
DirectShow COM Interfaces Page 340 of 658

GetLocaleinfo (*pLanguage, LOCALE SENGLANGUAGE, pszstring, cbSize) i

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§lllMM

MQi§i!!.ljj,i 111.J,,[9 Topic Contents 1@1§111$8

IDvdlnfo::GetCurrentAngle

IDvdinfo Interface

Retrieves the number of available angles and the currently selected angle number.

HRESULT GetCurrentAngle(
ULONG *pnAnglesA vailable,
ULONG *pnCurrentAngle);

Parameters

pnAnglesAvailable
[out] Pointer to the retrieved number of available angles. If the value pointed to equals
1, then the current video does not contain multiple angles.

pnCurrentAngle
[out] Pointer to the retrieved current angle number.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

Angles are interleaved video streams that presumably contain the same scene shot with
different camera angles.

This method returns an error unless the domain is DVD DOMAIN Title.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M 111.1 1119 Topic Contents l@i§lllMM

731

DirectShow COM Interfaces Page 341of658

IDvdinfo::GetCurrentAudio

IDvdinfo Interface

Retrieves the number of available audio streams and the number of the currently selected
audio stream.

HRESULT GetCurrentAudio(
ULONG *pnStreamsA vailable,
ULONG *pnCurrentStream);

Parameters

pnStreamsAvailable
[out] Pointer to the retrieved number of available audio streams

pnCurrentStream
[out] Pointer to the current stream number.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

This method returns an error unless the domain is DVD DOMAIN Title.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij Topic Contents

IDvdinfo::GetCurrentAudioAttributes

IDvdinfo Interface

Retrieves the audio attributes for the stream in the current title or menu.

HRESULT GetCurrentAudioAttributes(
DVD _AudioATR *pA TR) ;

Parameters

pATR
[out] Pointer to the retrieved audio attributes.

732

l@i§i 11111+

DirectShow COM Interfaces Page 342 of 658

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

See the DVD-Video specification for information about DVD_AudioATR.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

IDvdlnfo::GetCurrentButton

IDvdinfo Interface

Retrieves the number of available buttons and the currently selected button number.

HRESULT GetCurrentButton(
ULONG *pnButtonsAvailable,
ULONG *pnCurrentButton) ;

Parameters

pnButtonsA vailable
[out] Pointer to the number of buttons available.

pnCurrentButton
[out] Pointer to the number of the current button.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

If buttons are not present this method returns zero for both pnButtonsAvailable and
pnCurrentButton.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§ill·h' 111.J,,[9 Topic Contents i@i§ii!¥M

733

DirectShow COM Interfaces

IDvdlnfo::GetCurrentDomain

IDvdlnfo Interface

Retrieves the current DVD domain of the DVD player.

HRESULT GetCurrentDomain(
DVD_DOMAIN *pDomain);

Parameters

pDomain

Page 343 of 658

[out] Pointer to the current domain which is a member of the DVD DOMAIN enumerated
type.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. Typical return
values might include one of the following:
Value Meaning
E_FAIL Failure.
E_I NV ALI DARG
E_NOTIMPL

E_OUTOFMEMORY
E_POINTER

Input argument is invalid.
Method is not supported.
Out of memory (insufficient buffer space).
NULL pointer argument.

E_UNEXPECTED
E_UOP PROHIBITED

DVD is not initialized or domain is not DVD DOMAIN Title.
Requested action cannot occur at this point in the movie due
to the authoring of the current DVD-Video disc.

S_OK Success.
VFW_E_DVD_INVALIDDOMAIN Requested action is not supported on this domain

(DVD DOMAIN).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11!j Topic Contents l@i§lllMM

w QiM [.] ij,+ 111.Hj Topic Contents •@!§' 1gnw

IDvdl nfo: :GetCu rrentlocation

IDvdlnfo Interface

734

DirectShow COM Interfaces

Retrieves the current playback location.

HRESULT GetCurrentlocation(
DVD_PLAYBACK_LOCATION *placation);

Parameters

placation
[out] Pointer to the retrieved playback location information in a
DVD PLAYBACK LOCATION structure.

Return Values

Page 344 of 658

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

The default implementation of this method returns E_UNEXPECTED if the current domain is not
DVD DOMAIN Title.

Remarks

This method retrieves information sufficient to restart playback of a video from the current
playback location in titles that don't explicitly disable seeking to the current location.

This method returns an error unless the domain is DVD DOMAIN Title.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

IDvdlnfo::GetCurrentSubpicture

IDvdinfo Interface

Retrieves the number of available subpicture streams, the currently selected subpicture stream
number, and whether the subpicture display is disabled.

HRESULT GetCurrentSubpicture(
ULONG *pnStreamsA vailable,
ULONG *pnCurrentStream,
BOOL *pisDisabled);

Parameters

pnStreamsAvailable
[out] Pointer to the retrieved number of available subpicture streams.

735

DirectShow COM Interfaces Page 345 of 658

pnCurrentStream
[out] Pointer to the retrieved number of the currently selected subpicture stream.

pisDisabled
[out] Pointer to a value indicating whether the subpicture display is disabled.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdlnfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

Subpicture streams authored as forcedly activated streams will be displayed even if the
application has disabled sub picture display with the IDvdControl:: SuboictureStreamChanqe
method.

This method returns an error unless the domain is DVD DOMAIN Title.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.ij Topic Contents l@i§i llfttiM

+Qi§i[.jjj,+ 111.],.[j Topic Contents •@m••1m+

IDvdlnfo::GetCurrentSubpictureAttributes

IDvdlnfo Interface

Retrieves the video attributes for the stream in the current title or menu.

HRESULT GetCurrentSubpictureAttributes(
DVD_SubpictureATR *pATR);

Parameters

pATR
[out] Pointer to the retrieved subpicture attributes.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdlnfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

736

DirectShow COM Interfaces Page 346 of 658

See the DVD-Video specification for information about DVD_SubpictureATR.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!MM

IDvdlnfo::GetCurrentUOPS

IDvdinfo Interface

Retrieves which IDvdControl methods are currently valid.

HRESULT GetCurrentUOPS(
VALID_UOP _SOMTHING_OR_OTHER *pUOP);

Parameters

pUOP
[out] Pointer to the retrieved valid user operations (UOP).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

This method is useful because DVD titles can enable or disable individual user operations at
almost any point during playback.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41H+1 1 !1·HM Topic Contents i@l§ii!MM

IDvdlnfo::GetCurrentVideoAttributes

IDvdinfo Interface

Retrieves the video attributes for the current title or menu.

HRESULT GetCurrentVideoAttributes(

737

DirectShow COM Interfaces Page 347 of 658

DVD_VideoATR *pATR);

Parameters

pATR
[out] Pointer to the retrieved video attributes.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdlnfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

See the DVD-Video specification for information about DVD_VideoATR.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

IDvdlnfo::GetCurrentVolumelnfo

IDvdlnfo Interface

Retrieves the current DVD volume information.

HRESULT GetCurrentVolumeinfo(
ULONG *pNumOfVol,
ULONG *pThisVo/Num,
DVD_DISC_SIDE *pSide,
ULONG *pNumOfTitles);

Parameters

pNumOfVol
[out] Pointer to the retrieved number of volumes in a volume set.

pThisVo/Num
[out] Pointer to the retrieved volume number for this root directory.

pSide
[out] Pointer to the retrieved current disc side (DVD DISC SIDE).

pNumOfTitles
[out] Pointer to the retrieved number of titles available in this volume.

Return Values

lmli§lllMM

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdlnfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this

738

DirectShow COM Interfaces Page 348 of 658

interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§lllMM

MQi§i!!.ljj,i 111.J,,[9 Topic Contents 1@1§111$8

IDvdlnfo: :GetDVDTextlnfo

IDvdinfo Interface

Retrieves the TXTDT MG structure, which can contain text descriptions for title name, volume
name, producer name, vocalist name, and so on, in various languages.

HRESULT GetDVDTextinfo(
BYTE *p Text Manager,
ULONG cbBufSize,
ULONG *pcbActua/Size);

Parameters

pTextManager
[out, size_is(cbBufSize)] Pointer to the retrieved text manager.

cbBufSize
[in] Size of the buffer for pTextManager, in bytes.

pcbActua/Size
[out] Pointer to a value containing the number of bytes of data returned.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

If the supplied buffer size in cbBufSize is too small for the data, (for example if cbBufSize
equals zero), then this method returns E_OUTOFMEMORY and sets the value pointed to by
pcbActua/Size to the required size.

Refer to Section 4.1.6 and Annex A of the DVD-Video specification for more information.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M 111.1 1119 Topic Contents l@i§lllMM

739

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM Topic Contents

IDvdlnfo::GetNumberOfChapters

IDvdinfo Interface

Retrieves the number of chapters that are defined for a given title.

HRESULT GetNumberOfChapters(
ULONG u/Title,
ULONG *pNumberOfChapters
);

Parameters

u/Title
[in] Title for which to retrieve the number of chapters.

pNumberOfChapters
[out] Retrieved number of chapters for the specified title.

Return Values

Page 349 of 658

i@l§ii!MM

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 1119 Topic Contents i@l§lllMM

IDvdl nfo: :GetPlayerPa renta I Level

IDvdinfo Interface

Retrieves the current parental level and country code settings for the DVD player.

HRESULT GetPlayerParentallevel(
ULONG *pParenta/Level,
ULONG *pCountryCode
);

Parameters

740

DirectShow COM Interfaces

pParenta/Level
[out] Pointer to a value indicating the current parental level.

pCountryCode
[out] Pointer to a value indicating the current country code.

Return Values

Page 350 of 658

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdlnfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

See Table 3.3.4-1 of the DVD-Video specification for the defined parental levels.

See IS03166 : Alpha-2 Code for the country codes.

Valid Parental Levels are 1 through 8 if parental management is enabled, Oxffffffff if parental
management is disabled.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

IDvdlnfo: :GetRoot

IDvdlnfo Interface

Retrieves the root directory that is set in the player.

HRESULT GetRoot(
LPTSTR pRoot,
ULONG cbBufSize,
ULONG *pcbActua/Size
);

Parameters

pRoot

Topic Contents

[out, size_is(cbBufSize)] Pointer to the buffer to receive the root string.
cbBufSize

[in] Size of buffer passed in, in bytes.
pcbActua/Size

[out] Pointer to a value containing the size of the actual data returned.

Return Values

741

1@1§111¥+

DirectShow COM Interfaces Page 351of658

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

If a valid root was found, this method returns the root string. Otherwise, it returns zero for
pcbActua/Size, indicating that a valid root directory has not been found or initialized.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8

IDvdl nfo: :GetSu bpictu re language

IDvdinfo Interface

Retrieves the language of the specified subpicture stream within the current title.

HRESULT GetSubpicturelanguage(
ULONG nStream,
LCID *planguage);

Parameters

nStream
[in] Stream number.

pLanguage
[out] Pointer to the retrieved language.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

This method does not return languages for menus. This method sets the value pointed to by
planguage to zero if the stream does not include language. Call the Win32 Getlocalelnfo API
as follows to create a human-readable string name from planguage.

GetLocaleinfo (*pLanguage, LOCALE_SENGLANGUAGE, pszString, cbSize) ;

742

DirectShow COM Interfaces Page 352 of 658

This method returns an error unless the domain is DVD DOMAIN Title.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!MM

+Q<@[.]ij,+ 111.1 111M Topic Contents 1@1§11!¥+

IDvdinfo::GetTitleAttributes

IDvdinfo Interface

Retrieves attributes of all video, audio, and subpicture streams for the specified title, including
menus.

HRESULT GetTitleAttributes(
ULONG nTitle,
DVD_ATR *pATR);

Parameters

nTitle
[in] Requested title number. Specify OxFFFFFFFF for the current title.

pATR
[out] Pointer to the retrieved attributes structure (DVD ATR).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdinfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

+;<§1[.]ij,+ +II.HM Topic Contents i@faii!MM

IDvdI nfo: :GetTitlePa renta I Levels

IDvdinfo Interface

Retrieves the parental levels that are defined for a particular title.

743

DirectShow COM Interfaces

HRESULT GetTitleParentallevels(
ULONG u/Title,
ULONG *pParenta/Levels
);

Parameters

u/Title
[in] Title for which parental levels are requested.

pParentalLevels

Page 353 of 658

[out] Logical combination of the parental levels defined for the title. Valid parental levels
are DVD PARENTAL LEVEL 8, DVD PARENTAL LEVEL 6, and DVD PARENTAL LEVEL 1.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdlnfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij

IDvdI nfo: :GetTota ITitleTi me

IDvdlnfo Interface

Retrieves the total playback time for the current title.

HRESULT GetTotalTitleTime(
ULONG *pTota/Time);

Parameters

pTota/Time

Topic Contents l@i§lllMM

[out] Pointer to the total time in DVD TIMECODE format, which includes hours, minutes,
seconds, and frames.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdlnfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

This method works only for simple linear movies.

744

DirectShow COM Interfaces Page 354 of 658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

IDvdlnfo: :GetVMGAttributes

IDvdlnfo Interface

Retrieves attributes of all video, audio, and subpicture streams for video manager (VMG)
menus.

HRESULT GetVMGAttributes(
DVD_ATR *pATR);

Parameters

pATR
[out] Pointer to the retrieved attributes structure (DVD ATR).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. See
IDvdlnfo: :GetCurrentDomain for a list of typical return values for the methods exposed by this
interface.

Remarks

The video manager contains a separate group of streams, such as the DVD MENU Title menus
and are not associated with any particular title number.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

IEnumFilters Interface

The IFilterGraph:: EnumFilters method returns the enumerator interface. It is based on the
COM IEnum style of enumerators.

When to Implement

This interface is implemented on the filter graph manager and is not intended for
implementation by developers.

745

DirectShow COM Interfaces Page 355 of 658

When to Use

This interface is used by applications or other filters to determine what filters exist in the filter
graph.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release

I En um Filters
methods

Decrements the reference count.

Description

Next
Skip

Reset

Retrieves the specified number of filters in the enumeration sequence.
Skips a specified number of filters in the enumeration sequence.
Resets the enumeration sequence to the beginning.

Clone Retrieves a duplicate enumerator containing the same enumeration
state as the current one.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •=@• 1gnw

MQi§i[.]11,M 11!.HM Topic Contents l@l§il!MM

IEnumFilters: :Clone

IEnumFilters Interface

Retrieves a duplicate enumerator containing the same enumeration state as the current one.

HRESULT Clone(
I En um Filters * * ppEnum
);

Parameters

ppEnum
[out] Duplicate of the enumerator.

Return Values

No return value.

Remarks

746

DirectShow COM Interfaces Page 356 of 658

This method produces two enumerators (the original and the duplicate); both are set at the
same filter. After they are created, however, they are independent; therefore, calling the
IEnumFilters:: Next method for one does not affect the other.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents

IEnumFilters::Next

IEnumFilters Interface

Retrieves the specified number of filters in the enumeration sequence.

HRESULT Next(
ULONG cFilters,
IBaseFilter ** ppFilter,
ULONG * pcFetched
);

Parameters

cFilters
[in] Number of filters to place.

ppFilter
[out] Array in which to place IBaseFilter pointers.

pcFetched
[out] Actual number of filters placed in the array.

Return Values

1@1§111¥+

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

The interface returned by this method has had its reference count incremented. Be sure to use
IUnknown:: Release on the interface to decrement the reference count when you have finished
using the interface.

747

DirectShow COM Interfaces Page 357 of 658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

MQl§i[.jjj,M '!!·HM Topic Contents 'ffl!'+* •um•

IEnumFilters::Reset

IEnumFilters Interface

Resets the enumeration sequence to the beginning.

