
DirectShow COM Interfaces Page 110 of 658 

IAM Fi leC utlistE le ment:: GetTri ml n Position 

IAMFileCutlistElement Interface 

Retrieves the media time of the trimin point, based on the timeline of the cut's source file. 

HRESULT GetTriminPosition( 
REFERENCE_TIME *pmtTrimin 
); 

Parameters 

pmtTrimin 
[out] Pointer that will receive the trimin point. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. HRESULT 
can include one of the following standard constants, or other values not listed. 
Value Meaning 
E FAIL Failure. 
E_INVALIDARG Argument is invalid. 
E NOTIMPL Method is not supported. 
E_ POINTER 
S_OK 

Null pointer argument. 

Success. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS 

MQl§i[.jjj,M '!!·HM 

Topic Contents 

Topic Contents 

IAM Fi leCutlistElement: :GetTri m Length 

IAMFileCutlistElement Interface 

Retrieves the length of time between the trimin and trimout points. 

HRESULT GetTrimlength( 
REFERENCE_TIME *pmtlength 
); 

Parameters 

501 

lml!§lllMM 

i@i§ill@iM 



DirectShow COM Interfaces Page 111 of 658 

pmtlength 
[out] Pointer that will receive the length in media time. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. HRESULT 
can include one of the following standard constants, or other values not listed. 
Value Meaning 
E FAIL Failure. 
E_INVALIDARG Argument is invalid. 
E NOTIMPL Method is not supported. 
E_ POINTER 
S_OK 

Remarks 

Null pointer argument. 

Success. 

This method retrieves the length of time between the in and out points specified by 
GetTriminPosition and GetTrimOutPosition. 

The value that GetTrimlength retrieves equals the value that GetElementDuration retrieves 
(trimout minus trimin). Other lengths are not supported. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lll¥M 

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8 

IAM Fi leC utlistE le ment:: GetTri mOutPosition 

IAMFileCutlistElement Interface 

Retrieves the media time of the trimout point, based on the timeline of the cut's source file. 

HRESULT GetTrimOutPosition( 
REFERENCE_TIME *pmtTrimOut 
); 

Parameters 

pmtTrimOut 
[out] Pointer that will receive the trimout point, in REFERENCE TIME. 

Return Values 

502 



DirectShow COM Interfaces Page 112 of 658 

Returns an HRESULT value that depends on the implementation of the interface. HRESULT 
can include one of the following standard constants, or other values not listed. 
Value Meaning 
E_FAIL Failure. 
E_INVALIDARG Argument is invalid. 
E_NOTIMPL Method is not supported. 
E_POINTER 
S_OK 

Remarks 

Null pointer argument. 
Success. 

The media time does not include the trimout point. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS 

8 4'41[.]1!,M 1!1·H¥ 

IAMLine21Decoder Interface 

Topic Contents i@fa111¥M 

Topic Contents i@fa111¥M 

The IAMLine21Decoder interface provides access to closed-captioned information and 
settings. Closed-captioned information is transmitted in the vertical blanking interval (VBI) of 
television signals, specifically on line 21 (Line21) of field 1 in the VBI. Video cassette recorders 
record this information on video tape, and you can use Microsoft® DirectShow™ filters to 
capture the Line21 data and save it on disk in a media file format such as audio-video 
interleaved (AVI). The closed-captioned information appears as a separate stream within the 
media file. 

Closed-captioned text is currently used mainly in digital versatile disc (DVD) movies. DVD 
movies contain Line21 data as part of the user data section of each Group of Pictures (GOP) in 
the video stream. Capture cards with Windows Driver Model (WDM) drivers will provide Line21 
data. 

When to Implement 

Do not implement this interface. DirectShow provides the Line 21 Decoder in the DirectX Media 
5.1 SDK, which implements it for you. 

When to Use 

Applications use this interface when they want to provide closed-captioned text, primarily to 
turn closed-captioned capabilities on and off. Use this interface in your application or in the 
filter immediately downstream of the Line21 Decoder filter (typically a mixer filter) to change 
closed-captioned options, such as the output video's size and whether to make the caption 
background opaque or transparent. Mixer filters can also change the physical color used for the 

503 



DirectShow COM Interfaces Page 113 of 658 

background color key. 

Applications can call the GetDrawBackqroundMode and SetDrawBackqroundMode methods so 
the user can select transparent or opaque captioning. 

Methods in Vtable Order 
!Unknown methods Description 
Querylnterface 
AddRef 
Release 

IAMLine21Decoder 
methods 

Retrieves pointers to supported interfaces. 
Increments the reference count. 
Decrements the reference count. 

GetDecoderLevel 
GetCurrentService 

SetCu rrentService 
GetServiceState 
SetSe rv ice State 
GetOutputFormat 

SetOutp utFormat 

GetBackgroundColor 
SetBackg rou ndColor 
GetRedrawAlways 

SetRed raw Always 

GetDrawBackgroundMode 

SetDrawBackg round Mode 

Description 

Retrieves the closed-captioned decoder level. 
Retrieves the current closed captioning service selected by the 
user. 
Sets the current closed captioning service. 
Retrieves the closed captioning service state (on or off). 
Sets the closed captioning service state. 
Retrieves information about output video characteristics such as 
size and bit depth. 
Sets information that describes output video characteristics 
such as size and bit depth. 
Retrieves the physical color to use as background for overlays. 
Sets the physical color to use as background for overlays. 
Retrieves whether the renderer should redraw the whole output 
bitmap for each sample. 
Sets whether the renderer should redraw the whole output 
bitmap for each sample. 
Retrieves whether the caption text background should be 
opaque or transparent. 
Sets whether to make the caption text background opaque or 
transparent. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M l!i.! 11ij Topic Contents l@i§i 11111+ 

•;<¥!.ll!:' iu.H; Topic Contents l@i§lllMM 

IAM Line 21 Decoder:: Get Ba ckg rou n dColor 

IAMLine21Decoder Interface 

Retrieves the physical color to use as background for overlays. 

504 



DirectShow COM Interfaces 

HRESULT GetBackgroundColor( 
DWORD *pdwPhysColor 
); 

Parameters 

pdwPhysColor 
Pointer to the retrieved DWORD value. 

Return Values 

Page 114 of 658 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

Remarks 

Magenta is the default background color. 

See Also 

IAMLine21Decoder:: SetBackgroundColor 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents 

IAMLine21Decoder::GetCurrentService 

IAMLine21Decoder Interface 

Retrieves the current closed captioning service selected by the user. 

HRESULT GetCurrentService( 
AM_LINE21_CCSERVICE *lpService 
); 

Parameters 

lpService 

lmli§lllMM 

Pointer to the current service. This value is a member of the AM LINE21 CCSERVICE 
enumerated data type. The default service is AM L21 CCSERVICE Caption!. 

Return Values 

505 



DirectShow COM Interfaces Page 115 of 658 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

See Also 

IAM Li ne21 Decoder: : SetC u rrentService 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents 

IAM Li ne21 Decoder: :GetDecoderlevel 

IAMLine21Decoder Interface 

Retrieves the closed-captioned decoder level. 

HRESULT GetDecoderlevel( 
AM_LINE21_CCLEVEL *lpLevel 
); 

Parameters 

lpLevel 

lml!§lllMM 

Pointer to the retrieved decoder level. AM L21 CCLEVEL TC2 (TC2) is the only supported 
operating channel level and is an enhanced and backward-compatible version of the 
original TC1 level. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

Remarks 

This method is for informational purposes only. 

TC1 and TC2 are television set decoder levels that represent whether the television can handle 
some closed-captioned byte pairs and produce the desired captioning results. The Line21 
Decoder is capable of TC2 level decoding, which includes all TC1 decoding. Only the first 
100,000 television sets manufactured that included closed-captioned capability were TC1 
compliant; the later TV sets are TC2 compliant. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

506 



DirectShow COM Interfaces Page 116 of 658 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

IAM Line 21 Decoder:: GetD rawBackg round Mode 

IAMLine21Decoder Interface 

Retrieves whether the caption text background should be opaque or transparent. 

HRESULT GetDrawBackgroundMode( 
AM_LINE21_DRAWBGMODE *lpMode 
); 

Parameters 

lpMode 
Retrieved mode. Supported mode values are AM L21 DRAWBGMODE Opaque and 
AM L21 DRAWBGMODE Transparent. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

Remarks 

By default, the caption background is opaque. 

See Also 

IAMLine21Decoder:: SetDrawBackgroundMode 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

+ ;<§1 [.] jj,+ +II.HM Topic Contents Mttfjl§i +gn+ 

IAM Li ne21 Decoder: :GetOutputFormat 

IAMLine21Decoder Interface 

Retrieves information about output video characteristics such as size and bit depth. 

507 



DirectShow COM Interfaces 

HRESULT GetOutputFormat( 
LPBITMAPINFOHEADER lpbmih 
); 

Parameters 

lpbmih 
Pointer to the retrieved BITMAPINFOHEADER structure. 

Return Values 

Page 117 of 658 

Returns an HRESULT value that depends on the implementation of the interface. 

If successful, the default implementation returns S_FALSE if downstream filters haven't 
defined an output format, or S_OK if an output format has been defined. 

Remarks 

The default video output size is 320 x 240 pixels. 

See Also 

IAM Li ne21 Decoder: : SetOutoutFormat 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]1!,+ '!!·HM Topic Contents i@l§ii!MM 

IAM Li ne21 Decoder: :GetRedraw Always 

IAMLine21Decoder Interface 

Retrieves whether the renderer should redraw the whole output bitmap for each sample. 

HRESULT GetRedrawAlways( 
LPBOOL lpbOption 
); 

Parameters 

lpbOption 
Pointer to a value indicating whether the whole bitmap should be redrawn; FALSE by 
default, indicating don't always redraw. TRUE means always redraw. 

Return Values 

508 



DirectShow COM Interfaces Page 118 of 658 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

See Also 

IAMLine21Decoder:: SetRedrawAlways 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents 

IAM Li ne21 Decoder: :GetServiceState 

IAMLine21Decoder Interface 

Retrieves the closed captioning service state (on or off). 

HRESULT GetServiceState( 
AM_LINE21_CCSTATE *lpState 
); 

Parameters 

lpState 

lml!§lllMM 

Pointer to the retrieved state. Supported state values are AM L21 CCSTATE On and 
AM L21 CCSTATE Off. Closed-captioned text is off by default. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

See Also 

IAMLine21Decoder:: SetServiceState 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

•Q<M!.l+' •11·!:.!¥ Topic Contents lml!§lllMM 

509 



DirectShow COM Interfaces Page 119 of 658 

IAM Line 21 Decoder:: SetBackg rou ndColor 

IAMLine21Decoder Interface 

Sets the physical color to use as background for overlays. 

HRESULT SetBackgroundColor( 
DWORD dwPhysColor 
); 

Parameters 

dwPhysColor 
DWORD value that specifies the physical background color. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

Remarks 

Magenta is the default background color. 

See Also 

IAM Li ne21 Decoder: : GetBackq rou ndColor 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Q'41[.]1!,+ 1 !1·HM Topic Contents 

IAM Line 21 Decoder:: SetC u rre ntServi ce 

IAMLine21Decoder Interface 

Sets the current closed captioning service. 

HRESULT SetCurrentService( 
AM_LINE21_CCSERVICE Service 
); 

Parameters 

510 

ifflj[§ii!¥M 



DirectShow COM Interfaces Page 120 of 658 

Service 
Specified service. This value is a member of the AM LINE21 CCSERVICE enumerated 
data type. The default service is AM L21 CCSERVICE Caption!. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

See Also 

IAM Li ne21 Decoder: : GetCu rrentService 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.l:.ij Topic Contents l@i§i llfttiM 

IAM Line 21 Decoder:: SetDrawBackg round Mode 

IAMLine21Decoder Interface 

Sets whether to make the caption text background opaque or transparent. 

HRESULT SetDrawBackgroundMode( 
AM_LINE21_DRAWBGMODE Mode 
); 

Parameters 

Mode 
Mode to set. Supported mode values are AM L21 DRAWBGMODE Opaque and 
AM L21 DRAWBGMODE Transparent. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

Remarks 

By default, the caption background is opaque. 

See Also 

511 



DirectShow COM Interfaces Page 121 of 658 

IAMLine21Decoder: :GetDrawBackqroundMode 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!MM 

IAM Li ne21 Decoder: :SetOutputFormat 

IAMLine21Decoder Interface 

Sets information that describes output video characteristics such as size and bit depth. 

HRESULT SetOutputFormat( 
LPBITMAPINFO lpbmi 
); 

Parameters 

lpbmi 
Pointer to the specified BITMAPINFO structure containing the desired output format. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

The default video output size is 320 x 240 pixels. 

See Also 

IAM Li ne21 Decoder: : GetOutp utFormat 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

+Q'41!.l+1 1 !1·HM Topic Contents i@i§ii!MM 

IAM Li ne21 Decoder: :SetRedraw Always 

IAMLine21Decoder Interface 

512 



DirectShow COM Interfaces Page 122 of 658 

Sets whether the renderer should redraw the whole output bitmap for each sample. 

HRESULT SetRedrawAlways( 
BOOL bOption 
); 

Parameters 

bOption 
Value indicating whether the whole bitmap should be redrawn. TRUE indicates redraw 
always, FALSE means do not redraw always. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

Remarks 

Call this method from your filter if it dirties the buffer that it provides to the Line21 Decoder 
filter. Typically, a mixer filter resides in the filter graph directly downstream from the Line21 
Decoder filter. The mixer filter should call this method and set bOption to TRUE to ensure the 
entire bitmap is redrawn properly. 

A downstream mixer (or any filter that needs to do so) should only call this method with 
bOption set to TRUE if it provides the same buffer to the Line21 decoder as it uses to mix 
secondary video streams(s). 

Redrawing (setting bOption to TRUE) degrades performance and increases CPU load, because it 
negates any potentia I optimizations. 

See Also 

IAM Li ne21 Decoder: : GetRed raw Always 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM 

IAM Li ne21 Decoder: :SetServiceState 

IAMLine21Decoder Interface 

Sets the closed captioning service state. 

513 



DirectShow COM Interfaces 

HRESULT SetServiceState( 
AM_LINE21_CCSTATE State 
); 

Parameters 

State 
Specified state. Supported state values are AM L21 CCSTATE On and 
AM L21 CCSTATE Off. Closed-captioned text is off by default. 

Return Values 

Page 123 of 658 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_INVALIDARG if a parameter is invalid or NOERROR to 
indicate success. 

See Also 

IAM Li ne21 Decoder: : GetServiceState 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]1!,+ '!!·HM Topic Contents i@l§ii!MM 

IAMovie Interface 

The IAMovie interface is a plug-in distributor (PID) interface that you could use as a 
replacement for all other interfaces on the filter graph manager. It wraps the most commonly 
used methods of IGraohBuilder, IMediaControl, IMediaEvent, and IMediaPosition by providing 
the same methods as these interfaces and simply calling these interfaces on the filter graph 
manager for the implementation. It also adds several unique methods that simplify 
instantiating and running a filter graph. 

When to Implement 

This interface is implemented by the IAMovie sample plug-in distributor included in this SDK. It 
is not expected that anything else will implement this interface. 

When to Use 

Applications use plug-in distributors. If this interface is implemented through the IAMovie 
sample application, you can use the methods on this interface rather than the methods on the 
IGraphBuilder, IMediaControl, IMediaEvent, and IMediaPosition interfaces. You can also use 
specialized methods on this interface to render a filter graph and play it in one command, to 
enumerate filters in the filter graph that contain a specified interface, to enumerate all pins in 
the filter graph, and to perform other tasks. 

514 



DirectShow COM Interfaces Page 124 of 658 

Methods in Vtable Order 
!Unknown methods Description 
Ouerylnterface 
AddRef 

Returns pointers to supported interfaces. 
Increments the reference count. 

Release Decrements the reference count. 

IFilterGraph methods Description 
Add Filter Adds a filter to the graph and gives it a name. 
RemoveFilter 
Reconnect 
EnumFilters 
FindFilterByName 
ConnectDirect 
Reconnect 

Removes a filter from the graph. 
Breaks the existing pin connection and reconnects it to the same pin. 
Provides an enumerator for all filters in the graph. 
Finds a filter that was added with a specified name. 
Connects the two !Pin objects directly (without intervening filters). 
Breaks the existing pin connection and reconnects it to the same pin. 

Disconnect Disconnects the pin, if connected. 
SetDefaultSyncSource Sets the default synchronization source (a clock). 

IAMovie methods 
Connect 

Render 
Run 
Pause 

Stoo 
GetState 
RenderFile 
AddSourceFilter 

GetEventHandle 
Get Event 
WaitForComoletion 
Ca ncelDefa ultHa ndling 

Description 
Connects two !Pin objects. If they will not connect directly, this 
method connects them with intervening transforms. 
Adds a chain of filters to this output pin so as to render it. 
Switches the entire filter graph into running mode. 
Pauses all filters in the filter graph. 
Switches all filters in the filter graph to a stopped state. 
Retrieves the state of the filter graph. 
Adds and connects filters needed to play the specified file. 
Adds to the graph the source filter that can read the given file name, 
and returns an interface pointer to the filter object. 
Retrieves a handle to a manual-reset event that will be signaled. 
Retrieves the next notification event. 
Waits until the graph's operation has completed. 
Cancels any default handling of the specified event by the filter graph. 

