Filter Developer's Guide Page 58 of 83

Member function Description
Transform Implement transform.
ChecklnputType Verify support of media type.

Beyond providing your transform filter with a default implementation by providing the
minimum overrides, you can override other member functions to provide more specialized
behavior. Which member functions you override, of course, depends on what you want your
filter to do. For example, you must override the GetPin and GetPinCount member functions if
you want to have more than one input pin and one output pin on the filter.

Also, several base class member functions, such as BreakConnect or CompleteConnect, are
called as notifications to your filter through the pins. Typically, most of these member
functions exist only on the pins. In the classes based on CTransformFilter, the pin functions are
implemented to call similarly named functions in the filter class. This means that the member
functions you most likely will want to override are all collected into one filter class, so you can
leave the pin classes unchanged, making implementation smaller and easier. These member
functions are as follows:

Member function Reason to override
NonDelegatingQueryInterface To distribute any interfaces added in the derived class.
Pin n If adding more pins to the transform filter.
GetPin If adding more pins to the transform filter.
CheckConnect To obtain extra interfaces at connect time or for other reasons.
BreakConn To release extra interfaces when connection is broken or for
other reasons.
mpl nn To perform some action at the end of connection (such as
reconnecting the input pin).
MediaT To be notified when the media type has been set.
rtStreamin To be notified when entering the streaming state.
StopStreaming To be notified when exiting the streaming state.
Alter i To do anything with quality-control messages other than

passing them on.

A Sample Transform Filter Declaration

An example of a filter derived from a transform class is the NullNull sample filter. This sample
illustrates a true minimalist filter, which does nothing except demonstrate the least you must
implement for a filter. It uses the transform-inplace classes and derives its filter class from the
CTransInPlaceFilter class. Following is the class declaration for the derived filter class CNullNull.

// CNullNull
//

class CNullNull
: public CTransInPlaceFilter
{

public:
static CUnknown *Createlnstance (LPUNKNOWN punk, HRESULT *phr);

DECLARE TUNKNOWN ;

366

Filter Developer's Guide Page 59 of 83

LPAMOVIESETUP FILTER GetSetupData ()

{

return &sudNullNull;

private:

// Constructor - just calls the base class constructor
CNullNull (TCHAR *tszName, LPUNKNOWN punk, HRESULT *phr)
CTransInPlaceFilter (tszName, punk, CLSID NullNull, phr}

// Overrides the PURE virtual Transform of CTransInPlaceFilter base class
// This is where the "real work" is done by altering *pSample.

// We do the Null transform by leaving it alone.

HRESULT Transform(IMediaSample *pSample){ return NOERRCR; }

// We accept any input type. We'd return & FALSE for any we didn't like.
HRESULT CheckInputType (const CMediaType* mtIn) { return S _OK; }

}i

This example illustrates the basic member functions required in the base class:

Createlnstance Needed by every filter so that it can be instantiated as a COM object.

GetSetupData Overrides CBaseFilter: :GetSetupData and is used to provide the class with
information required to register this particular filter. In this case, it
provides the address of a structure defined in the Nullnull.cpp file included

in the SDK.
CNullNull Class constructor, which typically just calls the base class constructor.
Transform Overrides CTranslnPlaceFilter: :Transform and does the main work of

CNuliNull, which in this case is nothing.

CheckInputType Overrides CTransInPlaceFilter: :CheckInputType to verify the media type
during connection, and in this case accepts any media type offered, since it
will simply pass it along to the next filter in line.

Note that, strictly speaking, GetSetupData is required only if you want your filter to be self-
registering. However, since the base classes implement this feature and it is easy to
implement, it is a good idea to include this in your base class.

& 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topic Contents | iniex | Hext
[Previous | Home | Topic Contents | intex | Hext

Connecting Transform Filters

This article describes some of the connection issues faced when creating a transform filter.
Connecting any two filters requires negotiating which media types to use and deciding on a
common allocator for passing samples. Since transform filters are connected on both sides, and
since some transform filters use the media types and allocators of other filters in the graph, it

367

Filter Devel oper's Guide Page 60 of B3

£ rneortant B dnderstand the concents invoived in Trgnsioem Fiker conneckions,
Lontants of thig articla:

+ How Atgoator Meqgobighion Works
» Estabiighing Megdia Tyoe Jonnactions

How Allgcater Negotiation Waorks

For infprmation about the connection Hroless, inckding media byoe and aliocathr nagotiation,
sea Connection Modet Whan oo aee detaemining youe teansfoerm Fiter charactaristics, i might
hain e your (0 dnderstand the modet oF aiiocator nagotiation for transiorm Fiars,

P oty transform Fiter raqiiives cooying, than i will ooy madia sampies feom a boffer
establighed by itg inngt pin £ 3 buffer astabliched by g ouinut nin, Thess buffars aes negvided
By gHocatoes that might actually be gcated in Other Filters, nerhansg evern Severai filtaes
ramoved F the fitars in betwaen do not cony the data,

& copying bransfoem Filer Tynigity trias 10 Use tha iio0ator oF the uostragm Ritar For 85 nngt
pir, gnd the aiiocator OF the downstream Fitar for it QUEnet nin. During tha connaction
eEO0ass, tha guingt nin OF the gestraam Fiitar Jetarminas which atiooatir £ use e tha
einstrazen Lransooet, S0 the inout oin OF tha oooy teansfpeem megst ba sranaead o oraate an
aitocator for the dostream transoort iF £g IMominegtPin: Getiiiocator method & caliad by the
conaacking Quthut nin, The base Ciasses orovide 3 way Lo craato 3 new 3E0Cator frgm the oyt
pir OF gy connadkion,

On the other hand, fransform-inpiace fitars do not make copies, byt rather modify tha data in
an exigting buffoe, Thage Flkers shouid abways OFfar the aiipoator from the downsteegm Fiter)
the gestream Fiar, THiS requires 3 reconnection, bacause the Fiter does ndt Know about the
gerwnsiraam Fikar whan 85 ineat nin i fiest connectad, Also, baause inpiaca-transfoems do ngk
change the media type, the media type from the downstream Fiter shouid be offered 0 tha
eostragm Fitae andn reconnection,

Cannacting Filter Graphs: An Examplea

TO battor anderstand the aiiocation moded for 3 trangfoam-inpiace Filker, the Foligwing
ghrstration shows & Simpke and commdon exampta of 3 Hitar geaoh,

Source InPlace CopyDec | InPlace - InPlace - VYidRen
A B I C I D E F

This simpie axampta damonsgteates the maodet of the transfoem-inpiaon Ritoe gFfanng ig
downsgtraam giioeator 0 85 westream Fiker Consider what happens when InPiace £ i5
connactad to VigRan ¢,

Loan connection, the videq renderar fitkee [VidRaen F} offars it aiiocator foe use by the
tostragm ingiace Bitar {InPlace T} Bacausa i i5 3 transform-ingiace fitar, InPlace £ offers the
sigcator B0 the next Biter gostream, InPiace O and 50 on, This reconnedtion and ranegotiation
QCCUES LINEE ancounbers either the SOUrce Filkar OF 3 CODY Bransfor Fiker, In this case i
meets @ decompressor, JopyDed £ (The Copy transform Filfer canngtl offer i85 aliocator
LOGEraam, HBECRUSe it muUst perfOrm @ CopY Qneration. ; 50 the decomopressor wil be writing
diracthy tn the wvideq rendesse’s boffar, which might be 3 DivectDraw @ sueface. This

368

Filter Developer's Guide Page 61 of 83

demonstrates why it is a good practice to write a transform filter as a transform-inplace filter
and pass allocators from the renderer upstream, if possible.

On the other hand, consider filters InPlace B and CopyDec C. What if the downstream filter
from a transform-inplace filter is a copy transform filter instead of a renderer? In this case, the
copy transform filter will offer to create its own allocator on its input pin (the base classes
handle this), and the transform-inplace filter can then offer that allocator downstream upon
reconnection (the same as if it were connected to a renderer filter).

However, even though CopyDec C can create its own allocator (from its
IMemiInputPin::GetAllocator method), the source filter, Source A, uses its own buffer—say, a
file. So when InPlace B connects to CopyDec C, InPlace B will have accepted the source filter's
allocator already and will force that allocator to be used for the transport between itself and
the decompressor filter. InPlace B can then provide the upstream filter, Source A, with the
option of using the allocator offered by CopyDec C, but the source filter will refuse this
allocator so that an extra copy does not have to be made from the file buffer to the
decompressor's input buffer.

Therefore, any upstream filter can force the use of its allocator downstream but should have
good reason to do so (such as if it already has a buffer). In this example, only one copy is
being made (by the decompression filter) between the file buffer and the video memory.

Establishing Media Type Connections

When pins from different filters are connected, they must both agree on a common media type
for the samples they will exchange. A quick review of the connection mechanism might help
highlight how transform filters handle media type negotiations.

This section contains the following topics.

¢ The Connection Process: A Summary
« When Reconnections Occur

The Connection Process: A Summary

When one filter's output pin is called by the filter graph manager to connect to an input pin of
a second filter, the IPin::Connect method is called. This, in turn, calls

CBaseQutputPin: :CheckConnect to obtain interfaces from the connected pin and

CBasePin: :AgreeMediaType to find a common media type.

AgreeMediaType calls CBasePin: :TryMediaTypes, which uses media type enumerators to query
the pins for preferred media types. IEnumMediaTypes is an interface on the connected input
pin that TryMediaTypes uses first. The base classes use IEnumMediaTypes to repeatedly call
a CBasePin member function called GetMediaType for each media type in the list. You use this
member function in your input and output pin classes to return the media types that your pin
prefers.

TryMediaTypes calls the output pin's CheckMediaType member function with each input type
returned. You must use CheckMediaType to verify whether this type is acceptable. If no
media types are found (for example GetMediaType may not even be used on the connected
input pin, or may return an unacceptable media type), then AgreeMediaType obtains a media
type enumerator for the output pin and tries each of these in turn. Again, the GetMediaType
member function of the derived ocutput pin is called for each type. In this case, it can

369

Filter Devel oper's Guide Page 62 of B3

determing media types by inguiving about any existing connection estabished by the filter's
EDLE i,

Whanr Raconnactions Gocur

Fqe teangforem fitars that do nof modify the media tyne fegem inpgt nin 1o gutnut oin (5uch a5
mgst in-piace transforms and many copy transforms), @ rechnaection scheme must be in piace
For offering the downstream filker's media tyoe t0 the gostream Ffilter, To understang this,
consider the media tyoe neqotiation oF the transform-ingiade Fiter B in the Foiiwing
sirgteation,

Filter
C

Filter
B

Filter

A ACULPIn |—-| BInPin

BOURin |—-| CInPin

Thae inpdt oin oF Hiter & 5 connected Best angd establishes 3 meadia tyne with the gostream
Qutoit pin (AOUEPing, Whan the gutput pin oF Fiiter B 5 connactad next, i mgst gse the
animarator Froe tha outout oin of the connacted unstream fitee [AQUEPIN G, beCause i does
not have one ofF 5 owe,

if the pin of the downstream Fiter, {InPin, can accapt this, then the connection is compiata,
Howawar, assime that Fitar I does not aqres £ Bhis madia tyne DUE oroposes & media Hyne
that Filtar B can handie,

gefore deciding that i can handie the madia tyse, Fiter B 3l the [Pin i Gueeviocant mathpy
an ADUEPin 1o angire that € 5 aocentable, IF ng madi tyoe (an be found that is acceotable e
i the Fiterg then the BOUEPin 10 DInPin connection wiil fad, (I8 5 nossibie 1 fing that 2
transFoom-inpiace Filter witi connedt £ edher 5 gostream o &5 downstream neighborg, byt
ngt Bokh simgianagusiy . ;

if 3 suitabie tyoe & found, BOUEPIN mgst Foece @ reconnaction on the entive fitker, ang nass the
estabighed mediz Hyoe (the media tyne of JInPing 1o A0uEPin, when A0uEPin and 2inPin are
connactad again,

A3 1G0T Microanlt Corporatior. Sl righ s rese reed, Terms of Lisg,

[Previous | ome [opio Contents | index | Hext |

" Previous | Home | Topic Contents | index | Hext

About Compression Filters

& compression fiter is a speciatized type oF fransfprm flitor, Sompression filters (COMprassors;
accaent data, dse 3 comprassion scheme o transform the data, and oas5s the compeessed data
downstragm,

MiprosOfEE DireckShow™ inciugdes an AVI Compeessor Fitkor ang an ACM Aadin Comorassor
Filtar wiich will gsae any Microsoft Vide) For Windows® video or aadio codec 10 compress data,
YOuL oan weike yOUr Owen comoressor Filtar F you nead 1O comprass data in a foemat that isn't

370

Filter Developer's Guide Page 63 of 83

supported by the default filters that DirectShow provides.

To begin writing a compression filter, write a transform filter that includes one input pin and
one cutput pin. See the following articles for more information about writing a transform filter.

¢ Creating a Transform Filter
¢ Using the CTransformFilter and CTransInPlaceFilter Transform Base Classes
¢ Connecting Transform Filters

After you've written a transform filter, you should review the following points when completing
your compression filter:

¢ Register your filter.

Register your compression filter by using the AMovieDlIRegisterServerZ function. This
enables applications to enumerate your filter with all the other compression filters on the
system. See Enumer nd A Hardware Devi in Dir how Applications for
more information about device enumeration.

¢ Implement the recommended compressor interfaces.

It is strongly recommended that you implement the IAMStreamConfig interface on the
output pin of all compression filters and IAMVideoCompression on the output pin of video
compressors so that applications can access the compression features of your filter.

IAMStreamConfig enables you to inform applications about the formats to which you can
compress data, and enables the application to configure your compressor to compress to
a particular data type.

IAMVideoCompression enables an application set video-specific settings, like keyframe
frequency, that do not appear in the AM_MEDIA_TYPE structure.

The VidCap Sample (Video Capture Filter) sample video capture filter included with the
DirectShow SDK implements the IAMStreamConfig and IAMVideoCompression interfaces, and
performs filter registration. Note that this sample code is for a capture filter, but the filter
registration and implementation of these two interfaces is similar to that of a compression
filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | ome | Topie Contents | miex | ext

About Effect Filters

In DirectShow, effect filters are defined as filters that apply an effect to media data, but don't
change the media type. DirectShow provides several effect filters, including Contrast, Gargle,
and EzRGB24. Effect filters can apply a wide range of useful video and audio effects to media
data.

371

Filter Developer's Guide Page 64 of 83

Contents of this article:

+ Creating Effect Filters
¢ List of DirectShow Effect Filters and Samples

Creating Effect Filters

Because the input and output media formats are the same, and the applied effect can't change
the format, effect filters often contain a code that checks the media formatting. If the filter
derives from one of the transform filter base classes, CTransformFilter or CTransInPlaceFilter,
the filter typically checks the format with the CheckMediaType, ChecklnputType, and
CheckTransform methods. If the filter doesn't derive from one of the transform filter base
classes, its pins typically check the format by calling the CBasePin::CheckMediaType member
function. See Negotiating Media Types with CBasePin::AgreeMediaType for more information.

You should choose a base class for your effect filter class that provides the greatest amount of
the functionality you need. Often, the base class will be one of the transform filter base
classes. If none of the higher-level base classes support your required functionality, you can
choose CBaseFilter or CBasePin as your base class.

Your effect filter must implement the IPersistStream interface if you want to save the state of
your effects in the Filter Graph Editor. To access this interface, derive your effect filter class
from CPersistStream and query for the IPersistStream interface. Saving the filter's state can
be helpful during design, but it is often useful to have the effect filter return to a default state
when the Filter Graph Editor closes it, in which case you don't need to implement
IPersistStream.

If you want the user to be able to manipulate the effect, you must create and display your
effect filter's property page and provide a mechanism for returning the user's input to the
filter. To do this, implement a property page class, the ISpecifyPropertyPages interface (which
exposes property pages), and a custom interface that changes property page values. Typically,
property pages use controls such as a slider, button, or check box to receive user input. You
also must provide the resource file that displays the controls on the property page.

To implement the property page class, create a class that derives from CBasePropertyPage and
implement the OnReceiveMessage method, the CPersistStream: :SetDirty method, and a data
member for each effect parameter. To access the two interfaces, derive your effect filter class
from ISpecifyPropertyPages and the custom interface, and then query for the interfaces. You
can query for all the interfaces you need by overriding the NonDel in ryln

method as shown in the following code from the Gargle sample {IGargle is the custom
interface):

STDMETHODIMP CGargle: :NonDelegatingQueryInterface (REFIID riid, wvoid **ppv)

{

CheckPointer (ppv, E_POINTER]) ;

if (riid == IID IGargle) ({
return GetlInterface((IGargle *) this, ppv);
} else if (riid == IID ISpecifyPropertyPages) {
return GetInterface((ISpecifyPropertyPages *) this, ppv);
} else if (riid == IID IPersistStream) ({
return GetInterface((IPersistsStream *) this, ppv);
} else {
} return CTransInPlaceFilter: :NonDelegatingQueryInterface (riid, ppv);

372

Filter Developer's Guide Page 65 of 83

}

The effect filter's custom interface typically supplies a put and a get method for each effect
parameter. For example, the IGargle custom interface supplies put_(GargleRate and

get GargleRate methods. The IContrast custom interface in the Contrast sample supplies
put_ContrastLevel and get_ContrastLevel methods. When the user accesses one of the controls
on the property page, the page generates a windows message. The property page class's
OnReceiveMessage member function handles this message. The following code fragment from
the Contrast sample demonstrates this message generation and handling. IDB_DEFAULT is the
resource 1D of the Default button. The user clicks this button to set the video contrast to its
default state. The CContrastProperties class implements the property page and the
IContrast::put_DefaultContrastLevel method sets the contrast level to its default value.

BOOL CContrastProperties::0OnReceiveMessage (HWND hwnd, UINT uMsg,
WPARAM wParam, LPARAM lParam)

switch (uMsg)

{

case WM_COMMAND:

{

if (LOWORD (wParam) == IDB_DEFAULT)

pIcContrast()-=put_DefaultContrastLevel () ;
SendMessage (m_hwndslider, TBM_SETPOS, TRUE, 0L} ;
SetDirtvy () ;

}

return (LRESULT) 1;

Effect filters use critical sections internally to protect the global filter state. Effect filters can
lock a critical section to ensure that data flow through the filter graph is serialized and that the
global filter state doesn't change while an effect is occurring. DirectShow locks a critical section
by declaring a CAutolock class object. Typically, effect filters lock the critical section as soon
as they enter the function that applies the effect. For example, in the following code fragment
from the Gargle sample, the function that applies the effect is MessItAbout:

CCritsec m_GargleLock; // Declare the critical section data member in the effect

vold CGargle::MessItZbout (PBYTE pb, int cb)

{

CautoLock foo{am GargleLock) ;

The put and get methods of the effect properties {for example, put GargleRate) typically lock
the critical section so effect values can't change in the middle of an update.

List of DirectShow Effect Filters and Samples

The DirectShow SDK ships with the following effect filters. You can find these filters in the
Samples directory. All the source code is included.

Contrast: This effect filter adjusts the contrast of the video images sent through it. The filter
adjusts the contrast by using palettes, because an image's color palette effectively determines
how the image is interpreted by the display device; that is, how the value 23 (for example)
maps into an RGB triplet for display. By changing the palette, you can reduce and increase

373

Filter Developer's Guide Page 66 of 83

contrast without doing anything to the image pixels themselves. The Filter Graph Editor lists
this filter as Video Contrast.

EzRGB24: This effect filter modifies decompressed video images sent through it. It creates
color and image filtering effects through simple techniques such as adjusting the red, green, or
blue levels (to change the playback color) and by averaging neighboring pixels (to achieve blur
and embossed (raised) effects). The Filter Graph Editor lists this filter as Image Effects.

Gargle: This effect filter modifies audio data sent through it. A synthesized wave function
modulates the audio data's amplitude. The secondary wave can be a triangular or square wave,
and can have different frequencies. At low modulation frequencies it sounds like a tremolo. At
high modulation frequencies it sounds like a distortion. The Filter Graph Editor lists this filter
as Gargle.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents | iniex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

Video Renderers

This section describes how to write and use video renderers, both full-screen and custom
renderers. It discusses how and why to support a full-screen renderer, and how to handle
notifications, state changes, and dynamic format changes in a custom renderer.

=Full-Screen Video Renderer

=Alternative Video Renderers

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home | Topic Contents | insex | Hext

Full-Screen Video Renderer

This article explains the logic used by the default Microsoft® IVideoWindow plug-in distributor
(PID), when an application instructs it to render the video in full-screen mode. Substitute
renderer filters can use the IVideoWindow PID for communication with applications.
Developers of substitute renderers should be aware of how this PID searches the filter graph
for the best means of representing full-screen video, when requested to render in full-screen
mode.

Contents of this article:

374

Filter Developer's Guide Page 67 of 83

Using the IVideoWindow PID to Implement Full-Screen Support
Finding a Filter That Supports Full-Screen Mode

Finding a Filter That Can Be Stretched Full-Screen at No Cost
Supplying a Full-Screen Renderer Filter

Stretching the Qutput of a Renderer Full-Screen

Implications of Full-Screen Support for the Application

Using the IVideoWindow PID to Implement Full-Screen Support

Microsoft® DirectShow™ implements full-screen support in a number of ways that depend on
what hardware resources are available. An application can support full-screen video playback
through the IVideoWindow interface provided by the filter graph manager. An application can
have its own implementation of full-screen playback, but it can probably make better use of
resources by using the IVideoWindow implementation.

The IVideoWindow plug-in distributor (PID) tries three different options for implementing full-
screen support when an application requests full-screen mode. The option is typically chosen
the first time the filter graph enters full-screen mode. While in full-screen mode, no
IVideoWindow methods can be called (apart from accessing the full-screen property). Any
attempts to do so will return the VFW_E IN FULLSCREEN MODE message. The PID searches
in the following order for a filter that supports IVideoWindow and that has one of these
characteristics:

1. The filter supplies full-screen mode directly.
2. The filter allows its window to be stretched to full screen without penalty.
3. The filter can be replaced by a full-screen renderer.

If none of these three options are found, the default is to simply stretch the video of a filter
that supports IVideoWindow to full-screen, ignoring the performance penalties.

Finding a Filter That Supports Full-Screen Mode

The first option is to search for a filter in the filter graph that supports full-screen mode
directly. When asked to go into full-screen mode, the IVideoWindow PID first scans all filters
supporting IVideoWindow in the filter graph. The PID calls

IvideoWindow: :get FullScreenMode on each filter and, if the filter returns E_NOTIMP (the
default), assumes that the filter has no inherent support for full-screen playback. If the filter
returns anything else, then that filter becomes the nominated filter for full-screen playback.
This means that any calls to the filter graph manager to set the full-screen mode on or off will
be sent directly to that nominated filter. This mechanism allows filters to be extended to
support full-screen support directly. Most normal window-based renderers do not need to
support this feature.

Finding a Filter That Can Be Stretched Full-Screen at No Cost

If a full-screen rendering filter can't be found, then the PID tries to find a filter supporting the
IVideoWindow interface that can have its window stretched full-screen without penalty. The
PID does this by scanning the list of filters in the filter graph that support IVideoWindow. For
each filter found, the PID calls IVideoWindow: :GetMaxIdeallmageSize. If a filter indicates that
its window can be stretched full-screen at no cost, then that becomes the nominated filter.