HRESULT Reset(void);

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E FAIL Failure.
E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

This method affects the return value of the next call to the IEnumFilters:: Next method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.15 Topic Contents l@i§lllMM

MQl§i[.jjj,M 111.],.(5 Topic Contents l@l§lllMM

IEnumFilters::Skip

IEnumFilters Interface

Skips a specified number of filters in the enumeration sequence.

748

DirectShow COM Interfaces

HRESULT Skip(
ULONG cFilter
);

Parameters

cFilter
[in] Number of filters to skip.

Return Values

No return value.

Remarks

Page 358 of 658

This method affects the return value of the next call to the IEnumFilters:: Next method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]i!,+ '!!·HM Topic Contents i@l§ii!MM

IEnumMediaTypes Interface

The IEnumMediaTypes interface enumerates the preferred formats for a pin.

When to Implement

This interface must be implemented and made available by the I Pin:: EnumMediaTypes
method. The CBasePin:: EnumMediaTypes member function automatically does this in the
DirectShow™ class library and uses the CEnumMediaTypes class to create the enumerator
object.

When to Use

This interface is normally used by a connecting pin to determine the media type when
negotiating a connection. It can also be passed through to other pins, either upstream or
downstream of the filter, when intervening filters do not have a list of preferred media types.
For example, a transform-inplace filter might pass the IEnumMediaTypes interface of a
downstream input pin to the connecting output pin of the upstream filter, instead of providing
its own IEnumMediaTypes interface.

Methods in Vtable Order
!Unknown methods Description
Querylnterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

749

DirectShow COM Interfaces Page 359 of 658

I En um MediaTypes Description
methods
Next Retrieves the specified number of items in the enumeration

sequence.
Skip Skips a specified number of elements in the enumeration

sequence.
Reset Resets the enumeration sequence to the beginning.
Clone Returns another enumerator containing the same enumeration

state as the current one.

© 1997 Microsoft Corooration. All rights reserved. Terms of Use.

MQ<§i[.]i!:M MB.HS Topic Contents i@fa111¥M

MQ'41[.]l!:I 11!.HM Topic Contents i@fai11¥M

IEnumMediaTypes: :Clone

IEnumMediaTypes Interface

Returns another enumerator containing the same enumeration state as the current one.

HRESULT Clone(
IEnum MediaTypes * * ppEnum
);

Parameters

ppEnum
[out] New copy of the enumerator.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M lh.11115 Topic Contents i@fai l!lltiM

750

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM Topic Contents

IEnumMediaTypes::Next

IEnumMediaTypes Interface

Retrieves the specified number of items in the enumeration sequence.

HRESULT Next(
ULONG cMediaTypes,
AM_MEDIA_TYPE ** ppMediaTypes,
ULONG * pcFetched
);

Parameters

cMediaTypes
[in] Number of media types to place.

ppMediaTypes
[out] Array in which to place the pointers to the next media type.

pcFetched
[out] Actual count passed.

Return Values

Page 360 of 658

i@l§ii!MM

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

To use this method, pass an array of pointers to media types. (If you want only a single media
type, you can pass a pointer to a media type pointer in place of an array of media type
pointers.) The interface allocates the necessary AM MEDIA TYPE structures and initializes
them with the variable format block. Free each media type by calling DeleteMediaType, which
will free the format block and the media type itself.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

751

DirectShow COM Interfaces Page 361of658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

IEnumMediaTypes::Reset

IEnumMediaTypes Interface

Resets the enumerator to the beginning so that the next call to the IEnumMediaTypes:: Next
method returns, at a minimum, the first media type (if any) in the enumeration.

HRESULT Reset(void);

Return Values

Returns S_OK if successful; otherwise, returns S_FALSE.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+ Q i§i [.] jj,+ +!!·HM Topic Contents

IEnumMediaTypes: :Skip

IEnumMediaTypes Interface

Skips a specified number of elements in the enumeration sequence.

HRESULT Skip(
ULONG cMediaTypes
);

Parameters

cMediaTypes
[in] Number of media type elements to skip.

Return Values

Mttfjl§ii!MM

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:

752

DirectShow COM Interfaces

Value
E FAIL
E_ POINTER

Meaning
Failure.
Null pointer argument.

E INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM

MQl§i[.jjj,M '!!·HM

IEnumPins Interface

Page 362 of 658

Topic Contents lml!§lll¥M

Topic Contents l@i§il/¥8

The IBaseFilter:: EnumPins method returns this interface. It is based on the IEnumX protocol of
the Component Object Model (COM).

Note that actions that cause the number of pins to change might cause the enumerator to fail.

When to Implement

This interface must be implemented and made available by the IBaseFilter:: EnumPins method.
The CBaseFilter:: EnumPins member function automatically does this in the DirectShow™ class
library and uses the CEnumPins class to create the enumerator object.

When to Use

This interface is normally used by the filter graph manager when connecting filters. It can,
however, be used by an application that must find the pins associated with filters in the filter
graph-for example, to add another filter to the graph.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef
Release

IEnumPins
methods
Next
Skip

Reset

Returns pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

Puts pointers to IPin interfaces for the next pins into the specified array.
Skips the specified number of pins.
Resets the position to the beginning so that the next call to the
IEnumPins:: Next method returns, at a minimum, the first pin of the filter.
Provides another enumerator, which is a duplicate of the current one.

753

DirectShow COM Interfaces Page 363 of 658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

MQl§i[.jjj,M '!!·HM Topic Contents 'ffl!'+* •um•

IEnumPins: :Clone

IEnumPins Interface

Makes a copy of the enumerator. This allows the calling application to retain two positions in
the list of pins.

HRESULT Clone(
IEnumPins ** ppEnum
);

Parameters

ppEnum
[out] New enumerator, which is a copy of this enumerator.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.15 Topic Contents l@i§lllMM

MQl§i[.jjj,M 111.],.(5 Topic Contents l@l§lllMM

IEnumPins::Next

754

DirectShow COM Interfaces

IEnumPins Interface

Places pointers to IPin interfaces into the specified array.

HRESULT Next(
ULONG cPins,
I Pin * * ppPins,
ULONG * pcFetched
);

Parameters

cPins
[in] Number of pins to place.

ppPins
[out] Array in which to place the interface pointers.

pcFetched
[out] Actual number of pins placed in the array.

Return Values

Page 364 of 658

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

The interface returned by this method has had its reference count incremented. Be sure to use
IUnknown:: Release on the interface to decrement the reference count when you have finished
using the interface.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M

IEnumPins::Reset

IEnumPins Interface

755

DirectShow COM Interfaces Page 365 of 658

Resets the enumerator to the beginning so that the next call to the IEnumPins: :Next method
returns, at a minimum, the first pin of the filter.

HRESULT Reset(void);

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

IEnumPins: :Skip

IEnumPins Interface

Skips the specified number of pins.

HRESULT Skip(
ULONG cPins
);

Parameters

cPins
[in] Number of pins to skip.

Return Values

+Q'41[.]i!,+ 1 !1·HM

+Q<@[.]jj,+ 111.1 1119

Topic Contents ifflj[§ii!¥M

Topic Contents 1@1§11!¥+

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:

756

DirectShow COM Interfaces

Value
E FAIL
E_ POINTER

Meaning
Failure.
Null pointer argument.

E INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

This method affects the next call to the IEnumPins:: Next method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.llj,M l!i.! 11ij Topic Contents

•;<¥[.]++ MB.HM Topic Contents

IEnumRegFilters Interface

Page 366 of 658

l@i§i l!lltiM

l@i§lllMM

The purpose of the mapper is to help the filter graph manager avoid loading filters when
attempting to build a filter graph to render a given media type. By looking at filter properties
recorded in the registry, the number of filters that must be loaded and tried can be reduced.

The IFilterMaoper:: EnumMatchinqFilters method returns the enumerator that enumerates the
filters that match specific requirements. The enumerator returns descriptors of filters, including
the globally unique identifiers (GUIDs) that the Microsoft® Win32® CoCreateinstance function
can instantiate. The filters are not loaded. The IEnumRegFilters interface is a Component
Object Model (COM) enumerator.

When to Implement

This interface is implemented by the filter mapper and need not be implemented elsewhere.

When to Use

Although the filter graph manager is the primary user of this interface, applications can also
use it to determine available filters in the system - for example, to construct a unique filter
graph by adding and connecting filters itself, or to allow users to choose from a list of available
filters.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

757

DirectShow COM Interfaces

I En um Reg Filters
methods

Page 367 of 658

Description

Next
Skip

Reset
Clone

Fills an array with the next filters that meet the requirements.

Skips a specified number of elements in the enumeration sequence.
Makes the Next method start again, beginning at the first filter.

Returns another enumerator containing the same enumeration
state as the current one.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

MQi§i!!.ljj,i 111.J,,[9 Topic Contents 1@1§111$8

IEnumRegFilters: :Clone

IEnumRegFilters Interface

Creates another enumerator with the same enumeration state as the current one.

HRESULT Clone(
I En um Reg Filters **ppEnum
);

Parameters

ppEnum
[out] Pointer to the duplicate enumerator interface.

Return Values

Returns an HRESULT value. Currently returns E_NOTIMPL.

Remarks

Currently, this method is not implemented.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i[.]jj,i 11!·],,(9

IEnumRegFilters::Next

758

Topic Contents 1@1§111$8

DirectShow COM Interfaces Page 368 of 658

IEnumReqFilters Interface

Fills the array with descriptions of the next set of filters (specified by the cFilters parameter)
that meet the requirements specified upon creation of the enumerator.

HRESULT Next(
ULONG cFilters,
REGFILTER ** apRegFilter,
ULONG * pcFetched
);

Parameters

cFilters
[in] Number of filters.

apRegFilter
[out] Pointer to an array of REGFILTER pointers.

pcFetched
[out] Actual number of filters passed.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

The calling application must use the Microsoft Win32 CoTaskMemFree function to free each
REGFILTER pointer returned in the array. Do not free the Name member of the REGFILTER
structure separately, because IEnumRegFilters::Next allocates memory for this string as
part of the REGFILTER structure.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8

IEnumRegFilters::Reset

759

DirectShow COM Interfaces Page 369 of 658

IEnumReqFilters Interface

Resets the enumerator so that the next call to the IEnumRegFilters: :Next method begins again
at the first filter, if any.

HRESULT Reset(void);

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

+Qi§i[.]11,+ '!!·Hi

IEnumRegFilters::Skip

IEnumReqFilters Interface

Skips a specified number of items in the enumeration sequence.

HRESULT Skip(
ULONG celt
);

Parameters

celt
[in] Number of items to skip.

Return Values

Returns an HRESULT value. Currently returns E_NOTIMPL.

Remarks

760

Topic Contents l@IJll!MM

Topic Contents l@i§il!MM

DirectShow COM Interfaces Page 370 of 658

Currently, this method is not implemented.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!MM

IFileClip Interface

The IFileClip interface provides a simple way for an application to create one or more cuts
from a single media file, or to create blank cuts. Blank (empty or null) cuts are useful to either
stop playback for a specified time, or to make a placeholder for a cut that the cutlist can't play.

See About Cutlists and Using Cutlists for more information.

When to Implement

Do not implement this interface. DirectShow implements it for you.

When to Use

Use this interface in your application when you want to provide cutlist functionality to the user.

When compiling a cutlist application you must explicitly include the cutlist header file as
follows:

#include <Cutlist.h>

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef
Release

IFileClip
methods

Retrieves pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

SetFileAndStream Initializes the clip object with the specified media file and stream number
or makes an empty clip for producing null elements.

CreateCut
GetMediaTyoe

Creates a cutlist element.
Retrieves the clip's media type structure.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41H++ +11.q9

+Qij[.]jj,+ 111.1 1119

761

Topic Contents

Topic Contents

i@i§ii!MM

i@i§iil@M

DirectShow COM Interfaces

IFileCI ip: :CreateCut

IFileClio Interface

Creates a cutlist element.

HRESULT CreateCut(
IAMCutlistElement **ppElement,
REFERENCE_ TIME mtTrimin,
REFERENCE_ TIME mtTrimOut,
REFERENCE_ TIME mtOrigin,
REFERENCE_ TIME mtLength,
REFERENCE_ TIME mtOffset
);

Parameters

ppE/ement

Page 371of658

[out] Address of a pointer to the IAMCutlistElement interface of the created cutlist
element.

mtTrimln
[in] Trimin (beginning) position for the cut.

mtTrimOut
[in] Trimout (ending) position for the cut.

mtOrigin
[in] Clip origin. Must be zero.

mtLength
[in] Length of clip. Must be mtTrimOut minus mtTrimln.

mtOffset
[in] Offset of clip. Must be zero.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning

E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_OUTOFMEMORY Could not allocate required memory.
S_OK Success.

Remarks

All of the times specified in this method are relative to the media clip rather than to the cutlist.

To make an empty cut, first create an empty (null) clip by calling the

762

DirectShow COM Interfaces Page 372 of 658

IFileClip: :SetFileAndStream method as illustrated by the following code fragment. Then, create
a cut of the desired duration (n) to indicate you want to do nothing for n units of time.

IAMCutListElement *pElement;

setFileAndstream(NULL, -1);
cretecut(&pElement, o, n, o, n, O);

See Using Cutlists for more information about using cutlists and the cutlist interfaces from an
application.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

+Q<@[.]11,+ 111.1 111M

IFileClip::GetMediaType

IFileClip Interface

Retrieves the clip's media type structure.

HRESULT GetMediaType(
AM_M ED IA_ TYPE *pmt
);

Parameters

pmt

Topic Contents

Topic Contents

[out] Pointer to the AM MEDIA TYPE structure describing the video clip.

Return Values

ifflj[§ii!¥M

1@1§11!¥+

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_ FAIL Failure.
E_INVALIDARG Argument is invalid.
E_ NOTIMPL Method is not supported.
E_OUTOFMEMORY Could not allocate required memory.

S_OK Success.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

+;<§1[.]1!,+ +II.HM Topic Contents i@fa11!¥M

763

DirectShow COM Interfaces Page 373 of 658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

IFileClip::SetFileAndStream

IFileClip Interface

Initializes the clip object with the specified media file and stream number or makes an empty
clip for producing null elements.

HRESULT SetFileAndStream(
LPWSTR wstrFileName,
DWORD streamNum
);

Parameters

wstrFileName
[in] Name of the file from which to initialize the clip. Must be an AVI or .wav file. Specify
NULL to make an empty (null) clip.

streamNum
[in] Stream number (AVI files only) within the specified file from which to initialize the
clip. Must be zero. AVI files with more than one stream of any type are not supported;
clips must be from the first stream (stream 0). Specify -1 for empty elements.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_OUTOFMEMORY Could not allocate required memory.
S_OK Success.

Remarks

This method opens the file to verify the format and media type (which you can find by using
the IFileClio: :GetMediaTyoe method).

Use the following call to make an empty clip.

SetFileAndStream(NULL, -1);

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

764

DirectShow COM Interfaces Page 374 of 658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M 111.1 1119 Topic Contents i@l§i i!lltiM

IFileSinkFilter Interface

The IFileSinkFilter interface is implemented on filters that write media streams to a file. A file
sink filter in a video capture filter graph, for instance, writes the output of the video
compression filter to a file. Typically, the application running this filter graph will want to allow
the user to enter the name of the file to be written to. This interface enables the
communication of this information.

IFileSinkFilter2 replaces this interface unless you need to maintain backward compatibility with
ActiveMovie 1.0.

