ActiveMovie Control Page 112 0of 116

Parts
objVideoWindow

Object expression that evaluates to an IVideoWindow object.
handle

New value for the window handle.
Remarks

This property offers a way for applications to set the owner of the video window. This is often
used when playing videos in compound documents.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | opio Contents | ndex | Hext |

SetWindowForeground Method (IVideoWindow
Object)

IVideoWindow Obiject

Sets the video window as the foreground window and optionally gives it focus.

objVideoWindow.SetWindowForeground Focus

Parts
objVideoWindow

Object expression that evaluates to an IVideoWindow object.
Focus

Long value that specifies whether the video window will have focus. A value of -1 gives
the window focus and 0 does not.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[previous | Home | topie Contenta | niex | Wext |

SetWindowPosition Method (IVideoWindow
Object)

IVi Window

136

ActiveMovie Control Page 113 of 116

Sets the position of the video window (not the client rectangle position) in device coordinates.
objVideoWindow.SetWindowPosition Left, Top, Width, Height
Parts

objVideoWindow
Object expression that evaluates to an IVideoWindow object.

Left

Specifies the x-axis origin of the window.
Top

Specifies the y-axis origin of the window.
Width

Specifies the width of the window.
Height

Specifies the height of the window.

Remarks

Specify, in window coordinates, where the video should appear. For example, setting a
destination of (100,50,200,400) positions the video playback at an origin of 100 pixels from
the left of the client area, 50 pixels from the top, and with an overall size of 200 x 400 pixels.
If the video is smaller than this (or a source rectangle has been specified that is smaller than
the video), it will be stretched appropriately. Similarly, if the video is larger than the
destination rectangle, the video is compressed into the visible rectangle. There are fairly
severe performance penalties if an application does not keep the source and destination
rectangles the same size.

Under typical circumstances, when no destination rectangle has been set, the video fills the
entire visible client window area (regardiess of how much the user has stretched the window).
Also, the destination rectangle properties correctly return the size of the video window client
area.

This method has the same effect as individually setting the Left, Top, Width, and Height
properties.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topie Contents | iniex | Next _
[Previoss | Home | Topic Contents | intex | Hext _

Top Property (IVideoWindow Object)

IVideoWindow Obiject

Retrieves or sets the y-axis coordinate of the video window.

137

ActiveMovie Control Page 114 0f 116

objVideoWindow.Top [= [Value]
Parts

objVideoWindow

Object expression that evaluates to an IVideoWindow object.
Value

New value for the y-axis origin.

Remarks

Calling this method does not affect the height of the video window.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents | iniex | Hext

Visible Property (IVideoWindow Object)

IVideoWindow Object

Retrieves or sets the visibility of the video window.
objVideoWindow. \Visible [= boolean]
Parts

objVideoWindow

Object expression that evaluates to an IVideoWindow object.
boolean

If set to True, the window is shown; if False, the window is hidden.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | ome | Topio Contents | miex | ext

Width Property (IVideoWindow Object)

Vi Window

Retrieves or sets the width of the video window.

138

ActiveMovie Control Page 115 0f 116

objVideoWindow Width [= /Value]
Parts

objVideoWindow

Object expression that evaluates to an IVideoWindow object.
Value

New value of the width.

Remarks

The Width property is independent of the video window's Height property {the x-coordinate).

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents | iniex | Hext

WindowState Property (IVideoWindow Object)

IVideoWindow Object

Returns or sets the state of the video window.
objVideoWindow WindowState [= /Value)
Parts
objVideoWindow
Object expression that evaluates to an IVideoWindow object.

Value
New value for the WindowState property.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | ome | Topio Contents | miex | ext

WindowsStyle Property (IVideoWindow Object)

Vi Window

Retrieves or sets the style parameters for the video window.

139

ActiveMovie Control Page 116 of 116

objVideoWindow . WindowStyle [= /Value]
Parts

objVideoWindow

Object expression that evaluates to an IVideoWindow object.
Value

New value for the WindowStyle property.

Remarks

For a complete list of window styles, see the CreateWindow function in the Microsoft® Platform
Software Development Kit (SDK).

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext

WindowStyleEx Property (IVideoWindow
Object)

IVideoWindow

Changes the style parameters for the video window.
objVideoWindow WindowStyleEx [= [Value]

Parts

objVideoWindow

IvalueObject expression that evaluates to an IVideoWindow object.

New value for the flags. Valid values include only those flags that can be set by the
GWL_STYLE value of the Microsoft Win32 GetWindowlLong function.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

140

DirectShow Basics Page 1 of 62

[Previous | Home | Topic Contents | iniex | Hext

DirectShow Basics

This section contains articles covering basic DirectShow concepts, such as filter graph
architecture and data flow, how to use the Filter Graph Editor tool, and a list of the filters and
sample filters supplied with DirectShow. You can use this section as a high-level introduction to
DirectShow. You need only a general understanding of programming and media to understand
the topics in this section.

=Using DirectShow

=Filter Graph Manager and Filter Graphs

=Filters and Pin

=Stream Control Architecture

=Quality-Control Management

=About Capture Filter Graphs

=Improving Capture Performance

=Data Flow in the Filter Graph

=Constructing Filter Graphs Using Vi | Basi

=Controlling Filter Graphs Using Visual Basic

=List of Filters and Samples

" he Dir how Filter Graph Editor

=Using the Filter Graph Editor

=COM Overview

=QOverview of DVD Interfaces and Data Types

=About WDM Video Capture

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] index | Hext

141

DirectShow Basics Page 2 of 62

" previous | Home | opio Contente | index | Hext |

Using DirectShow

Microsoft® DirectShow™ is an architecture that controls and processes streams of multimedia
data through custom or built-in filters. You can also use the set of media streaming interfaces
to stream media data without creating filters. See Use Multimedia Streaming in DirectShow
Applications for more information.

In addition to the architecture and the set of classes and interfaces to support it, DirectShow is
also a run time that uses this architecture to enable users to play digital movies and sound
encoded in various formats, including MPEG, AVI, MOV (Apple® QuickTime®) and WAV-
formatted files. The DirectShow run time is a control (.ocx), called the ActiveMovie Control,
and a set of dvnamic-link libraries (DLLs) that enable you to play back supported media files.

DirectShow playback uses video and audio hardware cards that support the Microsoft DirectX®
set of application programming interfaces {APIs). The video and audio capture capability lets
you programmatically control your system's video and audio capture hardware, as well as video
and audio compressors and decompressors (codecs). The Plug and Play capability lets
DirectShow automatically retrieve and use your filters, once you register their properties.

Use the DirectShow architecture for most new multimedia applications for Windows® 95 or
Windows NT®. With a few exceptions, it replaces multimedia playback services, APIs, and
architectures provided by Microsoft in earlier versions of the Windows Software Development
Kit (SDK). However, libraries will continue to be available and supported for applications that
use the earlier Microsoft multimedia playback services, such as Microsoft Video for Windows.

Contents of this article:
¢ DirectShow Architecture

¢ Choosing the Right Programming Model
e Plaving Back Files Over the Internet

DirectShow Architecture

The DirectShow architecture defines how to control and process streams of multimedia data
using modular components called filters. The filters have input or output pins, or both, and are
connected to each other in a configuration called a filter graph. Applications use an object
called the filter graph manager to assemble the filter graph and move data through it. By
default, the filter graph manager automatically handles data flow for you; for example, it
automatically inserts the proper codec if needed, and it automatically connects a transform
filter's output pin to the default rendering filter. You can always specify your own filters and
connections if you don't want to use the default configuration.

The filter graph manager provides a set of Component Object Model (COM) interfaces so that
applications can access the filter graph. Applications can directly call the filter graph manager
interfaces to control the media stream or retrieve filter events, or they can use the ActiveMovie
Control to play back media files.

142

DirectShow Basics Page 2 of 62

THUS, YOu Can access DirectShow through the CODM inferface, the ActiveMovie Contegl, or media
conteoi interfaces (MOTG, as shown i Bhe Foligwing dastration,

| Application |
ActiveMovie | ZOm M
Control interfaces &
Filter graph manager
Source . Transfarm . Renderer
’_' filter filter filter
Media source Media destination

Because of the DicectShow archiecture's flodibio, moduiar design, Filter grachs have many
potential gses and appiications. Exampies incide Filter graphs that mpiament vided captura,
conteol remote devices such as YORS, or enabie MIDI recording and editing,

{haoging the Right Programming Model

DiractShow is accessibie at several lovels, and the aoorach You use depends on what you
need ang Bow MUCh progeamming you want (0 do. You might sian B0 ravweita an existing

PR EEIEdia rodeam, weke 3 nevw miitmedia neogeam, oF add muiimedia canabiifies £0 an
axigting peogeam. Typicaity, exishing appications that use the MOI command set are easily
eortad, whereas aoolications that acoess iowes-tevel muikbmedia seevices requice more tme i
rEw ke, YO Can Quickly add DiredtShow piayhack senvices o new anoiications by using the
ActiveMovie Control, o with g Tew divect functions that cali the COM interfaces, o O
GEQOERIMIMEns can weite Fiters that change Or anhandce migitimedia data airegady managed by
exigting filer geanhs,

Thig section containg the Rlowing TO0iCs,

o Rewribing Existing Soolcationsg
» ek Beyy Annirationg

Rewriting Existing Applications

IPwou have an aooiication that oiays sV -angodad movies and sounds and want 10 adant K10
e DireckShow B0 pigy AVI Bles, oorting i straighitforward F your anoication uses MOT
commands or the Microsoft Video for Windows® APL Your choice depends gn the senvices the
FonECAtnn Uses and your qoais, IF your aonlication gses MOI commands, wou ¢an use the MO
subset that DivedtShow provides, In the majority OF cases, this will be g straightforward
gegeade that mantaing AVI slavback and adds MPEG and QuickTime siayback canabilities 10
yOuE anniication, IF your axigting O-based appiication uses YVigeg for Windows AP, you ¢an
reniace most oF these with calig 1) the COM intarfaces,

Writing New Applications
You can take g variaty OF aooenaches when wriking a new annlcation with DiractShow, For

axampie, Fyou oniy want 10 add MPEG niayhack 0 your aoolication, you £an incomorate the
ActiveMovie Conkepl inkn your anoiication or diredtly aocess the COM inteefacas on the Ritar

143

DirectShow Basics Page 4 of 62

graph manager. Both Microsoft Visual Basic® version 5.x and later and Microsoft Visual C++®
version 5.x and later allow access to the ActiveMovie Control or the COM interfaces. Filters
within a filter graph are typically written in C++ using the DirectShow class library.

If your application must process the media stream in some way or capture a media stream,
you can incorporate both the filter graph manager and a custom filter into your application.
The instantiated filter graph manager generates and manages the filter graph. You can insert
the custom filter into a preconfigured filter graph (which you create and save by using the
Filter Graph Editor tool in the DirectShow SDK). You also could insert the filter into an existing
filter graph at run time.

Playing Back Files Over the Internet

The ActiveMovie Control is incorporated into Microsoft Internet Explorer so that you can place
the control on a Web page and program it by using Microsoft Visual Basic® Scripting Edition
(VBScript) commands. To a programmer, the ActiveMovie Control is another ActiveX™ Control,
one that has real-time playback capability. Real-time playback means that the ActiveMovie
Control can play video or audio files over the Internet while the file is downloading, rather than
requiring the user to wait until the whole file is downloaded to begin playback.

The same filter graphs constructed to play media from files can play media from the Internet
by simply changing the source filter. Take, for example, a filter graph that plays MPEG movies
from a disk file. The first filter in the graph might be a file reader filter. By replacing this filter
with a filter capable of reading from an Internet URL address, you can play MPEG movies from
the Internet. Both file and URL reader source filters just deliver an unparsed stream of data. A
parser filter pulls the data from the reader, parses it into separate streams of video, audio,
text, or other data types, and pushes it downstream. This filter remains unchanged regardless
of whether the source filter is a file or URL reader filter.

The source filter that reads from an Internet server is called the File Source {(URL) filter.
DirectShow provides this as a built-in filter. It knows how to read, but not parse, data from a
URL address. Therefore, a media parser follows the File Source (URL) filter in the filter graph.
For MPEG sources, this parser is built into the MPEG splitter filter. Other media types have
their own parser filters (for example, a QuickTime parser).

The source filter that reads from files is the File Source (Async) filter. DirectShow also provides
this as a built-in filter. It does no parsing on its own but simply reads data off a disk to play
back. Most DirectShow filter graphs use this source filter.

The architecture's modularity allows most of the same components to be reused between file
and Internet playback. This modularity also means that if you want to render a new type of
data, often you only need to write a parser and renderer, and you can still use the existing file
or URL filter.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[previous | Home] topic Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

144

DirectShow Basics Page 5 of 62

Filter Graph Manager and Filter Graphs

To use the fiitar grach manager from an apoiication, i is not necessary 10 Rnow much about
the ungeriying Riter graphs, Howevar, i 5 gsalinl 10 understand at ieast the basic pringipies of
Hitar geanhs F Yoo avar wank 10 configurs your own Filker geanh rather than tetting the Riter
graph manager configues tharm o You,

& Fittee geanh is ogmoosed oF & ooltection of Fitkees oF differant tyoes, Most filkers Can be
cateqorizad nto one of the Foligwing thrase tynaes,

» A source Fiter, which Takes the data from SOme SOUFCe, SUch 35 3 file on disk, 3 sateiiida
Foed, an Internet senver, gr 3 YOR, and introduces & into the filter geanh,

» A teansgPoery Fiee which takes the data, orocesses B and then sasses i along,

» & rangdering Fiter which rengders the data: tynicaly this is renderad 10 @ hargdware
devica, bt Coitl] be renderad t0 any cation that aocents maedia ot [SU0H 35 mamaory
OF & disk Fita),

In addigion to these theee Tynes, there gre gthar Ringdg of Bitars, For examnie, affedct Fitaes,
which add effects without changing the data type, and parser Bitars which understang the
Eyrenat oF the souece data ang Rnow how 10 read the corradt bytos cregte times stamos, andg
sarfLem seals,

For exampia, g Fitar granh whose purnpose 15 10 piay back an MPEG-compressed video from 2
Fita woilid gse the Foligwing Fitars,

& squrce Fitar to regd the data off the disk,

An MPEG fitboe £0 parse the stream ang soiit the MPES audin and video data streams,
& teangtoom Bitar 1o dacqmprass the vidad data,

& teangtoem Fiitoe 1o Jdecqmorass tha audin data,

& wideg rendesar Filker T disoizy the vigeo data on the sgroan,

A audin rendecer Fiter 10 send the audio £0 tha sound caed.

& & 4 4 & &

The Figwing Bigsteation shows Such g Fhiter geanh,

MPE video "
decompressian Video
transforrn [7| renderer
: i filter
File or LURL filter
: MPEG | _
rmoniker ;
Fw splitter
Fitar filter
ilter .
MPEG audio -q'-'d':"ﬂ
decormpression |- FENOSIE"
filter filter

It is possibie For some Fiitors 10 reprasent g combination OF Hypas, FOr exampie, g Hitar might
ba an audio rendarar that aicd acts a5 3 transfoom Bilar by nassing thequgh the vided data, Bt
Bynicaly, Tikars TE Qniy One oF thase throa tynes,

Fiatar geanhs steearm muitimad s data theough Bilers, In the madia stream, one fitar passes the

145

DirectShow Basics Page 6 of 62

media downslream o the next fitker, An gpstreanm flter describes the Biter that passes data 10
the fiter: a downstream Riter describes the next filkar in fine for the data, This distinction is
enpdetant bacause madia Hows downstream, bt othar infprmation can Qo upstraam,

O make a Titer granh work, Fiters must ba connected in the proper grder, and the data
sktraam mst ba staraed and stopned in the peoper grder. The FELEe Jranhl manager connects
Fitars ang contepis the media stream. B aico has the abitly B0 saaech For 3 configueation of
Fitaes that will eender 3 narbicaiae mediz tyne aad bl that Fitee geanh, Fitar geaohs oan 350
Ba proconfiguead, in which £ase the FRar granh manager does not nead 1) search 1o 3
configeeation,

When segrching for g rendecing confiqueation, the Ffiter granh manager wses the Bitae manbear,
which Fiegt rapds tha vagistey and detarmines tha tynas OF Blars gygiighia, Tha RBitar geanh
managar than attemets 1) ink Ritars that acceot that data type anti i regohas g randaring
Fittar, A marit vaile g refisterad with agch fitar and, OF the Filtars Ehat might ba Cangbia oF
fanding the data, the Fiiters with the Righest meed are trag Firgt

Contegiiing the mediz steagm means starting, nadsing, or stonoing the media stream. I can
2ig0 mean oiaying e g sgebicgiae Joeatinn F seaiing 10 3 oarbicitiar opint i the steaam, Tha
Fifar geanh manager aiows the aoplication or ActiveX Conkegl 1o spacify thase activities, and
than caiis the aporopnate methods on the Biters 10 invoke them, I 350 aB0ws Filtars 10 005t
evants that the aonlication can metrieve, Tharelra an aopiication can, for axampia, ratriava
sktatus abouk some spacial Filter i has ingtaiied,

A3 1557 Microasll Corporalicr, Sl righ (s ese rvsd, Terms of Liae,

[Previous | Home | opio Cortents | index | Hext:
[Previous | ome | opio Contents | index | Hext |

Filters and Pins

The twd Basic componants ased in the siream architectitre are Filfers and ping, & fiteris g COM
abject that pedfdrms o SHeCific Lask, Such as regding data form a diskl, For ageh straam &
handieg, it exn0ses af oact one pin. A pin is 3 COM object created by the Filker, that repragants
& point oF connaection For & wnidicectionat data steearm on tha Ritar, ag shown in the IQiigwing
sirsteation,

Source

- —| Transform " - Renderer
o Qutput pin I—l-| Input pin P Qutput pin I—l-| Input pin TR

I ping accent data intn tha Rikar and guinud ping orovide data to gthar Fitarg, & soueos
Fitar provides one Quinut oin for aach straam oF (data in the Fie, 5 Tynicat transfoem fitar, Such
a5 @ comprassionidecomprassion (ooded; fitar, provides one input nin and one guipit pin,
white an audin Qutoyt Filker Dynically axn0ses oniy gne inogt o, More comoies argngements
@re sl nossibia,

You can name ping anything you want, IF your pin name beging with the tide {~} character,

146

DirectShow Basics Page 7 of 62

the filter graph will not automatically render that pin when an application calls

IGraphBuilder: :RenderFile. This can apply to pins that are just informational and are not meant
to be rendered, or need to be enumerated so that their properties can be set. The tilde {(~)
prefix only affects the behavior of RenderFile and intelligent connect (IGraphBuilder: :Connect).
Note that intelligent connect can still be used to connect pins with this property if they
implement the IPin: :Connect method. However, ocutput pins of intermediate filters which are
being used to complete the connection which have the tilde at the start of their name will not
be connected as part of the intelligent connection attempt.

At a minimum, a filter exposes the IBaseFilter interface. This interface provides methods that
allow the enumeration of the pins on the filter and return filter information. It also provides the
inherited methods from IMediaFilter; these methods allow control of state processing (for
example running, pausing, and stopping) and synchronization, and are called primarily by the
filter graph manager.

In addition, a filter might expose several other interfaces, depending on the media types
supported and tasks performed. For example, a filter can expose the 1 ifyPropertyP
interface to support a property page.

Pins are responsible for providing interfaces to connect with other pins and for transporting the
data. The pin interfaces support the following:

¢ The transfer of time-stamped data using shared memory or other resource.

o Negotiation of data formats at each pin-to-pin connection.

+ Buffer management and buffer allocation negotiation designed to minimize data copying
and maximize throughput.

Pin interfaces differ slightly, depending on whether they are ocutput pins or input pins.
An output pin typically exposes the following interfaces.

o IPin methods are called to allow the pin to be queried for pin, connection, and data type
information, and to send flush notifications downstream when the filter graph stops.

+ IMediaSeeking allows information about the stream's duration, start time, and stop time
to be relayed from the renderer. The renderer passes the media position information
upstream to the filter (typically the source filter) responsible for queuing the stream to
the appropriate position.

o IQualityControl passes quality-control messages upstream from the renderer to the filter
that is responsible for increasing or decreasing the media supply.

An input pin typically exposes the following interfaces.

+ IPin allows the pin to connect to an output pin and provides information about the pin
and its internal connections.

o IMemlInputPin allows the pin to propose its own transport memory allocator, to be
notified of the allocator that an output pin is supplying, to receive media samples
through the established allocator, and to flush the buffer. This interface can create a
shared memory allocator object if the connected pin does not supply a transport memory
allocator.

The standard transport interface, IMemlInputPin, provides data transfer through shared
memory buffers, although other transport interfaces can be used. For example, where two
components are connected directly in hardware, they can connect to each other by using the

147

DirectShow Basics Page 8 of 62

IPin interface, and then seek a private interface that can manage the transfer of data directly
between the two components.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext
[Previous | ome | Topio Contents | imiex | Hext

Stream Control Architecture

The stream architecture allows applications to communicate with the filter graph manager; it
also allows the filter graph manager to communicate with individual filters to control the
movement of the data through the filter graph. Using the stream architecture, filters can post
events that the application can retrieve, so an application can, for example, retrieve status
information about a special filter it has installed.

The filter graph manager exposes media control and media positioning interfaces to the
application. The media control interface, IMediaControl, allows the application to issue
commands to run, pause, and stop the stream. The positioning interface, IMediaSeeking, lets
the application specify which section of the stream to play.

Individual filters expose an IBaseFilter interface so that the filter graph manager can issue the
run, pause, and stop control commands. The filter graph manager is responsible for calling
these methods in the correct order on all the filters in the filter graph. (The application should
not do this directly.)

For position commands, the filter graph manager is called by the application to, for example,
play a specified [ength of media stream starting at some specified stream time. However,
unlike the IBaseFilter interface, only the renderer filter exposes an IMediaSeeking interface.
Therefore, the filter graph manager calls only the renderer filter with positioning information.
The renderer then passes this position control information upstream through IMediaSeeking
interfaces exposed on the pins, which simply pass it on. The positioning of the media stream is
actually handled by the output pin on the filter that is able to seek to a particular position,
usually a parser filter such as the AVI splitter.

Position information is passed serially upstream because there might be filters between the
renderer and the source filter that require position information. Consider a transform filter that
is written to perform some video or audio modification only during the first 10 seconds of a
video clip (for example, increasing the volume or fading in the video). This filter probably
needs to have information about where the stream is starting so that it can determine its
correct behavior. For example, it should not perform if the start time is after the first 10
seconds, or it should adjust accordingly if the start time is within this duration.

Filters also get position information from the IPin::NewSegment method which provides the
media start and stop times for the next set of samples and the rate to be associated with those
samples.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

148

DirectShow Basics Page 9 of 62

" prerious | ome | Topic Contents] index | Hext
" Prerious | Home | Topic Contents] index | Hext

Quality-Control Management

The Microsoft® DirectShow™ stream architecture provides for graceful adaptation of media
rendering to overloaded or underloaded media streams. The IQualityControl interface is used
to send quality-control notifications from a renderer filter either upstream, eventually to be
acted on by some filter in the graph, or directly to a designated quality control manager. The
base classes implement the passing of quality control notifications upstream by providing the
IQualityControl interface on the output pins of filters. Quality control notification uses a
Quality structure, which indicates whether the renderer is overloaded or underloaded. A filter
capable of, say, discarding samples to relieve an overloaded condition, can then act on this
notification. This is typically done by a source filter but could be done by other filters. For
example, the DirectShow AVI Decoder filter skips samples until the next key frame when it
receives a quality control notification.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contenta | niex | Wext |

About Capture Filter Graphs

This article provides a brief introduction to capture and introduces the fundamentals of filter
graphs that provide video or audio capture or preview capabilities. It includes conceptual
diagrams of the most common capture-related filter graphs to help you visualize the
components in each filter graph and see how they fit together. It discusses the role of
particular filters such as video and audio capture filters, the AVI MUX (multiplexer) filter, and
the file writer filter. It also highlights unusual points such as filters (for audio capture in this
case) that have input pins.

See Where Can I Learn About... for a list of topics relating to capture, including articles that
discuss writing code to perform capture.

If you are new to DirectShow, read Filter Graph Manager and Filter Graphs and Filters and Pins
to familiarize yourself with the architecture's fundamental concepts.

Contents of this article:

¢ Capture Introduction
+ Video and Audio Capture Filter Graphs

149

DirectShow Basics Page 10 of 62

Capture Introduction

Video and audio capture enable you to take multimedia data from an external source such as a
VCR or camera, and view it, listen to it, or save it on your computer's hard drive. Your
computer must include video or audio capture hardware to perform capture. For audio capture,
a sound card with a microphone or line-in jack is usually sufficient. Some video capture cards
support audio capture as well, so you might not need two separate cards. The DirectShow
architecture provides default components (filters) that enable you to capture video and audio
data streams given the appropriate capture hardware and drivers. DirectShow takes advantage
of new capture drivers that are written as DirectShow filters and also uses existing Video for
Windows-style drivers.

Video and Audio Capture Filter Graphs

Typical filter graphs that provide video and audio capture and video preview capability must
include video capture, audio capture, multiplexer (MUX), file writer, and video renderer filters.
If you need a subset of these features your filter graph can be simpler and contain fewer
filters. This section begins by discussing the simpler capture filter graphs and the components
they contain. It then discusses filter graphs that combine features and build upon the basic
capture filter graphs to provide more functionality.

This section contains the following topics:

Video Preview Filter Graphs

Video Capture Filter Graphs

Video Capture and Preview Filter Graphs Combined
Adding Audio Capture

Capture Filter Input Pins

Example Capture Filter Graph

Video Preview Filter Graphs

A video preview filter graph enables you to watch the video on your computer screen as it
plays from your VCR, camera, or other video source. The video preview filter graph is very
simple. It contains a video capture filter and a video renderer. The capture filter provides the
video data from the capture card, exposing a pin called Preview to which the video renderer
connects. The video renderer provides a playback window in which it displays the video data. If
the capture filter produces compressed data, you must insert a decompressor filter between
the capture filter and the renderer.

Note Capture filters are not required to expose a preview pin.

The portion of the graph from the preview pin downstream to and including the video renderer
is called the preview section of the filter graph.

DirectShow provides video capture and video renderer filters. If you have an existing Video for
Windows-style capture driver, the video capture filter wraps the functionality provided by that
driver so that it works with the DirectShow architecture. You can also write your own video
capture filter or use third-party capture filters.

The following diagram illustrates a simple video preview filter graph.

150

DirectShow Basics Page 11 of &2

. Capture
Video Capture / Video Renderer
Filter Previewy

Vigeo captive Filtars axo0se ¢ pin For capture a5 well a5 an optional pin For praview, Pin ngmeas
can vary From those showen in Bhe diggeam above, The next saction oF this articie disgusses tha
Caphiea nin,

Motae Some capture Fitars hgve 3 capture pin ang do not have g preview pin, IF the cantire nin
5 Fhe ordy pin On @ capture Biter, connect the renderer 10 the capture pin,

Video Capture Filter Graphs

& viden cactues Biter geach takes caotured video data and saves i 1o g file, Tha tarm "video
captire Fiker granh” oFten encompasses vided capture and oreview Functiongiiy, byt this
sectinn gses the tenm in the steict "caotues tn fie" sense,

The gimpiast vided cantiee Fitee geanhs contain 3 vided captitea Filkor, mitiiniaer Fitoe, ang
Fiie weiter Fiter, The capture Bitee negvides vides data from the canture caed, Just as i does in
vided praview Fikar gqraphs. I axpnses ¢ pin for capture 10 which the mgitiniewer fikor (MY
connects, The migitintewer fitee andearstands 3 oarticuiae File Toemat, such a5 audio-vidag
intarieaved (AVI I has muitinie inogt sing and one Qutodt nin, Each inogt nin takes in g
straarm oF audip o vided datya. The MUX combinegs the senarate steeams oF data inth the
goorgnriate e foomat and then oasses the newly combinad data theough 65 guinut nin & the
Fite weitar, The Fie wreiter Pilber writes the data stregrm from the MUK 1o disk without any
Rngwiedge of the particuiar data format,

The MiFK and Bie wekar wirk tfethar g5 & gt

Diracthnow provides the SV MUX gnd Fie Weiter fliters, The AV MUK fiiter packages data
shraarms inko an AYI File stragem: therafore the Fie Weikse abways weites Filas i SWT Tormat iF i
i connectad 1o the AVI MR

The Foigwing diggeam Bustratas o simpia vided caoture fitar granh,

Capture ——f= C—

Wideo Capture Multipleser File Writer

Filter Frewviewy

Video Capture and Praview Filter Graphs Combinad

A& Filter grach that ceovides both video caoture and viden oreview (anabilitias combinas i the
Eiters fegrm vigded capture and vided praview Filtar granhs, A the Blars serve the same cole as
i the smakier Bikee geanhs,

Tha FpEQwing diggeam Egsteatas the combined vide) capture angd videq praview Ritar geanh,

1581

DirectShow Basics Page 12 of 62

Multiplexer File \Writer

Wideo Capture CHAIHE

Filter

/ Video Renderer

Prewviesn:

Adding Acdic Captura

Mone oF the Fiter geachs discussed thas fare cantoee audio data, A5 3 resuit, thay oroduce
mgwies Bhat are sdent doon olayvback, Adding an audio capture Fitar to the vide) capture ang
praviaw fitar graph, a5 idigstrated in the foliowing diggeam, provides the missing audio captura
Cangbiity,

Capture
Audio Capture _ - _ _
Filter Multiplesxer File \Wiriter

. Capture
video Capture / Wideo Renderer
Filter Presviesn

Audin capture Fiters aocent audio data from the audio capture card much as video capture
Fitars accent videg data, & capturs card might provide both vided and audio capturs
capabiitias 50 the cormesponding vided and audin capture Fiitars might orocess data from the
same capture card, IF your system contains separate audio and video capture cards, the vigag
captura and audio capture filters orocess data from separate capture Cards,

Audin cantues Fitorg 3ish &xXn0se 3 cantirs nin that connacts 1o the mibtinioxer Fitoae in the
same way that tha capture nin on g vided capties Hitar connects to the myiictawar, Tha
engtitiniaxas's role bacmes more important in this fiilter graph because & has more £han one
connected innak nin, Each connectad input on the MUY provides @ separate data stragm [one
videg and gne audio in thig case), which the MUY combines into #5 supnorted fie Format, and
the Fie weilar saves tha resuiting data 1o 3 Fie on disk,

LCapture Filter Input Ping

A ereetseat fagties oF audin and vided captuee Fitars i that thay Can &xnise oyt oing, dnike
Other souece Fiters, Source fitars 4o not Typicaily odn05e ingat ping bacause they are the
source OF the data, Thay tynically nass data on to the next Fitor in the graph rathar than

152

DirectShow Basics Page 12 of 62

aocaoking inpdt data from another Fitee, The et oing orovids 2 machanism i 300ess ino
charactarigtios Ao captitre Fltars caneaet the TAMAGioInntMier intadace Lo oepvige
BOCESE 10 such charactaristics as recording and bass tavais on aach input inea, Each inpat nin
raprasants an inpat ine such as microphione, O0 audio, oF MIDI on the audio card.

The Fpigwing diggeam shows g fiib-fagtiray] Ftar granh that peovides vided preview, angd vided
god audio canture, The audio Captiee Fitae BX00585 30 nout oin foe aach ingdt ing on the
captiea card, Internaily, aach pin Suonds IAMAGMIDInGUEMider) anabio aoslicatiing 1o
2CCass ot characteristics on each ting,

hAICH

: Capture / _ . . :
CD Audie a1 din Capture Multiplexer File ¥Writer
Line=In F||tEr
Microphone

: Capture
\ideo Capture / Viden Renderer

Filter Presvies:

Exarrple Captura Filter Graph

Bow that you're familiar with captues Fiifar geachs in ganergd, hera's 3 seepen shot of 3 capturs
Fiar geanh from the Filer Granh Sditor to0f that i included with the DirectShow SDE, I boiids
teon the concestual diagrams examinad aariiar,

Extern Capture & Input 0
Audio Capture AWt —in
Irtern Input 02 Civtest i
AV Y, AesTCap. avl
It 03

; ; Capture Iragost
Video Capture (Motion JPEG) //' “ideo Renderer

Preview:

The precading screan shot shows 3 motipn JPEG video capture Filtar ang an audio capturs Fitar
@ Lanties FiRoe geanh, Both Biers oepoass data feqem the same canties oanl badause tha
captire Cargd hannens B captues both vigded and audin data streams. & ocrmniter might incilgde
& sound card in addition 10 3 captire Cand, gRiNg You & choice bebwesen Dwo udio sourees and
tharafpre betwean gudin aotirs Piters 10 et in the canture Ritar granh,

The sorean ShOt i very simiige 10 The concentagd diagrams axamingd eariiee with the excention

153

DirectShow Basics Page 14 of 62

of filker names and input pin names. The input pins on the audio capture filter are labeled
Intern and Extern. The file writer filter saves captured video and audio data to a file called
Testcap.avi at the root of the C: drive.

If you have capture hardware installed on your system and use the Filter Graph Editor tool to
create a capture filter graph, it will appear similar to the preceding screen shot. The names of
the video and audio capture filters depend on the capture drivers installed on the computer. If
present, the audio capture filter's input pins might have different names from those illustrated.
The name of the file to which captured data is saved will differ as well. The preview pin will
connect to a decoder if the data from the pin is compressed, and the decoder will then connect
to the renderer.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | Home | Topic Contents | intex | Hext
Previous | Home | Topic Contents | iniex | Hext

Improving Capture Performance

Capturing is a hardware-intensive operation that requires saving a large amount of information
to disk as quickly as possible. This information is typically in the form of video and audio data.
Reducing bottlenecks that slow down the system is very important, because it can help
improve the quality of the captured movie.

This article presents some general suggested practices and hints and tips that can help vou, as
the user of a capture application, set up the capture system for optimal capture performance.

Note Be sure to read your capture card manual for information specific to your capture card.
Systems vary as well, so all the information presented in this article might not apply to your
system configuration.

See Capture Introduction for a brief introduction to capture. See capture topics for a list of
Microsoft® DirectShow™ interfaces and articles relating to capture.

Contents of this article:

Capture Numbers

Optimizing the Hard Disk for Capture

Disk Settings in Window 95 and Later

Reducing Noncapture-Related Machine Activity

Additional Hints and Tips for Improving Capture Performance
Choosing a Capture System

Suggested Capture Reading

Capture Numbers

Capturing involves transferring a large amount of data from a capture card to disk. To get an

154

DirectShow Basics Page 15 of 62

idea of the amount of data and the data throughput required for a particular capture scenario,
consider the following:

Suppose you want to capture a movie with a height of 320 pixels, a width of 240 pixels, a
capture rate of 30 frames per second (fps), and in 24-bit color format. The movie does not
include any sound.

Use the following formula to determine the number of bytes of uncompressed data that must
be transferred every second in order to capture all of the image data, and therefore to
maintain the image quality.

bytes of transferred videoc data = height {(in pixels) x width (in pixels) x rate
(in fps) X color depth {(in byvtes}

Plugging in the numbers from the preceding scenario produces the following result.
320 X 240 X 30 X 3 = 6912000 bvtes of transferred video data

Capturing one second of this movie at the desired size, frame rate, and color depth requires
approximately 6.9 million bytes of disk space. Multiplying by 60 seconds produces the results
for a minute; each minute of capture requires 414,720,000 bytes in this case. You can reduce
the amount of data required by reducing any of the parameters in the above formula: capture
a smaller image, at fewer frames per second, or with fewer colors. However, in cases where
your image requirements push the system to its limits and you need to be able to capture at
the highest possible number of megabytes per second, you'll want to optimize your system as
much as possible. After all, the capture settings you use affect how the movie will look when
someone plays it back.

The preceding numbers are for a silent movie. If you want to capture audio as well as video,
you have to add the amount of required audio data. For example, CD-quality audio, recorded at
44 kilohertz (kHz), 16-bit, stereo, requires about 172 kilobytes (KB) per second. Audio capture
is also very CPU-intensive, and synchronizing the audio and video data (to achieve proper lip
synch, for example) can cause delays as well.

You might find that your system can't keep up with the required amount of data transfer for
the settings you've chosen. When capturing, your system might pause, the video might be
jerky or jitter {(not smooth), and some of the frames might be dropped (not saved to disk).
Playback quality of such an image is typically unsatisfactory. To avoid such problems, you can
follow a number of practices to optimize your system for capturing.

The suggestions presented in this article can help you reach the goal of optimal capture
performance. At the same time, bear in mind that each system is different and something that
improves performance on one system might not be effective on another system.

Optimizing the Hard Disk for Capture

Because capturing is very hard-disk intensive, optimizing the files on the hard drive that you'll
use for capturing (also called the data drive or data disk) is the most important task in
optimizing capture performance. The following list contains goals in optimizing the data drive
and techniques you might use to achieve those goals. The techniques discussed here are
suggestions and might not be helpful given particular capture requirements. Your requirements
and resources govern precisely which techniques you might want to try.

155

DirectShow Basics Page 16 of 62

¢ Ensure the capture file is in a contiguous (nonfragmented) location on the data drive.

The heads of a hard drive can read from and write to a contiguous file more efficiently
than if they have to seek to other, nonadjacent portions of the disk. Use a tool such as
the Microsoft Windows® Disk Defragmenter (Defrag.exe) to defragment your data disk.
Defragment both the data drive and the operating system drive. The operating system
drive comes into play when using drivers (such as audio and video drivers), writing to
the system cache, writing to the registry, using overlays, and so forth. Run the Windows
95 Scandisk tool to ensure the integrity of the data drive and the operating system drive.

+ Preallocate a capture file that is larger than any movie clips you expect to save.

Allocating file space is time-consuming, so you should allocate your file before you
capture. Capture software such as the DirectShow AMCap sample lets you allocate space
for the capture file. If you capture more data than will fit in the capture file, the system
has to allocate more space for the file as you capture, which, again, slows down capture.
Avoid the reallocation of file space during capture, and the speed penalty, by allocating a
file that is large enough to meet your needs. Saving the captured data can require as
much space as the original capture file, so ensure you have enough free hard disk space
to save your captured data to another file. Be sure to regularly defragment your capture
file as well.

+ Devote an entire hard disk, or partition on the disk, for the capture file.

This technique is particularly useful under Windows NT® because Windows NT does not
include a Scandisk or Disk Defragmenter tool. Reserving an entire disk or partition on the
disk for the capture file can make it easier to keep the capture file space clean and
contiguous. You can format such a disk or partition, and then preallocate file space again,
or defragment it without having to worry about other files on the disk or partition. When
you format a dedicated capture drive, use the full format to initialize the disk rather than
a quick format that leaves old data on the disk.

Save your captured images to a directory that is not on your data drive or data partition
to help keep your data drive clean. If you can't devote an entire drive to capture, allocate
space for the capture file, defragment the file, and (in Windows 95) run the Windows 95
Scandisk tool.

+ Place the capture file at the beginning (outer rim) of the data drive.

If you allocate the capture file as the only file on the disk, or as the only file in the first
partition on the disk, it will begin at the outer rim of the disk. Access to the outer portion
of a hard disk is faster than access to the inner portion of the disk. If you don't have a
hard drive to devote to capture, you can use disk utilities to move your capture file to the
beginning of the disk.

Revisit these goals as necessary before each capture session to ensure your disk is configured
for optimal performance. Defragment the data disk before each capture session and
defragment the drive containing your saved images before you play back the saved files.

Disk Settings in Window 95 and Later

The System applet of the Windows 95 and OSR2 Control Panel contains several options you

156

DirectShow Basics Page 17 of 62

can disable for optimal capture performance. In high-bandwidth situations like capture, it's
important to make sure the drive is writing as much data as possible and not spending time
with software optimizations or checking for system changes. The options to disable include the
following:

o Automatic detection that a CD-ROM disc has been inserted in the CD-ROM drive
+ Read-ahead optimization for the hard disk
+ Write-behind caching for all drives

To access these gptions in Windows 95, click the Start menu. Under Settings, click Control
Panel, and double-click the System applet. Select the appropriate tab and proceed as outlined
below:

+ Device Manager tab: Click CD=ROM and click your CD-ROM drive. Click the Properties
button, select the Settings tab and clear the Auto insert notification check box.

¢ Performance tab: Click the File System button and drag the Read-ahead optimization
slider to None. {The default is Full.) While still on the File System Properties dialog,
select the Troubleshooting tab and check Disable write-behind caching for all drives.

You will have to restart your machine for the new settings to take effect.

Note For optimal performance for other applications, be sure to return these settings to their
original values after your capture session is complete.

Reducing Noncapture-Related Machine Activity

Anything that interrupts the system or consumes CPU time for purposes other than capture
can potentially decrease capture performance. Consider performing the following tasks to see if
they affect performance on your system.

o Close all applications except the capture application.

o Turn off the clock that Windows 95 displays on the taskbar. To do so, right-click the
taskbar, click Properties and clear the Show Clock check box on the Taskbar Options
tab.

o Turn off the screen saver. To do so, right-click the desktop, click Properties, select the
Screen Saver tab, and choose "{None)" from the screen saver drop-down combo box.

o Turn off your printer.

+ Disable your network card if you have one. Sending and receiving data over the network
can interrupt the system, even if you aren't actively doing anything over the network.

Additional Hints and Tips for Improving Capture Performance
This section contains a collection of hints and tips for improving capture performance that you
might want to try after experimenting with the other suggestions in this article. The
suggestions are grouped according to hardware and software-related suggestions.
Software
o Consider capturing on Windows NT, because the Windows NT file system (NTFS) is
typically faster than the traditional FAT file system, due to its use of threads. You might

need to contact the manufacturer of your capture card for a driver that will work on
Windows NT. Use a dedicated NTFS drive rather than a drive that is part NTFS and part

157

DirectShow Basics Page 18 of 62

FAT. The FAT-32 file system is typically faster than the FAT file system.

e Using your capture software, experiment with different compression ratios (for example
2:1 0or 1:1) to decrease the amount of data that has to be saved. Start with the default
compression ratio and increase it until you drop frames. Try three passes and take the
best results of the three. After you've saved the captured image to another drive, run
Scandisk on the standard setting to quickly defragment the drive.

o If you installed Windows 85 over your Windows 3.1 installation, put the line "verify=off"
in your Autoexec.bat file. This line will prevent DOS from re-reading data after a write
operation to make sure the correct data was written. Verification slows down the writing
operation.

Hardware

¢ Insert the capture card in PCI slot zero so it will be checked for activity before other
cards on the system.

¢ Make sure the hard drive cache is turned on for the data drive. Refer to your SCS&I card
manual for more information.

e Heat buildup inside a system can wear down the system components and decrease
capture performance. If you will be capturing continuously for hours at a time, make sure
your system has three fans: one each for the power supply, CPU, and components
(cards). If your captured images look fine at first, but become jittery after the system
has been capturing for a while, the capture card might be overheating.

e Some capture cards include a built-in audio card. Whether you use the on-board audio
card or a separate audio card depends on your needs. You might find that a separate
audio card provides features you need, or the on-board audio card might suit you just as
well,

¢ Some capture cards have an external connection for a monitor so you don't have to go
through software to preview what you're capturing. That feature can help with
performance, because the system isn't busy with the preview window.

Choosing a Capture System

Capturing is possible with a wide range of systems and capture cards. Shop around to compare
capture cards and features to see what best meets your needs. See Suggested Capture
Reading for possible sources of information. The optimal hardware configuration varies
depending on the capture card.

If you're setting up a new machine to devote to capture, consider a 166-megahertz Pentium or
later, with 64 megabytes or more of EDO RAM (as much RAM as possible), and a 2-gigabyte or
larger Wide SCSI 2.0 AV-certified hard disk. AV-certified drives are designed for high-
bandwidth data transfer. The SCSI hard disk controller should support PCI bus mastering 2.0
and later, which uses 32-bit drivers. If your capture card supports overlays, ensure that your
video card also supports overlays. Make sure the capture card has drivers for the operating
system you plan to use.

Suggested Capture Reading
This section lists possible sources of information about capture.
o O http://www.ccs.queensu.ca/pubs/itsnote/VideoCapture.html contains a general
introduction to video capturing.

¢ O http://gcunix.gc.maricopa.edu/~IC/vidph/vidph05.html contains information about
organizing the capture process.

158

DirectShow Basics Page 19 of 62

O http://fre.www.ecn.purdue.edu/FrE/asee/fie95/3a2/3a25/3a25.htm contains an article
titled "Effective Video Capture Techniques for Educational Multimedia.”

O http://www.worldguide.com/Tech/videocapture.html contains information about
setting up a system for video capture and compression.

O http://cctpwww.cityu.edu.hk/public/graphics/g3 vidcap.htm contains information
about some capture card and chip manufacturers.

¢ Search the World Wide Web for "capturing”.
o Contact the manufacturers of various capture cards, many of whom are available on the

Web.

o See the manual for each capture card for its particular requirements.
¢ For general background regarding digital video, see "PC Video Madness!”, by Ron

Wodaski, Sams Publishing, Carmel, Indiana, c. 1993, ISBN 0-672-30322-1.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

" Previous | Home | Topio Contents | index | ext |
" previous | Home | opio Contents | index | Hext |

Data Flow in the Filter Graph

This article examines the types of data, including samples, events, and notifications, that move
through a filter graph, including where this data and information criginates, where it is routed,
and the protocols that must be followed for data to flow correctly.

Contents of this article:

+ How Data Moves in a Filter Graph
o Media Sample Data Flow
¢ Control Information Data

o End-Of-Stream Notifications
o Flushing

Event Notifications

Filter Graph Control Data

Quality Control Data

Serializing Data

IAsyncReader Transport

How Data Moves in a Filter Graph

Data flow in the filter graph can be viewed by examining the paths through which it flows, and
also by examining the protocols that are used within those paths. Data flows primarily in the
following paths.

Media sample data flows from one filter to the next — originating at a source filter and
terminating, eventually, at a renderer filter.
Control information, such as end-of-stream and flushing notifications, travels with the

159

DirectShow Basics Page 20 of 62

media data stream from filter to filter.

+ Event notification events flow from the filters to the filter graph manager and, optionally,
to the application.

o Filter graph control data flows from the application to the filter graph manager and finally
to the filters themselves.

+ Quality control data originates in the renderer and flows upstream through the filters
until it finds a filter capable of increasing or decreasing the media data flow. It might also
flow directly to a quality control manager if one is registered.

This article describes each of these data paths. Data movement in a filter graph is enabled by
implementation of the following Microsoft® DirectShow™ filter graph protocols.

¢ Media sample protocol, which defines the way that media samples are allocated and
passed between filters.

s End-of-stream protocol, which defines how filters generate and process end-of-stream
information and how the filter graph manager is notified.

e Flushing protocol, which defines how filters flush data through the filter graph.

e Error detection and reporting protocol, which defines how errors are handled by filters
and propagated to the filter graph manager.

o New segment protocol, which defines a means to enable start and stop times and data
rate information to be presented to a filter in advance of the data, so that a filter can
adjust its processing accordingly.

o Quality management protocol, which defines how the filter graph adapts dynamically to
hardware and network conditions to degrade or improve performance gracefully.

Media Sample Data Flow

DirectShow filters pass media data downstream, that is, from the output pin of one filter to the
input pin of the next filter. The flow and control of the data is effected by the interfaces on
those pins and the filters themselves. The filters serialize data streaming activity; all data
streaming calls for a given pin are explicitly serialized and usually originate from a single
thread.

Data starts at a source filter and ends at a renderer filter. The source filter can either push the
data down the graph (that is, originate the thread and send data to the IMemInputPin::Receive
method of the downstream pin), or implement the IAsyncReader interface and let the
downstream filter originate the thread, pull the data from the source filter, and send it
downstream. For a description of how this latter case differs from other protocols, see

IAsyncReader Transport.

Every filter should accept and process data received by its input pins, with the following
exceptions.

o The filter is in a stopped state.

+« The pin is in the middle of a flush operation. That is, the pin's IPin::BeginFlush method
has been called but its IPin::EndFlush method has not been called yet (see Flushing).

e The input pin rejected some previous data and no flush or stop action has occurred since
(in which case the connected output pin should have stopped sending data anyway).

There can be other conditions for a filter to reject data as well. For instance, a transform filter
would reject data at its input pin if its output pin was not connected.

Media samples are data objects that support the IMediaSample interface. They are usually

160

DirectShow Basics Page 21 of 62

obtained from an allocator, which is most likely represented by an object supporting the
IMemaAllocator interface. The two connected pins of adjacent filters agree on a common method
of exchanging data, called a transport. Many of the base classes for the DirectShow class
library are used to implement objects that support the local memory transport.

In the local memory transport, the input pin for a connection supports the IMemlInputPin
interface. An output pin can determine that it can use the local memory transport if a call to
the IUnknown::Querylnterface method on the input pin to request the IMemInputPin
interface succeeds. For this transport, data is passed from the output pin of one filter to the
input pin of an adjacent filter in media samples. During connection, the output pin and input
pin agree on the connection's allocator object, which is used to create the media samples.

Filters must follow protocols to pass and receive media samples. The connected pins must
agree on the allocator to be used, must have a means of passing the data, and must follow the
correct procedure for holding on to a sample or releasing it back to the sender.

For the local memory transport, an output pin passes a media sample to the input pin it is
connected to by calling the input pin's IMemInputPin::Receive or

IMemlInputPin: :ReceiveMultiple methods, depending on whether it is passing single or multiple
samples. Before it can pass this data, however, the output pin must obtain a media sample.
The IMemInputPin interface on the input pin provides an IMemaAllocator object when requested
to provide an allocator. If the output pin is not using its own allocator, or one provided to it
from further upstream, it calls the IMemAllocator: :GetBuffer method on the input pin to
retrieve one.

The input pin can either process the data right away or save it for later processing. In the
fatter case, it must call the IUnknown: :AddRef method on the media sample to prevent the
sample from being returned to the allocator. When the output pin has called the input pin's
IMemlInputPin: :Receive method, it must call the IUnknown::Release method to free the
sample. If the input pin did not save the sample by calling IUnknown::AddRef, the sample is
immediately returned to the allocator.

The output pin can decide not to pass the media sample on to the input, in which case it can
just call the sample’s IUnknown::Release method without calling the input pin's
IMemInputPin::Receive method.

Control Information Data

There are two types of control information which are passed downstream filter to filter:

¢ End-of-stream notifications
¢ Flushing

End-Of-Stream Notifications

It is important for filters to indicate when there will be no more data in the current set of data.
A filter does this by sending an end-of-stream notification to the next filter, which is
accomplished by the output pin calling the IPin: :EndOfStream method on the downstream
filter's input pin.

When a source filter (an originator of data) reaches the end of its data, it calls the
IPin: EndOfStream method on all pins connected to its output pins. This mechanism is
propagated down the filter graph so that each filter that processes its EndOfStream method in

161

DirectShow Basics Page 22 of 62

turn calls EndOfStream on the pins connected to its output pins. When the notification
reaches the end of the line in the filter graph, the renderer passes an EC_COMPLETE
notification to the filter graph manager. The filter graph manager counts the EC_COMPLETE
notifications it receives and when all renderer filters have completed, passes the notification to
the application. The filter graph manager counts rendered streams by counting the number of
filters (not pins) that support IMediaSeeking or IMediaPosition and have a rendered input pin.
A rendered input pin is a pin with no corresponding outputs, which can be determined with
IPin: :QueryInternalConnections. input pins. A renderer input pin returns zero pins when its
IPin::QueryInternalConnections is called. Note that the filter, not the pins, support
IMediaSeeking in this case.

Although source filters usually originate the end-of-stream notification, it is also possible for
other filters to detect this condition and generate the notification downstream. Most notably,
this applies to parser filters that connect to asynchronous reader filters {filters implementing
the IAsyncReader interface).

For example, the MPEG parser (in the MPEG splitter filter) can detect the end of the stream
and when it does, return S _FALSE from the Receive method, which signals the upstream filter
to stop sending data until a seek occurs or the filter graph is stopped. In this case, the
upstream filter does not need to call EndOfStream. Instead, EndOfStream should be called by
the filter detecting the end-of-stream condition (the downstream splitter or parser) before
returning from Receive or ReceiveMultiple.

Note that EndOfStream should be serialized with data passed in the stream. It is a single piece
of information that must be passed after all the other data in the stream.

Flushing

In the DirectShow filter graph architecture, flushing is a two-stage process. Flushing is not
usually initiated as part of normal data flow, but rather as a result of a control action from the
filter graph manager. As such, it is an asynchronous event which requires flushing of old data
followed by a resynchronization and pushing of new data.

In a flushing operation, first IPin::BeginFlush is called by the source filter on all input pins
connected to its output pins. This call is propagated down the graph by all filters to the
rendering filter or filters. BeginFlush should flush any pending EndOfStream calls or

EC COMPLETE notifications. After BeginFlush has been called, an input pin should reject all
data until its IPin::EndFlush method has been called (this includes end-of-stream
notifications). It should also free any connected pins waiting for any of its resources. In the
case of the local memory transport, this means that every filter should free any filter waiting
for a sample from its allocator. This is usually done by calling IMemAllocator: :Decommit on the
allocator.

After a filter has called BeqginFlush on the pins connected to its ocutput pins, and when it can
guarantee that all processing of samples by its pins is complete and no more samples will be
processed, it should call EndFlush. For source filters this means shutting down data generation,
then calling EndFlush on the pins connected to its output pins. For other filters it means
waiting for an EndFlush call (which guarantees that no more samples will be sent) and then
waiting for any queues it maintains itself to empty. Because calls can block on downstream
filters for the local memory transport model, it is important to wait for queues to empty when
EndFlush is called, rather than trying to do so when BeginFlush is called.

Event Notifications

162

DirectShow Basics Page 23 of 62

Notification data goes from filters to the filter graph manager and can be passed on to the
application. The EC_COMPLETE notification, which is sent from renderers at the end of a data
stream, has already been mentioned.

The filter graph manager should not be notified of EC_COMPLETE until a Run command is
issued. A renderer filter that has EndOfStream called on its input pin while in a paused state
must not notify the filter graph manager until its IMediaFilter::Run method is called. Stop and
EndFlush calls cancel any such deferred notifications and allow more data to be subsequently
processed by the pin. After notifying the filter graph manager once with EC_COMPLETE, the
renderer must not generate another EC_COMPLETE notification before processing a Stop or
EndFlush method.

If a running filter graph is paused while at the end of its stream and IMediaFilter::Run is
subsequently called, renderers should notify the filter graph manager with EC_COMPLETE
again.

Besides EC COMPLETE, there are many other event notifications, many of which are sent by
specialized filters, such as the renderer, to communicate with a host application. Error
notifications are another class of notifications that are also sent from filters to the filter graph
manager.

The convention for DirectShow filters is that when a filter detects an error, it passes a
notification to the filter graph manager by calling the IMediaEventSink: :Notify method. Errors
in processing data can generate several error events, including the following:

¢ EC STREAM ERROR STOPPED, if no more data can be processed.
¢ EC STREAM ERROR STILLPLAYING, if data can still be processed.

If processing can no longer continue, the filter graph manager should be notified with

EC STREAM ERROR STOPPED and the appropriate convention for the particular transport
should be used to notify the upstream output pin. In the case of the local memory transport,
this involves returning an error value from IMemInputPin::Receive. In addition to notifying the
filter graph manager of the error, a filter should also either call EndOfStream on all the pins
connected to its output pins or, if it is a renderer, also notify the filter graph manager with

EC COMPLETE. This ensures the play will complete gracefully.

Errors of this type can be caused by encountering events such as being out of memeory or other
resource problems. Or they might be caused by other events such as a failure to obtain a
buffer when trying to pass data downstream.

On the other hand, when an error occurs but processing can still continue,

EC STREAM ERROR_STILLPLAYING should be sent to the filter graph manager. In this case,
the upstream output pin should not be notified. Specifically, for the local memory transport,
the input pin's IMemlInputPin::Receive method should return NOERROR when this type of error
occurs.

Filter Graph Control Data

Control data originates at the application and is passed to the filter graph manager. At the
COM level, this is handled by filter graph manager interfaces in the Control.odl type definition

library. Examples of control data are calls to the IMediaControl interfaces, such as
IMediaControl::Run, IMediaControl: :Pause, and IMediaControl: :Stop. The IMediaPosition and

163

DirectShow Basics Page 24 of 62

IMediaSeeking interfaces provide a means of moving forward or backward in a media stream.

The most important thing to understand about the flow of control data is that it should always
pass through the filter graph manager first. This is because there is usually an order that must
be followed in controlling the filters in the filter graph to make sure filters are called in the
correct order and with regard for internal filter graph states.

Quality Control Data

The DirectShow stream architecture provides a means of gracefully adapting to load
differences in the media stream so that rendering of the data is maintained at the highest
possible resolution. The IQualityControl interface is used to send quality-control notification
messages from a renderer filter either upstream, to be acted on eventually by some filter in
the graph, or directly to a designated location. For example, a renderer that is getting too
many frames to process can try to get an upstream filter to cut down on the number of frames
it is sending. This is usually more efficient than simply dropping frames at the renderer. (A
video decompressor filter uses many CPU cycles to decompress frames, so it is better to
discard samples before processing them rather than after processing them.) Likewise, when
the renderer filter can handle more data, it sends notifications to increase the number of
samples.

Quality-control messages are passed upstream by default; if a filter has no registered quality
sink, the default action passes the message to the IQualityControl interface of the connected
output pin. Internally, the output pin passes the quality-control message to its input pin, if it
has one, and the message travels upstream until it reaches a filter that can affect the data
stream quality in the requested manner. DirectShow handles this mechanism automatically in
the transform base classes.

If a filter can handle the quality notification {by increasing or decreasing the flow) and if it is
not appropriate for filters further upstream to take any action, that filter will act on the
notification and not pass it on. A filter must pass the quality-control message on if it does not
act on the message. It can also pass it on even if it does act on the message. Silently
accepting the message without acting on it or passing it on is considered bad behavior, and
might damage the performance of the filter graph as a whole.

A guality sink is a feature implemented by the IQualityControl: :SetSink method. When this
method is called, the filter is instructed not to send messages upstream, but rather to send
them to the object passed to the SetSink method. Typically, this object would be a component
called a quality-control manager. Such a component would set itself as the sink for all the
filters to send the quality-control messages rather than anywhere else. It would then
determine whether to route the messages upstream or to take some other action, such as
cutting back the video stream to avoid breaking the audio. A quality-control manager can be
implemented by using the IQualityControl interface and should be anticipated when writing
filters.

Serializing Data

A filter usually has to synchronize two contexts: filter state and data flow. Usually a filter will
create a critical section for each context.

The data flow critical section is held during streaming operations. For example, for the local
memory transport, this critical section should be held while processing the following methods.

¢ IPin::NewSegment

164

DirectShow Basics Page 25 of 62

o IMemiInputPin::Receive
¢ IMemlInputPin::ReceiveMultiple
¢ IPin::EndOfStream

The filter state critical section is held while processing state changes when the following
IBaseFilter methods are called.

¢ Stop
¢ Pause

¢ Run

It is also held during BeginFlush and EndFlush streaming control operations.

During Stop and EndFlush calls, the stream state must be synchronized with the filter state. An
example of how to do this is in the base class CTransformFilter. In the case of implementing
the Stop method for the local memory transport, for example, the stream must be "released”
to avoid deadlocks by decommitting the input allocator pin. This is not required to process
EndFlush, because this will have already been done in BeginFlush processing. Once the
stream is released, the data flow critical section (as implemented in Receive) can also be
locked to synchronize with the stream state.

Note that because Stop requires access to the filter state before synchronizing with the data
flow component, these two critical sections must be different.

A filter should not, in general, have its filter state critical section locked while calling methods
on other filters. The filter graph synchronizes graph-wide operations such as setting the
current position.

IAsyncReader Transport

For source parsing filters, the IAsyncReader interface helps implement a "pull” data flow
model, as opposed to the "push" model, in which a thread in the source filter pushes data
downstream. The parsing filter is connected downstream to the filter whose pin implements
IAsyncReader. In this case, the downstream parsing filter initiates data transfer by calling
IAsyncReader methods such as SyncReadAligned. The parsing filter, in this case, creates the
thread, pulls data from the source, and pushes it downstream.

Because all data flow activity in this transport is initiated by the downstream filter, several of
the protocols mentioned previously operate in reverse. For example:

¢ The downstream pin initiates BeginFlush and EndFlush upstream during seek gperations.
¢« The downstream pin reports errors to the filter graph manager.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Uss.

