
ActiveMovie Control

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

handle
New value for the window handle.

Remarks

Page 112of116

This property offers a way for applications to set the owner of the video window. This is often
used when playing videos in compound documents.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

SetWindowForeground Method (IVideoWindow
Object)

IVideoWindow Object

Sets the video window as the foreground window and optionally gives it focus.

objVideoWindow.SetWindowForeground Focus

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

Focus
..LQ.ng value that specifies whether the video window will have focus. A value of -1 gives
the window focus and 0 does not.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jij,M 111.1 1119 Topic Contents 1@1§111¥+

SetWindowPosition Method (IVideoWindow
Object)

IVideoWindow Object

136

ActiveMovie Control Page 113of116

Sets the position of the video window (not the client rectangle position) in device coordinates.

objVideoWindow.SetWindowPosition Left, Top, Width, Height

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

Left
Specifies the x-axis origin of the window.

Top
Specifies the y-axis origin of the window.

Width
Specifies the width of the window.

Height
Specifies the height of the window.

Remarks

Specify, in window coordinates, where the video should appear. For example, setting a
destination of (100,50,200,400) positions the video playback at an origin of 100 pixels from
the left of the client area, 50 pixels from the top, and with an overall size of 200 x 400 pixels.
If the video is smaller than this (or a source rectangle has been specified that is smaller than
the video), it will be stretched appropriately. Similarly, if the video is larger than the
destination rectangle, the video is compressed into the visible rectangle. There are fairly
severe performance penalties if an application does not keep the source and destination
rectangles the same size.

Under typical circumstances, when no destination rectangle has been set, the video fills the
entire visible client window area (regardless of how much the user has stretched the window).
Also, the destination rectangle properties correctly return the size of the video window client
area.

This method has the same effect as individually setting the Left, Tup_, Width, and Height
properties.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij Topic Contents l@i§i 11111+

MQ<§i[.jlj,M 111.Hj Topic Contents l@i§lllMM

Top Property (IVideoWindow Object)

IVideoWindow Object

Retrieves or sets the y-axis coordinate of the video window.

137

ActiveMovie Control

objVideoWindow.Top [= /Value]

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

/Value
New value for the y-axis origin.

Remarks

Calling this method does not affect the height of the video window.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents

Page 114of116

l@IJll!MM

Visible Property (IVideoWindow Object)

IVideoWindow Object

Retrieves or sets the visibility of the video window.

objVideoWindow.Visible [= boolean]

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

boolean
If set to True, the window is shown; if False, the window is hidden.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+;<§1[.]jj,+ 11!.Hj Topic Contents

Width Property (IVideoWindow Object)

IVideoWindow Object

Retrieves or sets the width of the video window.

138

l@i§il!MM

ActiveMovie Control

objVideoWindow.Width [= /Value]

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

/Value
New value of the width.

Remarks

Page 115of116

The Width property is independent of the video window's Height property (the x-coordinate).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@IJll!MM

WindowState Property (IVideoWindow Object)

IVideoWindow Object

Returns or sets the state of the video window.

objVideoWindow.WindowState [= /Value]

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

/Value
New value for the WindowState property.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+;<§1[.]jj,+ 11!.Hj Topic Contents l@i§il!MM

WindowStyle Property (IVideoWindow Object)

IVideoWindow Object

Retrieves or sets the style parameters for the video window.

139

ActiveMovie Control

objVideoWindow.WindowStyle [=/Value]

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

/Value
New value for the WindowStyle property.

Remarks

Page 116of116

For a complete list of window styles, see the CreateWindow function in the Microsoft® Platform
Software Development Kit (SDK).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.ij Topic Contents l@i§i llfttiM

WindowStyleEx Property (IVideoWindow
Object)

IVideoWindow Object

Changes the style parameters for the video window.

objVideoWindow.WindowStyleEx [=/Value]

Parts

objVideo Window
Object expression that evaluates to an IVideoWindow object.

/Value
New value for the flags. Valid values include only those flags that can be set by the
GWL_STYLE value of the Microsoft Win32 GetWindowLong function.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

140

DirectShow Basics Page 1of62

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

DirectShow Basics

This section contains articles covering basic DirectShow concepts, such as filter graph
architecture and data flow, how to use the Filter Graph Editor tool, and a list of the filters and
sample filters supplied with DirectShow. You can use this section as a high-level introduction to
DirectShow. You need only a general understanding of programming and media to understand
the topics in this section.

· Using DirectShow

· Filter Graph Manager and Filter Graphs

· Filters and Pins

· Stream Control Architecture

•Quality-Control Management

· About Capture Filter Graphs

· Improving Capture Performance

· Data Flow in the Filter Graph

· Constructing Filter Graphs Using Visual Basic

· Controlling Filter Graphs Using Visual Basic

· List of Filters and Samples

· About the DirectShow Filter Graph Editor

· Using the Filter Graph Editor

· COM Overview

· Overview of DVD Interfaces and Data Types

· About WDM Video Capture

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M lh.Hj Topic Contents i@faii!MM

141

DirectShow Basics Page 2of62

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

Using DirectShow

Microsoft® DirectShow™ is an architecture that controls and processes streams of multimedia
data through custom or built-in filters. You can also use the set of media streaming interfaces
to stream media data without creating filters. See Use Multimedia Streaming in DirectShow
Applications for more information.

In addition to the architecture and the set of classes and interfaces to support it, DirectShow is
also a run time that uses this architecture to enable users to play digital movies and sound
encoded in various formats, including MPEG, AVI, MOV (Apple® QuickTime®) and WAV­
formatted files. The DirectShow run time is a control (.ocx), called the ActiveMovie Control,
and a set of dynamic-link libraries (DLLs) that enable you to play back supported media files.

DirectShow playback uses video and audio hardware cards that support the Microsoft DirectX®
set of application programming interfaces (APis). The video and audio capture capability lets
you programmatically control your system's video and audio capture hardware, as well as video
and audio compressors and decompressors (codecs). The Plug and Play capability lets
DirectShow automatically retrieve and use your filters, once you register their properties.

Use the DirectShow architecture for most new multimedia applications for Windows® 95 or
Windows NT®. With a few exceptions, it replaces multimedia playback services, APis, and
architectures provided by Microsoft in earlier versions of the Windows Software Development
Kit (SDK). However, libraries will continue to be available and supported for applications that
use the earlier Microsoft multimedia playback services, such as Microsoft Video for Windows.

Contents of this article:

• DirectShow Architecture
• Choosing the Right Programming Model
• Playing Back Files Over the Internet

DirectShow Architecture

The DirectShow architecture defines how to control and process streams of multimedia data
using modular components called filters. The filters have input or output pins, or both, and are
connected to each other in a configuration called a filter graph. Applications use an object
called the filter graph manager to assemble the filter graph and move data through it. By
default, the filter graph manager automatically handles data flow for you; for example, it
automatically inserts the proper codec if needed, and it automatically connects a transform
filter's output pin to the default rendering filter. You can always specify your own filters and
connections if you don't want to use the default configuration.

The filter graph manager provides a set of Component Object Model (COM) interfaces so that
applications can access the filter graph. Applications can directly call the filter graph manager
interfaces to control the media stream or retrieve filter events, or they can use the ActiveMovie
Control to play back media files.

142

DirectShow Basics Page 3 of 62

Thus, you can access DirectShow through the COM interface, the ActiveMovie Control, or media
control interfaces (MCI), as shown in the following rnustratiOn.

ActiveMovie
Control

Source
filter

Media source

Application

Filter graph manager

Transform
filter

MCI

Renderer
filter

Media destination

Because of the DirectShow architecture's flexible, modular design, filter graphs have many
potential uses and applications. Examples include filter graphs that implement video capture,
control remote devices such as VCRs, or enable MIDI recording and editing.

Choosing the Right Programming M()(lel

DirectShow is accessible at several levels, and the approach you use depends on what you
need and how much programming you want to do. You might plan to rewrite an existing
multimedia program, write a new multimedia program, or add multimedia capabilities to an
existing program. Typically, existing applications that use the MCI command set are easily
ported, whereas applications that access lower-level multimedia serviees require more time to
rewrite. You can quickly add DirectShow playback services to new applications by using the
ActiveMovie Control, or with a few direct !'unctions that call the COM interfaces. C or C+ +
programmers can write filters that change or enhance multimedia data already managed by
existing filter graphs.

This section contains the following topics.

• Rewriting Existing Applications
• Writing New Applications

Rewriting Existing Applications

If you have an application that plays AV I-encoded movies and sounds and want to adapt it to
use DirectShow to play AVI files, porting is straightforward if your application uses MCI
commands or the Mierosoft Video for Windows® API. Your choice depends on the services the
application uses and your goals. If your applicatiOn uses MCI commands, you can use the MCI
subset that DirectShow provides. In the majority of cases, this will be a straightforward
upgrade that maintains AVI playback and adds MPEG and QuickTime playback capabilities to
your applieation. If your exiSting C-based application uses Video for Windows API, you can
replace most of these with calls to the COM interfaces.

Writing New Applications

You can take a variety of approaches when writing a new applieation with DirectShow. For
example, if you only want to add MPEG playback to your application, you can incorporate the
ActiveMovie Control into your application or directly access the COM interfaces on the filter

143

DirectShow Basics Page 4of62

graph manager. Both Microsoft Visual Basic® version 5.x and later and Microsoft Visual C++®
version 5.x and later allow access to the ActiveMovie Control or the COM interfaces. Filters
within a filter graph are typically written in C++ using the DirectShow class library.

If your application must process the media stream in some way or capture a media stream,
you can incorporate both the filter graph manager and a custom filter into your application.
The instantiated filter graph manager generates and manages the filter graph. You can insert
the custom filter into a preconfigured filter graph (which you create and save by using the
Filter Graph Editor tool in the DirectShow SDK). You also could insert the filter into an existing
filter graph at run time.

Playing Back Files Over the Internet

The ActiveMovie Control is incorporated into Microsoft Internet Explorer so that you can place
the control on a Web page and program it by using Microsoft Visual Basic® Scripting Edition
(VBScript) commands. To a programmer, the ActiveMovie Control is another ActiveX™ Control,
one that has real-time playback capability. Real-time playback means that the ActiveMovie
Control can play video or audio files over the Internet while the file is downloading, rather than
requiring the user to wait until the whole file is downloaded to begin playback.

The same filter graphs constructed to play media from files can play media from the Internet
by simply changing the source filter. Take, for example, a filter graph that plays MPEG movies
from a disk file. The first filter in the graph might be a file reader filter. By replacing this filter
with a filter capable of reading from an Internet URL address, you can play MPEG movies from
the Internet. Both file and URL reader source filters just deliver an unparsed stream of data. A
parser filter pulls the data from the reader, parses it into separate streams of video, audio,
text, or other data types, and pushes it downstream. This filter remains unchanged regardless
of whether the source filter is a file or URL reader filter.

The source filter that reads from an Internet server is called the File Source CURL) filter.
DirectShow provides this as a built-in filter. It knows how to read, but not parse, data from a
URL address. Therefore, a media parser follows the File Source (URL) filter in the filter graph.
For MPEG sources, this parser is built into the MPEG splitter filter. Other media types have
their own parser filters (for example, a QuickTime parser).

The source filter that reads from files is the File Source (Async) filter. DirectShow also provides
this as a built-in filter. It does no parsing on its own but simply reads data off a disk to play
back. Most DirectShow filter graphs use this source filter.

The architecture's modularity allows most of the same components to be reused between file
and Internet playback. This modularity also means that if you want to render a new type of
data, often you only need to write a parser and renderer, and you can still use the existing file
or URL filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

MQl@[.jjj,M M!i.l:.19 Topic Contents i@i§i i!fttiM

144

DirectShow Basics Page 5 of 62

Filter Graph Manager and Filter Graphs

To use the filter graph manager from an application, it is not necessary to know much about
the underlying filter graphs. However, it is usefUI to understand at least the basic principles of
filter graphs if you ever want to configure your own filter graph rather than letting the filter
graph manager configure them for you.

A filter graph is composed of a collection of filters of different types. Most filters can be
categorized into one of the following three types.

• A source filter, which takes the data from some source, such as a file on disk, a satellite
feed, an Internet server, or a VCR, and introduces it into the filter graph.

• A transform filter, which takes the data, processes it, and then passes it along.
• A rendering filter, which renders the data; typically this is rendered to a hardware

device, but could be rendered to any location that accepts media input (such as memory
or a diSk file).

In addition to these three types, there are other kinds of filters, for example, effect filters,
which add effects without changing the data type, and parser filters, which understand the
format of the source data and know how to read the correct bytes, create times stamps, and
perform seeks.

For example, a filter graph whose purpose is to play back an MPEG·compressed video from a
file would use the following filters.

• A source filter to read the data off the disk.
• An MPEG filter to parse the stream and split the MPEG audio and video data streams.
• A transform filter to decompress the video data.
• A transform filter to decompress the audio data.
• A video renderer filter to display the video data on the screen.
• An audio renderer filter to send the audio to the sound card.

The following illustration shows such a filter graph.

MPEG video
decompression Video

J transform Ho renderer

File or URL filter filter

moniker MPEG
source f-> splitter

filter filter

~ MPEG audio Audio
decompression f-> renderer

filter filter

It is possible for some filters to represent a combination of types. For example, a filter might
be an audio renderer that also acts as a transform filter by passing through the video data. But
typically, filters fit only one of these three types.

Filter graphs stream multimedia data through filters. In the media stream, one filter passes the

145

DirectShow Basics Page 6 of 62

media <1cwn$tream to the next filter. An up$tream filter describes the filter that passes data to
the filter; a <1Cwn$tream filter describes the next filter in line for the data. This distinction is
important because media flows downstream, but other information can go upstream.

To make a filter graph work, filters must be connected in the proper order, and the data
stream must be started and stopped in the proper order. The filter graph manager connects
filters and controls the media stream. It also has the ability to search for a configuration of
filters that will render a partieular media type and build that filter graph. Filter graphs can also
be preconfigured, in which case the filter graph manager does not need to search for a
configuration.

When searching for a rendering configuration, the filter graph manager uses the filter mapper,
which first reads the registry and determines the types of filters available. The filter graph
manager then attempts to link filters that accept that data type until it reaches a rendering
filter. A merit value iS registered with each filter and, of the filters that might be capable of
hand ling the data, the filters with the highest merit are tried first.

Controlling the media stream means starting, pausing, or stopping the media stream. It can
also mean playing for a partieular duration or seeking to a partieular point in the stream. The
filter graph manager allows the applieation or Activex Control to specify these actiVities, and
then calls the appropriate methods on the filters to invoke them. It also allows filters to post
events that the applieation can retrieve. Therefore an application can, for example, retrieve
status about some special filter it has installed.

8 41411·!11* 1 11·'"'* T op1c Contents

Topic Contents

Filters and Pins

The two basic components used in the stream architecture are filters and pins. A filter is a COM
object that performs a specific task, such as reading data from a disk. For each stream it
handles, it exposes at least one pin. A pin is a COM object created by the filter, that represents
a point of connection for a unidirectional data stream on the filter, as shown in the following
mustration.

Source Transform Renderer
filter Output pin Input pin

filter
Output pin Input pin

filter

Input pin$ accept data into the filter, and output pin$ provide data to other filters. A source
filter provides one output pin for each stream of data in the file. A typical transform filter, such
as a compression/decompression (codec) filter, provides one input pin and one output pin,
while an audio output filter typically exposes only one input pin. More complex arrangements
are also possible.

You can name pins anything you want. If your pin name begins with the tilde (~) character,

146

DirectShow Basics Page 7 of 62

the filter graph will not automatically render that pin when an application calls
!GraohBuilder: :RenderFile. This can apply to pins that are just informational and are not meant
to be rendered, or need to be enumerated so that their properties can be set. The tilde(~)
prefix only affects the behavior of RenderFile and intelligent connect (!GraohBuilder: :Connect).
Note that intelligent connect can still be used to connect pins with this property if they
implement the !Pin: :Connect method. However, output pins of intermediate filters which are
being used to complete the connection which have the tilde at the start of their name will not
be connected as part of the intelligent connection attempt.

At a minimum, a filter exposes the !BaseFilter interface. This interface provides methods that
allow the enumeration of the pins on the filter and return filter information. It also provides the
inherited methods from !Media Filter; these methods allow control of state processing (for
example running, pausing, and stopping) and synchronization, and are called primarily by the
filter graph manager.