RestoreDefaultHandling Restores default handling for this event. 
get Duration 

QUt CurrentPosition 
get CurrentPosition 

get StoQTime 

QUt StoQTime 

get PrerollTime 

QUt PrerollTime 

QUt Rate 

Retrieves the total duration of the media stream. 
Sets the time that the media stream begins. 
Retrieves the current position in terms of the total length of the media 
stream. 
Retrieves the position within the media stream at which playback 
should stop. 
Sets the position within the media stream at which playback should 
stop. 
Retrieves the time prior to the start position that the filter graph 
begins any nonrandom access device rolling. 
Sets the time prior to the start position that the filter graph begins 
any nonrandom access device rolling. 
Sets the playback rate, relative to norma I playback of the media 
stream. 

515 



DirectShow COM Interfaces Page 125 of 658 

get Rate Retrieves the playback rate, relative to norma I playback of the media 
stream. 

RemoveAllFilters 
flay_ 

Play File 

Removes all filters from the filter graph. 
Plays the media in the current filter graph. 
Plays the media in a given file. 

EnumFiltersByinterface Retrieves a list of filters supporting a specified interface. 
EnumPins Retrieves a list of pins in the filter graph. 
EnumPinsin Retrieves a list of input pins in the filter graph. 

Retrieves a list of output pins in the filter graph. 
Renders all output pins in the filter graph. 

EnumPinsOut 
RenderAll 
RenderNewFi le 
Free Event Para ms 

Renders a filter graph for a file name, possibly reusing existing filters. 
Frees the resources associated with an event's parameters. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM 

MQl§i[.jjj,M 111.l:.!j Topic Contents •@m• •gnw 

IAMovie: :AddSourceFilter 

IAMovie Interface 

Adds a source filter to the filter graph for this file. The IGraphBuilder:: RenderFile method adds 
the same source filter. 

HRESULT AddSourceFilter( 
LPCWSTR lpwstrFileName, 
IBaseFilter* * ppFilter 
); 

Parameters 

lpwstrFileName 
[in] Pointer to the file. 

ppFilter 
[out] Pointer to an IBaseFilter interface on the filter that was added. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IGraphBuilder: :AddSourceFilter method. The lpwstrFileName file 
name is used as the filter name when IGraphBuilder::AddSourceFilter is called. 

516 



DirectShow COM Interfaces Page 126 of 658 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8 

IAMovie::CancelDefaultHandling 

IAMovie Interface 

Cancels any default handling by the filter graph of the specified event and ensures that it is 
passed to the application. 

HRESULT CancelDefaultHandling( 
long IEvCode 
); 

Parameters 

/EvCode 
Event code for which to cancel default handling. 

Return Values 

Returns S_OK if successful, or S_FALSE if the event does not have any default handling. 

Remarks 

This method simply calls the IMediaEvent: :CancelDefaultHandling method. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M Ill.HS 

IAMovie: :Connect 

IAMovie Interface 

Connects the two pins, using intermediates if necessary. 

HRESULT Connect( 
IPin * ppinOut, 
IPin * ppinin 
); 

517 

Topic Contents lffll!§M 1gnw 



DirectShow COM Interfaces 

Parameters 

ppinOut 
[in] Output pin. 

ppinln 
[in] Input pin. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IGraphBuilder: :Connect method. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS Topic Contents 

IAMovie::EnumFiltersBylnterface 

IAMovie Interface 

Retrieves a list of filters supporting a specified interface. 

HRESULT EnumFiltersBylnterface( 
REFllD riid, 
I En um Filters * * ppEnum 
); 

Parameters 

riid 
[in] REFIID of the interface qualifying the search. 

ppEnum 
[out] Retrieved IEnumFilters enumerator containing the matching filters. 

Return Values 

Returns an HRESULT value. 

Remarks 

Page 127 of 658 

i@faii!MM 

This method retrieves an IEnumFilters enumerator containing a list of pointers to filters in the 
filter graph that support a specified interface. Note that the pointers in the list (as returned by 
IEnumFilters:: Next) actually point to the specified riid interface on each filter rather than to 
the IBaseFilter interface. For implementation details of this method, see the IAMovie sample 

518 



DirectShow COM Interfaces 

plug-in distributor included in this SDK. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

IAMovie::EnumPins 

IAMovie Interface 

Retrieves a list of pins in the filter graph. 

HRESULT EnumPins( 
IEnumPins ** ppEnum 
); 

Parameters 

ppEnum 

MQ<§i[.jjj,M Ill.HS 

[out] Enumerator containing the list of pins. 

Return Values 

Returns an HRESULT value. 

Remarks 

Page 128 of 658 

Topic Contents lmll§lllMM 

For implementation details of this method, see the IAMovie sample plug-in distributor included 
in this SDK. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M Ill.HS 

IAMovie::EnumPinsln 

IAMovie Interface 

Retrieves a list of input pins in the filter graph. 

HRESULT EnumPinsin( 
IEnumPins ** ppEnum 
); 

519 

Topic Contents l@fail!MM 



DirectShow COM Interfaces Page 129 of 658 

Parameters 

ppEnum 
[out] Enumerator containing the list of input pins. 

Return Values 

Returns an HRESULT value. 

Remarks 

For implementation details of this method, see the IAMovie sample plug-in distributor included 
in this SDK. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

w Q<M [.] +• 111.H5 

IAMovie::EnumPinsOut 

IAMovie Interface 

Retrieves a list of output pins in the filter graph. 

HRESULT EnumPinsOut( 
IEnumPins ** ppEnum 
); 

Parameters 

ppEnum 
[out] Enumerator containing the list of output pins. 

Return Values 

Returns an HRESULT value. 

Remarks 

Topic Contents •=@• 1gnw 

For implementation details of this method, see the IAMovie sample plug-in distributor included 
in this SDK. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.]11,M 11!.HM Topic Contents lml!§lllMM 

520 



DirectShow COM Interfaces 

IAMovie::FreeEventParams 

IAMovie Interface 

Frees the resources associated with an event's parameters. 

HRESULT FreeEventParams( 
long /EvCode, 
long /Param1, 
long /Param2 
); 

Parameters 

/EvCode 
Event code. 

/Param1 
Event's first para meter. 

/Param2 
Event's second para meter. 

Return Values 

Returns an HRESULT. 

Remarks 

Page 130 of 658 

The /Param1 and /Param2 parameters must be LONG values, BSTR values, or IUnknown 
interface pointers. If an argument is a LONG value, FreeEventParams does nothing to it. If it 
is an !Unknown interface pointer, its reference count has been incremented. Call its Release 
method to decrement its reference count after calling FreeEventParams. If the argument is a 
BSTR value, free it by calling the task allocator after FreeEventParams. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM 

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8 

IAMovie: :get_ Cu rrentPosition 

IAMovie Interface 

521 



DirectShow COM Interfaces 

Retrieves the current position in terms of the total length of the media stream. 

HRESULT get_CurrentPosition( 
REFTIME* pl/Time 
); 

Parameters 

pl/Time 
[out] Reference time of the current position. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaPosition: :get CurrentPosition method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.! 11ij 

IAMovie: :get_Duration 

IAMovie Interface 

Retrieves the total duration of the media stream. 

HRESULT get_Duration( 
REFTIME* plength 
); 

Parameters 

plength 
[out] Returned length of the media stream. 

Return Values 

Returns an HRESULT value. 

Remarks 

Topic Contents 

This method simply calls the IMediaPosition: :get Duration method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

522 

Page 131of658 

l@i§lllMM 



DirectShow COM Interfaces 

IAMovie: :GetEvent 

IAMovie Interface 

Retrieves the next notification event. 

HRESULT GetEvent( 
long * /EventCode, 
long * /Param1, 
long * /Param2, 
long msTimeout 
); 

Parameters 

/EventCode 
[out] Next event notification. 

/Param1 
[out] First parameter of the event. 

/Param2 
[out] Second parameter of the event. 

ms Timeout 

Page 132 of 658 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

[in] Time, in milliseconds, to wait before assuming that there are no events. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaEvent: :GetEvent method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

HQ i§i [.] jj,M I !1.],.[9 Topic Contents i@l§ii/¥+ 

MQl@[.jjj,M M!l.l:.19 Topic Contents i@l§i i!fttiM 

IAMovie: :GetEventHandle 

523 



DirectShow COM Interfaces Page 133 of 658 

IAMovie Interface 

Retrieves a handle to a manual-reset event that will be signaled as long as there are event 
notifications to deliver. 

HRESULT GetEventHandle( 
OAEVE NT * hEvent 
); 

Parameters 

hEvent 
[out] Handle for the event. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaEvent: :GetEventHandle method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M l!i.! 111j Topic Contents 

IAMovie: :get_PrerollTime 

IAMovie Interface 

Retrieves the time prior to the start position that devices should start rolling. 

HRESULT get_PrerollTime( 
REFTIME* pTime 
); 

Parameters 

pTime 
[out] Returned preroll time. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaPosition: :get PrerollTime method. 

524 

l@IJll!MM 



DirectShow COM Interfaces 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents 

IAMovie: :get_Rate 

IAMovie Interface 

Retrieves the rate of playback relative to normal playback speed. 

HRESULT get_Rate( 
double * pdRate 
); 

Parameters 

pdRate 
[out] Returned rate. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaPosition: :get Rate method. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

IAMovie: :GetState 

IAMovie Interface 

Determines the state of the filter. 

HRESULT GetState( 
DWORD dwMilliSecsTimeout, 
FILTER_STATE *State 
); 

•Q<M!.l+' 111.],.[5 

525 

Topic Contents 

Page 134 of 658 

lml!§I 11$8 

lml!§I 11$8 



DirectShow COM Interfaces Page 135 of 658 

Parameters 

dwMilliSecsTimeout 
[in] Duration of the time-out, in milliseconds. To block indefinitely, pass INFINITE. 

State 
[out] Holder of the returned state of the filter. States include stopped, paused, running, 
or intermediate (in the process of changing). 

Return Values 

Returns an HRESULT value, which will be VFW S STATE INTERMEDIATE if the state transition 
is not complete, or S_OK if it has been successfully completed. 

Remarks 

This method simply calls the IMediaControl: :GetState method. Note that the state is returned 
in a FILTER STATE structure rather than as an OAFilterState type. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

w Q<M [.] +• 111.H5 

IAMovie: :get_StopTime 

IAMovie Interface 

Retrieves the time at which the media stream stops. 

HRESULT get_StopTime( 
REFTIME* pTime 
); 

Parameters 

pTime 
[out] Returned stop time. 

Return Values 

Returns an HRESULT value. 

Remarks 

Topic Contents 

This method simply calls the IMediaPosition: :get StopTime method. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

526 

•=@• 1gnw 



DirectShow COM Interfaces Page 136 of 658 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

IAMovie::Pause 

IAMovie Interface 

Pauses all the filters in the filter graph. 

HRESULT Pause( ); 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaControl: :Pause method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qij[.jjj,M M!i.1 1119 Topic Contents i@l§lllMM 

IAMovie::Play 

IAMovie Interface 

Plays the media in the current filter graph. 

HRESULT Play( ); 

Return Values 

Returns an HRESULT value. 

Remarks 

This method runs the filter graph to completion by calling IAMovie:: Run, and waits for it to 
complete by calling IAMovie: :WaitForCompletion. For implementation details of this method, 
see the IAMovie sample plug-in distributor included in this SDK. 

© 1997 Microsoft Cornoration . All rights reserved. Terms of Use. 

527 



DirectShow COM Interfaces 

IAMovie::PlayFile 

IAMovie Interface 

Plays the media in a given file. 

HRESULT Playfile( 
LPCWSTR strFilename 
); 

Parameters 

strFilename 
[in] Name of the file to play. 

Return Values 

Returns an HRESULT value. 

Remarks 

Page 137 of 658 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

This method calls the IAMovie:: RenderNewFile method to build a filter graph capable of 
rendering the file passed in strFilename and then plays the file by calling IAMovie:: Play. For 
implementation details of this method, see the IAMovie sample plug-in distributor included in 
this SDK. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§i[.]ii,+ '!!·HM 

IAMovie::put_CurrentPosition 

IAMovie Interface 

Sets the time that the media stream begins. 

HRESULT put_CurrentPosition( 
REFTIME Time 
); 

528 

Topic Contents i@l§ii!MM 



DirectShow COM Interfaces 

Parameters 

Time 
[in] Start time. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaPosition: :put CurrentPosition method. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 Topic Contents 

IAMovie::put_PrerollTime 

IAMovie Interface 

Sets the time prior to the start position that devices should start rolling. 

HRESULT put_PrerollTime( 
REFTIME I/Time 
); 

Parameters 

I/Time 
[in] Preroll time to be set. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the !Media Position: :put PrerollTime method. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

MQ<§i[.jjj,M Ill.HS Topic Contents 

529 

Page 138 of 658 

lmli§lllMM 

lmli§M 1gnw 



DirectShow COM Interfaces 

IAMovie::put_Rate 

IAMovie Interface 

Sets the rate of playback relative to normal speed. 

HRESULT put_Rate( 
double dRate 
); 

Parameters 

dRate 
[in] Rate to set. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaPosition: :put Rate method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.! 11!j 

IAMovie::put_StopTime 

IAMovie Interface 

Sets the time at which the media stream will stop. 

HRESULT put_StopTime( 
REFTIME Time 
); 

Parameters 

Time 
[in] Stop time. 

Return Values 

Returns an HRESULT value. 

530 

Page 139 of 658 

Topic Contents l@i§lllMM 



DirectShow COM Interfaces Page 140 of 658 

Remarks 

This method simply calls the IMediaPosition: :put StopTime method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQij[.jlj,M l!i.! 111j Topic Contents lml!Jl l!lltiM 

IAMovie::RemoveAllFilters 

IAMovie Interface 

Removes all filters from the filter graph. 

HRESULT RemoveAllFilters( ); 

Return Values 

Returns an HRESULT value. 

Remarks 

This method enumerates all filters in the filter graph and then removes each of them by calling 
RemoveFilter. For implementation details of this method, see the IAMovie sample plug-in 
distributor included in this SDK. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.]11,+ 11!.Hj 

IAMovie::Render 

IAMovie Interface 

Builds a filter graph that renders the data from this output pin. 

HRESULT Render( 
IPin * ppinOut 
); 

Parameters 

531 

Topic Contents l!ftl!JlllMM 



DirectShow COM Interfaces Page 141 of 658 

ppinOut 
[in] Output pin. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IGraphBuilder:: Render method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM 

IAMovie: :RenderAll 

IAMovie Interface 

Renders all output pins in the filter graph. 

HRESULT RenderAll( ); 

Return Values 

Returns an HRESULT value. 

Remarks 

This member function enumerates all output pins in the filter graph and renders each of them 
(builds a filter graph capable of rendering the media type) by calling IAMovie:: Render for each 
output pin. For implementation details of this method, see the IAMovie sample plug-in 
distributor included in this SDK. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.Hj Topic Contents l@i§lllMM 

IAMovie: :RenderFile 

IAMovie Interface 

532 



DirectShow COM Interfaces 

Adds and connects filters needed to play the specified file. 

HRESULT Renderfile( 
LPCWSTR strFilename 
); 

Parameters 

strFilename 
Name of the file to render. 

Return Values 

Returns an HRESULT value. 

Remarks 

Page 142 of 658 

This method simply calls the IGraphBuilder:: RenderFile method with the Playlist parameter of 
that method set to NULL. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQiji.li!:M l!i.! 11ij Topic Contents 

IAMovie:: RenderNewFi le 

IAMovie Interface 

Renders a filter graph for a file name, possibly reusing existing filters. 

HRESULT RenderNewFile( 
LPCWSTR strFilename 
); 

Parameters 

strFilename 
[in] Name of the file to be rendered. 

Return Values 

Returns an HRESULT value. 

Remarks 

l@i§i 11111+ 

This method disconnects all filters in the filter graph, then renders the file in the strFilename 
parameter by calling IAMovie:: RenderFile. This will use the disconnected filters if they can be 

533 



DirectShow COM Interfaces Page 143 of 658 

used to render the file. It then removes any unconnected filters left in the filter graph. For 
implementation details of this method, see the IAMovie sample plug-in distributor included in 
this SDK. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM 

IAMovie::RestoreDefaultHandling 

IAMovie Interface 

Reinstates the normal default handling by a filter graph for the specified event if there is one. 

HRESULT RestoreDefaultHandling( 
long /EvCode 
); 

Parameters 

/EvCode 
[in] Event to restore. 

Return Values 

Returns S_OK if successful, or S_FALSE if there is no default handling for this event. 

Remarks 

This method simply calls the IMediaEvent:: RestoreDefaultHandling method. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.]11,M '!!·HM Topic Contents i@faii!MM 

IAMovie::Run 

IAMovie Interface 

Switches the entire filter graph into a running state. 

HRESULT Run( ); 

534 



DirectShow COM Interfaces Page 144 of 658 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaControl: :Run method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+QH"·h' 111.q9 Topic Contents 1@1§111¥+ 

IAMovie: :Stop 

IAMovie Interface 

Switches all filters in the filter graph to the stopped state. 

HRESULT Stop( ); 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaControl: :Stop method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M 111.l:.i# Topic Contents 1@1§111¥+ 

IAMovie: :Wa itForCom pletion 

IAMovie Interface 

Provides a simplified way for applications to wait until the filter graph's operation has 
completed. It is the equivalent of blocking until the event notification EC COMPLETE, 
EC ERRORABORT, or EC USERABORT is received. 