When to Implement

If a filter needs the name of an output file, it should expose this interface to allow an
application to set the file name. Note that there is currently no base class implementation of
this interface.

When to Use

Any application that must set the name of the file into which the file sink filter will write should
use this interface to get and set the file name.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef
Release

IFileSinkFilter
methods
SetFileName
GetCurFile

Returns pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

Sets the name of the file into which media samples will be written.
Retrieves the name of the current file into which media samples will be
written (the sink file).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 111.1 1119 Topic Contents i@l§iil@M

+ 4'41 [.] jj,+ +II.HM Topic Contents Mttfjl§ii!lj4M

765

DirectShow COM Interfaces Page 375 of 658

IFileSinkFilter::GetCurFile

IFileSinkFilter Interface

Retrieves the name of the current file into which media samples will be written (the sink file).

HRESULT GetCurFile(
LPOLESTR *ppszFileName,
AM_M ED IA_ TYPE *pmt
);

Parameters

ppszFileName
[out] Name of the file set to receive media samples.

pmt
Type of media samples to be written to the file.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

If a file name is not assigned, this method returns E_FAIL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents 1@1§111¥+

IFileSinkFilter: :SetFileName

IFileSinkFilter Interface

766

DirectShow COM Interfaces

Sets the name of the file into which media samples will be written.

HRESULT SetFileName(
LPCOLESTR pszFileName,
const AM_MEDIA_ TYPE *pmt
);

Parameters

pszFileName
[in] Name of the file to receive the media samples.

pmt

Page 376 of 658

[in] Type of media samples to be written to the file, and the media type of the sink
filter's input pin.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E FAIL Failure.
E_ POINTER Null pointer argument.
E INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

If the pszFileName parameter names a nonexistent file, the file will be created. If it names an
existing file, the sink filter will overwrite the file without first deleting it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@i§il!MM

+Qi§i[.]11,+ 1!1·Hj Topic Contents l@IJll!MM

IFileSinkFilter2 Interface

The IFileSinkFilter2 interface derives from the IFileSinkFilter interface and replaces it unless
you need backward compatibility with ActiveMovie™ 1.0. Like IFileSinkFilter, filters that write
media streams to a file implement this interface. A file sink filter in a video capture filter
graph, for instance, saves the output of the video compression filter to a file. Typically, the
application running this filter graph should allow the user to enter the name of the file to which
to save the data. This interface enables you to communicate this information. IFileSinkFilter2
adds the option to determine whether the file it writes should destroy an existing file of the

767

DirectShow COM Interfaces Page 377 of 658

same name. In the video capture case, do not destroy a file you've already created, because
preallocating file space takes valuable time. By default, the new file does not destroy the old
one. Otherwise, destroy the original file to make sure the file you author doesn't contain
garbage.

When to Implement

A filter should implement this interface when it needs the name of an output file or needs to
set options for that file. Implement the older IFileSinkFilter interface if you need to make your
filter compatible with ActiveMovie 1.0. Note that there is currently no base class
implementation of this interface.

When to Use

When an application must set the name of the file into which the file sink filter will write, it
should use this interface to get and set the file name or change options. Use the older
IFileSinkFilter interface if you need to make your application compatible with ActiveMovie 1.0.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef
Release

IFileSinkFilter
methods
SetFileName
GetCurFile

IFileSinkFilter2
methods
Set Mode

Get Mode

Retrieves pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

Sets the name of the file into which media samples will be written.
Retrieves the name of the current file into which media samples will be
written (the sink file).

Description

Determines whether the file writer destroys the file when it creates
the new one.
Retrieves whether the file writer destroys the file when it creates
the new one.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij Topic Contents l@i§i 11111+

MQ<§i[.jlj,M 111.Hj Topic Contents l@i§lllMM

I Fi leSi n kf i lter2: :GetMode

IFileSinkFilter2 Interface

Retrieves whether the file writer destroys the file when it creates the new one.

768

DirectShow COM Interfaces

HRESULT GetMode(
DWORD *dwF/ags
);

Parameters

dwF/ags

Page 378 of 658

[out] Pointer to the retrieved flags. Currently, the only defined flag is
AM_ FILE_OVERWRITE, which indicates that the file should be destroyed; zero indicates
that the file will be left alone.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

I Fi leSi n kFi lter2: :SetMode

IFileSinkFilter2 Interface

Determines whether the file writer destroys the file when it creates the new one.

HRESULT SetMode(
DWORD dwF/ags
);

Parameters

dwF/ags
[in] Currently, the only defined flag is AM_FILE_OVERWRITE, which indicates that the file
writer should destroy the file. Specify zero for dwF/ags to leave the file alone.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQl§i[.jjj,M 111.],.(j Topic Contents l@i§lllMM

IFileSourceFilter Interface

769

DirectShow COM Interfaces Page 379 of 658

The IFileSourceFilter interface is exposed by source filters to set the file name and media
type of the media file that they are to render. It is an abbreviated version of the COM
IPersistFile interface. If the file has a type that can be determined by the algorithm described
in Registering a Custom File Tyoe, the recommended file source filter CLSID is used when the
filter graph manager attempts to render the filter graph.

When to Implement

If a filter needs the name of a file to open, it should expose this interface to allow an
application to set the file name. Note that there is no base class implementation of this
interface.

When to Use

An application that inserts file source filters directly must query for this interface and set the
file name. Normally, the filter graph manager uses this interface when an application calls
IGraphBuilder:: RenderFile. The Graphedt.exe tool queries for the IFileSourceFilter interface
and prompts for a file name if it finds it.

Methods in Vtable Order
!Unknown methods Description
Querylnterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IFileSourceFilter methods Description
Load Loads the source filter with the file.
GetCurfile Retrieves the current file.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9

MQi§i!!.llj,i 111.J,,[9

IFileSourceFilter: :GetCurfile

IFileSourceFilter Interface

Collects information about the file to open.

HRESULT GetCurfile(
LPOLESTR *ppszFileName,
AM_M ED IA_ TYPE *pmt
);

770

Topic Contents

Topic Contents

lmli§lllMM

1@1§111$8

DirectShow COM Interfaces Page 380 of 658

Parameters

ppszFileName
[out] Path to the loaded file.

pmt
[out] Media type.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

+Qij[.jjj,M 111.1 1119

IF i I eSo u rce Filter:: Load

IFileSourceFilter Interface

Loads a media file.

HRESULT Load(
LPCOLESTR pszFileName,
const AM_MEDIA_ TYPE *pmt
);

Parameters

pszFileName
[in] Absolute path of the file to open.

pmt
[in] Media type of the file. This can be NULL.

Return Values

Topic Contents 1@1§111¥+

Topic Contents 1@1§111¥+

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the

771

DirectShow COM Interfaces Page 381of658

following standard constants, or other values not listed:
Value Meaning
E_ FAIL Failure.
E POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

This is an initialization method for the interface. It is not designed to load multiple files, and
any calls to this method after the first call will fail.

You should implement this method to load the file specified by pszFileName.

Note that the name in pszFileName need not actually be a disk file name (that is, one you
could pass to the Microsoft® Win32® CreateFile function, for example). It could also be a URL
name. The URL moniker filter uses IFileSourceFilter to retrieve its URL name, and
IGraohBuilder: :AddSourceFilter (and hence IGraphBuilder:: RenderFile) handles this correctly.
IGraphBuilder::AddSourceFilter returns a specific error (ERROR_FILE_NOT_FOUND) upon
not finding the file, which indicates that the file specified does not exist and not that the filter
does not exist.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§illlj4M

IFilterGraph Interface

The IFilterGraph interface is an abstraction representing a graph of filters. All filters in the
graph share the same clock. They might or might not also be connected and stream data
between them. This interface allows filters to be joined into a graph and operated as a unit.
Unlike the IGraphBuilder interface, this interface does not use heuristics to connect and build
the filter graph.

When to Implement

This interface is implemented on the filter graph manager and is not intended for
implementation by developers.

When to Use

Applications should not use this interface directly but instead should use the IGraphBuilder
interface, which inherits this interface.

772

DirectShow COM Interfaces

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef

Returns pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IFilterGraph methods Description
AddFilter Adds a filter to the graph and gives it a name.

Removes a filter from the graph.
Provides an enumerator for all filters in the graph.
Finds a filter that was added with a specified name.

Page 382 of 658

RemoveFilter
EnumFilters
FindFilterByName
ConnectDirect
Reconnect

Connects the two IPin objects directly (without intervening filters).
Breaks the existing pin connection and reconnects it to the same pin.

Disconnect Disconnects this pin, if connected.
SetDefaultSyncSource Sets the default synchronization source (a clock).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents

+Qi@[.]+• 111.1,.19 Topic Contents

IFilterGraph: :Add Filter

IFilterGraph Interface

Adds a filter to the graph and names it by using the pName parameter.

HRESULT Addfilter(
IBaseFilter * pFilter,
LPCWSTR pName
);

Parameters

pFilter
[in] Filter to add to the graph.

pName
[in] Name of the filter.

Return Values

i@i§ll!¥+

i@i§i i!fttiM

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:

773

DirectShow COM Interfaces

Value
E FAIL
E_ POINTER

Meaning
Failure.
Null pointer argument.

E INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

Page 383 of 658

The name of the filter can be NULL, in which case the filter graph manager will generate a
name. If the name is not NULL and is not unique, this method will modify the name in an
attempt to generate a new unique name. If this is successful, this method returns
VFW S DUPLICATE NAME. If it cannot generate a unique name, it returns
VFW E DUPLICATE NAME.

AddFilter calls the filter's IBaseFilter: :JoinFilterGraph method to inform the filter that it has
been added. AddFilter must be called before attempting to use the IGraphBuilder: :Connect,
IFilterGraph: :ConnectDirect, or IGraphBuilder:: Render method to connect or render pins
belonging to the added filter.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9

MQi§i!!.llj,i 111.J,,[9

IFilterGraph::ConnectDirect

IFilterGraph Interface

Connects the two pins directly (without intervening filters).

HRESULT ConnectDirect(
IPin * ppinOut,
IPin * ppinln,
const AM_MEDIA_TYPE * pmt
);

Parameters

ppinOut
[in] Output pin.

ppinin
[in] Input pin.

pmt

Topic Contents lmli§lllMM

Topic Contents 1@1§111$8

[in] Media type to use for the connection (optional; that is, can be NULL).

774

DirectShow COM Interfaces Page 384 of 658

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j

+Qi§i[.]jj,+ 1 1!·!:.!j

IFilterGraph::Disconnect

IFilterGraoh Interface

Disconnects this pin.

HRESULT Disconnect(
IPin * ppin
);

Parameters

ppin
[in] Pin to disconnect.

Return Values

Topic Contents l@IJll!MM

Topic Contents l@i§il!MM

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

775

DirectShow COM Interfaces Page 385 of 658

This method does not completely break the connection. To completely break the connection,
both ends must be disconnected.

This method results in a successful no operation (no-op) if the pin is not connected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

+Qi§i[.]11,+ '!!·Hi

IFilterGraph::EnumFilters

IFilterGraoh Interface

Provides an enumerator for all filters in the graph.

HRESULT EnumFilters(
I En um Filters * * ppEnum
);

Parameters

ppEnum
[out] Enumerator.

Return Values

Topic Contents l@IJll!MM

Topic Contents l@IJll!MM

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

The interface returned by this method has had its reference count incremented. Be sure to use
IUnknown:: Release on the interface to decrement the reference count when you have finished
using the interface.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

776

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM Topic Contents

MQij[.jjj,M M!i.1 1119 Topic Contents

I Fi lterGra ph:: Find Fi lterByNa me

IFilterGraph Interface

Finds a filter that was added to the filter graph with a specific name.

HRESULT FindFilterByName(
LPCWSTR pName,
IBaseFilter ** ppFilter
);

Parameters

pName
[in, string] Name to search for.

ppFilter
[out] Pointer to an IBaseFilter interface on the found filter.

Return Values

Page 386 of 658

i@l§ii!MM

i@l§i 11111+

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_ FAIL Failure.
E POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

This function fails and sets pointers to the ppFilter parameter to NULL if the name is not in this
graph.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.l:.19 Topic Contents i@l§lllMM

• QIM [.] "'' I!!.],.[. Topic Contents i@l§ii!MM

777

DirectShow COM Interfaces Page 387 of 658

IFilterGraph::Reconnect

IFilterGraoh Interface

Disconnects this and the pin to which it connects and then reconnects it to the same pin. This
allows the details of the connection, such as media type and allocator, to be renegotiated.

HRESULT Reconnect(
IPin * ppin
);

Parameters

ppin
[in] Pin to disconnect and reconnect.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

This method performs its operation on a separate thread that will not hold any relevant locks.
It can be called by a pin or filter to allow renegotiation of the connection. When a transform
filter has its input connected, it must agree upon some media type. When the output is
connected, it might discover that, to please both its upstream and downstream connections, it
would have been better to have chosen a different media type for the upstream connection.
The solution is to reconnect the input pin. The caller of this method should ensure (for
example, by calling I Pin: :QueryAccept) that the resulting renegotiation will succeed, because
the reconnection process is performed asynchronously and there is no mechanism for reporting
or correcting errors.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8

778

DirectShow COM Interfaces

IFilterGraph::RemoveFilter

IFilterGraph Interface

Removes a filter from the graph.

HRESULT Removefilter(
IBaseFilter * pFilter
);

Parameters

pFilter
[in] Pointer to the filter to be removed from the graph.

Return Values

Page 388 of 658

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

The filter graph implementation informs the filter that it is being removed by calling the
IBaseFilter: :JoinFilterGraoh method with a NULL argument.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

IFilterGraph::SetDefaultSyncSource

IFilterGraph Interface

Sets the default source of synchronization.

779

DirectShow COM Interfaces Page 389 of 658

HRESULT SetDefaultSyncSource(void);

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_ FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

This method is used when no clock has been given to the filter graph, and the filter graph
manager consequently must find a clock to use as the synchronization source. The filter graph
manager first tries all filters, starting with renderers, to see if any filter exports a clock (by
providing an IReferenceClock interface). The filter graph manager will choose the first filter
that it finds, providing that filter is connected to an upstream source. If no connected filters
are found, the first filter if IReferenceClock is used. Typically, this will be the audio rendering
filter. If no filter exports a clock, the filter graph manager uses a system clock.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

+Qi§i[.]jj,+ 1 !1·Hj Topic Contents l@IJll!MM

IFilterGraph2 Interface

The IFilterGraph2 interface adds new functionality to the IGraphBuilder and IFilterGraph
interfaces. It inherits from both interfaces and exposes all their methods. This interface also
includes a method to add a source for a moniker, and an improved version of the
IFilterGraph:: Reconnect method. For this reason, you should usually use IFilterGraph2
instead of the other two.

When to Implement

The filter graph implements this interface so it isn't intended that you implement it.

When to Use

Use this interface in applications that previously called IFilterGraph: :Reconnect and in
applications that need a source filter for a moniker.

780

DirectShow COM Interfaces

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IFilterGraph methods Description
AddSourceFilterForMoniker Adds a source for a moniker.
Reconnect Ex Specifies a pin and a media type to reconnect with.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents

MQijl.111,h 111.1 1119 Topic Contents

Page 390 of 658

i@l§ii!MM

i@l§i 11111+

I Fi lterGra ph 2: :AddSou rcef i lterForMon i ker

IFilterGraph2 Interface

Adds a source for a moniker.