In addition, a filter might expose several other interfaces, depending on the media types
supported and tasks performed. For example, a filter can expose the !SoecifyProoertyPages
interface to support a property page.

Pins are responsible for providing interfaces to connect with other pins and for transporting the
data. The pin interfaces support the following:

• The transfer of time-stamped data using shared memory or other resource.
• Negotiation of data formats at each pin-to-pin connection.
• Buffer management and buffer allocation negotiation designed to minimize data copying

and maximize throughput.

Pin interfaces differ slightly, depending on whether they are output pins or input pins.

An output pin typically exposes the following interfaces.

• !Pin methods are called to allow the pin to be queried for pin, connection, and data type
information, and to send flush notifications downstream when the filter graph stops.

• !MediaSeeking allows information about the stream's duration, start time, and stop time
to be relayed from the renderer. The renderer passes the media position information
upstream to the filter (typically the source filter) responsible for queuing the stream to
the appropriate position.

• !QualityControl passes quality-control messages upstream from the renderer to the filter
that is responsible for increasing or decreasing the media supply.

An input pin typically exposes the following interfaces.

• !Pin allows the pin to connect to an output pin and provides information about the pin
and its internal connections.

• !MemlnputPin allows the pin to propose its own transport memory allocator, to be
notified of the allocator that an output pin is supplying, to receive media samples
through the established allocator, and to flush the buffer. This interface can create a
shared memory allocator object if the connected pin does not supply a transport memory
allocator.

The standard transport interface, !MemlnputPin, provides data transfer through shared
memory buffers, although other transport interfaces can be used. For example, where two
components are connected directly in hardware, they can connect to each other by using the

147

DirectShow Basics Page 8of62

IPin interface, and then seek a private interface that can manage the transfer of data directly
between the two components.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •@M* 1gnw

MQi§1[.]1!,M 11!.HM Topic Contents i@faii!MM

Stream Control Architecture

The stream architecture allows applications to communicate with the filter graph manager; it
also allows the filter graph manager to communicate with individual filters to control the
movement of the data through the filter graph. Using the stream architecture, filters can post
events that the application can retrieve, so an application can, for example, retrieve status
information about a special filter it has installed.

The filter graph manager exposes media control and media positioning interfaces to the
application. The media control interface, IMediaControl, allows the application to issue
commands to run, pause, and stop the stream. The positioning interface, IMediaSeeking, lets
the application specify which section of the stream to play.

Individual filters expose an IBaseFilter interface so that the filter graph manager can issue the
run, pause, and stop control commands. The filter graph manager is responsible for calling
these methods in the correct order on all the filters in the filter graph. (The application should
not do this directly.)

For position commands, the filter graph manager is called by the application to, for example,
play a specified length of media stream starting at some specified stream time. However,
unlike the IBaseFilter interface, only the renderer filter exposes an IMediaSeekinq interface.
Therefore, the filter graph manager calls only the renderer filter with positioning information.
The renderer then passes this position control information upstream through IMediaSeeking
interfaces exposed on the pins, which simply pass it on. The positioning of the media stream is
actually handled by the output pin on the filter that is able to seek to a particular position,
usually a parser filter such as the AVI splitter.

Position information is passed serially upstream because there might be filters between the
renderer and the source filter that require position information. Consider a transform filter that
is written to perform some video or audio modification only during the first 10 seconds of a
video clip (for example, increasing the volume or fading in the video). This filter probably
needs to have information about where the stream is starting so that it can determine its
correct behavior. For example, it should not perform if the start time is after the first 10
seconds, or it should adjust accordingly if the start time is within this duration.

Filters also get position information from the I Pin:: NewSeqment method which provides the
media start and stop times for the next set of samples and the rate to be associated with those
samples.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

148

DirectShow Basics Page 9of62

+Qi§1[.]i!:+ 1 !!·HM Topic Contents i@l§ii!MM

MQi@[.ji!:M 111.1 1119 Topic Contents i@l§i i!lltiM

Quality-Control Management

The Microsoft® DirectShow™ stream architecture provides for graceful adaptation of media
rendering to overloaded or underloaded media streams. The IQualityControl interface is used
to send quality-control notifications from a renderer filter either upstream, eventually to be
acted on by some filter in the graph, or directly to a designated quality control manager. The
base classes implement the passing of quality control notifications upstream by providing the
IQualityControl interface on the output pins of filters. Quality control notification uses a
Quality structure, which indicates whether the renderer is overloaded or underloaded. A filter
capable of, say, discarding samples to relieve an overloaded condition, can then act on this
notification. This is typically done by a source filter but could be done by other filters. For
example, the DirectShow AVI Decoder filter skips samples until the next key frame when it
receives a quality control notification.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M 111.1 1119 Topic Contents i@l§i i!lltiM

About Capture Filter Graphs

This article provides a brief introduction to capture and introduces the fundamentals of filter
graphs that provide video or audio capture or preview capabilities. It includes conceptual
diagrams of the most common capture-related filter graphs to help you visualize the
components in each filter graph and see how they fit together. It discusses the role of
particular filters such as video and audio capture filters, the AVI MUX (multiplexer) filter, and
the file writer filter. It also highlights unusual points such as filters (for audio capture in this
case) that have input pins.

See Where Can I Learn About. .. for a list of topics relating to capture, including articles that
discuss writing code to perform capture.

If you are new to DirectShow, read Filter Graph Manager and Filter Graphs and Filters and Pins
to familiarize yourself with the architecture's fundamental concepts.

Contents of this article:

• Capture Introduction
• Video and Audio Capture Filter Graphs

149

DirectShow Basics Page 10 of 62

Capture Introduction

Video and audio capture enable you to take multimedia data from an external source such as a
VCR or camera, and view it, listen to it, or save it on your computer's hard drive. Your
computer must include video or audio capture hardware to perform capture. For audio capture,
a sound card with a microphone or line-in jack is usually sufficient. Some video capture cards
support audio capture as well, so you might not need two separate cards. The DirectShow
architecture provides default components (filters) that enable you to capture video and audio
data streams given the appropriate capture hardware and drivers. DirectShow takes advantage
of new capture drivers that are written as DirectShow filters and also uses existing Video for
Windows-style drivers.

Video and Audio Capture Filter Graphs

Typical filter graphs that provide video and audio capture and video preview capability must
include video capture, audio capture, multiplexer (MUX), file writer, and video renderer filters.
If you need a subset of these features your filter graph can be simpler and contain fewer
filters. This section begins by discussing the simpler capture filter graphs and the components
they contain. It then discusses filter graphs that combine features and build upon the basic
capture filter graphs to provide more functionality.

This section contains the following topics:

• Video Preview Filter Graphs
• Video Capture Filter Graphs
• Video Capture and Preview Filter Graphs Combined
• Adding Audio Capture
• Capture Filter Input Pins
• Example Capture Filter Graph

Video Preview Filter Graphs

A video preview filter graph enables you to watch the video on your computer screen as it
plays from your VCR, camera, or other video source. The video preview filter graph is very
simple. It contains a video capture filter and a video renderer. The capture filter provides the
video data from the capture card, exposing a pin called Preview to which the video renderer
connects. The video renderer provides a playback window in which it displays the video data. If
the capture filter produces compressed data, you must insert a decompressor filter between
the capture filter and the renderer.

Note Capture filters are not required to expose a preview pin.

The portion of the graph from the preview pin downstream to and including the video renderer
is called the preview section of the filter graph.

DirectShow provides video capture and video renderer filters. If you have an existing Video for
Windows-style capture driver, the video caoture filter wraps the functionality provided by that
driver so that it works with the DirectShow architecture. You can also write your own video
capture filter or use third-party capture filters.

The following diagram illustrates a simple video preview filter graph.

150

DirectShow Basics Page 11 of62

Video Capture Capture~
Video Renderer

Filter Preview

-
Video capture filters expose a pin for capture as well as an optional pin for preview. Pin names
can vary from those shown in the diagram above. The next section of thiS article discusses the
capture pin.

Note Some capture filters have a capture pin and do not have a preview pin. If the capture pin
is the only pin on a capture filter, connect the renderer to the capture pin.

Video Capture Filter Graphs

A video capture filter graph takes captured video data and saves it to a file. The term "video
capture filter graph" often encompasses video capture and preview functionality, but this
section uses the term in the striet "capture to file" sense.

The simplest video capture filter graphs contain a video capture filter, multiplexer filter, and
file writer filter. The capture filter provides video data from the capture card, just as it does in
video preview filter graphs. It exposes a pin for capture to which the multiplexer filter (MUX)
connects. The multiplexer filter understands a particular file format, such as audio-video
interleaved (AYI). It has multiple input pins and one output pin. Each input pin takes in a
stream of audiO or video data. The MUX combines the separate streams of data into the
appropriate file format and then passes the newly combined data through its output pin to the
file writer. The file writer filter writes the data stream from the MUX to disk without any
knowledge ofthe part:icular data format.

The MUX and file writer work together as a unit.

DirectShow provides the AVI M!lX and file wnter filters. The AVI M!lX filter packages data
streams into an AVI file stream; therefore, the file Writer always writes files in AVI format if it
is connected to the AVI MUX.

The following diagram illustrates a simple video capture filter graph.

-

Capture • ..
Video Capture Multiplexer File Writer

Filter Preview :i ~

-
Video Capture and Preview Filter Graphs Combined

A filter graph that provides both video capture and video preview capabilities combines au the
filters from video capture and video preview filter graphs. All the filters serve the same role as
in the smaller filter graphs.

The following diagram illustrates the combined video capture and video preview filter graph.

151

DirectShow Basics Page 12 of62

~
• " -Multiplexer File Writer
•

I I Capture Video Capture v Video Renderer
Filter Preview

-
Adding A1.1dlo Capt1.1re

None of the filter graphs discussed thus far capture audio data. As a result, they produce
movies that are silent upon playback. Adding an audiO capture filter to the video capture and
preview filter graph, as mustrated in the following diagram, provides the missing audio capture
capability.

Capture -
Audio Capture -

' File Writer Filter Multiplexer

I
Video Capture Capture ~

Video Renderer
Filter Preview

-
Audio capture filters accept audio data from the audio capture card much as video capture
filters accept video data. A capture card might provide both video and audio capture
capabilities, so the corresponding video and audio capture filters might process data from the
same capture card. If your system contains separate audio and video capture cards, the video
capture and audiO capture filters process data from separate capture cards.

Audio capture filters also expose a capture pin that connects to the multiplexer filter in the
same way that the capture pin on a video capture filter connects to the multiplexer. The
multiplexer's role becomes more important in this filter graph because it has more than one
connected input pin. Each connected input on the MUX provides a separate data stream (one
video and one audio in this case}, which the MUX combines into its supported file format, and
the file writer saves the resulting data to a file on disk.

Capt1.1re Filter Inpl.lt Pins

An unusual feature of audio and video capture filters is that they can expose input pins, unlike
other source filters. Source filters do not typically expose input pins because they are the
source of the data. They t;ypiea!!y pass data on to the next filter in the graph rather than

152

DirectShow Basics Page 13 of 62

accepting input data from another filter. The input pins provide a mechanism to access input
characteristics. Audio capture filters support the IAMAudioinoutMixer intert'ace to provide
access to such characteristics as recording and bass levels on each input line. Each input pin
represents an input line such as microphone, CD audio, or MIDI on the audio card.

The following diagram shows a full-featured filter graph that provides video preview, and video
and audio capture. The audio capture filter exposes an input pin for each input line on the
capture card. Internally, each pin supports IAMAudjoinpirtMixer to enable applieations to
access input characteristics on each line.

-
IL MIDI

. Capture
L ~

IC CD Audio Audio Capture Multiplexer File Writer

Line-In Filter

Microphone

Video Capture Capture l~ Video Renderer
Filter Preview

-
Example Capture Filter Graph

Now that you're familiar with capture filter graphs in general, here's a screen shot of a capture
filter graph from the Filter Graph Editor tool that is included with the DirectShow SDK. It builds
upon the conceptual diagrams examined earlier.

~ Extern Captur~ ! ~ Input 01
Audio Capture Input 02 A VI Out

.· · 1n
~ Intern !

C:\testcap.avi AVI Mux
< Input 03

Capture • Input
Video Capture (Motion JPEG) v Video Renderer

Preview

The preceding screen shot shov.is a motion JPEG video capture filter and an audio capture filter
in a capture filter graph. Both filters process data from the same capture card because the
capture card happens to capture both video and audiO data streams. A computer might include
a sound card in addition to a capture card, giVing you a choice between two audio sources and
therefore between audio capture filters to insert in the capture filter graph.

The screen shot is very similar to the conceptual diagrams examined earlier with the exception

153

DirectShow Basics Page 14 of 62

of filter names and input pin names. The input pins on the audio capture filter are labeled
Intern and Extern. The file writer filter saves captured video and audio data to a file called
Testcap.avi at the root of the C: drive.

If you have capture hardware installed on your system and use the Filter Graph Editor tool to
create a capture filter graph, it will appear similar to the preceding screen shot. The names of
the video and audio capture filters depend on the capture drivers installed on the computer. If
present, the audio capture filter's input pins might have different names from those illustrated.
The name of the file to which captured data is saved will differ as well. The preview pin will
connect to a decoder if the data from the pin is compressed, and the decoder will then connect
to the renderer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

+Qi@[.]+• 111.1,.19 Topic Contents i@i§i i!fttiM

Improving Capture Performance

Capturing is a hardware-intensive operation that requires saving a large amount of information
to disk as quickly as possible. This information is typically in the form of video and audio data.
Reducing bottlenecks that slow down the system is very important, because it can help
improve the quality of the captured movie.

This article presents some general suggested practices and hints and tips that can help you, as
the user of a capture application, set up the capture system for optimal capture performance.

Note Be sure to read your capture card manual for information specific to your capture card.
Systems vary as well, so all the information presented in this article might not apply to your
system configuration.

See Capture Introduction for a brief introduction to capture. See capture topics for a list of
Microsoft® DirectShow™ interfaces and articles relating to capture.

Contents of this article:

• Capture Numbers
• Optimizing the Hard Disk for Capture
• Disk Settings in Window 95 and Later
• Reducing Noncapture-Related Machine Activity
• Additional Hints and Tips for Improving Capture Performance
• Choosing a Capture System
• Suggested Capture Reading

Capture Numbers

Capturing involves transferring a large amount of data from a capture card to disk. To get an

154

DirectShow Basics Page 15 of 62

idea of the amount of data and the data throughput required for a particular capture scenario,
consider the following:

Suppose you want to capture a movie with a height of 320 pixels, a width of 240 pixels, a
capture rate of 30 frames per second (fps), and in 24-bit color format. The movie does not
include any sound.

Use the following formula to determine the number of bytes of uncompressed data that must
be transferred every second in order to capture all of the image data, and therefore to
maintain the image quality.

bytes of transferred video data = height (in pixels) x width (in pixels) x rate
(in fps) x color depth (in bytes)

Plugging in the numbers from the preceding scenario produces the following result.

320 x 240 x 30 x 3 = 6912000 bytes of transferred video data

Capturing one second of this movie at the desired size, frame rate, and color depth requires
approximately 6.9 million bytes of disk space. Multiplying by 60 seconds produces the results
for a minute; each minute of capture requires 414,720,000 bytes in this case. You can reduce
the amount of data required by reducing any of the parameters in the above formula: capture
a smaller image, at fewer frames per second, or with fewer colors. However, in cases where
your image requirements push the system to its limits and you need to be able to capture at
the highest possible number of megabytes per second, you'll want to optimize your system as
much as possible. After all, the capture settings you use affect how the movie will look when
someone plays it back.

The preceding numbers are for a silent movie. If you want to capture audio as well as video,
you have to add the amount of required audio data. For example, CD-quality audio, recorded at
44 kilohertz (kHz), 16-bit, stereo, requires about 172 kilobytes (KB) per second. Audio capture
is also very CPU-intensive, and synchronizing the audio and video data (to achieve proper lip
synch, for example) can cause delays as well.

You might find that your system can't keep up with the required amount of data transfer for
the settings you've chosen. When capturing, your system might pause, the video might be
jerky or jitter (not smooth), and some of the frames might be dropped (not saved to disk).
Playback quality of such an image is typically unsatisfactory. To avoid such problems, you can
follow a number of practices to optimize your system for capturing.

The suggestions presented in this article can help you reach the goal of optimal capture
performance. At the same time, bear in mind that each system is different and something that
improves performance on one system might not be effective on another system.