HRESULT WaitForCompletion( 
long msTimeout, 

535 



DirectShow COM Interfaces 

long * pEvCode 
); 

Parameters 

ms Timeout 

Page 145 of 658 

[in] Duration of the time-out, in milliseconds. To block indefinitely, pass INFINITE. 
pEvCode 

[out] Event to wait for. 

Return Values 

Returns an HRESULT value. 

Remarks 

This method simply calls the IMediaEvent: :WaitForCompletion method. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

MQ<§i[.jjj,M Ill.HS Topic Contents lmli§lllMM 

IAMovieSetup Interface 

The IAMovieSetup interface provides methods that allow objects in a dynamic-link library 
(DLL) to be self-registering. The IAMovieSetup interface works in conjunction with an overall 
registration architecture that COM requires; this architecture is partially implemented in the 
DirectShow™ base classes. The remainder of the implementation is described in the following 
sections. 

When to Implement 

Implement this interface if you want your filter or plug-in distributor to be able to register itself 
automatically as part of a setup routine on an end user system. The two methods in this 
interface, IAMovieSetup:: Register and IAMovieSetup:: Unregister, are implemented by the 
CBaseFilter base class for self-registering filters. For a complete list of steps showing how to 
use this interface with the DirectShow class library, see Register DirectShow Objects. 

When to Use 

Use implemented methods on this interface from an entry point on the filter that is called by a 
setup utility or installation utility. These are used automatically by the DirectShow architecture 
and normally should not need to be called by any other component. 

Methods in Vtable Order 

536 



DirectShow COM Interfaces Page 146 of 658 

!Unknown methods Description 
Querylnterface Returns pointers to supported interfaces. 
AddRef Increments the reference count. 
Release Decrements the reference count. 

IAMovieSetup methods Description 
Register Adds the filter to the registry. 

Unregister Removes the filter from the registry. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

•;<MM+' MB.HM Topic Contents i@fa111¥M 

8 4'41M+• 1!1·H¥ Topic Contents i@fai11¥M 

IAMovieSetup::Register 

IAMovieSetup Interface 

Adds the filter to the registry. 

HRESULT Register(void); 

Return Values 

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the 
following standard constants, or other values not listed: 
Value Meaning 
E_ FAIL Failure. 
E POINTER Null pointer argument. 
E_INVALIDARG Invalid argument. 
E_NOTIMPL Method isn't supported. 

S_OK or NOERROR Success. 

Remarks 

This method registers the filter, its pins, and the media type associated with the pins. It should 
be implemented to use IFilterMapper methods to accomplish this. See the 
CBaseFilter:: Register member function for a description of its implementation. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

•;<MM+• lh.1::1¥ Topic Contents i@fa111¥M 

•;<MM+' MB.HM Topic Contents •@M* 1gnw 

537 



DirectShow COM Interfaces Page 147 of 658 

IAMovieSetup::Unregister 

IAMovieSetuo Interface 

Removes the filter from the registry. 

HRESULT Unregister(void); 

Return Values 

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the 
following standard constants, or other values not listed: 
Value Meaning 
E_FAIL Failure. 
E_POINTER Null pointer argument. 
E_INVALIDARG Invalid argument. 
E_NOTIMPL Method isn't supported. 
S_OK or NOERROR Success. 

Remarks 

This method should be implemented to use the IFilterMapper:: UnreqisterFilter method to 
remove the filter from the registry. This effectively removes the pins and media types as well. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M 

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+ 

IAMStreamConfig Interface 

The IAMStreamConfig interface enables you to find out what types of formats an output pin 
can be connected with. Additionally it can be used to set stream formats, to tell a pin to 
connect with a certain format the next time it's connected, or to make it reconnect with a new 
format if it's already connected. Audio/video capture and audio/video compression filters 
implement this interface on their output pins, but potentially any filter dealing with audio or 
video can implement this interface on its output pins. 

Use this interface to set a pin's output format, rather than connecting the pin by using a 
specific media type. After setting an output format, the pin will try to use that format the next 
time it connects. This enables you to call the IGraphBuilder: :Render method on that pin and 

538 



DirectShow COM Interfaces Page 148 of658 

get a desired format without connecting the pins and providing a CMediaTyoe class object. 
Your pin should offer only the media type set in the CMediaTyoe: :SetFormat function in its 
enumeration of media types after SetFormat is called. Before then, offer media types as usual. 
This will ensure that the pin uses that format for connection. An application that needs to 
enumerate accepted media types using CBasePin: :GetMediaTyoe must do so before calling 
Setformat. 

The IAMStreamConfig: :GetStreamCaos method can get more information about accepted 
media types than the traditional way of enumerating a pin's media types, so you typically 
should use it instead of pin enumeration. GetStreamCaos retrieves information about the kinds 
of audio and video formats allowed. 

GetStreamCaos provides detailed information about the media types and capabilities supported 
by this pin. This method returns a set of structures that includes pairs of AM MEDIA TYPE and 
either a VIDEO STREAM CONFIG CAPS or an AUDIO STREAM CONFIG CAPS structures 
describing an accepted media type and how that media type can be altered to create other 
acceptable media types. 

Note The cropping rectangle described throughout the IAMStreamConfig documentation is 
the same as the VIDEOINFOHEADER structure's resource rectangle for the output pin. 

The output rectangle described throughout the IAMStreamConfig documentation is the same 
as the width and height members of the output pin's BITMAPINFOHEADER structure. 

For more information on GetStreamCaos see Exoosing Caoture and Comoression Formats. 

When to Implement 

Implement this interface on the video output pin when you are writing a video capture or video 
compression filter. 

When to Use 

Use this interface when your application or filter must get or set audio or video stream 
information. 

WDM capture applications that wish to preview and then capture might have to set audio and 
video stream information on the preview pin and again on the capture pin. 

Methods in Vtable Order 
!Unknown methods Description 
Oueryinterface Retrieves pointers to supported interfaces. 
AddRef Increments the reference count. 
Release Decrements the reference count. 

IAMStreamConfig Description 
methods 
SetFormat Sets the audio or video stream's format. 
GetFormat Retrieves the audio or video stream's format. 
GetNumberOfCaoabilities Retrieves the number of stream capabilities structures for the 

compressor. 

539 



DirectShow COM Interfaces Page 149 of 658 

GetStreamCaps Obtains audio or video capabilities of a stream depending on 
which type of structure is pointed to in the pSCC parameter. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M l!i.! 111j 

+Qi§i[.]11,+ '!!·Hi 

IAMStrea mConfig:: Getf ormat 

IAMStreamConfiq Interface 

Retrieves the audio or video stream's format. 

HRESULT GetFormat( 
AM_M ED IA_ TYPE **pmt 
); 

Parameters 

pmt 

Topic Contents 

Topic Contents 

[out] Address of a pointer to an AM MEDIA TYPE structure. 

Return Values 

l@IJll!MM 

l@IJll!MM 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Be sure to initialize the media type structure before using it. For example, the following code 
fragment calls the Win32® ZeroMemory function to initialize the structure. 

AM_MEDIA_TYPE mt; 
ZeroMemory(&mt, sizeof(mt)) 
GetFormat (&mt); 

Call the FreeMediaType function to free the structure. cmt> 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

+;<§i[.]lj,+ 111.],.[j 

540 

Topic Contents l@IJll!MM 



DirectShow COM Interfaces Page 150of658 

IAMStreamConfig::GetNumberOfCapabilities 

IAMStreamConfig Interface 

Retrieves the number of stream capabilities structures for the compressor. 

HRESULT GetNumberOfCapabilities( 
int *piCount, 
int *piSize 
); 

Parameters 

pi Count 
[out] Pointer to the number of VIDEO STREAM CON FIG CAPS and/or 
AUDIO STREAM CONFIG CAPS structures supported. 

pi Size 
[out] Pointer to the size of the configuration structure (either 
AUDIO STREAM CON FIG CAPS or VIDEO STREAM CON FIG CAPS). 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lllMM 

IAMStrea mConfig:: GetStrea mCa ps 

IAMStreamConfig Interface 

Obtains audio, video, or other capabilities of a stream depending on which type of structure is 
pointed to in the pSCC parameter. 

HRESULT GetStreamCaps( 
int iindex, 
AM_M ED IA_ TYPE **pmt, 
BYTE *pSCC 
); 

Parameters 

ilndex 
[in] Index to the desired media type and capability pair. Use the 
GetNumberOfCapabilities method to retrieve the total number of these pairs. Possible 
index values range from zero to one less than the total number of pairs. 

541 



DirectShow COM Interfaces 

pmt 
[out] Address of a pointer to an AM MEDIA TYPE structure. 

pSCC 
[out] Pointer to either a stream configuration structure. 

Return Values 

Page 151of658 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

This method enables you to get more information about accepted media types rather than the 
traditional way of enumerating a pin's media types, so you typically should use it instead of pin 
enumeration. Information such as possible video capture rates, media types, and sizes is 
returned by the VIDEO STREAM CON FIG CAPS structure. Audio capabilities of the filter's 
output pin, including the number of inputs, sampling rate, and bit rate granularity will be 
returned by an AUDIO STREAM CONFIG CAPS structure. 

Call DeleteMediaType to free the pmt media type. 

For more information on GetStreamCaps, see Exposing Capture and Compression Formats. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 

MQi§i!!.ljj,i 111.J,,[9 

IAMStrea mConfig:: Set Format 

IAMStreamConfig Interface 

Sets the audio or video stream's format. 

HRESULT Setformat( 
AM_M ED IA_ TYPE *pmt 
); 

Parameters 

pmt 
[in] Pointer to an AM MEDIA TYPE structure. 

Return Values 

Topic Contents lmli§lllMM 

Topic Contents 1@1§111$8 

Returns an HRESULT value that depends on the implementation of the interface. 

542 



DirectShow COM Interfaces Page 152of658 

Remarks 

A call to this method will fail if the pin is streaming. 

If your output pin isn't connected and you can connect it with this media type, return S_OK 
from this method and start enumerating the specified media type as follows: Specify this 
format as format number zero in the CTransformOutputPin: :GetMediaType function's iPosition 
parameter. You can offer and accept only this type to ensure that the pins will use this format 
for the connection when it occurs. 

If your output pin is already connected and you can provide this type, then reconnect your pin. 
If the other pin can't accept the media type, fail this call and leave your connection alone. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]1!,+ '!!·HM Topic Contents i@l§ii!MM 

IAMStreamControl Interface 

The IAMStreamControl interface is exposed on input and output pins on any filter in a filter 
graph. This interface exposes methods that allow applications to control individual stream 
components in a filter graph. You can turn various streams on or off without affecting the rest 
of the graph. For example, you can turn off an audio stream while a video stream continues, 
for muting. Or a capture stream can be turned off while preview continues to flow. This 
interface also assists in frame accuracy when exact capture start or stop times are important. 

Currently, the CBaseStreamControl base class implements IAMStreamControl. 
CBaseStreamControl enables the user to specify start and stop times in the 
CBaseStrea mControl: : Sta rtAt and C BaseStrea mControl: : StopAt member functions and 
provides stream information in the C BaseStrea mControl: : GetI nfo member function. 
CBaseStreamControl uses the StreamControlState enumerated data type to describe the 
various states a stream is in. A flowing stream is indicated by the STREAM_FLOWING setting; 
otherwise it is in a discarding state indicated by the STREAM_DISCARDING setting. See 
StreamControlState for more details on stream states. 

If you want to implement this interface on your own your class should typically inherit from 
CBaseStrea mControl to obtain an implementation of the C BaseStrea mControl: : Sta rtAt, 
CBaseStrea mControl: : StopAt, and C BaseStrea mControl: : GetI nfo methods. The 
CBaseStreamControl class also maintains state information and makes decisions about what 
to do with the sample. Developers implementing their own filters with pins that support 
IAMStreamControl through the CBaseStreamControl base class must follow certain 
guidelines outlined in the CBaseStreamControl documentation. 

Note that there must be a clock in the filter graph or the stream control methods might not 
function as expected. 

This interface is not available on the preview pin of capture cards with hardware overlay. 
Calling Queryinterface for this interface will return the error E_NOINTERFACE (Ox80004002). 

543 



DirectShow COM Interfaces Page 153of658 

When to Implement 

Implement on input or output pins of filters when you want precise control of the data stream. 
This interface enables you to turn off portions of the filter graph's streams at specific times 
without affecting the rest of the graph. Although this interface can be used throughout the 
graph, the output pins of audio and video capture filters and input pins of multiplexer filters 
primarily use it. 

If you are writing a filter that will implement IAMStreamControl on one of its pins, you should 
set the STREAM_DISCARDING state so that the pin discards media samples in a timely fashion, 
rather than as soon as they are received. This means that if your pin is discarding samples as 
soon as it determines they are outside the time that the pin is supposed to be on, it will 
discard samples as fast as possible and the whole file could potentially be pushed into your 
filter and discarded in mere moments. This causes problems if the pin tries to call 
IAMStreamControl: :StartAt at a later point in time because the entire file will have already 
been discarded. To avoid pins from dumping media samples as fast possible, your code should 
check the media sample's timestamp and wait until the reference clock verifies that the end of 
the sample's time has actually occurred before discarding. This is known as discarding in a 
timely fashion (see CBaseStreamControl for an implementation that does this). 

When to Use 

Use this interface to turn on or off certain portions of the filter graph's streams while other 
portions continue to process data. For example, your application can tell a video capture filter's 
output pin precisely when to start or stop capturing, independent of what is happening in the 
rest of the graph. This assists in frame accuracy when exact capture start or stop times are 
important. 

Methods in Vtable Order 
!Unknown methods Description 
Queryinterface Retrieves pointers to supported interfaces. 
AddRef Increments the reference count. 
Release 

IAMStreamControl 
methods 

Decrements the reference count. 

Description 

StartAt 
StopAt 

Informs the pin when to start sending streaming data. 
Informs the pin when to suspend processing and supplying 
data. 

Getinfo Retrieves information about the current streaming settings. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lmli§I 11$8 

MQl§i[.jjj,M 111.],.[5 Topic Contents 'ffl!'+* •um• 

IAMStrea mControl: :Getlnfo 

544 



DirectShow COM Interfaces 

IAMStrea mControl Interface 

Retrieves information about the current streaming settings. 

HRESULT Getinfo( 
AM_STREAM_INFO *plnfo 
); 

Parameters 

plnfo 

Page 154of658 

[out] Pointer to an AM STREAM INFO structure that contains current stream settings. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Call this method to discover the state of the StreamControlState enumerated data type, which 
indicates the stream's state. Other values in the AM STREAM INFO structure include start 
time, stop time, start cookie, and stop cookie. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS 

IAMStrea mControl: :Sta rtAt 

IAMStrea mControl Interface 

Informs the pin when to start sending streaming data. 

HRESULT StartAt( 
const REFERENCE_ TIME* ptStart, 
DWORD dwCookie ); 

Parameters 

ptStart 

Topic Contents lmli§lllMM 

[in] Time at which to start streaming as specified in the REFERENCE TIME structure. If 
NULL, start immediately (no notification); if MAX_ TIME, start canceled and will have no 
effect. 

dwCookie 
[in] Specifies a particular value to be sent with the notification when the start occurs. 
(Only used if ptStart is non-NULL or MAX_ TIME). 

545 



DirectShow COM Interfaces Page 155of658 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Streams are enabled by default, so this method will have no effect unless a previous StopAt 
member function has been called. 

If the pointer to the REFERENCE TIME is not NULL or MAX_ TIME, then pins should signal 
EC STREAM CONTROL STARTED with an IPin pointer and the cookie specified in the dwCookie 
parameter. This enables applications to tie the events back to their requests. If the ptStart 
pointer is NULL or MAX_ TIME, then the filter graph sends no event. 

If start and stop are scheduled for a single point in time, the effect is as if the start occurred 
an infinitesimal time before the stop. You can use this to capture a single frame. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 

IAMStrea mControl: :StopAt 

IAMStrea mControl Interface 

Informs the pin when to suspend processing and supplying data. 

HRESULT StopAt( 
const REFERENCE_ TIME* ptStop, 
BOOL bSendExtra, 
DWORD dwCookie ); 

Parameters 

ptStop 

Topic Contents lmli§lllMM 

[in] Time at which to stop streaming as specified in the REFERENCE TIME structure. If 
you specify NULL for ptStop, it will stop immediately (no notification); if MAX_ TIME, 
cancels stop. 

bSendExtra 
[in] Indicates whether to send an extra sample after scheduled ptStop time. 

dwCookie 
[in] Specifies a particular value to send with the notification when the stop occurs (used 
only if ptStart if not NULL or MAX_ TIME). 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

546 



DirectShow COM Interfaces Page 156of658 

Remarks 

This method is exposed by pins that support the stopping of streams. It sets the 
StreamControlState enumeration type to STREAM_DISCARDING. 

In video capture, you would typically call StopAt on both the output pin of a capture filter and 
the input pin of a multiplexer, and pay attention only to the notification from the multiplexer. 
This ensures that the capture filter doesn't needlessly capture extra frames, while 
guaranteeing that the multiplexer has, in fact, saved the last frame to a file. 

In addition, you should specify TRUE for the bSendExtra parameter on the capture pin, and 
specify FALSE to the multiplexer pin. If an extra frame is not sent, the multiplexer will wait for 
the stop time indefinitely and not realize it already has received all the capture information. 
The multiplexer will discard the extra sample sent by the capture pin, so it will not get written 
to the file. Do not set bSendExtra to TRUE unless you also use IAMStreamControl on another 
downstream pin too, like in the preceding case. 