HRESULT AddSourceFilterForMoniker(
!Moniker *pMoniker,
IBindCtx *pCtx,
LPCWSTR lpcwstrFilterName,
IBaseFilter **ppFilter);

Parameters

pMoniker
[in] Pointer to an !Moniker interface.

pCtx
[in] Pointer to an IBindCtx bind context interface.

lpcwstrFilterName
[in] Pointer to the filter's name.

ppFilter
[out] Address of a pointer to an IBaseFilter interface.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

When adding a source filter for the given moniker to the graph, the COM

781

DirectShow COM Interfaces Page 391of658

IMoniker:: BindToStorage member function will query for an IStream interface. If this fails,
IMoniker: :BindToObject will try to retrieve an IBaseFilter interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w ;<M [.] +• 111.HM

MQi§i[.]11,M 11!.HM

IFilterGraph2::ReconnectEx

IFilterGraph2 Interface

Specifies a pin and a media type to reconnect with.

HRESULT ReconnectEx(
IPin * ppin,
const AM_MEDIA_TYPE *pmt);

Parameters

ppin
[in] Pin to disconnect and reconnect.

pmt

Topic Contents •=@• 1gnw

Topic Contents l@l§il!MM

[in] Media type to reconnect with. Specify NULL to use the existing media type.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Like the IFilterGraph:: Reconnect method, the ReconnectEx method schedules a reconnection
of the pin with the pin it is currently connected to. By specifying a media type when this
method is called, the pins don't have to check what type they were originally connected with or
enumerate possible new types. This makes the reconnection more likely to succeed.

See Also

IFilterGraph:: Reconnect

© 1997 Microsoft Corooration. All rights reserved. Terms of Use.

• Q<M [.] +• I !I.HM Topic Contents l@l§il!MM

M Q i§i [.] lj,M I !!·HM Topic Contents l@l§il!MM

782

DirectShow COM Interfaces Page 392 of 658

IFilterlnfo Interface

IFilterinfo is an interface that manages information about a filter and provides access to the
filter and to the IPininfo interfaces representing the pins on the filter. It is essentially an
IBaseFilter interface that can be accessed through Automation. This was created to provide
access to the IBaseFilter methods from Microsoft® Visual Basic® applications without
incurring the overhead of Automation in the IBaseFilter interface itself.

When to Implement

This interface is implemented by the filter graph manager for use by Automation client
applications, such as Microsoft Visual Basic.

When to Use

Use this interface from an application to retrieve information about a filter and to retrieve
individual pin objects in the filter or a collection of all pin objects belonging to the filter. This
can be used when adding filters to a filter graph and connecting pins together.

Methods in Vtable Order
!Unknown methods Description
Oueryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

I Dispatch Description
methods
GetTyoeinfoCount Determines whether there is type information available for this

dispinterface.
GetTyoeinfo Retrieves the type information for this dispinterface if GetTyoeinfoCount

returned successfully.
Get!DsOfNames Converts text names of properties and methods (including arguments) to

their corresponding DISP!Ds.
Invoke Calls a method or accesses a property in this dispinterface if given a

DISPID and any other necessary parameters.

IFilterinfo Description
methods
FindPin Locates a pin and returns an IPininfo interface.
get Name Retrieves the filter name.
get Vendorinfo Retrieves a string containing optional information supplied by a vendor

about the specified filter.
get Filter Retrieves the IBaseFilter interface for the filter.
get Pins Retrieves an IAMCollection interface which provides access to the IPininfo

interfaces for this filter.
get IsFileSource Determines if the filter is a file source filter.
get Filename Retrieves the file name associated with the source filter.

783

DirectShow COM Interfaces

put Filename Sets the file name containing the media source.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents

MQ<§i[.jlj,M 111.Hj Topic Contents

IFilterlnfo: :FindPin

IFilterinfo Interface

Locates a pin, given an identifier, and returns an IPininfo interface.

HRESULT FindPin(
BSTR strPinID,
!Dispatch **ppUnk
);

Parameters

strPinID
[in] String pin identifier.

ppUnk
[out] IPininfo interface.

Return Values

Returns an HRESULT value.

Remarks

Page 393 of 658

l!ftli§i l!lltiM

l@fail!MM

This method corresponds to the IBaseFilter: :Find Pin method. This method is exposed for use
by Automation clients and is not expected to be used by C or C++ applications because of
performance limitations.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jlj,M 111.],.(j Topic Contents i@faii!MM

IFilterlnfo: :get_Filename

IFilterinfo Interface

784

DirectShow COM Interfaces

Retrieves the file name associated with the source filter.

HRESULT get_Filename(
BSTR *pstrFilename
);

Parameters

pstrFilename
[out, retval] File name containing the source media.

Return Values

Returns an HRESULT value.

Remarks

Page 394 of 658

This method is exposed for use by Automation clients and is not expected to be used by C or
C++ applications because of performance limitations.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11

IFilterinfo: :get_Filter

IFilterinfo Interface

Retrieves the IBaseFilter interface of the filter.

HRESULT get_Filter(
!Unknown **ppUnk
);

Parameters

ppUnk

Topic Contents

[out, retval] IBaseFilter interface of the filter represented by IFilterinfo.

Return Values

Returns an HRESULT value.

Remarks

l@i§i 11111+

The object that implements IFilterinfo is a wrapper and is not the same COM object as the
filter itself. Thus a call to IFilterinfo::Queryinterface for IBaseFilter will fail. The

785

DirectShow COM Interfaces Page 395 of 658

IFilterinfo::get_Filter method allows an application to obtain the filter object itself. This
method is exposed for use by Automation clients and is not expected to be used by C or C++
applications because of performance limitations.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

I Fi lterlnfo: :get_lsf i leSou rce

IFilterinfo Interface

Determines if the filter is a file source filter.

HRESULT get_IsFileSource(
LONG *pbisSource
);

Parameters

pblsSource
[out, retval] Returned Boolean value.

Return Values

Topic Contents i@faii!MM

Returns an HRESULT value. Returns OATRUE if filter is a file source filter; otherwise, returns
OAFALSE.

Remarks

This method is exposed for use by Automation clients and is not expected to be used by C or
C++ applications because of performance limitations.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents •@M* 1gnw

IFilterlnfo: :get_Name

IFilterinfo Interface

Retrieves the filter name.

786

DirectShow COM Interfaces

HRESULT get_Name(
BSTR *strName
);

Parameters

strName
[out, retval] Name of the filter.

Return Values

Returns an HRESULT value.

Remarks

Page 396 of 658

This method is exposed for use by Automation clients and is not expected to be used by C or
C++ applications because of performance limitations.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

IFilterlnfo: :get_Pins

IFilterinfo Interface

Retrieves an IAMCollection interface, which provides access to the IPininfo interfaces for the
pins on this filter.

HRESULT get_Pins(
!Dispatch **ppUnk
);

Parameters

ppUnk
[out, retval] IAMCollection interface.

Return Values

Returns an HRESULT value.

Remarks

This method is exposed for use by Automation clients and is not expected to be used by C or
C++ applications because of performance limitations. Visual Basic applications can enumerate
the IPininfo interfaces in the returned IAMCollection object by using the For Each ... Next

787

DirectShow COM Interfaces Page 397 of 658

syntax.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§lllMM

IFilterlnfo: :get_ Vendorlnfo

IFilterinfo Interface

Retrieves a string containing optional information supplied by a vendor about the specified
filter.

HRESULT get_Vendorinfo(
BSTR *strVendorinfo
);

Parameters

strVendorinfo
[out, retval] String containing vendor information.

Return Values

Returns an HRESULT value.

Remarks

This method is exposed for use by Automation clients and is not expected to be used by C or
C++ applications because of performance limitations.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M l!!.!:.19

I Fi lterlnfo:: put_Fi lena me

IFilterinfo Interface

Sets the file name containing the media source.

HRESULT put_Filename(
BSTR strFilename

788

Topic Contents lmll§lllMM

DirectShow COM Interfaces Page 398 of 658

);

Parameters

strFilename
[in] Name of the file for the source filter to read from.

Return Values

Returns an HRESULT value.

Remarks

This method is exposed for use by Automation clients and is not expected to be used by C or
C++ applications because of performance limitations.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

IFilterMapper Interface

The IFilterMapper interface is an abstraction that represents registered information about
filters. This allows properties of filters to be looked up during loading.

When to Implement

This interface is implemented on the filter mapper and is not intended to be implemented by
developers.

When to Use

This interface is used by filters to register and unregister themselves. This is handled in the
base classes by the CBaseFilter:: Register and CBaseFilter:: Unregister member functions. It is
also used by the filter graph manager to look up filters and determine their characteristics
when building a filter graph to render a given media type.

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef
Release

Returns pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

789

DirectShow COM Interfaces

IFilterMapper methods Description
RegisterFilter Records the details of a filter in the registry.
RegisterFi lterI nsta nee
RegisterPin
RegisterPinType
UnregisterFilter

Registers an identifiable instance of a filter.
Records the details of a pin in the registry.
Adds a type for the pin to the registry.
Deletes a filter from the registry.

UnregisterFilterinstance Deletes an identifiable instance of a filter.
Deletes a pin from the registry. UnregisterPin

EnumMatchingFilters Finds all filters matching specific requirements.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

8 4'41[.]1!,M 1!1·H¥ Topic Contents

I Fi lterMa pper:: En um Matching Filters

IFilterMapper Interface

Page 399 of 658

i@fa111¥M

i@fai11¥M

Provides an enumerator that enumerates registered filters that meet specified requirements.

HRESULT EnumMatchingFilters(
IEnumRegFilters ** ppEnum,
DWORD dwMerit,
BOOL binputNeeded,
CLSID clsinMaj,
CLSID clsinSub,
BOOL bRender,
BOOL bOutputNeeded,
CLSID clsOutMaj,
CLSID clsOutSub
);

Parameters

ppEnum
[out] Enumerator returned.

dwMerit
[in] Enumerate only filters with at least this merit.

binputNeeded
TRUE if there must be at least one input pin.

clsinMaj
[in] Input major type required. Set to GUID_NULL if you do not care.

clsinSub
[in] Input subtype required. Set to GUID_NULL if you do not care.

bRender

790

DirectShow COM Interfaces

[in] Option that specifies if the input must be rendered by this filter.
bOutputNeeded

TRUE if there must be at least one output pin.
clsOutMaj

[in] Output major type required. Set to GUID_ NULL if you do not care.
clsOutSub

[in] Output subtype required. Set to GUID_NULL if you do not care.

Return Values

Returns an HRESULT value.

Remarks

Page 400 of 658

Set the ppEnum parameter to be an enumerator for filters matching the requirements. For a
description of merit values for the dwMerit parameter, see the IFilterMaoper:: ReqisterFilter
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,+ '!!·HM

MQijl.111,h 111.1 1119

I Fi lterMa pper:: Registerf i lter

IFilterMapper Interface

Adds a filter to the registry; the filter can then be enumerated.

HRESULT Registerfilter(
CLSID clsid,
LPCWSTR Name,
DWORD dwMerit
);

Parameters

els id
[in] Globally unique identifier (GUID) of the filter.

Name
[in] Descriptive name for the filter.

dwMerit

Topic Contents i@l§ii!MM

Topic Contents i@l§i 11111+

[in] Position in the order of enumeration. Filters with higher merit are enumerated first.

Return Values

Returns an HRESULT value.

791

DirectShow COM Interfaces Page 401of658

Remarks

The merit (as defined by the dwMerit parameter) controls the order in which the filter graph
manager tries filters when performing an operation as a result of a call to
IGraphBuilder: :Connect, IGraphBuilder:: Render, or IGraphBuilder:: RenderFile. The filter graph
manager finds all filters registered with the correct media type and then tries the one with the
highest merit, using other criteria in the registration to choose between filters with equal
merit.

The following predefined values exist for the dwMerit parameter. Other values, such as
MERIT _NORMAL-1, can be used. Using the formula (MERIT_NORMAL+MERIT _UNLIKELY)/2 to
calculate the merit value is advisable, because it leaves some low-order bits available for
making even finer distinctions.
Ox900000 Hardware renderer filter. Filters with this merit value are tried

first.
MERIT _ PREFERRED
(Ox800000)
Ox680000

MERIT _NORMAL
(Ox600000)

MERIT _ UNLIKELY
(Ox400000)

MERIT _ DO_NOT _USE
(Ox200000)

Filter, such as a renderer, that is likely to complete the operation
directly.

MPEG decompression filter. These are tried before AVI
decompressors because the latter require more time to determine
if they work in the filter graph.

Filter that may contribute to the completion of a connection. AVI
decompression filters and splitter transform filters are registered
to this value.
Filter that may contribute to the completion of a connection (a
color space conversion filter, for example). The filter graph
manager uses this filter only if other options have failed. Register
source filters with this value.
Filter that will never contribute to the completion of a connection.
Filters registered with this value (or less) will never be tried by
the filter graph manager when automatically building a filter
graph. Use this to register filters that must be added explicitly,
either as part of a predefined filter graph or by adding them using
IFilterGraph: :Add Filter. Examples include tee filters or effects
filters.

MERIT _HW_COMPRESSOR Hardware compressor filter. Filters registered with this value will
(Ox100050) never be tried by the filter graph manager when automatically

building a filter graph.
MERIT _SW_COMPRESSOR Software compressor filter. Filters registered with this value will
(Ox100000) never be tried by the filter graph manager when automatically

building a filter graph.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M

792

DirectShow COM Interfaces

IFilterMapper::RegisterFilterinstance

IFilterMapper Interface

Registers an identifiable instance of a filter.

HRESULT Registerfilterlnstance(
CLSID clsid,
LPCWSTR Name,
CLSID *MR!d
);

Parameters

els id
[in] Globally unique identifier (GUID) of the filter.

Name
[in] Descriptive name of the instance.

MR!d

Page 402 of 658

[out] Returned media resource ID. This parameter is a locally unique identifier for this
instance of this filter.

Return Values

Returns an HRESULT value.

Remarks

This method handles cases such as when two similar sound cards that are driven by the same
driver are available, and it is necessary to choose which card will emit the sound. This is not
needed if there is only one instance of the filter (such as when there is only one sound card in
the computer), or if all instances of the filter are equivalent.

The filter itself must have already been registered.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M

I Fi lterMa pper:: RegisterPi n

IFilterMapper Interface

Records the details of the pin in the registry.

793

DirectShow COM Interfaces

HRESULT RegisterPin(
CLSID Filter,
LPCWSTR Name,
BOOL bRendered,
BOOL bOutput,
BOOL bZero,
BOOL bMany,
CLSID ConnectsToFilter,
LPWSTR ConnectsToPin
);

Parameters

Filter
[in] Globally unique identifier (GUID) of the filter.

Name

Page 403 of 658

[in] Name of the pin. This should be unique within the filter. It has no significance other
than to indicate type information. Note that pin names longer than 99 characters should
not be used, because this causes filter enumeration problems.

bRendered
[in] Set to TRUE if the filter renders this input; otherwise, set to FALSE.

bOutput
[in] Set to TRUE if this is an output pin; otherwise, set to FALSE.

bZero
[in] If the filter can have zero instances of this pin, set to TRUE; otherwise, set to FALSE.
For example, a decompression filter might choose to not create a sound output pin for a
movie without a sound track.

bMany
[in] If the filter can have many instances of this pin, set to TRUE; otherwise, set to
FALSE. For example, a mixer might have multiple instances of its input pin.

ConnectsToFilter
[in] Reserved. Must be NULL. (This is intended for filters such as system-wide mixers
that have connections outside the filter graph. It is not yet implemented.)