[Previous | ome] Topie Contents | imiex | Wext |
[previous | ome] topic Contents | imiex | Wext |

165

DirectShow Basics Page 26 of 62

Constructing Filter Graphs Using Visual Basic

Thig griicie desorbes how B0 Use ActhveMovie Contegl type Bibrary objects 1o manage the
components oF g filtar graph - Fikers ang ping — in anplications based on Microsoft® Viguad
Basicl, version 5ox. I aiso describes the funchionaiity demonstrated by the Buider sampie
apnication, This geticie g weitten B the Visudal Basi develnner whi 5 aleaady Farmiiige with
aonlcation programming in Microsoft Windows®@, Windows-based muyitimedia srogramming,
and Agtomation faatires of the Visual Basic prpgeamming systam,

Contants of this articla:

About Fiiker Sranhs
About the DirectShow Quarte dif Objects
Lreating g Fiter (Sraph
Ganarating the Compists Fiter Granh
Crogting a New Fiiter Grach and Adding Fitars
Connecting Fitor Ping

o Ligting Fiterg in the Fiter Sraoh

a Ligting Ping Defined foe g Fiikar

o Expiighiy Connacting Two Ping

o Automaticaily Connecting Ping
+« Viswing Pin Connection Information
+ Cragting a Qustom Geanh

- gg.;mmgg;g

Abxout Filtar Graphs

4 4 & 4 & &

The Fiter Gragh Editor provided with the Micrsoft DivectShow™ Software Deveigpmant €Kit
{S0K} i a graphical Yool that creates and manages fiter granhs, There gre thres fypes of
Fikers: souece Fiters, transform fiters, and renderer Biters, The Fiter Granh Sditor i3 3 graphic
Lger inkoeface You wse to oconsbeult Fitoe geanhsg by ingarting Fitares and creating connactionsg
batween tham, For exampie, You Can render the Fifar granh For 3 specifio muiimedia sourge
Pk cuch as Doishinmoy, and see each of the connections in the graph, a5 in the folowing
ERFnia,

dolphin [Read only] - Filter Graph Editor |_ O] x]

HForm Out = |Inpot
%41 Decompression Filter ‘ %ideo Renderer

. |

__Einput fair vitlen | auclio Ingut pin (rendered)
i MO File Parger (async) - Audio Renderer ¢

o

audio 1 4

1BE

DirectShow Basics Page 27 of 62

Heady

i

The same Bitor geaoh Objects, fitars and ning, can be managad from & sampie Visuai Basic.
Baned aoolcation that uses Duarts i, For simpiicity | the Visgal Bacic-based aonlication gses
Bk bowes rather than geaohicg! slaments 10 show the narts of the Ritar graoh, and disoiays
enForenation for gniy gna filker and onky gne pin at 3 time, {The puropse OF the aootication & not
i compete with the Fiter Graph Sditor, but 0 demonstrate how 0 retrieve and manage the
same yngdaerying Biter granh information using Visuat Basic.)

The Fpigwing Bigsteation shows the same miitimeadia souece Fia, Doinhin, moy, a5 denicted by
tha Visoat Basic-based sampia annication,

& Filter and Pin Yiewer =]

FilterGraph Options

i~ Filter Graph
Beaiztered filters Filterz in current filker graph

MPEG Yideo Codec A
I'"*41 Decompression Filker £0d -x
|

&4 Decompreszor
ACK YWiapper
MPEG-| Stream Splitker

&l Splitker

WOANE Parser =

Audio Renderer

Yideo Henderer

w41 Decornpression Filker
MO File Parzer [azwnc]
c:dalphin. oy

Add Source Filker...

—~Filter-
Filter name: [%41 Decompreszion Filker
“Yendor: | R
Ping in zelected filker Information for zelected pin
Connected ta pin: wideo O on filker: =
#Form Out k0% File Parzer [async]
kedia Tupe:
{7 3646976-0000-001 0-2000-0044003
S9B71}
Diirection: [nput
LConnect Downstream Connect One Pin... =

The iigt bow ipbeiad "Fiterg in cueeant fitae geanh” gty the Four Filoeg roquired For Ehig Soure
Fiim, Tha kst box iabeied "Ping in selactad Fiee" sty the two ping defined for the seiectad indao
YVideo RE 1 Decompression Filkae: the "XEgem In" ang "KRgem ot ning, The XFgem In pin s
sefaciad 50 the aopication dispiays detatied information about this oin, inciuding s direction
grd connectinn inforrmation,

The remginger oF this articie discusses the Visysl Basic code you Can use 1o retrieve ang
manage such Fikar granh information. In adddion Lo the genarai-pirndse code that works with
gy Souece inodt, the aonication incirdes a eputine that fdiastratas a more dkely qse OF thaga
eopartes angd mathods —boiiding @ soaciie havd-opdeyd FiEtar geanh e youre Yigoat Basic-basad
sonication,

167

DirectShow Basics Page 28 of 62

This article assumes you have already set up your Visual Basic environment to use Quartz.dll.
For more information about setting up your Visual Basic environment, see Controlling Filter
Graphs Using Visual Basic.

About the DirectShow Quartz.dll Objects

Quartz.dll provides objects that you can use in your Visual Basic-based applications to manage
filters and pins. There is an implicit hierarchy among these objects; that is, you must often
access the properties of one object to obtain another object. In the following example, an
object that appears indented below another indicates that you obtain that lower-level object
from a property or method of the higher-level object.

Filter graph cbject (IMediaControl)
Filter collection (RegFilterCollection, FilterCollection properties)
Filter Info object (IFilterInfo or IRegFilterInfo in filter collection)
Pin collection (Pins property)
Pin Info obkject (IPinInfo item in pins collection)

The top-level object in the hierarchy is the filter graph object, or the IMediaControl object,
which represents the entire filter graph. You can access two properties of the IMediaControl
object to obtain collections of filter objects. The RegFilterCollection property represents the
filters registered with the system. The FilterCollection property represents the filters that are
part of the filter graph.

As with other collections accessible to Visual Basic, you can access individual items in the
collections by using the Visual Basic for each...next statement. The number of items in the
collection is indicated by the Count property of the collection.

The filter collection contains IFilterInfo objects. Each IFilterInfo object has a Pins property
that represents a collection of pins defined for that filter.

The pins collection contains IPinInfo objects. Each IPinInfo object includes detailed
information about that pin, including its media type and its connection to another pin.

To examine a specific pin on a filter in the filter graph, use the following procedure.

Obtain the filter graph object.

Use the IMediaControl.FilterCollection property of the filter graph object to obtain the
collection of filters present in the filter graph.

Search through the filter collection for the specific filter.

Use the IFilterInfo.Pins property of the filter object to obtain the collection of pins defined
for the filter.

Search through the pins collection for the specific pin.

Examine the properties of the pin object to find connection information and other
information for the pin.

N =

P

o

Creating a Filter Graph

There are three distinct ways to use Quartz.dll to create a filter graph; each way offers a
different amount of control over the filter graph. These range from automatically generating
the entire filter graph to specifying every filter and pin connection. The three approaches are
as follows:

168

DirectShow Basics Page 29 of 62

+ Automatic.

Generate the complete filter graph from either a multimedia source or a stored filter
graph file.

¢ Semi-automatic.

Create a new {empty) filter graph, add one or more filters, then automatically generate
all filters and connections needed to render a specific pin.

¢ Manual.

Create a new (empty) filter graph, add individual filters to the graph, and explicitly add
connections between pins.

The sample application, Builder, demonstrates all three approaches. The application's
"Generate from input file" command on the FilterGraph menu supports the first approach. The
New command (empty) on the FilterGraph menu supports the other two approaches.

Generating the Complete Filter Graph

The following code fragment demonstrates how to generate the complete filter graph based on
the multimedia source or stored filter graph. After creating an IMediaControl object that is
initially "empty,"” the application calls the IMediaControl.RenderFile method to build up the
complete graph:

' fragment from the Filter Graph menu's Generate from input file command
' start by creating a new, empty filter graph;
Dim g_objMC as IMediaControl ' from the General Declarations section

Set g_objMC = New FilgraphManager ' create the new filter graph

'

' Use the common File Open dialog to let the user select the input file
CommonDialogl. ShowOpen ' user selects a source or filter graph

' call IMediaCcntrol .RenderFile to add all filters and ccnnect all pins
g _objMC.RenderFile CommonDialogl.filename ' generates the complete graph

Creating a New Filter Graph and Adding Filters

The following code fragment demonstrates how to create the new (empty) filter graph object.

' fragment from the Filter Graph menu's New {(empty) command handler
Dim g_objMC as IMediaControl ' from the General Declarations section

Set g_objMC = New FilgraphManager ' create the new filter graph

When you choose to create an empty filter graph and add individual filters, you must know the
filter type. In general, there are three categories of filters: source filters, transform filters, and
renderer filters. The procedure for adding source filters uses a different method than the
procedure for adding transform and renderer filters.

Add source filters to the filter graph by calling the IMediaControl.AddSourceFilter method and
supplying the name of a file of the specified source type or stored filter graph.

169

DirectShow Basics Page 30 of 62

The main form of the application includes a button labeled "Add Source Filter..." that uses the
common File Open dialog box to query the user for the name of the source file or stored filter
graph. The application supplies the specified file as the parameter to AddSourceFilter.

Dim objFilter As Object ' temporary object for wvalid syntax; not used

CommonDialogl. ShowOpen ' get the name of the source or filter graph file
g_objMC.AddSourceFilter CommonDialogl.filename, objFilter

Add transform and renderer filters to the filter graph by calling the IRegFilterInfo.Filter
method. The IRegFilterInfo object can be obtained from the IMediaControl.RegFilterCollection
property, which represents the collection of filter ohjects registered with the system and
available for use.

After creating the filter graph and obtaining the IMediaControl object, use the following
procedure to add filters.

1. Obtain the list of registered filters by getting the IMediaControl.RegFilterCollection
property.

2. Search through the collection for the desired filter. Each element in the collection is an
IRegFilterInfo object.

3. Add the filter to the filter graph by calling the IRegFilterInfo.Filter method.

In the sample program, the list box labeled "Registered filters” contains the names of all the
filters that appear in the RegFilterCollection property. The following code fragment illustrates
steps 1 and 2 in the previous procedure.

' code fragment that populates the registered filter list box
' global variable g_objRegFilters is set to IMediaControl.RegFilterCollection
' Set g _objRegFilters = g objMC.RegFilterCollection
Dim filter As IRegFilterInfo
listRegFilters.Clear
If Not g objRegFilters Is Nothing Then
For Each filter In g objRegFilters ' for each filter in collection
listRegFilters.2ddItem filter.Name ' add name to the list box
Next filter
End If

The sample application contains an Add button that adds the selected registered filter to the
current filter graph. The following code fragment illustrates step 3 in the previous procedure.

' code fragment from the event handler for the "Add" button

Dim filter As IRegFilteriInfo

' find the selected filter and add it to the graph

' g_objRegFilters is the IMediaControl cbject RegFilterCollection property
For Each filter In g objRegFilters

If filter.Name = listRegFilters.Text Then ' the selected filter?
Dim f As IFilterInfo ' ves
filter.filter £ ' add to the filter graph, return IFilterInfo £

If £f.IsFileSource Then
CommonDialogl. ShowOpen
f.filename = CommonDialogl.filename

End If
Exit For
End If

Next filter

170

DirectShow Basics Page 31 of 62

Connecting Filter Pins

After adding individual filters to the filter graph, you can establish connections between the
filters by explicitly connecting each pin, or by automatically generating all connections that are
needed downstream from a specific pin.

In both cases, you must traverse the hierarchy of DirectShow objects to obtain the IPinInfo
object that represents a pin of the filter object. This involves finding the desired filter in the
filter collection of the filter graph object, then finding the desired pin in the pin collection of the
filter object.

Listing Filters in the Filter Graph

All filters in the filter graph are available in a collection that you can access using the
IMedi ntrol.FilterCollection property.

When the user adds a filter to the filter graph, the application refreshes the list of current
filters by using the IMediaControl.FilterCollection property, as shown in the following code
fragment.

' refresh the list box that contains the current filters in the graph
listFilters.Clear
For Each objFI In g_objMC.FilterCollection
listFilters.AddItem objFI.Name ' add to list box
Next cbjFI

Listing Pins Defined for a Filter

You can access the pins defined for a filter object through the IFilterInfo.Ping property. The
Pins property is a collection of individual IPinInfo objects.

After you obtain an individual IPinInfo object from the collection, vou can access its properties
and call its methods, as shown in the following code fragment.

For Each objPin In g cobjSelFilter.Pins
If objPin.Name = listPins.Text Then ' selected pin?
Set g _objselPin = objPin ' vyes, update information
' ... perform operations using that pin
End If
Next objPin

After you have obtained the pin object, you can explicitly connect to one other pin or
automatically generate all subsequent pin connections needed to render the pin.

Explicitly Connecting Two Pins

The IPinInfo object provides three methods to connect pins: Connect, ConnectDirect, and
ConnectWithType. Connect adds other transform filters as needed, ConnectDirect does not
add transform filters, and ConnectWithType performs the connection only if the specified pin
matches the specified media type.

The sample application connects two pins using the IPinInfo.Connect method, as shown in the
following code fragment. You can call the Connect method from either of the two pins that are
to be connected.

171

DirectShow Basics Page 32 of 62

' The sample application displays another form to select the second pin
' or "other pin" that is to be connected to this pin.
frmSelectPin.OtherDir = g objSelPin.Direction
Set frmSelectPin.Graph = g _objMC ' give that form a copy of the graph
Set frmSelectPin.SelFilter = g objsSelFilter ' and the current filter
frmSelectPin.RefreshFilters ' display availabkble filters to connect
frmSelectPin.Show 1 ' display the form
If frmSelectPin.bOK Then ' user has selected one--used OK button
Dim ©objPI As IPinInfo
Set objPI = frmSelectPin.SelPin ' get the new pin from the form

g_objSelPin.Connect objPI ' connect the two pins
RefreshFilters ' display the latest pin information
End If

Automatically Connecting Pins

Call the IPinInfo.Render method to automatically generate all portions of the filter graph that
are needed downstream from that pin.

The term downstream refers to all connections needed to construct a complete path from that
pin to a renderer filter. For example, consider the representation of the filter graph by the
Filter Graph Editor, which shows connections as moving from the source filter at the left to the
renderer filter at the right. The Render method adds all required filters and connections to the
right of the specified pin.

The application includes a Connect Downstream command button. The code that handles this
command automatically establishes all pin connections downstream from the specified pin
object, as shown in the following code fragment.

' call IPinInfo.Render

' complete the graph downstream from this pin

' g_objsSelPin refers to the pin selected in the list box labeled 'Pins'
g_objSelPin.Render

Viewing Pin Connection Information

When you have obtained a pin object from the collection available from the IFilterInfo.Pins
property of the filter object, you can list its connection and other information.

The sample application uses the IPinInfo.ConnectedTo property to obtain the pin object to
which it is connected, as shown in the following code fragment.

' Add detailed pin information to the text box on the right
' when the user clicks on a pin in the list beox on the left
Dim strTemp As String
On Error Resume Next
Dim objPin As IPinInfo
For Each objPin In g _objSelFilter.Pins

If objPin.Name = listPins.Text Then ' selected in list box?
Set g objsSelPin = objPin ‘'ves, get all information
strTemp = "" ' clear existing displaved pin information

Dim objPinCther As IPinInfo

Set objPinCther = objPin.ConnectedTo

If Err.Number = ¢ Then ' ves, there is a connection
strTemp = "Connected to pin: " + objPinOther Name + " "
Dim cbjPeer As IFilterInfo

172

DirectShow Basics Page 33 of 62

Set objPeer = objPinOther . FilterInfo

strTemp = strTemp + " on filter: " + cbjPeer.MName + " "
Dim ©objMTI As IMediaTypelnfo

Set objMTI = cbjPin.ConnectionMediaType

strTemp = strTemp + vbCrLf + "Media Type: " + CObjMTI.Type
End If
If objPin.Direction = 0 Then
strTemp = strTemp + " " + vbCrLf + "Direction: Input”
Else
strTemp = strTemp + " " + vbCrLf + "Direction: Cutput"
End If
txtPinInfo.Text = strTemp
End If

Next objPin
Creating a Custom Graph

The sample application featured in this article is similar to the filter graph editor utility,
allowing a user to create and manage any filter graph. Most applications will not provide such a
general-purpose interface—they are more likely to create only the specific filter graphs needed
by the application.

The sample application provides one subroutine that creates such a custom filter graph. The
Options menu offers a "Build custom graph” command that calls this subroutine.

The routine that handles this command creates five filter objects and eight pin objects. The
routine then connects pins by calling the IPinInfo.Connect method.

The graph connects the following filters: AVI Source, AVI Decompressor, AVI Splitter, Video
Renderer, and Audio Renderer. These filters can be connected by reusing just two pin object
variables. For clarity, however, each pin object is defined using a name that indicates its
position in the filter graph.

The filters and pins are declared as follows:

Dim pSourceFilter As IFilterInfo ' AVI Source Filter; has two pins
Dim SourceCutputPin As IPinInfo 'Source Filter output pin

Dim pAVISplitter As IFilterInfo ' AVI Splitter

Dim SplitterInPin 2As IPinInfo ' AVI Splitter pin "Input®

Dim SplitterCut00Pin As IPinInfo ' AVI Splitter pin "Stream 00"
Dim SplitteroutolPin A= IPinInfo ' AVI Splitter pin "Stream 01"
Dim pDECFilter As IFilterInfo ' AVI Decompressor; has two pins
Dim DECInPin As IPinInfo 'AVI Decompressor pin "XForm In"

Dim DECOutPin As IPinInfo ' AVI Decompressor pin "XForm Out"

Dim pVidRenderer As IFilterInfo ' Video Renderer, has one pin
Dim VidRendInPin As IPinInfc ' Video Renderer pin "Input”

Dim pAudicRenderer As IFilterInfo 'Audioc Renderer, has cne pin
Dim AudioRendInPin As IPinInfo ' ZAudic Renderer pin "Input”

The application adds the source filter object by calling the IMediaControl.AddSourceFilter
method:

' create the source filter using IMediaControl.AddScurceFilter
CommonDialogl. ShowOpen ' get the name ¢of the source AVI file

173

DirectShow Basics Page 34 of 62

g_objMC.AddSourceFilter CommonDialogl.filename, pSourceFilter

The application adds the other filter objects by searching for a specific name in the registered
filter collection (the filter collection is available from the IMediaControl.RegFilterCollection
property), and calling the IRegFilterInfo.Filter method when it finds the specific filter to add:

' add all non-source filters from the collection of registered filters
Set g_objRegFilters = g objMC.RegFilterCollection

' use the local subroutine AddFilter to find the filter named

' "AVI Decompressor" in the collection, and set the variable pDECFilter
AddFilter "AVI Decompressor”, pDECFilter

The AddFilter subroutine of the application loops through all the filters present in the
collection. When the names match, it calls the IRegFilterInfo.Filter method to add the filter to
the filter graph:

Private Sub AddFilter (FName As String, £ As IFilterInfo)
' call IRegFilterInfo.Filter

Set LocalRegFilters = g_objMC.RegFilterCollection
Dim filter As IRegFilteriInfo
For Each filter In LocalRegFilters
If filter.Name = FName Then
filter.filter £
Exit For
End If
Next filter

The application calls similar code for the AVI Compressor, AVI Splitter, Video Renderer, and
Audio Renderer filters. After obtaining all the filter objects, the application uses the
IFilterInfo.Pins property to find specific pin objects. The code loops through all pin objects in
the collection, searching for the specific pin names and setting the individual pin objects when
they are found, as shown in the following code fragment.

' Get the source filter pin we need to build the graph
For Each pPin In pSourceFilter.Pins
Debug.Print pPin.Name

If pPin.Name = "Output" Then
Set SourceOutputPin = pPin
End If
Next pPin

'2dd DEC filter
AddFilter "AVI Decompressor", pDECFilter
'Print out list of pins on decompressor filter
For Each pPin In pDECFilter.Pins
Debug.Print pPin.Name
' save gpecific pins to connect them

If pPin.Name = "XForm In" Then
Set DECInPin = pPin
End If
If pPin.Name = "XForm Out" Then
Set DECOutPin = pPin
End If
Next pPin

'Add AVI Splitter
AddFilter "AVI Splitter", pAVISplitter
'Print out list of pins on decompressor filter
For Each pPin In pAVISplitter.Pins

174

DirectShow Basics

Debug.Print pPin.Name

' save sgpecific pins to connect them

''pin 0, pin 1

If pPin.Name = "input pin" Then
Set SplitterInPin = pPin

ElgselIf pPin.Name = "Stream 00" Then
Set Splitteroutd0Pin = pPin

ElseIf pPin.Name = "Stream 01" Then
Set Splittercout?lPin = pPin

End If

Next pPin

Page 35 of 62

After initializing the eight pin objects, it is a simple matter to call the IPinInfo.Connect method
to establish the four connections between them. The following code fragment demonstrates the
connection calls.

' connect the pins
' Note: error handling omitted for brevity

'Connect Source video output pin to AVI splitter input pin

SourceCutputPin. Connect SplitterInPin

' Connect AVI splitter stream 00 to AVI decompressor

Splitterouto0Pin. Connect DECInPin

' Connect AVI splitter stream 01 toc audic renderer

SplitteroutolPin. Connect AudioRendInPin

'Connect AVI decompressor output pin to Video renderer input pin

DECOutPin. Connect VidRendInPin

You can establish the connection from either pin; after a successful call to the Connect

method, you can access the connection information from either pin object.

Summary

In summary, this article discussed the use of the following DirectShow objects, properties, and
methods.

Task

Create a new, empty filter

graph.

Generate the complete filter Call the IMediaControl.RenderFile method.

DirectShow properties or methods
Set objMediaControl = New FilgraphManager.

graph for a specific file.

Add a source filter.

Add a renderer or transform Get the IRegFilterInfo objects using the
IMediaControl.RegFilterCollection property; call the
IRegFilterInfo.Filter method.

Get the IPinlnfo objects using the IFilterInfo.Pins property.

filter.

List the pins of a filter

object.

Explicitly connect two pins.
Create all connections from Call the IPinInfo.Render method.

Call the IMediaControl.AddSourceFilter method.

Call the IPinInfo.Connect method.

the pin to the renderer

filter.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Uss.

[Previous | ome | Topio Contents | miex | ext

175

DirectShow Basics Page 36 of 62

[Previous | ome [opio Contents | index | Hext

Controlling Filter Graphs Using Visual Basic

Thig aricta desoibes ow B0 dse the mathods, evants, and oegoartias axpnsad by tha
Microsoft® DirectShow™ dynamic-iink dbeaey, Quartz dif, 10 render 3 stream of time-stampad
viden data in aonlications based in MICrosofE Vicual Basic®, This articie is weitlan for the Yigual
Basic deveioper who i aiready famiiar with Windows®@-based appiication progeameming,
Windows-based muitimedia progeamming, and Aatomation Features OF the Vigual Basic
srOQEamming system version 5.0,

Lontants of this articla:

» DirectShow Fiters and Fier Granhs

» Divecthngw Interfaces Visual Basic Objects and Reqistering Huaets (il
+» The V2Demo Samoie Aoniication

Inshatiing the Fieg

Radqigtaring Ouaets di with Vigual Basic
Praparing to iise the DirectShow Dbjects
ingtantiating the Fiter Granh

Rangaring Yideg

Lonteniiing Audin

Heating and Trangiating the Video Outout
Teacking Status

GCatting and Sething the Start Position

o Getting and Sething the Rate

o Lisanin

LR B S S S R S S

DirectShow Filtarg ard Filtar Graphs

When mitimedia is dispiaved in an application by using Ouaste i, the aoplication i5 gsing a
cotiection OF objects catied Aiters; this coliection 5 sometimes Catied g flter gragh, The
Epiigwing diagram denicts a Biter graoh that is capabie oF rendering an audio-videq interiegvad
{.avi} Big,

&I AVl Wideo
= i
sOUrce codec renderer
—|_. Audio
renderer

in thig fkgsteation, the AYI sQurece Tilter regds the File Brom disk, The AYI decimoeessor Fitar
{codec; decompresses the video data as i is passad from the source Fiter, The codec fiker
then passes this data 1o the vide) rendarar, The vigep renderar, in tim, passes the data to the
davica in g Fgemat that tha davice gndarstands, The AYI souele Ritar nassas the agdio data
divacthy £n the audio rendorer, wiich, in fyen, oasses the data 1o the audio devica,

176

DirectShow Basics Page 27 of 62

in addition £o Bitoes, DirsctShow sunnorts an Agtomation object catied the After graph
manager, ThS objedt knows about the avaiiabio filkers and dandeestands wiich Fitor fynes are
cagiiced to mnder wiich Fie Formats. Tha Fiitar graoh manager exnoses the maethods, avents,
and propertias sunopetad by the Bitars in g ghvaen granh, The fiter geanh Manager aish axnoses
s own set OF methods, events, ang seoneeties, These gre exnased by using inteefaces which
are simohy coiiactions of reiated methods, events, and proparias,

The fpilgwing tabie identifies the DirectShow interfales avaiabie in Quarty dit B gse with
Wiseat Basic-based annbicationg, and describas the ogmise OF each infaface,

Intarface Do pati e

iaMotiactinon ACCESSEs pin ang Fitor coiiaciiong,

idast i Contegis ang retrieves current voigme setting,

igasicyides ConteQis @ generic videq engerer,

Iriterintn Retrioves FQrmation about ¢ Bifer and about nin objects in the Fitar,

IMedi ntepl Instantiptes the BHee grach and contenis medie Fow Jninning, oaused,
stopned;,

IMadiztyan Al custnmizad avent handiing foe events such a5 renainking, ser
tarmination, cormpiation, and 54 .

iMediaPogition Confegis ang refrieves start Bime, stop time, rate, and current HosEion,

iMediaTyoainky Ratpieves tha madia tyoo ang soabtyne,

IPininfy ACCESSEs pin nformation, such as pin direction and medis Byne, and controis
pin connaction, disconnaction, and randaring,

IRegFiiterinfg Containg infoemation about reqistered Transform ang render} Filtarg,
VigegWindgw {ontegis window asopedts of 3 vide renderer,

DirectShow Irterfacaes, Visual Basgic Ghiacts, and Registering Quartz.dl

To use the DivectShow interfaces in your Microsoft Visual Basic-based annication, you must
reqistar the ActiveMovie {ontenl Byne dbeaey in your Yisual Basic oegject,

Whan you register the ActiveMovie Contegi fyope tibeary by gsing the Visuat Basic Referencss
digion bi, your are idantifying the tyne Hbeary that containg the Agtomation infFoemation that,
YVisuatl Basic raqiires, The foligwing dlusteation shows the Refarences digiog box,

References
Available References: K
Eizual Basic For Applications = Cancel

['izual Bazic objectz and pracedures
[Microgoft Windows Common Controls
[Microgoft Common Dialog Cantral
&k ctivebd ovie control tupe library

Browsze. .

[l

O Standard OLE Types il

O Office Binder 1.0 Type Library.

O Microgoft Office 95 Object Libran Priarity

O Microsoft Graph 5.0 Object Library - Help
O Microgoft Excel 5.0 Object Libran :I

O Microgoft a0 3.0 Object Libram

O Microzoft DAD 2.5/3.0 Compatibility Library
O Microgoft Access for Windows 95

I:Ij‘-.-’isual B aszic For Applications | b
4 *

177

Diirect=how Basics

[BCIVEMOVIE CONCTONYPE NDrary -

Location:

Language:

C:aw MDD S5 STE MY quartz. dil
Standard

Page 25 of 62

Once the tyne Hbeary 5 reqistared, you a0 ase the Object Bepwser diaiog bow 1o view the Hst

of mathods, events, ang peonemies ascoliated with & ghen intoeiace,

Object Browser

Librariez/Fraojects:

1E!uart2T_l,lpeLi|:| - Activebd ovie contral type library

Clazzes/Modules:

Methods/Properties:

Filgraphtd anager
[AMCallection

|B azicAudio
|Bazichiden
[Filkerlnfo

[ediaContral
|Mediak vent

M ediaFozition

[MediaT ypelnfo
IPinlnfo

IR eagFilker nfo
[Videaowindow

CurrentPazition
Druration
PrerallT ime
Rate

StopTime

: | IMediaFozition interface

Mota The tyne inFormahion in the Fiker geanh manafes s oeganized by intecfare rather than

object,

The VBDemo Sample Application

Thig saction 5 based on the YEDemg sampie apoiication, which anabias the gser 10 do tha

EQiiwing:

& & 4 4 & &

Foeem,

Choose an DivectShow fite [avi, fong, O mov].
Digniay g simpla tooibar that lats tha gser oigy, oause, o st0p the rendaring,
Digniay the fength of the vide) and the siapsed timae,
Diseiay stak nosition and rin eate,
Eeoniay g voldme conteol and & baince contrdl,
Position the destination window (3 shape contegi; beigw ai othar controis in the main

The appiication, whan sinoing & fie, aooears a5 filows:

178

DirectShow Basics Page 39 of 62

. DirectShow Yizual Basic Sample | [O0] =]
Ei

=

e Length [Sec]: e
’ | 7] Elapsed Time [Sec): -
Hae] [Eatee] Filo Start position (Secl: || N
Flayback speed: e
Yalurne Balance
—— 1
kit bl Left Right

Irsgtallitg the Files

Bafoee gsing the DivedtShow objects in your Viguai Basic-based anplication, you st inghad
Qupartz (i in the Windows\Systam directory and engire that the anoroorigte entries are made
i yQuE System's reqistry database. Currently, the DirectShow Sofware Deveigoment Kt (S0
sefiln program automates this process. To install, start Setuon exe and choose the Runtime
optign. The dynamic-#nk brary (DLL} will be copied 10 the corredt ipcation, and the reqistey
Wit ba gutomaticaily uondatad.

Ragistaring Quartz.dll witk Visual Bagic

Open the Yisial Bagic aonlication and choose the References command from the Toois meny £
wvarify that tha Fitag wera ingtatiag sucoashiiny, (AL startun, Vigual Basic axamines the ragigtry
database For refistersd agtomation Controis and adds their namaes B0 the Hst That annoars in
Erig digiog bod.) To use the fiiker granh manager, CHCK tha hox that aopears nat i) the
ActivaMovie Conkegl tyne Horaey nams,

Gnee Visual Basic reqistars the type infoemation, you £an wse the fiter geanh manager ang i
associated interfaces in Your anoiication,

Praparing to Use the DirectShow Ghiects

Wigilal Basic iniiahives af objacts in the YEDemo Sampie neoqram dsing the FigeranhManagear

179

DirectShow Basics

object, which implements the following interfaces.

IBasicAudio
IBasicVideo
IMediaControl
IMediaEvent
IMediaPosition
IVideoWindow

*« & & & &

Page 40 of 62

Each of the interfaces is accessed by a Visual Basic programmable object defined to be of that
interface type. The objects in the sample application are defined as global variables in the
general declarations section, as shown in the following example.

Dim g_objVideoWindow As IVideoWindow
Dim g_objMediaControl As IMediaControl
Dim g_objMediaPosition As IMediaPosition
Dim g_objBasicAudioc As IBRasicaudio

Dim g_objBasicVideo As IBasicVideo

'VideoWindow Cbject
'MediaControl Object
'MediaPosition Object
'Basic Audio Cbject
'Basic vVideo Cbject

All the programmable objects are initialized using FilgraphManager, as shown in the following
example:

Set g _objMediaControl = New FilgraphManager

g_objMediaControl .RenderFile (g _strFileName) ' name of input file

Set g_objBasicaudic = g objMediaControl
Set g_objvideoWindow = g _objMediaControl
Set g_objMediaEvent = g objMediaControl
Set g_objMediaPosition = g_objMediaControl

The other interfaces available for use with Visual Basic-based applications are obtained by
calling methods that explicitly return the desired interface. The following table summarizes
how to obtain these interfaces.

Interface Methods that return the interface pointer

IAMCollection IPinInfo.MediaTypes, IFilterInfo.Pins, IMediaControl.FilterCollection,
IMediaControl.RegFilterCollection

First IMediaControl.FilterCollection, then IAMCollection.Item or
IPinInfo.FilterInfo

IMediaTypelnfo IPinInfo.ConnectionMediaType
IPinInfo IFilterInfo.FindPin, IAMCollection.Item
IRegFilterInfo First IMediaControl.RegFilterCollection, then IAMCollection.Item

IFilterInfo

For a sample that shows how to manipulate these filter and pin interfaces, see Constructing
Filter Graph ing Vi [Basic.

Instantiating the Filter Graph
You can use the filter graph manager to render existing files of the following types.
¢ .avi {audio-video interleaved)

o .mov (Apple® QuickTime®)
¢ .mpg (Motion Picture Experts Group)

180

DirectShow Basics Page 41 of 62

In addition, you can use the filter graph manager to render an existing filter graph by
specifying the file that contains that graph as a parameter to the RenderFile method.

Because the filters in a filter graph are dependent on the type of file being rendered, the
sample application does not instantiate a filter graph until the user selects a file. The code that
handles this selection is embedded in the procedure that opens the file, mnu_FileOpen. This
code displays the Show Open common dialog box and stores the selected file name in a
g_strFileName variable. After this, the code verifies that the correct file type was chosen.
Quartz.dll issues an error message if it is passed a file extension other than .mpg, .avi,

or .mov.

Once the g strFileName variable is set, the application instantiates the filter graph manager
and creates the filter graph object. The filter graph manager is instantiated when the Visual
Basic keyword New is used to create the AUTOMATION object. The filter graph object is created
when the IMediaControl: :RenderFile method is called, as shown in the following example.

'Instantiate a filter graph for the regquested
*file format.

Set g_objMediaControl = New FileGraphManager
g_objMediaControl .RenderFile (g _strFileName)

Rendering Video

The IMediaControl interface supports three methods (Run, Pause, and Stop) that an application
can call to render, pause, or stop a video stream. After the filter graph object is instantiated,
your application can call these methods.

The sample application displays a toolbar from which the user controls video rendering. When
the user clicks Run, the Run method is activated and a global Boolean variable (fYideoRun) is
set to True. This variable is used in a timer procedure that retrieves the current media position
{or elapsed rendering time). If the Pause or Stop button is clicked, this variable is set to False,
and the current media position is not retrieved during timer events.

The code that activates the Run, Pause, and Stop methods is found in the
Toolbarl_ButtonClick procedure. The toolbar contains buttons that are numbered 1, 3, and 5;
the buttons numbered 2 and 4 are separators that provide additional space between the
buttons, as shown in the following example.

Private Sub Toolbarl ButtonClick {(Byval Button As Button)

' handle buttons on the toolbar

' buttons 1, 3 and 5 are defined; 2 and 4 are separators

' all DirectShow objects are defined only if the user

' has already selected a filename and initialized the cbjects

' if the cbjects aren't defined, avoid errors
If g cbjMediaControl Is Nothing Then

Exit Sub
End If

If Button.Index = 1 Then 'PLAY
'Invoke the MediaControl Run() method
'and play the video through the predefined
'filter graph.

g_objMediaControl.Run

181

DirectShow Basics

g_fvideoRun = True

ElseIf Button.Index = 3 Then 'PAUSE

'Invoke the MediaControl Pause () method
'and pause the video that is being
'displaved through the predefined
'filter graph.

g_objMediaControl.Pause
g _fvideoRun = False

ElseIf Button.Index = 5 Then 'STOP

'Invcke the MediaControl Stop() method
'and stop the video that is being
'displaved through the predefined
'filter graph.

g_objMediaControl.stop

g _fvideoRun = False

' reset to the beginning of the video
g_objMediaPosition.CurrentPosition = ©
txtElapsed.Text = "0.0"

Controlling Audio

Page 42 of 62

The IBasicAudio interface supports two properties: the Volume property and the Balance
property. The Volume property retrieves or sets the volume. In the sample application, this
property is bound to the slider control siVolume. The Balance property retrieves or sets the
stereo balance. In the sample application, this property is bound to the slider control siBalance.

Note The volume is a linear volume scale, so only the far right side of the slider is useful.

The following example shows the code that adjusts the volume (by setting the
g_objBasicAudio.Volume property) is found in the slVolume_Change procedure.

Private

Sub slvVolume Change ()

'Set the volume on the slider

If Not g objMediaControl Is Nothing Then

'if

g_objMediaControl has been assigned

g _objBasicAudio.Volume = slvVolume.Value

End

End Sub

Scaling

If

and Translating the Video Output

The 1VideoWindow interface supports the methods and properties you can use to alter the size,

state, owner, palette, visibility, and so on, for the destination window. If you are not concerned
with the location or appearance of the destination window, you can render output in the default
window (which appears in the upper-left corner of the desktop) without calling any of these

methods or properties.

The sample application moves the destination window to a position below the other controls on
its main form. In addition to moving the window, the sample application alters the window

182

DirectShow Basics Page 43 of 62

style by removing the caption, border, and dialog box frame. To do this, set the
g_objVideoWindow. WindowStyle property to O0x06000000. This corresponds to the logical OR
operation of the values WS_DLGFRAME (0x04000000) and WS_VSCROLL (Ox02000000). For a
complete list of window styles and corresponding values, see the Winuser.h file in the
Microsoft® Platform SDK.

To move the destination window onto the form, specify a new position by setting the Top and
Left properties of g_objVideoWindow. The Top and Left properties are set to correspond to the
upper-left corner of a blank control with a rectangular shape, a placeholder of sorts, that
appears on the form. The ScaleMode property for the form was set to 3, which specifies units
of pixels. This allows the form properties and DirectShow object properties to be used without
conversion. The DirectShow object properties are also expressed in pixels. The default units for
a Visual Basic form are twips.

The sample application uses the left top of the placeholder rectangle, then resizes the shape
based on the size of the specified video. The application determines the required size of the
rectangle by retrieving the source video width and height. These values correspond to the

VideoWidth and VideoHeight properties of the g_objBasicVideo object.

In addition to setting the Top and Left properties, it is necessary to identify the form of the
application as the new parent window by passing the window handle of the form, hWnd, to the
g_objVideoWindow.Owner property. If the handle is not passed, the destination window will
appear relative to the desktop and not the form.

The following example shows the tasks that are accomplished in the mnu_FileOpen procedure.

Set g_objvideoWindow = g_objMediaControl

g objvideoWindow.WindowStyle = CLng (&H6000000) ' WS_DLGFRAME | WS_VSCROLL

g _objvideoWindow.Left = CLng(Shapel.Left) ' shape is a placeholder on the for
g_objvideoWindow.Top = CLng{Shapel.Top)

Shapel.width = g_objvideoWindow.Width ' resize the shape given the input wvid
Shapel.Height = g objvideoWindow.Height

g_objvideoWindow.Cwner = frmMain.hWnd ' set the form as the parent

The following example shows how the ScaleMode property is initialized in the Form_Load
procedure.

' code fragment from the Form Load procedure

froMain.ScaleMode = 3 ' pixels

'

Avoid attempting to scale the destination window by setting the Width and Height properties
for the g_objVideoWindow object, because performance suffers considerably.

Tracking Status

The g_objMediaPosition object exposes a number of properties that you can use to retrieve or
set the current position, stop point, duration, and rate. When the user selects a file, the
sample application retrieves and displays the duration, starting position, and rate. The
corresponding code appears in the mnu_FileOpen procedure, as shown in the following
example.

Set g_objMediaPosition = g_objMediaControl
g_dblRunLength = g objMediaPosition.Duration
txtDuration.Text = CStr(g_dblRunLength) ' display the duration

183

DirectShow Basics Page 44 of 62

g _dblstartPosition = 0.0

txtsStart.Text = CDbl (g_dblstartbPosition) ' display the start time
g _dblrRate = g objMediaPosition.Rate

txtRate.Text = CStr{g _dblRate)

The current position is also displayed, using a timer that is started when the user clicks Run.
When the user clicks Run, a global Boolean variable, g_fVideoRun, is set to True, indicating
that the program should retrieve and display the current media position, which is expressed as
the elapsed rendering time from the absolute beginning of the multimedia stream.

If Pause or Stop is clicked, the variable is set to False, and the current media position is not
retrieved. The corresponding code {which displays the current position) appears in the
Timerl Timer procedure, as shown in the following example.

Private Sub Timerl Timer ()
'Retrieve the Elapsed Time and
'*display it in the corresponding
'textbox.

Dim Dbl As Double

If g fvideoRun = True Then
Dbl = g _objMediaPosition.CurrentPosition
If Dbl < g_dblRunLength Then
txtElapsed.Text = CStr(Dbl}
Else
txtElapsed.Text = CStr(g_dblRunLength)
End If
End If
End Sub

Getting and Setting the Start Position

The sample application uses the IMediaPosition.CurrentPosition property to let the user adjust
the point at which the video begins rendering. If the user enters a new CurrentPosition and
then clicks Play, the video begins rendering at the frame whose timestamp is closest to the
requested time.

In addition to adjusting the starting time, the user can jump to new frames while the video is
rendering by specifying a new value in the corresponding text box and then pressing ENTER.

The code that handles the CurrentPosition property is found in the following example of the
txtStart KeyDown procedure.

Private Sub txtStart_ KeyDown (KeyCode As Integer, sShift As Integer)
' handle user input to change the start position
If KeyCode = vbKeyReturn Then
If g cbjMediaPosition Is Nothing Then
Exit Sub
ElseIf CDbl (txtStart.Text)} > g dblRunLength Then
MsgBox "Specified position invalid: re-enter new position.”
ElseIf CDbl (txtStart.Text) <« 0 Then
MsgBox "Specified position invalid: re-enter new position.”
ElseIf CDbl (txtsStart.Text) <> "" Then
g _dblstartPosition = CDbl (txtsStart.Text)
g_objMediaPosition.CurrentPosition = g dblStartPosition
End If
End If
End Sub

184

DirectShow Basics Page 45 of 62

Getting and Setting the Rate

The sample application uses the IMediaPosition.Rate property to let the user adjust the rate at
which the video is rendered. This rate is a ratio with respect to typical playback speed. For
example, a rate of 0.5 causes the video to be rendered at one-half its typical speed, and a rate
of 2.0 causes the video to be rendered at twice its typical speed.

Unlike the CurrentPosition property, which can be set while the video is being rendered, the
Rate property must be set prior to rendering.

Note The sound track can be disabled for some videos when the rate is less than 1.0.

The code that handles the Rate property is found in the following txtRate KeyDown procedure.

Private Sub txtRate KeyDown (KeyCode As Integer, Shift As Integer)
' DirectsShow VB sample
' handle user updates to the Rate wvalue
If KeyCode = vbKeyReturn Then
If g cbjMediaPosition Is Nothing Then
Exit sub
ElseIf CDbl (txtRate.Text) =< 0O# Then
MsgBox "Negative wvalues invalid: re-enter value between 0 and z2.0"
ElseIf CStr(txtRate.Text) <> "" Then
g_dblrRate = CDbl (txtRate.Text)
g_objMediaPosition.Rate = g dblRate

End If
End If
End Sub
Cleaning Up

Each time your application uses the Visual Basic Set statement to instantiate a new
DirectShow object, it must include a corresponding Set statement to remove that object {and
its corresponding resources) from memory prior to shutdown. For example, in the
mnu_FileOpen procedure, a new g objBasicAudio object is instantiated with the following
syntax.

Set g objBRasiciAudio = g _cobjMediaControl

When the user selects Exit from the File menu, a corresponding Set statement removes this
object:

Set g objBasicAudioc = Nothing

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] ndex | Hext
[Previous | Home | Topic Contente] ndex | Hext

List of Filters and Samples

185

DirectShow Basics Page 46 of 62

Microsoft® DirectShow™ provides filters and samples as part of the DirectShow Software
Development Kit (SDK). The filters are supplied as binary code only and are listed among the
filters available in the Filter Graph Editor when you choose Insert Filters from the Graph
menu. A sample filter includes source code and you must build and register it before it will
appear in the Filter Graph Editor. In addition to sample filters, the SDK contains sample
applications that demonstrate how to use filters.

See the following sections for a list of filters, sample filters, and sample applications supplied
with DirectShow:

s Filters
+ Sample Filters
+ Sample Applications

Filters
The DirectShow SDK provides the following filters:

ACM Audio Compressor

Analog Video Crossbar

Audio Capture

Audio Renderer

AVI Compressor

AVI Decompressor

AVI Draw

AVI MUX

AVI Splitter

AVI/WAV File Source

Color Space Converter

Cutlist File Source

DSound Audio Renderer

DV Muxer

DV Splitter

DV Video Decoder

DV Video Encoder

DVD Navigator

File Source (Async)

File Source (URL)

File Stream Renderer

File Writer

Full Screen Renderer

Indeo 4.3 Video Compression
Indeo 4.3 Video Decompression
Indeo 5.0 Audio Decompression
Indeo 5.0 Video Progressive Download Sources
Indeo 5.0 Video Compression
Indeo 5.0 Video Decompression
Internal Script Command Renderer

186

DirectShow Basics

Line 21 Decoder

Lyric Parser

MIDI Parser

MIDI Renderer

MPEG Audio Decoder
MPEG Video Decoder
MPEG-1 Stream Splitter
Multi-File Parser

Qverlay Mixer

QuickTime Decompressor
QuickTime Movie Parser
SAMI (CC) Parser
TrueMotion 2.0 Decompressor
TV Audio

TV Tuner

VFW Video Capture

VGA 16 Color Ditherer
Video Renderer

WAVE Parser

WDM Video Capture

Sample Filters

The DirectShow SDK provides the following sample filters:

Async Sample {Asynchronous Reader Filter)
Ball Sample (Bouncing Ball Filter)

Contrast Sample (Video Contrast Filter)

Dump Sample (Dump Filter)

EzRGR24 Sample {Image Effect Filter)

Gargle Sample (Gargle Filter)

Inftee Sample (Infinite-Pin Tee Filter)
MPGAudio Sample (MPEG Audio Decoder Filter)

MPGVideo Sample (MPEG Video Decoder Filter)

Nullip Sample (Null In Place Filter)
Nullnull Sample (Minimal Null Filter)
Scope Sample (Oscilloscope Filter)
Synth Sample (Audio Synthesizer Filter)
SampVid Sample (Video Renderer Filter)
TextOut Sample (Text Display Filter)
Veretrl Sample (VCR Control Filter)
VidCap Sample {Video Capture Filter)

Sample Applications

The DirectShow SDK provides the following sample applications:

¢ AMCap Sample {DirectShow Capture Application)

+ CPlay Sample {C/COM-based Media Player Application)

CLText Sample (Text Cutlist Application)

187

Page 47 of 62

DirectShow Basics Page 45 of 62

-
b
-
-
-
-
-
-
-
-
-
-
b
-

Dvgoamed Sampie (DVD Piayver Anniication)

InWindow Samnie [Window Piaybacik Annlication}

IPigy Samnie [Indeq Pigyer Annication}

MECPiay Sample (O 4 fOOM-based Media Plaver Aoolication}
MPEGPron Sampie (MPEG Property Page Disniay Aonlication
PigyFite Sampie {Simpie Piayback Annication)

PID Sample {Piyg-in Digteibutor Sontication)

ShowStem Sampie {Muitimedia Streaming Aopication}
Simpiact Samoie [Cutist Aookcation}

VigCHs Sampie [Video Editing Annoiication]

Visuai Basic-Based ActiveX Player

Vistiai Basic-Based Fiker Granh Buiider

Visuai Basic-Based Fiter Graph Player

Visual Basic-Basad Playar

[Previous | Home | opio Cortents | index | Hext:
[Previous | ome | opio Contents | index | Hext |

About the DirectShow Filter Graph Editor

The MicrosofE DivectShow ™ SDE provides the Fiter Granh Editor 1008 {aig0 refoered 80 35
"Granhedt exe” gr "GrachEdat) that you can use B0 create, adit, and save Riter geanhs, Thig
articie introduces GranhEdit, and discusses the purmose oF the buttons on the GrachEdit
tnqibar in AbLut the GranhEdl Tooibar, Ses Hging the Fiter Granh Eior for detaiiang
iEQernEtion abolt how to use Granhads,

The DirectShow arohitecture gsaes fiiter graphs 10 manage mykimedia streams in Microsort
Windows® §5 and Microsoft Windows NTE ., & Fiitar granh consists of 3 set of fitars connactad
1 seduances; tha saquaence Pyoicatly inclides g Sorce Biltar raading Bom g media fia, 3
transgboern Bitar, and & randarar, aithough your Qeanh witi vary dapanding on &5 pirbose. A
geanh B olay 3 media fia with videg and audio tyoicatly inchides 3 soure filtar, a stragm
shiittar & vide) dacomprassion Fitar, and aooegnnate randarars, Tha FQEQwing screan shot
shows 3 filkar geanh in GeaohEdit that incigdes both audin and wvideq stragms,

il dolphin.avi [Read only] - Filter Graph Editor

File Edit ‘Wiew Graph Help

| 1

Output :*- {input gin Stream 01 A Audio Input pin (rendered)
Stream 00

Chdalphin. avi ‘ ‘ A Splitter [' Default VWaveOut Device (B

188

DirectShow Basics Page 49 of 62

*E}{Fnrm In ¥Form Out <= {Input _
A% Decomprassor “ideo Rendere

Feady

GraphEdit heing you visuaiize g Filter granh as shown in the precading screen 5hot. & regtangie
raprasents & Bitar, with tiny attached squares reprasanting ping, Ping are kay 1) undaestanding
Diractohow, from foemat neqgotiation &0 data transportation. Arrgws joining the ping reprasent
data fow paths, much ke 3 pipe directs the fiow oF water, GraphEdi disoiays innut ping on
the ol gide of Ehe fiiter's rectangie andg ouitout ping on the right side, Dutogt oing might not be
pracant nti Yo connedt an nnut nin, Inogt ning gniy connedt B Qutngt ning, ang vics versa,

GraphEdit indicates the audio rengerar that provides the clock Ror the Fiter graph by a smatl
yetigw-Riied Clock symbol within the audio renderer’s rectangie. You can disable the Ciock by
cancaiing the seiection of Use Clock on the Graph meni. HGraphs without COOks piay the
audiQ and video streams as fast as possibie, independently OF each Othar,

The fpigwing Biter granh piays back audio frgm the sudio Synthesizer souree Biter [(Synth},
Synth generates s own audio data rather than reading data fegm g Rile, The aadio renderer's
CEOCH i engbiad in thig filker granh,

ff - Untitled - Filter Graph Editor

File Edit ‘“iew Graph Help

D& &) 2=

3| »|ul=] 2

Outplt! +— g | 41io Input pin (rendered)

Audio Svnth Stream \‘
! ; Default WaveOut De
Output2

Audio Synthesizer input

Infinite Fin Tea Filter |
SutpLts

= [=cope Input Pin
Czcilloscope

Ready

The Foligwing Biter grach 5 one of the simplest oossible fiter grachs, The Bouncing Bati source
Fitar gonergtes vided data and the vided rendeear Fitar disniays i

189

DirectShow Basics Page 50 of 62

i~ Untitled - Filter Graph Editor

_Eile Edit Miew Graph Help
2] e m|m]| 2]

|

&, Bouncing Ball +—e=:|InpLt
Bouncing Ball Yideo Renderer

Feady |

S

Abxout the GraphEdit Toelbar

GraphEdit's to0ibar aopedrs benegti the meng bar, It peovides shortout commands foe Hoening
navwy Bitgr geanhs, saving the Cievent Bier granh, and piaying, bausing, O stopoing the
rrtitirmedia SOEce Fie, You ¢an disniay o hide the todibar by clicking Toolbar on the Viaw
FOIELLEL

Buttar: Effact
Craztes & new, amoty Fitare geanh,

Openg an exigting myitimedia soures file Or an existing fiter graph { gef} fiig,
Saves tha cureent Biter graph a5 g Bitar grach [qef) fiia,

Prints the cgrrant Filtar granh,

Pigys the mitimedia source gsing the cureant Fitar grach,

Pauses nigy OF The mitimead iz SOrce.

Stops piay of the muiimedia source,

SEEroEEC

Digniays Haeip infoemation for GeanhEdi,

Ay 1667 PMicroasft Corporalior. S riglh (s rese reed, Teras of Lise

[Previous | ome | opio Contents | index | Hext |

[Previous | Home | opio Cortents | index | Hext:

Using the Filter Graph Editor

Thig articte stens through how t0 open and use the Fiter Graph Editor (GraphEdit} to create
Fiter grachs and to piay them back, See About the DirectShow Fiiter Graoh Edior for an
introdeckion 1o Graph g,

190

DirectShow Basics Page 51 of 62

Contents of this article:

Starting GraphEdit

Creating a New Filter Graph
Running and Editing a Filter Graph
Viewing Properties in GraphEdit

Starting GraphEdit
Start GraphEdit in one of the following ways.

o Click Start, and then point to Programs. On the DirectX Media SDK version b5.x
submenuy, click GraphEdit.

+ Open the DXMedia\Tools folder (assuming the default installation directory for the
DirectX media SDK) and double-click the Graphedt icon.

+ Drag and drop a multimedia file, such as .avi or .mpg, onto the Graphedt icon.

Creating a New Filter Graph

This section discusses ways to create a new filter graph using GraphEdit. It contains the
following topics:

¢ Drag Files Onto GraphEdit

¢ Use the Open Command

¢ Use the Render Media File Command
¢ Manually Build a Filter Graph

Drag Files Onto GraphEdit

If GraphEdit is not running, you can drag a multimedia file, such as .avi or .mpg, onto the
Graphedt icon and GraphEdit will run and automatically build the filter graph for the media file.

If GraphEdit is already running, drag a multimedia file into its client area to have it
automatically build the filter graph.

Use the Open Command

Choose the Open command from the GraphEdit File menu, or choose the Qpen button from
the GraphEdit toolbar, to open a media file or saved filter graph file (.grf). GraphEdit
automatically generates the complete filter graph.

Use the Render Media File Command

You can use the GraphEdit Render Media File command to automatically generate the
complete filter graph for a multimedia source.

To generate a complete filter graph for a given source file perform the following steps:
1. On the File menu, click Render Media File.

2. From the "Select a file to be rendered” dialog box, choose a multimedia source file, such

191

DirectShow Basics Page 52 of 62

S5 & @V DG, OF way Fils,
3. LChick Gpers

GCranhEdi adds and connects aif Bitees neaded 1o render the sogrce fiie automaticaily,
#arzally Build a Filter Graph:

TO Ccragta an emeby Fitar geanh aod manuaity add Bitaes and connectinns, nacfomm the
Fpiignwing stans, THES xameds assumes wou want i oigy g Fie from your hard disk,

e About the DicactShow Fiter Granh EQRoe for information about how GraphEdi renresents
Fitars, ning, and connections granhlicatiy,

1. Gnthe Fila meng, cick Naw to Create a new Ritar grani,

2. {nthe Graph mend, click Ingert Filtars, GraphEdi dispiays the "Which Bilters do you
wartd t0 ingert?” digiog bok, which containg & kst of filker cateqorias,

3. CHeR the oigs symboi {4 immediagtely 10 the eff of the Divecthhow Fitars category 1o
sas the deon-down Hgt oF Filters, The nigs symboi becQmes @ minys symboi (-} whan tha
tigh ig exnanded, as the fgligwing digsteation shows, CHOR the mings symboi 80 conteadt
the kgt

i Which filters do you want to insert?

F- &udio Capture Sources e Insert Filters |
?- Audio Comprezsors
H- Audio Renderers m
'—_1 DirectShova Filkers -

ACH YWiapper

i fudio Synthesizer

i] Decompreszor

b BT Diraw

b AT b

b] Splitter

Fo AWLAWAN File Source

i Color Space Converter

i Cutlist File Source
Mt bl - :J

4, Selech File Souece (Agyndc Feom the Fiitee g [sorifing B nocessasy) and click tha Ingart
Filtars button, Because the Agyachrgnous Fiie Sogrce Filfar ragives an inoyt fie,
GraphEdit dispiays the "Seiect an inpyt file Tor this Filler 1o use” diging HOX,

5. Seiect @ muitimedia File that wou hawve on your hard disik (For RS exampie, agsume you
chogse @ file calied Jupider avi}, Click the Qper button, GraphEdi ingers 3 reciangis
Exbatag Joniar avi in g chiant geea, Thig ectangie reprasants tha Aoynchepnos Fia
Souece fiiter ang has a smali square atiached o g vight side, iabeied Outngt, which
raprasants the Bited's outout pin,

G, AL TR ooint, woul Couig right-CHOR the Agyag Bilfer's Qutngt oin ang chioose Randar from
the resuiting shortoyt mend 2o have GrachEdit render the rest oF the fiter geanh FOr Yo
automaticaity, Instead, continga by nserting a few more Fikers manuaily, From tha
“Which Fitters do wou want to insert?" dialog box, select the AVI Soldter Fiter, Like the
Fite Source (Agync} Biter, this fitter is isted in the DirectGhow Filers cateqory, Click
Ingart Filtars and GraphEdit inseets the AYI Soiftar fiitar in s client aeag. This fikor
FaEs Gne Nk pin, shown By 3 smatl square attached to the el side of the AYI Spidier
Fitar ractangia,

192

DirectShow Basics Page 53 of 62

7. Connect the Async File Source filter to the AVI Splitter filter as follows.

1. Click the Async filter's Output pin and drag to the AVI Splitter's input pin.
GraphEdit creates an arrow representing the connection between the filters, and
moves the arrow in response to the dragging operation.

2. Release the mouse button when the tip of the arrow head is over the small square
representing the AVI Splitter's input pin. The interior of the pin's square turns
black when the arrow head is in a valid location. After you've connected these
filters, the AVI Splitter filter sprouts one output pin for each stream in the file. If
Jupiter.avi contains an audio stream and a video stream, the pins will be labeled
Stream 01 and Stream 00.

8. At this point, you could right-click each of the AVI Splitter's output pins in turn and
choose Render to have GraphEdit render the rest of the filter graph for you
automatically. Instead, continue by inserting one more filter manually. From the "Which
filters do you want to insert?” dialog box, open the Audio Renderers filter category by
clicking on the plus symbol (+) immediately to the left of the Audic Renderers label.
Select a default audio renderer (for example, the Default WaveOut Device or Default
DirectSound Device if available) and click the Insert Filters button.

9. Connect the AVI Splitter's Stream 01 output pin by dragging from that pin and releasing
the mouse button when the arrowhead is over the input pin of the audio renderer.

10. You could continue to insert filters manually, much in the same way that you have so far.
Instead, right-click the AVI Splitter's Stream 00 output pin and choose Render to have
GraphEdit build up the rest of the filter graph for you automatically.

Running and Editing a Filter Graph

After you've built a filter graph as outlined in Creating a New Filter Graph, you can play or
pause the filter graph. To do s0, select Play or Pause from the GraphEdit Graph menu.

Play plays the filter graph. If the graph includes the video renderer filter, any video data (such
as a movie), plays in the video renderer window. If the filter graph includes an audio renderer,
any sound associated with the movie plays as well. Pause cues up data in the filter graph and
displays the first frame of video data, enabling playback to happen quickly if you later select
Play. When the filter graph is playing or paused, you can select Stop from the Graph menu to
stop playback.

You can also play, pause, or stop the filter graph by choosing the appropriate buttons from the
GraphEdit toolbar. See About the GraphEdit Toolbar for more information.

You can edit the filter graph when it is stopped. Select either a filter or connection between
filters by clicking the filter or connecting arrow. GraphEdit highlights the object by placing a
blue border around it. You can highlight multiple objects at once by clicking cutside an object
and dragging diagonally to create a selection rectangle. When you release the mouse button,
objects contained within the selection rectangle are highlighted. Press the peLeTe key to delete
a highlighted object or group of objects. Insert new filters by choosing Insert Filters from the
Graph menu, and make new connections as outlined in Manually Buil Fil

You can drag filters in the GraphEdit client area if you want to reposition them. You might want
to do this to make the filters fit on one screen without scrolling.

Viewing Properties in GraphEdit

GraphEdit enables you to view the properties of filters, pins, and connections. To view the
properties of an object such as a filter, right-click the filter and choose Properties from the
resulting shortcut menu. The options provided by a property sheet vary depending on the

193

DirectShow Basics Page 54 of 62

filter, pin, or connection. Typically, the property sheet for a filter includes tabs for its pins.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topie Contents | miex | ext _
[Previoss | Home | Topio Contents | miex | ext _

COM Overview

The Component Object Model (COM) is a binary standard that defines how objects are created
and destroyed and, most importantly, how they interact with each other. As long as
applications follow the COM standard, different applications from different sources can
communicate with each other across process boundaries. People use COM to make
communication with other applications easy.

Because COM is a binary standard, it is language independent. You do not have to use C++ to
implement COM. You can use any language that supports tables of function pointers.

A COM interface is a collection of logically related methods that express a single functionality.
For example, the IAsyncReader interface enables reading of MEDIATYPE_Stream data. All COM
interfaces derive from IUnknown, and all are named by a globally unique interface identifier
(1ID).

A COM class is an implementation of one or more COM interfaces, and a COM object is an
instance of a COM class. A Microsoft® DirectShow™ filter, for example, is a COM object. Each
object has a globally unique class identifier (CLSID).

Globally unique identifiers (GUIDs) are extremely long integers that identify COM interfaces
and objects, and are used to eliminate name collisions across applications.

All access to a COM object is through pointers to its interfaces. Interface methods are purely
virtual and are stored in a table called a vtable. The interface pointer points to the vtable's
beginning. A COM interface defines the parameter types and the syntax for each of its
methods. The COM class provides an implementation for each method of the interface.

Once a COM class has been defined and assigned a CLSID, you can create an instance of the
object. There are several ways to create an instance of the class, including using the COM
CoCreatelnstance or IClassFactory: :Createlnstance methods , or the C++ new operator.

When you create an instance of an object, the call returns a pointer to one of the object's
interfaces. Once you have an initial pointer to an interface on the object, you can use the
IUnknown: :QueryInterface method to find out whether the object supports another specific
interface, and, if s0, to get a pointer to that interface. COM supplies many standard interfaces
that support data storage and transfer, notification, and basic connectivity with other objects,
including IStream, IPropertyPage, and IMgoniker. DirectShow, in turn, adds its own COM
interfaces, such as IAMDirectSound, that clients of DirectShow objects can query for to
determine if the object supports a particular functionality. To use COM interfaces, clients must
know the interface definitions and the IID to query for (11D interfacename). For example,

194

DirectShow Basics Page 55 of 62

assume you have a pointer to a COM object’s IUnknown interface in the pUnknown variable.
You can query to see if the object supports IAMDirectSound with the following code.

hr=pUnknown-=>QueryInterface (IID_IAMDirectSound, (void **}&pIAMDSound) ;

IUnknown is the basic COM interface on which all others are based. IUnknown has three
methods—Querylnterface, AddRef, and Release—that implement interface querying and
reference counting. All COM interfaces inherit these three methods from IUnknown.