If that nominated filter is then requested to render full-screen, the PID resets a number of the

375

Filter Developer's Guide Page 68 of 83

filter's IVideoWindow properties and stretches the window to full-screen. This typically means
setting a null owner, changing the window styles to not show the border or the caption, and
updating the window position to match the current display size. When full-screen mode is
switched off, the properties on the filter will be reset to the state prior to the full-screen mode.

Most video renderers supporting IVideoWindow cannot return the maximum ideal image size
until they have been activated (either paused or running), because that is when they allocate
their resources. For this reason, when scanning the list of filters while the filter graph is in a
stopped state, the PID pauses each filter before calling IVideoWindow: :GetMaxIdeallmageSize.
After calling this method, the filter is stopped again.

Supplying a Full-Screen Renderer Filter

If neither of the previous options were successful, then the PID finds the first available filter in
the filter graph that supports an IVideoWindow interface, and assumes that it is the current
video renderer filter.

If no filters that support IVideoWindow are available, the call to change to full-screen mode will
return VFW E NO FULLSCREEN. When asked to change into full-screen mode, the PID stops
the filter graph, if it is not already stopped, disconnects the current renderer, and reconnects
the DirectShow full-screen renderer in its place. If the connection succeeds, then the filter
graph is restored to its criginal state. When switching out of full-screen mode, the opposite
occurs. That is, the full-screen renderer is disconnected and the original filter is reconnected.
The state of the filter graph is likewise restored. The full-screen renderer is a specialized
renderer that uses the display changing capabilities provided by DirectDraw®. For example, it
might switch the full-screen display 320 x 240 when it might have been in, for example, 1024
x 768. By switching to lower resolution modes, it can cheaply implement full-screen rendering
without having to stretch images.

The full-screen renderer currently implements 320 x 200 x 8/16 bits per pixel, 320 x 240 x
8/16, 640 x 400 x 8/16, 640 x 400 x 8/16, 640 x 480 x 8/16, 800 x 600 x 8/16, 1024 x
768 x 8/16, 1152 x 864 x 8/16, and 1280 x 1024 x 8/16 display modes. The Modex renderer
supperts the IFullScreenVideo interface. When the modex renderer is connected, it loads the
display modes DirectDraw has made available. The number of modes available can be obtained
through IFullScreenVi . ntM . Information on each mode is available by calling
IFullScreenVideo: :GetModelnfo and IFullScreenVideo: :IsModeAvailable. An application can
enable and disable any modes by calling the SetEnabled flag with OATRUE or OAFALSE. The
current value can be queried for with IFullScreenVi

Another way to set the modes enabled is to use the clip loss factor. This defines the amount of
video that can be lost when deciding which display mode to use. Assuming the decoder cannot
compress the video, then plaving, for example, an MPEG file that is 352 x 288 pixels into a
320 x 200 display will lose over 40 percent of the image. The clip loss factor specifies the
upper range of clipping loss that is permissible. To allow typical MPEG video to be played in
320 x 200 it defaults to 50 percent. You can set the clip loss factor with

IFullScreenVideo: :SetClipFactor.

Stretching the Qutput of a Renderer Full-Screen

After trying the first three options, the final option for implementing full-screen support is to
pick any filter enabled by IVideoWindow and stretch its window full-screen, regardless of the
resulting poor performance. Essentially, the first filter in the filter graph that is enabled by the
IVideoWindow interface becomes the nominated filter. This filter is then used in the same
manner as if it was a filter that could be stretched full-screen without sacrificing performance

376

Filter Developer's Guide Page 69 of 83

{that is, the owner is reset, the styles changed, and the window position changed to match the
display extents).

The cost of stretching a window full-screen where there is an implicit performance penalty
varies, depending on the resclution currently displaved. The worst scenario is one in which the
user is using a relatively high resolution (for example, 1024 x 768) and the images must be
stretched by the renderer using GDI. This is likely to provide very low frame throughput and is
used only as a last resort.

Implications of Full-Screen Support for the Application

While the interface exposed to applications is relatively simple, the underlying implementation
can be more complex. The full-screen renderer has some special properties that application
developers should be aware of. In particular, the renderer changes display modes only when
activated (either paused or running). Therefore, if the filter graph is stopped when switching to
full-screen mode, no change might be obviously visible until the filter graph is started again.
When the filter graph is subsequently run, the display mode will change and the full-screen
rendering will start.

If a window is being stretched full-screen (that is, no full-screen renderer is being used), the
change will be viewable when the full-screen mode is set, regardless of state. If full-screen
playback is being supported directly by a filter in the filter graph, it might elect to copy the
behavior of the full-screen renderer and switch to full-screen only when activated. The filter
supporting full-screen playback might have to do this, because the resources they require to
play full-screen might not be available until then. Therefore, an application should avoid
setting full-screen mode when stopped.

This makes sense in a user interface context as well, because if full-screen mode is set when
the filter graph is stopped, users are unlikely to be able to start the graph running without
switching out of full-screen mode (that is, tabbing back to the original application).

All renderers that implement IVideoWindow send event codes to the filter graph manager when
their windows are activated or deactivated. When in full-screen mode, the PID watches for
these event codes. When it sees a window that it made full-screen being deactivated, it will
automatically switch out of full-screen mode and send an EC_ FULLSCREEN_LOST notification to
the application event queue. This is the only interference caused by the PID; all other user
interface is left open to the application as described in the remainder of this article.

One of the most important aspects of full-screen playback is that when in full-screen mode, no
window can be displayed on top of the full-screen window. In fact, when the full-screen
renderer switches display modes, it disables all GDI output for other applications, so displaying
a window on top of a full-screen window is actually impossible. Any user interactions with the
computer must be done through hot keys.

Whatever mechanism the PID ultimately uses to implement full-screen playback, it always
ensures that the message drain property is set on the window executing the playback. (The
message drain specifies a window that will be forwarded all Windows® messages sent to the
renderer.) So, even if the full-screen renderer is used, as long as a message drain has
previously been set on the filter graph manager's IVideoWindow interface, all messages will be
passed on to that renderer.

Because the message drain is set on the appropriate window, an application can rely on
receiving all mouse and keyboard messages when in full-screen mode, regardless of which
filter is implementing it. An application can use this fact to implement hot-key support for

377

Filter Developer's Guide Page 70 of 83

seeking, for example. However, properties can be set only when not in full-screen mode, so if
the only time an application is required to catch messages is when it is in full-screen mode, it
must set the message drain before setting full-screen on. Likewise, the message drain can be
reset only after setting full-screen mode off.

One other application consideration is that, when in full-screen mode, any source and
destination rectangles set through IBasicVideo will not be adhered to. The PID resets these
rectangles when switching to full-screen mode. It does this because not all filters implementing
full-screen support can guarantee to support IBasicVideo as well.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | insex | Hext _
[Previous | Home | fopic Contents | insex | Hext

Alternative Video Renderers

This article describes some of the more complicated implementation requirements of a
renderer; these apply to most renderers, although some aspects are video-specific (such as
EC_REPAINT and other notifications). In particular, it discusses how to handle various
notifications, state changes, and format changes. It also provides a summary of the
notifications that a renderer is responsible for sending to the filter graph manager.

Contents of this article:

Writing an Alternative Renderer

Handling End-of-stream and Flushing Notifications
Handling State Changes and Pause Completion
Handling Termination

Handling Dynamic Format Changes

Handling Persistent Properties

Handling EC REPAINT Notifications

Handling Notifications in Full-Screen Mode
Summary of Notifications

Writing an Alternative Renderer

Microsoft® DirectShow™ provides a window-based video renderer; it also provides a full-
screen renderer in the run-time installation. You can use the C++ classes in the DirectShow
SDK to write alternative video renderers. For alternative renderers to interact correctly with
DirectShow-based applications, the renderers must adhere to the guidelines outlined in this
article. You can use the CBaseRenderer and CBaseVideoRenderer classes to help follow these
guidelines when implementing an alternative video render. Consult the SampVid sample in the
DirectShow SDK for an example of an alternative video renderer that uses these classes.
Because of the ongoing development of DirectShow, review your implementation periodically to
ensure that the renderers are compatible with the most recent version of DirectShow.

378

Filter Developer's Guide Page 71 of 83

This article discusses many notifications that a renderer is responsible for handling. A brief
review of DirectShow notifications might help to set the stage. There are essentially three
kinds of notifications that occur in DirectShow:

o Stream notifications, which are events that occur in the media stream and are passed
from one filter to the next. These can be begin-flushing, end-flushing or end-of-stream
notifications and are sent by calling the appropriate method on the downstream filter's
input pin (for example IPin::BeginFlush).

e Filter graph manager notifications, which are events sent from a filter to the filter graph
manager such as EC_COMPLETE. This is accomplished by calling the

iaEventSink:: Notify method on the filter graph manager.

o Application notifications, which are retrieved from the filter graph manager by the
controlling application. An application calls the IMediaEvent::GetEvent method on the
filter graph manager to retrieve these events. Often, the filter graph manager passes
through the events it receives to the application.

This article discusses the responsibility of the renderer filter in handling stream notifications it
receives and in sending appropriate filter graph manager notifications.

Handling End-of-stream and Flushing Notifications

An end-of-stream notification begins at an upstream filter (such as the source filter) when that
filter detects that it can send no more data. It is passed through every filter in the graph and
eventually ends at the renderer, which is responsible for subsequently sending an

EC COMPLETE notification to the filter graph manager. Renderers have special responsibilities
when it comes to handling these notifications.

A renderer receives an end-of-stream notification when its input pin's IPin::EndOfStream
method is called by the upstream filter. A renderer should note this notification and continue to
render any data it has already received. Once all remaining data has been received, the
renderer should send an EC_COMPLETE notification to the filter graph manager. The
EC_COMPLETE notification should be sent only once by a renderer each time it reaches the
end of a stream. Furthermore, EC_COMPLETE notifications must never be sent except when
the filter graph is running. Therefore, if the filter graph is paused when a source filter sends an
end-of-stream notification, then EC_COMPLETE should not be sent until the filter graph is
finally run.

Any calls to the IMemlInputPin: :Receive or IMemInputPin::ReceiveMultiple methods after an
end-of-stream notification is signaled should be rejected. E_UNEXPECTED is the most
appropriate error message to return in this case.

When a filter graph is stopped, any cached end-of-stream notification should be cleared and
not resent when next started. This is because the filter graph manager always pauses all filters
just before running them so that proper flushing occurs. So, for example, if the filter graph is
paused and an end-of-stream notification is received, and then the filter graph is stopped, the
renderer should not send an EC_COMPLETE notification when it is subsequently run. If no
seeks have ogccurred, the source filter will automatically send another end-of-stream
notification during the pause state that precedes a run state. If, on the other hand, a seek has
occurred while the filter graph is stopped, then the source filter might have data to send, so it
won't send an end-of-stream notification.

Video renderers often depend on end-of-stream notifications for more than the sending of
EC COMPLETE notifications. For example, if a stream has finished playing (that is, an end-of-

379

Filter Developer's Guide Page 72 of 83

stream notification is sent) and another window is dragged over a video renderer window, a
number of WM _PAINT window messages will be generated. The typical practice for running
video renderers is to refrain from repainting the current frame upon receipt of WM_PAINT
messages (based on the assumption that another frame to be drawn will be received).
However, when the end-of-stream notification has been sent, the renderer is in a waiting
state; it is still running but is aware that it will not receive any additional data. Under these
circumstances, the renderer customarily draws the playback area black.

Handling flushing is an additional complication for renderers. Flushing is carried out through a
pair of IPin methods called BeqginFlush and EndFlush. Flushing is essentially an additional state
that the renderer must handle. It is illegal for a source filter to call BeginFlush without calling
EndFlush, so hopefully the state is short and discrete; however, the renderer must correctly
handle data or notifications it receives during the flush transition.

Any data received after calling BeginFlush should be rejected immediately by returning
E_UNEXPECTED. Furthermore, any cached end-of-stream notification should also be cleared
when a renderer is flushed. A renderer will typically be flushed in response to a seek. The flush
ensures that old data is cleared from the filter graph before fresh samples are sent. (Typically,
the playing of two sections of a stream, one after another, is best handled through deferred
commands rather than waiting for one section to finish and then issuing a seek command.)

Handling State Changes and Pause Completion

A renderer filter behaves the same as any other filter in the filter graph when its state is
changed, with the following exception. After being paused, the renderer will have some data
queued, ready to be rendered when subsequently run. When the video renderer is stopped, it
holds on to this queued data. This is an exception to the DirectShow rule that no resources
should be held by filters while the filter graph is stopped.

The reason for this exception is that by holding resources, the renderer will always have an
image with which to repaint the window if it receives a WM_PAINT message. It also has an
image to satisfy methods, such as CBaseControlVideo:: GetStaticlmage, that request a copy of
the current image. Another effect of holding resources is that holding on to the image stops
the allocator from being decommitted, which in turn makes the next state change occur much
faster because the image buffers are already allocated.

A video renderer should render and release samples only while running. While paused, the
filter might render them {for example, when drawing a static poster image in a window), but
should not release them. Audio renderers will do no rendering while paused (although they
may perform other activities, such as preparing the wave device, for example). The time at
which the samples should be rendered is obtained by combining the stream time in the sample
with the reference time passed as a parameter to the IMediaControl: :Run method. Renderers
should reject samples with start times less than or equal to end times.

When an application pauses a filter graph, the filter graph does not return from its
IMediaControl:: Pause method until there is data queued at the renderers. In order to ensure
this, when a renderer is paused, it should return S FALSE if there is no data waiting to be
rendered. If it has data queued, then it can return S OK.

The filter graph manager checks all return values when pausing a filter graph, to ensure that
the renderers have data queued. If one or more filters are not ready, then the filter graph
manager polls the filters in the graph by calling GetState. The GetState method takes a time-
out parameter. A filter (typically a renderer) that is still waiting for data to arrive before
completing the state change returns VFW_$ STATE INTERMEDIATE if the GetState method

380

Filter Developer's Guide Page 73 of 83

expires. Once data arrives at the renderer, GetState should be returned immediately with
S OK.

In both the intermediate and completed state, the reported filter state will be State Paused.
Only the return value indicates whether the filter is really ready or not. If, while a renderer is
waiting for data to arrive, its source filter sends an end-of-stream notification, then that should
also complete the state change.

Once all filters actually have data waiting to be rendered, the filter graph will complete its
pause state change.

Handling Termination

Video renderers must correctly handle termination events from the user. This implies correctly
hiding the window and knowing what to do if a window is subsequently forced to be displayed.
Also, video renderers must notify the filter graph manager when its window is destroyed (or
more accurately, when the renderer is removed from the filter graph) to free resources.

If the user closes the video window (for instance by pressing aLt+r4), the convention is to hide
the window immediately and send an EC_USERABORT notification to the filter graph manager.
This notification is passed through to the application, which will stop the graph playing. After
sending EC_USERABORT, a2 video renderer should reject any additional samples delivered to
it.

The abort flag should be left on by the renderer until it is subsequently stopped, at which point
it should be reset so that an application can override the user action and continue playing the
graph if it desires. If aLT+F4 is pressed while the video is running, the window will be hidden and
all further samples delivered will be rejected. If the window is subsequently shown (perhaps
through IVideoWindow::put_Visible), then no EC_REPAINT notifications should be generated.

The video renderer should also send the EC WINDOW DESTROYED notification to the filter
graph when the video renderer is terminating. In fact, it is best to handle this when the
renderer's 1BaseFilter::JoinFilterGraph method is called with a null parameter (indicating that
the renderer is about to be removed from the filter graph), rather than waiting until the actual
video window is destroyed. Sending this notification allows the plug-in distributor in the filter
graph manager to pass on resources that depend on window focus to other filters (such as
audio devices).

Handling Dynamic Format Changes

Video renderers in DirectShow accept only video formats that can be drawn efficiently. For
example, the window-based run-time renderer will accept only the RGB format that matches
the current display device mode (for example, RGB565 when the display is set to 65,536
colors). As a last resort, it also accepts 8-bit palettized formats, as most display cards can draw
this format efficiently. When the renderer has Microsoft® DirectDraw® lpaded, it might later
ask the source filter to switch to something that can be written onto a DirectDraw surface and
drawn directly through display hardware. In some cases, the renderer's upstream filter might
try to change the video format while the video is playing. This often occurs when a video
stream has a palette change. It is most often the video decompressor that initiates a dynamic
format change.

An upstream filter attempting to change formats dynamically should always call the
IPin::QueryAccept method on the renderer input pin (for filters based on CTransformFilter, this
is implemented in CTransformFilter: :CheckInputType). It is undefined as to which formats a

381

Filter Developer's Guide Page 74 of 83

renderer will allow an upstream filter to change dynamically. However, at a very minimum, it
should allow the upstream filter to change palettes. When an upstream filter changes media
types, it will attach the format to the first sample delivered in that new type. If the renderer
holds many samples in a queue waiting to be rendered, it should delay changing the format
until the sample with the type change is actually about to be rendered.

Whenever a format change is detected by the video renderer, it should send an

EC DISPLAY CHANGED notification. Most video renderers pick a format during connection so
that the format can be drawn efficiently through GDI. If the user changes the current display
mode without restarting the computer, a renderer might find itself with a bad image format
connection and should send this notification. The first parameter should be the pin that needs
reconnecting. The filter graph manager will arrange for the filter graph to be stopped and the
pin reconnected. During the subsequent reconnection, the renderer can accept a more
appropriate format.

Whenever a video renderer detects a palette change in the stream it should send the
EC_PALETTE_CHANGED notification to the filter graph manager. The DirectShow video
renderers detect whether a palette has really changed in dynamic format or not. The video
renderers do this not only to filter out the number of EC_PALETTE_CHANGED notifications
sent but also to reduce the amount of palette creation, installation, and deletion required.

Finally, the video renderer might also detect that the size of the video has changed, in which
case, it should send the EC VIDEQ SIZE CHANGED notification. An application might use this
notification to negotiate space in a compound document. The actual video dimensions are
available through the IBasicVideo control interface. The DirectShow renderers detect whether
the video has actually changed size or not prior to sending these events.

Handling Persistent Properties

All properties set through the IBasicVideo and IVideoWindow interfaces are meant to be
persistent across connections. Therefore, disconnecting and reconnecting a renderer should
show no effects on the window size, position, or styles. However, if the video dimensions
change between connections, the renderer should reset the source and destination rectangles
to their defaults. The source and destination positions are set through the IBasicVideo
interface.

Both IBasicVideo and IVideoWindow provide enough access to properties to allow an
application to save and restore all the data in the interface in a persistent format. This will be
useful to applications that must save the exact configuration and properties of filter graphs
during an editing session and restore them later.

Handling EC_REPAINT Notifications

The EC_REPAINT notification is sent only when the renderer is either paused or stopped. This
notification signals to the filter graph manager that the renderer needs data. If the filter graph
is stopped when it receives one of these notifications, it will pause the filter graph, wait for all
filters to receive data (by calling GetState), and then stop it again. When stopped, a video
renderer should hold on to the image so that subsequent WM _PAINT messages can be
handled.

Therefore, if a video renderer receives a WM_PAINT message when stopped or paused, and it
has nothing with which to paint its window, then it should send EC_REPAINT to the filter graph
manager. If an EC_REPAINT notification is received while paused, then the filter graph
manager calls IMediaPosition: :put CurrentPosition with the current position (that is, seeks to

382

Filter Developer's Guide Page 75 of 83

the current position). This causes the source filters to flush the filter graph and causes new
data to be sent through the filter graph.

A renderer must send only one of these notifications at a time. Therefore, once the renderer
sends a notification, it should ensure no more are sent until some samples are delivered. The
conventional way to do this is to have a flag to signify that a repaint can be sent, which is
turned off after an EC REPAINT notification is sent. This flag should be reset once data is
delivered or when the input pin is flushed, but not if end-of-stream is signaled on the input
pin.

If the renderer does not monitor its EC_REPAINT notifications, it will flood the filter graph
manager with EC_REPAINT requests {which are relatively expensive to process). For
example, if a renderer has no image to draw, and another window is dragged across the
window of the renderer in a full-drag operation, the renderer receives multiple WM_PAINT
messages. Only the first of these should generate an EC_REPAINT event notification from the
renderer to the filter graph manager.

A renderer should send its input pin as the first parameter to the EC_REPAINT notification. By
doing this, the attached output pin will be queried for IMediaEventSink, and if supported, the
EC_REPAINT notification will be sent there first. This allows output pins to handle repaints
before the filter graph must be touched. This will not be done if the filter graph is stopped,
because no buffers would be available from the decommitted renderer allocator.

If the output pin cannot handle the request and the filter graph is running, then the

EC REPAINT notification is ignored. An output pin must return NOERROR (S_0OK) from
IMediaEventSink: : Notify to signal that it processed the repaint request successfully. The
output pin will be called on the filter graph manager worker thread, which avoids having the
renderer call the output pin directly, and so sidesteps any deadlock issues. If the filter graph is
stopped or paused and the output doesn't handle the request, then the default processing is
done.

Handling Notifications in Full-Screen Mode

The IVideoWindow plug-in distributor (PID) in the filter graph manages full-screen playback. It
will swap a video renderer out for a specialist full-screen renderer, stretch a window of a
renderer to full screen, or have the renderer implement full-screen playback directly. To
interact in full-screen protocols, a video renderer should send an EC_ACTIVATE notification
whenever its window is either activated or deactivated. In other words, an EC_ACTIVATE
notification should be sent for each WM _ACTIVATEAPP message a renderer receives.

When a renderer is being used in full-screen mode, these notifications manage the switching
into and out of that full-screen mode. Window deactivation typically occurs when a user
presses ALT+TaB to switch to another window, which the DirectShow full-screen renderer uses as
a cue to return to typical rendering mode.

When the EC_ACTIVATE notification is sent to the filter graph manager upon switching out of
full-screen mode, the filter graph manager sends an EC_ FULLSCREEN_ LOST notification to the
controlling application. The application might use this notification to restore the state of a full-
screen button, for example. The EC_ACTIVATE notifications are used internally by DirectShow
to manage full-screen switching on cues from the video renderers.

Summary of Notifications

This section lists the filter graph notifications that a renderer can send.

383

Filter Developer's Guide Page 76 of 83

Event notification Description

EC ACTIVATE Sent by video renderers in full-screen rendering mode for each
WM _ACTIVATEAPP message received.

EC COMPLETE Sent by renderers after all data has been rendered.

EC DISPLAY CHANGED Sent by video renderers when a display format changes.
EC PALETTE CHANGED Sent whenever a video renderer detects a palette change in the
stream.

EC REPAINT Sent by stopped or paused video renderers when a WM_PAINT
message is received and there is no data to display. This causes
the filter graph manager to generate a frame to paint to the
display.

EC USERABORT Sent by video renderers to signal a closure that the user
requested (for example, a user closing the video window).

EC_VIDEQ_SIZE CHANGED Sent by video renderers whenever a change in native video size is
detected.

