Field of the Invention

This invention relates to information servers, and, more

specifically, this invention relates to a mechanism for admin-
istering and configuring an information server that dramati-
cally reduces the administrative burden.

2. The Prior State of the Art

Today, business and technology trends are changing the
way we use computers and information. The personal com-
puter of PC has become the standard business information
tool as prices have decreased and computing power has
increased. In record numbers, business are re-engineering
their organizational structure and processes to become faster
and more competitive, in addition to being better able to use
the wealth of information resources available today. Never
before has there been so much information so readily
available nor such high expectations for how much the
individual will be able to accomplish by utilizing this
information. The result is that people today need access to
information everywhere, anytime.

The need for access to information and the widespread
availability of information has been aided and encouraged
by the growth of large-scale computer networks such as the
Internet. Through the Internet, users can access a wide
variety of information and have the information delivered
and displayed to their screens almost immediately. With the
proliferation ofthe Internet and Internet related and inspired
technologies, many businesses and corporations are model-
ing in-house information networks, called intranets, after the
model used by the Internet. The result is that users today
have more access to more different types of information than
ever before.

To supply information over these networks, various types
of information servers have been developed. These infor-
mation servers are designed to receive a request for infor-
mation from a client, retrieve the desired information, and
pass the information back to the requesting cl ient. In the case
if the Internet andlor intranets. information is generally
stored in a variety of standard formats that may be retrieved
and provided to the requesting client. The type of format
used to store the data depends in large measure upon the type
of information server and the purpose of the infonrtation
server. For example, information servers designed to provide
information to various web browsers over the Internet often

store and provide information in a Hypertext Markup Lan-
guage (HTML). On the other hand, a server providing
information via the Internet File Transfer Protocol (l'-’I'P)
may store information in a wide variety of formats suitable
for downloading by a requesting client. Other types of
information servers such as mail servers, news servers, and
so forth, also abound.

Although each of these various types of information
servers has unique requirements, at some level all such
information servers require the ability to retrieve informa-
tion in a desired format and provide the information to a
requesting client. In order to achieve this goal, many infor-
mation servers must store a wide variety of configuration
and other data. For example, many information servers are
customizable in a wide variety of ways. The various cus-
tomization infon'nation must be stored for each particular
installation. Such configuration information may range from

I0

15

30

35

40

50

55

60

65

17

2

configuration information regarding the specific hardware
environment, protocols used to communicate with clients
and service client requests, configuration information relat-
ing to the specific information stored on the information
server, and many other types of configuration information.

Trad itionally. such configuration information was stored
in text-based files referred to on various systems as “INI"
files, “CONF” files, or "RE" files. These INI files were
typically formatted according to some identified format, for
example, a parameter identifier followed by the value of the
parameter. When the information server was initialized, the
in formation server would go to the appropriate INI file, read
the text-based information contained therein, parse the text-
based information to extract the appropriate configuration
information. and apply the configuration information. As
explained below, dynamic configuration was rare and the
system often had to be restarted as changes were made.

Such an approach worked relatively well for information
servers that provided a small amount of information or that
were customizable in a limited number of ways. Ilowever, as
the amount of information available from a particular infor-
mation server has increased and as the contexts in which an

information server must operate has diversified, the amount
and type of configuration information has dramatically
increased. This dramatic increase has created several prob-
lems for traditional configuration mechanisms.

One problem with using text-based INI files to configure
and administer an information server is highlighted by the
amount of information that must be stored when the amount

of information serviced by the server increases. As one
example, web servers may provide ratings for each of the
web pages accessible from the server. These ratings rate the
information content of a web page or other information
object so that individuals may screen out objectionable
material. An information server that supports ratings must,
therefore, maintain rating information on each and every
information object that can be accessed via the information
server. Such rating information may be compiled into a
single large INI file or may be stored in separate INI files,
each associated with an appropriate infonriation object.
When an administrator wishes to update rating information,
the administrator must change the information in the appro-
priate INI file. For a large number of information objects,
this task can be tedious and is fraught with error. For
example, if the entire rating of one particular subtree of an
information server is changed, then the rating for each and
every information object in that subtree must be identified
and updated. It would, therefore, be highly desirable to
provide a mechanism that reduces the administrative burden
in updating configuration information that applies to large
groups of information objects. It would also be highly
desirable to reduce or eliminate the probability of errors
associated with such changes.

Another problem with text—based INI files can be illus-
trated by the following scenario. Suppose configuration
information is stored in a single, large INI file. Now suppose
that the administrator wishes to make a modification to a

portion of the information in the INI file. After the admin-
istrator has completed the desired changes, a mechanism
must exist for making the information server aware of the
changes that have been made. In some systems, this neces-
sitates stopping the information server and reinitializing the
information server. Such a reinitialization may be as simple
as stopping and restarting a program or as complicated as
shutting down an entire system and rebooting the entire
system, causing service outages. Such a mechanism is
highly undesirable if configuration information is changed

18

6,061 ,692

3

on a relatively frequent basis. It would, therelhre. be an
advancement in the art to eliminate the necessity of reini-
tializing an information server when configuration changes
are made.

In order to eliminate the need to reinitialize an informa-

tion server, mechanisms may be put in place that cause the
information server to return to the text file and reread all the

configuration parameters. The server can reparse the text file
and extract the appropriate configuration information. Such
an approach may work for certain types of configuration
changes. However, such an approach still requires the infor-
mation server to reread and reparse all entries in the text file
in order to identify which information in the file has
changed. This still represents a rather cumbersome process.
It would be an advancement in the art to obviate the

necessity of rereading and reparsing configuration tiles to
determine which configuration parameters have been modi-
fied. It would be a further advancement in the art to allow all

such configuration changes to be made without reparsirrg an
entire INI tile and without requiring any stopping and
starting of the information server.

In order to eliminate the need to reread and reparse
tex1—based INI files whenever configuration parameters are
needed, most existing information servers keep as much of
the configuration information in memory as pmaible. For “
example, if rating information is utilized, it is desirable to
maintain the rating information for the associated informa-
tion objects in memory so as to eliminate the necessity of
retrieving text from an INI file and parsing the retrieved
information to extract the configuration information. As the
number of information objects provided by an information
server increases and as the variety and type of configuration
information proliferates, keeping all such information in
memory becomes a difficult task. Furthermore, the amount
of non—volatile storage space and the initialization time also ‘
increases. It would, therefore, be highly desirable to reduce
the amount of information that needs to remain in memory
in order to configure an information server while,
simultaneously, reducing the necessity of retrieving infor-
mation from [NI tiles that must be parsed to extract the
desired configuration information. It would also be highly
desirable to reduce the amount of non-volatile storage
required to store such information and to reduce the time
required to initialize an information server.

SUMMARY AND Ol3.|]:LCI'S OF THE
INVENTION

Glossary of Terms

In order to assist in understanding the terminology used in
the summary of the invention and detailed description, the
following definitions for key terms are provided:

Application Metadata
Properties stored by an application or extension config-

ured as part of the information server. Examples of such
applications or extensions may be a content indexing com-
ponent which indexes the content of various objects admin-
istered and served by the information server, a component
that issues stock quotes, or other active content provider.
Application metadata is generally used at initialization time
or at run time to affect the behavior of the associated

application. Examples of application metadata include a
property that identifies a directory as requiring indexing and
the server name to connect to in order to retrieve stock quote
data. Application metadata is sornetirne referred to applica-
tion information.

I0

15

30

40

50

55

60

65

18

4
Children

In a hierarchy, progeny below the identified level.
Includes not only direct children but also progeny of greater
degree (e.g. grandchildren, great grandchildren, etc.).

Client

A general term used to refer to a requesting entity or an
entity that is served by another entity. Clients can include
both entities making requests of the information server and
entities accessing the metabase of the present invention.

Configuration Metadata
Properties and settings which apply to information server

operating system services such as HTTP, FTP, etc. Examples
include http port and enabling of certain features for the type
of service. Configuration metadata is sometimes referred to
as configuration information.

Content Metadata

Properties which apply to the objects served and managed
by an information server. Examples include ratings on files,
and execute access for an object or location. Content Meta-
data is sometimes referred to as content information.

Information Object
A broad term that incorporates any and all types of

information served by an information server. Information
objects may include, but are not limited to, documents,
software components or objects that provide a result or
information, files, data, and so forth.

Key Location
A storage location in a metabase where one or more

properties containing metadata are stored. Key locations are
also sometime referred to as keys. A key location is some-
what analogous to a directory on a storage device.

Mctabase

A database used for the storing of metadata including, but
not limited to, configuration metadata, content metadata, and
application metadata.

Metadata

Configuration of other information that is helpful to or
required by a system in managing and administering infor-
mation objects. Examples include configuration metadata,
content metadata, and application metadata.

Parent

In a hierarchy, the levels above the identified level.
Parents include not only the immediate progenitor but all
other progenitors as well (e.g. grandparents, great
grandparents, etc).

Programmatic Interface
An interface through which something is accessed typi-

cally consisting of series of functions, interfaces, or entry
points that are called by an entity in order to achieve a
certain result. A programmatic interface implies a software
component on each side of the interface, one to perform the
calling and another to perform the called function.

Software Component
A general term to refer to any type of software entity

including software objects, DLLs, application programs,
executable units, services, and so forth.

Virtual Directory
A 'directory' that corresponds to one or more keys in a

metabase but has no direct counterpart on physical storage
media.

Virtual Server

An information server that appears to the outside world as
a totally separate physical information server but which, in
reality may share a physical machine with other informationservers.

19

6,061 ,692

5

Brief Summary and Objects of the Invention

The foregoing problems in the prior state of the art have
been successfully overcome by the present invention, which
is directed to configuration, administration, and operation of
an information server. Various aspects of the present inven-
tion dramatically reduce the administrative burden and asso-
ciated overhead. The present invention reduces the amount
of information that must be maintained in memory and on
disk while, simultaneously, eliminating the need to parse
text-based INT files. The invention reduces the burden of

administering and maintaining an information server and
eliminates maintenance errors by reducing the amount of
data that needs to be stored to configure and maintain an
information server. The present invention implements a full
complement of security mechanisms that allow wide [lex-
ibility in granting and controlling access to both the infor-
mation objects provided by the information server and to the
configuration information. Mechanisms are also imple-
mented that allow simultaneous administration by multiple
administrators. The invention also implements mechanisms
to allow for true remote administration such that the infor-

mation server may be administered from any desired loca-
tion.

An information server constructed according to the
present invention incorporates a database of configuration
and other information. This database is separate and distinct
from the various information objects that can be accessed
through the information server. The database is used to store
so called "metadata.“ Metadata, as used herein. includes

configuration metadata (properties and settings which apply
to the information server), content metadata (properties
which apply to the information objects served and managed
by the information server), and application metadata

(properties stored by the information server application or ‘extensions thereto which are used at initialization time or

run time to affect the application’s behavior). The database
is preferably arranged in a hierarchical fashion with various
properties being stored at each of the hierarchical levels.

One mechanism provided by the present invention to
reduce the amount of data that must be stored and managed
in order to conligure and administer an information server is
the use in inheritance for various properties. The present
invention allows properties at one level to inherit properties
from a parent or progenitor level. Thus, a property stored at
a particular level may effectively extend to any and all
sub-levels. This allows properties to be stored and admin-
istered from a single iocation. The use of inheritance is one
mechanism which the present invention utilizes to reduce
the overall amount of information that must be stored and
administered for an inforrnation server. Inheritance also
reduces the administrative burden and administrative errors.

Requests received from clients desiring to access infor-
mation objects managed and administered by the informa-
tion server typically include a path name having a series of
individual constituent names. One example of such a path
name is the familiar Uniform Resonance Locators {URI..s)
used to access web pages over the Internet. For example, one
such path name may be written as http:;‘f
www.mycompanycomfsubpathlidocument.htrn. in this
example. the path has various constituent names such as
http, www.mycompany.com, subpathl, and document.htm.
The path name is typically interpreted by an information
server as a hierarchical path to locate an information object
on physical storage that should be retrieved and provided to
the requestor. The present invention extends this concept by
also mapping all or part of the path name into the hierar-

I0

15

30

40

50

55

60

65

19

6

chical database containing configuration information. Thus,
configuration information relating to the portion of the
information server that provides http services may be stored
in a hierarchical location that corresponds to the http con-
stituent name. In addition, configuration information relat-
ing to any of the other constituent names may be stored in
an associated hierarchical level. Thus, configuration infor-
mation relating to subpathl or information objects stored
along subpathl may be placed in the database at a hierar-
chical level associated with the subpathl constituent name.
Information relating to document.htm may be stored in a
hierarchical level corresponding to the document.htm con-
stituent name. Using this mechanism, configuration infor-
mation may be accessed in parallel with the access to the
information object itself. In other words, in the example just
given the constituent names may map both to a physical
location on a storage medium and a location in the database.

Because the database provides inheritance of properties
from one level to another, it may not be necessary to have
a hierarchica} level in the database that corresponds to each
and every constituent name of a path name. For example, if
all documents along subpathl had a particular rating, then
the rating for all documents may be stored at a level
corresponding to subpathl and inherited by the subsequent
levels. If no other properties need to be stored for the
subsequent levels, then there is no need for subsequent
levels in the database. To facilitate such a functionality, the
present invention allows part of a path to be resolved in the
database and part of the path to be resolved in other
locations. In other words, the resolution process picks up
only those properties from the database that are needed.

The database may be provided with a programmatic
interface that provides entry points and functions to manipu-
late data in the database. Software components wishing to
access the database may do so through the appropriate
programmatic function. Functions may be provided to per-
form any desired manipulations on the data in the database.
Such functions may include, for example, functions to get
and set properties at various hierarchical levels, functions to
determine whether properties reside at a particular level or
whether they are inherited from other levels, and so forth. If
care is taken to implement the programmatic interface in a
manner that is accessible from remote locations, then admin-

istration of configuration information for the information
server may be accomplished from any location.
Furthermore, mechanisms may be put in place to allow
concurrent administration of the database.

The programmatic interface may also be provided with
functions and mechanisms that allow the database to be

written to a storage medium, restored from the storage
medium, synchronized with a copy of the database in
another location. and so forth. Such functions may allow a
rich set of administrative tools to be developed that dramati-
cally reduce the burden and administrative overhead asso-
ciated with maintaining and configuring the informationSCIVCI.

In order to reduce the overhead necessary to discover
changes that are made to the database, the present invention
may implement a notification mechanism. Software compo-
nents or other clients may register to be notified when certain
events occur. For example, a component may register to be
notified when a change is made to properties in the database.
Because access to the database is implemented via a pro-
grammatic interface, when changes are made to the database
the database may initiate and send notification to Compo-
nents registered for that event. In addition, the notification
may identify which properties or locations in the database

20

6,061 ,692

7

have been changed. In this way, a components receiving
such notification can decide whether it needs to retrieve the

updated information from the database. Such a mechanism
eliminates the necessity of parsing a text file to determine
what information has been changed. Furthermore. such :1
mechanism eliminates the need to reinitialize an information

server to cause it to pick up changes that are made.

Accordingly, it is a primary object ofthe present invention
to provide a system and method for administration of an
information server that dramatically reduces the administra-
tive burden. Another object of the present invention is to
provide an information server that reduces the amount of
information that needs to be stored to administer an infor-

mation server. Yet another object of the present invention is
to provide an information server with an integral database
that stores configuration information and that can access
such configuration information while resolving a path name
from a request received by the information server.

Additional objects and advantages of the invention will be
set forth in the description which follows, and in part will be
obvious from the description, or may be learned by the
practice of the invention. The objects and advantages of the
invention may be realized and obtained by means of the
instruments and combinations particularly pointed ottt in the
appended claims. These and other objects and features of the “
present invention will become more fully apparent from the
following description and appended claims, or may be
learned by the practice of the invention as set forth herein-
after.

BRIEF DESCRIPTION OF THE DRAWINGS

In order that the manner in which the above-recited and

other advantages and objects of the invention are obtained,
a more particular description of the invention brielly

I0

15

30

described above will be rendered by reference to specific ‘
embodiments thereof which are illustrated in the appended
drawings. Understanding that these drawings depict only
typical embodiments of the invention and are not therefore
to be considered limiting of its scope, the invention will be
described and explained with additional specificity and
detail through the use of the accompanying drawings in
which:

FIG. 1 is an example system that provides a suitable
operating environment for the present invention;

FIG. 2 is a diagram of an example network with an
information server;

FIG. 3 is a high-level architectural diagram of one
embodiment of the present invention;

FIG. 4 is a representative example of the hierarchical
structure of one metabase according to the present invention;

FIG. 5 illustrates one embodiment of a property suitable
for use with the present invention;

FIG. 6 is a high-level diagram illustrating path name
resolution according to the present invention;

FIG. 7 is a high-level diagram illustrating inheritance of
properties according to the present invention;

FIG. 8 is a diagram illustrating the read and write locking
mechanisms according to one embodiment of the present
invention;

FIGS. 9A and 9B illustrate the processes of granting and
releasing read locks according to one embodiment of the
present invention;

FIGS. 10/\ and 10B illustrate the processes of granting
and releasing write locks according to one embodiment of
the present invention;

40

50

55

60

65

20

8

FIG. 11 represents the notification mechanism of one
embodiment of the present invention;

FIGS. 12A and 12B illustrate the process of registering
and sending notifications according to one embodiment of
the present invention;

FIG. 13 illustrates the storing of security information in
the metabase of one embodiment of the present invention;

FIG. 14 illustrates one mechanism for reducing the
amount of information stored in memory; and

FIG. 15 illustrates the general component object model
(COM) technology from Microsoft.

DETAILED DESCRIPTION OF THE
PREFERIQED EMBODIMEN'l‘S

The invention is described below by using diagrams to
illustrate either the structure or processing of embodiments
used to implement the system and method of the present
invention. Using the diagrams in this manner to present the
invention should not be construed as limiting of its scope.
The present invention contemplates both methods and sys-
tems for the configuration, management, and operation of an
information server. The embodiments of the present inven-
tion may comprise a special purpose or general purpose
computer comprising various computer hardware, as dis-
cussed in greater detail below.

Embodiments within the scope of the present invention
also include computer readable media having executable
instructions or data fields stored thereon. Such computer
readable media can be any available media which can be
accessed by a general purpose or special purpose computer.
By way of example, and not limitation, such computer
readable media can comprise RAM, ROM, EEPROM,
CD-ROM or other optical disk storage, magnetic disk stor-
age or other magnetic storage devices, or any other medium
which can be used to store the desired executable instruc-

tions or data fields and which can accessed by a general
purpose or special purpose computer. Combinations of the
above should also be included within the scope of computer
readable media. Executable instructions comprise, for
example, instructions and data which cause a general pur-
pose computer, special purpose computer, or special purpose
processing device to perform a certain function or group of
functions.

FIG. 1 and the following discussion are intended to
provide a brief, general description of a suitable computing
environment in which the invention may be implemented.
Although not required, the invention will be described in the
general context of cornputer-executable instructions, such as
program modules or other software components, being
executed by a personal computer. Generally, program mod-
ules include routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the
art will appreciate that the invention may be practiced with
other computer system configurations, including hand-held
devices, multi-processor systems, microprocessor-based or
programmable consumer electronics, network PCs,
minicomputers, mainframe computers, and the like. The
invention may also be practiced in distributed computing
environments where tasks are performed by remote process»
ing devices that are linked through a communications net-
work. In a distributed computing environment, program
modules may be located in both local and remote memory
storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a general purpose computing

21

6,061 ,692

9

device in the form of a conventional computer 20, including
a processing unit 21, a system memory 22, and a system bus
23 that couples various system components including the
system mentory to the processing unit 21. The system bus 23
may be any of several types of bus structures including a
memory bus or memory controller. a peripheral bus, and a
local bus using any of a variety of bus architectures. The
system memory includes read only memory (ROM) 24 and
random access memory (RAM) 25. A basic input/output
system (BIOS) 26, containing the basic routines that help to
transfer in formation between elements within the computer
20, such as during start-up, may be stored in ROM 24. The
computer 20 may also include a magnetic hard disk drive 2'7
for reading from and writing to a magnetic hard disk, not
shown, a magnetic disk drive 28 for reading from or writing
to a removable magnetic disk 29, and an optical disk drive
30 for reading from or writing to removable optical disk 31
such as a CD-ROM or other optical media. The magnetic
hard disk drive 27, magnetic disk drive 28, and optical disk
drive 3|] are connected to the system bus 23 by a hard disk
drive interface 32, a magnetic disk drive-interface 33, and an
optical drive interface 34, respectively. The drives and their
associated computer—rcadable media provide nonvolatile
storage of computer readable instructions, data structures,
program modules and other data for the computer 20. H
Although the exemplary environment described herein
employs a magnetic hard disk 27, a removable magnetic disk
29 and a removable optical disk 31, it should be appreciated
by those skilled in the art that other types of computer
readable media which can store data that is accessible by a
computer, such as magnetic cassettes, flash memory cards,
digital video disks, Bernoulli cartridges, random access
memories (RAMs), read only memories (ROMs), and the
like, may also be used in the exemplary operating environ-
ment.

A number of program modules may be stored on the hard
disk, magnetic disk 29, optical disk 31, ROM 24 or RAM 25,
including an operating system 35, one or more application
programs 36, other program modules 37, and program data
38. A user may enter commands and information into the
computer 20 through input devices such as a keyboard 40
and pointing device 42. Other input devices (not shown)
may include a microphone, joy stick, game pad, satellite
dish, scanner, or the like. These and other input devices are
often connected to the processing unit 21 through a serial
port interface 46 that is coupled to system bus 23, but may
be connected by other interfaces, such as a parallel port,
game port or a universal serial bus (USB). A monitor 47 or
other type of display device is also connected to system bus
23 via an interface, such as video adapter 48. In addition to
the monitor, personal computers typically include other
peripheral output devices (not shown), such as speakers and
printers.

The computer 20 may operate in a networked environ-
ment using logical connections to one or more remote _
computers, such as a remote computer 49. Remote computer
49 may be another personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to the computer 20, although only a memory
storage device 50 has been illustrated in FIG. 1. The logical
connections depicted in FIG. 1 include a local area network
(LAN) 51 and a wide area network (WAN) 52 that are
presented here by way of example and not limitation. Such
networking environments are commonplace in oflices
enterprise-wide computer networks, intranets and the Inter-
net.

It)

15

30

35

40

45

50

60

65

21

10

When used in a IAN networking environment, the com-
puter 20 is connected to the local network 51 through a
network interface or adapter 53. When used in a WAN
networking environment, the computer 20 typically includes
a modem 54 or other means for establishing communica-
tions over the wide area network 52, such as the Internet.
The modem 54, which may be internal or external, is
connected to the system bits 23 via the serial port interface
46. In a networked environment, program modules depicted
relative to the computer 20, or portions thereof, may be
stored in the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

Referring now to FIG. 2, an example network where an
information server might be employed is presented. The
network of FIG. 2 is given by way of example and not
limitation. Other configurations are possible and the con-
figuration of FIG. 2 is intended to provide one possible
context for the use of an information server.

In FIG. 2, an information server is shown generally as 56.
information server 56 may be an information server config-
ured according to the present invention and incorporating
the concepts disclosed herein. Information server 56 may
service information requests from various clients such as
clients 58. Clients 58 are illustrated as connecting to infor-
mation server 56 over a local area network (LAN) 60.
Although not specifically shown in FIG. 2, LAN 60 may
have routers that route message traffic on the network. A
configuration such as that illustrated in FIG. 2 is often
encountered in an intranet context where a company or other
organization desires to provide information that can be
accessed using Internet type technology. Accem to informa-
tion scrver 56 may also be gained by mobile clients such as
mobile client 62 through a remote access server. such as
remote access server 64 or similar technology. Information
server 56 may also be connected to lntemet service provider
66. Internet service provider 66 and information server 56
may then engage in two way communication where requests
for information may flow between Internet service provider
66 and information server 56. Such information requests
may come from, for example, clients connected to the
Internet 68.

The configuration may also contain other servers such as
SQL server 70 and DHCP server 72. DHCP server 72

typically provides IP addresses to clients and other entities
on LAN 60. SQL server 70 is representative, for example, of
various other types of servers that provide information to or
receive information from information server 56 or other
clients of LAN 6!].

As illustrated in FIG. 2, an information server may
receive requests for information from a variety of sources. In
this application, entities that request information will be
referred to as clients. It should be noted that entities that

request infonnation may be various physical clients as
illustrated in FIG. 2 but may also include various software
components whether internal or external to information
server 56.

Referring now to FIG. 3, one example of a top—level
diagram of an embodiment of the present invention is
illustrated. FIG. 3 represents a top-level architectural dia-
gram and is given by way of example, and not limitation. In
FIG. 3, client 74 initiates a request 76 for information from
an information server according to the present invention,
such as information server 78. Request 76 travels through
network communication infrastructure 80 and is received by

22

6,061 ,692

11
network interface device 82. Communication infrastructure

80 may represent any type of communication infrastructure
between information server 78 and client 74. Communica-

tion infrastructure 80 may be a IAN, such as an intranet or
other local network, a WAN such as the Internet or other
wide area network, a combination of a LAN and WAN, or
any other communication path that allows transmission of
requests and responses between client 74 and information
server 78. Network interface device 82 thus represents the
appropriate interface mechanism to tie information server 78
to network communication infrastructure 80.

Requests received by network interface device 82, such as
request '76, are passed through network interface device
driver 84, protocol layer driver 36, and a sockets layer such
as sockets layer 88 or secure sockets layer 90. Network
interface device driver 84, protocol layer driver 86 and a
sockets layer 88 or secure sockets layer 90 represent typical
mechanisms to communicate information from a low-level

network interface device up to a higher level application or
service. In addition, the various layers may have interface
layers that reside between them in order to make the
changing ofa driver at any particular layer a relatively easy
process. In other words, if a standard interface layer exists
between protocol layer 86 and network interface device
driver 84, either side of the interface may be replaced with
very little impact on the component on the other side of the
interface. Such an approach is taken, for example, by
Microsoft Windows NT which typically utilizes a network
device interface specification {NDIS) layer between a hard-
ware device driver and a protocol layer. Similar interface
layers may also exist between protocol layer 86 and sockets
layer 88 or secure sockets layer 90.

Network interface device driver 84 represents, for
example, an appropriate hardware device driver used to
communicate information to and from network interface

device 82. Similarly, protocol layer driver 86 represents, for
example, any one of a number of standard protocols such as
a standard ll’ stack including transmission control protocol
('I‘Cl’) andfor user datagram protocol (UDP), Intemet con-
trol message protocol (ICMP), Internet protocol (IP),
address resolution protocol (ARI-"), and so forth.

Once the request passes through sockets layer 88 or
secure sockets layer 90, the request is handled by an
appropriate software component. Such a software
component, either alone or in conjunction with other
components, is responsible for interpreting the request and
providing an appropriate response. As discussed in greater
detail below, in an information server configured according
to the present invention this process also involves retrieving
configuration information from a special database where
configuration and other types of “metadata” are stored. Such
a database is sometimes referred to as a “metabase".

Embodiments within the scope of this invention may there-
fore comprise means for retrieving information from a
database and for accessing and returning information objects _
in response to a request. In 1710. 3, such a means is
illustrated, for example, by such software components as
web service 92, FTP service 94, news service 96, and other
services 98. It should be remembered that these are given by
way of example and not limitation. Other embodiments may
implement such a component differently. Thus, the scope of
means for retrieving information from a metahase and for
accessing and returning information objects extends beyond
the specific examples illustrated in ITIG. 3 to equivalent
functionality incorporated into other embodiments.

Web service 92, FTP service 94, news service 96, and
other services 98 may be implemented, for example, by

ID

15

30

35

40

45

50

60

65

22

12

services running under Windows NT. Other embodiments
are also possible and the services illustrated in FIG. 3 are
simply meant to illustrate a software component that is
tasked with handling a request received as previously
described. In various embodiments, services, such as those
illustrated in FIG. 3, may handle a request by themselves or
may employ one or more other software andlor hardware
components to handle the request. In the embodiment illus-
trated in FIG. 3, the various services may make use of other
entities such as tile system 100 and metabase system 102.

In the embodiments illustrated in FIG. 3, when a request
is received by a component, such as one of the services
illustrated, the component accesses appropriate information
to till the request. For example, request T6 may be a request
to retrieve information from a particular information object
stored on local storage 104 or remote storage 105. As
explained in greater detail below, such a request is often
accompanied by a path name that indicates the identity
andlor location of the particular information object that
should be retrieved. The service receiving the request may
resolve the path name received in the request and use the
resolved path name to retrieve the appropriate information
object from local storage 104 or remote storage 105 using
file system 100.

Retrieving the appropriate information object from local
storage 104, however, is only part of the process for an
information server configured according to the present
invention. In addition to an information object, configura-
tion and other data is retrieved and utilized in filling the
request. In the present invention, such configuration and
other data is stored in a metabase. As illustrated in FIG. 3,

metabasc 106 is accessed via metahase system 102. As
explained in greater detail below, metabase 106 may be
stored on local storage or may reside in memory, or in some
combination of locations including local storage, memory,
remote storage, and so forth. In general, however, the
information in rnctabase 106 is stored in a manner to

minimize the time necessary to retrieve desired information.
Conceptually, an information server configured according

to the present invention receives a request, extracts appro-
priate configuration and other information, uses that infor-
mation to perform any configuration or make any decisions
necessary regarding the response that should be generated,
accesses appropriate information objects, creates a response,
and returns response to the requesting client. The exact
manner that this process is performed by embodiments
within the present invention will be described in greater
detail below. At this point, however, it is important to
understand that when a service, such as web service 92, FTP
service 94, news service 96, or other services 98 of FIG. 3
receives a request, in filling the request it may access
information in metabase 106 through metabase system 102
and infonnation objects stored on local storage 104 or
remote storage 105 through file system 100. Although not
specifically illustrated in l"'IG. 3, it is also possible that the
service may access information objects that are not stored
locally through a mechanism appropriate to the information.
For example, a service could retrieve information from
another location of a local area network.

In the embodiment illustrated in FIG. 3. mctahasc 106 is
accessed through metabase system 102. Metabase system
102 is meant to depict a software component that handles all
access to the information contained in metabase 106. Exem-

plary implementations of rnetabase system 102 are discussed
in greater detail below. Essentially, metahase system 102
provides a programmatic interface to metabase 106. Meta-
base system 102 is, therefore, but one example of a means

23

6,061 ,692

13

for providing a programmatic interface to a metabase such
that access to the metabase is obtained through the program-
matic interface. Metabase system 102 may provide various
functions, interfaces, entry points, and so forth to allow other
software components to access metabase 106 in an appro-
priate manner. Various functions that can be implemented in
various embodiments will become more apparent from
discussions below which describe various features and char-
acteristics of metabase 106.

After the appropriate service has generated a response by
accessing information in local storage 104, remote storage
105, anclfor metabase 196, the response is passed back
through the appropriate sockets layer, such as sockets layer
88 or secure sockets layer 90, through protocol layer driver
86, network interface device driver 84, and network inter-

face device 82. The response, such as response 108, is then
passed through network communication infrastructure 80
back to client 74.

The previous discussion illustrated how an embodiment
of the present invention may access appropriate conligura-
tion and other information to generate and service a response
received from a client. The present invention, however,
provides many advantages for administration of the infor-
mation server and configuration information stored thereon.
Thus, embodiments within the scope of this invention may H
comprise means for administering a metabase. In FIG. 3,
such means for administering is illustrated by administrative
tools 110. Administrative tools 110 represent any number or
type of administrative tools used by an administrator to
maintain and configure information server 78 and the data
stored thereon. As described in greater detail below, such
administration is typically performed by including various
properties and other information in mctabase 106. Thus,
embodiments within the scope of this invention may com-
prise means for allowing write access to a metabase. In FIG.
3, such means is illustrated, by way of example, by arrow
112. Such a means may allow access to metabasc 106
through the programmatic interface provided by metabase
system 102. If metabase system 102 is implemented using a
technology that allows remote access, then administrative
tools 110 may reside at any location and still allow full
administration of information server 76. Such a possibility is
illustrated in FIG. 3 by administrative tools 110 residing
outside the dashed box enclosing information server 78.

Since mctabase 106 is accessed through the programmatic
interface of metabase system 102 in the embodiment illus-
trated in FIG. 3, other entities may also access the metabase
for varioLLs purposes. In FIG. 3, such a possibility is illus-
trated by other entity 114. Other entity 114 may be any type
of entity which has the appropriate permissions and a need
to store information in or retrieve information from meta-

base 106. For example, other entity 114 may be a content
index server which accesses information on local storage
104 and indexes the content of the information. The results

ofsuch a process may reside in whole or in part in metabase _
106. In, addition or in the alternative, metabase 106 may be
used to store properties which indicate that indexing has
been accomplished or should be performed. Various other
purposes may also be accomplished by storing information
in or retrieving information from metabasc 106.

All the discussion of the embodiment illustrated in FIG.

3 has centered around a single copy of metabase 106. In
certain embodiments, it may be desirable to maintain more
than one copy of a metabase. In such an embodiment, it may
be desirable to have a second copy of the melahase, such as
metabase copy 116. If two copies of a single metabase exist,
then embodiments may comprise a means for synchronizing

I0

15

30

35

40

45

50

60

65

23

14

one copy a metabase with a second copy of a metabase. In
FIG. 3, such a means is illustrated, for example, by arrow
118, The synchronization mechanism is illustrated as com-
municating over communication infrastructure 120. This
simply illustrates that the copy may reside a location where
remote communication is necessary. In addition, the syn-
chronization mechanism may also require the assistance of
one or more other software components. In such a scheme,
a software component at the location of metabase copy 116
may communicate with metabase system 102 or another
software component to synchronize the two copies of the
database. An example mechanisms to synchronize two oop-
ies of a database are discussed below.

As previously described, embodiments of the present
invention utilize a metabase, such as metabase 106 of FIG.

6, to store various types of configuration and other infor-
mation. Although data stored therein may be organized in
any fashion, for a variety of reasons it may be desirable,
although not required, to organize the information in meta-
base 106 in a hierarchical fashion. Thus, in one embodiment

of the present invc ntion, mctaba.se 106 comprises a variety
of storage locations organized in a hierarchical fashion. The
storage locations are sometimes referred to as key locations,
or more simply keys. At each individual key, one or more
properties may be stored. As explained in greater detail
below, properties contain configuration and other types of
metadata. The metadata stored by embodiments within the
scope of this invention may generally be broken down into
three categories. The first category is configuration meta-
data. Configuration metadata includes properties and set-
tings which apply to information server operating system
services. Such services are illustrated in FIG. 3, by way of
example and not limitation, by web service 92, l"'l‘P service
94, news service 96, and other services 98. Such configu-
ration metadata may include various configuration options
for the various services. An example of such configuration
metadata is an http port number.

The second category of metadata is content metadata.
Content metadata includes properties which apply to the
objects served and managed by an information server. An
example of such content metadata is content rating infor-
mation for various information objects on the information
server. Another example of content metadata are access
privileges which describe the type of access that a client may
have for a particular location or object.

The third category of metadata suitable for storage in a
metabase of the present invention is application metadata.
Application metadata includes properties stored by an appli-
cation or extension to the information server. Examples of
such applications or extensions to the information server
would be other entities which utilize or operate in conjunc-
tion with the information server. A content indexer has

already been mentioned in conjunction with FIG. 3. Another
example may be a component that retrieves real time or near
real time information such as stock quotes and provides
them in response to a request. Application metadata is
typically stored or used by such an application or extension
at initialization or run time to affect their behavior. Such

behavior may either be in configuration or may be in the type
of data or response returned. Examples of application meta-
data may include a property which indicates that a directory
should be indexed, the server name which should be con-

nected to in order to retrieve real time data, or objects which
retrieve real time data or pointers to objects which retrieve
real time data.

Turning now to FIG. 4, an example of the hierarchical
structure of a metabase is illustrated. In FIG. 4, the keys are

24

6,061 ,692

15

illustrated by ovals, such as my computer 122, FTP service
124-, web service 126, MIMI."-. map 128, and logging 130. The
metabase keys correspond to elements of an information
server and each key contains properties that affect the
configuration of its associated element. As previously
described, each key may contain one or more configuration
values called metabase properties or, more simply, proper-
ties. The metabase hierarchical structure typically mirrors
the structure of an information server installation. For

example, in the illustration of FIG. 4, my computer key 122
represents configuration information for the host computer
Such as a maximum bandwidth property that affects the
overall operation of the information server.

Subordinate to the top-level hey are E-"t‘l’service 124, web
service 126, MIME map 128, and logging 130. Keys stored
at I-‘Tl’ service 124 would alfect, for example, the contigu-
ration and operation of an t-‘TP service, such as t"I‘P service
94 of FIG. 3. Information stored at web service key 126
would affect the configuration and operation of a web
Service, such as web service 92 of FIG. 3. Similarly, MIME
map 128 may affect a mail service and logging 130 may
affect a logging service.

Embodiments within the scope of this invention may
comprise multiple virtual sewers of any given type. For
example, although only a single Ft‘P service and a single “
web service is illustrated in FIG. 3, such services may
implement several virtual servers that look to the outside
world like separate servers but, in reality, are implemented
by a single service. Thus, the metabase may have several
keys, each corresponding to a different virtual server. Such
a situation is illustrated in FIG. 4 by l*“l‘l’ server 1 132, FIP
server N 134, web server 1 136, and web server N 138. Keys
at this location would be used to store properties influencing
how the virtual servers are configured or how they operate.

