
Filter Developer's Guide Page 58 of 83

Member function Description
Transform Implement transform.
CheckinoutTyoe Verify support of media type.

Beyond providing your transform filter with a default implementation by providing the
minimum overrides, you can override other member functions to provide more specialized
behavior. Which member functions you override, of course, depends on what you want your
filter to do. For example, you must override the GetPin and GetPinCount member functions if
you want to have more than one input pin and one output pin on the filter.

Also, several base class member functions, such as BreakConnect or ComoleteConnect, are
called as notifications to your filter through the pins. Typically, most of these member
functions exist only on the pins. In the classes based on CTransformFilter, the pin functions are
implemented to call similarly named functions in the filter class. This means that the member
functions you most likely will want to override are all collected into one filter class, so you can
leave the pin classes unchanged, making implementation smaller and easier. These member
functions are as follows:
Member function Reason to override
NonDelegatingOueryinterface To distribute any interfaces added in the derived class.
GetPinCount If adding more pins to the transform filter.
GetPin If adding more pins to the transform filter.
CheckConnect
BreakConnect

ComoleteConnect

SetMediaTyoe
Sta rtStrea ming
StooStreaming
AlterOuality

To obtain extra interfaces at connect time or for other reasons.
To release extra interfaces when connection is broken or for
other reasons.
To perform some action at the end of connection (such as
reconnecting the input pin).
To be notified when the media type has been set.
To be notified when entering the streaming state.
To be notified when exiting the streaming state.
To do anything with quality-control messages other than
passing them on.

A Sample Transform Filter Declaration

An example of a filter derived from a transform class is the NullNull sample filter. This sample
illustrates a true minimalist filter, which does nothing except demonstrate the least you must
implement for a filter. It uses the transform-inplace classes and derives its filter class from the
CTransinPlaceFilter class. Following is the class declaration for the derived filter class CNullNull.

I I CNullNull
II
class CNullNull

: public CTransinPlaceFilter

public,

static CUnknown *Createinstance(LPUNKNOWN punk, HRESULT *phr);

DECLARE_IUNKNOWN;

366

Filter Developer's Guide

LPAMOVIESETUP FILTER GetSetupData ()
{ -

return &sudNullNull;
}

private:

II constructor - just calls the base class constructor
CNullNull(TCHAR *tszName, LPUNKNOWN punk, HRESULT *phr)

{ }
: CTransinPlaceFilter (tszName, punk, CLSID_NullNull, phr)

Page 59 of 83

II Overrides the PURE virtual Transform o f CTransinPlac eFilter base class
II This is where the "real work" is done by altering *pSample.
II we do the Null transfo rm by leaving it alone.
HRESULT Transform(IMediaSample *pSample) { return NOERROR; }

II we accept any input type. We'd returns FALSE f o r any we didn't like.
HRESULT CheckinputType (const CMediaType* mtln) { return S_OK; }

This example illustrates the basic member functions required in the base class:
Createlnstance Needed by every filter so that it can be instantiated as a COM object.
GetSetupData Overrides CBaseFilter: :GetSetuoData and is used to provide the class with

information required to register this particular filter. In this case, it
provides the address of a structure defined in the Nullnull.cpp file included
in the SDK.

CNullNull Class constructor, which typically just calls the base class constructor.
Transform Overrides CTransinPlaceFilter: :Transform and does the main work of

CNullNull, which in this case is nothing.
CheckinputType Overrides CTransinPlaceFilter: :CheckinoutTyoe to verify the media type

during connection, and in this case accepts any media type offered, since it
will simply pass it along to the next filter in line.

Note that, strictly speaking, GetSetupData is required only if you want your filter to be self
registering. However, since the base classes implement this feature and it is easy to
implement, it is a good idea to include this in your base class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11!j Topic Contents l@i§illlj4M

w QiM [.] ij,+ 111.Hj Topic Contents i@faiillj4M

Connecting Transform Filters

This article describes some of the connection issues faced when creating a transform filter.
Connecting any two filters requires negotiating which media types to use and deciding on a
common allocator for passing samples. Since transform filters are connected on both sides, and
since some transform filters use the media types and allocators of other filters in the graph, it

367

Filter Developer's Guide Page 60 of 83

is important to understand the concepts involved in transform filter connections.

Contents of this article:

• How Allocator Negotiation Works
• Establishing Media Type Connections

How All(l(:lltOt Negotiation Wotks

For information about the connection process, including media type and allocator negotiation,
see Connection Model. When you are determining your transform filter characteristics, it might
help for you to understand the model of allocator negotiation for transform filters.

If your transform filter requires copying, then it will copy media samples from a buffer
establiShed by its input pin to a buffer established by its output pin. These buffers are provided
by allocators that might actually be located in other filters, perhaps even several filters
removed if the filters in between do not copy the data.

A copying transform filter typically tries to use the allocator of the upstream filter for its input
pin, and the allocator of the downstream filter for its output pin. During the connection
process, the output pin of the upstream filter determines which allocator to use for the
upstream transport, so the input pin of the copy transform must be prepared to create an
allocator for the upstream transport if its IMeminputPin: :GetAllocator method iS called by the
connecting output pin. The base classes provide a way to create a new allocator from the input
pin of any connection.

On the other hand, transform-inplace filters do not make copies, but rather modify the data in
an existing bUffer. These filters should always offer the allocator from the downstream filter to
the upstream filter. This requires a reconnection, because the filter does not know about the
downstream filter when its input pin is first connected. Also, because in place-transforms do not
change the media type, the media type from the downstream filter should be offered to the
upstream filter upon reconnection.

Connecting Filtet Graphs: An Example

To better understand the allocation model for a transform-inplace filter, the following
mustration shows a simple and common example of a filter graph.

Source In Place Copy Dec InPlace ,__.. In Place ,__.. VidRen
A

,__..
B

,__..
c D E F

This simple example demonstrates the model of the transform-inplace filter offering its
downstream allocator to its upstream filter. Consider what happens when InPlace E is
connected to VidRen F.

Upon connection, the video renderer filter (VidRen F) offers its allocator for use by the
upstream inplace filter (InPlace E). Because it is a transform-inplace filter, InPlace E offers the
allocator to the next filter upstream, InPlace D, and so on. ThiS reconnection and renegotiation
occurs until it encounters either the source filter or a copy transform filter. In this case it
meets a decompressor, CopyDec C. (The copy transform filter cannot offer its allocator
upstream, because it must perform a copy operation.) So the decompressor wm be writing
directly to the video renderer's buffer, which might be a DirectDraw® surface. ThiS

368

Filter Developer's Guide Page 61of83

demonstrates why it is a good practice to write a transform filter as a transform-inplace filter
and pass allocators from the renderer upstream, if possible.

On the other hand, consider filters InPlace Band CopyDec C. What if the downstream filter
from a transform-inplace filter is a copy transform filter instead of a renderer? In this case, the
copy transform filter will offer to create its own allocator on its input pin (the base classes
handle this), and the transform-inplace filter can then offer that allocator downstream upon
reconnection (the same as if it were connected to a renderer filter).

However, even though CopyDec C can create its own allocator (from its
!MemlnoutPin: :GetAllocator method), the source filter, Source A, uses its own buffer-say, a
file. So when InPlace B connects to CopyDec C, InPlace B will have accepted the source filter's
allocator already and will force that allocator to be used for the transport between itself and
the decompressor filter. InPlace B can then provide the upstream filter, Source A, with the
option of using the allocator offered by CopyDec C, but the source filter will refuse this
allocator so that an extra copy does not have to be made from the file buffer to the
decompressor's input buffer.

Therefore, any upstream filter can force the use of its allocator downstream but should have
good reason to do so (such as if it already has a buffer). In this example, only one copy is
being made (by the decompression filter) between the file buffer and the video memory.

Establishing Media Type Connections

When pins from different filters are connected, they must both agree on a common media type
for the samples they will exchange. A quick review of the connection mechanism might help
highlight how transform filters handle media type negotiations.

This section contains the following topics.

• The Connection Process: A Summary
• When Reconnections Occur

The Connection Process: A Summary

When one filter's output pin is called by the filter graph manager to connect to an input pin of
a second filter, the !Pin: :Connect method is called. This, in turn, calls
CBaseOutoutPin: :CheckConnect to obtain interfaces from the connected pin and
CBasePin: :AgreeMediaTyoe to find a common media type.

AgreeMediaTyoe calls CBasePin: :TryMediaTyoes, which uses media type enumerators to query
the pins for preferred media types. !EnumMediaTyoes is an interface on the connected input
pin that TryMediaTyoes uses first. The base classes use IEnumMediaTypes to repeatedly call
a CBasePin member function called GetMediaTyoe for each media type in the list. You use this
member function in your input and output pin classes to return the media types that your pin
prefers.

TryMediaTyoes calls the output pin's CheckMediaTyoe member function with each input type
returned. You must use CheckMediaType to verify whether this type is acceptable. If no
media types are found (for example GetMediaTyoe may not even be used on the connected
input pin, or may return an unacceptable media type), then AgreeMediaTyoe obtains a media
type enumerator for the output pin and tries each of these in turn. Again, the GetMediaType
member function of the derived output pin is called for each type. In this case, it can

369

Filter Developer's Guide Page 62 of 83

determine media types by inquiring about any existing connection established by the filter's
input pin.

When Reconnectlons Occut

For transform filters that do not modify the media type from input pin to output pin (such as
most in-place transforms and many copy transforms), a reconnection scheme must be in place
for offering the downstream filter's media type to the upstream filter. To understand this,
consider the media type negotiation of the transform-inplace Filter Bin the following
mustration.

Filter Filter Filter AOutPin Bin Pin BOutPin ClnPin
A B c

The input pin of Filter B is connected first and establishes a media type with the upstream
output pin (AOutPin). When the output pin of Filter Bis connected next, it must use the
enumerator from the output pin of the connected upstream filter (AOutPin), because it does
not have one of its own.

If the pin of the downstream filter, CinPin, can accept this, then the connection is complete.
However, assume that Filter C does not agree to this media type but proposes a media type
that Filter B can hand le.

Before deciding that it can handle the media type, Filter B calls the IPiw ·QneryAccept method
on AOutPin to ensure that it is acceptable. If no media type can be found that is acceptable for
au the filters, then the BOutPin to CinPin connection wm fail. (It is possible to find that a
transform-inplace filter wm connect to either its upstream or its downstream neighbors, but
not both simultaneously.)

If a suitable type iS found, BOutPin must force a reconnection on the entire filter, and pass the
establiShed media type (the media type of CinPin) to AOutPin, when AOutPin and BinPin are
connected again.

w;•; "·II' a 111.11119 Topic Contents l@i§Mit§M

+414 "·II' a 1:1.1 .. 19 Topic Contents l@i§MMt§M

About Compression Filters

A ccmpre$$iCn filter is a specialized type of transform filter. Compression filters (compressors)
accept data, use a compression scheme to transform the data, and pass the compressed data
downstream.

Microsoft® DirectShow'" includes an AVI Compressor filter and an ACM Audio Compressor
filter, which wm use any Microsoft Video for Windows® video or audio~ to compress data.
You can write your own compressor filter if you need to compress data in a format that isn't

370

Filter Developer's Guide Page 63 of 83

supported by the default filters that DirectShow provides.

To begin writing a compression filter, write a transform filter that includes one input pin and
one output pin. See the following articles for more information about writing a transform filter.

• Creating a Transform Filter
• Using the CTransformFilter and CTransinPlaceFilter Transform Base Classes
• Connecting Transform Filters

After you've written a transform filter, you should review the following points when completing
your compression filter:

• Register your filter.

Register your compression filter by using the AMovieDllRegisterServer2 function. This
enables applications to enumerate your filter with all the other compression filters on the
system. See Enumerate and Access Hardware Devices in DirectShow Applications for
more information about device enumeration.

• Implement the recommended compressor interfaces.

It is strongly recommended that you implement the IAMStreamConfiq interface on the
output pin of all compression filters and IAMVideoCompression on the output pin of video
compressors so that applications can access the compression features of your filter.

IAMStreamConfig enables you to inform applications about the formats to which you can
compress data, and enables the application to configure your compressor to compress to
a particular data type.

IAMVideoCompression enables an application set video-specific settings, like keyframe
frequency, that do not appear in the AM MEDIA TYPE structure.

The VidCap Sample (Video Capture Filter) sample video capture filter included with the
DirectShow SDK implements the IAMStreamConfiq and IAMVideoCompression interfaces, and
performs filter registration. Note that this sample code is for a capture filter, but the filter
registration and implementation of these two interfaces is similar to that of a compression
filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

About Effect Filters

In DirectShow, effect filters are defined as filters that apply an effect to media data, but don't
change the media type. DirectShow provides several effect filters, including Contrast, Gargle,
and EzRGB24. Effect filters can apply a wide range of useful video and audio effects to media
data.

371

Filter Developer's Guide Page 64 of 83

Contents of this article:

• Creating Effect Filters
• List of DirectShow Effect Filters and Samples

Creating Effect Filters

Because the input and output media formats are the same, and the applied effect can't change
the format, effect filters often contain a code that checks the media formatting. If the filter
derives from one of the transform filter base classes, CTransformFilter or CTranslnPlaceFilter,
the filter typically checks the format with the CheckMediaType, ChecklnputType, and
CheckTra nsform methods. If the filter doesn't derive from one of the transform filter base
classes, its pins typically check the format by calling the CBasePin: :CheckMediaType member
function. See Negotiating Media Types with CBasePin: :AgreeMediaType for more information.

You should choose a base class for your effect filter class that provides the greatest amount of
the functionality you need. Often, the base class will be one of the transform filter base
classes. If none of the higher-level base classes support your required functionality, you can
choose CBaseFilter or CBasePin as your base class.

Your effect filter must implement the !PersistStream interface if you want to save the state of
your effects in the Filter Graph Editor. To access this interface, derive your effect filter class
from CPersistStream and query for the IPersistStream interface. Saving the filter's state can
be helpful during design, but it is often useful to have the effect filter return to a default state
when the Filter Graph Editor closes it, in which case you don't need to implement
IPersistStream.

If you want the user to be able to manipulate the effect, you must create and display your
effect filter's property page and provide a mechanism for returning the user's input to the
filter. To do this, implement a property page class, the !SpecifyPropertyPages interface (which
exposes property pages), and a custom interface that changes property page values. Typically,
property pages use controls such as a slider, button, or check box to receive user input. You
also must provide the resource file that displays the controls on the property page.

To implement the property page class, create a class that derives from CBaseProoertyPage and
implement the OnReceiveMessage method, the CPersistStream: :SetDirty method, and a data
member for each effect parameter. To access the two interfaces, derive your effect filter class
from !SoecifyProoertyPages and the custom interface, and then query for the interfaces. You
can query for all the interfaces you need by overriding the NonDelegatingOuerylnterface
method as shown in the following code from the Gargle sample (!Gargle is the custom
interface):

STDMETHODIMP CGargle, ,NonDelegatingQueryinterface(REFIID riid, void **ppv)
{

CheckPointer(ppv,E POINTER);
if (riid == IID_IGargle) {

return Getinterface((IGargle *) this, ppv);
else if (riid == IID_ISpecifyPropertyPages) {

return Getinterface((ISpecifyPropertyPages *) this, ppv);
else if (riid == IID_IPersiststream) {

return Getinterface((IPersiststream *) this, ppv);
else {

return CTransinPlaceFilter: :NonDelegatingQueryinterface(riid, ppv);

372

Filter Developer's Guide Page 65 of 83

The effect filter's custom interface typically supplies a put and a get method for each effect
parameter. For example, the !Gargle custom interface supplies put_GargleRate and
get_GargleRate methods. The !Contrast custom interface in the Contrast sample supplies
put_Contrastlevel and get_Contrastlevel methods. When the user accesses one of the controls
on the property page, the page generates a windows message. The property page class's
OnReceiveMessage member function handles this message. The following code fragment from
the Contrast sample demonstrates this message generation and handling. IDB_DEFAULT is the
resource ID of the Default button. The user clicks this button to set the video contrast to its
default state. The CContrastProperties class implements the property page and the
!Contrast:: put_DefaultContrastlevel method sets the contrast level to its default value.

BOOL ccontrastProperties::OnReceiveMessage(HWND hwnd, UINT uMsg,
WPARAM wParam, LPARAM lParam)

switch (uMsg)
{

case WM COMMAND: { -

if (LOWORD(wParam) == IDB_DEFAULT)
{

pIContrast()->put_DefaultContrastLevel();
SendMessage(m_hwndSlider, TBM_SETPOS, TRUE, OL);

SetDirty () ;

return (LRESULT) 1;

Effect filters use critical sections internally to protect the global filter state. Effect filters can
lock a critical section to ensure that data flow through the filter graph is serialized and that the
global filter state doesn't change while an effect is occurring. DirectShow locks a critical section
by declaring a CAutolock class object. Typically, effect filters lock the critical section as soon
as they enter the function that applies the effect. For example, in the following code fragment
from the Gargle sample, the function that applies the effect is MessltAbout:

CCritSec m_GargleLock; //Declare the critical section data member in the effect

void CGargle,,MessitAbout(PBYTE pb, int cb)
{

CAutoLock foo(&m_GargleLock);

The put and get methods of the effect properties (for example, put_GargleRate) typically lock
the critical section so effect values can't change in the middle of an update.

List of DirectShow Effect Filters and Samples

The DirectShow SDK ships with the following effect filters. You can find these filters in the
Samples directory. All the source code is included.

Contrast: This effect filter adjusts the contrast of the video images sent through it. The filter
adjusts the contrast by using palettes, because an image's color palette effectively determines
how the image is interpreted by the display device; that is, how the value 23 (for example)
maps into an RGB triplet for display. By changing the palette, you can reduce and increase

373

Filter Developer's Guide Page 66 of 83

contrast without doing anything to the image pixels themselves. The Filter Graph Editor lists
this filter as Video Contrast.

EzRGB24: This effect filter modifies decompressed video images sent through it. It creates
color and image filtering effects through simple techniques such as adjusting the red, green, or
blue levels (to change the playback color) and by averaging neighboring pixels (to achieve blur
and embossed (raised) effects). The Filter Graph Editor lists this filter as Image Effects.

Gargle: This effect filter modifies audio data sent through it. A synthesized wave function
modulates the audio data's amplitude. The secondary wave can be a triangular or square wave,
and can have different frequencies. At low modulation frequencies it sounds like a tremolo. At
high modulation frequencies it sounds like a distortion. The Filter Graph Editor lists this filter
as Gargle.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M l!i.! 11ij Topic Contents l@i§il!MM

+Qi§i!.li!:1 1 !1·Hj Topic Contents l@IJlllMM

Video Renderers

This section describes how to write and use video renderers, both full-screen and custom
renderers. It discusses how and why to support a full-screen renderer, and how to handle
notifications, state changes, and dynamic format changes in a custom renderer.

· Full-Screen Video Renderer

· Alternative Video Renderers

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M l!i.! 11ij Topic Contents l@i§i l!lltiM

Full-Screen Video Renderer

This article explains the logic used by the default Microsoft® IVideoWindow plug-in distributor
(PID), when an application instructs it to render the video in full-screen mode. Substitute
renderer filters can use the IVideoWindow PID for communication with applications.
Developers of substitute renderers should be aware of how this PID searches the filter graph
for the best means of representing full-screen video, when requested to render in full-screen
mode.

Contents of this article:

374

Filter Developer's Guide Page 67 of 83

• Using the IVideoWindow PID to Implement Full-Screen Support
• Finding a Filter That Supports Full-Screen Mode
• Finding a Filter That Can Be Stretched Full-Screen at No Cost
• Supplying a Full-Screen Renderer Filter
• Stretching the Output of a Renderer Full-Screen
• Implications of Full-Screen Support for the Application

Using the IVideoWindow PIO to Implement Full-Screen Support

Microsoft® DirectShow™ implements full-screen support in a number of ways that depend on
what hardware resources are available. An application can support full-screen video playback
through the IVideoWindow interface provided by the filter graph manager. An application can
have its own implementation of full-screen playback, but it can probably make better use of
resources by using the IVideoWindow implementation.

The IVideoWindow plug-in distributor (PID) tries three different options for implementing full
screen support when an application requests full-screen mode. The option is typically chosen
the first time the filter graph enters full-screen mode. While in full-screen mode, no
IVideoWindow methods can be called (apart from accessing the full-screen property). Any
attempts to do so will return the VFW E IN FULLSCREEN MODE message. The PID searches
in the following order for a filter that supports IVideoWindow and that has one of these
characteristics:

1. The filter supplies full-screen mode directly.
2. The filter allows its window to be stretched to full screen without penalty.
3. The filter can be replaced by a full-screen renderer.

If none of these three options are found, the default is to simply stretch the video of a filter
that supports IVideoWindow to full-screen, ignoring the performance penalties.

Finding a Filter That Supports Full-Screen Mode

The first option is to search for a filter in the filter graph that supports full-screen mode
directly. When asked to go into full-screen mode, the IVideoWindow PID first scans all filters
supporting IVideoWindow in the filter graph. The PID calls
IVideoWindow: :get FullScreenMode on each filter and, if the filter returns E_NOTIMP (the
default), assumes that the filter has no inherent support for full-screen playback. If the filter
returns anything else, then that filter becomes the nominated filter for full-screen playback.
This means that any calls to the filter graph manager to set the full-screen mode on or off will
be sent directly to that nominated filter. This mechanism allows filters to be extended to
support full-screen support directly. Most normal window-based renderers do not need to
support this feature.

Finding a Filter That Can Be Stretched Full-Screen at No Cost

If a full-screen rendering filter can't be found, then the PID tries to find a filter supporting the
IVideoWindow interface that can have its window stretched full-screen without penalty. The
PID does this by scanning the list of filters in the filter graph that support IVideoWindow. For
each filter found, the PID calls IVideoWindow: :GetMaxideallmageSize. If a filter indicates that
its window can be stretched full-screen at no cost, then that becomes the nominated filter.

If that nominated filter is then requested to render full-screen, the PID resets a number of the

375

Filter Developer's Guide Page 68 of 83

filter's !VideoWindow properties and stretches the window to full-screen. This typically means
setting a null owner, changing the window styles to not show the border or the caption, and
updating the window position to match the current display size. When full-screen mode is
switched off, the properties on the filter will be reset to the state prior to the full-screen mode.

Most video renderers supporting !VideoWindow cannot return the maximum ideal image size
until they have been activated (either paused or running), because that is when they allocate
their resources. For this reason, when scanning the list of filters while the filter graph is in a
stopped state, the PID pauses each filter before calling !VideoWindow: :GetMaxldeallmageSize.
After calling this method, the filter is stopped again.

Supplying a Full-Screen Renderer Filter

If neither of the previous options were successful, then the PID finds the first available filter in
the filter graph that supports an !VideoWindow interface, and assumes that it is the current
video renderer filter.

If no filters that support !VideoWindow are available, the call to change to full-screen mode will
return VFW E NO FULLSCREEN. When asked to change into full-screen mode, the PID stops
the filter graph, if it is not already stopped, disconnects the current renderer, and reconnects
the DirectShow full-screen renderer in its place. If the connection succeeds, then the filter
graph is restored to its original state. When switching out of full-screen mode, the opposite
occurs. That is, the full-screen renderer is disconnected and the original filter is reconnected.
The state of the filter graph is likewise restored. The full-screen renderer is a specialized
renderer that uses the display changing capabilities provided by DirectDraw®. For example, it
might switch the full-screen display 320 x 240 when it might have been in, for example, 1024
x 768. By switching to lower resolution modes, it can cheaply implement full-screen rendering
without having to stretch images.