EC WINDOW DESTROYED Sent by video renderers when the filter is removed or destroyed
so that resources that depend on window focus can be passed to
other filters.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] index | Hext
[Previons | Home | Topic Contente] index | Hext

Exposing Capture and Compression Formats

This article describes how to return capture and compression formats by using the
IAMStreamConfig: :GetStreamCaps method. This method can get more information about
accepted media types than the traditional way of enumerating a pin's media types, so it should
typically be used instead. See Establishing Media Type Connections for information about
traditional media type enumeration. IAMStreamConfig::GetStreamCaps can return
information about the kinds of formats allowed for audio or video. Additionally, this article
provides some sample code that demonstrates how to reconnect the input pin of a transform
filter to ensure your filter can produce a particular output.

The IAMStreamConfig: :GetStreamCaps method returns an array of pairs of media type and

capabilities structures. The media type is an AM_MEDIA TYPE structure and the capabilities
are represented either by an AUDIO STREAM CONFIG CAPS structure or a

VIDEO STREAM CONFIG CAPS structure. The first section in this article presents a video
example and the second presents an audio example.

Contents of this article:

o Video Capabilities
¢ Audio Capabilities
¢ Reconnecting Your Input to Ensure Specific Qutput Types

384

Filter Devel oper's Guide Page 77 of B3

Video Capsalsilities

The IAMStreamOonfiq: Gatttraamfang method presents video capabiitios in an aray OF pairg
of AM MEDIA TYPE and WIDED STREAM CONFIG CAPS steucturas, You can use this £ expose
ait tha Fpemats and respivfions sunoorted 0n @ nin as dscussed bainw,

Ses Audip Canabibities for audio-raiated exampies oF IAMStreamContin:: GetStreamians,

SUBOOGE YO Cantire Cang SUBBORS JPEG Format at ail resqiutions betweean 160 x 120 piveis
and 326 x 240 pikels incigsive, The differance batween suooaried resqidtions is gne in thig
Case bedause you add or subbeact gne pidel fegm each sunnorted resoiution £o get the nexk
sunngrted esigtion, This differance in sunooried rasQiutins is catiad grandianty,

SUBBOse You Ccard 350 Sunnorts the sike G40 = 480, The Foilgwing Higstrates this singie
FaSQILEION and the above range OF resiltions {aii sizes between 160 x 126 pieis and 320 x
245 pivais),

B0
320
240 FEG 450
/150 /
170| IPEG

i 'granularky =il
P i all resolutions)

A5, SUHH058 K sunngrts 24-Bit ooigr RGE format 2t resoiutions bebween 165 » 120 and 326 =
244G, Bt with g geanitiageity OF 8 The fiigwing Blusteation shows stme oF the vaiig sizes in thig
Case,

320
_l B R M e e s e
L — — '
T I L .
: A
L 1md i i ek
smmehmaale oy : raaa
. 7 . : g L
sl o AR SRR 4 P
160 L Poon
S T : L
2% v ATt
24-hit 120 ! ! TR s T T
RGB |
T granularity=5§

384

Filter Developer's Guide Page 78 of 83

To put it another way, and listing more resolutions, the following are all among the list of valid
resolutions.

160 x 120
168 x 120
168 x 128
176 x 128
176 x 136
... additional resolutions ...
312 x 232
320 x 240

Use GetStreamCaps to expose these color format and dimension capabilities by offering a
media type of 320 x 240 JPEG (if that is your default or preferred size) coupled with minimum
capabilities of 160 x 120, maximum capabilities of 320 x 240, and a granularity of 1. The next
pair you expose by using GetStreamfCaps is a media type of 640 x 480 JPEG coupled with a
minimum of 640 x 480 and a maximum of 640 x 480 and a granularity of 0. The third pair
includes a media type of 320 x 240, 24-bit RGB with minimum capabilities of 160 x 120,
maximum capabilities of 320 x 240, and a granularity of 8. In this way you can publish almost
every format and capability your card might support. An application that must know what
compression formats you provide can get all the pairs and make a list of all the unique
subtypes of the media types.

A filter obtains its media type source and target rectangles from the VIDEOINFOHEADER
structure's rcSource and rcTarget members, respectively. Filters do not have to support source
and target rectangles.

The cropping rectangle described throughout the IAMStreamConfig documentation is the same
as the VIDEOINFOHEADER structure's rcSource rectangle for the output pin.

The output rectangle described throughout the IAMStreamConfig documentation is the same as
the biWidth and biHeight members of the output pin's BITMAPINFOHEADER structure.

If a filter's output pin is connected to a media type with nonempty source and target
rectangles, then yvour filter is required to stretch the input format's source subrectangle into
the output format's target subrectangle. The source subrectangle is stored in the

VIDEO STREAM CONFIG CAPS structure's InputSize member.

For example, consider the following video compressor scenario: The input image is in RGB
format and has a size of 160 x 120 pixels. The source rectangle's upper-left corner is at
coordinate (20,20), and its lower-right corner is at (30,30). The output image is in MPEG
format with a size of 320 x 240. The target rectangle's upper-left corner is at (0,0) and its
lower-right corner is at (100,100). In this case, the filter should take a 10 x 10 piece of the
160 x 120 RGB source bitmap, and make it fill the top 100 x 100 area of a 320 x 240 bitmap,
feaving the rest of the 320 x 240 bitmap untouched. The following illustration shows this
scenario.

386

Filter Devel oper's Guide Page 79 of B3

1a0

20,20
— - Source rectangle
120 ER— 11 1] (Input)
RGE
L. e 320
=-. Target rectangle
(output)
100,100
240 MPEG
& Fiiter mighl ngl suooort this and can 138 L connect with 3 media tyne where reSouece agng

eCEprgaet gra not ampty

The VIDDOINFOHEADER structure expgses information about @ fiter's data rate capabilitias,
FQr exampia, Suooose you connactad your oubout pin o the naxt Biter with g certam media
type [efher directly O by using the media tyoe passed by the CMediaTyoe:: Sotrormat
Function . ook gt the dwBiRate member of that media Hyoee's VIDEGINFOHEADER format
steucture B0 see what data rate you should compress the vided £0. IF you muitinty the numbar
of qnits of time per frame in the VIDEGINFRQHEADER structure's AvgTimePorframe mamber
by the data rate in the dwBitRate member and divide by 10,000,000 (the number oF ynits per
second}, vou can Bgure QuUf how many bytes each frame shogid be, YOu can oroduce g smalier
sized frame, bt never g iarger gne, To determine the frame rate for 3 Ve COMpBrassor o for
2 capture fiter, wuse AvgTimeParfFramae from your ouingt pin's media type,

Audia Capalsilitiag

For audio capabitities, TAMStreamontig: GetStream{ang retyems an areay oF paws of

AM MEDIA TYPE and AUDID STREAM DONFIC DAPT struciures, A5 with videq, you can yse
thig to axoose ait Rinds 0F audio canabiities on the oin, such as dats rate and whethar B
SEEBQFES mOnd o starag,

Ses Video Capabiitias For videg-reiated exampies reigting to
iaMStregamConfio s GetStreamians,

SHBOO5e YOu SUnoort piise code modaiation {(POM} wave format {as represented by the
Microsoft® Wind2®& POMWAVEFDRMAT strycture) atf sampiing rates of 11,625, 22,855, and
A4 160 sampies per second, aif at 8- or 16-Hi mong o stereq. In this case, you wouid offer
b pates of stractures, The Fiest palr would have an AUDIO STREAM CONFIG CAPS capabiiity
stegrcheles Saying you sunoort g mindimenm of 11,025 t0 3 maximiem of 22,0650 samopies oer
second with @ grandiarity oF 11,025 sampies per second {(grandianty is the Jifferance bebween
supnorted vaikles): an S-bit minimem £ & L6-BiE maimm Bifs ner sampie with a grangiarity
OF 8 Bits per sampie; and one-channet minimem ang two-channet maximem, The Fiegt nair's
madia tyne woiid be your defauit POM foemat in that range, nerhans 22 Righerty (kHzY, 16-bit
starad, YOur second o wouid be g capabiity showing 43,100 for both minigmaem and

387

Filter Developer's Guide Page 80 of 83

maximum samples per second; 8-bit (minimum) and 16-bit (maximum) bits per sample, with a
granularity of 8 bits per sample; and one-channel minimum and two-channel maximum. The
media type would be your default 44 kHz format, perhaps 44 kHz 16-bit stereo.

If you support non-PCM wave formats, the media type returned by this method can show which
non-PCM formats you support {with a default sample rate, bit rate, and channels) and the
capabilities structure accompanying that media type can describe which other sample rates, bit
rates, and channels you support.

Reconnecting Your Input to Ensure Specific Qutput Types

Filters implement the IAMStreamConfig: : SetFormat method to set the audio or video stream's
format before pins are connected. Additionally, if your output pin is already connected and you
can provide a new type, then reconnect your pin. If the other pin vour filter is connected to
can't accept the media type, fail this call and leave your connection alone.

Transform filters that do not know what output types their pins can provide should refuse any
calls to IAMStreamConfig: :SetFormat and IAMStreamConfig: :GetStreamCaps with the error
code VFW E NOT CONNECTED until their input pin is connected.

If your pin knows what types it can provide even when your input is not connected, it is okay
to offer and accept them as usual. See Connecting Transform Filters for more information.

In certain cases it is useful to reconnect pins when you are offering a format on an established
connection. For example, if you can compress video into format X but only if you get 24-bit
RGB input, and you can turn 8-bit RGB input into compressed format Y, vou can either:

1. Offer and accept both X and Y in IAMStreamConfig: :GetStreamCaps and
IAMStreamConfig: : SetFormat all the time, or,

2. Only offer format X if your input is connected as 24, and only offer Y if your input is
connected as 8. Fail both IAMStreamConfig: . GetStreamCaps and
IAMStreamConfig: :SetFormat if your input is not connected.

No matter which one you choose, you will need some reconnecting code that looks like this:

// Cverridden to do fancy reconnecting footwork.

/7
HRESULT MyOutputPin: :CheckMediaType (const CMediaType *pmtout)

{

HRESULT hr;

CMediaType *pmtEnum;
BOOL fFound = FALSE;
IEnumMediaTypes *pEnum;

if (!m pFilter->m pInput-=IsConnected()) {
return VFW_E NOT CONNECTED;

// Quickly verify that the media type is not bogus here
//

// If somebody has previously called SetFormat, fail this call if the media typ
// isn't an exact match.

// Accept this output type like normal; nothing fancy required.
hr = m_pFilter->CheckTransform(&m pFilter->m pInput->CurrentMediaType(},

388

Filter Developer's Guide Page 81 of 83

pmtout) ;
if (hr == NOERRCR)
return hr;

DbgLog ((LOG_TRACE, 3,TEXT ("Can't accept this output media type"}));
DbgLog ((LOG_TRACE, 3, TEXT (" But how about reconnecting our input...")});

// Attempt to find an acceptable type by reconnecting our input pin.
// The pin our input pin connects to might be able to provide a type
// that our pin can convert into the necessary type.
hr = m _pFilter-=m pInput-=>GetConnected () ->EnumMediaTypes (&pEnum) ;
if (hr != NOERRCR)

return E_FAIL;
while (1) {

hr = pEnum-=Next (1, (AM MEDIA TYPE **)&pmtEnum, &3J);

// BAll out of enumerated types.

if (hr == 8_FALSE || j == 0) {
break;

}

// Can our pin convert between these?
hr = m_pFilter->CheckTransform{pmtEnum, pmtout} ;

if (hr != NOERROR) ({
DeleteMediaType (pmtEnum;} ;
continue;

}

// OK, it offers an acceptable type, but will it accept it now?
hr = m_pFilter->m_pInput->GetConnected ()->QueryvAccept (pmtEnumj ;

// Nope.

if (hr != NOERROR) ({
DeleteMediaType (pmtEnum;} ;
continue;

// OK, I'm satisfied.
fFound = TRUE;
DbgLog ((LOG_TRACE, 2, TEXT ("This output type is only acceptable after reconn

// Al1l done with this.
DeleteMediaType (pmtEnum) ;
break;

}

pEnum->Release () ;

if (!fFound)
DbgLog { (LOG_TRACE, 3, TEXT ("*NO! Reconnecting our input won't help")});

return fFound ? NOERROR : VFW_E INVALIDMEDIATYPE;

HRESULT MyOQutputPin::SetFormat (AM_MEDIA TYPE *pmt)

{

HRESULT hr;
LPWAVEFORMATEX lpwfx;
DWORD dwSize;

if (pmt == NULL)
return E_POINTER;

389

Filter Developer's Guide Page 82 of 83

// To make sure streaming isn't in the middle of starting/stopping:
CAutoLock cCObjectLock(am pFilter-=-m_csFilter);

if (m_pFilter--m State != State_ Stopped)
return VFW_E_NOT STOPPED;

// Possible output formats depend on the input format.
if (!m pFilter->m pInput-=IsConnected())
return VFW_E NOT CONNECTED;

// Already using this format.
if (IsConnected(} && CurrentMediaType() == *pmt)
return MNOERROR;

// See if this type is acceptable.

if ({hr = CheckMediaTvype({CMediaType *)pmt)) != NOERROCR} {
DbgLog ((LOG_TRACE, 2, TEXT ("IAMStreamConfig: : SetFormat rejected"}));
return hr;

// If connecting to another filter, make sure they like it.

if (IsConnected(}) {
hr = Getlonnected(}-»QuervAccept (pmt} ;
if (hr != NOERROR)

return VFW_E INVALIDMEDIATYPE;

}

// Now make a note that from now on, this is the only format allowed,
// and refuse anything but this in the CheckMediaType code above.

// Changing the format means reconnecting if necessary.
if (IsConnected())
m_pFilter->m pGraph->Reconnect (this) ;

return NOERROCR;

// Overridden to complete our fancy reconnection footwork:

/7

HRESULT MyWrapper::SetMediaType (PIN _DIRECTION direction,const CMediaType *pmt)

{

HRESULT hr;

// Set the CUTPUT type.
if (direction == PINDIR_OUTPUT) {

// Uh oh. BAs part of our fancy reconnection, our input pin might be asked
// provide a media type it cannoct provide without reconnection

// to a different type.

if (m_pInput && m _pInput->IsConnected()) {

// If our pin can actually provide this type now, don't worry.
hr = CheckTransform(&m pInput-=>CurrentMediaType (),
&m_poutput->CurrentMediaType (}};
if (hr == NOERRCR)
return hr;

DbgLog { (LOG_TRACE, 2, TEXT ("*Set OUTPUT requires RECONNECT of INPUT!

// Reconnect our input pin.
return m_pGraph->Reconnect (m_pInput) ;

390

Filter Developer's Guide Page 83 of 83

return MNOERROR;

}

return NOERROR;

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] index | Hext

391

DirectShow COM Interfaces Page 1 of 658

[Previous | Home | Topic Contents | iniex | Hext

DirectShow COM Interfaces

This section contains reference entries for all the DirectShow COM interfaces and their
methods.

*Summary of DirectShow COM Interfaces

=DirectShow Interfaces by Category

=IAMAudioCutlistElement Interface

=IAMAudiolnputMixer Interface

=]AMBufferNegotiation Interface

=IAMCollection Interface

=IAMCopyCaptureFileProgress Interface

=IAMCrossbar Interface

=IAMCutlistElement Interface

=]IAMDevMemoryAllocator Interface

=IAMDevMemoryControl Interface

=IAMDirectSound Interface

=IAMDroppedFrames Interface

=IAMExtDevice Interface

=IAMExtTransport Interface

=IAMFileCutListElement Interface

=IAMLineZ21Decoder Interface

=IAMovie Interface

=IAMovieSetup Interface

=IAMStreamConfig Interface

392

DirectShow COM Interfaces

=IAMStreamControl Interface

=IAMStreamSelect Interface

=[AMTimecodeDisplay Interface

=[AMTimecodeGenerator Interface

IAMTimecodeReader Interface

«IAMTVTuner Interface

=IAMVfwCaptureDialogs Interface

=IAMVIfwCompressDialogs Interface

=[AMVideoCompression Interface

=IAMVideoCutListElement Interface

=IAMVi ProcAmp Interf

=IAsyncReader Interface

=IBaseFilter Interface

=IBasicAudio Interface

=IBasicVideo Interface

=ICaptureGraphBuilder Interface

=IConfigAviMux Interf

=IConfigInterieaving Interface

=ICreateDevEnum Interface

=ICutlistGraphBuilder Interface

=IDeferredCommand Interface

=IDirectDrawVideo Interface

=IDistributorNotify Interface

=IDvdControl Interface

=IDvdGraphBuilder Interface

393

Page 2 of 658

DirectShow COM Interfaces Page 3 of 658

=IDvdInfo Interface

=IEnumFilters Interface

=I[EnumMediaTypes Interface

=IEnumPins Interface

=IEnumRegFilters Interface

=IFileClip Interface

=IFileSinkFilter Interface

=IFileSinkFilter? Interf

=IFileSourceFilter Interface

=IFilterGraph Interface

=IFilterGraph2 Interf.

=IFilterInfo Interface

=IFilterMapper Interface

=IFilterMapper2 Interface

=IFullScreenVideo Interface

=IGraphBuilder Interface

=IGraphVersion Interf

=IKsPropertySet Interface

=IMediaControl Interface

=IMediaEvent Interf

=IMediaEventEx Interface

=IMediaEventSink Interface

=IMediaFilter Interf

=IMediaPosition Interface

=IMediaPropertyBag Interface

394

DirectShow COM Interfaces Page 4 of 658

=IMediaSample Interface

=IMedi mple2 Interf

*IMediaSeeking Interface

=IMediaTypelnfo Interface

=IMemAllocator Interface

=IMemlInputPin Interface

=IMixerPinConfig Interface

=I0verlay Interf

=I0verlayNotify Interface

=IPin Interface

=IPinInfo Interface

=IQualityControl Interface

=IQualProp Interface

=IQueueCommand Interface

=IReferenceClock Interface

=IRegFilterInfo Interface

=IResourceConsumer Interface

=IResourceManager Interface

=ISeekingPassThru Interface

=IStandardCutlist Interface

=IUnknown Interface

=IVideoWindow Interface

=IVPBaseConfig Interface

=IVPBaseNotify Interface

=IVPConfig Interface

395

DirectShow COM Interfaces Page 5 of 658

=IVPNotify Interface

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

previous | Home | Topio Contents | niex | Hext |
Previous | Home | Topio Contents | niex | Wext |

Summary of DirectShow COM Interfaces

This article groups the Microsoft® DirectShow™ interfaces according to the objects that expose
them. It explains which object implements each interface and who is likely to call the interface
methods implemented on each type of object. The information is presented as a series of
tables of COM interfaces relating to each object, and so provides a summary and quick
reference for understanding the DirectShow interfaces.

Contents of this article:

¢ Introducing the DirectShow COM Interfaces
¢ Interfaces on a Typical Filter Graph

Introducing the DirectShow COM Interfaces

The DirectShow COM interfaces comprise the schematic of an architecture for streaming time-
stamped media. The filter graph, through which media flows, is composed of objects, such as
filters, pins, media samples, allocators, and enumerators, that work together. COM interfaces
are implemented on these objects and are called by other objects with which they interact. The
filter is the only filter graph COM object that has a CLSID; all other objects in the filter graph
support COM interfaces, and are created as needed by the filter. Filters and their supporting
object must implement their COM interfaces and a class library is available for help in that
task. The filter graph manager, on the other hand, has a CLSID and supports several fully
implemented interfaces, as do plug-in distributors, which are aggregated by the filter graph
manager. {Microsoft-provided plug-in distributors are referred to as the filter graph manager in
this article.)

This section contains the following topics.

Filter Graph Manager Interfaces

Filter and Pin Interfaces

Media Sample and Enumerator Interfaces
Control Interfaces

The DirectShow COM interfaces can be categorized as follows:

+ Filter graph manager interfaces, which are fully implemented and used by applications to
create, connect, and control filter graphs and by filters within the filter graph to post
event notifications and to force reconnections when needed.

396

DirectShow COM Interfaces

Page 6 of 658

o Filter and pin interfaces, which must be implemented by the filter. They comprise the
methods exposed by filters for communicating with the filter graph manager, connecting
with other filters, passing data downstream (from source filter to renderer filter) and
passing quality control and media positioning information upstream (from renderer to

source).

¢ Enumerator and media sample interfaces, which are interfaces on objects created

temporarily for passing information.

+ Control interfaces, which are exposed by filters and the filter graph manager to enable

the starting, stopping, and positioning of media in the stream. The

control interfaces on

the filters must be implemented when writing a filter, whereas they are already

implemented on the filter graph manager.

Filter Graph Manager Interfaces

Most filter graph manager interfaces fall in the category of control interfaces, also listed
separately in this article; however, some are unique to the filter graph manager.

Interface What calls What methods do
methods

IAMCollection An Automation client Retrieve the number of items
such as Microsoft® in the collection and retrieve
Visual Basic®. an indexed item.

IDeferredCommand The application that Retrieve confidence

sent a deferred information, postpone or
command using cancel a deferred command,
IQueueCommand. and return HRESULT values
from an invoked command.
IEnumFilters Application or Retrieve filters, skip filters, or

possibly a filter that clone the enumerator.
needs to know what
other filters are in

the graph.
IEnumRegFilters Filter mapper. Retrieve filters, skip items, or
clone the enumerator.
IFilterGraph Not usually called Add, connect, and reconnect
directly. filters in a filter graph.
IFilterGraph2 CorC++ Extend filter graph
applications. functionality.
IFilterInfo An Automation client Retrieve name, vendor

such as Visual Basic. information, IBaseFilter

interface, file name (for
source filters), specified pin
object, or collection of
associated pin objects.

IGraphBuilder Application. Create filter graphs
dynamically from stream
media type or re-create
stored filter graph.

397

Comments

Implemented by the
filter graph manager.
Not used by C or C++
applications.

Implemented by the
filter graph manager
and returned to any
application that calls

IQueueCommand

methods.

Implemented in the
filter graph manager.

Implemented by the
filter graph manager.

Use IGraphBuilder

instead, because it
inherits from this
interface.

Implemented by the
filter graph manager.
Not used by C or C++
applications.

Inherits from
IFilterGraph. Also
uses a filter mapper
object to look up
filters in the registry.

DirectShow COM Interfaces

IGraphVersion

IMediaControl

IMediaEven

IMediaEventSink

IMediaPosition
IMedi kin
IMediaT Inf
IPinInfo
IQueueCommand

IRegFilterInfo

ISeekingPassThru

Application and plug-
in distributors in the graph version and determine
filter graph manager.

Application.

Applications that
need to retrieve
events passed to the
filter graph manager
from filters.

Filters that need to
pass events to the
application.

Applications.

Applications.

An Automation client
such as Visual Basic.

An Automation client
such as Visual Basic.

Application needing
to send a deferred
command.

An Automation client
such as Visual Basic.

Applications.

Retrieve the current filter

when a filter graph has had
filters added, deleted, or
reconnected.

Run, pause, and stop the
filter graph, and retrieve the
state.

Get events, get event
handles, block until
completion, and block or
unblock default handling of
events by the filter graph
manager.

Receive event notifications
from filters.

Get duration and position
properties, and get and set
start time, stop time, preroll
time, and rate properties.

Set and retrieve current
position and stop position in
units other than time (such
as sample or field).

Retrieve the major and minor

media types.

Retrieve pin information such

as name, direction,

connections, and collection of

associated media type
objects. Also includes
methods to connect and
disconnect pins.