ConnectsToPin
[in] Reserved. Must be NULL.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij Topic Contents l@i§i 11111+

MQ<§i[.]I!:+ 111.Hj Topic Contents l@i§lllMM

I Fi lterMa pper:: RegisterPi nType

794

DirectShow COM Interfaces

IFilterMapper Interface

Registers this pin type.

HRESULT RegisterPinType(
CLSID clsFilter,
LPCWSTR strName,
CLSID clsMajorType,
CCLSID clsSubType
);

Parameters

clsFilter
Class identifier (CLSID) of the filter to which the pin belongs.

strName
Name by which it is known.

clsMajorType
Major type of the media sample supported by this pin class.

clsSubType
Subtype of the media sample supported by this pin class.

Return Values

Returns an HRESULT value.

Remarks

Page 404 of 658

The clsMajorType and clsSubType parameters specify the media type of the pin and correspond
to the AM MEDIA TYPE structure's majortype and subtype members, respectively.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jli,M 11!.l:.ij

+Qi§i[.jjj,+ 111.],.[j

I Fi lterMa pper:: Un registerf i lter

IFilterMapper Interface

Removes the registration of this filter from the registry.

HRESULT UnregisterFilter(
CLSID Filter
);

Parameters

795

Topic Contents l@i§lllMM

Topic Contents l@bll!MM

DirectShow COM Interfaces

Filter
[in] Globally unique identifier (GUID) of the filter.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

I Fi lterMa pper:: Un registerf i lterlnsta nee

IFilterMaoper Interface

Removes the registration of this filter instance from the registry.

HRESULT UnregisterFilterinstance(
CLSID MRid
);

Parameters

MRid
[in] Media resource identifier of this instance.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i!!.llj,i Mh.J,,[5

IFilterMapper::UnregisterPin

IFilterMapper Interface

Removes the registration of this pin from the registry.

HRESULT UnregisterPin(
CLSID Filter,

796

Topic Contents

Page 405 of 658

i@faii!MM

i@faii!MM

DirectShow COM Interfaces

LPCWSTR Name
);

Parameters

Filter
[in] Globally unique identifier (.G..U..lD.) of the filter that this pin is part of.

Name
[in] Name of the pin.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,+ '!!·HM Topic Contents

IFilterMapper2 Interface

Page 406 of 658

i@l§ii!MM

IFilterMapper2 is an interface for registering and locating DirectShow filters with greater
flexibility than IFilterMaooer allowed. Applications and filters should use IFilterMapper2
instead of IFilterMapper, although both interfaces can find filters registered with the other
interface.

One major change from IFilterMapper to IFilterMapper2 is that IFilterMapper2 provides
support for filter categories. A filter can appear in one or more categories (for example, Video
Compressors) to restrict the search space. The RegisterFilter method takes a category, and the
EnumMatchingFilters method searches across categories.

Other changes include:

1. Quicker and easier enumeration of hardware devices such as WDM/PnP
2. Registration in one step (previously you had to register pins and media types with

separate calls)
3. Register and search by mediums (see Kernel Streaming in the NT DDK)

When to Implement

This interface is implemented on the filter graph and is not intended to be implemented by
developers.

When to Use

Applications and filters should use IFilterMapper2 when they need to register or unregister
filters. IFilterMapper2 should be used instead of IFilterMapper.

Methods in Vtable Order

797

DirectShow COM Interfaces Page 407 of 658

!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IFilterMapper2 Description
methods
CreateCategory Adds a new category to the list of filter categories

(CLSI D _ActiveMovieCategories).
UnregisterFilter Removes the registration of the specified filter from the registry.
RegisterFilter Registers a filter, pins, and media types under a category.

EnumMatchingFilters Provides an enumerator that enumerates registered filters that meet
specified requirements.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lll¥M

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

I Fi lterMa pper2: :CreateCategory

IFilterMapper2 Interface

Adds a new category to the list of filter categories (CLSID_ActiveMovieCategories).

HRESULT CreateCategory(
REFCLSID clsidCategory,
DWORD dwCategoryMerit,
LPCWSTR Description);

Parameters

clsidCategory
[in] Name of the new filter category.

dwCategoryMerit
[in] Merit value of the category. Categories with higher merit are enumerated first.

Description
[in] Descriptive name for the category.

Return Values

Returns S_OK on success; HRESULT_FROM_WIN32 on failure.

Remarks

The graph builder initially skips all categories with merit less than DO_NOT_USE to speed up

798

DirectShow COM Interfaces Page 408 of 658

the IGraphBuilder:: RenderFile method. Categories of filters that should not be considered for
playback should be marked DO_ NOT_ USE.

A filter can appear in one or more categories (for example, Video Compressors) to restrict the
search space.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

MQiji.jjj,M M!i.1 1119 Topic Contents i@l§i 11111+

I Fi lterMa pper2:: En u mMatch i ng Filters

IFilterMapper2 Interface

Provides an enumerator that enumerates registered filters that meet specified requirements.

HRESULT EnumMatchingFilters(
I En um Moniker **ppEnum,
DWORD dwF/ags,
BOOL bExactMatch,
DWORD dwMerit,
BOOL blnputNeeded,
DWORD cinputTypes,
const GUID *pinputTypes,
const REGPINMEDIUM *pMedin,
const CLSID *pPinCategoryin,
BOOL bRender,
BOOL bOutputNeeded,
DWORD cOutputTypes,
const GUID *pOutputTypes,
const REGPINMEDIUM *pMedOut,
const CLSID *pPinCategoryOut,);

Parameters

ppEnum
[out] Enumerator returned.

dwF/ags
[in] Currently reserved, specify zero.

bExactMatch
[in] Specify TRUE to indicate wildcards not allowed; FALSE indicates wildcards allowed.

dwMerit
[in] Enumerate only filters with at least the specified merit value.

blnputNeeded
[in] TRUE if there must be at least one input pin.

cinputTypes
[in] Number of input types to match.

799

DirectShow COM Interfaces Page 409 of 658

pinputTypes
[in] Input major types and subtype required. Set to GUID_NULL if you do not care.

pMedin
[in] Input medium. Set to NULL if not needed.

pPinCategoryin
[in] Input pin category. Set to NULL if not needed.

bRender
[in] Option that indicates if the specified filter must render the input.

bOutputNeeded
[in] TRUE if there must be at least one output pin.

cOutputTypes
[in] Number of output types to match.

pOutputTypes
[in] Output major type and subtype required. Set to GUID_NULL if you do not care.

pMedOut
[in] Output medium. Set to NULL if not needed.

pPinCategoryOut
[in] Output pin category. Set to NULL if not needed.

Return Values

Returns S_OK if successful or E_FAIL upon failure.

Remarks

If a pin hasn't registered any media types, this method will not consider a match for the media
type passed in for the plnputTypes or pOutputTypes parameters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥

+Qi@[.]+• 111.1,.19

I Fi lterMa pper2:: Registerf i lter

IFilterMapper2 Interface

Registers a filter, pins, and media types under a category.

HRESULT Registerfilter(
REFCLSID clsidFilter,
LPCWSTR Name,
!Moniker **ppMoniker,
const CLSID *pclsidCategory,
const OLECHAR *szlnstance,
const REGFILTER2 *prf2);

800

Topic Contents i@i§ll!¥+

Topic Contents i@i§i i!fttiM

DirectShow COM Interfaces Page 410 of 658

Parameters

clsidFilter
[in] .G..U..ID. of the filter. CoCreateinstance will be called with this GUID when the filter is
instantiated.

Name
[in] Descriptive name for the filter.

ppMoniker
[in, out] Address of a pointer to a device moniker that determines where this filter's data
will be written. This parameter will be set to NULL upon return.

pclsidCategory
[in] Category of the filter to register.

szlnstance
[in] Unique identifier for the filter (can be the friendly name or the filter CLSID).

prf2
[in] Pointer to a REGFILTER2 structure containing merit and pin information.

Return Values

Returns one of the following values:
Value Meaning
VFW E BAD KEY Couldn't get registry key.
HRESULT_FROM WIN32 Failure.
NO ERROR Success.

Remarks

Specify the moniker in the ppMoniker parameter if you are registering a filter for a WDM/PnP
(Windows Driver Model/Plug and Play) device. If ppMoniker is non-null, the moniker returned
can be used to write additional private values in the property bag.

The pclsidCategory parameter defaults to CLSID_ActiveMovieFilters if NULL is passed in.

Set ppMoniker to NULL if you don't want to provide or receive the moniker.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@IJll!MM

+Qi§i[.]11,+ '!!·Hi Topic Contents l@IJll!MM

I Fi lterMa pper2:: Un reg isterfi lter

IFilterMaoper2 Interface

Removes the registration of the specified filter from the registry.

801

DirectShow COM Interfaces

HRESULT Unregisterfilter(
const CLSID *pclsidCategory,
const OLECHAR *sz!nstance,
REFCLSID Filter);

Parameters

pclsidCategory
[in] Name of the category that the filter falls under.

sz!nstance
[in] Name of the filter you want to remove.

Filter
[in] Globally unique identifier (GUID) of the filter.

Return Values

Returns S_OK on success; HRESULT_FROM_WIN32 on failure.

Remarks

If sz!nstance is NULL, this method uses the filter GUID passed in Filter.

This method might return an error if the filter was not registered.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents

MQ<§i[.]I!:+ 111.Hj Topic Contents

IFullScreenVideo Interface

Page 411of658

l@i§i 11111+

l@i§lllMM

This interface allows an application or plug-in distributor to control a full-screen renderer. The
Microsoft® DirectShow™ full -screen renderer supports this interface. When connected, a
renderer should load the display modes that are available. The number of modes available can
be obtained through IFullScreenVideo: :CountModes. Information on each individual mode is
then available by calling IFullScreenVideo: :GetModeinfo and
IFullScreenVideo: :IsModeAvailable. An application can enable and disable any mode by calling
the IFullScreenVideo: :SetEnabled method. The current value can be queried by calling
IFullScreenVideo: :IsModeEnabled. An application can enable or disable any mode by calling the
IFullScreenVideo::SetEnabled flag with OATRUE or OAFALSE (not C/C++ TRUE and FALSE
values).

The DirectShow full-screen renderer can function only when it is the foreground active window.
If the user tries to switch to another application while in full-screen mode, the video will be
hidden. The renderer does this by minimizing the window it is actually drawing the video in
(although the use of a window is transparent to the user). Maximizing the window restores the

802

DirectShow COM Interfaces Page 412 of658

video.

The filter graph manager uses the full-screen renderer to help implement the full-screen
property that can be set through IVideoWindow: :out FullScreenMode. When used in this
manner, the expected behavior is to switch seamlessly between full-screen mode and then
back into normal window playback when the user presses Esc or other escape sequences. In
this case, the renderer is required to hide its window rather than minimize it when switching
away from it. The renderer can be made to hide rather than minimize (the default action) by
calling IFullScreenVideo:: HideOnDeactivate.

When to Implement

Implement this interface if you are writing an alternate full-screen video renderer. The
Microsoft full-screen video renderer implements this interface by default.

When to Use

Use this interface from any application that must interact with the full-screen video renderer in
order to set or determine video modes or other full-screen renderer properties.

Methods in Vtable Order
!Unknown methods Description
Oueryinterface
AddRef
Release

IFullScreenVideo
methods
CountModes

GetModeinfo
GetCurrentMode
IsModeAvailable
IsModeEna bled
SetEnabled
GetClioFactor
SetClioFactor

SetMessageDrain

GetMessageDrain

SetMonitor

GetMonitor
HideOnDeactivate
IsH ideOnDeactivate
SetCaotion
GetCaotion
SetDefault

Returns pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

Retrieves the number of modes available on the full-screen
renderer.
Retrieves information about a specified mode.
Retrieves the video mode currently in effect.
Determines if a specified video mode is available.
Determines if a specified video mode is enabled.
Enables and disables video modes.
Retrieves the current clip loss factor setting.
Specifies the video mode based on the maximum image area that
will be lost.
Specifies a window that will receive window messages sent to the
renderer.
Retrieves the window set to receive window messages sent to the
renderer.
Sets the monitor in use (for use with multiple-monitor
implementations).
Retrieves the monitor in use.
Hides the window when it is deactivated.
Retrieves the state of the HideOnDeactivate property.
Sets the caption associated with the full-screen window.
Retrieves the caption associated with the full-screen window.
Sets the default for all full-screen video renderer properties.

803

DirectShow COM Interfaces

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

MQl§i[.jjj,M 11!·],,[5 Topic Contents

I Fu I IScreenVideo: :Cou ntModes

IFullScreenVideo Interface

Retrieves the number of modes available on the full-screen renderer.

HRESULT CountModes(
long *pModes
);

Parameters

pModes
[out] Returned mode count.

Return Values

Returns an HRESULT value.

Remarks

Page 413 of 658

lml!§I 11$8

'ffl!'+* •um•

The Microsoft DirectShow full-screen renderer supports eight modes (320 x 200 x 8/16 bit, 320
x 240 x 8/16, 640 x 400 x 8/16, and 640 x 480 x 8/16). The lower-resolution modes are
always chosen over the higher modes. An application can enable and disable specific modes to
more accurately specify which ones are available for use. A slightly less fine-grained
mechanism to affect the selected mode is available through the clip loss factor.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i!!.llj,i 111.J,,[5 Topic Contents l@i§lllMM

I Fu I IScreenVideo: :GetCa pt ion

IFullScreenVideo Interface

Retrieves the caption associated with the full-screen window.

804

DirectShow COM Interfaces

HRESULT GetCaption(
BSTR *pstrCaption
);

Parameters

pstrCaption
[out] Retrieved caption.

Return Values

Returns an HRESULT value.

Remarks

Page 414 of 658

The Microsoft DirectShow full-screen renderer will show itself as an icon when it is deactivated
(you can deactivate it by pressing ALT+TAB to switch away from it). The text caption for the icon
can be set through this method. If the renderer is supposed to hide itself when deactivated,
this method will succeed, although it will have no use because the window will never be shown
as an icon.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM

I Fu I IScreenVideo: :GetCI i pf actor

IFullScreenVideo Interface

Retrieves the current clip loss factor setting.

HRESULT GetClipFactor(
long *pC/ipFactor
);

Parameters

pC/ipFactor
[out] Maximum allowable amount of the image to lose.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents i@l§ii!MM

For a description of the clip loss factor setting, see IFullScreenVideo: :SetClioFactor.

805

DirectShow COM Interfaces

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

I Fu I IScreenVideo: :GetCu rrentMode

IFullScreenVideo Interface

Retrieves the video mode currently in effect.

HRESULT GetCurrentMode(
long *pMode
);

Parameters

pMode
[out] Retrieved full-screen video mode.

Return Values

Returns an HRESULT value.

Remarks

Page 415 of 658

lml!§I 11¥8

When the full-screen video renderer is connected, it chooses a display mode to use for video
playback. The selected mode can be retrieved through this method. The details for that mode
can then be retrieved by using IFullScreenVideo: :GetModeinfo.

For a list of available modes for the Microsoft DirectShow full-screen video renderer, see
IFullScreenVideo: :SetEnabled.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 11!.HS Topic Contents lfflj[§ill¥M

I Fu I IScreenVideo: :GetMessageDra in

IFullScreenVideo Interface

Retrieves the window set to receive window messages sent to the renderer.

806

DirectShow COM Interfaces

HRESULT GetMessageDrain(
HWND *hwnd
);

Parameters

hwnd
[out] Window handle of the window specified as the message drain.

Return Values

Returns an HRESULT value.