Reference counting is the technique by which an object (or, strictly, an interface) decides when
it is no longer being used and can therefore destroy itself. COM objects are dynamically
allocated from within the object and multiple clients can use them simultaneously. To avoid
wasting memory, the COM object must keep track of the number of clients using it, and
destroy itself when clients no longer need it. The number of clients using the object is
maintained in the reference count. Every time a new interface pointer to the COM object is
created, the client using the object must increase the reference count by calling AddRef on the
interface pointer. Every time a client destroys an interface pointer to the object, it must first
decrease the reference count by calling Release on the interface pointer.

Binding associates a method with a pointer to its memory location. At compile time, a COM
object's client is bound to the vtable locations of the object's interface methods. This is called
early binding. With some languages, such as Microsoft® Visual Basic®, a vtable interface is
difficult to access. Dispatch interfaces, identified by dispatch identifiers (DISPIDs), allow clients
to access member functions not by position in a vtable, but by a human-readable name.
Dispatch interfaces are accessed through the COM IDispatch interface and its Invoke method,
which converts the names of the dispatch interface's functions to DISPIDs. The client retrieves
the DISPIDs at run time. This is called late binding. To allow late binding, a COM object must
implement the IDispatch interface and a mapping of function names and function parameters
to a set of DISPIDs. In DirectShow, CBaseDispatch implements the IDispatch interface.

Marshaling is the process of passing function arguments and return values among processes
and machines. An in-process proxy packages arguments for the member function of an object
in another process, and generates a remote procedure call to the other process. In the other
process, a stub receives the call and unpacks the data, and calls the object through its
interface. Dispatch interfaces do not need proxies and stubs and so are easier to use than
vtable interfaces in out-of-process applications. Vtable interfaces, however, can be
considerably faster, particularly in in-process applications. You can also write dual interfaces
that have both tables of function pointers and dispatch interfaces. Dual interfaces can be
nearly as fast as vtable interfaces, while allowing the flexibility of dispatch interfaces.

For more information about how DirectShow uses COM, see DirectShow and COM. For general
information about COM, see the "COM" section in the Microsoft Platform SDK, or an
introductory book such as ActiveX OLE by David Chappell.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Uss.

[Previous | ome] Topie Contents | imiex | Wext |
[previous | ome] topic Contents | imiex | Wext |

195

DirectShow Basics Page 56 of 62

Overview of DVD Interfaces and Data Types

This article provides an overview of the DVD interfaces and data types used in Microsoft®
DirectShow™.

Contents of this article:
+ DVD Application-Level Interfaces

« DVD Decoder Filter Interfaces
¢ DVD Filter Graph Media Types, Formats, and Events

DVD Application-Level Interfaces
The following list shows DVD interfaces that media developers can use to create applications.

IAMLine21Decoder
Provides access to closed captioning information and settings. Closed captioning
information is transmitted in the vertical blanking interval (VBI) of television signals,
specifically on line 21 {Line21l) of field 1 in the VBL.

IDvdControl
Controls the playback and search mechanisms of a DVD-Video disc that contains one or
more video movies.

IDvdGraphBuilder
Enables the DVD application writer to easily build a filter graph for DVD-Video playback.

IDvdInfo
Enables an application to query for attributes of available DVD-Video titles and the DVD
player status. This interface also allows for control of a DVD player beyond Annex] in the
DvD specification.

IMixerPinConfig
Exposed on the input pins of overlay mixer filters and contains methods that manipulate
video streams in various ways. The overlay mixer filter contains multiple input pins that
are dynamically created as video input streams are added.

DVD Decoder Filter Interfaces

The following list shows DVD interfaces that developers can use to set and retrieve device and
sample properties.

IKsPropertySet
Enables you to set and retrieve device properties. Use this interface to set and retrieve
any of the properties from the following list.

+« DVD Copy Protection Property Set — These properties provide authentication of
copy protection information from hardware or software decrypters.

e DVD Subpicture Property Set — These properties control the color, contrast, and
output of the subpicture display.

e DVD Time Stamp Rate Change Property Set — These properties enable you to
change DVD playback rate, by modifying timestamps between input and output
pins on two filters.

IMediaSample2
Enables you to set and to retrieve sample properties. This interface is derived from the

196

DirectShow Basics Page 57 of 62

IMediaSample interface and uses the following data types:
¢« AM MEDIA TYPE structure — Describes a media sample type. This structure can
include the following substructures.

o VIDEOQINFOHEADERZ structure — Describes the bitmap and color information
for a video image, including interlace, copy protection, and pixel aspect ratio
information.

o MPEGZVIDEOINFO structure — Describes an MPEG-2 video stream.

¢« AM SAMPLE PROPERTY FLAGS enumerated type — Indicates values for the
dwSampleFlags member of the AM_SAMPLE2_ PROPERTIES structure.
e AM SAMPLEZ PROPERTIES structure — Generic media sample properties structure.
IVPConfig
Enables a video port (VP) mixer filter to communicate with a VP driver {decoder), to set
and retrieve configuration information. This interface assumes that the mixer filter
creates the video port.
IVPNotify
Enables you to control the properties of a filter that uses a video port. This interface
derives from the IVPBaseNotify interface.

DVD Filter Graph Media Types, Formats, and Events
The following articles provide more information about DVD:

¢ DirectShow DVD Support — Provides a diagram of a DVD filter graph and outlines the
media types and data formats used in each connection.

+ DVD Event Notification Codes — Describes DirectShow system-defined events, which
filters in the filter graph pass to the filter graph manager. Filters pass these events to the
filter graph manager by using the IMediaEventSink: :Notify method, and the application
retrieves them with the IMediaEvent::GetEvent method.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

previous | Home | ‘opic Contents | ndex | Hext |
" previous | ome | opio Contents | index | Hext |

About WDM Video Capture

This article provides an overview of video capture using the Microsoft® Windows® 98 and
Windows NT® Driver Model (WDM) and Microsoft DirectShow™. It describes the close
association between WDM video capture and DirectShow.

This article also briefly describes the close association between the Stream class and WDM
Connection and Streaming Architecture (CSA) and video capture minidrivers {which are clients
of the Stream class driver). However, you should have a basic understanding of these topics
before reading this article. For background information, see
http//www.microsoft.com/hwdev/pcfutur

Contents of this article:

197

DirectShow Basics Page 58 of 62

A Brief History of Windows Video Capture
WDM QOverview

WDM Video Capture Architecture

Filter Graph Configuration

Conclusion

New WDM Capture Interfaces and Filters

A Brief History of Windows Video Capture

Microsoft released Video for Windows 1.x in November 1992 for Windows 3.1 and optimized it
for capturing movies to disk. Since then, video capture rates have risen dramatically due to
use of the PCI bus, bus mastering controllers, NT striped sets, Fast/Wide SCSI, and direct
transfer of captured video from adapter memory to disk without data copies. Despite capture
rates that now exceed 20 MB per second, and a large number of clients for Video for Windows,
deficiencies in the Video for Windows architecture exposed by the emergence of video
conferencing required development of a new video capture technology.

The Video for Windows architecture lacks features important to video conferencing, television
viewing, capture of video fields, and additional data streams such as vertical blanking interval
(VBI). Vendors have extended Video for Windows by implementing proprietary extensions,
which are product specific, to circumvent these limitations. However, without standardized
interfaces, applications that use these features must include hardware-dependent code. The
tight coupling between Video for Windows capture drivers and display drivers means that
changes made to capture drivers require changes to display drivers as well.

In addition, the Video for Windows interface, AVICap, doesn't work well with DirectShow
because AVICap allocates buffers. If DirectShow is accessed through AVICap, the buffers
must be copied at the transition point, which is very inefficient. With the integration of digital
versatile disc (DVD), MPEG decoders, video decoders and tuners, video port extensions (VPE),
and audio codecs on single adapters, a unified driver model that supports all of these devices
and handles resource contention is needed.

WDM Overview

DirectShow supplies backward compatibility for Video for Windows applications without the
shortcomings of Video for Windows. WDM video capture aims to provide additional support for
the following: USB conferencing cameras, 1394 DV devices, desktop cameras, TV viewing,
multiple video streams support and VPE capture support. This support is provided through
kernel-based streaming.

WDM-based streaming extends the nonkernel streaming of DirectShow by providing a kernel
connection. Streaming services are processed by the WDM Streaming Class Driver and other
Cross-process system software components. The WDM Streaming Class Driver is also
responsible for calling a minidriver, which is a hardware-specific dynamic-link library (DLL)
provided by IHVs to support device-specific controls. The minidriver and the Microsoft-provided
WDM Streaming Class Driver work together to provide low-level services for the lowest latency
streaming, and DirectShow provides the higher-level features specific for your application.
Because the Stream class supports a uniform streaming model for standard and custom data
types, and supports data transfer between kernel drivers without requiring a transition to user
mode, it is a highly efficient mode to use.

Previously, DirectShow filters transmitted data to and from the kernel whenever necessary to

198

DirectShow Basics Page 59 of 62

gchieve things ke dechmoression oF rendearing, nfoetiinately, each oF these transitions of the
data strearm fom aser mode 80 Rernel mode was Bme-consuming baecause oF the transition
faeif, and bacguse OF pararmataer vaiidation, security vatidation, and possibly data cooying, that
FILLSE QOO

Thegug b kerned gtreaming, § stream makes fewer fransitions betwean gser and the Rernel
rmigde. It can be afher nartigiy oF antivaly oroduced and consimed in Beensei mods. Whan
SEreams are processed in Reenel mode, the DirectShow filfers marely expgse contegi
rechanisms 1o divect the streams, This greatly raduces the gverhead associated with
Fpneels transikbinng betweaan modes,

Fernel sEraams (a0 0855 data 1o the fiter geanh at aoorooriata ooints, dapanding on tha
gonication, The Wigwing diaggeam dstrates the brangition 0 gser mode.

Kernel Streaming

T DS filk Any of the streams can
i ok be directed to either

Kernel

Ll_gcnmpressed Cormpressed Closed Timecode T other
wideo id caption i
¥ideo 2 — k= filters

| Stream class |

Tuner,
Crosshar,
and Capture
minidrivers

Erreing vigeq captume, the steeam Cass passes ancompressed vide) data back 10 the vidan
caphura Fitar For weiting OF rendering, AlsQ, baguse Keenel streamng suongas miitinia
stragms, other Bynes OF data contained in the stream, sach as Bmecode or Ci0sed cantioning,
COL] be nassed un SEMUEanadushy,

WOD#M Vidao Captura Architacture

The Fpiigwing diagram shiws the three basic componants of the WDN capture architeciyne,

| DirectShow filker graph

User mode
| kernel mode

| Stream class driver

| Video capture minidriver |

Because the WDM capture architachure was designed to infegrate smoothly with DirectShow, i
5 steaightforwand 10 buid capture granhs in DisectShow by dsing WDM canture fitaes that
sang contrgl messaqes from DirecEShow intg the stregaming Cigss. The KSprowy.ax, Ksiune ax,
and Kgabar gx Biters, which gre scheduied to shin in the Windows 88 Device Deiver KE (DDRG,
angbie WDM streaming data, such as data feom dniversat Sedat Bus (HSE) conferancing
camearas, 1394 0¥ devicas, TV viewing, and Jeskins cameras, 10 be agsily contrgiiad and sant
By the Steegm Ciass to the DivectShgw Captyre granh, The foiigwing diageam demonsteates how
thace comoonents ara intaqgeatad intg tha bagic architectre,

199

DirectShow Basics Page &0 of 62

Capture Components

Applications
Directshow filker graph
KsTune Karbar ksCap Other DS
K ap .ax .ax .8 filters
Kernel Strearn class
. o : Tunet,
Tuner Crossbar Capture Crossbar,
rrinidriver | minidriver | minidriver [and Capture
rinidrivers
Provided by:
O Microsoft
oISy
@ IHY

Mote: You can have three separate minidrivers or a
single minidriver that does everything.

in this diagram, the Reoroy @), Kstune ax, Kgcbar g, ang other DirectShow fikers
commitnicate directly with the Stream Ciass. The Microsoft WM Stream ciass, through s
particination in {58, transports high-bandwidth, tme-stamped, iatency-sensitive data streams
batwean kernat moda comoonants or batwean kaenal moda devars angd gsae-mode
comoppnants, Thegagh 098, the Stream CRss works wall with DirectShow in that i shares
media tynes, has simiar streaming states [Ston, Pause, and Runj, and shares the same
concast oF ping and connections, Thig provides an easy transition oF data from the Stream class
to the Fitars in the fiter granh,

The Esoedwy.ax, Kstune ad, and Ksdbare g Biters aisd have suooiting minidebsaes {ge one
eminig vivar that suongrts gl three), Yideg capture minigdrivers are clients of the Stream Ciass
and corkent hardwaes devices that orodace streams oF vidao images and raiatad data, These
rmirigeivers orgvide the FQEQwing ranctiQraiity

» Cantive oF comprassed angd anogmpressed vides streams, vertical bigniing interal data,
timecode, and anciiagey data straams,

» Contegi oF devices associated with videg streams such as TY tunerg, vide routing
devicas, TV audin contegl, and video COMpressoes.

+ Compatibiy with WDM-L58,

Steaarn Cass video capture deivars Can Sunopet miitioie, simuianegus streams oF comorassed
grd wncomprassed videg, tenalode, cinsad cantitn, raw and decoded YEI Jata, a5 weil a5
custom data formats, For each date type that can be produced simuitanegushy with other data
tynas, the deiver shogid create 3 naw stream. The Stream Ciass exn0ses aach stream as 2
senarate WDM-COE pin, Each stream can be connacted o another WDM-LS4 kernei Fitar, or &
can make the fransition o user mode and figw on an outndt pin oFf 3 DivectShow dser-mode
Fiker, Each stream (or ping Can supnort @ variety oF different formats, For exampie, 3§ single pin
can provide RGELE, RGE24, VWS, and JPEG digital videg, For mgea information on
Finirivars sea the Wingdows B8 DOE,

Filter Grapl Corfiguration
The asstciation between DirectShow Filters ang {54 makes DivectZhow fiitees a nowerfui and

ezightively safe method for manipaiating data from a kernei mode Stream Class dever, The
Faibiity of DirectShow makes nmergus configurations of fikers possible, The Foligwing

200

DirectShow Basics Page 61 of 62

diagram Shows 0ne possibie configueation oF gsee-mode DirectShow fiiters for simyianegus
peayiew and canture OF vige) o disk,

Capture Application
Directshow Filter Graph

1AM Tuner 1AM Crossbar IaMAnalogWideoDecoder
IAMYideoP rocAmp

IAMCameraZontrol
Cable &— Tuner | | Uncompressed video .
Antenna o—] filter Wideo ; Yideo
. L | capture Cornpressed video renderer
S-\ideo CO—m8——————— filter | Timecode or oc filter
Cormpl (O—mo-———— A
Comp2 (— | Crosshar i File
filter . filker [W,“ter
o O Audio : filter
I capture | Audio
filter
21 S-Widend
1 Cormpl

inthis diagram, an incoming TV signat can be tunad inowith the Tuner Bitar and rputad with
the {Jrosshar Fiter, The Filter geanh passes data in varigus streams to the vided or audio
caphura Fitars £0 be saved On disk, This inchudes audio straams, video straams, and any othar
ancitary data in varous streams such a5 SMPTE timecde or closed caotioning data,

Lo Egicn

WM vided cantitrs was designed 1o resobe the pepblams inherant in the Viden for Windows
grchitactra, Tha main agdvantages of WDM vigen captira ara:

o 32 b deivars,

* Synerqgy between DirectShow and 54,

+ Singie ciass debver aechiteciure For haedware (such a5 video ports and chio sats) that is
shared bebween videg capture devices and DVD/MPES devices,

= Teievigion tunee, oyt seiaction, and suonoet for fleids, WBI, and videg nort extensions
{¥PL},

+ One deiver works gn both Windows B8 angd NT piatforms,

Becgdse OF the igrge instalied base OF Vige for Windows apnications, Yigdeg for Windows
deivers wili contings B be gsed for devices That are orimarily used for canturing maovies,
Yergign 1. 1e of Yideo For Wingdows currentiy shing in Windows S8 0 orovide gpepting systam
SHenOet e Bhase devices, Howeyver, tha WD wvide) caotuee aechifaciurs pegyvides gotimat
sHpnQet For capbure devicas wsed primariy for TY wviewing and vided conferancing.

Maw WOM Capture Interfaces and Filtars
Some of the new WDM capture inferfaces exposed by the kernel gtreaming filters are

IAMTVYTuner, IAMCrosshar, TAMAnalogYidecEncoder, IAMAnalegVidecDacodar,
IAMVideoPeocime, and IAMCameralonterol.

Some of the new Windows 98 video capture Fikars for WDM are Egpeoudy i, Kgtune g%,
Howbarad, See the Windows S8 DDE fore miges infoemation gn these filkaes,

201

DirectShow Basics Page 62 of 62

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | tHome | Topie Contents | miex | ext _

202

Application Developer's Guide Page 1 of 106

[Previous | Home | Topic Contents | iniex | Hext

Application Developer's Guide

If you are creating an application that uses DirectShow components, read the articles in this
section. These articles pertain to writing applications in both C and Microsoft® Visual Basic®.

*How to...
=Clocks

=Controlling Filter Graphs Using C

=Creating a Capture Application

=About Cutlists
=Usin I

=DVD for Title Vendors

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,
[iome | [ndex | Hext |

How to...

This section gives step-by-step procedures for creating applications, adding features to
applications, and registering DirectShow objects. Topics include how to play a movie from C++,
how to build an application in Visual C++, how to display a filter's property page, and how to
use multimedia streaming, control the video playback window, or enumerate hardware devices
from an application.

=Play a Movie from C++

=Control the Video Playback Window from C++

=Display a Filter's Property Page from C++

=Use Multimedia Streaming in DirectShow Applications

=P Movie in a Window Using DirectDrawEx and Multimedi reamin

203

Application Developer's Guide Page 2 of 106

=Control an External Device in DirectShow

=Buil Filter or Application with Vi IC++ 5.x

*Recompress an AVI File

=Register DirectShow Objects

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome] topic Gonients | miex | Wext |
[Previous | ome] topic Contents | imiex | Wext |

Play a Movie from C++

This article walks through a simple C++ program designed to demonstrate one way to play
movies. It is based on the PlayFile function code, taken from the Playfile.cpp file, which you
can find in the Playfile sample in the Samples\ds\plaver directory.

The PlayFile function has no control over the filters selected by the filter graph manager to play
the input media file or over the playback window created. This article contains the following
sections.

+ Plaving a Media File — the basic code to play back a media file.
¢ Adding Media Seeking — shows the code needed to seek to a particular location in the
media file.

See these related sections to add a particular feature to your playback code:

¢ Control the Video Playback Window from C++ — demonstrates how to set the playback
window's style and position.

+ Display a Filter's Property Page from C++ — demonstrates how to display a filter's
property page, so that the user can change how media files are played back.

Playing a Media File

This section explains the code needed to play a media file from within C/C++. The Playfile
sample contains Playfile.cpp and demonstrates how to create an application window, display a
menu to open a media file, and call the PlayFile function to play the media file. You can
examine the Playfile application in the Samples\ds\player\Playfile directory to see how to use
the PlayFile function. To learn how to build the Playfile sample from Visual C++ 5.x, see
Setting the Visual Studio Include and Lib Directories.

The PlayFile function plays a specified file in a playback window. This function uses the filter

204

Application Developer's Guide Page 3 of 106

graph manager to automatically render the media clip. The filter graph manager selects the
appropriate filters and constructs the filter graph.

PlayFile function code demonstrates:

Basic interfaces needed to play and control a media file.

Instantiating the filter graph manager.

Calling the filter graph manager to build the filter graph that renders the media file.
Playing the media file.

Accessing events to tell when the playback is finished (media file ended).

After any function call that retrieves an interface pointer (CoCreatelnstance, RenderFile, and
QuerylInterface), vou should insert error-checking code to make sure the interface pointer was
successfully obtained; if it wasn't, release any interfaces pointers already obtained. An
example of error-checking code is:

if (FAILED (hr)) {
goto ObjectRelease; // go to the clean-up section

You can call the PlayFile function from an application with code such as the following:

TCHAR *szFilename = "c:\\dxmedia\\movie\\movie.avi";
PlayFile(szFilename) ;

Perform the following steps to play a media file from within C/C++. You don't necessarily have
to perform the steps in the order presented.

1. Include the necessary headers.

#include <«windows.h:
#include <mmsystem. h>
#include <streams.hs
#include "playfile.h"

2. Define a windows message constant and the HELPER RELEASE macro, which will be used
to release the interfaces from the WndMainProc callback (see the Playfile code for generic
window code).

#define WM_GRAPHNOTIFY WM_USER+13
#define HELPER RELEASE (x) T if (x) x-»>Release(); x = NULL; }

3. Declare variables.

HWND ghipp;
HINSTANCE ghInst;
HRESULT hr;

LONG evCode;
LONG evParaml;
LONG evParamz2;

205

Application Developer's Guide Page 4 of 106

The ghApp variable is the handle of window to notify when the graph signals an event.
The ghlnst variable is the HINSTANCE of the window. The evCode variable will hold the
event code, and the evParaml and evParamZ variables will hold the event parameters.

4, Declare and initialize the necessary interfaces. The reference count of the interfaces is
automatically incremented on initialization, so you don't need to call the
IUnknown:: AddRef method on them. For this example, you need only the four interfaces
shown in the following code. For more information, see the documentation for the
IMediaEventEx, IGraphBuilder, IMediaControl, and IVideoWindow interfaces.

IGraphBuilder *pigb = NULL;
IMediaContrcl *pimc = NULL;
IMediaEventEX *pimex = NULL;
IVideoWindow *pivw = NULL;

5. Define the function. The szFile parameter is the name of the media file that will be
played.

vold PlayFile (LPSTR szFile)

HRESULT hr;

6. Create a Unicode {(wide character) string from the input file name.

WCHAR wFile[MAX_PATH];
MultiByteToWideChar{(CP_ACP, 0, szFile, -1, wFile, MAX PATH);

7. Instantiate the filter graph manager, asking for the IGraphBuilder interface.

hr = CoCreateInstance(CLSID FilterGraph,
NULL,

CLSCTX INPROC SERVER,

IID_ IGraphBuilder,

(vold **)&pigb);

8. Query for the IMediaControl interface (provides the methods to run, pause, and stop the
playback), the IMediaEventEx interface (so you can receive event notifications), and the
IVideoWindow interface to hide the window when the movie is finished playing.

pigb->QueryInterface (IID_IMediaControl, (void **)&pimc);
pigb->QueryInterface (IID_IMediaEventEx, (void **)&pimex);
pigb->QueryInterface (IID_IVideoWindow, (void #**)&pivw) ;

9. Ask the filter graph manager to build the filter graph that renders the input file. This
does not play the media file. (When you play the file with Run, the filter graph will
automatically render the input file's media type. You do not have to specify a renderer
filter.)

hr = pigb->RenderFile{wFile, NULL}) ;

206

Application Developer's Guide Page 5 of 106

10. Use a window to capture graph signal events. This not only improves performance, but
allows your application to run in any threading model.

pimex->SetNotifyWindow ((OAHWND) ghApp, WM _GRAPHNOTIFY, 0);

The window specified by ghdpp will handle messages in response to all events from the
graph. If an event occurs, DirectShow posts a WM_GRAPHNOTIFY message to the
window.

11. Start playing the media file.

hr = pimc-=Runf(; ;

Alternatively, if your playback had a pause or stop button (see, for example, the CPlay
sample or Controlling Filter Graphs Using C), you can pause or stop the playback on the
button event with the IMediaControl: :Pause or IMediaControl::Stop method, as shown in
the following code.

hr
hr

pimc-=Pause () ;
pimc-=Stop() ;

The WndMainProc callback function in Playfile handles the filter graph messages and releases
the interfaces when necessary, using the HELPER RELEASE macro. The GetClipFileName
function gets the movie to be played, while the WinMain function creates the window. These
are all generic windows functions.

This section showed how to play a media file from the beginning. The next section shows how
to control where within a media file to start and stop playing.

Adding Media Seeking

You can use the IMediaPosition or IMediaSeeking interface to seek to a particular place in your
media file. The IMediaPosition::put CurrentPosition method enables you to specify a start time
within the media file. For example, you can use the following code to rewind to the media file's
beginning.

IMediaPosition *pimp;
hr pigb-=QueryInterface (&IID_IMediaPosition, (void **)&pimp);
hr pimp->put_ CurrentPosition (0) ;

Time is specified in 100-nanosecond units. The following code seeks into the media file 1
second:

hr = pimp-=put_CurrentPosition(100000600) ;

You can use the IMediaPosition:: put StopTime method to set the time within the media file to
stop playback.

However, with IMediaPosition you can seek only to times within a media file. With the

207

Application Developer's Guide Page 6 of 106

IMediaSeeking interface, you can set your seeking time format to 100-nanosecond time units,
frames, bytes of data, media samples, or interlaced video fields. You set the format you want
to use with the IMediaSeeking::SetTimeFormat method. Make sure your media file is not
playing when you the set the format.

The term media time refers to positions within a seekable medium. Media time can be

expressed in a variety of units, and indicates a position within the data in the file. The

following table shows the possible media time formats.

Value Description

TIME _FORMAT MEDIA TIME Seeks to the specified time in the media file, in 100-nanosecond
units. This is the default.

TIME_FORMAT BYTE Seeks to the specified byte in the stream.
TIME_FORMAT FIELD Seeks to the specified interlaced video field.
TIME_FORMAT FRAME Seeks to the specified video frame.

TIME_FORMAT SAMPLE Seeks to the specified sample in the stream.

For example, the following code sets the format so that the application seeks for sample
numbers.

IMediaSeeking *pims;
hr pigb->QueryInterface (IID_IMediaSeeking, (void **)&pims);
hr pims->SetTimeFormat (&TIME_FORMAT SAMPLE) ;

An application can use the various seeking modes to seek in a stream to a particular video

frame or audio sample without doing time/rate conversions itself. This is useful for editing,

which requires sample-accurate playback. The frame or sample number that the application
specifies is passed through to the AVI or MPEG parser without the risk of rounding errors.

The following steps show how to set which frame in a media file to start playing at and which
frame to stop playing at; for example, to start playing a movie at the fifth frame after its
beginning. You can insert this code into the PlayFile function anywhere after the RenderFile
function has built the filter graph.

1. Access the IMediaSeeking interface.

IMediaSeeking *pims;
hr = pigb-=QueryInterface (IID_ IMediaSeeking, (void **)&pims);

2. Set the time format. In the following example, the time format is set to seek to frames.

hr = pims->SetTimeFormat (&TIME_FORMAT FRAME) ;

3. Declare and initialize the media-seeking variables. In this case, they are frames within
the media file to start and stop playback. The following values set the start frame to 5
and the stop frame to 15,

LONGLONG start = 5L;
LONGLONG stop = 15L;

4, Set the start and stop media time with the IMediaSeeking: :SetPositions method. The

208

Application Developer's Guide Page 7 of 106

AM_SEEKING_ AbsolutePositioning flag means that the start and stop frames are absolute
positions within the media file {not relative to the present position in the media file). In
this example, the media file will start playing at frame 5 into the file and stop at frame
15, for a duration of 10 frames. The length of playing time depends on the video's frame
rate.

pims->SetPositions (&start, AM SEEKING AbsoclutePositioning, &stop,
AM SEEKING AbsolutePositioning) ;

5. Release the IMediaSeeking interface.

pims-=Release () ;

By removing the SetTimeFormat call and setting the values of start and stop as follows, you
can set the media file to start playing 5 seconds into the file and stop 7 seconds into the file,
for a duration of 2 seconds.

LONGLONG start = 50000000L;
LONGLONG stop = 70000000L;

By setting other formats in the SetTimeFormat call, you can seek to frames, sample numbers,
byte, and so on.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topio Contents | miex | hext
[Previous | Home | Topic Contents | insex | Hext

Control the Video Playback Window from C++

This article walks through a simple C++ program designed to demonstrate one way to play
movies in a particular playback window. It is based on the PlayMovieInWindow function code
taken from the InWindow.cpp file, which is available in the InWindow sample in the
Samples\ds\player directory. This function is based on the Playfile sample, but has been
expanded to show how an application can control the size and style of the video playback
window.

See these related sections if you want to play back media files or display a property page:

+ Play a Movie from C++ — demonstrates the basic code for playing back a media file.

¢ Adding Media Seeking — shows the code needed to seek to a particular location in the
media file.

¢ Display a Filter's Property Page from C++ — demonstrates how to display a filter's
property page, so the user can change how media files are played back.

209

Application Developer's Guide Page 8 of 106

Perform the following steps to play a video file in a particular window from within C/C++. You
don't necessarily have to perform the steps in the order presented.

1. Include the necessary headers.

#include <«windows.h:
#tinclude <mmsystem.h=
#include <streams.hs
#include "inwindow.h"

2. Define a windows message constant and the HELPER RELEASE macro, which will be used
to release the interfaces from the WndMainProc callback (see the InWindow code for
generic window code).

#define WM_GRAPHNOTIFY WM_USER+13
#define HELPER RELEASE (x) T if (x) x-»>Release(); x = NULL; }

3. Declare variables.

HWND ghZpp;
HINSTANCE ghInst;
HRESULT hr;

LONG evCode;
LONG evParaml;
LONG evParamz2;
RECT grc;

The ghApp variable is the handle of window to notify when the graph signals an event.
The ghlnst variable is the HINSTANCE of the window. The evCode variable will hold the
event code, and the evParaml and evParamZ variables will hold the event parameters.
The grc variable will hold the coordinates of the parent window's client area.

4, Declare and initialize the necessary interfaces. The reference count of the interfaces is
automatically incremented on initialization, so you don't need to call the
IUnknown::AddRef method on them. For this example, you need only the four interfaces
shown in the following code. For more information, see the documentation for the
IMediaEventEx, 1GraphBuilder, IMediaControl, and IVideoWindow interfaces.

IGraphBuilder *pigb = NULL;
IMediaContrcl *pimc = NULL;
IMediaEventEx *pimex = NULL;
IVideoWindow *pivw = NULL;

5. Define the function and declare variables. The szFile parameter is the name of the video
file that will be played.

voild PlayMovieInWindow (LPCTSTR szFile)

{

6. Create a Unicode (wide character) string from the input file name.

210

Application Developer's Guide Page 9 of 106

WCHAR wFile[MAX_PATH];
MultiByteToWideChar{ CP_ACP, 0, szFile, -1, wFile, MAX PATH);

7. Instantiate the filter graph manager, asking for the IGraphBuilder interface.

hr = CoCreateInstance(CLSID FilterGraph,
NULL,

CLSCTX_INPROC_SERVER,

IID _IGraphBuilder,

(void **)&pigb);

8. Query for the IMediaControl interface (provides the methods to run, pause, and stop the
playback), the IMediaEventEx interface (so you can receive event notifications), and the
lvVideoWindow interface to hide the window when the movie is finished playing.

pigb->QueryInterface (IID_IMediaControl, (void **)&pimc);
pigb->QueryInterface (IID_ IMediaEventEx, (vold **)&pimex);
pigb->QueryInterface (IID_IVideoWindow, ({(void **)&pivw);

9. Ask the filter graph manager to build the filter graph that renders the input file. This
does not play the media file. (When you play the file with Run, the filter graph will
automatically render the input file's media type. You do not have to specify a renderer
filter.)

hr = pigb->RenderFile{wFile, NULL}) ;

10. Set the ownership of the playback window. This sets ghApp as the owning parent.

pivw->put_ Cwner ((QAHWND) ghZpp) ;

11. Set the style of the videg window. This step is very important, and you must specify the
WS CHILD, WS CLIPCHILDREN, and WS CLIPSIBLINGS flags.

pivw->put_wWindowStyle (WS_CHILD | WS_CLIPCHILDREN | WS_CLIPSIBLINGS) ;

12. Get the coordinates of the parent window's client area.

GetClientRect (ghkpp, &gre);

13. Set the playback window's position within parent's client area. In this case, the playback
window fills the client area. If the video being played is smaller than the playback
window it will be stretched to fit the window. If the video is larger, it will be compressed
to fit the window.

pivw->SetWindowPosition{grc.left, grc.top, grc.right, grc.bottom);

14. Start playing the media file.

211

Application Developer's Guide Page 10 of 106

hr = pimc->Run(} ;

The InWindow sample uses the same GetClipFileName function to get the movie to be played
and the same the WinMain function to create the window as the Playfile sample.

The InWindow WndMainProc callback function is similar to the Playfile WndMainProc used to
handle the filter graph messages and release the interfaces when necessary, with one
important difference. The WndMainProc function in InWindow calls the

IVideoWindow: :put Owner method with a NULL value for its parameter. You must do this
before releasing the IGraphBuilder interface and before the video window is destroyed.
Otherwise, messages will continue to be sent to the video playback window but it will have no
parent to forward the messages to, so errors will likely occur.

pivw->put_ Owner (NULL} ;

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

Display a Filter's Property Page from C++

This article walks through a simple C++ program designed to demonstrate how to request a
filter to display its property page. It is based on the MPegProp function code in the
MPegProp.cpp file, which you can find in the MPegProp sample in the Samples\ds\player
directory.

This code displays the property page of the MPEG video decoder. This filter has a property page
that enables you to play MPEG files in color or monochrome. You can see this filter's property
page by opening the Filter Graph Editor, choosing the Insert Filters command from the
Graph menu, selecting MPEG Video Decoder from the DirectShow Filters list, and clicking
the Insert Filters button. After you've inserted the filter, right-click anywhere on it to display
its property page.

See these related sections if you want to play back media files or specify the video playback
window:

e Play a Movie from C++ — demonstrates the basic code for playing back a media file.

¢ Adding Media Seeking — shows the code needed to seek to a particular location in the
media file.

+ Control the Video Playback Window from C++ — demonstrates how to display a filter's
property page, so the user can change how media files are played back.

Perform the following steps to control the MPEG video decoder's property page in C/C++. You
don't necessarily have to perform the steps in the order presented.

212

Application Developer's Guide Page 11 of 106

1. Include the necessary headers.

#include <«windows.h:
#include <mmsystem. h>
#include <«streams.h:
#include "playfile.h"

2. Define a windows message constant and the HELPER RELEASE macro, which will be used
to release the interfaces from the WndMainProc callback (see the MPegProp code for
generic window code).

#define WM _GRAPHNOTIFY WM_USER+13
#define HELPER RELEASE(x) { if (x) x-»Release(); x = NULL; }

3. Declare variables.

HWND ghipp;
HINSTANCE ghInst;
HRESULT hr;

LONG evCode;
LONG evParaml;
LONG evParamz2;

The ghApp variable is the handle of window to notify when the graph signals an event.
The ghlnst variable is the HINSTANCE of the window. The evCode variable will hold the
event code, and the evParaml and evParam?2 variables will hold the event parameters.

4, Declare and initialize the necessary interfaces. The reference count of the interfaces is
automatically incremented on initialization, so you don't need to call the
IUnknown:: AddRef method on them. For this example, you need only the four interfaces
shown in the following code. For more information, see the documentation for the
IMediaEventEx, IGraphBuilder, IMediaControl, and IVideoWindow interfaces.

IGraphBuilder *pigb = NULL;
IMediaContrcl *pimc = NULL;
IMediaEventEX *pimex = NULL;
IVideoWindow *pivw = NULL;
IFilterGraph *pifg = NULL;
IRBaseFilter *pifPP = NULL;

ISpecifyPropertyPages *pispp = NULL;

5. Define the function and declare variables. The szFile parameter is the name of the MPEG
video file that will be played.

vold MpegProp (LPSTR szFile)

6. Create a Unicode (wide character) string from the input file name.

213

Application Developer's Guide Page 12 of 106

WCHAR wFile[MAX_PATH];
MultiByteToWideChar{ CP_ACP, 0, szFile, -1, wFile, MAX PATH);

7. Instantiate the filter graph manager, asking for the IGraphBuilder interface.

hr = CoCreateInstance(CLSID FilterGraph,
NULL,

CLSCTX_INPROC_SERVER,

IID _IGraphBuilder,

(void **)&pigb);

8. Query for the IMediaControl interface (provides the methods to run, pause, and stop the
playback), the IMediaEventEx interface (so you can receive event notifications), and the
lvVideoWindow interface to hide the window when the movie is finished playing.

pigb->QueryInterface (IID_IMediaControl, (void **)&pimc);
pigb->QueryInterface (IID_ IMediaEventEx, (vold **)&pimex);
pigb->QueryInterface (IID_IVideoWindow, ({(void **)&pivw);

9. Ask the filter graph manager to build the filter graph that renders the input file. This
does not play the media file. (When you play the file with Run, the filter graph will
automatically render the input file's media type. You do not have to specify a renderer
filter.)

hr = pigb->RenderFile{wFile, NULL}) ;

10. Use a window to capture graph signal events. This not only improves performance, but
allows your application to run in any threading model.

pimex->SetNotifyWindow ((OAHWND) ghApp, WM _GRAPHNOTIFY, 0);

The window specified by ghdpp will handle messages in response to all events from the
graph. If an event occurs, DirectShow posts a WM_GRAPHNOTIFY message to the
window.

11. Query for the IFilterGraph interface. Through IFilterGraph, you will retrieve a pointer to
the IBasefFilter interface on the MPEG Video Codec filter. The easiest way to find the
single MPEG video codec in the graph is through IFilterGraph: :FindFilterByNarme.

pigb-=QueryInterface (IID IFilterGraph, (void **)&pifg);

12. Use FindFilterByName to find the MPEG Video Codec. This method returns a pointer
(8pifPP) to the IBaseFilter interface on the MPEG Video Codec.

hr = pifg->FindFilterByName (L"MPEG Video Codec", &pifPP);

13. Retrieve the ISpecifyPropertyPages interface for the MPEG Video Codec. This filter has a
property page that enables you to play MPEG files in color or monochrome.

214

Application Developer's Guide Page 13 of 106

14,

15.

16.

17.

18.

pif-=QueryInterface (IID ISpecifyPropertyPages, (void **)&pispp);

Allocate a counted array of GUIDs for the property page. The

ISpecifyPropertyPages.: :GetPages method uses the COM CAUUID structure to receive an
array of CLSIDs from the filter for each of its property pages. The structure has two
members, cElems, which holds the number of property pages, and pElems, which points
to an array holding the property page CLSIDs.

CAUUID caGUID;

Using the pointer to the MPEG Video Decoder filter's property page, pispp, call the COM

ISpecifyPropertyPages: :GetPages method to fill the caGUID structure with a counted
array of UUIDs, where each UUID specifies a property page CLSID.

pispp-=>GetPages (&caGUID} ;

Release the ISpecifyPropertyPages interface.

HELPER RELEASE (pispp) ;

Create a modal dialog box to display the MPEG Video Decoder filter's property page. This
dialog box appears before the video is played, enabling the user to choose to play back in
color or monochrome.

OleCreatePropertyFrame (NULL,

OI

OI

L"Filter", // Caption for the dialog box

1, // Number of filters

{IUnknown **)&pifPP, // Pointer to the filter whose property

Pages are being displayed. This can

// be an array of pointers if more than
// one filter's property pages are to
// be displayed. Note that only
// properties common to all the filters
// can be displayed on the same modal

// dialog.
caGUID. cElems, // Number of property pages
caGUID.pElems, // Pointer to property page CLSIDs

0,
OI
NULL) ;

Release the IBaseFilter interface.

HELPER_RELEASE (pifPP) ;

The MPegProp sample uses the same WndMainProc callback function to handle the filter graph
messages, the same GetClipFileName function to get the movie to be played, and the same the
WinMain function to create the window as the Playfile sample. These are all generic windows

215

Application Developer's Guide Page 14 of 106

functions.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topie Contents | miex | ext _
[Previoss | Home | Topio Contents | miex | ext _

Use Multimedia Streaming in DirectShow
Applications

This section describes and demonstrates how to support multimedia streaming in Microsoft®
DirectShow™ applications. DirectShow applications typically use multimedia streaming to send
audio and video data directly to a Microsoft DirectDraw® surface for rendering, instead of
attaching playback to a specific window. This section has short conceptual explanations of
windowless playback and multimedia streams, as well as additional detail on the multimedia
streaming architecture and a minimal code demonstration of using streams to perform
windowless playback of DirectShow-supported media files.

This section contains the following topics.
¢ Windowless Playback

¢ Multimedia Streams
¢ Code Walk-through of a Simple Application

Programmers who want to use multimedia streaming in their applications should be familiar
with COM programming concepts, DirectDraw and its associated objects, and DirectShow media
playback. For information on DirectDraw, consult the Microsoft DirectX SDK documentation.
The DirectShow SDK documentation includes many examples of media file playback using
C/C++; see About DirectShow and the included samples for more information. If you need
information on programming with COM and OLE, consult reference materials such as Inside
OLE by Kraig Brockschmidt or Understanding ActiveX and OLE by David Chappell.

Windowless Playback

Typically, applications display their video output in a clearly bounded rectangle, — the window.
Each window has certain properties in common with other windows, such as menus, close
buttons, and so forth. This shared behavior is helpful because it provides a measure of
consistency and reliability to programming procedures and the user interface. DirectShow
typically uses windows for media playback, because of the low programming overhead and
consistent interface. However, there are a number of situations where an application developer
wants to divorce media playback from the window and gain complete control over its
appearance. For example, if you were creating a three-dimensional computer model of a
museum tour, complete with moving exhibits and an animated tour guide, it would not be
appropriate (or lifelike) to show each element of the tour in a separate window; you would
need to integrate all of the elements together into a single presentation. By attaching the
media playback to a DirectDraw surface instead of a window, you gain complete control over its
appearance and behavior.

216

Application Developer's Guide Page 15 of 106

DirectDraw surfaces represent a portion of a system's video memory. Once you designate a
surface as the destination of a movie's video data, you can blit the data to the surface in the
same way you would normally blit color and texture information. Because it is a normal
DirectDraw surface, you can manipulate it in any manner supported by the DirectDraw
interfaces; you can play it back as the background of a game, texture map it into a three-
dimensional environment, and so forth. While this level of control adds some programming
overhead to your application, these effects would be impossible to do in a normal window.

Multimedia Streams

Audio and video data is, at its most basic, a sequence of information that specifies
characteristics like color, resolution, frequency, and volume. Because there are a large number
of devices and data formats related to media, moving data from its origin to its destination is a
very convoluted process; yvou must know exactly how the original device formats its
information, what characteristics the display format has, and how to convert the device
information from its original format to a format suitable for rendering or storage. Because the
exact steps in this process are different for every device, it is often difficult to handle multiple
devices (such as a video camera, movie data file, and Internet URL) in a single application.
Applications can, however, avoid much of this difficulty by using multimedia streaming as the
data source. The streaming architecture automatically handles the process of data conversion
and formatting, producing a consistently formatted data source ready for rendering or file
storage. Thus, applications only need to handle the presentation of the data and not the data
conversion.

Code Walk-through of a Simple Application

Using multimedia streams in a DirectShow application is fairly straightforward; the following
steps describe the process.

1. Open a media file that DirectShow supports.

2. Create a multimedia stream for each of the file's media types; typically, this will be one
video and one audio stream.

3. Create a DirectDraw surface and associate it with the video stream.

4. Render the stream data, which will then play back on the surface.

The following code sample, which you can find in its entirety in the \Streams\Simple\Main.cpp
file included with the DirectShow SDK, demonstrates these steps. The complete file comprises
three functions: OpenMMStream, RenderStreamToSurface, and main. OpenMMStream creates
the audio and video multimedia streams from the media file, RenderStreamToSurface does the
actual surface rendering, and main calls the other two functions appropriately. Because this
example is a command-line application, you must supply the name of the media file as a
parameter when you run the program. In Main.cpp, the following macro handles error
checking.

#define CHECK ERROR () 5\

if (FAILED(hr = (x))} { \
printf (#x " failed with HRESULT (0x%8.8X)\n", hr); \

goto Exit; \

}

Each application that uses multimedia streaming must include the correct header files. The
following list contains the stream-related header files from Main.cpp; the DirectShow SDK
includes all of these header files.

217

Application Developer's Guide Page 16 of 106

#include "ddraw.h" // DirectDraw interfaces

#include "mmstream.h" // Multimedia stream interfaces

#include "amstream.h" // Directshow multimedia stream interfaces
#include "ddstream.h" // DirectDraw multimedia stream interfaces

The code in Main.cpp is intended to be the minimum amount of programming necessary to
implement multimedia streams, so it is appropriate to read it as a series of required steps. The
following instructions illustrate all of the important concepts from Main.cpp, but don't
necessarily include every line of code. For the complete code, refer to Main.cpp.

Creating a Multimedia Stream Linked to a DirectShow File

To create a multimedia stream and link it to a media file, perform the following steps. You do
not necessarily need to perform the steps in the given order.

1) The OpenMMStream function creates a multimedia stream and attaches the stream to a
valid input media file. The pszFileName parameter specifies the name of the media file, whose
type DirectShow must support. The pDD parameter specifies an IDirectDraw interface that
points to the destination DirectDraw object. When this function creates the multimedia stream,
it attaches the stream's video portion to the object by using this pointer. The ppMMStream
parameter represents a global stream pointer. Once this function creates a valid local stream,
it points this parameter to the stream so other functions can use the stream as needed.

HRESULT OpenMMStream{const char * pszFileName, IDirectDraw *pDD,
IMultiMediaStream **ppMMStream) {

2) Declare a local IAMMultiMediaStream pointer, create a stream object, and initialize it. You
should use the local pAMStream pointer during the stream's creation; don't use the global
ppMMStream pointer until you are sure the stream and its media file are valid.

*ppMMStream = NULL; // Initialize global stream pointer to null
IAMMultiMediaStream *pAMStream;
HRESULT hr; // Function's return value

CHECK_ERRCR (CoCreatelInstance (CLSID AMMultiMediaStream, NULL,
CLSCTX_INPROC SERVER, IID_IAMMultiMediaE
{volid **)&pAMStream)} ;
CHECK_ERROR(pAMStream—>Initialize(STREAMTYPE_READ,
AMMSF NOGRAPHTHREAD, NULL}) ;

3) Now that you have a stream object, add a single audio and video stream to it; typically, you
need only these two streams for media file playback. When the

IAMMultiMediaStream: : AddMediaStream method receives the MSPID PrimaryVideo flag as its
second parameter, it uses the pointer in the first parameter as the destination surface for
video playback. The audio stream needs no such surface, however, so you pass NULL as the
first parameter when you add audio streams. The AMMSF_ADDDEFAULTRENDERER flag
automatically adds the default sound renderer to the current filter graph.

CHECK_ERRCR (pAMStream->AddMediaStream(pDD, MSPID PrimaryVideo, ¢, NULL));
CHECK_ERROR (pAMStream->2AddMediasStream (NULL, MSPID_ PrimaryAudio,
AMMSF ADDDEFAULTRENDERER, DI

218

Application Developer's Guide Page 17 of 106

4} Convert the provided file name to a wide (Unicode) string and open the file. If the file name
specifies a valid media file, DirectShow attaches the audio and video tracks to the streams you
created earlier in the function. Point the ppMMStream parameter to the stream and increment
the pointer's reference count.

WCHAR wPath [MAX PATH] ; // Wide (32-bit) string name
MultiByteToWideChar (CP_ACP, 0, pszFileName, -1, wPath,
sizeof (wPath) /sizeof (wPath[0])) ;

CHECK_ERRCR (pAMStream->OpenFile (wPath, 0));
*ppMMStream = pAMStream; // Set global pointer to local pointer
pAMStream- =AddRef () ; // Add a reference to the file

Now that you have valid streams and a pointer to them, this function is complete.
Render the Video Data to a DirectDraw Surface

To render the video portion of a multimedia stream to a DirectDraw surface, perform the
following steps. You do not necessarily need to perform the steps in the given order.

1) The RenderStreamToSurface function handles the actual rendering; it creates and initializes
the required DirectDraw surface, and blits the video stream's data to the surface. The pDD
parameter points to a global DirectDraw object, which you later use to create the surface. The
pPrimary parameter is the primary rendering surface; it sends all blitted video data from the
video stream, which the pMMStream parameter points to.

HRESULT RenderStreamTcSurface (IDirectDraw *pDD, IDirectDrawSurface *pPrimary,
IMultiMediaStream *pMMStream) {

2) Create local variables for the surface, media streams, and video sample. When you blit data
to the DirectDraw surface, you will use these local variables to store the individual frame and
video sample information.

IMediaStream *pPrimaryVidStream = NULL;
IDirectDrawMediaStream *pDDStream = NULL;
IDirectDrawsSurface *pSurface = NULL;
IDirectDrawStreamSample *pSample = NULL;

3) Retrieve the video stream from the global stream, which the pMMSEream pointer specifies;
the IMultiMediaStream:: GetMediaStream method associates the local IMediaStream pointer
with the retrieved stream. You can then use that pointer to obtain a DirectDraw media stream
pointer, which you will need to retrieve the video format.

CHECK_ERRCR (pMMStream->GetMediaStream(MSPID PrimaryVideo,
&pPrimaryVidStream)) ;

CHECK_ERROCR (pPrimaryVidsStream-=QueryInterface (
IID IDirectDrawMediaStream, (void #**)&pDDStream)) ;

4) Create a DirectDraw surface and a bounding rectangle to use for playback. Call
IDirectDrawMediaStream::GetFormat to retrieve the video format and set the dimensions of
the rectangle to match the format dimensions.

219

Application Developer's Guide Page 18 of 106

DDSURFACEDESC ddsd; // surface characteristics
ddsd.dw8ize = sizeof (ddsd) ;

CHECK_ERROR (pDDStream->GetFormat (&ddsd, NULL, NULL)}} ;
RECT rect; // Playback rectangle
rect.top = rect.left = 0;

rect.bottom = ddsd.dwHeight;

rect.right = ddsd.dwwidth;

CHECK_ERROCR (pDD->CreateSurface (&ddsd, &psSurface, NULL)) ;

5) Create the first video sample and attach it to the desired playback surface. You can then blit
all samples from the video stream directly to the surface by calling the DIrectDraw Surface's
Update method in a loop. Each loop iteration throws out the previous video image and grabs
the next image from the stream. The loop breaks once there is no remaining renderable video
data.

CHECK_ERRCR (pDDStream->CreateSample (pSurface, NULL, 0, &pSample));
while (true) {
if (pSample-=Update (0, NULL, NULL, 0} != 8 OK) {
break;
}

pPrimary->Blt (&rect, pSurface, &rect, DDBELT_WAIT, NULL);

6) Release all local pointers.

RELEASE {pPrimaryVidStream; ;
RELEASE {pDDStream) ;

RELEASE {pSample) ;

RELEASE {pSurface) ;

return hr;

}
Once DirectShow finishes rendering all available data, the function is complete.
Run the Program

To obtain a valid media filename and run the program, perform the following steps. You do not
necessarily need to perform the steps in the given order.

1) Create a main function to obtain the file name and run the rendering process. The following
example takes the media file name as a command-line parameter.

int main{int argc, char *argvl[]} {

2) Create a global DirectDraw object; once you have a valid object, create a surface that you
will later use for video playback. This example calls the Win32 GetDesktopWindow function
to associate the surface with the desktop, reducing the amount of required configuration code.

220

Application Developer's Guide Page 19 of 106

CoInitialize (NULL) ; // Initialize the COM objects

// Create the DirectDraw object and its interface pointer

IDirectDraw *pDD;
HRESULT hr = DirectDrawCreate (NULL, &pDD, NULL} ;

if {(SUCCEEDED (hr)) { // The object is wvalid
DDSURFACEDESC ddsd; // Surface characteristics
IDirectDrawSurface *pPrimarySurface;

pDD->SetCooperativelLevel (GetDesktopWindow () , DDSCL NORMAL) ;
dded.dws8ize = sizeof (ddsd) ;

ddsd. dwFlags = DDSD_CAPS;
ddsd.ddsCaps.dwCaps = DDSCAPS PRIMARYSURFACE;

hr = pDD-=CreateSurface{&ddsd, &pPrimarySurface, NULL) ;

3) Create the multimedia stream and call the previously defined functions. Once the functions
finish execution, make sure to release all pointers at the correct times. Once playback is
complete, call the Win32 ColUninitialize function and return. Once DirectShow finishes
playback of the file, it returns control to the command line.

if (SUCCEEDED (hr)) {
IMultiMediaStream *pMMStream;
hr = OpenMMStream{argv([l], pDD, &pMMStream);
if (SUCCEEDED (hr)} {
RenderStreamToSurface (pDD, pPrimarySurface, pMMStream) ;

pMMStream-=Release () ;
pPrimarySurface->Release () ;

}

CoUninitialize () ; // Release COM cbjects
return 0; // Success

}

Now that you know how to direct streamed video data to a DirectDraw surface, you can use
this functionality any way you would normally use DirectDraw surfaces. A typical use would be
to texture map the playback surface onto a Direct3D primitive object and incorporate it as part
of a three-dimensional environment. For information on controlling any part of DirectDraw,
consult the DirectX SDK documentation.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.
[Home [ndex | Wext |

previous | Home | topie Contents | niex | Wext |

Play a Movie in a Window Using DirectDrawEx
and Multimedia Streaming

This article walks through the MovieWin C++ example code, which plays movies in a window
by rendering to a Microsoft DirectDraw® surface. The MovieWin example code is a Microsoft®

221

Application Developer's Guide Page 20 of 106

Windows® 95 application that is an extension of the ShowStrm Sample (Multimedia Streaming
Application) sample. MovieWin uses multimedia streaming to render a video file to a
DirectDraw surface created through DirectDrawEx. It implements a primary DirectDraw surface
and an offscreen DirectDraw surface to optimize frame blitting. It also attaches a DirectDraw
clipper to the window to process window overlapping.

Contents of this article:

Necessary Header files and Libraries

WinMain Function

Initialize DirectDraw Surfaces and Create the Clipper
Open a Movie File

Create the Multimedia Stream Object

Create the Stream Sample Object

Render the Multimedia Stream to the DirectDraw Surface
Release Objects

WndMainProc Function

Entire MovieWin Example Code

* & & & & & & & & @

The example demonstrates a way to render a movie that differs from the traditional method of
instantiating a filter graph directly in your application. The MovieWin example code uses the
multimedia streaming interfaces to automatically negotiate the transfer and conversion of data
from the source to the application, so you don't have to write code to handle the connection,
transfer of data, data conversion, or actual data rendering.

Additionally, the example demonstrates how to create DirectDraw surfaces and how to add
code for a DirectDrawClipper object through DirectDrawEx.

Note that all error checking has been left out of the code walk-through. The Entire MovieWin
Example Code section provides all of the code with complete error checking.

Necessary Header files and Libraries

This section discusses necessary headers and libraries that need to be included and examines
each function in the MovieWin example code in detail.

To compile the MovieWin example code you must have DirectX Media SDK 5.x or later installed
and vou will need to set your include path under Tools/Options/Directories/Include to
c:\DXMedia\Include and your library path to c:\DXMedia\Lib. Also link with the Amstrmid.lib,
the Quartz.lib, the Strmbase.lib, and the Ddraw.lib (DirectDrawEx does not provide its own
library) libraries under Project/Settings/Link.

Include the necessary header files and define the window's name and the window class name.

#include <windows.h>

#include <mmstream.hs // Multimedia stream interfaces

#include <amstream.h> // DirectShow multimedia stream interfaces

#include <ddstream.h> // DirectDraw multimedia stream interfaces

#include <initguid.h> // Defines DEFINE GUID macrc and enables GUID initializatic
#include <ddrawex.hx> // DirectDrawEx interfaces

#include "resource.h" // Resources for the menu bar

#define APPLICATIONNAME "Multimedia Stream In Window"

222

Application Developer's Guide Page 21 of 106

#idefine CLASSNAME "MMSDDRAWEXWINDOW"

Then declare the following global variables:

HWND ghwnd ;
HINSTANCE ghInst;
BCOL g_bAppactive=FALSE, // The window is active
g bFilel.oaded = FALSE, // There is a file lcaded
g _bPaused=FALSE; // The movie has been paused
RECT rect, rect2; // Rectangles for screen coordinates

The ghWnd variable is the handle of the window to send messages to. The ghlnst variable is
the handle of the instance of the window. The three Boolean values g bAppactive,

g bFileLoaded, g bPaused variables are used to determine the various states of the application
and are used extensively by the WndMainProc function. They are declared as global variables
to retain their TRUE or FALSE status. Finally, rect and rect2 are rectangle structures that will
contain the original movie coordinates and the coordinates of the window to show the movie in,
respectively.

Next, declare the DirectDrawEx and multimedia streaming interfaces. The reference count of
the interfaces is automatically incremented on initialization, so you don't need to call the
IUnknown::AddRef method to increment them. For more information on these interfaces, see
DirectDrawEx, , and the Microsoft DirectX® SDK.

//DirectDrawEx Global interfaces

IDirectDraw *g pDD=NULL;

IDirectDraw3 *g_ pDD3=NULL;

IDirectDrawFactory *g PpDDF=NULL;

IDirectDrawsurface *g pPrimarysurface=NULL,
*g_pDDSOffscreen=NULL;

IDirectDrawClipper *g_pDDClipper=NULL;

//Global MultiMedia streaming interfaces

IMultiMediaStream *g_ pMMStream=NULL;

IMediaStream *g pPrimaryvVidstream=NULL;

IDirectDrawMediaStream *g pDDStream=NULL;
IDirectDrawsStreamSample *g_pSample=NULL;

Finally, declare the function prototypes.

//Function prototypes

int PASCAL WinMain (HINSTANCE hInstC, HINSTANCE hInstP, LPSTR lpCmdLine, int nCmdsShc
LRESULT CALLBACK WndMainProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM lParanm
HRESULT InitDDrawEX(} ;

BOOL GetOpenMcvieFile (LPSTR szName) ;

HRESULT RenderFileToMMStream (LPCTSTR szFilename) ;

HRESULT InitRenderToSurface() ;

volid RenderToSurface () ;

void ExitCode() ;

WinMain Function
The WinMain function is a generic Windows function with a few exceptions.

Immediately after the Win32 CreateWindowEx function, the InitDDrawEx function is called to

223

Application Developer's Guide Page 22 of 106

initialize the DirectDrawEx surfaces that the movie will play on and to create a clipper to attach
to the window. The clipper can only be created after it has a global handle to the window
{ghWnd), and so must be created after the call to the CreateWindowEx function has
returned.

The message pump is a standard Windows message pump containing the TranslateMessage
and the DispatchMessage functions with an interesting note. Before the code reaches these
functions, it calls the PeekMessage function. The PeekMessage function checks a thread
message queue for a message and places the message (if any) in the specified structure. If
there are messages being passed to the window the code proceeds to the regular GetMessage,
TranslateMessage, and DispatchMessage functions respectively. However if there are no
messages in the message queue, the process will check for the g bFileLoaded Boolean value,
which specifies whether a file has been loaded. Initially, the value in g bFileLoaded is FALSE so
the code maintains its loop, waiting for new messages.

After a file has been loaded and rendered to a multimedia stream (see GetOpenMovieFile
function and RenderFileToMMStream function) the g bFileLoaded value and the g bAppactive
values are set to TRUE and the message pump will call the RenderT rf function, which
blits one frame of the movie to the window's coordinates. As the loop continues, the movie
continues to render frame by frame until completion or until it is interrupted the PeekMessage
function with an outside message to the window. If the movie is paused, stopped, or if it
completes on its own, the g _bAppactive variable is set to FALSE, which causes the call to
RenderToSurface to be skipped until g _bAppactive is set to TRUE again.

The following code shows how to create the message pump.

while (1) {
//The PeekMessage function checks a thread message queue
//for a message and places the message (if any) in the specified s
if (PeekMessage (&msg, NULL, 0,0,PM_NOREMOVE)){

// gQuit if WM QUIT found
if { !GetMessage (&msg,NULL, 0, 0)) return (msg.wParam);

// Ctherwise handle the messages
TranslateMessage (&msqg) ; // Allow input
DispatchMessage (&msg) ; // 8end to appropri

else{
// If there are no other windows messages...
// Render frame by frame (but only if the App is the active
// window and a file is actually loaded)
if (g bFilelLoaded && g bAppactive) ({
RenderToSurface () ;

} }
}
return msg.wParam;
Initialize DirectDraw Surfaces and Create the Clipper
The InitDDrawEx function initializes a primary DirectDraw surface and an offscreen DirectDraw
surface, as well as a clipper object that is attached to the window. The following code shows
how to do this.

1. Declare local variables and initialize the COM subsystem.

224

Application Developer's Guide Page 23 of 106

HRESULT hr=NOERROR ;
DDSURFACEDESC ddsd, ddsdz;

CoInitialize (NULL) ;

2. Create the DirectDrawFactory object and expose the IDirectDrawFactory interface.

CoCreatelInstance (CLSID DirectDrawFactory, NULL, CLSCTX INPRCC SERVER,
IID IDirectDrawFactory

Use the pointer to the 1DirectDrawFactory interface to call the
IDirectDrawF ry::Cr DirectDraw method, which you use to create the DirectDraw
object, set the cooperative level, and get the address of an IDirectDraw interface pointer.

g_pDDF->CreateDirectDraw (NULL, GetDesktopWindow (), DDSCL_NORMAL,
NULL, NULL, &g_pDD);

3. Query for the IDirectDraw3 interface, which you use to create the DirectDraw surfaces.

g_pDD->QueryInterface (IID_IDirectDraw3, (LPVOID*)&g pDD3) ;

4, Initialize the DDSURFACEDESC structure for the primary surface. The following is the
minimum code needed to accomplish this. You should also initialize other members of the
structure here if your code must create more sophisticated applications.