Cue commands to run at
stream time (offset from
start) or presentation time.

Retrieve a filter name and
add it to the filter graph.

Instantiate and initialize a

RendererPosPassThr
object. You can use this
object to keep track of
reference times and stream
times.

398

Page 7 of 658

Has many of the
same methods as the
IMediaFilter interface,
which is implemented
on filters.

Implemented by the
filter graph manager.

Implemented by the
filter graph manager.

Implemented on the
filter graph manager
and also on filters.

Implemented on the
filter graph manager
and also on filters.

Implemented by the
filter graph manager.
Not used by C or C++
applications.
Implemented by the
filter graph manager.
Not used by C or C++
applications.

Implemented by the
filter graph manager
and used by
applications. Filters
can implement this.

Implemented by the
filter graph manager.
Not used by C or C++
applications.

Implemented on
video renderer filters
that need to keep
track of reference
time and stream
time.

DirectShow COM Interfaces Page 8 of 658

Filter and Pin Interfaces

Filters are composed of one filter object and one or more pin cbjects. Although only the
IUunknown and IBaseFilter interfaces are strictly required on a filter, filters can support other
filter and pin interfaces, as discussed in Filter Interfaces.

This topic contains the following subtopics.

e Filter Interfaces
¢ Pin Interfaces

Filter Interfaces

The following interfaces are exposed by filter objects in order to be integrated with the filter
graph manager. The filter is the main COM o¢bject and has a class ID (CLSID) and name
registered in the registry. Filters must provide access to their pins and otherwise communicate
with the filter graph. They must also allow the filter graph manager to manage the data flow
by accepting state change messages.

Interface What calls What methods do Comments
methods

IAMovieSetup Entry-point Register and unregister This is implemented by the
routines in the object. base classes for most of what is
Dllentry.cpp. required to make a filter self-

registerable. Need to override
one base member function to
provide setup structures.

IBaseFilter Filter graph Same as IMediaFilter plus Inherits methods from the
manager. enumerate pins, retrieve IMediaFilter interface.
filter and vendor Implemented by the CBaserFilter

information, and locate class.
pins when rebuilding a
persistent filter graph.

IMediaFilter Nothing directly. Put the filter in run, stop, Inherited by the IBaseFilter
or pause state, get and set interface, which should be used
the reference clock, and instead of referencing this
retrieve the filter state. directly.

IPersist Filter graph Retrieve the filter's class Inherited by IBaseFilter along
manager when identifier. with IMediaFilter.
loading
preconfigured filter
graph files.
IUnknown Filter graph Retrieve a pointer to the Implemented by the CUnknown
manager. interface, add and delete base class.
references to the
interface.

The following additional filter interfaces can be exposed by filters such as source filters, and by
video and audio renderers. Source filters are notified by means of a quality control mechanism
so that they can adjust the amount of data introduced to the stream according to the
renderer's performance. Audio renderers are usually called upon to provide a reference clock,
since audio hardware generates this. The video renderer filter supplied by Microsoft exposes
interfaces to handle both the video window and the transferring of video frames into video

399

DirectShow COM Interfaces

buffers,
Interface

IAMCrossbar

IAMExtDevice

IAMExtTransport

IAMTimecodeDisplay

What calls
methods

Cor C++
applications.

CorC++
applications.
CorC++
applications.

CorC++
applications.

IAMTimecodeGenerator C or C++

IAMTimecodeReader

IAMTVTuner

IAMVideoProcAmp

IAsyncReader

IBasicAudio

IBasicVideo

applications.

CorC++
applications.

CorC++
applications.

Cor C++
applications.

Downstream
parser filter.

Applications and
Automation
clients such as
Visual Basic.

Applications and
Automation
clients such as
Visual Basic.

Page 9 of 658

What methods do Comments

Route messages from Exposed on analog video
an analog or digital crossbar filters.

audio or video source

to a video capture

filter.

Control external
devices.

Control specific
behaviors of an
external VCR.

Define behavior of an
external SMPTE/MIDI
timecode display
device.

Specify how an
external SMPTE/MIDI
timecode generator
should supply data to
the filter graph, and
the formats in which
timecode should be
supplied.

Specify the timecode
format that an
external device
should read and how
it is embedded in the
media.

Enables applications
toset TV
transmission types.

Control video quality Exposed on WDM video
settings. capture filters.

Perform synchronized Implemented on the Async
reads, request data, Sample (Asynchronous
request allocator, Reader Filter), which reads
begin and end media types with a major
flushing, and retrieve type of MEDIATYPE_Stream.
file's total length.

Get and set the
properties of the
audio renderer filter.

Can be implemented on an
audio renderer filter. Supports
Automation.

Get and set the
source video
rectangle, and
retrieve video size,
palette values, and
the current image.

Usually implemented on a
video renderer filter. Supports
Automation.

400

DirectShow COM Interfaces

ICreateDevEnum
IDirectDrawVi
IFileSinkFilter
IFileSinkFilter2
IFil rceFilter
IFuliScreenVi

IMediaPr rtyB

IMedi mple2

IOverlay

IQualityControl

IQualProp

CorC++
applications.

CorC++
applications.

Any application
that needs to set
the name of the
file from which
the file source
filter will read.

Cor C++
applications.

Any application
that needs to set
the name of the
file into which
the file sink filter
will write.

Cor C++
applications.

Cor C++
applications.

Filters.

Filters upstream
from the
renderer that
need to be
notified of
window changes.

Filter graph
manager,
upstream filter,
or pin.
Property page
objects.

Enumerate hardware
devices.

Set and retrieve
DirectDraw®
hardware and
emulated capabilities
and surface types.

Set or retrieve the
file name.

Set or retrieve the
file name, optionally
overwriting an
existing file.

Set or retrieve the
file name.

Set and retrieve full-
screen modes,
message drain, icon
caption, and other
information.

Expose copyright
information on filters.

Expose sample
properties.

Set and retrieve
palette and color key
information; get
window handle, clip
list, window position;
set up advise link
with upstream filter.

Receive a quality
message and receive
the quality sink
tocation.

Retrieve rendering
quality properties of
the video renderer,
such as the number
of frames drawn,
jitter, and so on.

401

Page 10 of 638

Usually implemented on a
video renderer filter.

Implemented on a file writer
filter, as used in a video
capture filter graph.

Implemented on any source
filter that needs a file name
from the user.

Usually implemented on a
video renderer filter.

Usually implemented on a
video renderer filter.

Normally implemented on
filters that can affect the
quality when they receive the
message.

Supports Automation.

DirectShow COM Interfaces Page 11 of 638

IReferen lock Filters that need Register for time Implemented on a filter that
to be notifications from the can generate a reference
synchronous with filter, convert real to clock, typically an audio
a reference clock. reference time, and renderer. Provides services

retrieve the current similar to the timeBeginPeriod

time. and timeSetEvent Win32®
functions.
IVideoWindow Applications and Control the window Usually implemented on a
Automation aspects of a video video renderer filter.
clients such as renderer.

Visual Basic.

DirectShow provides filters that implement particular interfaces for you. Applications typically
use those interfaces, but filters do so as well.

Interface What calls What methods do Comments
methods

IAMDirectSound DirectSound Set and retrieve the DirectSound audio renderer
audio window that will implements and uses this
renderer. handle the sound interface.

playback.

IAMLine21Decoder Applications Provide access to Line2l decoder implements
or video mixer closed caption this interface.
filter. settings.

IAMStreamSelect Applications. Control which logical The MPEG splitter implements

streams are played this interface.
and retrieve

information about

them.

IAMVfwCaptureDialogs Applications. Provide access to Video for Windows capture
dialog boxes exposed filter implements this
by Video for Windows interface.
capture drivers.

IAMVfwCompressDialogs Applications. Provide access to Video for Windows installable
dialog boxes exposed compression manager (ICM)
by Video for Windows filter implements this

COMpressors. interface.
IAMAudioCutListElement Applications Provide support fora The CLSID_AudioFileClip
and filters. cutlist element for an object implements this

audio file stream in a interface.
WAV or AVI file.

ICaptureGraphBuilder Applications. Simplify building Capture graph builder object
capture filter graphs. implements this interface.

IConfigAviMux Applications. Control how the AVI AVI multiplexer filter
multiplexer filter implements this interface on
writes files to disk. its property page.

IConfigInterleaving Applications. Control how the AVI AVI multiplexer filter
multiplexer filter implements this interface on

writes files to disk and its property page.
set interleaving

configuration

information.

402

DirectShow COM Interfaces

IAM ListElemen Filters.

ICutlistGraphBuilder Applications.
IDv ntrol Applications.
IDvdGraphBuilder Applications.
IDvdInfo Applications.
IFileCli Applications.

IAMFileCutListElement Filters.

IStandar Li Applications.

IAMVideoCutlistElement Filters.

IVPB nfi Video port
mixer filter.

IVPBaseNotify Applications.

IVPConfi Video port
mixer filter.

IVPNotify Applications.

Pin Interfaces

Describe a base

object, which

represents an element

in a cutlist.

Enable you to easily
implement one or
more cutlist filter

graphs.

Control playback and
searching on DVD

discs.

Simplify building DVD

filter graphs.

Query for DVD
attributes and DVD
player status.

Provide a simple way
for an application to
create one or more
cuts from a single
media file, or to create

blank cuts.

Provide support for a
cutlist element for a

file stream.

Provide a simple way
for an application to
feed a cutlist into a
cutlist provider {filter).
Provide support for a

cutlist element from
an AVI video file

stream.

Enable a video port
(VP) mixer filter to
communicate with a

VP driver.

Control properties of a
filter that uses a video

port.

Enable a video port
(VP) mixer filter to
communicate with a

VP driver.

Control properties of a
filter that uses a video

port.

403

Page 12 of 638

DirectShow provides the

CLSID_ VideoFileClip and
LSID AudioFileClip objects,

which can create an object

that implements it for you.

DVD navigator filter
implements this interface.

DVD graph builder object
implements this interface.
DVD navigator filter

implements this interface.

DirectShow provides the
LSID Vi FileClip and
CLSID AudioFileClip objects

that implement it for you.

DirectShow provides the

CLSID_VideoFileClip object

that implements it for you.

Ksproxy filter implements this
interface.

Video port mixer filter
implements this interface.

Ksproxy filter implements this
interface.

Video port mixer filter
implements this interface.

DirectShow COM Interfaces Page 13 of 638

Pin objects expose these interfaces. Pins do not usually have registered class identifiers and
are usually created by the filter object on which they reside. They are exposed externally by
the filter, which includes a method (IBaseFilter: :EnumPins) to hand out pointers to the IPin
interfaces of its pins, usually to the filter graph manager. The filter graph manager is
responsible for connecting pins by calling an IPin method on one of the pins with a pointer to
the other pin. Once pins are connected, each pin holds a pointer to the pin to which it is
connected.

Interface What calls What methods do Comments
methods
IAMAudioInputMixer Applications. Adjust audio input Input pin of an audio
characteristics. capture filter typically

implements this interface.
IAMBufferNegotiation Applications. Set and retrieve buffer The IAMBufferNegotiation
properties. interface informs a pin
what kind of buffer
specifications it should use
when connected.
1AMDevMemoryAllocator Applications. Provide creation of third- Makes use of on-board
party memory allocators. memory manager objects.

IAMDevMemoryControl Applications. Control and identify on- This interface is supported

board codec memory. by a device memory control
object.
IAMBroppedFrames Applications. Provide information about Capture filter's video output

the number of dropped pin should implement this
frames, frame rate, and interface.

data rate.
IAMStreamConfig Applications or Provide types of formats Output pins of capture and
filters. an output pin can compression filters typically
connect with. implement this interface.
IAMStreamControl Applications. Enable control of streams Implemented by any input
in a filter graph. or output pins.
IAMVideoCompression Applications. Control compression Output pin of a video

parameters that aren't capture or compression
part of the media type. filter typically implements
this interface.

IKsPropertySet Applications or Sets and retrieves device Expose device properties
filters. properties. and enable an application
or filter to change the
properties.
IMediaPosition Filter graph Get duration and position Downstream filters call

manager or properties, and get and methods on output pins
downstream set start time, stop time, supporting this to pass a

filter. preroll time, and rate requested media position
properties. upstream. Implemented in
CPosPassThru on pins.
IMedia%eeking Applications. Set and retrieve current Downstream filters call

position and stop position methods on output pins

in units other than time supporting this to pass a

{such as sample or field). requested media position
upstream. Implemented in
CPosPassThru on pins.

404

DirectShow COM Interfaces Page 14 of 638

IMemaAllocator Owning filter Allocate one or more Appears on allocator object
and output pin buffers based on required usually created by
of connected size, retrieve a buffer for IMemlnputPin,.

filter. a media sample, commit Implemented by the
memory when in use, CMemAllocater class.

and release it (decommit)
when not in use.

IMemlInputPin Filter graph Retrieve a preferred Usually only on input pins.
manager, allocator, receive the Implemented by the
output pin of a allocator provided by CBaselnputPin base class.
connected output pin, receive media
filter. samples, and tell whether

the pin will block on
receive.

IPin Filter graph Connect and disconnect Implemented on all pins by
manager, the pin, retrieve the CBasePin base class.

other pins, the information on external

owning filter. and internal pin
connections, retrieve
preferred media types
enumerator, negotiate
preferred media types,
receive flush and end-of-
stream notifications.

I i ntrol Downstream Receive a quality Implemented on output
filter or pin on message and receive the pins by the CBaseQutputPin
downstream quality sink to send base class, where it is used
filter. quality messages to. to pass the message

upstream.

IUnknown Filter graph Retrieve a pointer to the Implemented on all pins by
manager, interface, add and delete the CUnknown base class.

other pins, the references to the
owning filter. interface.

In addition, the Microsoft video renderer's input pin supports the I0verlay interface, which
allows the connected upstream pin to effectively register its I0verlayNotify interface in order to
receive notifications of video window changes. Replacement video renderers can also
implement this if they are intended to connect to the same filters as the video renderer
provided with DirectShow.

Media Sample and Enumerator Interfaces

Media sample and enumerator interfaces are temporary objects created to pass information or
data between objects. They do not have class identifiers.

This topic contains the following subtopics.

¢ Media Sample Interfaces
¢ Enumerator Interfaces

Media Sample Interfaces

The media sample interface, IMediaSample, is created from the memory allocator, which uses

405

DirectShow COM Interfaces Page 15 of 638

the media sample object as its unit of exchange. It has no class identifier. It is the unit of
media data that is passed from one filter to the next via the memory allocator shared by two
connected pins.

Interface What calls What methods do Comments

methods

IMediaSample Pins or filters that Retrieve a pointer to data, and get Implemented on

need to manipulate and set properties on the media media samples by
the media sample sample such as buffer size, time the CMediaSample
data or examine its stamp, data length, type, base class.
properties. synchronization point, preroll, and

end-of-stream properties.

IUnknown Pin or filter. Retrieve pointer to the interface, add Implemented on
and delete references to the media samples by
interface. the CUnknown base

class.

Enumerator Interfaces

Enumerators in DirectShow are based on the COM IEnumXXXX interfaces. They include the
Next and Prev methods, which tell the enumerator what item or items to return; the Skip
method, which skips one or more items; and the Clone method, which makes a copy of the
enumerator. Enumerators are used to present lists of items such as filters in a filter graph,

pins on a filter, or media types that are preferred by a pin.

Interface What calls methods What methods do Comments
IEnumfFilters Application or possibly a Retrieve filters, skip Implemented in the
filter that needs to know filters, or clone the filter graph manager.
what other filters are in enumerator.
the graph.

IEnumMediaTypes Filter graph manager or Retrieve media types, Implemented by the
connected pin negotiating skip media types, or CEnumMediaTypes

a media type. clone the enumerator. class.

IEnumPins Filter graph manager. Retrieve pins, skip Implemented by the
pinsg, or clone the CEnumpPins class.
enumerator.

IEnumRegFilters Filter mapper. Retrieve filters, skip Implemented by the
items, or clone the filter graph manager.
enumerator.

Control Interfaces

Control interfaces allow the filter graph manager to coordinate the activities of the data stream
with filters. Interfaces described previously in both the Filter Graph Manager Interfaces and
Filter and Pin Interfaces sections are repeated here so that all control interfaces can be viewed
together.

Interface What calls methods What methods do Comments
IBaseFilter Filter graph manager. Same as IMediaFilter plus Inherits methods from
enumerate pins, retrieve the IMediaFilter
filter and vendor interface.

information, and locate pins Implemented by the
when rebuilding a persistent CBaseFilter class.
filter graph.

406

DirectShow COM Interfaces Page 16 of 635

IModiagfonteql Anniication, Rern, pase, ang stop tha impiamantad by the
Hibar qeanh, and meinaya Fitar franil mangfer,
tha stata,

Magiafiter Nothing diragtiy, Pt the Fiitar in eun, s800, o Inherfaed by

paclse state aet ang et the [8aseriter which
eafarancs Gk and retriove shouid bBe ased inghead

the filtar state, of referanging this
fliractly,
IMaediaPosition Apshcation, when exposed Get duration and position Impiamentad on the
o the Fitae geanh pepperties and gat angd et Fitor geanh manggar
manager: fitee granh staet thme, ston time, oeerdl and on Bitees,

ranager o dowastream time, andg rate pronarties,
Fikoe whaen axoised on g
i1:4-18
iMediaSeaiking Anphcations. Set and eatriove cureernt impiamantagd on tha
BOSENN and SEOn BOSEDN in FILar 4ranh manggar
LeLEEs gthar than thoe (such and on Bikars,
35 Sampie g fieid},

Because DirectShow objects are CDOM-based objects, i s 2 natyral extension 1o use other £0M
intarfacas pubished in the JOM soecifications 10 peeform functions such as lsting property
nafes Or aocassing fies, Folowing are some OF the (0N interfaces that are commondy used in
Directhhow Fitars,

» IPergictFie
» ISnecitvPronertyPages

Intarfaces o a Typical Filter Graph:

Parhans the bast way 0 ouf the DirectShow interfaces intn peesoactive is 10 ook at the
irtarfacas axnosed in g simpde fitar geanh, The exampie chiosen hara 5 g Filtar grach that oiays
back audio data stored on a disk, I &5 oomoosad OF 3 source Biter and an audio rengderar Fittar
{ng transforms are done, 50 thig 5 3 very Simpie granh}.

The basic source Fifer cOnsists oF an I8asefiter inferface, and one ouinut pin that can be
Foung by asing the IBacefiter: EnmPing mathod, The {0OM IPergist interfare might aiso ba
sregent gn the Fiikee (nof shown here) &0 engble the Riter 10 be stored a5 part oF 3 persistent
Fitar granh,

The quitnit oin saooorts 1PN angd IMediaPosition, since the souece filter i 3 seekabie Riter [that
£, can be okl B0 move 50 3 particaiar ocosibion in the media stream). The foiigwing
girgtration shows the interfaces on the source Fitar and s ouk ot nin,

Mote that guaiity management is not implemantad in this exampie, bt opuid ba by incigging
the OuatdyOnnteni intedface gn the Quinut nin as weil,

IUnknown ?

IBaseFilter (O—

Biasic
source
filter

Thraugh
IBaseFilter; :EnumPins

IUnknown

Qutput pin [~ TMnr';:.Dnr;+;nnO A

407

DirectShow COM Interfaces Page 17 of 6355

¥ g '—‘. AT Or s

The basic randerar Fiter consists of a COM dever suppoeting the IBasefiter {and, again,
iMediafiter by inheritance; and IMediaPosition interfaces, as wel a5 having gne nput pin
tregugh the ErcmPing method of the IBagefilter interface, The {OM PargistFie inteface
eight aiso be presant on the Fiiter (not shown heeg) in grdes i0ad the fiie, The renderer £an
susnirt additionat interfaces, such as IReferenceliock (a5 @ masgter Or synchronization; oF
ifasichudio, for an audio renderar as shiiwn here,

The inoidt pin suongets the IPin and IMeminputPin interfaces, Methods of the IMediaPosiion
interface on the renderer Biter can Cal the IMadiaPosition interface methods of the ouipat
pinl that is connactad £o the engeror's inpgt nin,

IUnknown ?

IBaseFilter (O Bacic [0 IMediaPosition

renderer . .
filter 1 IBasicAudio

Through

Inknown Gy IBaseFilter: :EnumPins

IRin

IMernInputPin IREEEpIT

& basic representation OF the connactiQn OF g squrce Ftar 10 g rengderer Titar TOEOWS!

ILInknu:uan IUnknown ?
iR ehltERc Basic Basefitet O Basic [Ho IMediaPosition
source renderer ; ;
filter Fr HT) IBasicaudio

Through

Through !)
IBaseFilter: . EnurmPins

) ; IUnk
IBaseFilter:: EnumPins bt

IUnknown]]
IPIN IPIN

R
IMediaPosition IMermInputPin

Output pin Input pin

Qnee the ping are engmergtad and connected, & i the impiemantation of the guipat and inout
ping that defines the interachions OF the Twg ping,

Once the fikoes are connected, the contegi avaiiabie to the gser [fikor grach manager} is
indicated through the bokd ntarfaces, This continaes with the examoie OF connacking an audio
SOEECE B0 an aildin randaeae

IUnknown Q IUnkann?
[IBaseFilter] ; e
tRieEerier O Basic O Basic [MediaPosition
SOoUrce renderer . .
filter Filtar MO 1B asichudio

Through
IBaseFilter: :EnumPins

TUnknown

Output pin

IPin

IFin

00O

IMediaPosition IMermInputPin

TURknown

Input pin

Through
IBaseFilter:: EnumPins

Tha Fpigwing intarfaces ave those that wolld BRely ba gsaey daeing 2 transoon,

» IMagdiagPosition suonoets the abiiy 10 seek 10 3 position and change the rata,

» IB@SICAUYID SUHLOTS Tha abiiity 10 sel the woillme,

408

DirectShow COM Interfaces Page 18 of 638

¢ IBaseFilter supports such methods as Run and Pause (methods on the filter graph
manager's IMediaControl interface).

Special (custom) interfaces that the filters would support must be obtained directly from the
filters. Usage of these interfaces implies that the user is aware of their identifiers.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[previous | Home] Topie Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

DirectShow Interfaces by Category

The following lists group the Microsoft® DirectShow™ interfaces according to whether
application or filter developers typically call them, or whether they are exposed at the filter
graph level. Both application and filter developers can call some interfaces, while others have a
typical use by one or the other, but both types of developers can still call them. See the
documentation about each interface for more information. Each of the categories (Application-
Level Interfaces, Graph-Level Interfaces, and Filter-Level Interfaces) is divided into functional
groupings.

In addition, the Multimedia Streaming Reference contains documentation on interfaces specific
to multimedia streaming.