Optimizing the Hard Disk for Capture

Because capturing is very hard-disk intensive, optimizing the files on the hard drive that you'll
use for capturing (also called the data drive or data disk) is the most important task in
optimizing capture performance. The following list contains goals in optimizing the data drive
and techniques you might use to achieve those goals. The techniques discussed here are
suggestions and might not be helpful given particular capture requirements. Your requirements
and resources govern precisely which techniques you might want to try.

155

DirectShow Basics Page 16 of 62

• Ensure the capture file is in a contiguous (nonfragmented) location on the data drive.

The heads of a hard drive can read from and write to a contiguous file more efficiently
than if they have to seek to other, nonadjacent portions of the disk. Use a tool such as
the Microsoft Windows® Disk Defragmenter (Defrag.exe) to defragment your data disk.
Defragment both the data drive and the operating system drive. The operating system
drive comes into play when using drivers (such as audio and video drivers), writing to
the system cache, writing to the registry, using overlays, and so forth. Run the Windows
95 Scandisk tool to ensure the integrity of the data drive and the operating system drive.

• Preallocate a capture file that is larger than any movie clips you expect to save.

Allocating file space is time-consuming, so you should allocate your file before you
capture. Capture software such as the DirectShow AMCao sample lets you allocate space
for the capture file. If you capture more data than will fit in the capture file, the system
has to allocate more space for the file as you capture, which, again, slows down capture.
Avoid the reallocation of file space during capture, and the speed penalty, by allocating a
file that is large enough to meet your needs. Saving the captured data can require as
much space as the original capture file, so ensure you have enough free hard disk space
to save your captured data to another file. Be sure to regularly defragment your capture
file as wel I.

• Devote an entire hard disk, or partition on the disk, for the capture file.

This technique is particularly useful under Windows NT® because Windows NT does not
include a Scandisk or Disk Defragmenter tool. Reserving an entire disk or partition on the
disk for the capture file can make it easier to keep the capture file space clean and
contiguous. You can format such a disk or partition, and then preallocate file space again,
or defragment it without having to worry about other files on the disk or partition. When
you format a dedicated capture drive, use the full format to initialize the disk rather than
a quick format that leaves old data on the disk.

Save your captured images to a directory that is not on your data drive or data partition
to help keep your data drive clean. If you can't devote an entire drive to capture, allocate
space for the capture file, defragment the file, and (in Windows 95) run the Windows 95
Scandisk tool.

• Place the capture file at the beginning (outer rim) of the data drive.

If you allocate the capture file as the only file on the disk, or as the only file in the first
partition on the disk, it will begin at the outer rim of the disk. Access to the outer portion
of a hard disk is faster than access to the inner portion of the disk. If you don't have a
hard drive to devote to capture, you can use disk utilities to move your capture file to the
beginning of the disk.

Revisit these goals as necessary before each capture session to ensure your disk is configured
for optimal performance. Defragment the data disk before each capture session and
defragment the drive containing your saved images before you play back the saved files.

Disk Settings in Window 95 and Later

The System applet of the Windows 95 and OSR2 Control Panel contains several options you

156

DirectShow Basics Page 17 of 62

can disable for optimal capture performance. In high-bandwidth situations like capture, it's
important to make sure the drive is writing as much data as possible and not spending time
with software optimizations or checking for system changes. The options to disable include the
following:

• Automatic detection that a CD-ROM disc has been inserted in the CD-ROM drive
• Read-ahead optimization for the hard disk
• Write-behind caching for all drives

To access these options in Windows 95, click the Start menu. Under Settings, click Control
Panel, and double-click the System applet. Select the appropriate tab and proceed as outlined
below:

• Device Manager tab: Click CD-ROM and click your CD-ROM drive. Click the Properties
button, select the Settings tab and clear the Auto insert notification check box.

• Performance tab: Click the File System button and drag the Read-ahead optimization
slider to None. (The default is Full.) While still on the File System Properties dialog,
select the Troubleshooting tab and check Disable write-behind caching for all drives.

You will have to restart your machine for the new settings to take effect.

Note For optimal performance for other applications, be sure to return these settings to their
original values after your capture session is complete.

Reducing Noncapture-Related Machine Activity

Anything that interrupts the system or consumes CPU time for purposes other than capture
can potentially decrease capture performance. Consider performing the following tasks to see if
they affect performance on your system.

• Close all applications except the capture application.
• Turn off the clock that Windows 95 displays on the taskbar. To do so, right-click the

taskbar, click Properties and clear the Show Clock check box on the Taskbar Options
tab.

• Turn off the screen saver. To do so, right-click the desktop, click Properties, select the
Screen Saver tab, and choose "(None)" from the screen saver drop-down combo box.

• Turn off your printer.
• Disable your network card if you have one. Sending and receiving data over the network

can interrupt the system, even if you aren't actively doing anything over the network.

Additional Hints and Tips for Improving Capture Performance

This section contains a collection of hints and tips for improving capture performance that you
might want to try after experimenting with the other suggestions in this article. The
suggestions are grouped according to hardware and software-related suggestions.

Software

• Consider capturing on Windows NT, because the Windows NT file system (NTFS) is
typically faster than the traditional FAT file system, due to its use of threads. You might
need to contact the manufacturer of your capture card for a driver that will work on
Windows NT. Use a dedicated NTFS drive rather than a drive that is part NTFS and part

157

DirectShow Basics Page 18 of 62

FAT. The FAT-32 file system is typically faster than the FAT file system.
• Using your capture software, experiment with different compression ratios (for example

2: 1or1: 1) to decrease the amount of data that has to be saved. Start with the default
compression ratio and increase it until you drop frames. Try three passes and take the
best results of the three. After you've saved the captured image to another drive, run
Scandisk on the standard setting to quickly defragment the drive.

• If you installed Windows 95 over your Windows 3.1 installation, put the line "verify=off"
in your Autoexec.bat file. This line will prevent DOS from re-reading data after a write
operation to make sure the correct data was written. Verification slows down the writing
operation.

Hardware

• Insert the capture card in PCI slot zero so it will be checked for activity before other
cards on the system.

• Make sure the hard drive cache is turned on for the data drive. Refer to your SCSI card
manual for more information.

• Heat buildup inside a system can wear down the system components and decrease
capture performance. If you will be capturing continuously for hours at a time, make sure
your system has three fans: one each for the power supply, CPU, and components
(cards). If your captured images look fine at first, but become jittery after the system
has been capturing for a while, the capture card might be overheating.

• Some capture cards include a built-in audio card. Whether you use the on-board audio
card or a separate audio card depends on your needs. You might find that a separate
audio card provides features you need, or the on-board audio card might suit you just as
well.

• Some capture cards have an external connection for a monitor so you don't have to go
through software to preview what you're capturing. That feature can help with
performance, because the system isn't busy with the preview window.

Choosing a Capture System

Capturing is possible with a wide range of systems and capture cards. Shop around to compare
capture cards and features to see what best meets your needs. See Suggested Capture
Reading for possible sources of information. The optimal hardware configuration varies
depending on the capture card.

If you're setting up a new machine to devote to capture, consider a 166-megahertz Pentium or
later, with 64 megabytes or more of EDO RAM (as much RAM as possible), and a 2-gigabyte or
larger Wide SCSI 2.0 AV-certified hard disk. AV-certified drives are designed for high­
bandwidth data transfer. The SCSI hard disk controller should support PCI bus mastering 2.0
and later, which uses 32-bit drivers. If your capture card supports overlays, ensure that your
video card also supports overlays. Make sure the capture card has drivers for the operating
system you plan to use.

Suggested Capture Reading

This section lists possible sources of information about capture.

• ID http://www.ccs.gueensu.ca/pubs/itsnote/VideoCapture.html contains a general
introduction to video capturing.

• ID http://gcunix.gc.maricopa.edu/rvIC/vidph/vidph05.html contains information about
organizing the capture process.

158

DirectShow Basics Page 19 of 62

• IL:! http://fre.www.ecn.purdue.edu/FrE/asee/fie95/3a2/3a25/3a25.htm contains an article
titled "Effective Video Capture Techniques for Educational Multimedia."

• IL:! http://www.worldguide.com/Tech/videocapture.html contains information about
setting up a system for video capture and compression.

• IL:! http://cctpwww.cityu.edu.hk/public/graphics/g3 vidcap.htm contains information
about some capture card and chip manufacturers.

• Search the World Wide Web for "capturing".
• Contact the manufacturers of various capture cards, many of whom are available on the

Web.
• See the manual for each capture card for its particular requirements.
• For general background regarding digital video, see "PC Video Madness!", by Ron

Wodaski, Sams Publishing, Carmel, Indiana, c. 1993, ISBN 0-672-30322-1.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •@M* 1gnw

MQi§1[.]1!,M 11!.HM Topic Contents i@faii!MM

Data Flow in the Filter Graph

This article examines the types of data, including samples, events, and notifications, that move
through a filter graph, including where this data and information originates, where it is routed,
and the protocols that must be followed for data to flow correctly.

Contents of this article:

• How Data Moves in a Filter Graph
• Media Sample Data Flow
• Control Information Data

o End-Of-Stream Notifications
o Flushing

• Event Notifications
• Filter Graph Control Data
• Quality Control Data
• Serializing Data
• IAsyncReader Transport

How Data Moves in a Filter Graph

Data flow in the filter graph can be viewed by examining the paths through which it flows, and
also by examining the protocols that are used within those paths. Data flows primarily in the
following paths.

• Media sample data flows from one filter to the next - originating at a source filter and
terminating, eventually, at a renderer filter.

• Control information, such as end-of-stream and flushing notifications, travels with the

159

DirectShow Basics Page 20 of 62

media data stream from filter to filter.
• Event notification events flow from the filters to the filter graph manager and, optionally,

to the application.
• Filter graph control data flows from the application to the filter graph manager and finally

to the filters themselves.
• Quality control data originates in the renderer and flows upstream through the filters

until it finds a filter capable of increasing or decreasing the media data flow. It might also
flow directly to a quality control manager if one is registered.

This article describes each of these data paths. Data movement in a filter graph is enabled by
implementation of the following Microsoft® DirectShow™ filter graph protocols.

• Media sample protocol, which defines the way that media samples are allocated and
passed between filters.

• End-of-stream protocol, which defines how filters generate and process end-of-stream
information and how the filter graph manager is notified.

• Flushing protocol, which defines how filters flush data through the filter graph.
• Error detection and reporting protocol, which defines how errors are handled by filters

and propagated to the filter graph manager.
• New segment protocol, which defines a means to enable start and stop times and data

rate information to be presented to a filter in advance of the data, so that a filter can
adjust its processing accordingly.

• Quality management protocol, which defines how the filter graph adapts dynamically to
hardware and network conditions to degrade or improve performance gracefully.

Media Sample Data Flow

DirectShow filters pass media data downstream, that is, from the output pin of one filter to the
input pin of the next filter. The flow and control of the data is effected by the interfaces on
those pins and the filters themselves. The filters serialize data streaming activity; all data
streaming calls for a given pin are explicitly serialized and usually originate from a single
thread.

Data starts at a source filter and ends at a renderer filter. The source filter can either push the
data down the graph (that is, originate the thread and send data to the !MemlnoutPin: :Receive
method of the downstream pin), or implement the !AsyncReader interface and let the
downstream filter originate the thread, pull the data from the source filter, and send it
downstream. For a description of how this latter case differs from other protocols, see
!AsyncReader Tra nsoort.

Every filter should accept and process data received by its input pins, with the following
exceptions.

• The filter is in a stopped state.
• The pin is in the middle of a flush operation. That is, the pin's !Pin:: BeginFlush method

has been called but its !Pin::EndFlush method has not been called yet (see Flushing).
• The input pin rejected some previous data and no flush or stop action has occurred since

(in which case the connected output pin should have stopped sending data anyway).

There can be other conditions for a filter to reject data as well. For instance, a transform filter
would reject data at its input pin if its output pin was not connected.

Media samples are data objects that support the !MediaSamole interface. They are usually

160

DirectShow Basics Page 21of62

obtained from an allocator, which is most likely represented by an object supporting the
!MemAllocator interface. The two connected pins of adjacent filters agree on a common method
of exchanging data, called a transport. Many of the base classes for the DirectShow class
library are used to implement objects that support the local memory transport.

In the local memory transport, the input pin for a connection supports the !MemlnoutPin
interface. An output pin can determine that it can use the local memory transport if a call to
the !Unknown: :Ouerylnterface method on the input pin to request the IMeminputPin
interface succeeds. For this transport, data is passed from the output pin of one filter to the
input pin of an adjacent filter in media samples. During connection, the output pin and input
pin agree on the connection's allocator object, which is used to create the media samples.

Filters must follow protocols to pass and receive media samples. The connected pins must
agree on the allocator to be used, must have a means of passing the data, and must follow the
correct procedure for holding on to a sample or releasing it back to the sender.

For the local memory transport, an output pin passes a media sample to the input pin it is
connected to by calling the input pin's !MemlnoutPin:: Receive or
!MemlnoutPin:: ReceiveMultiole methods, depending on whether it is passing single or multiple
samples. Before it can pass this data, however, the output pin must obtain a media sample.
The !MemlnoutPin interface on the input pin provides an !MemAllocator object when requested
to provide an allocator. If the output pin is not using its own allocator, or one provided to it
from further upstream, it calls the !MemAllocator: :GetBuffer method on the input pin to
retrieve one.

The input pin can either process the data right away or save it for later processing. In the
latter case, it must call the !Unknown: :AddRef method on the media sample to prevent the
sample from being returned to the allocator. When the output pin has called the input pin's
!MemlnoutPin:: Receive method, it must call the !Unknown:: Release method to free the
sample. If the input pin did not save the sample by calling IUnknown::AddRef, the sample is
immediately returned to the allocator.

The output pin can decide not to pass the media sample on to the input, in which case it can
just call the sample's !Unknown:: Release method without calling the input pin's
!MemlnoutPin:: Receive method.

Control Information Data

There are two types of control information which are passed downstream filter to filter:

• End-of-stream notifications
• Flushing

End-Of-Stream Notifications

It is important for filters to indicate when there will be no more data in the current set of data.
A filter does this by sending an end-of-stream notification to the next filter, which is
accomplished by the output pin calling the !Pin: :EndOfStream method on the downstream
filter's input pin.

When a source filter (an originator of data) reaches the end of its data, it calls the
!Pin: :EndOfStream method on all pins connected to its output pins. This mechanism is
propagated down the filter graph so that each filter that processes its EndOfStream method in

161

DirectShow Basics Page 22 of 62

turn calls EndOfStream on the pins connected to its output pins. When the notification
reaches the end of the line in the filter graph, the renderer passes an EC COMPLETE
notification to the filter graph manager. The filter graph manager counts the EC_COMPLETE
notifications it receives and when all renderer filters have completed, passes the notification to
the application. The filter graph manager counts rendered streams by counting the number of
filters (not pins) that support !MediaSeeking or !Media Position and have a rendered input pin.
A rendered input pin is a pin with no corresponding outputs, which can be determined with
!Pin: :OuerylnternalConnections. input pins. A renderer input pin returns zero pins when its
IPin::QueryinternalConnections is called. Note that the filter, not the pins, support
IMediaSeeking in this case.

Although source filters usually originate the end-of-stream notification, it is also possible for
other filters to detect this condition and generate the notification downstream. Most notably,
this applies to parser filters that connect to asynchronous reader filters (filters implementing
the !AsyncReader interface).

For example, the MPEG parser (in the MPEG splitter filter) can detect the end of the stream
and when it does, return S_FALSE from the Receive method, which signals the upstream filter
to stop sending data until a seek occurs or the filter graph is stopped. In this case, the
upstream filter does not need to call EndOfStream. Instead, EndOfStream should be called by
the filter detecting the end-of-stream condition (the downstream splitter or parser) before
returning from Receive or ReceiveMultiole.

Note that EndOfStream should be serialized with data passed in the stream. It is a single piece
of information that must be passed after all the other data in the stream.

Flushing

In the DirectShow filter graph architecture, flushing is a two-stage process. Flushing is not
usually initiated as part of normal data flow, but rather as a result of a control action from the
filter graph manager. As such, it is an asynchronous event which requires flushing of old data
followed by a resynchronization and pushing of new data.

In a flushing operation, first !Pin: :BeginFlush is called by the source filter on all input pins
connected to its output pins. This call is propagated down the graph by all filters to the
rendering filter or filters. BeginFlush should flush any pending EndOfStream calls or
EC COMPLETE notifications. After Beginflush has been called, an input pin should reject all
data until its !Pin::EndFlush method has been called (this includes end-of-stream
notifications). It should also free any connected pins waiting for any of its resources. In the
case of the local memory transport, this means that every filter should free any filter waiting
for a sample from its allocator. This is usually done by calling !MemAllocator: :Decommit on the
allocator.