Remarks

Page 416 of 658

The full-screen video renderer posts all mouse and keyboard messages it receives to the
window designated as a message drain, with the message parameters untranslated. The exact
list of messages passed is the same as for IVideoWindow:: out MessaqeDrain. An application
can use this to implement hot-key support for full-screen video. For example, it might watch
for the CTRL+P key combination as a cue to pause the video.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM

I Fu I IScreenVideo: :GetModelnfo

IFullScreenVideo Interface

Retrieves information about a specified mode.

HRESULT GetModeinfo(
long Mode,
long *pWidth,
long *pHeight,
long *pDepth
);

Parameters

Mode
[in] Specified mode for which to retrieve information.

pWidth
[out] Width in pixels of the mode's image display.

pHeight
[out] Height in pixels of the mode's image display.

pDepth

807

Topic Contents i@l§ii!MM

DirectShow COM Interfaces Page 417 of 658

[out] Number of color bits per pixel.

Return Values

Returns an HRESULT value.

Remarks

This method returns the height, width, and color depth for a given mode that the renderer has
available. The number of display modes available can be retrieved through
IFullScreenVideo: :CountModes.

For a list of modes available to the Microsoft DirectShow full-screen video renderer, see
IFullScreenVideo: :SetEnabled.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij

+Qi§i[.jjj,+ 111.],.[j

I Fu I IScreenVideo: :GetMon itor

IFullScreenVideo Interface

Retrieves the monitor type in use.

HRESULT GetMonitor(
long *Monitor
);

Parameters

Monitor
[out] Monitor currently in use.

Return Values

Returns NOERROR.

Remarks

Topic Contents l@i§i llfttiM

Topic Contents •@m••1m+

The Microsoft DirectShow full-screen renderer always returns zero (the primary monitor).

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Qi§i[.jjj,+ l!i.l:.!j Topic Contents '®'*' 1gn+

808

DirectShow COM Interfaces

I Fu I IScreenVideo:: H ideOn Deactivate

IFullScreenVideo Interface

Hides the window icon when the full-screen window is deactivated.

HRESULT HideOnDeactivate(
long Hide
);

Parameters

Hide

Page 418 of 658

[in] Set to OATRUE to hide the video window icon when deactivated; set to OAFALSE to
display the icon.

Return Values

Returns NOERROR if successful and E_INVALIDARG if Hide is invalid.

Remarks

The default setting for the Microsoft DirectShow full-screen renderer is OATRUE.

The full-screen renderer can function only when it is the foreground active window. If the user
tries to switch to another application while in full-screen mode, the video will be hidden. The
renderer does this by minimizing the window it is actually drawing the video in (although the
use of a window is transparent to the user). Maximizing the window restores the video. If this
property is set, the window will be hidden rather than minimized.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

I Fu I IScreenVideo: :lsH ideOn Deactivate

IFullScreenVideo Interface

Retrieves the state of the IFullScreenVideo:: HideOnDeactivate property.

HRESULT IsHideOnDeactivate(void);

Return Values

809

DirectShow COM Interfaces Page 419 of 658

Returns S_OK if HideOnDeactivate is set to OATRUE or S_FALSE if it is set to OAFALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents

I Fu llScreenVideo: :lsModeAva i la hie

IFullScreenVideo Interface

Determines if a specified video mode is available.

HRESULT IsModeAvailable(
long Mode
);

Parameters

Mode
[in] Full-screen mode to check.

Return Values

Returns S_OK if the video mode is available or S FALSE if it isn't.

Remarks

ifflj[§ii!MM

The display modes supported by the Microsoft DirectShow full-screen renderer are different
than the actual modes available on any given display card. The application should call this
method only when the renderer is connected, because until then the renderer might not have
allocated the resources it needs to make this information available. Even if a mode is available,
it will not necessarily be used for video playback; the mode must also be compatible with the
filters in the filter graph.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§ill·h' 111.J,,[9 Topic Contents i@i§ii!MM

I Fu I IScreenVideo: :lsModeEna bled

IFullScreenVideo Interface

810

DirectShow COM Interfaces

Determines if a specified mode is enabled.

HRESULT IsModeEnabled(
long Mode
);

Parameters

Mode
[in] Full-screen video mode to check.

Return Values

Returns S OK if the video mode is enabled or S_FALSE if it isn't.

Remarks

Page 420 of 658

You can use this method to enable and disable specific display modes supported by the
renderer. Even if a mode is enabled, it will not necessarily be used for video playback; the
mode must also be compatible with the filters in the filter graph.

For a list of available modes for the Microsoft DirectShow full-screen video renderer, see
IFu I IScreenVideo: : Set Enabled.

See Also

IFullScreenVideo: :IsModeAvailable

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij

I Fu I IScreenVideo: :SetCa pt ion

IFullScreenVideo Interface

Sets the title associated with the full-screen window.

HRESULT SetCaption(
BSTR strCaption
);

Parameters

strCaption
[in] String containing the caption.

811

Topic Contents l@i§i 11111+

DirectShow COM Interfaces

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 11ij Topic Contents

I Fu llScreenVideo: :SetCI i pf actor

IFullScreenVideo Interface

Specifies the video mode based on the maximum data that will be lost.

HRESULT SetClipFactor(
long ClipFactor
);

Parameters

ClipFactor
[in] Maximum allowable amount of the image to lose.

Return Values

Returns an HRESULT value.

Remarks

Page 421of658

l!ftl!Ji l!lltiM

Clip loss factor is a means of enabling full-screen modes that is more generic and easier for
applications to use. This method defines the amount of video that can be lost when deciding
which display mode to use. For example, assuming the decoder cannot compress the video,
playing an MPEG file (say 352 x 288 pixels) into a 320 x 200 display will lose about 25 percent
of the image. The clip loss factor specifies the upper range permissible. To allow typical QCIF­
sized MPEG video (352 x 288 pixels) to be played in a 320 x 200 display mode, it defaults to
25 percent.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

IFullScreenVideo::SetDefault

812

DirectShow COM Interfaces Page 422 of 658

IFullScreenVideo Interface

Sets the default full-screen video renderer settings.

HRESULT SetDefault(void);

Return Values

Returns an HRESULT value.

Remarks

The properties set through this interface apply only to the current renderer instance. They can,
however, be made the global default by calling this interface method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

I Fu llScreenVideo: :SetEna bled

IFullScreenVideo Interface

Enables and disables video modes.

HRESULT SetEnabled(
long Mode,
long bEnabled
);

Parameters

Mode

Topic Contents

[in] Mode to be enabled or disabled (see the following table).
bEnabled

[out] Can be set to one of the following values.
Value Meaning
OATRUE Enable mode.

OAFALSE Disable mode.

Return Values

Returns an HRESULT value.

Remarks

813

1@1§111¥+

DirectShow COM Interfaces Page 423 of 658

Available DirectShow modes are defined as follows. The ordering of these modes is subject to
change, so use IFullScreenVideo: :CountModes and IFullScreenVideo: :GetModeinfo interface
methods to enumerate modes.
Mode Width Height RGB depth (in bits)
0 320 200 16
1 320 200 8
2
3
4

5
6
7
8
9
10
11
12
13
14
15

320
320
640
640
640
640
800
800
1024
1024
1152
1152
1280
1280

240 16
240 8
400 16
400 8
480 16
480 8
600 16
600 8
768 16
768 8
864 16
864 8
1024 16
1024 8

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥

+Qi@[.]+• 111.1,.19

Topic Contents

Topic Contents

I Fu I IScreenVideo: :SetMessageDra in

IFullScreenVideo Interface

Specifies a window that will receive window messages sent to the renderer.

HRESULT SetMessageDrain(
HWND hwnd
);

Parameters

hwnd
[in] Window handle of the message drain window.

Return Values

814

i@i§ll!¥+

i@i§i i!fttiM

DirectShow COM Interfaces Page 424 of 658

Returns an HRESULT value.

Remarks

The full-screen video renderer posts all mouse and keyboard messages it receives to the
window designated as a message drain, with the message parameters untranslated. The exact
list of messages passed is the same as for IVideoWindow:: put MessageDrain. An application
can use this to implement hot-key support for full-screen video. For example, it might watch
for the CTRL+P key combination as a cue to pause the video.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5

I Fu I IScreenVideo: :SetMon itor

IFullScreenVideo Interface

Sets the monitor type in use.

HRESULT SetMonitor(
long Monitor
);

Parameters

Monitor
[in] Monitor currently in use.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents •=@• 1gnw

Setting this method to anything but the primary display (0) will return an error. In future
versions of Microsoft DirectShow, the renderer might allow applications to select the monitor
on which to play back the full-screen video.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

• Q<M [.] "'' I!!.],.[. Topic Contents lml!§lllMM

IGraphBuilder Interface

815

DirectShow COM Interfaces Page 425 of 658

The IGraphBuilder interface allows applications to call upon the filter graph manager to
attempt to build a complete filter graph, or parts of a filter graph given only partial
information, such as the name of a file or the interfaces of two separate pins. The filter mapper
looks up filters in the registry to configure the filter graph in a meaningful way.

IGraphBuilder inherits from the !FilterGraoh interface and exposes all its methods. For this
reason, IFilterGraph should normally not be used directly.

When to Implement

This interface is implemented on the filter graph manager and is not intended for
implementation by developers.

When to Use

Applications use this interface to create a filter graph, add filters to or remove filters from a
filter graph, enumerate all the filters in a filter graph, and force connections when adding a
filter. Filters typically use the interface to reconnect pins during the connection and negotiation
process of building a filter graph.

Methods in Vtable Order
!Unknown methods Description
Ouerylnterface
AddRef

Returns pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IFilterGraph methods Description
Add Filter Adds a filter to the graph and gives it a name.
RemoveFilter
EnumFilters
FindFilterByName
ConnectDirect
Reconnect

Removes a filter from the graph.
Provides an enumerator for all filters in the graph.
Finds a filter that was added with a specified name.
Connects the two !Pin objects directly (without intervening filters).
Breaks the existing pin connection and reconnects it to the same pin.

Disconnect Disconnects this pin, if connected.
SetDefaultSyncSource Sets the default synchronization source (a clock).

!Graph Builder Description
methods
Connect

Render
RenderFile
AddSourceFilter

SetLogFile

Connects two !Pin objects. If they will not connect directly, this method
connects them with intervening transforms.
Adds a chain of filters to this output pin to render it.
Builds a filter graph that renders the specified file.
Adds a source filter to the filter graph for a specific file. The
!GraohBuilder: :RenderFile method calls this to find the source filter.
Sets the log file into which actions taken in attempting to perform an
operation a re logged.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

816

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM

MQij[.jjj,M M!i.1 1119

IG ra ph Bui Ider: :Add Sou rcefi lter

IGraphBuilder Interface

Adds a source filter to the filter graph for a specific file.

HRESULT AddSourceFilter(
LPCWSTR lpwstrFileName,
LPCWSTR lpwstrFilterName,
IBaseFilter* * ppFilter
);

Parameters

lpwstrFileName
[in] Pointer to the file.

lpwstrFilterName
[in] Name to give the source filter when it is added.

ppFilter

Topic Contents

Topic Contents

[out] Pointer to an IBaseFilter interface on the filter that was added.

Return Values

Returns an HRESULT value.

Remarks

Page 426 of 658

i@l§ii!MM

i@l§i 11111+

This method allows you to obtain and retain more control over building the rest of the graph.
For example, you can use the IFilterGraph: :Add Filter method to add a renderer of your choice,
and then use the IGraphBuilder: :Connect method to connect the two filters. The IBaseFilter
interface exposed by the source filter is returned in the ppFilter parameter, and the reference
is already added by the IUnknown: :Add Ref method. The lpwstrFilterName parameter is used to
allow the filter to be identified by this name in this filter graph. For more information, see
FindFilterByName.

It is the application's responsibility to find the output pin of the added source filter in order to
build the rest of the filter graph, which can be done by calling IGraphBuilder: :Render on the
output pin, to build the entire filter graph automatically, or by adding and connecting filters
individually. Note that, when adding filters individually, the asynchronous file reader source
filter and the URL moniker source filter do not parse the data, so the output pins of these
source filters can be connected only to a parser filter, such as the MPEG splitter filter.

Note that the IGraphBuilder:: RenderFile method adds the same source filter.

817

DirectShow COM Interfaces

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

MQl§i[.jjj,M 11!·],,[5

IGraphBuilder::Connect

IGraphBuilder Interface

Connects the two pins, using intermediates if necessary.

HRESULT Connect(
IPin * ppinOut,
IPin * ppinln
);

Parameters

ppinOut
[in] Output pin.

ppinin
[in] Input pin.

Return Values

Returns an HRESULT value.

Remarks

Page 427 of 658

Topic Contents lml!§I 11$8

Topic Contents 'ffl!'+* •um•

This method connects these two pins directly or indirectly, using transform filters if necessary.
The method either succeeds or leaves the filter graph unchanged. The filter graph manager
attempts a direct connection. If that fails, it attempts to use any available transforms provided
by filters that are already in the filter graph. (It enumerates these in an arbitrary order.) If
that fails, it attempts to find filters from the registry to provide a transform. These will be tried
in order of merit.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i!!.ljj,i 111.J,,[5 Topic Contents l@i§lllMM

IGraphBuilder:: Render

818

DirectShow COM Interfaces

IGraohBuilder Interface

Builds a filter graph that renders the data from this output pin.

HRESULT Render(
IPin * ppinOut
);

Parameters

ppinOut
[in] Output pin.

Return Values

Returns an HRESULT value, which can include one of the following:
VFW S AUDIO NOT RENDERED
VFW S DUPLICATE NAME
VFW S PARTIAL REN DER
VFW S RPZA
VFW S VIDEO NOT RENDERED

Remarks

Page 428 of 658

This method connects this output pin directly or indirectly to a filter or filters that will render it,
using transform filters as intermediary filters if necessary. Filters are tried in the same order as
for the IGraphBuilder: :Connect method.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

IGraphBuilder::RenderFile

IGraphBuilder Interface

Builds a filter graph that renders the specified file.

HRESULT Renderfile(
LPCWSTR lpwstrFile,
LPCWSTR lpwstrP/ayList
);

819

Topic Contents i@fa111¥M

Topic Contents i@fai11¥M

DirectShow COM Interfaces

Parameters

lpwstrFile
[in] Name of the file containing the data to be rendered.

lpwstrP/ayList
[in] Playlist name. Reserved; must be NULL. (This parameter is currently
unimplemented.)

Return Values

Returns an HRESULT value, which can include one of the following:
VFW S AUDIO NOT RENDERED
VFW S DUPLICATE NAME
VFW S PARTIAL REN DER
VFW S RPZA
VFW S VIDEO NOT RENDERED

Remarks

Page 429 of 658

If the lpwstrP/ayList parameter is NULL, this method would use the default playlist, which
typically renders the entire file.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lll¥M

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

IGraphBuilder::SetlogFile

IGraphBuilder Interface

Sets the file into which actions taken in attempting to perform an operation are logged.

HRESULT Setlogfile(
HANDLE hFile
);

Parameters

hFile
Handle to the log file.

Return Values

820

DirectShow COM Interfaces Page 430 of 658

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

The hFile parameter must be an open file handle. After calling this method with a valid file
handle, actions taken by IGraphBuilder methods when attempting to build a filter graph are
logged to this file. This is intended to help you determine the cause of any failure to
automatically build a filter graph.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •@M* 1gnw

MQi§1[.]1!,M 11!.HM Topic Contents i@faii!MM

IGraphVersion Interface

The IGraphVersion interface is provided by the filter graph manager to let other objects,
especially plug-in distributors and the Graphedt.exe tool, know when the graph has changed.

When to Implement

This interface is implemented by the filter graph manager.