Application-Level Interfaces

IAMCollection
IAMCopyCaptureFileProgress
IAMLine21Decoder
IAMVfwCaptureDialogs
1AMViwCompressDialogs
ICaptureGraphBuilder
IDistributorNotify
IEnumPins
IFileSourceFilter
IGraphBuilder
IMediaStream
IMultiMediaStream
ISeekingPassThru
IStreamSample
IVPBaseNotify

IVPNotify

Digital Versatile Disc (DVD) Application-Level Interfaces

¢ IDvdControl

409

DirectShow COM Interfaces Page 19 of 638

o IDvdGraphBuilder
+ IDvdInfo

Cutlist Application-Level Interfaces

o ICutListGraphBuilder

s IFileClip
o IStandardCutList

Cutlist Application-Level or Filter-Level Interfaces

IAMAudioCutListElement
IAMCutlListElement
IAMFileCutListElement
IAMVideoCutListElement

Capture, Compression, Device Enumeration, and Windows Driver Model (WDM)
Capture Application-Level or Filter-Level Interfaces

IAMAudiolnputMixer
IAMBufferNegotiation
IAMCrossbar
IAMTVTuner
IAMBroppedFrames
IAMStreamConfig
IAMStreamControl
IAMStreamSelect
IAMVideoCompression
1AMVideoProcAmp
IConfigAviMux
IConfigInterleaving
ICreateDevEnum
IFileSinkFilter
IFileSinkFilter2
IMediaPropertyBag
IMixerPinConfig

Device Control, Timecode, and Property Set Application-Level or Filter-Level
Interfaces

IAMExtDevice
IAMExtTransport
IAMTimecodeDisplay
IAMTimecodeGenerator
IAMTimecodeReader
IKsPropertySet

Graph-Level Interfaces

o IAMovie

410

DirectShow COM Interfaces

IBasicAudio
IBasicVideo
IDeferredCommand
IDirectDrawVideo
IDistributorNotify
IEnumFilters
IEnumRegFilters
IFilterGraph
IFilterGraph2
IFilterInfo
IFilterMapper
IFullScreenVideo
IGraphVersion
IMediaControl
IMediaEvent
IMediaEventEx
IMediaEventSink
IMediaPosition
IMediaSeeking
IMediaTypelnfo
IQualityControl
IQualProp
IQueueCommand
IReferenceClock
IRegFilterInfo
IResourceConsumer
IResourceManager
IvideoWindow

Filter-Level Interfaces

IAMovieSetup
IAsyncReader
IBaseFilter
IBasicAudio
IBasicVideo
IEnumMediaTypes
IMediaFilter
IMemInputPin
IOverlay
IOverlayNotify
IPin

IPinInfo
IVPBaseConfig

IVPConfig

DirectSound Filter-Level Interface

¢ IAMDirectSound

411

Page 20 of 638

DirectShow COM Interfaces Page 21 of 638

Memory Allocation and Media Sample Filter-Level Interfaces

IAMDevMemoryAllocator
IAMDevMemoryControl
IMediaSample
IMediaSample2
IMemAllocator

COM Interfaces

s IUnknown

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" preious | ome | Topis Contents] index | hext
" Prerious | Home | Topic Contents] index | Hext

IAMAudioCutListElement Interface

The IAMAudioCutListElement interface provides support for a cutlist element for an audio
file stream in @ WAV or AVI file.

See About Cutlists and Using Cutlists for more information.

When to Implement

Usually, you don't need to implement this interface because DirectShow provides the
CLSID AudioFileClip object that implements it for you. Implement this interface in your
application when you need to change the default behavior of this interface.

When to Use
Use this interface in your filter when you specify an audio-based media clip. Call

QueryInterface on the IAMCutlistElement interface to determine if the element is an audio
type element.

When compiling a cutlist application you must explicitly include the cutlist header file as
follows:

#include <cutlist.hs

Methods in Vtable Order

412

DirectShow COM Interfaces Page 22 of 638

IUnknown methods Description

Queryinterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMAudioCutListElement methods Description

GetStreamlndex Retrieves the index to the stream in the AVI file.
HasFadeln Determines if the element fades in automatically.
HasFadeOut Determines if the element fades out automatically.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] ndex | Hext
[prerious | Home | Topic Contents] index | Hext

IAMAudioCutListElement::GetStreamlIndex

IAMAudi ListElement Interf
Retrieves the index to the stream in the AVI file.

HRESULT GetStreamIndex(
DWORD *piStream
);

Parameters

piStream
[out] Stream number to be opened.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.
E POINTER Null pointer argument.

S OK Success.

Remarks

This method must always retrieve zero for the stream index. For AVI files, only the first audio
stream is supported.

413

DirectShow COM Interfaces Page 23 of 638

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home] topie Contents | imiex | Wext |
[previous | Home] Topie Contents | imiex | Wext |

IAMAudioCutListElement::HasFadeln

IAMAudi ListElement Interf

Determines if the element fades in automatically.

HRESULT HasFadeIn(void);

Return Values

Returns S OK if the element should be automatically faded in, or S _FALSE if not.
Remarks

This method always returns $S_OK, but fading in and out is not currently supported.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[previous | Home | topie Contenta | niex | Wext |

IAMAudioCutListElement::HasFadeOut

IAMAudioCutListElement Interface

Determines if the elerment fades out automatically.

HRESULT HasFadeOut(void);

Return Values

Returns S_OK if the element should be automatically faded out, or S FALSE if not.
Remarks

This method always returns S_OK, but fading in and out is not currently supported.

414

DirectShow COM Interfaces Page 24 of 638

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | tHome | Topie Contents | miex | ext _

IAMAudioInputMixer Interface

The IAMAudioInputMixer interface tells an audio capture filter what level, panning, and
equalizer to use for each input. The name of each pin, such as "Line input 1" or "Mic", reflects
the type of input.

Implementation of the methods on this interface depends on the device. A device might not
implement all methods depending on its capabilities.

When to Implement

Implement this interface on each input pin of an audio capture filter. You can also implement
this interface on the audio capture filter itself to control the overall record level and panning
after the audio mixing occurs.

When to Use

Use this interface when your application needs to adjust audio input characteristics such as
mixing of a particular input, use of mono or stereo, mix level, pan level, loudness, treble, and
bass settings. Use the pin names to decide how to set the recording levels for each type of
input.

Methods in Vtable Order
IUnknown methods Description

QuerylInterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMAudicInputMixer Description

methods

put_Enable Enables or disables an input in the mix.

get Enable Retrieves whether the input is enabled.

put_Mono Combines all channels of an input into a mono signal.

get Mono Retrieves whether all channels of an input are combined into a
mono signal.

put_MixLevel Sets the record level for this input.

get MixLevel Retrieves the recording level for this input.

put_Pan Sets the pan for this input.

get Pan Retrieves the pan for this input.

put_Loudness Turns the loudness control for this input on or off.

get Loudness Retrieves the loudness control setting for this input.

put Treble Sets the treble equalization for this input.

415

DirectShow COM Interfaces Page 25 of 638

Trebl Retrieves the treble equalization for this input.
TrebleRan Retrieves the treble range for this input.
put Bass Sets the bass equalization for this input.
get Bass Retrieves the bass equalization for this input.
get BassRange Retrieves the bass range for this input.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contente | niex | Wext |

[Pretious | Home | Topic Contents] index | Hext

IAMAudiolnputMixer::get_Bass

IAMAudioInputMixer Interface

Retrieves the bass equalization for this input.

HRESULT get_Bass(
double *pBass

);
Parameters

pBass
[in] Pointer to the bass gain in decibels (a negative value means attenuate).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E POINTER Null pointer argument.
E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.
NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome | Topio Contents | miex § Hext

previous | Home | topie Contente | niex | Wext |

416

DirectShow COM Interfaces Page 26 of 638

IAMAudioInputMixer::get_BassRange

IAMAudioInputMixer Interface

Retrieves the bass range for this input.

HRESULT get_BassRange(
double *pRange
);

Parameters

pRange
[out, retval] Largest value allowed in the bass range specified in put_Bass. For example,
6.0 means any value between -6.0 and 6.0 is allowed.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E POINTER Null pointer argument.
E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.
NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

" prerious | ome | Topic Contents] index | hext
" Prerious | Home | Topic Contents] index | Hext

IAMAudiolnputMixer::get_Enable

IAMAudioInputMixer Interface

Retrieves whether the input is enabled.

HRESULT get_Enable(
BOOL *pfEnable

417

DirectShow COM Interfaces Page 27 of 638

);
Parameters

pfEnable

[in] Pointer to a value indicating whether mixing is enabled for the input. TRUE indicates
the input is enabled, FALSE indicates the input is disabled.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Couldn't retrieve information.

E POINTER Null pointer argument.

E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.

NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home | Topio Contents | niex | Hext |
Previous | tome | Topio Contents | niex | et |

IAMAudioInputMixer::get_Loudness

IAMAudioInputMixer Interface

Retrieves the loudness control setting for this input.
HRESULT get_Loudness{
int *pfloudness
)i
Parameters
pfLoudness
[in] Pointer to value indicating whether loudness is on or off. TRUE indicates on, FALSE
incicates off.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

418

DirectShow COM Interfaces Page 28 of 638

Value Meaning

E FAIL Error.

E POINTER Null pointer argument.
E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.
E_OUTOFMEMORY Out of memory.
NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | Home | Topio Contents | ndex | ext |
[Prcvious | Home | Topio Contente | ndex | ext |

IAMAudioInputMixer::get_MixLevel

IAMAudioInputMixer Interf
Retrieves the recording level for this input.

HRESULT get_MixLevel(
double *plevel

);
Parameters

[fout] pLevel
Pointer to the value of the recording level. Values range between O (off) and 1 (full

volume). AMF_AUTOMATICGAIN {-0x0001), if supported, means automatic adjustment of
level.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Error retrieving recording level.

E POINTER Null pointer argument.

E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.

NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

Previous | Home | topie Contente | niex | Wext |

419

DirectShow COM Interfaces Page 29 of 638

" previous | Home | Topio Contents | index | Hext |

IAMAudiolnputMixer::get_Mono

IAMAudioInputMixer Interf,

Retrieves whether all channels of an input are combined into a mono signal.

HRESULT get_Mono(
BOOL *pfMono
);

Parameters

pfMono
[in] Pointer to a value indicating whether mono is enabled. TRUE indicates mono is
enabled, FALSE indicates mono is disabled.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Error getting mono control.
E POINTER Null pointer argument.

E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.
NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home | Topic Contents | iniex | Hext

[Pretious | Home | Topic Contents] index | Hext

IAMAudiolnputMixer::get_Pan

IAMAudioInputMixer Interface

Retrieves the pan level for this input.

420

DirectShow COM Interfaces Page 30 of 638

HRESULT get_Pan(
double * pPan
);

Parameters

pPan

[in] Pointer to the value of the pan level. Possible levels are from -1 to 1, with specific
values as follows:

Value Meaning

-1 Full left
0 Center
1 Full right

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning

E FAIL Error retrieving pan level.
E POINTER Null pointer argument.

E INVALIDARG Invalid argument.

E NOTIMPL Can't pan: not stereo.
NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[previous | Home | topie Contenta | niex | Wext |

[Prerioss | Home | Topic Contents] index | Hext

IAMAudiolnputMixer::get_Treble

IAMAudioInputMixer Interface

Retrieves the treble equalization for this input.
HRESULT get_Treble(

double *pTreble

);

Parameters

pTreble

421

DirectShow COM Interfaces Page 31 of 638

[in] Pointer to the treble gain in decibels (a negative value means attenuate).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E POINTER Null pointer argument.

E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.

NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext

[Previous | Home | Topie Contents | miex | ext _

IAMAudioInputMixer::get_TrebleRange

IAMAudioInputMixer Interface

Retrieves the treble range for this input.
HRESULT get_TrebleRange(

double *pRange

);

Parameters

pRange
[out, retval] Largest value allowed in the treble range. This is the maximum value

allowed in put Treble. For example, 6.0 means any value between -6.0 and 6.0 is
allowed.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

422

DirectShow COM Interfaces Page 32 of 638

Value Meaning

E FAIL Failure.

E POINTER Null pointer argument.
E INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] ndex | Hext
Previous | Home | Topic Contente] index | Hext

IAMAudiolnputMixer::put_Bass

IAMAudioInputMixer Interf.
Sets the bass equalization for this input.

HRESULT put_Bass(
double Bass

);
Parameters

Bass
[in] Gain in decibels {(a negative value means attenuate).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E POINTER Null pointer argument.

E INVALIDARG Argument is invalid. Must be in range given by get BassRange.
E NOTIMPL Method isn't supported.

NOERROR Success.

Remarks

Boosts or cuts the signal's bass before it is recorded by the number of decibels specified by
Bass.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

423

DirectShow COM Interfaces Page 33 of 638

" prerious | ome | Topic Contents] index | next
" Prerious | Home | Topic Contents] index | Hext

IAMAudioInputMixer::put_Enable

IAMAudioInputMixer Interface

Enables or disables an input in the mix.

HRESULT put_Enable(
BOOL rfEnable
);

Parameters

fEnable
[in] Value to enable or disable an input. TRUE enables the input, FALSE disables it.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failed to enable or disable an input.

E POINTER Null pointer argument.

E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.

NOERROR Successfully enabled or disabled an input.

Remarks

If disabled, this input will not be mixed in as part of the recorded signal.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | imiex | Next _
[Previous | Home | fopic Contents | intex | Hext

IAMAudiolnputMixer::put_Loudness

424

DirectShow COM Interfaces Page 34 of 638

IAMAudioInputMixer Interface

Turns the loudness control for this input on or off.

HRESULT put_Loudness(
BOOL floudness
);

Parameters

floudness
[in] TRUE sets loudness on, FALSE sets loudness off.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E_FAIL Loudness control set.

E POINTER Null pointer argument.
E INVALIDARG Invalid argument.

E NOTIMPL Method isn't supported.
NOERROR Success.

Remarks

IAMAudioInputMixer::put_Loudness boosts the bass of low volume signals before they are
recorded to compensate for the fact that your ear doesn't hear quiet bass sounds as well as
other sounds.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

" Previous | Home | Topio Contente | index | ext |
" previous | Home | opio Contents | ndex | Hext |

IAMAudiolnputMixer::put_MixLevel

IAMAudioInputMixer Interf
Sets the record level for this input.

HRESULT put_MixLevel(
double Level

425

DirectShow COM Interfaces Page 35 of 638

);
Parameters

Level

Recording level. Values range between 0 (off) and 1 (full volume). AMF_AUTOMATICGAIN
(-Ox0001), if supported, means automatic adjustment of level.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Error setting volume.

E_POINTER Null pointer argument.

E_INVALIDARG Record level must be between 0 and 1.

E NOTIMPL Automatic gain currently not implemented.

NOERROR Success.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home | Topio Contents | niex | Hext |
Previous | tome | Topio Contents | niex | et |

IAMAudioInputMixer::put_Mono

IAMAudioInputMixer Interface

Combines all channels of an input into a mono signal.
HRESULT put_Mono(

BOOL rMono

)i

Parameters

Mono
[in] TRUE indicates mong, FALSE indicates multichannel.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

426

DirectShow COM Interfaces Page 36 of 638

Value Meaning

E FAIL Error setting mono control.
E POINTER Null pointer argument.

E INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NOERROR Success.

Remarks

When set to mono mode, making a stereo recording of this input will have both channels
contain the same data. The result will be a mixture of the left and right signals.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents | iniex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

IAMAudiolInputMixer::put_Pan

IAMAudioInputMixer Interface

Sets the pan for this input.

HRESULT put_Pan(
double Pan

)
Parameters

Pan
[in] Pan level. Possible values for Pan are from -1 to 1, with specific values as follows:

Value Meaning
-1 Full left
0 Center
1 Full right

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

427

DirectShow COM Interfaces Page 37 of 638

Value Meaning

E FAIL Error setting volume.

E POINTER Null pointer argument.

E INVALIDARG Pan level must be between -1 and 1.
E NOTIMPL Can't pan: not stereo.

NOERROR Success.

Remarks

Setting the pan of an input to full left makes that input's signal go only into the left channel of
a stereo recording. Panning has no effect for a mono recording.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents | iniex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

IAMAudiolnputMixer::put_Treble

IAMAudioInputMixer Interface

Sets the treble equalization for this input.

HRESULT put_Treble{
[in] double Treble
);

Parameters

Treble
[in] Gain in decibels {(a negative value means attenuate).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E POINTER Null pointer argument.

E INVALIDARG Argument is invalid. Must be in range given by get TrebleRange.

E NOTIMPL Method isn't supported.

NOERROR Success.

Remarks

428

DirectShow COM Interfaces Page 38 of 638

This method boosts or cuts the signal’'s treble by a specified number of decibels before it is
recorded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[previous | Home] Topie Contents | imiex | Wext |
[Previous | ome] topic Gonients | miex | Wext |

IAMBufferNegotiation Interface

The IAMBufferNegotiation interface tells a pin what kind of buffer specifications it should
use when connected. Use this interface when an application requires control over allocating the
number of buffers that pins will use when transporting media samples between filters.

The IAMBufferNegotiation: :SuggestAllocatorProperties method accepts an

ALLOCATOR PROPERTIES structure that contains the allocator's count, size, alignment, and
prefix properties that you want to use. Typically, yvou set only the cBuffers member of the
ALLOCATOR_PROPERTIES structure, which refers to the number of buffers at the specified
allocator. All other properties should indicate a negative number to enable your capture
hardware to use its own default values.

If a negative value is specified for cBuffers, the allocator will try to allocate as many buffers as
it needs, which depends on the available resources and capture frame rate. If you specify a
higher value, the allocator will try to allocate more buffers, up to the system's available
memory. Allocating a lower number of buffers can result in dropped frames. For
teleconferencing applications, it may be desirable to set this number to a smaller value (for
example, 2 is a reasonable setting if the network can only support transmission of 2 frames
per second (fps) at a given video format and resclution).

Applications can call the JAMBufferNegotiation: :GetAllocatorProperties method to retrieve the
properties of the allocator being used.

When to Implement

Implement this interface when your pin will connect to ancther pin by using the IMemInputPin
interface and you want to enable an application to allocate the buffer settings to be used for
transporting media samples between filters. All capture filters should support this interface to
enable applications to specify precise settings for buffers (see Vidcap.cpp and Vidcap.h in the
\Samples\DS\Vidcap directory for a sample implementation).

When to Use

Teleconferencing applications should use this interface to specify a minimal number of buffers.
This tells the capture filter not to waste resources buffering information in slower capture or
disk-writing scenarios.

429

DirectShow COM Interfaces Page 39 of 638

Methods in Vtable Order
IUnknown methods Description

QueryInterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.

Release Decrements the reference count.
IAMBufferNegotiation Description

methods

SuggestAllocatorProperties Asks a pin to use the allocator buffer properties set in the
ALLOCATOR PROPERTIES structure.

GetAllocatorProperties Retrieves the properties of the allocator being used by a pin.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[previous | Home | fopic Contents | insex | Hext
previous | Home | Topic Contents | iniex | Hext

IAMBufferNegotiation::GetAllocatorProperties

IAMBufferNegotiation Interface

Retrieves the properties of the allocator that a pin is using.
HRESULT GetAllocatorProperties(
ALLOCATOR_PROPERTIES *pprop
);

Parameters

pprop
[out] Pointer to an ALLOCATOR PROPERTIES structure.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Call this method only after the pins connect.

See Also

SuggestAlliocatorProperties

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

430

DirectShow COM Interfaces Page 40 of 638

" previous | Home | Topio Contents | index | Hext |

IAMBufferNegotiation::SuggestAllocatorPropertie

IAMBufferNegotiation Interface

Asks a pin to use the allocator buffer properties set in the ALLOCATOR PROPERTIES structure.

HRESULT SuggestAllocatorProperties(
const ALLOCATOR_PROPERTIES *pprop

);

Parameters

pprop
[in] Pointer to an ALLOCATOR PROPERTIES structure.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

An application must call this function before two pins are connected. If the pins are connected
before you call this method, then the filter graph will have already negotiated the buffer and it
will be too late for an application to preallocate them.

Applications must call this method on both pins being connected to ensure that the other pin
doesn't overrule the application's request. However, if one pin doesn't support this interface, a

single call will be sufficient.

Use a negative number for any element in the ALLOCATOR PROPERTIES structure to set
properties to default values.

See Also

IAMBufferN iation:: All rPr rti

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[previous | Home | topie Contenta | niex | Wext |

IAMCollection Interface

431

DirectShow COM Interfaces Page 41 of 638

The filter graph manager exposes IAMCollection, which allows access to collections of objects
such as those exporting IPinInfo and IFilterInfo interfaces.

When to Implement

This interface is implemented by the filter graph manager for use by Automation client
applications, such as Microsoft® Visual Basic®.

When to Use

Applications that use Automation use this interface indirectly when retrieving collections of
objects. For example, the IFilterInfo::get Pins method retrieves an IAMCollection interface that
can be used to access the IPinInfo interfaces corresponding to the pins on the filter.

Methods in Vtable Order

IUnknown methods Description

QueryInterface Returns pointers to supported interfaces.
AddRef Increments the reference count.

Release Decrements the reference count.
IDispatch Description

methods

GetTypelnfoCount Determines whether there is type information available for this
dispinterface.

GetTypelnfo Retrieves the type information for this dispinterface if GetTypelnfoCount
returned successfully.

GetIDsOfNames Converts text names of properties and methods (including arguments) to
their corresponding DISPIDs.

Invoke Calls a method or accesses a property in this dispinterface if given a
DISPID and any other necessary parameters.

IAMCollection Description

methods

get Count Retrieves the number of items in the collection.

get NewEnum Retrieves an enumerator object that implements IEnumVARIANT on

this collection.
Ite Retrieves the indexed item from the collection.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home] topie Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

IAMCollection::get_Count

432

DirectShow COM Interfaces Page 42 of 638

IAMCollection Interface

Retrieves the number of items in the collection.
HRESULT get_Count(

LONG *p/Count

);

Parameters

piCount
[out, retval] Number of items in the collection.

Return Values
Returns an HRESULT value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[previous | Home | fopio Contents | ndex | Hext |

IAMCollection::get_ NewEnum

IAMCollection Interf

Retrieves an enumerator object that implements IEnumVARIANT on this collection.

HRESULT get_ NewEnum(
IUnknown **ppUnk

)

Parameters

ppUnk
[out, retval] IUnknown for an object that implements IEnumVARIANT on this collection.

Return Values

Returns an HRESULT value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contenta | niex | Wext |

433

DirectShow COM Interfaces

Page 43 of 638

IAMCollection::Item

IAMCollection Interf
Retrieves the indexed item from the collection.

HRESULT Item(
long /Item,
IUnknown **pplnk

);
Parameters
{Ttem

[in] Index into the collection.
ppUnk

[out] Returned IUnknown interface for the contained item.

Return Values
Returns an HRESULT value.

Remarks

The returned ppUnk parameter represents an object corresponding to the type of objects in the
container. It can be an IFilterInfo, IPinInfo, or IMediaTypelnfo object. The index is zero-based.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topio Contents | miex | ext

IAMCopyCaptureFileProgress Interface

The IAMCopyCaptureFileProgress interface contains one method, Progress, which the
ICaptureGraphBuilder: :CopyCaptureFile method can call to receive information on the

percentage complete of a copy operation.

When to Implement

Capture applications implement this method when they need to receive information on the

percentage complete of a copy operation.

When to Use

Use this interface when applications need to check the copying progress of a captured file.