After a filter has called BeginFlush on the pins connected to its output pins, and when it can
guarantee that all processing of samples by its pins is complete and no more samples will be
processed, it should call EndFlush. For source filters this means shutting down data generation,
then calling Endflush on the pins connected to its output pins. For other filters it means
waiting for an Endflush call (which guarantees that no more samples will be sent) and then
waiting for any queues it maintains itself to empty. Because calls can block on downstream
filters for the local memory transport model, it is important to wait for queues to empty when
Endflush is called, rather than trying to do so when Beginflush is called.

Event Notifications

162

DirectShow Basics Page 23 of 62

Notification data goes from filters to the filter graph manager and can be passed on to the
application. The EC COMPLETE notification, which is sent from renderers at the end of a data
stream, has already been mentioned.

The filter graph manager should not be notified of EC COMPLETE until a Run command is
issued. A renderer filter that has EndOfStream called on its input pin while in a paused state
must not notify the filter graph manager until its IMediaFilter:: Run method is called. Sl;QQ_ and
EndFlush calls cancel any such deferred notifications and allow more data to be subsequently
processed by the pin. After notifying the filter graph manager once with EC_COMPLETE, the
renderer must not generate another EC_COMPLETE notification before processing a Stop or
Endflush method.

If a running filter graph is paused while at the end of its stream and IMediaFilter: :Run is
subsequently called, renderers should notify the filter graph manager with EC COMPLETE
again.

Besides EC COMPLETE, there are many other event notifications, many of which are sent by
specialized filters, such as the renderer, to communicate with a host application. Error
notifications are another class of notifications that are also sent from filters to the filter graph
manager.

The convention for DirectShow filters is that when a filter detects an error, it passes a
notification to the filter graph manager by calling the IMediaEventSink: :Notify method. Errors
in processing data can generate several error events, including the following:

• EC STREAM ERROR STOPPED, if no more data can be processed.
• EC STREAM ERROR STILLPLAYING, if data can still be processed.

If processing can no longer continue, the filter graph manager should be notified with
EC STREAM ERROR STOPPED and the appropriate convention for the particular transport
should be used to notify the upstream output pin. In the case of the local memory transport,
this involves returning an error value from IMeminoutPin:: Receive. In addition to notifying the
filter graph manager of the error, a filter should also either call EndOfStream on all the pins
connected to its output pins or, if it is a renderer, also notify the filter graph manager with
EC COMPLETE. This ensures the play will complete gracefully.

Errors of this type can be caused by encountering events such as being out of memory or other
resource problems. Or they might be caused by other events such as a failure to obtain a
buffer when trying to pass data downstream.

On the other hand, when an error occurs but processing can still continue,
EC STREAM ERROR STILLPLAYING should be sent to the filter graph manager. In this case,
the upstream output pin should not be notified. Specifically, for the local memory transport,
the input pin's IMeminoutPin:: Receive method should return NOERROR when this type of error
occurs.

Filter Graph Control Data

Control data originates at the application and is passed to the filter graph manager. At the
COM level, this is handled by filter graph manager interfaces in the Control.odl type definition
library. Examples of control data are calls to the IMediaControl interfaces, such as
IMediaControl:: Run, IMediaControl:: Pause, and IMediaControl:: Stoo. The IMediaPosition and

163

DirectShow Basics Page 24 of 62

!MediaSeeking interfaces provide a means of moving forward or backward in a media stream.

The most important thing to understand about the flow of control data is that it should always
pass through the filter graph manager first. This is because there is usually an order that must
be followed in controlling the filters in the filter graph to make sure filters are called in the
correct order and with regard for internal filter graph states.

Quality Control Data

The DirectShow stream architecture provides a means of gracefully adapting to load
differences in the media stream so that rendering of the data is maintained at the highest
possible resolution. The IOualityControl interface is used to send quality-control notification
messages from a renderer filter either upstream, to be acted on eventually by some filter in
the graph, or directly to a designated location. For example, a renderer that is getting too
many frames to process can try to get an upstream filter to cut down on the number of frames
it is sending. This is usually more efficient than simply dropping frames at the renderer. (A
video decompressor filter uses many CPU cycles to decompress frames, so it is better to
discard samples before processing them rather than after processing them.) Likewise, when
the renderer filter can handle more data, it sends notifications to increase the number of
samples.

Quality-control messages are passed upstream by default; if a filter has no registered quality
sink, the default action passes the message to the IOualityControl interface of the connected
output pin. Internally, the output pin passes the quality-control message to its input pin, if it
has one, and the message travels upstream until it reaches a filter that can affect the data
stream quality in the requested manner. DirectShow handles this mechanism automatically in
the transform base classes.

If a filter can handle the quality notification (by increasing or decreasing the flow) and if it is
not appropriate for filters further upstream to take any action, that filter will act on the
notification and not pass it on. A filter must pass the quality-control message on if it does not
act on the message. It can also pass it on even if it does act on the message. Silently
accepting the message without acting on it or passing it on is considered bad behavior, and
might damage the performance of the filter graph as a whole.

A quality sink is a feature implemented by the IOualityControl: :SetSink method. When this
method is called, the filter is instructed not to send messages upstream, but rather to send
them to the object passed to the SetSink method. Typically, this object would be a component
called a quality-control manager. Such a component would set itself as the sink for all the
filters to send the quality-control messages rather than anywhere else. It would then
determine whether to route the messages upstream or to take some other action, such as
cutting back the video stream to avoid breaking the audio. A quality-control manager can be
implemented by using the IOualityControl interface and should be anticipated when writing
filters.

Serializing Data

A filter usually has to synchronize two contexts: filter state and data flow. Usually a filter will
create a critica I section for each context.

The data flow critical section is held during streaming operations. For example, for the local
memory transport, this critical section should be held while processing the following methods.

• !Pin::NewSegment

164

DirectShow Basics Page 25 of 62

• IMemlnputPin:: Receive
• IMemlnputPin:: ReceiveMultiple
• I Pin:: EndOfStream

The filter state critical section is held while processing state changes when the following
IBaseFilter methods are called.

• Stop
• Pause
• Run

It is also held during BeginFlush and EndFlush streaming control operations.

During Stop and EndFlush calls, the stream state must be synchronized with the filter state. An
example of how to do this is in the base class CTransformFilter. In the case of implementing
the Stop method for the local memory transport, for example, the stream must be "released"
to avoid deadlocks by decommitting the input allocator pin. This is not required to process
Endflush, because this will have already been done in BeginFlush processing. Once the
stream is released, the data flow critical section (as implemented in Receive) can also be
locked to synchronize with the stream state.

Note that because S.to.Q. requires access to the filter state before synchronizing with the data
flow component, these two critical sections must be different.

A filter should not, in general, have its filter state critical section locked while calling methods
on other filters. The filter graph synchronizes graph-wide operations such as setting the
current position.

IAsyncReader Transport

For source parsing filters, the IAsyncReader interface helps implement a "pull" data flow
model, as opposed to the "push" model, in which a thread in the source filter pushes data
downstream. The parsing filter is connected downstream to the filter whose pin implements
IAsyncReader. In this case, the downstream parsing filter initiates data transfer by calling
IAsyncReader methods such as SyncReadAligned. The parsing filter, in this case, creates the
thread, pulls data from the source, and pushes it downstream.

Because all data flow activity in this transport is initiated by the downstream filter, several of
the protocols mentioned previously operate in reverse. For example:

• The downstream pin initiates BeginFlush and EndFlush upstream during seek operations.
• The downstream pin reports errors to the filter graph manager.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

165

DirectShow Basics Page 26 of 62

Constructing Filter Graphs Using Visual Basic

This article describes how to use ActiveMovie Control type library objects to manage the
components of a filter graph ······ filters and pins ······ in applications based on Microsoft:® Visual
Basic®, version S.:<. It also describes the functionality demonstrated by the Builder sample
application. This artiele is written for the Visual Basie developer who iS already familiar with
application programming in Microsoft: Windows®, Windows-based multimedia programming,
and Automation features of the Visual Basie programming system.

Contents of this article:

• About Filter Graphs
• About the DirectShow Ouartz.d!! Objects
• Creating a Filter Graph
• Generating the Complete Filter Graph
• Creating a New Filter Graph and Adding Filters
• Connecting Filter Pins

c Listing Filters in the Filter Graph
c Listing Pins Defined for a Filter
c Explicitly Connecting Two Pins
c Automatically Connecting Pins

• Viewing Pin Connection Information
• Creating a Custom Graph
• Summary

About Filter Graphs

The Filter Graph Ediwr provided with the Microsoft: DirectShow"' Software Development Kit
(SDK} is a graphical too! that creates and manages filter graphs. There are three types of
filters: source filters, transform filters, and renderer filters. The Filter Graph Editor is a graphic
user interface you use to construct filter graphs by inserting filters and creating connections
between them. For example, you can render the filter graph for a specific multimedia source
file, such as Do!phin.mov, and see each of the connections in the graph, as in the following
example.

dolphin (Read only) - Filter Graph Editor 11!1~ f3
.Eile f.dit \iiew §.raph !ielp

f_QJ§g]WI ~ JJI~l\iil !El II I• I 00

XForm Out Input Output
C:\dolphin.mov IV41 Decompression Filter Video Renderer

166

DirectShow Basics Page 27 of 62

~Ready LJ!I il .J
The same filter graph objects, filters and pins, can be managed from a sample Visual Basic·
based application that uses Quartz.di!. For simplicity, the Visual Basic-based application uses
list boxes rather than graphical elements to show the parts of the filter graph, and displays
information for only one filter and only one pin at a time. (The purpose of the application iS not
to compete with the Filter Graph Editor, but to demonstrate how to retrieve and manage the
same undertying filter graph information using Visual Basic.)

The following illustration shows the same multimedia source file, Dolphin.mov, as depicted by
the Visual Basie-based sample applieation.

It Filter and Pin Viewer l!!i~ f3
.EilterGraph Qptions

Filter Graph~~~~~~~~~~~~~~~~~~~~~~!

fiegistered filters Filters in current filter .Qraph

~M~P~E~~~v~i~mo~.c~o~de~cili!!Dlllml:~n:J.~"!~A~ddr-~> I ne~:t~~~~~~=~~~~:~::l:lj!!!l!llJJ!!Dlllll•l
AVI Decompressor --i I':' 1 • •
ACM Wrapper J MDV File Parser (async)
MPEG-1 Stream Splitter j

1
c:\dolphin.mov

AVI Splitter
WAVE Parser IEJ1

Filter
Filter name:
Vendor:

IV41 Decompression Filter
IR

fins in selected filter

XF01m In
XFormDut

r~onnect Downstream I ~ Connect One Pin ...

! Add .S.ource Filter...

Information for selected pin

Connected to pin: video 0 on filter: I~
MDV File Parser (async)
Media Type:
{73646976-0000-0010-8000-00AA003
89871)
Direction: Input

The liSt box labeled "Filters in current filter graph" lists the four filters required for this source
file. The liSt box labeled "Pins in selected filter" lists the two pins defined for the selected Indeo
Video R4.1 Decompression Filter: the "XForm In" and "XForm Out" pins. The XForm In pin is
selected, so the application displays detailed information about this pin, including its direction
and connection information.

The remainder of thiS article discusses the Visual Basic code you can use to retrieve and
manage such filter graph information. In addition to the general-purpose code that works with
any source input, the application includes a routine that mustrates a more likely use of these
properties and methods building a specific hard-coded filter graph for your Visual Basic-based
application.

167

DirectShow Basics Page 28 of 62

This article assumes you have already set up your Visual Basic environment to use Quartz.di!.
For more information about setting up your Visual Basic environment, see Controlling Filter
Graohs Using Visual Basic.

About the DirectShow Quartz.di! Objects

Quartz.di! provides objects that you can use in your Visual Basic-based applications to manage
filters and pins. There is an implicit hierarchy among these objects; that is, you must often
access the properties of one object to obtain another object. In the following example, an
object that appears indented below another indicates that you obtain that lower-level object
from a property or method of the higher-level object.

Filter graph object (IMediaControl)
Filter collection (RegFilterCollection, FilterCollection properties)

Filter Info object (IFilterinfo or IRegFilterinfo in filter collection)
Pin collection (Pins property)

Pin Info object (IPininfo item in pins collection)

The top-level object in the hierarchy is the filter graph object, or the !MediaControl object,
which represents the entire filter graph. You can access two properties of the IMediaControl
object to obtain collections of filter objects. The RegFilterCollection property represents the
filters registered with the system. The FilterCollection property represents the filters that are
part of the filter graph.

As with other collections accessible to Visual Basic, you can access individual items in the
collections by using the Visual Basic for each ... next statement. The number of items in the
collection is indicated by the Count property of the collection.

The filter collection contains !Filterlnfo objects. Each IFilterinfo object has a Pins property
that represents a collection of pins defined for that filter.

The pins collection contains !Pinlnfo objects. Each IPininfo object includes detailed
information about that pin, including its media type and its connection to another pin.

To examine a specific pin on a filter in the filter graph, use the following procedure.

1. Obtain the filter graph object.
2. Use the !MediaControl.FilterCollection property of the filter graph object to obtain the

collection of filters present in the filter graph.
3. Search through the filter collection for the specific filter.
4. Use the !Filterlnfo.Pins property of the filter object to obtain the collection of pins defined

for the filter.
5. Search through the pins collection for the specific pin.
6. Examine the properties of the pin object to find connection information and other

information for the pin.

Creating a Filter Graph

There are three distinct ways to use Quartz.di! to create a filter graph; each way offers a
different amount of control over the filter graph. These range from automatically generating
the entire filter graph to specifying every filter and pin connection. The three approaches are
as follows:

168

DirectShow Basics Page 29 of 62

• Automatic.

Generate the complete filter graph from either a multimedia source or a stored filter
graph file.

• Semi-automatic.

Create a new (empty) filter graph, add one or more filters, then automatically generate
all filters and connections needed to render a specific pin.

• Manual.

Create a new (empty) filter graph, add individual filters to the graph, and explicitly add
connections between pins.

The sample application, Builder, demonstrates all three approaches. The application's
"Generate from input file" command on the FilterGraph menu supports the first approach. The
New command (empty) on the FilterGraph menu supports the other two approaches.

Generating the Complete Filter Graph

The following code fragment demonstrates how to generate the complete filter graph based on
the multimedia source or stored filter graph. After creating an !MediaControl object that is
initially "empty," the application calls the !MediaControl.RenderFile method to build up the
complete graph:

fragment from the Filter Graph menu's Generate from input file command
' start by creating a new, empty filter graph;
Dim g_objMC as IMediaControl ' from the General Declarations section

Set g_objMC = New FilgraphManager ' create the new filter graph

' Use the common File Open dialog to let the user select the input file
CommonDialogl.Showopen ' user selects a source or filter graph
' call IMediaControl.RenderFile to add all filters and connect all pins
g_objMC.RenderFile CommonDialogl.filename ' generates the complete graph

Creating a New Filter Graph and Adding Filters

The following code fragment demonstrates how to create the new (empty) filter graph object.

fragment from the Filter Graph menu's New (empty) command handler
Dim g_objMC as IMediaControl ' from the General Declarations section

Set g_objMC = New FilgraphManager create the new filter graph

When you choose to create an empty filter graph and add individual filters, you must know the
filter type. In general, there are three categories of filters: source filters, transform filters, and
renderer filters. The procedure for adding source filters uses a different method than the
procedure for adding transform and renderer filters.

Add source filters to the filter graph by calling the !MediaControl.AddSourceFilter method and
supplying the name of a file of the specified source type or stored filter graph.

169

DirectShow Basics Page 30 of 62

The main form of the application includes a button labeled "Add Source Filter ... " that uses the
common File Open dialog box to query the user for the name of the source file or stored filter
graph. The application supplies the specified file as the parameter to AddSourceFilter.

Dim objFilter As Object ' temporary object for valid syntax; not used

CommonDialogl.Showopen ' get the name of the source or filter graph file
g_objMC.AddSourceFilter CommonDialogl.filename, objFilter

Add transform and renderer filters to the filter graph by calling the !RegFilterlnfo.Filter
method. The !RegFilterlnfo object can be obtained from the !MediaControl.RegFilterCollection
property, which represents the collection of filter objects registered with the system and
available for use.