The full-screen renderer currently implements 320 x 200 x 8/16 bits per pixel, 320 x 240 x
8/16, 640 x 400 x 8/16, 640 x 400 x 8/16, 640 x 480 x 8/16, 800 x 600 x 8/16, 1024 x
768 x 8/16, 1152 x 864 x 8/16, and 1280 x 1024 x 8/16 display modes. The Modex renderer
supports the !FullScreenVideo interface. When the modex renderer is connected, it loads the
display modes DirectDraw has made available. The number of modes available can be obtained
through !FullScreenVideo: :CountModes. Information on each mode is available by calling
!FullScreenVideo: :GetModelnfo and !FullScreenVideo: :IsModeAvailable. An application can
enable and disable any modes by calling the SetEnabled flag with OATRUE or OAFALSE. The
current value can be queried for with !FullScreenVideo: :IsModeEnabled.

Another way to set the modes enabled is to use the clip loss factor. This defines the amount of
video that can be lost when deciding which display mode to use. Assuming the decoder cannot
compress the video, then playing, for example, an MPEG file that is 352 x 288 pixels into a
320 x 200 display will lose over 40 percent of the image. The clip loss factor specifies the
upper range of clipping loss that is permissible. To allow typical MPEG video to be played in
320 x 200 it defaults to 50 percent. You can set the clip loss factor with
!FullScreenVideo: :SetClioFactor.

Stretching the Output of a Renderer Full-Screen

After trying the first three options, the final option for implementing full-screen support is to
pick any filter enabled by !VideoWindow and stretch its window full-screen, regardless of the
resulting poor performance. Essentially, the first filter in the filter graph that is enabled by the
IVideoWindow interface becomes the nominated filter. This filter is then used in the same
manner as if it was a filter that could be stretched full-screen without sacrificing performance

376

Filter Developer's Guide Page 69 of 83

(that is, the owner is reset, the styles changed, and the window position changed to match the
display extents).

The cost of stretching a window full-screen where there is an implicit performance penalty
varies, depending on the resolution currently displayed. The worst scenario is one in which the
user is using a relatively high resolution (for example, 1024 x 768) and the images must be
stretched by the renderer using GD!. This is likely to provide very low frame throughput and is
used only as a last resort.

Implications of Full-Screen Support for the Application

While the interface exposed to applications is relatively simple, the underlying implementation
can be more complex. The full-screen renderer has some special properties that application
developers should be aware of. In particular, the renderer changes display modes only when
activated (either paused or running). Therefore, if the filter graph is stopped when switching to
full-screen mode, no change might be obviously visible until the filter graph is started again.
When the filter graph is subsequently run, the display mode will change and the full-screen
rendering will start.

If a window is being stretched full-screen (that is, no full-screen renderer is being used), the
change will be viewable when the full-screen mode is set, regardless of state. If full-screen
playback is being supported directly by a filter in the filter graph, it might elect to copy the
behavior of the full-screen renderer and switch to full-screen only when activated. The filter
supporting full-screen playback might have to do this, because the resources they require to
play full-screen might not be available until then. Therefore, an application should avoid
setting full-screen mode when stopped.

This makes sense in a user interface context as well, because if full-screen mode is set when
the filter graph is stopped, users are unlikely to be able to start the graph running without
switching out of full-screen mode (that is, tabbing back to the original application).

All renderers that implement !VideoWindow send event codes to the filter graph manager when
their windows are activated or deactivated. When in full-screen mode, the PID watches for
these event codes. When it sees a window that it made full-screen being deactivated, it will
automatically switch out of full-screen mode and send an EC FULLSCREEN LOST notification to
the application event queue. This is the only interference caused by the PID; all other user
interface is left open to the application as described in the remainder of this article.

One of the most important aspects of full-screen playback is that when in full-screen mode, no
window can be displayed on top of the full-screen window. In fact, when the full-screen
renderer switches display modes, it disables all GD! output for other applications, so displaying
a window on top of a full-screen window is actually impossible. Any user interactions with the
computer must be done through hot keys.

Whatever mechanism the PID ultimately uses to implement full-screen playback, it always
ensures that the message drain property is set on the window executing the playback. (The
message drain specifies a window that will be forwarded all Windows® messages sent to the
renderer.) So, even if the full-screen renderer is used, as long as a message drain has
previously been set on the filter graph manager's !VideoWindow interface, all messages will be
passed on to that renderer.

Because the message drain is set on the appropriate window, an application can rely on
receiving all mouse and keyboard messages when in full-screen mode, regardless of which
filter is implementing it. An application can use this fact to implement hot-key support for

377

Filter Developer's Guide Page 70 of 83

seeking, for example. However, properties can be set only when not in full-screen mode, so if
the only time an application is required to catch messages is when it is in full-screen mode, it
must set the message drain before setting full-screen on. Likewise, the message drain can be
reset only after setting full-screen mode off.

One other application consideration is that, when in full-screen mode, any source and
destination rectangles set through IBasicVideo will not be adhered to. The PID resets these
rectangles when switching to full-screen mode. It does this because not all filters implementing
full-screen support can guarantee to support IBasicVideo as well.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]i!,+ '!!·HM Topic Contents i@l§ii!MM

MQiji.jjj,M M!i.1 1119 Topic Contents i@l§i i!lltiM

Alternative Video Renderers

This article describes some of the more complicated implementation requirements of a
renderer; these apply to most renderers, although some aspects are video-specific (such as
EC REPAINT and other notifications). In particular, it discusses how to handle various
notifications, state changes, and format changes. It also provides a summary of the
notifications that a renderer is responsible for sending to the filter graph manager.

Contents of this article:

• Writing an Alternative Renderer
• Handling End-of-stream and Flushing Notifications
• Handling State Changes and Pause Completion
• Handling Termination
• Handling Dynamic Format Changes
• Handling Persistent Properties
• Handling EC REPAINT Notifications
• Handling Notifications in Full-Screen Mode
• Summary of Notifications

Writing an Alternative Renderer

Microsoft® DirectShow™ provides a window-based video renderer; it also provides a full
screen renderer in the run-time installation. You can use the C++ classes in the DirectShow
SDK to write alternative video renderers. For alternative renderers to interact correctly with
DirectShow-based applications, the renderers must adhere to the guidelines outlined in this
article. You can use the CBaseRenderer and CBaseVideoRenderer classes to help follow these
guidelines when implementing an alternative video render. Consult the SampVid sample in the
DirectShow SDK for an example of an alternative video renderer that uses these classes.
Because of the ongoing development of DirectShow, review your implementation periodically to
ensure that the renderers are compatible with the most recent version of DirectShow.

378

Filter Developer's Guide Page 71of83

This article discusses many notifications that a renderer is responsible for handling. A brief
review of DirectShow notifications might help to set the stage. There are essentially three
kinds of notifications that occur in DirectShow:

• Stream notifications, which are events that occur in the media stream and are passed
from one filter to the next. These can be begin-flushing, end-flushing or end-of-stream
notifications and are sent by calling the appropriate method on the downstream filter's
input pin (for example !Pin:: BeginFlush).

• Filter graph manager notifications, which are events sent from a filter to the filter graph
manager such as EC COMPLETE. This is accomplished by calling the
!MediaEventSink:: Notify method on the filter graph manager.

• Application notifications, which are retrieved from the filter graph manager by the
controlling application. An application calls the !MediaEvent: :GetEvent method on the
filter graph manager to retrieve these events. Often, the filter graph manager passes
through the events it receives to the application.

This article discusses the responsibility of the renderer filter in handling stream notifications it
receives and in sending appropriate filter graph manager notifications.

Handling End-of-stream and Flushing Notifications

An end-of-stream notification begins at an upstream filter (such as the source filter) when that
filter detects that it can send no more data. It is passed through every filter in the graph and
eventually ends at the renderer, which is responsible for subsequently sending an
EC COMPLETE notification to the filter graph manager. Renderers have special responsibilities
when it comes to handling these notifications.

A renderer receives an end-of-stream notification when its input pin's !Pin:: EndOfStream
method is called by the upstream filter. A renderer should note this notification and continue to
render any data it has already received. Once all remaining data has been received, the
renderer should send an EC COMPLETE notification to the filter graph manager. The
EC_COMPLETE notification should be sent only once by a renderer each time it reaches the
end of a stream. Furthermore, EC_COMPLETE notifications must never be sent except when
the filter graph is running. Therefore, if the filter graph is paused when a source filter sends an
end-of-stream notification, then EC_COMPLETE should not be sent until the filter graph is
finally run.

Any calls to the !MemlnoutPin:: Receive or !MemlnoutPin:: ReceiveMultiole methods after an
end-of-stream notification is signaled should be rejected. E_UNEXPECTED is the most
appropriate error message to return in this case.

When a filter graph is stopped, any cached end-of-stream notification should be cleared and
not resent when next started. This is because the filter graph manager always pauses all filters
just before running them so that proper flushing occurs. So, for example, if the filter graph is
paused and an end-of-stream notification is received, and then the filter graph is stopped, the
renderer should not send an EC COMPLETE notification when it is subsequently run. If no
seeks have occurred, the source filter will automatically send another end-of-stream
notification during the pause state that precedes a run state. If, on the other hand, a seek has
occurred while the filter graph is stopped, then the source filter might have data to send, so it
won't send an end-of-stream notification.

Video renderers often depend on end-of-stream notifications for more than the sending of
EC COMPLETE notifications. For example, if a stream has finished playing (that is, an end-of-

379

Filter Developer's Guide Page 72 of 83

stream notification is sent) and another window is dragged over a video renderer window, a
number of WM_PAINT window messages will be generated. The typical practice for running
video renderers is to refrain from repainting the current frame upon receipt of WM_PAINT
messages (based on the assumption that another frame to be drawn will be received).
However, when the end-of-stream notification has been sent, the renderer is in a waiting
state; it is still running but is aware that it will not receive any additional data. Under these
circumstances, the renderer customarily draws the playback area black.

Handling flushing is an additional complication for renderers. Flushing is carried out through a
pair of !Pin methods called BeginFlush and End Flush. Flushing is essentially an additional state
that the renderer must handle. It is illegal for a source filter to call Beginflush without calling
Endflush, so hopefully the state is short and discrete; however, the renderer must correctly
handle data or notifications it receives during the flush transition.

Any data received after calling BeginFlush should be rejected immediately by returning
E_UNEXPECTED. Furthermore, any cached end-of-stream notification should also be cleared
when a renderer is flushed. A renderer will typically be flushed in response to a seek. The flush
ensures that old data is cleared from the filter graph before fresh samples are sent. (Typically,
the playing of two sections of a stream, one after another, is best handled through deferred
commands rather than waiting for one section to finish and then issuing a seek command.)

Handling State Changes and Pause Completion

A renderer filter behaves the same as any other filter in the filter graph when its state is
changed, with the following exception. After being paused, the renderer will have some data
queued, ready to be rendered when subsequently run. When the video renderer is stopped, it
holds on to this queued data. This is an exception to the DirectShow rule that no resources
should be held by filters while the filter graph is stopped.

The reason for this exception is that by holding resources, the renderer will always have an
image with which to repaint the window if it receives a WM_PAINT message. It also has an
image to satisfy methods, such as CBaseControlVideo: :GetStaticlmage, that request a copy of
the current image. Another effect of holding resources is that holding on to the image stops
the allocator from being decommitted, which in turn makes the next state change occur much
faster because the image buffers are already allocated.

A video renderer should render and release samples only while running. While paused, the
filter might render them (for example, when drawing a static poster image in a window), but
should not release them. Audio renderers will do no rendering while paused (although they
may perform other activities, such as preparing the wave device, for example). The time at
which the samples should be rendered is obtained by combining the stream time in the sample
with the reference time passed as a parameter to the !MediaControl: :Run method. Renderers
should reject samples with start times less than or equal to end times.

When an application pauses a filter graph, the filter graph does not return from its
!MediaControl:: Pause method until there is data queued at the renderers. In order to ensure
this, when a renderer is paused, it should return S_FALSE if there is no data waiting to be
rendered. If it has data queued, then it can return S_OK.

The filter graph manager checks all return values when pausing a filter graph, to ensure that
the renderers have data queued. If one or more filters are not ready, then the filter graph
manager polls the filters in the graph by calling GetState. The GetState method takes a time
out parameter. A filter (typically a renderer) that is still waiting for data to arrive before
completing the state change returns VFW S STATE INTERMEDIATE if the GetState method

380

Filter Developer's Guide Page 73 of 83

expires. Once data arrives at the renderer, GetState should be returned immediately with
S_OK.

In both the intermediate and completed state, the reported filter state will be State Paused.
Only the return value indicates whether the filter is really ready or not. If, while a renderer is
waiting for data to arrive, its source filter sends an end-of-stream notification, then that should
also complete the state change.

Once all filters actually have data waiting to be rendered, the filter graph will complete its
pa use state change.

Handling Termination

Video renderers must correctly handle termination events from the user. This implies correctly
hiding the window and knowing what to do if a window is subsequently forced to be displayed.
Also, video renderers must notify the filter graph manager when its window is destroyed (or
more accurately, when the renderer is removed from the filter graph) to free resources.

If the user closes the video window (for instance by pressing ALT+F4), the convention is to hide
the window immediately and send an EC USERABORT notification to the filter graph manager.
This notification is passed through to the application, which will stop the graph playing. After
sending EC_USERABORT, a video renderer should reject any additional samples delivered to
it.

The abort flag should be left on by the renderer until it is subsequently stopped, at which point
it should be reset so that an application can override the user action and continue playing the
graph if it desires. If ALT+F4 is pressed while the video is running, the window will be hidden and
all further samples delivered will be rejected. If the window is subsequently shown (perhaps
through !VideoWindow:: out Visible), then no EC REPAINT notifications should be generated.

The video renderer should also send the EC WINDOW DESTROYED notification to the filter
graph when the video renderer is terminating. In fact, it is best to handle this when the
renderer's !BaseFilter: :JoinFilterGraoh method is called with a null parameter (indicating that
the renderer is about to be removed from the filter graph), rather than waiting until the actual
video window is destroyed. Sending this notification allows the plug-in distributor in the filter
graph manager to pass on resources that depend on window focus to other filters (such as
audio devices).

Handling Dynamic Format Changes

Video renderers in DirectShow accept only video formats that can be drawn efficiently. For
example, the window-based run-time renderer will accept only the RGB format that matches
the current display device mode (for example, RGB565 when the display is set to 65,536
colors). As a last resort, it also accepts 8-bit palettized formats, as most display cards can draw
this format efficiently. When the renderer has Microsoft® DirectDraw® loaded, it might later
ask the source filter to switch to something that can be written onto a DirectDraw surface and
drawn directly through display hardware. In some cases, the renderer's upstream filter might
try to change the video format while the video is playing. This often occurs when a video
stream has a palette change. It is most often the video decompressor that initiates a dynamic
format change.

An upstream filter attempting to change formats dynamically should always call the
!Pin: :OueryAcceot method on the renderer input pin (for filters based on CTransformFilter, this
is implemented in CTransformFilter: :ChecklnoutTyoe). It is undefined as to which formats a

381

Filter Developer's Guide Page 74 of 83

renderer will allow an upstream filter to change dynamically. However, at a very minimum, it
should allow the upstream filter to change palettes. When an upstream filter changes media
types, it will attach the format to the first sample delivered in that new type. If the renderer
holds many samples in a queue waiting to be rendered, it should delay changing the format
until the sample with the type change is actually about to be rendered.

Whenever a format change is detected by the video renderer, it should send an
EC DISPLAY CHANGED notification. Most video renderers pick a format during connection so
that the format can be drawn efficiently through GD!. If the user changes the current display
mode without restarting the computer, a renderer might find itself with a bad image format
connection and should send this notification. The first parameter should be the pin that needs
reconnecting. The filter graph manager will arrange for the filter graph to be stopped and the
pin reconnected. During the subsequent reconnection, the renderer can accept a more
appropriate format.

Whenever a video renderer detects a palette change in the stream it should send the
EC PALETTE CHANGED notification to the filter graph manager. The DirectShow video
renderers detect whether a palette has really changed in dynamic format or not. The video
renderers do this not only to filter out the number of EC_PALETTE_CHANGED notifications
sent but also to reduce the amount of palette creation, installation, and deletion required.

Finally, the video renderer might also detect that the size of the video has changed, in which
case, it should send the EC VIDEO SIZE CHANGED notification. An application might use this
notification to negotiate space in a compound document. The actual video dimensions are
available through the IBasicVideo control interface. The DirectShow renderers detect whether
the video has actually changed size or not prior to sending these events.

Handling Persistent Properties

All properties set through the IBasicVideo and IVideoWindow interfaces are meant to be
persistent across connections. Therefore, disconnecting and reconnecting a renderer should
show no effects on the window size, position, or styles. However, if the video dimensions
change between connections, the renderer should reset the source and destination rectangles
to their defaults. The source and destination positions are set through the IBasicVideo
interface.

Both IBasicVideo and IVideoWindow provide enough access to properties to allow an
application to save and restore all the data in the interface in a persistent format. This will be
useful to applications that must save the exact configuration and properties of filter graphs
during an editing session and restore them later.

Handling EC_REPAINT Notifications

The EC REPAINT notification is sent only when the renderer is either paused or stopped. This
notification signals to the filter graph manager that the renderer needs data. If the filter graph
is stopped when it receives one of these notifications, it will pause the filter graph, wait for all
filters to receive data (by calling GetState), and then stop it again. When stopped, a video
renderer should hold on to the image so that subsequent WM_PAINT messages can be
handled.

Therefore, if a video renderer receives a WM_PAINT message when stopped or paused, and it
has nothing with which to paint its window, then it should send EC REPAINT to the filter graph
manager. If an EC_REPAINT notification is received while paused, then the filter graph
manager calls IMediaPosition:: out CurrentPosition with the current position (that is, seeks to

382

Filter Developer's Guide Page 75 of 83

the current position). This causes the source filters to flush the filter graph and causes new
data to be sent through the filter graph.

A renderer must send only one of these notifications at a time. Therefore, once the renderer
sends a notification, it should ensure no more are sent until some samples are delivered. The
conventional way to do this is to have a flag to signify that a repaint can be sent, which is
turned off after an EC REPAINT notification is sent. This flag should be reset once data is
delivered or when the input pin is flushed, but not if end-of-stream is signaled on the input
pin.

If the renderer does not monitor its EC REPAINT notifications, it will flood the filter graph
manager with EC_REPAINT requests (which are relatively expensive to process). For
example, if a renderer has no image to draw, and another window is dragged across the
window of the renderer in a full-drag operation, the renderer receives multiple WM_PAINT
messages. Only the first of these should generate an EC_REPAINT event notification from the
renderer to the filter graph manager.

A renderer should send its input pin as the first parameter to the EC REPAINT notification. By
doing this, the attached output pin will be queried for IMediaEventSink, and if supported, the
EC_REPAINT notification will be sent there first. This allows output pins to handle repaints
before the filter graph must be touched. This will not be done if the filter graph is stopped,
because no buffers would be available from the decommitted renderer allocator.

If the output pin cannot handle the request and the filter graph is running, then the
EC REPAINT notification is ignored. An output pin must return NOERROR (S_OK) from
IMediaEventSink:: Notify to signal that it processed the repaint request successfully. The
output pin will be called on the filter graph manager worker thread, which avoids having the
renderer call the output pin directly, and so sidesteps any deadlock issues. If the filter graph is
stopped or paused and the output doesn't handle the request, then the default processing is
done.

Handling Notifications in Full-Screen Mode

The IVideoWindow plug-in distributor (PID) in the filter graph manages full-screen playback. It
will swap a video renderer out for a specialist full-screen renderer, stretch a window of a
renderer to full screen, or have the renderer implement full-screen playback directly. To
interact in full-screen protocols, a video renderer should send an EC ACTIVATE notification
whenever its window is either activated or deactivated. In other words, an EC_ACTIVATE
notification should be sent for each WM_ACTIVATEAPP message a renderer receives.

When a renderer is being used in full-screen mode, these notifications manage the switching
into and out of that full-screen mode. Window deactivation typically occurs when a user
presses ALT+TAB to switch to another window, which the DirectShow full-screen renderer uses as
a cue to return to typical rendering mode.

When the EC ACTIVATE notification is sent to the filter graph manager upon switching out of
full-screen mode, the filter graph manager sends an EC FULLSCREEN LOST notification to the
controlling application. The application might use this notification to restore the state of a full
screen button, for example. The EC_ACTIVATE notifications are used internally by DirectShow
to manage full-screen switching on cues from the video renderers.

Summary of Notifications

This section lists the filter graph notifications that a renderer can send.

383

Filter Developer's Guide

Event notification
EC ACTIVATE

EC COMPLETE
EC DISPLAY CHANGED

EC PALETTE CHANGED

EC REPAINT

EC USERABORT

Page 76 of 83

Description
Sent by video renderers in full-screen rendering mode for each
WM_ACTIVATEAPP message received.

Sent by renderers after a II data has been rendered.
Sent by video renderers when a display format changes.

Sent whenever a video renderer detects a palette change in the
stream.
Sent by stopped or paused video renderers when a WM_PAINT
message is received and there is no data to display. This causes
the filter graph manager to generate a frame to paint to the
display.

Sent by video renderers to signal a closure that the user
requested (for example, a user closing the video window).

EC VIDEO SIZE CHANGED Sent by video renderers whenever a change in native video size is
detected.

EC WINDOW DESTROYED Sent by video renderers when the filter is removed or destroyed
so that resources that depend on window focus can be passed to
other filters.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lml!§lll¥M

• QIM [.] +• I !!·HM Topic Contents l@i§il/¥8

Exposing Capture and Compression Formats

This article describes how to return capture and compression formats by using the
IAMStreamConfig: :GetStreamCaos method. This method can get more information about
accepted media types than the traditional way of enumerating a pin's media types, so it should
typically be used instead. See Establishing Media Type Connections for information about
traditional media type enumeration. IAMStreamConfig::GetStreamCaps can return
information about the kinds of formats allowed for audio or video. Additionally, this article
provides some sample code that demonstrates how to reconnect the input pin of a transform
filter to ensure your filter can produce a particular output.

The IAMStreamConfig: :GetStreamCaps method returns an array of pairs of media type and
capabilities structures. The media type is an AM MEDIA TYPE structure and the capabilities
are represented either by an AUDIO STREAM CONFIG CAPS structure or a
VIDEO STREAM CONFIG CAPS structure. The first section in this article presents a video
example and the second presents an audio example.

Contents of this article:

• Video Capabilities
• Audio Capabilities
• Reconnecting Your Input to Ensure Specific Output Types

384

Filter Developer's Guide Page 77 of 83

Vide<l Capabilities

The IAMStreamConfig: :Get$treamCaps method presents video capabilities in an array of pairs
of AM MEDIA TYPE and VIDEO STREAM CONFIG CAPS structures. You can use this to expose
llll the formllts llnd resolutions supported on ll pin llS discussed below.

See Audio Capabilities for llUd io-relllted eXl!mples of IAMStreamConfig: :GetStreamCaps.

Suppose your capture card supports JPEG formllt lit llll resolutions between 160 x 120 pixels
llnd 320 x 240 pixels, inclusive. The difference between supported resolutions is one in this
case because you lldd or subtract one pixel from ellch supported resolution to get the next
supported resolution. This difference in supported resolutions is called granulllrity.