ZeroMemory (&ddsd, sizeof (ddsd))} ;

ddsd.dwsSize = gizeof (ddsd);

ddsd.dwFlags = DDSD_CAPS;

ddsd.ddsCaps.dwCaps = DDSCAPS PRIMARYSURFACE;

5. Call the IDirectDraw3::CreateSurface method to create the primary DirectDraw surface
and return a pointer to IDirectDrawSurface interface.

g_pDD3->CreatesSurface (&ddsd, &g _pPrimarySurface, NULL) ;

6. Create the offscreen surface where the IStreamSample: :Update method will send the
individual movie frames before they are blitted onto the screen. Using an offscreen
surface optimizes the performance of the video and enables the blits to be processed at a
faster rate. Also the video remains in memory and can be called upon in the event of a
repaint notification.

You must create the offscreen surface with the identical height, width, and pixel format
to the primary surface in order to blit from one to the other. Do this by first getting the
DDSURFACEDESC structure from the primary surface through a call to the
IDirectDrawSurface: :GetSurfaceDesc method.

g_pPrimarySurface-=>GetSurfaceDesc (&ddsd) ;

7. Now you can initialize the DDSURFACEDESC structure for the offscreen surface with the
same parameters as the primary surface:

225

Application Developer's Guide Page 24 of 106

9.

10.

11,

ZeroMemory (&ddsdz, sizeof (ddsd2)) ;

ddsd2.dwsize = sizeof (ddsd2) ;

ddsdz.dwFlags = DDSD _CAPS | DDSD HEIGHT | DDSD WIDTH | DDSD PIXELFORMAT;
ddsdz.ddsCaps.dwCaps = DDSCAPS OFFSCREENPLAIN;

ddsd2 . dwHeight = ddsd.dwHeight; //set the height of the surfaces equal
ddsdz.dwwidth = ddsd.dwwWwidth; //set the width of the surfaces equal
ddsdz.ddpfPixelFormat = ddsd.ddpfPixelFormat; //set the pixel formats equal

Call the IDirectDraw3::CreateSurface method to create the offscreen surface.

g_pDD3->CreateSurface (&ddsd2, &g_pDDsOffscreen, NULL)

At this point, you should have two identical DirectDraw surfaces: the offscreen surface
that will be used to update the movie frames on, and the primary surface, which your

user will see. The primary surface will contain the video after the data has been blitted
from the offscreen surface to the primary surface.

To give the window the look and feel of a regular window, you must add code for a
clipper. The DirectDraw(lipper object (casually referred to as a "clipper”) helps you
prevent blitting to certain portions of a surface or beyond the bounds of a surface.
DirectDrawClipper objects expose their functionality through the IDirectbDrawClipper
interface. You can create a clipper by calling the IDirectDraw3: :CreateClipper method.

Use the following code to create the clipper object and retrieve a pointer to the
IDirectDrawClipper interface.

g_pDD3->CreateClipper (0, &g pDDClipper, NULL) ;

Use the IDirectDrawSurface interface to attach the clipper to the primary surface.

g_pPrimarySurface->SetClipper (g_pDDClipper) ;

Finally, associate the clipper with the window by calling the
IDirectDrawClipper: : SetHWnd method.

g_pDDClipper-=SetHWnd (0, ghWnd) ;

At this point, you should have two DirectDraw surfaces, and a clipper attached to the primary
surface and to the applications window. The DirectDrawEx initialization is complete and all the
objects are available to the process until the ExitCode function is called to release the objects.

For more information on DirectDrawEx, see DirectDrawEx.

Open a Movie File

The following code shows how to use the GetOpenMovieFile function to display the Open file
dialog box. It initializes the OPENFILENAME structure and calls the GetOpenFileName APL.

BOOL GetOpenMcvieFile (LPSTR szName)

OPENFILENAME ofn;

ofn.lstructsSize
ofn.hwndowner

ofn.lpstrFilter
ofn.lpstrFilter

sizeof (OPENFILENAME) ;

ghWnd;

NULL;

"Video (*.avi;*.mpg;*.mpeg)\0*.avi;*.mpg;*.mpeg\0A

226

Application Developer's Guide Page 25 of 106

}

ofn.lpstrCustemFilter = NULL;
ofn.nFilterIndex = 1;
*szName = 0;
ofn.lpstrFile = szName;
ofn.nMaxFile = MAX_ PATH;
ofn.lpstrInitialDir = NULL;
ofn.lpstrTitle = NULL;
ofn.lpstrFileTitle = NULL;
ofn.lpstrDefExt = NULL;
ofn.Flags = OFN FILEMUSTEXIST | OFN_READONLY | OFN_PATHMUSTEXTI:
(

return GetOpenFileName (LPOEENFILENAME)&ofn);

Create the Multimedia Stream Object

The RenderFileToMMStream function creates a multimedia stream and attaches the stream to
the file retrieved by the GetOpenMovieFile function. This function uses the
IAMMultiMediaStream interface to expose DirectShow functionality to the application. After the
address of a pointer to the IAMMultiMediaStream interface is retrieved, it will be used to
initialize the stream, add specific media streams to the current filter graph, and open and
automatically create a filter graph for the specified media file.

The following steps show how to do this.

1.

Declare the local variables hr and pAMStream, and convert the provided file name to a
wide (Unicode) string.

HRESULT hr;

IAMMultiMediaStream *pAMStream=NULL;

WCHAR wFile[MAX_PATH];

MultiByteToWideChar (CP_ACP, 0, szFilename, -1, wFile,
sizeof (wFile) /sizeof (wFile[0]));

Create the AMMultiMediaStream object and initialize it.

hr =CoCreatelInstance (CLSID AMMultiMediasStream, NULL, CLSCTX_INPROC SERVER,
IID IAMMultiMediaStream, (void **)&pAMSt
hr = pAMStream->Initialize{(STREAMTYPE READ, 0, NULL) ;

Now that you have a stream object, add a single audio and video stream to it; typically,
you need only these two streams for media file playback. When the
IAMMultiMediaStream:: AddMediaStream method receives the MSPID PrimaryVideo flag
as its second parameter, it uses the pointer in the first parameter as the destination
surface for video playback. The audio stream needs no such surface, however, so pass
NULL as the first parameter when you add audio streams. The

AMMSF ADDDEFAULTRENDERER flag automatically adds the default sound renderer to
the current filter graph.

hr
hr

pAMStream->AddMediasStream{(g_pDD3, &MSPID_ PrimaryVideo, 0, NULL);
pPAMStream->AddMediaStream (NULL, &MSPID PrimaryAudio, AMMSF ADDDEFAULTRENLC

Finally, open and create a filter graph for the specified media file and save the local
stream to the global variable g pMMStream. Don't forget to increase the reference count
on the IAMMultiMediaStream object.

//0pens and automatically creates a filter graph for the specified media file

227

Application Developer's Guide Page 26 of 106

hr = pAMStream->OpenFile (wFile, 0);

//save the local stream to the global variable
g_pMMStream = pAMStream;

// Add a reference to the file
p2MStream->AddRef () ;

Now that you have valid streams and a pointer to them, this function is complete. For more
information on multimedia streams see and Use Multimedia Streaming in DirectShow

Applications.

Create the Stream Sample Object

The InitRenderToSurface function creates the stream sample that will be associated with the
offscreen DirectDrawSurf object. The stream sample will be used later by the

RenderToSurface function to call the IStreamSample::Update method to perform frame-by-
frame updates of the sample.

The following steps show how to do this.

1. To create and initialize the stream sample, declare the local variables, and then get the
primary video media stream by using the IMultiMediaStream: :GetMediaStream method.

HRESULT hr;
DDSURFACEDESC ddsd;

//Use the multimedia stream to get the primary video media stream
hr = g pMMStream->GetMediastream(MSPID PrimaryVideo, &g _pPrimaryvVidStream) ;

2. After you obtain the primary video stream interface (IMediaStream), you can use it to
query for the IDirectDrawMediaStream interface, which you'll use to create the stream
sample.

hr = g _pPrimaryVvidstream->QueryInterface (IID IDirectDrawMediaStream, (void **)

3. Before you can create the stream sample, you must call the
IDirectDrawMediaStream: : Format method. The trick to watch on this call is that you
must set the dwSize member of the DDSURFACEDESC structure. After the stream
sample has retrieved the height and width of the movie file, vou can set the rectangle
that the offscreen surface will use to contain the video data.

ddsd.dwSize = sizeof (ddsd);

hr = g pDDStream->GetFormat (&ddsd, NULL, NULL, NULL) ;
rect.top = rect.left = 0;

rect.bottom = ddsd.dwHeight;

rect.right = ddsd.dwWidth;

4, Create the stream sample by calling the IDirectDrawMediaStream: :CreateSample method
with the offscreen surface and the RECT structure, which was just initialized with the
movie coordinates. This method will retrieve a pointer to the global
IDirectDrawStreamSample interface g _pSample.

hr = g pDDStream->CreateSample (g pDDSCffscreen, &rect, 0, &g _pSample);

At this point, the IDirectDrawMediaStream::CreateSample method has created a global
IDirectDrawStreamSample stream sample and returned a pointer to g_pSample, its interface,
which the RenderToSurface function can use.

228

Application Developer's Guide Page 27 of 106

Render the Multimedia Stream to the DirectDraw Surface

The RenderToSurface function handles the actual rendering and blits the video stream's data to
the primary surface. The main message pump in the WinMain function calls this method. The
RenderToSurface function performs one individual frame update at a time and one blit from the
offscreen surface to the primary surface. When the movie is complete, it will set the stream
state to STOP.

The following steps show how to do this.

1.

Declare the local variables.

HRESULT hr;
POINT point;

Call the IStreamSample::Update method. Each loop iteration throws out the previous
video image and grabs the next image from the stream.

If the update is successful, the Microsoft Win32® GetClientRect and the ClientToScreen
functions are called to get the rectangle coordinates of the window into which the video
will be displayed. These functions must be called after each update, in case a user has
moved or resized the window.

After the window's coordinates have been retrieved, call the IDirectDrawSurface3: :Bit
method to perform a bit block transfer of the movie's video data from the offscreen
surface to the primary surface. The loop breaks and the stream state is set to STOP when
no renderable video data remains.

if (g _pSample->Update (0, NULL, NULL, 0) != S OK) {
g_bappactive = FALSE;
g _pMMStream->SetState (STREAMSTATE STOP) ;

else {

//get window coordinates to blit into
GetClientRect (ghWnd, &rect2);
point.x = rectz.top;

point.y = rectz.left;
ClientToScreen (ghwnd, &point};
rectz.left = point.x;
rectz.top = point.y;

point.xX = rectz.right;

point.y = rectz.bottom;
ClientToScreen (ghWnd, &pcint) ;
rectz.right = point.x;
rectz.bottom= point.y;

//Blit from the offscreen surface to the primary surface
hr = g_pPrimarySurface-=Blt (&rect2, g pDDSOffscreen, &rect, DDBLT_ WAII

This function will be called repeatedly from the WinMain function's message pump as
long as the g bAppactive and g_bFileLoaded Boolean values are TRUE.

Release Objects

The ExitCode function releases all objects that the MovieWin application creates, destroys the
window, and closes the COM library.

229

Application Developer's Guide Page 28 of 106

Call this function if the application fails or the user quits the program.

volid ExitCode ()}

//Release MultiMedia streaming Cbjects
if (g_pMMStream != NULL) {
g _pMMStream->Release () ;
g_pMMStream= NULL;
if (g_pSample != NULL) {
g_pSample-=>Release() ;
g _pSample = NULL;

if (g_pDDStream != NULL) {
g_pDDStream-=>Release () ;
g_pDDStream= NULL;

if (g _pPrimaryvidsStream != NULL) {
g _pPrimaryVidStream->Release () ;
g _pPrimaryvidstream= NULL;

//Release DirectDraw Objects

if (g_pDDF !=NULL} {
g_pDDF->Release () ;
g_pDDF = NULL;

if (g_pPrimarySurface!=NULL) {
g_pPrimarysSurface->Release () ;
g _pPrimarySurface=NULL;

if (g _pDDsoffscreen !=NULL) {
g_pDDsOffscreen->Release () ;
g _pDbDsOffscreen= NULL;

if (g_pDDClipper !=NULL) {
g_pDDClipper-=>Release () ;
g_pDDClipper=NULL;

if (g_pDD3 != NULL) {
g_pDD3-=Release () ;
g_pDD3 = NULL;

if (g_pDD != NULL) {
g_pDD-=>Release () ;
g pDD = NULL;

}

PostQuitMessage (0) ;
CoUninitialize(};

WndMainProc Function

The WndMainProc callback function handles any messages sent to the window and calls the
ExitCode function when the user quits the application. Users generate messages by selecting
various items from the menu, including Open, Start, Stop, Pause, About, and Exit.

If the user chooses Open, an IDM_OPEN message is generated and the following code runs.

//1f a file is already open - call STOP first

230

Application Developer's Guide

Page 29 of 106

if (g bAppactive && g bFileLoaded) ({
g_pMMStream->SetState (STREAMSTATE_ £

bOpen = GetOpenMovieFile(szFilename) ;
if {bopen) {
hr = RenderFileToMMS3tream({szFilenan

hr = InitRenderToSurface () ;
g _bAppactive = g_bFilelLoaded = TRUE
g bPaused = FALSE; /7T

/7Now set the multimedia stream to
hr = g pMMStream-=>SetState (STREAMST

}

break;

This code first checks whether a file is loaded (g_bFileLoaded) and if it is in a running state
{(g_bAppactive). If this is the case, the IMultiMediaStream: :SetState method is called to stop
the stream before another gne is lpaded through a call to the GetOpenMovieFile function. After
the call to GetOpenMovieFile has returned successfully, the RenderFileToMMStream function is
called, followed by the InitRenderToSurface function. If both of these functions are successful,
the g bFileLoaded and g bAppactive Boolean values are set to TRUE and g bPaused is set to
FALSE in case the old file was in a paused state. Finally, the IMultiMediaStream::SetState
method is called to set the state to RUN and now the RenderToSurface function will
automatically be called through the WinMain function's message pump.

If the user chooses Play from the application's menu, an IDM_START message is generated
and the following code runs.

if

(g_bAppactive && g bFileLoaded)

{break; /7

else {
if (g _bPaused) { J/ If its i
g_pMMStream->Seek (StreamTin
g_pMMStream->SetState (STREZ
g_baAppactive = TRUE;
g_bPaused = FALSE;

}

else {

if {g_bFileLoaded) { // If a file is act
g _bAppactive = g_bFilelLoaded = TRUEI
hr = g _pMMStream-=SetState (STREAMSI

}

else {
MessageBox (hWnd, "Please select a n

break;

This code first checks if a file is loaded (g_bFileLoaded) and if it is in a running state

{g bAppactive). If this is the case, break is called to ignore the message. If the movie is in a
paused state, the IMultiMediaStream: :Seek method is called to seek to the correct location in
the file, and then the [MultiMediaStream: : SetState method is called to set the state to RUN
again. The Boolean values g_bAppactive and g_bPaused are reset again to TRUE and FALSE
respectively.

If a file is loaded but not in a paused state, it must be in a stopped state. Therefore, if this
code succeeds on the if (g bFileLoaded) call it must restart the movie from the beginning. This

231

Application Developer's Guide Page 30 of 106

involves resetting the g bAppactive Boolean value to TRUE and calling the
IMultiMediaStream: :SetState method to set the stream state to RUN.

If the user chooses Pause from MovieWin's menu, an IDM_PAUSE message is generated and
the following code runs.

// Pause if not already in a paused state and you have a file loaded
if {!g bPaused &&g_bFileloaded) {
hr = g pMMStream->GetTime (&StreamTi
hr = g pMMStream-=>SetState (STREAMST
g_bappactive = FALSE;
g_bPaused = TRUE;

}

break; // If its a

In order for the pause key to do anything, the application must not already be in a paused
stated (/g bPaused) and a file must be loaded (g_bFileLoaded). If these two conditions are
both TRUE, the IMultiMediaStream: :GetTime method is called to store the STREAM_TIME at
which the application was paused in the static StreamTime variable, and then the
IMultiMediaStream::SetState method set the stream state to STOP. Finally, the g bAppactive
and the g_bPaused global Boolean values must be set to FALSE and TRUE respectively.

If the user chooses Stop from the application's menu, an IDM_STOP message is generated and
the following code executes.

if (g bFileLoaded) ({

g _pMMStream->SetState (STREAMSTATE ¢
StreamTime = 0; // Reset the strean
g_pMMStream->Seek (StreamTime}; //R
g _pMMStream->SetState (STREAMSTATE F
RenderToSurface(} ;

g _pMMStream->SetState (STREAMSTATE ¢
StreamTime = 0;

g_bAppactive = FALSE;

The preceding code runs if there is a file loaded (g_bFileLoaded). In such a case the
IMultiMediaStream: :SetState method sets the stream state to STOP and the global

STREAM_ TIME value is set to zero. Next, the IMultiMediaStream::Seek method and the
IMultiMediaStream::SetState method are called to run one frame of the video before the
true stop is called. After the RenderToSurface function renders the frame, the
IMultiMediaStream::SetState method is called a final time to stop the video. This gives the
user the visual experience of seeing the movie rewind to the beginning.

Finally, if the user chooses Exit from the application's menu, an IDM_EXIT message is
generated and the following code runs.

response = MessageBox (hWnd, "Quit the Program?", "Quit", MB_YESNO) ;
if (response==IDYES) SendMessage (ghWnd, WM_
break;

When it runs, this code will prompt the user if he or she really wants to quit the application. If
the user chooses Yes, a WM_DESTROY message is sent, which calls the ExitCode function.

Entire MovieWin Example Code

This is the entire code for the MovieWin example code. To compile this code in Microsoft Visual

232

Application Developer's Guide Page 31 of 106

Studio™, create a new Win32 application project and add this code into the project. Follow the
directions in the following code comments on how to set your project libraries and include
paths.

// This application uses a Multimedia stream to render

// a video file to a DirectDrawEx surface contained in

// a window. It implements a primary DirectDraw surface

// and an offscreen DirectDraw surface to optimize individual
// frame blits. It also attaches a DirectDraw clipper to the
// window to process window overlapping.

//To compile this program you must have DXMedia SDK 5.1 installed

//and you will need set vyour include path under tools/options/directories/include
//to c:\DXMedia\include and vyour library path to c:\DXMedia\lib

//Also 1link with the following libraries under project/settings/link. ..
//amstrmid.lib quartz.lib strmbase.lib ddraw.lib

#include <windows.h>

#include <mmstream.hs // Multimedia stream interfaces

#include <amstream.h> // Directshow multimedia stream interfaces

#include <ddstream.h> // DirectDraw multimedia stream interfaces

#include <initguid.h> // Defines DEFINE GUID macrc and enables GUID initializatic
#include <ddrawex.h> // DirectDrawEx interfaces

#include "resource.h" // Resources for the menu bar

#define APPLICATIONNAME "Multimedia Stream In Window"
#define CLASSNAME "MMSDDRAWEXWINDOW"

//Global variables

HWIND ghWnd;
HINSTANCE ghInst;
BOOL g_bAppactive=FALSE, // The window is active
g bFileloaded = FALSE, // There is a file loac
g_bPaused=FALSE; // The movie has be
RECT rect, rectz; // Rectangles for screen cc
//DirectDrawEx Global interfaces
IDirectDraw *g pDD=NULL;
IDirectDraw3 *g pDD3=NULL;
IDirectDrawFactory *g PDDF=NULL;
IDirectDrawSurface *g_pPrimarySurface=NULL,
*g pDDSOffscreen=NULL;
IDirectDrawClipper *g_ pDDClipper=NULL;
//Global MultiMedia streaming interfaces
IMultiMediaStream *g pMMStream=NULL;
IMediasStream *g pPrimaryVidStream=NULL;

IDirectDrawMediaStream *g pDDStream=NULL;
IDirectDrawStreamSample *g pSample=NULL;

//Function prototypes

int PASCAL WinMain (HINSTANCE hInstC, HINSTANCE hInstP, LPSTR lpCmdLine, int nCmdsShc
LRESULT CALLBACK WndMainProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam
HRESULT InitDDrawEx() ;

BOOL GetOpenMcvieFile (LPSTR szName) ;

HRESULT RenderFileToMMStream (LPCTSTR szFilename) ;

HRESULT InitRenderToSurface () ;

volid RenderToSurface () ;

volid ExitCode() ;

233

Application Developer's Guide Page 32 of 106

void ExitCode ()
{
//Release MultiMedia streaming Cbjects
if (g_pMMStream != NULL) {
g _pMMStream->Release () ;
g_pMMStream= NULL;

if (g_pSample != NULL) {
g_pSample-=>Release() ;
g_psSample = NULL;

if (g_pDDStream != NULL) {
g_pDDStream->Release () ;
g_pDhDStream= NULL;

if (g_pPrimaryvidstream != NULL) {
g _pPrimaryVidStream->Release () ;
g _pPrimaryVidStream= NULL;

//Release DirectDraw Cbjects
if (g_pDDF !=NULL} {
g_pDDF->Release() ;
g _pDDF = NULL;

if (g _pPrimarySurface!=NULL) {
g_pPrimarysSurface->Release () ;
g _pPrimarysurface=NULL;

if (g_pDDSOffscreen !=NULL) {
g_pDDsOffscreen->Release() ;
g_pDDSOffscreen= NULL;

if (g_pDDClipper !=NULL) ({
g_pDDClipper-=Release(} ;
g_pDDClipper=NULL;

if (g_pDD3 != NULL) {
g_pDD3->Release() ;
g _pbD3 = NULL;

if (g_pDD != NULL) {
g_pDD-=>Release () ;
g_pDhD = NULL;

}

PostQuitMessage (0) ;
CoUninitialize(};

}

//Create the stream sample which will be used to call updates on the video
HRESULT InitRenderToSurface ()

HRESULT hr;
DDSURFACEDESC ddsd;

//Use the multimedia stream to get the primary video media stream

hr = g pMMStream->GetMediaStream (MSPID PrimaryVideo, &g pPrimaryVidsStream) ;
if (FAILED(hr))
{ goto Exit;

//Use the media stream to get the IDirectDrawMediaStream

hr = g pPrimaryvVidStream->QueryInterface(IID IDirectDrawMediaStream, (void **)&
if (FAILED (hr))
{ goto Exit;

234

Application Developer's Guide Page 33 of 106

//Must set dwSize before calling GetFormat

ddsd.dwsSize = sizeof (ddsd} ;

hr

= g_pDDStream->GetFormat (&ddsd, NULL, NULL, NULL) ;

if (FAILED (hr))
{ goto Exit;

rect.top = rect.left = 0;

rect.bottom = ddsd.dwHeight;
rect.right = ddsd.dwWidth;

Exit:

}

//Create the stream sample

hr = g_pDDStream->CreateSample (g pDDSOffscreen, &rect, 0, &g pSample);
if (FAILED (hr))

{ goto Exit;

}

if (FAILED (hr))
{ MessageBox {(ghWnd, "Initialization failure in InitRenderToSurface",
return E_FAIL;

return MNOERROR;

//Perform frame by frame updates and blits. Set the stream
//state to 8ToP if there are no more frames to update.
vold RenderToSurface ()

{

}

HRESULT hr;
POINT point;

//update each frame

if (g_psSample->Update (0, NULL, NULL, 0) != S OK) ({
g_bAppactive = FALSE;
g_pMMStream-=>SetState (STREAMSTATE_ STOP) ;

}

else {

//get window coordinates to blit into
GetcClientRect (ghWnd, &rectz);
point.x = rectz.top;

point.v = rectz.left;
ClientToScreen (ghWnd, &pcint);
rectz.left = point.x;
rectz.top = point.v;

point.x = rectz.right;

point.yv = rectz.bottom;
ClientToScreen (ghWwnd, &point);
rectz.right = point.x;
rectz.bottom= point.y;

//blit from the offscreen surface to the primary surface
hr = g_pPrimarySurface->Blt (&rect2, g _pDDSCffscreen, &rect, DDBLT WAIT, NUI
if (FAILED (hr))
MessageBox (ghWwnd, "Blt failed", "Error", MB_OK);
ExitCode () ;

//Renders a file to a multimedia stream
HRESULT RenderFileToMMStream (LPCTSTR szFilename) //IMultiMediaStrean

{

HRESULT hr;

235

Application Developer's Guide Page 34 of 106

IZAMMultiMediaStream *pAMStream=NULL;

//Convert filename to Unicode
WCHAR WFile[MAX_PATH];
MultiByteToWideChar (CP_ACP, 0, szFilename, -1, wFile,
sizeof (wFile) /sizec

//Create the AMMultiMediaStream object
hr =CoCreatelInstance (CLSID AMMultiMediaStream, NULL, CLSCTX INPROC SERVER,
IID IAMMultiMediaStream, (vold **}&pAMStream)
if (FAILED({(hr))
{ MessageBox (ghWnd, "Could not create a CLSID MultiMediaStream object\n"
"Check you have run regsvr32 amstream.dlli\n", "Error", MB OK);
return E_FAIL;

}

//Initialize stream
hr = pAMStream->Initialize (STREAMTYPE READ, 0, NULL);
if (FAILED (hr)) N
{ MessageBox (ghWnd, "Initialize failed.", "Error", MB_OK);
return E_FAIL;

//2dd primary video stream
hr = paMStream->AddMediastream(g_pDD3, &MSPID PrimaryVideo, 0, NULL) ;
if (FAILED (hr))
{ MessageBox (ghWnd, "AddMediaStream failed.", "Error", MB_OK};
return E_FAIL;

//Add primary audio stream
hr = paAMStream-=>AddMediaStream(NULL, &MSPID PrimaryAudio, AMMSF ADDDEFAULTRENDE
if (FAILED{hr))
{ MessageBox (ghWnd, "AddMediaStream failed.", "Error", MB OK);
return E_FAIL;

//0pens and automatically creates a filter graph for the specified media £
hr = pAMStream->OpenFile (wFile, 0);

if (FAILED{hr))

{ MessageBox (ghWnd, "File format not supported.", "Error", MB_OK) ;

} return E_FAIL;

//save the local stream to the global variable
g_pMMStream = pAMStream;

// 2dd a reference to the file
pAMStream->AddRef () ;

return MNOERROR;

}

HRESULT InitDDrawEx()
HRESULT hr=NOERROR ;
DDSURFACEDESC ddsd, ddsdz;

CoInitialize (NULL} ;

//Create a DirectDrawFactory cobject
hr = CoCreatelInstance (CLSID DirectDrawFactory, NULL, CLSCTX INPROC_SERVER,
IID IDirectDrawFactory, (v<
if (FAILED({(hr))
{ MessageBox (ghWnd, "Couldn't create DirectDrawFactory", "Error", MB_OK)
return E_FAIL;
}

236

Application Developer's Guide Page 35 of 106

//Call the IDirectDrawFactory::CreateDirectDraw method to create the

//DirectDraw cbject, set the cooperative level, and get the address

//of an IDirectDraw interface pointer

hr = (g _pDDF-»>CreateDirectDraw{(NULL, GetDesktopWindow(}, DDSCL_NORMAL,
NULL, NULL, &g_pDD));

if (FAILED (hr))
{ MessageBox (ghWnd, "Couldn't create DirectDraw object", "Error", MB_OK)
return E_FAIL;

//Now query for the new IDirectDraw3 interface
hr =(g_pDD-=QueryInterface (IID IDirectDraw3, (LPVOID*)&g pDD3)]) ;

if (FAILED (hr))
{ MessageBox (ghWnd, "Couldn't get IDirectDraw3", "Error", MB OK) ;
return E_FAIL;

//Initialize the DDSURFACEDESC structure for the primary surface
ZeroMemory (&ddsd, sizeof (ddsd)) ;

ddsd.dwsSize = sizeof (ddsd} ;
ddsd.dwFlags = DDSD_CAPS;

ddsd.ddsCaps.dwCaps = DDSCAPS PRIMARYSURFACE;

hr = g_pDD3->Createsurface (&ddsd, &g_pPrimarysurface, NULL) ;

if (FAILED (hr))
{ MessageBox (ghWnd, "Couldn't create Primary Surface", "Error", MB OK);
return E_FAIL;

// Now, do the same for the offscreen surface.

// The offscreen surface needs to use the same pixel format as the primary.
// Query the primary surface to for its pixel format.
hr = g pPrimarySurface->GetSurfaceDesc (&ddsd) ;
if (FAILED (hr)}
{ MessageBox (ghWnd, "Couldn't GetSurfaceDesc", "Error", MB _OK);
return E_FAIL;
}

// Now, set the info for the offscreen surface, using the primary's pixel
ZeroMemory {(&ddsd2, sizeof (ddsd2));

ddsd2.dwSize = sizeof (ddsd2) ;

ddsdz.dwFlags = DDSD_CAPS | DDSD HEIGHT | DDSD WIDTH | DDSD PIXELFORMAT;
ddesd2.ddsCaps . dwCaps = DDSCAPS OFFSCREENPLAIN;
ddsdz.dwHeight = ddsd.dwHeight; //set the height of the surfaces equal
ddsd2z.dwWidth = ddsd.dwWidth; //set the width of the surfaces equal
ddsd2.ddpfPixelFormat = ddsd.ddpfPixelFormat; //set the pixel formats equal

// Now, create the offscreen surface and query for the latest interface.
hr = g_pDD3->Createsurface (&ddsd2, &g _pDDSOffscreen, NULL) ;
if (FAILED (hr))
{ MessageBox (ghWnd, "Couldn't create Offscreen Surface", "Error", MB_OK);
return E_FAIL;

//Add code for Clipper
hr = g_pDD3->CreateClipper(0, &g pDDClipper, NULL) ;
if (FAILED (hr})

237

Application Developer's Guide Page 36 of 106

}

MessageBox (ghWnd, "Couldn't create Clipper", "Error", MB OK) ;
return E_FAIL;

hr = g_pPrimarySurface-=SetClipper (g _pDDClipper) ;

if (FAILED(hr))

MessageBox (ghWnd, "Call to SetClipper failed", "Error", MB_OK);
return E_FAIL;

hr = g_pDDClipper-=SetHWnd (0, ghWnd) ;

if (FAILED (hr))

MessageBox (ghWwnd, "Call to sSetHWnd failed", "Error", MB_OK);
return E_FAIL;

return NOERROR;

// Display the open dialog box to retrieve the user-selected movie file
BOOL GetOpenMovieFile (LPSTR gzName) //LPSTR gzName

}

OPENFILENAME ofn;

ofn.lstructsSize = gizeof (OPENFILENAME) ;

ofn.hwndOwner = ghWnd;

ofn.lpstrFilter = NULL;

ofn.lpstrFilter = "Video (*.avi;*.mpg;*.mpeg}\0*.avi;*.mpg;*.mpeg\0A
ofn.lpstrCustemFilter = NULL;

ofn.nFilterIndex = 1;

*gzName = 0;

ofn.lpstrFile = szName;

ofn.nMaxFile = MAX PATH;

ofn.lpstrInitialDir = NULL;

ofn.lpstrTitle = NULL;

ofn.lpstrFileTitle = NULL;

ofn.lpstrDefExt = NULL;

ofn.Flags = OFN_FILEMUSTEXIST | OFN_READONLY | OFN_PATHMUSTEXI:

return GetOpenFileName ((LPOPENFILENAME) &ofn) ;

LRESULT CALLBACK WndMainProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam

// wndMainProc //

int response;

HRESULT hr;

BOOL bopen;

static TCHAR szFilename [MAX PATH] ;

static STREAM TIME StreamTime; // Stream time of t

switch (message)

{

case WM_COMMAND:

switch (wParam)
//Program menu option

case IDM_ OPEN:
//1If a file is already open - call SToP fir
if {g_bippactive && g bFileLoaded) ({
g _pMMStream->SetState (STREAMSTATE ¢

238

Application Developer's Guide

bOpen

Page 37 of 106

GetOpenMovieFile (szFilename) ;

if {(bopen) {

}

break;

case IDM_START:

hr = RenderFileToMMStream{szFilenan
if (FAILED(hr)) {
ExitCode () ;
break;
hr = InitRenderToSurface () ;
if (FAILED(hr)) {
ExitCode () ;
break;

}

g _bappactive = g bFileLoaded = TRUL
g _bPaused = FALSE; /7T
//Now set the multimedia stream to
hr = g _pMMStream-=SetState (STREAMSI
if (FAILED (hr))
{ ExitCode () ;

if (g_bippactive && g_bFileLoaded)

{break;

else {

/

if (g_bPaused) // If its i
g_pMMStream->Seek (StreamTin
g_pMMStream->SetState (STREZ
g_baAppactive = TRUE;
g_bPaused = FALSE;

}

else {

if (g bFileLoaded) { // If a file is act

else {

break;

case IDM_PAUSE:

hr = RenderFileToMMStream{szFilenan
if (FAILED(hr)) {
ExitCode () ;
?reak;
hr = InitRenderToSurface(};
if (FAILED(hr)) {
ExitCode () ;
break;

g _bappactive = g bFileLoaded = TRUL
//Now set the multimedia stream to
hr = g _pMMStream-=SetState (STREAMSI
if (FAILED (hr)}
{ ExitCode () ;

MessageBox (hWnd, "Please select a n

// DPause if not already in a paused state :
if (!g_bPaused &&g_bFileLoaded) {

239

hr = g _pMMStream-=>GetTime (&StreamTi

Application Developer's Guide

Page 38 of 106

hr = g pMMStream-=>SetState (STREAMST
g_bappactive = FALSE;
g_bPaused = TRUE;

}

break; // If its a

case IDM STOP:
if (g bFileLoaded) {

g _pMMStream->SetState (STREAMSTATE ¢
StreamTime = 0; // Reset the strean
g_pMMStream->Seek (StreamTime}; //R
g _pMMStream->SetState (STREAMSTATE F
RenderToSurface(} ;

g _pMMStream->SetState (STREAMSTATE ¢
StreamTime = 0;

g_bAppactive = FALSE;
break;

case IDM_ABOUT:
MessageBox (hwnd, "This application uses mul
" render a video file to a DirectDz
"about", ME_OK};
break;

case IDM_EXIT:
response = MessageBox (hWwnd, "Quit the Prog:
if ({response==IDYES) SendMessage (ghwnd, WM_

break;
break;
break;
case WM_DESTROY:
ExitCode () ;
break;
case WM _ACTIVATE:
if { (BOOL) LOWORD (wParam) == WA INACTIVE)

else

}

break;

default:

//App is not active
g _bAppactive = FALSE;

//set app to active if a file is loaded
g bAppactive = (g _bFileLoaded) ?TRUE:FALSE;

return DefWindowProc(hWnd, message, wParam, lParam);

}// Window msgs handling

return FALSE;

} // wndMainProc //

int PASCAL WinMain (HINSTANCE hInstC, HINSTANCE hInstP, LPSTR lpCmdLine, int nCmdshc

{ // winMain //

240

Application Developer's Guide Page 39 of 106

MSG msq;
WNDCLASS WC;
HRESULT hr;

ZeroMemory (&wc, sizeof wo);
we. lpfnWwndProc = WndMainProc;
ghInst = wc.hInstance = hInstC;
wc.hbrBackground = (HBRUSH)GetStockObject (BLACK BRUSH) ;
wc.lpszClassName = CLASSNAME;
wC. lpszMenuName = MAKEINTRESOURCE (IDR_MENU) ;
wc.hCursor = LoadCursor (NULL, IDC ARROW) ;
RegisterClass (&wc) ;

ghWnd = CreateWindowEx (WS EX WINDOWEDGE,

CLASSNAME,
APPLICATIONNAME,
WS_VISIBLE |WS POPUP |WS_OVERLAPPEDWINDOW,
150,
150,
280,
250,
0,
0 r
ghlInst,
0);
if (ghwnd) { // If the call to create window suc
hr = InitDDrawEx{); // initialize DirectDrawEx
if (FAILED (hr}) {
ExitCode () ;
}
ilse {
MessageBox (ghWnd, "Couldn't create window.", "Error", MB_OK);
return 0;

ShowWindow (ghWnd, SW_NORMAL) ;
Updatewindow (ghwWnd) ;

while{1) {
//The DPeekMessage function checks a thread message queue
//for a message and places the message (if any) in the specified s
if (PeekMessage (&msg, NULL, 0,0,PM_NOREMOVE)){

// gQuit if WM QUIT found
if {!GetMessage (&msg,NULL, 0, 0)) return (msg.wParam);

// Otherwise handle the messages
TranslateMessage (&msqg) ; // Allow input
DispatchMessage (&msg) ; // Send to appropri

else{
// If there are no other windows messages...
// Render frame by frame (but only if the App is the active
// window and a file is actually loaded)
if (g bFilelLoaded && g bAppactive) ({
RenderToSurface () ;

}
}
}

return msg.wParam;

241

Application Developer's Guide Page 40 of 106

) // WinMain //

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] ndex | Hext
[Previons | Home | Topic Contente] index | Hext

Control an External Device in DirectShow

This article provides background for developers interested in adding external device control
and timecode support to DirectShow applications. It also discusses how timeceode is used in the
production environment and lists some typical applications that rely on external devices.
Finally, it describes how external device control is implemented and provides links to the
interfaces available to build VCR control- and timecode-enabled filters in DirectShow.

Contents of this article:

Introduction

Understanding SMPTE Timecode
Typical Uses of Timecode
Capturing Timecode

External Device Control

References and Suggested Reading

Introduction

You can control an external device in DirectShow by implementing device control filters. These
filters control devices or streams of data which are entirely external to the computer and
expose interfaces such as IAMExtDevice, JAMExtTransport, IAMTimecodeGenerator, and
IAMTimecodeReader. Generally, external device control filters do not need to expose pins.
However, an example of a device control filter that does expose pins might be a filter
representing a source of data such as a VCR. A pin-to-pin connection representing the data
flowing from the VCR to the capture board allows the device control filter and the video capture
filter to talk to each other and neggotiate data types, athough they do not use the standard
transport and no data would flow between the filters themselves other than control
information. Applications can instantiate and directly control an external device filter, but it is
strongly recommended that they are always instantiated within the context of a filtergraph,
even if they are the only filter in the graph.

External devices can include VCRs, video editing stations, audio tape recorders (ATRs), mixers,
or any other device used in the video capture and editing process. Capture and editing requires
DirectShow external device control filters to provide audio and video synchronization and
precise control. You can accomplish synchronization of audio and video during playback, edit,
and capture with external clocks or Society of Motion Picture and Television Engineers {SMFTE)
timecode. Understanding timecode is the key to understanding external device control.

242

Application Developer's Guide Page 41 of 106

Understanding SMPTE Timecode

SMPTE timecode is the glue that holds the post-production process together. It identifies video
and audio sources, makes automatic track synchronization possible, and provides a container
for ancillary data related to the production. You will need to understand this data stream and
its application to media production, tool development, or system design.

SMPTE timecode, more properly known as SMPTE time and control code, is a series of digital
frame address values, flags and additional data applied to a video or audio stream, and is
defined in ANSI/SMPTE 12-1986. Its purpose is to provide a machine readable address for
video and audio.

The most common form of a SMPTE timecode data structure an 80-bit frame that contains the
following information:

A time stamp in hh:mm:ss:ff (hours: minutes:seconds:frames) format.
Eight 4-bit binary groups commonly known as userbits.

Various flag bits.

Synchronization sequence.

Checksum.

Vihwh e

The DirectShow TIMECODE SAMPLE structure is an example of a timecode data structure that
contains timecode information for video or audio data.

SMPTE timecode comes in one of two types. Timecode recorded on an analog audio track as a
bi-phase mark encoded signal is known as LTC, or Linear TimeCode (formerly known as
Longitudinal TimeCode). Each timecode frame is one video frame time in duration. The other
common type of timecode is known as VITC, or Vertical TimeCode. VITC is usually stored on
two lines of a video signal's vertical blanking interval, somewhere between lines 10 and 20.

LTC timecode is easy to add to a pre-recorded tape, since it is encoded in a separate audio
signal. However, it cannot be read when the tape is paused, moving very slowly, or very
quickly. In addition it consumes one audio channel on non-professional VCRs.

VITC timecode, on the other hand, can be read from speeds of zero to 15 times normal speed.
It can contain field-dependent data and can be read from video capture cards. However, it is
not easily added to a prerecorded tape and often requires expensive hardware.

SMPTE timecode also comes in one of two modes, non-drop frame and drop frame. Non-drop
frame is timecode that is consistently increasing and sequential. It can act as a real-time clock
and works fine for monochrome video that runs at a frame rate of exactly 30 frames per
second.

However, NTSC color video actually runs at a frame rate of 29.97 Hz (frames per second)
because of some compatibility issues with monochrome television. This causes a problem with
non-drop frame timecode because it gets out of step with real-time at the rate of 108 frames
{or 3.6 seconds) per hour. This means that after 1 hour of playback, the timecode would read
00:59:56:12, assuming a start point of 00:00:00:00. This causes problems when trying to
calculate show duration or using "time-of-day" referencing.

A solution to this problem is to skip some frames in the count every so often so the error is
reduced to something tolerable. This compensation method is called "drop frame" and is
implemented by skipping the first two frames from the count at the start of each minute

243

Application Developer's Guide Page 42 of 106

except minutes 00, 10, 20, 30, 40 and 50. The net result is an error of less than 1 frame per
hour, or about 3 frames per 24 hour period.

Drop frame is used more commonly in today's productions, although any implementation
should support mixing both modes.

Typical Uses of Timecode

Applications which provide video capture and editing functionality will typically require control
of external devices. These applications need to identify and index video and audio frames
through references to SMPTE timecode. Linear editing system computers generally control
three or more tape machines, as well as a video switcher and possibly a digital disk recorder.
The controlling computer must execute commands at precise times and therefore must get
videotapes cued to specific places at specific points in time.

Applications typically use timecode in a number of different ways including, but not limited to
the following:

o Tracking of video and audio sources throughout the editorial process so an edit decision
list, or EDL, may be generated for archival or export to another system. To create an
EDL:

1. Shoot the video.

2. Capture into a nonlinear offline system that uses some form of intraframe-only
compression (MIPEG, DV, etc.).

3. Edit the material and generate an edit decision list (EDL) and offline edited master.

4. Import the EDL to an online system and do an "auto-assembly” using the original
source material to generate the final master, adding titles and effects where
required.

+ Synchronizing audio to video. In feature film production, audio is usually recorded on a
separate tape recorder along with timecode. Specially equipped film cameras can also
record timecode on the film in between the sprocket holes. After the filmed image is
electronically transferred to videctape, the timecode is used to align the audio with the
picture in a process known as "synching the dailies”. If the audio and video timecodes
are different, VITC and LTC may sometimes be used together, one for video timecode
and the other for audio timecode.

+ Synchronization and triggering of multiple devices such as ATRs, digital disk recorder or
players, VCRs, or other similar devices. This is a much broader class of synchronization
than described above, and is most commonly seen in linear editing and nonlinear editing
systems, closed captioning systems, and subtitling systems.

+ Making use of the undefined bits in the timecode, called userbits. Often information such
as dates, ASCII codes, or film industry information is contained in the userbits, however
uses of userbits is limited only to the ingenuity of the user.

It quickly becomes obvious that timecode makes many things possible when properly handled.
Unfortunately, there is also a lot that can go wrong, either because of poor technique or
hardware malfunctions. Some things to look out for on timecoded tapes are:

1. Unstable or drifting timecode relative to video or audio.

2. Poor timecode field integrity. This means an LTC word begins in the middle of a frame
rather than at the beginning, or VITC is not updated on a true frame boundary. The net
result is an ambiguous reference.

Unintentional VITC/LTC mismatch.

Intermittent dropouts.

Missing timecode.

Utk W

244

Application Developer's Guide Page 43 of 106

6. Poor timecode signal quality.
7. Incremental frame offset from incorrectly made copies.

Capturing Timecode

Timecode can be generated either by an external timecode generator, by a capture card
capable of generating timecode, by the device control filter itself, or by an external device such
as a VCR that has a built-in timecode reader. An RS-422 connection is generally necessary if
the timecode is sent to the host from an external device.

Once timecode is generated, it needs to be captured either in tabular or stream format
concurrently with the video or audio so that it can later be accessed during editing. This is
handled in one of two ways:

1 Build a table that lists the timecode discontinuities indexed to frame position within the
stream, and write the table to the end of the file after capture is complete. The list might be an
array of structures that look like this (NOTE, the following structure is a simplification of the
DirectShow TIMECODE SAMPLE structure and is intended as an example only):

struct |
DWORD dwOffset; // offset into stream in frames
char[11] szTC; // timecode value at offset in hh:mm:ss:ff
// for non drop, hh:mm:ss;ff for dre
} TIMECCDE;

For example, given a captured video stream with one timecode break in it, the list might look
like this:

0, 02:00:00:02},
16305, 15:21:13:29) // timecode jumps at frame 16305

Using this table, any frame's timecode can be easily calculated.

2 Treat the data as a stream and write it to the file just as video and audio are written. This is
useful for rapidly changing data or even non-timecode data in the vertical blanking interval
{(VBI) such as closed captioning data.

Once the timecode data is properly stored with its associated frame data, applications that
edit, composite, synchronize or trigger can access and use a familiar and standard indexing
system.

External Device Control

To understand external device control, it is necessary to understand timecode. The key things
to remember about timecode are:

¢ SMPTE timecode is a frame addressing system that identifies video and audio frames. It
comes in many types and modes: LTC, VITC, Drop Frame, Non-Drop Frame, and operates
at various frame rates: 24, 25, 29.97, and 30 frames per second.

¢ SMPTE timecode is used in edit decision lists (EDLs) which are generated for offline
editing and online editing, as a timing reference for synchronizing hardware devices, and
as a vehicle for additional data such as production source or film reference information.

¢ SMPTE timecode can be stored as a stream or table of discontinuities.

+ Timelines are necessary for synchronization, and can be local to the controlling

245

Applicati on Devel oper's Guide Page 44 of 106

chmpitar, exteenat gynchegnizer, o the controlied device ggelf,

Given this background, two fundamental probiems exist with device contegi, Fiegt, hundreds of
iffmrant COMMnICation nrotooois it Foe 2 the varipus devices frgm ai tha varigs
mgnafacurars, Aithough some devices are more widely used than others, such as VORs and
Laserdiscs, 3imost 3l hgve g diferent remote contegl intarface, A5 more soohisticatad
profasciongt vides and audio aopiications contings 1o move &) the desikion, this negblem geats
worse, Dire o this miyriad OF peotocdis, senarate DivectThow Rlters must be implamentad e
eath ang evary extarnat device your want 1o oonki,

Second, the fundamentad peobierm in the design OF professionat video and audio systems i that
events must Qocir at pracie noints in time, Taking a systems view OF this sae, consider the
EQiiwwEng tiening diggram:

- . e Sync Word
7o QL |

Systern Vertical Drive I: I u

Systern Frame Pulse -I—I "

External Device i :

Wertical Drive -I—I I—I

Digital Video/Audio -I_l

Player Wertical Drive

Field times

The horizonial gxig denotes time in videg fieids, or rougity 1760 oF 2 second for NTSC videg,
The Key ooink hare i That i gignais ine oo in time, that is, tmecode stars at the baginning
OF & Frame {System Frame Puige), Dxtarmal devices such 85 Lane machings aeo glignad with tha
systam reference, a5 well ags digital vided pigyback Such a5 an AVE Fie rin from an AV i-enabieg
apnication,

Confoemance 0 Bhig timing requiremeant 5 achievad by vanqus means, the most commaon of
which 5 3 master referance signat distribgted 1o alf comoonents in the system, Thig refarenis
i5 Known a5 "higckberst” in the videg workl, 50 named because i 5 a composite video signa
containing ng active vigeo above bigck level The "burst” noetion OF tha name referg & the
COEQr burst norion OF the videg signat, Sach device connacted to the refarance 5 responsibie
e mgintaining &5 own syachronization, This maeans e exampie, that a digital vida) oiayer
rrLtSE Swibch Feamas dueing the vertical bigniing infeeval 3 tane maching mest Switch inko
eacQrd mode during the verticad bianking intoeval, commands sent (o axtarmat devices via g
serigi oo mask ba tmaed 10 the frame ouaise, angd ai Of these and other synchrgnized events
LS Qoo whan the SMPTE timecode hits & predeteeminad vakte, Faliee o conform o these
elies rasiits in Eeacing OF 3 viged mage or edits oooitrdng at the weong noint in tima,

ACohmpiinhing it this in the professionat vided wortd &5 relatively straightiforwand, bt in the
frybei] workd OF desikbon wvideq, i g veey JFRCUTE

BeLiiging on the concents prasantad 50 far, the Two dagigqn exampias in the Foiiowing diageams
grstrate o notontial configueation OF axtarngd favicas,

245

Applicati on Devel oper's Guide Page 45 of 106

Cormputer

e,

DV Recorder/Player H T/C
Effects Gen/DWEACG Reader/Gen

I T3 ;

WVCR

Serial IA/0

cgm Control Lm Hand Contraller
—= Audio/video

Motes: Computer MonitordMouseevboard omitted for clarity,

H Tirmecode reader required for non-timecode-enabled WCRs,

Computer

O% Recorder/Plavyer/ 3] B T/
Effects Gen/DWEACZG Serial I/ ReaderdGen

I F1 [.i. .t L L4

VIR et HCTEE R (P e b Hand Controller

WVCR - WVCR =

L Vil |
—= AudioSvideo

Motes: ComputerMaonitordMousefeyvboard omitted for clarity,
H Timecode reader required for non-timecode-enabled WCR,

Serial 1/0 can be replaced by a more saphisticated
control subsystern {plug-in or external)l.

The BioCk diaqrams show Ehat & &5 reigtively simpie 10 distribate the refarance gignat £o i of
tha bowas, T4 deat with syanchegrnization that takes sipee within the oompatar, e adampia,
babweon the thmecods reader and digital video pigyer, & i recqmmaended Ehat aiher 3 "wertica
driva” hardware intarmet snecizized operating Systam Sermvices, OF some pthar custom
SOEIEION Da (sed.

Fingity, iF youo intand 20 weite an extamat device fiter wou should implameant the
IAMExtDevice, IAMEXTransogrt IAMTImecodeReader, IAMTImeacodeGenarator, and
IAMTimecodaDisniay interfpoes orovided by DivectShow, Addiiongily & you need 1o move
Binary messages to and fom an externgl dovice, for exampde, 0 downioad execitabie oode for
the externat device's microprocessor 1o execute, this showid be accomuplishad by impiamarnting
tha {OM IDatalbject interface, which has a compiete set of methods for handiing binary data
teangfers, Lise this interface e whatever custom data bransier nurnQses your Bitar neads,

For sampie oode that demonstrates how 1o impiement an axterngi device controi filter see the
Sampleg\DEWCrckel foider in the DirectX Madip DK,

247

Application Developer's Guide Page 46 of 106

References and Suggested Reading

For additional information on SMPTE timecode and external device control, refer to the
following documentation.

1. Proposed revision to ANSI/SMPTE 12M-1986, SMPTE Standard for Television, Audio and
Film Time and Control Code, SMPTE Journal, February 1995,
2. SMPTE RP 135-1990 "Use of Binary User Groups in Motion-Picture Time and Control
Codes”
3. SMPTE RP 169 "Television, Audio and Film Time and Control Code - Auxiliary Time
Address Data in Binary Groups - Dialect Specification of Directory Index Locations"
SMPTE RP 179-1994 "Dialect Specification of Page-Line Directory Index for Television,
Audio and Film Time and Control Code for Video-Assisted Film Editing”
5. "Touring the Vertical Interval", Warner Johnston, TV Technology, August 1991
6. "Closed Captioning in Real Time", Marc Oakrand, SMPTE Journal, June 1991
7. Timecode Handbook, 3rd. Edition, Cipher Digital, Inc. (available from Mix Bookshelf)
8. Timecode: A Users Guide, John Ratcliffe {(available from Mix Bookshelf)
9. SMPTE RP 138 - Control Message Architecture
10. SMPTE RP 139 - Tributary Interconnection
11
12
13

»

SMPTE RP 163 - System Service Messages
SMPTE RP 170 - Video Tape Recorder Type Specific Messages for Digital Control Interface
SMPTE RP 171 - Type-Specific Messages for Digital Control Interface of Analog Audio
Tape Recorders

14, SMPTE RP 172 - Common Messages for Digital Control Interface

15. SMPTE 275M - ESlan-1 Remote Control System

Note SMPTE standards and reprints available from SMPTE at (914)761-1100

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home] topie Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

Build a Filter or Application with Visual C++ 5.x

This article describes step-by-step procedures for building your Microsoft® DirectShow™
projects. You can either build your filter or application from the command line, or build it from
within the Visual Studio environment that comes with Microsoft Visual C++®. If you choose to
build a filter from within Microsoft Visual Studio™, you can use the VC5Kit set of files shipped
with the DirectShow SDK, by default, in the dxmedia\tools\VC5Kit directory. This provides an
easy way to configure Visual Studio project settings. You can also set the project settings
within Visual Studio yourself.

The main difference between building a filter and building an application from within Visual
Studio is that for a filter you select Win32 Dynamic-Link Library as the project type, while
for an application you select Win32 Application or Win32 Console Application as the
project type. (You choose the project type in the New Projects dialog box opened by choosing

248

Application Developer's Guide Page 47 of 106

the New command from the File menu.)
This article includes the following topics.
o Building a Filter or Application from the Command Line

o Using VC5Kit to Build a Filter in Visual Studio
o Setting DirectShow Project Settings in Visual Studio

Building a Filter or Application from the Command Line
Perform the following steps to build a DirectShow project from the command line.

Go to the Visual C+4+ Bin directory.

Type VCVARS32.

Go to the directory containing the filter you want to build.

If you are building a sample filter and the sample filter isn't in the default directory (the
default is \dxmedia\Samples\ds\Samplename; for example,
\dxmedia\Samples\ds\Gargle), set the AXSDK MAKEFILE variable to the top-level
DirectShow directory. For example, at the command prompt, type:

hPWNE

set axsdk=c:\dxmedia

5. At the command prompt, type:

NMAKE

For nondebug versions, type:

NMAKE NCDEBUG=1
Using VC5Kit to Build a Filter in Visual Studio

This section discusses building filters with Microsoft® Visual C++® version 5.x. The 5.x VC5Kit
is installed by default in the dxmedia\tools\VC5Kit directory.

Setting the Visual Studio Include and Lib Directories
Creating a Project Directory and Adding Source Files
Building the Project in Visual Studio

Creating a GUID

Creating a Definition File

Setting the Visual Studio Include and Lib Directories

This topic describes how to set your Visual Studio Include and Lib directories. If you are
building a DirectShow sample application, such as PlayFile, that comes with a makefile or .mak
file, the steps in this topic are the only ones you must perform to build the sample. Once you
set your directories, you can choose Open Workspace from the File menu and select the
existing makefile or .mak file. Visual Studio will wrap the makefile. If you are building a filter,
other steps will probably be necessary.

1. Open Visual Studio.

249

Application Developer's Guide Page 48 of 106

Uik Wi

NOo

From the Tools menu, choose Options.

Choose the Directories tab.

In the Show directories for drop-down list, select Include files.

Add the DirectShow include directories (by default: dxmedia\Include and
dxmedia\Classes\Base) to the list.

In the Show directories for drop-down list, select Library files.

Add the DirectShow library directory (by default C:\dxmedia\Lib}.

Creating a Project Directory and Adding Source Files

Follow these steps to create your project directory and add your source files to it:

1.
2.
3

Create an empty directory for your project; for example, C:\Filter.

Copy the VC5Kit Filter.def, Filter.dsp, Filter.dsw, and Filter.mak files into the directory.
Copy your source files into the directory. This includes .h, .cpp and any other
miscellaneous source files your project requires. If your project has its own .def and .rc
files, you can use these rather than the .def and .rc files provided with VC5Kit.

Building the Project in Visual Studio

Follow these steps to build your project in Visual Studio:

1.
2.

O N U A

From the File menu in Visual Studio, choose Open Workspace.
In the Open Workspace dialog box that appears, browse to the directory you created
and select Filter.dsw.

The project opens.

To add your source files to the project, choose Add to Project from the Project menu,
and then choose Files from the submenu that appears. Browse to the directory
containing your source files, select the ones you want to add, and click the OK button.
From the Project menu, choose Settings.

Choose the Link tab and select General from the Category drop-down list.

In the Output file name box, type the name of your filter; for example, Filter.ax.
Choose QK to confirm the project settings you've selected.

Choose Build Filter.ax from the Build menu. The name Filter.ax is the name you gave
the output file in the Link tab.

Creating a GUID

If you are building your filter using source files from an existing filter, including any samples
filter that ships with DirectShow, you must create a GUID for the new filter.

To create a GUID in Visual Studio:

1.

2.
3.
4,

From the Tools menu, choose Create GUID. By default, the GUID is in DEFINE_GUID
format, which is the format you want.

Click the Copy button.

Delete the old GUID from your source file.

Put the cursor in your source file where the old GUID used to be, and choose Paste from
the Edit menu.

Creating a Definition File

200

Application Developer's Guide Page 49 of 106

If yvour filter implements the DlIGetClassObject, DliCanUnloadNow, DIIRegisterServer, or
DllUnregisterServer functions, you must include a definition file {(.def file) that exports them.
For example (where Filter.ax is the name you gave the output file):

LIBRARY FILTER.AX
DESCRIPTICN 'Description of my filter'
PROTMODE
EXPORTS
DllGetClassObject
DllcCcanUnlcadNow
Dl1lRegisterServer
DllUnregisterServer

Setting DirectShow Project Settings in Visual Studio

This section describes how to set project settings in Visual Studio to build your own DirectShow
applications and filters. If you are building samples supplied by DirectShow, you need only set
yvour Include and Lib directories.

In some cases, you might need to add to these project settings for your particular application.
For example, if you use DirectDraw functions, you must add Ddraw.lib to the list of Link
libraries.

In all cases, you must set the Visual Studio Include and Lib directories as described in Setting
the Visual Studio Include and Lib Directories.

This section contains the following topics.

Creating a Project

Adding Files to the Project

Setting Project Settings For Both Release and Debug Builds
Setting Project Settings for Debug Builds

Building a Release or Debug Version of Your Project

Creating a Project
To create a project, perform the following steps.

1. From the File menu, choose New.

2. Choose the Projects tab.

3. If you are building an application, select Win32 Application as the type of project. If
you are building a filter, select Win32 Dynamic-Link Library.

4. Type a name for the project and a location for the project files.

Adding Files to the Project
To add files to the project, perform the following steps.

1. From the Project menu, choose Add to Project. From the submenu that appears,
choose Files.

2. In the Insert Files into Project dialog box that appears, browse for the filter files you
want to add to the project, such as the .cpp, .h, .rc, and .def files.

251

Application Developer's Guide Page 50 of 106

3. Select the file or files you want to add and choose OK.
Setting Project Settings For Both Release and Debug Builds
To set project settings for both release and debug builds, perform the following steps.
1. From the Project menu, choose Settings.
2. IIir;t'fhe dialog box that appears, select All Configurations in the Settings For drop-down

Follow these steps to set your project general settings:

1. From the Project menu, choose Settings.
2. Choose the General tab.
3. From the Microsoft Foundation Classes drop-down list, select Not Using MFC.

Follow these steps to set your project compiler settings:

From the Project menu, choose Settings.

Choose the C/C++ tab.

In the Category drop-down list, select General.

In the Preprocessor definitions text box, insert the following:

AWM

INC_OLEZ,STRICT,WIN32, MT, DLL, X86 =1, WINVER=0xX0400

5. Select the C++ Language category.

6. Select the Enable exception handling check box.

7. Choose the Code Generation category.

8. In the Processor drop-down list, select Blend*.

9. In the Calling convention drop-down list, select _stdcall.
10. In the Use Run-time library drop-down list, select Multithreaded DLL.
11. Select the Precompiled Headers category.
12. Select the Not using precompiled headers option button.

Follow these steps to set your project link settings:

From the Project menu, choose Settings.

Chogse the Link tab.

In the Category drop-down list, select General.

In the Output file name text box, type the filter's ocutput file name; for example,
Debug/Filter.ax.

Add the following libraries to the beginning of the Object/Library modules text box.

P W=

v

gquartz.lib strmbase.lilb msvcrt.lib

These libraries must be the first libraries in the link list. Depending on the functions vour
application accesses, you might need to add other libraries to this list.

Select the Ignore all default libraries check box.
Select the Customize category.

Clear the Use program database check box.
Select the Output category.

In the Base address text box, type:

SwENO

202

Application Developer's Guide Page 51 of 106

0x1c400000

11. In the Entry-point symbol text box, type:

Dll1EntryPointelz
Setting Project Settings for Debug Builds
To set project settings for debug builds, perform the following steps.

From the Project menu, choose Settings.

Select Win32 Debug in the Settings For drop-down list in the Project Settings dialog
box that appears.

Choose the C/C++ tab.

In the Category drop-down list, select General.

Select the Generate browse info check box.

In the Debug info drop-down list, select C7 Compatible.

Select the Code Generation category.

In the Use Run-time library drop-down list, select Debug Multithreaded DLL.
Choose the Link tab.

Select the Debug category.

Select the Debug info check box.

N =

ool g oo

el

Building a Release or Debug Version of Your Project
To build a release or debug version of your project:

1. Choose Set Active Configuration from the Build menu, and select Win32 Release or
Win32 Debug from the list that appears.

2. Choose Build Filter.ax from the Build menu. The name Filter.ax is the name you gave
the output file in the Link tab.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

Recompress an AVI File

The following sample code shows how to recompress the file c:\Foo.avi to c:\Bar.avi, where the
output file will use Cinepak compression and will include CD-quality audio. Recompression is
useful to change the format of a file from one compression scheme to another. The exact
benefits of recompression depend on the different compressors used to compress the source
and output files and often include producing a smaller output file. In this example the source
file, Foo.avi, might be in a format such as uncompressed RGB with 22 kilohertz (kHz) sound.