After creating the filter graph and obtaining the !MediaControl object, use the following
procedure to add filters.

1. Obtain the list of registered filters by getting the !MediaControl.RegFilterCollection
property.

2. Search through the collection for the desired filter. Each element in the collection is an
!RegFilterlnfo object.

3. Add the filter to the filter graph by calling the !RegFilterlnfo.Filter method.

In the sample program, the list box labeled "Registered filters" contains the names of all the
filters that appear in the RegFilterCollection property. The following code fragment illustrates
steps 1 and 2 in the previous procedure.

' code fragment that populates the registered filter list box
' global variable g_objRegFilters is set to IMediaControl.RegFilterCollection
' Set g_objRegFilters = g_objMC.RegFilterCollection
Dim filter As IRegFilterinfo

listRegFilters.Clear
If Not g_objRegFilters Is Nothing Then

For Each filter In g_objRegFilters ' for each filter in collection
listRegFilters.Additem filter.Name ' add name to the list box

Next filter
End If

The sample application contains an Add button that adds the selected registered filter to the
current filter graph. The following code fragment illustrates step 3 in the previous procedure.

' code fragment from the event handler for the "Add" button
Dim filter As IRegFilterinfo
' find the selected filter and add it to the graph
' g_objRegFilters is the IMediaControl object RegFilterCollection property
For Each filter In g_objRegFilters

If filter.Name = listRegFilters.Text Then ' the selected filter?
Dim f As IFilterinfo ' yes
filter.filter f ' add to the filter graph, return IFilterinfo f
If f.IsFileSource Then

CommonDialogl.Showopen
f.filename = CommonDialogl.filename

End If
Exit For

End If
Next filter

170

DirectShow Basics Page 31of62

Connecting Filter Pins

After adding individual filters to the filter graph, you can establish connections between the
filters by explicitly connecting each pin, or by automatically generating all connections that are
needed downstream from a specific pin.

In both cases, you must traverse the hierarchy of DirectShow objects to obtain the !Pinlnfo
object that represents a pin of the filter object. This involves finding the desired filter in the
filter collection of the filter graph object, then finding the desired pin in the pin collection of the
filter object.

Listing Filters in the Filter Graph

All filters in the filter graph are available in a collection that you can access using the
!MediaControl. FilterCollection property.

When the user adds a filter to the filter graph, the application refreshes the list of current
filters by using the !MediaControl.FilterCollection property, as shown in the following code
fragment.

refresh the list box that contains the current filters in the graph
listFilters.Clear
For Each objFI In g_objMC.FilterCollection

listFilters.Additem objFI.Name ' add to list box
Next objFI

Listing Pins Defined for a Filter

You can access the pins defined for a filter object through the !Filterlnfo.Pins property. The
Pins property is a collection of individual !Pinlnfo objects.

After you obtain an individual !Pinlnfo object from the collection, you can access its properties
and call its methods, as shown in the following code fragment.

For Each objPin In g_objSelFilter.Pins
If objPin.Name = listPins.Text Then ' selected pin?

Set g_objSelPin = objPin ' yes, update information
' perform operations using that pin

End If
Next objPin

After you have obtained the pin object, you can explicitly connect to one other pin or
automatically generate all subsequent pin connections needed to render the pin.

Explicitly Connecting Two Pins

The !Pinlnfo object provides three methods to connect pins: Connect, ConnectDirect, and
ConnectWithTyoe. Connect adds other transform filters as needed, ConnectDirect does not
add transform filters, and ConnectWithType performs the connection only if the specified pin
matches the specified media type.

The sample application connects two pins using the !Pinlnfo.Connect method, as shown in the
following code fragment. You can call the Connect method from either of the two pins that are
to be connected.

171

DirectShow Basics

The sample application displays another form to select the second pin
or "other pin" that is to be connected to this pin.

frmSelectPin.OtherDir = g_objSelPin.Direction

Page 32 of 62

Set frmSelectPin.Graph = g_objMC ' give that form a copy of the graph
Set frmSelectPin.SelFilter = g_objSelFilter ' and the current filter
frmSelectPin.RefreshFilters ' display available filters to connect
frmSelectPin.Show 1 ' display the form
If frmSelectPin.bOK Then ' user has selected one--used OK button

Dim objPI As IPininfo
Set objPI = frmSelectPin.SelPin ' get the new pin from the form
g_objSelPin.Connect objPI ' connect the two pins
RefreshFilters ' display the latest pin information

End If

Automatically Connecting Pins

Call the !Pinlnfo.Render method to automatically generate all portions of the filter graph that
are needed downstream from that pin.

The term downstream refers to all connections needed to construct a complete path from that
pin to a renderer filter. For example, consider the representation of the filter graph by the
Filter Graph Editor, which shows connections as moving from the source filter at the left to the
renderer filter at the right. The Render method adds all required filters and connections to the
right of the specified pin.

The application includes a Connect Downstream command button. The code that handles this
command automatically establishes all pin connections downstream from the specified pin
object, as shown in the following code fragment.

call IPininfo.Render
complete the graph downstream from this pin
g_objSelPin refers to the pin selected in the list box labeled 'Pins'

g_objSelPin.Render

Viewing Pin Connection Information

When you have obtained a pin object from the collection available from the !Filterlnfo.Pins
property of the filter object, you can list its connection and other information.

The sample application uses the !Pinlnfo.ConnectedTo property to obtain the pin object to
which it is connected, as shown in the following code fragment.

Add detailed pin information to the text box on the right
when the user clicks on a pin in the list box on the left
Dim strTemp As String
On Error Resume Next
Dim objPin As IPininfo
For Each objPin In g_objSelFilter.Pins

If objPin.Name = listPins.Text Then ' selected in list box?
Set g_objSelPin = objPin 'yes, get all information
strTemp = "" clear existing displayed pin information
Dim objPinOther As IPininfo
Set objPinOther = objPin.ConnectedTo
If Err.Number = o Then ' yes, there is a connection

strTemp = "Connected to pin: " + objPinOther.Name + " "
Dim objPeer As IFilterinfo

172

DirectShow Basics

Set objPeer = objPinOther.Filterinfo
strTemp = strTemp + " on filter: " + obj Peer. Name + " "
Dim objMTI As IMediaTypeinfo
Set objMTI = objPin.ConnectionMediaType
strTemp = strTemp + vbCrLf + "Media Type: " + obj MTI. Type

End If
If obj Pin.Direction 0

strTemp strTemp + "
Else

strTemp strTemp + "
End If

txtPininfo.Text = strTemp
End If

Next objPin

Creating a Custom Graph

Then
" + vbCrLf + "Direction: Input"

" + vbCrLf + "Direction: output"

Page 33 of 62

The sample application featured in this article is similar to the filter graph editor utility,
allowing a user to create and manage any filter graph. Most applications will not provide such a
general-purpose interface-they are more likely to create only the specific filter graphs needed
by the application.

The sample application provides one subroutine that creates such a custom filter graph. The
Options menu offers a "Build custom graph" command that calls this subroutine.

The routine that handles this command creates five filter objects and eight pin objects. The
routine then connects pins by calling the !Pinlnfo.Connect method.

The graph connects the following filters: AV! Source, AV! Decompressor, AV! Splitter, Video
Renderer, and Audio Renderer. These filters can be connected by reusing just two pin object
variables. For clarity, however, each pin object is defined using a name that indicates its
position in the filter graph.

The filters and pins are declared as follows:

Dim pSourceFilter As IFilterinfo
Dim SourceoutputPin As IPininfo

Dim pAVISplitter As IFilterinfo
Dim SplitterinPin As IPininfo
Dim SplitteroutOOPin As IPininfo
Dim SplitteroutOlPin As IPininfo

' AVI Source Filter; has two pins
'Source Filter output pin

AVI Splitter
AVI Splitter pin "Input"

AVI Splitter pin "Stream 00"
' AVI Splitter pin "Stream 01"

Dim pDECFilter As IFilterinfo AVI Decompressor; has two pins
Dim DECinPin As IPininfo 'AVI Decompressor pin "XForm In"
Dim DECOutPin As IPininfo ' AVI Decompressor pin "XForm out"

Dim pVidRenderer As IFilterinfo Video Renderer, has one pin
Dim VidRendinPin As IPininfo Video Renderer pin "Input"

Dim pAudioRenderer As IFilterinfo 'Audio Renderer, has one pin
Dim AudioRendinPin As IPininfo ' Audio Renderer pin "Input"

The application adds the source filter object by calling the !MediaControl.AddSourceFilter
method:

create the source filter using IMediaControl.AddSourceFilter
CommonDialogl.Showopen get the name of the source AVI file

173

DirectShow Basics Page 34 of 62

g_objMC.AddSourceFilter CommonDialogl.filename, pSourceFilter

The application adds the other filter objects by searching for a specific name in the registered
filter collection (the filter collection is available from the !MediaControl.RegFilterCollection
property), and calling the !RegFilterlnfo.Filter method when it finds the specific filter to add:

add all non-source filters from the collection of registered filters
Set g_objRegFilters = g_objMC.RegFilterCollection

use the local subroutine AddFilter to find the filter named
"AVI Decompressor" in the collection, and set the variable pDECFilter

AddFilter "AVI Decompressor", pDECFilter

The Add Filter subroutine of the application loops through all the filters present in the
collection. When the names match, it calls the !RegFilterlnfo.Filter method to add the filter to
the filter graph:

Private Sub AddFilter(FName As String, f As IFilterinfo)
call IRegFilterinfo.Filter

Set LocalRegFilters = g_objMC.RegFilterCollection
Dim filter As IRegFilterinfo
For Each filter In LocalRegFilters

If filter.Name = FName Then
filter.filter f
Exit For

End If
Next filter

The application calls similar code for the AV! Compressor, AV! Splitter, Video Renderer, and
Audio Renderer filters. After obtaining all the filter objects, the application uses the
!Filterlnfo.Pins property to find specific pin objects. The code loops through all pin objects in
the collection, searching for the specific pin names and setting the individual pin objects when
they are found, as shown in the following code fragment.

' Get the source filter pin we need to build the graph
For Each pPin In pSourceFilter.Pins

Debug.Print pPin.Name
If pPin.Name = "Output" Then

Set SourceoutputPin = pPin
End If

Next pPin

'Add DEC filter
AddFilter "AVI Decompressor", pDECFilter
'Print out list of pins on decompressor filter
For Each pPin In pDECFilter.Pins

Debug.Print pPin.Name
' save specific pins to connect them
If pPin.Name = "XForm In" Then

Set DECinPin = pPin
End If
If pPin.Name = "XForm out" Then

Set DECOutPin = pPin
End If

Next pPin

'Add AVI Splitter
AddFilter "AV! Splitter", pAVISplitter
'Print out list of pins on decompressor filter
For Each pPin In pAVISplitter.Pins

174

DirectShow Basics

Debug.Print pPin.Name
' save specific pins to connect them
' pin o, pin 1
If pPin.Name = "input pin" Then

set SplitterinPin = pPin
Elseif pPin.Name = "Stream 00" Then

Set SplitterOutOOPin = pPin
Elseif pPin.Name = "Stream 01" Then

set SplitteroutOlPin = pPin
End If

Next pPin

Page 35 of 62

After initializing the eight pin objects, it is a simple matter to call the IPininfo.Connect method
to establish the four connections between them. The following code fragment demonstrates the
connection calls.

' connect the pins
' Note: error handling omitted for brevity
'Connect source video output pin to AVI splitter input pin

SourceOutputPin.Connect SplitterinPin
' connect AVI splitter stream oo to AVI decompressor

SplitteroutOOPin.connect DECinPin
' Connect AVI splitter stream 01 to audio renderer

SplitteroutOlPin.connect AudioRendinPin
'Connect AVI decompressor output pin to Video renderer input pin

DECOutPin.Connect VidRendinPin

You can establish the connection from either pin; after a successful call to the Connect
method, you can access the connection information from either pin object.

Summary

In summary, this article discussed the use of the following DirectShow objects, properties, and
methods.
Task
Create a new, empty filter
graph.

DirectShow properties or methods
Set objMediaControl = New FilgraphManager.

Generate the complete filter Call the IMediaControl.RenderFile method.
graph for a specific file.
Add a source filter. Call the IMediaControl.AddSourceFilter method.
Add a renderer or transform Get the IReqFilterinfo objects using the
filter. IMediaControl.ReqFilterCollection property; call the

I Reg Fi lterI nfo. Filter method.
List the pins of a filter Get the IPininfo objects using the IFilterinfo.Pins property.
object.
Explicitly connect two pins. Call the IPininfo.Connect method.
Create all connections from Call the IPininfo.Render method.
the pin to the renderer
filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM

175

Topic Contents i@l§ii!¥M

DirectShow Basics Page 36 of 62

+pi§lii.i!i A 11!.l::ifi Topic Contents

Controlling Filter Graphs Using Visual Basic

This article describes how to use the methods, events, and properties exposed by the
Microsoft® DirectShow"' dynamic-link library, Quartz.di!, to render a stream of time-stamped
video data in applicatiOns based in Microsoft Visual Basic®. This article is written for the Visual
Basic developer who is already familiar with Windows®·based application programming,
Windows-based multimedia programming, and Automation features of the Visual Basic
programming system version s.o.

Contents of this article:

• DirectShow Filters and Filter Graphs
• DirectShow Interfaces. Visual Basic Objects. and Registering Quartz.di!
• The VBDemo Sample Application

c Installing tM Files
c Registering Quartz.di! with Visual Basic
c Preoaring to Use the DirectShow Objects
c Instantiating the Filter Graph
c Rendering Video
c Controlling Aud iO
c Scaling and Translating the Video Output
c Tracking Status
c Getting and Setting the Start Position
c Getting and Setting the Rate
c Cleaning Up

DlrectShow Filters and Filter Graphs

When multimedia is displayed in an application by using Quartz.di!, the application is using a
collection of objects called filter$; this coUectiOn is sometimes called a filter graph. The
following diagram depicts a filter graph that is capable of rendering an audio-video interleaved
(.avi) file.

AV!
~

AV! ,.... Video
source codec renderer

'>
Audio

renderer

In this illustration, the AVI source filter reads the file from disk. The AVI decompressor filter
(codec) decompresses the video data as it is passed from the source filter. The codec filter
then passes this data to the video renderer. The video renderer, in tum, passes the data to the
device in a format that the device understands. The AVI source filter passes the audio data
directly to the audio renderer, which, in turn, passes the data to the audio device.

176

DirectShow Basics Page 37 of 62

In addition to filters, DirectShow supports an Automation object called the filter graph
manager. This object knows about the available filters and understands which filter types are
required to render which file formats. The filter graph manager exposes the methods, events,
and properties supported by the filters in a given graph. The filter graph manager also exposes
its own set of methods, events, and properties. These are exposed by using interfaces, which
are simply couectiOns of related methods, events, and properties.

The following table identifies the DirectShow interfaces available in Quartz.di! for use with
Visual Basic-based applications, and describes the purpose of each interface.
Interface Descriptl<1n
IAMCoUection Accesses pin and filter collections.
IBasicAudio Controls and retrieves current volume setting.

Controls a generic video renderer. IBasjcVideo

Ifi!terinfo
IMediaControl

Retrieves information about a filter and about pin objects in the filter.
Instantiates the filter graph and controls media flow (running, paused,
stopped).

IMediaEvent Allows customized event handling for events such as repainting, user
termination, completion, and so on.

IMediaPosition Controls and retrieves start time, stop time, rate, and current position.
IMediaTupeinfo Retrieves the media type and subtype.
IPininfo Accesses pin information, such as pin direction and media type, and controls

pin connection, disconnection, and rendering.
IRegfi!terinfo Contains information about registered (transform and render) filters.
IVideoWindow Controls window aspects of a video renderer.

DlrectSh<1w Interfaces, Visual Basic Objects, and Registering Quartz.(111

To use the DirectShow interfaces in your Microsoft Visual Basic-based application, you must
register the ActilleMovie Control type library in your ViSual Basic project.

When you register the ActiveMovie Control type library by using the Visual Basic References
dialog box, you are identifying the type library that contains the Automation information that
Visual Basic requires. The following mustration shows the References dialog box.