Suppose you card lllso supports the size 640 x 480. The following mustrlltes thiS single
resolution llnd the llbove range of resolutions (llll sizes between 160 x 120 pixels llnd 320 x
240 pixels).

640

320

240 JPEG 480

/160 ,,::::::-

120 JPEG

Also, suppose it supports 24-bit color RGB formllt lit resolutions between 160 x 120 llnd 320 x
240, but with ll grnnulllrity of 5. The following illustrlltion shows some of the Vlllid sizes in this
case.

320

;·- ·--·--·--·--·}'~-----·--·--·--·--
304 .---'--· --· --· --·--·--· --· --· --· --· -

' ' 296
;·--·--·--·--·--·--·--·--·--·--·-~ . . . ' ' ' ' . . .
• 184 '

··--·---~----·--·--·--·--·
176

' 168
' • • J. -- • -- • -- • -- • -- • -- •

' ' ; 160 '

24-bit
RGB

120
:izs
' '
' ' --· -. -- . _,

144
136

:216
, .

'
'
' . . r. -- . -

granularity=8

ZZ4

385

240

"'

Filter Developer's Guide Page 78 of 83

To put it another way, and listing more resolutions, the following are all among the list of valid
resolutions .

• 160 x 120
• 168 x 120
• 168 x 128
• 176 x 128
• 176 x 136
• ... additional resolutions ...
• 312 x 232
• 320 x 240

Use GetStreamCaps to expose these color format and dimension capabilities by offering a
media type of 320 x 240 JPEG (if that is your default or preferred size) coupled with minimum
capabilities of 160 x 120, maximum capabilities of 320 x 240, and a granularity of 1. The next
pair you expose by using GetStreamCaps is a media type of 640 x 480 JPEG coupled with a
minimum of 640 x 480 and a maximum of 640 x 480 and a granularity of 0. The third pair
includes a media type of 320 x 240, 24-bit RGB with minimum capabilities of 160 x 120,
maximum capabilities of 320 x 240, and a granularity of 8. In this way you can publish almost
every format and capability your card might support. An application that must know what
compression formats you provide can get all the pairs and make a list of all the unique
subtypes of the media types.

A filter obtains its media type source and target rectangles from the VIDEOINFOHEADER
structure's resource and rcTarqet members, respectively. Filters do not have to support source
and target rectangles.

The cropping rectangle described throughout the IAMStreamConfig documentation is the same
as the VIDEOINFOHEADER structure's resource rectangle for the output pin.

The output rectangle described throughout the IAMStreamConfiq documentation is the same as
the biWidth and bi Height members of the output pin's BITMAPINFOHEADER structure.

If a filter's output pin is connected to a media type with nonempty source and target
rectangles, then your filter is required to stretch the input format's source subrectangle into
the output format's target subrectangle. The source subrectangle is stored in the
VIDEO STREAM CONFIG CAPS structure's InputSize member.

For example, consider the following video compressor scenario: The input image is in RGB
format and has a size of 160 x 120 pixels. The source rectangle's upper-left corner is at
coordinate (20,20), and its lower-right corner is at (30,30). The output image is in MPEG
format with a size of 320 x 240. The target rectangle's upper-left corner is at (0,0) and its
lower-right corner is at (100,100). In this case, the filter should take a 10 x 10 piece of the
160 x 120 RGB source bitmap, and make it fill the top 100 x 100 area of a 320 x 240 bitmap,
leaving the rest of the 320 x 240 bitmap untouched. The following illustration shows this
scenario.

386

Filter Developer's Guide

160

20,20

120
Source rectangle

·. 30;-so (Input)
·.

RG~
..

\ o,~- .
·,

320
·. ·. ·. ·,

100,100

240 MPEG

Target rectangle
(Output)

Page 79 of 83

A filtllr might not support this and can fail to connllct with a mlldia type wherll rcSource and
rcTarget arll not empty.

Thll VIDEOINfOHEADER structure llXposlls information about a filtllr's data rate capabilitills.
for example, supposll you connectlld your output pin to the next filter with a certain mlldia
type (either directly or by using the media type passlld by the CMediaTupe:: Setformat
function). Look at the dwBjtRate mllmber of that media type's VIDEOINFOHEADER format
structurll to see what data rate you should comprllss the vidllo to. If you multiply the number
of units of timll per frame in the VIDEOINFOHEADER structurll's AvgTimePerframe mllmber
by the data ratll in thll <fWBitRate member and divide by 10,000,000 (thll number of units per
second), you can figure out how many bytes llach frame should be. You can prod ucll a smaller
siZlld framll, but nllver a larger onll. To determine the framll rate for a VidllO compressor or for
a capture filtllr, use AvgTimePerframe from your output pin's mlldia type.

Al.ldio Cllpabilities

for audio capabilities, IAMStreamConfig: :GetStreamCaos rlltums an array of pairs of
AM MEDIA TYPE and AUDIO STREAM CONEIG CAPS structures. As with Video, you can USll
this to expose au kinds of audio capabilitills on thll pin, such as data rate and whllthllr it
supports mono or sterllo.

See Video Caoabilities for video·rlllated llxamples rlllating to
IAMStreamConfig: :GetStreamCaps.

Supposll you support pulsll code modulation (PCM) wave format (as represllnted by thll
Microsoft® Win32® PCMWAVEfORMAT structurll) at sampling rates of 11,025, 22,050, and
44,100 sampllls per sllcond, au at 5· or 16-bit mono or stllrllo. In this casll, you would offer
two pairs of structurlls. Thll first pair would have an A!JDIO STREAM CONFIG CAPS capability
structurll saying you support a minimum of 11,025 to a maximum of 22,050 samples per
second with a granularity of 11,025 samples per second (granularity is thll differencll between
supported valulls); an 5•bit minimum to a 16-bit maximum bits pllr samplll with a granularity
of 5 bits per samplll; and one-channlll minimum and two-channlll maximum. Thll first pair's
media type 'NOUld be your dllfault PCM format in that rangll, perhaps 22 kilohertz (kHz), 16-bit
stereo. Your second pair would be a capability showing 44,100 for both minimum and

387

Filter Developer's Guide Page 80 of 83

maximum samples per second; 8-bit (minimum) and 16-bit (maximum) bits per sample, with a
granularity of 8 bits per sample; and one-channel minimum and two-channel maximum. The
media type would be your default 44 kHz format, perhaps 44 kHz 16-bit stereo.

If you support non-PCM wave formats, the media type returned by this method can show which
non-PCM formats you support (with a default sample rate, bit rate, and channels) and the
capabilities structure accompanying that media type can describe which other sample rates, bit
rates, and channels you support.

Reconnecting Your Input to Ensure Specific Output Types

Filters implement the IAMStreamConfig: :SetFormat method to set the audio or video stream's
format before pins are connected. Additionally, if your output pin is already connected and you
can provide a new type, then reconnect your pin. If the other pin your filter is connected to
can't accept the media type, fail this call and leave your connection alone.

Transform filters that do not know what output types their pins can provide should refuse any
calls to IAMStreamConfig: :SetFormat and IAMStreamConfig: :GetStreamCaos with the error
code VFW E NOT CONNECTED until their input pin is connected.

If your pin knows what types it can provide even when your input is not connected, it is okay
to offer and accept them as usual. See Connecting Transform Filters for more information.

In certain cases it is useful to reconnect pins when you are offering a format on an established
connection. For example, if you can compress video into format X but only if you get 24-bit
RGB input, and you can turn 8-bit RGB input into compressed format Y, you can either:

1. Offer and accept both X and Yin IAMStreamConfig: :GetStreamCaos and
IAMStreamConfig: :SetFormat all the time, or,

2. Only offer format X if your input is connected as 24, and only offer Y if your input is
connected as 8. Fail both IAMStreamConfig: :GetStreamCaos and
IAMStreamConfig: :SetFormat if your input is not connected.

No matter which one you choose, you will need some reconnecting code that looks like this:

//overridden to do fancy reconnecting footwork.
II
HRESULT MyOutputPin, ,checkMediaType(const CMediaType *pmtout)
{

HRESULT hr;
CMediaType *pmtEnum;
BOOL fFound = FALSE;
IEnumMediaTypes *pEnum;

if (!m_pFilter->m_pinput->IsConnected())
return VFW_E_NOT_CONNECTED;

II Quickly verify that the media type is not bogus here
II
II If somebody has previously called SetFormat, fail this call if the media tYIO
// isn't an exact match.

II Accept this output type like normal; nothing fancy required.
hr m_pFilter->CheckTransform(&m_pFilter->m_pinput->CurrentMediaType(),

388

Filter Developer's Guide

if (hr == NOERROR)
return hr;

Page 81of83

pmtout);

DbgLog((LOG_TRACE,3,TEXT("Can't accept this output media type")));
DbgLog((LOG_TRACE,3,TEXT(" But how about reconnecting our input ... ")));

II Attempt to find an acceptable type by reconnecting our input pin.
II The pin our input pin connects to might be able to provide a type
//that our pin can convert into the necessary type.
hr= m_pFilter->m_pinput->Getconnected()->EnumMediaTypes(&pEnum);
if (hr != NOERROR)

return E FAIL;
while (1) { -

hr = pEnum- >Next (1, (AM_ MEDIA_ TYPE * *) &pmtEnum, &j) ;

II All out of enumerated types.
if (hr == s FALSE I I j == O) {

break;

// Can our pin convert between these?
hr = m_pFilter->CheckTransform(pmtEnum, pmtout);

if (hr != NOERROR) {
DeleteMediaType(pmtEnum);
continue;

II OK, it offers an acceptable type, but will it accept it now?
hr= m_pFilter->m_pinput->Getconnected()->QueryAccept(pmtEnum);
11 Nope.
if (hr != NOERROR) {

DeleteMediaType(pmtEnum);
continue;

}
II OK, I'm satisfied.
fFound = TRUE;
DbgLog ((LOG_TRACE, 2, TEXT ("This output type is only acceptable after reconn•

II All done with this.
DeleteMediaType(pmtEnum);
break;

pEnum->Release();

if (! fFound)
DbgLog ((LOG_TRACE, 3, TEXT ("*NO! Reconnecting our input won't help")));

return fFound ? NOERROR ' VFW_E_INVALIDMEDIATYPE;

HRESULT MyOutputPin, ,setFormat(AM MEDIA TYPE *pmt)
{ - -

HRESULT hr;
LPWAVEFORMATEX lpwfx;
DWORD dwSize;

if (pmt == NULL)
return E_POINTER;

389

Filter Developer's Guide Page 82 of 83

//To make sure streaming isn't in the middle of starting/stopping:
CAutoLock cObjectLock(&m_pFilter->m_csFilter);

if (m_pFilter->m_State != State_Stopped)
return VFW_E_NOT STOPPED;

II Possible output formats depend on the input format.
if (!m_pFilter->m_pinput->IsConnected())

return VFW_E_NOT CONNECTED;

II Already using this format.
if (IsConnected() && CurrentMediaType() *pmt)

return NOERROR;

II See if this type is acceptable.
if ((hr= CheckMediaType((CMediaType *)pmt)) != NOERROR) {

DbgLog((LOG_TRACE,2,TEXT("IAMStreamConfig, ,setFormat rejected")));
return hr;

II If connecting to another filter, make sure they like it.
if (IsConnected()) {

hr= Getconnected()->QueryAccept(pmt);
if (hr != NOERROR)

return VFW_E_INVALIDMEDIATYPE;

//Now make a note that from now on, this is the only format allowed,
II and refuse anything but this in the CheckMediaType code above.

//Changing the format means reconnecting if necessary.
if (IsConnected())

m_pFilter->m_pGraph->Reconnect(this);

return NOERROR;

//overridden to complete our fancy reconnection footwork:
II
HRESULT MyWrapper, ,setMediaType(PIN DIRECTION direction,const CMediaType *pmt)
{ -

HRESULT hr;

II Set the OUTPUT type.
if (direction == PINDIR_OUTPUT)

//Uh oh. As part of our fancy reconnection, our input pin might be asked
//provide a media type it cannot provide without reconnection
II to a different type.
if (m_pinput && m_pinput->IsConnected())

// If our pin can actually provide this type now, don't worry.
hr= CheckTransform(&m_pinput->CurrentMediaType(),

&m_poutput->CurrentMediaType());
if (hr == NOERROR)

return hr;

DbgLog ((LOG_TRACE, 2 'TEXT(" *Set OUTPUT requires RECONNECT of INPUT!

II Reconnect our input pin.
return m_pGraph->Reconnect(m_pinput);

390

Filter Developer's Guide Page 83 of 83

return NOERROR;

return NOERROR;

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lml!§lllMM

391

DirectShow COM Interfaces Page 1of658

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

DirectShow COM Interfaces

This section contains reference entries for all the DirectShow COM interfaces and their
methods.

· Summary of DirectShow COM Interfaces

• DirectShow Interfaces by Category

• IAMAud ioC utListElement Interface

· IAMAudioinputMixer Interface

• IAMBufferNeqotiation Interface

· IAMCollection Interface

• IAMCopyCa ptu re Fi leProg ress Interface

· IAMCrossbar Interface

· IAMCutListElement Interface

· IAMDevMemoryAllocator Interface

· IAMDevMemoryControl Interface

· IAMDirectSound Interface

· IAMDroppedFrames Interface

· IAMExtDevice Interface

· IAMExtTransport Interface

• IAMFileCutListElement Interface

· IAMLine21Decoder Interface

· IAMovie Interface

• IAMovieSetu p Interface

• IAMStrea mConfiq Interface

392

DirectShow COM Interfaces

• IAMStrea mControl Interface

• IAMStrea mSelect Interface

• IAMTi mecodeDisplay Interface

• IAMTi mecodeGenerator Interface

• IAMTi mecodeReader Interface

· IAMTVTuner Interface

· IAMVfwCaptureDialoqs Interface

• IAMVfwComp ressDia logs Interface

• IAMVideoComp ression Interface

· IAMVideoCutListElement Interface

· IAMVideoProcAmp Interface

• IAsyncReader Interface

· IBaseFilter Interface

· IBasicAudio Interface

• IBasicVideo Interface

· ICaptureGraphBuilder Interface

· IConfigAviMux Interface

• IConfiqI nterleavi nq Interface

· ICreateDevEnum Interface

· IC utListG ra ph Bui Ider Interface

• IDeferredComma nd Interface

· IDirectDrawVideo Interface

· ID istri butorNotify Interface

• IDvdControl Interface

· IDvdGraphBuilder Interface

Page 2of658

393

DirectShow COM Interfaces

· IDvdinfo Interface

· IEnumFilters Interface

· IEnumMediaTypes Interface

· IEnumPins Interface

· IEnumRegFilters Interface

· IFileClip Interface

· IFileSinkFilter Interface

· IFileSinkFilter2 Interface

• IFi leSourceFi lter Interface

· IFilterGraph Interface

· IFilterGraph2 Interface

· IFilterinfo Interface

· IFilterMapper Interface

· IFilterMapper2 Interface

· IFullScreenVideo Interface

· IGraphBuilder Interface

• IG ra phVersion Interface

· IKsPropertySet Interface

· I Med iaControl Interface

· IMediaEvent Interface

· IMediaEventEx Interface

· IMediaEventSink Interface

· IMediaFilter Interface

· IMediaPosition Interface

· I Media PropertyBag Interface

Page 3of658

394

DirectShow COM Interfaces

· IMediaSamole Interface

· IMediaSample2 Interface

· IMediaSeeking Interface

· IMediaTyoeinfo Interface

· IMemAllocator Interface

· IMeminputPin Interface

· IMixerPinConfig Interface

· IOverlay Interface

• IOverlayNotify Interface

· IPin Interface

· IPininfo Interface

· IQualityControl Interface

· IQualProp Interface

• IQueueComma nd Interface

· I ReferenceClock Interface

· IRegFilterinfo Interface

· IResourceConsumer Interface

· IResourceManager Interface

· ISeekingPassThru Interface

· I Sta nda rdCutList Interface

· IUnknown Interface

· IVideoWindow Interface

· IVPBaseConfig Interface

• IVPBaseNotify Interface

• IVPConfig Interface

Page 4of658

395

DirectShow COM Interfaces Page 5of658

• IVPNotify Interface

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!MM

+Q<@[.]jj,+ 111.1 1119 Topic Contents 1@1§11!¥+

Summary of DirectShow COM Interfaces

This article groups the Microsoft® DirectShow™ interfaces according to the objects that expose
them. It explains which object implements each interface and who is likely to call the interface
methods implemented on each type of object. The information is presented as a series of
tables of COM interfaces relating to each object, and so provides a summary and quick
reference for understanding the Di rectShow interfaces.

Contents of this article:

• Introducing the DirectShow COM Interfaces
• Interfaces on a Typical Filter Graph

Introducing the DirectShow COM Interfaces

The DirectShow COM interfaces comprise the schematic of an architecture for streaming time
stamped media. The filter graph, through which media flows, is composed of objects, such as
filters, pins, media samples, allocators, and enumerators, that work together. COM interfaces
are implemented on these objects and are called by other objects with which they interact. The
filter is the only filter graph COM object that has a CLSID; all other objects in the filter graph
support COM interfaces, and are created as needed by the filter. Filters and their supporting
object must implement their COM interfaces and a class library is available for help in that
task. The filter graph manager, on the other hand, has a CLSID and supports several fully
implemented interfaces, as do plug-in distributors, which are aggregated by the filter graph
manager. (Microsoft-provided plug-in distributors are referred to as the filter graph manager in
this article.)

This section contains the following topics.

• Filter Graph Manager Interfaces
• Filter and Pin Interfaces
• Media Sample and Enumerator Interfaces
• Control Interfaces

The DirectShow COM interfaces can be categorized as follows:

• Filter graph manager interfaces, which are fully implemented and used by applications to
create, connect, and control filter graphs and by filters within the filter graph to post
event notifications and to force reconnections when needed.

396

DirectShow COM Interfaces Page 6 of 658

• Filter and pin interfaces, which must be implemented by the filter. They comprise the
methods exposed by filters for communicating with the filter graph manager, connecting
with other filters, passing data downstream (from source filter to renderer filter) and
passing quality control and media positioning information upstream (from renderer to
source).

• Enumerator and media sample interfaces, which are interfaces on objects created
temporarily for passing information.

• Control interfaces, which are exposed by filters and the filter graph manager to enable
the starting, stopping, and positioning of media in the stream. The control interfaces on
the filters must be implemented when writing a filter, whereas they are already
implemented on the filter graph manager.

Filter Graph Manager Interfaces

Most filter graph manager interfaces fall in the category of control interfaces, also listed
separately in this article; however, some are unique to the filter graph manager.
Interface What calls What methods do Comments

methods
IAMCollection An Automation client

such as Microsoft®
Visual Basic®.

!DeferredCommand The application that
sent a deferred
command using
IOueueCommand.

Retrieve the number of items
in the collection and retrieve
an indexed item.

Retrieve confidence
information, postpone or
cancel a deferred command,
and return HRESULT values
from an invoked command.

Implemented by the
filter graph manager.
Not used by C or C++
applications.

Implemented by the
filter graph manager
and returned to any
application that calls
IOueueCommand
methods.

IEnumFilters Application or
possibly a filter that
needs to know what
other filters are in
the graph.

Retrieve filters, skip filters, or Implemented in the

IEnumRegFilters

IFilterGraoh

IFilterGraoh2

IFilterinfo

IGraohBuilder

clone the enumerator. filter graph manager.

Filter mapper. Retrieve filters, skip items, or Implemented by the
clone the enumerator. filter graph manager.

Not usually called
directly.

C or C++
applications.

Add, connect, and reconnect
filters in a filter graph.

Extend filter graph
functionality.

An Automation client Retrieve name, vendor
such as Visual Basic. information, IBaseFilter

interface, file name (for
source filters), specified pin
object, or collection of
associated pin objects.

Application. Create filter graphs
dynamically from stream
media type or re-create
stored filter graph.

397

Use IGraohBuilder
instead, because it
inherits from this
interface.

Implemented by the
filter graph manager.
Not used by C or C++
applications.

Inherits from
IFilterGraoh. Also
uses a filter mapper
object to look up
filters in the registry.

DirectShow COM Interfaces Page 7 of 658

IGraohVersion

IMediaControl

IMediaEvent

IMediaEventSink

IMediaPosition

I Media Seeking

IMediaTyoeinfo

IPininfo

IOueueCommand

IRegFilterinfo

Application and plug- Retrieve the current filter
in distributors in the graph version and determine
filter graph manager. when a filter graph has had

Application.

Applications that
need to retrieve
events passed to the
filter graph manager
from filters.

Filters that need to
pass events to the
application.
Applications.

Applications.

filters added, deleted, or
reconnected.

Run, pause, and stop the
filter graph, and retrieve the
state.

Get events, get event
handles, block until
completion, and block or
unblock default handling of
events by the filter graph
manager.

Receive event notifications
from filters.

Get duration and position
properties, and get and set
start time, stop time, preroll
time, and rate properties.
Set and retrieve current
position and stop position in
units other than time (such
as sample or field).

Has many of the
same methods as the
IMediaFilter interface,
which is implemented
on filters.
Implemented by the
filter graph manager.

Implemented by the
filter graph manager.

Implemented on the
filter graph manager
and also on filters.

Implemented on the
filter graph manager
and also on filters.

An Automation client Retrieve the major and minor Implemented by the
such as Visual Basic. media types. filter graph manager.

Not used by C or C++
applications.

An Automation client Retrieve pin information such Implemented by the
such as Visual Basic. as name, direction, filter graph manager.

connections, and collection of Not used by C or C++
associated media type applications.

Application needing
to send a deferred
command.

objects. Also includes
methods to connect and
disconnect pins.
Cue commands to run at
stream time (offset from
start) or presentation time.

An Automation client Retrieve a filter name and
such as Visual Basic. add it to the filter graph.

Implemented by the
filter graph manager
and used by
applications. Filters
can implement this.

ISeekingPassThru Applications. Instantiate and initialize a
CRendererPosPassThru
object. You can use this
object to keep track of
reference times and stream
times.

Implemented by the
filter graph manager.
Not used by C or C++
applications.
Implemented on
video renderer filters
that need to keep
track of reference
time and stream
time.

398

DirectShow COM Interfaces Page 8 of 658

Filter and Pin Interfaces

Filters are composed of one filter object and one or more pin objects. Although only the
!Unknown and !BaseFilter interfaces are strictly required on a filter, filters can support other
filter and pin interfaces, as discussed in Filter Interfaces.

This topic contains the following subtopics.

• Filter Interfaces
• Pin Interfaces

Filter Interfaces

The following interfaces are exposed by filter objects in order to be integrated with the filter
graph manager. The filter is the main COM object and has a class ID (CLSID) and name
registered in the registry. Filters must provide access to their pins and otherwise communicate
with the filter graph. They must also allow the filter graph manager to manage the data flow
by accepting state change messages.
Interface What calls What methods do Comments

methods
IAMovieSetuo Entry-point

routines in
Dllentry.cpp.

!BaseFilter Filter graph
manager.

!MediaFilter Nothing directly.

!Persist

!Unknown

Filter graph
manager when
loading
preconfigured filter
graph files.
Filter graph
manager.

Register and unregister
the object.

Same as !Media Filter plus
enumerate pins, retrieve
filter and vendor
information, and locate
pins when rebuilding a
persistent filter graph.