The AMCap Sample (DirectShow Capture Application) sample demonstrates a capture

203

Application Developer's Guide Page 52 of 106

application and uses many of the same concepts as the following code.

Note This sample code fragment introduces concepts only and is not designed to compile. See
the AMCap Sample (DirectShow Capture Application) sample for actual code. The code
fragment does not perform error checking for the sake of brevity.

// Create a graph builder object.

hr = CoCreateInstance((REFCLSID}CLSID CaptureGraphBuilder,
NULL, CLSCTX_ INPROC, (REFIID)IID_ICaptureGraphBuilder,
(void **)&pBuild) ;

// Create a filter graph, and tell the builder what it is.

hr = CoCreateInstance({(REFCLSID)CLSID FilterGraph,
NULL, CLSCTX_ INPROC, (REFIID)IID_IGraphBuilder,
(void **)&pFg) ;

hr = pBuild->SetFiltergraph(pFg) ;

// Obtain a source for c:\foo.avi.

hr = CoCreateInstance((REFCLSID)CLSID AsyncReader,
NULL, CLSCTX_INPROC, (REFIID)IID_IBaseFilter,
(vold **)&pSrcy) ;

hr = pSrc-=QueryInterface(IID IFileSourceFilter, (void **)a&pl);

hr = pI-sLoad{L"c:\\foo.avi", NULL);

pl->Release();

hr = pFg->AddFilter (pSrc, NULL) ;

// Create a rendering section to create the c:\bar.avi output file.
hr = pBuild->SetoutputFileName (&MEDIASUBTYPE Avi, L"c:\\bar.avi", &pRender,
NULL) ;

// [...Enumerate the audic compressors with the category CLSID AudioCompresscrCateg
// and pick one. See the Amcap.cpp file in the capture sample directory for an exar
// how to enumerate a category...]

// Render the recompressed audio stream
hr = pBuild->RenderStream(NULL, pSrc, pCAud, pRender);

// [...Enumerate a video compressor using the CLSID VideoCcompressorCategory enum,
// as seen in Amcap.cpp...]

pcvid = [...IBaseFilter pointer of the chosen Cinepak compressor...]
hr = pFg-->AddFilter {pCvid, NULL) ;

// Tell it to compress at 100k/second data rate.
// Use the current format to set the data rate, but change the data
// rate item in the media type.
hr = pBuild->FindInterface (NULL, pCVid, IID IAMStreamConfiqg,
{vold **)&pvsce);
hr = pvsSC-»GetFormat (&cmt} ;
((VIDEQINFOHEADER) (cmt . Format ())) -=dwBitRate = 100000;
hr = pvseC-=SetFormat (&cmt) ;
pvVsSC->Release() ;

// Request key frames every 4 frames.

hr = pBuild->FindInterface (NULL, pCvid, IID IAMVideoCompression,
{vold **)&pvce) ;

hr = pvVC-=>put_ KeyFrameRate (4) ;

pvVC-=Release(} ;

// Render the recompressed video stream.
hr = pBuild-»RenderStream(NULL, pSrc, pCvid, pRender);

254

Application Developer's Guide Page 53 of 106

// All done with these objects now.
pSrc->Release() ;
pRender->Release () ;
pCiud-=>Release () ;

pCVid-»>Release() ;

// Run the graph.
hr = FG-=QueryInterface (IID IMediaControl, &MC);
MC->Run () ;

// Wait for EC COMPLETE, and it's all dene!
// [...wait for EC COMPLETE event... see AMCap sample...]

pGraphBuilder->FindInterface (pRender, IID IMediaSeeking, pMS);

// [...While waiting for complete, use IMediaSeeking methods to get

// the percentage complete... IMediaSeeking-s>GetCurrentPosition divided by
// GetDuration * 100 will tell you the percent complete at any time...]

pFg-=Release () ;
pBuild->Release(} ;

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | insex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

Register DirectShow Objects

This section describes the steps you must take to make your Microsoft® DirectShow™ objects
self-registering. It describes the relationships between the registry entry points called by COM,
the globally-defined CFactoryTemplate array elements, and the AMOVIESETUP MEDIATYPE,
AMOVIESETUP PIN, and AMOVIESETUP FILTER structures.

To enable objects in a dynamic-link library (DLL) to register themselves, two COM-defined
entry points must be provided in the DLL and exported:

¢ DlIRegisterServer
o DllUnregisterServer

With these entry points in your DLL, you can use the Regsvr32.exe tool to register and
unregister your DLL or setup tools, or applications can register the filter programmatically.

Implementing Self-Registration

To implement a self-registering filter, carry out the following steps.

1. Add DIlIRegisterServer and DllUnregisterServer to the export list in your filter's DEF file.

2. Provide implementations for these functions, which call the DirectShow
AMovieDIlIRegisterServer2 function with parameters of TRUE and FALSE, respectively. For
example:

205

Application Developer's Guide Page 54 of 106

STDAPI DllRegisterServer(}

return AMovieDllReglisterServerz (TRUE) ;

}

HRESULT DllUnregisterServer()

{

return AMovieDllRegisterServerz (FALSE) ;

}

You can add code to these functions to set up custom registry entries.

3. Define the setup data structures for each filter based on the AMOVIESETUP MEDIATYPE,
AMOVIESETUP PIN, and AMOVIESETUP FILTER structures.

For example, here are the structures for the Ball.ax sample filter:

// setup data

const AMCVIESETUP MEDIATYPE sudOpPinTypes =
{ &MEDIATYPE Video
, &MEDIASUBTYPE NULL };

const AMCVIESETUP PIN sudOpPin =
{ L"output”

, FALSE

. TRUE

. FALSE

, FALSE

, &CLSID_NULL

. NULL

L1

, &sudopPinTypes };

const AMOVIESETUP_FILTER sudBallax =
{ &CLSID BouncingBall

, L"Bouncing Ball"

, MERIT UNLIKELY

, 1

, &sudopPin };

4, In the CFactoryTemplate g Templates array that instantiates your class, ensure that the

first parameter has the name of the filter, (for example, "Bouncing Ball") and that the
last parameter has the address of the AMOVIESETUP FILTER structure you defined.

CFactoryTemplate gTemplates[]:{

L"Bouncing Ball", // Name of the filter

&CLSID BouncingBall, // CLSID of the filter

CBouncingBall: :CreatelInstance, // static function to be called by class £
NULL, /7

&sudBallax} // Rhddress of the AMOVIESETUP FILTER struc

I

5. Tag the DLL file as self-registering by adding the string "OLESelfRegistering” to its
resource {defining AMOVIE_SELF REGISTER in your resource file does this automatically
if you are using Activex.rcv and Activex.ver). This string enables applications to

206

Application Developer's Guide Page 55 of 106

determine whether the object is self-registering without loading the DLL.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topie Contents | miex | ext _
[Previoss | Home | Topio Contents | miex | ext _

Enumerate and Access Hardware Devices in
DirectShow Applications

This article explains and demonstrates how to initialize and access system hardware devices by
using interfaces and classes provided by Microsoft® DirectShow. Developers need this
functionality to support many types of hardware in their applications. Typically, DirectShow
applications use the following types of hardware.

¢ Audio and video capture cards
¢ Audio or video playback cards
¢ Audio or video compressors or decompressors {such as an MPEG decoder)

Because developers support these devices in a similar manner (and for the sake of brevity),
they will be referred to as AV devices for the remainder of this article; they will be
distinguished only if a topic applies to a specific type of device.

Three interfaces apply to hardware device support: ICreateDevEnum {(documented in the
DirectShow SDK), and IPropertyBag and IPersistPropertyBag (both Microsoft Win32®
interfaces). These interfaces handle hardware device enumeration and the loading and storage
of AV device properties.

Contents of this article:
+ How to Enumerate Hardware Devices

¢ Device Enumeration in the AMCap Sample
+ How to Store DirectShow Filter Properties Persistently

Application developers who want to control hardware devices should be familiar with the COM-
based concepts of monikers, enumerators, and the initialization and creation of DirectShow
objects.

How to Enumerate Hardware Devices

Microsoft provides audio and video capture and playback functionality through interfaces,
classes, and samples included in the DirectShow SDK. Because the File Source filters and the
filter graph manager handle the internal work of passing information from component to
component, adding capture capabilities to an application requires a relatively small amount of
additional code. The required additional code enumerates the system's hardware devices and
compiles a list of the devices that can perform a specific task (a list of all video capture cards,

207

Application Developer's Guide Page 56 of 106

for example). You can use the same enumeration process for any hardware device, past or
present; DirectShow automatically instantiates filters for both Win32 and Video for Windows
devices.

To work with AV devices, you must first detect what devices exist on the current system. The
ICreateDevEnum interface, which creates enumerators for any specified type of object,
provides the functionality you need to detect and set up the hardware. Accessing a specific
device is a three-step process, detailed by the following instructions and code fragments.

1. Create a system hardware device enumerator.

First, set aside a pointer for the enumerator, and then create it by using the
CoCreatelnstance function; CLSID_SystembDeviceEnum is the type of object you want to
create (a system hardware device enumerator, in this case) and IID ICreateDevEnum is
its interface GUID.

ICreateDevEnum *pCreateDevEnum ;
CoCreatelInstance (CLSID SystemDeviceEnum, NULL, CLSCTX INPROC SERVER,
IID_ICreateDevEnum, (void**)&pCreateDevEnum) ;

2. Create an enumerator for a specific type of hardware device (such as a video capture
card).

Declare an IEnumMoniker interface pointer and pass it to the
ICreateDevEnum::CreateClassEnumerator method, called on the system device
enumerator. You can then use the IEnumMoniker interface pointer to access the newly
created enumerator.

IEnumMoniker *pEnumMon ;
pCreateDevEnum->CreateClassEnumerator (
[specify device GUID here]
&pEnumMon, 0);

3. Enumerate the list itself until you locate the desired device.

If the previous call to CreateClassEnumerator succeeded, you can call the
IEnumMoniker:: Next method to step through the list of devices. To retrieve the device
itself, call the IMoniker::BindToObject method on an enumerated device. BindToObject
creates the filter associated with the selected device and loads the filter's properties
(CLSID, FriendlyName, and DevicePath) from the registry. Don't be confused by the (1
== cFetched) portion of the if condition; the Next method will set it to the number of
returned objects (1, if successful) before testing the statement's validity.

ULONG cFetched = 0;
IMoniker *pMon ;

if (8_OK == (pEnumMon-=>Next (1, &pMon, &cFetched)) && (1 == cFetched))

{

pMon->BindToCbject (0, 0, IID IBaseFilter, (void *+*)&[desired interface

Now that you have the IMoniker pointer, you can add the device's filter to the filter
graph. Once you've added the filter, you don't need the IMoniker pointer, device
enumerator, or system device enumerator.

208

Application Developer's Guide Page 57 of 106

pGraph->aAddFilter ([desired interface here], L"[filter name here]".
pMon-=Release{} ; // Release moniker

pEnumMon-=Release(} ; // Release the class enumerator

pCreateDevEnum-=>Release () ;
Device Enumeration in the AMCap Sample

The DirectShow SDK includes an audio and video capture sample application called AMCap, as
well as the sample’s source code. Internally, AMCap uses the ICreateDevEnum interface to
construct a list of a system's capture devices. In the application itself, you can access the list
of devices from the Devices menu,

The code that builds AMCap's enumerated list of devices is its InitCapFilters function. This
function demonstrates a typical way to enumerate filters, for both former and current hardware
devices. For the sake of brevity, the following code walk-through contains no error-checking
code; for the complete version, see the Amcap.cpp file in the \Samples\DS\Capture directory
of the SDK. The AMCap sample uses a global variable, gcap, which is a structure from the
Amcap.cpp file that stores a variety of information used by the filter graph. While you generally
want to avoid using global variables, this structure does show the amount of information that
the filter graph manager handles.

struct capstuff {
char szCaptureFile[MAX PATH] ;
WORD wCapFileSize;
ICaptureGraphBuilder *pBuilder;
IVideoWindow *pVW;
IMediaEventExX *pME;
IAMDroppedFrames *pDF;
IAMVideoCompression *pVC;
IaMvVvEwCaptureDialogs *pDlg;
IaMAudioStreamConfig *pASC;
IAMVideoStreamConfig *pVsC;
IBaseFilter *pRender;
IBaseFilter *pVCap, *pACap;
IGraphBuilder *pFg;
IFileSinkFilter *pSink;
BOOL fCaptureGraphBuilt;
BOOL fPreviewGraphBuilt;
BOOL fCaptureGraphRunning;
BOOL fPreviewGraphRunning;
BOOL fcCapiudio;
int 1ivideoDevice;
int iAudioDevice;
double FrameRate;
BOOL fWantPreview;
long lCapStartTime;
long lCapStopTime;

} gcap;

InitCapFilters starts by defining some basic return and error-checking variables. AMCap uses
the ulndex value to loop through the system's hardware devices later.

BOOL InitCapFilters(}

{

HRESULT hr;

209

Application Developer's Guide Page 58 of 106

BROCL f;
UINT ulIndex = 0;

The MakeBuilder function call creates a filter graph builder. You can find the MakeBuilder
function in Amcap.cpp.

f = MakeBuilder() ;

The next section handles the video capture device enumeration; this code is very similar to the
code description from the How to Enumerate Hardware Devices section. It first declares an
ICreateDevEnum pointer, then uses CoCreatelnstance to create an enumerator for system
hardware devices.

ICreateDevEnum *pCreateDevEnum;
hr = CoCreateInstance(CLSID SystemDeviceEnum, NULL, CLSCTX INPRCC SERVER,
IID ICreateDevEnum, (vold#**)&pCreateDevEnum) ;

After it has a device enumerator, AMCap creates an enumerator specifically for video capture
devices by passing the CLSID VideolnputDeviceCategory class identifier to

ICreateDevEnum: :CreateClassEnumerator. It can now use the IEnumMoniker pointer to access
the enumerated list of capture devices.

IEnumMoniker *pEm;

hr = pCreateDevEnum->CreateClassEnumerator (CLSID VidecInputDeviceCategory, &pEWT
pCreateDevEnum->Release () ; // We don't need the device enumers:
PEm->Reset () ; // Go to the start

Now AMCap needs the actual device, it calls [IEnumMoniker::Next to move through the device
list, and then points pM to each device by calling IMoniker: :BindToObject, which also loads the
device's properties {CLSID, FriendlyName, and DevicePath) from the registry. If you do not
want to automatically create the filter associated with the device, use IMoniker::BindToStorage
instead of BindToObject.

ULCONG cFetched;

IMoniker *pM; // This will access the act
gcap.pVCap = NULL;

while (hr = pEm->Next (1, &pM, &cFetched), hr==S_OK}

{

if ({int)ulIndex == gcap.ivideoDevice) { // This is the one we want. Instantiate it
hr = pM->BindToObject (0, 0, IID IBaseFilter, (void**)&gcap.pVCap);
pM-=Release () ; // We don't need the monike
break;
pM->Release () ;
uIndex++;
pEm-=Release () ; // We've got the device; don't neec

After AMCap has a device, it retrieves the interface pointers to measure frames, get the driver
name, and get the capture size. AMCap stores each pointer in the gcap global structure.

// We use this interface to get the number of captured and dropped frames
gcap.pBuillder->FindCaptureInterface (gcap.pVCap,
IID_IAMDroppedFrames, (void **)&gcap.pDF);

// We use this interface to get the name of the driver

gcap.pBullder->FindCapturelInterface (gcap.pvCap,
IID IAMVideoCompression, (void **)&gcap.pVC);

260

Application Developer's Guide Page 59 of 106

// We use this interface to set the frame rate and get the capture size
gcap.pBullder->FindCapturelInterface (gcap.pvCap,
IID IaMVideoStreamConfig, (vold **)&gcap.pVsC);

AMCap then gets the media type and sizes the display window to match the size of the video
format.

AM MEDIA TYPE *pmt;
gcap.pVsC-=>GetFormat (&pmt} ; // Current capture format

ResizeWindow (HEADER {pmt ->pbFormat) -=biwidth,
HEADER (pmt->pbFormat) ->biHeight) ;
DeleteMediaType (pmt) ;

This section applies only to earlier Video for Windows devices. Video for Windows devices
support a specific set of dialog boxes, which set the video source, format, and display type. For
additional information on these dialog boxes, see the IAMVfwCaptureDialogs interface
documentation.

hr = gcap.pBuilder->=FindCapturelnterface {gcap.pvCap,
IID_IaMvfwCaptureDialogs, (vold **)&gcap.pDlg);
if (hr != NOERRCR) {
ErrMsg ("Error %x: Cannot find vCapture:IaMvViwCaptureDialogs", hr};

Now that AMCap has the video capture device and its relevant information, it repeats the
process with the audio devices and stores the information in the global structure. Note that it
calls ICreateDevEnum: :CreateClassEnumerator with the CLSID AudiolnputDeviceCategory
CLSID to enumerate audio hardware devices.

hr = CoCreateInstance(CLSID SystemDeviceEnum, NULL, CLSCTX INPROC_SERVER,
IID ICreateDevEnum, (void**}&pCreateDevEnum);

ulndex = 0;

hr = pCreateDevEnum->CreateClassEnumerator (CLSID AudicInputDeviceCategory,

&pEm, 0);
pCreateDevEnum->Release () ;
pEmM-=Reset () ;
gcap.plCap = NULL;
while (hr = pEm->Next (1, &pM, &cFetched), hr==5 OK)
{
if ((int)ulndex == gcap.ilAudioDevice) ({ // this is the one

hr = pM->BindToObject (0, 0, IID IBaseFilter, (void**)&gcap.pACap);
pM-=>Release () ;
break;

pM->Release () ;
uIndex++;

PEm-=Release(} ;

AMCap also repeats the process of retrieving the format interface, this time for the audio
device.

hr = gcap.pBuilder-=FindCapturelnterface (gcap.piCap,
IID IaMAudioStreamConfig, (vold **)&gcap.pASC);

261

Application Developer's Guide Page 60 of 106

How to Store DirectShow Filter Properties Persistently

The Win32 IPropertyBag and IPersistPropertyBag interfaces store and retrieve groups {("bags")
of properties for developer-specified objects. Properties stored by these interfaces are
persistent; that is, they remain consistent between different instantiations of the same object.
Filters can store their properties (CLSID, FriendlyName, and DevicePath) persistently. After a
filter stores its properties, DirectShow automatically retrieves them whenever it instantiates
the filter. To add this functionality to your filter, implement the IPersistPropertyBag
interface and its Load method. Your implementation of the Load method should call the
IPropertyBag::Read method to load the filter's properties into a Win32 VARIANT variable, and
then initialize its input and output pins.

The following code sample demonstrates how the DirectShow VfWCapture filter implements the
IPersistPropertyBag: :Load method. Remember that your filter must supply a valid IPropertyBag
pointer to hold the filter's properties during execution. You can specify an error log to trap
errors generated by the filter's properties, although you can pass in a null value to ignore error
reporting.

STDMETHODIMP CvViwCapture::Load (LPPROPERTYBAG pPropBag, LPERRORLOG pErrorLog)

HRESULT hr;

CAutoLock cObjectLock (m pLock}) ; // Locks the object; automatically

if {m pStream) // If the filter already exists for
return E UNEXPECTED;

VARIANT var; // VARIANT from Platform SDK

var.vt = VT_I4; // four-byte integer (long)

hr = pPropBag->Read (L"VFWIndex", &var, 0); // VFWIndex ig the private name use¢

if (SUCCEEDED (hr)) // If it read the properties succes
hr = 8 OK; // Defaults return value to 5 OK
m_ividecId = var.lval; // Stores the specified hardware de
CreatePins (&hr) ; // Inits the pins, replacir

return hr; // Returns S OK or an error value,

}

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topie Contents | miex | ext _
[Previous | ome | Topio Contents | miex | ext

Clocks

This section describes time and synchronization in DirectShow, how to implement a reference
clock in a filter or application, and how to make a reference clock the master clock if a filter
graph has more than one clock.

262

Application Developer's Guide Page 61 of 106

=Synchronization

=Understanding Time an locks in Dir how

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contente | niex | Wext |

Synchronization

DirectShow accomplishes synchronization by using a reference clock. A reference clock is an
object that implements the IReferenceClock interface. For example, because sound cards are
often used for reference clocks, the audio renderer filter implements this interface, which
essentially allows any caller to register for the receipt of time notifications.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home | topie Contents | niex | Wext |

Understanding Time and Clocks in DirectShow

This article describes the basic concepts of time used in the filter graph and then goes on to
describe what a reference clock is, how it is implemented by a filter or as a stand-alone clock,
how the filter graph manager decides which clock to use as the master reference clock, and
how to ensure that a reference clock implemented by a filter is used as the master reference
clock.

Contents of this article:

¢ About Time
o About Reference Clocks
o Characteristics of a Reference Clock
o Using a Reference Clock
o DirectShow Clock Classes
o Multiple Clocks in a Filter Graph

About Time

A few concepts of time come up often in discussions about DirectShow streams,
synchronization to a common clock, and seeking to different places in the stream. Four terms
are defined here:

o Media time

263

Application Developer's Guide Page 62 of 106

¢ Reference time
¢ Stream time
+ Presentation time

In DirectShow, the term media time is used to refer to positions within a seekable medium
such as a file on disk. Media time can be expressed in a variety of units, such as frames,
seconds, bytes, or 100-nanosecond intervals, and indicates a position within the data in the
file.

Reference time is an absolute time (sometimes called wall-clock time) that is established by a
reference clock in the filter graph. It is a reference to some time value outside the filter graph
{for example, perhaps the number of milliseconds since Windows was started).

Stream time is relevant only within a running filter graph, and represents the time since the
graph was last started. When a filter graph is run, each filter is passed a notional start time
{tStart) according to the reference clock, and the packets of data that a filter receives will
normally be time-stamped with the stream time at which they should be presented. This is
known as the presentation time. Stream time is often called "relative reference time" since, by
definition, stream time is equivalent to reference time minus start time when the graph is
running.

Since a filter graph can start playing a file at an arbitrary position and rate, file source filters
and/or parsers must take these two factors into account when time-stamping the samples that
they pass downstream to renderers. Such filters will calculate the presentation time and will
place that value in the sample. The presentation time is calculated by subtracting the starting
media time (the [ast time that was seeked to) from the media time of the sample, and dividing
this by the playback rate. Expressed as a formula, this would be:

Presentation Time = (Media Time - Starting Media Time} / playback rate.

For example, consider a media stream with a duration of six seconds that is set to be played at
double speed. What happens when the filter graph is seeked to a sample with a media time of
two seconds and then run? Each media sample read from the disk gets stamped with a
presentation time equivalent to half of the difference of its media time and the start time {two
seconds). Here is how the time stamps would appear at one-second media sample intervals:

Media time (sec) Presentation time stamp (sec)

3 0.5
4 1.0
5 1.5
6 2.0

When finally presented in the renderer, the difference between the actual time the sample is
rendered and the stamped presentation time that was expected can be calculated. In a perfect
graph, this would always be zero. In reality, there is 2 margin of acceptable tolerance. If this
difference is out of tolerance, then quality-control management will be initiated by the
renderer.

About Reference Clocks

A reference clock is an object that implements the IReferenceClock interface. This interface
supports querying for the current time and scheduling events according to time as counted by
that clock. Event scheduling is achieved by submitting advise requests to the clock. These

264

Application Developer's Guide Page 63 of 106

requests can be for single-shot or periodic events.

Many pieces of hardware can provide time signals. These time signals can be of particularly
high accuracy, or might represent some clock signal significant only to the resolution of a
particular application, such as sound playback.

Filters can expose a hardware time signal to other filters by implementing a reference clock in
the filter graph. A filter graph manager will choose (or be assigned) one of these reference
clocks to be the filter graph reference clock. (By definition, there is only one reference clock
allowed in a filter graph.) If no such reference clocks exist, the filter graph manager can create
a suitable reference clock and use that one instead. A reference clock can be appointed by
calling the filter graph manager's IMediaFilter: :SetSyncSource method. The reference clock is
also called the sync source. A filter graph manager propagates this selection to the filters in its
graph by calling their individual IMediaFilter::SetSyncSource methods.

Developers can provide a reference clock on a filter for purely altruistic reasons; the filter
might simply be in a position to provide a high-accuracy clock. Alternatively, the overall
performance of a filter graph might be determined by which reference clock, of all the possible
reference clocks in the graph, is selected to provide its services to the filter graph. Because
audio hardware cannot easily adjust the rate at which it delivers data, it is often the most
appropriate source of time signals. Therefore, the reference clock of the audio renderer is often
selected to be the filter graph's reference clock.

All clocks in DirectShow report a reference time; that is, a time which would be suitable to use
for the filter graph reference time. The filter graph reference time for the filter graph is the
time of the clock that has been selected as the current sync source.

Characteristics of a Reference Clock

Any reference clock must support the IReferenceClock interface. The time of the clock can be
obtained by calling the IReferenceClock: :GetTime method. The time returned by GetTime is
defined as a REFERENCE TIME type (LONGLONG) and loosely represents the number of 100-
nanosecond units that have elapsed since some fixed start time. This is just a guideline.
Specifically, IReferenceClock::GetTime must adhere to some conditions as follows.

A reference clock must return values that are monotonically increasing. That is, successive
calls to GetTime must result in values that are greater than or equal to the previous value.

Also, the return value should generally increase at a rate of approximately one per 100
nanoseconds.

In exceptional circumstances, it is allowable for the clock to stop for a time. (This will
effectively suspend any filter that was using the clock as a sync source.) Furthermore, it is
allowable for the clock to jump forward in exceptional circumstances.

Finally, the reference clock must continue to count time even if its containing filter graph is
stopped, and should normally continue to count time if it is paused. (A filter's reference clock
implementation can optionally use a system-supplied clock to fill in during such times, but that
is an implementation decision.)

The reference clock does not have to bear any permanent relationship to any real time. It is
allowed to drift, it can drift at a changing rate, and it need not correct for such drift. In
particular, it does not have to represent a count of the number of 100 nanoseconds that have
passed since some arbitrary time in the past. It is important to remember that this loose

265

Application Developer's Guide Page 64 of 106

description of a reference clock, though it can be helpful, is just a guideline. In some cases, a
strict adherence to the guideline might actually result in a poorer overall look and feel when
the filter graph is running. If you want your clock to adhere strictly to the guideline, you need
to set the clock yourself.

Using a Reference Clock

A filter will always be told to use a specific clock (or, possibly, to use none) by a call to its
IMediaFilter: :SetSyncSource method. Filters that require timing information should use the
clock that they are told to use. All filters in a particular filter graph should use the same
reference clock. An application can use a reference clock by calling
IMediaFilter::GetSyncSource on the filter graph manager to obtain a pointer to an
IReferenceClock, and then invoke methods on that interface. If a null pointer is passed to
SetSyncSource, it implies that the filter should not use any clock and should just run as quickly
as possible without discarding any data. If no clock has been set as the reference clock for the
filter graph, then when the filter graph manager's GetSyncSource is called, the filter graph
manager chooses a clock in the filter graph or creates and appoints a clock of its own. This is
the same logic that applies when the filter graph is first run.

If a new reference clock is appointed, the time as tracked by the old reference clock and the
time as tracked by the new reference clock need bear no relation to each other. As a
consequence, functions that call IReferenceClock::GetTime on the current sync source should
not be surprised to see the reported time jump forward or backward. Reference clocks can be
switched only if the filter graph is paused or stopped. When the filter graph next starts to run,
the filters in the filter graph will be given their start times in terms of the new clock. (See
IMediaFilter::Run for details.) Typically, only filters that use advise requests from the reference
clock (that is, use its scheduling facilities) must specifically handle clock differences when then
the filter graph is switched to an alternative sync source.

If a filter (or application) uses a reference clock's scheduling facilities, it is important to
recognize that the advise requests are scheduled against that specific clock in the absolute
time used by that clock. If a filter has set up advise requests against its sync source, and is
then notified of a new sync source, then the filter is normally expected to cancel the advise
requests on the first clock and set them up again on the new one. Applications that use advise
requests should monitor for EC CLOCK CHANGED events. If an EC_CLOCK_CHANGED event
notification is received, then the application should cancel any outstanding advise requests,
call GetSyncSource on the filter graph manager to obtain an interface pointer to the new clock,
and reschedule the advise requests on the new clock (also taking into account that the time on
the old and new clock might be different).

Similarly, when a filter sets up advise requests in stream time (for example, 135 milliseconds
into the media stream), then it is expected that the filter will set up an advise when it is told to
run, cancel the advise if it is told to pause or stop, and recalculate and resubmit the advise
request when it is told to run again.

DirectShow Clock Classes
DirectShow provides three class that are used to implement clocks:
¢ CBaseReferenceClock, the main clock class that implements IReferenceClock.
o CAMSchedule, which handles the mechanics of advise list processing and is inherited by

B Referen fock.
¢ CSystemClock, a stand-alone minimal clock class derived from CBaseReferenceClock.

266

Application Developer's Guide Page 65 of 106

CBaseReferenceClock provides the event notification functionality (mainly via CAMSchedule)
and a rudimentary clock based on the Win32 timeGetTime function.

The most important aspect of CBaseReferenceClock is a virtual GetPrivateTime method. This
method can be overridden in derived classes to return a time. The

CBaseReferenceClock: :GetTime method calls GetPrivateTime, caches the result, and ensures
that the time it returns to its caller does not go backward. Thus, implementers of
GetPrivateTime can code that method so that it returns a best estimate, and not worry about
time going backward. CBaseReferenceClock::GetTime locks the clock before calling
GetPrivateTime; therefore, implementations of GetPrivateTime need not worry about locking
the clock. If methods in derived classes call GetPrivateTime, they should ensure that the
clock is locked first and released afterward.

A derived clock can basically be implemented in one of two ways:

¢ It can override GetPrivateTime {and SetTimeDelta if desired) and provide its own clock.
This effectively abandons the clock in CBaseReferenceClock.

¢ It can call SetTimeDelta from the derived clock to minimally adjust the time of the clock
in CBaseReferenceClock.

CSystemClock is derived from CBaseReferenceClock and implements a stand-alone clock {not
attached to a filter), which can be saved as part of a stored filter graph and used as the filter
graph reference clock when the filter is restored. CSystemClock generates the default time
base generated by CBaseReferenceClock (using the Win32 timeGetTime function).

Multiple Clocks in a Filter Graph

It sometimes happens that a filter graph will be built with more than one clock. Several filters
in the graph might implement clocks or there might even be an independent system clock in
the filter graph. Since only one clock can be the master clock, it is assumed that all other
clocks, when notified of the sync source, will synchronize with it.

The filter graph manager has a default algorithm for choosing the master reference clock, and
a filter uses this to ensure that its own reference clock becomes the master clock. Why would a
filter want to insist on its own reference clock rather than letting the filter graph manager
make the decision? There are several reasons to use a filter's own reference clock. For
example, the filter's clock might:

Be tied to some external source that the filter graph must be synchronized with.

Be the most accurate.

Incur the lowest system overhead while being used.

Be the only clock that cannot be adjusted to be in sync with the other(s). (Although, it
could be argued that this constitutes a badly designed clock.)

Here are the steps used by the filter graph manager for choosing the master reference clock in
a filter graph:

1. If a call to the filter graph manager's IMediaFilter: .SetSyncSource method has been
made, then that reference clock will be used {(or no reference clock will be used if a null
pointer was passed to IMediaFilter::SetSyncSource).

2. If IMediaFilter: :SetSyncSource has never been called for this graph, the sync source is
provided by the first connected filter that exposes the IReferenceClock interface. In this

267

Application Developer's Guide Page 66 of 106

case, the search for the first connected filter goes in roughly upstream order, starting
with the renderers. Connected means the filter has an input pin connected to another
filter. There is no check to see if that stream would actually be active. If more than one
clock is found at the same level in this search, and both are connected, it is undefined
which one will be used as the sync source for this filter graph. The filter graph manager
will chogse one of them.

3. If neither of those steps result in a sync source being set, the filter graph manager will
create a freestanding reference clock and use that as the sync source.

A filter can explicitly indicate which reference clock is to be the sync source by having the
filter's IBaseFilter: :JoinFilterGraph method call IMediaFilter::SetSyncSource on the filter graph
manager when it joins the filter graph to set the desired clock. In fact, if the filter really needs
its clock to be the reference clock, to the extent that the filter won't function properly if it isn't,
then it should additionally fail the IBaseFilter::JoinFilterGraph call if the
IMediaFilter::SetSyncSource call fails.

Having described how to force a filter's clock to be the system clock, it should be emphasized
that this is not normally required.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext
[previous | Home | fopic Contents | intex | Hext

Controlling Filter Graphs Using C

This article describes how to use the interfaces and methods exposed by the Microsoft®
DirectShow™ dynamic-link library to communicate with the Filter Graph Manager and the
filters in a graph. These interfaces and methods render a stream of time-stamped video data in
applications that are based in Microsoft Windows®. This article provides an overview of the
interfaces and methods to use, and then describes their use in the DirectShow CPlay sample
application.

Contents of this article:
o Interfaces that Access the Filter Graph Manager

o CPlay Tutorial
¢ Using the Filter Graph Manager

Interfaces that Access the Filter Graph Manager

The stream architecture enables applications to communicate with the filter graph manager,
and the filter graph manager to communicate with individual filters to control the movement of
data through the filter graph. It also enables filters to post events that an application can
retrieve, so an application can, for example, retrieve status information about a special filter it
has installed.

268

Application Developer's Guide Page 67 of 106

This section contains the following topics.

Implementing Dual Interfaces
Installing and Registering Quartz.dll
Instantiating the Filter Graph Manager
Invoking Methods on the Interfaces

An application communicates with the filter graph manager and the filters in a specific graph
by using the interfaces exposed by either the filter graph manager or the filters. The following
table identifies these interfaces.

Interface Description

IAMCollection Represents a collection of objects of type IFilterInfo, IRegFilterInfo,
IMediaTypelnfo, and IPinInfo.

IBasicAudio Controls and retrieves current volume setting.

IBasicVideo Controls a generic video renderer.

IDeferredCommand Used in conjunction with IQueueCommand methods to defer the
execution of methods and properties.

IFilterInfo Enables an Automation client to set and retrieve filter properties.

IGraphBuilder Builds the filter graph manager.

IMediaControl Instantiates the filter graph and controls media flow (runs, pauses,
stops).

IMediaEvent Enables customized event handling for events such as repainting,
user termination, completion, and so on.

IMediaPosition and Controls or retrieves start time, stop time, preroll rate, and current

IMediaSeeking position.

IMediaTypelnfo Enables an Automation client to retrieve a media type's major type
and subtype.

IQueueCommand Enables an application to queue methods and properties so that the
filter invokes them during rendering of a video stream.

IPinInfo Enables an Automation client to set and retrieve filter properties.

IRegFilterInfo Enables an Automation client to retrieve the name of a registered
filter and add a filter to the filter graph.

IVideoWindow Controls window aspects of a video renderer, such as the window's

position and size.

Of all the interfaces for the filter graph manager, C and C++ programmers use the following
most effectively.

IBasicAudio
IBasicVideo
IDeferredCommand
IGraphBuilder
IMediaControl
IMediaEvent
IMediaSeeking
IQueueCommand
IVideoWindow

269

Application Developer's Guide Page 68 of 106

The remainder are collection interfaces, which enable Automation clients, such as Microsoft
Visual Basic®, to access the properties of filters, pins, and media types that are not otherwise
exposed to Automation clients.

Implementing Dual Interfaces

Most of the interfaces that communicate with the Filter Graph Manager are implemented as
dual interfaces. This means that an application can call the methods in each interface directly
or through Automation (by using the IDispatch::Invoke method). DirectShow provides
Automation support for the developer using Visual Basic. The developer using C or C++ can
avoid the indirection {and accompanying overhead) associated with Automation by calling the
methods directly.

DirectShow doesn't implement all interfaces as dual interfaces. An application must call the
methods in these interfaces directly. For example, the following interfaces are not dual
interfaces: IQueueCommand, IDeferredCommand, and IGraphBuilder.

Installing and Registering Quartz.dll

Before you begin using the filter graph manager, you must install and register the Quartz.dll
dynamic-link library. Currently, the DirectShow SDK setup program automates this process.
Run Setup.exe and choose the Runtime option. This program copies Quartz.dll to yvour
Windows\System directory and adds the appropriate entries to your system's registration
database.

Instantiating the Filter Graph Manager

After you have registered Quartz.dll, you can begin using the filter graph manager in your

Windows-based application. First, initialize the COM library by calling the COM Colnitialize

function. The sample application calls Colnitialize within its InitApplication function in the
Cplay.c file of the CPlay sample application.

Next, instantiate the filter graph manager. Most applications should use the CoCreatelnstance
function to instantiate the filter graph. Both CoCreateInstance and CoGetClassObject can
instantiate an object; however, applications typically use the former to instantiate a single
object and the latter to instantiate multiple instances of an object.

The complete call to CoCreatelnstance appears as follows:

hr = CoCreatelInstance(&CLSID FilterGraph, // Get this document's graph ok
NULL,
CLSCTX INPROC_ SERVER,
& IID IGraphBuilder,
{void **) amedia.pGraprh);

The first parameter, CLSID FilterGraph, is the class identifier (CLSID) for the filter graph
manager. This CLSID is defined in the Uuids.h file, which is installed as part of the DirectShow
SDK. The CLSID is a 128-bit value that the registration database uses to identify the dynamic-
tink library (DLL or in-process server). Using this value, COM can locate and then load the
appropriate DLL.

The second parameter is a pointer to the outer IUnknown and is NULL because the Filter Graph
object is not part of an aggregate.

270

Application Developer's Guide Page 69 of 106

The third parameter is the context in which the code that manages the Filter Graph will run,
which is in the same process as the caller of the CoCreatelnstance function.

The fourth parameter passed to the CoCreatelnstance function identifies the interface that the
application will use to communicate with the object. This interface identifier should be

IID IGraphBuilder; this value is defined internally in the DirectShow sources and then exposed
in the Strmif.h file.

If the call to CoCreatelnstance succeeds, this function returns a pointer to a filter graph
manager object in the media.pGraph variable. After this pointer is returned, the application
begins to call the methods in the IGraphBuilder interface. Typically, the application first calls
the IGraphBuilder: :RenderFile method. This method creates a filter graph for the type of file
that was supplied as one of the parameters. In addition, the application can use the
IGraphBuilder: :QueryInterface method to retrieve pointers to any of the interfaces exposed by
the filter graph manager. The IGraphBuilder interface derives from IUnknown.

If you are writing your application in C (rather than C++), you must use a vtable pointer to call
the methods exposed by IGraphBuilder. The following example illustrates a call to the
QuervInterface method on the IGraphBuilder interface from within an application written in
C.

hr = media.pGraph->1pvtbl->QueryInterface (media.pGraph,
&IID_IMediaEvent, (void **) &pME);

If you are writing your application in C++, the function is simpler; it requires less indirection
and one less parameter:

hr = m_pGraph->QueryInterface (IID IMediaEvent, ({(void **} &pME};
Invoking Methods on the Interfaces

An application can retrieve a pointer to any of the other interfaces exposed by the filter graph
manager by calling the 1GraphBuilder: :Querylnterface method and supplying a REFIID for the
corresponding interface. After retrieving this interface pointer, the application can begin calling
the interface's methods by using the interface's vtable pointer (just as the IGraphBuilder's
vtable pointer called the IGraphBuilder::QueryInterface method in the previous example).
The application must release an acquired interface by calling the IUnknown: :Release method
on that interface.

CPlay Tutorial

This section's tutorial describes CPlay, a sample included in the DirectShow SDK that plays a
media file. The source files for this application are in the Samples\DS\Player\CPlay
subdirectory of the DirectShow SDK project.

This section contains the following topics.

+ CPlay Sample Application
¢ Filesin CPla

This tutorial does not describe the Microsoft Windows® API code found in the source files,
Instead, it focuses almost exclusively on the code that shows:

271

Applicati on Devel oper's Guide Page 70 of 106

How 50 instantiate 3 Filker granh For 2 oarbicuiar fio Tybe,

How 0 process madia evaents,

How B0 eun, oause, and stop tha media stream.

How 50 5at 3 giobai wvaripghia 10 ingdicate the wail meadia sEate [egnning, naused, oF
stonned;

» How Ih reiease the resOurces and ciegn db the variaghies dsed by the Fiiter geani,

& & 4 &

LPlay Sample Application

Your can gse the CPigy sampie aoplication &0 open 3 media file and then ran, pause, or 5600 the
coerasoonding media stream, The aonication's gser inferface COnSgists oF menus and @ to0ibar,
The menys inciude File, Media, and Hein, The tooibar ingigdes Piay, Pause, and SEop buttons,

B Player - Unti... IR

File Media Help

Eftae YOU QEn & Fikm gog ciick ?i&“p’, g Fiikae g:‘a;}h rangdars Fhe vigdeo steagm in s Jefgoi
wEngove.

Filas i CPlay

The sampie apcication COnssts oF sik source Hies, Cach fie COntaing Source oode that
atcompiishas 3 specific set Of tasks, For exampie, the About o maoduia containg the code that
disoiays the SBOUE Jiging box, The Foilgwing table ilaentifiog aach source Fia ang dasceibes i
DEIFEOSE,

File Dasgcription

SBOUE.C Dgniays the ADOUE digiog BOX,

Agsert & DiSniays 3 message box with debugying information,

Lolay . © Processes wser inogt,

Fia Dignigys the Fie Dnen dialgg box,

Madia ¢ Ingtantiatas the Biter granhy inwdkes tha Ritar geaoh mathods 20 ran, oadse, ang
stop tha videg rengdaring,

Togibar ¢ Draws the togibar buttons,

The ramaingdes OF this aeticie Foouses ooirmaeily on the oode foung in the Media o Fie: however,
rafarenes tn othar fiag anneae when daescribing some oF the tasks aconmpiished by thig
aonication,

Biging the Filter Grapl: Marager

The Media ¢ Fie conkaing inikiaiization, destraction and clegnus, command handing, and state
change oode, The inkigication oode instantiates a Filtar grach for g oarticdiar File tyne, The
gastegrtion Lode reiagces the resoureas and claang un the variahies gsed by the Fiitee geani,
The command handiing code invokes the methods requivad B0 oiay, nause, OF SEOn Tha vided
eangasring, The state changs code 5685 3 giobat varigbia that indicates vatigd media states [that
i5, Can SEOD, CAN DAUSE, Lan nlay}

272

Application Developer's Guide Page 71 of 106

This section contains the following topics.

o Initializing the Filter Graph Manager and the Filter Graph
+ Playing, Pausing, and Stopping the Videg Stream
+ Handling Events

Initializing the Filter Graph Manager and the Filter Graph

The following code illustrates how to create the filter graph manager and the filter graph,
including including how to enable event handling, and how to open the media file that the filter
graph will render.

First, instantiate the filter graph manager. The CreateFilterGraph function in Media.c
instantiates the filter graph manager by calling the COM CoCreatelnstance function. It saves
the pointer returned by CoCreatelnstance in the pGraph member of a global media structure
{(defined in Media.h in the CPlay sample included in the SDK).

BOOL CreateFilterGraph(}
HRESULT hr;

hr = CoCreatelInstance (&CLSID FilterGraph, // CLSID of object

NULL, // outer unknown.
CLSCTX INPROC SERVER, // Type of server.
&IID IGraphBuilder, // Interface wanted.
{void **) &media.pGraph) ; // Pointer to IGraphBuilder.

Next, enable event handling. Using the pointer returned by CoCreatelnstance, the
CreateFilterGraph function retrieves a pointer to the IMediaEvent interface by calling the
IUnknown::Querylnterface method. The interface pointer retrieves an event notification handle
by calling the IMediaEvent: :GetEventHandle method. The main message loop uses this handle
{the DoMainLoop function in CPlay.c). After GetEventHandle obtains the handle,
CreateFilterGraph releases the pointer to the IMediaEvent interface by calling the
IUnknown::Release method.

IMediaEvent *pME;

hr = media.pGraph-=1pVtbl-=>QueryInterface (media.pGraph, &IID_ IMediaEvent, (void #**)
if (FAILED(hr}) {
DeleteContents ()} ; //Releases the pointer media.pGraph.
return FALSE;

}

hr = pME->1pVtbl->GetEventHandle (pME, (OAEVENT*) &media.hGraphNotifyEvent) ;
PME-=1pvthbl->Release(pME);

After instantiating the Filter Graph Manager and enabling event handling, open the media file
to be rendered. In the CPlay sample application, a user opens a multimedia file. The file name
extension (for example, .avi or .mpg) is unimportant, because the DirectShow filter graph
examines the file header to ensure that the file is a multimedia file.

273

Application Developer's Guide Page 72 of 106

When the user opens a file by choosing Open from the File menu, this action calls the
OpenMediaFile function in Media.c, which displays the File Open common dialog box.

void OpenMediaFile(HWND hwnd, LPSTR szFile){
// File..Open has been selected
static char szFileName[MAX PATH];
static char szTitleName[_MAX FNAME + _MAX EXT];
// The user has already chosen a file.
if (szFile!=NULL && RenderFile(szFile)){
LPSTR szTitle;

// Work out the full path name and the file name from the
// specified file.

GetFullPathName (szFile, MAX PATH, szFileName, &szTitle) ;
strncpy(szTitleName, szTitle, MAX FNAME + MAX EXT);
szTitleName[MAX FNAME + MAX EXT -1] = '\0';

// Set the main window title and update the state.

SetTitle(hwnd, szTitleName) ;

ChangeStateTo(Stopped) ;
// The user hasn't already chosen a file, so display the Open File
// dialog box. The DoFileCpenDialog function is in file.c in the CPlay
// sample.

} else 1if(DoFileOpenDialog{ hwnd, szFileName, szTitleName)
&& RenderFile(szFileName }) {

// 8et the main window title and update the state.
SetTitle(hwnd, szTitleName) ;
ChangeStateTo(Stopped };

After the file has been opened, render the file. The OpenMediaFile function passes the name of
the user's chosen file to the RenderFile function in Media.c. The RenderFile function in turn
calls the CreateFilterGraph function to instantiate the filter graph manager. After creating the
filter graph manager, the RenderFile function calls the IGraphBuilder: :RenderFile metheod to
create the actual filter graph:

BOOL RenderFile(LPSTR szFileName)

{

HRESULT hr;
WCHAR wPath [MAX_PATH] ;
DeleteContents(); // Release the pointer media.pGraph i1f it existg,

// because the call to CreateFilterGraph will
// retrieve a new pointer.

//Create the filter graph manager

if (!CreateFilterGraph()) {
PlayerMessageBox{ IDS_CANT INIT QUARTZ) ;
return FALSE;

}

MultiByteToWideChar{ CP ACP, 0, szFileName, -1, wPath, MAX PATH };

SetCursor{ LoadCursor(NULL, IDC WAIT) }; // Put up the haur—glass
// while the media file
// loads.

// Create the actual filter graph
hr = media.pGraph->1pVtbl->RenderFile (media.pGraph, wPath, NULL);
SetCursor(LoadCursor(NULL, IDC ARRCW)); // Turn the cursor back

274

Application Developer's Guide Page 73 of 106

// to an arrow.
if (FAILED({ hr)) {
PlayerMessageBox (IDS_CANT_RENDER_FILE } ;
return FALSE;

}

return TRUE;

Playing, Pausing, and Stopping the Video Stream

After the application creates the filter graph manager and the filter graph, it can expose the
user interface, which enables the user to play, pause, and stop video rendering. In the case of
CPlay, the toolbar buttons (Play, Pause, and Stop) are redrawn in color after the user chooses
a valid file.

When the user clicks Play, the OnMediaPlay function is called. This function accomplishes the
following tasks sequentially.

Examines the global state variable in the media structure to ensure that the video can be
rendered.

Retrieves a pointer to the IMediaControl interface.

Invokes the IMediaControl: :Run method.

Releases the IMediaControl interface.

Sets the global state variable.

[EEY

Vi wn

The OnMediaPlay function appears as follows:

void oOnMediaPlay(void }{
if { canPlay()){
HRESULT hr;
IMediaContrel *pMC;

// Obtain the interface to our filter graph.
hr = media.pGraph->1pvVtbl->QueryInterface (media.pGraph,
&IID_IMediaControl, (void **) &pMC);

if (SUCCEEDED (hr)){
// Ask the filter graph to play and release the interface.

hr = pMC->1pvVtbl-sRun{ pMC);
pMC-=>1pVvthbl->Release{ pMC) ;

if (SUCCEEDED (hr)) {

ChangesStateTo{ Playing) ;
return;

}

// Inform the user that an error occurred.
PlayerMessageBox (IDS_CANT PLAY);

}

The code that handles pausing and stopping the video stream is nearly identical to the code
that plays the media stream. The actual functions that handle these tasks are OnMediaPause
and OnMediaStop, respectively. You can find all this code in the Media.c file.

Handling Events

275

Application Developer's Guide Page 74 of 106

The IMediaEvent interface enables an application to receive events that the filter graph or
individual filters within the graph raise. Following are some of the possible events and
corresponding event notification messages.

Event notification message Description

EC COMPLETE The video has finished rendering.

EC USERABORT A user forced the termination of a requested operation.
EC ERRORABORT An error forced the termination of a requested operation.
EC PALETTE CHANGED The video palette changed.

EC REPAINT The display should be repainted.

The sample application tracks the EC COMPLETE, EC USERABORT, and EC_ERRORABRORT
events by using the IMediaEvent::GetEvent method. The application calls this method from
within the OnGraphNotify function. The application calls the OnGraphNotify function (in
Media.c) from within the application's main message loop function (DoMainLoop), which you
can find in the Cplay.c file.

If any of these events are raised, OnGraphNotify immediately stops video rendering by calling
the OnMediaStop function.

The OnGraphNotify function accomplishes the following tasks sequentially.

1. Declares the IMediaEvent interface pointer and the variables for the event code and
event parameters.

2. Retrieves a pointer to the IMediaEvent interface by calling IUnknown:: ryln
3. Calls the IMediaEvent::GetEvent method to retrieve the next event notification. The

retrieved event is stored in the [EventCode variable and the event parameters are stored
in the IParam1 and IParamZ2 variables. The time-out value is set to zero, which means
that GetEvent will not wait for an event to occur, but only return an already waiting
event.

4. Checks the event type stored in IEventCode and takes the appropriate action, if GetEvent
retrieves an event. See Event Notification Codes for a list of the system-supplied events
that DirectShow supports. Note that if the event parameters are declared as type BSTR
instead of LONG, IMediaEvent::FreeEventParams should be called free the BSTRs.

void OnGraphNotify (void) {
IMediaEvent *pME;

long lEventCode, lParaml, lParamZz;

ASSERT (media.hGraphNotifyEvent != NULL) ;

if (SUCCEEDED {media.pGraph-=1pVtbl->QueryInterface (media.pGraph,
&IID IMediaEvent, (void **) &pME})) {

if (SUCCEEDED (pME->1pVtbl->GetEvent (pME, &lEventCode, &lParaml,
&lParam2, 0))

&& (l1EventCode == EC_COMPLETE
| | LEventCode == EC_USERABORT
| | LEventCode == EC ERRORABORT
)
)
OnMediaStop () ;

PME->1pVtbl->Release(pME) ;

276

Application Developer's Guide Page 75 of 106

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome] topie Contents | imiex | Wext |
[previous | Home] Topie Contents | imiex | Wext |

Creating a Capture Application

Microsoft® DirectShow™ provides the capability to capture and preview both video and audio
data from an application, when combined with the appropriate capture hardware. The data
source might include a VCR, camera, TV tuner, microphone, or other source. An application can
display the captured data immediately {(preview) or save it to a file for later viewing either
inside or outside of the application.

DirectShow takes advantage of new capture drivers that are written as DirectShow filters, and
also uses existing Video for Windows-style drivers.

Note This article relies heavily on the AMCap Sample (DirectShow Capture Application) sample
application. See the AMCap sample code (Amcap.cpp) in the Samples\DS\Capture directory of
the DirectShow SDK for complete sample code, because this article does not present AMCap
Sample (DirectShow Capture Application) in its entirety.

The AMCap Sample (DirectShow Capture Application) sample application performs video and
audio capture, similar to the VidCap sample from Video for Windows®. It uses the
ICaptureGraphBuilder interface to handle the majority of the capture work. In your own
capture application, you'll use the same methods and interfaces that AMCap uses. This article
focuses on AMCap's use of ICaptureGraphBuilder to perform video and audio capture and
presents relevant code excerpts from AMCap.

This article assumes you are familiar with the DirectShow filter graph architecture and the
general layout of a capture filter graph. See Filter Graph Man r and Filter Graphs and About

Capture Filter Graphs for more information.

Contents of this article:

Introduction to ICaptureGraphBuilder

Device Enumeration and Capture Interfaces
Building the Capture and Preview Filter Graph
Controlling the Capture Filter Graph
Obtaining Capture Statistics

Saving the Captured File

Displaying Property Pages

Introduction to ICaptureGraphBuilder

The ICaptureGraphBuilder interface provides a filter graph builder object that applications use
to handle some of the more tedious tasks involved in building a capture filter graph, which

277

Application Developer's Guide Page 76 of 106

frees the application to focus on capture. You access the graph builder object by calling
methods on ICaptureGraphBuilder. The variety of methods satisfies the basic requirements
for capture and preview functionality.

The FindInterface method searches for a particular capture-related interface in the filter graph.
The method handles the complexities of filter graph traversal for you, which enables you to
access the functionality of a particular interface without having to enumerate pins and filters in
the filter graph looking for the interface. The RenderStream method connects source filters to
rendering filters, optionally adding other needed intermediate filters. The ControlStream
method independently control sections of the graph for frame-accurate start and stop.

Additional methods deal with allocating space for the capture file (AllocCapFile), specifying a
name for it and building up the file writer section of the graph, which consists of the
multiplexer and file writer filters (SetOutputFileName), and saving the captured data to
another file (CopyCaptureFile). Finally, SetFiltergraph and GetFiltergraph enable the application

to provide a filter graph for the graph builder to use or retrieve the filter graph already in use.
Device Enumeration and Capture Interfaces

AMCap's InitCapFilters function enumerates the capture devices on the system by using the
ICreateDevEnum: : CreateClassEnumerator method. After enumerating a capture device and
instantiating a DirectShow filter to use that device, the sample calls the

ICaptureGraphBuilder: :FindInterface method several times to obtain interface pointers for the
IAMBroppedFrames, IAMVideoCompression, IAMStreamConfig, and IAMVfwCaptureDialogs
capture-related interfaces. The AMCap code saves all of these interface pointers for later use in
the gcap global structure and uses gcap structure members throughout the code.

Note: IAMVfwCaptureDialogs is designed for you to use only with the Microsoft-supplied video
capture filter and only when using a former Video for Windows device.

For your convenience, the declaration of the gcap structure follows:

struct capstuff {
char szCaptureFile[MAX PATH] ;
WORD wCapFilesize; // size in Meg
ICaptureGraphBuilder *pBuilder;
IVideoWindow *pVW;
IMediaEventExX *pME;
IAMDroppedFrames *pDF;
IAMVideoCompression *pVC;
IaMvfwCaptureDialogs *pDlg;
IAMStreamConfig *pASC; // for audioc cap
IAMStreamConfig *pvsc; // for video cap
IBaseFilter *pRender;
IRBaseFilter *pVCap, *pACap;
IGraphBuilder *pFg;
IFileSinkFilter *pSink;
IConfigAviMux *pConfigAviMux;
int 1iMasterStream;
BOOL fCaptureGraphRuilt;
BOOL fPreviewGraphRuilt;
BOOL fCapturing;
BOOL fPreviewing;
BOOL fcCapiudio;
int 1ivideoDevice;
int iAudioDevice;
double FrameRate;

278

Applic

ation Developer's Guide

BOOL fWwantPreview;

} gc

long lCapsStartTime;
long lCapsStopTime;
char achFriendlyName [120] ;
BOOL fUseTimeLimit;
DWORD dwTimeLimit;

ap;

Page 77 of 106

AMCap's InitCapFilters function stores several interface pointers in the gcap structure. Be sure
to properly release all interface pointers when they are no longer needed as shown in the
following example.

See Enumer nd A Hardware Devi

if (gcap.pBuilder)
gcap.pBuilder-=>Release() ;

gcap.pBullder = NULL;

if (gcap.pSink)
gcap.pSink->Release(} ;

gcap.pSink = NULL;

if (gcap.pConfigaviMux)
gcap.pConfigaviMux->Release () ;

gcap.pConfigAviMux = NULL;

if (gcap.pRender)
gcap.pRender->Release() ;

gcap.pRender = NULL;

if (gcap.pVW)
gcap.pVW->Release () ;

gcap.pVW = NULL;

if (gcap.pME)
gcap.pME->Release () ;

gcap.pME = NULL;

if (gcap.pFg)
gcap.pFg->Release () ;

gcap.pFg = NULL;

about device enumeration.

in Dir how Applications for more information

Building the Capture and Preview Filter Graph

AMCap includes a BuildCaptureGraph function that builds up a capture graph with both capture
and preview components. Most applications will perform the same tasks sequentially as
described in the following topics contained in this section.

Set the Capture File Name
Create a Graph Builder Object
Set the Qutput File Name
Retrieve the Current Filter Graph

Add the Capture Filters to the Filter Graph

Render the Capture Pins
Render the Video Preview Pin

Configure the Video Preview Window

These tasks are explained in greater detail later in this section.

AMCap also includes a BuildPreviewGraph function that is essentially a version of
BuildCaptureGraph that deals only with preview. Another difference between

279

Application Developer's Guide Page 78 of 106

BuildCaptureGraph and BuildPreviewGraph is that the latter uses

ICaptureGraphBuilder: : SetFiltergraph to provide a filter graph object (IGraphBuilder interface)
for the capture graph builder object (ICaptureGraphBuilder interface) to use. You probably
won't need to call SetFiltergraph as the graph builder object creates a filter graph to use by
default. Use this method only if you have already created your own filter graph and want the
graph builder to use your filter graph. If you call this method after the graph builder has
created a filter graph, this method will fail. BuildPreviewGraph calls CoCreatelnstance to create
a new filter graph object, if necessary, as shown in the following example.

hr = CoCreatelInstance (CLSID_FilterGraph, NULL, CLSCTX_ INPROC,
IID_IGraphBuilder, (LPVQOID *)&gcap.pFd);

hr = gcap.pBuilder-»SetFiltergraph(gcap.pFqg) ;
if (hr != NOERRCOR) {
ErrMsg ("Cannot give graph to builder");
goto SetupPreviewFail;

}

The details of each important task performed by BuildCaptureGraph follow.
Set the Capture File Name

AMCap's SetCaptureFile function displays the common Open File dialog box to enable the user
to select a capture file. If the specified file is a new file, it calls the application-defined
AllocCaptureFile function that prompts the user to allocate space for the capture file. This
"preallocation” of file space is important, because it reserves a large block of space on disk.
This speeds up the capture operation when it occurs, because the file space doesn't have to be
allocated while capture takes place (it has been preallocated). The

ICaptureGraphBuilder: : AllocCapFile method performs the actual file allocation.

IFileSinkFilter: : SetFileName instructs the file writer filter to use the file name that the user
chose, The code assumes you've called ICaptureGraphBuilder: : SetOQutputFileName to add the
file writer to the filter graph. See Set the Output File Name for more information.

The AMCap-defined SetCaptureFile and AllocCaptureFile functions follow:

/*

* Put up a dialog to allow the user to select a capture file.
*/
BOOL SetCaptureFile (HWND hwWnd}

if (OpenFileDialog(hWnd, gcap.szCaptureFile, MAX PATH)) {
OFSTRUCT os;

// We have a capture file name.

/*
* Tf this is a new file, then invite the user to
* allocate some space.
*/
if (OpenFile{gcap.szCaptureFile, &os, OF_EXIST) == HFILE_ ERROR) {

// Bring up dialog, and set new file size.
BOOL f = AllocCaptureFile (hWnd) ;
if (1f)

return FALSE;

280

Application Developer's Guide Page 79 of 106

} else {
return FALSE;
}

SetAppCaption() ; // Need a new app caption.

// Tell the file writer to use the new file name.
if (gcap.pSink) {
WCHAR wach[MAX PATH] ;
MultiByteToWideChar (CP_ACP, MB_PRECOMPOSED, gcap.szCaptureFile, -1,
wach, MAX PATH) ;
gcap.pSink-=>SetFileName {(wach, NULL) ;

return TRUE;

}

// Preallocate the capture file.

//
BOOL AllocCaptureFile (HWND hwnd}

// We'll get into an infinite loop in the dlg proc setting a value.
if (gcap.szCaptureFile[0] == 0}
return FALSE;

/*
* Show the allocate file space dialog to encourage
* the user to pre-allocate space.
*/
if (DoDialog(hWnd, IDD AllocCapFileSpace, AllocCapFileProc, 0}) {

// Ensure repaint after dismissing dialog before
// possibly lengthy operation.
UpdatewWwindow (ghwndapp) ;

// User has hit OK. Alloc requested capture file space.
BOOL £ = MakeBuilder () ;
if (1f)

return FALSE;

WCHAR wach[MAX PATH] ;
MultiByteToWideChar (CP_ACP, MB_PRECOMPOSED, gcap.szCaptureFile, -1,
wach, _MAX PATH) ;
if (gcap.pRBuilder-=AllcoccCapFile (wach,
gcap.wlapFileSize * 1024L * 1024L} != NOERRCR) {
MessageBoxA (ghwndapp, "Error",
"Failed to pre-allocate capture file space™,
MB_OK | MB_ICONEXCLAMATION) ;

return FALSE;

return TRUE;
} else {
return FALSE;

}
}

Create a Graph Builder Object

AMCap's MakeBuilder function creates a capture graph builder object and obtains an
ICaptureGraphBuilder interface pointer by calling CoCreatelnstance. If you already have a

capture graph builder object, you can call QueryInterface to obtain an interface pointer. AMCap
stores the object pointer in the pBuilder member of the global gcap structure.