Keys directly below the server keys correspond to root
virtual directories, subordinate virtual directories, disk
directories, and information objects. Virtual directories have
no direct correlation in the physical storage media while
directories and information objects have a direct counterpart
in the physical storage media. In some situations, virtual root
directories may be mapped to a physical counterpart that
may not he a root directory. Various of these type of keys are
illustrated in FIG. 4 as 140, 142, 144-, and 146, respectively.
The other keys illustrated in FIG. 4 also correspond to
various objects of the information server installation.

In FIG. 4-, the ability to store one or more properties at
each key is illustrated by the various boxes attached to the
individual keys. In FIG. 4 representative properties are
illustrated as 148. Not all properties of FIG. 4 have been
numbered to simplify the figure and make it easier to pick
out various objects.

Keys in a metabase that are organized according to a
hierarchy, such as that illustrated in FIG. 4, are analogous to
a directory in a file system. Thus, key locations in a database _
organized in such a fashion may be addressed by a path
name having various constituent names separated by a
separator. For example, in FIG. 4 web server 1 key 136 may
be accessed by l\eornputer\weh service\we|) server 1.

Referring now to FIG. 5, a representative example of one
possible property format is illustrated. As illustrated in FIG.
5, a property may comprise ID 150, data type 152, user type
154, data length 156, data 158, and attributes 160. ID 150
uniquely identifies the metabase property. For example, an
ID may indicate that the property is a server state property.
Data type 152 indicates the data type of the data in the
property. Data may be strings, words. binary, or any other

10

15

30

35

40

45

50

60

65

24

16

type ofdata supported by the implementation. User type 154-
specifies the user type of the data. This field may be used by
a user to indicate what the data is used for. Examples are user
types that indicate an entry contains information specific to
application configuration, access permissions, log methods,
ports in use, It’ addresses, web application management
information, and so forth. Data length 156 allows retrieval of
data 158. Basically, it allows the beginning and ending of
data 158 to be identified. Attributes 160 are various [lags that
specify information about the property.

In one implementation, attributes 160 include inherit
attribute 162, is inherited attribute 164, partial path attribute
166, reference attribute 168. secure attribute 170, volatile
attribute 172, insert path attribute 1'74 and no attributes
attribute 176. Inherit attribute 162 indicates that the data can

be inherited. Inheritance ofproperties is described in greater
detail below. Inherit attribute 162 may also be used to
indicate that only inherited data should be returned. Is
inherited attribute 164 indicates that a property has been
inherited from a parent key. Partial path attribute 166
indicates that the entire path was not present or may not be
present in the metabase. More information about partial
paths is presented below. Reference attribute 168 indicates
that the data is retrieved or can be handled by reference.
Secure attribute 170 indicates that the data should be

handled and transported in a secure fashion. Volatile
attribute 172 indicates that the data should not be stored in

long-term storage. Insert path attribute 174 indicates the
path relative to a given starting point. No attributes attribute
176 indicates that the data does not have any attributes and
the state of the other attributes should be ignored.

In order to implement a robust complement of security
measures, properties within the metabase can be designed
for secure handling and storage. ‘this was alluded to previ-
ously in conjunction with secure attribute 170. Secure
attribute 170 represents an example of means for storing
secure data in a metabase. There may be a wide variety of
reasons why properties in the metabase should be handled
securely. Thus, setting secure attribute 170 will trigger any
implemented security for storage and handling of sensitive
properties. For example, as described in greater detail below,
a mctabase may store access control information that iden-
titles what access various clients have. For a variety of
reasons, the access control information should not be stored
in a manner where someone can examine the information

and determine which clients have what type of access. Thus,
it may be desirable to handle such a property in a secure
fashion so that the property is encrypted whenever it is
transmitted beyond a trusted environment.

What constitutes a trusted environment may vary from
implementation to implementation. What constitutes a
secure or trusted environment may also vary according to
the application. For example, security measures taken to
store sensitive company information may not be as high as
security measures taken to store national security informa-
tion. In one embodiment, secure attributes are encrypted
whenever they are written to non-volatile storage, such as a
disk, and are encrypted whenever they are transferred
beyond the immediate control of the programmatic inter-
face. For example, if information is transferred beyond the
direct control of metabase system 102 of FIG. 3, then such
secure attributes would be encrypted. Other security mecha-
nisms may be put in place to provide a greater or lesser
degree of security when handling secure attributes, as appro-
priate to the particular implementation and intended use.
Embodiments within the scope of this invention may also
comprise other security features, some of which are dis-
cussed in greater detail below.

25

6,061 ,692

17

As previously illustrated in FIG. 4, embodiments within
the scope of this invention may comprise a metabase with
key locations organized in a hierarchical fashion. Each key
location may store a variety of different properties. Also, as
previously discussed the key locations within the metabasc
may be accessed through a hierarchical path with a plurality
of constituent names, some of which corresponds to a key
location in the metabase. If the structure of the metabase is

set up to closely mirror the installation of the information
server, such as that illustrated in l--‘IG. 4, there is a high
degree of correlation between the key locations in the
mctabase and the installation of the information server. A

path name can, therefore, be used to access both the prop-
erties in the metabase and the information objects on theserver.

Due to the high degree of correlation between the meta-
base structure and the information server installation, a
single path name can be used to access both infonrtation
objects and configuration and other metadata in the meta-
base. The present invention allows the retrieval ot'conligu-
ration properties concurrently with the access of requested
in formation objects. The server can then combine the infor-
mation retrieved from the metabase and the information

objects accessed to generate a response that is appropriate to
the request. As discussed in greater detail below, the infor-
mation in the metabase may allect any aspect of the process
of creating and returning an appropriate response. Creating
a hierarchical key structure that closely tracks the server
installation allows the access of required metadata to be a
natural and integral part of the process of handling the
request. No extra steps must be taken to a parse and
determine what configuration information must be retrieved
and where the configuration information is located. This can
result in a dramatic savings over systems which store
configuration and other parameters in text—based [NI files.

Tuming now to FIG. 6, examples of how configuration
data may be retrieved as an integral part of the path
resolution process are presented. In the metabase illustrated
in FIG. 6, the named root key is local machine 178.
Underneath named root key 178 are three keys representing
web serves 180, FTP services 182, and other services 184.
The web services have two virtual sewers with keys 186 and
188. Each of the web servers has a root directory and an
appropriate key structure that tracks, at least to some degree,
the organization of information objects on the virtual server.
Associated with each key are properties as appropriate.
Exemplary properties 190 and 192 are numbered in FIG. 6.

The hierarchical structure of a metahase may also have an
unnamed root key above the named root key that is always
present. This key is illustrated in FIG. 6 by key 179.
Depending on the implementation, such an unnamed root
key may be treated slightly different than other keys. For
example, in one implementation such a key may be pro-
tected from being deleted. Such a key may or may not be
used to store properties, depending on the implementation. _
If such an unnamed root key is used to store properties, a
mechanism to set and retrieve the properties should gener-
ally be provided.

To illustrate how path names can be used to retrieve
information from the mctabase, several examples are pre-
sented. As a first example, consider a request that comes
with a path name of http:ltwww.CompanyServcr.oomffoo1/
subltdefaulthtm. When the request is received, the http and
www.CorripanyServer.com constituent names will identify
the request as one that should be handled by a web server.
In one embodiment of the present invention, the second
constituent name (www.C.‘ompanyServer.com in this

It)

15

30

35

40

45

50

60

65

25

18

example) maps to a virtual information server {sometimes
called an instance number) like that defined in FIG. I5 by
keys 186 and 188. The request, therefore, will be directed to
one of the two virtual web servers provided by the infor-
mation server. In this example, assume that the www.Com—
panyServer.com name refers to the second virtual web
server. Thus, as the name is resolved, the service handling
the request will know it needs to retrieve the properties
stored in unnamed root 179 (if it exists), local machine 178,
web 180, and virtual server 2 188. In addition, it is typical
that the basic web address (wvvw.CompanyName.com) refer
to a root or default directory. Thus, resolving the constituent
name www.C.‘ompanyName.eom will also retrieve properties
from key location 194. Note that until this point, the name
resolution process has simply identified key locations in the
metabase where properties should be retrieved. In this
example, key location 194 corresponds to a virtual directory
that has no corresponding location on physical storage. In
some installations, this may not be a practical configuration
and key location 194 would most likely indicate a location
where a home page for the server may be retrieved if
someone makes a request specifying only the company
address.

As the name resolution process continues, the system
would, in turn, identify the fool constituent name, the subl
constituent name, and the default.htm constituent name. The

resolution process would also identify the corresponding key
locations 196, 198, and 200 respectively. Properties that
specify various parameters for each ofthese physical objects
are retrieved from the corresponding key locations. In FIG.
6, key location 196 has associated therewith property 202
whose contents are c:\fool. This property thus points to a
location on physical storage. At this point, the server may
begin to go to physical storage and begin the name resolu-
tion process starting with the location indicated by property
202. An associated physical storage hierarchy is illustrated
in FIG. 6 generally as 204. Examining physical storage
hierarchy 204 indicates that the name resolution process of
the path foolt’sub1t’default.htm will identify and retrieve the
del‘ault.htm document 206.

The server thus has retrieved all appropriate configuration
information and has identified and retrieved default.htt'n

document 206. The sever can then examine the properties
retrieved from the metabase, the default.htm document 206,

and then decide what response should be generated given the
information available. For example, perhaps one or more of
the properties retrieved form the metabase contained rating
information. As the service decides how to respond to the
request, it may evaluate the ratings on the pages and the
permissible ratings that should be returned in a response. If
default.htm document 206 contains lI1liI)l’ITlall()I1 that should

not be returned as identified by its rating, then perhaps the
server returns a standard response indicating that the
requestor"s permissions were insulficient to receive the
requested information. If, on the other hand, the requestor
has suflicient permission to receive the desired information,
the server may simply return default.htm document 206.

This example illustrates but one situation where the server
may modify its operation based on the information retrieved
from the metabase. Many other scenarios are possible and
the present invention is flexible enough to accommodate a
virtually unlimited number of dilferent scenarios. Since
there is no restriction on the type of property data that may
be stored at any given key location, any information that
would be necessary or desirable to help a server determine
what response should be given to a request can be stored in
the rnetabase.

26

6,061 ,692

19

As another example of a situation where the inlonriation
server modifies its operation based on retrieved information,
suppose one of the retrieved properties indicates that the
information should only be transmitted in a secure fashion.
In this situation, the server can initiate a secure connection
to the requester before transferring the desired information.
Such a secure session maybe a standard mechanism such as
passing through a secure sockets layer like secure sockets
layer 90 of FIG. 3 or may be a custom proprietary protocol.
For example, a property may contain a requestor’s public
encryption key and the requested information can be
encrypted using the public key stored in the metabase.
Assuming that sufiicient protections have been put in place
to guarantee that only the proper public key has been stored
in the metabase, such a scenario would allow selected
individuals to retrieve and read desired information.

Returning now to FIG. 6, suppose that a request came in
with the path http:e';’www.CompanyServer.comlfoo2i’sub2r‘
del'ault.htm. As in the previous example, name resolution
will identify the http and www.CompanyServer constituent
names. These can be used to retrieve properties from key
locations 178, 179 (if it exits), 180, 188, and 194. Constitu-
ent name foo2 would then identify key location 208., which
would allow property 210 containing c:\foo2 to be retrieved.
As in the previous example, this property is a pointer into
physical storage hierarchy 204. Note, however, that unlike H
the previous example, the key hierarchy of the metabase
terminates at foo2 key location 208. Thus, the remainder of
the path cannot be resolved in the metabase. The remainder
of the path can, however, be resolved in the physical storage
hierarchy to retrieve default.htm document 212.

As previously indicated, and as discussed in greater detail
in conjunction with FIG. 7 below, one aspect of the present
invention allows properties to be inherited from parent key
locations. Thus, although key locations corresponding to the
constituent names in the suhpath sub2,tdel’ault.htm do not
correspond to any key locations in the metabasc, those
locations may effectively be configured by inheriting various
properties from one or more parent key locations. Thus, if
the entire foo2 subtrce of physical storage hierarchy 204 has
a given rating, the rating parameter may be placed in key
location 208 and may be inherited by every location and
every information object in the foo2 subtree of physical
storage hierarchy 204. This creates many benefits in admin-
istration and reduction of storage requirements that will be
discussed in greater detail below. Partial path attribute .166
of the exemplary property illustrated in FIG. 5 can be used
to help identify or retrieve partial path configuration infor-
mation from a rnetabase.

The mapping of a received path into both the virtual name
space of a metabase and the physical name space of physical
storage provides some unique advantages not available in
prior art systems. For example, two dillerent paths with two
dilferent sets of properties can he used to retrieve a single
physical object. Depending on which path is used to access
the object, different results can occur.

For example, a first path can be provided that allows only _
read access to an object. Ascoond path can be provided that
accesses the same object, but allows read and write access.
As another example, suppose when an object is accessed
from an internal intranet, the object is sent in the clear
(non—encrypted). However, if the same object is accessed
from an outside Internet connection, the object is encrypted
prior to being sent. Two different paths can be established to
access the object from an internal intranet and from an
outside Internet. The two paths will retrieve dilferent prop-
erties and cause dilfercnt behavior even though the object is
the same. The concept can be extended to any number of
paths.

I0

15

30

35

40

45

50

60

65

26

20

Although the previous two examples have focused on
retrieving documents from a physical storage location, the
present invention is not limited to retrieving static informa-
tion. Path names may also be used to access dynamic objects
or other information objects that can retrieve or create
desired information on demand when accessed. For

example, it is relatively easy to envision an information
object that when activated goes out, collects certain
information, assembles the information into a desired
format. possibly processing the information in the interim,
and returns the assembled information in a form that may be
used in creating an appropriate response.

As an example of such a situation, suppose the path
httpzlflnternalServcr;’gool was received. Further suppose
that the constituent name lntert1alServer referred to an

internal intranet server which was implemented as the first
virtual server corresponding to key location 186 of FIG. 6.
This path would then be resolved and allow retrieval of
property information from key locations 178. I79 (if it
exists), 180, 186, 214, and 216 respectively. Note that key
location 216 corresponds to the gool constituent name. As
illustrated in FIG. 6 key location 216 contains property 218
whose contents are a pointer or handle to object 1 222 as
indicated by dashed line 220 and object 1 222. When the
property information containing the pointer or handle is
returned to the service, the service may access object 1 via
the pointer or handle and use object 1 to generate and
retrieve desired information.

This example illustrates that the present invention may go
far beyond the service of requests to access static informa-
tion documcnts and may, in a true sense, access and retrieve
a wide variety of information in any desired manner so as to
respond appropriately to a request received from a client.

Turning now to FIG. 7, the concept of property inherit-
ance is discussed in greater detail. FIG. 7 illustrates another
key hierarchy of a mctabase. Properties are attached to
individual key locations in a manner that is consistent with
previous diagrams discussed herein. Focusing on key loca-
tion 224, which may correspond to the key location of a first
virtual web server, properties 226 and 228 are stored therein.
Assuming properties 226 and 228 have the form illustrated
in FIG. 5 or, as a minimum, have a mechanism to indicate

that a property should be inherited, then when the property
is written to the key location, this indicator can be included.
This indicator will then signal the ntetabase that the property
should be inherited by all child nodes. In FIG. 7, property
226 is inherited by key location 230, 232, and 234. This is
indicated visually by the shaded and dashed nature of
property 226 as attached to key locations 230, 232, and 234.

Focusing for a moment on key location 234, it will be
noted that the only property associated with key location 234
is property 226 which is inherited from key location 224.
Thus, since the property is inherited and not stored at key
location 234, there is no need to keep key location 234 in the
metabase. Thus, key location 234 may be deleted as indi-
cated by the dashed nature of key location 234. It should be
noted that if a programmatic interface is used to access a
metahase, then the functions implemented by the program-
matic interface may handle the returning of virtual keys in
a variety of fashions. As one example, when a requested
location does not exist {e.g. the path terminates prematurely
before the requested key location is reached), then the
function may return properties that are inherited by that node
based on its location relative to existing key locations. Other
solutions are also possible. In the exemplary interface illus-
trated below, the calling program may set the partial path
attribute illustrated in FIG. 5 when requesting data to request

27

6,061 ,692

21

that inherited data for key locations he returned if the key
location is not found. In the alternative, not setting the partial
path attribute when requesting data will cause the function
to return an error if the requested key location does not exist.

Returning now to FIG. 7, an example of how an attribute
which has been inherited can be overridden is presented.
Note that in FIG. 7, key location 236 has associated there-
with property 238. Property 238 is set to override inherited
property 226. Thus, for any child nodes of 236 property 226
will not be inherited. This can be identified by examining
key locations 240 and 242. In one embodiment, such as that
illustrated in the web subtree of FIG. 7, inheritance will not
skip a generation. Thus, if a property is overridden at a
particular level in the hierarchy, then any child key locations
from that level will not inherit the property. Property 226 is
eifectively blocked from being inherited by property 238 for
all ol‘ the subtree attached to key location 236. Note,
however, that another property may be set in the subtree and
inherited by child key locations. This is indicated in FIG. 7
by property 244 attached to key location 240 and inherited
by key location 242. As with key location 234, if key
location 242 possesses no other properties than inherited
property 244, then key location 242 need not exist in the
hierarchy and may be removed as indicated by the dashed
nature of the key location.

An alternate embodiment implementing different rules for
inheritance is illustrated in the HI‘? subtree of FIG. 7. In this

embodiment, inheritance can skip a generation. Focusing on
key location 225 with properties 227 and 229, assume that
property 227 is inherited. This property will then be inher-
ited by all subkeys unless overridden by another property. As
illustrated in FIG. 7, property 227 is inherited by key 231.
However, property 227 is overridden at key 233 by property
235 and key 239 by property 241. If property 235 is to be
inherited by all subkey locations, this will block key 227
from being inherited by any subkeys of key 233. This is
indicated in FIG. 7 by property 235 being inherited by key
23?.

Unlike the embodiment illustrated in the web subtree of

FIG. 7, inherited keys can skip a generation in this example.
Thus, although property 227 is overridden by property 241
at key 239, any subkeys will still inherit property 227 as long
as property 241 is not inheritable. Property 227 is, therefore,
inherited by keys 243 and 245 as indicated. Other types of
inheritance schemes may also be developed.

As illustrated in FIG. 7, the characteristic of inheritance
may dramatically reduce the number of key locations that
must be created and tracked in a metabase and may dra-
matically reduce the administrative burden in maintaining
and configuring a metabase. This creates the ability to
maintain the entire metabase in memory for much greater
numbers of documents than would be possible with text-
based INI files. Judicious use of the inheritance feature of

the present invention can also dramatically simplify the
administrative burden in creating and maintaining a meta- .
base. lior example, a system administrator who organizes a
logical metabase hierarchy where key locations may share
inherited data to the maximum extent possible will only
need to administer those key locations possessing the origi-
nal property. Thus, entire subtrees may be administered by
setting a single property in a single location. The ability to
override properties that are inherited also allows a great
degree of flexibility in collecting data together that may
share many properties in common but not all properties in
common. Of course, this technology may open up an
entirely new class of administrative tools which can go
through the hierarchy of a metabase, examine the properties

It)

15

30

35

40

45

50

60

65

27

22

stored therein, and make recommendations to system admin-
istrators on how to rearrange the hierarchy to achieve the
maximum use of the inheritance feature so as to eliminate
redundant data front the metabase.

The incorporation of inheritance properties into a meta-
base may lead to the incorporation of various features into
any programmatic interface used to access the metabase. As
previously discussed, these features may include functions
that operate properly when a key is not found in the
metabase but inheritahle properties exist for the desired key.
In other contexts, it may be desirable to provide functions
that return all properties of a key, both inherited and prop-
erties physically stored at that key (non-inherited). Other
functions may be provided that retrieve only inherited
properties or only non-inherited properties.

The inheritance feature of the present invention greatly
eases the administrative burden and reduces the number and

diversity of properties that need to be stored in a metabase.
There may be cases, however, where a server may not want
a particular property to be overridden. For example, it may
not be wise to allow various security features to be over-
ridden by blocking inheritance of those properties. Thus,
appropriate mechanisms may be put in place to allow an
entity retrieving infonnation from the metabase to identify
which properties are inherited and identify if such inherited
properties are being overridden at a particular point in the
key hierarchy. Again returning to FIG. Sand examining the
attributes of the example property, is inherited attribute 164
may identify a property that is inherited from a parent node.
A comparison of the ID and is inherited flag of the properties
retrieved at various key locations in the hierarchy can
identify if one key location is overriding an inherited prop-
erty. The entity can then make an appropriate determination
as to what should be done.

Referring now to FIG. 8. a discussion regarding a mecha-
nism for locking keys for reading or writing is presented. In
any database there arise problems of simultaneous access to
data locations. It is desirable to always ensure that the
database maintains a logically consistent state as changes or
updates are being made to the database. A situation should
be avoided where one entity is reading information from a
particular location while another entity is changing that
location. In order to prevent such occurrences, react locking
and write locking of databases are implemented and a wide
variety of schemes have been developed in the past.
llowever, when the concept of inheritance is introduced into
a database, traditional mechanisms of read locking and write
locking must be modified in order to allow the database to
be changed in a manner that is logically consistent.

The present invention implements two different types of
read locks and two dilferent types of write locks. In this
discussion, the two different read locks will be referred to as

a read lock and a path read lock, and the two diflerent write
locks will be referred to as a write lock and a path write lock.
In general, a read lock and write lock function in much the
same way as has been traditionally employed in other
contexts. For example, if an entity wishes to ensure that no
data will he changed while it is reading a key it may open
a particular key location for reacting. As the key location is
opened for reading, a read lock is placed on the key location.
Any number of entities may open a particular key location
for reading. This is premised on the concept that everybody
may read a particular location and receive consistent data as
long as no changes are made to the data. Thtts, opening a
read lock on a particular location will block any write looks
from being granted on that location. Similarly, if a location
is being updated, then no entity should read the location until

28

6,06l ,692

23

the update has been complete. Thus, a write lock on a
particular location will block any read locks from being
granted.

Due to the hierarchical nature of the metabase and due to

the fact that when properties are retrieved they are typically
retrieved for an entire hierarchical path, when a read lock is
granted, a read lock is placed on the requested key location
and any child locations. The read locks on the child locations
will prevent write locks from being opened on the child
locations before an entity has had sullicicnt time to retrieve
properties from the entire desired path. Similarly, when a
write lock is granted on a particular key location. the write
lock is also placed on all child locations to allow updates to
occur to an entire subtree if desired. This is necessary due to
the fact that a property that will be inherited by an entire
subpath can be written at a specific key location and that
single write wilt eiliectively propagate through an entire
subpath. Thus, to protect against reading inconsistent data
write locks must be granted to the entire subpath when a
write lock is granted on a particular key location.

The previous discussion illustrates the rationale for grant-
ing read and write locks to key locations and their child
locations. However. the concept of inheritance also requires
modifications in the way that parent nodes are treated when
read locks and write locks are granted. This can be illustrated H
by examining the desired outcome when a particular key
location is open for reading or writing. When a particular
key location is open for reading, it is desired that the
properties at that key location and its child locations, remain
constant until the read is complete and the read lock is
released. In order to ensure that the properties at that key
location remain constant. however, any properties inherited
from parent key locations must also remain constant. Thus,
a type of read lock should be placed on parent key locations
when a read lock is granted for a particular key location. The
read lock must he suflieient to ensure that the properties at
parent key locations will not change. but should not preclude
writing at other points in the hierarchy related to the location
where the read lock is granted only through a common
parent key. Similarly, when a write lock is granted, parent
locations should be protected from change. It would not be
desirable to allow someone to open a parent key location for
reading {since that will attempt to place read lock on the
write lock and key) but there is no reason to preclude other
entities from reading a dilIerent part of the hierarchy related
to the location where the write lock has been granted only
through a common parent key location. The solution to all
these issues is to assign path read locks to parent key
locations when a read lock is granted to a particular key
location and to assign path write locks to parent key loca-
tions when a write lock is granted.

Referring now to FIG. 8, one embodiment of a read lock
mechanism suitable for use with the present invention is
presented. In FIG. 8, suppose that a first entity was granted
a write lock on gool key location 246. This is illustrated in .
FIG. 8 by write lock 248. As indicated in FIG. 8, write lock
248 is also placed on child key locations relative to key
location 246. This results in write lock 248 being placed on
key location subl 250. /\ path write lock is then placed on
all parent key locations. Thus, path write lock 252 is placed
on web key 254 and local machine key 256. Similarly, write
lock 258 may be granted to key 260 which will result in path
write lock 262 being placed on key 264 and key 256. Note
that key 256 now contains two path write locks but neither
precludes appropriate write locks from being granted on
dil.Terent pans of the hierarchy. They will, however, prevent
read locks from being granted on those keys.

I0

15

30

35

40

45

50

60

65

28

24

Now assume that a read lock 266 was granted for key
location foo2 268. Read lock 266 would then be granted to
all child keys 268 as indicated in FIG. 8. Path read lock 270
would also be placed on parent key 264 and 256. Finally,
assume that a second read lock 272 was granted on key 274
labeled hoo.htm. This would result in path read lock 276
being placed on all its parent key locations in FIG. 8.

l"-‘rorn the diagram in FIG. 8, it will be seen that although
a single node may only have a single write lock or multiple
read locks, a node may have various combination of path
read locks and path write locks. This is due to the specialized
function these locks performed as previously described.
Counts may be maintained for each of the key locations as
read locks are granted to track the number of read locks
granted to a particular key location.

Referring now to FIGS. 9A and 9B, the process of
granting read loclcs and releasing read locks is presented.
Referring [irst to l"I(3. 9A, the process begins with a request
for a read lock as indicated by step 278. Before a read lock
will be granted, it will be checked to see if the key location
has any open write locks or path write locks. This test is
illustrated in FIG. 9A by decision block 280. If the key
location has active write locks or path write locks, execution
then proceeds to step 282 where one of several events may
occur. In the situation illustrated in FIG. 9A, the request
waits until no write locks or path write locks remain on the
desired key location. In the alternative, the routine may
return with an error indicating that a read lock may not be
granted. As yet a third option, the routing may wait for a
designated period of time and, if the read lock cannot be
granted within that time, return with an error.

Once no active write locks or path write locks remain on
the desired key location, execution proceeds to step 284
where read locks are granted to the key location and to any
child locations. Execution then proceeds to step 286 where
path read locks are placed on all parent key locations. Steps
284 and 286 individually and collectively represent but one
example of a means for placing read locks at identified key
locations. in embodiments that support different types of
read locks, mechanisms that place these various types of
read locks may also be properly classified as means for
placing key locks.

Referring now to FIG. 9B, the process of releasing a read
lock is presented. The process begins at step 288 where a
read lock release request is received. Execution then pro-
ceeds to step 290 where read locks are released from the key
location and any child locations. In step 292 path read locks
are released from any parent locations.

Turning now to FIGS. 10A and 1013, the process of
granting and releasing write locks is presented. There are
many similarities between the process of granting write
locks and the process of granting read locks. These are
apparent in the similar structures of the read locks and write
lock ligures. Referring first to FIG. 10A, the process of
granting a write lock begins when a write lock request is
received at step 294. Execution proceeds to decision block
296 where the key location is checked for any active read
locks, path read locks, or any write locks or path write locks.
If active react locks, path read locks, write locks, or path
write locks exist, execution proceeds to step 298 where the
route waits until all locks have been released. Waiting for
write and path write locks to be released prevents overlap-
ping write locks. As previously discussed in conjunction
with FIG. 9/\, at this point the routine may also return an
indication that a write lock could not be granted without
waiting. In the alternative, a routine may wait for a desig-

29

6,061 ,692

25

nated period of time and, if the write lock cannot be granted
within that time, return with an error.

After no read locks or path read locks remain, execution
proceeds to step 300 where write locks are granted to the
requested key location and any child key locations. Execu-
tion then proceeds to step 302 where path write locks are
assigned to the ancestors. Steps 300 and 302 individually
and collectively are examples of means for placing write
locks at identified locations. In other implementations using
dillerent types of write locks, other mechanisms may cor-
respond to such means for placing write locks at identified
locations.

Referring now to FIG. 108, the process of releasing write
locks is illustrated. The process begins with step 304 where
a release request is received. Execution proceeds to steps
306 and 308 where the key location and child location write
locks are released and where ancestor path write Iocks are
released. Execution then proceeds to step 310 where noti-
fication of changes may be sent to any registered clients.

One of the advantages of the present invention over prior
art systems is the ability to notify registered clients when
changes occur to the metabase. 'Ihis allows clients to register
for certain events and, when those events occur, receive

notification so that they can take appropriate action.
Although this concept is discussed in greater detail below,
one event that clients may register for is a change to all or
part of the metahase. When changes occur, notification of
the changes is sent to registered clients. It is desirable to send
such notification when a logically consistent state has been
reached in the metabase. In other words, if an administrator

is making several changes to a particular key location or to
a particular hierarchy in the metabase, it would be unprof-
itable to send notification for each individual change. It is
much more efficient and better to allow the administrator to

finish all changes to a particular key location or hierarchy
and then send notification of changes to that key location or
hierarchy. If the administrator still has a write lock on a
particular key location or on a particular hierarchy, it would
not do any good to send notification that the key location had
changed since a client attempting to read properties from the
key location would be prevented by the write lock on the key
location. Thus, the first time that a client would have an
opportunity to read properties from the key location would
be when the write lock on the key location was released. It
makes sense to trigger notifications for modifications in the
hierarchy when write locks on the particular location have
been released.

In addition to the simple step 310 shown in FIG. 108, it
may also be desirable to track or test whether actual changes
were made in the metabase before notification is sent. For

example, it is not necessary to send notification if an
administrator obtains a write lock on a location and simply
releases it without making any changes. Thus, the trigger to
send notification may be much more sophisticated than is _
indicated in FIG. 108. Step 310 of FIG. 1013 represents only
one example of means for sending notification when certain
events occur. Other examples, as previously explained, are
also available.

Referring now to FIG. 11, the concept of notification is
explored in greater detail. FIG. 11 represents a high-level
diagram of the notification process. A client, illustrated in
FIG. 11 as 312, sends registration request 314 to mctabasc
system 316. As previously explained in conjunction with
FIG. 3, metabase system 316 represents but one example of
a programmatic interface to a metabase, such as metabase
320 of FIG. 11. Such a programmatic interface makes the

10

15

30

35

40

45

50

60

65

29

26

process of sending notification described herein much sim-
pler. This is because the programmatic interface controls all
access to the metahase and is aware of all events which

occur relative to the rnetabase. Thus, tracking and sending
notification when certain events occur is a simpler process
than if metabasc 320 were not accessed through a program-
matic interface.

Mctabasc system 316 receives event registration request
314 and registers client 312 for the requested events. When
the events occur, rnetabase system 316 sends notification
318 to client 312. Notification 318 may contain information
regarding which event occurred and, perhaps, detailed infor-
mation that allows client 312 to select an appropriate course
of action. For example, client 312 may register for changes
that occur to the metabase. When changes occur to the
metabase, mctabase system 316 may include as pan of
notification 318 information that identifies the particular key
locations that have been changed. Client 312 can then
determine whether it is necessary to read information from
metabase 320 to update its information. If the change
occurred in a portion of the metaliasc of little interest,
perhaps client 312 does not immediately read the informa-
tion from metabase 320 but waits until a request is received
that requires client 312 to retrieve the changed information.
At the very least, notification 318 will allow client 312 to
invalidate locally stored information so that updated infor-
mation can be obtained from metabase 320 at the appropri-
ate timc. By way ofexample, and not limitation, in FIG. 11,
means for sending notification when specified events occur
is illustrated by notification 318, arrow 322, and arrow 324
which indicate the transfer of notification 318 to client 312.

Referring now to FIGS. 12A and 12B, simplified dia-
grams of the registration and notification process are pre-
sented. These diagrams represent only the basic concept of
registration and notification and, as briefly explained in
conjunction with these diagrams, many other features and
steps may be included to implement a robust notification
mechanism.

Referring first to FIG. 12A, the process begins with
decision block 326 which allows the process to wait until an
event registration request is received. Once an event regis-
tration request is received, execution proceeds to decision
block 328 which tests whether the entity requesting regis-
tration has sufficient security permissions to register for this
event. This decision block is not necessary but may be
desired to implement a robust notification system. In
addition, any other checks necessary to determine the valid-
ity or allowability of a registration request may be placed in
FIG. 12A. For example, it may be desirable to test whether
the request contains a valid registerable event. It is antici-
pated that not all events that occur in the rnetabase may he
registerable events. In other words, notification may be sent
for each and every possible event that may occur within the
metabase. Some events may be registerable for notification
while other events may not. The exact details will depend
upon the particular implementation. Assuming the registra-
tion requcst passes decision block 328, and any other
associated checks, execution proceeds to step 330 where the
client is registered for the event.

The registration and notification may occur through a
wide variety of mechanisms. For example, the registration
request may contain a handle or pointer to an entry point or
function that should be called when the event occurs. Other

mechanisms may also be used. For example, certain sub-
systems and operating systems have built-in event notifica-
tion mechanisms. Notification may be sent via these mecha-
nisms by placing a message onto the event notification

30

6,061 ,692

27

stream. For a variety of reasons, it may not be desirable to
send notification in this manner, but certain implementations
may choose to utili'/e such mechanisms. Essentially, all that
is required is that notification be able to be given to clients
which register for a specified event.

'll.trning now to FIG. 12B, the basic steps involved in
sending notification to a registered client are illustrated. The
process begins with decision block 332 which waits until
one of the registerable events occur. Execution then pro-
ceeds to step 334 where all registered clients are identified.
How this step is implemented will be highly dependent upon
the particular registration implementation, and possibly
upon the particular notification mechanism used. After all
registered recipients have been identified, execution pro-
ceeds to step 336 where notification is sent to the identified
recipients. How this is accomplished will be dependent upon
the notification mechanism used.

The read and write locking as well as the notification
procedures enable true simultaneous administration of a
metabase. For example, one administrator may write lock a
portion of the metabase hierarchy while another adminis-
trator may write lock another portion of the metabase
hierarchy. Both administrators may make changes to their
respective portions of the hierarchy. When one administrator
releases the write lock, the changes that were made can “
immediately be sent to the other administrator in order to
allow the view of the metabase seen by the administrator to
be updated. Thus, the ability to write lock different portions
of the metabase coupled with the ability to notify others of
changes ensures that each entity accessing the metabase will
have the most current view and can make intelligent deci-
sions about how the metabase should be administered.

Various security aspects of the metabase have been pre-
viously described. For example, the concept of secure prop-

I0

15

30

erties which are handled in a secure fashion has been ‘

previously described in conjunction with FIG. 5. Generally,
security may be broken down into two fundamental catego-
ries. 'l'l'te llt'Sl is security of the metabase itself which
includes the ability to prevent unauthorized access or modi-
fication of the metabase. The second is security of the
information objects served by the information server.
Typically, access to the information objects served by a
server is implemented using the security mechanisms of the
operating system. For example, Microsoft Windows NT and
other advanced operating systems provide a full complement
of security measures which prevent unauthorized access and
modification to various portions of the operating system or
data stored on the system. More information regarding the
security features of Microsoft Windows NT can be found in
Inside Windows NTby Helen Custer, published by Microsoft
Press and incorporated herein by reference.

To compliment or enhance the security features already
implemented in the operating system that hosts the infor-
mation server, it may also be desirable to include various
security features in the metabase. The security features can
be used to enhance the security of not only the metabase
itself but also the information object served by the informa-
tion server.

Referring now to FIG. 13, one characteristic of the
security features that may be implemented by the metabase
is presented. In FIG. 13, a hierarchical representation of the
keys of a metabase is presented. Associated with various key
locations are properties. As previously illustrated, and con-
sistent with the notation of previous diagrams, the keys ol’
FIG. 13 are illustrated by ovals with keys 338 and 340 being
exemplary. Each key 1 may store a plurality of properties

40

50

55

60

65

30

28

which are represented by the boxes attached to the ovals.
Properties 342 and 344 are exemplary.

In order to enhance security of the metabase, each request
to the metabase may be checked for appropriate permissions
to access the metabase. For example, because access to the
metabase is preferably implemented through a program-
matic interface, queries or accesses into the database may be
tested for suflicient permissions. All that remains is to
establish a procedure and mechanism for storing and check-
ing the permissions. Although any mechanism may be
utilized, including various conventional mechanisms, in one
embodiment a unique mechanism is used to store access
control information directly in the metabase itself. For
example, access control information may be stored as a
property in a particular key location. The property may be
inheritable and may also include and take advantage of the
wide variety and rich set of other attributes available in the
metabase. Security properties may, for example, have the
secure attribute set which will cause them to be handled and

treated in a secure fashion as discussed in conjunction with
FIG. 5 above. Other property formats may also be possible.
In FIG. 13, keys where access control properties reside are
indicated by key symbols 346. As indicated in FIG. 13,
implementing access control in this fashion allows the
access control for each individual key to be customized or
allows a single key to control access to an entire subtrec
through the use of inherence. For example, key location 340
may store an access control property which is then inherited
by each of its child keys.