Available References:

121 Visual Basic For Applications
121 Visual Basic objects and procedures
121 Microsoft Windows Common Controls
121 Microsoft Common Dialoa Control
181a " I I I I I

D Standard OLE Types
D Office Binder 1.0 Type Library.
D Microsoft Office 95 Object Library
D Microsoft Graph 5.0 Object Library
D Microsoft Excel 5.0 Object Library
D Microsoft DAO 3.0 Object Library
D Microsoft DAO 2.5/3.0 Compatibility Library
D Microsoft Access for Windows 95
D Visual Basic For Applications
• 1

Cancel

~rowse ...

-
Priority

t!elp

177

DirectShow Basics Page 38 of 62

- ~,o;cuveMov1e conuo1cype11orarv==.,------------,,.==1:~1

Location: C:\WINDDWS\SYSTEM\quartz.dll

Language: Standard

Once the type library is registered, you can use the Object Browser dialog box to view the list
of methods, events, and properties associated with a given interface.

Quartz T ypelib · ActiveMovie control type library

!;lasses/Modules:

FilgraphManager
IAMCollection
IBasicAudio
IBasicVideo
IFilterlnfo
IMediaControl
IMediaE vent
IMed10Pos1hon
I Media T ypelnfo
IPinlnfo
IRegFilterlnfo
IVideoWindow

Methods/Properties:

CunentPosition
Duration
PrerollTime
Rate
Stop Time

faste

Clos~

l:!elp

Note The type information in the filter graph manager is organized by interface, rather than
object.

The VBDemo Sample Application

This section is based on the VBDemo sample application, which enables the user to do the
following:

• Choose an DirectShow file (.avi, .mpg, or .mov).
• Display a simple toolbar that lets the user play, pause, or stop the rendering.
• Display the length of the video and the elapsed time.
• Display start position and run rate.
• Display a volume control and a balance control.
• Position the destination window (a shape control} below au other controls in the main

form.

The applicatiOn, when running a file, appears as follows:

178

DirectShow Basics

-. OirectShow Visual Basic S ~ File
II Video-----­

~.~~~=.

Play

Volume

' :ti
Min Max

Install Ing the Flies

Page 39 of 62

ample llll~D

Length (Sec): -Elapsed Time (Sec): -Start position (Sec): -Playback speed: -- Balance

' ' :d. ' . ' '

.
Left Right

Before using the DirectShow objects in your Visual Basic-based application, you must install
QU11rtz.dll in the Windows\System directory and ensure that the appropriate entries are made
in your system's registry database. Currently, the DirectShow Soft•Nare Development Kit (SDK)
setup program automates this process. To install, start Setup.exe and choose the Runtime
option. The dyn11mie-link library (DLL) will be copied to the correct location, and the registry
wm be automatically updated.

Registering Quartz.di! with Visual Basic

Open the Visual Basic application and choose the References command from the Tools menu to
verify thilt the files were installed succesfully. (At startup, Visual Basic examines the registry
database for registered automation controls and adds their n11mes to the list thilt appears in
this dialog box.) To use the filter graph man11ger, click the box that appears next to the
ActiveMovie Control type library name.

Once Visual Basic registers the type information, you can use the filter graph manager and its
associated interfaces in your application.

Preparing to Use the DlrectShow Objects

Visual Basic initializes all objects in the VBDemo sample program using the FilgraphMan11ger

179

DirectShow Basics Page 40 of 62

object, which implements the following interfaces.

• IBasicAudio
• IBasicVideo
• !MediaControl
• I Media Event
• !MediaPosition
• !VideoWindow

Each of the interfaces is accessed by a Visual Basic programmable object defined to be of that
interface type. The objects in the sample application are defined as global variables in the
general declarations section, as shown in the following example.

Dim g_objVideoWindow As IVideoWindow
Dim g_objMediaControl As IMediaControl
Dim g_objMediaPosition As IMediaPosition
Dim g_objBasicAudio As IBasicAudio
Dim g_objBasicVideo As IBasicVideo

'VideoWindow Object
'MediaControl Object
'MediaPosition Object
'Basic Audio Object
'Basic Video Object

All the programmable objects are initialized using FilgraphManager, as shown in the following
example:

Set g_objMediaControl = New FilgraphManager
g_objMediaControl.RenderFile (g_strFileName)

Set g_objBasicAudio = g_objMediaControl
Set g_objVideoWindow = g_objMediaControl
Set g_objMediaEvent = g_objMediaControl
Set g_objMediaPosition = g_objMediaControl

' name of input file

The other interfaces available for use with Visual Basic-based applications are obtained by
calling methods that explicitly return the desired interface. The following table summarizes
how to obtain these interfaces.
Interface
IAMCollection

!Filterlnfo

Methods that return the interface pointer
!Pinlnfo. MediaTyoes, !Filterlnfo. Pins, !Med iaControl. FilterCollection,
I Med iaControl. Reg Fi lterCol lection
First !MediaControl.FilterCollection, then IAMCollection.Item or
!Pinlnfo. Filterlnfo

!MediaTyoelnfo !Pinlnfo.ConnectionMediaTyoe
!Pinlnfo !Filterlnfo.FindPin, IAMCollection.Item
!RegFilterlnfo First !MediaControl.RegFilterCollection, then IAMCollection.Item

For a sample that shows how to manipulate these filter and pin interfaces, see Constructing
Filter Graohs Using Visual Basic.

Instantiating the Filter Graph

You can use the filter graph manager to render existing files of the following types.

• .avi (audio-video interleaved)
• .mov (Apple® QuickTime®)
• .mpg (Motion Picture Experts Group)

180

DirectShow Basics Page 41of62

In addition, you can use the filter graph manager to render an existing filter graph by
specifying the file that contains that graph as a parameter to the RenderFile method.

Because the filters in a filter graph are dependent on the type of file being rendered, the
sample application does not instantiate a filter graph until the user selects a file. The code that
handles this selection is embedded in the procedure that opens the file, mnu_FileOpen. This
code displays the Show Open common dialog box and stores the selected file name in a
g_strFileName variable. After this, the code verifies that the correct file type was chosen.
Quartz.di! issues an error message if it is passed a file extension other than .mpg, .avi,
or .mov.

Once the g_strFileName variable is set, the application instantiates the filter graph manager
and creates the filter graph object. The filter graph manager is instantiated when the Visual
Basic keyword New is used to create the AUTOMATION object. The filter graph object is created
when the !MediaControl: :RenderFile method is called, as shown in the following example.

'Instantiate a filter graph for the requested
'file format.

Set g obJMediacontrol = New FileGraphManager
g_objMediaControl.RenderFile (g_strFileName)

Rendering Video

The !MediaControl interface supports three methods (Run,~, and fil®.) that an application
can call to render, pause, or stop a video stream. After the filter graph object is instantiated,
your application can call these methods.

The sample application displays a toolbar from which the user controls video rendering. When
the user clicks Run, the Run method is activated and a global Boolean variable (fVideoRun) is
set to True. This variable is used in a timer procedure that retrieves the current media position
(or elapsed rendering time). If the Pause or Stop button is clicked, this variable is set to False,
and the current media position is not retrieved during timer events.

The code that activates the Run, Pause, and Stoo methods is found in the
Toolbarl_ButtonClick procedure. The toolbar contains buttons that are numbered 1, 3, and 5;
the buttons numbered 2 and 4 are separators that provide additional space between the
buttons, as shown in the following example.

Private Sub Toolbarl_ButtonClick(ByVal Button As Button)
handle buttons on the toolbar
buttons 1, 3 and 5 are defined; 2 and 4 are separators
all Directshow objects are defined only if the user
has already selected a filename and initialized the objects

' if the objects aren't defined, avoid errors
If g_objMediaControl Is Nothing Then

Exit Sub
End If

If Button.Index= 1 Then 'PLAY
'Invoke the MediaControl Run() method
'and play the video through the predefined
'filter graph.

g_objMediaControl.Run

181

DirectShow Basics

g_fVideoRun = True

Elseif Button.Index= 3 Then 'PAUSE
'Invoke the MediaControl Pause() method
'and pause the video that is being
'displayed through the predefined
'filter graph.

g_objMediaControl.Pause
g_fVideoRun = False

Elseif Button.Index= 5 Then 'STOP

'Invoke the MediaControl Stop() method
'and stop the video that is being
'displayed through the predefined
'filter graph.

g_objMediaControl.Stop
g_fVideoRun = False
' reset to the beginning of the video
g_objMediaPosition.CurrentPosition = o
txtElapsed.Text = "0.0"

Controlling Audio

Page 42 of 62

The IBasicAudio interface supports two properties: the Volume property and the Balance
property. The Volume property retrieves or sets the volume. In the sample application, this
property is bound to the slider control slVolume. The Balance property retrieves or sets the
stereo balance. In the sample application, this property is bound to the slider control slBalance.

Note The volume is a linear volume scale, so only the far right side of the slider is useful.

The following example shows the code that adjusts the volume (by setting the
g objBasicAudio.Volume property) is found in the slVolume_Change procedure.

Private Sub slVolume Change()

'Set the volume on the slider

If Not g_objMediaControl Is Nothing Then
'if g_objMediaControl has been assigned

g_objBasicAudio.Volume = slVolume.Value

End If

End Sub

Scaling and Translating the Video Output

The IVideoWindow interface supports the methods and properties you can use to alter the size,
state, owner, palette, visibility, and so on, for the destination window. If you are not concerned
with the location or appearance of the destination window, you can render output in the default
window (which appears in the upper-left corner of the desktop) without calling any of these
methods or properties.

The sample application moves the destination window to a position below the other controls on
its main form. In addition to moving the window, the sample application alters the window

182

DirectShow Basics Page 43 of 62

style by removing the caption, border, and dialog box frame. To do this, set the
g objVideoWindow.WindowStyle property to Ox06000000. This corresponds to the logical OR
operation of the values WS_DLGFRAME (Ox04000000) and WS_VSCROLL (Ox02000000). For a
complete list of window styles and corresponding values, see the Winuser.h file in the
Microsoft® Platform SDK.

To move the destination window onto the form, specify a new position by setting the Too and
Left properties of g_objVideoWindow. The Top and Left properties are set to correspond to the
upper-left corner of a blank control with a rectangular shape, a placeholder of sorts, that
appears on the form. The ScaleMode property for the form was set to 3, which specifies units
of pixels. This allows the form properties and DirectShow object properties to be used without
conversion. The DirectShow object properties are also expressed in pixels. The default units for
a Visual Basic form are twips.

The sample application uses the left top of the placeholder rectangle, then resizes the shape
based on the size of the specified video. The application determines the required size of the
rectangle by retrieving the source video width and height. These values correspond to the
VideoWidth and VideoHeight properties of the g objBasicVideo object.

In addition to setting the Too and Left properties, it is necessary to identify the form of the
application as the new parent window by passing the window handle of the form, hWnd, to the
g objVideoWindow.Owner property. If the handle is not passed, the destination window will
appear relative to the desktop and not the form.

The following example shows the tasks that are accomplished in the mnu_FileOpen procedure.

Set g objVideoWindow = g objMediaControl
g_objVideoWindow.Windowstyle = CLng(&H6000000) ' WS_DLGFRAME I WS_VSCROLL
g_objVideoWindow.Left = CLng(Shapel.Left) ' shape is a placeholder on the for
g_objVideoWindow.Top = CLng(Shapel.Top)
Shapel.Width = g_objVideoWindow.Width resize the shape given the input vid
Shapel.Height = g_objVideoWindow.Height
g_objVideoWindow.owner = frmMain.hWnd set the form as the parent

The following example shows how the ScaleMode property is initialized in the Form_Load
procedure.

code fragment from the Form_Load procedure

frmMain.ScaleMode = 3 ' pixels

Avoid attempting to scale the destination window by setting the Width and Height properties
for the g objVideoWindow object, because performance suffers considerably.

Tracking Status

The g objMediaPosition object exposes a number of properties that you can use to retrieve or
set the current position, stop point, duration, and rate. When the user selects a file, the
sample application retrieves and displays the duration, starting position, and rate. The
corresponding code appears in the mnu_FileOpen procedure, as shown in the following
example.

Set g_objMediaPosition = g_objMediaControl
g_dblRunLength = g_objMediaPosition.Duration
txtDuration.Text = cstr(g_dblRunLength) ' display the duration

183

DirectShow Basics

g_dblStartPosition = o.o
txtstart.Text = CDbl(g_dblStartPosition)
g_dblRate = g_objMediaPosition.Rate
txtRate.Text = cstr(g_dblRate)

Page 44 of 62

' display the start time

The current position is also displayed, using a timer that is started when the user clicks Run.
When the user clicks Run, a global Boolean variable, g_fVideoRun, is set to True, indicating
that the program should retrieve and display the current media position, which is expressed as
the elapsed rendering time from the absolute beginning of the multimedia stream.

If Pause or Stop is clicked, the variable is set to False, and the current media position is not
retrieved. The corresponding code (which displays the current position) appears in the
Timerl_Timer procedure, as shown in the following example.

Private Sub Timerl_Timer()
'Retrieve the Elapsed Time and
'display it in the corresponding
'textbox.

Dim Dbl As Double

If g_fVideoRun = True Then
Dbl = g_objMediaPosition.CurrentPosition
If Dbl < g_dblRunLength Then

txtElapsed.Text CStr(Dbl)
Else

txtElapsed.Text
End If

cstr(g_dblRunLength)

End If
End Sub

Getting and Setting the Start Position

The sample application uses the !MediaPosition.CurrentPosition property to let the user adjust
the point at which the video begins rendering. If the user enters a new CurrentPosition and
then clicks Play, the video begins rendering at the frame whose timestamp is closest to the
requested time.

In addition to adjusting the starting time, the user can jump to new frames while the video is
rendering by specifying a new value in the corresponding text box and then pressing ENTER.

The code that handles the CurrentPosition property is found in the following example of the
txtStart_KeyDown procedure.

Private Sub txtstart_KeyDown(KeyCode As Integer, Shift As Integer)
' handle user input to change the start position
If Keycode = vbKeyReturn Then

If g_objMediaPosition Is Nothing Then
Exit Sub

Elseif CDbl(txtstart.Text) > g_dblRunLength Then
MsgBox "Specified position invalid: re-enter new position."

Elseif CDbl(txtstart.Text) < o Then
MsgBox "Specified position invalid: re-enter new position."

Elseif CDbl(txtstart.Text) <>""Then
g_dblStartPosition = CDbl(txtstart.Text)
g_objMediaPosition.CurrentPosition g_dblStartPosition

End If
End If
End Sub

184

DirectShow Basics Page 45 of 62

Getting and Setting the Rate

The sample application uses the IMediaPosition.Rate property to let the user adjust the rate at
which the video is rendered. This rate is a ratio with respect to typical playback speed. For
example, a rate of 0.5 causes the video to be rendered at one-half its typical speed, and a rate
of 2.0 causes the video to be rendered at twice its typical speed.

Unlike the CurrentPosition property, which can be set while the video is being rendered, the
Rate property must be set prior to rendering.

Note The sound track can be disabled for some videos when the rate is less than 1.0.

The code that handles the .B.a..re property is found in the following txtRate_KeyDown procedure.

Private Sub txtRate_KeyDown (KeyCode As Integer, Shift As Integer)
' Directshow VB sample
' handle user updates to the Rate value
If Keycode = vbKeyReturn Then

If g_objMediaPosition Is Nothing Then
Exit sub

Elseif CDbl (txtRate.Text) < O# Then
MsgBox "Negative values invalid: re-enter value between o and 2.0"

Elseif CStr(txtRate.Text) <> "" Then
g_dblRate = CDbl (txtRate.Text)
g_objMediaPosition.Rate g_dblRate

End If
End If
End sub

Cleaning Up

Each time your application uses the Visual Basic Set statement to instantiate a new
DirectShow object, it must include a corresponding Set statement to remove that object (and
its corresponding resources) from memory prior to shutdown. For example, in the
mnu_FileOpen procedure, a new q obiBasicAudio object is instantiated with the following
syntax.

set g_objBasicAudio = g_objMediacontrol

When the user selects Exit from the File menu, a corresponding Set statement removes this
object:

set g_objBasicAudio = Nothing

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11¥8

• QIM [.] +• I !!·HM Topic Contents l@i§il/¥8

List of Filters and Samples

185

DirectShow Basics Page 46 of 62

Microsoft® DirectShow™ provides filters and samples as part of the DirectShow Software
Development Kit (SDK). The filters are supplied as binary code only and are listed among the
filters available in the Filter Graph Editor when you choose Insert Filters from the Graph
menu. A sample filter includes source code and you must build and register it before it will
appear in the Filter Graph Editor. In addition to sample filters, the SDK contains sample
applications that demonstrate how to use filters.