When to Use

Use this interface if your application or plug-in distributor must know when filters have been
added, deleted, or reconnected.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IGraphVersion methods Description
QueryVersion Returns the current graph version number.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

821

DirectShow COM Interfaces

+Qi§1[.]i!:+ 1 !!·HM

MQi@[.ji!:M 111.1 1119

IG ra phVersion: :QueryVersion

IGraphVersion Interface

Returns the current graph version number.

HRESULT QueryVersion(
LONG* pVersion
);

Parameters

pVersion
Current graph version.

Return Values

Page 431of658

Topic Contents i@l§ii!MM

Topic Contents i@l§i 11111+

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E FAIL Failure.
E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

The version number is incremented every time there is a change in the set of filters in the
graph or in their connections. If the version number has changed since the last enumeration,
the graph must be re-enumerated.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M 111.1 1119 Topic Contents i@l§i 11111+

H Qi§1[.]11:+ I !l.H9 Topic Contents Mttfjl§ii!MM

822

DirectShow COM Interfaces Page 432 of 658

IKsPropertySet Interface

The IKsPropertySet interface enables you to set and retrieve device properties.

When to Implement

Implement this interface on any pin to expose its properties and to enable its properties to be
changed.

When to Use

Use this interface in your application or filter to access device properties.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release

IKsPropertySet
methods

Decrements the reference count.

Description

Set Sets a property identified by a property set GUID and a property
ID.

QuerySu p ported

Retrieves a property identified by a property set GUID and a
property ID.

Determines whether an object supports a property set.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

8 4'41[.]1!,M 1!1·H¥ Topic Contents

IKsPropertySet: :Get

IKsPropertySet Interface

Retrieves a property identified by a property set GUID and a property ID.

HRESULT Get(
REFGUID guidPropSet,
DWORD dwPropID,
LPVOID pinstanceData,
DWORD cbinstanceData,

823

i@fa111¥M

i@fai11¥M

DirectShow COM Interfaces

LPVOID pPropData,
DWORD cbPropData,
DWORD *pcbReturned
);

Parameters

guidPropSet
[in] Property set .G..U.IQ.

dwPropID
[in] Identifier of the property within the property set.

pl ns tanceDa ta
[out, size_is(cbinstanceData)] Pointer to instance data for the property.

cbinstanceData
[in] Number of bytes in the buffer to which pinstanceData points.

pPropData

Page 433 of 658

[out, size_ is(cbPropData)] Pointer to the retrieved buffer, which contains the value of the
property.

cbPropData
[in] Number of bytes in the buffer to which pPropData points.

pcbReturned
[out] Pointer to the number of bytes returned in the buffer to which pPropData points.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

The current DirectShow implementation returns E_PROP _SET_UNSUPPORTED if the property
set is not supported or E_PROP _ID_UNSUPPORTED if the property ID is not supported for the
specified property set.

Remarks

To retrieve a property, allocate a buffer which this method will then fill in. To determine the
necessary buffer size, specify NULL for pPropData and zero (0) for cbPropData. This method
returns the necessary buffer size in pcbReturned.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents 1@1§111¥+

IKsPropertySet: :QuerySu pported

IKsPropertySet Interface

Determines whether an object supports a property set.

824

DirectShow COM Interfaces

HRESULT QuerySupported(
REFGUID guidPropSet,
DWORD dwPropID,
DWORD *pTypeSupport
);

Parameters

guidPropSet
[in] Property set GUID.

dwPropID
[in] Identifier of the property within the property set.

pTypeSupport

Page 434 of 658

[out] Pointer to a value in which to store flags indicating the support provided by the
driver. Supported flags include the following:
Value Meaning
KSPROPERTY_SUPPORT_GETYou can retrieve the property by calling the

IKsPropertySet: :Get method.
KSPROPERTY_SUPPORT_SET You can change the property by calling

IKsPropertySet: :Set.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

The return values for the current DirectShow implementation include the following:
Value Meaning
E_ NOTIMPL Property set is not supported.
E PROP _ID_UNSUPPORTED Property ID is not supported for the specified property set.
E_ PROP _SET _UNSUPPORTED Property set is not supported.

S_OK Specified property set and property ID combination is supported.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmll§I 11¥8

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

IKsPropertySet: :Set

IKsPropertySet Interface

Sets a property identified by a property set GUID and a property ID.

HRESULT Set(

825

DirectShow COM Interfaces

REFGUID guidPropSet,
DWORD dwPropID,
LPVOID pinstanceData,
DWORD cbinstanceData,
LPVOID pPropData,
DWORD cbPropData
);

Parameters

guidPropSet
[in] Property set .G..U..ID..

dwPropID
[in] Identifier of the property within the property set.

pl ns tanceDa ta
[out, size_is(cbinstanceData)] Pointer to instance data for the property.

cbinstanceData
[in] Number of bytes in the buffer to which pinstanceData points.

pPropData

Page 435 of 658

[out, size_ is(cbPropData)] Pointer to the retrieved buffer, which contains the value of the
property.

cbPropData
[in] Number of bytes in the buffer to which pPropData points.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

The current DirectShow implementation returns E_PROP _SET_UNSUPPORTED if the property
set is not supported or E_PROP _ID_UNSUPPORTED if the property ID is not supported for the
specified property set.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§illlj4M

w QIM !.l ++ Mii.HJ Topic Contents i@faiillj4M

IMediaControl Interface

The filter graph exposes the IMediaControl interface to allow applications to control the
streaming of media through the filters in the graph. The interface provides methods for
running, pausing, and stopping the streaming of data. It also provides applications with a
simple method of building graphs to play back media files.

When to Implement

This interface is implemented by the filter graph manager. Implement this only if you are
writing a plug-in distributor that needs to export the control methods. The CMediaControl base

826

DirectShow COM Interfaces Page 436 of 658

class implements this interface and handles the !Dispatch interface.

When to Use

Use this interface from any application that wants to control the playing of media through
Microsoft® DirectShow™ filter graphs. Applications can also use it to enumerate the filters in
the filter graph and all the filters in the registry, to add a source filter to the filter graph, and
to instruct the filter graph manager to build a filter graph capable of rendering the media type
in a file.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release

I Dispatch
methods
GetTypeI nfoCou nt

GetTypeinfo

GetI DsOfNa mes

Invoke

IMediaControl
methods
Run

Pause
Stop
StopWhenReady

GetState
RenderFile
AddSourceFilter

get FilterCollection

Decrements the reference count.

Description

Determines whether there is type information available for this
dis pi nterface.
Retrieves the type information for this dispinterface if GetTypeinfoCount
returned successfully.
Converts text names of properties and methods (including arguments) to
their corresponding DISPIDs.

Calls a method or accesses a property in this dispinterface if given a
DISPID and any other necessary parameters.

Description

Switches the entire filter graph into running mode.
Pauses all filters in the filter graph.

Switches all filters in the filter graph to a stopped state.
Waits for an operation such as Pause to complete, allowing filters to
queue up data, then stops the filter graph.
Retrieves the state of the filter graph.
Adds and connects filters needed to play the specified file.
Adds to the graph the source filter that can read the given file name,
and returns an !Dispatch interface pointer representing the filter
object.
Retrieves a collection of IFilterinfo interfaces representing the filters
in the graph.

get RegFilterCollection Retrieves a collection of IRegFilterinfo interfaces representing the
filters available in the registry.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M

827

DirectShow COM Interfaces Page 437 of 658

IMediaControl: :AddSou rcef i lter

IMediaControl Interface

Adds to the graph the source filter that can read the given file name, and returns an IDispatch
interface pointer representing the filter.

HRESULT AddSourceFilter(
BSTR strFilename,
!Dispatch **ppUnk
);

Parameters

strFilename
[in] Name of the file containing the source video.

ppUnk
[out] Pointer to the IFilterinfo interface on the filter.

Return Values

Returns an HRESULT value.

Remarks

This method is primarily for use by Automation clients because it returns an IDispatch
interface pointer. C and C++ applications should call the IGraphBuilder: :AddSourceFilter
method to perform this operation for maximum efficiency.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

I Media Control: :get_Fi lterCol lection

IMediaControl Interface

Retrieves a collection of IFilterinfo interfaces representing the filters in the graph and returns
IDispatch for an object that supports the IAMCollection interface.

HRESULT get_FilterCollection(
!Dispatch **ppUnk
);

Parameters

828

DirectShow COM Interfaces Page 438 of 658

ppUnk
[out, retval] The IAMCollection interface on a collection of IFilterinfo objects.

Return Values

Returns an HRESULT value.

Remarks

This method is primarily for use by Automation clients because it returns an IDispatch
interface pointer. C and C++ applications should call the IFilterGraph:: EnumFilters method to
perform this operation for maximum efficiency.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M lll.! 11ij Topic Contents l@IJll!MM

IMediaControl: :get_Reg Fi lterCol lection

IMediaControl Interface

Retrieves a collection of IReqFilterinfo interfaces representing the filters available in the
registry.

HRESULT get_RegFilterCollection(
!Dispatch **ppUnk
);

Parameters

ppUnk
[out, retval] IDisoatch interface of the IAMCollection object.

Return Values

Returns an HRESULT value.

Remarks

This method is primarily for use by Automation clients because it returns an IDispatch
interface pointer. C and C++ applications should call the IFilterMapper: :EnumMatchingFilters
method to perform this operation for maximum efficiency.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M lll.! 11ij Topic Contents l@IJll!MM

829

DirectShow COM Interfaces

I Media Control: :GetState

IMediaControl Interface

Retrieves the state of the filter graph.

HRESULT GetState(
LONG msTimeout,
OAFilterState* pfs
);

Parameters

ms Timeout
[in] Duration of the time-out, in milliseconds.

pfs
[out] Holds the returned state of the filter graph.

Return Values

Page 439 of 658

Returns VFW S STATE INTERMEDIATE if the state transition is not complete, or S_OK if it
completed successfully.

Remarks

Not all state transitions are synchronous. For example, even though the IMediaControl:: Pause
method returns immediately, the filter graph typically does not complete the transition into
paused mode until data is ready at the renderer. This method will not return S_OK until the
state transition has been completed.

If you specify a nonzero time-out, the method waits up to that number of milliseconds for the
filter graph to leave the intermediate state. If the time-out expires before the state transition
is complete, the return code will be VFW S STATE INTERMEDIATE, and the returned state will
be the state into which the graph is transitioning (either the State Stopped, State Paused, or
State Running members of the FILTER STATE structure).

This method will return an error if there is a call on another thread to change the state while
this method is blocked.

Avoid specifying a time-out of INFINITE. Threads cannot process messages while waiting in
GetState. If you call GetState from the thread that processes Windows® messages, specify
only small wait times on the call in order to remain responsive to user input. This is most
important when streaming data from a source such as the Internet, because state transitions
can take significantly more time to complete.

If you want to pause a filter graph completely before stopping it, call IMediaControl:: Pause,
and then IMediaControl:: Stop When Ready (instead of calling GetState with an INFINITE time­
out, and then IMediaControl:: Stop).

830

DirectShow COM Interfaces Page 440 of 658

Although pfs is declared as a pointer to an OAFilterState value in IMediaControl::GetState,
DirectShow implements it as a pointer to a FILTER STATE value in CBaseFilter: :GetState and
its derivatives. Since both OAFilterState and FILTER_STATE resolve to LONG values, this does
not cause an error.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

IMediaControl: :Pause

IMediaControl Interface

Pauses all the filters in the filter graph.

HRESULT Pause();

Return Values

Returns an HRESULT value.

Remarks

In the paused state, filters process data but do not render it. Data is pushed down the filter
graph and is processed by transform filters as far as buffering permits. No data is rendered
(except that media types capable of being rendered statically, such as video, have a static,
poster frame rendered in paused mode). Therefore, putting a filter graph into a paused state
cues the graph for immediate rendering when put into a running state.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 1119

IMediaControl:: RenderFi le

IMediaControl Interface

Adds and connects filters needed to play the specified file.

HRESULT Renderfile(
BSTR strFilename
);

831

Topic Contents i@l§lllMM

DirectShow COM Interfaces Page 441of658

Parameters

strFilename
Name of the file to render.

Return Values

Returns an HRESULT value.

Remarks

This method allows an application to pass the name of a media file that it wants rendered to
the filter graph manager. The filter graph manager will build a graph of the filters needed to
play back this file. This method is Automation-compatible and is equivalent to
IGraphBuilder:: RenderFile, which should be used by C and C++ applications.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lllMM

IMediaControl::Run

IMediaControl Interface

Switches the entire filter graph into a running state.

HRESULT Run();

Return Values

Returns an HRESULT value.

Remarks

In a running state, data is pushed down the filter graph and rendered. The graph remains in a
running state until it is stopped by the IMediaControl: :Pause or IMediaControl: :Stop method.
The graph remains in a running state even after notifying the application of completion (that
is, the EC COMPLETE notification is sent to the application). This allows the application to
determine whether to pause or stop after completion.

If the filter graph is in the stopped state, this method first pauses the graph before running.

If an error value is returned, some filters within the graph might have successfully entered the
running state. In a multistream graph, entire streams might be playing successfully. The
application must determine whether to stop running or not.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

832

DirectShow COM Interfaces Page 442 of 658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

IMediaControl: :Stop

IMediaControl Interface

Switches all filters in the filter graph to a stopped state.

HRESULT Stop();

Return Values

Returns an HRESULT value.

Remarks

In this mode, filters release resources and no data is processed. If the filters are in a running
state, this method pauses them before stopping them. This allows video renderers to make a
copy of the current frame for poster frame display while stopped.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119 Topic Contents i@l§ii!MM

IMediaControl::StopWhenReady

IMediaControl Interface

Waits for an operation such as Pause to complete, allowing filters to queue up data, then stops
the filter graph.

HRESULT StopWhenReady();

Return Values

Returns an HRESULT value.

Remarks

Changing the current position when stopped will not normally repaint the video window with
the new position. Applications will need to enter Pause mode to do this. Calling
StopWhenReady instead of simply calling Stop after this pause ensures that the graph is fully

833

DirectShow COM Interfaces Page 443 of 658

paused, and that data has arrived at the video renderer and has been displayed before the
graph is stopped.

This method is run asynchronously so that the application regains control immediately and can
respond to user input. Use this method rather than calling IMediaControl: :GetState with an
INFINITE time-out, followed by IMediaControl: :Stop.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

IMediaEvent Interface

This interface supports event notification from the filter graph and filters within it to the
application. It is decoupled by using a queuing scheme rather than callbacks, because events
can be notified from worker threads that cannot safely call back into application code.

An event code and two DWORD values represent event notification information. Your
application can use this for typical completion of asynchronous operations, errors that occur
during asynchronous operation, or user-initiated events, such as when a user clicks a hot spot.

Filters within the filter graph and the filter graph itself raise event notifications. Possible events
include playback completion or asynchronous playback errors. In addition, the filter graph
provides a method to generate events at specific reference clock times. The filter graph
exposes an IMediaEventSink interface that the filters within the graph can call to pass event
notifications to the application.

Event notifications are placed in a queue. An application calls the IMediaEvent: :GetEvent
method to retrieve the next notification from the queue. This method blocks until there is an
event to return. The GetEvent time-out parameter (msTimeout) allows the application to
specify the time, in milliseconds, to wait for an event, including values of zero and INFINITE.
After calling GetEvent, applications should always call FreeEventParams to release any
resource associated with the event.