The use of properties to store access control information
results in a tremendously llexible format that can be custom
tailored to any desired implementation. Since there are no
restrictions on the type of data that may be stored in a
property, any particular access control mechanism may be
implemented. The programmatic interface may retrieve the
access control properties and determine whether the request-
ing client has sufiicient permissions for the desired access. If
so, the request may be filled. If not, an error may be returned.
In this fashion, unauthorized access to the metabase may be
prevented.

Such a mechanism prevents unauthorized access to the
metabase though the defined programmatic interface.
However, if the metabase is written to permanent storage
then the metabase may be accessed through other mecha-
nisms not authorized by the programmatic interface. For
example, the file may be accessed through another program.
Modern operating systems, such as Windows NT, carry a full
complement of security features that can prevent such
unauthorized access. It is important to realize, however, that
the security of a copy of the metabase written to the
permanent storage does not rest solely with the metabase but
also with the operating system.

The security mechanism described to prevent unautho-
rized access to the metabase may also be extended to prevent
unauthorized access to information objects served by the
information server. In this situation, security information
would be placed in a property and written to the metabase.
The security information would apply to the information
objects, rather than to the metabase itself. The security
information could be retrieved by a requesting entity just
like any other property. Using the security information, the
requesting entity can determine whether the client attempt-
ing to access the information object has sufficient permis-
sions.

Although any type of security object may be stored in the
security properties, in one implementation access control

31

6,061 ,692

29

lists having a structure equivalent to those used by Windows
NT are used. Such access control lists comprise a linked list
or other collection of access control entries. Ari access

control entry contains security ID and a set of access rights.
The security ID identifies the user or group being granted or
denied the rights enumerated in the access control entry.
Access rights may include, for example, the right to read
data, the right to write data, the write to execute an object,
and so forth. Access control entries in Windows NT can

grant the enumerated rights, deny the enumerated rights, or
allow the enumerated rights with an auditing procedure.
Further information regarding access control lists can be
found in lrtside ‘l‘Vindows NI previously incorporated by
reference. The access control lists of Windows NT are but

one example of possible access control structures that may
be used with the present invention. As the properties define
and impose no structure on the data stored therein, any
access control information custom tailored to a particular
implementation may be used.

In summary, using the particular implementation illus-
trated in FIG. 13 and described above, access rights may be
granted either to the metabase or to information objects.
Access control information in the metabasc may be used to
control administration of the mctabas-e. For example, an
administrator may grant limited rights to administer a por-
tion of the metabase, and by extension the information _
server, to specific individuals. In the alternative, specific
portions of the metahase may be restricted so that only
designated individuals may administer them. Any other
combination may also be created by storing appropriate
access control information in the metabase.

One advantage of the present invention over the prior art
is the ability to minimize the amount of information that
must be stored to administer an information server. One
mechanism used to minimize the amount of information is

the inheritance mechanism previously discussed. This ‘
mechanism allows redundant information to be eliminated.

The invention may also use other mechanisms to minimize
the amount of information that must be stored.

In many implementations, the metabasc will be stored on
non-volatile storage and, when the information server is
initialized, be read from non-volatile storage into memory. It
is desirable to maintain the mctabase in memory to speed
access to the information contained therein. As the amount

of information administered by the information server
increases, the size of the metabase also increases. Thus it

may be important to utilize various mechanisms to reduce
the overall amount of memory consumed by the metabase.
Another mechanism, in addition to the inheritance mecha-
nism previously discussed, for reducing the amount of
memory consumed by the metabase is illustrated in FIG. 14.

When the metahase is read into memory, a data hash table
may be created. A data hash table is simply a look-up table
that is indexed by a particular key. In FIG. 14, an example
data hash table is illustrated as 348. At each of the index

locations, various values may be stored. For example, in
FIG. 14 at index location 349 values 350, 352 and 354 are

illustrated. The data hash table may be constructed as
properties are read into memory. Essentially, the concept is
to take the information from the property and store it in an
appropriate location in the hash table. The information from
the property is then replaced with a pointer or handle to the
value. The value may be retrieved when desired through the
pointer or handle. By storing a value a single time and
replacing the value with a pointer, a net reduction in overall
storage may be achieved. This is because the value need only
be stored once. As indicated in FIG. 14, value 356 is
common to both property 358 and 360.

I0

15

30

40

50

55

60

65

31

30
Other mechanisms to reduce the overall size of the

metabase may be used. Many schemes used to reduce the
amount of memory a particular quantity of information takes
up trade access speed for memory size. In other words, they
are able to reduce the amount of memory that a given
quantity of information takes up but may increase the access
time somewhat. Any scheme used in the present invention to
reduce the amount of memory that a particular metabase
utilizes must be balanced with the need and desirability for
rapid access to the information in the metabase.

As previously explained, in some implementations it is
desirable to implement programmatic access to the meta-
base. Such an approach allows several features to be imple-
mented and, for that reason, is sometimes preferred. Such a
programmatic interface is, however, not required by the
present invention. The hierarchical structure of the metabase
may be implemented and accessed without a programmatic
interface. If a programmatic interface is selected, however,
then consideration should be given as to how the program-
matic interface should be implemented. Such an interface
may be implemented using a wide variety of mechanisms.
For example, such a programmatic interface may be imple-
mented in a linkable library in a separate executable soft-
ware object, or in any other mechanism.

In one embodiment, a programmatic interface is imple-
mented using Microsoft’s component object model {COM}
technology. Microsoffs COM technology is well know in
the industry and well documented from a wide variety of
sources. Essentially, COM provides a mechanism whereby a
software object can expose an "interface” that defines a
series of functions through which the functionality imple-
mented by the object may be accessed. Any other software
entity having a handle to the interface may then utilize any
or all of the functions on the interface and access the

functionality of the object. Implementing the programmatic
interface in this fashion has many benefits. It allows the
programmatic interface to be accessed by any number or
type of software objects. It also allows the interface to be
accessed across platforms or networks to allow for full
remote administration and access.

Turning to FIG. 15, a simplified diagram of the concept
behind COM technology is presented. FIG. 15 shows a
variety of COM objects 362 located in a variety of software
objects. This emphasizes the fact that COM objects may be
implemented in a variety of ways and in a variety of
contexts. The COM objects have interfaces 364 which
allows the functionality of the object to be accessed. In the
illustration in FIG. 15 application 366 has handles to various
interfaces in the COM objects and thus can access the
functionality of the COM objects through those interfaces.
Note that although application 366 is illustrated as accessing
the functionality of the various COM objects, any software
component with a handle to an interface may access the
functionality thereof. COM defines well—known procedures
for software entities to discover and obtain handles to

interfaces of COM objects. 't‘he-se mechanisms are well
known and well documented in the art. An example refer-
ence providing an overview of COM technology is Under-
stanatiri_.c;Acrr‘v.-eX and 011?, by David Chappell, published by
Microsoft Press and incorporated herein by reference.

As previously mentioned, a metabase may be replicated
or duplicated at various locations and the copies of the
metabase may be synchronized. Mechanisms to replicate
and synchronize information exist and are known in the art.
Any such mechanisms may be implemented as part of the
present invention to facilitate the synchronization ofvarious
copies of a metabase. Thus, such mechanisms as keeping a

32

6,061 ,692

31

change list or tracking log of the changes that have been
made to a metabasc and sending notification ofchanges that
are made to other copies of the metabase may be used to
facilitate the synchronization of two copies of a metabase.

Mechanisms may also be employed to identify whether
two copies of a rnetahase are identical. Such a mechanism
may include calculating signatures or other digest type
information on the metabase and comparing it with a similar
signature or digest calculated from the other copy of the
metabase. Alternatively keeping track of change numbers
and other such inform ation may help determine whether two
copies of a metabase contain identical information. As
another option, a comparison can he made on the key
hierarchy and property information stored therein to deter-
mine whether they are the same.

After a detennination has been made as to whether two

copies of a metabase are the same or not, then steps may be
taken to reconcile their differences. Any type of mechanism
may be used for this step. All that is required is that when
the step is completed the two copies of the rnetabase have
been reconciled and contain the most recent version of the
data. As has been discovered in other contexts, such a

procedure may not be as simple as it first appears. Mecha-
nisms developed to perfonn this function range from a
simplistic comparison of time stamp or other information to H
a complicated tracking of change histories in order to ensure
that no conflicts exist in the data. Any such mechanisms may
be used, although some may be more suited to particular
implementations of the present inventions than others.

One approach would be to require that all changes made
to a metabase be made in a particular copy of the metabase.
These changes may then be propagated to other copies of the
metahase through various mechanisms. A metabase allows
simultaneous access, remote administration, and event noti-
fication if various of the features described in this patent are .
implemented. With these features, requiring all changes to
be made to a particular copy of the metabase may not be a
limitation. When all changes are made to a particular copy
of the metahase, then synchronization becomes a simple
matter of replacing older information with more current
information.

Example Programmatic Interface
In order to more fully document one possible implemen-

tation of a programmatic interface to a metabase, the fol-
lowing is intended to present an example implementation.
The implementation presented below is given by way of
example, and not limitation. In the following example
implementation, IIS refers to a particular software compo-
nent that implements an information server containing much
of the functionality described herein. The interface is docu-
mented according to a style typically employed by Microsoft
and well known in the art. The interface document is

followed by header files typically employed in a C or C++
program that define data types, structures, and function
prototypes of the example programmatic interface.
Admin Base Object

The Admin Base Object is a fully-distributable compo-
nent object model (COM) object that implements the
lMSAdminBas.e interface, with methods that enable an

application to manipulate configuration keys and data in the
memory-resident metabase. Using the Admin Base Object, a
C++ application can administer the configuration of [IS and
can also use the metahase to store custom application data.

The Admin Objects provide most of the same function-
ality as the Admin Base Object for Java, Microsoft Visual
Basic, or Active Server Pages (ASP)-based applications.
ASP is a technology developed by Microsoft and informa-

I0

15

30

40

50

55

60

65

32

32

tion regarding the technology is available from Microsoft
and a variety of sources. In addition, the Admin Objects are
a provider for Active Directory Services, with supplemental
llS—specifie functionality.

This section contains:

About the Admin Base Object explains how this object
manages IIS configuration by manipulating data in the
metabase, and discusses how to use keys, data entries,
handles, inheritance, identifiers, and user types in a program.

Using the Admin Base Object explains setting, retrieving,
and enumerating metabase data, registering an event sink,
and backing up and restoring the metabase.

Admin Base Object Reference provides details of the
interface structures, methods, and errors.

About the Admin Base Object
You can use the Admin Base Object to write applications,

such as server administration or Web authoring tools, which
check and update the server's conligurat ion by manipulating
keys and data in the metabase. You can also use the Admin
Base Object to store your IIS-related custom application
configuration data in the fast-access tttetabase without filling
up the system registry.

This section contains:

Keys and Data Entries describes how data is organized
into hierarchical keys.

Handles to Keys discusses the use of handles to access
keys.

Inheritance details a feature that minimizes data storage
and increases the efficiency of your programs.

Reserved Identifiers and User Types explains how data is
identified and categorized.
Keys and Data Entries

You can use the Admin Base Object to control the
configuration of your IIS installation. HS configuration data
is stored in the metabase in a hierarchical structure that

parallels the organization ofthe elements of your IlS instalw
lation. Configuration data is stored in keys that are associ-
ated with IIS elements, and the keys are organized in a path
structure similar to the Windows NT® registry, or a direc-
tory and file system. Keys are identified by their path within
the metabase. For example, the path KIM specifies the local
machine key, and the patht’l..M,"W3SVC;’3 specifies the key
for the third web server.

Each key name cannot be longer than the METADAFA
MAX_ NAME. LEN constant. This applies to each node
name separately, not the entire path. In the preceding
example, the names LM and W3SVC must each be less than
METADATA_MAX_NAME_I..EN, but their combined
path (fLM;’W3SVC) can be longer.

Data entries may be assigned to each key, and each data
entry has a unique identifier in the metabase. For example,
MD__SERVER_STATE is an identifier for data that speci-
fies the server state, and, when located at the key having the
path i’LMi’MSI~'l‘I’SVCf1, specifies data that describes the
server state of the first virtual FTP server on the local
machine.

For each FTP or Web server, the root virtual directory is
given the special name ROOT. For example, the path
II.M{MSFTPSVCIlfROOTt'ScriptsfScri})t1.a.sp refers to the
key associated with an ASP page in the virtual directory
Scripts under the first virtual FTP server on the local
machine.

Handles to Keys
The Admin Base Object uses handles to refer to keys in

the metabase. When the metabase is initialized at startup, a
handle (ME'IY\I)A'I‘A_MAS'l'ER_ROO'I‘_lIANDLI3) is
automatically opened with read-only permissions. You can

33

6,061 ,692

33

use the 0penKey method to get a handle to a key in the
metabase by providing the key’s path relative to this handle,
such its i’I..Mi’W3SVC.r’2, the path to the key for the second
Web server. You can also use a handle to any key as a
reference point to subordinate keys. For example, if you
have opened a handle to i’LMfW3SVCi'2 as mentioned
above, you can then use this handle and the relative path,
;‘RO0T;‘VDir1, with the OpenKey method to get a handle to
the key fI.MrW3SVC}2tROO'l‘i‘VDir1.

The master handle, Ml3'l"I\D/\'I‘A__MASTIlR_ROO'I'_
llANDI.l_7., does not protect metabase data from multiple-
thread access, so data retrieved using this handle may
change unexpectedly in the metabase. However, a handle
that you open with the OpenKey method locks the mctabasc
data for the key, all of its ancestor keys, and all of its
subordinate keys. This insures consistency of metabase data
by preventing other threads from changing data in a path
containing a key for which you have an open handle.

A handle opened with read-only permission to a key
permits other clients to open read-only handles to that key
and other keys in its path, both superior and subordinate to
it. No client can open a handle with write permission to a key
until all handles, read or write, have been closed by all
clients to all keys in the path. In addition, once one client has
opened a handle with write permission to a key, no other
client can open a handle for either reading or writing to that -
key or to any key above it in its path, or subordinate to it.
Because server performance can significantly be reduced
while waiting for keys to be available for read-only handles,
it is recommended that you call the CloseKcy method as
soon as you have finished writing data. This frees the handle
and releases the key and all keys above and below it to other
processes and clients.
Inheritance

You can specify data in the metabase to be inheritable.
This means that if you add a data entry to a key and specify
it as inheritable, all of the keys subordinate to that key can
access that data. This is much more eflicient than setting the
same data for each key in the metabase. For example, if you
add the inheritable data Ml)__MYDKI'A for the key ELM,
the subkeys i’LMt’W3SVC and i’[.Mi'MSl‘"l‘l’S\/C, and others
below them can also return MD_MYDATA. Inheritance

stops at a subordinate key where the same metabase iden-
tifier is set. inheritance can not skip kcys—keys inherit data
from the nearest superior key where the identifier is set.

You can specify that an entry is inheritablc by setting the
METADATA__INHERlT flag in the dwMDAttributes mem-
ber of the Ml;£TADA'l'A _RliC()RD structure that is passed
to the SetData method.

When retrieving data, you can specify that inherited data
be returned by setting the METAI)/\l‘A_lNllllRIT flag in
the dwMDAttributes member of the METADATA_
RECORD structure that is passed to the GetData or Enum-
Data method. For the GetAllData method, you specify this
flag in the dwMDAttributes parameter. If this flag is not set,
inherited data is not returned.

You can use the MI:"I'ADAl'A_PAR‘]'IAL_I’A"l‘H flag to
specify that inherited data be returned, even if a requested
path does not exist. If you add the same inheritable data at
the key r'I.M as in the preceding example, the subkey
ILMIMYSVC would return the inheritable data,
MD_MYDATA, regardless of whether the key ELM}
MYSVC exists in the metabase. The METADATA

l’ARTIAL. PATH flag only applies if the ME’I'ADA'l'A.
lNHl:‘.Rl’l‘ flag is also set.

You can use the Mli'l'ADA'I'A_ _PARTIAL_ _l-"ATII llag to
minimize the number of keys you create in the metabase. For
example, when tiles in a directory have no metabase data of
their own, you can specify data as inheritable at the directory
key and use the METADATA_PART'l'A.I._PATH flag to

ID

15

30

35

40

45

50

60

65

33

34

return inherited data for individual liles without having to
create keys for them.

You can use the METADATA_ISINHERlTED flag to
determine if retrieved data is local or inherited. Ifspecified
on a call to any method that retrieves data, the method will
return this flag for those data elements for which the returned
data is inherited.

Reserved Identillers and User Types
Each data entry in the rnetabase is assigned a unique

identifier. An identifier is a DWORD containing a number
that uniquely identifies the data in the metabase. Identifiers
used by IIS are assigned from a pool of reserved numbers.
The first 32K is reserved by the system for IIS data and the
second 32K is reserved for Microsoft® FrontPage'““ data. If
you create identifiers in the metabase, use identifier numbers
greater than 65535 (0x0000fffi) to avoid conflicts with
current or future system data.

Each identifier is also assigned a user type, which is a
DWOI-ll) that specifies how the data is used. Current IIS
user types include IIS_M D_UT_Sl_iRVl_ER for server eon-
Iiguration parameters, llS_MD_UT_FlI..E for file and
directory properties, IIS__ MD _UT WAM for web appli-
cation management, and ASP__MD_U'l"_APP for ASP
application configuration. User types enable you to classify
your identifiers by application. You must assign a user type
to each identifier you create in the metabase, although each
identifier is not required to have a unique user type. The
numbers from U to 2,000 are reserved for current and future
system user types. User types you create must be above
2 000 to avoid conllicts with current and future system user
types.

You can use the user type to filter data requested from a
key. For example, the GetAllData method has a parameter,
dwUserType, you can use to specify that only data of a
certain user type is to be returned. For example, if this
parameter is set to lIS_MD_U’l‘_SERVER during the
method call, only data related to the server will be returned.
Note: Metabase identifiers must be unique, but multiple
identifiers can have the same user type and data type.
Using the Admin Base Object

When IIS starts, it loads the metabase into memory, where
it is available until IIS shuts down. The Admin Base Object
enables you to manage data in the metabase through the
structures and methods of the IMS/\dminBase interface.

You use handles to access keys in the rnetabase as
described in Handles to Keys. The METADATA
MAS'I‘l:‘R _ ROOT HANDLE is provided by IIS and con-
nects to the root key of the metabase. You use this handle
with the OpenKey method to open handles to specific keys,
and to specify read or write permissions you need for the
key. You can also use an existing open handle from an
OpenKey call to open additional handles to other keys.

Once you have a handle to a key, you can use the Admin
Base Object methods to manipulate that key’s data entries.
You can also access subkeys of the currently open key by
specifying additional path information.

With a valid handle, you can use the GetData method to
retrieve a data entry, or the SetData method to add an entry
to the metabase. The Get/\lll)ata method enables your
application to retrieve all or a subset of the values associated
with a key with a single method call. The EnumData method
enables your application to enumerate all or a subset of the
values associated with a key. When a data entry is no longer
needed, you can remove it from the metabasc by calling the
DeleteData method.

In addition to manipulating data entries, you can add,
delete, or move keys from one path to another in the
metabase. Use the AddKey method to add keys and the
l)eleteKey method to delete keys in the metabase. Use the
CopyKey method to copy or move a key and all of its
subkeys and data items.

34

6,061 ,692

35

Your program can also incorporate event sinks for noti-
fication when metabase data is changed by other processes,
and when IIS shuts down.

This section contains:

Selling and Retrieving Data
Enumerating Keys and Data
Registering an Event Sink

Setting and Retrieving Data
You can set data in the metabase by calling the SetData

method. This method takes as one of its parameters a
Ml_Z'l‘ADATA_Rl_iCORD structure. This stmcture contains
information about the data, such as its identifier, attributes,
user type, data type, a pointer to the data, and so on. By
setting values for the members of the ME'l‘ADATA_
RECORD structure when it is passed as an input parameter
to the SetData method, you can specify the data’s type and
storage method. For example, you can specify that the data
be stored in a secure manner by setting the Ml3TA[JATA_
SECURE Bag in the structure‘s dwMDAttributes member.

In addition to specifying the data to be retrieved, the
METAD/\TA_RECORD structure is also used to receive
data from the metabase. When you call the GetData or
Enumflata methods, you pass in a pointer to a

fidefine UNIOODE
illdefine Ii\'l'IlGU[D
fiinclude "iadmw.lr"

#inr:Iudu: "iiscnt‘g.t:u“#inL:It.Idc "atll3ase.h"
I-IRES].-‘l_'l‘ lattes = U:
DWORD indx = U;

10

15

36

total count of the subkeys associated with a key, you can
increment the index parameter of the method. Sec Errrr.urer-
tiring Subkeys for details and example code that enumerates
keys.

Similarly, you can use the EnumData method to enumer-
ate the data elements of a key. One data item is enumerated
per call, but unlike enumerating keys, the EnumData method
returns the data as well as the data identilier. ERRDR__NO__
MORE_ITEMS is returned after the last data item has been

enumerated. To get a total count of the data items associated
with a key, you must increment the index parameter of the
method. See Emurrerrrring Dam Items for details and
example code that enumerates data items.

Enumerating Subkeys

The following example uses the Enuml(eys method to
cnu merate the number of virtual Web servers defined on the

local machine. This example also uses the Active Template
Library to demonstrate smart pointers. Smart pointers per-
form the normal COM Querylnterface, AddRef and Release
calls automatically.

at COM [rtterfaee header
H MD_ &: t[S_MD_ fidcftncs
H AFL support

MFTADATA. HANDIE MyHa1'Idle:
VVCHAR SuhK1:_\'Mantc[METADAT/\. MAX. N!\MF._ LEN]:
OC'n-rnPtr <[MSJ\dn1inl3ase> pl.V'|et:t'.
hlles an CoC'reatc[rIsInnce(Cl5lD_MS/\Llmin]3ase, ;\'l.."-I,I._. C[.SC'TX_rI\I.l._.
Ill) .[MS.Ad:'ninBasc, [void *"') S:p[Mt:ta):
tr (F.r’\lI.l_ED)hRcs}JICILITTII

Hgcl a handle to the local machinehRes - pIMet:I- 2-Ope nKe y(META DATA__MASTER_ ROOT_[-IAND LE, "l"EX'I'(“r"|...\«{"',l,
ME.'l'AI)ATA_PERM[SSIOr\’_READ, 20, &MyHandle_l:
ffloop until there are no more subkeys
while (SUC‘CEEDED)hRes),1 {

.-fltenumemte the subkeys of the World Wide Web service
Pikes = p[Metru—>EnumKey:s[My[landle, ‘I'EX'l‘(‘“,’W3SVC"), SubKey1\‘ame, indx):
if (SI.-'(_‘CEEDED)l1Res}J {
.-fltstore the virtual server names in an array for future use
r’.-‘Note: declare a suitable array of names and add
.I'." array bound checking
vxtscpy (names [irtdx], SubK.CyNan1t:):
}
Hirtcre me nt the index
indx-r+:

}
.-Vrelease the handle
p]Mcta— >CIoscKc y(!t-'lyHundIc}'.

Mi-L’l‘ADA'l'A_ RECORD structure to specify the data to be
retrieved, and to receive the data. Your program must
allocate the bulfer irtto which the data will be retrieved, and
pass a pointer to it in the pbMDData member of the
METADATLRECORD structure.

The GetAllData method retrieves multiple data entries
from a key. In this case, you use parameters of the GctAll—
Data method to specify the data to be retrieved, and provide
a bulfer where the method returns an array of
METADAl‘A___GETALL_Rl£CORD structures.
Enumerating Keys and Data

You can use the l:1numKeys method to enumerate the
subkeys of a key. The name of one subkey is returned per
each enumeration call. I3RROR_N()_M()RE__I'I'EMS is

returned after the last suhkey has been enumerated. To get a

55

60

65

34

Enumerating Data Items

The l_inumData method returns the entire data entry, so
you must pass in a METAU/-\TA_RECORD structure to
receive the data. The values that are set for the
MET/\DATA_REC.‘ORD members when that structure is

passed into the ErtumData method specify which data items
are to be enumerated.

The following example enumerates all of the server-
related data entries of the first virtual Web server, including
any inherited data. This is an example only, and does not
include all appropriate error handling.

35

6,061 ,692

37 38

#dcFtnc L-‘NICOIJIE
#definc l. TGUID
itincludc tatlmw.h"

#include “iiscrtfg.h"
#inc1ude “:1liBase.l1"
HRFEULT l1Res as D;
DWORD indx -- t):
ME'I'ADATA_[LANDLE Myl-Iandle;
METADAD‘-_RECORD MyRecord:
DWORD dwBufLen = OR1GINAL_BUFFE.R_SlZE:
DWORD dwReqBufLen an 0:
PBYIE pblsuffcr = new BYl'E[clwBufl_.::n]:
CComPtr -=IMSAdminBasc> p[Mcta:
hRcs -= C‘oC‘r::aLcInstancc(CI_S[D_MSAdminliasc, NULL, C]_SCTX_AL]..,
Il'.'D__[!\-'[SAdminBase, (void ") &pIMeL:t);
if (FAIl.ED(hRes))

return;
Hgct a handle to the Web servicehRes =
METADATA_PERMlSSION_RE.AD, 20, &MyIIandle):
if (SUCCElEDED(hRes),1 {
ifloop until there are no more data items
while (SUC.'C'EliDED(hRes)) {

Hinitialize the input structure,
.l.I'll'Ic values specify‘ what kind of data to enumerate
MyReoord.c|wMDr\ttribuk:5 = ME'l}‘\])AT1_lNH[iR['I‘;
‘MyRecord.dwMDl.IserTy])e - IIS_MD_UT_SERVER;
NyRecord.dwMDDataTypc - Al.L__ METAD.-‘-\'I'A:
‘MyRecord.dwMDDataI;en - dwfluflacnl
MyRecord.phMDD:tla - pbfiuffer.
Henumeratc the data of the first virtual Web server
Hchecking to ensure that the data returned does not
Hoverflow the bulfer

H‘ COM Interface header
H MD. & HS. MD. ttfdefines
if J\T[. support

plMeta—:0penKey(METADATA_MASTER_ROOT_l1ANDLE, ‘1‘E)t"I'(".'LlW\\t3SVC“).

hikes = pIMeta—>EnumData(Myl{and|e, 'I'EX'[{“,'l"J, &MyRecord, indx, &dwReqBufl_.enJ'.
it‘ (hR:r.-5 .=.= RlTI'L'RN(30l)t?l‘OHR}.'-.5U1SF(F.RROR_[N5UFFI(3IENT_.BUFFER)'} {

dclclc [] (phBulTer};
pbliulicr = new HY'l"E[dwReqBul‘[A:n]:
dwBul'Lc11 = t:lwRt:qBuELcn:
MyRecord->dwMDD:Ital.en - dwReqBut1.en:
MyRr:cord—>pbMDDnta = pbI3ufi'cr:
hRes = p]Mcta—>EnumData[MyHand1c, ‘I‘EX'lI‘“,f1"'j, &MyRr.-cord, indir, &dwRcq]5utLcnJ:

}
tr (SUCC’E.EDED(hRes}) {

Ltstore the data identifiers in an array for future use
I.-"Note: declare a suitable DWORD army for names and add
if array bound checking
data[indx] = M_vRecord—:dwMD1dentifier:
If Additional code needed to store other data fields.

}
ffincrement the index
indx++:

} tr end while
Hrclcase lht: handle and buffer
pIMeta->CloseKey(MyI!:Ind|e):
} If end if pIMeta->OpenKey Succeeded
delete pbBufl'er'.

Registering an Event Sink
You may design your application to be notified when

certain cvcnts occur. To receive evcnt notifications, your
application must implement a COM sink of a class
descended from the IMSAt:lminBascSink interface. You may
implement a sink for the following events.

The metabase shuts down.

A key or its associated data changes.
Shutdown Notify Sink

This sink method will be called when IISADMIN stops.
The metabase will be open during this call, however there is
no guarantee that handles will not be open that prevent you
from reading from or writing to portions of the metabasc. In
addition, your sink must not release its interface during this
call. The recommended implementation is, when notified,
set a flag and return, then release the interface. The metabase
will wait for live seconds or until all interfaces have been

released before actually shutting down.

50

60

35

Your callback method must implement the following
prototype as a minimum:

l-IRESULT S"I'DME'I'IIODC.AL].I'YPE ShutdownNolify(void]
{
return IIRESULT__ F'ROM_W[N3’.’ (ERROR NOT SUPPORIED):
}

Change Notify Sink

If your application needs to be notilietl whenever a key or
its associated data changes, it must implement the SinkNo-
tify method. This method will receive a notification when-
ever one of the following events occurs.

A key that has been changed is closed by the CloseKcy
method.

36

6,061 ,692

39

Penrtissions on a handle to a key are changed from write
or readfwrite to read-only by the ChangePermissions
method.

The SinkNotify method is not called if the handle is
closed by the instance of the IMSMetadata interface that
registered the sink. In other words, a client only receives
notifications of changes made by other clients.
Note

Do not open any write handles within your SinkNotify
processing or recursive notifications between clients may
cause a system lockup. You may open read handles to the
metabase within your SinkNotify method.

Your callback method must implement the following
prototype as a minimum:

HRESULT SinkNolit'y(DWORD dwMD.\'umF.lcments
MD_ClL’!tl\'GE_OBJ'EC'T pcoChange‘t.ist[]
J:

The parameter dwMDNurnl£lernents receives the number
of elements that have changed. The maximum number of
change entries that are sent on a single cal] to the callback

fidefine MD_CI-lA NGE_OBJ ECT

5

I0

15

40
FMS/\dminBase Structures

The following structures are used by the Admin Base

Object methods.

MD (Til.-‘-\NCiE OBJECT Stores information about changes
made to a key in the metabase.
Member of an army that receives
multiple metabase entries.
Stores information about it handle to
the metabasc.

Specifics or receives 3 single
rnctubasc data entry.

METADATA GF.TAl.L RECORD

l\rlE‘I‘ADA"l‘i\ IIANDLE INFO

MlE"l}\Dr‘\'[]I’\ RECORD

M I)_CI-IAN(3E._0BJECT

The MD CHANGE _ OBJECT structure receives informa-

tion about the changes made to a key in the metabase. It is
used in the Sinl<NoIify method of a change notify sink.

MD_C[L-RNG E_.UBJEC‘.'T_W
fldefine PMD_CTIIANGE_OB-JECT l"MD._.C[IA.-\’GE_OBJECT_W
lypcdcf struct
{

_ MD_(.‘HAN{.il‘I_._.0l3JIZ(.T'I‘_W

2”‘ {string} "t' LPWSIR p5zMDl’ath:
DWORI) ctwMtJct.angc't3-pa:DWORD dw‘.\'l1'J.\'ttmDataIDs:
.n"‘ [size is] [unique] ’.-’ DWORD . .RPC FAR ‘pdwMDDat:I[Ds:
} MD_CI{..-’\NGE_Ol3JEC'T_W:
typcdcf struct MD\C‘l-1ANCE OBJECT W

method is specified by the constant MD_MAX_
C[IANGl3_l_-lN'I'RlES. If more notifications are required.
the method is called multiple times.
Remarks

IlS does not make secure calls to remote machines. If your
program implements a sink and is executing on a machine
other than the machine on which [18 is running, you must
remove security by calling the COM Colnitializesecurity
function with the dwImpLevcl parameter set to R1-’C _C_
AUTHN LEVEL NONE, as shown in this example:

hRc5 = CulnitiaIizcSccLtrity(NULI.,
_1__
NL‘LL.
.\'lILI,
RFC. C AITTHN I.E.VEl.. NONE,
«J,
N1.‘ [J7
E02‘-\C__NON E,
OJ

For more information on this function, see the Reference
topic in COM and Activex Object Services in the Platform
SDK, which is also available in the MSDN Library.
Admin Base Object Reference

The following topics specify the stmctures, methods, and
errors of the Admin Base Object:

IMS/\dminBase Structures
IMS/\dminl3ase Methods
IMSAdminBasc Errors

40

45

50

60

65

36

RFC‘ .l'ii‘-\R "l-"MD .Cl1AN(.iE_ .0BJE(_“[‘ W;

Members

ps2MDl-’ath
The path to the modified key.
dwMDChaI1geType
A DWORD that lists the type of changes made. This

member can contain one or more of the following flags:

Flag Description

MD_ClL=\NGE__TY[’E_,ADD_OB.lECI' The key was added to the
metabase.

Mt)_(Tt-L-’\N(.iIi_'I"r't’lE__DE]_l3I‘lj__I).-’(I]-‘K A data entry was deleted
from the key.

MD_(_‘t-EAN(.ifi_‘I‘Yt’E_DEl_I5I‘lj_0B.IEC“l‘ The key was deletedfrom the mctabase.
The key was renamed.
A data entry was added
to or set liar the key.

MD, .Cl*L-NNGE TYPE ,R|7.t\'A.\-1E OBJECT
MD _C'HANGE TYPI-I SET DATA

dwMDNumDatalDs

The number of data entries that were changed.
pdwMDDataIDs
Apointer to an array containing the identifiers of the data

entries that were changed. 'l'"l1e array is dwM.DNumDataIDs
in length.
Mlj'l‘ADAI‘A __RECORD

The ME’I‘ADA'l"A RECORD structure contains informa-

tion about a metabase entry. it isused as an input parameter
by the SetData method and as an inputloutput parameter by
methods that retrieve data from the metabase, such as
GetData, EnumData, or GetA.llData.

37

6,061 .692

41

typcdef slrtlut _MEl‘ADA'l3A_RE-CORD {DWORD dwl\«'iD[dcntificr:
DWORD dwl\«'lDAtLributcs;
DWORD dwMDUscrType;
DWORD dwMDD:1taTypc;
DWORD dwMDDataLI:‘I'J:
unsigned char 'pbMDData;
DWORD dwMDData'I‘ag:

] METADA'I‘A_RECORIJ:

Members
dwMDIdcntifier

A DWORD that uniquely identifies the metabase entry,
for example, MD_SERVER_STATE.

dwMDAttributes

Flags that specify how to set or get data from the
melabase. This member can be set to one or more of the

[allowing values:

an

ID

15

42

-continued

User type Description

1IS__ h-tD_ l."'l' SERVER The entry contains information specific to the
server, such as ports in use and IPaddresses.
The entry contains information specific
to web application nranagemcnt.

lIS_MD_L"I‘_WAM

dwMDData’l‘ype
Identifies the type of data in the metabase entry. This

parameter can be one of the following values:

Data type Description
Set: Not valid

Gut: Return data regardless of type.
A[_L_. _MI3TJ‘\ DJ\Ta\

l-‘lag Description

Set: The data can be inherited.
Get: Return inheritable data.
Fora string data item:
Set: [ndicates the string contains
MD_INSERT_PAT£I__STRI1\'GW,
(jet: Replace

M E'1'J\D.r’\TJ_ [NH ERIT

METADATJ‘-_lNSERT_PA'I'[]

MD_]NSflR'l'_PKl'H_S'I"RINGW with the pathof the data item relative to the handle
ME'l}\Dr\’I?___[SINHl£RITED Set: Not valid.

Get: Mark data items that were
inherited.

METADATA .1‘-.'0 ATTR|BITI'ES Set: The data does not have any
attributes.
Get: Not applicable. Data is returned
regardless of this Ilag setting.Set: Not valid.
Oct: Return l'IRR()R_Sl.J{'I'T|ESS and

l\-ll"."l'a'\I).:’\'['.:\ __ PA RT'l.«'\I. _ PATH

any inherited data even if the entire path is not
present. This flag is only valid if
MEI'ADATA_INiIERIT is also set.
Set: The data was retrieved by
reference.
Get: Not vaiid

Set: Store and transport the data in asecure fashion.
Get: Not valid.

METADATA_R.F.FER ENCE

ME‘l}\DA'l‘r‘-_S ECU RE

METADATA _ V0] ATILE
storage.
Get: Not valid.

dwMDUserType

ADWORI) that specifies the user type ofthe data. When
you use the SetData method to create a new data item,
specify a user type above 2,000. User types 2.000 and below
are reserved. When retrieving or updating data, this specifics
the user type assigned to the data item.

IIS currently uses these user types:

L"-ser type Description

ASP MD UT ._.t\PP "ho entry contains irlforrnation specific
0 ASP application configuration.
"ho cntry contains information about a

file. such as access permissions or log on
methods.

1.-lIS_MD_l..='T_F'{l.E

Set: Do not save the data in long term

60

65

37

-continued

Data type Description

l3lNAR‘r'_.\"ll':TADATA Binary data in any form.
DWORD__.\«lE'.TADA'1"A
EXPA NDSZ_METADATA

An unsigrted 33-bit number.
A null-terminated string that contains
trnexpanded errvironnient variables. such
as ".’ErPAT'[I%. The environment variables

are not expanded by the
Admin Base Object.
An array of null-terminated strings,
terminated by two null characters.
A null-terminated string.

MUI_TtSZ_M I3l‘ADAl‘A

STRING _Ml-?T'J\DATr\

r1wMDDataL<:n

A DWORD that specifies the length 01‘ the data in bytes.
If the data is a string, this value includes the ending null
character. For mullisz data, this includes an additional null

38

6,061 ,692

43

character alter the final string. For example, the length of a
rnultisz string containing two strings would be (wcslen
(stringA)+1)*si2eof(WCHAR)+(wcslen(stringB)+l)*si7eof
(WC‘HAR)+1 “sizedf(WCHAR)

In-process clients need to specify dwMDDataLcn only
when setting binary and rnultisz values in the metabase.
Remote applications must specify dwMDDataLen for all
data types.

pbMDData
When setting a value in the metabase, points to a butler

that contains the data. When retrieving data from the
metahase, poinLs to a buffer to receive the data.

dvvMDDataTag
Reserved.