If you call StopAt with a time that is in the middle of a packet, the filter will deliver the whole 
packet before going into a discarding state. Also, if start and stop are scheduled for a single 
point in time, the effect is as if the start occurred an infinitesimal time before the stop. You 
can use this effect to capture a single frame (see CBaseStreamControl for an implementation 
example). 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.! 11!j Topic Contents l@i§illlj4M 

w QIM !.l ++ Mii.HJ Topic Contents i@faiillj4M 

IAMStreamSelect Interface 

The IAMStreamSelect interface controls which logical streams are played and retrieves 
information about them. 

When to Implement 

Implement this interface on your filter when you want to enable selection of logical streams 
and provide information about them. An example of logical stream selection is selection from a 
set of audio streams that encode different national languages. Perhaps you could choose 
English from among a set of audio streams that include English, German, and French. The 
MPEG splitter implements this interface. 

When to Use 

Use this interface when you want to select between available streams; for example, when you 
want to select the streams for a particular locale. 

547 



DirectShow COM Interfaces 

Methods in Vtable Order 
!Unknown methods Description 
Queryinterface 
AddRef 

Retrieves pointers to supported interfaces. 
Increments the reference count. 

Release Decrements the reference count. 

IAMStreamSelect methods Description 
Count 
Info 
Enable 

Retrieves the total count of available streams. 
Retrieves information about a given stream. 
Enables or disables a given stream. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Q'41[.]1!,+ 1 !1·HM 

+Q<@[.]ij,+ 111.1 111M 

IAMStreamSelect: :Count 

IAMStreamSelect Interface 

Retrieves the total count of available streams. 

HRESULT Count( 
DWORD *pcStreams 
); 

Parameters 

pcStreams 

Topic Contents 

Topic Contents 

[out] Pointer to a value indicating the number of available streams. 

Return Values 

Page 157of658 

ifflj[§ii!¥M 

1@1§11!¥+ 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns S_OK. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

+;<§1[.]ij,+ +II.HM Topic Contents i@fa11!¥M 

IAMStreamSelect::Enable 

548 



DirectShow COM Interfaces 

IAMStreamSelect Interface 

Enables or disables a given stream. 

HRESULT Enable( 
long /Index, 
DWORD dwF/ags 
); 

Parameters 

/Index 
[in] Index number of desired stream. Zero-based. 

dwF/ags 

Page 158of658 

[in] Flag indicating whether to enable or disable the stream. Valid values include the 
following: 
Value Meaning 
Zero Disable all streams in the group containing 

this stream. 
AMSTREAMSELECTENABLE_ENABLE Enable only this stream within the given 

group and disable all others. 
AMSTREAMSELECTENABLE_ENABLEALL Enable all streams in the group containing 

this stream. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns E_NOTIMPL if support for the specified flag has not been 
implemented, E_INVALIDARG if the stream ID is invalid, or S_OK otherwise. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]I!:+ +!!.HM 

MQi@[.jlj,M M!i.1 1119 

IAMStreamSelect: :Info 

IAMStreamSelect Interface 

Retrieves information about a given stream. 

HRESULT Info( 
long /Index, 
AM_M ED IA_ TYPE **ppmt, 

549 

Topic Contents i@l§ii!MM 

Topic Contents i@l§i 11111+ 



DirectShow COM Interfaces 

DWORD *pdwF/ags, 
LCID *plcid, 
DWORD *pdwGroup, 
WCHAR **ppszName, 
!Unknown **ppObject, 
!Unknown **ppUnk 
); 

Parameters 

/Index 
[in] Index number of desired stream. Zero-based. 

ppmt 

Page 159of658 

[out] Address of a pointer to the stream's media type. Optional. Use the 
DeleteMediaType function to free the AM MEDIA TYPE structure when done. 

pdwFlags 
[out] Pointer to flags. Optional. Valid values include the following: 
Value Meaning 
Zero Disable this stream. 
AMSTREAMSELECTINFO_ENABLED Enable the stream. 
AMSTREAMSELECTINFO_EXCLUSIVE Turns off the other streams in the group when 

enabling this one. 
plcid 

[out] Pointer to the locale context (LCID) value. This parameter points to a zero value if 
there is no LCID. Optiona I. 

pdwGroup 
[out] Pointer to the logical group. Optional. 

ppszName 
[out] Pointer to the stream name. Optional. Free with the CoTaskMemFree function when 
done. 

pp Object 
[out] Pointer to the pin or filter object associated with this stream. Optional. The object 
can change if the IAMStreamSelect:: Enable method is called. This parameter contains a 
null value upon return from this method if there is no associated object. 

ppUnk 
[out] Address of a pointer to a stream-specific interface. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The current 
DirectShow implementation returns S_FALSE if /Index is out of range, or S_OK otherwise. 

Remarks 

The first stream in each group is the default. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M 

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M 

550 



DirectShow COM Interfaces Page 160 of 658 

IAMTimecodeDisplay Interface 

The IAMTimecodeDisplay interface contains properties and methods that define behavior of 
an external SMPTE/MIDI timecode display device. This interface should be implemented in 
combination with IAMExtDevice, IAMExtTransoort, and the other timecode interfaces to control 
an external device, such as a VCR, which can read, generate and/or display timecode data. 
This interface controls the physical timecode character generator display that is either built 
into a VCR or is on some other similar external device. 

For more information on SMPTE timecode see the Control an External Device in DirectShow 
overview article. 

When to Implement 

Implement this interface on an external device filter that will control the timecode display on 
an external timecode reader or generator. Timecode readers or generators can be built into a 
VCR or can be a separate external device. Do not try to implement this interface if your 
external device can't display timecode or if your timecode is being generated through an 
internal card with no integral or overlay hardware. 

This interface is not intended for rendering in a DirectShow filter graph, it is purely for use on 
external device displays. 

When to Use 

Use this interface when applications need to control an external device and how it's timecode 
information is displayed. 

Hardware Requirements 

See the IAMExtTransoort interface for hardware requirements. 

Methods in Vtable Order 
!Unknown methods Description 
Oueryinterface 
AddRef 

Retrieves pointers to supported interfaces. 
Increments the reference count. 

Release Decrements the reference count. 

IAMTimecodeDisplay Description 
methods 
GetTCDisolayEnable 

SetTCDisolayEnable 

GetTCDisolay 

SetTCDisolay 

Determines whether an external device's timecode character 
generator output is enabled or disabled. 
Enables or disables an external device's timecode character 
output generator. 
Retrieves current settings of the timecode character generator 
output. 
Sets the timecode character generator output characteristics. 

551 



DirectShow COM Interfaces 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents 

MQl§i[.jjj,M '!!·HM Topic Contents 

IAMTi mecodeDisplay:: GetTCD isplay 

IAMTi mecodeDisplay Interface 

Retrieves current settings of the timecode character generator output. 

HRESULT GetTCDisplay( 
long Param, 
long *pValue 
); 

Parameters 

Pa ram 

Page 161 of 658 

lml!§I 11$8 

'ffl!'+* •um• 

[in] Timecode display characteristic. Specify one of the following items you want to get 
settings for. 
Value 
ED_TCD BORDER 

ED_ TCD_INTENSITY 
ED_ TCD_INVERT 

ED_ TCD_POSITION 
ED_ TCD_SIZE 
ED_ TCD_SOURCE 

Meaning 
White border for black characters, black border for white 
characters 
Intensity (brightness) of characters 

Black characters on white background or white characters on 
black background 
Position of characters 
Size of characters 
Source of display's data 

ED_ TCD _TRANSPARENCY Transparency of characters 
pValue 

[out] Current setting of the parameter specified in Param. This parameter retrieves one 
of the following values: 
Value Meaning 
If ED_ TCD_SOURCE specified in Param, will return one of the 
following: 
ED_ TCG TimeCode generator 
ED_ TCR TimeCode reader 
If, ED_TCD_SIZE specified in Param, will return one of the 
following: 
ED_ LARGE Large 
ED MED Medium 

552 



DirectShow COM Interfaces 

ED_SMALL 

If ED_ TCD_POSITION specified in Param, will return one of the 
following: 
ED_BOTTOM 
ED_MIDDLE 
ED_ TOP 

in combination with: 
ED_CENTER 
ED_LEFT 
ED_RIGHT 

If ED_ TCD_INTENSITY specified in Param, will return one of the 
following: 
ED_HIGH 
ED_LOW 

If ED_ TCD_ TRANSPARENCY is specified in Param, will return a 
value from 0 to 4, 0 being completely opaque. 
If ED_ TCD_INVERT specified in Param, will return one of the 
following: 
OAFALSE 

OATRUE 

If ED_TCD_BORDER specified in Param, will return one of the 
following: 
OAFALSE 

OATRUE 

Return Values 

Small 

Bottom 
Middle 
Top 

Center 
Left 
Right 

High 

Low 

Page 162 of 658 

Black characters on 
white background 
White characters on 
black background 

Black characters for 
white border 
White border for black 
characters 

Returns an HRESULT value that depends on the implementation of the interface. 

See Also 

IAMTimecodeDisplay:: SetTCDisplay 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M 

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M 

IAMTi mecodeDisplay:: GetTCD isplayE na hie 

553 



DirectShow COM Interfaces Page 163 of 658 

IAMTi mecodeDisplay Interface 

Determines whether an external device's timecode character generator output is enabled or 
disabled. 

HRESULT GetTCDisplayEnable( 
long *pState 
); 

Parameters 

pState 
[out] OATRUE specifies enabled; OAFALSE specifies disabled. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

This method is not intended for character rendering inside a filter graph, it is purely intended 
for hardware displays. Ensure that your external timecode reader or generator has display 
capability before trying to use this method. 

See Also 

IAMTi mecodeDisplay: : SetTCDisplayEna b le 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M l!i.! 111j Topic Contents 

IAMTi mecodeDisplay:: SetTC Display 

IAMTimecodeDisplay Interface 

Sets the timecode character generator output characteristics. 

HRESULT SetTCDisplay( 
long Param, 
long Value 
); 

Parameters 

Pa ram 

554 

l@IJll!MM 



DirectShow COM Interfaces Page 164 of 658 

Value 

[in] Timecode display characteristic. Specify one of the following properties you want to 
set properties for. 

Meaning Value 
ED_TCD_BORDER White border for black characters, black border for white 

characters 
Intensity (brightness) of characters ED_TCD_INTENSITY 

ED_TCD_INVERT Black characters on white background or white characters on 
black background 

ED_ TCD _POSITION 
ED_ TCD _SIZE 
ED_TCD_SOURCE 

Position of characters 
Size of characters 
Source of the display's data 

ED_TCD_TRANSPARENCYTransparency of characters 

[in] Setting of the parameter specified in Param. Must be one of the following: 
Value Meaning 
If ED_TCD_SOURCE specified in Param, set one of the following: 
ED_TCG TimeCode 

ED_TCR 
If, ED_TCD_SIZE specified in Param, set one of the following: 
ED_LARGE 
ED_MED 

ED_SMALL 
If ED_TCD_POSITION specified in Param, set one of the following: 
ED_BOTTOM 
ED_MIDDLE 

ED_TOP 
In combination with: 
ED_CENTER 
ED_LEFT 

ED_RIGHT 
If ED_TCD_INTENSITY specified in Param, set one of the following: 
ED_HIGH 
ED_LOW 
If ED_TCD_TRANSPARENCY specified in Param, set a value from 0 
to 4, 0 being completely opaque, 4 being as dark as possible. 
If ED_TCD_INVERT specified in Param, set one of the following: 
OAFALSE 
OATRUE 
If ED_TCD_BORDER specified in Param, set one of the following: 
OAFALSE 

OATRUE 

generator 
TimeCode reader 

Large 
Medium 
Small 

Bottom 
Middle 
Top 

Center 
Left 
Right 

High 

Low 

Black on white 
White on black 

Black characters for 
white border 
White border for 
black characters 

Return Values 

555 



DirectShow COM Interfaces Page 165 of 658 

Returns an HRESULT value that depends on the implementation of the interface. 

See Also 

IAMTi mecodeDisplay:: GetTC Display 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

w Q<M [.] +• 111.HM Topic Contents •=@• 1gnw 

MQi§i[.]11,M 11!.HM Topic Contents l@l§il!MM 

IAMTi mecodeDisplay:: SetTC Di spl ayE na hie 

IAMTi mecodeDisplay Interface 

Enables or disables an external device's timecode character output generator. 

HRESULT SetTCDisplayEnable( 
long State 
); 

Parameters 

State 
[in] Specify OATRUE to enable; OAFALSE to disable. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

This method is not intended for rendering characters inside a filter graph, it is purely intended 
for hardware displays. Ensure that your external timecode reader or generator has display 
capability before trying to use this method. 

See Also 

IAMTi mecodeDisplay: : GetTC DisplayEna ble 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.]11,M 11!.HM Topic Contents l@l§il!MM 

556 



DirectShow COM Interfaces Page 166 of 658 

IAMTimecodeGenerator Interface 

The IAMTimecodeGenerator interface contains properties and methods that specify how an 
external SMPTE/MIDI timecode generator should supply data to the filter graph and the 
formats in which timecode should be supplied. This interface should be implemented in 
combination with the IAMExtDevice and IAMExtTransoort interfaces to control an external 
device, such as a VCR. This interface provides methods that enable applications to specify 
various SMPTE/MIDI timecode modes or formats that an external device should use in the 
generation of timecode, and methods that verify that the generator is working properly. 

SMPTE timecode is a frame addressing system that identifies video and audio sources, makes 
automatic track synchronization possible, and provides a container for additional data related 
to the production. SMPTE timecode's main purpose is to provide a machine-readable address 
for video and audio. It is displayed in hh:mm:ss:ff format and is thoroughly defined in 
ANSI/SMPTE 12-1986. 

For more information on SMPTE timecode see the Control an External Device in DirectShow 
overview article. 

See the IAMTimecodeReader interface for more information on methods which access an 
external timecode reader. 

When to Implement 

Implement this interface on an external device filter when you want to control how 
SMPTE/MIDI timecode information is generated by an external timecode generator. 

Expose the IMediaSeeking interface on your filter to enable applications to convert timecode to 
DirectShow reference time (by using IMediaSeeking: :ConvertTimeFormat). 

Your external device must be able to read timecode and send it to the computer over its 
control interface (see hardware requirements). If this is not the case, you must either have a 
timecode reader card in your computer, or you can write a software decoder that converts VITC 
embedded in captured video frames or LTC captured as an audio signal into DirectShow 
timecode samples. 

When to Use 

Use this interface when you want to generate SMPTE timecode in an external device. 

Hardware Requirements 

See the IAMExtTransoort interface for hardware requirements. 

Methods in Vtable Order 
!Unknown methods Description 
Oueryinterface 
AddRef 
Release 

Retrieves pointers to supported interfaces. 
Increments the reference count. 
Decrements the reference count. 

557 



DirectShow COM Interfaces 

IAMTimecodeGenerator 
methods 

Page 167 of 658 

Description 

GetTCGMode 
SetTCGMode 

Retrieves the SMPTE timecode generator properties. 
Sets the SMPTE timecode generator properties. 

put VITCLine Specifies which line(s) to insert the vertical interval timecode 
information into. 

get VITCLine Retrieves which line(s) the vertical interval timecode 
information has been inserted into. 
Sets the timecode, userbit value, or both. SetTi mecode 

GetTimecode Retrieves the most recent timecode and/or userbit value 
available in the stream. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 Topic Contents 

MQi§i!!.llj,i 111.J,,[9 Topic Contents 

IAMTi mecodeGe nerator:: GetTCG Mode 

IAMTimecodeGenerator Interface 

Retrieves the SMPTE timecode generator properties. 

HRESULT GetTCGMode( 
long Param, 
long *pValue 
); 

Parameters 

Pa ram 

lmli§lllMM 

1@1§111$8 

[in] Timecode generator mode. Specify one of the following modes you want to get 
settings for. 
Value Meaning 
ED_TCG FRAMERATE Frame rate 
ED_TCG_REFERENCE_SOURCE Source of the count value 

ED_ TCG SYNC SOURCE Source of the hardware clock reference 
ED_TCG_TIMECODE_TYPE SMPTE timecode format of the generator 

pValue 
[out] Current setting of the parameter specified in Param. 

If you specify ED_ TCG_ TIMECODE_ TYPE in Param, this parameter retrieves one of the 
following: 

558 



DirectShow COM Interfaces Page 168 of 658 

Value Meaning 
ED_TCG MIDI_FULL MIDI full frame timecode 
ED_ TCG_MIDI_ QF MIDI quarter frame ti mecode 
ED_TCG SMPTE_LTC Linear timecode 
ED_TCG SMPTE_VITC Vertical interval timeCode 

If you specify ED_TCG_FRAMERATE in Param, this parameter retrieves one of the 
following: 
Value 
ED_FORMAT_SMPTE_24 
ED_FORMAT_SMPTE_25 

Meaning 
24 frames per second 
25 frames per second 

ED_FORMAT _SMPTE_30 30 frames per second. Nondrop frame 
ED_FORMAT _SMPTE_30DROP 30 frames per second. Drop frame (actually 29.97 fps) 

If you specify ED_TCG_SYNC_SOURCE in Param, this parameter retrieves one of the 
following: 
Value 
ED_TCG FREE 

Meaning 
Lock to nothing (freerun) 

ED_ TCG READER Lock to timecode reader 
ED_TCG_VIDEO Lock to incoming video 

If you specify ED_ TCG_ REFERENCE_SOURCE in Param, this parameter retrieves one of 
the following: 
Value Meaning 
ED_ TCG FREE No count reference source 
ED_ TCG_READER Syncron ize to reader va I ue (ja msync) 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

This method returns various settings of the timecode generator. For more information on 
ED_TCG_TIMECODE_TYPE, see IAMTimecodeReader: :SetTCRMode. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+;<§1[.]lj,i 111.],.[9 Topic Contents l@i§il/¥+ 

MQl@[.jlj,M 111.l:.19 Topic Contents l@i§i l!fttiM 

IAMTi mecodeGenerator: :GetTi mecode 

559 



DirectShow COM Interfaces 

IAMTimecodeGenerator Interface 

Retrieves the most recent timecode and/or userbit value available in the stream. 