This is implemented by the
base classes for most of what is
required to make a filter self
registerable. Need to override
one base member function to
provide setup structures.
Inherits methods from the
!MediaFilter interface.
Implemented by the CBaseFilter
class.

Put the filter in run, stop, Inherited by the !BaseFilter
or pause state, get and set interface, which should be used
the reference clock, and instead of referencing this
retrieve the filter state. directly.
Retrieve the filter's class
identifier.

Retrieve a pointer to the
interface, add and delete
references to the
interface.

Inherited by !BaseFilter along
with !MediaFilter.

Implemented by the CUnknown
base class.

The following additional filter interfaces can be exposed by filters such as source filters, and by
video and audio renderers. Source filters are notified by means of a quality control mechanism
so that they can adjust the amount of data introduced to the stream according to the
renderer's performance. Audio renderers are usually called upon to provide a reference clock,
since audio hardware generates this. The video renderer filter supplied by Microsoft exposes
interfaces to handle both the video window and the transferring of video frames into video

399

DirectShow COM Interfaces

buffers.
Interface

IAMCrossbar

IAMExtDevice

IAMExtTransoort

What calls
methods
C or C++
applications.

C or C++
applications.
C or C++
applications.

IAMTimecodeDisolay C or C++
applications.

IAMTimecodeGenerator C or C++
applications.

IAMTimecodeReader C or C++
applications.

IAMTVTuner C or C++
applications.

IAMVideoProcAmo

!AsyncReader

IBasicAudio

IBasicVideo

C or C++
applications.
Downstream
parser filter.

Applications and
Automation
clients such as
Visua I Basic.
Applications and
Automation
clients such as
Visua I Basic.

Page 9 of 658

What methods do Comments

Route messages from Exposed on analog video
an analog or digital crossbar filters.
audio or video source
to a video capture
filter.
Control external
devices.
Control specific
behaviors of an
external VCR.
Define behavior of an
external SMPTE/MIDI
timecode display
device.
Specify how an
external SMPTE/MIDI
timecode generator
should supply data to
the filter graph, and
the formats in which
timecode should be
supplied.
Specify the timecode
format that an
external device
should read and how
it is embedded in the
media.
Enables applications
to set TV
transmission types.
Control video quality
settings.

Exposed on WDM video
capture filters.

Perform synchronized Implemented on the Async
reads, request data, Samole (Asynchronous
request allocator, Reader Filter), which reads
begin and end media types with a major
flushing, and retrieve type of MEDIATYPE_Stream.
file's total length.
Get and set the
properties of the
audio renderer filter.

Get and set the
source video
rectangle, and
retrieve video size,
palette values, and
the current image.

400

Can be implemented on an
audio renderer filter. Supports
Automation.

Usually implemented on a
video renderer filter. Supports
Automation.

DirectShow COM Interfaces Page 10 of 658

ICreateDevEnum C or C++ Enumerate hardware
applications. devices.

IDirectDrawVideQ C or C++ Set and retrieve Usually implemented on a
applications. DirectDraw® video renderer filter.

hardware and
emulated capabilities
and surface types.

I Fi leS in kFi lter Any application Set or retrieve the Implemented on a file writer
that needs to set file name. filter, as used in a video
the name of the capture filter graph.
file from which
the file source
filter will read.

IFileSinkFilter2 C or C++ Set or retrieve the
applications. file name, optionally

overwriting an
existing file.

IFileSQurceFilter Any application Set or retrieve the Implemented on any source
that needs to set file name. filter that needs a file name
the name of the from the user.
file into which
the file sink filter
will write.

IFullScreenVideQ C or C++ Set and retrieve full- Usually implemented on a
applications. screen modes, video renderer filter.

message drain, icon
caption, and other
information.

!Media PrQpert:i-:Bag C or C++ Expose copyright
applications. information on filters.

IMediaSample2 Filters. Expose sample
properties.

!Overlay Filters upstream Set and retrieve Usually implemented on a
from the palette and color key video renderer filter.
renderer that information; get
need to be window handle, clip
notified of list, window position;
window changes. set up advise link

with upstream filter.
IQualityControl Filter graph Receive a quality Normally implemented on

manager, message and receive filters that can affect the
upstream filter, the quality sink quality when they receive the
or pin. location. message.

!Qua I Proo Property page Retrieve rendering Supports Automation.
objects. quality properties of

the video renderer,
such as the number
of frames drawn,
jitter, and so on.

401

DirectShow COM Interfaces Page 11 of 658

!ReferenceClock

!Video Window

Filters that need Register for time Implemented on a filter that
to be notifications from the can generate a reference
synchronous with filter, convert real to clock, typically an audio
a reference clock. reference time, and renderer. Provides services

retrieve the current similar to the timeBeginPeriod

Applications and
Automation
clients such as
Visua I Basic.

time. and timeSetEvent Win32®
functions.

Control the window
aspects of a video
renderer.

Usually implemented on a
video renderer filter.

DirectShow provides filters that implement particular interfaces for you. Applications typically
use those interfaces, but filters do so as well.
Interface What calls What methods do Comments

methods
!AM Di rectSou nd DirectSound

audio
renderer.

Set and retrieve the
window that will
handle the sound
playback.

IAMLine21Decoder Applications Provide access to
or video mixer closed caption
filter. settings.

IAMStreamSelect Applications.

IAMVfwCaotureDia logs Applications.

IAMVfwComoressDialogs Applications.

IAMAudioCutlistElement Applications
and filters.

!Ca otureGra oh Builder Applications.

!ConfigAviMux Applications.

!Configlnterleaving Applications.

Control which logical
streams are played
and retrieve
information about
them.
Provide access to
dialog boxes exposed
by Video for Windows
capture drivers.
Provide access to
dialog boxes exposed
by Video for Windows
compressors.
Provide support for a
cutlist element for an
audio file stream in a
WAV or AV! file.
Simplify building
capture filter graphs.
Control how the AV!
multiplexer filter
writes files to disk.
Control how the AV!
multiplexer filter
writes files to disk and
set interleaving
configuration
information.

402

DirectSound audio renderer
implements and uses this
interface.

Line21 decoder implements
this interface.

The MPEG splitter implements
this interface.

Video for Windows capture
filter implements this
interface.

Video for Windows installable
compression manager (ICM)
filter implements this
interface.
The CLSID AudioFileCliD
object implements this
interface.

Capture graph builder object
implements this interface.
AV! multiplexer filter
implements this interface on
its property page.
AV! multiplexer filter
implements this interface on
its property page.

DirectShow COM Interfaces

IAMCutlistElement

!CutlistG ra oh Bui Ider

!DvdControl

!DvdGraohBuilder

!Dvdlnfo

!FileClio

Page 12 of 658

Filters. Describe a base DirectShow provides the
object, which CLSID VideoFileClio and
represents an element CLSID AudioFileClio objects,
in a cutlist. which can create an object

that implements it for you.
Applications. Enable you to easily

implement one or
more cutlist filter
graphs.

Applications.

Applications.

Applications.

Control playback and
searching on DVD
discs.
Simplify building DVD
filter graphs.
Query for DVD
attributes and DVD
player status.

Applications. Provide a simple way
for an application to
create one or more
cuts from a single
media file, or to create
blank cuts.

DVD navigator filter
implements this interface.

DVD graph builder object
implements this interface.
DVD navigator filter
implements this interface.

IAMFileCutlistElement Filters. Provide support for a
cutlist element for a
file stream.

DirectShow provides the
CLSID VideoFileClio and
CLSID AudioFileClio objects
that implement it for you.

!Sta nda rdC utlist Applications. Provide a simple way
for an application to
feed a cutlist into a
cutlist provider (filter).

IAMVideoCutlistElement Filters. Provide support for a
cutlist element from
an AV! video file

DirectShow provides the
CLSID VideoFileClio object
that implements it for you.

IVPBaseConfig

IVPBaseNotify

IVPConfig

!VP Notify

Pin Interfaces

stream.
Video port Enable a video port Ksproxy filter implements this
mixer filter. (VP) mixer filter to interface.

communicate with a
VP driver.

Applications. Control properties of a Video port mixer filter
filter that uses a video implements this interface.
port.

Video port Enable a video port Ksproxy filter implements this
mixer filter. (VP) mixer filter to interface.

communicate with a
VP driver.

Applications. Control properties of a Video port mixer filter
filter that uses a video implements this interface.
port.

403

DirectShow COM Interfaces Page 13 of 658

Pin objects expose these interfaces. Pins do not usually have registered class identifiers and
are usually created by the filter object on which they reside. They are exposed externally by
the filter, which includes a method (!BaseFilter:: EnumPins) to hand out pointers to the !Pin
interfaces of its pins, usually to the filter graph manager. The filter graph manager is
responsible for connecting pins by calling an IPin method on one of the pins with a pointer to
the other pin. Once pins are connected, each pin holds a pointer to the pin to which it is
connected.
Interface

IAMAudiolnoutM ixer

IAMBufferNegotiation

What calls
methods

What methods do

Applications. Adjust audio input
characteristics.

Applications. Set and retrieve buffer
properties.

Comments

Input pin of an audio
capture filter typically
implements this interface.
The IAMBufferNegotiation
interface informs a pin
what kind of buffer
specifications it should use
when connected.

IAMDevMemoryAllocator Applications. Provide creation of third
party memory allocators.
Control and identify on
boa rd codec memory.

Makes use of on-board
memory manager objects.
This interface is supported
by a device memory control
object.

IAMDevMemoryControl Applications.

IAMDroooedFrames Applications. Provide information about Capture filter's video output
the number of dropped pin should implement this
frames, frame rate, and interface.
data rate.

IAMStreamConfig Applications or Provide types of formats Output pins of capture and
filters. an output pin can compression filters typically

connect with. implement this interface.
IAMStreamControl Applications. Enable control of streams Implemented by any input

in a filter graph. or output pins.
IAMVideoComoression Applications. Control compression

parameters that aren't
part of the media type.

Output pin of a video
capture or compression
filter typically implements
this interface.

!KsProoertySet

!MediaPosition

I Media Seeking

Applications or Sets and retrieves device
filters. properties.

Filter graph
manager or
downstream
filter.

Get duration and position
properties, and get and
set start time, stop time,
preroll time, and rate
properties.

Expose device properties
and enable an application
or filter to change the
properties.
Downstream filters call
methods on output pins
supporting this to pass a
requested media position
upstream. Implemented in
CPosPassThru on pins.

Applications. Set and retrieve current Downstream filters call
position and stop position methods on output pins
in units other than time supporting this to pass a
(such as sample or field). requested media position

404

upstream. Implemented in
CPosPassThru on pins.

DirectShow COM Interfaces Page 14 of658

!MemAllocator Owning filter Allocate one or more Appears on allocator object
and output pin buffers based on required usually created by
of connected size, retrieve a buffer for !MemlnoutPin.
filter. a media sample, commit Implemented by the

memory when in use, CMemAllocator class.
and release it (decommit)
when not in use.

!MemlnoutPin Filter graph Retrieve a preferred Usually only on input pins.
manager, allocator, receive the Implemented by the
output pin of a allocator provided by CBaselnoutPin base class.

!OualityControl

!Unknown

connected output pin, receive media
filter. samples, and tell whether

the pin will block on
receive.

Filter graph Connect and disconnect
manager, the pin, retrieve
other pins, the information on external
owning filter. and internal pin

Downstream
filter or pin on
downstream
filter.

connections, retrieve
preferred media types
enumerator, negotiate
preferred media types,
receive flush and end-of
strea m notifications.

Receive a quality
message and receive the
quality sink to send
quality messages to.

Filter graph Retrieve a pointer to the
manager, interface, add and delete
other pins, the references to the
owning filter. interface.

Implemented on all pins by
the CBasePin base class.

Implemented on output
pins by the CBaseOutoutPin
base class, where it is used
to pass the message
upstream.
Implemented on all pins by
the CUnknown base class.

In addition, the Microsoft video renderer's input pin supports the !Overlay interface, which
allows the connected upstream pin to effectively register its IOverlayNotify interface in order to
receive notifications of video window changes. Replacement video renderers can also
implement this if they are intended to connect to the same filters as the video renderer
provided with DirectShow.

Media Sample and Enumerator Interfaces

Media sample and enumerator interfaces are temporary objects created to pass information or
data between objects. They do not have class identifiers.

This topic contains the following subtopics.

• Media Sample Interfaces
• Enumerator Interfaces

Media Sample Interfaces

The media sample interface, !MediaSamole, is created from the memory allocator, which uses

405

DirectShow COM Interfaces Page 15 of 658

the media sample object as its unit of exchange. It has no class identifier. It is the unit of
media data that is passed from one filter to the next via the memory allocator shared by two
connected pins.
Interface What calls What methods do Comments

methods
!MediaSamole Pins or filters that

need to manipulate
the media sample
data or examine its
properties.

!Unknown Pin or filter.

Enumerator Interfaces

Retrieve a pointer to data, and get
and set properties on the media
sample such as buffer size, time
stamp, data length, type,
synchronization point, preroll, and
end-of-stream properties.

Implemented on
media samples by
the CMediaSamole
base class.

Retrieve pointer to the interface, add Implemented on
and delete references to the media samples by
interface. the CUnknown base

class.

Enumerators in DirectShow are based on the COM !EnumXXXX interfaces. They include the
Next and Prev methods, which tell the enumerator what item or items to return; the Skip
method, which skips one or more items; and the Clone method, which makes a copy of the
enumerator. Enumerators are used to present lists of items such as filters in a filter graph,
pins on a filter, or media types that are preferred by a pin.
Interface What calls methods What methods do
!EnumFilters Application or possibly a

filter that needs to know
what other filters are in
the graph.

!EnumMediaTyoes Filter graph manager or
connected pin negotiating
a media type.

!EnumPins Filter graph manager.

!EnumRegFilters Filter mapper.

Control Interfaces

Retrieve filters, skip
filters, or clone the
enumerator.

Retrieve media types,
skip media types, or
clone the enumerator.
Retrieve pins, skip
pins, or clone the
enumerator.
Retrieve filters, skip
items, or clone the
enumerator.

Comments
Implemented in the
filter graph manager.

Implemented by the
CEnumMediaTyoes
class.
Implemented by the
CEnumPins class.

Implemented by the
filter graph manager.

Control interfaces allow the filter graph manager to coordinate the activities of the data stream
with filters. Interfaces described previously in both the Filter Graoh Manager Interfaces and
Filter and Pin Interfaces sections are repeated here so that all control interfaces can be viewed
together.
Interface
!BaseFilter

What calls methods
Filter graph manager.

What methods do Comments
Same as !Media Filter plus Inherits methods from
enumerate pins, retrieve the !MediaFilter
filter and vendor interface.
information, and locate pins Implemented by the
when rebuilding a persistent CBaseFilter class.
filter graph.

406

DirectShow COM Interfaces

IMediaControl Application.

IMediafilter Nothing directly.

IMediaPosition Application, when exposed
on the filter graph
manager; filter graph
manager or downstream
filter, when exposed on a
filter.

IMediaSeeking Applications.

Run, pause, and stop the
filter graph, and retrieve
the state.

Page 16 of 658

Implemented by the
filter graph manager.

Put the filter in run, stop, or Inherited by
pause state, get and set the IBasefilter. which
reference clock and retrieve should be used instead
the filter state. of referencing this

directly.
Get duration and position Implemented on the
properties, and get and set filter graph manager
start time, stop time, preroll and on filters.
time, and rate properties.

Set and retrieve current Implemented on the
position and stop position in filter graph manager
units other than time (such and on filters.
as sample or field}.

Because DirectShow objects are COM-based objects, it is a natural extension to use other COM
interfaces published in the COM specifications to perform functions such as listing property
pages or accessing files. Following are some of the COM interfaces that are commonly used in
DirectShow filters.

• IPersistfile
• ISoecifVProoert:vPages

Interfaces on a Typical Filter Gi-aph

Perhaps the best way to put the DirectShow interfaces into perspective is to look at the
interfaces exposed in a simple filter graph. The example chosen here is a filter graph that plays
back audio data stored on a disk. It iS composed of a source filter and an audio renderer filter
(no transforms are done, so this iS a very simple graph}.

The basic source filter consists of an IBasefilter interface, and one output pin that can be
found by using the IBasefilter: :EnumPins method. The COM !Persist interface might also be
present on the filter (not shown here) to enable the filterto be stored as part of a persistent
filter graph.

The output pin supports !Pin and IMediaPosition, since the source filter is a seekable filter (that
is, it can be told to move to a particular position in the media stream). The following
mustration shows the interfaces on the source filter and its output pin.

Note that quality management is not implemented in thiS example, but could be by including
the IOualityControl interface on the output pin as well.

IBaseFilter

Through
IBaseFilter:: EnumPins

!Unknown

Basic
source
filter

!Unknown

~O;:;;u:;:tp;:u;;-t ;;;P,.-;:n lr::-:-,----:--:-....,...,.--O !Pin
/""\ TM-li:i.O.-. .. it-i.-..-.

407

DirectShow COM Interfaces Page 17 of 658

The basic renderer filter consists of a COM driver supporting the IBasefi!ter (and, again,
IMediafi!ter by inheritance) and IMediaPosition interfaces, as we!! as having one input pin
through the Em rmPins method of the IBaseFiltet interface. The COM IPersistFi!e interface
might also be present on the filter (not shown here) in order load the file. The renderer can
support additional interfaces, such as IReferenceClock (as a master for synchronization) or
IBasicA11dio. for an audio renderer as shown here.

The input pin supports the I£ill. and IMeminpirtpjn interfaces. Methods of the IMediaPosition
interface on the renderer filter can cal! the IMedlaPosltlon interface methods of the output
pin that is connected to the renderer's input pin.

IBaseFilter

!Unknown
!Pin r......,.-----,---';,

IMemlnputPin '-"'"'---...11

IMediaPosition

IBasicAudio

Through
IBaseFilter:: EnumPins

A basic representation of the connection of a source filter to a renderer filter follows:

IBaseFilter

source
filter

Through !Unknown
IBaseFilter:: EnumPins

!Base Filter

!Pin !Pin
!Unknown

IMediaPosition

IBasicAudio

Through
IBaseFilter: :EnumPins

Once the pins are enumerated and connected, it is the implementatiOn of the output and input
pins that defines the interactions of the two pins.

Once the filters are connected, the control available to the user (filter graph manager) is
indicated through the bold interfaces. ThiS continues with the example of connecting an audio
source to an audio renderer.

!Base Filter

source
filter

Through !Unknown
IBaseFilter:: EnumPins !Pin

IBaseFilter

!Pin

IMediaPosition

IBasicAudio

Through
IBaseFilter: :EnumPins

The following interfaces are those that would likely be used during a transport.

• IMediaPosition supports the ability to seek to a position and change the rate.
• IBasicAudio supports the ability to set the volume.

408

DirectShow COM Interfaces Page 18 of 658

• IBaseFilter supports such methods as Run and Pause (methods on the filter graph
manager's IMediaControl interface).

Special (custom) interfaces that the filters would support must be obtained directly from the
filters. Usage of these interfaces implies that the user is aware of their identifiers.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

+Qi@[.]+• 111.1,.19 Topic Contents i@i§i i!fttiM

DirectShow Interfaces by Category

The following lists group the Microsoft® DirectShow™ interfaces according to whether
application or filter developers typically call them, or whether they are exposed at the filter
graph level. Both application and filter developers can call some interfaces, while others have a
typical use by one or the other, but both types of developers can still call them. See the
documentation about each interface for more information. Each of the categories (Application
Level Interfaces, Graph-Level Interfaces, and Filter-Level Interfaces) is divided into functional
groupings.

In addition, the Multimedia Streaming Reference contains documentation on interfaces specific
to multimedia streaming.

Application-Level Interfaces

• IAMCollection
• IAMCopyCaptureFileProgress
• IAMLine21Decoder
• IAMVfwCaptureDialogs
• IAMVfwCompressDialogs
• I Ca ptu reG ra ph Bui Ider
• IDistributorNotify
• IEnumPins
• IFileSourceFilter
• IGraphBuilder
• IMediaStream
• IMultiMediaStream
• ISeekingPassThru
• IStreamSample
• IVPBaseNotify
• IVPNotify

Digital Versatile Disc (DVD) Application-Level Interfaces

• IDvdControl

409

DirectShow COM Interfaces Page 19 of 658

• !DvdGraphBuilder
• !Dvdlnfo

Cutlist Application-Level Interfaces

• ICutlistGraphBuilder
• !FileClip
• IStandardCutlist

Cutlist Application-Level or Filter-Level Interfaces

• IAMAudioCutlistElement
• IAMCutlistElement
• IAMFileCutlistElement
• IAMVideoCutlistElement

Capture, Compression, Device Enumeration, and Windows Driver Model (WDM)
Capture Application-Level or Filter-Level Interfaces

• IAMAudiolnputMixer
• !AM BufferNeqotiation
• IAMCrossba r
• IAMTVTuner
• IAMDroppedFrames
• IAMStreamConfiq
• IAMStreamControl
• IAMStreamSelect
• IAMVideoCompression
• IAMVideoProcAmp
• !ConfiqAviMux
• !Confiqlnterleavinq
• !CreateDevEnum
• !FileSinkFilter
• !FileSinkFilter2
• !MediaPropertyBaq
• !MixerPinConfiq

Device Control, Timecode, and Property Set Application-Level or Filter-Level
Interfaces

• IAMExtDevice
• !AM ExtTra nsport
• IAMTimecodeDisplay
• IAMTimecodeGenerator
• IAMTimecodeReader
• !KsPropertySet

Graph-Level Interfaces

• IAMovie

410

DirectShow COM Interfaces Page 20 of 658

• IBasicAudio
• IBasicVideo
• !DeferredCommand
• !DirectDrawVideo
• !DistributorNotify
• !EnumFilters
• !EnumReqFilters
• !FilterGraph
• !FilterGraph2
• !Filterlnfo
• !FilterMapper
• !FullScreenVideo
• !GraphVersion
• !MediaControl
• I Media Event
• !MediaEventEx
• !MediaEventSink
• !MediaPosition
• !MediaSeekinq
• !MediaTypelnfo
• !QualityControl
• !QualProp
• !QueueCommand
• !ReferenceClock
• I Reg Fi lterl nfo
• !ResourceConsumer
• !ResourceManaqer
• !VideoWindow

Filter-Level Interfaces

• IAMovieSetup
• !AsyncReader
• !BaseFilter
• IBasicAudio
• IBasicVideo
• !EnumMediaTypes
• !MediaFilter
• !MemlnputPin
• !Overlay
• IOverlayNotify
• !Pin
• !Pinlnfo
• IVPBaseConfiq
• IVPConfiq

DirectSound Filter-Level Interface

• IAMDirectSound

411

DirectShow COM Interfaces Page 21of658

Memory Allocation and Media Sample Filter-Level Interfaces

• IAMDevMemoryAllocator
• IAM DevMemoryControl
• IMediaSample
• IMediaSample2
• IMemAllocator

COM Interfaces

• !Unknown

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§illlj4M

IAMAudioCutlistElement Interface

The IAMAudioCutlistElement interface provides support for a cutlist element for an audio
file stream in a WAV or AVI file.

See About Cutlists and Using Cutlists for more information.

When to Implement

Usually, you don't need to implement this interface because DirectShow provides the
CLSID AudioFileClip object that implements it for you. Implement this interface in your
application when you need to change the default behavior of this interface.