434

DirectShow COM Interfaces Page 44 of 638

Methods in Vtable Order
IUnknown methods Description

QueryInterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMCopyCaptureFileProgress Description

methods

Progress Sends applications the progress (percentage complete) of a

copy operation that the
ICaptureGraphBuilder: :CopyCaptureFile method is
performing.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

" prerious | ome | Topio Contents] index | Hext
" Prerious | Home | Topic Contents] index | Hext

IAMCopyCaptureFileProgress::Progress

IAMCopyCaptureFileProgress Interface

Sends applications the progress {percentage complete) of a copy operation that the
ICaptureGraphBuilder: :CopyCaptureFile method is performing.

HRESULT Progress(
int iProgress
);

Parameters

iProgress
[in] Percentage of copy complete between 0 and 100.

Return Values
Returns S OK if successful or S _FALSE if the operation is aborted.

Remarks

The ICaptureGraphBuilder: :CopyCaptureFile can call this method to inform applications of the

copy operation's progress.

This method is called periodically while ICaptureGraphBuilder::CopyCaptureFile is running.

435

DirectShow COM Interfaces Page 45 of 638

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | tHome | Topie Contents | miex | ext _

IAMCrossbar Interface

The IAMCrossbar interface is exposed on analog video crossbar filters and is used to route
messages from an analog or digital audio or video source to a video capture filter. The crossbar
filter is modeled after a general switching matrix, with n inputs and m outputs. Any of the
input signals can be routed to one or more of the outputs.

A single crossbar can route both video and audio signals. You can also use a video pin to route
only the audio portion of a combined signal.

This filter is based on a simple multiplexer.
When to Implement

Implement this interface when your filter needs to route analog or digital signals to a capture
filter.

When to Use

Use this interface when your application needs to route analog or digital video signals through
a crossbar filter.

Methods in Vtable Order
IUnknown methods Description

QueryInterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMCrossbar methods Description

get PinCounts Retrieves the number of input and output pins.

CanRoute Determines if the crossbar filter can route the analog or digital
signal.

Route Routes an input pin to an output pin.

get IsRoutedTo Retrieves the input pin connected to a given output pin.

get CrossbarPinInfo Retrieves a pin that has audio or video data relating to a given pin.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home] topic Contents | imiex | Wext |
[Previous | ome] topic conients | imiex | Wext |

436

DirectShow COM Interfaces Page 46 of 638

IAMCrossbar::CanRoute

IAMCrossbar Interface

Determines if routing is possible.

HRESULT CanRoute {
long OutputPinindex,
long InputPinindex
);

Parameters
QutputPinIndex

[in] Output pin.
InputPinlndex

[in] Input pin.
Return Values

Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex | ext

IAMCrossbar::get_CrossbarPinInfo

IAMCr r Interf
Retrieves a pin that has audio or video data relating to a given pin.

HRESULT get_CrossbarPinInfo (
BOOL IsInputPin,
long Pinindex,
long * PinIndexRelated,
long * PhysicalType
)i

Parameters

IsIinputPin
[in] Specify TRUE for an input pin; FALSE for an output pin.

437

DirectShow COM Interfaces Page 47 of 638

PinIndex
[in] Pin to find a related pin for.
PinIndexRelated
[out] Index value of the related pin.
PhysicalType
[out] Physical type of pin (audio or video).
Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks
This method retrieves, for example, the audio pin related to a given video pin.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

" Previons | ome | Topis Contents] index | next
" Prerious | Home | Topic Contents] index | Hext

IAMCrossbar::get_IsRoutedTo

IAMCrossbar Interface

Retrieves the input pin connected to a given output pin.

HRESULT get_IsRoutedTo (
long QutputPinlndex,
long * InputPinindex
)

Parameters

QutputPinIndex
[in] Output pin.
InputPinIndex
[out] Pointer to the connected input pin.
Return Values
Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Pretious | Home | Topic Contents] index | Hext

438

DirectShow COM Interfaces

Page 48 of 638

IAMCrossbar::get_PinCounts

IAMCrossbar Interface

Retrieves the number of input and output pins.

HRESULT get_PinCounts(
long * OQutputPinCount,
long * InputPinCount

);
Parameters
QutputPinCount
[out] Number of output pins.
InputPinCount
[out] Number of input pins.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex | ext

IAMCrossbar::Route

IAMCr r Interf
Routes an input pin to an output pin.

HRESULT Route (
long CutputPinindex,
long InputPinindex

);
Parameters
QutputPinIndex
[in] OQutput pin.

InputPinindex
[in] Input pin.

439

DirectShow COM Interfaces Page 49 of 638

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Pin indexes are zero based.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previons | Home | Topio Contents | miex | ext

IAMCutListElement Interface

The IAMCutListElement interface describes a base object, which represents an element in a
cutlist. For a simpler interface that provides basic cutlist functionality, applications can use
IFileClip to create an object that supports this interface.

See About Cutlists and Using Cutlists for more information.

When to Implement

Usually, you don't need to implement this interface because DirectShow provides the

CLSID VideoFileClip and CLSID AudioFileClip objects, which can create an object that
implements it for you. However, you can implement this interface in your application when you
need to change this interface's default behavior.

When to Use
Use this interface in your filter when you need to get specific elements of a cutlist.

When compiling a cutlist application you must explicitly include the cutlist header file as
follows:

#include <cutlist.h=

Methods in Vtable Order
IUnknown methods Description

QuervInterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

440

DirectShow COM Interfaces Page 50 of 638

IAMCutListElement Description

methods

GetElementStartPosition Retrieves the media time of the element's start in the time
scale of the cutlist.

GetElementDuration Retrieves the duration of the cutlist element.

IsFirstElement Determines if the element is the first in the cutlist.

IsLastElement Determines if the element is the last in the cutlist.

IsNull Determines if the element is null.

ElementStatus Determines the status of the element.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | Topio Contents | ndex | ext |
" previous | Home | opio Contents | ndex | Hext |

IAMCutListElement::ElementStatus

IAM ListElement Interf
Determines the status of the element.
HRESULT ElementStatus(

DWORD *pdwStatus,
DWORD dwTimeoutMs

);

Parameters

pdwsStatus
[in/out] Status. On input, if this parameter contains CL WAIT FOR_STATE and an
additional state value from the CL ELEM STATUS enumerated data type, this method
waits dwTimeoutMs milliseconds until the element is in that state before returning. On
output, this is a logical combination of flags from the CL_ELEM_STATUS enumerated
data type.

dwTimeouthls

[in] Timeout value, in milliseconds.
Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

441

DirectShow COM Interfaces Page 51 of 638

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.

S OK Success. The element is null.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Contents] index | Hext

IAMCutListElement::GetElementDuration

IAM ListElement Interf
Retrieves the duration of the cutlist element.
HRESULT GetElementDuration{
REFERENCE_TIME *pmtDuration
)

Parameters

pmtDuration
[out] Duration of the element in REFERENCE TIME.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.
E POINTER Null pointer argument.

S OK Success.

Remarks

When you call the IFileClip::CreateCut method to create the element, the difference between
its mETrimQut and mtTrimIn parameters determines the duration.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

442

DirectShow COM Interfaces Page 52 of 638

" prerious | ome | Topic Contents] index | next
" Prerious | Home | Topic Contents] index | Hext

IAMCutListElement::GetElementStartPosition

IAMCutListElement Interface

Retrieves the media time of the element's start in the time scale of the cutlist.

HRESULT GetElementStartPosition{
REFERENCE_TIME *pmitStart

);
Parameters

pmtStart
[out] Pointer to the media time for the start of the element.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMFL Method is not supported.
E POINTER Null pointer argument.

S OK Success.

Remarks

Times retrieved by this method are relative to the time within the cutlist. For example, the first
element in the cutlist starts at time zero.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | Home | Topio Contents | imiex | ext _
[previous | Home | Topic Contents | intex | Hext

443

DirectShow COM Interfaces Page 33 of 638

IAMCutListElement::IsFirstElement

IAMCutListElement Interface

Determines if the element is the first in the cutlist.
HRESULT IsFirstElement(void);
Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.

S OK Success. This is the first element in the cutlist.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | miex | ext

IAMCutListElement::IsLastElement

IAMCutListElement Interf

Determines if the element is the [ast in the cutlist.
HRESULT IsLastElement{void);

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.

S_OK Success. This is the last element in the cutlist.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] index | Hext

444

DirectShow COM Interfaces Page 54 of 638

IAMCutlListElement::IsNull

IAMCutListElement Interface

Determines if the element is null.
HRESULT IsNull{void);
Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.

S FALSE Element is not null.

S OK Success. The element is null.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contenta | niex | Wext |

[Prerious | Home | Topic Contents] index | Hext

IAMDevMemoryAllocator Interface

The IAMDevMemoryAllocator interface enables the creation of third-party memory allocators
by using an on-board memory manager object. Many codec hardware manufacturers put on-
board mapped memory for the codecs to improve the efficiency of buffer manipulation. This
interface allocates that memory and provides the GetDevMemoryObject method to retrieve a
device memory control object, which supports the IAMDevMemoryControl interface. Devices
that share the same device ID can use the memory.

The global memory manager object exposes this interface to allocate memory from memory
that is on a particular device.

When to Implement

Implement this interface when your pin must support the creation of on-board memory
allocators. Source filters that are aware of on-board memory and need to create their own
allocators should query for this interface, request an amount of memory and then create an

445

DirectShow COM Interfaces Page 35 of 638

allocator (aggregating the device memory control object). Source filters that don't need to
create their own allocator could just use the allocator of the downstream pin (which also
aggregates the device memory control object). The hardware-based filter can confirm the
usage of its on-board memory by calling methods on the aggregated allocator.

When to Use

Use this interface when applications need to control the memory of codecs with on-board
memory.

Methods in Vtable Order
IUnknown methods Description

QueryInterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMDevMemoryAllocator Description

methods

Getlnfo Retrieves information about the memory capabilities.

CheckMemory Tests whether a memory pointer was allocated by the specific
instance (device) of the allocator.

Alloc Allocates a memory buffer.

Free Frees the previously allocated memory.

GetDevMemoryObject Retrieves an IUnknown interface pointer to a device memory
control object that can be aggregated with a custom
allocator.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[prerious | Home | Topic Contents] index | Hext
[Previons | Home | Topic Contente] index | Hext

IAMDevMemoryAllocator::Alloc

IAMDevMemoryAllocator Interface
Allocates a memory buffer.
HRESULT Alloc(

BYTE **ppBuffer,

DWORD *pdwchBuffer

);

Parameters

ppBuffer

446

DirectShow COM Interfaces Page 56 of 638

[out] Address of a pointer to the allocated memory buffer.

pdwcbBuffer
[in, out] For input, the number of bytes to allocate. For output, the number of actual
bytes allocated.

Return Values

Returns 5 OK if the desired quantity of memory was allocated, S FALSE if memory was
unavailable.

Remarks
Call this method to allocate a block of memory from the available pool.
See Also

IAMDevMemoryAllocator: :Free

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | miex | ext _
[Previous | Home | Topio Contents | miex | ext

IAMDevMemoryAllocator::CheckMemory

IAMDevMemoryAllocator Interface

Tests whether a memory pointer was allocated by the specific instance (device) of the
allocator.

HRESULT CheckMemory({
const BYTE *pBuffer
);

Parameters

pBuffer
[in] Pointer to the allocated memory buffer's address.

Return Values

Returns 5 OK if the on-board allocator allocated the memory, or S FALSE if not. Memory that
is on the particular device but not allocated will also return $ FALSE.

Remarks

447

DirectShow COM Interfaces Page 57 of 638

The hardware filter typically uses this method to test whether the pointer actually points to on-
board memory.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | ome | Topie Contents | miex | ext

IAMDevMemoryAllocator::Free

IAMDevMemoryAllocator Interface
Frees the previously allocated memory.
HRESULT Free{

BYTE *pBuffer

)

Parameters

pBuffer
[in] Pointer to the allocated memory.

Return Values

Returns E _INVALIDARG if the specified allocator didn't allocate the memory (that is,
CheckMemory fails).

Remarks
This method frees a block of memory from the pool.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[previous | Home] topie Contents | imiex | Wext |

IAMDevMemoryAllocator::GetDevMemoryObject

IAMDevMemoryAllocator Interface

Retrieves an IUnknown interface pointer to a device memory control object that can be
aggregated with a custom allocator.

448

DirectShow COM Interfaces Page 38 of 638

HRESULT GetDevMemoryObject(
IUnknown **ppUnkinnner,
IUnknown *pUnkQOuter

);
Parameters

ppUnkInnner
[out] Address of a pointer to the newly created control object's own IUnknown. This inner
IUnknown interface should be released when the outer object is destroyed. The custom
allocator should call the QueryInterface method on this pointer to obtain the
IAMDevMemoryControl interface.

pUnkQuter
[in] Pointer to the custom allocator's own IUnknown interface. This interface aggregates
the device memory control object inside the custom allocator.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

The device memory control object is necessary to aggregate with the custom allocator,
because renderers that require the use of on-board memory will query for
IAMBevMemoryControl when they receive a new allocator, to verify that the memory is from
the same device. This occurs because the hardware filter will receive an IMemAllocator object,
which might or might not use the on-board memory. To decide if it is a compatible allocator,
the object would query for the IAMDevMemoryControl interface to access specific methods.
The IAMDevMemoryControl creates an aggregated object that implements the methods of
IAMDevMemoryControl (these are often hardware-specific).

See COM documentation for rules on how the outer object implements aggregation.

& 1997 Microsoft Corporation. All rights reserved. Terms of Use,

[Previous | Home | Topic Contents | iniex | Hext

IAMDevMemoryAllocator::GetInfo

IAMDevMemoryAllocator Interface

Retrieves information about the memory capabilities.

HRESULT GetInfo(
DWORD *pdwchTotalFree,
DWORD *pdwcblLargestFree,
DWORD *pdwcbTotalMemory,
DWORD *pdwcbMinimumChunk

449

DirectShow COM Interfaces Page 39 of 638

);
Parameters

padwcbTotalFree
[out] Total free memory size.
pdwcblargestFree
[out] Retrieves the largest free memory size.
pdwcbTotalMemory
[out] Retrieves the total memory size.
padwcbMinimumChunk
[out] Retrieves the minimum chunk size, giving granularity and alignment rules.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Use this method to find out the total amount of memory available. This method returns values
for the entire on-board memory that is available on that device. If multiple filters (devices)
share the memory, it will return the amount available to that specific device, which might be a
portion of the total amount of on-board memory. This amount will be implementation-specific.
For example, the on-board memory manager on the codec might be able to access all 32
megabytes (MB) of memory on the card. However, individual pin implementations of
IAMDevMemoryAllocator only report a portion of this memory.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[prerious | Home | Topic Contents] index | Hext
Previons | Home | Topic Content] index | Hext

IAMDevMemoryControl Interface

The IAMDevMemoryControl interface controls and identify the on-board memory of codecs.
A device memory control object supports this interface. This object is aggregated with an
IMemAllocator object that is used in the connection. Typically, filters will call the
IAMBevMemoryAllocator: :GetDevMemoryObject method to obtain a pointer to this interface.

When to Implement

Implement this interface with the IAMDevMemoryAllocator interface when pins need to have
greater control of memory allocation.

When to Use

Use this interface to synchronize the completed data write of a memory allocator, and to get

450

DirectShow COM Interfaces Page 60 of 638

the device ID of the on-board memory allocator.

Methods in Vtable Order
IUnknown methods Description

QueryInterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMDevMemoryControl Description

methods

QueryWriteSync Checks if the memory supported by the allocator requires the
use of the WriteSync method.

WriteSync Used to synchronize with the completed write. This method

returns when any data being written to the specified allocator
region is fully written into the memory.
GetDevld Retrieves the device ID of the on-board memory allocator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[previous | Home | fopic Contents | insex | Hext
[Previous | Home | Topic Contents | iniex | Next _

IAMDevMemoryControl::GetDevid

IAMDevMemoryControl Interface

Retrieves the device ID of the on-board memory allocator.
HRESULT GetDeviId(

DWORD *pdwDeviId

);

Parameters

pdwDevId
[out] Pointer to the device ID.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

This method retrieves a unique ID that the hardware filter can use to verify that the specified
allocator passed uses its on-board memory (because there can be more than one). The 1D will
be the same one as used to create the allocator object (using CoCreateNamedInstance). For

451

DirectShow COM Interfaces Page 61 of 638

another filter to be able to use the on-board memory, it must have the same device ID as the
on-board memory allocator.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext

IAMDevMemoryControl::QueryWriteSync

IAMDevMemoryControl Interface

Checks if the memory supported by the allocator requires the use of the
IAMDevMemoryControl: :WriteSync method.

HRESULT QueryWriteSync();

Return Values

Returns S OK if the method is required, or S FALSE otherwise.
Remarks

Not all on-board memory needs to have WriteSync called to synchronize with the completed
write. This method is used to check if the call is necessary.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex | ext

IAMDevMemoryControl::WriteSync

IAMDevMemor ntrol Interf.

Used to synchronize with the completed write. This method returns when any data being
written to the particular allocator region is fully written into the memory.

HRESULT WriteSync();
Return Values

Returns an HRESULT value that depends on the implementation of the interface. Common
return values include:

452

DirectShow COM Interfaces Page 62 of 638

Value Meaning
E FAIL A time-out has occurred without confirming that data was written.
S OK Operation proceeded normally.

VFW E NOT COMMITTED The allocator hasn't called the IMemAliocator: :Commit method.

Remarks

This method guarantees that all prior write operations to allocated memory have succeeded.
Subsequent memory write operations require another call to WriteSync.

This method is implementation dependent, and is used (when necessary) to synchronize
memory write operations to the memory. The driver of the on-board memory provides the
implementation.

The IAMDevMemoryControl interface is typically found on memory that is accessed through a
PCI-bridge. Memory behind a PCI bridge must be synchronized after a memory write operation
completes if another device will access that memory from behind the PCI bridge. This is
because the host access to the memory is buffered via the PCI bridge FIFO (first in first out),
and the host will think the write is completed before the bridge actually writes the data. A
subsequent action by a device behind the bridge, such as a SCSI controller, might read the
memory before the write is completed if the IAMDevMemoryControl::WriteSync method is
not called.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topio Contents | miex | ext _

IAMDirectSound Interface

The IAMDirectSound interface provides access from Microsoft® DirectShow™ to Microsoft
DirectX™ audio interfaces, such as IDirectSound and IDirectSoundBuffer. This enables you to
play back the audio portions of DirectShow-compatible media files anywhere within the 3-D
space of a DirectX application, making your applications much more absorbing and lifelike.

After you connect the media source file to a sound renderer ¢on a filter graph, you can use
DirectSound's functionality to position or manipulate the sound playback as needed. For more
information on the relevant DirectSound interfaces and methods, see the DirectX SDK
documentation. After you finish with an interface you obtained through IAMDirectSound, be
sure to release it by calling the appropriate method. If you disconnect the sound renderer from
the graph before releasing the interfaces, your application might fail.

The DSound Audio Renderer filter implements this interface.

Note Only the GetWindowFocus and SetWindowFocus methods are currently implemented for
this interface.

When to Implement

453

DirectShow COM Interfaces Page 63 of 638

This interface is implemented by the DSound Audio Renderer filter.

When to Use

The DSound Audio Renderer filter uses this interface; it is not intended for other uses.

Methods in Vtable Order
IUnknown methods Description

QuerylInterface Returns pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMDirectSound methods Description

GetDirectSoundInterface Retrieves a handle to the current sound device's
IDirectSound interface. Not currently implemented.

GetPrimaryBufferInterface Retrieves a handle to the current sound device's primary
sound buffer. Not currently implemented.

GetSecondaryBufferInterface Retrieves a handle to the current sound device's secondary
sound buffer. Not currently implemented.

ReleaseDirectSoundInterface Releases the current sound device's IDirectSound interface.

Not currently implemented.

ReleasePrimaryBufferinterface Releases the current sound device's primary sound buffer.
Not currently implemented.
ReleaseSecondaryBufferInterface Releases the current sound device's secondary sound buffer.
Not currently implemented.

SetWindowFocus Sets the window that will handle sound playback for the
current media file.
GetWindowFocus Retrieves the window that is handling sound playback for the

current media file.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | Topio Contents | index | Hext |

Previous | Home | Topic Contents | iniex | Hext

IAMDirectSound::GetDirectSoundInterface

IAMDirectSound Interface

Retrieves a handle to the current sound device's IDirectSound interface. Not currently
implemented.

HRESULT IAMDirectSound::GetDirectSoundInterface(
LPDIRECTSOUND */pipds

454

DirectShow COM Interfaces Page 64 of 638

);
Parameters

iplpds

Address of a pointer to an IDirectSound interface that will point to the current sound
device's interface.

Return Values

Returns one of the following values.

Value Meaning

E FAIL No sound device is available.
E INVALIDARG The Ipipds parameter is null.
E NOTIMPL DirectSound isn't installed.
NOERROR The method succeeded.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

" Previous | ome | Topio Contents] index | next
Pretious | Home | Topic Contents] index | Hext

IAMDirectSound::GetPrimaryBufferInterface

IAMDirectSound Interface

Retrieves a handle to the current sound device's primary sound buffer. Not currently
implemented.

HRESULT IAMDirectSound::GetDirectSoundInterface(
LPDIRECTSOUNDBUFFER *ipipdsb

);
Parameters

Ipipdsh
Address of a pointer to an IDirectSoundBuffer interface that will point to the current
sound device's primary sound buffer.

Return Values

Returns one of the following values.

455

DirectShow COM Interfaces Page 65 of 638

Value Meaning

E FAIL No sound device is available.
E INVALIDARG The Ipipdsh parameter is null.
E NOTIMPL DirectSound isn't installed.
NOERROR The method succeeded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Contents] index | Hext

IAMDirectSound::GetSecondaryBufferInterface

IAMDir nd Interf

Retrieves a handle to the current sound device's secondary sound buffer. Not currently
implemented.

HRESULT IAMDirectSound::GetSecondaryBufferInterface(
LPDIRECTSOUNDBUFFER */p/lpdsb

);
Parameters
iplpdsb

Address of a pointer to an IDirectSoundBuffer interface. On exit, it will point to the
current sound device's secondary sound buffer.

Return Values

Returns one of the following values.

Value Meaning

E FAIL No sound device is available.
E INVALIDARG The Ipipdsb parameter is null.
E NOTIMPL DirectSound isn't installed.
NOERROR The method succeeded.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contente | niex | Wext |

[Pretious | Home | Topic Contents] index | Hext

456

DirectShow COM Interfaces Page 66 of 638

IAMDirectSound::GetWindowFocus

IAMDir nd Interf
Retrieves the window that is handling sound playback for the current media file.

HRESULT IAMDirectSound::GetWindowFocus(
HWND* hWnd,
BOOL bMixingOnOrOff
);

Parameters

hWnd
Handle to the sound playback window. If this value is null, the sound isn't associated
with a window; note that Windows NT 4.0 does not currently support windowless sound
playback.

bMixingOnOrOff
Value indicating whether to mix the sound (TRUE) or not (FALSE).

Return Values

Returns one of the following values.

Value Meaning

E FAIL No sound device is available.
E INVALIDARG The hWnd argument is invalid.
E NOTIMPL DirectSound isn't installed.
NOERROR The method succeeded.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

Previous | Home | Topic Contents | iniex | Hext _

[Previoss | ome | Topie Contents | miex | ext _

IAMDirectSound::ReleaseDirectSoundInterface

IAMDirectSound Interface

Releases the current sound device's IDirectSound interface. Not currently implemented.