281

Application Developer's Guide Page 80 of 106

// Make a graph builder cbject we can use for capture graph building.

//

BOOL MakeBuilder ()

{

// We have one already.
if (gcap.pBuilder)
return TRUE;

HRESULT hr = CoCreatelInstance ((REFCLSID)CLSID CaptureGraphBuilder,
NULL, CLSCTX_ INPROC, (REFIID)IID_ICaptureGraphBuilder,
{void **)&gcap.pBuilder) ;

return (hr == NOERROR) 7? TRUE : FALSE;

}

Set the OQutput File Name

AMCap creates the rendering section of the filter graph, consisting of the AVI MUX
{multiplexer) and the File Writer. It also provides the filter graph with the previously specified
file name to which to save the captured data. See About Capture Filter Graphs for more
information about capture filter graph in general.

ICaptureGraphBuilder: : SetQutputFileName signals to add the multiplexer and file writer to the
filter graph, connects them, and sets the file name. The following example illustrates a call to
SetQutputFileName.

/7

// We need a rendering section that will write the capture file out in AVI
// file format.

/7

WCHAR wach[MAX PATH] ;
MultiByteToWideChar (CP_ACP, MB PRECOMPOSED, gcap.szCaptureFile, -1, wach,
_MAX_PATH) ;
GUID guid = MEDIASUBTYPE Avi;
hr = gcap.pBuilder-=SetOutputFileName (&guid, wach, &gcap.pRender,
&gcap.psSink} ;
if (hr != NOERRCR) {
ErrMsg ("Error %x: Cannct set output file", hr);
goto SetupCaptureFail;

}

In the above code fragment the value of the first parameter, pType, in the call to
SetOutputFileName is MEDIASUBTYPE_Avi, indicating that the capture graph builder object will
insert an AVI multiplexer filter. Consequently, the file writer that is connected to the
multiplexer will write the data to the capture file in AVI file format.

The second parameter, lpwstrFile, specifies the file name. The last two parameters contain
pointers to the multiplexer filter and the file writer filter, respectively, and are initialized for
you by the capture graph builder ohject upon return from SetOutputFileName. AMCap stores
these pointers in the pRender and pSink members of its gcap structure. Internally, the capture
graph builder object creates a filter graph object which exposes the IGraphBuilder interface
and inserts these two filters into that filter graph. It tells the file writer to use the specified file
when writing to disk.

Alternatively, if you want filters besides the multiplexer and file writer in the rendering section

282

Application Developer's Guide Page 81 of 106

of your filter graph, call [FilterGraph: :AddFilter to explicitly add the necessary filters. You
might need to remember the pointer to the IBaseFilter interface of the first filter in your
custom rendering chain so you can use it in calls such as RenderStream.

Retrieve the Current Filter Graph

Because the capture graph builder object created a filter graph in response to
SetOutputFileName and you must put the necessary filters in the same filter graph, call the

ICaptureGraphBuilder: :GetFiltergraph method to retrieve the newly created filter graph. The
pointer to the filter graph's IGraphBuilder interface is returned in the function's parameter.

i
// The graph builder created a filter graph to do that. Find out what it 1is,

// and put the video capture filter in the graph tooc.
/7

hr = gcap.pBuilder-=GetFiltergrarh (&gcap.pFqg) ;

if (hr != NOERRCR) {
ErrMsg ("Error %x: Cannct get filtergraph", hr);
goto SetupCaptureFail;

}
Add the Capture Filters to the Filter Graph

Call IFilterGraph::AddFilter to add the capture filters to the filter graph as shown in the
following example.

hr = gcap.pFg->AddFilter(gcap.pvVCap, NULL);

if (hr != NOERROR) {
ErrMsg ("Error %x: Cannot add videcap te filtergraph", hr);
goto SetupPreviewFaill;

hr = gcap.pFg->AddFilter(gcap.pACap, NULL);
if (hr != NOERRCR) {
ErrMsg ("Error %x: Cannot add audcap to filtergraph", hr);
goto SetupCaptureFail;

}
Render the Capture Pins

The ICaptureGraphBuilder: :RenderStream method connects the source filter's pin to the
rendering filter. It connects intermediate filters if necessary. The pin category is optional, but
typically specifies either a capture pin (PIN CATEGORY CAPTURE) or a preview pin

{PIN CATEGORY PREVIEW). The following example connects the capture pin on the video
capture filter (represented by the gcap.pVCap variable) to the renderer {represented by
gcap.pRender).

/7

// Render the video capture and preview pins - we may not have preview, so
// don't worry if it doesn't work.

//

hr = gcap.pBuilder->RenderStream (&PIN_CATEGORY CAPTURE, gcap.pVCap,
NULL, gcap.pRender) ;

283

Application Developer's Guide Page 82 of 106

// Error checking.

Call ICaptureGraphBuilder: :RenderStream again to connect the audio capture filter

{represented by gcap.pACap) to the audio renderer as in the following example.

/7

// Render the audio capture pin?

//

if (gcap.fcCapaudio) {
hr = gcap.pBuilder-=>RendersStream(&PIN_CATEGORY CAPTURE, gcap.pACap, NULL, gca
// Error checking.

Render the Video Preview Pin

Call ICaptureGraphBuilder: :RenderStream again to render the graph from the capture filter's
preview pin to a video renderer as in the following example.

hr = gcap.pBuilder->RenderStream (&PIN_CATEGORY PREVIEW, gcap.pVCap,
NULL, NULL) ;

Configure the Video Preview Window

By default, the video preview window will be a separate window from your application window.
If you want to change the default behavior, call ICaptureGraphBuilder::FindInterface to obtain
a pointer to the IVideoWindow interface. The first parameter, pCategory specifies the output
pin category to search for a connected filter that supports the desired interface. The code
fragment below uses PIN CATEGORY PREVIEW to indicate a search beginning with all preview
pins, and continuing to any pins and filters that connect to the preview pins. The second
parameter, specified by the gcap.pVCap variable below, represents the video capture filter. The
third {riid) is the identifier for the desired interface (IID IVideoWindow), and the last will be
filled upon return from this function to give you the IVideoWindow interface. After you have
the IVideoWindow interface, you can call IVideoWindow methods such as put Owner,

put WindowStvyle, or SetWindowPosition to take ownership of the video preview window, make
it a child of your application, or to position it as desired.

// This will go through a possible decoder, find the video renderer it's
// connected to, and get the IVideoWindow interface on it.
hr = gcap.pBuilder->FindInterface (&PIN_CATEGORY_ PREVIEW, gcap.pvCap,
IID IVidecWindow, (voild **)&gcap.pVW);
if (hr != NOERROR) {
ErrMsg ("This graph cannot preview");

} else |
RECT rc;
gcap.pVW-=>put Owner ({long) ghwndapp) ; // We own the window now.
geap. pvW->put _WindowsStyle (WS CHILD) ; // You are now a child.

// Give the preview window all our space but where the status bar is.
GetClientRect (ghwndipp, &rc);

cyBorder = GetSystemMetrics (SM_CYBORDER) ;

cy = statusGetHeight () + cyBorder;

rc.bottom -= cy;

gcap. pvW->SetWindowPosition (0, 0, r¢.right, ro.bottom); // Be this big.
gcap.pvVW->put Visible (OATRUE) ;

284

Application Developer's Guide Page 83 of 106

Now that you've built the entire capture filter graph, you can preview video, audio, or actually
capture data.

Controlling the Capture Filter Graph

Because a capture filter graph constructed by the ICaptureGraphBuilder interface is simply a
specialized filter graph, controlling a capture filter graph is much like controlling any other kind
of filter graph: you use the IMediaControl interface’s Run, Pause, and Stop methods. You can
use the CBaseFilter::Pause method to cue things up, but remember that capture and
recompression only happen when the graph is running. In addition, ICaptureGraphBuilder
provides the ControlStream method to control the start and stop times of the capture filter
graph's streams. Internally, ControlStream calls the IAMStreamControl::StartAt and
IAMStreamControl: :StopAt methods to start and stop the capture and preview portions of the
filter graph for frame-accurate control.

Note: This method might not work on every capture filter because not every capture filter
supports IAMStreamControl on its pins.

The ICaptureGraphBuilder: :ControlStream method's first parameter (pCategory) is a pointer to
a GUID that specifies the output pin category. This value is normally either

PIN_CATEGORY_ CAPTURE or PIN_CATEGORY PREVIEW. See the Pin Property Set for a

complete list of categories. Specify NULL to control all capture filters in the graph.

The second parameter {(pFilter) in ICaptureGraphBuilder::ControlStream indicates which filter
to control. Specify NULL to control the whole filter graph as AMCap does.

To run only the preview portion of the capture filter graph, prevent capture by calling
ICaptureGraphBuilder: :ControlStream with the capture pin category and the value MAX_TIME
as the start time (third parameter, pstart). Call the method again with preview as the pin
category, and a NULL start value to start preview immediately. The fourth parameter indicates
the desired stop time {pstop, as with start time, NULL means immediately). MAX_TIME is
defined in the DirectShow base classes as the maximum reference time, and in this case
means to ignore or cancel the specified operation.

The last two parameters, wStartCookie and wStopCookie are start and stop cookies
respectively. These cookies are arbitrary values set by the application so that it can
differentiate between start and stop times and tell when specific actions have been completed.
AMCap doesn't use a specific time in ICaptureGraphBuilder: :ControlStream, so it doesn't need
any cookies. If you use a cookie, use IMediaEvent to get event notifications. See
IAMStreamControl for more information.

The following code fragment sets preview to start immediately, but ignores capture.

// Let the preview section run, but not the capture section.

// (There might not be a capture section.)

REFERENCE TIME start = MAX TIME, stop = MAX TIME;

// Show us a preview first? but don't capture quite vet...

hr = gcap.pBuilder-=>Controlstream(&PIN_CATEGORY PREVIEW, NULL,
gcap.fWantPreview ?» NULL : &start,
gcap.fWantPreview ? &stop : NULL, 0, 0);

if (SUCCEEDED {(hr})

hr = gcap.pBuilder-=ControlStream(&PIN_ CATEGORY CAPTURE, NULL, &start,
NULL, 0, 0):

285

Application Developer's Guide Page 84 of 106

The same concept applies if you want only to capture and not preview. Set the capture start
time to NULL to capture immediately and set the capture stop time to MAX_TIME. Set the
preview start time to MAX_TIME, with an immediate (NULL) stop time.

The following example tells the filter graph to start the preview stream now (the pstart (third)
parameter is NULL). Specifying MAX_TIME for the stop time (pstop) means disregard the stop
time.

gcap.pBuilder->ControlStream (&PIN CATEGORY PREVIEW, NULL, NULL, MAX TIME, 0, 0)

Calling IMediaControl::Run runs the graph.

// Run the graph.
IMediaContrcl *pMC = NULL;
HRESULT hr = gcap.pFg-=QueryInterface (IID IMediaControl, (void **)&pMC) ;
if (SUCCEEDED (hr}) {
hr = pMC-=Run(};
if (FAILED(hr)) {
// Stop parts that ran.
pMC-=Stop(} ;

pPMC->Release () ;
if (FAILED(hr))

ErrMsg ("Error %x: Cannot run preview graph", hr);
return FALSE;

If the graph is already running, start capture immediately with another call to

ICaptureGraphBuilder::ControlStream. For example, the following call controls the whole filter
graph (NULL pFilter (second) parameter), starts now (NULL pstart (third) parameter), and
never stops {(pstop {fourth) parameter initialized to MAX_TIME).

REFERENCE TIME stop = MAX TIME;

/7 NOW!
gcap.pBuilder-=ControlsStream (&PIN_CATEGORY CAPTURE, NULL, NULL, &stop, 0, 0);

AMCap uses this approach to start capture in response to the user clicking a button.

To stop the capture or preview operation, call IMediaControl: :Stop, much as you called
IMediaControl::Run to run the filter graph.

// 8top the graph.
IMediaContrcl *pMC = NULL;
HRESULT hr = gcap.pFg-=>QueryInterface (IID IMediaControcl, (vold *#*)&pMC) ;
if (SUCCEEDED (hr})
hr = pMC-=8top();
pMC->Release () ;

Obtaining Capture Statistics

AMCap calls methods on the IAMDroppedFrames interface to obtain capture statistics. It

286

Application Developer's Guide Page 85 of 106

determines the number of frames dropped {IAMDroppedFrames::GetNumDropped) and
captured (IAMDroppedFrames: :GetNumNotDropped), and uses the Win32 timeGetTime
function at the beginning and end of capture to determine the capture operation's duration.
The IAMDroppedFrames: : GetAverageFrameSize method provides the average size of captured
frames in bytes. Use the information from IAMDroppedFrames::GetNumNotDropped,
timeGetTime, and IAMDroppedFrames::GetAverageFrameSize to obtain the total bytes
captured and calculate the sustained frames per second for the capture operation.

Saving the Captured File

The original preallocated capture file temporarily holds capture data so you can capture as
quickly as possible. When you want to save the data you captured to a more permanent
focation, call ICaptureGraphBuilder::CopyCaptureFile. This method transfers the captured data
out of the previously allocated capture file to another file you choose. The resulting new file
size matches the size of the actual captured data rather than the preallocated file size, which is
usually very large.

The ICaptureGraphBuilder: :CopyCaptureFile method’s first parameter, lpwstrOld, is the file
you're copying from {typically the very large, preallocated file you always use for capture). The
second parameter, [pwstrNew, is the file to which you want to save your captured data. Setting
the third parameter, fAllowEscAbort, to TRUE indicates that the user is allowed to abort the
copy operation by pressing esc. The last parameter, pCallback, is optional and enables you to
supply a progress indicator, if desired, by implementing the IAMCopyCaptureFileProgress
interface. The following example demonstrates a call to CopyCaptureFile.

hr = pBuilder-=CopyCaptureFile (wachSrcFile, wachDstFile, TRUE,NULL) ;

The SaveCaptureFile function defined by AMCap prompts the to enter a new file name in the
Open File common dialog box, uses the Win32 MultiByteToWideChar function to convert the file
name to a wide string, and saves the captured data to the specified file using
ICaptureGraphBuilder: :CopyCaptureFile.

/*
* Put up a dialog to allow the user to save the contents of the capture file
* elsewhere.
*/
BOOL SaveCaptureFile (HWND hwnd)
HRESULT hr;
char achDstFile[MAX PATH] ;
WCHAR wachDstFile[MAX PATH] ;
WCHAR wachSrcFile[MAX PATH] ;

if (gcap.pBuilder == NULL)
return FALSE;

if (OpenFileDialog(hWnd, achDstFile, MAX PATH)) {

// We have a capture file name.

MultiByteToWideChar (CP_ACP, MB_PRECOMPOSED, gcap.szCaptureFile, -1,
wachSrcFile, _MAX PATH);

MultiByteToWideChar (CP_ACP, MB _PRECOMPOSED, achDstFile, -1,
wachDstFile, MAX PATH) ;

statusUpdatestatus (ghwndstatus, "Saving capture file - please wait...");

// We need our own graph builder because the main one might not exist.

287

Application Developer's Guide Page 86 of 106

ICaptureGraphBuilder *pRuilder;
hr = CoCreatelInstance ((REFCLSID)CLSID CaptureGraphBuilder,
NULL, CLSCTX_INPROC, (REFIID)IID_ ICaptureGraphBuilder,
(void **)&pBuilder) ;
if (hr == NOERRCR) ({
// Rllow the user to press ESC to abort... don't ask for progress.
hr = pBuilder-=CopyCaptureFile (wachSrcFile, wachDstFile, TRUE,NULL) ;
pBuilder-=Release () ;

}

if (hr == S_OK)
statusUpdateStatus (ghwndStatus, "Capture file saved");
else if (hr == S FALSE)
statusUpdatestatus (ghwndstatus, "Capture file save aborted");
else
statusUpdateStatus (ghwndStatus, "Capture file save ERROR");
return (hr == NOERROR ? TRUE : FALSE);
} else {
return TRUE; // They canceled or something.

}
}

See Amcap.cpp and Status.cpp from the AMCap sample for more details about capturing media
files and obtaining capture statistics.

Displaying Property Pages

DirectShow provides a number of interfaces to customize the settings of a capture filter graph
including: IAMStreamConfig, IAMVideoCompression, IAMCrossbar, IAMTVTuner,
IAMTVAudio, IAMAnalogVideoDecoder, IAMCameraControl, IAMVideoProcAmp.
Creating a property page is one way of allowing users to interact with these settings.

To bring up the settings associated with an object on a property page, use an interface on the
object to query for the ISpecifyPropertyPages interface. Use this interface to obtain a list of
property page CLSIDs that this object supports. The CLSID list can be later passed to
OleCreatePropertyFrame or OleCreatePropertyFramelndirect to invoke a property sheet. This
will supply your application with the custom property pages a filter has in addition to the
standard pages.

There are at least 9 objects that can have property pages in capture applications. Capture
applications usually have 2 of these objects at least; the video capture filter and the audio
capture filter {call them pVCap and pACap). These objects expose the IBaseFilter interface

which can be used to query for the ISpecifyPropertyPages interface. You can obtain a pointer to
the other 7 objects as follows:

1. The video capture filter's capture pin. Get this by calling :

FindInterface (&§PIN_ CATEGORY CAPTURE, pVCap, IID IPin, &pX);

2. The video capture filter's preview pin. Get this by calling:

FindInterface (&§PIN_ CATEGORY PREVIEW, pVCap, IID IPin, &pX);

3. The audio capture filter's capture pin. Get this by calling:

FindInterface (&§PIN_ CATEGORY CAPTURE, pACap, IID IPin, &pX);

288

Application Developer's Guide Page 87 of 106

4, The crossbar connected to the video capture filter. Get this by calling:

FindInterface (NULL, pVCap, IID IAMCrossbar, &pX);

5. The crossbar connected to the audio capture filter. This might be the same as object #4.
Compare their IUnknown interfaces to find out. Get this by calling:

FindInterface (NULL, pACap, IID_IAMCrossbar, &pX);
6. The TV Tuner connected to the video capture filter. Get this by calling:
FindInterface (NULL, pVCap, IID IAMTIVTuner, &pX);

7. The TV Audio connected to the audio capture filter. Get this by calling:

FindInterface (NULL, pACap, IID IAMTVAudio, &pX);

If you do not wish to create your property page using the ISpecifyPropertyPages interface
and the OleCreatePropertyFrame function, you can create your own custom property pages and
use the results of your page to call the interfaces programmatically.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | Home] topic Contents | imiex | Wext |
[Previous | ome] topic conients | imiex | Wext |

About Cutlists

This article introduces cutlists and discusses interfaces that provide cutlist support. See Using
Cutlists for information about the limitations of the current cutlist implementation and sample
code for using cutlists in an application.

Contents of this article:

o What Are Cutlists?
o Cutlist Objects and Interfaces

What Are Cutlists?

A cutlist is a list of audio or video clips {cutlist elermnents) you want to play back sequentially.
For each clip, the cutlist element contains the file name from which to create the clip, and
details about the clip including start and stop time within that file. A cutlist is either video- or
audio- specific, and that video or audio data must all be of the same media type. The
beginning time for the clip, relative to the source file, is called the trimin position and the
ending time for the clip is the trimout position.

289

Application Developer's Guide Page 88 of 106

You use cutlists to edit pieces of AVI and WAY files together. For instance a video cutlist could
contain video clips (elements) with characteristics as follows:

Clip # File Name Start Time Stop Time Type Stream #

1 Venus.avi 5 seconds 10 seconds video O
2 Mars.avi 15 seconds 20 seconds video 0
3 Venus.avi 15 seconds 30 seconds video O

In the preceding example, the first and third clips are both taken from the same file. One clip
is from seconds 5 through 10 of Venus.avi, while another is from seconds 15 through 30 of the
same file. Between those clips, the cutlist contains seconds 15 through 20 of Mars.avi. All clips
are taken from the first video stream (stream 0) in their respective files. The clips play back
sequentially (1, 2, and then 3).

Cutlist Objects and Interfaces

Microsoft® DirectShow™ defines the following objects that implement the specified interfaces.
Applications use these objects and interfaces to create, manipulate, and play cutlists.

Object Supported Description
interfaces
CLSID SimpleCutList IStandardCutlist Cutlist object
CLSID VideoFileClip IFileClip Cutlist element (individual clip) object for
video
CLSID AudioFileClip IFileClip Cutlist element (individual clip) object for
audio

CLSID CutlistGraphBuilder ICutlistGraphBuilder Cutlist graph builder object

These interfaces enable application writers to construct filter graphs without having to worry
about the specifics of each cutlist object. They provide a simple way to create and manipulate
cutlists, and to create a filter graph to play an edited movie in real time. In addition, a single
cutlist filter calls these interfaces — the application must be aware of the different cutlist filters
that are installed and generate the proper filter graph.

If you need cutlist functionality that the preceding interfaces don't provide, such as detailed
cutlist or cutlist element information, see the following interfaces.

IAMAudioCutListElement
IAMCutListElement
IAMFileCutListElement
IAMVideoCutListElement

* & & @

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home] topic Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

290

Application Developer's Guide Page 89 of 106

Using Cutlists

This article summarizes the steps necessary to create and play a cutlist. It also lists the
fimitations of the current cutlist implementation and provides sample code for using cutlists in
an application. See What Are Cutlists? for an introduction to cutlists.

Contents of this article:

Cutlist Limitations

Creating a Video Cutlist

Creating Both Video and Audio Cutlists
Cutlist Sample Code (Simplecl)

To use cutlists, you must first explicitly include the cutlist.h header file in your project. Then
you can create cutlist objects and use the interfaces they expose. The following list
summarizes the steps for creating and playing back cutlists in your application. Creating a
Video Cutlist presents the example code from this section as one unit rather than many
separate fragments.

1. Create a standard cutlist object (CLSID SimpleCutlist) for each cutlist. Each cutlist can
contain only one media type, so if you want both audio and video you must create one
standard cutlist for all of your video clips, and one standard cutlist for all of your audio
clips.

CoCreatelInstance ((REFCLSID) CLSID SimpleCutList, NULL, CLSCTX INPROC,
(REFIID)IID IStandardCutList, (void**)&pvVCutList) ;

2. Create a video file clip object {(CLSID VideoFileClip) or an audio file clip object
(CLSID AudioFileClip), as appropriate, for each stream in each AVI or WAV file you will
use as the source for clips. If you want to play back both video and audio from the same
file, you must still create separate video and audio file clip objects because the file clip
objects are based upon one stream (either a video stream or an audio stream) within a
file.

CoCreatelnstance ((REFCLSID) CLSID VideoFileClip, NULL, CLSCTX INPROC,
(REFIID)IID IFileClip, (void+**)&pVFileClip);

3. Tell the file clip object what file and stream in that file to use by calling the
IFileClip: :SetFileAndStream method as follows. The first video and audio streams (stream
Q) are the only streams that DirectShow supports.

hr = pVFileClip->SetFileAndStream(L"jupiter.avi", 0} ;

4, Create one or more cutlist elements (individual clips) from each file clip by calling the
IFileClip: :CreateCut method. Each file clip represents a stream of data, and you can
create more than one clip from each data stream. For instance, the example in What Are
Cutlists? specifies two elements from Venus.avi, and one element from Mars.avi.

5. Add each cutlist element to the cutlist by calling the IStandardCutlist:: AddElement

291

Application Developer's Guide Page 90 of 106

method.

The following example creates two cutlist elements from the file clip and adds them to
the cutlist. The file clip is the first video stream (stream zero) of Jupiter.avi, as specified
previously in IFileClip: :SetFileAndStream. The first element plays seconds 5 through 10
of Jupiter.avi and the second element plays second 0 through 5 of the same file.

hr = pVFileClip->CreateCut (&pVElementl,5*SCALE, 10*SCALE, 0,5*3SCALE, 0) ;
hr = pvVCutlList->AddElement (pVElementl, CL_DEFAULT TIME, CL_DEFAULT_TIME) ;
hr = pVFileClip->CreateCut {(&pVElement2, 0,5*SCALE, 0, 5*SCALE, 0 ;

hr = pvCutList->AddElement (pVElement2, CL_DEFAULT_TIME, CL_DEFAULT_TIME) ;
The first three parameters of IFileClip::CreateCut are the important ones. The first,

ppElement, specifies the element, and is filled in for you. The second (mtTrimIn) and
third (mtTrimOut) specify, respectively, the start and stop times for the clip relative to
the original file (Jupiter.avi in this case). The last three parameters must always be zero,
mtTrimQut minus mtTrimIn, and zero, respectively. A scale value of 10,000,000 scales
the start and stop times to seconds.

The first parameter in the IStandardCutlist: : AddElement call, pElement, is the element
obtained from the call to IFileClip::CreateCut. The last two parameters must be

CL DEFAULT TIME to indicate that the element should be added to the end of the
current cutlist, and its duration is the same as its duration in the original file.

6. Create a cutlist graph builder object (CLSID CutlistGraphBuilder) and use it to build a
filter graph that will play your cutlists. Give it a standard cutlist object by using the
ICutlistGraphBuilder: : AddCutList method, and then call the
ICutlistGraphBuilder::Render method to build a filter graph that can play the cutlist. The
following code fragment illustrates these calls.

CoCreateInstance ((REFCLSID) CLSID CutListGraphBuilder,NULL, CLSCTX_INPROC,

{(REFIID)IID ICutListGraphBuilder, (void*+*)&pGraphBuilder) ;

// Give the cutlist to the graph builder
hr = pGraphBuilder->aAddCutList (pvCutList, NULL) ;

// Tell the cutlist graph builder to build the graph
hr = pGraphRuilder-=Render ()} ;

7. Play the cutlist filter graph and clean up resources as in the following example. Be sure
to stop the graph before you remove the cutlist from the graph using
ICutListGraphBuilder: :RemoveCutList.

// Get the filter graph the builder just made
hr = pGraphRuilder->GetFilterGraph (&pGraph) ;

// Now get some useful graph interfaces
pGraph->QueryInterface (IID IMediaControl, (void**) gpControl);
pGraph->QueryInterface (IID IMediaEvent, (void+**)&pEvent);
pGraph->Release() ;

292

Application Developer's Guide Page 91 of 106

// Run the graph
pControl-=Run () ;

// Arbitrarily assumes 10000 millisecond timeout
pEvent->wWailtForCompletion (10000, &lEventcCode) ;
pControl-=stop(};

pEvent-=Release() ;

pControl-=Release() ;

// Cleanup

hr = pGraphRuilder-:=RemoveCutList (pVCutList) ;
pPVElementl-=Release () ;

pVElement2->Release () ;

pvCutList->Release() ;

pVFileClip-=Release () ;
pGraphBuilder->Release() ;

See the cutlist examples later in this article for more complete sample code illustrating these

steps.

Cutlist Limitations

The following list discusses limitations that you should be aware of when using DirectShow's
current cutlist implementation.

1.

All clips in a cutlist must be the same format {media type).

For video cutlists, this means that all the video clips must be of the same compression
type, size, dimensions, bit depth, and so forth. In other words, all video clips in the
cutlist must be represented by the same BITMAPINFOHEADER structure. For audio
cutlists, this means they must all use the same compression format, sampling rate, bit
depth, and number of channels. In other words all audio clips in the cutlist must be
represented by the same WAVEFORMATEX structure.

The first clip you add to a cutlist determines the cutlist's media type, and the media type
required for all other clips you add to the cutlist. The IStandardCutlist: :AddElement
method returns an invalid media type error (VEW _E INVALIDMEDIATYPE) if you try to
add a clip of a different media type to an existing cutlist.

All cuts must begin on a keyframe. If not, there will be an unwanted "fade in" effect at
the cut point, instead of a clean switch from one clip to the next. The biggest limitation is
that the first frame of the entire cutlist must be a keyframe. Otherwise, the file will be
corrupt if you write the resulting cutlist to a file.

. There is no way to save {persist) a cutlist. Every time your application runs, you must

build the cutlist by hand. There is no file format for saving a cutlist you have previously
constructed.

Audio cuts not made during silence might cause an audible "click” sound at the cut point
if there is low to moderate volume and sparse audio at the cut point.

. You can only create file clip objects from either the first video or audio stream of an AVI

file. Extra streams in files with multiple video or audio streams are ignored.
WAV files and AVI files are the only types of files that you can use as source material for
a cutlist. DirectShow doesn't support other formats, such as MPEG.

. You can't identify WAV or AVI files used in cutlists by a universal network connection

(UNC) network name. For example, the file name "x:\Venus.wav" is valid, but
"\\Server\Share\Venus.wav" is not.
Cutlists with audio NULL elements {gaps in the audio track) can't be written correctly to a

293

Application Developer's Guide Page 92 of 106

file or played properly with the audio renderer included with DirectShow. Unless you have
custom filters that can handle gaps in the audio stream, do not use audio NULL elements.
9. Cutlists work only with PCM audio, not compressed audio.
10. Cutlist support is currently not implemented for RLE compressed files.

Creating a Video Cutlist

The following code creates and plays a cutlist consisting of two video clips from one AVI file. It
plays seconds 5 through 10 of the file followed by seconds O through 5. The code fragment

contains no error checking for the sake of brevity. See Cutlist Sample Code (Simplecl) for an
example that performs error checking.

HRESULT hr;

ICutListGraphRuilder *pGraphBuilder;
IMediaControl *plontrol ;

IMediaEvent *pEvent;

IGrarhBuilder *pGraph;

IStandardCutlList *pVCutList;

IFileClip *pVFileClip;
IZAMCutListElement *pVElementl, *pVElementZz;
LONG 1EventCode=0L;

CoInitialize (NULL) ;

// we need these 3 objects

CoCreatelInstance ((REFCLSID) CLSID CutListGraphBuilder,NULL, CLSCTX INPROC,
(REFIID) IID ICutListGraphBuilder, (void#*+*)&pGraphBuilder) ;

CoCreateInstance ((REFCLSID) CLSID_ VidecoFileClip, NULL, CLSCTX_INPROC,
(REFIID) IID IFileClip, (void+**)&pVFileClip);

CoCreatelInstance ((REFCLSID) CLSID SimpleCutList, NULL, CLSCTX INPROC,
(REFIID) IID_IstandardCutList, (void#**)&pVCutList) ;

// Tell the clip what file to use as a source file
hr = pvFileClip->SetFileaAndStream(L"jupiter.avi”, 0);

// Create some cutlist elements and add them to the standard cutlist
// from 5 to 10 seconds, then from 0 to 5 seconds
hr = pVFileClip-=CreateCut (&pVElementl, 5*SCALE, 10*SCALE, 0,5*3SCALE, 0) ;

hr = pVCutList—>AddE1ement(pVElementl,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr = pVFileClip-=CreateCut (&pVElement2, 0,5*3SCALE, 0,5*3SCALE, 0) ;
hr = pVCutLiSt—>AddElement(pVElementZ,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

// Give the cutlist to the graph builder
hr = pGraphBuilder->AddCutList (pvVCutList, NULL} ;

// Tell the cutlist graph builder to build the graph
hr = pGraphBuilder-=Render () ;

// Get the filter graph the builder just made
hr = pGraphBuilder-=GetFilterGraph (&pGraph) ;

// Now get some useful graph interfaces
pGraph->QueryInterface (IID_ IMediaControl, {void#**)&pControl) ;
pGraph->QueryInterface (IID IMediaEvent, (void+*+*)&pEvent) ;
pGrarh->Release() ;

// Run the graph
pControl->Run(} ;

// Arbitrarily assumes 10000 millisecond timeout

pEvent->WaitForCompletion (10000, &lEventCode} ;
pControl-=8Stop () ;

294

Application Developer's Guide

PEvent-=Release () ;
pControl-»Release () ;

// Cleanup

hr = pGraphBuilder->RemoveCutList (pvCutlList) ;

PVElementl->Release(} ;
PVElementz-=Release() ;
pvVCutList-=>Release () ;
pVFileClip-=Release() ;
pGrarhBuilder-=Release(} ;

CoUninitialize () ;

// Exit
PostMessage (WM_QUIT, 0, 0);

Page 93 of 106

The preceding example uses video only. The example in the next section uses both audio and

video.

Creating Both Video and Audio Cutlists

The following code takes a file name from the command line and plays five different pieces of
that AVI file back to back, with both sound and video synchronized. The code fragment
contains no error checking for the sake of brevity. See Cutlist Sample Code (Simplecl) for an

example that performs error checking.

HRESULT hr;
ICutListGraphBuilder *pGraphBuilder;
IMediaControl *pControl ;
IMediaEvent *pEvent;
IGrarhBuilder *pGraph;
IStandardCutlList *pVCutList, *pACutlist;
IFileClip *pAFileClipl;
IFileClip *pVFileClipl;
IAMCutListElement *pVElementl;
IAMCutListElement *pVElementz;
IZAMCutListElement *pPVElements;
IAMCutListElement *pVElement4;
IZAMCutListElement *pPVElements;
IAMCutListElement *pAElementl;
IZAMCutListElement *pAElementz;
IZAMCutListElement *pAElement3;
IAMCutListElement *pAElement4;
IZAMCutListElement *pAElements;
LONG 1EventCode=0L;
WCHAR lpwstr[z56] ;

CoInitialize (NULL) ;

CoCreatelInstance ((REFCLSID) CLSID CutListGraphBuilder,NULL, CLSCTX INPROC,
(REFIID) IID ICutListGraphBuilder, (void#*+*)&pGraphBuilder) ;

CoCreatelInstance ((REFCLSID) CLSID AudicFileClip, NULL, CLSCTX INPROC,
(REFIID) IID IFileClip, {void**)&pAFileClipl);

CoCreatelInstance ((REFCLSID) CLSID VideoFileClip, NULL, CLSCTX INPROC,
(REFIID) IID IFileClip, {void**)&pVFileClipl);

CoCreatelInstance ((REFCLSID) CLSID SimpleCutList, NULL, CLSCTX INPROC,
(REFIID) IID IStandardCutList, {void+*+*)&pVCutList) ;
CoCreateInstance ((REFCLSID) CLSID_SimpleCutList, NULL, CLSCTX_INPROC,

295

Application Developer's Guide

(REFIID) IID IStandardCutList, {void+*+*)&pACutList) ;

// Get the Unicode file name to use from the command line
MultiByteToWideChar (CP_ACP, ¢, m_ lpCmdLine, strlen{m lpCmdLine}+1,
lpwstr, sizeof (lpwstr)/sizeof (*1pwstr));

// tell the clips what file they are reading from
hr = pVFileClipl-=SetFileAndStream(lpwstr, 0} ;
hr pAFileClipl-=>SetFileAndStream(lpwstr, 0} ;

// Create some cuts and add them the cutlist

// from 2 to 6 seconds

hr = pVFileClipl-=CreateCut (&pVElementl,2*SCALE, 6*SCALE, 0,4*3SCALE, 0) ;
hr = pVCutList—>AddE1ement(pVElementl,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr = pAFileClipl->CreateCut (&pAElementl,2*SCALE, 6*SCALE, 0,4*3CALE, 0} ;
hr = pACutList—>AddE1ement(pAElementl,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

// from 20 to 24 seconds

hr = pvFileClipl-sCreateCut (&pVElement2,20*SCALE,24*SCALE,0,4*3SCALE, 0
hr = pVCutList—>AddElement(pVElementZ,CL_DEFAULT_TIME,CL_DEFAULT_TIME
hr = pAFileClipl-=CreateCut (&pAElement2,20*SCALE, 24*SCALE, 0,4*SCALE, 0
hr = pACutList—>AddElement(pAElementZ,CL_DEFAULT_TIME,CL_DEFAULT_TIME

// from 65 to 6¢% seconds

hr = pvFileClipl-sCreateCut (&pVElement3,65*SCALE,69*SCALE,0,4*3SCALE, 0
hr = pVCutList—>AddElement(pVElement3,CL_DEFAULT_TIME,CL_DEFAULT_TIME
hr = paAFileClipl->CreateCut (&pAElement3,65*3CALE, 69*SCALE, 0,4*SCALE, 0
hr = pACutList—>AddE1ement(pAElementB,CL_DEFAULT_TIME,CL_DEFAULT_TIME

// from 35 to 39 seconds

hr = pVFileClipl-=CreateCut (&pVElement4, 35*SCALE,39*SCALE, 0,4*SCALE, 0
hr = pVCutList—>AddE1ement(pVElement4,CL_DEFAULT_TIME,CL_DEFAULT_TIME
hr = pAFileClipl-sCreateCut (&pAElement4,35*SCALE,39*SCALE,0,4*3SCALE, 0
hr = pACutList—>AddE1ement(pAElement4,CL_DEFAULT_TIME,CL_DEFAULT_TIME

// from 12 to 16 seconds

hr = pVFileClipl-=CreateCut (&pVElementh, 12*SCALE, 16*SCALE, 0,4*SCALE, 0
hr = pVCutList—>AddE1ement(pVElement5,CL_DEFAULT_TIME,CL_DEFAULT_TIME
hr = pAFileClipl-sCreatecCut (&pAElement5,12*SCALE, 16*SCALE,0,4*3SCALE, 0
hr = pACutList—>AddE1ement(pAElement5,CL_DEFAULT_TIME,CL_DEFAULT_TIME

// Add the cutlists to the graph
hr pGraphBuilder->AddCutList (pvCutList, NULL) ;
hr pGraphBuilder->AddCutList (pACutList, NULL) ;

// Tell the cutlist graph builder to build the graph
hr = pGraphBuilder->Render() ;

// Get the filter graph the builder just made
hr = pGraphBuilder-=GetFilterGraph (&pGraph) ;

// Now get some useful graph interfaces
pGraph->QueryInterface (IID_ IMediaControl, {void#**)&pControl) ;
pGraph-=QueryInterface (IID_IMediaEvent, (void**}&pEvent});
pGraph-=Release () ;

// Run the graph
pControl->Run() ;

// Arbitrarily assumes 10000 millisecond timeout
pEvent->WaitForCompletion (10000, &lEventCode) ;

pControl-=stop();

206

)
)
)
)
)
)
)
)
)
)
)
)

)
)
)
)

I

I

I

I

I

I

I

I

I
I

I

I

I
I

I

I

Page 94 of 106

Application Developer's Guide

PEvent-=Release () ;
pControl-»Release () ;

//

/7
hr

hr

PVElementl-=>Release

cleanup

Remove the cutlist from the graph
pGraphBuilder-=RemoveCutList (pVCutList) ;
pGraphBuilder-=RemoveCutList (pACutList) ;

Page 95 of 106

()
PVElementz->Release(}
pPVElement3->Release(}
PVElement4->Release(}
PVElement5-=Release() ;
pAElementl->Release(}
pAElementz->Release(}
pAElement3->Release(}
pAElement4->Release(}
pAElements5->Release(}

pAcCutlList->Release () ;
pvCutList->Release () ;

pPAFileClipl->Release();
pPVFileClipl->Release();

pGraphBuilder-=>Release() ;
CoUninitialize () ;

// Exit
PostMessage (WM_QUIT, 0, 0);

The preceding example obtains video and audio clips from the same file. The next example
adds a user interface and error checking, and it is available in the DirectShow SDK.

Cutlist Sample Code (Simplecl)

The Simplecl Sample (Cutlist Application) {(Simplecl) from the DirectShow SDK demonstrates
how to create and play back cutlists. By default, the DirectShow setup program installs
Simplecl in the DXMedia\Samples\DS\cutlist\simplec| directory. Simplecl provides a File Open
dialog box from which the user can chose a file to add to a cutlist. For each file, the user
specifies a starting (trimin) position for the clip and an ending (trimout) position for the clip.
For every AVI file specified, the sample tries to add the first video stream and the first audio
stream to its respective cutlist. The user must add at least two files, and then can run the filter
graph and see the clips played sequentially.

The DirectShow SDK also includes a sample that reads a list of cuts from a text file and plays
them, much like Simplecl does. That sample, Cltext, is installed in the
DXMedia\Samples\DS\cutlist\cltext directory by default.

The following code excerpts are from the Simplecl.h and Simplecl.cpp sample files. The sample
includes error checking.

Simplecl.h declares a few global variables, including a ClipDetails structure to manage the
user's file and clip start and stop time choices, and a ClipCollection structure to group the clip
details. It also defines a SCALE constant to scale all user-specified times in one-second

297

Application Developer's Guide Page 96 of 106

increments. The HELPER_RELEASE macro releases objects only if they exist, and then sets the
object pointer to NULL to guard against releasing the same object multiple times. The following
example contains fragments from Simplecl.h.

#define MAX_ CLIPS 150
#define SCALE 10000000 // scale for 1 second of reference time

// Clip (element) details
struct ClipDetails

{

TCHAR szFilename [MAX PATH] ; // name of file containing clip
REFERENCE TIME start; // start (Trim In) position of <¢lip within file

REFERENCE TIME stop; // Stop (Trim Out) position of clip within file

}i

// cutlist is a collection of clips (elements)
struct ClipCollection

int nNumClips;
ClipDetails List [MAX CLIPS];

I

#define HELPER RELEASE (x) { if (x) x->Release(); x = NULL; |

ClipCollection gTheSet; // cutlist

The application initializes the user input structure as follows:

// ... in WinMain
ZeroMemory (&gTheSet, sizeof gTheSet);

Simplecl keeps track of the name of the media file that the user chooses as the source of a
clip, tracks the number of files chosen, and displays a dialog box for the user to enter the start
and stop times for each clip. The following code fragments relate to tracking the user input for
clips:

// ... in WndMainProc
case IDM ADDFILE:
if (GetClipFileName (gTheSet.List [gTheSet . nNumClips] .szFilename)}
{ // ndd file
TCHAR szTitleBar([200];
DialogBox (ghInst, MAKEINTRESOURCE (wDlgRes = IDD MEDIATIMES),
ghZpp, (DLGPROC)DialogProc);
gTheSet.nNumClips = gTheSet .nNumClips + 1;
wsprintf {(szTitleRar, "SimpleCutList - %d clips(s) added.",
gTheSet.nNumClips} ;
SetWindowText (ghipp, szTitleRar);

} // Rrdd file

208

Application Developer's Guide

//

case I
gThe
gThe

EndD
brea

in DialogProc
DOKTIMES :

List.List [gTheSet .nNumClips] .start = GetDlgItemInt (h,
IDC TRIMIN2, NULL, FALSE);

List.List [gTheSet . nNumClips] .stop = GetDlgItemInt (h,

IDC _TRIMOUT2, NULL, FALSE);
ialogih, 1) ;
k;

Page 97 of 106

The real work of the Simplecl sample is in the SimpleCutList function. If the user has chosen
more than one clip, and then chooses Run from the Cutlist menu, then Simplec! builds and
plays the cutlist. The following code checks the number of clips chosen, and calls SimpleCutList
if more than one clip was chosen.

case I
if ¢
si
else
Di

brea

DM _RUN:

gTheSet.nNumClips > 1)

mpleCutList () ;

alogBox (ghInst, MAKEINTRESOURCE (wDlgRes = IDD_LESSTHANZ) ,
ghZpp, (DLGPROC)DialogProc) ;

k;

After the user has entered the file and clip choices, the SimpleCutList function creates and
plays the cutlist as follows:

veold SimpleCutList ()

{

// SimpleCutlList //
WCHAR wFile[MAX PATH]; // File name
// Initialize video and audio file clips and elements to NULL

// 80 we can easily free objects later.
for (int x = 0; x < MAX CLIPS; ++Xx)

pvidFileClip([x] = NULL;
pAudFileClip([x] = NULL;
pVidCLElem[x] = NULL;
PAUdCLElem[x] = NULL;

}i

// Create cutlist graph builder object

hr = CoCreatelInstance (CLSID CutListGraphBuilder, NULL,
CLSCTX_INPROC, IID ICutListGraphBuilder,
(void**} &pCLGraphBuilder) ;

if (FAILED(hr))
{ // CoCreateInstance of CutListGraphBuiler failed
MessageBox (ghhpp,
"CoCreatelInstance of CutlListGraphBuiler failed",
APPLICATIONNAME , MB_OK);
TearDownTheGraph () ;
return;
} // CoCreateInstance of CutListGraphBuiler failed

// Create simple (standard) cutlist cbject for videc
hr = CoCreatelInstance (CLSID SimpleCutList, NULL,

299

Application Developer's Guide Page 98 of 106

CLSCTX INPROC, IID IStandardCutList,
(vold**) &pvideoCL) ;

if (FAILED(hr))
{ // CoCreateInstance of videc SimpleCutList failed
MessageBox (ghipp,
"CoCreatelnstance of video SimpleCutList failed™,
APPLICATIONNAME , MB_OK);
TearDownTheGraph () ;
return;
} // CoCreatelInstance of video SimpleCutList failed

// Create simple (standard) cutlist cbject for audic

hr = CoCreatelInstance (CLSID SimpleCutList, NULL,
CLSCTX_INPRCC, IID_IStandardCutLiSt,
(voild**) &pAudioCL) ;

if (FAILED(hr))
{ // CoCreateInstance of audic SimpleCutList failed
MessageBox (ghipp,
"CoCreatelInstance of audic SimpleCutlList failed™,
APPLICATIONNAME , MB_OK);
TearDownTheGraph () ;
return;
} // CoCreatelInstance of audio SimpleCutList failed

// Create the individual c¢lips and add them to the cutlist
nvidElems = naudBElems = 0;
for (x = 0; x < gTheSet.nNumClips; ++x}

{ // Individual clips

MultiByteToWideChar (CP_ACP, O,
gTheSet.List [x] .szFilename,
-1, wFile, MAX_ PATH) ;

// Create a video c¢lip object and give it the file and stream

// to read from.

// SetFileAndStream will fail if we call it from a video clip

// object and the c¢lip is not a video clip.

hr = CoCreateInstance(CLSID VideoFileClip, NULL,
CLSCTX_INPROC, IID IFileClip,
{void**)&pVidFileClip[nVidElems]) ;

hr = pvidFileClip[nVvidElems] -»>SetFileAndsStream{wFile, 0} ;
if (SUCCEEDED (hr})
{ // Create videc cut and add the clip (element) to the cutlist
hr = pVidFileClip[nVidElems] ->CreateCut {(&pVidCLElem[nVidElems],
gTheSet .List [x] .start*SCALE,
gTheSet .List [x] . stcp*SCALE,
?éTheSet.List[x].stop—gTheSet.List[x].start)*SCALE,
0);
if {(SUCCEEDED (hr)}
{ // BAd the element to the cutlist

hr = pvVideoCL->AddElement (pVidCLElem[nVidElems], CL_DEFAULT TIME,

300

Application Developer's Guide Page 99 of 106

if (SUCCEEDED(hr))
++nVidElems;

else
{ // RAddElement failed so release associated objects
HELPER_RELEASE(pVidCLElem[nVidElems]);
HELPER_RELEASE(pVidFileClip[nVidElemS]);
MessageBox (ghipp, "AddElement (videc) failed!", APPLICATIONNA

} // BRddElement failed so release associated objects
} // Add the element to the cutlist

else MessageBox (ghZApp, "CreateCut (video) failed!"™, APPLICATIONNAME,
} // Create video cut
else
{ // pProblems creating videc stream

HELPER_RELEASE (pVidFileClip[nvVidElems]) ;
MessageBoX (ghapp, "SetFileaAndsStream (video} failed!", APPLICATIONNAME

} // Problems creating videc stream
// Create an audio clip object and give it the file and stream
// to read from.
// SetFileaAndStream will fail if we call it from an audio clip
// object and the c¢lip is not an audio c¢lip
hr = CoCreateInstance(CLSID AudioFileClip, NULL,
CLSCTX_INPROC, IID_IFileClip,
{void**)&paudFileClip[naudElems]} ;
hr = paudFileClip([nAudElems] ->SetFileAndStream{wFile, 0} ;
if (8UCCEEDED (hr))
{ // Create audic cut and add the clip (element) to the cutlist
hr = pAudFileClip[naudElems] ->Createlut (&pAudCLElem[nAudElems] ,
gTheSet .List [x] .start*SCALE,
gTheSet .List [xX] . stop*SCALE,
Q,
(gTheSet .List [x] . stop-gTheSet .List [x] . start) *SCALE,
0} ;
if {(SUCCEEDED (hr)}
{ // BAd the element to the cutlist
hr = paudicCL->AddElement (pAudCLElem[nAudElems] ,
CL DEFAULT TIME,
CL_DEFAULT TIME) ;

if (SUCCEEDED(hr))
++nAudElems;

else
{ // BddElement failed so release associated objects

HELPER_RELEASE (pAudCLElem[naudElems]) ;

301

Application Developer's Guide Page 100 of 106

HELPER_RELEASE (pAudFileClip[nAudElems]) ;
MessageBox (ghipp, "AddElement (audic) failed!"™, APPLICATIONNA

} // BRddElement failed so release associated objects
} // 2dd the element to the cutlist
else MessageBox (ghZApp, "CreateCut (audio) failed!"™, APPLICATIONNAME,
} // Create audioc cut

// Problems creating audio stream
else

{ // Problems creating audio stream

HELPER RELEASE (pAudFileClip[nAudElems]) ;
MessageBox (ghipp, "SetFileAndStream {audic} failed!", APPLICATIONNAME

} // Problems creating audic stream
// Individual clips
} P

// BAd the video cutlist to the filter graph
hr = pCLGraphRuilder-->AddCutList (pVideoCL, NULL} ;

if (FAILED(hr)} // AddCutList (video) failed
MessageBox (ghApp, "AddCutList (video) failed", APPLICATIONNAME, MB OK) ;

// Add the audio cutlist to the filter graph
hr = pCLGraphBuilder->addCutList (pAudioCL, NULL) ;

if (FAILED (hr)) // AddcCutList (audio) failed
MessageBox (ghApp, "AddCutList (audio) failed", APPLICATIONNAME, MB_OKj) ;

if ((!pVideoCL) && (!phudioCL})
{ // Clean up

TearDownTheGraph () ;
return;

} // Clean up

// Let the filter graph manager construct the appropriate graph
// automatically
hr = pCLGraphBuilder->Render(} ;

if (FAILED (hr))
{ // Problems rendering the graph
if (!AMGetErrorText (hr, gszScratch, 2048})

MessageBox (ghfipp, "Problems rendering the graph!", APPLICATICONNAME, MB_
else

MessageBox (ghRApp, gszScratch, APPLICATIONNAME, MB OK) ;
TearDownTheGraph () ;
return;

} // Problems rendering the graph

// Retrieve the filter graph and useful interfaces
hr = pCLGraphBuilder-=GetFilterGraph (&pigb) ;

if (FAILED (hr)}

{ // Problems retrieving the graph pointer
if (!AMGetErrorText (hr, gszScratch, 2048))

302

Application Developer's Guide Page 101 of 106

MessageRox (ghlipp, "Prcblems retrieving the graph pointer!", APPLICATICHN
else

MessageBox (ghfipp, gszScratch, APPLICATIONNAME, MB_OK) ;
TearDownTheGraph () ;
return;

} // Problems retrieving the graph pointer

// QuervInterface for some basic interfaces
pigb-=>QueryInterface (IID_IMediaControl, (void **)&pimc);
pigb-=>QueryInterface (IID IMediaEventEx, (vold **)&pimex) ;
pigb->QueryInterface(IID IVideoWindow, (void *+*)&pivw);

// Decrement the ref count on the filter graph
pigb->Release () ;

// Prepare to play in the main application window's client area

RECT rc;

GetClientRect (ghRhpp, &rc);

hr = pivw-=put_Owner { (OAHWND) ghApp} ;

hr pivw->put WindowStyle (WS _CHILD|WS_CLIPSIBLINGS) ;

hr pivw->SetWindowPosition(rc.left, rc.top, rc.right, rc.bottom);

// Have the graph signal event via window callbacks for performance
pimex->SetNotifyWindow ((OAHWND)ghApp, WM _GRAPHNOTIFY, 0);

// Run the graph if RenderFile succeeded
pimc->Run() ;

} // simplecutList //

Simplecl's TearDownTheGraph function releases all objects and cleans up as follows.

vold TearDownTheGraph (void)
{ // TearDownTheGraph //

if (pimc)
pimc-=8Stop () ;

if (pivw)
{ // Hide the playback window first thing

pivw->put_Visible (OAFALSE) ;
pivw->put Owner (NULL) ;

Y7/

HELPER_RELEASE {pimex) ;
HELPER_RELEASE (pimc) ;
HELPER_RELEASE {pivw} ;

// Remove the video cutlist from the filter graph to free resources

if (pCLGraphBuilder && pvideoCL)
pCLGraphRuilder->RemoveCutList (pVideolL) ;

// Remove the audio cutlist from the filter graph to free resources

if (pCLGraphBuilder && pAudioCL)
pCLGraphRuilder->RemoveCutList (pAudiolL) ;

for (int x = 0; X < nAudElems; ++X)

303

Application Developer's Guide Page 102 of 106

{ // Release audioc cbjects

HELPER_RELEASE (pAudCLElem([x]) ;
HELPER_RELEASE (pAudFileClip([x]) ;

} // Release audic objects
for (x = 0; x < nVidElems; ++X)
{ // Release video objects

HELPER_RELEASE (pVidCLElem[x]) ;
HELPER RELEASE (pVidFileClip([x]) ;

} // Release videc cbjects

HELPER_RELEASE {pVideoCL) ;
HELPER_RELEASE {pAudioCL) ;
HELPER_RELEASE (pCLGraphBuilder) ;

} // TearDownTheGraph //
£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" prerious | ome | Topis Contents] index | next
" Pretious | Home | Topic Contents] index | Hext

DVD for Title Vendors

DVD-Video discs typically contain programs such as feature films, interactive games, or video
reference materials like encyclopedias. The end user can play back those programs on a DVD-
Video player or on a DVD-ROM-equipped computer. Some of the features of DVD-Video include
support for multiple languages, parental control, different camera angles, and closed
captioning.

This article discusses the unique features of DVD that are not available in pure MPEG-2 (its
parent format) and outlines the interfaces and methods DirectShow provides in support of
those features.

DVD-unique features include the following:

Better seeking

Subpictures

Multiple language support

Variable speed play (forward/backward scan)
Consumer DVD interactivity

Seamless video angle change

Parental control

304

Application Developer's Guide Page 103 of 106

Title vendors can create feature-rich applications by taking advantage of these DVD-Video
features.

Note This release of DirectShow supports DVD-Video. It does not support pure MPEG-2.

See Additional DVD Resources on the Web for a list of DVD resources on the Web.

Contents of this article:

¢ DVD Interfaces
¢ DVD Control Data Structure
¢ DVD Features

o Seeking in DVD

o Subpicture

o Multiple Language Support
o Variable Speed Play
(o]
(o]

Consumer DVD Interactivity
Seamless Video Angle Change
o Parental Control
o Additional DVD Resources on the Web

DVD Interfaces

DirectShow provides the following DVD-related interfaces.

Interface Purpose

IDvdGraphBuilder Allows the DVD application writer to easily build a filter graph for DVD-Video
playback.

IBvdControl Controls the playback and search mechanisms of a DVD-Video disc that
contains one or more video movies.

IDvdInfo Allows an application to query for attributes of available DVD-Video titles

and the DVD player status. It also allows for control of a DVD player beyond
Annex] in the DVD specification.

Later sections of this article group methods from these interfaces into functional categories.
DirectShow also provides a number of events. See DVD Events for more information.
DVD Control Data Structure

DVD-Video contains a nested hierarchy that provides search capabilities at several levels in the
DVD data. This nested "control data" points to the real video and audio data. The following
table outlines the structure of the control data for a DVD-Video volume. Each DVD volume can
contain from one to 99 video title sets, which can contain one or more titles, which can contain
one or more program chains. This nested structure continues to the smallest unit, which is the
"pack.” DirectShow provides seeking capabilities for DVD at three distinct levels, as outlined in

Seeking in DVD.

DVD-Video Volume Structure

305

Application Developer's Guide Page 104 of 106

Control Data Description

Video Title Set Collection of movies. A single volume can contain one to 99 video title sets.
(VTS)

Title Individual movie. This may be a simple linear movie, consisting of one
program chain, or it might consist of several program chains.

Program Chain A collection of programs (often chapters in a movie).

(PGC)

Chapter/Part of Collection of programs. Can delimit scenes or provide optional scenes from

Title (PTT) which to choose. Possible options include different ratings, camera angles,
or a different storyline.

Program (PG) Collection of cells, which normally make up a scene.

Cell Collection of Video Object Units. Typically all the video and audio data from
a certain number of Video Object Units.

Cell-Part Stream of data (multi-angle only).

Video Object Unit Usually half a second of video.

{(voBU)

Pack 2KB of data, consisting of only one media type (such as video or audio).

Pure MPEG-2 supports only the title and pack from the list above.
DVD Features

This section outlines features specific to DVD-Video and lists the DirectShow methods that
provide these features.

Seeking in DVD

DirectShow enables you to seek at several different levels within the DVD content. Because
pure MPEG-2 supports only title and pack control data, it does not provide the flexibility in
seeking that DVD does.

The following table shows the DirectShow DVD methods for seeking at various levels.

Seeking Control data IDvdControl methods
level
Title Video Title Set (VTS), TitlePlay
Seeks Title, Program Chain
{PGC)
Chapter Chapter/Part of Title ChapterPlay (specifying title and chapter number),
Seeks (PTT), Program (PG), ChapterSearch (search for a chapter within the same
Cell title), PrevPGSearch, TopPGSearch, NextPGSearch
Time Cell-Part, Video Object TimePlay (start playing specified title from specified time),
Seeks Unit {(VOBU), Pack TimeSearch (start playing from specified time within the
same title)
Subpicture

Subpicture is an extra media type that is decoded and alpha blended. The data on the alpha
channel could be text for closed-captioning, buttons to provide a user interface, menus,
subtitles, credits, and so on.

306

Application Developer's Guide Page 105 of 106

Methods relating to subpicture include the following:

IDvdControl: : SubpictureStreamChange
IDvdInfo::GetCurrentSubpicture
IDvdiInfo: .GetSubpictureLanguage
IDvdInfo: :GetCurrentSubpictureAttributes

Multiple Language Support

DVD-Video provides support of up to eight audio tracks to accommodate various languages. It
also supports text in different languages for statistics related to the DVD title such as cast,
crew, or title.

Methods relating to language support include the following:
o IDvdControl::MenuLanguageSelect

o IDvdInfo::GetAudioLanguage
o IDvdInfo::GetSubpicturelanguage

Variable Speed Play

DirectShow provides variable speed play through the IDv ntrol: :Forwar n and
IDvdControl: :BackwardScan methods:

Consumer DVD Interactivity

The consumer of a DVD title can interact with the title by selecting and activating buttons,
displaying menus, and using the mouse to select and activate buttons.

Methods relating to consumer interactivity include the following:

IDvdControl: :MenuCall

IDvdControl: : UpperButtonSelect
IDvdControl::LowerButtonSelect
IDvdControl::LeftButtonSelect
IDvdControl::RightButtonSelect
IDvdControl::ButtonActivate
1DvdControl::ButtonSelectAndActivate
1DvdControl: : MouseActivate
1DvdControl: :MouseSelect

IDvdInfo: :GetCurrentButton

Seamless Video Angle Change

DVD-Video supports up to nine camera angles. These angles can be completely independent
video streams, or different camera angles of the same scene. The fast seeking of the DVD disc
allows switching angles seamlessly.

Methods relating to video angles include IDvdControl: :AngleChange and
IDvdInfo::GetCurrentAngle.

307

Application Developer's Guide Page 106 of 106

Parental Control

Parental control provides security for parents who want to prevent children from viewing
certain types of content. Content might be authored at a particular level, or might contain the
same scene shot at different rating levels to provide a viewing alternative for children.

Methods relating to parental control include the following:

IDvdControl: :ParentallevelSelect
1DvdControl: :ParentalCountrySelect
IDvdInfo: :GetPlayerParentallevel
1DvdInfo::GetTitleParentallevels

Additional DVD Resources on the Web

The following list contains links to a few of the Web sites that provide DVD information. Search
the Web for other DVD resources. Note that most of these external links point to servers that
are not under Microsoft's control. Please read Microsoft's official statement regarding other
servers.

e http: //www.microsoft.com/hwdev/devdes/dvdwp.htm contains a whitepaper titled "DVD
and Microsoft Operating Systems"” which outlines the planned support for DVD under
future Windows operating systems.

B http.//www.unik.no/~robert/hifi/dvd/ includes links to many other DVD sites, news
stories, and other resources.

B http://reality.sgi.com/nemec/dvd.html contains notes from a DVD technical forum.

O http://www.c-cube.com/technology/dvd.html contains a whitepaper on DVD.

O http://www.icdia.org/dvdfaq02.htmi contains a DVD frequently asked questions list.
B http://www.videodiscovery.com/vdyweb/dvd/dvdfaqg.html contains a DVD frequently
asked questions list which is also available from alt.video.dvd Usenet newsgroup.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Prerious | Home | Topic Contents] index | Hext

308

Filter Developer's Guide

Filter Developer’'s Guide

Page 1 of 83

[Previous | Home | Topic Contents | iniex | Hext

If you are developing a filter for use in a DirectShow filter graph, read the articles in this

section.

*How to...

=Stream Architecture

=Plug-in Distri r

=DirectShow and COM

=File Formats

=Transform Filters

= About Effect Filters

=Video Renderers

=Exposing Capture and Compression Formats

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

How to...