ME'l‘ADA’l‘A GtiTALL_ RECORD
The METADATA_GETAI_[.__RECORD structure is

analogous to the Ml_i'I'ADA'I'A_ RECORD structure. but is
only used to return data from a call to the GetAllData
method. Data retrieval specifications are provided in GetAll-
Data method parameters, not in this structure (as is the ease
with METADATA RECORD). The Get/\llData method
returns the data from multiple entries as an array of
METADATA_ GET/\I.l_._ RECORD structures.

typedef struct _l\-'lETADATA_GETALl. RECORD {DWORD dw‘MDIdentifier:
DWORD dwMD.-Xttributes;
DWORD dwMDUsci’l_rpc:
DWORD dwh-tDI)ata'I}'pc:
DWORD dwi\-tDl_‘)atal_.en:
union

{IJWORI} dwMI)Data0t1sct:
unsigned char ‘pbMDData:
}.

IJWORI} dw‘MDData'l"ag:
} M|:'l'A Da\l'1_ Gl':'['A l..L__RECORD:

Members
dwMDIdentilier

A DWORD that identifies the metabase entry. For
example. MD_SERVER_STATE.

dwMDAttri|)LItes

A set of flags that receives the attributes of the data entry.
This member can receive one or more of the following
values:

Flag Description
Return inherited data

lndicatrs the string contains
MD. INSERT PAT?-l_ STRINGW,
Returned data is inhetitect.
No attributes set.

ME'l'ADr‘-\TA_[NHERl'l'
M|5l}\Dr‘¥l'A_[NS1iR'l'_Pi5il‘t-l

METADATA ._ ISIN1-IIERITED
METADATA. NO, a'\'I‘TRtBI;"I't".S
ME'l'ADATA_PART'lAI,_PATH

present. This flag is only valid if
ME'l‘ADA‘I1A_iNiIERI‘1‘ is also set.
The data was retrieved by reference.
Not Valid.
Not Valid.

METADATJ‘-_ REFERENCTE
METADATA _ _S ECU RE
l\'lE'l‘r\iJA'l'J’___ V0]...-'\T[l_l_i

dwMDUser'I'ype

A DWORD that specilies the type of user of the data. HS

currently defines the following two types of users:

I0

15

30

40

65

38

44

User type Description

ASP _l\-'lD_ U1‘ APP The entry contains information specific to
ASP application configuration.
"he entry contains int‘:-rnration about a file,
such as access permissions, or log on ntethods.

]IS_MD_L'T_SF.R\"'fiR "I11: entry contains infornration specific to
I11: server, such as ports in use
and IP addresses.
The entry oontains information specific to
Web application management.

IIS MD UT FILE

HS _M D_L"T_WAM

dwMDDataType
Specifies the type of data in the metabase entry. This

member can be one of the following values:

Data type Description

ALL .Ml:‘.'I‘ADA'I'A All data returns, regardless of type.
Not valid when setting values.
Binary data in any form.
An unsigned 31-bit number:
A null-terminated. unicorle string that
contains unexpanded environment
variables, such as -71'»-[’A'I'iI%.
An array of null-terminated strings,
terminated by two null characters.
A nulI—tr.-rminsterl unicodc string

BINARY Ml"-."l'A|)A']]-K
D\\"ORD_. X-'[l'-f"l'r’\|)A']]-’\
EXP;-’\N|JS7._ 3-'Il'i'I‘.1‘\DATA

MULTIS ZLMETADATA

S'[‘R[l\E(_i_l\-1l:TI‘:\Dr'\'l}-‘\

dwMDDatal.en

A DWORD that receives the length of the data in bytes.
If the data is a string, this value includes the ending ntrll
character. For mu his: data, this includes an additional null

character after the linal string. For example, the length of a
rnultisz string containing two strings would be {wcslen
(stringA)+1)*sizeoHWCHAR)+(wcslen(stringB)+1)*sizeof
(WCHAR}+1*sizeof(WCHAR)

dwMDl)ataO[fset

If the data was returned by value, contains the byte offset
of the data in the hulfer specified by the parameter pbMD-
Buffer of the lMSAdminBase::GetAllData method. All out-

of-process executions will return data by value. The array of
records, excluding the data, is returned in the first part of the
buffer. The data associated with the records is returned in the

buffer after the array of records, and dwMDDataOl}"set is the

inherited data returned even if the entire path is not

offset to the beginning of the data associated with each
record in the array.

pbMDData
Reserved. Do not use.

dwMDDataTag

39

45
Reserved. Do not use.

See Also

METADATA_ RECORD

} l\«'lE'l)\[)1\'I}l__H..-’\NDl.[i_lNFO;

6,06 1 ,692

46

Va] uc Description

5 Ml:7l‘ADA'I‘A. _l’ER.\-l[SS1ON READ The handle can read keys
,, 1 , . ._ 1 and data.

MUADAIA. HANDLE. INFO METADa'rA, PERMISSION WRITE The handle can write keysand data.
The METADATA_I-I/\NDIJ3_lNFO structure contains

information about a handle to a rnetabase entry. 10 dwmnsyslemchangchlumber
Specifies the system change number when the handle was

opened. This is a number that tracks how many changes

l)'P=‘k1”5""*='-a-Ml='T+’\'Ml7\---H-‘\NW—‘3—JNF0{ were made to data since the metabase was created. ThisDWORD wMlJPu:nm'ssinns: ‘ 1' , '
DWORD dwMlJSystem(.‘hangcNumber; H rf;;:§mS:nV§:S:°hf1l::(::wccn mblabasc mS'SmnS'- e

The IMSALlrninBase COM interface of the Admin Base

Object exposes the following methods:

Method Description

[MSAdn1inBasat:::AddK::}' Adds a kc)’ to the mctabasc.
[MSAdnIinBase::Backup Backs up the metabase to a

backup file.
IMS.-=\dnIinBasc::ChangePermissions Changes readfwrite perntissions

on a handle to :1 key.
[MSAdminBase::CloseKey Closes at key.
[MSAdminBase::(‘opyData Copies or moves data between

keys.
[MSAdn1inBase::CopyKey Copies or moves a key in the

metabasc.
[MS.t\dn1inBase‘.:lJe]eteA||l}ata Dclctcs all or a subset of the

data assticiatcd with :1 key.
[M.‘SAdmin]3asat:: :DL-ielcflackup Dclctcs 3 metabase backup

from a backup file.
IMS.-*\dminBase::De]eteChi|dKeys Deletes all subkeys of a key.
IMSAdn1inl3asc::DclcteDaIa Deletes a data entry.
IMSAdn1inl3asc::l)e1cteKcy Deletes as key from the

rrtetahase.
[MsfitdniinBasc::EnumBackups Enumerates the metabase

backups in a backup file.
[MSN.1minBasc::EnunIData Iinunicmles the data associated

with a key, one entry per call.
[MSAelminBase:.'Enun1Keys Enurnerates the subkeys of st

key, one subkey per call.
[MSAdminBase::GetA]lData Retrieves all or a subset of the

data associated with a key.
[MSAcln1in]3asc::CielDatu Retrieves a data entry.
[MSAdrninl3asc::(_ielDatal’aths Retrieves all paths of a sublrcc

where a specified identifier exists.
[MSA:dminBasc::Get1'JataSethlurnber Retrieves the data set number

associated with :3 key.
[MSAi:ln1inBasc: :GeI[-landlelnfe Retrieves int}:-rrnatinn about a

handle.
lMSAdminBase::(_ietl_.astCImngc‘I‘ime Retrieves the last change time

for a key.
lMSAdminBase::GetSysten1ChangeNurttber Retrieves the system changenumber.

[MS.«’\dn1inBasc::OpCrIK.cy Opens a key.
[MSAdn1inBa.' :RcnamcK.cy Renarrtcs an existing key.
[MSAdn1inBasc::Rcstorc Restores the mctnhesc from at

backup file.
[MSAdminBase::SaveData Saves metahase changes to

disk.
[MSA:dnIinBase::SetData Sets a data entry.
[MSAdminBase::SctI_astChange‘lirne Sets the last change time for at

key.

Members lMSAdminBase: :AcldKey
dwMDPermissions

Specifies the permissions with which the handle was 55
opened. This member can have one or more of the following
flags set:

The IMSAdminBase::AddKey method creates a key and
adds it to the melabase as at subkey of the key at the specified
path.

39

40

6,061 ,692

47 48

HRESUL1" iI‘\ddKey(
l\-lE'IAIJA'l‘A_{-[.r‘\I\"DLE l1l\«'[Di-Iandle, If metiibasc handle
[.P(‘WSTR pszlt-'lDPath If path to the key,

relative to hMDl-Iandie
)1

Parameters 10

hMDl-Ianclle -continued

Specifics a handle with write permissions as relumerl by DWORD dwMm,mion= H “mm numb“
the lMSAdminBase::0pcriKey method. The value DWORD dwi\-ID}-‘lags, ,=.+ flags

METADATA__MASTER__RO0T__HANDLE is not valid 1‘ J1
for this operation. ‘

szMDPath ,
P . . . , . The IMSAdm1nBase::Backup method backs up the meta-
Points to a string that contains the new key s path, relative b _ _ _ _. _ ase to a backup location you specify by providing a backup

l°_Ih° Pam Dl hMDlla"dl‘°' For ‘="‘*'?‘P‘°- ll the halldle location name of up to ‘[00 characters in length. Multiple
1"5l'3"°UC°S ‘he trl--M kc)’: Y9“ Cmlld SP“-‘If? Ill‘? Wfil’ SCWIGC5 30 metabase backups can be stored in a backup location.
subkey using the path ./W3S\/C.

This parameter cannot be NULL. N0“:

Realm Values IIS delerrnines the backup storage mechanism. so the
Returns an l‘IRliSUl_.T that contains one of the following 25 backup location name, you provide does no: necessarily

values: translate to a particular directory, file, or database storage
mechanism. As implemented in this release, riietabase back-
ups are stored as files in the
SYSTE-‘.M32\lNETSRV\METABACK director . ThisY

ERROR_ACCESS DENIED Access is denied. Either the In mechanism may change in future l.c]ca5cS_open handle: docs not have -
read or write permission as _ _
needed or the user does not Paramucrs
have sufiticient perniissiorts to _ ‘ 1 .
perform the operation. pSzMDBa°kupL0LallDn

F.RROR_DUP_NAME A key of that name already _ ,
c,_..-,,[,, in [he m,,,bm_ 35 A string of up to hdD_BACKUP_MA)_(_I_EN umcodc

ERROR INvA1,lD__NAME The specified name is invalid. characters that identifies the backup location. The storage

EEREE '?_‘'‘j’I_‘\1vl[_T;I.(.)F1':‘\R+’\=‘‘l!:-]'{'51:) Y The P="3""'3“3F it‘ intififlw; mechanism will be (leterniinecl by US. If an empty string is
' R ho ' ‘ ‘GR ‘ ‘M R M“ E"°”l5ll swag." '5 “:"l' specified. the default backup location will be used.able to process lhts oomnuand.

ERROR_PPiTI-I_NO'l'_FOLlND The specified path is) .
not found in the 40 dwlvlnvuslonmetabase.

ERROR_.SL~'C‘CESS The method succeeded.

.\1D_ BAC KU P_[I[GIiESI‘_VERS[ON

MD__ BACKU P_ NEXT_ VERSION

dwMDFliigs

Specifies the version number to be assigned to the backup.
Must be less than or equal to MD_BACKUP_.MAX_
VERSION. Can he set to one of the following values:

Overwrite the highest existing backup
version in the specified backup location.
Use the next backup version number
available in the specified backup location.

One or more of the following flags:
M D__ BACKU P_ FORC |:'._BACKUP

MD ._ BAG Kl]? DVERW RITF.

.\-lD_ BACKU[‘_SAVE_FIRST

Force the backup even if the
S.-iveD:ita operation specified by
Ml) BACKIEP _S!\\«’E_ FIRST !‘:ii'ls_
Back up even if a backup of the same
name and version exists in the specified
backup loc-atiori, overt-vi'iti.ng it if necessary.
Perform a SaveData operation before
the backup.

IMSAdminBase: :Backup

lIRl:'.Sl.=‘LT
LPCWSTR

backupt
pszlvl DBackup Locatio n_. It backup location

60

65

40

Return Values

Returns an I-[RESULT that contains. one of the values

listed in the table below. Other errors may also be returned
that are passed through from the lile system, or from a crypto
api when secure rnetabasc data is being saved.

41

6,061 ,692

49

Value Description

ti l.N\«"ALlDAR(_i
ERROR NOT ENOUGH MEMORY

An argument was invalid
lnsufiieicnt rncrnory to
perform the operationThe mctltod succeeded.
This is a warning not an error.

ERROR _Sli('.‘CI 55
M D_WAR N[NG_SA\-'li_ FA l LI‘. D

I MSAdminBase: :ChangePermissions

HRIESULIT Cha ngc Pe rrnissions(
METADATA __[I.t'\NDLE l1wD[{a1'tdle, H
DWORD dw.\ilDTE meOut_. H
DWORD dw.\«lDAccessR-2 quest, J,

).

handle to the nietabasc
time to wait for success
new perrnissions for handle

The IMSAdminBase;:ChangePerrnissions method
changes permissions on an open handle. If the handle was
opened with write permission and you change it to read only,
this method will cause any callback methods registered to be
called.
Parameters

hMDl-Iandle

Specifies a handle to the metabase, as returned by the
IMS/\dminBase::OpenKey method.

dwMDTlmeOut

Specifies the time, in milliseconds, for the method to wait
for the operation to succeed.

dwMDAocessRcquesled
Specifies the new permissions for the handle. It must he

at least one of the following values:

Value Description

ME"I‘ADATi_PER.\dESSl0N_RE.AD
ME"I‘ADATi‘\ . . PERMISSION _WRI"['E

Open the key for reading.
Open the key for writing.

Return Values

Returns an HRESULT that contains one of the following
values:

The metabasc handle is invalid.

The path specified cannot beused at this time.
The method succeeded

liRRDR_ lNVAL|l)_ HANDLIE
liRROR_PKl'l~[_BUSY

lil-{ROI-I _SU(.‘Cl;'SS

Remarks

When you use this method to add permissions, success or
failure lhllows the same rules as apply in lMSAdmin-
Base: : 0penKey. Timeout values should be short for this call;
it is quite possible for two threads with road permission on
the same data to attempt to update to write permission at the
same time. Both will block until one read handle is closed.

I MSAdminBase: :CloseKey

The IMSAdminl3ase::CloseKey method closes a handle
to a key. If the handle was opened with write permission and
changes have been made, this will cause any callback
methods registered to be called.

10

15

30

35

40

45

50

60

65

41

50

t:tRl:‘SU[2l‘ C‘lo.-seK::y(
MEI)-\Di\TA_HANDLE hMDHnndle if handle to key

):

Parameters
hMDl-Iandle

Specifies the handle to close, as returned by the lMSAd-
mir1Base::0penKey method.
Return Values

Returns an HRESULT that contains one of the following
values:

ERROR_I.\'VAL[D__l{A NDLE
ERROR_SUOCESS

The handle is not valid.
The method succeeded.

IMS/\dmin.Base;:CopyData
The IMSAdn1inBase::CopyData method copies or moves

data associated with the source key to the destination key.
You can also specify whether the method oopies the k<:y’s
inherited data.

IiRESUl..T Copyflatat
ME'l‘i\Di’\'I‘A_ HANDLE
hh«'[L)t:§onreeI-Iandle,
LPCWSFR pszlt-'1DSoureePath,

Ii" sour-uc mctabasc handle

If path to the source key,
fr" relative to h_\«[DSot|rccl-Iandle

METADATA H.-’\Nl'JLl7. .-lfdeslination nletahttsc handle
l'IMDD::slHanctle,
l..PCW'5TR psZM|)DcstPnll't, ,"." path to the source key,

,"." relative to hN'[DDcslHandlc
,."," attributes of the data
."'.~’ uscr type oi" the data
.«"i" data type oi" the data
If flag that specifies whether to
if copy or move the data

DWORD dwMDiI’\ttrihutcs.
nwono dwl\1l'JUscr'l‘ypc_.
owono dwMDI)ata'I‘_vpc,
B001. bh-'[D(.‘opyFlag

Parameters
hMI)SourceI-Iandle

Specifies METADATA_.MASTER_ROOT_HANDLE,
or a handle with read permission returned by the lMSAd-
minBase::0penKey method.

psz.MDSourcePath
Points to a string, that contains the path of the key with

which the source data is associated, relative to the path of
hMDSourceIIandle. For example, if the handle references
the fl.M key, you could Specify the Web services suhkey
using the path IWBSVC.

hMDl)estHandle

Specifies a handle, returned by
lMSAdminBase::OpenKey, that has write permission.
METAD/\'l'A_ _MASTlER __ROO'I' __l IANDLE is not a valid

value for this parameter.
ps2.lVIDI)estPath
Points to the path of the key for data to be copied to,

relative to the path of hMDDestl'landle.
dwMDAttril1utes

The flags, contained in the METADATA RECORD
structure, used to get the data.

dwMDUs<:rType
A DWORD that specifies the user type ofthe data. If not

Set to AI.I__METl\D/\'TA, only metadata of the specified
user type will be copied or moved. The following user types
are defined for IIS:

42

6,061 ,692

51 52

-continued

use; type Description I.-2RROR_SUOCL".SS The method succeeded.

ALL__M£’l‘ADA'I'A 5
ASP MD. UT APP

Copy or move ail data, regardless of user type.
The entry contains information specific to ASP
application contigurntion.
Copy or niove only data specific [D a file,
such as access permissions or log on methods.
Copy or move only data specific to the server,
such as ports in use and IP addresses.
The entry contains information specific to Web
application management.

Remarks

It‘ inherited data is copied, (if dwMDAttributes spccifys
the META!)/Kl"A_lNIIERI'l" flag) it is copied to the desti-
nation key, not to the corresponding ancestor keys.

The handle, METADATA_MASTER_ROOT_
HANDLE, provides no guarantee against multiple thread
access. If your application requires a constant data state, use
a handle returned by lMSAdniinBase::OpenKey.
lMSAdminBase::CopyKey

The IMSAdniinl3ase::CopyKey method copies or moves
a key, including its suhkeys and data, to a specified desti-
nation. The copied or moved key becomes a subkey of the
destination key.

IIS MD 1.-T FILE

]IS_ MD_L"1‘_SER\r'ER
I 0

lIS_MD_ L-'I‘_WAM

dwMDDataTypc
A DWORD that specifies the type of data to retrieve. If 15

dwMDData‘l‘ypc is not set to ALL, _ME’l'ADA'I'A, only
rnetadata of the specified type will be copied or moved. This
parameter can be one of the foliowing values:

HRF.SI.‘[,T Cop_vKicy(
3-'ll"'.TiI’\lJA'I‘A Hiv\.V'D[.E hMDSourcel-iandlc,
IPCWSTR psich-1DSouIocPalh_.

2'." niizlabasc handle to the source key
.-'i" path of the source, relative to.-'i" hMDSouIct:Hand]c
Ii’ metabase haridte lo the destination
.-‘i’ path of the destination, relative lo
.-‘i’ hMDDestIIaridie
.-'.t whether to overwrite or merge data with
ii’ an existing version of the key
Ii’ whether to copy or move the key

.\tE'I‘ADATA_[Ii3tNDLE hMDDest[Iandle_.
LPC‘WS'I'R psz1\-'lDDestPath_.

BOOL bM DOverwrite Ftag,

B001. blvi I.)CopyFlag
"it:

Parameters

hMl)SourceI-Iandle

Specifies the handle of the key to be copied or moved. If
the key is to be copied (|JMDCopyFlag is set to TRUE)
hMDSouroeI-Iandle must have read permissions. If the key
is to be moved (hM1)CopyFlag is set to FALSE), hMD-
Sourcellandle must have readfwrite permissions.

Data type Description

ALI... METADATA
BINARY MEFADATA
DWORD_.VtE’t"fitD:\T!\
EXPANDSZ__.\tE’I'ADATA

Copy or rriove all dala, regardless of type.
Binary data in any frirrn.
An unsigned 32-bit number.
A nu|I—terminated string that contains

ERROR_l’ATH_NOT_F0 [END The specified path is
not found.

42

ttnexpanded enviroriment variables, 40 P53”-lnsoufccpaill
such as ‘.el’A'I‘iI‘.Ee. Points to a string that contains the path of the key to he

MULHSZ METADATA fl" “_”“i‘<' fi““Lll"°’“‘]i;'a;1°° 5‘:l“8S- copied or moved relative to the path of hMDSourceHandle.CT]'I'l11'tfi C “'0]'lU C ETEC CIS. ' ,
srRiNti__Mr-:'ii\Lm'm A niill-lcnriinatcd ASCII slrinn. For ‘ixamplc’ ll [be haiidlc ref°r'mC“5.lll° fl"M key’ you mild

' specify the Web services subkcy using the path IWSSVC.

‘ 45 hMDDestIIandle
bMD(-UPYFMI3 Specifics a handle with write permissions that specifics
A B901?“ "731 5P3‘jlfi€5 Whell“-‘r1'_l0 ‘~'°PY 0}’ mo‘? the the destination of the moved or copied key.

data. 11 this parameter is set to TRUIL, the da-la is copied. If pSzMDDcS{pa1h

:;lSl_,FAl'SE’ ll": dala ls moiicd‘ lfd“flMDAm"bu1cS°‘0"lalm’ an Points to a string that contains the path of the new or
e ag METADATA INIIERIT, this parameter must be set v moved key relative to hMDDcStHandlc

'° TRUE‘ bMDOverwrite[~'la
Return Values _ g y _ _ ,

Returns an HRESULT that contains one of the following pctcrmlncs lhc hifhavlor .lf.lllc dcstlnallon klay already
Values‘ exists. If set to I‘RUb, the ex_istii:ig key and all of its data and

‘ 55 descendants are deleted prior to copying or moving the
source. If l"-'/\LSE, the existing key, data, and descendants
remain, and the source is merged with that data. In cases of

bRR0R_ACcESS_DEN[ED Amfls is dcnicd_ Either [he data conflicts, the source data overwrites the destination
open handle does not have dam"
read or write permission as 60 bMDCopyF]ag
needed, or the user does not S ‘ .fi h ‘h I th .fi d k If
have sufticient perntissions In 13"?’ °5_“' ‘E E’ 0 FOP?’ ‘” "‘_‘“’° _“ SPCC.’ F , “Y; ._
Pflfmm the {,1,,mL;n,.‘ bMD(-opyI‘lag is IRUL, the key is copied. If it is l'AI_bi.-,

ERROR n~.'vAi.ID_ _Pi\RAMETr:R The {Jaranlclcr is incorrect. the key is moved, and the source key is deleted [tom its
lERROR_I\'-OT_l‘INOU(iH_MIiMORY Then: is not enough mcniory original }_(](_;a[i()n‘

to complete the operation. as Return Values
Returns an IIRESULT that contains one of the following

values:

43

6,061 ,692

53

Access is denied. [Either the

open handle does not have
read or write permission asneeded or the user does not
have sufficient pcrmiasiorts to
perform the operation.
A key of that name alreadyexists in the metahase.
The parameter is incorrect.
Not enough memory is avail-
able to process this command.
The specified path isnot found in the
mctabase.
The method succeeded.

]."RROR_A(JC ESS_ DENIED

ER R()R_DU P_ NAME

ERROR_l.\'V’AL[D_PARAM ETER.
ERROR_I\'OT_ ENOUG[!_MEMORY

|;'R.RDR_ PA']"H__1\iO'l'_l-‘OUNIJ

ER ROR_5UCCF.S§

lMSAdminBase::De1eteAllData
The IMSAdminBase::DeleteAllData method deletes all or

a subset of local data associated with a particular key.

HRIESUIII‘ Dcicle..r\!|Dala
ME']"a\D.:’t'l"A__. l-I.-‘\NDLl"I hMDHandle,
[.PCW'b']'R pszMl)l’ath,

,",t’ metahase handle
,",t’ path to the key, relativeto h.-\-'[DHand|c
user type of the data
If data type of the data

DWORD dwM DUaer"[‘ype,
DWORD dwM DDataT‘ype

Parameters
hMDHandlc

Specifies a handle to the metabase.
pszMDPath
Specifies the path of the key with which the data to be

deleted is associated, relative to the path of hMDl-landie. For
example, if the handle references the ELM key, you could
specify the Web services subkey using the path t'W3SVC.

dwMDUser‘I‘ype
Specifies the user type of the data to delete. If not set to

/\LL__METADA'l"A, only data of the specified user type will
be deleted.

dwMDDataType
Specifies the data type of the data to delete. If not set to

AL[._ME'1"ADATA, only data of the specified data type will
be deleted.
Remarks

The IMSAdminBase::Dele1eAllData method only deletes
data local to the specified key. Any data that the specitied
key inherits from keys higher in the metabase is not deleted.

This method can alfect subkeys of the specified object if
those sttbkeys inherit data from the key specified in the
lMSAdminBasc::DeleteAllData call.

iMSAdminBa5e::DeleteBackup
The tMSAdminBasc::Dele1eBackup method deletes a

metabase backup from a backup location.

IIRESULT DeleteBackup
LPCWSTR pszMDBack11pLocation
DWORD dwMDVersion
):

Parameters

ps2.MDBackupLocation
A string of up to MD_BACKUP__MAX_I.EN Unicode

characters that identifies the backup location.
dwMDVersiort

Specifies the version number of the backup to be deleted
from the backup location, or can be the following constant:

I0

15

30

35

40

50

55

60

65

43

54

MD_ISACKUl’_H[CiH]:ZS’I'_VERS[0N Delete the highest existing
backup version in the
specificd backup location.

Return Values

Returns an IIRESULT that contains one of the following

values, or any erro from the tile system converted to an
HRljSUL‘l'.

Value Description

l;'ZRROR_lNVAL[D_.\'AME
ERROR_I\'0T_ ENOUIZEI-i_MEMORY

Specified name is irtvatid.
tnsuflicient memory to
perform the operation.

ERROR. .S[."CIfl'*.'S.‘§ The method succeeded.

[MSAdmint}ase: :DeleteChiIdKeys

The [MSAdminBa_se::DeleteChildKeys deletes all sub-
keys of the specified key and any data they contain. It also
recursively deletes all keys below the subkcys.

HRESULT De!eteCt1iJdl(eys (
METAIJATA HANDIE hMDHandle.
LPCWSTR pszMDPath

J;

H nielahast: handle
H path to the key

Parameters

h MDHandle

Specifies a handle with write permissions, as returned by
the IMSAdrrtinBase::()penKcy method. MET/\DATA__
MASTER_RO0T_HAND{.E is not valid for this opera-
tion.

pszM1)Path

Points to a string that contains the path of the key whose
suhkeys are to be deleted, relative to the path of
hMDIIandle. For example, if the handle references the ELM
key, you could use the path ,I'W3SVC to specify the Web

services subkey. In this case, all subkeys below ELM!
W3SVC would be deleted.

Return Values

Returns an I-IRESULT that contains one of the following
values:

44

6,061 ,692

55

];'RROR_A(JCESS_DEN[l_'iD Access is denied. Either the open handle does
not have read or write permission as needed, or the user
does not have sutficient pennissions te pcrfenn the
nperatiom

ERROR PATH NOT FOUND The specified path is not found in the rnctabase.
ERROR _SU('.‘C1_'.SS The ntcthncl succeeded.

I 0
I MSAdminBa5e: :I)eleleData

The IMSAclIninBase::De1cteData method deletes a data

from a key in the metabase.

Ii”RESUI.T DeieleData(
METADATA _HANDI.E hM|')[-Iandle, It metadata handle
LPCWSTR pszMDPath_. if path to the key, relative to hMDHandle
DWORD dwMDIdenlifier, It identifier ot‘ the data
DWURD dwMDIJnta'I_.'pe H type of data to remove

Parameters
hMDl'Ian(lle

Specifies a handle returned by the IMSAdmiI1-
Base::OpenKey method with write permission. This param-
eter cannot be set to METAD/\TA_MASTER_RO0T_
HANDLE.

pszMDPath 3”
Specifics the path of the key to have its data deleted,

relative to the path ofthe handle. For example, ifthe handle
references the XLM key, you could specify the Web services
subkey using the path fW3S\/(T.

dwMDIc|entiI‘1er 35

Specifies the identifier of the data, such as
MD. CONNECTION 'l‘IMEOU'l'.

dwMDI)ataType
Specifies a data type. If this parameter is not set to

ALI._Ml-ETADATA, the data item will be removed only if 40
its data type matches the specified type. This parameter can
be one of the following values:

ta 9-

Data type Description

ALL_METADA'I'A Specifies all data, regardless of type.
BIl\'-ARY_.\«IETADATA Binary data in any form.
DWORD_ _METADATA An unsigned 32-bit number.
l:'XPANl)SZ__Mli'I}I’\l);X1'1\ A null-terminated string that contains uncxpandcd

cnvironnrcnt \-'ariabIcs: such as %PKl'f-[‘.'E-.
An array of nL1lI—tcrrninnlcd strings, terminated bytwo nttll charttctcrs.
A null-terminated ASCII string.

MULl'{SZ__Ml:'I‘!\DAl}’&

STRING _ METADAT;-\

60

65

44

56

45

6,061 ,692

57
Return Values

Return an IIRESULII‘ that contains one of the following
values:

l_"RROR_AOClESS_ DE N [ED

58

i"\ct:t.'5s is denied. Either the open handle docs
not have read or write permission as needed, or the
user does not have suflicient perniissions to perform
the operation.

ERROR_INVALlD_PaI\RAMETER The parameter is incorrect.
t:'RROR_PA‘1"H_l\"()'t‘_l~‘OUND

mctabase.
ERROR_SU(_‘C‘ESS The method succeeded
MD ERROR. lJA‘I‘A__.N0’I' .t'-‘(JUNIJ

mctahasc.

lMSAdminBase: :DeleteKey
The lMSAdminBase::DeleteKey method deletes a key

and all of its data from the rrietabase. All of the key's
subkeys are recursively deleted.

HRIiSUI_'l" I)eit:tcKcy(
METAICU‘-\TA_!L*‘-\NDLE l‘IMDHa11dle_.
[.PCWS'TR pszMDl’ath

If metabase handle
I.-" path of the key to detete

Parameters
hlVIDI-Iandle

Specifies a handle with write permission returned by the
lMSAdminBase::OpenKey method. ME't"ADA’l‘A.
MAS'l‘ER_RO0T_l{ANDLE is not valid for this operaw
tion.

ps:r‘.MDPath
Points to a string that contains the path of the key to be

deleted, relative to the path of hMDIIandle. For example, if
the handle references the KLM key, you could specify the
Web services subkey be deleted by using the path ;"W3SVC.

This parameter cannot be NULL.
Return Values

Returns an [IRESULT that contains one of the following
values:

ER ROR_AOCESS_ DE NIED

3-0

40

The specified path was not l'ound in the

The specified data is not found in the

HRESULT EnumBackups(
LPWSFR pszMDBaekupI_.ocation_.
DWORD. RFC. FAR ‘pdwMD\cl'.'.r5ion_.
Pl7"l[_F.T[l\«'iE pl'tM[)B:|L'.kup'l1nre_,DWORI) dwMDl'€nun'ilrtdcx

J;

Parameters

pszMDBackup[.ocatiori

011 input, a buffer of length MD_BACKUP_MAX_
LEN times sizeof(WCl1ar) containing an empty string or a

string of up to MD_BACKUP__MAX__LEN unicocle char-
acters that identifies the backup location. If an empty string
is input, the method will enumerate backups in all backup
locations, returning the backup location is this parameter. If
a backup location is specified on input, only backups in the
specified backup location will be enumerated.

pdwMD\/ersion

Receives the version number of the backup.

pftMDl3ackup"Iirne

Receives the date and time of the backup, in Universal
Time Coordinate (UTC). formerly GMT.

.I'\ccess is denied. Either the open handle does
not have read or write permission as needed, or the
user does not have sufficient permissions to perform
the operation.

ERROR_L\'VAL[D.._PARAMETER The parameter is incorrect.
ER ROH_ P1‘\‘l'H__NOT_F'0U N D

nrctabasae.
l:'.RROR_SUCC'1".SS The method succeeded.

lMSAdminBase: :t:‘nurnBackups

The IMSAdrr1ir1Base::EnumBackups method enumerates

the met abase backups in a specified backup location, or in all
backup locations. Repeated calls to this method, increasing
dwMDEnumIndex from U, will return information for each

rnetabase backup in the backup location until HRl:‘.SUL'l‘
FROM_WIN32 {ERROR_N0_MORE_ITEMS) is
returned.

The specified path is not found in the

55

60

45

dwMDl:1numIndex

Specifies the index number of the backup to be enumer-
ated.

Return Values

Returns an HRESULT that contains one of the following
values. or any errors from the tile system converted to
l{Rl;ZSUL'l'.

46

6,061 .692

Value Description

ERROR _lN\-’ALlIJ __NAMEl Specified name is invalid.
ERROR NO MORE, .lTEMS No more itertts to enunierate.
ERROR NOT FNOUGH MEMORY Insufiicient rnemory to perform the

Dpctaliort.
TiRR()R_SU('.‘C1_'.SS The method succeeded.

lMSAdminBase::Enum Data dwMDEnumDataIndex
The IMSAdminBa_se::EnumData method enumerates the

data entries of a key in the metztbase. One entry is enumer-
before the first call and increment it by 1 on each successive

ated per call. Set dwMDEnumt)ataIndex to 0 on the first call
and increment by 1 on each subsequent call until the method is call um” ERR0R—NO—MORl:‘—n EMS 15 m"m"’d'
returns ERROR_NO_MORE__ITEMS. pdwMI)RequiredI)ataI_en

Specifies the index of the entry retrieved. Set this to 0

l-{RESULT E.num[)ata(
MI:‘l}‘\DATA_HA1\‘DL|;' hl\-1D!-Iandle, I.’ metadala handle
LPCWSFR pszMDPath, I.’ path to a key, relative to h.\«1Dl-Iandle
PMFITQDATA RECORD pmdrMt)Data_. 3'," pointer to a structure that

H receit-‘cs the data
DWORD d\\'i\-lDF.nun‘tData[nde'.K, H index of the t:Ltm:nt data entry
DWORD "pdwMDRequiredDataLen .".-" receives the required bufl'er size

if for the data
)1

30
Parameters Potnts to a DWORD that reec Ives the required buffer size

hMDHanctte if the method returns ERROR _lNSUI~‘FIClEN’I'

Specifies the handle to a key in the me1abase.'l‘he handle BUFFER-
ean be ME'l‘AtJA'l‘A_MAS'[‘ER_ROO’I'_HANDLE or a Return Values

handle, with read permission, returned by the lMSAc|rnin— Returns HRESULT that eontains one of the following
Base::0penKey method. values:

ERROR__ACCESS_IJENl'.ED Access is denied. Either the open handle does
not have read or write permission as needed, or the
user does not have suflicient permissions to perform
the operation.

['2RR0l{_[NSLFFFICIEN'l"_|3UFF|.iR Tltc buffer passed into the method call is toosmall to receive the data.

ERROR_ [N\-E-\L[D_ PARAMETER The parameter is incorrect.
ERROR NO. MORE l'TE.-MS There are no more entries to enumerate.
ERROR_ _P.I‘\TH NOT FOUND The specitied path is not found in themelabase.
ERROR_§I.‘Cf.TESS The method succeeded.

50

pszMDPath Remarks
The handle, METADATA MASTER ROOT _

_ _ _ HANDLE, provides no guarantee against multiple thread
5P°°1fi°5'lh° palh of lb“ kw 1° be en" meramd’ mlallve l“ access. If your application requires a constant data state, use

the path of hMDIIandle. For example, if the handle refcr- 55 a handle rclurnu] by [MSAdminBaSc:.0pmK€y_
ences the ELM key, you could specify the Web services]MSAdm;nBa5e._:EnumKcyS
“lbkey “Sing the Palh fw3SVC- The IMSAdminB:tse::EnumKeys method enumerates the

subkeys of the specifies key. A suhkey can be enumerated

pmdrmnnata once per call. Subl-toys are numbered from 0 to (Num‘Keys—
60 1), with NurnKeys equal to the number ofsubkeys below the

key. If dwMDEnumKeyIndex is greater than or equal to the
Points to a ME’l'ADPt'l‘A RECORD structure that speci~ number of subkeys, ERROR NO MORE. ITEMS is

lies. the data to retrieve and receives the data. returned.