When to Use

Use this interface in your filter when you specify an audio-based media clip. Call
Querylnterface on the IAMCutListElement interface to determine if the element is an audio
type element.

When compiling a cutlist application you must explicitly include the cutlist header file as
follows:

#include <Cutlist.h>

Methods in Vtable Order

412

DirectShow COM Interfaces Page 22 of 658

!Unknown methods Description
Querylnterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IAMAudioCutlistElement methods Description
GetStrea ml ndex
HasFadeln
HasFadeOut

Retrieves the index to the stream in the AVI file.

Determines if the element fades in automatically.
Determines if the element fades out automatically.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§lll¥M

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

IAMAudioCutlistElement: :GetStrea mlndex

IAMAudioCutListElement Interface

Retrieves the index to the stream in the AVI file.

HRESULT GetStreamindex(
DWORD *piStream
);

Parameters

piStream
[out] Stream number to be opened.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_POINTER
S_OK

Remarks

Null pointer argument.
Success.

This method must always retrieve zero for the stream index. For AVI files, only the first audio
stream is supported.

413

DirectShow COM Interfaces Page 23 of 658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

MQl§i[.jjj,M '!!·HM Topic Contents

IAMAudioCutlistElement:: HasFadel n

IAMAudioCutListElement Interface

Determines if the element fades in automatically.

HRESULT Hasfadeln(void);

Return Values

'ffl!'+* •um•

Returns S_OK if the element should be automatically faded in, or S_FALSE if not.

Remarks

This method always returns S_OK, but fading in and out is not currently supported.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.1 1115 Topic Contents

IAMAudioCutlistElement:: HasFadeOut

IAMAudioCutListElement Interface

Determines if the element fades out automatically.

HRESULT HasFadeOut(void);

Return Values

l@i§lllMM

Returns S_OK if the element should be automatically faded out, or S_FALSE if not.

Remarks

This method always returns S_OK, but fading in and out is not currently supported.

414

DirectShow COM Interfaces Page 24 of 658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lml!§I 11$8

IAMAudiolnputMixer Interface

The IAMAudioinputMixer interface tells an audio capture filter what level, panning, and
equalizer to use for each input. The name of each pin, such as "Line input 1" or "Mic", reflects
the type of input.

Implementation of the methods on this interface depends on the device. A device might not
implement all methods depending on its capabilities.

When to Implement

Implement this interface on each input pin of an audio capture filter. You can also implement
this interface on the audio capture filter itself to control the overall record level and panning
after the audio mixing occurs.

When to Use

Use this interface when your application needs to adjust audio input characteristics such as
mixing of a particular input, use of mono or stereo, mix level, pan level, loudness, treble, and
bass settings. Use the pin names to decide how to set the recording levels for each type of
input.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IAMAudioinputMixer Description
methods
put Enable Enables or disables an input in the mix.

get Enable
put Mono
get Mono

put MixLevel

get Mix Level

put Pan
get Pan

put Loudness
get Loudness
put Treble

Retrieves whether the input is enabled.
Combines all channels of an input into a mono signal.

Retrieves whether all channels of an input are combined into a
mono signal.

Sets the record level for this input.
Retrieves the recording level for this input.

Sets the pan for this input.
Retrieves the pan for this input.
Turns the loudness control for this input on or off.
Retrieves the loudness control setting for this input.
Sets the treble equalization for this input.

415

DirectShow COM Interfaces

get Treble
get Treble Range
put Bass
get Bass
get BassRange

Retrieves the treble equalization for this input.
Retrieves the treble range for this input.
Sets the bass equalization for this input.
Retrieves the bass equalization for this input.
Retrieves the bass range for this input.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11

MQ<§i[.jjj,M 111.Hj

IAMAudiolnputMixer::get_Bass

IAMAudioinoutMixer Interface

Retrieves the bass equalization for this input.

HRESULT get_Bass(
double *pBass
);

Parameters

pBass

Topic Contents

Topic Contents

Page 25 of 658

l!ftl!Ji l!lltiM

i@faii!MM

[in] Pointer to the bass gain in decibels (a negative value means attenuate).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ<§i[.]jj,+ 1!!·Hi Topic Contents l@l§lllMM

•;1;1.111,; 111.1::11 Topic Contents l@l§i 11111+

416

DirectShow COM Interfaces

IAMAudiolnputMixer::get_BassRange

IAMAudioinoutMixer Interface

Retrieves the bass range for this input.

HRESULT get_BassRange(
double *pRange
);

Parameters

pRange

Page 26 of 658

[out, retval] Largest value allowed in the bass range specified in put Bass. For example,
6.0 means any value between -6.0 and 6.0 is allowed.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]i!:+ '!!·HM Topic Contents

MQi@[.ji!:M M!i.1 1119 Topic Contents

IAMAudiolnputMixer::get_Enable

IAMAudioinputMixer Interface

Retrieves whether the input is enabled.

HRESULT get_Enable(
BOOL *pfEnable

417

i@l§ii!MM

i@l§i 11111+

DirectShow COM Interfaces Page 27 of 658

);

Parameters

pfEnable
[in] Pointer to a value indicating whether mixing is enabled for the input. TRUE indicates
the input is enabled, FALSE indicates the input is disabled.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Couldn't retrieve information.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents

+Qij[.jlj,M 111.1 1119 Topic Contents

IAMAudioinputMixer::get_Loudness

IAMAudioinputMixer Interface

Retrieves the loudness control setting for this input.

HRESULT get_Loudness(
int *pfLoudness
);

Parameters

pfLoudness

1@1§111¥+

1@1§111¥+

[in] Pointer to value indicating whether loudness is on or off. TRUE indicates on, FALSE
indicates off.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

418

DirectShow COM Interfaces

Value
E FAIL
E_ POINTER

Meaning
Error.
Null pointer argument.

E INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.
E_OUTOFMEMORY Out of memory.

NO ERROR Success.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

•Q<MMI!:' 111.],.[9

MQi§i!!.llj,i 111.J,,[9

Topic Contents

Topic Contents

IAMAudiolnputMixer::get_Mixlevel

IAMAudioinputMixer Interface

Retrieves the recording level for this input.

HRESULT get_Mixlevel(
double *pLevel
);

Parameters

[out] pLevel

Page 28 of 658

lmll§lllMM

1@1§111$8

Pointer to the value of the recording level. Values range between 0 (off) and 1 (full
volume). AMF _AUTOMATICGAIN (-Ox0001), if supported, means automatic adjustment of
level.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Error retrieving recording level.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.]l!:I 111.1 1119 Topic Contents l@i§i 111118

419

DirectShow COM Interfaces

+Qi§1[.]I!:+ 1 !!·HM Topic Contents

IAMAudiolnputMixer::get_Mono

IAMAudioinputMixer Interface

Retrieves whether all channels of an input are combined into a mono signal.

HRESULT get_Mono(
BOOL *pfMono
);

Parameters

pfMono

Page 29 of 658

i@l§ii!MM

[in] Pointer to a value indicating whether mono is enabled. TRUE indicates mono is
enabled, FALSE indicates mono is disabled.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Error getting mono control.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.]l!:i M!i.1 1119 Topic Contents i@l§i 11111+

H Qi§1[.]11:+ I !l.H9 Topic Contents Mttfjl§ii!MM

IAMAudiolnputMixer::get_Pan

IAMAudioinoutMixer Interface

Retrieves the pan level for this input.

420

DirectShow COM Interfaces

HRESULT get_Pan(
double * pPan
);

Parameters

pPan

Page 30 of 658

[in] Pointer to the value of the pan level. Possible levels are from -1 to 1, with specific
values as follows:
Value Meaning
-1 Full left

0 Center
1 Full right

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Error retrieving pan level.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Can't pan: not stereo.
NO ERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents

+Qi§i[.]jj,+ 1 1!·!:.!j Topic Contents

IAMAudiolnputM ixer: :get_ Treble

IAMAudiolnoutMixer Interface

Retrieves the treble equalization for this input.

HRESULT get_ Treble(
double *pTreble
);

Parameters

pTreble

421

l@IJll!MM

l@IJll!MM

DirectShow COM Interfaces Page 31of658

[in] Pointer to the treble gain in decibels (a negative value means attenuate).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.ij Topic Contents

+Qi§i[.jjj,+ 111.],.[j Topic Contents

IAMAudiol n putM ixer: :get_ TrebleRa nge

IAMAudiolnoutMixer Interface

Retrieves the treble range for this input.

HRESULT get_ TrebleRange(
double *pRange
);

Parameters

pRange

l@i§i llfttiM

•@m••1m+

[out, retval] Largest value allowed in the treble range. This is the maximum value
allowed in put Treble. For example, 6.0 means any value between -6.0 and 6.0 is
allowed.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

422

DirectShow COM Interfaces

Value
E FAIL

Meaning
Failure.

E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

NO ERROR Success.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

MQl§i[.jjj,M '!!·HM

IAMAudiolnputMixer::put_Bass

IAMAudioinputMixer Interface

Sets the bass equalization for this input.

HRESULT put_Bass(
double Bass
);

Parameters

Bass
[in] Gain in decibels (a negative value means attenuate).

Return Values

Page 32 of 658

Topic Contents lml!§lll¥M

Topic Contents l@i§il/¥8

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Argument is invalid. Must be in range given by get BassRange.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

Remarks

Boosts or cuts the signal's bass before it is recorded by the number of decibels specified by
Bass.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

423

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM Topic Contents

MQij[.jjj,M M!i.1 1119 Topic Contents

IAMAudioinputMixer::put_Enable

IAMAudioinputMixer Interface

Enables or disables an input in the mix.

HRESULT put_Enable(
BOOL fEnable
);

Parameters

fEnable

Page 33 of 658

i@l§ii!MM

i@l§i 11111+

[in] Value to enable or disable an input. TRUE enables the input, FALSE disables it.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E FAIL Failed to enable or disable an input.
E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

NOERROR Successfully enabled or disabled an input.

Remarks

If disabled, this input will not be mixed in as part of the recorded signal.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.l:.19 Topic Contents i@l§lllMM

• QIM [.] "'' I!!.],.[. Topic Contents i@l§ii!MM

IAMAudiolnputMixer::put_Loudness

424

DirectShow COM Interfaces

IAMAudioinoutMixer Interface

Turns the loudness control for this input on or off.

HRESULT put_Loudness(
BOOL fLoudness
);

Parameters

fLoudness
[in] TRUE sets loudness on, FALSE sets loudness off.

Return Values

Page 34 of 658

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Loudness control set.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

Remarks

IAMAudioinputMixer::put_Loudness boosts the bass of low volume signals before they are
recorded to compensate for the fact that your ear doesn't hear quiet bass sounds as well as
other sounds.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents

MQi§i!!.llj,i 111.J,,[9 Topic Contents

IAMAudiolnputMixer::put_Mixlevel

IAMAudioinputMixer Interface

Sets the record level for this input.

HRESULT put_Mixlevel(
double Level

425

lmli§lllMM

1@1§111$8

DirectShow COM Interfaces Page 35 of 658

);

Parameters

Level
Recording level. Values range between 0 (off) and 1 (full volume). AMF _AUTOMATICGAIN
(-Ox0001), if supported, means automatic adjustment of level.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Error setting volume.
E_POINTER Null pointer argument.
E_INVALIDARG Record level must be between 0 and 1.

E_NOTIMPL Automatic gain currently not implemented.
NO ERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

+Qij[.jjj,M 111.1 1119

IAMAudioinputMixer::put_Mono

IAMAudiolnputMixer Interface

Combines all channels of an input into a mono signal.

HRESULT put_Mono(
BOOL fMono
);

Parameters

fMono
[in] TRUE indicates mono, FALSE indicates multichannel.

Return Values

Topic Contents 1@1§111¥+

Topic Contents 1@1§111¥+

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

426

DirectShow COM Interfaces Page 36 of 658

Value Meaning
E FAIL Error setting mono control.
E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

NO ERROR Success.

Remarks

When set to mono mode, making a stereo recording of this input will have both channels
contain the same data. The result will be a mixture of the left and right signals.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

+Qi§i[.]11,+ '!!·Hi

IAMAudiolnputMixer::put_Pan

IAMAudiolnoutMixer Interface

Sets the pan for this input.

HRESULT put_Pan(
double Pan
);

Parameters

Pan

Topic Contents l@IJll!MM

Topic Contents l@i§il!MM

[in] Pan level. Possible values for Pan are from -1 to 1, with specific values as follows:
Value Meaning
-1 Full left
0 Center
1 Full right

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

427

DirectShow COM Interfaces Page 37 of 658

Value Meaning
E FAIL Error setting volume.
E_ POINTER Null pointer argument.
E_INVALIDARG Pan level must be between -1 and 1.

E_ NOTIMPL Can't pan: not stereo.

NO ERROR Success.

Remarks

Setting the pan of an input to full left makes that input's signal go only into the left channel of
a stereo recording. Panning has no effect for a mono recording.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents

+Qi§i[.]11,+ '!!·Hi Topic Contents

IAMAudiolnputM ixer:: put_ Treble

IAMAudiolnoutMixer Interface

Sets the treble equalization for this input.

HRESULT put_ Treble(
[in] double Treble
);

Parameters

Treble
[in] Gain in decibels (a negative value means attenuate).

Return Values

l@IJll!MM

l@i§il!MM

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Argument is invalid. Must be in range given by get TrebleRanqe.
E_NOTIMPL Method isn't supported.
NO ERROR Success.

Remarks

428

DirectShow COM Interfaces Page 38 of 658

This method boosts or cuts the signal's treble by a specified number of decibels before it is
recorded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

MQl@[.jlj,M M!i.l:.19 Topic Contents i@i§i i!fttiM

IAMBufferNegotiation Interface

The IAMBufferNegotiation interface tells a pin what kind of buffer specifications it should
use when connected. Use this interface when an application requires control over allocating the
number of buffers that pins will use when transporting media samples between filters.

The IAMB ufferNegotiation: : SuggestAllocatorProperties method accepts an
ALLOCATOR PROPERTIES structure that contains the allocator's count, size, alignment, and
prefix properties that you want to use. Typically, you set only the cBuffers member of the
ALLOCATOR_PROPERTIES structure, which refers to the number of buffers at the specified
allocator. All other properties should indicate a negative number to enable your capture
hardware to use its own default values.

If a negative value is specified for cBuffers, the allocator will try to allocate as many buffers as
it needs, which depends on the available resources and capture frame rate. If you specify a
higher value, the allocator will try to allocate more buffers, up to the system's available
memory. Allocating a lower number of buffers can result in dropped frames. For
teleconferencing applications, it may be desirable to set this number to a smaller value (for
example, 2 is a reasonable setting if the network can only support transmission of 2 frames
per second (fps) at a given video format and resolution).

Applications can call the IAMBufferNegotiation: :GetAllocatorProperties method to retrieve the
properties of the allocator being used.

When to Implement

Implement this interface when your pin will connect to another pin by using the IMeminputPin
interface and you want to enable an application to allocate the buffer settings to be used for
transporting media samples between filters. All capture filters should support this interface to
enable applications to specify precise settings for buffers (see Vidcap.cpp and Vidcap.h in the
\Samples\DS\Vidcap directory for a sample implementation).

When to Use

Teleconferencing applications should use this interface to specify a minimal number of buffers.
This tells the capture filter not to waste resources buffering information in slower capture or
disk-writing scenarios.

429

DirectShow COM Interfaces

Methods in Vtable Order
!Unknown methods Description
Oueryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAM BufferNegotiation Description
methods

Page 39 of 658

SuqqestAI locatorProperties Asks a pin to use the allocator buffer properties set in the
ALLOCATOR PROPERTIES structure.

GetAllocatorProperties Retrieves the properties of the allocator being used by a pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

+Qi@[.]+• 111.1,.19 Topic Contents i@i§i i!fttiM

IAMB ufferN egoti ati on:: GetAI locatorProperties

IAMB ufferNeqotiation Interface

Retrieves the properties of the allocator that a pin is using.

HRESULT GetAllocatorProperties(
ALLOCATOR_PROPE RTIES *pprop
);

Parameters

pprop
[out] Pointer to an ALLOCATOR PROPERTIES structure.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Call this method only after the pins connect.

See Also

SuqqestAI locatorProperties

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

430

DirectShow COM Interfaces Page 40 of 658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

IAM BufferNegotiation: :SuggestAI locatorProperti E

IAMB ufferNegotiation Interface

Asks a pin to use the allocator buffer properties set in the ALLOCATOR PROPERTIES structure.

HRESULT SuggestAllocatorProperties(
const ALLOCATOR_PROPERTIES *pprop
);

Parameters

pprop
[in] Pointer to an ALLOCATOR PROPERTIES structure.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

An application must call this function before two pins are connected. If the pins are connected
before you call this method, then the filter graph will have already negotiated the buffer and it
will be too late for an application to preallocate them.

Applications must call this method on both pins being connected to ensure that the other pin
doesn't overrule the application's request. However, if one pin doesn't support this interface, a
single call will be sufficient.

Use a negative number for any element in the ALLOCATOR PROPERTIES structure to set
properties to default values.

See Also

IAMB ufferNegotiation: : GetAI locatorProperties

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 1119 Topic Contents i@l§lllMM

IAMCollection Interface

431

DirectShow COM Interfaces Page 41 of 658

The filter graph manager exposes IAMCollection, which allows access to collections of objects
such as those exporting IPininfo and IFilterinfo interfaces.

When to Implement

This interface is implemented by the filter graph manager for use by Automation client
applications, such as Microsoft® Visual Basic®.

When to Use

Applications that use Automation use this interface indirectly when retrieving collections of
objects. For example, the IFilterinfo: :get Pins method retrieves an IAMCollection interface that
can be used to access the IPininfo interfaces corresponding to the pins on the filter.

Methods in Vtable Order

!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

I Dispatch Description
methods
GetTyoeinfoCount Determines whether there is type information available for this

dis pi nterface.
GetTyoeinfo Retrieves the type information for this dispinterface if GetTypeinfoCount

returned successfully.
GetIDsOfNames Converts text names of properties and methods (including arguments) to

their corresponding DISPIDs.
Invoke Calls a method or accesses a property in this dispinterface if given a

DISPID and any other necessary parameters.

IAMCollection Description
methods
get Count Retrieves the number of items in the collection.
get NewEnum Retrieves an enumerator object that implements IEnumVARIANT on

this collection.
Item Retrieves the indexed item from the collection.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents 1@1§111¥+

IAMCol lection: :get_Cou nt

432

DirectShow COM Interfaces

IAMCollection Interface

Retrieves the number of items in the collection.

HRESULT get_Count(
LONG *p/Count
);

Parameters

p/Count
[out, retval] Number of items in the collection.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

IAMCollection::get_NewEnum

IAMCollection Interface

Page 42 of 658

Topic Contents ifflj[§ii!¥M

Retrieves an enumerator object that implements IEnumVARIANT on this collection.

HRESULT get_NewEnum(
!Unknown **ppUnk
);

Parameters

ppUnk
[out, retval] IUnknown for an object that implements IEnumVARIANT on this collection.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M M!i.1 1119 Topic Contents i@i§iil¥M

433

DirectShow COM Interfaces

IAMCollection: :Item

IAMCollection Interface

Retrieves the indexed item from the collection.

HRESULT Item(
long /Item,
!Unknown **ppUnk
);

Parameters

/Item
[in] Index into the collection.

ppUnk
[out] Returned IUnknown interface for the contained item.

Return Values

Returns an HRESULT value.

Remarks

Page 43 of 658

The returned ppUnk parameter represents an object corresponding to the type of objects in the
container. It can be an IFilterinfo, IPininfo, or IMediaTyoeinfo object. The index is zero-based.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

IAMCopyCaptureFileProgress Interface

The IAMCopyCaptureFileProgress interface contains one method, Progress, which the
ICaotureGraohBuilder: :CooyCaotureFile method can call to receive information on the
percentage complete of a copy operation.

When to Implement

Capture applications implement this method when they need to receive information on the
percentage complete of a copy operation.

When to Use

Use this interface when applications need to check the copying progress of a captured file.

434

DirectShow COM Interfaces

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAMCopyCaptureFileProgress Description
methods

Page 44 of 658

Progress Sends applications the progress (percentage complete) of a
copy operation that the
ICaotureGraohBuilder: :CooyCaotureFile method is
performing.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents 1@1§111¥+

IAMCopyCaptureFileProgress::Progress

IAMCopyCa ptu re Fi leProq ress Interface

Sends applications the progress (percentage complete) of a copy operation that the
ICaptureGraphBuilder: :CopyCaptureFile method is performing.

HRESULT Progress(
int iProgress
);

Parameters

iProgress
[in] Percentage of copy complete between 0 and 100.

Return Values

Returns S_OK if successful or S_ FALSE if the operation is aborted.

Remarks

The ICaptureGraphBuilder: :CopyCaptureFile can call this method to inform applications of the
copy operation's progress.

This method is called periodically while ICaptureGraphBuilder: :CopyCaptureFile is running.

435

DirectShow COM Interfaces Page 45 of 658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]i!:M '!!·HM Topic Contents lml!§I 11$8

IAMCrossbar Interface

The IAMCrossbar interface is exposed on analog video crossbar filters and is used to route
messages from an analog or digital audio or video source to a video capture filter. The crossbar
filter is modeled after a general switching matrix, with n inputs and m outputs. Any of the
input signals can be routed to one or more of the outputs.

A single crossbar can route both video and audio signals. You can also use a video pin to route
only the audio portion of a combined signal.

This filter is based on a simple multiplexer.

When to Implement

Implement this interface when your filter needs to route analog or digital signals to a capture
filter.

When to Use

Use this interface when your application needs to route analog or digital video signals through
a crossbar filter.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAMCrossbar methods Description
Retrieves the number of input and output pins. get PinCounts

Can Route Determines if the crossbar filter can route the analog or digital
signal.

Route Routes an input pin to an output pin.
get IsRoutedTo Retrieves the input pin connected to a given output pin.
get CrossbarPininfo Retrieves a pin that has audio or video data relating to a given pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.]l!:I '!!·HM Topic Contents l@l§lllMM

MQl@[.]i!:i l!i.! 111M Topic Contents l@l§i l!lltiM

436

DirectShow COM Interfaces

IAMCrossbar::CanRoute

IAMCrossbar Interface

Determines if routing is possible.

HRESULT CanRoute (
long OutputPinindex,
long InputPinindex
);

Parameters

OutputPinindex
[in] Output pin.

InputPinindex
[in] Input pin.

Return Values

Page 46 of 658

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents

IAMCrossba r: :get_Crossba rPi nl nfo

IAMCrossbar Interface

Retrieves a pin that has audio or video data relating to a given pin.

HRESULT get_CrossbarPininfo (
BOOL IsinputPin,
long Pinlndex,
long * PinindexRelated,
long * Physica/Type
);

Parameters

Isinputpin
[in] Specify TRUE for an input pin; FALSE for an output pin.

437

ifflj[§ii!¥M

DirectShow COM Interfaces Page 47 of 658

Pinindex
[in] Pin to find a related pin for.

PinindexRelated
[out] Index value of the related pin.

Physica/Type
[out] Physical type of pin (audio or video).

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

This method retrieves, for example, the audio pin related to a given video pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM

+Q<@[.]jj,+ 111.1 1119

IAMCrossba r: :get_IsRoutedTo

IAMCrossbar Interface

Retrieves the input pin connected to a given output pin.

HRESULT get_lsRoutedTo (
long OutputPinindex,
long * InputPinindex
);

Parameters

OutputPinindex
[in] Output pin.