HRESULT IAMDirectSound::ReleaseDirectSoundInterface(
LPDIRECTSOUND /pds

457

DirectShow COM Interfaces Page 67 of 638

);
Parameters

lpds
Pointer to the IDirectSound interface to release.

Return Values

Returns one of the following values.

Value Meaning
E FAIL There are no references to the specified IDirectSound interface, so it can't be
released.

E INVALIDARG The /pds parameter is null.
NOERROR The method succeeded.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

" prerious | ome | Topic Contents] index | hext
" Prerious | Home | Topic Contents] index | Hext

IAMDirectSound::ReleasePrimaryBufferinterface

IAMDirectSound Interface

Releases the current sound device's primary sound buffer. Not currently implemented.

HRESULT IAMDirectSound::ReleasePrimaryBufferInterface(
LPDIRECTSOUNDBUFFER /pdsb
);

Parameters

ipdsh
Pointer to the IDirectSoundBuffer interface to release.

Return Values

Returns one of the following values.
Value Meaning

E FAIL There are no references to the specified IDirectSoundBuffer interface, so it
can't be released.

E_INVALIDARG The lpdsb parameter is null.
NOERROR The method succeeded.

458

DirectShow COM Interfaces Page 68 of 638

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | miex | ext _

[previous | Home] Topie Contents | imiex | Wext |

IAMDirectSound::ReleaseSecondaryBufferInterfa

IAMDir nd Interf

Releases the current sound device's secondary sound buffer. Not currently implemented.
HRESULT IAMDirectSound::ReleaseSecondaryBufferInterface(
LPDIRECTSOUNDBUFFER /pdsb
);

Parameters

ipdsb
Pointer to the IDirectSoundBuffer interface to release.

Return Values

Returns one of the following values.
Value Meaning

E FAIL There are no references to the specified IDirectSoundBuffer interface, so it
can't be released.

E_INVALIDARG The lpdsb parameter is null.
NOERROR The method succeeded.

& 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home | topie Contents | niex | wext |

[Prerious | Home | Topic Contents] index | Hext

IAMDirectSound::SetWindowFocus

IAMDirectSound Interface

459

DirectShow COM Interfaces Page 69 of 638

Sets the window that will handle sound playback for the current media file.

HRESULT IAMDirectSound::SetWindowFocus(
HWND hlWnd,
BOOL bMixingOnOrOff
)

Parameters

hWnd
Handle to the sound playback window. If this value is null, the sound will not be
associated with any window, note that Windows NT 4.0 does not currently support
windowless sound playback.

bMixingOnOrOff
Value indicating whether to mix the sound (TRUE) or not (FALSE).

Return Values

Returns one of the following values.

Value Meaning

E FAIL No sound device is available.
E INVALIDARG The hlWnd argument is invalid.
E NOTIMPL DirectSound isn't installed.
NOERROR The method succeeded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext
[Previons | Home | Topic Content] index | Hext

IAMDroppedFrames Interface

The IAMDroppedFrames interface provides information to an application from a capture filter
about frames that the filter dropped (that is, did not send), the frame rate achieved (the
fength of time the graph ran divided by the number of frames not dropped), and the data rate
achieved (the length of time the graph ran divided by the average frame size). A high number
of dropped frames can detract from the smoothness of the video clip.

When to Implement
A capture filter's video output pin should always implement this interface.

When a capture filter runs, it sends frame numbers beginning with the sequence 0, 1, 2, 3
{numbers will be missing if frames were dropped). The time stamp of each frame sent
corresponds to the filter graph clock's time when the image was digitized. The end time is the

460

DirectShow COM Interfaces Page 70 of 638

start time plus the video frame's duration.

Set the media time of each sample by using CMediaSample: :SetMediaTime and using frame
numbers for the start and end times. For example, the start-time and end-time sequence
might appear as follows: (0,1) {(1,2) (2,3). A downstream filter can easily tell that a frame was
dropped by checking for gaps in the frame number sequence rather than by looking for gaps in
the regular time stamps. The following start-time and end-time sequence reveals that frame
number 3 was dropped: (1,2) (2,3) (4,5) (5,6).

Every time a capture filter goes from State Stopped to State Paused, it should reset all counts
to zero.

If your filter runs, pauses, and then runs again, you must continue to deliver frames as if it
never paused. The first frame after the second run can't be time stamped earlier than the last
frame sent before the pause. That is, your filter must always increment the media time of each
sample sent. Never send the same frame number twice, and never go back in time.

When to Use

Applications should use this interface all the time when capturing to update the current
capture status. After capturing is done, applications should use this interface to determine the
final capture results.

If you are using a WDM video capture filter, you can only query an output pin for this interface
if the capture filter is connected to another filter in the graph.

Methods in Vtable Order
IUnknown methods Description

QuerylInterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMDroppedFrames Description

methods

GetNumbDropped Retrieves the total number of frames that the pin dropped since
it last started streaming.

GetNumNotDropped Retrieves the total number of frames that the pin delivered
downstream (did not drop).

GetDroppedInfo Retrieves an array of frame numbers that were dropped.

GetAverageFrameSize Retrieves the average size of frames that were not dropped.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[previous | Home] Topie Contents | imiex | Wext |
[Previous | Home] topic Conients | imiex | Wext |

IAMDroppedFrames::GetAverageFrameSize

461

DirectShow COM Interfaces Page 71 of 638

IAMDroppedFrames Interface

Retrieves the average size of frames that the pin dropped.

HRESULT GetAverageFrameSize(
long * plAverageSize);

Parameters

plAverageSize
[out, retval] Average size of frames sent out the pin since the pin started streaming, in
bytes.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[previous | Home | fopio Contents | ndex | Hext |

IAMDroppedFrames::GetDroppedInfo

IAMDr Frames Interf,
Retrieves an array of frame numbers that the pin dropped.

HRESULT GetDroppedInfo(
long /Size,
long * plArray,
long * piNumCopied);

Parameters

iSize
[in] Requested number of elements in the array.

DlArray
[out] Pointer to the array.

piNumCopied
[out, retval] Pointer to the number of array elements filled in. This number can differ
from ISize because the filter determines an arbitrary number of elements to save and it
might not save this information for as many frames as you requested.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

462

DirectShow COM Interfaces Page 72 of 638

Remarks

The filter will fill the array with the frame numbers of up to the first /1Size number of frames
dropped, and it will set piNumCopied accordingly.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topio Contents | imiex | hext _
[Previous | Home | Topic Contents | insex | Hext _

IAMDroppedFrames::GetNumDropped

IAMDroppedFrames Interface

Retrieves the total number of frames that the pin dropped since it last started streaming.

HRESULT GetNumDropped(
long * plDropped);

Parameters

piDropped
[out] Pointer to the total number of dropped frames.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | opio Contents | ndex | Hext |

IAMDroppedFrames::GetNumNotDropped

IAMDr Frames Interf
Retrieves the total number of frames that the pin delivered downstream (did not drop).
HRESULT GetNumNotDropped(

long * piNotDropped);

463

DirectShow COM Interfaces Page 73 of 638

Parameters

piNotDropped
[out] Pointer to the total number of frames that weren't dropped.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | miex § Hext _

IAMExtDevice Interface

The IAMExtDevice interface is the base interface for controlling external devices. Developers
can implement this interface to control numerous types of devices; however, the current
DirectShow implementation is specific to VCRs. The IAMExtDevice interface controls general
settings of external hardware and is intended to be used in combination with the
IAMExtTransport interface, which controls a VCR's more specific settings. You can also
implement the [AMTimecodeReader, IAMTimecodeGenerator, and IAMTimecodeDisplay
interfaces if your filter manages SMPTE (Society of Motion Picture and Television Engineers)
timecode, and the external device has the appropriate features.

For a description of a sample filter which controls a VCR through DirectShow, see Vcrctrl

Sample (VCR Control Filter).

When to Implement

Implement this interface when you want to build a filter or application that controls an external
device, such as a VCR. Because this interface controls general information about a device,
implement the IAMExtTransport interface in addition to control the external device's more
specific properties.

An application can directly instantiate and control external devices, such as VCRs, but it is
strongly recommended that you always instantiate these devices within the context of a filter
graph, even if they are the only filters within the graph.

When to Use
Use this interface when you want to add external device control to your application.

Applications should use the filter graph to enumerate the filters and then get the IAMExtDevice
interface directly from the appropriate filter.

Hardware Requirements

To control an external VCR, certain hardware requirements are recommended. VCRsS with an

464

DirectShow COM Interfaces Page 74 of 638

RS-422 serial interface require a special serial port card or an external R$-232-to-R5-422
adapter. In addition, for best performance, your computer should have a serial port card built
with a 16,550 high-performance UART (Universal Asynchronous Receiver/Transmitter) to
sustain higher baud rates, such as 38.4 baud.

Methods in Vtable Order
IUnknown Methods Description

Queryinterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMExtDevice Methods Description

GetCapability Retrieves the capabilities of the external device.

get ExternalDevicelD Retrieves the model number of the external device.

get ExternalDeviceVersion Retrieves the version number of the external device's operating
software.

put DevicePort Specifies the communication port to which the external device is
connected.

get DevicePower Retrieves whether the external device's power mode is on, off, or
standby.

put DevicePower Sets the external device's power mode to on, off, or standby.

Calibrate Calibrates the external device's transport mechanism.

get DevicePort Retrieves the communication port to which the external device is
connected.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topie Contents | miex | ext

previous | Home | topie Contenta | niex | Wext |

IAMExtDevice::Calibrate

IAMExtDevice Interface

Calibrates an external device's transport mechanism.
HRESULT Calibrate(

HEVENT hEvent,

long Mode,

long *pStatus);
Parameters

hEvent
[in] Event used to signal completion of this process.

465

DirectShow COM Interfaces Page 75 of 638

Mode
[in] Value that activates or deactivates the calibration process. Specify one of the
following:
Value Meaning
ED ACTIVE Activates calibration process.
ED_INACTIVE Deactivates calibration process.
NULL Used to determine if current status is active or inactive.
pStatus

[out] Value indicating whether an event is active (OATRUE) or inactive (OAFALSE).

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Use this method on certain external devices that require calibration; for example, when
rewinding a tape and resetting the counter, or computing the frame offset for a timecode
reader or generator.

Filters for various external devices can implement this method differently, depending on the
calibration that the device needs. This method assumes the IMediaEventSink interface has
already established an event sink, or that ancther event signaling method has been
established.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topio Contents | imiex | ext _
[previous | Home | fopic Contents | intex | Hext _

IAMExtDevice::GetCapability

IAMExtDevice Interface

Retrieves the capabilities of the external device.

HRESULT GetCapability(
long Capability,
long *pValue,
double *pdbiValue);

Parameters
Capability

[in] Value that specifies which capability you want to check. This parameter must be one
of the following values.

466

DirectShow COM Interfaces Page 76 of 638

Value Meaning
ED DEVCAP CAN RECORD Checks whether transport can record.
ED DEVCAP CAN RECORD STROBE Checks whether transport can single-frame record.
ED DEVCAP CAN SAVE Checks whether transport can save data.
ED DEVCAP DEVICE TYPE Checks the external device type.
ED_DEVCAP_HAS_AUDIO Checks whether transport has audio.
ED_DEVCAP_HAS_VIDEO Checks whether the device has video.
ED_DEVCAP_USES_FILES Checks whether transport has a built-in file
system.
pValue

[out] Value indicating the capabilities of the property specified in the Capability
parameter. Returns OATRUE if the property is supported or OAFALSE if the property is
not supported for all properties except ED DEVCAP DEVICE TYPE. In this case, returns
one of the following:

Value Meaning

ED DEVTYPE ATR Audio Tape Recorder

ED DEVTYPE CG Character Generator

ED DEVTYPE DDR Digital Disc Recorder

ED DEVTYPE DVE Digital video effects unit

ED DEVTYPE GPI General purpose interface trigger
ED DEVTYPE_KEYER Video keyer

ED_DEVTYPE LASERDISK Laser disc
ED_DEVTYPE_MIXER_AUDIO Audio mixer
ED_DEVTYPE_MIXER_VIDEO Video mixer

ED DEVTYPE ROUTER Video router

ED DEVTYPE TBC Timebase corrector

ED DEVTYPE TCG Timecode generator/reader
ED_DEVTYPE_VCR VCR

ED DEVTYPE WIPEGEN Video wipe generator
ED_DEVTYPE_JOYSTICK Joystick
ED DEVTYPE KEYBOARD Keyboard

pdblValue

[out] Value indicating the capabilities of the specified property (if it is a double value).
Pass NULL if not in use.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

All return values are in pValue unless you have large or floating point values to return, in
which case they are returned in the pdbiValue parameter.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topie Contents | miex | hext

467

DirectShow COM Interfaces Page 77 of 638

" previous | Home | Topio Contents | index | Hext |

IAMExtDevice::get_DevicePort

IAMExtDevice Interface
Retrieves the communication port to which the external device is connected.

HRESULT get_DevicePort(
long *pDevicePort);

Parameters

pDevicePort
[in] Port to which the device is connected. Retrieves one of the following:
Value Meaning

DEV_PORT 1394 IEEE 1394 Bus
DEV_PORT_ARTI ARTI driver
DEV_PORT_COM1 COM1
DEV_PORT_COMZ2 COM2
DEV_PORT_COM3 COM3
DEV_PORT_COM4 COM4

DEV_PORT DIAQ Diaquest driver
DEV_PORT SIM Simulation port
DEV_PORT_USB Universal Serial Bus

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtDevice: put DevicePort

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home] topie Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

IAMExtDevice::get_DevicePower

468

DirectShow COM Interfaces Page 78 of 638

IAMExtDevice Interface

Retrieves the external device's power mode: on, off, or standby.

HRESULT get_DevicePower({
long *pPowerMode);

Parameters
pPowerMode
[out] External device's power mode; can be one of the following values.
Value Meaning
ED POWER OFF Off
ED_POWER_ON On

ED_POWER_STANDBY Standby
Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtDevice: :put DevicePower

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Contents] index | Hext

IAMExtDevice::get_ExternalDevicelD

IAMExtDevice Interface
Retrieves the model number of the external device.

HRESULT get_ExternalDevicelID(
LPOLESTR *ppszData };

Parameters

ppszData
[out] Returns the manufacturer-specific identification number or text as a string.

469

DirectShow COM Interfaces Page 79 of 638

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home | topie Contente | niex | Wext |

IAMExtDevice::get_ExternalDeviceVersion

IAMExtDevice Interface

Retrieves the version number of the external device's operating software.

HRESULT get_ExternalDeviceVersion(
LPOLESTR *ppszData);

Parameters

ppszData
[out] Returns the manufacturer-specific operating software version number from the
external device.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | Home | Topie Contents | miex | ext _

IAMExtDevice::put_DevicePort

IAMExtDevice Interface

Specifies the communication port to which the external device is connected.
HRESULT put_DevicePort{
long DevicePort

);

Parameters

470

DirectShow COM Interfaces Page 80 of 638

DevicePort
[in] Port to which the device will connect. Specify one of the following:
Value Meaning

DEV_PORT_1394 IEEE 1394 Bus

DEV PORT ARTI ARTI driver

DEV _PORT COM1 COM1

DEV_PORT COM2Z2 COM2

DEV_PORT COM3 COM3

DEV_PORT COM4 COM4

DEV PORT DIAQ Diaquest driver

DEV PORT MIN DEV PORT SIM

DEV_PORT SIM Simulation port (used for "no hardware" simulation)
DEV_PORT USB Universal serial bus

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

See Also
IAMExtBevice. :get DevicePort

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topio Contents | imiex | Next _
[Previoss | Home | Topic Contents | intex | Hext _

IAMExtDevice::put_DevicePower

IAMExtDevice Interface

Sets the external device's power mode to either on, off, or standby.

HRESULT put_DevicePower(
long PowerMode);

Parameters

PowerMode
[in] Value indicating which power mode the device will have. Set to one of the following:

471

DirectShow COM Interfaces Page 81 of 638

Value Meaning
ED POWER OFF Off
ED POWER ON On

ED POWER STANDBY Standby
Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtDevice: .get DevicePower

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Uss.

" prerions | ome | Topis Contents] index | next
" Prerious | Home | Topic Contents] index | Hext -

IAMExtTransport Interface

The IAMExtTransport interface provides methods which control specific behaviors of an
external VCR. These methods generally set and get the transport properties which relate to
how the VCR and the computer exchange data. Since this interface controls specific behaviors
of transport, it must be implemented in combination with the IJAMExtDevice interface, which
controls an external device's general behaviors. If you want to control an external device other
than a VCR, two options are available. Either use the methods you need and return E NOTIMPL
for the rest, or design a new interface and aggregate it with IAMExtDevice.

This interface also provides methods that enable develpopers to define edit events which assist
in the content authoring process. Edit events are made up of individual edit properties that are
grouped together into edit property sets. These edit property sets can define an actual
recording sequence on the transport or a simple positional command. They can, for example,
specify certain modes of editing, record inpoints and outpoints, or memorize positions called
bookmarks. The SetEditPropertySet method creates or registers a group of edit properties,
called an edit property set, while the SetEditProperty enables the application to define
parameters and values of individual edit properties. Since these are relatively sophisticated
situations, their implementation is left to the advanced developer.

For a description of a sample filter which controls a VCR through DirectShow, see Vcrctrl
Sample (VCR Control Filter).

When to Implement

Implement this interface if you want to build a filter or application that controls an external
device, such as a VCR. Because this interface controls specific information about a device, you
should implement it with the IAMExtDevice interface.

472

DirectShow COM Interfaces Page 82 of 638

An application can directly instantiate and control external device control filters, such as those
for VCRs, but it is strongly recommended that you always instantiated them within the context
of a filter graph, even if they are the only filter within the graph.

Implementations can vary depending on the type of external device being controlled. With
certain devices, methods can return E_NOTIMPL if they are not applicable.

When to Use

Use this interface if you want a filter to control video and audio tape machines that are
external to the computer. Typical uses for this interface include the applications that
implement "batch capture” and "print to tape” of audio and video.

Applications should use the filter graph to enumerate the filters and then get the
IAMExtTransport interface directly from the appropriate filter.

Hardware Requirements

To control an external VCR, certain hardware requirements are recommended. VCRs with an
RS-422 serial interface require a special serial port card or an external RS-232-to-RS-422
adapter. In addition, for best performance, your computer should have a serial port card built
with a 16,550 high-performance UART to sustain higher baud rates, such as 38.4 baud.

Methods in Vtable Order
IUnknown methods Description

Queryinterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMExtTransport methods Description

GetCapability Retrieves the general capabilities of an external transport.

put MediaState Sets the current state of the media.

get MediaState Retrieves the current state of the media.

put_LocalControl Sets the state of the external device to local or remote control.
LocalControl Retrieves the state of the external device.

GetStatus Determines the status of the external transport.

GetTransportBasicParameters Retrieves the external transport's basic parameter settings.
TransportBasicParameters Sets the external transport's basic parameters.
GetTransportVideoParameters Retrieves the external transport's video parameter settings.
SetTransportVideoParameters Sets the video parameters for the external transport.
GetTransportAudioParameters Retrieves the external transport's audio parameter settings.
SetTransportAudioParameters Sets audio parameter setting for the external transport.

put_Mode Sets the movement of the transport to a new mode (play, stop,
record, edit, and so on).

get Mode Retrieves the mode of the transport (play, stop, record, edit,
and so on).

put_Rate Sets the playback rate for variable-speed external devices.

get Rate Retrieves the playback rate set in put Rate for variable speed

external devices.

473

DirectShow COM Interfaces Page 83 of 638

GetChase Retrieves the status of chase mode.
SetChase Enables or disables chase mode.
GetBump Retrieves status of bump mode.
SetBump Temporarily changes the speed of playback for synchronization
of multiple external devices.
AntiCl ntrol Determines if the anti-headclog control is enabled or disabled.
AntiCl ntrol Enables or disables the transport's anti-headclog control.
GetEditPropertySet Retrieves the current state of an edit property set.
SetEditPropertySet Registers an edit property set that describes a group of edit
properties.
GetEditProperty Retrieves individual parameters and values associated with a
particular edit property set.
EditProper Defines individual parameters and values associated with a
particular edit property set.
get EditStart Determines if the external transport's edit control is active.
put_EditStart Activates edit control on a capable transport.

& 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext
[Previons | Home | Topic Contents | intex | Hext

IAMExtTransport::get_AntiClogControl

IAMExtTransport Interface

Determines if the anti-headclog control is enabled or disabled.

HRESULT get_AntiClogControl(
long *pEnabled);

Parameters

pEnabled
[out] OATRUE indicates anti-headclog is enabled; OAFALSE indicates disabled.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtTransport: :put_AntiClogControl

474

DirectShow COM Interfaces Page 84 of 638

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | miex | ext _

IAMExtTransport::GetBump

IAMExtTransport Interface

Retrieves the status of bump mode.
HRESULT GetBump(
long *pSpeed,
long *pDuration };
Parameters
pSpeed
[out] Temporary speed (a multiple of normal speed).
pDuration
[out] Pointer to the duration of a bump in current time format.
Return Values
Returns an HRESULT value that depends on the implementation of the interface.

Remarks

This method will cause a temporary speed variation of transport used during the physical
synchronization process. It will stay in effect until pDuration time has expired.

See "IAMExtTransport Basic Parms” in DXMedia\Include\Edevdefs.h for supported time
formats.

See Also

IAMExtTransport: :SetBump

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Contents] index | Hext

475

DirectShow COM Interfaces Page 85 of 638

IAMExtTransport::GetCapability

IAMExtTransport Interface

Retrieves the general capabilities of an external transport.

HRESULT GetCapability(
long Capability,
long *pValue,
double *pdbiValue);

Parameters
Capability
[in] Capability to query for. Specify one of the following:
Value Meaning
ED TRANSCAP CAN BUMP_PLAY Checks whether transport can vary speed for

synchronizing.
ED TRANSCAP CAN DELAY AUDIO IN Checks whether transport does delayed-in

audio edits.
ED_TRANSCAP_CAN_DELAY AUDIO_OUT Checks whether transport does delayed-out
audio edits.
ED_TRANSCAP_CAN_DELAY VIDEO IN Checks whether transport does delayed-in
video edits.
ED_TRANSCAP_CAN_DELAY VIDEO OUT Checks whether transport does delayed-out
video edits.
ED TRANSCAP CAN EJECT Checks whether transport can eject its media.

ED TRANSCAP CAN PLAY BACKWARDS Checks whether transport can play media in
reverse (negative rate).