46

47

6,061 ,692

61

HRESULT }_"nun1Kn.-.ys{
t\-lE'I‘ADA’l‘A_{-IAl\"DLE hMDHandle_.
I.P(‘WSTR pszMDPath,
LPWSTR ps?.MDNan1e_.
DWORD dwMDF.nun1K::yIndex

If metabase handle
it path to the key

ff index of the subkcy

Parameters
hMDHandle

Specifics a handle to a metabase key. This can be either
METADATA_MASTER_ROOT_HANDLE, or a handle

with read permissions returned by the IMSAdmin-
Base::0penKey method.

pszMDPath
Points to a stnng that contains the path of the key relative

to the path of hMDHandle. For example, if the handle
references the /LM key, you could specify the Web services
subkey using the path fW3SVC. In this case the suhkeys of
ILM/W3SVC would be enumerated.

pszMDName
Points to a string buffer that receives the names of the

metabase suhkeys enumerated. This buffer must be at least
Ml:lTAD/Xl‘A__MAX__NAME___LEN wide characters long.

dwMDEnumKeyIndex
Specifies the index of the subkey to be retrieved. Set this

to 0 before the first call and increment it by l on each
successive Call until ERROR NO. MORE. ITEMS is
returned.
Return Values

Returns an HRESUl_'I' that contains one of the following
values:

10

62

if receives the name of the subkey

Remarks

The handle, METADA'l‘A_ MASTER ROOT

HANIDLE, provides no guarantee against multiple thread
access. If your application requires a constant data state, use
a handle returned by IMSAdrr1inl3ase::OpenKr:y.

lMSAdminBase::GelAllData

The IMSAdminBase::GetAllData method retrieves all

data associated with a key in the metabase. This includes all
values that the key inherits.

ERROR ACCESS DENIED Access is denied. Either the open handle does
not have read or write permission as needed, or the
user does not have sufllcient permissions to perform
the operation.

ERROR_INVAL[D_PARAMETER The parameter is incorrect.
ERROR .NO__ _MORE. ._ ITEMS
IERROI-l_ PATH. _ NOT_ FOUND

nictabasc.
l.".RROR_SU(.‘.CIiSS The method so ceceded.

There are no more subkeys to enumerate.
The specified path was not Iburtd in the

HR ES Ul.'I' Gct1\|IData(
MI‘.'['ADiI‘\T.:I’\ .l-L-'\NDI..I': h!\u1DI-Iandle,
1.PCWSTR pszMl)Path,

DWORD dwMDAttributes_.
DWORD dwl\-'lDL'~sefType,
DWORD dwMDDataT_vpe,
DWORD “pdwMDNttmDataEntries_.

DWORD ‘pdwMDDataSetNun1her,
DWORD d\.vMDBufl'erSi2.e,
Unsigned char ']'Jh.\"lDBL|ffcT_,
DWORD ‘p-dwM[)Requi1'edBt.l|‘ferSi7.c

)2

47

If melabasae handle
H path to the key, relative to
H hMDI-Iandlc
ii‘ attributes of the data to retrieve
if user type of the data to retrieve
t’! data type of the data to retrieve
ii‘ receives the number of entries
ii‘ copied to pblvlnliuffer
ii‘ receives the data set number
ii‘ the size, in bytes, of pbMDBuffcr
H’ the buffer that Ieceives the data
if if the method fails, receives
.-',I' the lequired buffer size

48

6,061 ,692

63
Parameters

hMD[Iandle

Specifies a handle to the metahase. This can be either
METADATA MASTER__ ROOT _HANDLE or a handle,

with read permission, returned by the IMSAdmin- 5
Base::OpenKey method.

ps2.MDPath
Specifies. the path of the key with which the data to be

retrieved is associated, relative to the path of hMDHand1e.
For example, if the handle references the ;'LM key, you could to
specify the Web services subkey using the path KWSSVC.

dwMDAttri|)utes

The flags, contained in the METADATA_lZECORD
structure, used to get the data.

dwMDUser'1’ype 15
Specifies the user type of the data. If not set to ALL_

ME'l‘ADA'l‘A, only data of the specified user type will be
returned.

The following user types are delined for IIS:

l..'ser type Description

t-’\1.I. .MF.'D\Dt\Tt\ Return all data, regardless of user type.
A5P_MD_tJT_APP The entry contains information specific to ASP

application configuration.
llS_MD_L"l‘_FILE Return only data specific to a file, such as aooess

permissions or log on methods.
IlS_MD__L'T_SER\-'ER Return only data specific to the server, such as ports

in use and [P addresses.

llS_Ml)_LT_WJ\M The entry contains infonnatiun specific to Web
application management.

dwMl)IJata’l'ype

Specifies the type of data to retrieve. If dwMDDataType 35
is not set to ALL_ ME'l'ADA'l'A, only rnetadata of the
specified type will be returned. This parameter can be one of
the following values:

Data type Description

i-'\‘i.I. METAIJATA Retrieve all data, regardless of type.
BINARY .V'lETi'\l'.‘l.-’\TA Binary data in an)’ form.
DW()RD. .\"|IZ'[l-\DATA :'\n unsigned 32-bit number.
lEXPANDS7._ME'l'iI’\DATJ\ A null-terminated string that contains uncxpanded

environment variables, such as "."?'PA'I'I'i%.
MULTISZ_ME'TADA'I‘A An array of null—terrninated strings, terminated by

two null characters.
STRING_METADATA A null-terminated ASCII string.

pdwMDNumDataEntries
Points to a DWORD that receives the number of entries

copied to pbBulIer. 55
pdwMDDataSetNun1ber
Points to a number associated with this data set.
dwMDBufferSize

Specifies the size, in bytes, of pbM DButTer.
pbMDBuEfer 50
Points to a bufier that receives the data. lfthe method call

is successful. the buffer will contain an array of
METADATA_GETALL__RECORD structures.

pdwMDRequiredBulIerSi2.e
Points to a DWORD that contains the buffer length 65

required, in bytes.
Return Values

48

64

49

6,061 ,692

65

Returns an [IRESULT that contains one of the following
values:

ERROR AOCTESS _ DENIED

66

Access is denied. Either the open
handle does not have lead or write permission
as needed, or the user does not have sufficient
permissions to perform the operation.

The hutfer passed into the method callERROR_lNSUFF[C[El\'I'_BUFFER
is too small to receive the data.

ERROR_lNVAL[D__PARAMETER The parameter is incorrect.
l_"RROR_ P.4U'H_NO'I‘_F'OU N D
1-'.RROR_SU(_‘CI:'.SS The method snuoced ed.

Remarks

On non-Intel platforms the DWORD data is aligned; this
may not be true on remote clients.

The handle, METADAT/_MASTER_ROOT_
HANDLE, provides no guarantee against multiple thread
access. If your application requires a constant data state, use
a handle returned by IMSAdminBasc::0penKey
lMSAdrninBasc::GctData

The IMSAdminBase::GetData method retrieves an entry
from the metabasc.

1-IRESUL1‘ GetData(
M£'l‘AIJA't‘A_I-L-'\1\"Dl.E hMDt-Iandle,
LPCWSYR pszMDPttth,

If mctahasc handle

If hMDHandIe
PMETADATA REC‘ORDpn1dIMDDala__

fr’ receives the data
DWORD ‘pdwMDRequiredDataI en

fr‘ poinLer to a structure that

The specified path was not found.

15

pszMDPath
Specifies the path of the key that contains the data. This

path is relative to the path of hMI)IIandle. For example, if
the handle references the ELM key, you could specify the
Web services subkey using the path r'W3SVC.

pmdt'MDData
Points to a ME'I'ADATA._REC'0RD structure that speci-

fies the data to retrieve and receives the retrieved data.

pdwMDRcquircdDataLer1
Receives the data length of the required buffer size if the

buffer size specified by pmdrMDData—>dwMDDatal_x:n is

20

If path to the key, relative to

L" pointer to a DWORD that receives
H the required data length in the case
H of an ox-'erflD\-v

Parameters
hMDHandle

Specifies a handle to the melabase. This can be either
METADATA_MASTER_ROOT_HANDLE or a handle

returned by the IMSAdminBase::0penKey method with
read permission.

ERROR_ ACCTESS_ DENIED

ERROR. INS UF17'iCIEN'I‘ BUFFER

ERROR__ [NW\l.[I)_.PARAMlE"['[ER
IiRROR._ PNl'[-I _ _NOT__F‘O[JNl')

ERRORJIUCCESS
.\JD_ ERROR_ DATA _NOT_FOUr\'D

not large enough to hold the data returned {ljRROR_

4” lNSUFFICIENT_BUFFER is returned}.
Return Values

Returns an I-IRESULT that contains one of the following
values:

Access is denied, Either the open handle
does not have read or write permission as needed,
or the user does not have sufiicient permissions to
perform the operation.

The buffer passed to the method call is too
small to receive the data.

The pamirtieter is incorrect.
The specified path is not Found in thernclahase.
The method succeeded.
The specified data is not found in the

rnelabase.

60

65

49

50

6,061 ,692

6'?
Remarks

The ha ndle , M ETAI)A'l"A_MAS'I'llR__ROO'l‘_
HANDLE, provides no guarantee against multiple thread
access. If your application requires a constant data state, use
a handle returned by IMSAdminBase::0penKey.
IMSAdminBase::(jetDataPaths

The IMSAdminBase::GetDataPaths determines which

keys in the metabase contain a specified data identifier. This
method retrieves the paths of all keys in the subtree relative
to a specified starting key that actually contains the identi-
fier. You can use this method to determine the scope of
inherited data values, since only keys that contain the
identifier itself are returned. Paths to keys that only contain
inherited data for the specified identifier will not be returned.

lIRESL'LT (ietDatat’aths(
ME'I‘ADATA_iL-‘-\l\'DLE hMD! landte,
LPCWSTR ps2.MDPath,
DWORD dwMDldentifier,
l)W()R|) dwMDIJat:|'Fypc,

If metabase handle

If identifier of the data
H type of data

I0

68
dwMDButTerSi7e

Specifies the size, in wchars, of the buffer.

pszBufi"er

Points to a butIer that receives the data. If the method call

is successful, the buffer will contain a double-null termi-

nated mullsz of all paths in the subtree that contain the

specified identifier. The returned paths are relative to the

handle specified. If the identifier exists on the key designated

If path to the key, relative to hMDi-Iandte

l)W()R|J dwMDl3ufl.'crSi;rc,
[.i’Wb'i‘R pszliutlfer,
DWORD ‘pdwMDRec[LtircdBufi'erSiz.e

J".-" the sin}, in wchars, of pl:tl3uiTer
It the bufi"er that receives the data
If ifthe method fails, receives
ft’ the required buffer size

J;

Parameters

hMDHandle 30
Specifies a handle to the metahase. This can either be

ME'l‘ADA'l‘A__ MAS'l'l:‘.R__ ROOT _HANDLE or a handle

returned by a previous call to IMSAdrnirIBase::OpenKey‘.
ps2MDPath
Points to a string that contains the path of the key to be

opened, relative to hMDHandle. For example, if the handle
references the ELM key, you could specify the Web services
subkey using the pathfW3SVC.

dwMDIdentiIler

Specifies the identifier of the data, such as
MD_/\CCESS__PERM.

dwMDDataType
A DWORD that specifies the type of data to be located.

This parameter can he one of the following values:

by the handle and path specified, this path will be the first
entry in the list.

pdwMDRequiredBuEferSize

Points to a DWORD that contains the buffer length
required. in wchars. This parameter is only used if the
method returns ERROR _lNSUI"l~‘ICIIiN’l' __BUFl‘l:".R.

40 Return Values

Returns an I-IRESULT that contains one of the following
values:

Data type Description

ALL_l\-'tE't‘ADA'l‘A
BINARY_!\«tl':TADA'1]-R
DWORD _l\«tE‘I‘ADA'13A
IEXPANDSZ. 3-'|l'ETADiI‘\T.t‘\

Copy or move all data, regardless of type.
Binary data in any form.
An unsigned 32-bit number.
A null-terminated string that contains

uncxpandcd cnvirortmertt variables, such as‘3H’AT'l-[‘?t:-.

Art army at" null-Iierrrtirtaled strings, terminated
by two rrull characters.

A null-terntinated ASCII string.

MUlIl'I SZ_Ml:"l'iI’\DA'l‘A

STRlNG_M ETADATA

60

65

50

51

6,061 ,692

69

l_’.RROR_|NVALlD_}’t"\RAME'l‘ER
tiRROR_NO'l‘_liNOUGH_Ml€MOR‘r'

the operation.
The spccitied path is not found.The method succeeded.

The paianteter is incorrect.

ERROR PATH NOT FOUND
ERROR _SUCCESS

lMS/\drrtinBa.se::GetDataSe1Number
The IMSAdminBase::GetDataSetNumber method

retrieves all the data set numbers associated with a key in the
metabasc. Adata set number is a unique number identifying
the data items at that key, including inherited data items.
Keys with the same data set number have identical data.

l'IR.F'ISULT GetDataSelNttmber(
ME'l'ADATA__H.t’\N[)l.lj hl\-{DI-Itindlc,
lJ’CWS'l‘R pszh-'l[)Path_.

L" melabnse handle

I.’ hMl)[-Iandle
DWORD "pdwMDDaIaSet.\'umber

I0

I.’ associated with the key

Parameters
bMDHandle

Specifies a handle to the metabase. either METAD/-\TA_
MASTER_ROOT_l-IANDLE or a handle with read per-
mission as returned by the IMSAdminBase::0penKey
method.

pszMl)l’ath
Points to a string that contains the path ofthe key to have

its data set number retrieved, relative to the path of
hMDHandle. For example, if the handle references the ILM
key, you could specify the Web services subkey using the
path ,-'w3svc.

pdwMI)DataSetNumber
Points to a DWORD that receives the number associated

with this data set. You can use this value to identify data sets
common to multiple keys.
Return Values

Returns as l-ERESULT that contains one of the following
values:

F.RROR_l.\'VA L[D_ PARAMETER
ERROR_SUCCESS

The parameter is incorrect.
The method succeeded.

lMSAdminBase::GetI-landlclnfo
The lMSMAdrninBase::GetI-landlelnfo method retrieves

information associated with the specified rnetabase handle.

liRi:'.S[:’I_'l' Uetl-land|eIn[o(
l\-lE'l‘FtDA'I'A_£IA1\'DLE hMDI-Iandle,
l“Ml:"l}‘\DA'I'A _llA.\'lL)Ll:"._ INFO pmdhilnfo

.’.n' metabase handle

30

35

40

45

50

70

There is not ertetigh memory to complete

Parameters
hMDHandIe

Specifies a handle to the metahase, either METAUATA
MASTER__ROOT_HANDI.E or a handle returned by a
previous call to the IMSAdminBase::OpenKey method.

prndhilnfo

ft‘ path to the key, relative to

E.’ receives the data set number

Points to a METAl)ATA_IIANDI..E_INFO structure
that receives the information about the handle.

Return Values

Returns an HR1'-;SUL"I‘ that contains one of the following
values:

The handle is invalid.
The method succeeded.

ERROR. __|NV/\l.|[) HAN D] .F
IER ROR_S1.-'C(.‘l.’.SS

Remarks

The dwM DSystemChattgeNumher member of the
METADATA_HANDI.E_lN'F0 structure pointed to by
pmdhilnfo will correspond to the system change number
generated at the time the handle was created. It will not
change if write operations are done using this handle, or any
other handle. You can compare this number with the value
returned by the IMSAdrrtinBase: :GetSysterI1ChangeNumber
method to see if any write operatiorts have been done since
the handle was opened.

lMSAdminBase: :GetI .a_s.tCha ngeTime

The IMSAdminBase::GetLastChange'l'ime method
retrieves the last change time associated with a key.

.’.-' receives the information
,".=' associated with hMDHandlI:

51

52

6,061 ,692

71

HRESUEI" GetLa=stChange'l‘in1c(
Mf;"I‘ADA‘I‘A_H.ANDLE hMDHand!e,
Lt’(‘WS'I‘R ps-zMDPnth,

If melabase handle.

H h M DH:1nd lc
PFIIJ-TTIMF. pt‘rMDI_astC ha ngcTin1e
B001. hI_i:u:aJTime if local or IJTC‘ time

Parameters
IJMDI-Iandle

Specifies a handle to the metabase. This can either be
METADAT/___MASTER__ RO0T___HANDl_.E or a handle

with write permissions returned by the IMSAdrnin-
Base::OpenKey method.

pszMDPath
Specifies a string that contains the path of the affected key,

relative to the path of hMDIlandle. For example, if the
handle references the ELM key, you could specify the Web
services suhkey using the path i’W3SVC.‘.

pftMDI.astChangc"I'ime
Points to a FlLE'l'IME structure that receives the last

change time.
bl_.ocalTime

Specifies whether the value returned in pftMD-
l..astC.‘hangeTime is local (TRUE), or UTlC time (F-AISE.)
Return Values

Returns an HRESULT that contains one of the following
values:

Value Description

ERROR INVALID _PJ'\R-\Mt‘.TtER
ERROR PATH ‘NOT FOUND
ERROR .SUCC1".SS

The parameter is incorrect.
The specified path is not found.The method succeeded.

Remarks

Last change times are updated whenever data or subkeys
are set, added, renamed, deleted, copied, or moved. or when
this method is called.

lMSAdminBase::GetSystemChangeNum|)cr
The lMSA(|minBase::GetSystemChangeNumber method

retrieves the number of changes made to data since the
rrtetabasc was created. This value is saved to long term
storage between metabase sessions.

I-IR1:'SUL'l‘ (_ietS_v:stcn1Chan_i_:eNnn1ber(
DWORD “pdwSystemL‘hangcNumher

):

If path to the key, relative to

15

20

30

40

45

72

if receives the last change time

Parameters

pdwSystemChangeNurnbcr

Points to a DWORD that receives the system change
number. This number is incremented each time the metabase

is updated.

Return Values

Returns an IIRESULT that contains one of the following
values:

|;‘RROR_Sl_:'(_‘L‘l£SS The method succeeded.

Remarks

You can compare the value retrieved by this method to the
system change number of a handle to see whether changes
have been made to the metabase since the handle was

opened.

IMSAdrninBase'.:OpenKey

The IMSAdrninBase::OpenKey method opens a key for
read access, write access or both. ‘the returned handle can be

used by several of the other methods. The first time you call
this method, you must pass in the Mt:LTADA'l‘A__
MASTER_R0OT_HANDI .E.

If receives the system change number

HRESULI‘ opcn1(cy(
MT:T!\l)J’\]'A_HANDl .F: h.\-iI)Hand|e_.

I.Pt'.‘WSTR ps.zMDPat|1_.

DWORD dwMDAocessRequesled,

52

L‘ nielabasc handle

.-‘r’ path to the key, relative to hM1'JHandIe

.n'.' specifies read and.-‘or write perrnissiorts

53

6,061 ,692

73 74

-continued

DWORD dwMU1"in1e(_)tIt_. If the time, in milliseconds, before the
Hntcthotl times out

l’MI:‘l‘ADAl‘A _HAr‘wiDLE phMD-Newtlandle
If receives the handle to the opened key

Parameters 10 The METADAT/__M/\S'I‘ER_R()0'l'_IIANl)LE

hMDHandle remains open at all times, and does not block other handles
Specifies a handle to the rnetabase. This can either be of either access type from being opener].

METADATA__MASTER_ROOT_HANDLE or a handle

returned by a previous call to lMSAdrninBase::0penKey.
pszMDPath 15
Points to a string that contains the path of the key to be

opened, relative I0 hMDl-Iandle. I501‘ example, if the handle The [MSA(]m[nBa3.e:;Rgn;|mcKgy method renames .1 key
references the ,=’I.M key, you could specify the Web services in the metabgg-,~,c_
subkey using the path r'W3SVC.

dwMDAeeessRequested 30
Specifies. the requested permissions for the handle. This

parameter must be set to at least one of the following values:

lMSAdminBase::RenameKey

HR|7.SUI.'l' RcnamcK.ey(
l\‘IfiTJ\D.t\TA H1\N'Dl.l§ l'tl\«’l[)Hartdle__

.’t" metabasc handle to the key
[.PC\N'STR psZMl)Palh,

 25 t‘,-' path of the key, relative to
Value Description -'3' hMD[Iant:lle
 LPCWSTR pszMDNewl\'ame I.“ new name for the key
METADi\TA_PERMiSS[ON__RE.AD Open the key for reading.):
METADATA_PERMISS[ON_WRITE Open the key for writing.

30
dwMDT1meOut

Specifics the time, in milliseconds, for the method to wait Paffilflelcffi
for the open operation to succeed.

phMDNewI-landlc hmml dl
Points to a handle to receive the opened handle. an 6

Return Values 35
Retu rns an HRESUL’l" that contains one of the following Specifies a handle to a metabasc key. This can be either

values: ME'lADA'l2_MAS'!‘ER_R00'l‘_HANDLl:I, or a handle-

liRROR_INV-*\1.ID_Pi‘\Rr\ME'l‘ER The parameter is incorrect.
liRROR_PAl‘i-[_BUSY The path specified cannot be used at this

time because a handle to the lacy, or one of its
ancestors or descendants, is already open.

ERROR PATH NOT FOUND The specified path is not found.ERROR SUCCESS The method succeeded.

Remarks with write permissions returned by the IMSAdrnin-
so Base::OpenKey method.

Opening a key with read permissions guarantees that the

view of the data will not change while the key is open. pszMDPath

Opening a key with write permissions guarantees that no _ _ _ _
other processes will read or write any data until the handle P01111510 3 WIRE. lhal 301113105 the P3”? Oflhc k°Y~ l‘°1a‘W°

to the path of hMDIIandle. For example, if the handle
references the ELM key, you could specify the virtual
directory, VDIRI, on the third Web server using the path
KW3SV(_‘,t’3r'R0O'l"Nl)lR1.

is closed. This applies to the open key and all of its ancestor 55
and descendent keys. Because opening a key locks a portion
of the metabase. it is recommended that you open the key,
perform any reads or writes, and immediately close the key

when done‘ so pszMDNewNamc

If you try to open a key with read access, the method will_ 1 1 Points to a string that contains the new name for the key.
wait until all open write access handles to the key and to all

ancestor and descendent keys are closed. 11‘ you try to open Rem m Values
a key with write access, the method will wait until all open 55

handles (either read or write) I0 the key and to all ancestor Returns an [IRL-‘SULT that contains one of the following
and descendcnt keys are closed. values:

53

54

6,061 ,692

75 76

];'RROR_A(_lCESS_DEN[t.'iD Access is denied. Either the open handle
does not have read or write pcrntissi-zm as
needed, or the user does not have sufiicicnt
permissions to perform the operation.

ERROR DIJP NAME A key’ of that name already exists in thenrctabase.
l'iRR()R_l!\'VA].lD_P.t\RA3‘lE'l"lER The parameter is incorrect.
ERROR_NO'I'_ENOUG[l_ME1\-'lORY Not enough metnory is avnilabte to

process this coinrnand.
ERROR_l’ATI'I_NOT_FOUND The specified path was not found in the

metabztse.
liR.RDR_SU(‘C1iSS The mctltnd succeeded.

15
lMSAdminBasc::Rcstore

The IMSAclminBase::Restorc rnethod restores the meta-

base from a backup. The restore operation stops all services
dependent on IISADMIN, including all servers, until the
restore has completed, then restarts all services. You should

'3

be careful to plan for this service interruption when restoring -0
the metahase from a backup.

HRESULT Rescore(35
LPCWSTR p67.MT)Bnckupl.neation,
DWORD tiwMD\-'ersion,
DWORD dwMDF'tags

_l:

3n
Parameters

pszMDBackupL0cation
Astring of up to MD BACKUP MAX LEN uniondc

characters that identifies the backup location containing the
backup to be restored. 35

dwMDVersior1

Specifics the version number of the backup to be restored
from the backup location, or may be the following constant:

MD .BACKl_El’___[i[GIIES'l'_. VERSION Restore from the highest existing
backup version in the specified backup location.

45

dwMDt-‘lags
Reserved. Must be zero.

Return Values
Returns an HRESULT that contains one of the values

listed in the table below. Other errors may also be returned 50
that are passed through from the file system, or from a erypto
api when secure metabase data is being saved, or from
registry operations.

Value Description

l£_tI\‘\«"ALll.)AR(.i Art argument was invalid
l;-ERROR lI\'\-’AL-[D_._£'JA'l'A The data is invalid.
ERROR .NOT ENOUGH. _MI‘.MOR‘t"' lnsulllcient memory to perlbrnt the

operation.
l£RROR_SU(‘C1E.SS The method sttccccdcd.
MD _ERROR__lNVA1.lD VERSION The specified version is invalid.
MD_WARN[NG_[N\«’t\l..[D_DATA Invalid mctabasc data.
MD_WARNL\'G_PA'I'I !_N0"I'_FOU."\‘D Specified path riot fouitd.

54

55

6,061,692

77 78
lMSAdminBa.se::SaveData

The IMSA(ln1inBase::SaveData rnethod explicitly saves
the metahase data to disk. The metabasc data is saved in the

rnetabasc storage file, by default named rr1etabase.|Jin in the
INETSRV directory in which you installed US. or the file 5
specified in the Windows N’l‘® registry key LOCAL.
MACHlNE\\SOF'l‘WARE\\Microsoft\\INetMg,r\\Parameters
if the file has been relocated as discussed in the Security
topic of the IIS Metabase section.

You must not have a handle open with write permission '0
when you call this method, or the method will fail. The
process waits for a few seconds for handles to close, so
other processes with write handles open should not
normally interfere with the save operation.

Syntax 15
IIRELSULT Save Data (void);
Return Values

Returns an [IRESULT that contains one of the following
values:

ERROR PATH BUSY The path specified cannot be used at this time.|‘.RROR...Sl.-'CCESS The niethod succeeded.
File system error codes Sec wincrronh For inforrnatiem about specific errorcodes.

Remarks

All data in the rnetabase is saved, including data written 3n
by other applications. This method will fail and return
ERROR PAT}-I BUSY if there are any open write handles
to the metabase.

Metabase data is saved when US shuts down, so you
usually do not need to call this method. However, for critical as
data it is recommended that you call it whenever appropriate
[or your application.
lMSAdminBase::Sct Data

The IMSAdminl-3ase::SetData method sets a data item. II’

data with that identifier does not already exist. this method 40
creates and inserts a data item into the list of data items of

that type. If data with that identifier already exists, this
method sets the new data value. Duplicate data identifiers
are not allowed even if the entries are of dillerent user types
or data types.

I-IRESU LT S-etData(
ME't‘ADA'.tA_HAt\iDLE t1MDHandl<:_. If metadata handle
]_PCWS'l‘R psztt-'!DPath_. It path of the key relative to

It hMDHand1e
PMETADATA. RECORD pmdrMD1')at2I if pointer to data

55

Parameters
hMDl-Iandle

Specifies a handle with write permissions as returned by
the IMSAdn1inBasc::0penKey method. METADATA._
MASTER_ROOT_l-IANDLE is not valid for this opera» 50ll0Et.

pszM[)Path
Specifies a string that contains the path of the key that

receives the entry, relative to the path of hMDI-Iandle. For
example, if the handle references the ;'[.M key, you could 65
specify the Web services subkey using the path ;’W3SVC.

pmdrMl)Data-

55

56

6,061 ,692

79
Points to a ME.TAl)ATA_REC'ORD structure that con-

tainsthe data to set. All the structure members must be filled

except dwMDl)ataTag.
Return Values

Returns an HRESULT that contains one of the following
values:

ERROR_ACCESS_ DENIED

80

Access is denied. Either the open
handle does not have read or write permission
as needed, or the user does not have
stlllicicnt pcnnissions to perform the
operation.

1-IR ROR__ _tt\' \-*Al_tl) _PARAMI;"l‘lER
ERROR NOT _F.l\'()[.JGi-I _MEMORY

complete the operation.
ERROR. . I’.-’\Tl{ NOT .FOIJNl')
ERROR_51;'CC.‘F.SS
MD_ERROR_CANNUI'_REMO\-’E_S

EC'l_:'REl_A'I"I'R[BU'I'E when fl secure value exLsts.

lMSAdmin Base::SetLast(ThangeTi me
The lMSAdminBase::Setl_astChange’l‘ime method sets

the last change time associated with a key in the rnetabase.

I-lRliSUliI‘ S<:tI_.astChange'l1me(
ME'l‘ADA‘I‘A_HAND]_l£ hMDi~landle_.
l_.1’(‘WS't'l{ ps2:IvtDPath_.

I.’ handle to the mctahase

If hMDt-land]:
PF'll..F:"I'[ME pfLM DI,asL(Tl-ta ngeTirue
BOOI. bl .t:tCalTi1Ttc H local or IJTC‘ Lime

Parameters

l'IM DI Iandle

Specifies a handle to the metabase. This can either he
ME'l'ADATA__ MASTER__RO0T __HANDLE or a handle

with write permissions returned by the [MSAdmin~

Base::OpenKey method.

pszMDPalh

Specifies the path of the key to be set, relative to the path

of hMDHandle. For example, if the handle references the

ELM key, you could specify the Web services subkey using
the path ;'W3SVC.

pftMDLa5tChangeTime

Points to a FILETIME structure that contains the last

change time to set for the key

hLocal'l"ime

Specifies whether the value pointed at by pflMD-

l,astChangeTime is local (TRUE), or UTC time (FALSE).

The prmlmctcr is incorrect.
There is not enough mernery to

If path to the key, relative to

35

40

45

50

60

65

56

The specified path is not found.The method succeeded.
Cannot set data to be not secure

Return Values

Returns an I-IRESULT that contains one of the following
values:

If pointer to the last change time

Value

Description

llRRDR__INV/\Lll)__P/\RAME'l‘ER

The parameter is incorrect.
ERR0l{_PATH__NOT__ FOUND

The specified path is not found.
ERROR_SUCCESS
The method succeeded.

Remarks

in addition to calls to this method, last change times are
updated whenever data or subkeys are set, added, renamed,
deleted, copied, or moved.

IMS/\drrtinBase Errors

Error codes returned by Admin Base Object are
HRESULTS. The errors beginning with MD_ are already
HRESULFS, whereas the WIN32® errors, beginning with
ERROR_ _. are converted to I-IRESULTS by the RETURN-
(TODE'l‘0HR[-LSULT macro. The conversion adds 80(J70UOU
to the Win32® error code. Other COM and RFC
HRESUL'I'S can also he returned.

The following error codes are specific to the Metadata Key.

57

6,061 .692

81 82

Error Code Description

MD _I:‘.RROR_ __DA'I‘A_ N01‘ _t-‘OU-ND The specified data was not found in
the nlctabase

MD ERROR IN\«"..M.ID. VERSION The vclsiort specified in motadata
storage was not recognized.

MD_WJ\RN[NG_DUP_NAME A key or data was specified more than
once. The duplicate was ignored.

MD_WARN[NG_[NVAL[D_DATA The specified data is invalid and has
been ignored.

MD_WARN[NG_PA'J'lI__NOT_FOL]ND The specified key path was not found.
The key and its associated mcladata were
ignored.

15

Function Prototypes above. The function prototypes are given in the form of two
The foilowing section details the structures, data types, header tiles that are typically used in a C or C++ program.

and function prototypes for an example programatit: iI1ter- The first defines function prototypes while the second
face using many of the Concepts and functions defined defines structures and various data types.

57

58

6,061,692

83 84

i-
m
.—2
LL!
VA‘ 2 . ;-
-85. Hi 18 _

I: '5 1' th:s ALWAYS GENERATED file contains I:h-_-. definitions for the interfaces '2'u; u

8§'§EE5- 19g_;1'>~::.|'-E I‘ File created by MIDI. compile: VEr5.1.0]'1 ;i.D3.CI1CI6 ‘I
531553; :~ at. Tue Aug 1511:59:41 1997 ‘K;.E op»: 20 . . _
zmgggfi I‘ Cor.-\1:u:ie: settmas for .\1admu,1d1:

.«§.¢§§;' (Jj {tJptLav-iol. N1. 3535. emr=Hin32. m5_a:-:t, c_ext
E‘ — 21 enar checks: aJ.locaLion ref-;

E H@@z~q1n1._FILE_HsnnING1 1at 22
O

3 23 If vet-'._£y that the <:pct1d1:.h:=- version is high enough to compile zhis file‘.-’hinder. __REQ1JIRED_RPCNDR_H_\'ERSION_
Idetme _REQLIIREL>_RPc:¢DR_It_vERsmn__ no

24 #endif

- Page 127 - Dockcl Nu ;3752...s.2

58

59

6,061,692

85 86

*inclnde ”Ipc.h"
iincluda "rpcndr.h”

Gifndef _RPt.‘.'NDR_H_UBRS1.f)N _

3 lerrox this stub requires an updated version of <:pcndr.h>lendif If _RE’CN1'JR_H_VERSION___

4 lifndef coM_No_w1Noows_Hlinclude "wLndows.h”
linclude "o!e2.h”

5 lendif .-“CO!-I_NU_w1NDOW$_H*#

6 lifndef _iaL1mw_h__fldefine ___iad.r<Iw_h_

7 flifdr:-:1‘. __cp-lusplusexcern “C”!
Iendif

I‘ Forward Declarations ‘:

9 Iitndef __IMSAdminBaSeH_F‘WD_DEFINED_
Idefine __IMSAdminBa5eW_FWD_DEFINED

lo typedef interface Insndminaaseh‘ Imsfic-irninfiasew;lendif .-“' __IlvISAdrn.'1nBa5e'|I1_E'WD_DEFINED_ ‘I

ll
Iifndef _1HSAd.minBase5inkW_i-‘WD_DEE‘INED
«define _msAdminaasesinks-:_rwn_nBr1sxmn“'

12 typedef interface IMSAminBa5eSinkW IMS§Em1nBaseS1nkW;
iendif x- _n«ISAclminBa3eSin|c1I1_E‘PJD_D£F‘1NED -r

13
K‘ header iiles for imported files ‘I

14 linc1ur.'1e"mc1defw.h"Iinclude "I:>hji.d1.h"
linclude "ocid1.h"

15

void ___9.9c_n=u< ' ____RPC_U3EF. mnL_user_a11ocar.ets1ze_::;
W''-- 15 void _RPC_USER MIDL_u.-5er_freet void ___RPC_E-‘AR ' n‘-11
‘J it so u 4: a inwrwx-ti
Ej ‘ Generated header for inteztace: __MIDL_itf_1admw_UUOU5/3 : ‘ at Tue Aug 19 11:59:41 199'!

gégémg 13 * using mm. 3.03.0105
% f‘.1‘lUcal;.::‘ . . . 0 nos;-e-wwnwtxtuggof
8 EEEEE 19H11

3‘-+4
20

Z-§~<§§,_ Copyright [0] 1997 Microsoft Corporation
g" H E 2] nodule Name: Ladmmnht

g 22 Admin Objects Interfaces
3 __.,

23 hfndef __ADM_IA:JI4M__
¥de£ine _AD:-1_I.!\i)r-'IW_

24 #im::lL.-da <mdc:ommsg.h>

— Page 128 - DocketNn. [ms 62

59

60

>-U0
_J
DH

3 _

eaéiasgi
$§:‘§§ae
cg:-22:5U_m<fi;m ;¥C)DF
raggflsc
>'m8g:;“’
2;; #3
E: E3:
E‘ E
O
3

10

ll

12

13

14

I5

16

1'7

13

19

20

21

22

23

24

6,061,692

87 88

Sinclude <mdmsg.h>
;.

Error Codes

Admin api's all cetuzn HRESULTS. Since internal results are either
winerrors or Metadata specific return codes [see mdmsq.h}, they axe
converted to HRESULTS using the RETURNCODETOHRESULT macro {see
commsg.h].