HRESULT GetTimecode( 
PTIM ECODE_SAM PLE p TimecodeSample 
); 

Parameters 

pTimecodeSample 
[out] Pointer to a TIMECODE SAMPLE timecode structure. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Page 169 of 658 

Use this method to obtain the most recent timecode value available in the stream. The 
application can use this to monitor the timecode and verify the generator is working properly. 

See Also 

IAMTimecodeGenerator: :SetTimecode 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM 

IAMTimecodeGenerator: :get_ VITCLine 

IAMTimecodeGenerator Interface 

Retrieves which line(s) the vertical interval timecode information has been inserted into. 

HRESULT get_VITCLine( 
long *pLine ); 

Parameters 

pLine 
[out] Pointer to the vertical line(s) containing the timecode information (valid lines are 
11-20). 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

560 



DirectShow COM Interfaces Page 170 of 658 

Remarks 

To get VITC information from multiple lines, make successive calls to this method, once for 
each line desired, with the hi bit set for each line. 

See Also 

IAMTimecodeGenerator:: out VITCLine 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§i[.]ii,+ '!!·HM Topic Contents 

IAMTimecodeGenerator: :put_ VITCLine 

IAMTimecodeGenerator Interface 

Specifies which line to insert the vertical interval timecode information into. 

HRESULT put_ VITCLine( 
long Line ); 

Parameters 

Line 

i@l§ii!MM 

[in] Vertical line to contain the timecode information (valid lines are 11-20; 0 means 
autoselect). 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

To generate VITC on specific multiple lines, make successive calls to this method, once for 
each line desired. 

Set the hi bit to add to this line to any previously set lines. 

See Also 

IAMTimecodeGenerator: :get VITCLine 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM 

561 



DirectShow COM Interfaces Page 171 of 658 

IAMTi mecodeGe nerator:: SetTCG Mode 

IAMTimecodeGenerator Interface 

Sets the SMPTE timecode generator properties. 

HRESULT SetTCGMode( 
long Param, 
long Value 
); 

Parameters 

Pa ram 

Value 

[in] Timecode generator mode. Specify one of the following properties. 
Value Meaning 
ED_TCG_FRAMERATE Frame rate 
ED_TCG_REFERENCE_SOURCE Source of the count value 
ED_ TCG_SYNC_SOU RCE Source of the hardware clock reference 
ED_TCG_TIMECODE_TYPE SMPTE timecode format of the generator 

[in] Setting of the parameter specified in Param. 
Value Meaning 
If ED_TCG_TIMECODE_TYPE specified in Param, set one 
of the following: 
ED_TCG_MIDI_FULL MIDI Full Frame timecode 
ED_TCG_MIDI_QF MIDI Quarter Frame timecode 
ED_ TCG_SMPTE_LTC Linear TimeCode 
ED_TCG_SMPTE_VITC Vertical Interval TimeCode 
If, ED_ TCG_FRAMERATE specified in Param, this 
parameter is set to one of the following: 
ED_FORMAT _SMPTE_24 24 frames per second 
ED_FORMAT _SMPTE_25 25 frames per second 
ED_FORMAT _SMPTE_30 30 frames per second. 

Nondrop frame 
ED_FORMAT _SMPTE_30DROP 30 frames per second. Drop 

frame (actually 29.97 fps) 
If ED_TCG_SYNC_SOURCE specified in Param, set one of 
the following: 
ED_ TCG_FREE Lock to nothing (freerun) 
ED_ TCG_READER Lock to timecode reader 
ED_TCG_VIDEO Lock to incoming video 
If ED_TCG_REFERENCE_SOURCE specified in Param, set 
one of the following: 

562 



DirectShow COM Interfaces 

ED_TCG FREE 
ED_TCG READER 

Return Values 

Page 172 of 658 

No count reference source 
sync to reader value 
(jamsync) 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

This method sets various properties of the timecode generator. For more information on 
ED_TCG_TIMECODE_TYPE, see the IAMTimecodeReader: :SetTCRMode method. 

See Also 

IAMTimecodeGenerator: :GetTCGMode 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.! 11ij Topic Contents 

w QIM !.l ++ Mii.HJ Topic Contents 

IAMTi mecodeGenerator: :SetTi mecode 

IAMTimecodeGenerator Interface 

Sets the timecode, userbits value, or both. 

HRESULT SetTimecode( 
PTIM ECODE_SAM PLE p TimecodeSample 
); 

Parameters 

pTimecodeSample 
[in] Pointer to a TIMECODE SAMPLE timecode structure. 

Return Values 

l@i§lllMM 

•@!§' 1gnw 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

To set only timecode, set userbit value to NULL, and vice versa. If generator is running, these 
values will take effect immediately. 

563 



DirectShow COM Interfaces Page 173 of 658 

See Also 

IAMTi mecodeGenera tor: : GetTi mecode 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQij[.jjj,M l!i.! 111j Topic Contents l@iJI l!lltiM 

IAMTimecodeReader Interface 

IAMTimecodeReader is an interface that can be implemented to read SMPTE (Society of 
Motion Picture and Television Engineers) or MIDI timecode from an external device. It contains 
properties and methods that specify the timecode format that an external device should read 
and how it is embedded in the media. It is expected that you will use this interface with the 
IAMExtDevice and IAMExtTransport interfaces to control an external device, such as a VCR, 
which can read timecode data. 

SMPTE timecode is a frame addressing system that identifies video and audio sources, makes 
automatic track synchronization possible, and provides a container for additional data related 
to the source material. SMPTE timecode's main purpose is to provide a machine-readable 
address for video and audio. It is displayed in hh: mm :ss:ff (hours, minutes, seconds, frames) 
format and is thoroughly defined in ANSI/SMPTE 12-1986. 

For more information on SMPTE timecode see the Control an External Device in DirectShow 
overview article. 

When to Implement 

Implement this interface on an external device filter when you want to specify how an external 
device should read SMPTE/MIDI timecode information. 

Expose the IMediaSeekinq interface on your filter so that applications can convert timecode to 
DirectShow reference time (by using the IMediaSeekinq: :ConvertTimeFormat method). 

Your external device must be able to read timecode and send it to the computer over its 
control interface. If this is not the case, you must either have a timecode reader card in your 
computer, or you can write a software decoder that converts VITC (Vertical Interval Timecode) 
in captured video frames or LTC (Linear Timecode) captured as an audio signal into DirectShow 
timecode samples. 

When to Use 

Use this interface when you need to read timecode information for controlling an external 
device, or when you want to use timecode information from an external device in applications 
that must refer to original program information. 

Applications generally save timecode in one of two ways. It is either written to the capture file 
as an additional stream or as a discontinuity table stored in the extended AVI file index. It is 

564 



DirectShow COM Interfaces Page 174 of 658 

commonly used to trigger capture or playback and to create edit decision lists that describes 
how source material is organized into a finished product. 

If you intend to capture timecode, treat it as a separate stream that has its own media type. It 
can be consumed by an appropriate file-writing multiplexer filter. However, sometimes there 
are errors in reading the timecode off the tape because of dropouts and other mechanical tape 
problems. In such cases, the timecode source filter should simply drop samples and mark the 
next valid one with the discontinuity property. 

If you intend to use timecodes to trigger capture or playback from a timecoded (or "striped") 
videotape, the sequence of events goes as follows: 

1. Build a capture graph, open a target AV! file, and preallocate disk space if necessary. If 
the captured material will be appended to an existing AV! file, seek to the end of the file 
before writing. The capture graph is paused at this point. 

2. Search the VCR to the capture start point and note the timecode. You can either enter 
this value manually into your program, or the application can automatically read it. 
Automatic reading requires that the graph is running but the stream control interfaces on 
the file multiplexer's input pins are discarding incoming samples, effectively gating the 
capture. 

3. Cue the VCR to preroll position, usually five seconds before the target point. 
4. Start the VCR and the graph. When the trigger point is reached (or the trigger point 

minus the file writer's oreroll), the stream control interfaces release the file multiplexer 
and it begins streaming media samples to the file writer. 

5. You can stop the capture process manually or by setting a duration property on the 
stream control interface. 

You must consider discontinuous timecode, both during preroll and during the capture process; 
it is reasonable to demand that the timecode be continuous and monotonically increasing 
throughout the preroll and capture start point. This prevents a potentially ambiguous 
calculation of relative stream times by the !MediaSeeking: :ConvertTimeFormat method. Also, 
the timecode need not be the only gating signal for triggered capture. Any time-stamped data 
stored in the vertical blanking interval, such as Intercast or Closed Caption data (XDS), can be 
used to start the streaming of video and audio data to disk. 

Hardware Requirements 

See the IAMExtTransoort interface for hardware requirements. 

Methods in Vtable Order 
!Unknown methods Description 
Ouerylnterface 
AddRef 

Retrieves pointers to supported interfaces. 
Increments the reference count. 

Release Decrements the reference count. 

IAMTimecodeReader Description 
methods 
GetTCRMode Retrieves properties of the timecode reader. 
SetTCRMode 
out VITCLine 

get VITCLine 

Sets the timecode reader properties. 
Specifies the vertical interval line that the timecode reader will 
use to read timecode. 
Retrieves the vertical interval line that the timecode reader is 
using to read timecode. 

565 



DirectShow COM Interfaces Page 175 of 658 

GetTimecode Retrieves the most recent timecode, userbits, and flag values 
available in the stream. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M l!i.! 111j Topic Contents 

MQi§i[.]11,+ 11!.Hj Topic Contents 

IAMTi mecodeReader: :GetTCRMode 

IAMTi mecodeReader Interface 

Retrieves the timecode reader's properties. 

HRESULT GetTCRMode( 
long Param, 
long *pValue 
); 

Parameters 

Pa ram 
[in] Timecode reader property to get (use ED_TCR_SOURCE). 

pValue 

l@IJll!MM 

l@IJll!MM 

[out] Value of the requested timecode reader property. Must be one of the following: 
Value Meaning 
ED_ TCR_CT Control track 
ED_ TCR_L TC Linear ti mecode 
ED_ TCR_ VITC Vertical interval timecode 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Linear TimeCode is recorded on an analog audio track as a bi-phase mark-encoded signal. Each 
timecode frame is one video frame time in duration. 

Vertical TimeCode is usually stored in two lines of a video signal's vertical interval, somewhere 
between lines 11 and 20. 

Control Track is a once-per-frame signal recorded on a special track on a tape. The head and 
drive servo mechanisms use it to keep everything locked. It is also used to drive the counter 
on machines without timecode capability, and can optionally be used on machines equipped 
with a timecode reader. 

566 



DirectShow COM Interfaces Page 176 of 658 

See Also 

IAMTimecodeReader:: SetTCRMode 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQij[.jjj,M l!i.! 11ij Topic Contents l!ftl!Ji l!lltiM 

MQ<§1[.jjj,M 111.Hj Topic Contents l@fail!MM 

IAMTi mecodeReader: :GetTi mecode 

IAMTi mecodeReader Interface 

Retrieves the most recent timecode, userbit, and flag values available in the stream. 

HRESULT GetTimecode( 
PTIM ECODE_SAM PLE p TimecodeSample 
); 

Parameters 

pTimecodeSample 
[out] Pointer to a TIMECODE SAMPLE timecode structure. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Use this method to monitor the timecode and to parse duplicates and discontinuities. The 
source filter supplying the timecode, or possibly a downstream filter, might want to parse for 
discontinuities or errors since you have to look at every sample to be able to retrieve the most 
recent timecode. 

Applications can fill undefined bits in the timecode word to store syncronization information, or 
to encode original film and audio tape information. These undefined bits, or userbits, are 
retrieved by calling this method. 

© 1997 Microsoft Comoration. All rights reserved. Terms of Use. 

•;<§1[.]jj,i 111.],.[j Topic Contents 1 wm11um• 

567 



DirectShow COM Interfaces Page 177 of 658 

IAMTi mecodeReader: :get_ VITCLi ne 

IAMTi mecodeReader Interface 

Retrieves the vertical interval line that the timecode reader is using to read timecode. 

HRESULT get_VITCLine( 
long *pLine ); 

Parameters 

pLine 
[out] Vertical line containing timecode information (valid lines are 11-20). 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

The hi bit indicates that multiple lines are used and successive calls will cycle through the line 
numbers. 

See Also 

IAMTimecodeReader:: put VITCLine 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lml!§lllMM 

IAMTi mecodeReader:: put_ VITCLi ne 

IAMTi mecodeReader Interface 

Specifies the vertical interval line that the timecode reader will use to read timecode. 

HRESULT put_ VITCLine( 
long Line ); 

Parameters 

Line 
[in] Vertical line containing timecode information (valid lines are 11-20; 0 means 

568 



DirectShow COM Interfaces Page 178 of 658 

autoselect). 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

If VITC mode is specified in the IAMTimecodeReader:: SetTCRMode method, you must specify 
which line or lines will contain timecode information. To read VITC on specific multiple lines, 
the caller would make successive calls to put_VITCLine, once for each line desired. 

Set the hi bit to add to the list of lines for readers that test across multiple lines. 

See Also 

IAMTimecodeReader: :get VITCLine 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§i[.]ii,+ '!!·HM Topic Contents 

IAMTi mecodeReader: :SetTCRMode 

IAMTi mecodeReader Interface 

Sets the timecode reader properties. 

HRESULT SetTCRMode( 
long Param, 
long Value 
); 

Parameters 

Pa ram 

Value 
[in] Property you want to set (use ED_TCR_SOURCE). 

[in] Value of the specified property; currently one of the following: 
Value Meaning 
ED_ TCR_CT Control Track 
ED_TCR_ LTC Linear TimeCode 
ED_TCR_VITC Vertical Interval TimeCode 

Return Values 

i@l§ii!MM 

Returns an HRESULT value that depends on the implementation of the interface. 

569 



DirectShow COM Interfaces Page 179 of 658 

Remarks 

Linear TimeCode is recorded on an analog audio track as an NRZ bi-phase mark-encoded 
signal. Each timecode frame is one video frame time in duration. 

Vertical TimeCode is usually stored in two lines of a video signal's vertical interval, somewhere 
between 10 and 20. 

Control Track is a once-per-frame signal recorded on a special track on a tape. The head and 
drive servo mechanisms use it to keep everything locked. It is also used to drive the counter 
on machines without timecode capability, and can optionally be used on machines equipped 
with a timecode reader. 

See Also 

IAMTi mecodeReader: : GetTC RM ode 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

MQ<§i[.jjj,M Ill.HS Topic Contents lmli§lllMM 

8 4'41M+• 111.q9 Topic Contents 1@1§111$8 

IAMTVTuner Interface 

The IAMTVTuner interface is implemented on filters that provide TV tuning capabilities. A TV 
tuner filter is a device that selects an analog broadcast or cable channel to be viewed. The 
IAMTVTuner interface enables applications to set these transmission types through the 
TunerinoutTyoe enumerated data type. 

Because Microsoft® Video for Windows® wasn't written with TV tuning capabilities in mind, 
you can implement TV tuner filters only on operating systems that can interpret TV tuning 
information. The Windows Driver Model implements a version that contains international 
channel to frequency mapping tables, found in the Country Codes and Channel to Frequency 
Mappings appendix, which you can use in a filter graph. 

The IAMTVTuner interface supports multistandard analog decoders, which you can enumerate 
and select by using the get AvailableTVFormats method. The AnalogVideoStandard data type 
contains these formats, which include NTSC, PAL, and SECAM, among others. IAMTVTuner 
also supports tuners with multiple input pins, to allow for multiple devices and multiple 
transmission types. 

IAMTVTuner also maps TV channels to specific frequencies through the 
IAMTVTuner:: out Channel and IAMTVTuner: :AutoTune methods. These methods handle the 
details of the conversion so that the hardware driver receives an exact frequency. Because 
channels in different countries map to different frequencies, worldwide mapping tables are 
provided in the Country Codes and Channel to Frequency Mappings appendix. Override the 

570 



DirectShow COM Interfaces Page 180of658 

existing country code by selecting the new value from the appendix and passing it in as the 
parameter for the IAMTVTuner:: put CountryCode method. This is useful when a country wants 
to receive broadcast video from a different national source. 

When to Implement 

Implement this interface when you write a filter that can tune a TV. 

When to Use 

Use this interface when setting TV channels and to get or set information about their 
frequencies. This interface can also determine what analog video standards your TV supports. 

Methods in Vtable Order 
!Unknown methods Description 
Queryinterface 
Add Ref 

Retrieves pointers to supported interfaces. 
Increments the reference count. 

Release Decrements the reference count. 