In addition, applications can retrieve the event handle. IMediaEvent: :GetEventHandle returns a
handle to a manual-reset event created by the Microsoft® Win32® CreateEvent function. This
event is in a signaled state as long as there are event notifications to collect. The
IMediaEvent: :GetEvent method clears the event when there are no more event notifications to
collect. This allows an application to use an application programming interface (API), such as
MsgWaitForMultipleObjects, to wait for events and other occurrences at the same time. This
event handle will be closed when the filter graph is released; therefore, applications should
ensure that they are not using it after this point.

The filter graph manager handles some events raised by filters that are not passed to the
application. One example of this is the EC REPAINT event notification. By default the filter
graph manager handles this event by pausing the filter graph and repainting the video
renderer's static images. An application can override default handling for a specific event by
calling the IMediaEvent: :CancelDefaultHandling method with the event value as a parameter.
The I Media Event:: RestoreDefaultHandling method reinstates default handling for the specified
event value. These methods have no effect on events that have no default handling.

834

DirectShow COM Interfaces Page 444 of658

If an error occurs during the transition to a running state on any filter, the !MediaControl: :Run
method returns an error value. In this case, some filters within the graph might be running
successfully. The filter graph leaves it up to the application to determine whether to stop the
graph in case of an error. After the IMediaControl::Run method has returned, event
notifications report any additional errors. The EC ERRORABORT and EC USERABORT event
notifications indicate that playback has probably stopped in the graph (certainly in the filter
that reported it). Other errors and events indicate that it is still running. Note, however, that in
all cases the graph remains in running mode until the application explicitly changes it to
stopped or paused mode.

If the streams in the filter graph detect the end of the stream, the streams report this by using
the EC COMPLETE event notification. The filter graph manager asks filters if they can report
EC_COMPLETE by means of seekable renderers.

A seekable renderer is one that supports the !Media Position interface from the filter and that
has only input pins, or whose input pins report through !Pin: :OuerylnternalConnections that
they are rendered. The filter graph uses IPin::QueryinternalConnections and
IMediaPosition to detect seekable renderers. A seekable renderer should report
EC COMPLETE when all seekable streams on that filter have reached the stream's end.

A renderer can produce EC COMPLETE (and a regular filter produce EndOfStream) for one of
four reasons as follows:

• The typical case: Whether there is data arriving or not if it succeeds all calls to Receive it
will eventually get EndOfStream. If the end of the media is reached and when all data
and EndOfStream has been processed it will signal EC COMPLETE.

• The filter can never produce any data. In that case it just passes EC COMPLETE
immediately when a Run method is called. For example, a filter would pass
EC_COMPLETE if none if its input pins is connected.

• The complicated case, sometimes used by the wave renderer: It can't render data right
now even though it's getting it but it may be able to later. In that case it fails the first
Receive, schedules an EC COMPLETE for a time tStop minus tStart in the future (based
on the NewSegment parameters). If it finds it can start sending data it signals an
EC NEED RESTART. A better approach could be to use stream control for this to avoid
stopping and starting the graph.

• It detects an unrecoverable error. Then, like any filter, it signals end of stream which for
a renderer means signaling EC COMPLETE.

The filter graph manager will not pass EC COMPLETE to the application until an
EC_COMPLETE event notification has been received from each stream. For example, if a live
camera stream is playing as the background for a video playing from a file, the application will
be notified about EC_COMPLETE when the video and audio streams from the file have come
to the stream's end, even though the live source is still playing. In this case, too, the filter
graph remains in running mode until the application explicitly calls the !MediaControl: :Pause or
!MediaControl:: Stoo method.

Your application can disable the aggregation of EC COMPLETE messages by calling
!Media Event: :CancelDefaultHandling with EC_COMPLETE as the parameter. In this case, all
EC_COMPLETE events raised by the filters will be passed directly to the application.

For a list of system-defined event notifications, see Event Notification Codes.

Note All events must be handled if a handle to an IMediaEvent interface is obtained

835

DirectShow COM Interfaces Page 445 of 658

otherwise events will pile up and cause the heap to be used up.

When to Implement

The filter graph manager implements this interface.

You can use the CMediaEvent class, which handles the IDispatch implementation for
Automation, to help implement this interface.

When to Use

Applications use this interface to retrieve event notifications or event handles from the filter
graph manager. For example, an application can retrieve the EC COMPLETE notification to find
out when a media stream has been rendered completely.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

I Dispatch Description
methods
GetTypeinfoCount Determines whether there is type information available for this

dis pi nterface.

GetTypeinfo Retrieves the type information for this dispinterface if GetTypeinfoCount
returned successfully.

GetIDsOfNames Converts text names of properties and methods (including arguments) to
their corresponding DISPIDs.

Invoke Calls a method or accesses a property in this dispinterface if given a
DISPID and any other necessary parameters.

IMediaEvent Description
methods
GetEventHa nd le
Get Event
WaitForCompletion

CancelDefaultHandling

Retrieves a handle to a manual-reset event that will be signaled.
Retrieves the next notification event.
Blocks execution of the application thread until the graph's operation
finishes.

Cancels any default handling of the specified event by the filter
graph.

RestoreDefaultHandling Restores default handling for this event.
Free Event Para ms Frees resources associated with the parameters to an event.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 111.H5 Topic Contents •@M* 1gnw

MQi§1[.]1!,i 1 11·1::!¥ Topic Contents l@l§il!MM

836

DirectShow COM Interfaces Page 446 of 658

IMediaEvent::CancelDefaultHandling

IMediaEvent Interface

Cancels any default handling by the filter graph of the specified event and ensures that it is
passed to the application.

HRESULT CancelDefaultHandling(
long /EvCode
);

Parameters

/EvCode
Event code for which to cancel default handling.

Return Values

Returns S_OK if successful, or S_FALSE if the event does not have any default handling.

Remarks

Currently the filter graph manager applies default handling only to EC COMPLETE and
EC REPAINT.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM

IMediaEvent::FreeEventParams

IMediaEvent Interface

Frees resources associated with the parameters of an event.

HRESULT FreeEventParams(
long /EventCode,
long /Param1,
long /Param2
);

Parameters

/EventCode
[in] Next event notification.

837

Topic Contents ifflj[§ii!¥M

DirectShow COM Interfaces

/Param1
[in] First parameter of the event.

/Param2
[in] Second parameter of the event.

Return Values

Returns an HRESULT value.

Remarks

Page 447 of 658

Event parameters can be of type LONG or BSTR. If a BSTR is passed as an event, it will have
been allocated by the task allocator and should be freed using this method. No reference­
counted interfaces are passed to an application using IMediaEvent: :GetEvent because these
cannot be overridden by IMediaEvent: :CancelDefaultHandlinq. Therefore, this method is not
used to release interfaces.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

+Qij[.jjj,M 111.1 1119

I Media Event: :GetEvent

IMediaEvent Interface

Retrieves the next notification event.

HRESULT GetEvent(
long * /EventCode,
long * /Param1,
long * /Param2,
long msTimeout
);

Parameters

IEventCode
[out] Next event notification.

/Param1
[out] First parameter of the event.

/Param2
[out] Second parameter of the event.

ms Timeout

Topic Contents 1@1§111¥+

Topic Contents 1@1§111¥+

[in] Time, in milliseconds, to wait before assuming that there are no events.

Return Values

838

DirectShow COM Interfaces Page 448 of 658

Returns an HRESULT value that depends on the implementation of the interface. If the time­
out is zero and no event is waiting, or if the time-out elapses before an event appears, this
method returns E_ABORT.

Remarks

The application can pass a time-out value of INFINITE to indicate that the method should block
until there is an event; however, applications should avoid using INFINITE. Threads cannot
process any messages while waiting in GetEvent. If you call GetEvent from the thread that
processes Windows messages, specify only small wait times on the call in order to remain
responsive to user input. This is most important when streaming data from a source such as
the Internet, because state transitions can take significantly more time to complete.

After calling GetEvent, applications should always call FreeEventParams to release any
resource associated with the event.

For a list of notification codes and event parameter values, see Event Notification Codes.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij Topic Contents l@i§i llfttiM

+Qi§i[.jjj,+ 111.],.[j Topic Contents •@m••1m+

I Media Event: :GetEventHa ndle

IMediaEvent Interface

Retrieves a handle to a manual-reset event that will be signaled as long as there are event
notifications to deliver.

HRESULT GetEventHandle(
OAEVENT * hEvent
);

Parameters

hEvent
[out] Handle for the event.

Return Values

Returns an HRESULT value.

Remarks

839

DirectShow COM Interfaces Page 449 of 658

You can monitor events (including the retrieved event) and messages on a single thread; to do
this, declare a HANDLE variable, cast it to an OAEVENT pointer, then pass it to
GetEventHandle. You must cast the pointer to an OAEVENT pointer because HANDLE is not a
valid OLE Automation type. The following code fragment demonstrates how to cast and use the
HANDLE.

HANDLE hEvent;
GetEventHandle ((OAEVENT*) &hEvent) ;

You can pass the retrieved event handle to the Microsoft Win32 WaitForMultipleObjects or
MsgWaitForMultipleObjects functions to wait for event notifications at the same time as other
messages and events on a single thread. The implementation of GetEvent sets and resets the
handle within the application, so applications should not reset the handle themselves.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lllMM

I Media Event:: RestoreDefa u ltHa ndl i ng

IMediaEvent Interface

Reinstates the normal default handling by a filter graph for the specified event, if there is one.

HRESULT RestoreDefaultHandling(
long /EvCode
);

Parameters

/EvCode
[in] Event to restore.

Return Values

Returns S_OK if successful, or S_FALSE if there is no default handling for this event.

Remarks

Events that have default handling in place, such as EC REPAINT, are not typically passed to
the application.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M Ill.HS Topic Contents •=@• 1gnw

840

DirectShow COM Interfaces

I Media Event: :Wa itForCompletion

IMediaEvent Interface

Blocks execution of the application thread until the graph's operation finishes.

HRESULT WaitForCompletion(
long msTimeout,
long * pEvCode
);

Parameters

ms Timeout

Page 450 of 658

[in] Duration of the time-out, in milliseconds. Pass zero to return immediately. To block
indefinitely, pass INFINITE.

pEvCode
[out] Event that terminated the wait. This value can be one of the following:
Value Meaning
EC_COMPLETE Operation completed.
EC_ERRORABORT Error. Playback can't continue.
EC_USERABORT User terminated the operation.
Zero (0) Operation has not completed.

Return Values

Returns one of the following HRESULT values.
Value Meaning
E_ABORT Function timed out before the operation completed. This is equivalent to a zero

pEvCode value.
S_OK Operation completed.

Remarks

This method is the equivalent of blocking until the event notification EC COMPLETE,
EC ERRORABORT, or EC USERABORT is received, or the time-out occurs.

When this method returns, the filter graph is still running. This method assumes that separate
calls to the IMediaEvent interface are not being made. This method fails if the graph is not in
or transitioning into a running state.

The time-out parameter (msTimeout) specifies the length of time to wait for completion. To
test if the operation completed, specify a zero msTimeout value and check the event code
value (pEvCode) for zero, indicating that the operation is not completed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

841

DirectShow COM Interfaces Page 451of658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M M!i.1 1119 Topic Contents i@l§i i!lltiM

IMediaEventEx Interface

This interface derives from IMediaEvent and adds a method that allows registration of a
window to receive messages when events occur.

When to Implement

This interface is implemented by the filter graph manager.

Unlike IMediaEvent, IMediaEventEx is not available through Automation, and therefore cannot
be called directly from Visual Basic.

The CMediaEvent Class supports IMediaEventEx.

When to Use

This interface is used by applications to receive notification that an event has occurred.
Applications can then avoid using a separate thread that waits until an event is set.

For a list of system-defined event notifications, see DirectShow Event Notification Codes.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

I Dispatch Description
methods
GetTyoeinfoCount Determines whether there is type information available for this

dis pi nterface.
GetTyoeinfo Retrieves the type information for this dispinterface if GetTypeinfoCount

returned successfully.
GetIDsOfNames Converts text names of properties and methods (including arguments) to

their corresponding DISPIDs.
Invoke Calls a method or accesses a property in this dispinterface if given a

DISPID and any other necessary parameters.

842

DirectShow COM Interfaces Page 452 of 658

IMediaEvent methods Description
GetEventHandle Retrieves a handle to a manual-reset event that will be signaled.
GetEvent Retrieves the next notification event.
WaitForCompletion Waits until the graph's operation has completed.

CancelDefaultHandling Cancels any default handling of the specified event by the filter
graph.

RestoreDefaultHandling Restores default handling for this event.
Free Event Para ms

I Media Event Ex
methods

Frees resources associated with the parameters to an event.

Description

SetNotifyWi ndow Registers a window that will handle messages when a specified
event occurs.
Turns event notifications on or off. SetNotifyFlags

Get Notify Flags Retrieves whether event notifications a re on or off.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5

MQi§i[.]11,M 11!.HM

I Media EventEx: :GetNotifyFlags

IMediaEventEx Interface

Retrieves whether event notifications a re on or off.

HRESULT GetNotifyFlags(
[out] long *lp/NoNotifyF/ags
);

Parameters

lp/NoNotifyF/ags

Topic Contents

Topic Contents

•=@• 1gnw

l@l§il!MM

[out] Pointer to a value indicating whether event notifications should be on or off. OxOO
indicates notifications are on and Ox01 indicates notifications are off.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. The current
DirectShow implementation returns S_OK if successful or E_POINTER if lp/NoNotifyF/ags is
NULL.

Remarks

843

DirectShow COM Interfaces Page 453 of 658

The handle returned by the GetEventHandle method will be signaled at end of stream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

I Media EventEx: :SetNotifyFlags

IMediaEventEx Interface

Turns event notifications on or off.

HRESULT SetNotifyFlags(
long /NoNotifyF/ags
);

Parameters

/NoNotifyF/ags

Topic Contents ifflj[§ii!MM

[in] Value indicating whether event notifications should be on or off. Specify OxOO to turn
notifications on or specify Ox01 to turn notification off.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. The current
DirectShow implementation returns S_OK if successful or E_INVALIDARG if the argument is
invalid.

Remarks

If notification has been turned off, the handle returned by the GetEventHandle method will be
signaled at end of stream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41H++ +11.],.[9 Topic Contents i@i§ii/¥+

I Media EventEx: :SetNotifyWi ndow

IMediaEventEx Interface

Registers a window that will handle messages in response to all events from an object.

844

DirectShow COM Interfaces

HRESULT SetNotifyWindow(
OAHWND hwnd,
long /Msg,
long /InstanceData
);

Parameters

hwnd
[in] Handle of window to notify. Pass NULL to stop notification.

/Msg
[in] The window message to be passed as the notification.

/InstanceData

Page 454 of 658

[in] Value (instance data) to be passed as the /Param parameter for the /Msg message.

Return Values

Returns S_OK if successful or E_INVALIDARG if an argument is invalid.

Remarks

This method designates a window as the recipient of messages generated by or sent to the
current DirectShow object. You can use this method to monitor the messages from multiple
sources in a single window, which lowers processing overhead.

If an event occurs, DirectShow posts the notification message specified in /Msg to the window
specified by hwnd. SetNotifyWindow sets the message's /Param para meter to /InstanceData
and its wParam parameter to zero.

You can retrieve the event information by calling the GetEvent method when the destination
window receives the message.

All event types post the message; when it arrives, any number of events, including zero, might
actually be in the queue. If more than one event is in the queue when you call
SetNotifyWindow, DirectShow posts only one message. If the application can receive the
message after some other action has cleared events from the queue, there might be no events
in the queue. For example, the Stop method clears all EC COMPLETE events from the queue.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

IMediaEventSink Interface

The filter graph manager exposes the IMediaEventSink interface; it is called from filters to

845

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