‘I

;.
Max Name Length

The maximum number of characters in the length of a metaobject name.
including the terminating NULL. This refers to each node in the tree.
not the entire path.
eq. str1ent"Root”1 < ADMINDATA_MAX_NAME_L£N*.-'

fldefme AuMzNuA*ra_mx_nma_L£N 255

Idefine CLSiD_MSAdminBase CLS1D_MSAdminBase_W
ldefine I§D_IHSAdminBa5e IID_IMSAdminBa5e_WIdefine IMSAdminBa5e Iwsadminflasew
{define Inshdminaasesink IMSAdminBaseSinkW
Idefine IID_IMSRdminBaseSink lID_IMSAdminBase5ink_flldefine GETAdm1nBaseCL3ID GETAdminBaseCLSIDW

BEFINE_GUIDECLS1D_MSAdminEaee_W, Dxa9e696l0, Dxbflfld, Uxlldfl. Oxbfl. 0xb9. 0x0,
Oxafl, Dxc9, 0x22, DxeT, 0x50);
DEFINE_GUIDEIID_IMSAminBase_W. 0xTDb51d30. Uxbfica. Dxlldfl. Gxb9. 0xb9, OX0.
Oxafl. U329. 0x22, Dxe7. 0x50:;
DEE:NE_GUID:IIDmIM$AdminBase$1nk_W. 0xa9e69612, Uxbflod, Oxlldo, Oxbfi, flxb9,
0x0, oxafl, Dxc9. 0x22. 0x91, 0x50};
ldefine G2TAdminBaseCL3IDW¢TsService} CLSID_MSAdminBa5e_W3.
The Main Interface,
‘I

TJNICODE

extern RPC_IF_HANDLE __MTDL_itf_iadmw_UDU0"v0_0_c_if5peC:
extern RPC_IF_HANDLE __MIDL_itE_iadmw_0000_v0_O_5_iEspec:

llfndef __IMSAdminBaseH_TNTERFACE_DEFINED__
fidefine __IMShdminBaSGH_INTERFECE_DEFINED__
fadonquwasn3;n1ansn.s..¢.¢a+.n«nn«nnwwwtn

* Generated header for interface: Imsndminflasew
‘ at Tue Aug 19 11:59:41 1997
* using MIDL 3.03.0106
.n1a.nnu.Anivw-w.r»u.a....«¢«v¢«¢wtvw««.;

I‘ [un1que][uuid][objeCE] ‘I

EXTERN_C cons: IID IID_IMSAdminBa5eW;

llf def1nedt__cplusplus! £8 !definedfCI8TERPRCEl

MIDL_1NTERFHCEi"?0B5l430—B6CA-lldfl-B9B9~00AOC922E75G"J
Iflsadminfiasew : public Iflnknown
I
public:

virtual HRESULT STDMETHODCRLLTYPE AddKeyt
I‘ lin] ‘E METADATA_HANDLE hMDHandle,

Docket Nu. lJ':"68.62
- Page 129 -

60

61

WORKMAN,NYDEGGER&SEELEY AFlDFE55|'0'Na\I.CORPORATION' nTNUfiYShTLAW IUMEAGLEGATETOWER HDEASTSOUTHTEWIE SALTLAIQECITKUTAHHill

10

ll

12

13

I4

15

16

17

18

19

20

21

22

23

24

6,061,692

89 90

I‘ [str1ngi[in|[nniqne} ‘I LPCWSTR pszHDPath: " 0:

virtual HRESULT STDMETHOQCALLTYPE Deletekeyl
I‘ fin] ‘J METADATA_HANDLE hflnfiandle,
I‘ §strinq|lin][unique1 ‘I LPCWSTR pszM9Path> = 0:

virtual HRESULT STDMTHODCALLTYPE Deletechildfieysfl
I‘ :1r.| -r I-IE'I'.=\DATA_HANDLE hum-landle,
I‘ lstringilinlluniquel '1 LPCWSTR pszMDPath: = 0:

vxrtual HRESULT STDHETHODCALLTYPE Enumxeyst
J‘ [in] ‘K METADATA_HANDL£ hMDHandle.
J‘ {5tring]|in:[unique] '! LPCWSTR pszMDPnth,
f* [5ize_i5|iouti ‘I LPNSTB pszMDName.
I‘ {in} ‘I DWORD dwMDEnum0bjectIndex} = 0;

Virtual HRESULT STDMETHODCALLTYPE Cupyfleyt
J‘ linl -! M£TADATA_HANDL£ hubsourcefiandle,
(1 |3tring}[in§[unique] 'f LPCWSTR pszMDSourcePath.
I‘ Iin! ‘E METADATA_HANDLE hMODestHanule,
K‘ |5tringi[in![unique] ‘K LPCWSTR pszMDDe5tPath,
I‘ |ini ‘I BOOL hMDOverwriteP1ag.
K‘ lin! 'x BOOL bMDCopyFlaq} = 0:

virtual HRESULT STDMETHODCALLTYPE Renamekeyi
K‘ [in] ‘J METADATA_HANDLE hflflfiandle:
K‘ lstrinqltinllunique] ‘I LPCHSTR pszMDPa:h.
I‘ [stLing][in][unique] ‘I LPCWSTR p3zMDNewName# = 0:

virtual K‘ [local] *3 HRESULT STDMETHODCRLLTYPE Setnatal
K‘ [in] -3 METAnATA_HANDLE hnnnandle,
1' [5tring][in][unique] ‘K LPCWSTR p52MDPath,
I‘ [inJ ‘H PMETADATA_RECDRD pmdrMDData# = 0:

Virtual J‘ [local] ‘I HRESULT STDNETHODCALLTYPE Getnatai
J‘ [in] ‘I METADATA_HANDLE hMDHandle,
I‘ Istringllinlluniquel ‘I Lvcwsra p5zMD?ath,
I‘ ioutliinl ‘I PMETADATA_RBcoRD pmnrmnnata.
I‘ [out] ‘I DWORD __RPC_FAR ‘pduMDRequiredDataLenJ = 0:

virtual HRESULT STDMETHODCALLTYPE Deletenatat
F‘ [in] ‘K METADATA_HANDLE hMDHandle,
I‘ l5crin9]iin][unique] ‘I LPCWSTR pszMDPath,
K‘ [in] ‘X DWORD dwMDIdentifier,
I‘ [in] ‘H DWORD dwMDDaLaType} = 0;

Virtual J’ [iocall *! HRESULT STDMETHODCALLTYPE Enumnatai
1' lin! ’.-" ME'J"ADA'T.3'-__HJ\ND1.E hmniiandle.
X‘ |5:ring1[ini[unique] ‘I LPCWSTR p5zMDPath,
K‘ Ioutliinl ’f PM£TADATA_RECORD pmdrMDData.E‘ [in} ‘I DWORD dwMDEnumDataIndex.
1' [out] *2 DWORD __RPC_FAR 'pdwMDRequiredDa:aLen! = 0:

virtual 3‘ [local] ‘I HRESULE STDHETHODCALLTYFK GetA1lDaLa€
.f- r.i.r.l M’ I‘-1£.TADF\'l‘A_'r|.ANDLE h?-III!-iandle,
I‘ Istrinqlliniluniquel ‘K LPCWSTR p5zMDPaLh,
F‘ [in] ‘I DWORD dwflflkttributas,
J‘ Lin] ‘F DHORD dwMDUserType,
K‘ [in] ‘I DWGRD dwMDDataType,
I‘ [out] hr‘ Dwoan _RPc_FAR 'pdwMDNumDat'.aEr:tries,
!* [out] *f DHORD __RPC_FAR 'pdwMDDataSetNumber,
K‘ [in] ‘X DWORD dNMDBufferSize,
!* [siza_i3][out] ‘K unsigned char __apc_§na 'pbMDEuffer.

- Page 130 - Docket Na. 13168.62

61

62

6,061,692

91 92

] I’ louti ‘I nwnnn __RPC_FAR ‘pdwMDRequiredBuffe:5ize1 n 0:

varxual HRESULT STDMETHODCALLTYPE Deletenllnatat

2 J‘ {in} ‘I M£TADATA_HANDLE nMnHand1e.I’ lscringllinlluniquel ‘H LPCWSTR pszMDPath.

3 I‘ {in} ‘J DRORD dwMDUserType.K‘ [in] ‘I DHORD dwMDDataType: = 0;

4 v1rtua1 HRESULT STDMETHODCALLTYPB CopyDatat
K‘ [in] ‘K METHDATA_HANDLE hMD5ourceHandle,
!- [strinq][in][unique] ‘I LFCWSTR ps2MDsou:cePath,

5 I‘ [ini *f METADATA_HANDLE hMDDestHandle.
I‘ [s:ring][in][unique} ‘I LPCWSTR pszMDDestPaLh.
H’ [in] ‘I DRORD dwmnnttributes,

6 I‘ ?in1 ‘I DHORD dwMDUse:Type.f- ;in] -J DHGRD dwMDDataType.
7 i- Sin] ‘I BOOL bMDCopyFlagJ = 0:

virtual HRESULT STDMETHODCALLTYPE GatDataPaths[
3 I‘ [in] ‘I MBTADATA_HANDLE hmoflandle.

J‘ [sLrinQ}[ini[uniquel ‘I LPCWSTH pszMDPath.
I‘ [inl ‘F DWGRD dwnuldantifier.

9 I‘ Ein} ‘I DHORD dwMDDataType,J‘ [in} '3 DNORD dwMDBuff9rSi2e,

lo I‘ [s12e_is]loutI ‘I WCHAR RPC_FAR *pszBu£fer,
2* [sun] mi nwc-Ra _RPC_FnE—‘pdwHDRequiredauffersixe} - 0:

11 virtual HRESULT STDMETHGDCALLTYPE openaeyt
I‘ {in} ‘I METADATA_HANDLE hMDHandle.
3- [string}[in3[unique} *! LPCWSTR pSzMDPath. 12 I‘ [in} ‘I DNORD dwflbkccessfiequested.I‘ {in} ‘I DWORD dwM9TimeOut,

13 I‘ [out] ‘I ?METADRTA_HANDLE phMDNewHand1e) H 0:
virtual HRESULT STDMETHODCALLTYPE Closekeyt

" [4 J‘ Lin} ‘i METAnATA_HANDLE hMDHandle] = 0:

virtual HRESULT STDMETHODCALLTYPE ChanqePermission5t
15 I‘ {in} *3 METAuATA_HANDLE hMDHand1e.J‘ [in} ‘I DWORD dwMDTimeCut.

I‘ linl ‘I DHORD dwnnnccessflequestedl - O;

 16

53 virtual HRESULT STDHETHODCALLTYPE Savenatai void) = D;.2

Eg 17 virtual HRESULT STDMETHOUCALLTVPE GetHandleInfo{
out 3 x* [in] ‘E METADATA_HANDLE hmuuandle.
age 5_.: 13 3- [out] ‘I PMETADnTA_HnN0LE INFO pmdhirnfol — 0;

haggfl -v
:2

g virtual HRESULT STDMETHODCALLTY!-‘E: aecsystemchangeuuumert
033E;-t_ 19 I‘ [out] -I [moan _RP<:_rAn *pdwSystemChanqeNu.11m&‘r} = 0;H1 ?'-“?=’_

E3§§§EJ—_: 20 virtual HRESULT STDMETHODCALLTYPI-‘. Getlzlanasetnumberl
z§:§g§ 5- Sin] 5* mETAnAm_HnNDLa hMDHandle..
.§.:§‘§: 2" {string} [in] {unique} '.-’ LPCWSTR pszHDPath,

fit, — 3 21 r- [rm] -; nwonu _apr:_r».n "pdwMDDataSetNu:rLb-ear] = 0;

g virtual HRESULT STDMETHODCRLLTYPE 5etLastchanqeTimer22 1* Iin] -I M£‘.T.F\D.F\TA_HANDLE hMD1-iandle.
2 a” lstringl [in] [unique] -3 LPCWSTEI ‘psz[*€DPath.

2. K’ [in] ‘X PFILETIME pftMDLastChengeTime,9 ;- [in] '3 500; bLocalT1me1 = 0;

24 virtual HRESULT STDMETHODCALLTYPE GetLastChangeTime{

- Page 13! - I)ock¢lNo. 13158.52

62

63

6,061,692

] r* [ini ‘U METADATA_H.|!N'DLE hMDHandJ.e.
K‘ lstring1[in][unique} *l LPCWSTR pszMDPath.
I‘ [out] ‘I PFILETIME pftMDLa5tChangeTime.

2 x- [in] ‘r BOOL bLocalTime] = 0:

3 v:1.tu-1.1 r‘ [restricted] [local] ‘,1’ HRESULT STIJMETHODCALLTYPEE<eyE:<change9hase1\ vow: = 0;

4 virtual I‘ [rescncted] [local] ‘I HRESULT STDMETHODCALLTYPE
KeyExcl1angePhase2i void: A 0:

5 V1 rtual HRS-SULT STUMETHODCHLLTYPE Backupt
.-"‘ string] [in] [Lunque] *2’ LPCWSTR pszl.‘-IDBackupLOCEn:i0n.

6 I‘ in] *2’ DWORD dubdnversion..«"" in! ‘F DWORD du-'MDF'lags}I - U.’

7 Uirtu-a1 HRESULT STDMETHODCRLLTYPE Restozei.-F" sI:r:'mg][in][un.1.que] ‘J’ LPCWSTR pszMDBar:kLIpI..0caticIn.
!" ini H’ DWORD dwl\!D\c"er5icm,

3 P 5.111 -X DI-WORD dwMDF].agsJ = 0:

virtual HRBSULT STDMETHODCALLTYPE Enumflackupsl
9 !- size_is][out][in] tr LFWSTR pszMDBackupLocac:on.

2" out] '2’ DWORD __FlPC__EAR "pdwMDVer.fiion.
10 I‘ out] '1’ Pl-'ILE.‘1'IME pftMDBa1:kupTime,!- in] -I WORD dwMDEnumInde:n - D:

1] vzrtual HRESULT STDMETHODCALLTYPE DeleteBackL:p1
2" string][ln][u1'1iC_|ue] ‘I LFCWSTR p3zHDBackupLocation.
..-"' ini ‘E DHDRD dwMD\r'e1:5ion) = O:

 12
virtual HRESULT STDMETHUDCALLTYPE Unmarshallnterfacer

13 !- I'ouL] -I Iusmiminaasew _RPC_Em=l “__RPC_FAR -piadmbwlntertac.-el 4-0:

14 H

#2152 K‘ (2 style interface *1’
15

typedef strut: 1M5Ac1minBa5ew\a'tb1
i

.~ 15 BEGIN rursnrnca
>- ' ’

:3‘ 17 HRESULT t STDMETHODCALLTYPE __RPC_EAR 'QueryIm:erface HU1 IHSAdrn.1'nBaseW RFC FAR ' This,m _.w _
U‘) : .r"' [ini ‘K R£2E'I.ID rild,
ea 5 are“ 18 3* liid_is][out] -I void __RPC_FAR ‘__RPC_?AR *ppv0bject}:
n:S’?=E
H-1 EQEE umws : STDMET1-IODCALLTYFE __RPC__E‘AR ‘AddRef H
8 3E: , 19 1'M5P|dminBa5eW _R?C__E‘AR - This):

20 u1.oNr.‘. E STDMET!-IODCALLTYPE _RPC_FAR ‘Release H
gfi fig: INS?-'\d.11|inBPJseW _RE’C_‘EAR * T1-113:;.34: "

ZE g3; 21 naasuur : -‘STDMETHODCALLTYPE __R?(T__E‘AR ~smd1<e~_.r :1
g ' II-f$Adm.inE=zse!n‘l' _RE=C_FAR ‘ This,3; .-" [in] ‘I I-I=:‘.TADATA_H.ANDL£ hmmandle.

8 22 J“ lmrinqiliniluniquel ‘I LPCWSTR pszMDPath:-:

3 23 HMJSULT t STDMETHODCALLTYPE _R9C_rAR *DeleteKey in:Iflsndminfiasew ___RPC_FAR ' This.
I‘ [in] ‘I I-lE.'I‘ADATA_H.ANDLE E11-1DHand1e-,

24 1“ Estrinqllinlluniqud '3’ LPCWSTB pszr-1DPaI:ha:

- Page 132 ~ I)u4:k1=l No. l3?68.62

63

64

9*UJ
.3
U1

5.,‘ -

«“d.§;Eg,1§
1 Z}

3‘ an 5 5

Z.EE§~‘~"52: -3:

§(5
o
B

10

ll

I2

I3

I4

15

16

1?

18

19

20

2]

22

23

24

6,061,692

95 96

HRESULT I STDMETHOUCRLLTYPE __RPC_EER 'De1eteChi1dKey5 }[
Iusndminaasew __RPc_EAa - This,
K‘ [in] ‘I METEDATA_HANDLE hMDHandlE,
I‘ [s:ring]fin1[un1que1 ‘I LPCWSTR pszMDPath}:

HRESULT i STDMETHODCALLTYPE __HPC_FRH ‘EnumKay5 It
Iflshdminfiasefl __RPC_FAR ' This.
I‘ [in] ‘F METADATA_HANDLE hMDHandle,
I‘ [s::ing][in][uniqueJ ‘K LPCHSTR pszMDPath.
J‘ [size_is][out] *3 LPWSTH psznofiame,
F‘ [in] ‘I DWORD dwMDEnumOh]ectIndex];

HRESULT STDMETHODCALLTYPE __RPC_FAH *CopyKey 1[
IMsAdminBasew __RPc_FAa ' This
I‘ [in] ‘J METADATA_HAHDLE hmbsourceflandle,
F‘ [stting}[inj[uniqua] *f LPCWSTR pszMDSnurcePath.
K‘ {in} *l MRTADATA_HANDLE hflflflestflandle.
I‘ [strinqi[in}[unique] '3 LPCNSTR pszMDDes:Pa:h.
J‘ [in} ‘I BOOL bMDOverwriteFlag,
J‘ lini ‘I BDOL bMUCopyFlaqJ:

HHESULT ! STDMETHOUCALLTYPE __RPC FAR ~RenameKey it
Imsadminaasew __aPC_FAR - This.
I‘ [in} ‘J HETADATA_HANDLE hfinnandlc.
K‘ [sLring][in}[unLque] *3 LPCWSTR pszMDPath,
1' tstrihqiiinliunique} '1 LPCWSTR pszmnfleunameli

3* {local} 'J HRESULT I STDMETHODCALLTYPE __RPC_FAR 'SetData J:
Iflsndminaasew __RPC_FAR ' This.
I‘ Ein] ‘J METADATA_HANDLE hflbflandle;
J‘ [5tring}[in3IunLque} ‘K LPCWSTR pszMDPach.
{* {in} ‘I PMETADATA_RECORD pmdrMDDataI;

/' Elocall ‘K HRESULT I STDMETHODCALLTYPE __RPc_rAR ‘GetDa:a Ii
Imshdminfiasew __RPC_FAR * This,
3* {in} ‘K METADATA_HANDLE nMDHand1e,
I‘ [string§l1nEluniqueE '# LPCWSTR pszMDPath.
F‘ Ioutliin] ‘K PMETADATA_RECORD pmdrflflflata:
J‘ {out} ‘I DWORD __RPC_EAR 'pdwMDRequiredDataLenJ;

HRESULT I STDNETHODCALLTYPE __RPC_FAR ‘Dele:eDa:a Ii
IMSAdm£nBasaw __RPC_FAR ° This.
I‘ lini ‘K METADATA_HANDLE hflnflandle;
H‘ !strinq}[in1lunique1 ‘K LPCWSTR pszMDPath.
I‘ iin] ‘I DWORD dwMDIdentifier,
I‘ Iin] ‘F DWORD duMDDataType};

F‘ llncall '1 HRESULT E STDMETHODCALL?YPE __RPC_FAR 'EnumData J!
IMSAdminBaseW __RPC_EAR ‘ This.
I’ Iini ‘I METADATA_HANDLE hMDHandlB;
1' 15tzinq![:nl[unique] ‘I LPCWSTR pszMDPath.
I‘ lou:][in] ‘I PMETADRTA_RECDRD pmdrmnnate.
J‘ {in} ‘I DWORD dwMDEnumDataIndeX.
J‘ :our] '1 uwonu __RFC_FAR 'pdwMDRequi:edDataLanJ:

I‘ ilocall ‘I HRESULT { STDMETHODCALLTYPE __RPC_FAR 'GetAllData Ii
Imskdminaesew __RPC_FAR * This.
3* {in} *1 METADATR_HANDLE hflnflandle.
x* [aLrinq)[in}[unique} ‘I LPCWSTR pszHDPath.
E‘ [in] ‘I DWORD dwmnhttrihutesy
I‘ [in] ‘I DWORD dwMDUserType,
K‘ [in! ‘K DRORD dwMDDataType.

- Page 133 -

64

Dm$c:Nal3?fififi2

65

6,061,692

97 98

] 3‘ {ouL} ‘I DWGRD __RPC_FAR 'pdwMDNumUataEntrie5,
I‘ [out] -I DWORD __RPC_PAR *pduMDUa:asetN1amber.J" {in} ‘ -I" DNORD dwMDEuff€!1C3i2Qp

2 K‘ Es1ze_is|[out3 ‘I unsigned char __RPC_FAR ’pbMDBu£fer.
2'‘ [£31111] '1'’ DWORD __F.FC_F.RH *pdwMDRea_uiredBuffe‘r$izeli

HRESULT I STDMETHUDCALLTYPE __P.PC_FAH ‘De1eteAl1Data)f
IMSAdminBaseW __HPC_FAR ' This,

4 I‘ [in] "-I’ METADATA_HANDLE hHDHandl«*3.
I‘ [su-ing1[;n}[unique1 U‘ LPCWSTR pszMDPar.h.
!~ [in] *t Dwonn dwMDU5erType,

5 I‘ [in] ‘I nwono dwMoDataTypeJ:

HRESULT I STDMETHODCALLTYPE __RPC_FAR *CopyData If
6 1MSAdminBaseR __RPC_FfiR - This./‘ [in] ‘F METADATA_HANDLE hMDSou:ceHand1e.
7 I‘ [5trinq}[in][uniquQ] ‘I LPCNSTR pszHDSourcePath,

I‘ [in] ‘.3 M.ETADATA_HANDLE hbitloestiiandle.
I‘ [31:.ringI[inI[ur:iqU.e] U’ LPCWSTR pszl-IE)De5LPath,.

8 .-" [in] ‘J DWORD ciwMD.R1:tr1huEe5-
I‘ [in] -I DWDRD dwMnUserType.
I‘ [in] ‘E DWORD dwMDDataType.

9 r- [in] *3 sooL bMDCopyFlaqJ:

10 I-{RESULT l STDMETHODCALLTYPE _RPC_E'AR 'GetDataPat:h5 HInsndminfiasew _RPC_FAR ' This,
1" Ein} '1' M.ETAUATA_HANDLE hMDHandle.

1] I‘ [strinq]['mE[uniqueI ‘I LPCWSTR p52,!-IDPath.
J‘ [in] *.-’ WORD dwt-lnldentifiar.
I‘ [in] ‘I DWORD dwMDDataT:.rpe. 12 z~ [in] ‘J nwoan dwfinfiuffersize,
F‘ [size_i5][Dut} '3 WCHAR __HPC_FRR 'p5zBuffer.

13 I‘ [out] ‘I DWORD __RPC_FRR *pdwMDRequ1redBufferSize);

2: HRESULT < STDMETHODCALLTYPE __RPc_FAR -openfiey It
14 ‘IM$.|\dm1.nBaseh‘ __ElPC_E'AR " This.

-"E .r’* [in] ‘K M'ET.EDATA_HANDLE2 hmoflandle.
I‘ [string][1n}[uniquEI *f LPCWSTH ps2MDPaLh,

15 .-" [in] '2' WORD dwMDAcc:essI-'tec;uested.,
I‘ [in] ‘K DWORD dwMDTime0ut.
I‘ [out] ‘I PMETADRTR_HANDLE phMDNewHandle}: 16

HRESULT : STDMETHODCHLLTYPE __RPc_EhR *c1os2Key it
17 1MSAdminBéIse'tl ___RPC_FJ\R ‘ This,I‘ [in] '2' ME.TADATA_HANDLE hMDHendleJ.'

§ x..§ 13 HRESULT : STDMETHODCALLTYPE __RPC_FAR *ChangePermissions at
fig = 1M5AdminBasew __RPCHFAR * This,

§;jE E 19 K’ tgnl ‘I METAnATA_uA§oL£ hmnuandle.
8:‘;-1 I‘ [m] ‘I DWORD dw-MDT.1meDut,

1* [in] -I DWORD dwbflbflccessflequestedl:Q U

20 HRESULT I STDHETHODCALLTYPE __RPC_FAF: ‘savebata M§< Iusadminaasew 39¢ FAR - This}:
* 335 2i _ '
f

HRESULT t STDMETHODCALLTYPE __R9c_Fnn -Gecnandlernfo Ji
IMSAdminBaseW __RPC_FAR - This.

22 !* [in] ‘H METADATA_HANDLE hnnnandla,
I" [out] *3 PMETADATA_HANuLE_:NFo pmdhiinfol:

WORKMAN,NYDEGGER&SEELEY
23 HRESULT i STDMETHODCALLTYPE _RPC_FAR *GetSystemCha.ngeNumber H

Insndminfiasew __RPc_FAR ' This
24 f* [out] ‘I nwonn __RPc_rAn 'pdwSystemChangeNumber}:

~Pagel34- ImdmNmIflflé2

65

66

6,061,692

99 100

HRESULT i STDMETRODCALLTYPE __RPC_FAR 'GetDataSetNumber ?[
IMSRdminBa5EH RFC FAR ‘ This,

2 I‘ [inl ‘I MET§EnTA:HANDLE hmnnandle..-" [5:_ring] [in] [unique} ‘I LPCWSTR pszl-lDPath,

3 4-" [out] ‘I DWORD ___RPc_F.I§R *pdwHDDataser_Number):
HRESULT i STDMETHODCRLLTYPE __HPC_FAR 'SetLa5tChangeTim2 3‘

4 IHS.*\d.minBa5e'n‘ _RPC_£"AR ' This,
:" [in] '.-' MBTAD.RTA_I-LANDLE hMDHam:Ile,
E‘ [scrinql fin! [unique] '2' LPCWSTE pszl-!DPath,

5 K‘ [in] H’ PFILETIME pfta-IDLastChanqe‘I‘ime,
.-" [in] ‘H 5001.. bLoI:al‘I‘ime};

6 HRESULT I STDMEZTHGIJCALLTYPE _FtPc_FAR 'GetLa51'.ChangeTirnc- Hmssmmnaasew _RPC_I-“AR ‘ This.
7 I‘ [in] ‘F ME:TADATA_HP.NDLE hr-1!:-Handle.K‘ Lstrirzgllini [unique] *3 LPCWSTR pszb-IDPath,

.3‘ [out] H’ PTELEITII-IE: pit}-IDLa5r.ChanqaTima,
3 H {in} W EGOL bLucalTime];

E‘ Erestrictedifiocall ‘I HRESULT E STDMETHODCALLTYPE __RPC_FAH
9 "E<eg.rExr:bangePhase1 :I

If-lskdminliasew _RPC_FAR * Th151.=

lo I‘ Erestrzctedjiincalj ‘J’ I-IRESULT I STDHETHODCALLTYPE _RPC_l-‘AR"KoyExc'nangaP31as22 1 i
1] Imshdminflasew __RPC_FAR « This};

HRESULT : STD!-IETHDDCALLTYPE _RPC_E‘AR naae.-kup ii
12 1!-Ismiminaasew _aPc_r:-xa - This.

-"’ l5‘”—I-{I195 110? [unique] ‘I LPCWSTR p5zMDBackupLccatian,

13 .I'’‘' Hm] ‘.3 91-1030 dwflbvezsion,J‘ {in} ‘I DNORD :luMDF1ags]:

F‘ 14 HRESULT I STDMETHODCALLTYPE __RPC_FAR ‘Restore idImsadminaasew RPC_EAR - This,
.1’ stringj[1n]—[unique] ‘E LPCWSTR pszMDBackupLov:ation,

15 K’ in] -x Dwoan duwnversson.
I‘ in! U’ DWORD duMDP1ag.-3}:

'5 HRESULT E STDMETHODCALLTYPE __n1>c_s-an "E‘.nu.m.Backup5 H

IHsAdm1naasew __RPC_?AR - This.
17 2” .-size_i5][out]Iir1] ‘F’ LPWSTR pszHDBackupLncation,I‘ out] ‘I DWORD _RPC_I-‘AR ‘pom-Mnversion.

I‘ cur] ‘I PFILETIME pftMDBackupTim£,

>-"-.5[-11

dLu
0” :

egéggfig 13 J‘ in] *r DWORD dumnznumrndexb;«== 2
gégegg 9 HRESULT t STDMETHODCALLTYPE _1=.:=c_:-tam -De-Ieuesackup I E
03:35 _ 1. Insndmipaaseay _R1>c_r.=u=. * T1115,
LLlg'v"‘°§E .-"' stung] [N1] [unique] ‘I LPCWSTR pszMDBar_-kupLocatian,
eggghu: 20 I‘ in] '1‘ DWORD :1wMDVersion):

HRESULT E STDMETHODCALLTYPE _RPC_F.'1R ‘flnmarshallnteriaca }[
Z: — Q 21 IMSAd.minBaseW ___RPC_l-‘AR ‘ This.
§ "’ I‘ out] ‘I Imsndminflasew __RPC_F‘AR '_RPC_E'mE! 'piad:abuInI;e::fa<:eJ;ad
ad 22 END_1'N'1‘E:RF}\CE

g I 1HSAdminBasL=:I-.IVtk>l:
23 interface Iblsfldminflasefl[

24 C(JNST_VTBL struct Zr-ishdmnaasuwvthl _RPC_EAR '1pVtb1.-

- Page 135 - Docket Na. l3?68.62

66

67

WORKMAN.NYDEGGER&SEELEY APFIIOFESSION.-\LDOKPORATION' ATTORNEYSATLAW” moEAGLEGATE‘town sousrmumTEMPLE SALTLAKEcrrv.UTAH841II

10

H

12

13

I4

15

16

17

18

19

20

21

22

23

24

6,061,692

101 102

Iifdct COBJMACR03

idefine IflsndminfiaseW_0ueryInterface(This.riid.pDv0bject} \
tThis:—>lpVtbI —> 0ueryInterface{This,riid,ppvObjec:\

ldefine IMsAdminBa5efl_AddRef(This! \
lThisI->lpVcbI v> AddRef{ThisJ

#define IM$AdminBasew_Release(This! \
£This:—>lpVch1 ~> Re:ease{This:

adefine IMSAdminBa3ew_AddKay(This.hMDHand1e.pszMDPath} \
(This:->1pVtbL -> AddHay{Th1s.hHDHand:e.pszHDPath}

#de{ine IMSAdminBaseW_De1e:eKey[This.hMDHand1e.pszMDPath) \
{This>—>1pVtbl -> DaleteKey[Thi5.hMDHand]e,p5zMDPath}

#define IMSAdminBaseW_De1eteChildKeys{Thi5,hMDHand1e,pszMDPathJ \
(ThisJ~>1pvrb1 »> De1eteChildKeys{Thi$,hHDHand1e,p5zMUPath)

Hdefina
IMsAdminBasew_EnumKeys(This,hMDHand1e,p5:flDPath,pszMDName,dwMDEnum0bjectIndex}\

{This}->1pvtbL ->
Enumfieys{Th£s.nMDHandle.pszMDPath,p5zMDName,dwMDEnumObje:tIndex]

fidefine
IHSAdminBa5eH_CopyKaytTh;5,hMDSourCeHandle,pszMDSourcePath.hMDDestHandle,pszMDD
e5tFath.bMDDverwriteF1ag,bMDCopyFlag} \

[Thi5)—>1pV:b1 —>
CopyKey[Thi5.hMDSourceHandle,p5zHD5ourcePath,hMDDeStHandle,pszMDDestPath,bMDOve
rwriceF1aq.bMDCopyFlag3

ldafine IM5AdminBa5ew_RenameKeytThis,hMDHandle,pszMD?ath,pszHDNewName} \
{This}-nlpvtbl -> Renam2Key(This,hMDHandle.p5zMDPath,p5zMDNeuName}

fldefine IM5AdminBasew_5etDatatThis,hMDHandle,pszMDPa:h.pmdrnnnataj \
(This:->lpVtbl —> Setbata(This.hMDHandle,p5zMDPath.pmdrmflflatal

Idefina
IM5AdminBa5ew_Ge:DataiThis,hMDHand1e,p5zMDPath.pmdrMDData.pdwMflRequiredDataLenJ\

EThi5l-filpvtbl ->
GecnatalThis.hMDHandle,ps2MDPath,pmdrHDData,pdwMDRequi:adDa:aLen]
Hdefine

IMsAdminBaseW_De1eteData:This,hMDHand1e,pszMDPaLh,dwMD1dentifier,duMDDataType:\
(This?->1p\FLbl —>

Deleteoata(This.hMDHandle,pszMDPath.dwMDIdentifier,duMnDa:aType}
fldafine

IMSAdminBa5eW_EnumData(This.hMDHandle,pszMDPath,pmdrmbnata,duMDEnumDaLaIndex.pdwHDRequiredDataLen! \
tThis}—>1pV:bl —>

Enumbata(This,hMDHand1e,pszMDPath,pmdrmbbata,dunnfinumnatatndex.pdwMDRequiredDataLen}

- Page 136 - Dockc1.No. :3m.:s2

67

68

E-llllE 5»:

$355

“EEE
§‘§2WORKMAN,NYDFJGGER&SEELEY SALTLAKECIITY.UTAH

H

12

13

14

I5

16

17

18

19

20

2]

22

23

24

6,061,692

103 104

fldefine
IMSAdminBaseW_GetfllLflaLa{Th15.hHDHand1a,p5zMDPath,dwMDAttributeS,dwMDUsE£TypE,d
wMDDataType,pdwmnnumnataantrias.pdwMDDatasatNumber,dwMDBufferSize,pbMDBu£fe:,pd
wMDRequiredBu{fe:SizeJ \

(Thish->lpVtbl -3
Getnllnata[This,hMDHandle.pszMDPath.dunnntt:ibute5.dwMDUserType,dwMDDataType.Dd
wMDNumDataEntrie5,pdwMDDaraSetNumber.dwMDBuffEnSize.pbflflfiuffer.pdwMDRequir2dBuffersizel

fidefine
IHSAdm1nBa5eH_DeleteAl1Data[Thi5.hfibflandle.p$zMDPath.dwMDU5erType,dwMDDataType]\

(This!->lpVtbL -5
DelatehllData{Thi5,hHDHand1e.ps2MDPath.dwMDUserType.dwMDDataType!
fidefine
IMSAdminBaseW_CopyDatafThi3,hM3SOurCeHand1&.DSzHD$ourcePath,hMDD95tHand12,p52HD
De5tPath.dwMDAttrLbute5.dwMDU32rType,dwMDData?ype,bMDCOpyFlaqJ \

(ThiaJ~>lpVtbl ~>
CopyData(This.hMDScurceHand1e,p5zMDSourcePath.hMDDes:Handle,p5zMDDestPath.duMDA
ttcihutes.dNMDU5arType,dwMDDataType,bMDCopyF1ag}

#define

IMSAdminBaseW_GetDataPaths[This,hMDHand1e.pszMDPath.dwMDIdentif1e:,dwHDDataType
.GWMDBU§ferSize.p5zBuffe:.pdwMDRaquiredBufferSiZeJ \

{This}->1pVtb: ->
GetDataPaths[Th1s.hMDHend1e,pszMDPath,dwMDIdentifier.duMDDataType.dwMDBufferS;2
e.pszfiuffer.pdwMDRequi:edBuffer5ize}

ldefine
IMSAdminBasew_0penKey(This,hHDHandle,pszHDPath.dwMDAcces5Reque5tad,dwHDTim2Out,
phMDNeuHand1e1 \

(This)-31pVtbl -3
Openfiey[Thi5,hflflflandle.pSzMDPeth.dwMDAcce55Requested,dwMDTimeOut,phMDNewHandle}

fidefine 1flSAdminBaseW_CloseRey[This.hMDHand1e} \
{This}->lpVtbl -> C]o5EKey[This,hMDHand£21

fidafine

IMsAdminBa5eH_ChangePermassionstrhis,hMDHand1e,dwMDTime0ut,dwmnhccessfiequestedl\
(This}—>1pVLb1 -3

ChangePermissions[Thz5.hunflandle,dwMDTimeOut.duMDAccesaReque5:edJ

#define IMsAdminBasew_$aveData:Th1s} \
{This}->1pVthl -3 SaveOatalThi5}

kdefine 1MSAdminBaseW_GetHandlelnfu:This.hMDHand1e,pmdhiInfol \
{This}->1pVtb1 —> Getflandlelnfu£This,hMDHand1e,pmdhiInfol

fldefine ImsndminBa5eH_GeLSystemChangeNumbertThis.pdwsysnemchangeflumberl \
(This)->1pvtbE -> GatsystemchangewumberlThis.pdwSystemChangeNumber]

fidefine
IMSAdminBa9eW_GetDataSetNumber{Thi5,hMDHandie.pszMDPath,pdumnnatasetuumherj\

(This!-Jlpvthl ~>
Getnatasetflumber1This,hMDHandl2,pszMDPath,pdwnnnatasetuumbarl
idefine

1MSAdninBa5ew_5etLa3:ChangeTime:This.hMDHand1e,pszMDPa:h.p£tMDLastChanqeTime,bLnca1Time} \

- Page 137 . uocmno. rmsnz

68

69

§§§§§gee §
9:22?

grim?.‘§s:« 5WORKMAN,NYDEGGER&SEELBY

10

ll

12

13

14

15

16

17

18

19

20

2]

22

23

24

6,061,692

105 106

[Th1s}->lpVtb1 —>
Se:La5tCh¢ngeTime(Thi3,hMUHand}9,pszMDPath,pftMDLastChangeTime.bLocalTime:

Idefine
IMSAdminBa5eW_GetLa5tChangcT1me(This,hMDHandle,ps2MDPath.p£tMDLastChangeTime,bLoce1Time> \

tThis;—blpV:b£ —>
GetLastChanqeTime<This.hmnflandie,pszMDPath,pftMDLastChangeTime,bLocalTimeJ

Ideflne IM5AdminBa5eW_KeyExChanqePha5el{This} \
lThi5§->lpVtbl ~r KeyExchanqePhaseLtThis}

#define IM$AdminBa5eN_KeyExchanqePha5a2{Thisl \
:Thi5.—>1pVthl —> KeyExchangePhas92{ThisJ

fidefine IHSAdminBa3eW_Backup(This.p52MDBacknpL0catiOn.dwNDVer3i0n,dwMDFlag$J\

{This}->1pVthl —> Backup(This.p5zMUBackupLacat1on,dwMDVer5ion,dwMDFlaqs]

#de£Lnc lMSAdminBaseH_Re$tOre[Thi$,PSZMDBHCkupLocation,dwHDVersion,dwMDF1aq5]\
:This!->lpVthl —: Restorelrhis,pszMDBackupLoca:ion.dwHDversion.dwMDPlaqsJ

{define
IM5AdminBaseW_EnumBatkup$[Thi3,p5zMDBackupLocatiDn,pduMDVe:sion,pftMDBackupTime
,dwMD£num1ndexJ \

(This:—>lpVtbl —:
Enumsackups(This.psafififlackuphocation.pdwmnvexsion,pftMDBackupTime,dwMDEnumIndexh

#define IMSAdminBa3aW_De1etefiackup{ThiS.95zflnflackuphocation,dwMDUersionJ \
(This!->1pUtbl —> De1eteBackup{Thi5.pszmnflackuphocation,dwunversionl

fidefine IMSAdminBaseW_Unmarshallntcrface(This.piadmbulnterfacei \
fThisJ—>1pV:b1 —> Unmarshalrnterface{This.piadmbw1nterfaceJ

#endi£ I‘ COBJMACROS ‘I

fiendii f* C style lnterface ‘X

HRESULT STDMETHODCALLTYPE IfishdminBasaw_AddKey_ProxyE
IMSAdminBaaefi __RPC_FBR * This.
I‘ iin] ‘E METADATA_HANDLE hMDHandl2,
/' Estringltinlluniquel ‘I LFCWSTH ps2MDPathl:

void __RPc_sTuB IMsAdm1nBasew_AddKey_stub:IRpcStubBuE£er 'Th1s.
IRpcChannelBu£fer *_pRpcChannelBuifer.
PRPC_MESSAGE _pRpcMessaga.
DWORD *_pduS£uhPhaseJ:

HRESULT STDHETHODCALLTYPE IM9AdminBa5eW_De1eteKey_Proxy(
IfiSAdminBa5eW __RPC_?AR ‘ This,
I‘ {in} ‘K METflDATA_HANDLE hflflflandle,
I‘ lstringllinjluniquel ‘I LPCWSTR pszMDPa:h}:

void __RPC_STUB IusndminBasaw_DeleteKey_StuhI

— Page 138 - l')ocbclNo. l3T68.62

69

70

6,061,692

107 108

] Ifipcsiuhfluffer ‘This.
lRpcChanne1Buffex *_pHpcChannelBuf(e:,
PRPC_MESSAGE flpnpcnessage,

2 owoao ‘_pdu5tubPha5eJi

HRESULT STDMETHODCALLTYPE. '.EMSAdminBa:5eW_DaleteCh.1.1-:il(ey5_ProxyI
IMSAdminBasEw "_RPC_FAR ‘ This,

4 J“ [in] ‘I’ METADP.TA_HANDLE ‘nMDHandJ.e.
!‘ Iszringltinltuniquel ‘I LFCWSTR ps:MDPath1;

S
void __RPC__S'TUF! [MSAdrninBa sew_:Je1ev: echi 1:1:-:e3;s_sr.ub1

IRpc5tubBufEer 'Th15,

6 IRpcChanne1Buffer ‘_pRpcChanneiBuffar,
PRPC_HES5AGE _pRpcMe55age.

7 DWORD ‘_pdwStuhPha5eJ:

8 HHESULT STDMETHOFJCRLLTYPE IMSAd.'rI1i.nBaseW_Enu!11KeyS_PrDX}.«'I
IM.SAdrn1nBaseN __RPC_FAE " ‘I‘h:L5,
:"“ linl *1’ MET.PuUAT.B_H.F\NDLE hMDHand1e.