InputPinindex
[out] Pointer to the connected input pin.

Return Values

Topic Contents

Topic Contents

ifflj[§ii!¥M

1@1§11!¥+

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

+;<§1[.]jj,+ 111.],.[9 Topic Contents 1@1§11!¥+

438

DirectShow COM Interfaces

IAMCrossbar::get_PinCounts

IAMCrossbar Interface

Retrieves the number of input and output pins.

HRESULT get_PinCounts(
long * OutputPinCount,
long * InputPinCount
);

Parameters

OutputPinCount
[out] Number of output pins.

InputPinCount
[out] Number of input pins.

Return Values

Page 48 of 658

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

IAMCrossbar::Route

IAMCrossbar Interface

Routes an input pin to an output pin.

HRESULT Route (
long OutputPinindex,
long InputPinindex
);

Parameters

OutputPinindex
[in] Output pin.

InputPinindex
[in] Input pin.

+Q'41[.]i!,+ 1 !1·HM

439

Topic Contents ifflj[§ii!¥M

DirectShow COM Interfaces Page 49 of 658

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Pin indexes are zero based.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

IAMCutlistElement Interface

The IAMCutlistElement interface describes a base object, which represents an element in a
cutlist. For a simpler interface that provides basic cutlist functionality, applications can use
IFileClio to create an object that supports this interface.

See About Cutlists and Using Cutlists for more information.

When to Implement

Usually, you don't need to implement this interface because DirectShow provides the
CLSID VideoFileClip and CLSID AudioFileClip objects, which can create an object that
implements it for you. However, you can implement this interface in your application when you
need to change this interface's default behavior.

When to Use

Use this interface in your filter when you need to get specific elements of a cutlist.

When compiling a cutlist application you must explicitly include the cutlist header file as
follows:

#include <Cutlist.h>

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef
Release

Retrieves pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

440

DirectShow COM Interfaces

IAMCutlistElement
methods
GetElementSta rtPosition

GetElementDuration
Is Fi rstElement
IsLastElement
IsNull

ElementStatus

Page 50 of 658

Description

Retrieves the media time of the element's start in the time
scale of the cutlist.
Retrieves the duration of the cutlist element.
Determines if the element is the first in the cutlist.
Determines if the element is the last in the cutlist.
Determines if the element is null.

Determines the status of the element.

© 1997 Microsoft Corooration. All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

8 4'41[.]1!,M 1!1·H¥ Topic Contents

IAMCutlistElement:: ElementStatus

IAMC utlistElement Interface

Determines the status of the element.

HRESULT ElementStatus(
DWORD *pdwStatus,
DWORD dwTimeoutMs
);

Parameters

pdwStatus

i@fa111¥M

i@fai11¥M

[in/out] Status. On input, if this parameter contains CL WAIT FOR STATE and an
additional state value from the CL ELEM STATUS enumerated data type, this method
waits dwTimeoutMs milliseconds until the element is in that state before returning. On
output, this is a logical combination of flags from the CL_ELEM_STATUS enumerated
data type.

dwTimeoutMs
[in] Timeout value, in milliseconds.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

441

DirectShow COM Interfaces Page 51of658

Value Meaning
E FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.

S_OK Success. The element is null.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fai11¥M

IAMC utlistE lement:: GetE le mentDu ration

IAMC utlistElement Interface

Retrieves the duration of the cutlist element.

HRESULT GetElementDuration(
REFERENCE_ TIME *pmtDuration
);

Parameters

pmtDuration
[out] Duration of the element in REFERENCE TIME.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_POINTER
S_OK

Remarks

Null pointer argument.
Success.

When you call the IFileClip: :CreateCut method to create the element, the difference between
its mtTrimOut and mtTrimin parameters determines the duration.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

442

DirectShow COM Interfaces Page 52 of 658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M M!i.1 111M Topic Contents i@l§i 11111+

IAMC utlistE lement:: GetE le mentSta rtPosition

IAMC utlistElement Interface

Retrieves the media time of the element's start in the time scale of the cutlist.

HRESULT GetElementStartPosition(
REFERENCE_TIME *pmtStart
);

Parameters

pmtStart
[out] Pointer to the media time for the start of the element.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_ POINTER
S_OK

Remarks

Null pointer argument.

Success.

Times retrieved by this method are relative to the time within the cutlist. For example, the first
element in the cutlist starts at time zero.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 111M Topic Contents i@l§lllMM

+ Qi§1 [.] jj,+ +II.HM Topic Contents Mttfjl§i +gn+

443

DirectShow COM Interfaces Page 53 of 658

IAMC utlistE lement:: Is Fi rstEI ement

IAMC utlistElement Interface

Determines if the element is the first in the cutlist.

HRESULT IsFirstElement(void);

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
S_OK Success. This is the first element in the cutlist.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

IAMC utlistE lement:: IslastE le ment

IAMC utlistElement Interface

Determines if the element is the last in the cutlist.

HRESULT IslastElement(void);

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_ FAIL Failure.
E_INVALIDARG Argument is invalid.
E_ NOTIMPL Method is not supported.

S_OK Success. This is the last element in the cutlist.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+ Q<M [.] 11,1 Mil.HM Topic Contents •@!§' 1gn+

444

DirectShow COM Interfaces Page 54 of 658

IAMCutlistElement: :lsN u 11

IAMC utListElement Interface

Determines if the element is null.

HRESULT IsNull(void);

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.

Element is not null. S_FALSE
S_OK Success. The element is null.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

+Qi§i[.]11,+ '!!·Hi

Topic Contents

Topic Contents

IAMDevMemoryAllocator Interface

l@IJll!MM

l@i§il!MM

The IAMDevMemoryAllocator interface enables the creation of third-party memory allocators
by using an on-board memory manager object. Many codec hardware manufacturers put on
board mapped memory for the codecs to improve the efficiency of buffer manipulation. This
interface allocates that memory and provides the GetDevMemoryObject method to retrieve a
device memory control object, which supports the IAMDevMemoryControl interface. Devices
that share the same device ID can use the memory.

The global memory manager object exposes this interface to allocate memory from memory
that is on a particular device.

When to Implement

Implement this interface when your pin must support the creation of on-board memory
allocators. Source filters that are aware of on-board memory and need to create their own
allocators should query for this interface, request an amount of memory and then create an

445

DirectShow COM Interfaces Page 55 of 658

allocator (aggregating the device memory control object). Source filters that don't need to
create their own allocator could just use the allocator of the downstream pin (which also
aggregates the device memory control object). The hardware-based filter can confirm the
usage of its on-board memory by calling methods on the aggregated allocator.

When to Use

Use this interface when applications need to control the memory of codecs with on-board
memory.

Methods in Vtable Order
!Unknown methods Description
Querylnterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IAM DevMemoryAllocator Description
methods
Getlnfo Retrieves information about the memory capabilities.
CheckMemory

Alloc

Free
GetDevMemoryObject

Tests whether a memory pointer was allocated by the specific
instance (device) of the allocator.
Allocates a memory buffer.
Frees the previously a !located memory.
Retrieves an !Unknown interface pointer to a device memory
control object that can be aggregated with a custom
allocator.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9

MQi§i!!.llj,i 111.J,,[9

IAM DevMemory Al locator: :Al loc

IAMDevMemoryAllocator Interface

Allocates a memory buffer.

HRESULT Alloc(
BYTE **ppBuffer,
DWORD *pdwcbBuffer
);

Parameters

ppBuffer

446

Topic Contents lmli§lllMM

Topic Contents 1@1§111$8

DirectShow COM Interfaces

[out] Address of a pointer to the allocated memory buffer.
pdwcbBuffer

Page 56 of 658

[in, out] For input, the number of bytes to allocate. For output, the number of actual
bytes a I located.

Return Values

Returns S_OK if the desired quantity of memory was allocated, S_FALSE if memory was
unavailable.

Remarks

Call this method to allocate a block of memory from the available pool.

See Also

IAMDevMemoryAllocator:: Free

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8

IAM DevMemory Al locator:: C heckMemory

IAMDevMemoryAllocator Interface

Tests whether a memory pointer was allocated by the specific instance (device) of the
allocator.

HRESULT CheckMemory(
const BYTE *pBuffer
);

Parameters

pBuffer
[in] Pointer to the allocated memory buffer's address.

Return Values

Returns S_OK if the on-board allocator allocated the memory, or S_FALSE if not. Memory that
is on the particular device but not allocated will also return S_FALSE.

Remarks

447

DirectShow COM Interfaces Page 57 of 658

The hardware filter typically uses this method to test whether the pointer actually points to on
board memory.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥

IAM DevMemory Al locator:: Free

IAMDevMemoryAllocator Interface

Frees the previously a !located memory.

HRESULT Free(
BYTE *pBuffer
);

Parameters

pBuffer
[in] Pointer to the allocated memory.

Return Values

Topic Contents 'ffl!'+* •um•

Returns E_INVALIDARG if the specified allocator didn't allocate the memory (that is,
CheckMemory fails).

Remarks

This method frees a block of memory from the pool.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,M '!!·HM Topic Contents i@i§ii!MM

IAM DevMemory Al locator:: GetDevMe moryO bject

IAMDevMemoryAllocator Interface

Retrieves an IUnknown interface pointer to a device memory control object that can be
aggregated with a custom allocator.

448

DirectShow COM Interfaces

HRESULT GetDevMemoryObject(
!Unknown **ppUnk!nnner,
!Unknown *pUnkOuter
);

Parameters

ppUnk!nnner

Page 58 of 658

[out] Address of a pointer to the newly created control object's own IUnknown. This inner
!Unknown interface should be released when the outer object is destroyed. The custom
allocator should call the Querylnterface method on this pointer to obtain the
IAMDevMemoryControl interface.

pUnkOuter
[in] Pointer to the custom allocator's own IUnknown interface. This interface aggregates
the device memory control object inside the custom allocator.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

The device memory control object is necessary to aggregate with the custom allocator,
because renderers that require the use of on-board memory will query for
IAMDevMemoryControl when they receive a new allocator, to verify that the memory is from
the same device. This occurs because the hardware filter will receive an IMemAllocator object,
which might or might not use the on-board memory. To decide if it is a compatible allocator,
the object would query for the IAMDevMemoryControl interface to access specific methods.
The IAMDevMemoryControl creates an aggregated object that implements the methods of
IAMDevMemoryControl (these are often hardware-specific).

See COM documentation for rules on how the outer object implements aggregation.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents

IAM DevMemory Al locator: :Getlnfo

IAMDevMemoryAllocator Interface

Retrieves information about the memory capabilities.

HRESULT Getlnfo(
DWORD *pdwcbTota/Free,
DWORD *pdwcbLargestFree,
DWORD *pdwcbTota/Memory,
DWORD *pdwcbMinimumChunk

449

l@IJll!MM

DirectShow COM Interfaces

);

Parameters

pdwcbTota/Free
[out] Total free memory size.

pdwcbLargestFree
[out] Retrieves the largest free memory size.

pdwcbTota/Memory
[out] Retrieves the total memory size.

pdwcbMinimumChunk

Page 59 of 658

[out] Retrieves the minimum chunk size, giving granularity and alignment rules.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Use this method to find out the total amount of memory available. This method returns values
for the entire on-board memory that is available on that device. If multiple filters (devices)
share the memory, it will return the amount available to that specific device, which might be a
portion of the total amount of on-board memory. This amount will be implementation-specific.
For example, the on-board memory manager on the codec might be able to access all 32
megabytes (MB) of memory on the card. However, individual pin implementations of
IAMDevMemoryAllocator only report a portion of this memory.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •@M* 1gnw

MQi§1[.]1!,M 11!.HM Topic Contents i@faii!MM

IAMDevMemoryControl Interface

The IAMDevMemoryControl interface controls and identify the on-board memory of codecs.
A device memory control object supports this interface. This object is aggregated with an
IMemAllocator object that is used in the connection. Typically, filters will call the
IAMDevMemoryAllocator: :GetDevMemoryObject method to obtain a pointer to this interface.

When to Implement

Implement this interface with the IAMDevMemoryAllocator interface when pins need to have
greater control of memory allocation.

When to Use

Use this interface to synchronize the completed data write of a memory allocator, and to get

450

DirectShow COM Interfaces

the device ID of the on-board memory allocator.

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAMDevMemoryControl Description
methods

Page 60 of 658

QueryWriteSync Checks if the memory supported by the allocator requires the
use of the WriteSync method.

WriteSync Used to synchronize with the completed write. This method
returns when any data being written to the specified allocator
region is fully written into the memory.

GetDevld Retrieves the device ID of the on-board memory allocator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents

+Qi@[.]+• 111.1,.19 Topic Contents

IAM DevMemoryControl: :GetDevid

IAM DevMemoryControl Interface

Retrieves the device ID of the on-board memory allocator.

HRESULT GetDevid(
DWORD *pdwDevid
);

Parameters

pdwDevid
[out] Pointer to the device ID.

Return Values

i@i§ll!¥+

i@i§i i!fttiM

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

This method retrieves a unique ID that the hardware filter can use to verify that the specified
allocator passed uses its on-board memory (because there can be more than one). The ID will
be the same one as used to create the allocator object (using CoCreateNamedinstance). For

451

DirectShow COM Interfaces Page 61of658

another filter to be able to use the on-board memory, it must have the same device ID as the
on-board memory allocator.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •=@• 1gnw

IAM DevMemoryControl: :QueryWriteSync

IAM DevMemoryControl Interface

Checks if the memory supported by the allocator requires the use of the
IAMDevMemoryControl: :WriteSync method.

HRESULT QueryWriteSync();

Return Values

Returns S_OK if the method is required, or S_FALSE otherwise.

Remarks

Not all on-board memory needs to have WriteSync called to synchronize with the completed
write. This method is used to check if the call is necessary.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

M Q '41 [.] jj,M I !!·HM Topic Contents lfflj[§il!¥M

IAM DevMemoryControl: :WriteSync

IAM DevMemoryControl Interface

Used to synchronize with the completed write. This method returns when any data being
written to the particular allocator region is fully written into the memory.

HRESULT WriteSync();

Return Values

Returns an HRESULT value that depends on the implementation of the interface. Common
return values include:

452

DirectShow COM Interfaces Page 62 of 658

Value Meaning
E FAIL A time-out has occurred without confirming that data was written.
S_OK Operation proceeded normally.
VFW E NOT COMMITTED The allocator hasn't called the IMemAllocator: :Commit method.

Remarks

This method guarantees that all prior write operations to allocated memory have succeeded.
Subsequent memory write operations require another call to WriteSync.

This method is implementation dependent, and is used (when necessary) to synchronize
memory write operations to the memory. The driver of the on-board memory provides the
implementation.

The IAMDevMemoryControl interface is typically found on memory that is accessed through a
PCI-bridge. Memory behind a PCI bridge must be synchronized after a memory write operation
completes if another device will access that memory from behind the PCI bridge. This is
because the host access to the memory is buffered via the PCI bridge FIFO (first in first out),
and the host will think the write is completed before the bridge actually writes the data. A
subsequent action by a device behind the bridge, such as a SCSI controller, might read the
memory before the write is completed if the IAMDevMemoryControl::WriteSync method is
not called.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

IAMDirectSound Interface

The IAMDirectSound interface provides access from Microsoft® DirectShow™ to Microsoft
DirectX™ audio interfaces, such as IDirectSound and IDirectSoundBuffer. This enables you to
play back the audio portions of DirectShow-compatible media files anywhere within the 3-D
space of a DirectX application, making your applications much more absorbing and lifelike.

After you connect the media source file to a sound renderer on a filter graph, you can use
DirectSound's functionality to position or manipulate the sound playback as needed. For more
information on the relevant DirectSound interfaces and methods, see the DirectX SDK
documentation. After you finish with an interface you obtained through IAMDirectSound, be
sure to release it by calling the appropriate method. If you disconnect the sound renderer from
the graph before releasing the interfaces, your application might fail.

The DSound Audio Renderer filter implements this interface.

Note Only the GetWindowFocus and SetWindowFocus methods are currently implemented for
this interface.

When to Implement

453

DirectShow COM Interfaces Page 63 of 658

This interface is implemented by the DSound Audio Renderer filter.

When to Use

The DSound Audio Renderer filter uses this interface; it is not intended for other uses.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef

Returns pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAM DirectSound methods Description
GetDirectSoundinterface Retrieves a handle to the current sound device's

IDirectSound interface. Not currently implemented.
GetPrimaryBufferinterface Retrieves a handle to the current sound device's primary

sound buffer. Not currently implemented.
GetSecondaryBufferinterface Retrieves a handle to the current sound device's secondary

sound buffer. Not currently implemented.
ReleaseDirectSoundinterface Releases the current sound device's IDirectSound interface.

Not currently implemented.
ReleasePrimaryBufferinterface Releases the current sound device's primary sound buffer.

Not currently implemented.
ReleaseSeconda ryB ufferI nterface Releases the current sound device's secondary sound buffer.

Not currently implemented.
SetWindowFocus Sets the window that will handle sound playback for the

current media file.
GetWindowFocus Retrieves the window that is handling sound playback for the

current media file.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]I!:+ +!!.HM Topic Contents i@l§ii!MM

MQi@[.jlj,M M!i.1 1119 Topic Contents i@l§i 11111+

IAM Di rectSou n d:: Get Di rectSou n di nterf ace

IAMDirectSound Interface

Retrieves a handle to the current sound device's IDirectSound interface. Not currently
implemented.

HRESULT IAMDirectSound::GetDirectSoundinterface(
LPDIRECTSOUND *lplpds

454

DirectShow COM Interfaces Page 64 of 658

);

Parameters

lplpds
Address of a pointer to an IDirectSound interface that will point to the current sound
device's interface.

Return Values

Returns one of the following values.
Value Meaning
E_FAIL No sound device is available.
E_INVALIDARG The lplpds parameter is null.
E_NOTIMPL DirectSound isn't installed.
NOERROR The method succeeded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

IAM Di rectSou n d:: GetPri ma ryB ufferI nterf ace

IAMDirectSound Interface

Retrieves a handle to the current sound device's primary sound buffer. Not currently
implemented.

HRESULT IAMDirectSound::GetDirectSoundinterface(
LPDIRECTSOUN D BU Ff ER *lplpdsb
);

Parameters

lplpdsb
Address of a pointer to an IDirectSoundBuffer interface that will point to the current
sound device's primary sound buffer.

Return Values

Returns one of the following values.

455

DirectShow COM Interfaces Page 65 of 658

Value Meaning
E FAIL No sound device is available.
E_INVALIDARG The lplpdsb parameter is null.
E_NOTIMPL DirectSound isn't installed.

NOERROR The method succeeded.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.]i!:M MB.HS Topic Contents i@fa111¥M

MQ'41[.]l!:I 11!.HM Topic Contents i@fai11¥M

IAM Di rectSou n d:: GetSecon da ryBuffe rl nterf ace

IAMDirectSound Interface

Retrieves a handle to the current sound device's secondary sound buffer. Not currently
implemented.

HRESULT IAMDirectSound::GetSecondaryBufferinterface(
LPDIRECTSOUN D BU Ff ER *lplpdsb
);

Parameters

lplpdsb
Address of a pointer to an IDirectSoundBuffer interface. On exit, it will point to the
current sound device's secondary sound buffer.

Return Values

Returns one of the following values.
Value Meaning
E_FAIL No sound device is available.
E_INVALIDARG The lplpdsb parameter is null.
E_NOTIMPL DirectSound isn't installed.
NOERROR The method succeeded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M lh.11115 Topic Contents i@fai l!lltiM

MQ<§i[.]i!:M MB.HS Topic Contents i@fa111¥M

456

DirectShow COM Interfaces Page 66 of 658

IAM Di rectSou nd: :GetWi ndowFocus

IAMDirectSound Interface

Retrieves the window that is handling sound playback for the current media file.

HRESULT IAMDirectSound::GetWindowFocus(
HWND* hWnd,
BOOL bMixingOnOrOff
);

Parameters

hWnd
Handle to the sound playback window. If this value is null, the sound isn't associated
with a window; note that Windows NT 4.0 does not currently support windowless sound
playback.

bMixingOnOrOff
Value indicating whether to mix the sound (TRUE) or not (FALSE).

Return Values

Returns one of the following values.
Value Meaning
E_FAIL No sound device is available.
E_INVALIDARG The hWnd argument is invalid.
E_NOTIMPL DirectSound isn't installed.
NOERROR The method succeeded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M l!i.! 11ij Topic Contents l@i§i 11111+

MQ<§i[.]i!:M 111.Hj Topic Contents l@i§lllMM

IAMDirectSound::ReleaseDirectSoundlnterface

IAMDirectSound Interface

Releases the current sound device's IDirectSound interface. Not currently implemented.

HRESULT IAMDirectSound::ReleaseDirectSoundinterface(
LPDIRECTSOUND lpds

457

DirectShow COM Interfaces Page 67 of 658

);

Parameters

lpds
Pointer to the IDirectSound interface to release.

Return Values

Returns one of the following values.
Value Meaning
E_FAIL There are no references to the specified IDirectSound interface, so it can't be

released.
E_INVALIDARG The lpds parameter is null.
NOERROR The method succeeded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

MQijl.111,h 111.1 1119 Topic Contents i@l§i 11111+

IAM Di rectSou n d:: Re leasePri ma ryB ufferI nterf ace

IAMDirectSound Interface

Releases the current sound device's primary sound buffer. Not currently implemented.

HRESULT IAMDirectSound::ReleasePrimaryBufferinterface(
LPDIRECTSOUNDBUFFER lpdsb
);

Parameters

lpdsb
Pointer to the IDirectSoundBuffer interface to release.

Return Values

Returns one of the following values.
Value Meaning
E_ FAIL There are no references to the specified IDirectSoundBuffer interface, so it

can't be released.
E_INVALIDARG The lpdsb parameter is null.

NOERROR The method succeeded.

458

DirectShow COM Interfaces Page 68 of 658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

MQl§i[.jjj,M '!!·HM Topic Contents 'ffl!'+* •um•

IAMDirectSound::ReleaseSecondaryBufferlnterfa

IAMDirectSound Interface

Releases the current sound device's secondary sound buffer. Not currently implemented.

HRESULT IAMDirectSound::ReleaseSecondaryBufferinterface(
LPDIRECTSOUNDBUFFER lpdsb
);

Parameters

lpdsb
Pointer to the IDirectSoundBuffer interface to release.

Return Values

Returns one of the following values.
Value Meaning
E_FAIL There are no references to the specified IDirectSoundBuffer interface, so it

can't be released.
E_INVALIDARG The lpdsb parameter is null.
NOERROR The method succeeded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.11115 Topic Contents l@i§lllMM

MQl§i[.jjj,M Ill.HS Topic Contents l@l§lllMM

IAM Di rectSou nd: :SetWi ndowFocus

IAMDirectSound Interface

459

DirectShow COM Interfaces

Sets the window that will handle sound playback for the current media file.

HRESULT IAMDirectSound::SetWindowFocus(
HWND hWnd,
BOOL bMixingOnOrOff
);

Parameters

hWnd

Page 69 of 658

Handle to the sound playback window. If this value is null, the sound will not be
associated with any window; note that Windows NT 4.0 does not currently support
windowless sound playback.

bMixingOnOrOff
Value indicating whether to mix the sound (TRUE) or not (FALSE).