IAMTVTuner methods Description 
get AvailableTVFormats Retrieves all the analog video TV standards that are supported by 

the tuner. 
get TVFormat 
put Channel 
get Channel 

ChannelMinMax 
Auto Tune 
StoreAutoTu ne 
put CountryCode 
get CountryCode 

put TuningSpace 
get TuningSpace 

Retrieves the current analog video TV standard in use. 
Sets the TV channel. 
Retrieves the current TV channel set by put Channel. 
Retrieves the highest and lowest channels available. 
Scans for a precise signal on the channel's frequency. 
Saves the fine-tuning information for all channels. 
Sets the country code to establish the frequency to use. 
Retrieves the country code that establishes the current channel to 
frequency mapping. 

Sets a storage index for regional channel to frequency mappings. 
Retrieves the storage index for regional fine tuning set in 
put TuningSpace. 

get NuminputConnections Retrieves the number of TV sources plugged into the tuner filter. 
put InputType Sets the tuner input type (cable or antenna). 
get InputType 
put Connectlnput 
get Connectinput 
get VideoFreguency 
get AudioFreguency 

Retrieves the input type (Cable or Antenna) set in put InputType. 
Sets the hardware tuner input connection. 
Retrieves the hardware tuner input connection. 
Retrieves the current video frequency. 
Retrieves the current audio frequency. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQij[.jlj,M l!i.! 11ij Topic Contents l@i§i 11111+ 

MQ<§i[.]I!:+ 111.Hj Topic Contents l@i§lllMM 

571 



DirectShow COM Interfaces 

IAMTVTuner: :AutoTune 

IAMTVTuner Interface 

Scans for a precise signal on the channel's frequency. 

HRESULT AutoTune( 
long /Channel, 
long * p/FoundSignal 
); 

Parameters 

/Channel 
[in] TV channel number. 

p/FoundSignal 

Page 181of658 

[out] Value indicating whether the channel's frequency was found; TRUE indicates found, 
FALSE indicates not found. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

TV channels generally map to a unique frequency depending on regional variances. To avoid 
interference between multiple transmitters that are assigned the same channel when they are 
in close geographic proximity, small frequency offsets are introduced at each transmitter. In 
the US, this offset ranges up to +/- 26.25 kilohertz (kHz). 

This method handles the channel to frequency conversion and scans for the most precise 
frequency. Store these values by calling the IAMTVTuner:: StoreAutoTune method. Base 
frequencies for channels can be found in the Country Codes and Channel to Frequency 
Mappings appendix. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.ji!:M l!i.! 11ij Topic Contents l@i§i 11111+ 

IAMTVTuner::ChannelMinMax 

IAMTVTuner Interface 

Retrieves the highest and lowest channels available. 

572 



DirectShow COM Interfaces 

HRESULT ChannelMinMax( 
long */Channe/Min, 
long */Channe/Max 
); 

Parameters 

/Channel Min 
[out] Pointer to the lowest channel. 

/Channel Max 
[out] Pointer to the highest channel. 

Return Values 

Page 182of658 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Frequencies for channels are found in the Country Codes and Channel to Frequency Mappings 
appendix. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]1!,+ '!!·HM Topic Contents 

IAMTVTu ner: :get_Aud ioFrequency 

IAMTVTuner Interface 

Retrieves the currently tuned audio frequency. 

HRESULT get_ Audiofrequency( 
long */Freq 
); 

Parameters 

/Freq 
[out] Pointer to the audio frequency. 

Return Values 

i@l§ii!MM 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M M!i.l:.19 Topic Contents i@l§lllMM 

573 



DirectShow COM Interfaces 

IAMTVTuner::get_AvailableTVFormats 

IAMTVTuner Interface 

Retrieves all the analog video TV standards that are supported by the tuner. 

HRESULT get_ AvailableTVFormats( 
long */AnalogVideoStandard 
); 

Parameters 

/AnalogVideoStandard 
[out] Pointer to the combination of analog video standards supported. 

Return Values 

Page 183of658 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

See the AnalogVideoStandard enumerated data type for supported formats. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS 

IAMTVTuner: :get_Channel 

IAMTVTuner Interface 

Retrieves the current TV channel set by put Channel. 

HRESULT get_Channel ( 
long * p/Channel, 
long *p/VideoSubChannel, 
long *p/AudioSubChannel 
); 

Parameters 

p/Channel 
[out] Pointer to the channel. 

574 

Topic Contents i@faii!MM 



DirectShow COM Interfaces Page 184of658 

p/VideoSubChannel 
[out] Pointer to a predefined video subchannel value. Specify 
AMTUNER_SUBCHAN_NO_TUNE for no tuning or AMTUNER_SUBCHAN_DEFAULT for 
default subchannel. 

p/AudioSubChannel 
[out] Pointer to a predefined audio subchannel value. Specify 
AMTUNER_SUBCHAN_NO_TUNE for no tuning or AMTUNER_SUBCHAN_DEFAULT for 
default subchannel. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

See the Country Codes and Channel to Frequency Mappings appendix for frequencies for 
p/Channel. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]1!,+ '!!·HM 

MQijl.111,h 111.1 1119 

IAMTVTuner::get_Connectlnput 

IAMTVTuner Interface 

Retrieves the hardware tuner input connection. 

HRESULT get_Connectlnput ( 
long *p/Index 
); 

Parameters 

pl Index 
[out] Pointer to the input pin to get the connection for. 

Return Values 

Topic Contents i@l§ii!MM 

Topic Contents i@l§i 11111+ 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

H Qi§1 [.] lj,M I !1.],.[9 Topic Contents i@l§ii!MM 

575 



DirectShow COM Interfaces Page 185of658 

IAMTVTu ner: :get_Cou ntryCode 

IAMTVTuner Interface 

Retrieves the country code that establishes the current channel to frequency mapping. 

HRESULT get_CountryCode ( 
long * p/CountryCode 
); 

Parameters 

p/CountryCode 
[in] Country code currently in use by the TV Tuner filter. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

The IAMTVTuner:: put CountryCode method determines which channel to frequency mapping 
table to use. This establishes the base frequencies for the given country. Use the 
IAMTVTuner: :AutoTune method to determine the exact frequencies for specific regions. 

Override the country code when a country wants to receive broadcast video from a different 
national source. See the Country Codes and Channel to Frequency Mappings appendix for a list 
of country codes. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§i[.]ii,+ '!!·HM 

IAMTVTuner: :get_lnputType 

IAMTVTuner Interface 

Retrieves the input type set in put InputType. 

HRESULT get_InputType ( 
long /Index, 
TunerinputType * pinputType 
); 

576 

Topic Contents i@l§ii!MM 



DirectShow COM Interfaces 

Parameters 

/Index 
[in] Index value that specifies the input pin that will be set. 

pinputType 

Page 186of658 

[out] Pointer to the TunerinputType connection type; either cable (TunerinputCable) or 
antenna (TunerinputAntenna). 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+QH"·h' 111.q9 Topic Contents 1@1§111¥+ 

IAMTVTu ner: :get_N u min putCon nections 

IAMTVTuner Interface 

Retrieves the number of TV sources plugged into the tuner filter. 

HRESULT get_ NuminputConnections( 
long * p/NuminputConnections 
); 

Parameters 

p/NuminputConnections 
[out] Number of TV sources plugged into the tuner filter. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi@[.jlj,M 111.1 1119 Topic Contents l@i§il!MM 

IAMTVTu ner: :get_ Tun i ngSpace 

IAMTVTuner Interface 

577 



DirectShow COM Interfaces 

Gets the storage index for regional fine tuning set in out TuninqSpace. 

HRESULT get_ TuningSpace( 
long * p/TuningSpace 
); 

Parameters 

p/TuningSpace 
[out] Value specifying the current locale. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Page 187of658 

As TV tuners move into portable systems, you must retain locale-specific mappings of available 
channels and their actual frequencies. Formulating different /TuningSpace values for each 
locale provides a way of switching the channel/frequency mappings when moving from region 
to region. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.l:.ij Topic Contents l@i§i llfttiM 

IAMTVTuner: :get_ TVFormat 

IAMTVTuner Interface 

Retrieves the current analog video TV standard in use. 

HRESULT get_ TVFormat( 
long * p/AnalogVideoStandard ); 

Parameters 

p/AnalogVideoStandard 
[out] Pointer to the analog video standard currently in use by the TV Tuner filter. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

See the AnalogVideoStandard enumerated data type for supported formats. 

578 



DirectShow COM Interfaces 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents 

IAMTVTuner: :get_ Videofrequency 

IAMTVTuner Interface 

Retrieves the current video frequency. 

HRESULT get_ VideoFrequency( 
long */Freq 
); 

Parameters 

/Freq 
[out] Pointer to the video frequency. 

Return Values 

Page 188of658 

lml!§I 11$8 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl§i[.jjj,M 11!.HS 

IAMTVTu ner:: put_ Channel 

IAMTVTuner Interface 

Sets the TV channel. 

HRESULT put_ Channel( 
long /Channel, 
long /VideoSubChannel, 
long /AudioSubChannel 
); 

Parameters 

/Channel 

579 

Topic Contents l@l§lllMM 



DirectShow COM Interfaces 

[in] TV channel number. 
/VideoSubChannel 

Page 189of658 

Predefined video subchannel value. Specify AMTUNER_SUBCHAN_NO_TUNE for no tuning 
or AMTUNER_SUBCHAN DEFAULT for default subchannel. 

IAudioSubChannel 
Predefined audio subchannel value. Specify AMTUNER_SUBCHAN_NO_TUNE for no tuning 
or AMTUNER_SUBCHAN DEFAULT for default subchannel. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

This method handles the channel to frequency function call that converts the TV channel to a 
TV frequency. Frequencies for channels are found in the Country Codes and Channel to 
Frequency Mappings appendix. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§i[.]ii,+ '!!·HM 

MQi@i·li!:+ M!i.1 1119 

IAMTVTuner::put_Connectlnput 

IAMTVTuner Interface 

Sets the hardware tuner input connection. 

HRESULT put_ Connectlnput( 
long /Index 
); 

Parameters 

/Index 
[in] Index value of the input pin to set connection for. 

Return Values 

Topic Contents i@l§ii!MM 

Topic Contents i@l§i 11111+ 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

H Qi§1 [.] jj,M I !1.],.[9 Topic Contents i@l§ii!MM 

580 



DirectShow COM Interfaces 

IAMTVTu ner:: put_Cou ntryCode 

IAMTVTuner Interface 

Sets the country code to establish the frequency to use. 

HRESULT put_ CountryCode( 
long ICountryCode 
); 

Parameters 

/CountryCode 
[in] Value indicating the country code. 

Return Values 

Page 190 of 658 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

This method establishes the base frequencies for the given country. Use the 
IAMTVTuner: :AutoTune method to determine the exact frequencies for specific regions, unless 
there are previously cached settings for the new country. 

Override the country code when a country wants to receive broadcast video from a different 
national source. See the Country Codes and Channel to Frequency Mappings appendix for a list 
of country codes. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]1!,+ '!!·HM 

IAMTVTuner::put_lnputType 

IAMTVTuner Interface 

Sets the tuner input type (cable or antenna). 

HRESULT put_ InputType( 
long /Index, 
TunerinputType InputType 
); 

581 

Topic Contents i@l§ii!MM 



DirectShow COM Interfaces Page 191 of 658 

Parameters 

/Index 
[in] Index value that specifies the input pin to be set. 

InputType 
[in] Indicates the connection type, as specified in the TunerinputType data type. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents 

IAMTVTu ner:: put_ Tun i ngSpace 

IAMTVTuner Interface 

Sets a storage index for regional channel to frequency mappings. 

HRESULT put_ TuningSpace( 
long /TuningSpace 
); 

Parameters 

ITuningSpace 
[in] Value indicating the current locale. 

Return Values 

i@i§ll!¥+ 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

As TV tuners move into portable systems, you must retain locale-specific mappings of available 
channels and their actual frequencies. Formulating different /TuningSpace values for each 
locale provides a way of switching the channel to frequency mappings when moving from 
region to region. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+;<§1[.]lj,i 111.],.[9 Topic Contents 'ffl!'+* •um• 

582 



DirectShow COM Interfaces Page 192 of 658 

IAMTVTuner: :StoreAutoTune 

IAMTVTuner Interface 

Saves the fine-tuning information for all channels. 

HRESULT StoreAutoTune( ); 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Override the channel to frequency information stored by this method by setting a new country 
code in the IAMTVTuner:: put CountryCode method. See the Country Codes and Channel to 
Frequency Mappings appendix for a listing of country codes. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM 

IAMVfwCaptureDialogs Interface 

The IAMVfwCaptureDialogs interface enables an application to display one of the three 
dialog boxes (Source, Format, or Display) provided by Microsoft® Video for Windows® capture 
drivers. 

When to Implement 

The Video for Windows VFW Video Capture filter implements this interface. It isn't expected 
that anything else will implement this interface. 

When to Use 

Any application that enables the user to change settings in a Video for Windows capture driver­
supplied dialog box should use this interface. 

Methods in Vtable Order 
!Unknown methods Description 
Oueryinterface 
AddRef 
Release 

Retrieves pointers to supported interfaces. 
Increments the reference count. 
Decrements the reference count. 

583 



DirectShow COM Interfaces Page 193 of 658 

IAMVfwCaptureDialogs methods Description 
HasDialog 
ShowDialog 

SendDriverMessage 

Determines if the specified dialog box exists in the driver. 
Displays the specified dialog box. 

Sends a driver-specific message. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

w Q<M [.] +• 111.H5 Topic Contents 

MQi§i[.]11,M 11!.HM Topic Contents 

IAMVfwCa ptu re Dia logs:: HasDia log 

IAMVfwCaptureDialogs Interface 

Determines if the specified dialog box exists in the driver. 

HRESULT HasDialog( 
int iDialog ); 

Parameters 

iDialog 

•=@• 1gnw 

l@l§il!MM 

[in] Desired dialog box. This is a member of the VfwCaptureDialogs enumerated data 
type. 

Return Values 

Returns S_OK if the driver contains the dialog box or S_FALSE otherwise. 

Remarks 

This method calls the Video for Windows videoDialog function to query for the existence of the 
appropriate dialog box. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

M Q i§i [.] 11,1 I !1.],.15 Topic Contents 'ffl!'*' •um• 

IAMVfwCa ptu re Dia logs: :Send DriverMessage 

IAMVfwCaptureDialogs Interface 

584 



DirectShow COM Interfaces 

Sends a driver-specific message. 

HRESULT SendDriverMessage( 
int iDialog, 
int uMsg, 
long dw1, 
long dw2 ); 

Parameters 

iDialog 

Page 194 of 658 

[in] Handle of the driver dialog box. This is a member of the VfwCaotureDialoqs 
enumerated data type. 

uMsg 
[in] Message to send to the driver. 

dw1 
[in] Message data. 

dw2 
[in] Message data. 

Return Values 

Return value varies depending on the implementation within each driver. 

Remarks 

You should never need to use this method. This method can send any private message to the 
capture driver. Behavior might be undetermined in response to arbitrary messages; use this 
method at your own risk. 

This method calls the Video for Windows videoMessage function to send the driver message. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents 

MQl§i[.jjj,M '!!·HM Topic Contents 

IAMVfwCa ptu re Dia logs: :ShowDia log 

IAMVfwCaptureDialogs Interface 

Displays the specified dialog box. 

HRESULT ShowDialog( 
int iDialog, 
long hwnd ); 

585 

lmll§I 11¥8 

l@i§il/¥8 



DirectShow COM Interfaces Page 195 of 658 

Parameters 

iDialog 
[in] Dialog box to display. This is a member of the VfwCaptureDialogs enumerated data 
type. 

hwnd 
[in] Handle of the dialog box's parent window. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

You can't use this method when the driver is streaming or displaying another dialog box. While 
the driver displays the dialog box you can't stream (pause or run) the filter. 

IAMVfwCaptureDialogs::ShowDialog calls the Video for Windows® videoDialoq function to 
display the appropriate dialog box. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+ 

IAMVfwCompressDialogs Interface 

The IAMVfwCompressDialogs interface enables an application to display a Video for 
Windows codec (compressor/decompressor) Configure or About dialog box and to set and 
retrieve compressor status. 

When to Implement 

Microsoft's video compression manager (VCM) compressor filter (AVI Compressor) implements 
this interface. Other filters should not need to implement it. 

When to Use 

An application should use this interface when it must enable the user to change compression 
settings in an VCM compressor's Configure dialog box or to view the compressor's About dialog 
box. Applications also use this interface to set and retrieve compressor status. 

Methods in Vtable Order 
!Unknown methods Description 
Querylnterface Retrieves pointers to supported interfaces. 
AddRef Increments the reference count. 
Release Decrements the reference count. 

586 



DirectShow COM Interfaces 

IAMVfwCompressDialogs 
methods 
ShowDialog 

Page 196 of 658 

Description 

Displays the specified dialog box. 

GetState Retrieves the current configuration settings for the VCM 
codec currently being used. 

SetState 
SendDriverMessage 

Sets configuration for the ICM codec. 
Sends a driver-specific message. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 Topic Contents 

MQi§i!!.llj,i 111.J,,[9 Topic Contents 

IAMVfwCom pressDia logs: :GetState 

IAMVfwCom press Dia logs Interface 

lmll§lllMM 

1@1§111$8 

Retrieves the current configuration settings for the VCM codec currently being used. 

HRESULT GetState( 
LPVOID pState, 
int *pcbState 

Parameters 

pState 
[out] State of the VCM codec. 

pcbState 
[in, out] Size of the state. 

Return Values 

Return value varies depending on the implementation within each driver. 