9 X‘ |S’r.ring}['xn][L:niqueE "J LI-‘CWSTP. pszM!)[-‘ath.
K‘ Isi:e“is}iout3 'f LPWSTR pszMDName,

10 .r“ [in] '.-" DWORD dwMDEnum0bject1ndex]:

I] void __RPC_STUB IMS.F\Lin1inBa3eW_EnumKey5_Stub{
IP~pL:StuhI-Buffer “this.
IRpcI:hanneiEIuF1:'er ' pflpcchannelauffier,

[2 PRPC_:«1ESSM:E _pRpc?-Igssage,WORD ‘_pdwScubPha.se:}:
I3

HRESULT S'I‘DME:THODCALL.T':'PEI If-13.!‘-\d.111inE3a$e'|-\l_C0pyKey_Proxy[
14 Ibdskclminfiasew _RPC_x'-‘AP. ' This,

.I'‘ Hm] ‘I M.E‘E‘A|2|ATA_HANDLE hMDSaurceHand].e.
1"‘ Istrinqitinituniquel “‘.-’ LPICWSTP. p32.MDSourCePath,

15 I‘ linl '1 !'1ETADATA_HANDLE: hi‘-I|}EIestHandle,
I‘ |strinq][in][unique1 H’ LPCWSTR pszMDDestPath.
I‘ Iin} M’ BOOL bl-lflcueruriteflaq.

[5 3- fin? ‘I 3001. hr-Iancopynagl;

17

void _RPC_STUa IB-1SAdminBa:seb1_CcIpyKey_StubIIRpcStubBuffer *':'h§s.

E.3
U2
U4
95. :

egg 3 g IRpcChannelEuI:'fe:('_pRpCChar:neIEuffer,
‘,5 :3 __ PRPC_ME:SSA:::E'. _pRpci-lessage.
I-I-1 :2 E Dwonn ‘_pdwStubPha3eJ:

8 ‘Jig E; 19u; 5 ~
2 gfii‘-‘IE5 20 HRESULT s'rDMETHODcAL1.T'rPE II-ISAdm1nE3aseW__Re'nameKey__Proxyt

Imsmminaasew _RPC__FAR - This.
..g-tggh -I” Iinl ‘I P-lET.i\D.F1'J".R_HANDLE he-IDHandle.

E‘ - 1 2] K‘ IString][inj[uniqueI ‘I LPCWSTR pszl-IOPath,

E u‘ 1''‘ lSt'rinq]finHuniqueE "I LPCWSTR p.'sz!”lDNe\-Mame};at 22

C3 void RPC STUB IMSAdminBa5EW RenameKey Stub(
3 23 Ificszfibaufter ‘This. " "Ikpcchannelfluffer *_pRpcChanne1Buffer,

PR P|L‘.'__MESSAGE _pRp¢!"|es.-sage,
24 DNORD °_pdwstubPhase3;

~ Page I39 - nocue: No. mas 52

70

71

6,061,692

109 110

.I''‘ [CalJ._a5I '3' HRESULT STWETHODCALLTYPE I!'1SRad:!uI)BaSeW_R__SetData__ProxyI
2 1'MSAc|.m1'.nEase'Ii _RPC__FAR - This,

X‘ HM "I METAuM'A_HANoLE. rmoHandLe.

3 .-H Is.*.:ing]['m3[un':qua} Hf LPCWSTR pszr-!DPath.I‘ lin] ‘I PMETADATA_RECORD pmdrMDData|:

void _R'PC_STLTB IMSAdminBaseN R Setlfiata Stunt"
IRpcStL1bBut'fer -This. ' W W

5 IRpcChannelBuffar -_pRpcChannelEu£fer.
PRPC_HESSAGE _pRpcMes5aqe,
DHDRD “_pdwStubPha5EJ:

7 K‘ [Call_d5] ‘K HRBSULT STUMETHODCALLTY?E IflshdminBasew*R_GetData_ProxytInsndminaasew __RPC_FAR v This,
K‘ {in} *f METHDATh_HhNDLE hMDHandl2

8 9' |5trinq]Ein}[uniqueI ‘E LPCNSTR ps:MDPath.
I‘ [out I [in} '.-" PMETAD1\TA_RECORD pmdrfi-1DDat.a.
K‘ loutl ‘H DWORD __RPC_FAP *pdwMDRequiredDataLen.

9 /' Iout} ‘I struct _}IS_CRYPTO_BLOB __RPC_FRR *__RPC_FAR ‘ppDataBlobJ:

10
void __RPC_$TUB IMSAdm:nBaaeW_R_GetData_StubI

IRpr:5tuhEuft'er *This.
11 I.Rpa:Char1ne1.Buffer "__1::RpcC1':anneJ.Buffer,

PRP<.'_MES$.P.K3E __pRp::?-lessage.
DHORU '__pdwStubPl':ase];

I2

[3 HRESULT STDMETHODCALTIYPE IM5AdminBa3eW_De1eteData_ProxyEIMSAd.I11inBase'N ___F€PfT_E‘AR * This,
I‘ lin] ‘I METADATA_H.ANDLE ht-1DHandle.

14 .“ lstringl Ein}[L:niqLH.=!} ‘I I.P[:wS‘I'R pszl-1=.'.|Path,K‘ lin] ‘I DWORD dul-Inrdentifirer.
I‘ lin] ‘J DNORD dws-IDDar.aType];

22 void __RPC_STUB IMSAdm1nBa5ew_R_EnumData_S:ub{Ikpcstubfiuffer ‘This.

23 1Rp-:Channe1But'fer ‘_pRpcChannelBuffar:,PRPCWMESSAGE _pnpcMessage.
DWORD *_pdwStubPhaseJ:

15

void ___R‘.E'C_STIJB 1Msadminaasew_DeJ.eteDat;a_s:ubI
16 mpcstubauffer ‘This,

as Iflpcchannelfluffez -_pRpcChannelBuffex.
E} 17 P1=lPC__MI-JSSAGE _pRpc!-iessage.m DWORD ‘_pcIwStubPha5e];W :

eé :55: 13 _
cg 33E,_ 3" Ical1_as[‘I EIRESULT STDMETHOEICALLTYPE I!-!SAd.ErLinBa5eW P. Enu.rnData P1'ox§,I'{
8 9 IMSAd.minBase'N RPC FAR - This. ' F "' I 3' lin] -' ~1£TfiEATA'PANDLE ht-10H cu
DB‘¢fi. _!:_ __. an m
Lua‘:<3=E 1'‘ Ifitflflqlllniiunzquel ‘I LPCWSTR pszl-IDI~'at'.h,

20 x- Iout}[inI -: P:~1aTAnA'rA__nacono pmdr!-lDData.5 . I‘ lin] ‘I DWORD dwMDEnumDataIndex,Z . r:

Z-g-<§3l_ I‘ loutl ‘F DWJREI ___RE'4‘.'__F.=\Fl ‘pd:-MDRequiredDataLen.
<‘ — 3 21 3- loutj ‘I strum: _lIS_CF|'fPTO__BLOB __RPC__l-"AR “_RPC_FAP. "p‘_DDat,aBloh];EI!
{Z
O
B

24

- Page 140 - Dnckel Nu. I3?6%.62

71

72

6,061,692

111 112

A” 1ca}.1_asE ".-" HRESULT .'?-TDMETHODCRLLTYPE IMSAdmi1'lBa5EW_R_Get.R1lUat5_P£OKyE
IHSAdminBaseW _RPC_E‘AR ' This,

2 1* Iini *r METADnTA_HANDLE hMDHandlE,!* Istzinqllinlluniquel ‘I LPCHSTR pszmopath,

3 K‘ {in} *! Dwonn dwmnnctzibutes,I‘ iirai *4" DWORD dw-MDUse1:Type.
I‘ [in] *! DWORD duMDDataType.

4 I‘ [UutI '3' DWORD ___RPC__l-‘AR 'pdwMDNu.rnDataEntrie5,
I‘ Iont] ‘I DWORD _RPC_E'AR ‘paw!-1DDat;aSetN\.mIber.
I’ iinl ‘E DI-IORD dwt-Iflfiuffersize.

5 I” ioutfi ‘K DWORD _RPC_FAi'£ 'pd\-mflflequiredfluffersize.
I* {anti -3 s::u:t lIS_CRYPTO_ELOB HRPC_FAR ‘__RPC_FAR ”ppDaLaBlob}:

vm.d __RE'C__5'|i‘UB 11'-'l5Ad.111.1ni3aseW__R__Get3\1lData_5tubl
7 Ekpcswbfiuffer ‘This.

Illpcchannelfiuffer ‘_pRp<:ChanneJ.Buffer,
PRPC_ME$$AGE‘. _pRp<:Me=.-ssa.ge.

8 DHORD ‘_pdwSt.ubE’haseI:

9 HRESULT STDMETHODCALLTYPE LMSAr1minBasew_DeI.eteA11Data__Proxy{IHsAdminBa5eW RPC FAR " Thus.

10 I‘ [in] ‘X HETADATA_HANDLE hMDHandle..-" [string] [in] [Lm1que| ‘I LPCWSTR p52MDPath.-
.r"‘ [in] ".-" DWURD dwMDUse):Type..

1] I‘ [in] "I DWCJREJ dwMDDataTypei:

12 VOJ.d __P.Pl."I_STUB IMS.Hdm1nBa5eN_DeieteA11Data_StubLIRpcStubBuffer 'Thi3.
1'RpcChanne.'LBuf.'£az '_pRpcChanne1Buffer.
PRPC_HESSBGE _pRpcMe33age.
DWORD ‘_pdwStubPhase!:

.:..= 1 3

14

HRESULT S'rI}.~!E'rHODCALLTYPE Tr-lshdaninBaseW_CopyData__Prox-gE
I5 IMSAdminBaseW __RPC;FAR - This.

I‘ |in1 ‘J :~1E'.'I‘ADATA_HANDLE ht-Ibsourceflandle.
N |str:inr;][1n][uniq::eI “.3 LPCWSTR pszmbsourcemtzh,

"5 ;* Iin] ‘I I-1E'I‘ADATA_HANDl.E n:-xnoestuandle.
a 1" istringjtiniiuniquel ‘.1’ LPCI-IISTR p5zMDDe3tPath.
_; 17 3* [in] *# Dwona dwflbhttributefi;
3g 3* Iin] ‘I DWORD duMnuserType,
U): : 3* {in} ‘a’ D‘-'-IORD dt-rM$J!'.?ataType,

igiégg 13 3* {ml *1 BCOL bHDCopyF1aq};
Ll-‘I Q52? 5<2 :~'*='s 19 - - -G gm!‘-{E _ vold _RPC_S'lUB 1?-I.SALim§nHaseIrI_CopyD‘ata_StubI
u.::533E I.Rpc$|:ubBuffer ‘This.
9 égairgg 20 Iapcchannelauffer *__pRpc.Channe1Buffer.
Z fitfi PRPC_T-'EESSAGE _pRpr:1'-tassage,

z.'§¢§§;j 2‘ swear: ‘_pd\4StubPha5e}:<< ' 5

g 22 HRESULT STDQ-TETHDDCALLTYPE E1-isndminEIeseN_GetData?a:;hs_ProxyEI!"iSAdzni:‘|Ba5eW RPC FAR ' ’l'hL5.
0 3* [in 3 -I Mr-:'rEA'rA_HANDLI: nnoaandle.
3 23 F‘ lgtrinqitinltunafiueg =: LPCWSTR pszMDPat.h.K‘ I111] ‘H’ DWORU dwl‘-lflldantifier,

4“ Iin] ‘r’ DWORD dwMDDataType,
24 I‘ iin] *! DNGRD dNMDBufferSize.

- Page I41 - Dm:JscINo. mean:

72

73

WORKMAN,NYDEGGER&SEELEY .-\mcrn=.ssIo~a1.cauorumow.-'- ATTOKNEYSATLAW''- IOCIOEAGLEGRTETOWER 93EASTSOUTHTEMPLE SALTLAKE('1l'Y.lJTA|‘I8-!I.II

10

I]

12

I3

I4

15

16

1?

18

19

20

2}

22

23

24

6,061,692

113

K‘ isize_isIIau:3 ‘I WEHAR __REC_FAH 'pszBuffer,
I‘ iout} ‘I DNGRD __RPC_FAR ‘pdwfiflkequizedfiuffersiLe};

void 1-1Pc_s'1'u3 1:-1sAdm1naasew_GetDa:.aPaths_st.ubI
rfificsuubaufcex ‘This.
Tfipcchannelfluffez '_pRpcChannalButfer,
PHPC_MESsAGE _pRpcMe5sage,
DWORD *_pcIwstubPhase}:

HRESULT STDMETHODCALLTYPE 1H$ndmLnBaseW_UpenKey_PrcxyI
tushdminflasew RPC_FAR * Thzs.
x- [in] ‘K u:rEEATA_annvLE hmnaandne,K‘ istringlliniluniquel ‘I LPCWSTE pszMDEach,
1* [in] *! DHORD dunflaccessflequested,
f* [in] *3 DWORD dwHflTimeDut,
E‘ ioutl ‘I PMETADATA_HANDLE phMDNewHandle}:

voia __RPC_STUB IHSAdm1nfiaseW_0penKey_StubE
Ikpcstubfiuffer “This.
IRpcChann9lBuffex '_pRpcChannelBuffe:.
PF.P‘C_!'1.ES5AG‘E _papc1~tessage.
DWORD ‘_pdHStub?ha5E}:

HRESULT STDMETHODCRLLTYPE 1M3Adm1nBaseW_CloseKey_P:oxy1
Ifisndminflasew __RPC_FAR ' This,
.-"' {in} ‘X 1'-'!ETADATA_i-IANDLE hMDHandle>.'

void __RPC_STUB IMSAdminBa3eW_Clo5eKey_Stubi
Iapcstubfiuffaz ‘This.
Ikpcchannelauffer *_pRpcChannelBu£fer.
PRPC_MESSAGE _pRpcMessage,
DWORD ‘_pdwStubFhase);

HRESULT STDMETHODCALLTYPE IMSAdminfla5ew_ChangePermissions_Proxy[
1'M3Ad.rninBaseh‘ ___RI-'c:_rAR * This,
X’ [in] ‘I METADATA_fiANDL£ hMDHandle.
K‘ [in] ‘K DWORD dwMDTimeOut,
X‘ |inJ "I DWORD dwMDAccessRequested};

void __RPC_STUB 1MsadminEa5aw_ChangePermissions_StubiIapcstubfiuffer ‘This.
Iflpcchannelfiufter *_pRpcChanne1Buffer,
PRPC_MESSAGE _pRp-message.
DNORD '_pdwStubPhase}:

HRESULT STDMETHODCALLTYPE IflsndminaaseW_SaveDa:a_ProxyI
Ifisndminaasefl __RPC_FAR * This]:

void RPC STUB Imsndminaasefl Savenata Stuhi
Ifificscfibsurrer ‘This. " _
Ifipschannelflufiar * pflpcchannelfiuffer.
PRPC_MESSAGE _pRpcM§saaqe,
DWORD ‘_pdw5tuhPhaseh:

- Page 142 «

73

114

Docket No. I 3763.62

74

6,061,692

115 116

HRESULT STDMETHOUCALIEYPE IHSRdminBa5eW G2tHand1e1nfo_Proxyi
IMSAdminBaseW __RPc_Fna - This, '

2 X‘ [in] -x METADATA_HANDLE hMDHandle.
xv [out] ‘I PMETADATA_HRNDLE_INFO pmdhilnfol:

void __RPC_STUB IflfihdminBa5eWuGetHand!eInfo_StubL
4 IRpc5Luk:Buffer ‘This.

IRpcCh-anne1BuI fer '_pFlpcChanne1Buffer,
PRPC_HESSAGE _pRpcMe5saqe.

5 awonn '_pdwstu‘nPhase1.-

6 HRESULT STDMETHCIDCALLTYPE mSAdminBasew_Gecs~,rst_em<:hanqeNurnI>er_Pzoxy(Ibesndminfiasew __RFC_EAFl ' This.
7 I‘ [out] *»' DWORU __FtPr:__F‘AR °p:lwSystem{1hangeNu:nberl;

3 void ___P.PC_sTUB IP'!SA|1minB£l3eW_G&t‘.$)I'StemChflnqeNu!l|.DEr_5t1.lbEIRpcSLunBuEEer 'ThiS.
1'Rpt‘.ChannelBuffer '_pRpcChannelEnffer,

9 PRPC_MESSAGE _pHpcmessage,... [WORD ‘_pdwS'I:ubPhase'J:
10

HRESULT STDME‘.'I‘HODCALLT!'PE. fldsndminBasew_GetDat.aSer.Nu1nber__P:oxyI
[1 IMSAd.mir1BaseN __RPC_¥‘AR ‘ This,

K‘ [111] ‘I ME:'rADATA_H.=§NDLE ha"'.'[DHandlB,
H‘ i.-string] [in] [unique} H’ LPCWSTR p52MDPat‘.h,

12 3- [out] *3 nwono __RPC__FAR 'pcIwMDDataSetNuItLber]:

13 void __RPC_5'TUB TMSAd.rninBa5:eW_Gel:DataSetNurnbEr Stu.b(nzpcstubaufrer -1*n1s. '
I4 IRpcCharmelBufEer '_pRpcChanne'1Buffe\-:,.

PRPC_MI-ZSSAGE _pRp<:Messaqe,
DWCIRD ‘_pdwSr,ubE'hase';:

15

HRESULT STDMETHODCALLTYPE IMSAd.minBaseW Sethastfihan eTime Proxyt
- I6 - ‘J —*. IMSAdminBaseW __RPC_FAR - This.

> 1- {in} ~! METADATA HANDLE hMDHand1e,Llil . .-
4 17 I‘ [5trmg][1n}[un1que] ‘.1’ LPCHSTR ps2MDP-ath;
53 r- {in} °r PFILETIME pfnMDLa3tChanqETime,
mi : J‘ Iin] ’.r‘ 3001. bLoce1'."ime:;
cfiiaaggga 18n: _

void __RPC_S'I‘UEl ‘.[M.5Ad.minBase9l .Se§:La5tChangeTim2 Stub:
833$ 19 rapcstubaurter ‘This, ' "
mg‘ (DEE mpcchannelfiufter °__pRpcChanne1Buffer.95 5m‘-' PEPE MESSAGE R cuassa e
>_W DEN _ i‘ _P D 9 .
Z DWORD _PI:iwStubPha5eI.'-

£?“§8§ 21
K

I‘: HRESULT STDMETHODCALLTYPE tr-Isadminaasel-1_E'»ek:Lasr.ChangeT1me Prox_=,r{
g IMsAclminBa-sew __RPC_FAF. * This. '22 x- [im hf Mm'ArmTn_HnuoLa hMDI-Ian-ale,
9 r- [strinql [in] [unique] ~; Lrcvasra pszMlJF'at‘r:,BI

23 j:'' Eougzl E! PFILETIME pft.MDLa:sLChangeTime,‘ Ln ' BOOL bLocal'.l'irrue!:

24

- Page 143 - lJoc|c:tN:1. 13168.62

74

75

WORKMAN,NYDEGGER&SEELEY APROFESSIONALOUIPOIATPON AHDRNEYSM‘LAW' [O00EAGLEGAIErows: bDEASTSDUTH1ENWLE SALTLAKECITY.UTAHlollIF

10

ll

12

13

14

15

16

17

18

19

20

21

22

23

24

6,061,692

117

void __RPC_STUB TMSAdminBaseW_Ge:LasrChangeTime_StubI1Rpc5tubBuffer ‘This,
IRpcChannelBuLte: '_pRpcChanne1Eurfer.
E'RE’C__M.ESSAGE _pRpcMes.-sage.
SWORD '_pdw5tubPha5e}:

J‘ [ca11_asi *f HRESULT STDMETHDDCELLTYPE
IMSAdminBa3eW_R_KeyExchanqePhasE1_PrDxyi

IMS.=~d.minBasehl _RE’C_l.-‘AR " This.
I‘ linjiuniquei ‘I struct _IIS_CRYPTO_BLOB __RPCvEAR‘pC1ientKeyExchanqeKeyBl0b,
I‘ [inliuniquel v! sL:uct _IrS_CRYPTO_BLO3 __R9C_FAR

‘pclientSignaLu:eKeyB1ub,
3- Iouul *3 struct _IJS_CRYPTG_BLOB __RPC_FAR ‘__RPC_FAR

*ppserverKeyExchangeKayB1ob,
£~ lout} *r struct _IIS_CRYPTO_BLOB __RPc_rAR ‘_“RFC_EAR

*ppServerSiqnatuzafieyaiob.
I* loutl ‘E Struct _11S_CRYPTO_BLDB __RPC_FAR ‘_ RPC_FAR

'ppScrve:SessionKeyB1obJ: _

void __RPC;$TUB IflshdminBa5ew_a_KeyExchangePhase1_5:ubI
IRpc$LuhBufEer ‘This,
1RpcChanne1EuEfer *_pRpcChanne1Buff2r.
PRPC_MESSAGE _pRpCMessage,
DWORD ‘_pdwStubPhase]:

I‘ [call_as} ‘H HRESULT STDMETHOUCALLTYPE
IfisadminBa3ew_R_KeyExchangePha5e2_P:oxy{

lMSAdminBa5eW __RPC_FAR ’ This.
1"‘ [in] [unique-1 '1' strum. _IIS_CRYPTO_BL-OB _P~PC FAR

*pClJentSessionKeyBluh, ’

118

I‘ [1n][unique] *i struct qIIS_CRYPTO_BLOB __RPC_FAR 'pClientHashBlob,
I‘ [out] ‘I struct _IIS_CRYPTO_BLOE __HPC_FnR -__RPC;FAR*ppServerHashBlob:;

void __RPC_STUB LMSndminBaaeW R KeyExchanqePha5a2 Stubt
IRpcStubEuffer *Th15, " " ’
1Rpcchanne1Bu£fer '_pRpcChannelBu£fer,
PRPC_MESSAGE "pRpcMe55age,
DWORD ‘_pdwStubPha59!:

HRESULT S?DMETHODCALLTYPE IMSAdminBaseW_Backup_ProxyI
Imsadminfiasew _RPC_FAR ' This.
1' Istringjlinlluniquel ‘I LPCHSTR pszMDBackupLocation.
I‘ [in] ‘H DWORD dwMDVersiDn,
I‘ [in] '2‘ DWORD du'MDFlaq$).‘

void __RPC_STUB IflshdminBaseW_Eackup_ScubI
Iflpcstubfiuffer ‘This,
Ifipcchannelauffez '_pRpcChanne1Bu££er,
PRPC_HESSAGE _pRpcMes3a9e.
DNORD '_pdwStubPhase1;

HRESULT STDMETHODCALLTYPE THSAdminBasew_Restore_ProxyI
IM5Ad.minBasew H1=<:_1=AR ' This.
3* [atr1ng][inTTunique] ‘J LPCHSTR ps2MDaackupLocation.

-Page14:3-

75

Docks: No. l3T65.62

76

E .:.E
r:3§“n=
%s?§§
égéé?

>0 E
ggfiggg, I-

géizé
:‘§$:C {WORKMAN,NYDEGGERKr.SEELEY

10

ll

12

13

14

15

16

17

I3

19

20

2]

22

23

24

6,061,692

119

‘I DWOED dwMDVer5iun.
‘K DWORD dwMDF1agaI;

J4 iinl
I‘ am]

vold __RPC_STUB IMSAdminBaseW_Restore_stubI
Iapcstubfluffer ‘This.
Inpcchannelauffer ‘_pRpcChannelEuf£er.
PRPC_HESSAGE _pRpcMessage.
DWORD '_pdwS:ubPhase=:

HRESULT STDMETHODCALLT?PE 1MsndminaaseW_EnumBackups_ProxyI
IMSRdm1nBa5eW __RPC_FRR ' This.
I‘ isize_1s|Iouti[in] '! LPWSTR pszMD3ackupLoca:1on,
!* {out} ‘.-" D1-IORD __aPc:_mn 'pdwMD\a'er.'3:‘I.:;-n,
I‘ {out} ‘I PFILETIME pfLMDBackupTim&,
J‘ Iinl ‘J DWORD dwMDEnumIndex}:

voxd __RPC_$TUB IMsndminHaseW_EnumBackup5_StubI
IRpcStubBuffe: *This.
Ikpcchannelfiuffer ‘_pRpcChannelButfer,
PRPC_MES$nGE _pRpcMes5aqa.
DWORD ‘_pduSLubPhasen

HRESULT STDMETHDDCALLTYPE IM$AdminEa5eW_DeleteBackup_Proxy(
IMSAdminBa5eW __RPC_FRR ‘ This.
I‘ E5trinq][in![unique] ‘I LPCWSTR p5zMDBackupLoCatiOn.
J‘ [in] ‘I DWDRD dwMDVersion};

void __RPC_5TUB IMSAmln8aseW_DeleteBackup_StubE
1RpcStubBuffer ‘This,
IRpcChannelBu£fier ‘_pRpcChannelBuffer.
PRPC_MEssABE _pRpcMessage.
DWORD ‘_pdwStubPhase!;

120

HRESULT STDMETHODCALLTYPB IMSAdminEa5ew_Unmarsha1Interface_ProxyI
1MSAdminBa52H _RPC_5flR ‘ This.
2" [ouL] -I IM§Adrni.nBaseh‘ _RPC__FAFl ‘_RPC_E‘AR ‘piadmbwlntezfaceli

void _WRPC_STUB IMSAminBaseH_UnmarshalIn:ezface_5tubl1Rpc5LubBuffer ‘This.
Ifipcchannelflulfer -_pRpcChanne1BufEer.
PRPC_MEs5AGE _pRpcMes5age,
DWORD *_pduStubPhase::

iendif x' __IMSAd.minBa5eW_.INTERFACE_DEP1NED__ -I

Iifndef __IMSAdminBa$93inkW_INTERFACE_DEFINED__
Idefine __1MSAdminBa5e5inkW_INTERPACE_DEFINED__
;¢o.oq-49Q.g¢x¢-ggoaae.uanaa.«w.«vw¢n¢¢no
' Generated header for interfiace: Insndminaasesinkw
‘ at Tue Aug 19 11:59:41 1997
' using MIDL 3.03.0106
v:o§4§§§o;o«vqoxootvAuIooulorwrxxvnnxtunx

- Page 145 -

76

1')ocl::tNo. 13‘F6$.EnZ

77

6,061,692

121 122

I I‘ {unique}[u:.1:1d][ab;‘ec:r.] '2'

2
EXTERN_C cons: IID I1D_IMSAdminBa3e5inxW;

3 lif definedt__cplusp1usr as !definedtCINTBRFACE:

4 MIDL_IN'l'ERFACEl"A9E696l2-BBDD-1ldfl-B939-fl0R(JC922E'f5D"‘J
IH5AdminEase5inkW : public Innknown

5 fiubiic:vnrtual HRESULT STDMETHODCALLTYPE 5inkNotify<

6 J‘ Iin] ‘I DWORD dwMDNumE1emenLs..r"‘ I$i2.e_i3] [in] ‘.4’ MD_CHANGE_OEJECT_§M' _RPC_}:“AF|. pcoChangeLi5t[]J2 0:

7 virtual HRESULT STDMETHODCALLTYPE Shutdownnotifyi void} = 0:
8 1;

9 lelse 2"‘ C style interface ‘J’
typedeé struct 1M5Adm1nBaseSinkwvLbl
{

10 BEGIN_1N'1'ERFACE

11 HRESULT (STDMETHODCALLTYPE __RPc_FhR ‘QueryInte:Eace 1t
IMSAdminBa5eSi1'rkH‘ _RPC_FPtP. “ This,
3'' Sin] ':" REFIID riid,

12 x- [iid_i5l [out] ‘.1 void _RPc_?N1. ~__npc_mn 'ppvObject}:;

ULONG E STDMETHODCRLLTYPE _rwc_mn "Add.P.ef J1
13 TMSAminBaseSinkW __RPC_FAR * This]:

=* 14 ULONG i STDMETHODCALLTYPE __RPC_FRR *Reiease IImn IMSAdm1nBasesinkw __RPC_FAR ' ThisL

15 }-{RESULT I STDMETHUDCALLTYPE __FlPC_FJ\R *SinkNor.ify JE
Imshdminflasesinkw __HPC_FAR ' This.

- I6 3"‘ [in] ‘I DNOFID dwmmiumfilements,I‘ [size is] :in] *4’ MD CHANGE OBJECT w RPC FAR pcoc:hangeL.ist[
>- H: " ' ‘ ‘ ‘ ‘LL]
.—1

E 17 HRESULT 1 STDMETHGDCALLTYPE __RPC_FAR *ShuLdownNotify 1:m, : Insndminnasesinkw _RPC_F.P.R « This]:

oaé E»; 13
,1”: END_IN'TERE‘AI‘.‘E
“-3 :95? } IMsJ\d.minBaseSinkw\n;hl:
8 :55? '9

interface IMSActminBa5e3inkIr.‘U 1ea.‘ |—u.- 2
pi 0 CONS'T_VTBI.. struct IM5Ad.1'n1nBaseSinkW\«"I'.bl __P.PC_FAF “lp\.ftb].;
Z‘ ¢§3._I }F

E: " 3} 21hi

3% 22 iifdraf COBJ?-IACROS
3

23 #define IfisndmxnaasesinkW_QueryIntarface[Th;s,riid,ppv0bject: \
{Thlsl->lpVtbl —> Que:yInterEace[This,riid,ppvObje:t}

24

- Page 146 - poem M1. mass:

77

78

6,061,692

123 124

] ldefine IHsAdminBaseSinkW_AddRef{This} \
:':'his>—>1p\!‘:hl —> AddRef{Th.1'.sJ

2 tderine 1MSAdminfiaseSinkw_Reiea5e{This} \:This5—>1pvthl -3 Re£ease{This:

3

#define IhshdminflaseSLnkW_SinkNotify{This,dwHDNumElements,pcoChangeList] \
4 iThis:->lpVthl -> sinkNotify{This,dwHDNumElements.pcoChangeLis:J

{define lMSAdminBa5eSink'hl_Shut:iownNm:ify{This} \
5 :'rh1s.~—>1pv:.-1:1 -: Shu1;downNutlfy(This‘.

6 iendif I‘ COBJMACRCS ‘I

7 hendif f' C style interface ‘I

8
HRESUI.-T 5TDME'F'f‘IOUCALLT‘(' PE IMSArd.1'ni nSaseS inkW_$znkNoI: i fy_ Prcxyi

tM5AdminBaseSLnkw __RPC_FAR ' This.
9 K‘ lin] ‘J DWORD dwMDNumE1emsnts,

I‘ |size_is]|Ln1 ‘I HD_CHANGE_OBJECT_W __RPC_FAR pCOChangeLi5t[ll;
10

void _ru=c_s-rua Ilflshdminfiasesink'|-I_SinkNo1:ify_St.ubt
1| LRpc$tuhBuffer ‘This.

Inpcchannelauffer '_pRpcChanne1Buffer,
PRPC_MESSAGE _pRpcHa5sage,

12 mean *_pdwSt.ubPhase}:
13 nmasum STDMETHODCALLTYPE E!-lsndminaasesinkw_Shut;downNot.ify_ProxyEmsnaminaasesinkw _aru:_1—~An x This]:

5 14

void __RPC STUB IMSAdminBaseSinkw_ShutdownNotify_Stub{
15 Iapcscfinsutrer ‘This,

TRpcChanne1Buffer '_pRpcChannelBuffer,
PRPC_HESSAGE _pRpcMessage.

 16 DWORD *_pdwStuhPhase];>-

3
E3 1'?g) .-. #endif .r" IM5:‘AdminBa3eSin|(W INTERFRCE DEFINED "J"

2 ¢ 3 — — — —

:§a=§§5 '8
fcdfllniqinnflnclI-iiI1t|t|-ngnanndliink-0111

I"

‘-73¢-‘5-«=3 19 - Generazeu header Ear interface: MIDL it! iadmw 0155{J m-CF —— — — —
mpogg - at Tue Aug 1911:50:411997
Q5233: 20 « usmq mm. 3.03.0105

uncla--qcuntuvtunkwtnqnnndld-liviviizwillrtttvtln’. '~— iv 1 1! -I
§‘§s: 1°“

E. g 213 #endif
ad 22
C3
3

23 extern RPC_EF_HANDLE __HIDL_itE_iadmw_0166_v0_O_c_ifspec;extern RPC_IF_HANDLE __MlDL_itE_iadmw O!66_v0_0_3_if5pec;

24 I‘ Additional Prototypes for ALL interfaces ‘I

- Page 147 - rmm N... mass:

78

79

6,061,692

125 126

1" {local} U’ HFIESULT STDMETHGDCALLTYPE IMSAdminBa.3eW'_SetDaI;a_P:oxyt
Imfindminaasew ___RPC_FAR - This.

2 r’ ‘ Ii l".] " 3 METRDATBWHANDLE hHDHand].e ,
.-"‘ |st:'mg}!i:1![uniqueE ‘.9 LPCWSTR pszMDPat.*\,

3 I” Iifll ‘ 2' PMETRDHTR__RECORU pmdr!-lDDataJ:

4 J“ [call_asI H" HRESULT STDHETHODCRLLTYPE I2"fSAdminBasel'u'__SetData_$1:I.1b{
IMSAd.n1inBa5e?i ___RPI'.“_E‘BR ‘ This.
I‘ [.111] "3' MI:‘.TJ§DATA_HANDLE hz"lDHar|dlE;

S .-"' [string] [in] [uruque] ",1 LPCNSTR psz.D-1DPath.
x- [in] ‘H PMETADATA_REcoRo pmdrMDData]:

6 1'‘ [local] '2' HRESULT STDMETHODCALLTYPE IMSAda'ninBa5t=.W__GetData__Proxy(II‘-!SAd.minEasew RPC EAR * This,

7 X‘ [in] —.r METi._5ATA:H.=mDLE tmonandle,K‘ [string] iin] [un.1.quel U LPCWSTR p52MDPath,
3" [out:}[iI1] ‘J’ ?METADATP.__RE:COF|.l'J pmdfl-[DData.