Return Values

Returns one of the following values.
Value Meaning

E FAIL No sound device is available.
E_INVALIDARG The hWnd argument is invalid.
E_NOTIMPL DirectSound isn't installed.

NOERROR The method succeeded.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]i!,+ 1!1·H¥ Topic Contents i@fa111¥M

IAMDroppedFrames Interface

The IAMDroppedFrames interface provides information to an application from a capture filter
about frames that the filter dropped (that is, did not send), the frame rate achieved (the
length of time the graph ran divided by the number of frames not dropped), and the data rate
achieved (the length of time the graph ran divided by the average frame size). A high number
of dropped frames can detract from the smoothness of the video clip.

When to Implement

A capture filter's video output pin should always implement this interface.

When a capture filter runs, it sends frame numbers beginning with the sequence 0, 1, 2, 3
(numbers will be missing if frames were dropped). The time stamp of each frame sent
corresponds to the filter graph clock's time when the image was digitized. The end time is the

460

DirectShow COM Interfaces Page 70 of 658

start time plus the video frame's duration.

Set the media time of each sample by using CMediaSamole: :SetMediaTime and using frame
numbers for the start and end times. For example, the start-time and end-time sequence
might appear as follows: (0,1) (1,2) (2,3). A downstream filter can easily tell that a frame was
dropped by checking for gaps in the frame number sequence rather than by looking for gaps in
the regular time stamps. The following start-time and end-time sequence reveals that frame
number 3 was dropped: (1,2) (2,3) (4,5) (5,6).

Every time a capture filter goes from State Stopped to State Paused, it should reset all counts
to zero.

If your filter runs, pauses, and then runs again, you must continue to deliver frames as if it
never paused. The first frame after the second run can't be time stamped earlier than the last
frame sent before the pause. That is, your filter must always increment the media time of each
sample sent. Never send the same frame number twice, and never go back in time.

When to Use

Applications should use this interface all the time when capturing to update the current
capture status. After capturing is done, applications should use this interface to determine the
fi na I capture resu Its.

If you are using a WDM video capture filter, you can only query an output pin for this interface
if the capture filter is connected to another filter in the graph.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAM Dropped Frames Description
methods
GetN um Drooped

GetNumNotDropped

GetDroppedI nfo
GetAveraqeFra meSize

Retrieves the total number of frames that the pin dropped since
it last started streaming.
Retrieves the total number of frames that the pin delivered
downstream (did not drop).
Retrieves an array of frame numbers that were dropped.
Retrieves the average size of frames that were not dropped.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lttfjl§M IU@+

MQl@[.jlj,M 111.l:.19 Topic Contents l@i§lllMM

IAM Dropped Frames:: GetAvera geFra meSize

461

DirectShow COM Interfaces

IAMDroooedFrames Interface

Retrieves the average size of frames that the pin dropped.

HRESULT GetAverageFrameSize(
long * p/AverageSize);

Parameters

p/AverageSize

Page 71 of 658

[out, retval] Average size of frames sent out the pin since the pin started streaming, in
bytes.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents

IAM Dropped Frames: :GetDroppedlnfo

IAMDroppedFrames Interface

Retrieves an array of frame numbers that the pin dropped.

HRESULT GetDroppedinfo(
long /Size,
long * p/Array,
long * p/NumCopied);

Parameters

/Size
[in] Requested number of elements in the array.

p/Array
[out] Pointer to the array.

p/NumCopied

ifflj[§ii!¥M

[out, retval] Pointer to the number of array elements filled in. This number can differ
from /Size because the filter determines an arbitrary number of elements to save and it
might not save this information for as many frames as you requested.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

462

DirectShow COM Interfaces Page 72 of 658

Remarks

The filter will fill the array with the frame numbers of up to the first /Size number of frames
dropped, and it will set p/NumCopied accordingly.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M lll.! 11ij Topic Contents l@IJll!MM

+Qi§i[.]11,+ '!!·Hi Topic Contents l@IJll!MM

IAMDroppedFrames::GetNumDropped

IAMDroooedFrames Interface

Retrieves the total number of frames that the pin dropped since it last started streaming.

HRESULT GetNumDropped(
long * p/Dropped);

Parameters

pl Dropped
[out] Pointer to the total number of dropped frames.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+Qi§ill·h' 111.J,,[j Topic Contents l@IJll!MM

IAM Dropped Frames: :GetN um NotDropped

IAMDroppedFrames Interface

Retrieves the total number of frames that the pin delivered downstream (did not drop).

HRESULT GetNum Not Dropped(
long * pl Not Dropped) ;

463

DirectShow COM Interfaces Page 73 of 658

Parameters

pl Not Dropped
[out] Pointer to the total number of frames that weren't dropped.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,+ '!!·HM Topic Contents i@l§ii!MM

IAMExtDevice Interface

The IAMExtDevice interface is the base interface for controlling external devices. Developers
can implement this interface to control numerous types of devices; however, the current
DirectShow implementation is specific to VCRs. The IAMExtDevice interface controls general
settings of external hardware and is intended to be used in combination with the
IAMExtTransport interface, which controls a VCR's more specific settings. You can also
implement the IAMTimecodeReader, IAMTimecodeGenerator, and IAMTimecodeDisplay
interfaces if your filter manages SMPTE (Society of Motion Picture and Television Engineers)
timecode, and the external device has the appropriate features.

For a description of a sample filter which controls a VCR through DirectShow, see Vcrctrl
Sample (VCR Control Filter).

When to Implement

Implement this interface when you want to build a filter or application that controls an external
device, such as a VCR. Because this interface controls general information about a device,
implement the IAMExtTransport interface in addition to control the external device's more
specific properties.

An application can directly instantiate and control external devices, such as VCRs, but it is
strongly recommended that you always instantiate these devices within the context of a filter
graph, even if they are the only filters within the graph.

When to Use

Use this interface when you want to add external device control to your application.

Applications should use the filter graph to enumerate the filters and then get the IAMExtDevice
interface directly from the appropriate filter.

Hardware Requirements

To control an external VCR, certain hardware requirements are recommended. VCRs with an

464

DirectShow COM Interfaces Page 74 of 658

RS-422 serial interface require a special serial port card or an external RS-232-to-RS-422
adapter. In addition, for best performance, your computer should have a serial port card built
with a 16,550 high-performance UART (Universal Asynchronous Receiver/Transmitter) to
sustain higher baud rates, such as 38.4 baud.

Methods in Vtable Order
!Unknown Methods Description
Queryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAM ExtDevice Methods Description
GetCaoability Retrieves the capabilities of the external device.
get ExternalDeviceID Retrieves the model number of the external device.
get ExternalDeviceVersion Retrieves the version number of the external device's operating

software.
out DevicePort

get DevicePower

put DevicePower
Calibrate
get DevicePort

Specifies the communication port to which the external device is
connected.
Retrieves whether the externa I device's power mode is on, off, or
standby.
Sets the external device's power mode to on, off, or standby.
Calibrates the external device's transport mechanism.
Retrieves the communication port to which the external device is
connected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥

+Qi@[.]+• 111.1,.19

IAMExtDevice::Calibrate

IAMExtDevice Interface

Calibrates an external device's transport mechanism.

HRESULT Calibrate(
HEVENT hEvent,
long Mode,
long *pStatus) ;

Parameters

hEvent
[in] Event used to signal completion of this process.

465

Topic Contents i@i§ll!¥+

Topic Contents i@i§i i!fttiM

DirectShow COM Interfaces Page 75 of 658

Mode
[in] Value that activates or deactivates the calibration process. Specify one of the
following:
Value Meaning
ED_ACTIVE Activates calibration process.
ED_INACTIVE Deactivates calibration process.

NULL Used to determine if current status is active or inactive.
pStatus

[out] Value indicating whether an event is active (OATRUE) or inactive (OAFALSE).

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Use this method on certain external devices that require calibration; for example, when
rewinding a tape and resetting the counter, or computing the frame offset for a timecode
reader or generator.

Filters for various external devices can implement this method differently, depending on the
calibration that the device needs. This method assumes the IMediaEventSink interface has
already established an event sink, or that another event signaling method has been
established.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.ij

+Qi§i[.jjj,+ 111.],.[j

IAMExtDevice::GetCapability

IAMExtDevice Interface

Retrieves the capabilities of the external device.

HRESULT GetCapability(
long Capability,
long *pValue,
double *pdb/Value);

Parameters

Capability

Topic Contents l@i§lllMM

Topic Contents l@bll!MM

[in] Value that specifies which capability you want to check. This parameter must be one
of the following values.

466

DirectShow COM Interfaces Page 76 of 658

Value Meaning
ED_DEVCAP _CAN_RECORD Checks whether transport can record.
ED_ DEVCAP _CAN_ RECORD_STROBE Checks whether transport can single-frame record.
ED_DEVCAP _CAN_SAVE Checks whether transport can save data.
ED_ DEVCAP _DEVICE_ TYPE Checks the external device type.
ED_DEVCAP_HAS_AUDIO
ED_ DEVCAP_HAS_VIDEO
ED_DEVCAP _USES_FILES

pValue

Checks whether transport has audio.
Checks whether the device has video.
Checks whether transport has a built-in file
system.

[out] Value indicating the capabilities of the property specified in the Capability
parameter. Returns OATRUE if the property is supported or OAFALSE if the property is
not supported for all properties except ED_DEVCAP _DEVICE_ TYPE. In this case, returns
one of the following:
Value
ED_DEVTYPE_ATR
ED _ D EVTYPE_ CG
ED DEVTYPE DDR

- -

ED _ D EVTYPE_DVE
ED_DEVTYPE_GPI
ED_ DEVTYPE_ KEYER

Meaning
Audio Tape Recorder
Character Generator
Digital Disc Recorder

Digital video effects unit
General purpose interface trigger

Video keyer
ED_DEVTYPE_ LASERDISK Laser disc
ED_ DEVTYPE_MIXER_AUDIO Audio mixer
ED_DEVTYPE_MIXER_ VIDEO Video mixer
ED_ DEVTYPE_ ROUTER Video router
ED_DEVTYPE_ TBC
ED_ DEVTYPE_ TCG
ED_DEVTYPE_ VCR
ED_ DEVTYPE_WIPEGEN
ED _D EVTYPE_JOYSTICK
ED_ DEVTYPE_KEYBOARD

pdb/Value

Timebase corrector
Timecode generator/reader
VCR

Video wipe generator
Joystick
Keyboard

[out] Value indicating the capabilities of the specified property (if it is a double value).
Pass NULL if not in use.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

All return values are in pValue unless you have large or floating point values to return, in
which case they are returned in the pdb/Value parameter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

467

DirectShow COM Interfaces

+Qi§1[.]i!:+ 1 !!·HM Topic Contents

IAM Ext Device: :get_DevicePort

IAMExtDevice Interface

Retrieves the communication port to which the external device is connected.

HRESULT get_DevicePort(
long *pDevicePort);

Parameters

pDevicePort

Page 77 of 658

i@l§ii!MM

[in] Port to which the device is connected. Retrieves one of the following:
Value Meaning
DEV _PORT _1394 IEEE 1394 Bus
DEV _PORT _ARTI ARTI driver
DEV_PORT_COM1 COM1
DEV PORT _COM2 COM2
DEV _PORT _COM3 COM3
DEV PORT_COM4 COM4
DEV _PORT _DIAQ Diaquest driver
DEV _PORT _SIM Simulation port
DEV_PORT_USB Universal Serial Bus

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtDevice:: out DevicePort

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]i!:+ 1 !!·HM Topic Contents i@l§ii!MM

MQi@[.ji!:M M!i.! 111M Topic Contents i@l§i 11111+

IAM Ext Device: :get_DevicePower

468

DirectShow COM Interfaces

IAMExtDevice Interface

Retrieves the external device's power mode: on, off, or standby.

HRESULT get_DevicePower(
long *pPowerMode);

Parameters

pPowerMode
[out] External device's power mode; can be one of the following values.
Value Meaning
ED_POWER_OFF Off
ED_POWER_ON On
ED_POWER_STANDBY Standby

Return Values

Page 78 of 658

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtDevice:: put DevicePower

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

8 4'41[.]1!,M 1!1·H¥ Topic Contents

IAM Ext Device:: get_Externa I Devi eel D

IAMExtDevice Interface

Retrieves the model number of the external device.

HRESULT get_ExternalDevicelD(
LPOLESTR *ppszData);

Parameters

ppszData

i@fa111¥M

i@fai11¥M

[out] Returns the manufacturer-specific identification number or text as a string.

469

DirectShow COM Interfaces Page 79 of 658

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j Topic Contents lml!Jl l!lltiM

IAM Ext Device:: get_Externa I DeviceVersi on

IAMExtDevice Interface

Retrieves the version number of the external device's operating software.

H RESULT get_ExternalDeviceVersion (
LPOLESTR *ppszData);

Parameters

ppszData
[out] Returns the manufacturer-specific operating software version number from the
externa I device.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(j Topic Contents

IAM Ext Device:: put_DevicePort

IAMExtDevice Interface

Specifies the communication port to which the external device is connected.

HRESULT put_DevicePort(
long DevicePort
);

Parameters

470

lml!JlllMM

DirectShow COM Interfaces

DevicePort
[in] Port to which the device will connect. Specify one of the following:
Value Meaning
DEV_PORT_1394 IEEE 1394 Bus
DEV _PORT _ARTI ARTI driver

DEV_PORT_COM1 COM!
DEV _PORT _COM2 COM2
DEV _PORT _COM3 COM3
DEV _PORT _COM4 COM4
DEV _PORT _DIAQ Diaquest driver
DEV_PORT_MIN DEV_PORT_SIM

DEV_PORT_SIM Simulation port (used for "no hardware" simulation)
DEV_PORT_USB Universal serial bus

Return Values

Page 80 of 658

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtDevice: :get DevicePort

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents

MQ<§i[.jjj,M 111.Hj Topic Contents

IAM ExtDevice:: put_DevicePower

IAMExtDevice Interface

Sets the external device's power mode to either on, off, or standby.

HRESULT put_DevicePower(
long PowerMode);

Parameters

PowerMode

l@i§i 11111+

l@i§lllMM

[in] Value indicating which power mode the device will have. Set to one of the following:

471

DirectShow COM Interfaces

Value
ED _POWER_ OFF

Meaning
Off

ED_ POWER_ON On
ED_POWER_STANDBY Standby

Return Values

Page 81 of 658

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtDevice: :get DevicePower

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]jj,+ 111.1 1119 Topic Contents i@i§ii!¥M

IAMExtTransport Interface

The IAMExtTransport interface provides methods which control specific behaviors of an
external VCR. These methods generally set and get the transport properties which relate to
how the VCR and the computer exchange data. Since this interface controls specific behaviors
of transport, it must be implemented in combination with the IAMExtDevice interface, which
controls an external device's general behaviors. If you want to control an external device other
than a VCR, two options are available. Either use the methods you need and return E_NOTIMPL
for the rest, or design a new interface and aggregate it with IAMExtDevice.

This interface also provides methods that enable developers to define edit events which assist
in the content authoring process. Edit events are made up of individual edit properties that are
grouped together into edit property sets. These edit property sets can define an actual
recording sequence on the transport or a simple positional command. They can, for example,
specify certain modes of editing, record inpoints and outpoints, or memorize positions called
bookmarks. The SetEditPropertySet method creates or registers a group of edit properties,
called an edit property set, while the SetEditProperty enables the application to define
parameters and values of individual edit properties. Since these are relatively sophisticated
situations, their implementation is left to the advanced developer.

For a description of a sample filter which controls a VCR through DirectShow, see Vcrctrl
Sample (VCR Control Filter).

When to Implement

Implement this interface if you want to build a filter or application that controls an external
device, such as a VCR. Because this interface controls specific information about a device, you
should implement it with the IAMExtDevice interface.

472

DirectShow COM Interfaces Page 82 of 658

An application can directly instantiate and control external device control filters, such as those
for VCRs, but it is strongly recommended that you always instantiated them within the context
of a filter graph, even if they are the only filter within the graph.

Implementations can vary depending on the type of external device being controlled. With
certain devices, methods can return E_NOTIMPL if they are not applicable.

When to Use

Use this interface if you want a filter to control video and audio tape machines that are
external to the computer. Typical uses for this interface include the applications that
implement "batch capture" and "print to tape" of audio and video.

Applications should use the filter graph to enumerate the filters and then get the
IAMExtTransoort interface directly from the appropriate filter.

Hardware Requirements

To control an external VCR, certain hardware requirements are recommended. VCRs with an
RS-422 serial interface require a special serial port card or an external RS-232-to-RS-422
adapter. In addition, for best performance, your computer should have a serial port card built
with a 16,550 high-performance UART to sustain higher baud rates, such as 38.4 baud.

Methods in Vtable Order
!Unknown methods Description
Oueryinterface

AddRef
Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAMExtTransport methods Description
GetCaoability Retrieves the general capabilities of an external transport.
out MediaState Sets the current state of the media.
get Media State

out Loca !Control
get LocalControl

GetStatus

Retrieves the current state of the media.
Sets the state of the externa I device to loca I or remote control.
Retrieves the state of the externa I device.
Determines the status of the external transport.

GetTransoortBasicParameters Retrieves the external transport's basic parameter settings.
SetTransoortBasicParameters Sets the external transport's basic parameters.
GetTransoortVideoParameters Retrieves the external transport's video parameter settings.
SetTransoortVideoParameters Sets the video parameters for the external transport.
GetTransoortAudioParameters Retrieves the external transport's audio parameter settings.
SetTransoortAudioParameters Sets audio parameter setting for the external transport.
out Mode Sets the movement of the transport to a new mode (play, stop,

record, edit, and so on).
get Mode Retrieves the mode of the transport (play, stop, record, edit,

and so on).
out Rate
get Rate

Sets the playback rate for variable-speed external devices.
Retrieves the playback rate set in out Rate for variable speed
externa I devices.

473

DirectShow COM Interfaces

GetChase
SetChase
GetBump
SetBump

get AntiClogControl
put AntiClogControl
GetEditPropertySet
SetEd itPropertySet

GetEditProperty

SetEd it Property

get Ed itSta rt
put EditStart

Retrieves the status of chase mode.
Enables or disables chase mode.
Retrieves status of bump mode.

Page 83 of 658

Temporarily changes the speed of playback for synchronization
of multiple external devices.
Determines if the anti-headclog control is enabled or disabled.
Enables or disables the transport's anti-headclog control.
Retrieves the current state of an edit property set.
Registers an edit property set that describes a group of edit
properties.
Retrieves individual parameters and values associated with a
particular edit property set.
Defines individual parameters and values associated with a
particular edit property set.
Determines if the external transport's edit control is active.
Activates edit control on a capable transport.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents

MQl§i[.jlj,M 111.l:.!j Topic Contents

IAM ExtTra n sport: :get_AntiC logControl

IAMExtTransport Interface

Determines if the anti-headclog control is enabled or disabled.

H RESULT get_AntiClogControl (
long *pEnabled);

Parameters

pEnabled

l@i§lllMM

•@!§' 1gnw

[out] OATRUE indicates anti-headclog is enabled; OAFALSE indicates disabled.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtTransport:: put_AntiClogControl

474

DirectShow COM Interfaces

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

IAMExtTransport: :GetBump

IAMExtTransport Interface

Retrieves the status of bump mode.

HRESULT GetBump(
long *pSpeed,
long *pDuration);

Parameters

pSpeed
[out] Temporary speed (a multiple of normal speed).

pDuration

Topic Contents

[out] Pointer to the duration of a bump in current time format.

Return Values

Page 84 of 658

lml!§I 11¥8

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

This method will cause a temporary speed variation of transport used during the physical
synchronization process. It will stay in effect until pDuration time has expired.

See "IAMExtTransport Basic Parms" in DXMedia\Include\Edevdefs.h for supported time
formats.

See Also

IAMExtTransport: :SetBump

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

•Q<M!.l+' 1u.H5 Topic Contents i@fa111¥M

MQ<§i[.jjj,M 11!.HS Topic Contents i@fa111¥M

475

DirectShow COM Interfaces Page 85 of 658

IAMExtTransport::GetCapability

IAMExtTransoort Interface

Retrieves the general capabilities of an external transport.

HRESULT GetCapability(
long Capability,
long *pValue,
double *pdblValue);

Parameters

Capability
[in] Capability to query for. Specify one of the following:
Value
ED_TRANSCAP_CAN_BUMP_PLAY

ED_TRANSCAP _CAN_DELAY_AUDIO IN

Meaning
Checks whether transport can vary speed for
synchronizing.
Checks whether transport does delayed-in
audio edits.

ED_TRANSCAP _CAN_DELAY_AUDIO_OUT Checks whether transport does delayed-out
audio edits.

ED_TRANSCAP _CAN_DELAY_VIDEO_IN Checks whether transport does delayed-in
video edits.

ED_TRANSCAP _CAN_DELAY_VIDEO_OUT Checks whether transport does delayed-out
video edits.

ED_TRANSCAP_CAN_EJECT Checks whether transport can eject its media.
ED_ TRANSCAP _CAN_PLAY _BACKWARDS Checks whether transport can play media in

reverse (negative rate).
ED_TRANSCAP_CAN_SET_EE

ED_TRANSCAP_CAN_SET_PB

ED_TRANSCAP _FWD_VARIABLE MAX

ED_TRANSCAP_LTC_TRACK

ED_TRANSCAP_NUM_AUDIO_TRACKS
ED_TRANSCAP _REV_VARIABLE_MAX

pValue

Checks whether transport can show its input
on its output.
Checks whether transport can show media
playback on its output.
Maximum forward speed (multiple of play
speed) in pdblValue.
Track number of linear timecode (LTC) in
pValue.
Number of audio tracks in pValue.
Maximum reverse speed (multiple of play
speed) in pdblValue.

[out] Indicates whether the capability specified in Capability is supported or not. Returns
either OATRUE if it is supported or OAFALSE if not.

pdblValue
[out] Indicates the capabilities of the property specified in Capability.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

476

DirectShow COM Interfaces Page 86 of 658

Remarks

All OATRUE and OAFALSE values are returned in pValue; numerical values are returned in
pValue or pdb/Value. Use the pdb/Value parameter to return double values if the pValue
parameter is insufficient. Return NULL if one of the parameters is not needed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 111.l:.!j

+Qi§i[.jjj,+ 111.],.[j

IAMExtTransport: :GetChase

IAMExtTransport Interface

Retrieves the status of chase mode.

HRESULT GetChase(
long *pEnabled,
long *pOffset,
HEVENT *phEvent);

Parameters

pEnabled

Topic Contents l@i§i llfttiM

Topic Contents l@i§lllMM

[out] OATRUE specifies chase enabled; OAFALSE specifies chase disabled.
pOffset

[out] Offset from the present time to which the transport will maintain while playing.
phEvent

[out] Pointer to the completion notification that will signal chase offset is established.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

The time for pOffset is given in the current time format (see "IAMExtTransport Basic Parms" in
DXMedia\Include\Edevdefs.h for supported time formats).

See Also

IAMExtTransport: :SetChase

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

477

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM Topic Contents

MQij[.jjj,M M!i.1 111M Topic Contents

IAM ExtTra n sport: :Get Ed itProperty

IAMExtTransport Interface

Retrieves the parameters and values associated with a particular edit event.

HRESULT GetEditProperty(
long EditID,
long Param,
long *pValue);

Parameters

EditID
[in] Identification number of the edit property set.