See the following sections for a list of filters, sample filters, and sample applications supplied
with DirectShow:

• Filters
• Sample Filters
• Sample Applications

Filters

The DirectShow SDK provides the following filters:

• ACM Audio Compressor
• Analog Video Crossbar
• Audio Capture
• Audio Renderer
• AV! Compressor
• AV! Decompressor
• AV! Draw
• AV! MUX
• AV! Splitter
• AVl/WAV File Source
• Color Space Converter
• Cutlist File Source
• DSound Audio Renderer
• DV Muxer
• DV Splitter
• DV Video Decoder
• DV Video Encoder
• DVD Navigator
• File Source (Asyncl
• File Source (URL)
• File Stream Renderer
• File Writer
• Full Screen Renderer
• Indeo 4.3 Video Compression
• Indeo 4.3 Video Decompression
• Indeo 5.0 Audio Decompression
• Indeo 5.0 Video Progressive Download Sources
• Indeo 5.0 Video Compression
• Indeo 5.0 Video Decompression
• Internal Script Command Renderer

186

DirectShow Basics Page 47 of 62

• Line 21 Decoder
• Lyric Parser
• MIDI Parser
• MIDI Renderer
• MPEG Audio Decoder
• MPEG Video Decoder
• MPEG-1 Stream Splitter
• Multi-File Parser
• Overlay Mixer
• OuickTime Decompressor
• OuickTime Movie Parser
• SAM! CCC) Parser
• TrueMotion 2.0 Decompressor
• TV Audio
• TV Tuner
• VFW Video Capture
• VGA 16 Color Ditherer
• Video Renderer
• WAVE Parser
• WDM Video Capture

Sample Filters

The DirectShow SDK provides the following sample filters:

• Async Sample (Asynchronous Reader Filter)
• Ball Sample (Bouncing Ball Filter)
• Contrast Sample (Video Contrast Filter)
• Dump Sample (Dump Filter)
• EzRGB24 Sample (Image Effect Filter)
• Gargle Sample (Gargle Filter)
• Inftee Sample (Infinite-Pin Tee Filter)
• MPGAudio Sample (MPEG Audio Decoder Filter)
• MPGVideo Sample (MPEG Video Decoder Filter)
• Nullip Sample (Null In Place Filter)
• Nullnull Sample (Minimal Null Filter)
• Scope Sample (Oscilloscope Filter)
• Synth Sample (Audio Synthesizer Filter)
• SampVid Sample (Video Renderer Filter)
• TextOut Sample (Text Display Filter)
• Vcrctrl Sample (VCR Control Filter)
• VidCap Sample (Video Capture Filter)

Sample Applications

The DirectShow SDK provides the following sample applications:

• AMCap Sample (DirectShow Capture Application)
• CL Text Sample (Text Cutlist Application)
• CPlay Sample CC/COM-based Media Player Application)

187

DirectShow Basics Page 48 of 62

• Dvdsampl Sample <DVD Player Application)
• InWindow Sample <Window Playback Application)
• !Play Sample <Indeo Player Application)
• MFCPlay Sample <C+ +/COM-based Media Player Application)
• MPEGProp Sample (MPEG Property Page Display Application)
• Play File Sample <Sim pie Playback Application)
• PID Sample (plug-In Distributor Application)
• ShowStrm Sample <Multimedia Streaming Application)
• Simp!ecl Sample <Cut!ist Application)
• VidClip Sample <Video Editing Application)
• Visual Basic-Based ActiveX Player
• Visual Basic-Based Filter Graph Builder
• Visual Basic-Based Filter Graph Player
• Visual Basic-Based Player

8 41411·!11* 1 11·'"'* T op1c Contents

Topic Contents

About the DirectShow Filter Graph Editor

The Microsoft:® DirectShow'" SDK provides the Filter Graph Editor tool (also referred to as
"Graphedt.exe" or "GraphEdit") that you can use to create, edit, and save filter graphs. This
article introduces GraphEdit, and discusses the purpose of the buttons on the GraphEdit
toolbar in About the GraphEdit Toolbar. See Using the Filter Graph Editor for detailed
information about how to use GraphEdit.

The DirectShow architecture uses filter graphs to manage multimedia streams in Microsoft
Windows® 95 and Microsoft Windows NT®. A filter graph consists of a set of filters connected
in sequence; the sequence typically includes a source filter reading from a media file, a
transform filter, and a renderer, although your graph wm vary depending on its purpose. A
graph to play a media file with video and audio typically includes a source filter, a stream
splitter, a video decompression filter, and appropriate renderers. The following screen shot
shows a filter graph in GraphEdit that includes both audio and video streams.

Output
C:\dolphin.avi

.- input pin Stream 01
AVI Splitter

Stream 00

188

- Audio Input pin (rendered)
Default WaveOut Device (!)

DirectShow Basics Page 49 of 62

i XForm In XForm Out i-.; . Input
AVI Decompresser Video Rendere

Ready I ...

GraphEdit helps you visualize a filter graph as shown in the preceding screen shot. A rectangle
represents a filter, with tiny attached squares representing pins. Pins are key to understanding
DirectShow, from format negotiation to data transportation. Arrows joining the pins represent
data flow paths, much like a pipe directs the flow of water. GraphEdit displays input pins on
the left side of the filter's rectangle and output pins on the right side. Output pins might not be
present until you connect an input pin. Input pins only connect to output pins, and vice versa.

GraphEdit indicates the audio renderer that provides the clock for the filter graph by a small
yellow-filled clock symbol within the audio renderer's rectangle. You can disable the clock by
canceling the selection of Use Clock on the Graph menu. Graphs without clocks play the
audio and video streams as fast as possible, independently of each other.

The following filter graph plays back audio from the Audio Synthesizer source filter (Syn th}.
Sy nth generates its own audio data rather than reading data from a file. The audio renderer's
clock is enabled in thiS filter graph.

fl · Untitled · Filter Graph Editor

.Eile Edit ~iew !lraph lfelp

Audio Synth Stream
Audio Synthesizer "' Input

Ready

Infinite Pin Tee Filter

Output1Jl.7-- >H . . Audio Input pin (rendered)

Output2

Output3

Default WaveOut De

~ Scope Input Pin
Oscilloscope

The following filter graph is one of the simplest possible filter graphs. The Bouncing Ball source
filter generates video data and the video renderer filter displays it.

189

DirectShow Basics Page 50 of 62

fr . Untitled - Filter Graph Editor \l!!I~ f3

A Bouncing Ball! IG--~- Input
Bouncing Ball Video Renderer

Ready

About the GraphEdlt Tool bar

GrophEdit's toolbar appears beneath the menu bar. It provides shortcut commands for opening
new filter graphs, saving the current filter groph, and playing, pausing, or stopping the
multimedia source file. You can display or hide the toolbar by clicking Tool bar on the View
menu.
Button Effect

fill
~
~
~
El
~
~
[!!]

Creates a new, empty filter graph.

Opens an existing multimedia source file or an existing filter graph (.grf) file.

Saves the current filter graph as a filter graph (.grf) file.

Prints the current filter graph.

Plays the multimedia source using the current filter graph.

Pauses play of the multimedia source.

Stops play of the multimedia source.

Displays Help information for GrophEdit.

Topic Contents

8 41411·!11* 1 11·'"'* T op1c Contents

Using the Filter Graph Editor

This article steps through how to open and use the filter Graph Editor (GraphEdit) to create
filter graphs and to play them back. See About the DirectShow filter Graph Editor for an
introduction to Graph Ed it.

190

DirectShow Basics Page 51of62

Contents of this article:

• Starting GraphEdit
• Creating a New Filter Graph
• Running and Editing a Filter Graph
• Viewing Properties in GraphEdit

Starting GraphEdit

Start GraphEdit in one of the following ways.

• Click Start, and then point to Programs. On the DirectX Media SDK version 5.x
submenu, click GraphEdit.

• Open the DXMedia\Tools folder (assuming the default installation directory for the
DirectX media SDK) and double-click the Graphedt icon.

• Drag and drop a multimedia file, such as .avi or .mpg, onto the Graphedt icon.

Creating a New Filter Graph

This section discusses ways to create a new filter graph using GraphEdit. It contains the
following topics:

• Drag Files Onto GraphEdit
• Use the Open Command
• Use the Render Media File Command
• Manually Build a Filter Graph

Drag Files Onto GraphEdit

If GraphEdit is not running, you can drag a multimedia file, such as .avi or .mpg, onto the
Graphedt icon and GraphEdit will run and automatically build the filter graph for the media file.

If GraphEdit is already running, drag a multimedia file into its client area to have it
automatically build the filter graph.

Use the Open Command

Choose the Open command from the GraphEdit File menu, or choose the Open button from
the GraphEdit toolbar, to open a media file or saved filter graph file (.grf). GraphEdit
automatically generates the complete filter graph.

Use the Render Media File Command

You can use the GraphEdit Render Media File command to automatically generate the
complete filter graph for a multimedia source.

To generate a complete filter graph for a given source file perform the following steps:

1. On the File menu, click Render Media File.
2. From the "Select a file to be rendered" dialog box, choose a multimedia source file, such

191

DirectShow Basics Page 52 of 62

as a .avi, . mpg, or .wav file.
3. Click Open.

GraphEdit adds and connects all filters needed to render the source file automatieally.

Manually Build a Fiiter Graph

To create an empty filter graph and manually add filters and connections, p4)rform tM
following steps. This example assumes you want to play a file from your hard diSk.

54le About the DirectShow Filter Graph Editor for information about how GraphEdit represents
filters, pins, and connections graphieally.

1. On the File menu, click New to create a new filter graph.
2. On the Graph menu, click Insert Filters. GraphEdit displays the "Which filters do you

want to insert'" dialog box, which contains a list of filter categories.
3. Click the plus symbol(+) immediately to the left of the DirectShow Filters category to

see the drop-down liSt of filters. The plus symbol becomes a minus symbol () when the
list is expanded, as the following mustration shows. Click the minus symbol to contract
the list.

: Which filte1s do you want to insert? l!l!E f3

It!·· Audio Capture Sources
~·· Audio Compressors
~·· Audio Renderers
EJ .. DirectShow Filters
. ' ACM Wrapper

j Audio Synthesizer
1 AVI Decompressor
i AVI Draw

i .. AVI Splitter
i AVl/WAV File Source
1 Color Space Converter
: Cutlist File Source

Insert filters

Close

4. 54llect File Source (Async) from the filter liSt (scrolling if necessary) and click the Insert
Fiiters button. Because the Asynchronous File Source filter requires an input file,
GraphEdit diSplays the "Select an input file for thiS filter to use" dialog box.

S. 54llect a multimedia file that you have on your hard disk (for this example, assume you
chose a file called Jupiter.avi). Click the Open button. GraphEdit inserts a rectangle
labeled Jupiter.avi in its client area. This rectangle represents the Asynchronous File
Source filter and has a small square attached to its right side, labeled Output, which
represents the filter's output pin.

6. At thiS point, you could right-click the Async filter's output pin and choose Render from
the resulting shortcut menu to have GraphEdit render the rest of the filter graph for you
automatieally. Instead, continue by inserting a few more filters manually. From the
"Which filters do you want to insert'" dialog box, select the AVI Splitter filter. Like the
File Source (Async) filter, this filter is liSted in the DirectShow Filters category. Click
Insert Fiiters and GraphEdit inserts the AVI Splitter filter in its client area. This filter
has one input pin, shown by a small square attached to the left side of the AVI Splitter
filter rectangle.

192

DirectShow Basics Page 53 of 62

7. Connect the Async File Source filter to the AV! Splitter filter as follows.
1. Click the Async filter's Output pin and drag to the AV! Splitter's input pin.

GraphEdit creates an arrow representing the connection between the filters, and
moves the arrow in response to the dragging operation.

2. Release the mouse button when the tip of the arrow head is over the small square
representing the AV! Splitter's input pin. The interior of the pin's square turns
black when the arrow head is in a valid location. After you've connected these
filters, the AV! Splitter filter sprouts one output pin for each stream in the file. If
Jupiter.avi contains an audio stream and a video stream, the pins will be labeled
Stream 01 and Stream 00.

8. At this point, you could right-click each of the AV! Splitter's output pins in turn and
choose Render to have GraphEdit render the rest of the filter graph for you
automatically. Instead, continue by inserting one more filter manually. From the "Which
filters do you want to insert?" dialog box, open the Audio Renderers filter category by
clicking on the plus symbol(+) immediately to the left of the Audio Renderers label.
Select a default audio renderer (for example, the Default WaveOut Device or Default
DirectSound Device if available) and click the Insert Filters button.

9. Connect the AV! Splitter's Stream 01 output pin by dragging from that pin and releasing
the mouse button when the arrowhead is over the input pin of the audio renderer.

10. You could continue to insert filters manually, much in the same way that you have so far.
Instead, right-click the AV! Splitter's Stream 00 output pin and choose Render to have
GraphEdit build up the rest of the filter graph for you automatically.

Running and Editing a Filter Graph

After you've built a filter graph as outlined in Creating a New Filter Graoh, you can play or
pause the filter graph. To do so, select Play or Pause from the GraphEdit Graph menu.

Play plays the filter graph. If the graph includes the video renderer filter, any video data (such
as a movie), plays in the video renderer window. If the filter graph includes an audio renderer,
any sound associated with the movie plays as well. Pause cues up data in the filter graph and
displays the first frame of video data, enabling playback to happen quickly if you later select
Play. When the filter graph is playing or paused, you can select Stop from the Graph menu to
stop playback.

You can also play, pause, or stop the filter graph by choosing the appropriate buttons from the
GraphEdit toolbar. See About the GraohEdit Toolbar for more information.

You can edit the filter graph when it is stopped. Select either a filter or connection between
filters by clicking the filter or connecting arrow. GraphEdit highlights the object by placing a
blue border around it. You can highlight multiple objects at once by clicking outside an object
and dragging diagonally to create a selection rectangle. When you release the mouse button,
objects contained within the selection rectangle are highlighted. Press the DELETE key to delete
a highlighted object or group of objects. Insert new filters by choosing Insert Filters from the
Graph menu, and make new connections as outlined in Manually Build a Filter Graoh.

You can drag filters in the GraphEdit client area if you want to reposition them. You might want
to do this to make the filters fit on one screen without scrolling.

Viewing Properties in GraphEdit

GraphEdit enables you to view the properties of filters, pins, and connections. To view the
properties of an object such as a filter, right-click the filter and choose Properties from the
resulting shortcut menu. The options provided by a property sheet vary depending on the

193

DirectShow Basics Page 54 of 62

filter, pin, or connection. Typically, the property sheet for a filter includes tabs for its pins.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents 1@1§111$8

COM Overview

The Component Object Model (COM) is a binary standard that defines how objects are created
and destroyed and, most importantly, how they interact with each other. As long as
applications follow the COM standard, different applications from different sources can
communicate with each other across process boundaries. People use COM to make
communication with other applications easy.

Because COM is a binary standard, it is language independent. You do not have to use C++ to
implement COM. You can use any language that supports tables of function pointers.

A COM interface is a collection of logically related methods that express a single functionality.
For example, the IAsyncReader interface enables reading of MEDIATYPE_Stream data. All COM
interfaces derive from IUnknown, and all are named by a globally unique interface identifier
(IID).

A COM class is an implementation of one or more COM interfaces, and a COM object is an
instance of a COM class. A Microsoft® DirectShow™ filter, for example, is a COM object. Each
object has a globally unique class identifier (CLSID).

Globally unique identifiers (.G..U..ID.s) are extremely long integers that identify COM interfaces
and objects, and are used to eliminate name collisions across applications.

All access to a COM object is through pointers to its interfaces. Interface methods are purely
virtual and are stored in a table called a vtable. The interface pointer points to the vtable's
beginning. A COM interface defines the parameter types and the syntax for each of its
methods. The COM class provides an implementation for each method of the interface.

Once a COM class has been defined and assigned a CLSID, you can create an instance of the
object. There are several ways to create an instance of the class, including using the COM
CoCreateinstance or IClassFactory: :Createlnstance methods, or the C++ new operator.