Remarks 

This method calls the COM ICGetState macro. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

•Q'41M+• i11.q9 Topic Contents 

587 

'®'*'•um• 



DirectShow COM Interfaces Page 197 of 658 

IAMVfwCom pressDia logs:: Send DriverM essa ge 

IAMVfwCom press Dia logs Interface 

Sends a driver-specific message. 

HRESULT SendDriverMessage( 
int uMsg, 
long dw1, 
long dw2 ); 

Parameters 

uMsg 
[in] Message to send to the driver. 

dw1 
[in] Message data. 

dw2 
[in] Message data. 

Return Values 

Return value varies depending on the implementation within each driver. 

Remarks 

You should never need to use this method. This method can send any private message to the 
video compressor (codec). Behavior might be undetermined in response to arbitrary messages; 
use this method at your own risk. 

This method calls the Video for Windows video compression manager (VCM) ICSendMessage 
function to send the message. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM 

MQi§i!!.ljj,i 111.J,,[9 Topic Contents 1@1§111$8 

IAMVfwCom pressDia logs: :SetState 

IAMVfwCom press Dia logs Interface 

Sets configuration for the VCM codec. 

HRESULT SetState( 

588 



DirectShow COM Interfaces 

LPVOID pState, 
int cbState ); 

Parameters 

pState 
[in] State of the VCM codec. 

cbState 
[in] Size of the state. 

Return Values 

Return value varies depending on the implementation within each driver. 

Remarks 

Page 198 of 658 

This method calls the COM ICSetState macro, which notifies a video compression driver to set 
the state of the compressor. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

w Q<M [.] +• 111.H5 Topic Contents 

IAMVfwCom pressDia logs: :ShowDia log 

IAMVfwCom oressDia logs Interface 

Displays the specified dialog box. 

HRESULT ShowDialog( 
int iDialog, 
long hwnd ); 

Parameters 

iDialog 

•=@• 1gnw 

[in] Dialog box to display. This is a member of the VfwCompressDialogs enumerated data 
type. 

hwnd 
[in] Handle of the dialog box's parent window. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

This method returns an error when the driver is streaming or displaying another dialog box. 

589 



DirectShow COM Interfaces Page 199 of 658 

While the driver displays the dialog box you can't stream (pause or run) the filter. 

IAMVfwCompressDialogs::ShowDialog calls the Video for Windows video compression 
manager (VCM) functions ICConfiqure and ICAbout to display the appropriate dialog box. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+ 

IAMVideoCompression Interface 

The IAMVideoCompression pin interface enables you to control compression parameters that 
aren't part of the media type. 

The put PFramesPerKeyFrame and get PFramesPerKeyFrame methods refer to predicted (P) 
frames and bidirectional (B) frames, which are MPEG concepts and not generally applicable to 
simpler types of compressors. 

When to Implement 

Implement this interface on the output pin of a video capture or video compressor filter that 
provides compressed video data. 

When to Use 

An application can use this interface to control how video is compressed, including 
characteristics such as the number of key frames and frame quality. Use it to retrieve a textual 
description of the compressor and other available information, including the compressor's 
capabilities. 

If you are using a WDM video capture or compression filter, you can only query for this 
interface if the capture filter is connected to another filter in the graph. 

Methods in Vtable Order 
!Unknown methods Description 
Queryinterface 
AddRef 

Retrieves pointers to supported interfaces. 
Increments the reference count. 

Release Decrements the reference count. 

IAMVideoCompression Description 
methods 
put KeyFra meRate 
get KeyFrameRate 
put PFra mesPerKeyFra me 
get PFramesPerKeyFrame 

put Quality 
get Quality 

Sets the key frame rate. 
Retrieves the key frame rate. 
Sets the predicted (P) frame frequency. 
Retrieves the P frame frequency. 
Sets the quality of the video image compression. 
Retrieves the current image quality setting. 

590 



DirectShow COM Interfaces Page 200 of 658 

put WindowSize Sets the number of frames over which the compressor must 
maintain an average data rate. 

get WindowSize Retrieves the number of frames over which the compressor 
must maintain an average data rate. 

Getlnfo 
OverrideKeyFra me 

OverrideFra meSize 

Retrieves compressor information. 
Forces a particular frame to be a key frame. 
Overrides a particular frame's data rate. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M 111.l:.!j 

+Qi§i[.jjj,+ 111.],.[j 

IAMVideoCompression: :Getlnfo 

IAMVideoCom press ion Interface 

Retrieves compressor information. 

HRESULT Getinfo( 
WCHAR * pszVersion, 
int *pcbVersion, 
LPWSTR pszDescription, 
int *pcbDescription, 
long *pDefaultKeyFrameRate, 
long *pDefau/tpFramesPerKey, 
double *pDefaultQuality, 
long *pCapabilities 
) PURE; 

Parameters 

pszVersion 
[out] Pointer to a version string, such as "Version 2.1.0". 

pcbVersion 

Topic Contents 

Topic Contents 

l@i§i llfttiM 

l@i§lllMM 

[in,out] Size needed for a version string. Pointer to the number of bytes in the Unicode 
string, not the number of characters, so it must be twice the number of characters the 
string can hold. Call with this set to NULL to retrieve the current size. 

pszDescription 
[out] Pointer to a description string, such as "Awesome Video Compressor". 

pcbDescription 
[in,out] Size needed for a description string. Pointer to the number of bytes in the 
Unicode string, not the number of characters, so it must be twice the number of 
characters the string can hold. Call with this set to NULL to retrieve the current size. 

pDefaultKeyFrameRate 
[out] Pointer to receive the default key frame rate. 

pDefau/tpFramesPerKey 

591 



DirectShow COM Interfaces 

[out] Pointer to receive the default predicted (P) frames per key frame. 
pDefaultQuality 

[out] Pointer to receive the default quality. 
pCapabilities 

Page 201 of 658 

[out] Pointer to receive the compression capabilities, which are a combination of the 
CompressionCaps data type flags. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M 111.l:.!j Topic Contents l@i§i llfttiM 

+Qi§i[.jjj,+ 111.],.[j Topic Contents •@m••1m+ 

IAMVideoCom pression:: get_KeyFra me Rate 

IAMVideoCom press ion Interface 

Retrieves the current key frame rate. 

get_KeyFrameRate( 
long * pKeyFrameRate 
) PURE; 

Parameters 

pKeyFrameRate 
[out] Compressor's current key frame rate. A negative value means it is using the default 
frame rate for the video compressor. A zero value means only the first frame is a key 
frame. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

To determine if the compressor supports this method, check for the 
CompressionCaps CanKeyFrame flag returned in the pCapabilities parameter of the 
IAMVideoCompression: :Getinfo method. 

See Also 

IAMVideoCom press ion: : put_Keyfra meRate 

592 



DirectShow COM Interfaces Page 202 of 658 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8 

IAMVideoCom pression:: get_PFra mesPerKeyFra m 

IAMVideoCom press ion Interface 

Retrieves the predicted (P) frame interval. 

HRESULT get_PFramesPerKeyFrame( 
long * pPFramesPerKeyFrame 
) PURE; 

Parameters 

pPFramesPerKeyFrame 
[out] Pointer to receive the number of P frames per key frame. A negative value means 
the compressor will use its default value. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The Video for 
Windows capture filter (VFW Video Capture) and the AVI compression filter (AVI Compressor) 
do not currently support this interface and return E_NOTIMPL. 

Remarks 

To determine if the compressor supports this method, check for the 
CompressionCaps CanBFrame flag returned in the pCapabilities parameter of the 
IAMVideoCompression: :Getinfo method. 

As an example of the relationship between the types of frames, suppose a key frame occurs 
once in every 10 frames, and there are 3 P frames per key frame. The P frames will be spaced 
evenly between the key frames. The other 6 frames, which occur between the key frames and 
the P frames, will be bidirectional (B) frames. 

See Also 

IAMVideoCom press ion: : put_KeyFra meRate 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

•Q<M!.l+' 1u.H5 Topic Contents i@faii!MM 

593 



DirectShow COM Interfaces 

IAMVideoCompression: :get_ Qua I ity 

IAMVideoCom press ion Interface 

Retrieves the current image quality setting. 

HRESULT get_Quality( 
double * pQuality 
) PURE; 

Parameters 

pQuality 
[out] Current quality setting. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

Page 203 of 658 

The quality is a value between 0 and 1. One indicates the highest (best) quality and 0 
indicates the lowest (worst) quality. A negative number means it is using the compressor 
default. The compressor interprets this number; this interpretation varies from compressor to 
compressor. When the compressor is not compressing to a specific data rate, the value will 
roughly determine the image size or quality. 

To determine if the compressor supports this method, check for the 
CompressionCaps CanQuality flag returned in the pCapabilities parameter of the 
IAMVideoCompression: :Getlnfo method. 

If you are compressing to a fixed data rate, a high quality value means use all of the data rate, 
and a low quality value means you can use much lower than the data rate. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM 

IAMVideoCompression::get_WindowSize 

IAMVideoCom oression Interface 

Retrieves the number of frames over which the compressor must maintain an average data 
rate. 

594 



DirectShow COM Interfaces 

HRESULT get_WindowSize( 
DWORDLONG * pWindowSize 
); 

Parameters 

pWindowSize 
[out] Pointer to a DWORDLONG value that will receive the window size. 

Return Values 

Page 204 of 658 

Returns an HRESULT value that depends on the implementation of the interface. 

See Also 

IAMVideoComoression:: put WindowSize 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]1!,+ '!!·HM Topic Contents i@l§ii!MM 

IAMVideoCompression: :OverrideFra meSize 

IAMVideoCom press ion Interface 

Overrides a frame's data rate. 

HRESULT OverrideFrameSize( 
long FrameNumber, 
long Size 
) PURE; 

Parameters 

FrameNumber 
[in] Frame number for which to change the size. 

Size 
[in] Desired size, in bytes, for the specified frame. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The Video for 
Windows capture filter (VFW Video Capture) and the AVI compression filter (AVI Compressor) 
do not currently support this interface and return E_NOTIMPL. 

Remarks 

595 



DirectShow COM Interfaces Page 205 of 658 

To determine if the compressor might support this method, check for the 
CompressionCaps CanCrunch flag returned in the pCapabilities parameter of the 
IAMVideoCompression: :Getlnfo method. The flag might also be set to indicate that the 
dwBitRate value can be set in the AM MEDIA TYPE's VIDEOINFOHEADER structure. 

The frame number refers to which frame goes out of the filter after it is streaming. For 
example, frame 0 means the first frame this pin delivers. Frame 11 means the twelfth frame it 
delivers. Be sure to call this method before the filter delivers the frame for which you want to 
provide a different size. 

Overriding the frame size (or "crunching" the frame) instructs the filter to make the frame size 
this many bytes or less instead of the originally planned size. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM 

IAMVideoCom pression:: OverrideKeyFra me 

IAMVideoCom press ion Interface 

Forces a frame to be a key frame. 

HRESULT OverrideKeyFrame( 
long FrameNumber 
) PURE; 

Parameters 

FrameNumber 
[in] Number of the frame to be made a key frame when the graph runs, even if it 
wouldn't usually be a key frame. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The Video for 
Windows capture filter (VFW Video Capture) and the AVI compression filter (AVI Compressor) 
do not currently support this interface and return E_NOTIMPL. 

Remarks 

Once a compressor creates a key frame, it might reset its count to determine when the next 
key frame should occur. For example, assume a key frame typically occurs once every 10 
frames. If you mark frame 5 as a key frame using OverrideKeyFrame, the compressor might 
wait 10 more frames until creating the next key frame. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

596 



DirectShow COM Interfaces Page 206 of 658 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

IAMVideoCompression:: put_KeyFra meRate 

IAMVideoCom press ion Interface 

Sets the key frame rate. 

HRESULT put_KeyFrameRate( 
long KeyFrameRate 
) PURE; 

Parameters 

KeyFrameRate 
[in] Desired key frame rate. A negative value means use the default frame rate for the 
video compressor. A zero value means that only the first frame is a key frame. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

To determine if the compressor supports this method, check for the 
CompressionCaps CanKeyFrame flag returned in the pCapabilities parameter of the 
IAMVideoCompression: :Getlnfo method. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM 

IAMVideoCompression:: put_PFra mesPerKeyFra m 

IAMVideoCom press ion Interface 

Sets predicted (P) frame interval. 

HRESULT put_PFramesPerKeyFrame( 
long PFramesPerKeyFrame 
) PURE; 

597 



DirectShow COM Interfaces Page 207 of 658 

Parameters 

PFramesPerKeyFrame 
[in] Desired P frame interval. A negative value means use the default frame rate for the 
video compressor. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. The Video for 
Windows capture filter (VFW Video Capture) and the AVI compression filter (AVI Compressor) 
do not currently support this interface and return E_NOTIMPL. 

Remarks 

To determine if the compressor supports this method, check for the 
CompressionCaps CanBFrame flag returned in the pCapabilities parameter of the 
IAMVideoCompression: :Getinfo method. 

As an example of the relationship between the types of frames, suppose a key frame occurs 
once in every 10 frames, and there are 3 P frames per key frame. The P frames will be spaced 
evenly between the key frames. The other 6 frames, which occur between the key frames and 
the P frames, will be bidirectional (B) frames. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents 

IAMVideoCompression:: put_ Qua I ity 

IAMVideoCom press ion Interface 

Sets the quality of the video image. 

HRESULT put_Quality( 
double Quality 
) PURE; 

Parameters 

Quality 
[in] Desired quality. 

Return Values 

i@i§ll!¥+ 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

598 



DirectShow COM Interfaces Page 208 of 658 

The quality is a value between 0 and 1, inclusive. One indicates the highest (best) quality and 
0 indicates the lowest (worst) quality. A negative number means use the compressor default. 
The compressor (codec) interprets this number; interpretation varies from codec to codec. 
When the compressor is not compressing to a specific data rate, the value will roughly 
determine the image size or quality. 

To determine if the compressor supports this method, check the CompressionCaps CanQuality 
flag returned in the pCapabilities para meter of the IAMVideoComp ression: : GetI nfo method. 

If you are compressing to a fixed data rate, a high quality value means use all of the data rate, 
and a low quality value means you can use much lower than the data rate. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lllMM 

IAMVideoCompression:: put_ Wi ndowSize 

IAMVideoCom oression Interface 

Sets the number of frames over which the compressor must maintain an average data rate. 

HRESULT put_WindowSize( 
DWORDLONG WindowSize 
); 

Parameters 

WindowSize 
[in] Window size, or number of frames, whose average size cannot exceed the data rate 
that the compressor has been asked to provide. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. 

Remarks 

For a window of size n, the average frame size of any consecutive n frames will not exceed the 
stream's specified data rate, although individual frames can be larger or smaller. For example, 
if you have set a data rate of 100 kilobytes (KB) per second on a 10 frames per second (fps) 
movie, that will usually mean each frame must be less than or equal to 10 KB. However, by 
setting a window size of n, you are specifying that as long as the average length of those n 
frames is less than or equal to 10 KB, it doesn't matter how large the individual frames are. 
For example, some could be smaller and some could actually be larger than 10 KB, as long as 
the average is less than or equal to 10 KB. 

599 



DirectShow COM Interfaces Page 209 of 658 

See Also 

IAMVideoCom press ion: : get Wi ndowSize 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQij[.jjj,M l!i.! 111j Topic Contents l@iJI l!lltiM 

IAMVideoCutlistElement Interface 

IAMVideoCutlistElement provides support for a cutlist element from an AVI video file 
stream. 

See About Cutlists and Using Cutlists for more information. 

When to Implement 

Usually, you don't need to implement this interface because DirectShow provides the 
CLSID VideoFileClip object that implements it for you. Implement this interface in your 
application when you need to change the default behavior of this interface to include support 
for interlaced video. 

When to Use 

Use this interface in your filter when you specify a video-based media clip. Call Querylnterface 
on the IAMCutListElement interface to determine if the element is a video type element. 

When compiling a cutlist application you must explicitly include the cutlist header file as 
follows: 

#include <Cutlist.h> 

Methods in Vtable Order 
!Unknown methods Description 
Querylnterface 
AddRef 

Retrieves pointers to supported interfaces. 
Increments the reference count. 

Release Decrements the reference count. 

IAMVideoCutlistElement Description 
methods 
IsSingleFrame 

GetStrea ml ndex 

Determines if the element is a single frame with 
repeating fields. 
Retrieves the index to the specified stream in the AVI 
file. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

600 



DirectShow COM Interfaces Page 210of658 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

MQij[.jjj,M M!i.1 111M Topic Contents i@l§i 11111+ 

IAMVideoC utli stE lement:: GetStrea ml ndex 

IAMVideoC utlistElement Interface 

Retrieves the index to the specified stream in the AVI file. 

HRESULT GetStreamindex( 
DWORD *piStream 
); 

Parameters 

piStream 
[out] Pointer to the stream number to open. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. HRESULT 
can include one of the following standard constants, or other values not listed. 
Value Meaning 
E FAIL Failure. 
E_INVALIDARG Argument is invalid. 
E_NOTIMPL Method is not supported. 
E_ POINTER 
S_OK 

Remarks 

Null pointer argument. 

Success. 

The stream number must always be zero. The only supported video stream in an AVI file is the 
first video stream. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qij[.jjj,M M!i.1 111M Topic Contents i@l§lllMM 

+ Qi§1 [.] jj,+ +II.HM Topic Contents Mttfjl§i +gn+ 

601 



DirectShow COM Interfaces Page 211of658 

IAMVideoCutlistElement: :Issi ngleFra me 

IAMVideoC utlistElement Interface 

Determines if the element is a single frame with repeating fields. 