Pa ram
[in] Edit event parameter to determine the value of.

pValue

Page 87 of 658

i@l§ii!MM

i@l§i 11111+

[out] Returns the value of the parameter specified in Param: OATRUE, OAFALSE, or a
specific value.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtTransport:: SetEditProperty

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 111M Topic Contents i@l§lllMM

+ Qi§1 [.] jj,+ +II.HM Topic Contents Mttfjl§i +gn+

IAM ExtTra n sport: :Get Ed itPropertySet

478

DirectShow COM Interfaces Page 88 of 658

IAMExtTransport Interface

Retrieves individual parameters and values associated with a particular edit property set.

HRESULT GetEditPropertySet(
long EditID,
long *pState) ;

Parameters

EditID
[in] Identification number of the edit property set.

pState
[out] State of the edit property set. Retrieves one of the following:
Value Meaning
DC SET_ACTIVE Activates edit property set.
DC SET_DELETE Deletes edit property set.
DC SET_INACTIVE Deactivates edit property set.
DC_SET_REGISTER Registers edit property set.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAM ExtTra nsport: : SetEd itPropertySet

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

+Qi§i[.]11,+ '!!·Hi

IAMExtTransport::get_EditStart

IAMExtTransport Interface

Determines if the external transport's edit control is active.

HRESULT get_EditStart(
long *pValue);

Parameters

pValue

479

Topic Contents l@IJll!MM

Topic Contents l@IJll!MM

DirectShow COM Interfaces Page 89 of 658

[out] Returns OATRUE if edit control is active; OAFALSE if inactive.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtTransport:: out EditStart

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,+ '!!·HM Topic Contents

IAM ExtTra nsport: :get_Loca IControl

IAMExtTransport Interface

Retrieves the state of the externa I device.

HRESULT get_LocalControl(
long *pState) ;

Parameters

pState
[out] Returns either OATRUE for local control or OAFALSE for remote.

Return Values

i@l§ii!MM

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

To control an external device, it must be in remote mode.

See Also

IAM ExtTra nsport: : put_Loca !Control

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

H Qi§1 [.] lj,M I !1.],.[9 Topic Contents i@l§ii!MM

480

DirectShow COM Interfaces

IAM ExtTra nsport: :get_MediaState

IAMExtTransport Interface

Retrieves the current state of the media set in out MediaState.

HRESULT get_MediaState(
long *pState) ;

Parameters

pState

Page 90 of 658

[out] Returns the current state or the media. Values will be device specific but can
include the following:
Value Meaning
ED_MEDIA_SPIN_DOWN Stop spinning (for disk media); unthread the tape (for tape

media).
ED_MEDIA_SPIN UP

ED_MEDIA_UNLOAD

Return Values

Start spinning (for disk media); thread the tape (for tape
media).
Eject the media from the drive (if device supports it).

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

8 4'41[.]1!,M 1!1·H¥ Topic Contents

IAMExtTransport: :get_Mode

IAMExtTransport Interface

Retrieves the mode of the transport (play, stop, record, edit, and so on).

HRESULT get_Mode(
long *pMode);

Parameters

pMode

i@fa111¥M

i@fai11¥M

[out] Current transport mode (see IAMExtTransport:: put Mode for possible modes).

481

DirectShow COM Interfaces Page 91of658

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j

IAMExtTransport: :get_Rate

IAMExtTransport Interface

Retrieves the playback rate for variable-speed external devices.

HRESULT get_Rate(
double *pdb/Rate);

Parameters

pdb/Rate

Topic Contents

[out] Pointer to the playback rate set in IAMExtTransoort:: put Rate.

Return Values

lml!Jl l!lltiM

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,+ '!!·Hi

IAMExtTransport: :GetStatus

IAMExtTransport Interface

Determines the external transport's status.

HRESULT GetStatus(
long Statusitem,
long *pValue);

Parameters

482

Topic Contents lml!JlllMM

DirectShow COM Interfaces Page 92 of 658

Status!tem
[in] Item you want to determine the status of; can include one of the following:
Value Meaning
ED_MODE EDIT _CUE Checks if device is cueing for an active edit event.
ED_MODE FF Checks if device is fast forwarding.

Checks if device is paused. ED_MODE FREEZE
ED_MODE LINK_OFF Checks if transport control isn't linked to filter graph's run,

stop, and pause controls.
ED_MODE LINK_ON Checks if transport control is linked to filter graph's run,

stop, pause controls.
ED_MODE PLAY Checks if device is playing.
ED_MODE RECORD Checks if device is recording.
ED_MODE_RECORD_STROBE Checks if device is recording single-frame.
ED_MODE REW Checks if device is rewinding.
ED_MODE SHUTTLE Checks if device is shuttling (high-speed movement with

visible picture).
ED_MODE STEP

ED_MODE STOP
pValue

Checks if device is single-stepping.
Checks if device is stopped.

[out] Returns OATRUE if Statusltem is active or OAFALSE if not.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

When implementing this interface, be aware that transport Statusltem parameters are more
extensive than most Microsoft® DirectShow™ interfaces and code should reflect this variety
and feel free to check the transport status of appropriate parameters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@IJll!MM

MQi§i[.]11,+ 11!.Hj Topic Contents l@IJll!MM

IAM ExtTra n sport: :GetTra nsportAu di oPa ra meters

IAMExtTransport Interface

Retrieves audio parameter setting for external transport.

HRESULT GetTransportAudioParameters(

483

DirectShow COM Interfaces

long Param,
long *pValue);

Parameters

Pa ram

Page 93 of 658

[in] Audio parameter whose value you want to get. Specify one of the following:
Value Meaning
ED_TRANSAUDIO_ENABLE_OUTPUT Audio output channel(s)
ED_ TRANSAUDIO_ ENABLE_ RECORD Audio recording channel(s)
ED_ TRANSAUDIO_ ENABLE_SELSYNC Audio selsync recording channel(s)
ED_TRANSAUDIO_SET_MONITOR Monitor output audio channel(s)
ED_TRANSAUDIO_SET_SOURCE Audio source channel(s)

pValue
[out] Channel or channels set in the IAMExtTransport:: SetTransportAudioParameters
method.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

IAMExtTransport::GetTransportBasicParameters

IAMExtTransport Interface

Retrieves the transport's basic parameter settings.

HRESULT GetTransportBasicParameters(
long Param,
long *pValue,
LPOLESTR *ppszData);

Parameters

Pa ram
[in] Parameter you want to receive the setting for (see Edevdefs.h for possible
parameters under "IAMExtTransport Basic Parms").

pValue
[out] Setting of the parameter if it is numeric.

ppszData
[out] Setting of the parameter if it is a string .

484

DirectShow COM Interfaces Page 94 of 658

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAM ExtTra nsport: : SetTra nsoortBasicPa ra meters

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jjj,M 111.1 1119 Topic Contents 1@1§111¥+

IAM ExtTra nsport: :GetTra nsportVideoPa ra meters

IAMExtTransport Interface

Retrieves video parameter settings for external transport.

HRESULT GetTransportVideoParameters(
long Param,
long *pValue);

Parameters

Pa ram
[in] Video parameter you want to receive the settings for. Can be either
ED_ TRANSVIDEO_SET _OUTPUT (video transport output parameters) or
ED_ TRANSVIDEO_SET _SOURCE (video transport source).

pValue
[out] Set the ED_TRANSVIDEO_SET_SOURCE flag to retrieve the active video input, or
set the ED_TRANSVIDEO_SET_OUTPUT flag to retrieve one of the following values:
Value
ED_E2E
ED_OFF

Meaning
Input video is visible on device's output regardless of transport mode.
Video output is disabled.

ED_PLAYBACK Video playing from media is displayed on the screen.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtTransport:: SetTra nsportVideoPara meters

485

DirectShow COM Interfaces

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

MQl§i[.jjj,M '!!·HM Topic Contents

IAM ExtTra n sport:: put_AntiC logControl

IAMExtTransport Interface

Enables or disables transport anti-headclog control.

HRESULT put_AntiClogControl(
long Enable) ;

Parameters

Enable

Page 95 of 658

lml!§I 11$8

'ffl!'+* •um•

[in] Value indicating whether to enable anti-headclog control; set OATRUE to enable,
OAFALSE to disable.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Use this method to unclog video heads on VCRs that have an automatic head-cleaning feature.

See Also

get AntiClogControl

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents l@l§lllMM

IAMExtTransport::put_EditStart

IAMExtTransport Interface

Activates the edit control on a capable transport.

486

DirectShow COM Interfaces

HRESULT put_EditStart(
long Value);

Parameters

Value
[in] OATRUE activates the edit control; OAFALSE deactivates it.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Page 96 of 658

Use this method to manually enable edit control. Edit control is defined as the precise enabling
of individual, or a set of, record tracks on a VCR; for example, a video-only insert edit, where
only the video record head is enabled and a new video signal is recorded - the audio signal is
left as is. Use this method to control "on the fly" editing on machines that have this feature.

See Also

IAMExtTransport: :get EditStart

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

IAM ExtTra nsport:: put_Loca IControl

IAMExtTransport Interface

Sets the state of the externa I device to loca I or remote control.

HRESULT put_LocalControl(
long State);

Parameters

State
[in] Current state; pass OATRUE for local, OAFALSE for remote.

Return Values

i@faii!MM

Returns an HRESULT value that depends on the implementation of the interface.

See Also

487

DirectShow COM Interfaces

IAM ExtTra nsport: : get Loca !Control

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents

IAM ExtTra nsport:: put_MediaState

IAMExtTransport Interface

Sets the current state of the media.

HRESULT put_MediaState(
long State);

Parameters

State
[in] Value specifying the state. Use one of the following:
Value Meaning

Page 97 of 658

ifflj[§ii!MM

ED_MEDIA_SPIN_DOWN Stop spinning (for disc media); unthread the tape (for tape
media).

ED_MEDIA_SPIN UP

ED MEDIA_UNLOAD

Return Values

Start spinning (for disc media); thread the tape (for tape
media).
Eject the media from the drive (if device supports it).

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Use the preceding parameters for disk and tape media. For other devices, you might need to
specify new parameters.

See Also

IAMExtTransport: :get MediaState

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

+;<§1[.]ij,+ +II.HM Topic Contents i@i§ii!MM

+Q'41[.]1!,+ 1 !1·HM Topic Contents i@i§ii!MM

488

DirectShow COM Interfaces Page 98 of 658

IAMExtTransport: :put_Mode

IAMExtTransport Interface

Sets the movement of the transport to a new mode (play, stop, record, edit, and so on).

HRESULT put_Mode(
long Mode);

Parameters

Mode
[in] Transport mode. Specify one of the following:
Value Meaning
ED_MODE PLAY Play

ED_MODE STOP
ED_MODE FREEZE
ED_MODE_THAW
ED_MODE FF
ED_MODE REW

Stop
Freeze (pause)
Resume
Fast forward
Rewind

ED_MODE RECORD Record
ED_MODE_RECORD_STROBE Record single frame
ED_MODE STEP Single step
ED_MODE SHUTTLE
ED_MODE EDIT _CUE
ED_MODE LINK_ON

Shuttle (high-speed movement with visible picture)
Cue for an edit event

ED_MODE LINK_OFF

Return Values

Link this method to the graph's IMediaControl: :Run, St.o.Q.,
and .Ea..u..s.e. methods
Disengage this method from the graph's
IMediaControl:: Run, St.o.Q., .Ea..u..s.e. methods.

Returns an HRESULT value that depends on the implementation of the interface.

See Also

IAMExtTransport: :get Mode

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§I 11$8

MQl§i[.jjj,M 111.],.[5 Topic Contents 'ffl!'+* •um•

489

DirectShow COM Interfaces

IAMExtTransport: :put_Rate

IAMExtTransport Interface

Sets the playback rate for variable-speed external devices.

HRESULT put_Rate(
double db/Rate);

Parameters

db/Rate

Page 99 of 658

[in] Multiple of play speed where .5=half, !=normal, 2=double, 3=triple and so forth.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

This method enables an application to speed up or slow down playback relative to the normal
default playback speed. A rate of 1.0 indicates normal playback speed. Specifying 2.0 causes
playback at twice the norma I rate.

You can also link this method to the IMediaPosition:: out Rate method as an alternate means
of setting rates of playback relative to normal speed.

See Also

IAM ExtTra nsport: : get_ Rate

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

IAM ExtTra nsport: :Set Bu mp

IAMExtTransport Interface

Temporarily changes the speed of playback for synchronization of multiple external devices.

HRESULT SetBump(
long Speed,

490

DirectShow COM Interfaces Page 100 of 658

long Duration);

Parameters

Speed
[in] Temporary speed (a multiple of normal speed).

Duration
[in] Duration of a bump in current time format.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

This method will stay in effect until Duration time has expired.

See "IAMExtTransport Basic Parms" in DXMedia\Include\Edevdefs.h for supported time
formats.

See Also

IAMExtTransport: :GetBump

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

IAMExtTransport: :SetChase

IAMExtTransport Interface

Enables or disables chase mode.

HRESULT SetChase(
long Enable,
long Offset,
HEVENT hEvent);

Parameters

Enable

Topic Contents i@fa111¥M

Topic Contents i@fai11¥M

[in] Enables or disables chase. Specify OATRUE to enable chase; OAFALSE to disable.
Offset

[in] Offset from the time reference that the transport will maintain. Specify in current

491

DirectShow COM Interfaces

time format.
hEvent

[in] Event to signal offset established.

Return Values

Page 101of658

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Use the SetChase method when you want an external transport to continuously follow a
timecode signal with a fixed offset. For example, if your computer is generating timecode, a
VCR capable of chasing can be told by the computer to put itself in play mode and keep its
media a fixed offset from the reference timecode. You determine the offset by comparing the
timecode on the playback media to the reference (generated) timecode.

This method will stay in effect until canceled or complete and requires the filter to verify (by
periodically reading the transport's timecode) that the transport is indeed maintaining the fixed
offset.

Time for Offset is specified in current time format (see "IAMExtTransport Basic Parms" in
DXMedia\Include\Edevdefs.h for supported time formats).

See Also

IAM ExtTra nsport: : GetChase

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij Topic Contents l@i§lllMM

+Qi§i[.jjj,+ 111.],.[j Topic Contents l@bll!MM

IAM ExtTra nsport: :SetEditProperty

IAMExtTransport Interface

Defines individual parameters and values associated with a particular edit property set.

HRESULT SetEditProperty(
long EditID,
long Param,
long Value);

Parameters

EditID
[in] Identification number of the edit property set.

492

DirectShow COM Interfaces Page 102 of 658

Pa ram
[in] Edit event parameter to define.

Value
[in] Value of the parameter specified in Param. Use OATRUE, OAFALSE, or a specific
value.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Edit events can either refer to a group of predefined properties that define an actual recording
sequence, or they can refer to simple positional commands. They can, for example, specify
certain modes of editing, record inpoints and outpoints, or memorize positions called
bookmarks. The SetEditProoertySet method defines and registers a group of edit events, called
an edit property set, while the SetEditProperty method enables the user to define parameters
and values of individual edit events.

To define a set of edit properties, first register an edit property set and get an EditID with the
SetEditPropertySet method. Then use the SetEditProperty method to define specific
parameters and values of individual edit properties. Finally, use the SetEditPropertySet
method to activate the edit property set.

For a complete listing of possible parameters and values for edit property sets see Edevdefs.h
in the DirectShow SDK's DXMedia\Include folder.

See Also

IAM ExtTra nsport: : GetEditProperty

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.ij Topic Contents

+Qi§i[.jjj,+ 111.],.[j Topic Contents

IAM ExtTra n sport: :Set Ed itPropertySet

IAMExtTransport Interface

Registers an edit property set that describes a group of edit properties.

HRESULT SetEditPropertySet(
long *pEditID,
long State);

Parameters

493

l@i§lllMM

l@bll!MM

DirectShow COM Interfaces

pEditID

State
[in, out] Identification number of the edit property set.

[in] State of the edit property set. Specify one of the following:
Value Meaning
DC SET_ACTIVE Activates edit property set.
DC SET_DELETE Deletes edit property set.
DC SET_INACTIVE Inactivates edit property set.
DC_SET_REGISTER Registers edit property set.

Return Values

Page 103 of 658

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Edit events refer to a group of predefined properties that define an actual recording sequence
on the transport or a simple positional command. They can, for example, specify certain modes
of editing, record inpoints and outpoints, or memorize positions called bookmarks. The
SetEditPropertySet method defines and registers a group of edit properties, called an edit
property set, while the SetEditProperty enables the user to define parameters and values of
individual edit event properties.

To define a set of edit properties, first register an edit property set and get an EditID with the
SetEditPropertySet method. Then use the SetEditProperty method to define specific
parameters and values of individual edit properties. Finally, use the SetEditPropertySet
method to activate the edit property set.

For a complete listing of possible parameters and values for edit property sets see Edevdefs.h
in the DirectShow SDK's DXMedia\Include folder.

See Also

IAM ExtTra nsport: : GetEditPropertySet

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8

IAM ExtTra n sport: :SetTra n sportAud ioPa ra meters

IAMExtTransport Interface

Sets audio parameter setting for external transport.

494

DirectShow COM Interfaces

HRESULT SetTransportAudioParameters(
long Param,
long Value);

Parameters

Pa ram
[in] Audio parameter you want to set. Specify one of the following.
Value Meaning
ED_ TRANSAUDIO_ ENABLE_OUTPUT Enable audio channel(s) for output.
ED_ TRANSAUDIO_ ENABLE_ RECORD Enable audio channel(s) for recording.

Page 104 of 658

ED_ TRANSAUDIO_ENABLE_SELSYNC Enable audio channel(s) for selsync recording.
ED_TRANSAUDIO_SET_MONITOR Set the monitor output source.
ED_TRANSAUDIO_SET_SOURCE Set the active audio input.

Value
[in] Audio channel or channels to set the parameter on.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Specify an exact channel or channels in Value by selecting ED_AUDI0_1 through
ED_AUDI0_24 (use an or switch to combine), or all channels by selecting ED_AUDIO_ALL.

See Also

IAM ExtTra nsport: : GetTra nsportAud ioPa ra meters

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmll§I 11$8

MQl§i[.jjj,M '!!·HM Topic Contents i@i§ill@iM

IAM ExtTra n sport: :SetTra n sport Ba sic Para meters

IAMExtTransport Interface

Sets basic parameters of external transport.

HRESULT SetTransportBasicParameters(
long Param,
long Value,

495

DirectShow COM Interfaces Page 105 of 658

LPCOLESTR pszData);

Parameters

Pa ram
[in] Parameter you want to set (see Edevdefs.h for possible parameters under
"IAMExtTransport Basic Parms").

Value
[in] Setting of the parameter if it is numeric.

pszData
[in] Setting of the parameter if it is a string.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

Basic settings include time formats, record formats, preroll setting, servo setting, and others
(see Edevdefs.h).

See Also

IAM ExtTra nsport: : GetTra nsportBasicPa ra meters

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents l@i§i 11111+

MQ<§i[.]jj,+ 111.Hj Topic Contents l@i§lllMM

IAM ExtTra n sport: :SetTra n sport Vi deoPa ra meters

IAMExtTransport Interface

Sets video para meters for externa I transport.

HRESULT SetTransportVideoParameters(
long Param,
long Value);

Parameters

Pa ram
[in] Video parameter you want to set. Specify either ED_ TRANSVIDEO_SET _OUTPUT
(video transport output parameters) or ED_ TRANSVIDEO_SET _SOURCE (video transport
source).

Value

496

DirectShow COM Interfaces Page 106 of 658

[in] Set the ED_TRANSVIDEO_SET_SOURCE flag to set the active video input, or set the
ED_ TRANSVIDEO_SET _OUTPUT flag to one of the following values.
Value Meaning
ED E2E Input video is visible on device's output regardless of transport mode.
ED_OFF Video output is disabled.
ED_PLAYBACK Video playing from media is displayed on the screen.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

Remarks

For the ED_ TRANSVIDEO_SET _SOURCE flag, an external device filter uses physical pins to
describe its inputs. Calls to the filter's pin enumerator will return an index value. The value is
passed to this method as its as its Value parameter.

See Also

IAM ExtTra nsport: : GetTra nsportVideoPa ra meters

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •@M* 1gnw

MQi§1[.]1!,M 11!.HM Topic Contents i@faii!MM

IAMFileCutlistElement Interface

The IAMFileCutlistElement interface provides support for a cutlist element for a file stream.

See About Cutlists and Using Cutlists for more information.

When to Implement

Implement this interface in your application when you implement your own IAMCutListElement
interface. Usually, you don't need to implement either interface because DirectShow provides
the CLSID VideoFileClip and CLSID AudioFileClip objects that implement it for you. However,
you can implement this interface in your application when you need to change the default
behavior of this interface.

When to Use

Use this interface in your filter when you specify a media clip stored in a file. Call
Queryinterface on IAMCutListElement to determine if the element is file-based.

When compiling a cutlist application you must explicitly include the cutlist header file as

497

DirectShow COM Interfaces

follows:

#include <Cutlist.h>

Methods in Vtable Order
!Unknown methods Description
Querylnterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IAM FileCutlistElement Description
methods

Retrieves the file name of the cutlist element.

Page 107 of 658

GetFileName
GetTri ml n Position Retrieves the media time of the trimin point, based on the

timeline of the cut's source file.
GetTrimOutPosition

GetOriginPosition
GetTrimLength

GetElementSpl itOffset

Retrieves the media time of the trimout point, based on the
timeline of the cut's source file.
Retrieves the media time of the origin of the file or clip.

Retrieves the length of time between the trimin and trimout
points.

Retrieves the media time of the number of frames between the
trimin point and the start of this element in output time.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lll¥M

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

IAMFileCutlistElement::GetElementSplitOffset

IAMFileCutlistElement Interface

Retrieves the media time of the number of frames between the trimin point and the start of
this element in output time.

HRESULT GetElementSplitOffset(
REFERENCE_TIME *pmtOffset
);

Parameters

pmtOffset
[out] Pointer that will receive the offset in the element's length.

Return Values

498

DirectShow COM Interfaces Page 108 of 658

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_POINTER
S_OK

Remarks

Null pointer argument.
Success.

This method must retrieve a zero offset. Other offsets are not supported.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

8 4'41[.]1!,M 1!1·H¥ Topic Contents

IAM Fi leCutlistElement: :Getfi le Na me

IAMFileCutListElement Interface

Retrieves the file name of the cutlist element.

HRESULT GetFileName(
LPWSTR *ppwstrFileName
);

Parameters

ppwstrFileName

i@fa111¥M

i@fai11¥M

[out] Pointer that will receive the file name (must be freed when no longer needed).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_POINTER
S_OK

Null pointer argument.
Success.

499

DirectShow COM Interfaces Page 109 of 658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HM Topic Contents lml!§I 11$8

MQIM[.]l!:I 1 !!·HM Topic Contents 'ffl!'+* •um•

IAM Fi leC utlistE le ment:: GetOrig in Position

IAMFileCutListElement Interface

Retrieves the media time of the origin of the file or clip.

HRESULT GetOriginPosition(
REFERENCE_TIME *pmtOrigin
);

Parameters

mtOrigin
[out] Pointer that will receive the origin. The origin is in media time.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_POINTER

S_OK

Remarks

Null pointer argument.
Success.

This method must return a zero origin. Clips with nonzero start times are not supported.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQIM[.]1!:1 1 !!·HM Topic Contents l@i§lllMM

MQl@[.]l!:I l!i.! 111M Topic Contents l@i§i '!!¥•

500

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