[Previous | ome | topic Conients | imiex | Wext |
[Previous | ome] Topie Contents | miex | Wext |

This section gives step-by-step procedures for writing and using different kinds of filters,

including a video capture filter, an audio capture filter, and a transform filter.

=Write a Video Capture Filter

=Write an Audio Capture Filter

*Write a Transform Filter in C/C++

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

Filter Developer's Guide Page 2 of 83

" previous | Home | opio Contente | index | Hext |

Write a Video Capture Filter

This article outlines important points to consider when writing a video capture filter. The
Microsoft® DirectShow™ SDK includes a standard VEW Video Capture filter.

Contents of this article:

Capture and Preview Pin Requirements
Optimizing Capture Versus Preview (Optional)
Reqgistering a Video Capture Filter

Producing Data

Controlling Individual Streams

Time Stamping

Necessary Interfaces

Capture and Preview Pin Requirements

The capture pin and preview pin (if there is one) of the capture filter must support the
IKsPropertySet interface. Applications call this interface to ask "what category of pin are you?"
by getting the AMPROPERTY PIN CATEGORY value of the AMPROPSETIE Pin property set. The
value you return is typically either the PIN CATEGORY CAPTURE or PIN CATEGORY PREVIEW
GUID. (See Pin Property Set for a complete list of pin categories.) A capture filter must support
IKsPropertySet or an application can't tell how to connect the filter in a filter graph.

You can name the pin anything you want and you can have other output pins for any additional
purposes that you want. If your pin name begins with the tilde (~) character, the filter graph
will not automatically render that pin when an application calls IGraphBuilder::RenderFile. For
instance, if you have a capture filter with both a capture pin and a preview pin, you might want
to name the capture pin "~capture” and the preview pin "preview.” Given those names, if an
application renders that filter in a graph, the preview pin will be connected to a video renderer,
and nothing will be connected to the capture filter, which is probably what you want to happen
by default. This can also apply to pins that are just informational and are not meant to be
rendered, or need to be enumerated so that their properties can be set.

The tilde (~) prefix only affects the behavior of RenderFile and intelligent connect
(IGraphBuilder::Connect). Note that intelligent connect can still be used to connect pins with
this property if they implement the IPin::Connect method. However, output pins of
intermediate filters which are being used to complete the connection which have the tilde at
the start of their name will not be connected as part of the intelligent connection attempt.

See Audio Capture Pin Requirements for more details about audio capture filters.

The following sample code demonstrates how to implement IKsPropertySet on a capture pin.

Ll

310

Filter Developer's Guide Page 3 of 83

// PIN CATEGORIES - let the world know that we are a CAPTURE pin
!/

HRESULT CMyCapturePin: :Set (REFGUID guidPropSet, DWORD dwPropID, LPVOID plInstanceDat

{

return E_NOTIMPL;

// To get a property, the caller allocates a buffer which the called

// function fills in. To determine necessary buffer size, call Get with

// pProphata=NULL and cbPropData=0.

HRESULT CMyCapturePin: :Get (REFGUID guidPropSet, DWORD dwPropID, LPVOID plInstanceDat

if (guidPropSet != AMPROPSETID Pin)
return E_PROP_SET_UNSUPPORTED;

if (dwPropID != AMPROPERTY PIN CATEGORY)
return E_PROP_ID UNSUPPORTED;

if (pPropData == NULL && pcbReturned == NULL)
return E_POINTER;

if (pcbReturned)
*pcbReturned = sizeof (GUID) ;

if (pPropData == NULL)
return S_OK;

if (cbkbPropbhata < sizeof (GUID))
return E UNEXPECTED;

* (QUID *)pPropData = PIN_ CATEGORY CAPTURE;
return S_OK;

// Querysupported must either return E NOTIMPL or correctly indicate

// if getting or setting the property set and property is supported.

// S _OK indicates the property set and property ID combination is

HRESULT CMyCapturePin::Quervsupported (REFGUID guidPropSet, DWORD dwProplD, DWORD *p

{

if (guidPropSet != AMPROPSETID Pin)
return E_PROP_SET_UNSUPPORTED;

if (dwPropID != AMPROPERTY PIN CATEGORY)
return E_PROP_ID UNSUPPORTED;

if (pTypeSupport)
*pTypeSupport = KSPROPERTY SUPPORT GET;
return S_OK;

Optimizing Capture Versus Preview {Optional)

When your filter is running and capturing data, you must send a copy of the frame from your
preview pin as well as from your capture pin. If you can do hardware-assisted preview —
through an overlay, for example — and if you have a preview pin, you can use the IOverlay
interface transport for your preview pin instead of the IMemlInputPin interface. Using IQverlay
is optional. If you can't do hardware-assisted preview, only send a frame out the preview pin if
you have some spare time. Don't do it if it will make you drop any frames — the capture pin
has priority.

311

Filter Developer's Guide Page 4 of 83

For example, you might deliver a frame from the preview pin only if you have nothing to send
from the capture pin right now and the downstream filter has released all buffers previously
delivered from the capture pin.

If you can capture only one format of data, and the preview and capture pins must therefore
produce the same media type, or if you want information about how to properly reconnect
pins, read on. Otherwise, skip this section.

Send data of the same format from the preview and capture pins. If the filter graph manager
reconnects your capture pin with a different format, you must reconnect your preview pin with
the same format to make it work. If your capture pin is connected but your preview pin is not,
you must allow only your preview pin to connect with the same media type as the capture pin.
They must match.

Note: If your preview pin is producing 8-bit RGB and must reconnect using 16-bit RGB, the
reconnect might fail. This failure might occur if you are connected to a video renderer, because
the renderer might need a color converter filter inserted between the filters to convert the 16-
bit RGB to 8-bit RGB. In this case, calling the IFilterGraph::Reconnect method will fail. You
must do a full-fledged connect again (with CBasePin::Connect). If you only change between
different sizes of motion JPEG, don't worry; a simple reconnect will always work.

The following sample code shows how the more complicated reconnection would work.

// Capture pin is being told to use a certain media type

/
CCapturePin: :SetMediaType (CMediaTyvpe *pmt} ;

{

if (m_pMyPreviewPin-=IsConnected ()} {

// We need to reconnect our preview pin with this media type
if (m _pMyPreviewPin-=>GetConnected()->QueryAccept (pmt) == NOERROR) {

// The other filter that the preview pin is connected to
// can accept this new media type, so we simple reconnect
m_pGraph->Reconnect (m_pMyPreviewPin) ;

} else {
// The other filter WON'T accept this new time. Time to do
// the connection all over again, possibly pulling in new
// filters to help connect them
IPin *pPin = m_pMyPreviewPin-=GetConnected () ;
m_pGraph-=>Disconnect (pPin} ; // disconnect upstream first
m_pGraph->Disconnect (m_pMyPreviewPin) ;
// The sample code below will make sure the new connection
// happens with the same media type as we are using
hr = m_pGraph->Connect (m_pMyPreviewPin, pPin);
if (FAILED(hr))

; // UH OH 111

}

CPreviewPin: :CheckMediaType (CMediaType *pmt)

CMediaType cmt = m pMyCapturePin-=>m mt;

if (m_pMyCapturePin-=>IsConnected(} && *pmt != cmt)
// Sorry, our preview pin is only allowed to connect with
// the same format as the capture pin

312

Filter Developer's Guide Page 5 of 83

return E_INVALIDARG;

else if (!m_pMyCapturePin-=IsConnected(})
// You decide if you like this media type or not, maybe by
// knowing what the capture pin will connect with. But don't
// worry, when the capture pin is connected, we will be
// reconnected to use the same format

// if our capture pin is connected, and this is the same media type,
// we are OK.
return NCERROR;

}

Registering a Video Capture Filter

You must register your filter in the video capture filter category. See AMovieDlRegisterServer?
for more information.

Producing Data

Produce data on capture and preview pins only when the filter graph is in a running state. You
do not send data from your pins when the filter graph is paused. This will confuse the filter
graph unless you return VFEW S CANT CUE from the CBaseFilter: :GetState function, warning
the filter graph that you do not send data when paused. The following code shows you what to
do.

CMyVidcapFilter::GetState (DWORD dw, FILTER_STATE *State)

*State = m_State;
if {(m_State == State_Paused)
return VFW_S CANT CUE;
else
return S_OK;

}

Controlling Individual Streams

All cutput pins should support the IAMStreamControl interface, so an application can turn each
pin on or off individually (for instance, to preview without capturing). IAMStreamControl
enables you to switch between preview and capture without rebuilding a different graph.

Time Stamping

When you capture a frame and are sending it, time stamp the frame with the time the graph's
clock says it is when the frame is captured. The end time is the start time plus the duration.
For example, if you are capturing at 10 frames per second, and the graph's clock says
200,000,000 units at the time the frame is captured, the sample is stamped (200000000,
201000000) (there are 10,000,000 units per second).

A preview frame should have no time stamp because of latency problems. The latency is due to
the fact that, if the time of the sample is the graph's time when it leaves the preview pin, by
the time the sample gets to the renderer, it will be late. Therefore the renderer may chogse
not to draw the sample in order to save time and "catch up”, which can't happen for a live
stream. Implementing IAMStreamControl requires time stamps, so you can choose not to
implement stream control on the preview pin, only time stamp the preview pin sample when
there are outstanding requests to start or stop, or live with the latency problem. See the

313

Filter Developer's Guide Page 6 of 83

source code for the VidCap Sample (Video Capture Filter) sample for details.

You should set the media time of the sample you deliver; also set the regular time stamp for
your capture pin. The media time is the frame number of the sample. For example, if you are
capturing and sending frames and frame 3 gets dropped, you would set the media time values
to be (0,1) (1,2) (2,3) (4,5) (5,6) and s0 on. This informs the downstream filters if any video
frames were dropped even when the regular time stamps are a little random because the clock
being used is not the video digitizing clock.

Also, if you are in a running state, and then pause, and then run again, you must not send a
sample with a time stamp less than the last one you sent before pausing. Time stamps can
never go back in time, not even back to before a pause occurred.

Necessary Interfaces

Read about the following interfaces and consider implementing them. You should implement
these interfaces to provide functionality that applications might rely on, so these interfaces are
strongly recommended.

Implement IAMDroppedFrames on your filter or on each output pin that sends data.
Implement IAMStreamConfig on each output pin that sends video data.

Implement IAMStreamControl on each output pin that sends data.

Implement IAMVideoCompression on each output pin that sends video data.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topio Contents | imiex | ext _
previons | Home | Topic Contents | intex | Hext

Write an Audio Capture Filter

This article outlines important points to consider when writing an audio capture filter. The
Microsoft® DirectShow™ SDK includes a standard Audio Capture filter.

Contents of this article:

Audio Capture Pin Requirements
Registering an Audio Capture Filter
Producing Data

Controlling Individual Streams
Time Stamping

Necessary Interfaces

Audio Capture Pin Requirements

The capture filter's capture pin and preview pin (if there is one) must support the

314

Filter Developer's Guide Page 7 of 83

IKsPropertySet interface. See Capture and Preview Pin Requirements for more details and
sample code for implementing IKsPropertySet on your capture pin.

You must have one input pin for every sound source the capture card can mix before it
digitizes the audio. For instance, if your sound card has a line in, microphone in, and CD-ROM
input, you would have three input pins. You don't typically connect these input pins to any
other filters — you just support the IAMAudioInputMixer interface on each pin and an
application will set recording levels, balance, treble, and so on, on each pin using that
interface.

Registering an Audio Capture Filter

You must register your filter in the audio capture filter category. See the
AMovieDIlIRegisterServer2 function for more information.

Producing Data

Produce data on the capture pin only when the filter graph is in a running state. Do not send
data from your pins when the filter graph is paused. This will confuse the filter graph unless
yvou return VEW_S_CANT CUE from the CBaseFilter: :GetState function, which warns the filter
graph that you do not send data when paused. The following code sample shows how to do
this.

CMyVidcapFilter::GetState (DWORD dw, FILTER_STATE *State)

*State = m_State;
if (m _State == State_ Paused)
return VFW_S CANT CUE;
else
return S_OK;

}

Controlling Individual Streams

All output pins should support the IAMStreamControl interface, so an application can turn each
pin on or off individually (for instance, to preview without capturing). IAMStreamControl
enables you to switch between preview and capture without rebuilding a different graph. See
the source code for the VidCap Sample (Video Capture Filter) sample for details.

Time Stamping

When you send captured audio samples, the starting time stamp for each group equals the
start time of the graph's clock when the first sample in the packet was captured. The ending
time stamp equals the start time plus the duration that the audio packet represents. If your
audio capture filter is not providing the clock, the time stamps won't match up exactly {(where
the end of one package is the same as the beginning time stamp of the next package), but
that's ockay. See Write a Video Capture Filter and the source code for the VidCap Sample {(Video
Capture Filter) sample for time stamping examples.

You should also set the media time of the sample you deliver, as well as the regular time
stamp. The media time is the sample number in the packet. So if you are sending one-second
packets of 44.1 kilohertz (kHz) audio, you would set media time values of (0, 44100) (44100,
88200), and so on. This enables the downstream filters to know if any audio samples were
dropped, even when the regular time stamps are a little random because the clock being used

315

Filter Developer's Guide Page 8 of 83

is not the audio digitizing clock.

One other thing: If the filter graph is in a running state, and then paused, and then run again,
you must not produce a sample with a time stamp less than the last one you produced before
pausing. Time stamps can never go back in time, not even back to before a pause occurred.

Necessary Interfaces

Read about the following interfaces and consider implementing them. You should implement
these interfaces to provide functionality that applications might rely on, so these interfaces are
strongly recommended.

Implement IAMDroppedFrames on your filter or on each output pin that sends data.
Implement IAMStreamConfig on each output pin that sends data.

Implement IAMStreamControl on each output pin that sends data.

Implement IAMAudioInputMixer on vour filter and on each input pin.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" preious | ome | Topis Contents] index | Hext
" Previous | Home | Topic Contente] index | Hext

Write a Transform Filter in C/C++

A transform filter takes media input and alters it in some way. When you design a transform
filter, your filter class derives from one of the transform base classes, CTransformFilter,
CTransInPlaceFilter, or CVideoTransformFilter, or from the more generic CBaseFilter class.
Which base class you choose depends on whether your filter must copy media samples or can
transform them in place. See Determine Which Base Classes to Use for more information.

The filter graph manager can use the functions of the base classes your filter derives from to
fit your filter into the filter graph and automatically create the connections between your
filters. The filter mapper uses your filter's registry information to configure the filter graph.

For the simplest transform filter (for example, one that has only one input pin and one output
pin), you can derive your filter class from CTransformFilter and override only the Transform
and CheckInputType functions. If you need custom features, you can override additional
functions to create your own connections, pins, and other filter features and capabilities. See
Override the Base Class Member Functions for more information. You can also derive your filter
class from CBaseFilter and override its methods.

This section discusses how to:

o Define and Instantiate Your Filter Class

+ Override CheckInputType {(does not apply to filter classes derived from CBaseFilter)

o Override the Transform Function{does not apply to filter classes derived from
CBaseFilter)

316

Filter Developer's Guide Page 9 of 83

¢ Access Additional Interfaces

+ Create Registry Information

Every transform filter must implement code to perform all the preceding steps except access
additional interfaces.

For background information about transform filters, see:

+ Determine Which Base Classes to Use

o Override the Base Class Member Functions

For information on building a filter, see Build a Filter or Application with Visual C++ 5.x. For
information on registering a filter or making it self-registering, see Register DirectShow

Objects.

Define and Instantiate Your Filter Class

The following steps show you how to define and instantiate your filter class.

1.

Determine the base classes from which to derive your filter class (and pin classes, if
necessary). Typically, your transform filter class derives from the CTransformFilter,
CTransInPlaceFilter, or CVideoTransformFilter transform base classes, or from the more

generic CBaseFilter class. If you want to transform video media (especially AVI data),
derive from CVideoTransformFilter. If your filter must copy the input media samples,
derive from CTransformFilter. If you filter can transform the sampled media in place,
derive from CTransInPlaceFilter. If you don't want the simple transform filter support
provided in the transform base classes, but prefer to implement your own member
functions, derive from CBaseFilter. See Determine Which Base Classes to Use for more
information.

In the following example, the filter class derives from CTransInPlaceFilter.

class CMyFilter : public CTransInPlaceFilter
Implement the IUnknown interface for your object.

In the public section of your filter class definition, create an instance of CUnknown, and
then call the DECLARE TUNKNOWRN macro.

public:

static CUnknown *WINAPI Createlnstance (LPUNKNOWN punk, HRESUL'
*phr) ;

DECLARE TIUNEKNOWN ;

Define your constructor. Also, define your Transform and CheckInputType functions (this
does not apply if your filter class is derived from CBaseFilter).

In the private section of your filter class definition, define your constructor by calling the
constructor of the transform filter class vou derived from, and then add code to perform
the transform and check the input type. For example:

317

Filter Developer's Guide Page 10 of 83

//Define vour constructor by calling the constructor of
//CTransInPlaceFilter

CMyFilter (TCHAR *tszName, LPUNKNOWN punk, HRESULT *phr)
CTransInPlaceFilter (tszName, punk, CLSID MyFilter, phr)

{}
//2dd the transform code

HRESULT Transform(IMediaSample *pSample){
//Transform code here

//Add code to check the input type
HRESULT CheckInputTvpe (const CMediaType* mtIn) {
//Input checking code here

4. Implement CreateInstance for your filter object. Typically, Createlnstance calls the
constructor of your filter class. For example:

CUnknown * WINAPI CMyFilter::Createlnstance (LPUNKNOWN punk, HRESULT *
CMyFilter *pNewObject = new CMyFilter (NAME ("Description of My Filter”
if {pNewObject == NULL) ({

} *phr = E_CUTOFMEMORY;

return pNewObject;

5. Declare a global array g Templates of CFactoryTemplate objects to inform the default
class factory code how to access the CreateInstance function:

CFactoryTemplate g Templates|[]=
{ { L"My Filter"
, &CLSID MyFilter
, CMyFilter::Createlnstance //Function called by class factor

, NULL
&sudMyFilter } //Address of the AMOVIESETUP FILTER structur:
//or NULL if no structure exists

I

}i

int g cTemplates = sizeof(g_Templates)/sizeof(g_Templates[O]);

The g_cTemplates variable defines the number of class factory templates for the filter.
Each of these templates provides a link between COM and the filter and are used to
create the base object for the filter. At a minimum, the filter has one template that
provides the address of its own CreateInstance function, which, when called, creates
the base object.

You can add additional parameters to the CFactoryTemplate templates to add property
pages. See the Gargle sample for example code. See Register DirectShow Objects for
information about using CFactoryTemplate in registration.

6. Generate a GUID for your filter object.

For information about generating GUIDs in general, see "GUID Creation and
Optimizations” and "The uuidgen Utility" in the Platform SDK.

To generate a GUID in Microsoft® Visual C++® 5.x, choose Create GUID from the
Tools menu. By default, the GUID is in DEFINE_GUID format, which is the format you

318

Filter Developer's Guide Page 11 of 83

want. Click the Copy button. Put the cursor in your source file beneath the include
statements, and choose Paste from the Edit menu. The inserted code will look like the
following example, except that it will have its own unique number and CLSID. Insert the
code before your class definition in the header file or main file.

// {3FAED260-AF2F-11d0-AE9C-00A0CY1F0841}
DEFINE_GUID(CLSID_MyFilter,
O0x3fakdz2e60, oxaf2f, 0x11d0, Oxae, 0x9c, 0x0, 0Oxa0, 0xc9, oxl1f, o0xs8, O:

Override CheckInputType

You must override the CheckInputType function to determine if the proposed input to your
filter is valid. (This does not apply to filter classes derived from CBaseFilter.) Your
implementation should return an error for media types it can't support. The media types your
filter supports are listed in the AMOVIESETUP MEDIATYPE structure. For example:

HRESULT CMyFilter::CheckInputType{const CMediaType *pmt)

{

if (pmt-smajortype != MEDIATYPE Video) {
return 3_FALSE;

}

}

else return S_OK;

Override the Transform Function

To perform the desired transformation on your input media, your must override the
Transform function of your transform base class, or implement your own transformation
functions. (This does not apply to filter classes derived from CBaseFilter.) Examples of
transformations are MPEG audio/video decoders (see the MPGAudio and MPGVideo samples),
visual effects (see the Contrast and EzZRGB24 samples), and audio effects (see the Gargle
sample).

For example, consider the following code from the Contrast sample. You override the
CContrast: :Transform function as follows:

HRESULT CContrast::Transform(IMediaSample *pIn, IMediaSample *pOut)

{

HRESULT hr = Copy(pIn, pout);
if (FAILED (hr)) {

return hr;
}

return Transform{poOut} ;

}

The first CContrast: :Transform function copies the media data, and then passes the copy
{pointed to by the pOQut parameter) to a second Transform function. The first Transform
function in the Contrast sample is an overloaded function, and the second form of the
Transform function performs an in-place transform on the copy of the input media, as shown in
the following code fragment.

HRESULT CContrast::Transform(IMediaSample *pMediaSample}

319

Filter Developer's Guide Page 12 of 83

gigned char ContrastLevel;
ContrastLevel = m_ContrastLevel;
AM MEDIA TYPE *pAdjustedType = NULL;

pMediaSample->GetMediaType (&pAdjustedType) ;

HRESULT hr = Transform(&idjustedType, ContrastLevel);
pMediaSample->SetMediaType (&AdjustedType; ;

return NCERROR;

Note that the second form of the overloaded Transform function calls a third form of the
overloaded Transform function.

Access Additional Interfaces

If your filter implements any interfaces that aren't implemented in the base classes, you must
override the NonDelegatingQueryInterface function and return pointers to the implemented
interfaces.

1. In the public section of your filter class definition, declare
NonDelegatingQueryInterface:

STDMETHCDIMP NonDelegatingQueryInterface (REFIID riid, wvoid ** ppv);

2. In the implementation section of your class, implement the
NonDelegatingQueryInterface function. For example:

//Reveal persistent stream and property pages
STDMETHODIMP CMyFilter: :NonDelegatingQueryInterface(REFIID riid, wvoid

{

if (riid == IID IPersistStream) ({
AddRef {) ; // Add a reference count. Be sure to release when done.
*ppv = (void *) (IPersistStream *) this;

return NOERROCR;

else if (riid == IID_ISpecifyPropertyPages) {
return GetlInterface((ISpecifvPropertyPages *} this, ppv);

else {
return CTransInPlaceFilter::NonDelegatingQueryInterface(riid, ppv);

Create Registry Information

The filter graph manager uses your filter's registry entries to configure your filter and its
connections. You provide your filter's registry information in the AMOVIESETUP MEDIATYPE,
AMOVIESETUP PIN, and AMOVIESETUP FILTER structures. Typically, these structures are at
the beginning of your filter implementation code. See Register DirectShow Objects for more
information about using these structures.

Perform the following steps to provide the three structures you need for filter registration.

1. Provide the AMOVIESETUP MEDIATYPEstructure. This structure holds registry
information about the media types your filter supports. For example:

320

Filter Developer's Guide Page 13 of 83

const AMOVIESETUP_MEDIATYPE sudPinTypes =
{ &MEDIATYPE Video // MajorType
, &MEDIASUBTYPE NULL} ; // MinorType

The possible major types are MEDIATYPE_Stream, MEDIATYPE_Video, and
MEDIATYPE_ Audio.

2. Provide the AMOVIESETUP PIN structure. This structure holds registry information about
the pins your filter supports.

3. Provide the AMOVIESETUP FILTER structure. This structure holds registry information
about your filter object: its CLSID, description, number of pins, the pin structure's name,
and your filter's merit. The merit controls the order in which the filter graph manager
accesses your filter. Possible merit values are MERIT_PREFERRED, MERIT_NORMAL,
MERIT_UNLIKELY, and MERIT_DO_NOT_USE. See [FilterMapper::RegisterFilter for a
description of merit values. The following code shows an example of an
AMOVIESETUP_FILTER structure.

const AMOVIESETUP_FILTER

sudMyFilter = { &CLSID MyFilter // c¢lsID
, L"My Filter Description” // strName
, MERIT UNLIKELY // dwMerit
w2 // nPins
, sudpPins }; // 1pPin

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.
[iome | [ndex | wext |

[Previous | ome | Topio Contents | miex | ext

Stream Architecture

This section describes the DirectShow stream architecture and connection model. Topics
include connecting filters, using pins, and negotiating data types.

=About Stream Architecture

=Connection Model

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,
[iome | [ndex | wext |

About Stream Architecture

321

Filter Developer's Guide Page 14 of 83

Stream architecture defines objects and interfaces that exchange streams of time-based data.
In particular, it defines interfaces for the following requirements.

Connecting filters to other filters.

Negotiating data types.

Transporting data between filters.

Synchronizing presentation of data.

Graceful degradation of rendering in cases of insufficient resources (that is, guality-
control management).

See Filters and Pins for more information.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | Home | Topie Contents | miex | ext

Connection Model

This article provides an overview of the filter connection architecture in a Microsoft®
DirectShow™ filter graph by examining the behavior of the base classes that implement
connection. Because filters connect to other filters using pins, the architecture describes pin
connection. Consequently, the CBasePin, CBaseQutputPin, and CBaselnputPin base classes and
the IPin interface are discussed. This article describes the connection process and the default
functionality built into these classes.

Contents of this article:

¢ Connection Process
o How the Base Classes Implement Connection
o The Filter Graph Manager Starts the Connection
o Negotiating Media Types with CBasePin::AgreeMediaType
o Determining a Media Type with CBasePin::TryMediaTypes
¢ When a Reconnection Should Occur

Connection Process

When building a filter graph, the filter graph manager connects pins between filters. It also
selects filters based on the media type in the file it has been given to render or selects a
predetermined configuration for the filter graph it is assembling. The filter graph manager can
be asked specifically to add a filter by using the IFilterGraph::AddFilter method. The filter
graph manager calls the IBaseFilter::JoinFilterGraph method on the filter to notify it that it has
joined the filter graph. The added filter can then be connected like any other filter. When
connecting filters, the filter graph manager requests the filters to enumerate their pins and
then, for each connection required, requests that an output pin connect to an input pin.

The base classes handle much of the connection mechanism. However, it is important to

322

Filter Developer's Guide Page 15 of 83

understand the connection process when writing a filter so that you can identify what to
override and what is expected of your filter. Before two connected filters are prepared to pass
media between them, the following connection and negotiation processes must occur in this
order.

The initial pin connection occurs.

The output pin of one filter retrieves interfaces from the connected input pin.
Both pins negotiate for a common media type.

Both pins negotiate for an appropriate transport to pass the media.

HPUNPE

In the first step, the filter graph manager informs the output pin of one filter to connect to a
specified input pin of another filter. This results in an exchange of IPin interface pointers.
Filters should never connect to other filters by themselves. The filter graph manager must
always be the agent that initiates a connection, because deadlocks can occur otherwise. A filter
or an application can instruct the filter graph manager to connect two pins (through the
IGraphBuilder: :Connect or IFilterGraph::ConnectDir method), or the filter graph manager
can determine to connect filters when rendering a filter by using the IGraphBuilder::Render or
IGraphBuilder: :RenderFile method.

In the second step, the output pin may request the IMemInputPin interface from the connected
input pin. This is in preparation for the fourth step, where the output pin will use
IMemInputPin to retrieve a memory allocator from the input pin. If the output pin already
has a memory allocator (or some other transport in the case of hardware filters), it can skip
this step or can request some other interface in a proprietary design.

In the third step, media types are tried until one is found that is acceptable to both pins or the
pins run out of types to try (in which case the connection fails). First, the output pin asks the
connected input pin to propose its list of media types. If none of these are acceptable to the
output pin, the output pin proposes its own types.

In the fourth step, the output pin asks the connected input pin for an allocator interface. The
output pin then either accepts the allocator, or proposes its own allocator and notifies the input
pin of the selection. The output pin makes the final determination.

How the Base Classes Implement Connection

The CBasePin class and its derived base classes, CBaseQutputPin and CBaselnputPin,
implement most of the mechanism for the most common connection scenarios, much of which
can be overridden by the derived filter class for more control of the process.

The connection procedure relies on the implementation of four interfaces:

1. IPin, which is implemented by the CBasePin class and inherited by the CBaselnputPin
and CBaseQutputPin classes.

2. IEnumMediaTypes, which is implemented by the CEnumMediaTypes class and passed out
by the IPin::EnumMediaTypes method.

3. IMemlnputPin, which is implemented by the CBaselnputPin class.

4, IMemAllocator, which is implemented by the CBaseAllocator class and passed out by the
IMemlInputPin::GetAllocator method.

The IMemInputPin and IMemAllocator interfaces are necessary only if the filter belonging to
the connecting input pin (called the downstream filter) is expected to provide a shared memory
allocator for transporting samples between the pins. However, the base class implementation
in CBaselnputPin assumes this condition and implements IMemInputPin to provide an

323

Filter Developer's Guide Page 16 of 83

allocator object to a connected output pin that requests it.

In the connection scenario of the default base class, the pin classes derived from
CBaselnputPin and CBaseQutputPin need only to override and implement a few member
functions and can let the base classes do the remaining work. Base classes derived from these
classes, such as CTransformInputPin and CTransformOutputPin, do much of the required
implementation to provide a default connection scheme.

Pin classes derived from CBaselnputPin and CBaseQutputPin need only to override the
following member functions to enable pin connection.

o (CBasePin::CheckMediaType, which is called for every media type proposed by the media
type enumerator. The overriding member function must accept or reject the proposed
media type.

+ CBasePin::GetMediaType, which is called by the media type of the output pin enumerator
to suggest media types already agreed on by the input pin for transform filters. This
member function also presents the type of media a source filter will produce.

Additionally, the output pin derived from the CBaseQutputPin class must override the
CBaseQutputPin: :DecideBufferSize member function. This is called by the base classes to let
the output pin inform any acquired allocator of the size and type of media samples that the
output pin will provide. This is done by the output pin of the filter because the derived filter
class should know the type and size of the data it will send to the input pin of the connected
filter.

To see the context of these overriding functions, it is helpful to step through the execution of
the connection code in the class library. All connection takes place in the scope of one
CBasePin: :Connect member function.

The Filter Graph Manager Starts the Connection

The connection starts when the filter graph manager calls the IPin::Connect method on the
output pin, passing it a pointer to the input pin to which it is connecting. The filter graph
manager has previously retrieved pointers to the IPin interfaces of both filters, for example, by
calling the IBaseFilter::EnumPins method on each connecting filter. The EnumPins method
creates a CEnumPins object to enumerate the pins, which the enumerator does by repeatedly
calling the CBaseFilter: :GetPin member function of the derived filter, which the derived filter
must implement.

The CBasePin: :Connect implementation of IPin::Connect does much of the work in this case. It
calls the following functions.

+ CheckConnect, which is overridden by CBaseQutputPin.
o AgreeMediaType, which is implemented by CBasePin.

The CBasePin: :CheckConnect implementation simply determines that the pin directions are
different. The overriding CBaseQutputPin::CheckConnect member function calls the
IUnknown::Querylnterface method of the connected input pin to retrieve a pointer to the
IMemiInputPin interface of that pin. This will be used later in the connection process to request
an allocator from the connected input pin. (Your derived class can override
CBaseOQutputPin::CheckConnect and omit retrieving the IMemInputPin interface if the
output pin already has an allocator; for example, it might want to use the allocator from an
upstream filter to eliminate copying.)

324

Filter Developer's Guide Page 17 of 83

Negotiating Media Types with CBasePin::AgreeMediaType

The CBasePin: :AgreeMediaType member function is called next and attempts to negotiate a
media type that both pins agree on. It does this by trying to find a media type presented by
the connected input pin with which the output pin agrees. If that fails, it tries to find a media
type preferred by the output pin that the connected input pin agrees with.

CBasePin: :AgreeMediaType calls the following member functions and methods.

¢ IPin::EnumMediaTypes on the connected pin.
¢ CBasePin: . TryMediaTypes in the derived output pin class.

The IPin::EnumMediaTypes method of the connected input pin is called to return a media type
enumerator (IEnumMediaTypes). This allows the output pin to examine the list of preferred
media types belonging to the input pin.

The IEnumMediaTypes::Next method of the enumerator calls the GetMediaType member
function of the derived input pin to retrieve each media type. If GetMediaType is not
implemented, the base class implementation returns an error but this does not necessarily
break the connection. (Pins are not required to have a preferred media type if one pin or the
other can propose a type that they both accept. If neither pin can propose types, the
connection will fail.)

Determining a Media Type with CBasePin::TryMediaTypes

CBasePin: :AgreeMediaType calls CBasePin:: TryMediaTypes next. The TryMediaTypes member
function cycles through the preferred media types of the connected input pin and calls the
Pin::CheckMediaT member function of the derived output pin class for each one it
finds. CheckMediaType must be implemented by vour derived output pin class. If
CheckMediaType accepts the media type, the IPin::ReceiveConnection method of the
connected input pin is called with the media type to determine if the connected input pin
accepts this media type. If so, TryMediaTypes calls the CB Pin::
member function to finish the connection to the input pin.

If the input pin has no media types that the output type can use, CBasePin: :AgreeMediaType
repeats the entire process, using the enumerator for the media types of the output pin. (That
is, it gets its own enumerator and calls TryMediaTypes with each of its preferred media types.)
Again, the enumerator calls GetMediaType for each media type in the list. In this case,
GetMediaType should be implemented to provide a media type. If the filter is a source filter,
it will have a definite media type to export. If the filter is a transform filter, the media type will
be established between the filter's input pin and its connected pin; the transform filter should
query for that media type or simply use the enumerator of the upstream filter {unless the
transform filter changes the media type from input pin to output pin).

CheckMediaType is called by CBasePin: . TryMediaTypes, even when TryMediaTypes enumerates
the list of the preferred media types of the output pin. This is because the owning filter might
be a transform-inplace filter that is simply using the media type (and enumerator) of an
upstream filter; this is the point at which the filter determines if the media type is compatible.
The input pin of this transform filter might defer selecting a media type when it is connected,
in which case it would be up to the output pin of the transform filter to ensure the media type
is compatible with its transform.

325

Filter Developer's Guide Page 18 of 83

If a media type can be established, TryMediaTypes eventually calls the
CBaseQutputPin: :CompleteConnect member function to negotiate a memory allocator.

First, the CB Pin::Compl nn member function calls the

CBaseQutputPin: :DecideAllocator member function. This member function negotiates a shared
memory allocator with the input pin. It does this by first calling the

IMemInputPin:: GetAll r method of the connected input pin, which retrieves a pointer to an
IMemAllocator interface provided by the input pin.

Then, CompleteConnect calls the pure virtual CBaseQutputPin::DecideBufferSize member
function, which your derived output pin class must override and implement because only the
derived class can determine the required buffer size for its media type.

Finally, CompleteConnect calls the IMemInputPin::NotifyAllocator method of the connected pin
to inform the input pin of the allocator to use and to provide a pointer to it. The input pin can
reject this allocator, in which case the output pin can retry with a different allocator or fail the
connection. If your derived class is not using the allocator of the connected input pin, override
CBaseQutputPin: :DecideAllocator in your derived class to call the NotifyAllocator member
function with an allocator.

When a Reconnection Should Occur

Reconnection is always performed through the IFilterGraph interface on the filter graph
manager. Reconnect by calling the IFilterGraph2::ReconnectEx method or the
IFilterGraph::Reconnect method, both of which pass the IPin interfaces of the two pins to be
reconnected. The ReconnectEx method specifies a media type and thus removes the burden of
remembering what type to reconnect with from the pins, which makes the reconnection more
likely to succeed.

Filters are typically connected with the upstream filter first and the downstream filter second.
Therefore, the filter negotiates the connection on its input pin before information is available
about the filter being connected to its output pin. When the output pin of the filter connects, it
may become clear that the media type or allocator that was established for the input pin of the
filter are not appropriate. In this case, the input connection can be broken and reconnected.

For example, consider the following connection scenario. An audio effects filter (for example, a
reverberation effect) is inserted between an MPEG-audio decompressor filter and another audio
effects filter. During the upstream connection to the decompressor filter, a media type is
chosen—for example, 22.05 kHz, 16-bit mono. However, in this scenario, when the
reverberation filter connects its output pin, the downstream filter will accept only an 11.025
kHz, 16-bit mono media type. Therefore, after connecting with the downstream filter, the
reverberation effects filter must then reconnect with the upstream filter and negotiate for an
11.025 kHz media type.

But media types are not the only reason for reconnection. In many cases, the filter is a
transform-inplace filter; that is, a filter that does not require that it either alters the media
type or copies the data. Such a filter can be designed to use an allocator of some other filter
{upstream or downstream), and likewise use the media type of another filter. That is, the filter
is doing its transform "in place” in the buffer of another filter (for example, in the file buffer of
the source filter or the video buffer of the rendering filter).

The general rule is that filters of this type should offer the allocator of the downstream filter to
the upstream filter, once the allocator has been established for the output pin. This requires a

326

Filter Developer's Guide Page 19 of 83

reconnection of the input pin so that, when the input pin is asked for an allocator (in
IMemlInputPin: :GetAllocator) by the upstream output pin, it can offer the allocator retrieved
from the downstream filter by the output pin of the transform filter. Therefore, in-place
transforms always reconnect.

There are a couple of important rules to follow when requesting a reconnection.

First, a filter must never request a reconnection unless it is certain that the reconnection will
succeed. If the reconnection fails, it causes an asynchronous error in the filter graph for which
there is no obvious cleanup. Any error that occurs (for example, from incompatible media
types) should occur when the pins are connected the first time, when there are ample retry
options available at more than one level (by the filter graph manager or the application at
least).

Second, a filter should request a reconnection on the same thread as the call to IPin::Connect.
For example, the following scenario attempts reconnection on a separate thread and will cause
problems.

1. The filter graph manager calls Connect on a pin.

2. The filter pin carries out the Connect method and creates a thread, which starts to
determine whether everything is okay for the connection.

3. Connect returns to the filter graph manager.

4, The filter graph manager returns to the application.

5. The application calls the IMediaControl::Run method of the filter graph manager to start
the filter graph, and the filters start running.

6. The thread from the initial connection calls the IFilterGraph2::ReconnectEx or
IFilterGraph: :Reconnect method and the filter graph manager attempts to carry out
reconnection.

7. Failure occurs because the filters cannot reconnect while in the running state.

The filter graph has code to prevent this failure as long as the IFilterGraph2::ReconnectEx or
IFilterGraph::Reconnect method takes effect while the filter graph is still processing the
IGraphBuilder: :Connect method. Calling the filter graph to reconnect before returning from the
IPin::Connect method is the best way to ensure this problem does not occur. The best way to
achieve this is to perform all of this on the same thread.

& 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topic Contents | iniex | Hext
[Previous | Home | Topic Contents | intex | Hext

Plug-in Distributors

This article describes the plug-in distributor architecture and provides some rules assumed by
the default Microsoft® DirectShow™ control distributors.

Contents of this article:

327

Filter Developer's Guide Page 20 of 83

¢ Plug-in Distributors and Extensibility
+ Control Distributors

Plug-in Distributors and Extensibility

The filter graph manager exports control interfaces; it also distributes the actions of interface
methods to the appropriate filters. For example, the IMediaControl: :Run method on the filter
graph manager is called by an application to run the filter graph; this command is distributed
to the IMediaFilter::Run method of each filter method by the filter graph manager. This
distribution allows applications to have a single point of control to perform the basic
operations.

To allow the filter graph manager to be extensible, a mechanism known as a plug-in distributor
{PID)} is used. This is a Component Object Model {COM) object that exposes a particular control
interface and implements it by calling the enumerator of the filter graph manager, finding
which filters expose the control interface and communicating directly with those filters. PIDs
are supplied for the standard control interfaces; independent software vendors (ISVs) can
replace these supplied PIDs and also add others.

When the filter graph manager is asked for an interface that it does not recognize, it searches
the registry for a PID. This is an unnamed value under the following key.

HKEY CLASSES ROCT\Interface\<IID>\Distributor

This value provides the class identifier {CLSID) of an object that can distribute the interface
identifier (IID). The filter graph manager then instantiates that object as an aggregated object,
specifying the IUnknown implementation of the filter graph manager as the outer IUnknown,
and asking for the IID. The object will then be able to use its outer IUnknown pointer to
obtain an IFilterGraph interface. With this interface, it can enumerate the filters to implement
its control interface methods and properties; it will also be able to use the IMediaControl
implementation of the filter graph manager for correctly ordered and synchronized state
changes (run, pause, stop, and so on).

Control Distributors

A control distributor is a PID that is used to control the data flow in the filter graph; for
example, starting or stopping playback of a media stream. The standard control distributors
supplied with DirectShow directly implement their distribution. These distributors make the
following assumptions:

¢ Applications that connect filters directly without informing the filter graph manager will
get unexpected results if they also use the distributors of the filter graph manager. For
example, a deadlock might occur if an application calls a filter's IBaseFilter: :Run method
directly, because the filter graph manager contains a distributor that implements
IMediaControl::Run and passes calls on to each filter's IBaseFilter::Run method.

» Properties that can be aggregated directly can be read and written to through the control
interface, even when exposed by multiple filters. For example, duration can be reported
as the longest of all individual durations, with all streams treated as running in parallel.

¢ Where a property is exposed by several different filters, applications will either use the
filter graph manager to set and get the property or will communicate with the individual
filters, but will not mix the two methods. An application that communicates with two
audio renderers to reset the volume and then queries the IBasicAudio implementation of

328

Filter Developer's Guide Page 21 of 83

the filter graph manager for the volume, will get undefined results. {In practice, it will
probably retrieve the Volume property of the first audio renderer with no attempt to
combine this with the other stream.) If the application sets the property through the
interface of the filter graph manager, the same value will be set to all the individual
filters that expose it.

¢ The filter graph manager will expose the IMediaControl interface (through a non-
replaceable distributor) as the main application method for starting and stopping graphs.
This is a slightly higher-level, more simplified interface than IMediaFilter and is suitable
for Automation clients and applications. The IMediaFilter implementation on the filter
graph manager should not be called by applications. IMediaControl is implemented by
calling the IMediaFilter interface implemented by the filter graph manager and by
individual filters. Individual filters expose IMediaFilter through the IBaseFilter interface,
which inherits it.

PIDs must keep track of the filters in the filter graph. This is done by implementing the
IDistributorNotify interface on the distributor. IDistributorNotify has the same Run, Pause,
and Stop methods as IMediaFilter, all of which are called before the calling the filter. It also
has a IDistributorNotify::NotifyGraphChange method, which notifies the distributor when any
filters are added or removed from the filter graph, or connections change.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

" prerious | ome | Topic Contents] index | Hext
" Pretious | Home | Topic Contente] index | Hext

DirectShow and COM

Microsoft® DirectShow™ provides a framework that simplifies the creation of Component
Object Model (COM) ohjects. This article describes this framework and most of what you need
to know about COM to create a filter or plug-in distributor using the C++ class library. The
article assumes the reader is familiar with C++. An understanding of COM would be helpful,
but is not essential.

Contents of this article:

COM Objects in DirectShow
Reviewing the Instantiation Process
Creating Filters

Creating Plug-in Distributors
Implementing the Class Factory
Using an Object-Oriented Model

COM Objects in DirectShow

DirectShow filters, the filter graph manager, plug-in distributors, and enumerators are all COM
objects. A general design has been adopted for the way in which DirectShow implements COM
objects. This design is available to help you implement yvour own filters and plug-in distributors

329

Filter Developer's Guide Page 22 of 83

{or any COM object).

DirectShow components are supplied as in-process servers; that is, servers that run in the
same address space as your application. They are packaged in a single dynamic-link library
(DLL}), Quartz.dll. Use the COM framework of DirectShow to build your own in-process COM
servers, which you can package in your own DLL(s).

Typically, a single C++ class implements a single COM class. The DirectShow COM framework
requires that C++ classes implementing COM objects conform to a few simple rules. One of
these rules is that the developer provides a class factory template for each such class. The
class factory template contains information about the class that is vital to the framework. Class
factory templates are defined in the DLL using two global variables {g Templates and

g cTemplates) as shown in the following example.

CFactoryTemplate g_Templates[]=
{ {L"My class name", &CLSID MyClass, C(MyClass::CreateInstance, CMyClass::Init}
{L"My class name2", &CLSID MyClass2, CMyClass2::CreatelInstance}

2

int g cTemplates = sizeof (g Templates)/sizeof (g Templates[0]);

The names and types of these variables must be as they appear in the previous example.
Because any DLL might contain several COM classes, each of which will require a class factory
template, the factory templates are defined in an array and the number of elements in the
array is recorded in another variable. Each element of the array contains the following fields.

¢ A textual description of the class (using wide characters, therefore the "L" prefix).

+ A pointer to the class identifier of the class (CLSID).

+ A pointer to a static method of the class that can create instances of the class
(CFactoryTemplate: :Createlnstance).

e A pointer to a static method of the class. This method is called when the DLL is loading or
unloading and can perform one-time initialization and termination. If this method is not
required, this can be omitted, will default to NULL, and will be ignored.

e A pointer to an AMOVIESETUP FILTER structure. This is required when using filter self-
registration services.

The DirectShow COM framework uses the information in these class factory templates to create
instances of the specific class, and to register and unregister the COM classes.

The following example demonstrates a simple C++ class implementing a COM class using the
DirectShow framework.

class CMyClass : public IMyInterface, pubklic CUnknown
érivate:
/* private attributes */
protected:
~CMyClass (}
{ /* release private attributes */ }
CMyClass (TCHAR *pName, LPUNKNCOWN pUnk, HRESULT #*phr)
: CUnknown{ pName, pUnk, phr)
{ /* set up private attributes */ }
public:
DECLARE _TUNEKNOWN

330

Filter Developer's Guide Page 23 of 83

static CUnknown *Createlnstance (LPUNKNOWN pUnk, HRESULT *phr)

{

CUnknown * result = 0;

result = new CMyClass(NAME ("CMyClass")}, pUnk, phr);
if (!result } *phr = E_QUTOFMEMORY;

return result;

STDMETHODIMP NonDelegatingQueryInterface(REFIID iid, wvoid ** ppv)

if (iid == IID_IMyInterface)

{

return GetInterface(static_cast<IMyInterface *>(this), ppv);

}

else

return CUnknown: :NonDelegatingQueryInterface(iid, ppv);

/* My interface methods */

}i

This is not a typical filter example, because filters will normally derive from more specialized
base classes than CUnknown. However, because all base filter classes eventually derive from
CUnknown, this example demonstrates what is essential in a more generic manner. (The
example is probably more typical for a DirectShow plug-in distributor (PID), which extends the
functionality of the filter graph manager, or for a framework for implementing an arbitrary
COM object.)

In this example, the NonDelegatingQuerylInterface method is implemented. The more
specialized filter base classes that derive from CUnknown are responsible for implementing
NonDelegatingQueryInterface for the required interfaces; this is only necessary in the
derived filter class if it adds some interfaces that are not in the base classes. In this case, it
adds its own interface, IMylInterface.

INonDelegatingUnknown: :NonDelegatingQueryInterface is a method that allows other objects
to access interfaces on the COM object. All COM objects support IUnknown: :Querylnterface to
do this, and the DirectShow class library supplies the DECLARE TUNKNOWN macro to enable
the IUnknown interface. The DirectShow framework goes one step further and makes it easy to
aggregate objects {(make them part of a larger COM object) by implementing an
INonDelegatingUnknown interface. Even if your object is not aggregated, it uses the
INonDelegatingUnknown interface, which is mapped to the IUnknown interface by the
base classes.

Although aggregation is handled for all objects by the DirectShow class framewaork, it is
typically not used by filters in current DirectShow filter graphs. Plug-in distributors do,
however, require aggregation {as is described later in this article), and future filter graphs
might incorporate filter objects that are composed of collections of aggregated filters.

With this in mind, it might be helpful to explore more of the details of the previous example.
First, a brief review of some COM basics might be helpful. COM objects are created by their
class factories, are reference counted during their lifetimes, and self-destruct when their
reference counts drop to zero. COM objects can be created in isolation, or can be aggregated
with an already existing COM object. In this second case, the existing object (referred to as the
outer object) maintains the reference count. The created object (referred to as the inner
object) is not reference counted, but will be destroved by the outer object during the
destruction of the outer object. The application cannot directly manipulate COM objects; an

331

Filter Developer's Guide Page 24 of 83

application can only invoke the methods, which the object chooses to expose through its
interfaces. Typically, COM objects make several interfaces available. All COM objects must
support the IUnknown interface.

All classes using the DirectShow framework must inherit from CUnknown either directly (as in
the previous example) or indirectly, through one of the other supplied base classes.
CUnknown, with the DECLARE TUNKNOWN macro and the NonDelegatingQueryInterface
method, provide the IUnknown interface with the required reference counting and support for
COM aggregation.

NonDel in ryInterf. is a method on INonDelegatingUnknown, which is supported by
CUnknown. NonDelegatingQuerylInterface is overridden in derived classes that support new
interfaces, such as IMylnterface in the previous example. The method should check for all the
interfaces known to be implemented on the object and return appropriate pointers to these
interfaces. Requests for unrecognized interfaces should be passed to the
NonDelegatingQueryInterface of CUnknown. The call to the GetInterface method (of
CUnknown) copies the interface into the ppv parameter and ensures that the correct
reference count is incremented.

The methods in INonDelegatingUnknown mirror those in IUnknown. For more information
about CUnknown, the INonDelegatingUnknown interface, and the
NonDelegatingQueryInterface method, see the CUnknown section in the reference material.
INonDelegatingUnknown is defined in Combase.h; CUnknown is implemented in
Combase.cpp.

When an instance of the class is required, the framework, using the information in the class
factory template, calls the derived class's CreateInstance member function. The framework
passes a pointer to an outer unknown (if the object will be part of an aggregate object)
through the pUnkparameter, and passes a pointer to an HRESULT value through the phr
parameter. The constructor of an inherited class can set this value if an error occurs. The phr
parameter should not be initialized; this is the calling application's responsibility. The
Createlnstance member function constructs an instance of the class by calling the
constructor. The name passed to the constructor is wrapped with the NAME macro supplied by
DirectShow. When building debugging versions, NAME passes the textual name on to the
constructor. When building nondebugging versions, NAME results in a null pointer, thus saving
space in versions that are not for debugging purposes.

The class constructor and destructor are declared protected. This prohibits the creation of the
object using C++ language constructs. Instances of this class can be created only by calling
the CreateInstance member function.

The class constructor needs to construct the inherited CUnknown. The pName parameter points
to a string that is available for debugging purposes. It is vital that the string referenced by
pName is in static storage, because the constructor for CUnknown will not copy it.

Reviewing the Instantiation Process

It might be helpful at this point to consider the normal process of instantiating a COM object,
and examine how the DirectShow COM framewaork supports this process. First, a look at the
entry points required of an in-process server DLL (such as a filter or plug-in distributor) is in
order.

In-process server DLLs must export certain standard functions so that COM can interact with
them. The DirectShow framework provides these functions for you. The module definition file

332

Filter Developer's Guide Page 25 of 83

for the DLL must list these functions in its EXPORTS section, and link to Strmbase.lib. The
functions are: DliGetClassObject and DliCanUnloadNow. {The source code for these functions is
supplied in Dilentry.cpp.)

A DirectShow object can define DLL entry points that facilitate the automatic registration of
COM classes. These entry points are DlIRegisterServer and DllUnregisterServer. Although the
framework does not directly provide these entry points, it does provide a function, called
AMovieDlIRegisterServer?, that can implement these entry point functions. These functions
take care of registering and unregistering all COM gbjects for which you have provided class
factory templates in the g_Templates array. You can add a DlIRegisterServer function to your
module that simply calls AMovieDIlIRegisterServer2, or you could do the same for
DllUnregisterServer. For more information on self-registering DirectShow COM objects, see
Register DirectShow Objects.

Registry entries are required to link the class identifier (CLSID) of the COM object to the DLL in
which the class is implemented. The framework provides entry points in the DLL that support
the automatic registration of class identifiers in the registry, using the information provided in
the class factory templates.

Following are the steps that occur during initialization, which require the entry points
mentioned previously.

1. When the DLL is loaded, the DlIMain entry point is called to perform any initialization.
The framework provides this function. During its execution, any initialization routines
referenced in the class factory templates will be called.

2. When an application calls CoCreatelnstance or CoGetClassObject, COM calls the
DiiGetClassObject function in the appropriate DLL to obtain a pointer to a class factory
that can instantiate objects of the CLSID requested by the application. The framework
supplies this function. Using the information in the class factory template, the framework
creates a class factory. (If the requested CLSID cannot be found in the array of class
factory templates, an error is returned to the application.)

3. The class factory is called to instantiate an object that supports the interface identifier
(IID) requested by the application. At this point, the class factory will call the static
method referenced in the class factory template.

4, During the DLL's lifetime, the Querylnterface method might be called on the [Unknown
interface of the object (or owning object if aggregated), requesting some interface on
that object. By deriving the object class from CUnknown, overriding
NonDelegatingQuervInterface, and using the DEFINE_IUNKNOWN macro to declare the
IUnknown interface, both COM aggregation and reference counting are addressed.

5. During the life of the DLL, DiCanUnloadNow might be called to see if it is safe to unload
the DLL. Typically, this returns S_FALSE if any class factory is locked, or if any of the
objects that have been created still exist. The framework implements
DIICanUnloadNow.

Creating Filters

When creating filters, you can take advantage of one of the richer classes that DirectShow
provides, such as CTransformFilter or CBaseRenderer, instead of deriving from CUnknown.
These supplied classes are derived from CUnknown, but provide additional functionality
specific to various types of filters. However, building filters also requires an understanding of
the DirectShow connection model (see Connection Model) and the pin classes. For more
information about creating filters, see Creating a Transform Filter.

Creating Plug-in Distributors

333

Filter Developer's Guide Page 26 of 83

The filter graph manager can perform operations at a high level, treating the filter graph as a
single entity. These operations can be distributed across an entire filter graph, or perhaps
confined to just a single filter in the filter graph. The filter graph manager, of itself, only
exposes a few interfaces. A feature called a plug-in distributor allows the filter graph manager
to be extended with additional interfaces. When the filter graph manager receives a request for
an interface which it does not support, it tries to find a plug-in distributor (PID) that does
support it. If it succeeds in finding such a PID, then that PID is instantiated as an aggregate
object within the filter graph manager. By doing so, the filter graph manager appears to
support many more interfaces. Plug-in distributors are aggregated with the filter graph
manager, but all the aggregation logic is provided by CUnknown, allowing you to concentrate
on the PID logic.

A PID is designed to be aggregated into a filter graph manager; it will call on the services of its
owning filter graph manager. Because the PID is unlikely to function correctly without an
owning filter graph, it checks for an outer unknown in the constructor of the PID. To make this
determination, add the following line to the body of the constructor illustrated in the previous
example.

if (!pUnk) *phr = VFW_E_NEED OWNER;

To be even more defensive against being used without an owner, the PID could also request an
IFilterGraph or IGraphBuilder interface from the outer unknown during construction, because
these interfaces are known to be only on the filter graph manager.

If the PID obtains any interface pointers from the filter graph manager, the pointers should be
released immediately. Because the PID is an aggregate object, its lifetime is within the lifetime
of its containing object, the filter graph manager, so there is no need to maintain a lock on it.
Furthermore, maintaining a lock introduces a circular reference count that would not allow the
destruction of the filter graph manager.

Implementing the Class Factory

The concept of a class factory is not specific to DirectShow; it is a common design that appears
when the underlying type of the object being created is not known to the client that requests
its creation. With COM objects, clients request interface pointers but know little about the
underlying objects that implement that interface.

In C++, there are two means of implementing a class factory. One is to implement it as a
genuine class, the cother is to implement it as a static method on the class that the class
factory will manage. The first method provides better separation of responsibilities and data
hiding, and is the approach adopted by COM. The second method allows for a simpler
implementation.

The DirectShow COM framework provides the best of both worlds. It exposes a genuine COM
factory class to its clients while allowing the developer to implement the body of the class
factory as a static method of your class. The bridge between these two approaches is two
global variables, g Templates and g _cTemplates, which were described previously.

The DirectShow framework defines two classes for implementing the class factory:
CFactoryTemplate and CClassFactory. A CFactoryTemplate object holds information regarding
a specific class, including a pointer to the static factory method of the class. When
CClassFactory is instantiated, it must be given reference to a CFactoryTemplate instance.
The CClassFactory instance will then act as a class factory for the class described in its

334

Filter Devel oper's Guide Page 27 of B3

associated CFRactoryTamplate instance. The foliowing diasteation demonstratas the
reigtionsiup between these ciasses, their instances, and the objecks they cragte,

IClassFactory

Implements

CBaseCbject |

Inherits from

CClassFactory CFactoryTernplate |

In stal%-:e aof

Represents
Class factory Hogs Factory ternplate B
dses

Instance of

Produces Instance of
some class

The DirectBhow SDW incigdes g modiie, DHEntey Con, which orovides the Di ; '
Fnction, Thig Function gses the nroass described orevigushy 10 create o Ciass Faoiory That can
produce instances OF 3 CIass,

Using ar: Ohiaect-Oriented Model

Al componants of the DirectShow filtar geanh grohitaciure are impiamanted as OOM objacts,
Thig nciudes the Bitars theough which data s passed, and Fitar componants that seeve a5 3
connection batwaan Fiitars Qr aiioCata memgey. Sach objact implamants onea o mora intafacas,
aach Of which containg 3 predefined set of functions, catied methods, An goplication oalis 2
mathod, OF gther component objects, 1o cormmunicate with the objedt exnosing the intarface.
For exampia, the aonication catis methods on the IMediaContrgl interface on the object of the
Hitar granh manager, such as the Buyn method, which starts 3 mada stream, The Fitar granh
mmanager, in b, calis the Run method on the IBaserifer intaface exnosed by each OF the
Fitars,

Fiter granh archiecture uses COM interfaces because they have the Foligwing properties,

» COM intarfaces are publichy defined, This means that any Fiter that impiements the
coeract predetingd nterfaces will work in g Bitae grach withQut any Rnowiedge about the
Othige Hitoes bocaose ab Fitoeg avs bodlt with the sama nterface snedificationg,

» J0M intarfaces do not change ailar definition, & base set of interfaces are guaranieed £
work: additionat interfaces can be intradacad B0 oOver addiionat seevicas, Thig defintion
pEEYEnts verginn orpblams,

o JOM inkodaces mest have g methods molamaented by any object that exndses tham
{even iF the implemanted method simphy reteng £ ROTIMPL}, This assures Ehat calling 2
mathod on the interface OF an objact witl not ganarata an aregre,

» DOM intefaces are discoverabia, 58 O0M objects supnoet 3 maethod catied Quenyintarfacse
that atigws an extemat component B0 discover # an interface i present and refrieve 3
pointar to 6,

» J0M intafaces are impiamantad by the object that exposes the interface [they do not
conkain an impiementation themseives), The interface 5 assentizgity § conkeadt for the
Funckinnakity, Objects Hke the fiitar geanh manager, oF Miceosort Fitars, have
amptamantad intarfaces that can be accessed. Whan you! write g Fiitar, your implamant tha
entartacas,

To make fiker deveigpment eagior, DivactBnow peovides § set oF O+ Cipgses that hein you

335

Filter Developer's Guide Page 28 of 83

implement the interfaces required by the objects you create.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topie Contents | miex | ext _
[Previoss | Home | Topio Contents | miex | ext _

File Formats

This section describes file formats in different files used in DirectShow, including the format of
saved DirectShow graph files, DirectShow extensions to the AVI 2.0 file format, and how to
register custom files so that the DirectShow file-reader filters can read them.

=Dir how Graph File Form

=DV Data in the AVI File Format
AVI 2.0 File Format Extensions

=Registering a Custom File Type

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex | ext

DirectShow Graph File Format

The format of a saved DirectShow™ graph file is as follows:

The docfile (storage file) contains a stream called ActiveMovieGraph. This single stream
contains within it all the filters, filter names, file names, connections, and so on.

To load such a graph, either:

e Pass the storage file name to RenderFile. It will recognize that this is not a media file but
a saved graph, and will restore the graph.

oF:

Open the storage file (by using StgOpenStorage).

Query the filter graph manager for IPersistStream.

Open the L"ActiveMovieGraph" stream (by using IStorage::OpenStream).
Pass the stream to the filter graph {by using IPersistStream::Load).

e

336

Filter Developer's Guide Page 29 of 83

The syntax of the graph within the stream follows:

<graph> ::= <version3»<filters»<connections»<clock»END | <version2»<filterss<connec

<versionl3s ::= 0003\r\n

<version2> ::= 0002\r\n

<clocks ::= CLOCK <bs> <requireds<bs><clockid>\r\n

<reguireds> ::= 1|0

<clockid»> ::= <n»>|<class id»

<filters ::= FILTERS <b:[<filter list=<bz]

<connections:> ::= CONNECTIONS [« <connection list:]

<filter list> ::= [«<filter:> <«<b:x] <«<filter list>

<connection lists> ::= [<connections<bs>]<connection listx>

<filter> ::= <n>"<name>"<bs><class id=<b=[<file>]<length><bl><filter data=

<file> ::= SOURCE "<name>" | SINK "«<name>"<b:>

<class id> ::= class 1id of the filter in standard string form

<name:s> ::= any sedquence of characters NOT including "

<length> ::= character string representing unsigned decimal number, for example, 23
this is the number of bytes of data that fcllow the fellowing space.

 ::= any combination of space, \t, \r, or \n

<bl> ::= exactly one space character

<n> ::= an identifier that will in fact be an integer, 0001, 0002, 0003, etc.