ED TRANSCAP CAN SET EE Checks whether transport can show its input
on its output.
ED TRANSCAP CAN SET PB Checks whether transport can show media

playback on its output.
ED TRANSCAP FWD VARIABLE MAX Maximum forward speed (multiple of play
speed) in pdblValue.
ED TRANSCAP LTC TRACK Track number of linear timecode (LTC) in
pValue.
ED TRANSCAP NUM_AUDIO TRACKS Number of audio tracks in pValue.
ED TRANSCAP REV VARIABLE MAX Maximum reverse speed (multiple of play
speed) in pdbiValue.
pValue
[out] Indicates whether the capability specified in Capability is supported or not. Returns
either OATRUE if it is supported or OAFALSE if not.
pdblValue
[out] Indicates the capabilities of the property specified in Capability.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

476

DirectShow COM Interfaces Page 86 of 638

Remarks
All OATRUE and OAFALSE values are returned in pValue, numerical values are returned in

pValue or pdbiValue. Use the pdbiValue parameter to return double values if the pValue
parameter is insufficient. Return NULL if one of the parameters is not needed.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | imiex | ext _
[Previous | Home | fopic Contents | intex | Hext _

IAMExtTransport::GetChase

IAMExtTransport Interface

Retrieves the status of chase mode.
HRESULT GetChase(
long *pEnabled,

long *pOffset,
HEVENT *phEvent);

Parameters

pEnabled

[out] OATRUE specifies chase enabled; OAFALSE specifies chase disabled.
pOffset

[out] Offset from the present time to which the transport will maintain while playing.
phEvent

[out] Pointer to the completion notification that will signal chase offset is established.
Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

The time for pOffset is given in the current time format (see "IAMExtTransport Basic Parms” in
DXMedia\Include\Edevdefs.h for supported time formats).

See Also

IAMExtTran and h

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

477

DirectShow COM Interfaces Page 87 of 638

" prerious | ome | Topic Contents] index | next
" Prerious | Home | Topic Contents] index | Hext

IAMExtTransport::GetEditProperty

IAMExtTransport Interface

Retrieves the parameters and values associated with a particular edit event.

HRESULT GetEditProperty{
long EditiD,
long Param,
long *pValue);

Parameters
EditiD
[in] Identification number of the edit property set.
Param
[in] Edit event parameter to determine the value of.
pValue
[out] Returns the value of the parameter specified in Param: OATRUE, OAFALSE, or a
specific value.
Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtTran ks s EditPr r

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | Home | Topio Contents | imiex | hext _
Previous | Home | Topic Contents | intex | Hext

IAMExtTransport::GetEditPropertySet

478

DirectShow COM Interfaces Page 88 of 638

IAMExtTransport Interface

Retrieves individual parameters and values associated with a particular edit property set.

HRESULT GetEditPropertySet(
long EditiD,
long *pState);

Parameters

EditID
[in] Identification number of the edit property set.
pState
[out] State of the edit property set. Retrieves one of the following:
Value Meaning
DC SET ACTIVE Activates edit property set.
DC SET DELETE Deletes edit property set.
DC SET INACTIVE Deactivates edit property set.
DC SET REGISTER Registers edit property set.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtTran rt:: EditPr r

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome] topie Contents | imiex | Wext |
[Previous | Home] topie Contents | imiex | Wext |

IAMExtTransport::get_EditStart

IAMExtTransport Interface

Determines if the external transport's edit control is active.

HRESULT get_EditStart(
long *pValue);

Parameters

pValue

479

DirectShow COM Interfaces Page 89 of 638

[out] Returns OATRUE if edit control is active; OAFALSE if inactive.
Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtTransport: :put EditStart

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome | Topio Contents | miex § ext

IAMExtTransport::get_LocalControl

IAMExtTransport Interface
Retrieves the state of the external device.

HRESULT get_LocalControl(
long *pState);

Parameters

pState
[out] Returns either OATRUE for local control or OAFALSE for remote.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.
Remarks

To control an external device, it must be in remote mode.

See Also

IAMExtTransport: :put LocalControl

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] index | Hext

480

DirectShow COM Interfaces Page 90 of 638

IAMExtTransport::get__MediaState

IAMExtTransport Interface

Retrieves the current state of the media set in put MediaState.

HRESULT get_MediaState(
long *pState);

Parameters

pState

[out] Returns the current state or the media. Values will be device specific but can
include the following:

Value Meaning

ED MEDIA SPIN DOWN Stop spinning (for disk media); unthread the tape (for tape
media).

ED MEDIA SPIN UP Start spinning (for disk media); thread the tape (for tape
media).

ED MEDIA UNLOAD Eject the media from the drive (if device supports it).
Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Contents] index | Hext

IAMExtTransport::get_Mode

IAMExtTransport Interface
Retrieves the mode of the transport (play, stop, record, edit, and so on).

HRESULT get_Mode(
long *pMode);

Parameters

pMode
[out] Current transport mode (see IAMExtTransport::put_Mode for possible modes).

481

DirectShow COM Interfaces Page 91 of 638

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home | topie Contente | niex | Wext |

IAMExtTransport::get_Rate

IAMExtTransport Interface

Retrieves the playback rate for variable-speed external devices.

HRESULT get_Rate(
double *pdblRate };

Parameters

pdblRate
[out] Pointer to the playback rate set in JAMExtTransport::put Rate.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | tHome | Topie Contents | miex | ext _

IAMExtTransport::GetStatus

IAMExtTransport Interface

Determines the external transport's status.

HRESULT GetStatus(
long Statusitem,
long *pValue);

Parameters

482

DirectShow COM Interfaces Page 92 of 638

Statusltem
[in] Item vou want to determine the status of; can include one of the following:
Value Meaning
ED MODE EDIT CUE Checks if device is cueing for an active edit event.
ED MODE FF Checks if device is fast forwarding.
ED MODE FREEZE Checks if device is paused.
ED MODE LINK OFF Checks if transport control isn't linked to filter graph's run,
stop, and pause controls.
ED MODE LINK ON Checks if transport control is linked to filter graph's run,
stop, pause controls.
ED MODE PLAY Checks if device is playing.
ED MODE RECORD Checks if device is recording.
ED MODE RECORD STROBE Checks if device is recording single-frame.
ED MODE REW Checks if device is rewinding.
ED MODE SHUTTLE Checks if device is shuttling (high-speed movement with
visible picture).
ED_MODE_STEP Checks if device is single-stepping.
ED MODE STOP Checks if device is stopped.
pValue

[out] Returns OATRUE if StatusItem is active or OAFALSE if not.
Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

When implementing this interface, be aware that transport StatusItemn parameters are more
extensive than most Microsoft® DirectShow™ interfaces and code should reflect this variety
and feel free to check the transport status of appropriate parameters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

IAMExtTransport::GetTransportAudioParameters

IAMExtTransport Interface

Retrieves audio parameter setting for external transport.

HRESULT GetTransportAudioParameters(

483

DirectShow COM Interfaces Page 93 of 638

long Param,
long *pValue);

Parameters

Param
[in] Audio parameter whose value you want to get. Specify one of the following:
Value Meaning

ED TRANSAUDIO ENABLE OUTPUT Audio output channel(s)
ED_TRANSAUDIO_ENABLE_RECORD Audio recording channel(s)
ED TRANSAUDIO ENABLE SELSYNC Audio selsync recording channel(s)
ED TRANSAUDIO SET MONITOR Monitor output audio channel(s)
ED_TRANSAUDIO_SET_SOURCE Audio source channel(s)

pValue

[out] Channel or channels set in the JAMExtTransport::SetTran rtAudioParam
method.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home] Topie Contents | imiex | Wext |
Previous | ome] topie Contents | imiex | Wext |

IAMExtTransport::GetTransportBasicParameters

IAMExtTransport Interface

Retrieves the transport's basic parameter settings.

HRESULT GetTransportBasicParameters(
long Param,
long *pValue,
LPOLESTR *ppszData);

Parameters

Param
[in] Parameter you want to receive the setting for {see Edevdefs.h for possible
parameters under "IAMExtTransport Basic Parms").
pValue
[out] Setting of the parameter if it is numeric.
ppszData
[out] Setting of the parameter if it is a string .

484

DirectShow COM Interfaces Page 94 of 638

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtTransport: :SetTransportBasicParameters

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home] Topie Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

IAMExtTransport::GetTransportVideoParameters

IAMExtTransport Interface

Retrieves video parameter settings for external transport.

HRESULT GetTransportVideoParameters(
long Param,
long *pValue);

Parameters

Param
[in] Video parameter you want to receive the settings for. Can be either
ED TRANSVIDEO SET OUTPUT (video transport output parameters) or
ED TRANSVIDEO SET SOURCE (video transport source).
pValue
[out] Set the ED_TRANSVIDEO_SET SOURCE flag to retrieve the active video input, or
set the ED_TRANSVIDEO_SET_OUTPUT flag to retrieve one of the following values:

Value Meaning
ED EZE Input video is visible on device's output regardless of transport mode.
ED OFF Video output is disabled.

ED PLAYBACK Video playing from media is displayed on the screen.
Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtTran i Tran rtVi Param r

485

DirectShow COM Interfaces Page 95 of 638

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home] topie Contents | imiex | Wext |
[previous | Home] Topie Contents | imiex | Wext |

IAMExtTransport::put_AntiClogControl

IAMExtTransport Interface
Enables or disables transport anti-headclog control.

HRESULT put_AntiClogControl(
long Enable);

Parameters

Enable
[in] Value indicating whether to enable anti-headclog control; set OATRUE to enable,
OAFALSE to disable.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Use this method to unclog video heads on VCRs that have an automatic head-cleaning feature.
See Also

get AntiClogControl

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] ndex | Hext

IAMExtTransport::put_EditStart

IAMExtTransport Interface

Activates the edit control on a capable transport.

486

DirectShow COM Interfaces Page 96 of 638

HRESULT put_EditStart(
long Value);

Parameters

Value
[in] OATRUE activates the edit control; OAFALSE deactivates it.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Use this method to manually enable edit control. Edit control is defined as the precise enabling
of individual, or a set of, record tracks on a VCR; for example, a video-only insert edit, where
only the video record head is enabled and a new video signal is recorded — the audio signal is
left as is. Use this method to control "on the fly" editing on machines that have this feature.

See Also

IAMExtTransport::get EditStart

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext

IAMExtTransport::put_LocalControl

IAMExtTransport Interface

Sets the state of the external device to local or remote control.

HRESULT put_LocalControl(
long State);

Parameters

State
[in] Current state; pass OATRUE for local, OAFALSE for remote.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.

See Also

487

DirectShow COM Interfaces Page 97 of 638

IAMExtTransport: :get LocalControl

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[previous | Home] Topie Contents | imiex | Wext |

IAMExtTransport::put_MediaState

IAMExtTransport Interface
Sets the current state of the media.

HRESULT put_MediaState(
long State);

Parameters
State
[in] Value specifying the state. Use one of the following:
Value Meaning
ED MEDIA SPIN DOWN Stop spinning (for disc media); unthread the tape (for tape
media).
ED MEDIA SPIN UP Start spinning (for disc media); thread the tape (for tape
media).

ED MEDIA UNLOAD Eject the media from the drive (if device supports it).

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Use the preceding parameters for disk and tape media. For other devices, you might need to
specify new parameters.

See Also

IAMExtTransport: :get MediaState

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Contents] index | Hext

488

DirectShow COM Interfaces Page 98 of 638

IAMExtTransport::put_Mode

IAMExtTransport Interface

Sets the movement of the transport to a new mode (play, stop, record, edit, and so on).

HRESULT put_Mode(
long Mode);

Parameters
Mode
[in] Transport mode. Specify one of the following:
Value Meaning
ED MODE_PLAY Play
ED_MODE_STOP Stop
ED MODE FREEZE Freeze {(pause)
ED MODE THAW Resume
ED MODE FF Fast forward
ED MODE REW Rewind
ED MODE RECORD Record
ED MODE RECORD STROBE Record single frame
ED MODE STEP Single step
ED MODE SHUTTLE Shuttle (high-speed movement with visible picture)
ED MODE EDIT CUE Cue for an edit event
ED MODE LINK ON Link this method to the graph's IMediaControl: :Run, Stop,
and Pause methods
ED MODE LINK_OFF Disengage this method from the graph's
IMediaControl::Run, Stop, Pause methods.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
See Also

IAMExtTransport: :get Mode

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] ndex | Hext
Previous | Home | Topic Contente] index | Hext

489

DirectShow COM Interfaces Page 99 of 638

IAMExtTransport::put_Rate

IAMExtTransport Interface

Sets the playback rate for variable-speed external devices.

HRESULT put_Rate(
double dbiRate);

Parameters

dbiRate
[in] Multiple of play speed where .5=half, 1=normal, 2=double, 3=triple and so forth.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

This method enables an application to speed up or slow down playback relative to the normal
default playback speed. A rate of 1.0 indicates normal playback speed. Specifying 2.0 causes
playback at twice the normal rate.

You can also link this method to the IMediaPosition::put Rate method as an alternate means
of setting rates of playback relative to normal speed.

See Also

IAMExtTransport: :get Rate

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | Home | Topie Contents | miex | ext _

IAMExtTransport::SetBump

IAMExtTransport Interface

Temporarily changes the speed of playback for synchronization of multiple external devices.

HRESULT SetBump(
long Speed,

490

DirectShow COM Interfaces Page 100 of 658

long Duration);
Parameters
Speed
[in] Temporary speed (a8 multiple of normal speed).

Duration
[in] Duration of a bump in current time format.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.
Remarks

This method will stay in effect until Duration time has expired.

See "IAMExtTransport Basic Parms” in DXMedia\Include\Edevdefs.h for supported time
formats.

See Also

IAMExtTransport: :GetBump

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Contents] index | Hext

IAMExtTransport::SetChase

IAMExtTransport Interface

Enables or disables chase mode.

HRESULT SetChase(
long Enable,
long Offset,
HEVENT hEvent);

Parameters
Enable
[in] Enables or disables chase. Specify OATRUE to enable chase; OAFALSE to disable.

Offset
[in] Offset from the time reference that the transport will maintain. Specify in current

491

DirectShow COM Interfaces Page 101 of 658

time format.
hEvent
[in] Event to signal offset established.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Use the SetChase method when you want an external transport to continuously follow a
timecode signal with a fixed offset. For example, if your computer is generating timecode, a
VCR capable of chasing can be told by the computer to put itself in play mode and keep its
media a fixed offset from the reference timecode. You determine the offset by comparing the
timecode on the playback media to the reference {(generated) timecode.

This method will stay in effect until canceled or complete and requires the filter to verify (by
periodically reading the transport's timecode) that the transport is indeed maintaining the fixed

offset.

Time for Offset is specified in current time format (see "IAMExtTransport Basic Parms” in
DXMedia\Include\Edevdefs.h for supported time formats).

See Also

IAMExtTransport: :GetChase

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topio Contents | imiex | ext _
[previous | Home | fopic Contents | intex | Hext _

IAMExtTransport::SetEditProperty

IAMExtTransport Interface

Defines individual parameters and values associated with a particular edit property set.
HRESULT SetEditProperty(

long EditiD,

long Param,

long Value);
Parameters

EditiD
[in] Identification number of the edit property set.

492

DirectShow COM Interfaces Page 102 of 658

Param
[in] Edit event parameter to define.

Value
[in] Value of the parameter specified in Param. Use OATRUE, OAFALSE, or a specific
value.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Edit events can either refer to a group of predefined properties that define an actual recording
sequence, or they can refer to simple positional commands. They can, for example, specify
certain modes of editing, record inpoints and outpoints, or memorize positions called
bookmarks. The SetEditPropertySet method defines and registers a group of edit events, called
an edit property set, while the SetEditProperty method enables the user to define parameters
and values of individual edit events.

To define a set of edit properties, first register an edit property set and get an EditID with the
SetEditPropertySet method. Then use the SetEditProperty method to define specific
parameters and values of individual edit properties. Finally, use the SetEditPropertySet
method to activate the edit property set.

For a complete listing of possible parameters and values for edit property sets see Edevdefs.h
in the DirectShow SDK's DXMedia\Include folder.

See Also

IAMExtTran (A EditPr r

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome] topic Gontents | imiex | Wext |
[Previous | Home] Topic Contents | imiex | Wext |

IAMExtTransport::SetEditPropertySet

IAMExtTransport Interface

Registers an edit property set that describes a group of edit properties.
HRESULT SetEditPropertySet({

long *pEditiD,

long State);

Parameters

493

DirectShow COM Interfaces Page 103 of 658

pEditiD
[in, out] Identification number of the edit property set.
State
[in] State of the edit property set. Specify one of the following:
Value Meaning
DC SET ACTIVE Activates edit property set.
DC SET DELETE Deletes edit property set.
DC_SET INACTIVE Inactivates edit property set.
DC SET REGISTER Registers edit property set.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Edit events refer to a group of predefined properties that define an actual recording sequence
on the transport or a simple positional command. They can, for example, specify certain modes
of editing, record inpoints and outpoints, or memorize positions called bookmarks. The
SetEditPropertySet method defines and registers a group of edit properties, called an edit
property set, while the SetEditProperty enables the user to define parameters and values of
individual edit event properties.

To define a set of edit properties, first register an edit property set and get an EditID with the
SetEditPropertySet method. Then use the SetEditProperty method to define specific
parameters and values of individual edit properties. Finally, use the SetEditPropertySet
method to activate the edit property set.

For a complete listing of possible parameters and values for edit property sets see Edevdefs.h
in the DirectShow SDK's DXMedia\Include folder.

See Also

IAMExtTransport: :GetEditPropertySet

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents] index | Hext
[Previous | Home | Topic Contente] index | Hext

IAMExtTransport::SetTransportAudioParameters

IAMExtTransport Interface

Sets audio parameter setting for external transport.

494

DirectShow COM Interfaces Page 104 of 658

HRESULT SetTransportAudicParameters(
long Param,
long Value);

Parameters

Param
[in] Audio parameter you want to set. Specify one of the following.
Value Meaning

ED TRANSAUDIO ENABLE OUTPUT Enable audio channel(s) for output.

ED TRANSAUDIO ENABLE RECORD Enable audio channel(s) for recording.

ED TRANSAUDIO ENABLE SELSYNC Enable audio channel(s) for selsync recording.
ED TRANSAUDIO SET MONITOR Set the monitor output source.

ED TRANSAUDIO SET SOURCE Set the active audio input.

Value
[in] Audio channel or channels to set the parameter on.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Specify an exact channel or channels in Value by selecting ED_AUDIO_1 through
ED AUDIO 24 (use an or switch to combine), or all channels by selecting ED_AUDIO_ALL.

See Also

IAMExtTransport: :GetTransportAudioParameters

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | Home | Topio Contente] index | Next
[prerious | Home | Topic Contents] ndex | Hext

IAMExtTransport::SetTransportBasicParameters

IAMExtTransport Interface

Sets basic parameters of external transport.

HRESULT SetTransportBasicParameters(
long Param,
long Value,

495

DirectShow COM Interfaces Page 105 of 658

LPCOLESTR pszData);
Parameters

Param
[in] Parameter you want to set {see Edevdefs.h for possible parameters under
"IAMExtTransport Basic Parms").
Value
[in] Setting of the parameter if it is numeric.
pszData
[in] Setting of the parameter if it is a string.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

Basic settings include time formats, record formats, preroll setting, servo setting, and others
{see Edevdefs.h).

See Also

IAMExtTran rt:: Tran rtBasicParam r

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topio Contents | imiex | Next _
[Previoss | Home | Topic Contents | intex | Hext _

IAMExtTransport::SetTransportVideoParameters

IAMExtTransport Interface

Sets video parameters for external transport.

HRESULT SetTransportVideoParameters{
long Param,
long Value);

Parameters

Param
[in] Video parameter you want to set. Specify either ED._TRANSVIDEO SET QUTPUT
(video transport output parameters) or ED_TRANSVIDEO SET SOURCE (video transport
source).

Value

496

DirectShow COM Interfaces Page 106 of 658

[in] Set the ED TRANSVIDEO SET SOURCE flag to set the active video input, or set the
ED TRANSVIDEQ SET OUTPUT flag to one of the following values.

Value Meaning
ED EZE Input video is visible on device's output regardless of transport mode.
ED OFF Video output is disabled.

ED_PLAYBACK Video playing from media is displayed on the screen.

Return Values
Returns an HRESULT value that depends on the implementation of the interface.
Remarks

For the ED TRANSVIDEQO SET SOURCE flag, an external device filter uses physical pins to
describe its inputs. Calls to the filter's pin enumerator will return an index value. The value is
passed to this method as its as its Value parameter.

See Also

IAMExtTransport: :GetTransportVideoParameters

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Prerious | Home | Topic Contents] index | Hext
Previons | Home | Topic Content] index | Hext

IAMFileCutListElement Interface

The IAMFileCutListElement interface provides support for a cutlist element for a file stream.

See About Cutlists and Using Cutlists for more information.
When to Implement

Implement this interface in your application when you implement your own IAMCutlistElement
interface. Usually, you don't need to implement either interface because DirectShow provides
the CLSID VideoFileClip and CLSID AudioFileClip objects that implement it for you. However,
you can implement this interface in your application when you need to change the default
behavior of this interface.

When to Use

Use this interface in your filter when you specify a media clip stored in a file. Call
QueryInterface on IAMCutListElement to determine if the element is file-based.

When compiling a cutlist application you must explicitly include the cutlist header file as

497

DirectShow COM Interfaces Page 107 of 658

follows:

#include <cutlist.hs

Methods in Vtable Order
IUnknown methods Description

QuerylInterface Retrieves pointers to supported interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IAMFileCutlListElement Description

methods

GetFileName Retrieves the file name of the cutlist element.

GetTrimInPosition Retrieves the media time of the trimin point, based on the
timeline of the cut's source file.

GetTrimOutPosition Retrieves the media time of the trimout point, based on the
timeline of the cut's source file.

GetOriginPosition Retrieves the media time of the origin of the file or clip.

GetTrimlength Retrieves the length of time between the trimin and trimout
points.

GetElementSplitOffset Retrieves the media time of the number of frames between the

trimin point and the start of this element in output time.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | topic Contents] index | Hext
[Previous | Home | Topic Contente] ndex | Hext

IAMFileCutListElement::GetElementSplitOffset

IAMEFiIl ListElement Interf

Retrieves the media time of the number of frames between the trimin point and the start of
this element in output time.

HRESULT GetElementSplitOffset(
REFERENCE_TIME *pmtOffset
);

Parameters

pmtOffset
[out] Pointer that will receive the offset in the element's length.

Return Values

498

DirectShow COM Interfaces Page 108 of 658

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.
E POINTER Null pointer argument.

S OK Success.

Remarks

This method must retrieve a zero offset. Other offsets are not supported.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | tome | Topie Contents | miex | ext _

" previous | Home | fopio Contents | ndex | Hext |

IAMFileCutListElement::GetFileName

IAMFil ListElement Interf.
Retrieves the file name of the cutlist element.

HRESULT GetFileName(
LPWSTR *ppwstrFileName
)

Parameters

ppwstrFileName
[out] Pointer that will receive the file name (must be freed when no longer needed).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.

E POINTER Null pointer argument.

S OK Success.

499

DirectShow COM Interfaces Page 109 of 658

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home] topie Contents | imiex | Wext |
[previous | Home] Topie Contents | imiex | Wext |

IAMFileCutListElement::GetOriginPosition

IAMFil ListElement Interf.
Retrieves the media time of the origin of the file or clip.

HRESULT GetOriginPosition(
REFERENCE_TIME *pmtQOrigin
);

Parameters

mtOrigin
[out] Pointer that will receive the origin. The origin is in media time.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

Value Meaning

E FAIL Failure.

E INVALIDARG Argument is invalid.

E NOTIMPL Method is not supported.
E POINTER Null pointer argument.
S_OK Success.

Remarks

This method must return a zero origin. Clips with nonzero start times are not supported.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home] topie Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

500

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