8 :" [out] '.-’ DWORD ___RPC__F'AFl "pdwMDFlaquiredDataLen}:

9 I‘ I-:.a11_a.-3} ‘I HRESULT STDMETHODCALLTYPE IivlS1\d.'ninBas-2W_EietData_Stub(IM5Ad.n1inBaseW ___RPC_E‘AR " This.
10 I‘ [in] *2’ MET.|\E)ATA_HANDLE hMDHanc!le,i- [string] {in} [umquei H’ LPCWSTR pszb-lDPath.

3" [c>utl[in} '2' PMETAD.|\TP.__FlECOFlD pmc£t1“lDData.
1] I- [out] -x Dwc-Ru __RPE2__£‘AP. ~pdwamr<equi:ednataLen.

I‘ [outl "3' strum. __IrS__CR‘rPTO__BLOB _P.PC_FAR "_RPC_E'AR *ppDataB1ob}I:

12 I ‘ {Luca 1] ‘ I HRESULT STDMETHODCALLTYPE IMS.11cl.m_'L nBaseW__Enumflat a_Prox3«-EIMSAd.minBaseW ____RF'C_!“F\Fl ‘ This.,
I" [in] ‘.v" METRDRTA HBNDLEI hidflflandle, 13 I‘ [stringi[in][un1Eue] U’ LPCWSTR pszi‘-lDPati1,
I‘ [out‘J[inT '.-’ PMF.TADM‘.Ik_RECoRD pmdrMDDat.a.

14 I‘ [1111 ‘.-" DWORD dwMDEnu:nDataIndex.
2" [out] '2’ DWGRD _RPC__I_-‘AR *pdwMDRequirec.tDataI.er:J;

15
1" {call_as] ‘A’ HRESULT STDMETHODCALLTYPE IMSAd:ninBaseW_Enumi)ata_Stub{

IMSAdminBaseirJ ___RPC_f‘AR ' This.
. 15 3- [in] ‘I MeTADATA_HasuLE hMDHandle,

E 1"‘ [string] [in] [uruque] ‘I LPCWSTB pszMDPa\:h.
,4 17 f‘ [our.‘J{in1 M’ PME.TADATA_RECORD pmdmorlata,
E I‘ [in] ‘I Dwoau duMOEnmuata1ndQx.
:13: : J” [out] "3' DHORD ___RPC_E‘)!R *pdwMDFlequirP.dl'2IataLen,.

qggg E 18 I‘ [out] '1' suruct _IIS_CR!'PTO_BI.OB ___RPC__FAFl ‘_RPC_E‘AR 'ppDataBlc>h);= EW E; -E I‘ Ilocall ‘K HRE5ULT STDMETHDDCALLTYPE IM$HdminBa5eW GetA11DaEa Proxy:
8 3?"; 19 I.MSAd.minBaseW _RPc_rAR - Tms. _ "u:1> EE i‘ [in] ‘I METADATA_HANDLE hmouandle.
-':>§2gv-5 I‘ {s!;r':nq]Iin1[U1'1ique] u’ LPCHSTR pszMDPath.
Qgggfig 29 r- 11:1] U nwonn dwmmttributes.
..§.:§§;‘ K” {in} ’f DWORD dwMDU5erT5-"Pe.-

fig —- 1 2] r* [in] ‘I nwoma dwMDDar;aType.
E "' I‘ [ou|'.I "‘.«‘ DWORD __R.PC_FAR ‘pm-u-MDNumDataEntrieS:
3‘ !‘ [CHILI *2‘ DWORD ____RPC__FAR 'pdwMDDat;aSe1:,Nu.1-nber,
an 22 3- linl w Dwom) dwf-1DB\.>ffe:Si.za,

3 xv {si:'.e_is}Eout} ‘I unsigned aha: _apc:_r.r-xaz 'pbMDBI.1ffer.
23 1* lent} "2' DWORD _‘.RPC_FAR 'pdwI-IDRequiredBufferSizeI;

24 3* [ca1.J._as] U HRESULT STDMETIIODCALLTYPE II-Ishd.-ninaaset-I_Get3\llData_Sr.ub1

- Page 143 - Du<:|wlNo. I3?68.62

79

80

WORKMAN.NYDEGGER&SEELEY APROFESSIONALCOI.P()IAT|.0'N A1”‘I‘0R1'-‘I-XSan‘LAW L000E.M‘:1.EGATE‘rowan anE.n|\STSf}‘U'TI!1‘EMP'|.IE SALTLAKEcmr.UTAH:41:1

10

11

I2

13

14

15

16

I7

18

19

20

2]

22

23

24

6,061,692

127 128

IMSAd.trIinBa5Q‘n‘ ___RPC_FAR ' This.
I‘ [in] ‘J’ METADATA_HANDLE. hMDI'landJ.B.
I‘ [string][in][un1quel *3 LPCWSTR ps2MDPath,
3‘ [in] *f DWORD dwMDAttributQs.
I‘ [in] *f DWDRD dwMDUaetType,
I‘ [in] ‘X DWORD dwMDDataType,
I‘ [out} ‘I DWDRD __RPC_FAR *pdwMDNumDataEn:ries,
I‘ [out} ‘I DHORD __RPC_PAR *pdwMDDataSetNumber,
K‘ [in] *f DWORD dwMUBufferSize,
I’ [out] ‘I DNORD __RPC_FAR 'pdwMDRequi:edBufferSize.
I‘ {out} ‘I struck _IIS_CRYPTO_BLDB __RPC_FAR ‘__RPC FAR ‘ppDacaBlob}:

.u"' {restricted} [local] H" HRESULT STDMETHODCALLTYPE
IMsadminBa5eW_KeyExchangePhase1_Proxyfl

IMSAd.1ninBa5|2W _RPc_?AR « This);

f* {ca1;_as] ‘J HRESULT STDMETHODCALLTYPE IMSAdminBaseW_KeyExchangePha5e1_Stub(
1MSAdm4nBaseW __RPC_FAR * Thlfi.
I‘ {in][unique] ‘E srrucz _IIS_CRYPTO_BLOB __RPC_FAR

'pcli9ntKeyExchanqeKeyBlob.
x- :in] [uniquel n‘ strucr. _J.Is__=:R¥r’To__BI.oB __P.PC_E‘AR

‘pClientSignatureKeyB1ob.
I‘ [out] ‘I struct _IIS_CRY?TO__BI.0B __RPC_FAR ‘___RPC_1-‘AR

'ppserverKeyExchanqeKeyBlob.
I‘ {out} ‘I struct _1IS_CRYPTG_BLOB __HPC_FER ‘__RPC_FRR

'pp5erverSignatureKeyBlOh;
:- [out] ‘I struct _IIs_~:Rn>To_s1.oB ___RPC_F-‘AR "_RPC_E‘Al-‘t

'ppServez5essionKeyBlohJI

K‘ irestrictedjllocalj ‘I HRESULT STDMETHODCALLTYPE
IM3Adm1nBaseWwKeyExchangePhase2_ProxyI

Ifisfidminfiasew __RPC_FAR * Thlsl;

I‘ {ca11_a5] ‘I HRESULT STDMETHODCALLTYPE IMsAdminBaseW_KeyExchangePha5e2 Stuni
IMSAd.minB-asefl __RPC_FAR * This, _
{- [in][unique1 ‘I szrucz _IIS_CFYPTO_BLOB __RPC_PAH'pClient5a5sionKQyB1ob.
I‘ {in][unique] ‘I struct _IIS_CRYPTO_BLOE __RPC_F%H *pC1ientHashBlob,
.r- rcmu ‘I struck. _I'I.S_CRYPTO_BLOB _.RPC_P.|1.R ‘_RPC_PA1=t°ppServerHa5hBlob!:

I‘ end at Additional Prototypes ‘I

liidef __cplusplus
1
lendif

lendif

I‘ th1s ALWAYS GENERATED file contains the definitions for the interfaces *3

I‘ File created by MIDL compiler version 3.03.0106 ‘II‘ at Thu Jul 31 1D:b8:59 1937
‘K

I‘ Compiler settings for .\mddefw.idl:

- Page 149 — nocm No. 13153.52

80

81

“HDRK$dAN.N\qDHGGERJ&SEELEY »\PROFESSION.!.|.conmrunou KnUmflfi$flTLfiW IHEMR£GKE1UWER bGEfl3T§0UTHTEhWL£ sALTLAxEcn13uTaHmin

10

H

12

13

14

15

16

17

18

19

20

21

22

24

6,061,692

129 130

Oi 10ptLev-10:. W1. Zpfi, envwwinaz, ms_ext. c_exterror checks: allocation ref
‘X
!f@fiMIDL_?1LE_HEADINGt F

I‘ verify that Lhc <rpcndr.h} version is high enough to compile this file‘f
Iifndef _RE.OUIRED_RPCNDR_H_\a"ERS£ON_
{define __REQUIRED_RPCNDR_H_VERSION__ 440flendif

linclude "rpc.h"
ljnclude "rpcndr.h"

tifndef __mddefw_h__
ldefine __mddefw_h__

Iifdef __cplu5p1u5extern "C"!
lendit

I‘ Forward Declarations ‘K

f° header files for
Iinclude "unknwn.h"

imported files ‘I

void __RPC_?AR ‘ __RPC_USER MIDL_u5er_allocate{si:e_tJ;
void __RPC_USER MIDL*user_free£ void __RPC_FAR * J:
fooQnxInQunQuI2i1QIIInn¢tt|tttttttnIItvlfl

' Generated header for interface: __MIDL_it£_mddefw_0GO0* at Thu Jul 31 10:55:59 199?
‘ using MIDL 3.03.0106
c¢.;nInq|.¢In-analnoAdd-tvdz-1w1rtttnan4n¢aa4+‘.‘

I‘ {localf ‘f

i*++

Copyright to? 1997 Microsoft Corporation

Module Name: mddeE.h

Definitions for Admin Objects and Metadata

__oj
lifndef _MD_DEFW_
Idefine _MD_DEFW_
linclude <mdm5g.h>
linclude <mdComm5g.h>;‘

Error Codes

Metadata api's all return HRESULTS. Since internal results are either
winerrors or Metadata specific return codes (see mamsg.h:, they are
converted to HRESULT5 using the RETURNCODETOHRESULT macro {see
commsg.h]_

‘F

3.
Max Name Length

The maximum number oi characters in the length of a metaobject name.
including the terminating NULL. This refers to each node in the tree,

- Page I 50 — Doclse1‘No mean

81

82

WORKMAN.‘NYDEGGER&SEELEY APl.K}fl:‘.SSIOM\LCOKPGKATJUN _:ATTORNEYSATLAW nmnnnateoatsrowtn WHISTSOUTHIEMPLE SALTLAKECWYJHHEMIN

[0

I]

I2

13

I4

15

I6

I?

I3

19

20

21

22

23

24

6,061,692

131 132

not the entire path.
eg. 5trlen{"ROUt"J (METADATR_MAX_NAME_LEN'2'

#define METADATH_MRX_NAME_LEN‘lg.
Access Permiascns

Permissions associated with handles of type METADATA_HANDLE

256

METADATA_PERMISSION_READ - Allows reading metadata.
METADATA_PERMISSION_WRITE - Allows writing metadata.‘K

itciefine M'E.T.|\DAT.|_PERMISSI0N_FlE.1\D 0x00000001
{define METADATA_PERMI5SxON_wRITE 0x00000002;.

Data ‘Types

ALL_METADATA — Used on Get!Enum!Geta1l api'5 tComMDGetMetaData.
comMDEnumHetaData. and ComHDGetA11MetaData}, api's to allow getting
all data. Not valid on the Set api.

DwoRD_METADATA — The data is an unsigned 32 bit value.

$'.l'RING__P-1E2T.ROATJ'\ — The data is a null. terminated ASCII. string.

BlNARY_METADATA — The data is any binary value.

EXPANDSZ_MFTADATA - The data is a null terminated ASCII string.
Clients are expected to treat this as an expandsz string.

HULTISz_HETADATA - A series of NULL terminated ASCII strings, endingwith 2 NULL's.
‘I

enum HETADATRTYPES
I AL.L_METADF\TA - 0,

DHORD_METADATA
STRlNG_METADRTR
3TNHRY_METADATA
EXPANDSZ_METADATA
MULTISZ_METRDHTA
INVALID_END_HETADHTH

A1.L_METAD3\TA + 1.
DwoaD_t~1l-:TnDM‘A + 1.
STRING METADATA + 1,
EINARY:METAD.l\TA + 1,
txPANosz__Mm-ADATA + 1,

- MuLTIsz_ME'rADJ=.TA + I1:
1,».

Attributes — The flags for the data.

METRDATR_LNHER3T — If set for a data item, the data item can be
inherited. If set on input to the Gel:fEnum!Get.a1l ap1'.-3,
lcommofietmeteflate, Comfinanumuetanata, and ComMnGetA11MetaData].
inheritable data will be returned. If not set on input to the
Get."Enumr"Getal1. inheritable data will not be retuzned.

MTADATA_PARTIAL_PATH — If set on input to GetJEnum!Getall api's, this
routine will return ERHOR_sUCCESS and the inherited data even if
the entire path is not present. Only valid if METADATA_1NHERIT is
also set. Should not be set for data items on input the the Set apilComMDSetMetaDataJ.

MP.TADATA_5E!'.'URE - If set for a data item. the data is stored 1.11 a
secure fasion. should not be set on input to Getianum api's.

METADATA_REFERENCE — If set for a data item. the data item may be
gotten by reference. If set on input to Get!EnumfGetAll api's and
set on a the data item being returned, the data is returned by

- Page 151 - l_)D1:k¢l Ne. l3?68.(-2

82

83

WORKMAN,NYDEGGER&SEELEY nPBWESBIONALconmlwion NHORNEYSRTLAW IMHEAGLEGKTETOWER fiDEA5TSQUTH1§NW1E SALTLAKEcrnr.UTAHE-‘lln

10

ll

12

I3

14

15

16

17

13

19

20

2]

22

23

24

6,061,692

133 134

reference. A pointer to the metadata 5erver'5 copy of the data is
placed in the Data field of the METADATA_RECORD or
METADATA_GETALL_RECO8D, and the DataTag field is set. This datamust
be freed by calling CcmMDReleaseRefetencenata. The client must not
change this data. This flag must not be set on input to
Getffinumffietall api's from remote clients.

METADATA_VOLATILE — If set far a data item, the data item will not be
saved to long term storage.

METADATA_rsINHERIT£D — If specified on input to one oi the get api's,
the flag will be set on return if the data was inherited.

METADATA_1N3ERT_PATH - If specified on input to one of the get api‘s,
and on a string data item, the path relative to handle will replacedthe
5 t r ing MD_ IN3ER'l‘_PATH_5".l‘RING in the s t ring dat a .

‘I

ldefine METRDATI-_NC_ATTRlBUTES 0
{define METADATA_INHERIT 0x00000001
idefine METADATA_?ARTIAL_PATH DXDODUOGOZ
Idefine METADATA_SECURE DxDGDGDGOd
{define METADHTA_REEERENCE 0x00000008
Idefine METADATA_VOLATILE DxDUDflDfll0
[define METADATA_1SINHERITED DXOODGOGZO
ldefine METADATA_INSERT_PATH oxnnooouau

;.
Backup Flags.

MD_BACKUP_OUERwRITB — If set, the metabase will be backed up even if
a backupe with the same name and version already exists. The
existing backup will be overwritten.

MD_BACKUP_SAVE_FIRST — If set backup will save the metabase prior to
making the backup. It the save fails, backup behavior is dependent
on the value of MD_BhCKUF_FORCE_BACKUP.

MD_BACKUP_FORCE_BACKUP - If set backup will proceed even if the save
failed. Only valid if MD_BACKUE'_S.R\«"I‘._E'IRST is set. If the save
but the backup succeeds. a warning will be returned.

‘I

ldefine MD_BACKUP_OVERwRITE 0x00000001
ldcfine MD_BACKUP_3AVE_FIR3T 0x00000002
ldefine MD_flACKUP"FORCB_BACKUP 0x00000004(fa:

Backup Version Defines.

MD_BACKUP_NExT_VER5IoN — For Backup, indicates use the next available
backup version of the BackupLocation specified. ie. one higher than
the highest existing Version.
Not valid for Restore or Deletesackup.

MD_EACKUP_HIGHEST_VERS1ON - For Backup, Restore, and Deleteflackup. will
use the highest existing backup version of the BackupLocationspecified.

MD_BA£KUP_MAX_VERSION - The highest allowed backup version number.

— Page 152 - not-mun. l3?6S.62

83

84

WORKMAN,NYDEGGER8:SEELEY AHGGFESSIMNIAI.Ol')IPOflAT[ON ArnmN£vsarLaw INEAGLEGATETOWER antasrsouniltnnt Sr\l..TI.M(ECITV.UTJKHum

10

ll

12

13

14

15

16

17

13

19

20

21

22

23

24

6,061,692

135 136

MD_BACKUP_MAX_LEN — The maximup length, in UNTCODE characters. of the
BackupLocation.

‘I

‘define MD_BRCKUP_NEXT_VERSION Oxffffffff
fidefine MD_BACKUP_HIGHEST_VERSION Oxfffffffe
‘define MD_BRCKUP_MAX_UERSION 9995
idefine MD_BACKUP_MAX_LEN {I001
;.

Backup LocaLion Defines.

MD_DEFAULT_BACKUP_LOCATIoN — The default location to backup firm or
restore to if no location is specified.‘I

#define MD_DEFAULT_BACKUP_LOCATION TEXTI"MDBaCkUp"]
,.

Insert Path Defines.
‘I

idefine MD_INSERT_PATH_STRINGA
#define MD_1NSERT_PATH_STRtNGW
{define MD_INSERT_PATH_STRING

"<fiINSERT_PRTH%>"
Ll¥"<fiINSERT_PATH%>"
TEXT{”<$INSERT_PATHi>"l

‘(A
Handle Defines.

‘I

#define METADnTn_MAsTER_Ro0T_HANDLE 0
fr

METADnTA_RECORD is the basic inputlnutput parameter for the set and get
metadata api's. The Set api {ComMDSetfietaDataJ takes all fields as
input, except DataTaq. The Get!Enum api'5 tcomflucetuetadata and
ComMDEnumMetaData: take some of the fields as input. and fill in all
fields as output.

Identifier — The identifier of the data.

Attributes - The flags for the data.

UserType - The User Type for the data. This is a user defined field to
allow

users to group data. If set to anything other than ALL_HETADATA on
input

to Getffiez apis. only metadata of the specified User Type will hereturned.

ALL_METADHTR

User Defined Values

Da:aType - The Type of the data. Must be set ta a valid value other than
ALL_METADATA for each data item. If set to anything other than
ALL_METADATA on input to Getfset api'5, only metadata of the
specified Data Type will be returned.

ALL_METADNFA
DwoRD_METADATA
STRING_ME.'E‘ADA‘E‘A
a.INA?.Y_ME1‘A{J’A'E‘A

- Page 153 - Doc|<c[Nn.13T68.62

84

85

;§§E§

%‘%%aWORKMAN,NYDEGGER&SEELEY

13

I4

15

16

17

18

19

20

21

22

23

24

6,061,692

137 138

HXPfiMDS2_METAflATA

DataLen - On input to the Set api, specifies the length of Data, in
bytes. Enprocess clients only need to specify this for binary data.
Remote clients need to specify this for all data types. For strings,
this must include the trailing '\D', eg. strlenlscringa + 1.
On input to Getfinum apis. specifies the size of the buffer pointed to
by Data. On successful output from Getffinum API's, specifies the size

of
Data in bytes.

Data - On input to the Set api. points to the data. On input to the
Get!Enum api's, points to a buffer to return the data in. on output
from the Set!Enum api'5, points to the data. If the data is not
gotten by reference, the pointer uill be unchanged.

DataTaq - A tag for reference data. Not used in the Set api. Not used on
input to the Get#Enum api's. On successful return from the Getlfinum
api'e, this is set to a nonzero tag if the data was gotten by

reference.
and set to 0 if the data was not gotten by reference.*}

typedef struct
I
DWORD dunnldentifier;
DHORD dwunnttribuces;
DNGRD dwnbuserrype:
HWORD dwMDDataType;
DNQRD dwMDDataLen:

!* Isi2e_is]Iunique] ‘I unsigned char __RPC_FAR 'pbMDData;
DWORD duMDDataTag:
I METADnTA_RECORD:

_METADATA_RECORD

typedef struct _METADHTA_RECORD __RPC_FAR 'PMETADATA_REC0RD;
,.

METADATA_GETALL_RECORD. 15 essentially the same as METADATA_RECORD. but i5
used by MDGetAl1MetaData. It is used the same as the corresponding
METADATA_RECORn values for the MDGetMetaData, with the following
exceptions:

MGGetA11Metadeta does not take the structure as input, but takes parameters
equivalent to Attributes, UserType, and DataType.

on output, MDGetA1lMetadata returns an array of METADATA_GETALL_RECORD.

Dataflffsetfflata - If the data is not returned by reference, Dataoffset
contains the byte offset into the buffer provided. If the data is
returned by reference. Data Contains a pointer to the data..

I
typedef etruct _METADATA_GETALL_REC0RD{

DWORD dwMDIdenti£ier;
DWORD duMDAtt:ibutes;
DWORD dwMDUserType;
DHORD dwMDDataType:
DWORD dwMDDataLen;
union

I
DWORD dwMDData0frset:
unsigned char _ RPC_?AR *pbMDData:1 ;

DWORD dwMDDataTaq:

~ Page 154 - uucm No. t3‘l'68_fi2

85

86

6,061,692

139 140

1 l MET.PLDATA_GETAI.I._RF.CDRD:

typede f 51'. rucl; _MET.i\DAT.l_GETALL__F'.ECORD __l-'.PC__E‘AR ' P1\1ETADATA_('€F.TALL_RECORD .'

typede f DWORD META D.‘-'uTA__ HANDLE:

typedef DNCRD __'RPC_F.HFl ‘P!"|E}TADATA_H.RNDLE:

4«“Handle lnformation

5 Permissiona - The permissions associated with the handle.
MET.HDAT.P|_PERMISSION_EEAD
METADATA__I'PEP.MISSION__WRITE6

S3,-.-acemchangehumber — The system change number at the time the handle was
7 allocated.'3'

typedef 91: ruct _.~:ETADATn_HANDLE._'INFO
3 i

DWOREJ dwnnpermissians:
DWORD dwflnsysts-mt,‘hangeNuz!Lber:

9 1 I-iETADA'E‘A_HAND[.E_INFO;

10 typedef 5 t ruct __MI:‘.TADATA_HANDLE_IN'E'lII _____RPC_ FAR " E’METADA'!‘A_HANDLE_ INFO;

‘fi

Chan e Obect - The structure passed to Cornflbsinkwotify.9 2|

I2 Path - The path of the Metaobject modxfxed.
Chanqe'I‘ype — The types of changes made, from the flags below.

[3 Numflatalfls — The number of data id's changed.
Datalna — An array of the data id's Chan ed.

14 _J_ 9

[5 marine Mo_<:HANc1-:_oaJac-r 1-m_craANGE_na.:EcT_w
ifdefine PMD_CH.1\I~lGE_DB.JECT P‘MD__CHANGE_0BJECT_'PI

I6 typedef struct. _MD_CHANGE_0BJE‘.C':‘_wI

E 1" lstrjngl *1" LPHSTR pszMDPath;
_} 17 WORD dwMDChangeType.-
FL-3 [moan dwMDNumDat.aIDs:

9;; = 1"" l.size_:'.s] [unique] ‘I’ DWORD _RPC_}"-‘AR *pdwMDI)ataIDs:.3 i_ $33 13 1 HD_CHANG.‘.‘._0BJECT_N;,1 3;

19 typedef euucr. _M.'J_CHANGE_DBJ'ECT_W _RP(I__FAR ’'PMD_I1'.‘H.F\NGE_0BJECT_H:-(-23
‘-im-([1,:ca

§§§:.'§E "
>-332:” 20 Ch
2 Etmfij ange Types

.. -1: "

E; ESE 21 MD_CHANGE_TYPE_DELETE _OBJECT — The Meta Object was deleted.
:5 22 f-1i'1_CH.ANGE__T'(PB_ADD_OBJEC‘J' - The Meta Object was added.
g mn_cHanGE_-rn=a_sE1'_oA'rA - A data item was set.

23 MD__CHANGE_T'1'PE__DELETE_DA‘l‘A — A data item was deleted.

24 MU_CH.RNGE_T'fPE_RENAl'IE_0BJEC'T ' The Meta Object was 11'-_Inamed_

- Page 155 — Duckcma. ISM-8.62

86

87

6,061 ,692

141 142

1 -r

ifdefino MD_CHANGE._'I“1'PE_ DEI.l3TEZ_OBJECT 0x00000001
2 marine MD__C[-IANGE_T'z'PE_ADD_GaJECT‘ oxoooonooz

#define MD CI-lANGE_T‘:'PE_SET_D}'-\TF\ Oxoooooonq

3 seoiefine Mf1_CHANGE_T‘YPE__DE'.]'_.E‘I‘E_DA‘I'A oxooouoooesedefine M:'J__CHANGE2 T‘:'PE_RENAHE_0BJECT oxooooomo,.
4

Max Change Entries — The maximum number nf chanqe entries that will be sent on
a single call to 1flDCOfiSINK::ComDSinkNotLfy. If more notifications are

5 required. IMUCOMSINK::ComMDSinkNcti£y wili be called multiple times.‘I
fidofine MU_MAX_CHANGE_ENTRYES 100

6 Wendi!

7
extern RPC_IF_HANULE __MIDL_itf_mddefu_OD0O_vO_0_c_ifspec:
extern RPC_IF_HANDLE __M1DL_itf_mddefw_0OOO_v0_0_s_ifspec:

I‘ Additional Prototypes for ALL interfaces ‘I

9 X‘ and of Additional Prototypes ‘I

10 #ifdef __cplusplus}
fiendif

ll #endif

12

WORKMAN,NYDEGGER&SEELEY APR.0'FES5|O’.‘«'Al..|.'T{7RPO‘R.AI'lUN' .-rrrolmuvsanLAW L000EAGLEGATEmum: onFASTsourul'l7.MPl.E SALTLAKEl2‘1T\'.UTAHan:It

- Page 156 ~ mck.=mu_ 13152.52

87

88

6,061 ,692

143
SUMMARY

In summary, the present invention provides a novel infor-
mation server that includes an integral database for storing
metadata. The metadata is retrieved as pan of the process
that retrieves information objects accessed by clients of the
information server. The database, sometimes referred to as a
metabase, provides unique advantages that are not available
in prior art information servers. The metabase allows sim-
plified administration of the information server through
various features of the present invention including inherit-
ance of property information stored in the rnetabase. The
metahase may be provided with a programatic interface,
although this is not required. Such an approach, however,
has several advantages. The metabase also has the ability to
notify registered clients of the occurrence of specified
events. This notification ability can be used, for example, to
notify registered clients of changes in the metabase. Unique
read and write locking mechanisms may be implemented
that allow simultaneous administration of the metabase by
multiple administrators. Full remote administration of the
metabase is available if the metabase is implemented using
remotely accessible technology such as Microsol't’s COM
technology or an equivalent.

The present invention maybe embodied in other specific
forms without departing from its spirit or essential charac-
teristics. The described embodiments are to be considered in “

all respects only as illustrative and not restrictive. The scope
of the invention is, therefore, indicated by the appended
claims rather than by the foregoing description. All changes
which come within the meaning and range of equivalency of
the claims are to be embraced within their scope.

What is claimed and desired to be secured by United
Stated Letters Patent is:

1. In an information server that has access to a storage
medium wherein information objects are stored according to
a storage hierarchy and further has access to a database .
comprising a plurality of key locations that are arranged
hierarchically and store metadata, a method for retrieving an
information object and metadata associated with the infor-
mation object, said method comprising the steps of:

obtaining a path name comprising a hierarchy of constitu-
ent names;

resolving said path name into its constituent names;
while proceeding from parent to child through the con-

stituent names, performing the steps of:
identifying a key location in said database that corre-

sponds to one ofthe constituent names and retrieving
metadata from said identified key location;

identifying a storage location in the storage hierarchy
of the storage medium that corresponds to another of
the constituent names; and

resolving a physical location of the information object
at the storage medium by using said other of the
constituent names and any children constituent
names thereof; and

retrieving the information object from the physical
location.

2. A method as recited in claim 1 further comprising the
steps of:

checking for an indication that the retrieved metadata
should be inherited; and

if such indication exists then applying said retrieved
metadata to subsequent constituent names that are part
of said path name.

3. A method as recited in claim 1 further comprising the
step of storing in at least one of said plurality of key
locations an access control list that identifies the type of
access that clients may be granted.

I0

15

30

40

50

55

60

65

88

144

4. A method as recited in claim 3 further comprising the
step of prior to retrieving said metadata Iirst checking said
access control list to determine if a client requesting the
information object is authorized for the requested access.

5. A method as recited in claim 1 further comprising the
step of attempting to obtain a read lock prior to retrieving
said metadata.

6. A method as recited in claim 5 wherein said plurality of
key locations of said database are arranged in a hierarchical
relationship and when said read lock is obtained, all key
locations in a child relationship and all key locations in a
parent relationship to said identified key location are also
locked for reading.

7. A method as recited in claim 5 wherein said plurality of
key locations of said database are arranged in a hierarchical
relationship and said read lock is not granted if any other
client has a write lock on said identified key location.

8. A method as recited in claim I wherein said database

comprises a programmatic interface through which access to
said database is allowed and wherein said metadata is

retrieved from said identified key location by making an
appropriate call into said programmatic interface and receiv-
ing the requested metadata through said programmatic inter-
face.

9. A method as recited in claim 1 wherein at least one of

the constituent names corresponds both to at least one ofsaid
plurality of key locations and to at least one of either a
storage location in the storage hierarchy of the storage
medium or the information object.

10. A method as recited in claim 1 further comprising the
step of synchroniring the information in said database with
a second copy of said database.

11. A method as recited in claim 1 wherein at least some

of the metadata comprises an indication that the metadata is
secure. the method further comprising the steps of:

encrypting said secure metadata if said secure metadata is
written to disk; and

encrypting said secure metadata if said secure metadata is
sent outside a trusted environment.

12. A method as recited in claim 11 further comprising the
step of storing in at least one of said plurality of key
locations an access control list that identifies the type of
access that clients may be granted to said database.

13. A method as recited in claim 1 further comprising the
step of checking said retrieved metadata and based on said
retrieved metadata performing at least one of two possible
actions such that the action performed is determined at least
in part by said retrieved metadata.

14. In an information server that has access to a storage
medium wherein information objects are stored according to
a storage hierarchy and further has access to a database
comprising a plurality of key locations that are arranged
hierarchically and store metadata, a method for responding
to a request from a client for retrieval of an information
object, said method comprising the steps of:

at said information server, receiving from said client said
request for said infonnation object, said request includ-
ing a path name comprising a hierarchy of constituent
names;

resolving said path name into its constituent names;

while proceeding from parent to child through the con-
stituent names, performing the steps of:
identifying a key location in said database that corre-

sponds to one ofthe constituent names and retrieving
metadata from said identified key location;

identifying a storage location in the storage hierarchy
of the storage medium that corresponds to another of
the constituent names; and

resolving a physical location of the information object
at the storage medium by using said other of the

89

6,061 ,692

145

constituent names and any children constituent
names thereof; and

retrieving the information object from the physical loca-
tion.

15. A method as recited in claim 14 further comprising the
steps of:

checking for an indication that the retrieved metadata
should be inherited; and

if such indication exists then applying said retrieved
metadata to subsequent constituent names that are part
of said path name.

16. A method as recited in claim 14 further comprising the
step of storing in at least one of said plurality of key
locations an access control list that identifies the type of
access that clients may be granted.

17. A method as recited in claim 16 further comprising the
step of prior to retrieving said metadata first checking said
access control list to determine if a client requesting the
information object is authorized for the requested access.

18. A method as recited in claim 14 further comprising the
step attempting to obtain a read lock prior to retrieving said
metadata.

19. A method as recited in claim 18 wherein said plurality
of key locations of said database are arranged in a hierar-
chical relationship and when said read lock is obtained, all
key locations in a child relationship and all key locations in “
a parent relationship to said identified key location are also
locked for reading.

20. A method as recited in claim 18 wherein said read lock

is not granted if any other client has a write lock on said
identified key location.

21. A method as recited in claim 14 wherein said database

comprises a programmatic interface through which access to
said database is allowed and wherein said metadata is

retrieved from said identified key location by making an
appropriate call into said programmatic interface and rcoeiv- ,
ing the requested metadata through said programmatic inter-
face.

22. A method as recited in claim 14 wherein at least one

of the constituent names corresponds both to at least one of
said plurality of key locations and to at least one of either a
storage location in the storage hierarchy of the storage
medium or the information object.

23. A method as recited in claim 14 further comprising the
step of synchronizing the information in said database with
a second copy of said database.

24. A method as recited in ctairn 14 wherein at least some

of the metadata comprises an indication that the metadata is
secure, the method further comprising the steps of:

encrypting said secure metadata if said secure metadata is
written to disk; and

encrypting said secure metadata if said sccurc metadata is
sent outside a trusted environment.

25. A method as recited in claim 24 further comprising the
step of checking said retrieved metadata and based on said
retrieved metadata performing at least one of two possible
actions such that the action performed is determined at least
in part by said retrieved metadata.

26. In an information server that has access to a storage
medium wherein information objects are stored according to
a storage hierarchy and further has access to a database
comprising a plurality of key locations that are arranged
hierarchically and store metadata, a method for retrieving
information objects and metadata associated with the infor-
mation objects, said method comprising the steps of:

obtaining a first path name comprising a first hierarchy of
constituent names;

obtaining a second path name comprising a second hier-
archy of constituent names;

I0

15

30

40

50

55

60

65

89

146

resolving said first path name and said second path name
into their constituent names;

for each of the first path name and the second path name,
while proceeding from parent to child through the
constituent names of the particular path name, perform-
ing the steps of:
identifying a key location in said database that corre-

sponds to one of the constituent names of the par-
ticular path name and retrieving metadata from said
identified key location;

identifying a storage location in the storage hierarchy
of the storage medium that corresponds to another of
the constituent names of the particular path name;
and

resolving a physical location of the information object
at the storage medium by using said other of the
constituent names and any children constituent
names thereof; and

retrieving the information objects from the physical
locations.

27. A computer system comprising:
a database comprising a plurality of key locations

arranged in a hierarchical relationship, said plurality of
key locations representing storage locations where
metadata may be stored;

a plurality of information objects that can be accessed and
returned to a requesting client; and

a computer-readable medium having computer-
executable instructions that include:

means for receiving a path name comprising a hierar-
chy of constituent names from a client;

means for resolving said path name into its constituent
names;

means for retrieving said metadata from said database
using a first constituent name ol' the path name and
for accessing and returning an information object
using a second constituent name of the path name in
response the path name being received from the
client, said means for retrieving comprising means
for interpreting properties included in the metadata
retrieved from said database such that said means for

retrieving can perform actions based on the proper-
ties; and

means for providing a programmatic interface to said
database such that access to said database in obtained

through said programmatic interface.
28. A computer system as recited in claim 27 wherein said

database further comprises access control means for identi-
fying the type of access to at least one ofeither said database
or an information object that is to be granted certain clients.

29. A computer system as recited in claim 27 wherein said
computer—executable instructions further include means for
placing read locks at key locations, said read locks com-
prising at least a first type of read lock and a second type of
read lock, said first type of read lock being placed on an
identified key location and key locations in a child reiation-
ship thereto and said second type of read lock being placed
on key locations in a parent relationship to said identified
key location.

30. A computer system as recited in claim 27 wherein said
computer-executable instructions further include means for
placing write locks at key locations, said write locks com-
prising at least a iirst type of write lock and a second type
ofwrite lock, said lirst type of write lock being placed on an
identified key location and key locations in a child relation-
ship thereto and said second type ofwrite lock being placed
on key locations in a parent relationship to said identilied
key location, said first type of write lock granting the right

90

6,061 ,692

147

to write data and said second type ofwrite lock not granting
the right to write data.

31. A computer system as recited in claim 27 wherein said
metadata comprise an indicator that allows said metadata to
be inherited by key locations in a child relationship to the
key location where said metadata is stored.

32. A computer system as recited in claim 31 wherein
metadata stored in a designated key location can override
rnetadata inherited from key locations in a parent relation-
ship with said designated key location.

33. A computer system as recited in claim 2'7 wherein said
cornputer-executable instructions further include means for
synchronizing said database with a second copy of said
database.

34. A computer system as recited in claim 27 wherein said
cornputenexecutable instructions further include means for
storing secure data in said database, said secure data being
encrypted whenever said secure data is written outside of
system memory and said secure data being encrypted when-
ever said secure data is sent outside a trusted environment.

an

ID

15

90

148

35. A computer system as recited in claim 27 wherein said
computer-executable instructions further include means for
allowing write access to said database by a first administra-
tor and a second administrator simultaneously.

36. A computer system as recited in claim 35 wherein said
computer-executable instnictions further include means for
sending notification to said first administrator when said
second administrator releases write access and means for
second notification to said second administrator when said
first administrator releases write access.

37. A computer system as recited in claim 27 wherein said
computer-executable instructions further include means for
allowing remote administration of said database.

38. A computer system as recited in claim 27 wherein said
computenexecutable instructions further include means for
sending notilication to identified clients when designatedevents occur.