<connections= ::= <nl="<pinl id="<b:><nZ=<b="<pin2 id>" <media type>

<nls> ::= identifier of first filter

«n2> ::= identifier of second filter

<pinl id> ::= <name:x

<pinz id> ::= <name:x

<media type> ::= <major types<bs<sub types<bsz<flagss<length><bls<formats

<major type> ::= <class id=>

<sub type> ::= <class id>

<flags> ::= <«<FixedSizeSampless<TemporalCompression=<bs>

<FixedSizeSamples» ::= 1|0

<TemporalCompression» ::= 1|0

<Format> ::= <SampleSizes«<FormatTvpes<FormatLengths«<bl><FormatDatax>

<FormatType> ::= class id of the format in standard string form

<FormatLength> ::= character string representing unsigned decimal number
this is the number of bytes of data that follow the fcollowing space.

<FormatData> ::= binary data

On output there will be a new line (\r\n) per filter, one per connection, and one for each of the
keywords FILTERS and CONNECTIONS. Each other case of will be a single space. The
keywords FILTERS, CONNECTIONS, and END are not localizable. Note also that the filter data
and the format data are binary, so they might contain incorrect line breaks, null values, and s¢
on.

The following approximates what the cutput looks like (a connection line is long and so has
been split for presentation here, <with comments enclosed like this>).

0002

<version 2 of the syntax>

FILTERS

0001 "Source" {00000000—0000—0000—0000—000000000001} SOURCE "MyFile.mpg" 0000000000
<id name guid of the filter (need this to load it} source file name no priv
0002 "another filter™ {00000000—0000—0000—0000—000000000002} 0000000008 XXXXXXXX
<id name guid {this one is not a file source or sink) 8 bytes private datas
CONNECTIONS

0001 "Output pin" 0002 "In" «no line break herex

<filter id pin id filter id pin id (output pin is first, then input pin)>
goo0o0000172 {00000000—0000—0000—0000—000000000003} «<no line break here:x

337

Filter Developer's Guide Page 30 of 83

<sample size, media type major-type=
{00000000—0000—0000—0000—000000000004} 10 <no line break heres

<media type sub-type, fixed size samples, no temporal compressions
0000000083 {00000000—0000—0000—0000—000000000005} 18 YYYYYYYYYYYYYYYYYY

<length of format format tvpe 18 bytes of binary format datas

END

where:

e XXX... represents filter data
¢ YYY... represents format data

The strings and characters in the file are always in Unicode.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" Previous | Home | Topio Contents | index | ext |
" previous | Home | Topio Contents | index | Hext |

DV Data in the AVI File Format

Microsoft has specified the format for storage of digital video (DV) data in AVI files. Conforming
to this specification will ensure that the AVI files authored in this format will be compatible
with future versions of the Microsoft® DirectShow™ digital video architecture for the Microsoft
Windows® platform.

This article provides background information to understand the format of audio-video
interleaved (AVI) files containing DV audio and video data, or information for programmers
who use DV-AVI files on other platforms. Applications that read or write AVI files should use
the File Source {Async) filter with the AVI Splitter filter and the AVI MUX filter with the File
Writer filter and their associated interfaces provided in the DirectShow architecture, rather
than developing the routines to perform these services. These filters simplify the programming
requirements for accessing these files.

This article also describes the format of AVI files containing DV data. Specific FOURCCs (four-
character codes) for interleaved DV data streams and DV compressor/decompressor stream
handlers are defined. The stream format structure for DV data is defined. Specifications for two
methods of storing DV data in the AVI file format are specified.

It is assumed that the reader is familiar with the DV data format. (This format is defined in the
Specification of Consumer-use Digital VCRs, also called the Blue Book).

Contents of this article:
¢ Types of DV AVI Files

o AVI RIFF File Reference
¢ AVI 2.0 File Format Extensions

338

Filter Developer's Guide Page 31 of 83

For more information about resource interchange file format (RIFF) files, see the Windows
Software Development Kit (SDK) Multimedia Programmer’s Guide and Multimedia
Frogrammer’'s Reference.

For more information about AVI files, see Chapter 6 of the Microsoft Video for Windows
Development Kit version 1.1 Programmer’s Guide and version 1.02 of the OpenDML AVI File
Format Extensions published by the OpenDML AVI M-JPEG File Format Subcommittee, February
28, 1996,

For more information on compressors and decompressors, see the Video Compression and
Decompression Drivers section of the Windows DDK Documentation in the MSDN Library.

Types of DV AVI Files
There are two types of DV AVI files:

¢ AVI Files Containing One DV Data Stream
¢ AVI Files Containing DV Video as a 'vids' Stream and DV Audio as 'auds' Streams

AVI Files Containing One DV Data Stream

Interleaved DV data can be stored in its native format as a single stream within an AVI RIFF
file. This has the advantage of using the minimum amount of data storage for DV. The primary
disadvantage is that this file format is not backward-compatible with Video for Windows,
because it doesn't contain either a video 'vids' or an audio 'auds' stream. Support is provided
for the interleaved DV stream through the DV Muxer and DV Splitter filters provided with
DirectShow.

DV data can be stored in a single stream within an AVI RIFF file by specifying the

'lavs' {interleaved audio and video stream) FOURCC (four-character code) in the fccType
member and either of the 'dvsd’, 'dvhd’, or 'dvsl' FOURCCs in the fccHandler member of the
'strh’ stream header chunk. The frames per second of the video stream must be specified in
the dwRate and dwScale members and the total number of video blocks in the 'movi' chunk
in the dwlLength member.

The 'dvsd' stream handler FOURCC specifies that the DV data is as defined in Part 2 of the
Specification of Consumer-use Digital VCRs. Video is in the format of 525 lines at 29.97 Hz
{(525-60) or 625 lines at 25.00 Hz (625-50).

The 'dvhd' stream handler FOURCC specifies that the DV data is as defined in Part 3 of the
Specification of Consumer-use Digital VCRs. Video is in the format of 1125 lines at 30.00 Hz
(1125-60) or 1250 lines at 25.00 Hz (1250-50).

The 'dvsl' stream handler FOURCC specifies that the DV data is as defined in Part 6 of
Specification of Consumer-use Digital VCRs. Video is in the format of high-compression SD
(SDL).

Note The remainder of this article provides definitions for 'dvsd’ streams.

The stream header chunk must be followed by DVINFO stream format chunk. The DVINFO
stream format has the following data structure defined for it:

339

Filter Devel oper's Guide Page 32 of B3

typedef struct tag DVINFD |
CHORD dwDVAAuxSTo;
CHORD dwDVRRuMCE]L ;
DHORD dwDViduxSreol;
CHORD dwDVARRUNCE1L;
CHCORD dwDWWhuxSro;
CHORD dwDVVALMCE]L ;
DHORD dwDVEeserved[2] ;

| DVINFD, +FDVINEFD;

FWDVAAERSre Soecifieg the Agdio Boddipey Data SOuece Pack foe the Fiegt audin binok [Fiegt
5 DY DIF sequences for S525-60 systems or & DY DIF saquences for 62550
systerns) of @ frame, & DIF sequence & a data biock that containg 155 DIF
bICks, & DIF block consists of 80 bytes, The Audip Aaitiary Data Source
Pack i definad in section D71 oF Part 2, Annex D, "The Pack Header Table
ang Contents of Packs" of the Specification of Consumner-yse Digital VORs,
Specifies the Audio suxiizry Data Source Control Pack for the First audio
BipCE OF 3 Frame, The Audio Auitiary Data Dontroi Pacl & defined in section
0.7.2 oF Part 2, Annex D, "The Pack Header Table and Contents of Packs” of
the Specification of Consuner-use Digital VORs,

WDV AAUXSrcl Specifies the Audio Awdiigry Data Source Pack for the second audio biogk
{second 5 BY DIF sequences for 525-60 systems or & DY DIF sequences for
625-50 gystams) of 3 frama,

Soedifies the Agdio Suitiaey Data Source Dontrol Pack o the second audio
bBinCR OF 3 frame,

SwDVAA

dWwDVAAURCLE

dWDVVAGXSre Specifies the Vide) Agdiiary Data Source Pacik a5 definad in section 0.8.1 of
Part 2, Annex D, "The Pack Header Tabie and Contents of Packs” of tha
Specification of Consurmer-use Digital VORs,

dwDVVAExCHl Soecifies the Video Auaxiiiary Date Source Qontrol Pack as defined in section

28,2 of Part 2, Annex D, "The Pack Header Tabie and Dontants of Packs® of
the Specification of Consumer-vse Digital VIR s,

DwDV Rasarvad Reserved. Sef this aray 10 rerg,
f2])

The actual DY data is stored as #3840 chynis in the 'mowi’ chank {the ## in the format
raprasents the stregm identifier), Each chunk containg one frame oF data, efher 10 gr 12 DY
DIF sequences For 525-60 or 625-50 gystams, ragnactively, The DY S0 {'gvsd"} DIF sequencs
Eperngt is dafinad in Part 2 of the Specification of Consumer-use Digital VRS,

The Figwing diggeam dgsteates the oipyback of an AV fie with (ne DYV data stragam using 3
DiractShow Fiker granh (the DY Soiitter angd DY Video Decoder Biters are inciyded in
DiractShow specificaily £0 deal with DV data), The table that foiigws the diagram defines the
mmadia typas,

340

DY YWideo Video
Decoder F | Renderer
E filter filter
File Saurce AT (BT
[async) = Splitter » Splitter O audi
filter filter fee | | e
filter

Filter Devel oper's Guide Page 33 of B3

DV madia typag talkle

Media Major type Subtype Format
stroctisra
& MEDIATYPE Stream MEDIASUSTYPE AYI L

& MEDIATYPE javs MEDIASDUBTYPE dvsd, MEDIAZURTYPE dvid, or DVINFD
MEDISSUBTYPE dvs

£ MEDIATYPE VIDED MEDIASUBRTYPE dvsd, MEDIAZUBTYPE dvid, or DVINF
MEDIASUBTYPE dvsi

e MEDIATYPE AUIDHD NilL WAVEFDRMATEY
£ MEDIATYPE VIDEQ standard wvideg tynes VIDEOINED

Tha Fpigwing diggeam idusteatas the cragtion of an AV Fie with one DY data stregm by dsing 2
iractShow Fiter geanh (the DY Yideg Encoder and DY Mxer Filters are incigded in DirectShow
specifically 1 deat with DV data}. The preceding tabie defines the media tynes, Uogtream
Fikars {nof shown can bae of any combination to produce the proper media types, D and E.

D video | [
—» Encoder

fiter —L
O B | A B

= ML I ML -
filter filter

File Writer
filter

Tha Bpigwing diggearm dusteatas the cragtion oF an AYI fils with ona DY data stream wdging 3
soetece Fikar that cormmitnicates theough hargdwaes device deivers with g DY device [such a5 2
13sd-based DV camoprder; for DY data inogt, by asing 3 DicectBhow Fiker granh [the source
Fiter is incitded n DivectShow specificgiy to deat with DY data;, The preceding table defines
the mediz tynes,

'S ource” E Ayl H | File Writer

; e ML= - ;
filter filter filter

The EQwing diggram dEastrates the Quindt OF an AYI Tie with gne DV data stregm using & sink
Fittar that cOmminicates Ehepign hardware device drivars with g DV device (50ch a5 & 13%4
based DY camoorder) e DY data oukoat, By dsing @ DirectZhow fiker granh (fhe gink filfer ig
incictded in DirectThow SpeCfCaily t0 degt with DY data). The preceding fabie defines the
iz tynas,

File Source E AT E \ Mo

{async) Splitter - :
filter filter filter

[Dvosres |

The Fpiigwing exampie shows the AIFF RIFF fgrm for an AYI e with one DV data stream,
exnangded with compiatad header chunis:

¥

341

Filter Developer's Guide Page 34 of 83

00000000 RIFF (QFAE35D4) 'AVI '
go00000C LIST (00000106) 'hdrl®
00000018 avih (00000038}
dwMicroSecPerFrame : 33367
dwMaxBytesPerSec : 3728000
dwPaddingGranularity : 0
dwFlags : 0xX810 HASINDEX | TRUSTCKTYPE
dwTotalFrames : 2192
dwInitialFrames : 0
dwStreams 1
dwsuggestedBuffersize : 120000
dwiWidth 720
dwHeight : 480
dwReserved : 0x0
00000058 LIST (0000006C) 'strl'
00000064 strh (00000038}
fecType : 'lavs!
focHandler : 'dvsd!
dwFlags : 0XO0
wPriority : 0
wLanguage : 0x0 undefined
dwInitialFrames : 0
dwScale : 100 (29.970 Frames/Sec)
dwRate : 2997
dwsStart : 0
dwLength : 21le2
dwSuggestedBufferSize : 120000
dwQuality : 0
dwSampleSize : 0
rcFrame : 0,0,720,480
00000024 strf (00000020}
AdwDVAAUXSrC 00X ...,
dwDVAZuxCctl 00X ...,
dwDVAAuUxSrcl : 0X. ...
dwDVAAUXCE1l 00X ...,
AdwDVVAUXSrC 00X ...,
dwDVVAuUxCtl : 0X. ...
dwDVReserved([2] : 0,0
goo0o000cCC LIST (OFADACOO0) 'movi'
QFADACD4 idxl (00008900)

AVI Files Containing DV Video as a "vids' Stream and DV Audio as 'auds’ Streams

Interleaved DV data can be split into a video stream and one to four audio streams within an
AVI RIFF file. This has the advantage of being backward-compatible with Video for Windows,
because it contains a standard video 'vids' stream and at least one standard audio 'auds’
stream The primary disadvantage is that this file format requires the audio data to be
redundantly stored as audio streams. The "video" stream is actually the native interleaved DV
data stream. However, as a standard 'vids' stream with a handler type of 'dvsd’, the DV Video
Decoder is used. This format also requires that "captured” files are split by using the DV
Splitter filter before they are written as AVI files.

DV data can be stored as a video stream with a separate number of audio streams in an AVI
RIFF file. The video stream is specified with a standard video stream header (the fccType
member value is 'vids'). The fccHandler member is specified as 'dvsd’, 'dvhd’, or 'dvsl’. The
frames per second of the video stream must be specified in the dwRate and dwScale
members and the total number of video blocks in the 'movi' chunk in the dwLength member.

342

Filter Devel oper's Guide Page 25 of B3

in thug AYI Fiie containing DV video as 3 "ids' stream and DY aodi as "aads’ streams foem of
Y, the videg stream foemat chuni is 3 standand BITMAPINFOHEADER structire, The glraam
Format chuni can be gptiongily extended to nciude the DVINFD stryctire, by ingreasging the
stream Forenat chunik gize fegm 40 byles (size oF the BITMAPINFOHEADER structure; &0 72
bytes (size of BITMAPINFOHEADER pius DVINFD structuees) ang irmmadiately foiigwing the
BITMAPINFOHEADER data stracture with 3 DVINFD data steactire,

The audio streamis) & specified with & standard audio stream header (fhe feeType member
wvaiye is auds'y. The fecHandler member is not used for audio streams.

The DY video data 5 stored as "##4o’ chunks, a5 defined in the oreceding descrintion oF an AV
Fiig with one DV data, and the audio data s stored as "##wh' chunks in the 'movi’ chuni,

The fpigwing diggram Hustrates the piayback of an AYI file containing DY video as 3 "vids'
stream and DY audio as "auds' strearms, by using & DirectShow Filter grach {the DYV Videg
Dacoder fitter 5 included in DirectShow specificaily to deal with DY data). The DY madia tyoes
tabie defines the media tyoes,

O Mideo Video
Decoder » Renderer
E filter filter
File Source H AT
(async) = Splitter audia
filter filter w Renderer
filter

The fpigwing diggeam Hustratas the creation of an AYI file containing OV video as a "vids'
stream and DV audio as "auds’ streams, asing a DirectDhow Filter granh {the DY VYideo Decoder
ig inciged in DirectShow specficaily to deat with DY data}. The DY media fyoes tabis defines
the media types. dostream Riters (n0f shown can be of gny combination £0 oroduce the
neonar media tyoes, D ang £,

DV video

— E|1'|:g:||:u:|er
1ter
—IE—. AV B

= ML -
filter

File writer
filter

The fpigwing diageam Bustratas the ceeation of an AYI fiie containing OV video asa "vids'
stream and DY audio as ‘auds’ streams using a sourcae fiker that commitnicates thegugh
hardware device drivers with @ DY device (such 85 & 1394 -based DY camooeder) For DY data
ent, By using & DirectShow Riter granh (the source and DY Soitter fikers are inciuded in
rectShow specificatly £0 degl with OV data). The DY media tyoes tabie defines the media
tynas,

343

Filter Devel oper's Guide

Page 36 of B3

"Source"

T

filter

Dy
Splitter
filter

L3

] = &I lﬂ :
ML o File Writer
: filter filter

The foigwing diggram Hystrates the output OF gn AYI fie containing DY video a5 a "vids'
stream and DYV audio as "auds' streams gsing a sink filker that commitnicates Lhrough hardware
device drivers with @ DY device {Such as @ 1384-based DY cameorder) for DV data outout, by
gsing & DivectShow Far granh (the DY Muser gnd sink filkers are inciuded in DirectShow

specificaily to deal with DV data). The DY media types table defines the media types.
File Source ﬂ FAT E - oY e
{async) » Splitter : ML . Sink
filter filter e filter filter

CoOoO000 RIFF (103E2920)
LIST (00000148}

elelalalelelol
Qo018

Qo000058
pedalelelel

QOQ000Rd

The fpigwing exampie shows the AIFF RIFF foem For an AYI Fie containing DY vide a5 a 'idg'
stream and DV audio as "auds' streams expanded with compieted header chaniks [inciuding
aptinnat DVINED date milowing the BITMAPINGG in the 'shef! sub-chink for the "Vids' stregm):

'avI !
'hdrl'

avih (0000003}

dwiicroSecPexrFrame 33367
dwMaxBytesPerSec 3TEB000
dwPaddingGramlarity 0
dwFlags 0810 HASINDEY | TRUSTCETYFPE
dwTotalFrames 2192
dwInitialFrames 0
dwStreams 2
dwSuggestedBufferSize 120000
dwiidth ¢ T20
dwHeight ¢ 480
dwReserved ¢ 00
LIST (00000054} 'strl!
strh (00000032}
focTyie vids!
fecHandlex Virad!
dwFlags i)
wEPricrity 0
wharigquage 0x0 undefined
dwInitialFrames 0
dwScale 100 (29.970 Frames/Seaq)
dwRate 2997
dwStart 0
dwlLergth 2192
dwSuggestedBuffertize 120000
dwCnalitsy 0
dwSampleSize 0
reFrame 0,0, 720 480
strf (QO000048)
bisize : 40

344

Filter Developer's Guide

000000F4

00000100

00000140

00000814
103D1710

LIST
idx1

Page 37 of 83

biwidth : 720
biHeight : 480
biPlanes 1
biBitCount 24
biCompression 0xX64737664 ‘'dvsd!
bisizeImage 120000
biXPelsPerMeter 0
bi¥PelsPerMeter 0
biClrUsed 0
biClrImportant 0
dwDVAAUXSrC OX........
dwDVAAuxCtl OX........
dwDVAAUXSrcl 0X........
dwDVAAuUxCt1ll OX........
dwDVVAUXSrec OX........
dwDVvVAuxctl 0X........
dwDVReserved[2] 0,0
LIST (000000BE) ‘'strl’

strh (00000038)
fcoType tauds'
foccHandler ' '
dwFlags 0x0
wPriority 0
wLanguage 0x0 undefined
dwInitialFrames 0
dwscale 1 (32000.000 Samples/Sec)
dwRate 32000
dwstart 0
dwLength : 2340474
dwSuggestedBufferSize : 4272
dwQuality : 0
dwSampleSize : 4
rcFrame 0,0,0,0

strf (00000012}
wFormatTag 1 PCM
nChannels 2
nsamplesPersSec 32000
nAvgBytesPersSec 128000
nBlockAlign : 4
wBitsPersSample 16
cbsSize 0

(LO3DOEF4) 'movi'
(00011210)

AVI RIFF File Reference

The Microsoft audio-video interleaved (AVI) file format is a RIFF file specification used with
applications that capture, edit, and play back audio-video sequences. In general, AVI files
contain multiple streams of different types of data. Most AVI sequences use both audio and
video streams. A simple variation for an AVI sequence uses video data and does not require an

audio stream.

Modifications to the original AVI file specification made in the OpenDML AVI File Format
Extensions are not discussed in this section. For further information on these extensions, see
version 1.02 of the OpenDML AVI File Format Extensions published by the OpenDML AVI M-
JPEG File Format Subcommittee, February 28, 1996,

This section contains the following topics:

+ AVI RIFF Form

345

Filter Developer's Guide Page 38 of 83

AVI Main Header

AVI Stream Headers

Stream Data (LIST 'movi' Chunk)
BITMAPINFOHEADER Structure
WAVEFORMATEX Structure

AVI RIFF Form

AVI files use the AVI RIFF form. The AVI RIFF form is identified by the FOURCC {four-
character code) 'AVI '. All AVI files include two mandatory LIST chunks. These chunks define
the format of the stream and stream data. AVI files might also include an index chunk. This
optional chunk specifies the location of data chunks within the file. An AVI file with these
components has the following form:

RIFF ('AVI '
LIST {('hdrl'

)
LIST {'movi'

)
["idx1'<AVI Index:>]

)

The LIST chunks and the index chunk are subchunks of the RIFF 'AVI ' chunk. The 'AVI ' chunk
identifies the file as an AVI RIFF file. The LIST 'hdrl' chunk defines the format of the data and
is the first required LIST chunk. The LIST 'movi' chunk contains the data for the AVI sequence
and is the second required LIST chunk. The 'idx1' chunk is the index chunk. AVI files must
keep these three components in the proper sequence.

The LIST 'hdrl' and LIST 'movi' chunks use subchunks for their data. The following example
shows the AVI RIFF form expanded with the chunks needed to complete the LIST 'hdrl' and
LIST 'movi' chunks:

RIFF ('AVI
LIST {('hdrl'
‘avih' («Main AVI Header:)
LIST {'strl'
'‘strh' («8tream header:)

'‘strf' («8tream format:)
'strd' («additional header datasx)
'‘strn' («8tream name:)

)

LIST {'movi'
{subcChunk | LIST ('rec '
SubChunkl
SubChunk2

346

Filter Developer's Guide

).

Page 39 of 83

["idx1'<AVI Index:]

)

AVI Main Header

This and following sections describe the chunks contained in the LIST 'hdrl' and LIST 'movi'
chunks. The 'idx1' chunk is not described in this document. For more information on the 'idx1’
chunk and indexes in AVI files, see version 1.02 of the OpenDML AVI File Format Extensions
published by the OpenDML AVI M-JPEG File Format Subcommittee, February 28, 1996.

The file begins with the main header. In the AVI file, this header is identified by the 'avih'
FOURCC (four-character code). The header contains global information for the entire AVI file,
such as the number of streams within the file and the width and height of the AVI sequence.
The AVI main header structure is defined as follows:

typedef struct {

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

dwMicroSecPerFrame;
dwMaxBytesPersSec;
dwReservedl;
dwFlags;
dwTotalFrames;
dwInitialFrames;
dwsStreams;
dwSuggestedBuffersSize;
dwWidth;

dwHeight;
dwReserved[4] ;

} MainaAvIHeader;

dwMicroSecPerFrame Specifies the number of microseconds between frames. This value

indicates the overall timing for the file.

dwMaxBytesPerSec Specifies the approximate maximum data rate of the file. This

dwReservedl
dwFlags

value indicates the number of bytes per second the system must
handle to present an AVI sequence as specified by the other
parameters contained in the main header and stream header
chunks.

Reserved. Set this to zero.

Contains any flags for the file. The following flags are defined:

AVIF HASINDEX — Indicates the AVI file has an 'idx1' chunk
containing an index at the end of the file. For good performance, all
AVI files should contain an index.

347

Filter Developer's Guide Page 40 of 83

dwTotalFrames

AVIF MUSTUSEINDEX — Indicates that the index, rather than the
physical ordering of the chunks in the file, should be used to
determine the order of presentation of the data. For example, you
could use this to create a list of frames for editing.

AVIF ISINTERLEAVED — Indicates the AVI file is interleaved.

AVIF WASCAPTUREFILE — Indicates the AVI file is a specially
allocated file used for capturing real-time video. Applications should
warn the user before writing over a file with this flag set because
the user probably defragmented this file.

AVIF_COPYRIGHTED — Indicates the AVI file contains copyrighted
data and software. When this flag is used, software should not
permit the data to be duplicated.

Specifies the total number of frames of data in the file.

dwilnitialFrames Specifies the initial frame for interleaved files. Noninterleaved files

dwStreams

should specify zero. If you are creating interleaved files, specify the
number of frames in the file prior to the initial frame of the AVI
sequence in this member. For more information about the contents
of this member, see "Special Information for Interleaved Files" in
the Video for Windows Programmer's Guide.

Specifies the number of streams in the file. For example, a file with
audio and video has two streams.

dwSuggestedBufferSize Specifies the suggested buffer size for reading the file. Generally,

dwWidth
dwHeight
dwReserved[4]

this size should be large encugh to contain the largest chunk in the
file. If set to zero, or if it is too small, the playback software will
have to reallocate memory during playback, which will reduce
performance. For an interleaved file, the buffer size should be large
enough to read an entire record, and not just a chunk.

Specifies the width of the AVI file in pixels.

Specifies the height of the AVI file in pixels.

Reserved. Set this array to zero.

AVI Stream Headers

The main header

is followed by one or more 'strl' chunks. (A 'strl' chunk is required for each

data stream.) These chunks contain information about the streams in the file. Each 'stri' chunk
must contain a stream header and stream format chunk. Stream header chunks are identified
by the FOURCC (four-character code) 'strh' and the stream format chunks are identified by the

FOURCC 'strf'. In

addition to the stream header and stream format chunks, the 'strl' chunk

might also contain a stream-header data chunk and a stream name chunk. Stream-header
data chunks are identified by the FOURCC 'strd’. Stream name chunks are identified by the

FOURCC 'strn’.

The stream header structure contains header information for a single stream of a file.

typedef struct
FOURCC
FOURCC
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

{

fccType;
fccHandler;
dwFlags;
dwPriority;
dwInitialFrames;
dwScale;

dwRate;

dwstart;

348

Filter Developer's Guide Page 41 of 83

DWORD
DWORD
DWORD
DWORD
RECT

dwLength;
dwSuggestedBuffersSize;
dwQuality;
dwSampleSize;

rcFrame;

} AVIsStreamHeader;

The stream header specifies the type of data the stream contains, such as audio or video, by
means of a FOURCC.

fccType

fccHandler

dwFlags

dwPriority

Contains a FOURCC that specifies the type of the data contained in
the stream. The following standard AVI values for video and audio
are defined:

'vids' — Indicates the stream contains video data. The stream
format chunk contains a BITMAPINFO structure that can include
palette information.

'auds' — Indicates the stream contains audio data. The stream
format chunk contains a WAVEFORMATEX or PCMWAVEFORMAT
structure.

'txts' — Indicates the stream contains text data.

Optionally, contains a FOURCC that identifies a specific data
handler. The data handler is the preferred handler for the stream.
For audico and video streams, this specifies the installable
compressor or decompressor.

Contains any flags for the data stream. The bits in the high-order
word of these flags are specific to the type of data contained in the
stream. The following standard flags are defined:

AVISF DISABLED — Indicates this stream should not be enabled
by default.

AVISF VIDEO PALCHANGES — Indicates this video stream
contains palette changes. This flag warns the playback software
that it will need to animate the palette.

Specifies priority of a stream type. For example, in a file with
multiple audio streams, the one with the highest priority might be
the default stream.

dwlnitialFrames Specifies how far audio data is skewed ahead of the video frames in

dwScale

dwRate
dwStart

interleaved files. Typically, this is about 0.75 seconds. If you are
creating interleaved files, specify the number of frames in the file
prior to the initial frame of the AVI sequence in this member. For
more information about the contents of this member, see "Special
Information for Interleaved Files” in the Video for Windows
Programmer's Guide.

Used with dwRate to specify the time scale that this stream will
use. Dividing dwRate by dwS8cale gives the number of samples
per second. For video streams, this rate should be the frame rate.
For audio streams, this rate should correspond to the time needed
for nBlockAlign bytes of audio, which for PCM audio simply
reduces to the sample rate.

See dwScale.

Specifies the starting time of the AVI file. The units are defined by
the dwRate and dwScale members in the main file header.
Usually, this is zero, but it can specify a delay time for a stream
that does not start concurrently with the file.

349

Filter Developer's Guide Page 42 of 83

dwlength Specifies the length of this stream. The units are defined by the
dwRate and dwScale members of the stream's header.

dwSuggestedBufferSize Specifies how large a buffer should be used to read this stream.
Typically, this contains a value corresponding to the largest chunk
present in the stream. Using the correct buffer size makes playback
more efficient. Use zero if you do not know the correct buffer size.

dwQuality Specifies an indicator of the quality of the data in the stream.
Quality is represented as a number between 0 and 10,000. For
compressed data, this typically represents the value of the quality
parameter passed to the compression software. If set to -1, drivers
use the default quality value.

dwSampleSize Specifies the size of a single sample of data. This is set to zero if
the samples can vary in size. If this number is nonzero, then
multiple samples of data can be grouped into a single chunk within
the file. If it is zero, each sample of data (such as a video frame)
must be in a separate chunk. For video streams, this number is
typically zero, although it can be nonzero if all video frames are the
same size. For audio streams, this number should be the same as
the nBlockAlign member of the WAVEFORMATEX structure
describing the audio.

rcFrame Specifies the destination rectangle for a text or video stream within
the movie rectangle specified by the dwWidth and dwHeight
members of the AVI main header structure. The rcFrame member
is typically used in support of multiple video streams. Set this
rectangle to the coordinates corresponding to the movie rectangle
to update the whole movie rectangle. Units for this member are
pixels. The upper-left corner of the destination rectangle is relative
to the upper-left corner of the movie rectangle.

The last eight members describe the playback characteristics of the stream. These factors
include the playback rate (dwScale and dwRate), the starting time of the sequence
(dwStart), the length of the sequence {(dwlLength), the size of the playback buffer
{(dwSuggestedBuffer), an indicator of the data quality (dwQuality), and the sample size
(dwSampleSize).

Some of the members in the stream header structure are also present in the main header
structure. The data in the main header applies to the whole file, while the data in the stream
header structure applies only to a stream.

A stream format ('strf') chunk must follow a stream header ('strh’) chunk. The stream format
chunk describes the format of the data in the stream. For video streams, the information in
this chunk is a BITMAPINFO structure {including palette information if appropriate). For audio
streams, the information in this chunk is a WAVEFORMATEX or PCMWAVEFORMAT structure.
{The WAVEFORMATEX structure is an extended version of the WAVEFORMAT structure.) For
more information about this structure and other stream types, see the New Multimedia Data
Tvpes and Data Techniques Standards Update.

The 'strl' chunk might also contain an additional stream-header data ('strd’) chunk. If used,
this chunk follows the stream format chunk. The format and content of this chunk is defined by
installable compression or decompression drivers. Typically, drivers use this information for
configuration. Applications that read and write RIFF files do not need to decode this
information. They transfer this data to and from a driver as a memory block.

350

Filter Developer's Guide Page 43 of 83

The optional 'strn' stream name chunk provides a zero-terminated text string describing the
stream. (The AVI file functions can use this chunk to let applications identify the streams they
want to access by their names.)

An AVI player associates the stream headers in the LIST 'hdrl' chunk with the stream data in
the LIST 'movi' chunk by using the order of the 'strl' chunks. The first 'strl' chunk applies to
stream 0, the second applies to stream 1, and so forth.

For example, if the first 'strl' chunk describes the wave audio data, the wave audio data is
contained in stream 0. Similarly, if the second 'strl' chunk describes video data, then the video
data is contained in stream 1.

Stream Data (LIST 'movi’' Chunk)

Following the header information is a LIST 'movi' chunk that contains chunks of the actual data
in the streams — that is, the pictures and sounds themselves. The data chunks can reside
directly in the LIST 'movi' chunk or they might be grouped into 'rec' chunks. The "rec’ grouping
implies that the grouped chunks should be read from disk all at once. This is used only for files
specifically interleaved to play from CD-ROM.

Like any RIFF chunk, the data chunks contain a FOURCC (four-character code) to identify the
chunk type. A FOURCC is a 32-bit quantity represented as a sequence of one to four ASCII
alphanumeric characters, padded on the right with blank characters. The FOURCC that
identifies each chunk consists of the stream number and a two-character code that defines the
type of information encapsulated in the chunk. For example, a waveform chunk is identified by
a two-character code of 'wb'. If a waveform chunk corresponded to the second LIST 'hdrl'
stream description, it would have a FOURCC of '01lwb'.

Note While two-character codes are a convenient way to describe a stream, do not expect
them to be recognized by other applications. Use FOURCCs when creating a stream or
transferring the information to other applications.

Because all the format information is in the header, the audio data contained in these data
chunks does not contain any information about its format. An audio data chunk has the
following format (the ## in the format represents the stream identifier):

WAVE Bytes '##wb'
BYTE abBRytes|[];

Video data can be compressed or uncompressed DIBs. An uncompressed DIB has BI_RGB
specified for the biCompression member in its associated BITMAPINFO structure. A
compressed DIB has a value other than BI _RGB specified in the biCompression member. For
more information about compression formats, see the description of the BITMAPINFOHEADER
data structure in the Microsoft Windows Programmer's Reference.

A data chunk for an uncompressed DIB contains RGB video data. These chunks are identified
by a two-character code of 'db' (db is an abbreviation for DIB bits). Data chunks for a
compressed DIB are identified by a two-character code of 'dc’ {dc is an abbreviation for DIB
compressed). Neither data chunk will contain any header information about the DIBs. The data
chunk for an uncompressed DIB has the following form:

351

Filter Developer's Guide Page 44 of 83

DIB BRits '##db!
BYTE abRits[];

The data chunk for a compressed DIB has the following form.

Compressed DIB Bits '##dc’
BYTE abBits[];

Video data chunks can also define new palette entries used to update the palette during an AVI
sequence. For more information on specifying palette information, see Video for Windows
Programmer’s Guide.

Text streams can use arbitrary two-character codes.
BITMAPINFOHEADER Structure

The BITMAPINFOHEADER structure contains information for the video stream of an AVI RIFF
file. This structure has the following members:

typedef struct tagBITMAPINFCHEADER {
DWORD biSize;
LONG biwidth;
LONG biHeight;
WORD biPlanes;
WORD biRitCount;
DWORD DbiCompression;
DWORD DbiSizelImage;
LONG biXPelsPerMeter;
LONG bi¥YPelsPerMeter;
DWORD biClrUsed;
DWORD DbiClrImportant;
} BITMAPINFOHEADER ;

biSize Specifies the number of bytes required by the structure.
biWidth Specifies the width of the bitmap, in pixels.
biHeight Specifies the height of the bitmap, in pixels. If biHeight is positive, the

bitmap is a bottom-up DIB (device-independent bitmap) and its origin is
the lower left corner. If biHeight is negative, the bitmap is a top-down DIB
and its origin is the upper left corner.

biPlanes Specifies the number of planes for the target device. This value must be
set to 1.
biBitCount Specifies the number of bits per pixel. Some compression formats need this

information to properly decode the colors in the pixel.

biCompression Specifies the type of compression used or requested. Both existing and new
compression formats use this member.

biSizeImage Specifies the size, in bytes, of the image. This can be set to 0 for
uncompressed RGB bitmaps.

biXPelsPerMeter Specifies the horizontal resolution, in pixels per meter, of the target device
for the bitmap. An application can use this value to select a bitmap from a
resource group that best matches the characteristics of the current device.

biYPelsPerMeter Specifies the vertical resolution, in pixels per meter, of the target device for
the bitmap.

302

Filter Developer's Guide Page 45 of 83

biClrUsed Specifies the number of color indices in the color table that are actually
used by the bitmap. If this value is zero, the bitmap uses the maximum
number of colors corresponding to the value of the biBitCount member for
the compression mode specified by biCompression.

biClrImportant Specifies the number of color indices that are considered important for
displaying the bitmap. If this value is zero, all colors are important.

When the value in the biBitCount member is set to greater than eight, video drivers can
assume bitmaps are true color and they do not use a color table.

When the value in the biBitCount member is set to less than or equal to eight, video drivers
can assume the bitmap uses a palette or color table defined in the BITMAPINFO data
structure. This data structure has the following members:

typedef struct tagBITMAPINFO {
BITMAPINFCHEADER bmiHeader;
RGBQUAD bmiCcolors[1];
} BITMAPINFO;

The BITMAPINFO bmiheader member specifies a BITMAPINFOHEADER structure. The
BITMAPINFO bmiColors member specifies an array of RGBQUAD data types that define the
colors in the bitmap.

WAVEFORMATEX Structure

The WAVEFORMATEX structure contains information for the audio stream(s) of an AVI RIFF
file. This structure has the following members:

typedef struct waveformat extended tag {
WORD wFormatTag;
WORD nChannels;
DWORD nSamplesPersSec;
DWORD nAvgBytesPerSec;
WORD nBlockAlign;
WORD wBitsPerSample;
WORD cbSize;
} WAVEFORMATEX;

wFormatTag Defines the audio waveform type of the audio stream. A complete list of
format tags can be found in the MMREG.H header file included with
Microsoft Visual C++ and other Microsoft products.

nChannels Specifies the number of channels in the audio stream, 1 for mong, 2 for
stereg.

nSamplesPerSec Specifies the frequency of the sample rate of the audio stream in
samples/second (Hz). Examples are 11,025, 22,050, or 44,100.

nAvgBytesPerSec Specifies the average data rate. Playback software can estimate the buffer
size by using this value.

nBlockAlign Specifies the block alignment of the data, in bytes. Playback software
must process a multiple of nBlockAlign bytes of data at a time, so that
the value of nBlockAlign can be used for buffer alignment.

303

Filter Developer's Guide Page 46 of 83

wBitsPerSample Specifies the number of bits per sample per channel data. Each channel is
assumed to have the same sample resolution. If this field is not needed,
then you should set it to zero.

cbSize Specifies the size, in bytes, of the extra information in the format header,
not including the size of the WAVEFORMATEX structure. For example, in
the wave format corresponding to the wFormatTag
WAVE_FORMAT_IMA_ADPCM, cbSize is calculated as sizeof
(IMAADPCMWAVEFORMAT) - sizeof{ WAVEFORMATEX), which yields two.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topio Contents | imiex | ext _
previons | Home | Topic Contents | intex | Hext

AVI 2.0 File Format Extensions

DirectShow currently supports the following AVI 2.0 file format extensions:

¢ Increased AVI file size (greater than 1 GBR)
e Hierarchical indexing

See the specification in version 1.02 of the OpenDML AVI File Format Extensions published by
the OpenDML AVI M-JPEG File Format Subcommittee, February 28, 1996.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contenta | niex | Wext |

Registering a Custom File Type

This topic describes how to register a new file type so that file-reader source filters can
recognize it. The mechanism used here is taken from the Microsoft® Win32® GetClassFile
function, which is used to return the CLSID associated with the given file name. Microsoft
DirectShow™ media types use the same quadruple set of values in the registry that are used
for GetClassFile FileType registrations, but associate a file matching this criteria with a media
type rather than a file type. Also, the registry entry for a DirectShow media type provides the
CLSID of a source filter that can be used to read this media type.

For both FileType and MediaType registration, a pattern in the registry contains a series of
entries of the form:

regdb key = offset, cb, mask, wvalue

354

Filter Developer's Guide Page 47 of 83

The media type is defined as a CLSID pair, {Majortype clsid, Subtype clsid}. If the data in the
file at the specified offset or offsets matches a pattern in HKEY CLASSES ROOT\Media
Type\{<major type>}\{<subtype>}, the media type CLSID pair associated with that pattern is
the media type of the file.

The parameters of the registry key are interpreted as follows. The value of the offsef item is an
offset from the beginning or end of the file, and the cb item is a length in bytes. These two
decimal values represent a particular byte range in the file. (A negative value for the offset
item is interpreted from the end of the file.) The mask value is a hexadecimal bit mask that is
used to perform a logical AND operation, with the byte range specified by offsef and cb. The
result of the logical AND operation is compared with the value item. If the mask is omitted, it
is assumed to be all ones. The number of hexadecimal digits in mask and value must be twice
the value of cb (because cb is in bytes).

Each pattern in the registry is compared to the file in the order of the patterns in the database.
The first pattern where each of the value items matches the result of the AND operation
determines the media type of the file.

Note that each entry can have multiple quadruples, all of which must match the data in the file
for the media type to be associated with the file. An example of using multiple quadruples in a
single entry might be to match the byte sequence at the beginning and at the end of the file.
The following example shows a pattern of AB CD 12 34 as the first 4 bytes in the file and AB
AB 00 AB as the last 4 bytes in the file {(no masks applied here). All elements must match for
the pattern to match a file with a media type.

0 = REG Sz 0, 4, , ABCD1234, -4, 4, , ABAROOAR

Additionally, there can be multiple entries specified under a single media type, a match to any
one of which will associate the file with the media type.

For example, the pattern contained in the following entries of the registry requires that the
first three bytes be AB CD 12, that the fourth byte be 32, 33, 34, or 35, and that the last 4
bytes be FE FE FE FE:

HEKEY CLASSES ROCT
Media Type
{12345678—0000—0001—C000—000000000095}
{87654321—0000—0001—(3000—000000000095}
0 = REG_SZ 0, 4, FFFFFFFE, ABCD1234, -4, 4, , FEFEFEFE
1 = REG_SZ 0, 4, FFFFFFFE, ABCD1232, -4, 4, , FEFEFEFE
Source Filter = {56781234—0000—0001—C000—000000000095}

If a file contains such a pattern, the media type {12345678-0000-0001-C000-C0C000000095}
{87654321-0000-0001-C000-000000000095} will be associated with this file. The file source
filter for the media type is identified by the CLSID of the Source Filter value under the key for
the media type.

The media type can be used to find filter handlers for the file in order to render it. A handler
for a type performs a more exact test of the file to be sure of the type before attempting to
render the data.

Note that this scheme allows for a set of alternative masks (for instance, .wav files) that might
or might not have a RIFF header.

305

Filter Developer's Guide Page 48 of 83

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome] topie Contents | imiex | Wext |
[previous | Home] Topie Contents | imiex | Wext |

Transform Filters

This section describes how to create a transform filter, types of transform filters, how to use
the transform base classes, which base class member functions to override and when, and how
to connect transform filters.

*Creating a Transform Filter

=Using the CTransformpFilter and CTransInPlaceFilter Transform Base Classes

=Connecting Transform Filters

- mpression Filter

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contents | niex | Wext |

Creating a Transform Filter

Transform filters transform the media data that comes into their input pins and send the
transformed data out their output pins. Transform filters can be used to compress and
decompress data, to split audio and visual data, or to apply effects, such as contrast or
warbling, to media data. DirectShow contains several sample transform filters that perform
different kinds of transformations. See DirectShow Filters for a description of the transform

filters supplied by DirectShow. See Wri Transform Filter in ++ for instructions on how
to write your own transform filters in C++. See Using the CTransformfFil
CTransInPlaceFilter Transform Base Classes for a discussion of the CTransformPFilter and

CTransInPlaceFilter transform filter base classes. See Connecting Transform Filters for a
discussion of connecting to a transform filter.

This article steps through the process of creating a transform filter for a Microsoft®
DirectShow™ filter graph that uses the DirectShow C++ class library. It covers five basic
steps, and in the last step shows how to override the required member functions in your
derived class to implement the transform filter. It answers two common questions that arise
when creating transform filters: Which base class do I use? and How do I override member
functions?

306

Filter Developer's Guide Page 49 of 83

Contents of this article:

Writing a Transform Filter

Determine if the Filter Must Copy Media Samples

Determine Which Base Classes to Use

Instantiate the Filter

Make Added Interfaces Available Through NonDelegatingQuerylInterface

Override the Base Class Member Functions

o Qverriding the Transform Member Function

Overriding the CheckInputType Member Function

Overriding the CheckTransform Member Function

Overriding the DecideBufferSize Member Function

Qverriding the GetMediaType Member Function

Overriding Pin Member Functions

Overriding the CBaseQutput::DecideAllocator Member Function

(o]
(o]
(o]
(o]
(o]
(o]

Writing a Transform Filter

Writing a transform filter can be broken into the following discrete steps.

1.

Determine if the filter must copy media samples or can handle them in place.

The fewer copies in the media stream, the better. However, some filters require a copy
operation; this influences the choice of base classes.

Determine which base classes to use and derive the filter class (and pin classes, if
necessary) from the base classes.

In this step, create the header or headers for your filter. In many cases, you can use the
transform base classes, derive your class from the correct transform filter class, and
override a few member functions. In other cases, you can use the more generic base
classes. These classes implement most of the connection and negotiation mechanism;
but these classes also allow more flexibility at the cost of overriding more member
functions.

Add the code necessary to instantiate the filter.

This step requires adding a static CreateInstance member function to your derived
class and also a global array that contains the name of the filter, a CLSID, and a pointer
to that member function.

Add a NonDelegatingQueryInterface member function to pass out any unique
interfaces in your filter.

This step addresses the Component Object Model (COM) aspects of implementing
interfaces, other than those in the base classes.

QOverride the appropriate base class member functions.

This includes writing the transform function that is unique to your filter and overriding a
few member functions that are necessary for the connection process, such as setting the

307

Filter Developer's Guide Page 50 of 83

allocator size or providing media types.
Determine if the Filter Must Copy Media Samples

Because every copy operation uses valuable CPU cycles, filter developers are encouraged to
avoid copying the media samples, if possible. It is best to write the filter to modify media
samples in place on an allocator acquired from another filter. In some cases, this is not
possible, and a copy operation must be performed.

Where no copy is needed, the run-time overhead of a transform-inplace filter is scarcely more
than that of a function, however, by packaging the transform as a filter, you get the full
flexibility of the filter graph architecture.

Some reasons that a filter might be written as a copy transform filter rather than a transform-
inplace filter include the following:

o If the transformation generates more data on output than space provided in the allocator
of the input (for example, a decompressor filter), or if the transformation generates less
data on output and must consolidate memory.

o If the original media data must be preserved; this is the case with the splitter, where the
transform filter splits off a stream of data.

+ If a decompressor filter is performing temporal compression, relying on adjacent frames
for delta information. In this case, a separate copy must be made, primarily because the
decompressor cannot allow another filter to have access to the original data to modify it.

o If the filter relies on a queue; for example, a filter that creates a queue to help smooth
the delivery of irregularly spaced video frames would need to copy the samples.

Determine Which Base Classes to Use

Before choosing a base class for your transform filter, you must first decide whether your filter
needs more than one input and output pin. If it does, you should derive your filter class from
CBaseFilter.

If your filter needs to perform a video transform, you should derive your filter class from
CVideoTransformFilter.

Otherwise, you should derive your filter class from CTransformFilter or CTransInPlaceFilter. To
determine which one to use, you must decide whether your filter must copy media samples or
can transform them in place. Because every copy operation uses valuable CPU cycles, filter
developers should avoid copying media samples, if possible. It is best to write a filter to modify
media samples in place on an allocator acquired from another filter. In some cases, this isn't
possible, and you must perform a copy operation.

Where no copy is needed, the run-time overhead of a transform-inplace filter isn't much more
than that of a function. However, by packaging the transform as a filter, you get the full
flexibility of the filter graph architecture.

Some reasons that you might write a filter as a copy transform filter rather than a transform-
inplace filter are:

+ If the transformation generates more data on output than there is space already

allocated for the input (for example, a decompressor filter), or if the transformation
generates less data on output and must consolidate memory.

308

Filter Developer's Guide Page 51 of 83

o If the original media data must be preserved. This is the case with the splitter, where the
transform filter splits off a stream of data.

o If a decompressor filter is performing temporal compression, relying on adjacent frames
for information about what has changed frame to frame. In this case, you must make a
separate copy, primarily because the decompressor can't allow another filter to have
access to the original data to modify it.

o If the filter relies on a queue; for example, a filter that creates a queue to help smooth
the delivery of irregularly spaced video frames would need to copy the samples.

Once you determine whether the transform filter will copy media samples or transform them in
place, you must decide which base class or classes to use and which member functions you
must override and implement. You can then define your derived classes.

Some member functions in the base classes must be overridden in your derived class because
they are either declared as pure virtual in the base classes (they have no implementation), or
have default implementations that do nothing but return an error value.

You derive your filter class from the transform base classes CTransformFilter,
CTransInPlaceFilter, or CVideoTransformfFilter, or from the more generic CBaseFilter filter class.
Most of the connection, media type, and allocator negotiation code is handled in the base
classes and inherited by the transform classes. The transform classes make it possible to
create a filter by deriving just one filter class {no pin classes). The transform classes make
assumptions about the workings of transform filters that make the process of creating a
transform filter easier.

To learn more about CTransformFilter and CTransInPlaceFilter and which of their member
functions are typically overridden by the derived class, see Using the CTransformFilter and
CTransInPlaceFilter Transform Base Classes.

Instantiate the Filter

All filters must add code to let the base classes instantiate the filter. To instantiate a filter, you
must include two pieces of code in your filter: a static CreateInstance member function in
the derived filter class, and a means of informing the class factory in the base classes how to
access this function.

Typically, the CreateInstance member function calls the constructor for the derived filter
class. The following is the CreateInstance member function from the Gargle sample filter.

CUnknown *CGargle::CreatelInstance (LPUNKNOWN punk, HRESULT *phr} {

CGargle *pNewObject = new CGargle (NAME ("Gargle Filter"), punk, phr);
if (pNewCbject == NULL) {

*phr = E_OUTOFMEMORY;
}

return pNewCbject;
} // CreatelInstance

To communicate with the class factory, declare a global array of CFactoryTemplate objects as
g _Templates and provide the name of your filter, the class identifier (CLSID) of your filter, and
a pointer to the static CreateInstance member function that creates your filter object. The
Gargle sample filter does this as follows:

309

Filter Developer's Guide Page 52 of 83

// Needed for the CreateInstance mechanism
CFactoryTemplate g Templates[2]=
{ { L"Gargle filter" , &CLSID Gargle , CGargle::Createlnstance
, { L"Gargle filter Property Page", &CLSID GargProp, CGargleProperties::Createl

I

int g cTemplates = sizeof(g_Templates)/sizeof(g_Templates[O]);

You can add additional parameters to the CFactoryTemplate templates if you want your filter to
be self-registering. For more information on this, see Register DirectShow Objects.

Finally, link your filter to strmbase.lib and export DlIGetClassObject and DlICanUnloadNow
using a .def file.

Make Added Interfaces Available Through NonDelegatingQueryInterface

Only filters that add interfaces that are not in the base classes, such as those required for
creating property pages, need implement the IUnknown member functions {called
INonDelegatingUnknown in the base classes). The base classes provide default
implementations of the IUnknown methods. IUnknown methods in any COM-based code
retrieve interfaces from an object, and increment and decrement the reference counts of those
interfaces. For example, the IUnknown:: rylnterf, method retrieves interfaces from an
object.

DirectShow defines a special IUnknown class called INonDelegatingUnknown, whose methods
do the same thing as IUnknown. {(The reason for the name change is so that objects can be
aggregated.) The NonDelegatingQueryInterface method is called whenever some object or
application wants to query a pin or filter for any interfaces it implements. If your filter
implements any interface outside those listed in the base class implementation, you will need
to override the NonDelegatingQueryInterface method to return a pointer to the
implemented interface. For example, the following code example illustrates how the Gargle
sample overrides the member function to distribute references to the ISpecifyPropertyPages
and IPersistStream interfaces.

// Reveal our persistent stream, property pages, and IGargle interfaces
STDMETHODIMP CGargle: :NonDelegatingQueryInterface (REFIID riid, wvoid **ppv) {

if (riid == IID IGargle) {

return GetInterface((IGargle *} this, ppv);
} else if (riid == IID ISpecifyPropertyPages) {

return GetInterface((ISpecifyPropertyPages *) this, ppv);
} else if (riid == IID IPersistStream)

2ddRef () ; // Add a reference count to ourselves

*ppv = (void *) (IPersistStream *)this;

return NOERROR;

} else {
return CTransInPlaceFilter: :NonDelegatingQueryInterface(riid, ppv);

} // NonDelegatingQueryInterface

Note This sample calls the CTransInPlaceFilter implementation of the member function to
finish up.

360

Filter Developer's Guide Page 53 of 83

Override the Base Class Member Functions

When you determine which base class to use{ see Determine Which B |), you
write the header and define which member function to implement. You decide either to derive

your filter class from the transform base classes (CTransformFilter or CTransInPlaceFilter), or
from the more generic CBaseFilter filter class. In this section, you learn how to override the
following member functions.

Overriding the Transform Member Function

Overriding the CheckInputType Member Function

Overriding the CheckTransform Member Function

Overriding the DecideBufferSize Member Function

Overriding the GetMediaType Member Function

QOverriding Pin Member Functions

QOverriding the CBaseQutput::DecideAllocator Member Function

Overriding the Transform Member Function

The Transform member function in your derived class is called each time the

IMemlInputPin: :Receive method on the input pin of the filter is called to transfer another
sample. Place the code that performs the actual purpose of the filter in this member function,
or in the functions called from here. Copy transform filters will likely have a private Copy
member function associated with the transform code, while transform-inplace functions will
simply modify the code in one buffer.

Overriding the CheckInputType Member Function

During the pin connection, the CheckMediaType member function of the input pin is called to
determine whether the proposed media type is acceptable. The

CTransformInputPin: :CheckMediaType member function is implemented to call the
CheckInputType member function of the derived filter class with the media type. You must
implement this to accommodate the media types your filter can handle. The following code
sample outlines part of the ceargle: :checkInputType member function, which rejects any
media type but MEDIATYPE Audio.

HRESULT CGargle::CheckInputType {(const CMediaTvpe *pmt) {

// reject non-audic type
if (pmt-»majortype != MEDIATYPE Audioc} {
return E_INVALIDARG;

Overriding the CheckTransform Member Function

Copy transform filters can transform the media type from the input pin to output pin.
Therefore, if the output pin is connected (so its media type is known), when the
CTransformInputPin: :CheckMediaType member function is called during connection, the
CheckTransform member function of the derived class is called to verify that the transform
from the input type to the output type is valid. It is also called when
CTransformQutputPin::CheckMediaType is called.

In the CTransInPlaceFilter class, this member function is implemented in the base class header
file to simply return & OK, because the functions from CTransformFilter that call this member

361

Filter Developer's Guide Page 54 of 83

function are overridden in CTransInPlaceFilter to call CheckInputType instead. This
assumes that the media type doesn't change in a transform-inplace filter, as it might in a copy
transform filter.

Overriding the DecideBufferSize Member Function

Copy transform filters might be required to set the properties of the allocator into which they
are copying. This is likely if the downstream filter has provided a newly created allocator (that
is, one that hasn't passed an allocator from farther downstream), or if the output pin is forced
to create its own allocator. In this case, the pure virtual CBaseOutputPin: : DecideBufferSize
member function is called from the CBaseQutputPin::DecideAllocator member function, and the
derived class fills in the requirements for the buffer by calling the

IMemAllocator: : SetProperties method on the allocator object to which it has a reference.

The CTransInPlaceFilter: : DecideBufferSize method is never called, because the allocator of
another filter is always in use. It is implemented in the base class header file to return
E UNEXPECTED.

Overriding the GetMediaType Member Function

Pins provide enumerators to enable other objects to determine the pin's media type. A pin
provides the media type enumerator (the IEnumMediaTypes interface), which the pin base
classes implement to call the GetMediaType member function in the pin class. In the copy
transform filter classes, each pin's CTransform Pin:: MediaT member function
simply calls the virtual CTransformFilter: :GetMediaType member function in the filter class.
Your derived class must implement this member function to provide each supported media
type in a list of media types.

In the transform-inplace classes, the enumerators form a transparent channel between the
filters upstream and downstream from the transform filter. If the transform filter's input pin
must perform an enumeration, it obtains an enumerator from the downstream filter's input pin.
If the output pin must perform an enumeration, it obtains an enumerator from the upstream
filter's output pin. One consequence of this is that transform-inplace filters can't connect to
each other unless at least one of them is connected to something else, because neither of the
transform-inplace filters can propose any media type for the connection.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topie Contents | miex | ext _
[Previous | ome | Topio Contents | miex | ext

Overriding Pin Member Functions

If you derived your filter class from the transform classes and want more than one input or
output pin, you must override the pin class (for example, CTransformInputPin or
CTransformOQutputPin). If you override the pin class, you must also override the GetPin
member function of CTransformFilter or CTransInPlaceFilter, so that you can create pin objects
from your derived classes. If you override one of the pin classes {for example,

362

Filter Developer's Guide Page 55 of 83

CTransformInputPin) and override GetPin to create the pin object, you must also override
GetPin to create the other pin object of the same base class (for example,
CTransformOutputPin).

If you want more than one input or output pin, it is often simpler to derive vour filter from
CBaserFilter rather than from one of the transform classes.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Uss.

[Previous | ome | Topio Contents | miex | ext

Overriding the CBaseOutput::DecideAllocator
Member Function

The base classes implement CBaseOutputPin: :DecideAllocator to let the output pin
automatically use the downstream pin's allocator. One of the most common alterations in the
derived class is to force the use of an object's own allocator (or one from an upstream filter).
In the DirectShow model, for example, a source filter pushes media samples onto the next
filter and requires its own allocator. For example, if you write a transform-inplace filter and
insert it between a source filter and a decompressor filter, the transform filter must present
the source filter's allocator to the decompressor. Therefore, you must override the
CBaseQutputPin::DecideAllocator member function.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] index | Hext

Using the CTransformFilter and
CTransInPlaceFilter Transform Base Classes

This article describes the classes provided for creating a transform filter. It is background
information that you should read before reading the article Creatin Transform Filter, which
walks through the steps of creating a transform filter.

Contents of this article:
¢ Introducing the CTransformFilter and CTransInPlaceFilter Classes

+ What the Derived Class Must Provide
¢ A Sample Transform Filter Declaration

Introducing the CTransformFilter and CTransInPlaceFilter Classes

The easiest solution for writing a transform filter is to use the transform filter classes, which

363

Filter Devel oper's Guide Page 56 of B3

ok wai For mosk fypes OF transform Fiters, Typically, a noncopying transfonm Fiiter is derbvad
From the CTransinPiacarifer Ciass and £5 ass0ciated pin Classes: & copy transform Fiter i
derived from the CTransformPifer Fiter Class and £5 associated pin Ciasses.

Trangform Fitar ciasses are Rierarchical, with the transform-inniace clsses at the bottom of
the hisegechy tree, CTranginPiacariter is derived frgm CTransformbiter, which i darvad from
CRasarifer ag shown in the Filgwing Blusteation,

(EBaseDhject :)

| IMonDelegatingUnknown |

J—(CUnknown)

| IAMavieSetup |

| IMediaFilter |
I

| IBaseFilter |

| {:‘EBas eFilter .)

LC CTransformFilter)
LC CTransInPlaceFilter :'(]

The {TransinPiacainoutPin Class 5 derdved from the CTansform inogtPin ciass. The
CTrargformInpetPin ciass s derived from the CBaseinoubPin Ciass, as shown in the foigwing
RISt ration,

CEBaseDhject :)

| IMonDelegatingUnknown |

J—(CUnknown)

| IQuality Control |

| 1pin |
| {EBasePin)

| IMermInputPin |

J—(l::BaseIm:nutPin :)
LC CTransformInputPin :)
LCETransInPlaceInputPin :j‘

The {TransinPiacelutngtPin ciass i5 derived from the CTransformOuinatifin Ciass, The
CTransfermOutputPin Ciass is derved from the CBasefutoutPin Ciass, as shown in the
EQEwing fiirgteakinen,

364

Filter Devel oper's Guide Page 57 of B3

(EBaseDhject :)

| IManDelegatinglnknown |

J—(CUnknown)

| Iuality Control |

| IPin |

| {EBasePin :)

LCEBaseDutputPin :'(]
L(CTransformOutputPin :)
LC CTransInPlaced utputPin}

Copy transform and transforme-inniace Ciasses share many fegiires, bacause the transform-
inpiale Ciagses derive pimost aii member fyunctions frgm the cooy transform iasses. The
orincinat additions made by the transiem Ciasses Over the base Ciasses is that aif raguired pin
mmembaer firactions are implemaented-—-50 For defauit mpiemantation, you neeq oniy 1 derive 3
rmain Fitber ciass (from CTransinPiacefitor or COTeangformfiter),

What the Darived Class Mugt Provide
The derived fiter Ciass must orovide g faw mambar fanctigns, Dyoicaily 12

» Detooming iF the Fiitgr aocants the media tyne,
+ Specly the count and size of any requived aliocators (for ooy transforms aniyl,
» Provide the transform Functionatity of the Filfar,

Al dartvad Fiter clagses must implament 3 static ChadloryTaempiate Oraataingtance function,
You Can 2iso choose £ override the CBasefitor: GetSatunData meamber fiingction 10 make your
Hitar saif-ragictaring, Beyond this, your ciasses mist overvige g fow maember Runciions in tha
transform base classes. For more infoematinn about ingtantiating the filter, sae Draating g
Teansform Fitae,

IFyoue derbead Biter class is based on the CTransformPitar Class, you must overrige the
Eqiinwing mambar functions,

Mamber fonction Degeription

Fransfgrm Impiomant transiorm,
CheckinoutTyoa Yerfy suoooet oF madia tyope,

CheckTrangform Yerify support For transforming thig type {For debugging builds oniy},
DecideByfferSive Set gize and count when copying.
GetMadiaTyoe Suggest medi tyoes for the outout pin,

IFyour derbed Riter class is based on the ClransinPiaceritor Ciass, ovarride the Foliowing
riambar Finctinns.

365

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