HRESULT IsSingleFrame(void); 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. HRESULT 
can include one of the following standard constants, or other values not listed. 
Value Meaning 
E_FAIL Failure. 
E_INVALIDARG Argument is invalid. 
E_NOTIMPL Method is not supported. 
E_POINTER 
S_FALSE 
S_OK 

Remarks 

Null pointer argument. 
No, element is not a single frame with repeating fields. 
Yes, element is a single frame with repeating fields. 

This method must always return S_FALSE because repeating fields are not supported. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

w Q<M [.] +• 111.H5 Topic Contents •@M* 1gnw 

MQi§1[.]1!,M 11!.HM Topic Contents i@faii!MM 

IAMVideoProcAmp Interface 

The IAMVideoProcAmp interface contains methods for controlling video quality such as 
brightness, contrast, hue, saturation, gamma, and sharpness. It defines a uniform range for 
these settings regardless of whether the adjustment is made in the analog or digital domain. 

For analog video, this interface will typically be located on the same processing element as the 
IAMAnalogVideoDecoder interface. 

When to Implement 

Implement this interface when your filter needs to control video quality. 

When to Use 

602 



DirectShow COM Interfaces 

Use this interface when your application needs to adjust video quality. 

Methods in Vtable Order 
!Unknown methods Description 
Querylnterface Retrieves pointers to supported interfaces. 
AddRef Increments the reference count. 
Release Decrements the reference count. 

IAMVideoProcAmp Description 
methods 

Page 212of658 

GetRange Retrieves minimum, maximum, and default values for setting 
properties. 

Set Sets video quality for a specified property . 
.Get Retrieves video quality for a specified property. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.l:.ij 

+Qi§i[.jjj,+ 111.],.[j 

IAMVideoProcAmp: :Get 

IAMVideoProcAmp Interface 

Retrieves video quality for a specified property. 

HRESULT Get( 
long Property, 
long * /Value, 
long * Flags ) ; 

Parameters 

Property 

Topic Contents 

Topic Contents 

[in] Specific property to retrieve the setting of. Specify a member of the 
VideoProcAmpProperty enumerated type. 

/Value 
[out] Current value of the property. 

Flags 
[out] Pointer to a member of the VideoProcAmpFlags enumerated type. 

Return Values 

l@i§i llfttiM 

•@m••1m+ 

Returns an HRESULT value that depends on the implementation of the interface. HRESULT 
can include one of the following standard constants, or other values not listed. 

603 



DirectShow COM Interfaces 

Value 
E FAIL 

Meaning 
Failure. 

E_ POINTER Null pointer argument. 
E_INVALIDARG Invalid argument. 
E_ NOTIMPL Method is not supported. 
NOERROR No error. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS 

MQl§i[.jjj,M '!!·HM 

IAMVideoProcAmp: :GetRa nge 

IAMVideoProcAmp Interface 

Topic Contents 

Topic Contents 

Retrieves minimum, maximum, and default values for setting properties. 

HRESULT GetRange( 
long Property, 
long* pMin, 
long* pMax, 
long * pSteppingDelta, 
long * pDefault, 
long * pCapsF/ags ); 

Parameters 

Property 

Page 213of658 

lml!§lll¥M 

l@i§il/¥8 

[in] Specific property to determine the range of. Specify a member of the 
VideoProcAmpProperty enumerated type. 

pMin 
[out] Minimum setting range. 

pMax 
[out] Maximum setting range. 

pSteppingDelta 
[out] Step size. 

pDefault 
[out] Default value. 

pCapsFlags 
[out] Pointer to a member of the VideoProcAmpFlags enumerated type. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. HRESULT 
can include one of the following standard constants, or other values not listed. 

604 



DirectShow COM Interfaces 

Value 
E FAIL 

Meaning 
Failure. 

E_ POINTER Null pointer argument. 
E_INVALIDARG Invalid argument. 
E_ NOTIMPL Method is not supported. 
NOERROR No error. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS 

MQl§i[.jjj,M '!!·HM 

IAMVideoProcAmp: :Set 

IAMVideoProcAmp Interface 

Sets video quality for a specified property. 

HRESULT Set( 
long Property, 
long /Value, 
long Flags ) ; 

Parameters 

Property 

Page 214of658 

Topic Contents lml!§lll¥M 

Topic Contents l@i§il/¥8 

[in] Specific property to set. Specify a member of the VideoProcAmpProperty enumerated 
type. 

/Value 
[in] Value indicating the setting of the property. 

Flags 
[in] Member of the VideoProcAmpFlags enumerated type. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. HRESULT 
can include one of the following standard constants, or other values not listed. 
Value Meaning 
E_FAIL Failure. 
E_INVALIDARG Invalid argument. 
E_NOTIMPL Method is not supported. 
NO ERROR No error. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

605 



DirectShow COM Interfaces Page 215of658 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

MQij[.jjj,M 111.1 1119 Topic Contents i@l§i i!lltiM 

IAsyncReaderlnterface 

The IAsyncReader interface allows multiple overlapped reads from different positions in the 
media stream. This interface is supported by source filters. 

Note that during connection an output pin supporting the IAsyncReader should check 
whether its Queryinterface method is called asking for the IAsyncReader interface. If it is 
not, then the output pin should fail the connect unless it establishes some other transport to 
use during the connection. 

When to Implement 

Implement this interface on a pin if your filter reads data of media type MEDIATYPE_Stream 
from some source. 

When to Use 

A parser, such as an Apple® QuickTime® parser filter, can use this interface to read from a 
filter that reads from a file, the network, or memory. 

Methods in Vtable Order 
!Unknown methods Description 
Queryinterface 
AddRef 
Release 

IAsyncReader 
methods 
ReguestAllocator 
Request 

WaitForNext 
SyncReadAligned 
SyncRead 
Length 

BeginFlush 

End Flush 

Retrieves pointers to supported interfaces. 
Increments the reference count. 
Decrements the reference count. 

Description 

Retrieves the actual allocator to be used. 
Queues a request for data. 
Blocks until the next sample is completed or the time-out occurs. 
Performs an aligned synchronized read. 
Performs a synchronized read. 
Retrieves the total length of the stream, and the currently available 
length. 
Causes all outstanding reads to return. 
Ends the flushing operation. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qij[.jjj,M 111.1 1119 Topic Contents i@l§iil@M 

606 



DirectShow COM Interfaces Page 216of658 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

IAsyncReader::BeginFlush 

IAsyncReader Interface 

Starts the flushing operation. 

HRESULT Beginflush(void); 

Return Values 

Returns S_OK if successful, S_FALSE otherwise. 

Remarks 

Causes all outstanding reads to return, possibly with a failure code (VFW E TIMEOUT), 
indicating that the outstanding reads were canceled. Between IAsyncReader::BeginFlush 
and IAsyncReader:: End Flush calls, IAsyncReader:: Request calls will fail and 
IAsyncReader: :WaitForNext calls will always complete immediately. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jjj,M M!i.l:.19 Topic Contents i@l§lllMM 

IAsyncReader::EndFlush 

IAsyncReader Interface 

Completes the flushing operation. 

HRESULT Endflush(void); 

Return Values 

Returns S_OK if successful, S_FALSE otherwise. 

Remarks 

Between IAsyncReader:: BeginFlush and IAsyncReader::EndFlush calls, 
IAsyncReader:: Request calls will fail and IAsyncReader: :WaitForNext calls will always complete 
immediately. This method is called so the source thread can wait in the 

607 



DirectShow COM Interfaces 

IAsyncReader::WaitForNext method again. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

MQ<§i[.jjj,M Ill.HS Topic Contents 

IAsyncReader:: Length 

IAsyncReader Interface 

Retrieves the stream's total length, and the currently available length. 

HRESULT Length( 
LONGLONG* pTotal, 
LONGLONG* pAvailable 
); 

Parameters 

pTotal 
Total allocated length. 

pAvailable 
Available length. 

Return Values 

Returns S_OK if successful, E_UNEXPECTED if the file has not been opened. 

Remarks 

Page 217of658 

lmll§lllMM 

Read operations beyond the available length but within the total length will normally succeed, 
but they might block for a long period of time. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§M 1gnw 

IAsyncReader::Request 

IAsyncReader Interface 

Queues a request for data. 

608 



DirectShow COM Interfaces 

HRESULT Request( 
IMediaSample* pSample, 
DWORD dwUser 
); 

Parameters 

pSample 
Media sample being requested. 

dwUser 
[in] User context. 

Return Values 

Page 218of658 

Returns an HRESULT value that depends on the implementation of the interface. Current 
DirectShow implementation return values include: 
Value Meaning 
VFW E BADALIGN An invalid alignment was specified. 
VFW _E_M ED IA_ TIM E_NOT _SET Ti me has not been set. 
HRESULT_FROM WIN32 Request for data past end of file. 
NO ERROR 
S_OK 

Remarks 

No error. 
Success. 

Media sample start and stop times contain the requested absolute byte position (start-inclusive 
and stop-exclusive). This method might fail if the sample is not obtained from an agreed 
allocator or if the start or stop position does not match the agreed alignment. The samples 
allocated from the source pin's allocator might fail IMediaSamole: :GetPointer until after 
returning from IAsyncReader: :WaitForNext. 

The stop position must be aligned, which means it might exceed duration. On completion, the 
stop position will be corrected to the unaligned actual data. 

The dwUser parameter is used by the caller to identify the sample that returned from the 
IAsyncReader: :WaitForNext method. It has no meaning within IAsyncReader but could be used 
to track individual sample information. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lmli§I 11$8 

MQl§i[.jjj,M 111.],.[5 Topic Contents 'ffl!'+* •um• 

IAsyncReader::RequestAllocator 

609 



DirectShow COM Interfaces 

IAsyncReader Interface 

Retrieves the actual allocator to be used. 

HRESULT RequestAllocator( 
IMemAllocator* pPreferred, 
ALLOCATOR_PROPE RTIES* pProps, 
IM em Allocator * * ppActual 
); 

Parameters 

pPreferred 
[in] Preferred allocator. 

pProps 
[in] Preferred allocator properties (size, count, and alignment). 

ppActual 
[out] Actual allocator used. 

Return Values 

Page 219of658 

Returns an HRESULT value that depends on the implementation of the interface. Current 
DirectShow implementation return values include: 
Value Meaning 
E_ FAIL Failure to initialize an allocator. 
VFW_E_BADALIGN An invalid alignment was specified. 

S_OK Allocator was returned. 

Remarks 

The preferred allocator and preferred allocator properties must be passed in. This method 
returns the actual allocator to be used. 

IMemAllocator: :GetProperties should be called on the returned allocator to learn the alignment 
and prefix chosen. This allocator will not be committed and decommitted by the asynchronous 
reader, only by the consumer. This method must be called before calling 
IAsyncReader:: Request. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M 

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M 

IAsyncReader: :SyncRead 

IAsyncReader Interface 

610 



DirectShow COM Interfaces 

Performs a synchronous read. 

HRESULT SyncRead( 
LONGLONG I/Position, 
LONG /Length, 
BYTE* pBuffer 
); 

Parameters 

I/Position 
[in] Absolute file position. 

/Length 
[in] Number of bytes required. 

pBuffer 
[out] Where the data is written. 

Return Values 

Page 220 of 658 

Returns an HRESULT value that depends on the implementation of the interface. Current 
DirectShow implementation return values include: 
Value Meaning 
VFW_E_BADALIGN An invalid alignment was specified. 
HRESULT_FROM WIN32 Win32 error. 
S_FALSE Size changed (probably due to end of file). 

S_OK Success. 

Remarks 

The SyncRead method works in a stopped state as well as in a running state. The read is not 
necessarily aligned. This method fails if the read is beyond the actual total length. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M 11!.l:.ij 

+Qi§i[.jjj,+ 111.],.[j 

IAsyncReader: :SyncReadAI igned 

IAsyncReader Interface 

Performs a synchronous read of the data. 

HRESULT SyncReadAligned( 
IMediaSample* pSample 

611 

Topic Contents l@i§lllMM 

Topic Contents l@bll!MM 



DirectShow COM Interfaces Page 221of658 

); 

Parameters 

pSample 
Sample to read. 

Return Values 

Returns an HRESULT value that depends on the implementation of the interface. Current 
DirectShow implementation return values include: 
Value Meaning 
VFW E BADALIGN An invalid alignment was specified. 
HRESULT_FROM WIN32 Win32 error. 
S_FALSE Size changed (probably due to end of file). 
S_OK Success. 

Remarks 

The sample passed in must have been acquired from the agreed allocator. The start and stop 
positions must be aligned equivalent to an IAsyncReader:: Request/IAsyncReader: :WaitForNext 
pair, but may avoid the need for a thread on the source filter. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lll¥M 

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8 

IAsyncReader: :WaitForNext 

IAsyncReader Interface 

Blocks until the next read requested through IAsyncReader: :Request completes or the time­
out occurs. 

HRESULT WaitForNext( 
DWORD dwTimeout, 
IMediaSample** ppSample, 
DWORD * pdwUser 
); 

Parameters 

dwTimeout 
[in] Time-out in milliseconds; can be zero or INFINITE. 

ppSample 

612 



DirectShow COM Interfaces 

[out] Completed sample. 
pdwUser 

User context. 

Return Values 

Page 222 of 658 

Returns an HRESULT value that depends on the implementation of the interface. Current 
DirectShow implementation return values include: 
Value Meaning 
VFW_E_TIMEOUT A time-out has expired. 
VFW_E_WRONG_STATE The operation could not be performed because the filter is in the 

wrong state. 
E_FAIL 
S_OK 

Remarks 

Failure. 
Success. 

Samples may not be returned in order. If there is a read error of any sort, a notification will 
already have been sent by the source filter, and HRESULT will be an error. If ppSample is not 
null, a request has been completed with the result code returned. 

The pdwUser parameter returns the caller's context DWORD corresponding to the sample 
returned. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM 

+Qi§i[.]jj,M '!!·Hi Topic Contents l@IJll!MM 

IBaseFilter Interface 

The IBaseFilter interface abstracts an object that has typed input and output connections and 
can be aggregated dynamically. All DirectShow™ filters expose this interface. 

Since the IBaseFilter interface derives from the IMediaFilter interface, it inherits IPersist. 

When to Implement 

Implement this interface on every DirectShow filter. It is recommended that you use the 
CBaseFilter class library to implement this interface. 

When to Use 

The filter graph manager is the primary user of this interface. Applications or other filters can 
use IBaseFilter methods directly to enumerate or retrieve pins or to get vendor information, 
but should not use any methods derived from IMediaFilter to control media streaming (use the 

613 



DirectShow COM Interfaces 

IMediaControl methods on the filter graph manager instead). 

Methods in Vtable Order 
!Unknown methods Description 
Queryinterface Returns pointers to supported interfaces. 
AddRef Increments the reference count. 
Release Decrements the reference count. 

IMediaFilter Description 
methods 
Stop Informs the filter to transition to the new (stopped) state. 
Pause Informs the filter to transition to the new (paused) state. 
Run Informs the filter to transition to the new (running) state. 
GetState Determines the state of the filter. 

Page 223 of 658 

SetSyncSource Identifies the reference clock to which the filter should synchronize 
activity. 

GetSyncSource Retrieves the current reference clock (or NULL if there is no clock). Passes 
a time value to synchronize independent streams. 

IBaseFilter Description 
methods 
EnumPins Enumerates the specified pins available on this filter. 
FindPin Retrieves a pointer to the pin with the specified identifier. 
QueryFilterinfo Retrieves information about the specified filter. 
JoinFilterGraph Notifies a filter that it has joined a filter graph. 
QueryVendorinfo Retrieves optional information supplied by a vendor for the specified 

filter. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl§1[.jli,M +!!·!:.!¥ 

•;<@[.]+• 111.1,.19 

I Base Filter: :Enu mPins 

IBaseFilter Interface 

Enumerates all the pins available on this filter. 

HRESULT EnumPins( 
IEnumPins ** ppEnum 
); 

Parameters 

614 

Topic Contents i@i§ll!¥+ 

Topic Contents i@i§i i!fttiM 



DirectShow COM Interfaces Page 224 of 658 

ppEnum 
[out] Pointer to the IEnumPins interface to retrieve. 

Return Values 

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the 
following standard constants, or other values not listed: 
Value Meaning 
E FAIL Failure. 
E_ POINTER Null pointer argument. 
E INVALIDARG Invalid argument. 
E_ NOTIMPL Method isn't supported. 

S_OK or NOERROR Success. 

Remarks 

The interface returned by this method has had its reference count incremented. Be sure to use 
IUnknown:: Release on the interface to decrement the reference count when you have finished 
using the interface. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jjj,M l!i.l:.ij 

+Qi§i[.jjj,+ 111.],.[j 

I Base Filter:: Find Pin 

IBaseFilter Interface 

Retrieves the pin with the specified identifier. 

HRESULT FindPin( 
LPCWSTR Id, 
IPin **ppPin 
); 

Parameters 

Id 
[in] Identifier of the pin. 

ppPin 

Topic Contents l@i§i llfttiM 

Topic Contents •@m••1m+ 

[out] Pointer to the IPin interface for this pin after the filter has been restored. The 
returned IPin pointer has been reference counted. The caller should use the Release 
method on the pointer when finished with it. 

615 


	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40