When you create an instance of an object, the call returns a pointer to one of the object's
interfaces. Once you have an initial pointer to an interface on the object, you can use the
IUnknown: :Querylnterface method to find out whether the object supports another specific
interface, and, if so, to get a pointer to that interface. COM supplies many standard interfaces
that support data storage and transfer, notification, and basic connectivity with other objects,
including IStream, IPropertyPage, and IMoniker. DirectShow, in turn, adds its own COM
interfaces, such as IAMDirectSound, that clients of DirectShow objects can query for to
determine if the object supports a particular functionality. To use COM interfaces, clients must
know the interface definitions and the IID to query for (IID_interfacename). For example,

194

DirectShow Basics Page 55 of 62

assume you have a pointer to a COM object's !Unknown interface in the pUnknown variable.
You can query to see if the object supports IAMDirectSound with the following code.

hr=pUnknown->Queryinterface(IID_IAMDirectsound, (void **)&pIAMDSound);

IUnknown is the basic COM interface on which all others are based. !Unknown has three
methods-Queryinterface, AddRef, and Release-that implement interface querying and
reference counting. All COM interfaces inherit these three methods from !Unknown.

Reference counting is the technique by which an object (or, strictly, an interface) decides when
it is no longer being used and can therefore destroy itself. COM objects are dynamically
allocated from within the object and multiple clients can use them simultaneously. To avoid
wasting memory, the COM object must keep track of the number of clients using it, and
destroy itself when clients no longer need it. The number of clients using the object is
maintained in the reference count. Every time a new interface pointer to the COM object is
created, the client using the object must increase the reference count by calling AddRef on the
interface pointer. Every time a client destroys an interface pointer to the object, it must first
decrease the reference count by calling Release on the interface pointer.

Binding associates a method with a pointer to its memory location. At compile time, a COM
object's client is bound to the vtable locations of the object's interface methods. This is called
early binding. With some languages, such as Microsoft® Visual Basic®, a vtable interface is
difficult to access. Dispatch interfaces, identified by dispatch identifiers (DISPIDs), allow clients
to access member functions not by position in a vtable, but by a human-readable name.
Dispatch interfaces are accessed through the COM IDispatch interface and its Invoke method,
which converts the names of the dispatch interface's functions to DISPIDs. The client retrieves
the DISPIDs at run time. This is called late binding. To allow late binding, a COM object must
implement the !Dispatch interface and a mapping of function names and function parameters
to a set of DISPIDs. In DirectShow, CBaseDispatch implements the !Dispatch interface.

Marshaling is the process of passing function arguments and return values among processes
and machines. An in-process proxy packages arguments for the member function of an object
in another process, and generates a remote procedure call to the other process. In the other
process, a stub receives the call and unpacks the data, and calls the object through its
interface. Dispatch interfaces do not need proxies and stubs and so are easier to use than
vtable interfaces in out-of-process applications. Vtable interfaces, however, can be
considerably faster, particularly in in-process applications. You can also write dual interfaces
that have both tables of function pointers and dispatch interfaces. Dual interfaces can be
nearly as fast as vtable interfaces, while allowing the flexibility of dispatch interfaces.

For more information about how DirectShow uses COM, see DirectShow and COM. For general
information about COM, see the "COM" section in the Microsoft Platform SDK, or an
introductory book such as ActiveX OLE by David Chappell.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]jj,+ 111.1 1119 Topic Contents 1@1§11!¥+

195

DirectShow Basics Page 56 of 62

Overview of DVD Interfaces and Data Types

This article provides an overview of the DVD interfaces and data types used in Microsoft®
DirectShow™.

Contents of this article:

• DVD Application-Level Interfaces
• DVD Decoder Filter Interfaces
• DVD Filter Graph Media Types, Formats, and Events

DVD Application-Level Interfaces

The following list shows DVD interfaces that media developers can use to create applications.

IAMLine21Decoder
Provides access to closed captioning information and settings. Closed captioning
information is transmitted in the vertical blanking interval (VB!) of television signals,
specifically on line 21 (Line21) of field 1 in the VB!.

!DvdControl
Controls the playback and search mechanisms of a DVD-Video disc that contains one or
more video movies.

!DvdGraohBuilder
Enables the DVD application writer to easily build a filter graph for DVD-Video playback.

!Dvdlnfo
Enables an application to query for attributes of available DVD-Video titles and the DVD
player status. This interface also allows for control of a DVD player beyond Annex J in the
DVD specification.

!MixerPinConfig
Exposed on the input pins of overlay mixer filters and contains methods that manipulate
video streams in various ways. The overlay mixer filter contains multiple input pins that
are dynamically created as video input streams are added.

DVD Decoder Filter Interfaces

The following list shows DVD interfaces that developers can use to set and retrieve device and
sample properties.

!KsProoertySet
Enables you to set and retrieve device properties. Use this interface to set and retrieve
any of the properties from the following list.

• DVD Copy Protection Property Set - These properties provide authentication of
copy protection information from hardware or software decrypters.

• DVD Subpicture Property Set - These properties control the color, contrast, and
output of the subpicture display.

• DVD Time Stamp Rate Change Property Set - These properties enable you to
change DVD playback rate, by modifying timestamps between input and output
pins on two filters.

!MediaSamole2
Enables you to set and to retrieve sample properties. This interface is derived from the

196

DirectShow Basics Page 57 of 62

IMediaSample interface and uses the following data types:
• AM MEDIA TYPE structure - Describes a media sample type. This structure can

include the following substructures.
o VIDEOINFOHEADER2 structure - Describes the bitmap and color information

for a video image, including interlace, copy protection, and pixel aspect ratio
information.

o MPEG2VIDEOINFO structure - Describes an MPEG-2 video stream.
• AM SAMPLE PROPERTY FLAGS enumerated type - Indicates values for the

dwSampleFlags member of the AM SAMPLE2 PROPERTIES structure.
• AM SAMPLE2 PROPERTIES structure - Generic media sample properties structure.

IVPConfig
Enables a video port (VP) mixer filter to communicate with a VP driver (decoder), to set
and retrieve configuration information. This interface assumes that the mixer filter
creates the video port.

IVPNotify
Enables you to control the properties of a filter that uses a video port. This interface
derives from the IVPBaseNotify interface.

DVD Filter Graph Media Types, Formats, and Events

The following articles provide more information about DVD:

• DirectShow DVD Support - Provides a diagram of a DVD filter graph and outlines the
media types and data formats used in each connection.

• DVD Event Notification Codes - Describes DirectShow system-defined events, which
filters in the filter graph pass to the filter graph manager. Filters pass these events to the
filter graph manager by using the IMediaEventSink:: Notify method, and the application
retrieves them with the IMediaEvent: :GetEvent method.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •@M* 1gnw

MQi§1[.]1!,M 11!.HM Topic Contents i@faii!MM

About WDM Video Capture

This article provides an overview of video capture using the Microsoft® Windows® 98 and
Windows NT® Driver Model (WDM) and Microsoft DirectShow™. It describes the close
association between WDM video capture and DirectShow.

This article also briefly describes the close association between the Stream class and WDM
Connection and Streaming Architecture (CSA) and video capture minidrivers (which are clients
of the Stream class driver). However, you should have a basic understanding of these topics
before reading this article. For background information, see
http://www.microsoft.com/hwdev/pcfutu re/.

Contents of this article:

197

DirectShow Basics Page 58 of 62

• A Brief History of Windows Video Capture
• WDM Overview
• WDM Video Capture Architecture
• Filter Graph Configuration
• Conclusion
• New WDM Capture Interfaces and Filters

A Brief History of Windows Video Capture

Microsoft released Video for Windows 1.x in November 1992 for Windows 3.1 and optimized it
for capturing movies to disk. Since then, video capture rates have risen dramatically due to
use of the PC! bus, bus mastering controllers, NT striped sets, Fast/Wide SCSI, and direct
transfer of captured video from adapter memory to disk without data copies. Despite capture
rates that now exceed 20 MB per second, and a large number of clients for Video for Windows,
deficiencies in the Video for Windows architecture exposed by the emergence of video
conferencing required development of a new video capture technology.

The Video for Windows architecture lacks features important to video conferencing, television
viewing, capture of video fields, and additional data streams such as vertical blanking interval
(VB!). Vendors have extended Video for Windows by implementing proprietary extensions,
which are product specific, to circumvent these limitations. However, without standardized
interfaces, applications that use these features must include hardware-dependent code. The
tight coupling between Video for Windows capture drivers and display drivers means that
changes made to capture drivers require changes to display drivers as well.

In addition, the Video for Windows interface, AVICap, doesn't work well with DirectShow
because AVICap allocates buffers. If DirectShow is accessed through AVICap, the buffers
must be copied at the transition point, which is very inefficient. With the integration of digital
versatile disc (DVD), MPEG decoders, video decoders and tuners, video port extensions (VPE),
and audio codecs on single adapters, a unified driver model that supports all of these devices
and handles resource contention is needed.

WDM Overview

DirectShow supplies backward compatibility for Video for Windows applications without the
shortcomings of Video for Windows. WDM video capture aims to provide additional support for
the following: USB conferencing cameras, 1394 DV devices, desktop cameras, TV viewing,
multiple video streams support and VPE capture support. This support is provided through
kernel-based streaming.

WDM-based streaming extends the nonkernel streaming of DirectShow by providing a kernel
connection. Streaming services are processed by the WDM Streaming Class Driver and other
cross-process system software components. The WDM Streaming Class Driver is also
responsible for calling a minidriver, which is a hardware-specific dynamic-link library (DLL)
provided by IHVs to support device-specific controls. The minidriver and the Microsoft-provided
WDM Streaming Class Driver work together to provide low-level services for the lowest latency
streaming, and DirectShow provides the higher-level features specific for your application.
Because the Stream class supports a uniform streaming model for standard and custom data
types, and supports data transfer between kernel drivers without requiring a transition to user
mode, it is a highly efficient mode to use.

Previously, DirectShow filters transmitted data to and from the kernel whenever necessary to

198

DirectShow Basics Page 59 of 62

achieve things like decompression or rendering. Unfortunately, each of these transitions of the
data stream from user mode to kernel mode was time-consuming because of the transition
itself, and because of parameter validation, security validation, and possibly data copying, that
must occur.

Through kernel streaming, a stream makes fewer transitions between user and the kernel
mode. It can be either partially or entirely produced and consumed in kernel mode. When
streams are processed in kernel mode, the DirectShow filters merely expose control
mechanisms to direct the streams. This greatly reduces the overhead associated with
numerous transitions between modes.

Kernel streams can pass data to the filter graph at appropriate points, depending on the
application. The following diagram illustrates the transition to user mode.

Kernel Streaming

To OS filters Any ~f the strea.ms can

·~~~~ei t· ~~.~~~~~~r~;I)~;; ..
U.ncompressed Compressed Clos~d Timecode
video video caption --·.,. To other

KS filters

Stream class

Tuner,
Crossbar,

and Capture
minidrivers

During video capture, the stream class passes uncompressed video data back to the video
capture filter for writing or rendering. Also, because kernel streaming supports multiple
streams, other types of data contained in the stream, such as timecode or closed captioning,
could be passed up simultaneously.

WDM Video Capture Architecture

The following diagram shows the three basic components ofthe WDM capture architecture.

DirectShow filter graph ~ User mode

........... ~~;~~~·~1~.~·~;,;~;········· fi<ernei·;;;c;a•

Video capture minidriver ~

Because the WDM capture architecture was designed to integrate smoothly with DirectShow, it
is straightforward to build capture graphs in DirectShow by using WDM capture filters that
send control messages from DirectShow into the streaming class. The Ksproxy.ax, Kstune.ax,
and Ksxbar.ax filters, whieh are scheduled to ship in the Windows 95 Device Driver Kit (DDK},
enable WDM streaming data, such as data from Universal Serial Bus (USB) conferencing
cameras, 1394 DV devices, TV viewing, and desktop cameras, to be easily controlled and sent
by the Stream class to the DirectShow capture graph. The following diagram demonstrates how
these components are integrated into the basic architecture.

199

DirectShow Basics

User
Ke·rner··

Capture Components

Ks Tune
.ax

Tuner
minidriver

Provided by:
o Microsoft
OISV
OIHV

Applications

DirectShow filter graph

KsXbar KsCap
.ax .ax

Stream class

Crossbar Capture
mini driver minidriver

Other OS
filters

Tuner,
Crossbarj

and capture
minidrivers

Note: You can have three separate minidrivers or a
single minidriver that does everything,

Page 60 of 62

In this diagram, the Ksproxy.ax, Kstune.ax, Ksxbar.ax, and other DirectShow filters
communieate directly with the Stream class. The Microsoft WDM Stream class, through its
participation in CSA, transports high-bandwidth, time-stamped, latency-sensitive data streams
between kernel mode components or between kernel mode d livers and user-mode
components. Through CSA, the Stream class works well with DirectShow in that it shares
media types, has similar streaming states (Stop, Pause, and Run), and shares the same
concept of pins and connections. This provides an easy transition of data from the Stream class
to the filters in the filter graph.

The Ksproxy.ax, Kstune.ax, and Ksxbar.ax filters also have supporting mjojdrivMs (or one
minidliver that supports all three). Video capture minidrivers are clients of the Stream class
and control hardware devices that produce streams of video images and related data. These
minid livers provide the following functionality:

• capture of compressed and uncompressed video streams, vertical blanking interval data,
timecode, and ancillary data streams.

• Control of deviees associated with video streams such as TV tuners, video routing
devices, TV audio control, and video compressors.

• Compatibility with WDM·CSA.

Stream class video capture drivers can support multiple, simultaneous streams of compressed
and uncompressed video, timecode, closed caption, raw and decoded VBI data, as v.-eu as
custom data formats. For each data type that can be produced simultaneously with other data
types, the driver should create a new stream. The Stream class exposes each stream as a
separate WDM·CSA pin. Each stream can be connected to another WDM·CSA kernel filter, or it
can make the transition to user mode and flow on an output pin of a DirectShow user-mode
filter. Each stream (or pin) can support a variety of different formats. For example, a single pin
can provide RGB16, RGB24, YVU9, and JPEG digital video. For more information on
minidnvers, see the Windows 95 DDK.

Filter Graph Configuration

The association between DirectShow filters and CSA makes DirectShow filters a powerful and
relatively safe method for manipulating data from a kernel mode Stream class driVer. The
flexibility of DirectShow makes numerous configurations of filters possible. The following

200

DirectShow Basics Page 61 of62

diagram shows one possible con fig uratiOn of user-mode DirectShow filters for simultaneous
preview and capture of video to disk.

Capture Application

Coble
Antenna

S-Video

Compl

Comp2

0-
0-

' --
' --
'
' -

I IAMTuner

Tuner
filter ~

DirectShow Filter Graph

~) IAMCrossbar r IAMAnalogVideoDecoder
IAMVideoProcAmp
IAMCameraControl

Uncompressed video
Video

capture Compressed video

filter Timecode or CC

Crossbar
filter

Audio
capture

filter
Audio

VidetJ renderer
filter

AV! File mux writer filter filter

- S-Videol

- Compl -
In this diagram, an incoming TV signal can be tuned in with the Tuner filter and routed with
the Crossbar filter. The filter gr.iph passes data in various streams to the video or audio
capture filters to be saved on disk. This includes audio streams, video streams, and any other
ancillary data in various streams such as SMPTE timecode or closed captioning data.

Con<:l usion

WDM video capture was designed to resolve the problems inherent in the Video for Windows
architecture. The main advantages ofWDM video capture are:

• 32 bit drivers.
• Synergy between DirectShow and CSA.
• Single class driver architecture for hardware (such as video ports and chip sets) that is

shared between video capture devices and DVD/MPEG deviees.
• Television tuner, input selection, and support for fields, VBI, and video port extensions

(VPE}.
• One driver works on both Windows 95 and NT platforms.

Because ofthe large installed base of Video for Windows applications, Video for Windows
drivers wm continue to be used for devices that are primarily used for capturing movies.
Version 1. le of Video for w indov>1S currently ships in windows 95 to provide operating system
support for these devices. However, the WDM video capture architecture provides optima!
support for capture devices used primarily for TV viewing and video conferencing.

New WDM Capture Interfaces and Filters

Some of the new WDM capture interfaces exposed by the kernel streaming filters are
IAMDfDrner. !AMCros.sbar. IAMAnalogVideoEncoder, IAMAnalogVideoDe<:oder,
IAMVideoProcAmp. and IAMCameraControl.

Some of the new Windows 95 video capture filters for WDM are Ksproxy.ax, Kstune.ax,
Ksxbar.ax. See the Windows 95 DDK for more information on these filters.

201

DirectShow Basics Page 62of62

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lml!§I 11$8

202

Application Developer's Guide Page 1of106

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

Application Developer's Guide

If you are creating an application that uses DirectShow components, read the articles in this
section. These articles pertain to writing applications in both C and Microsoft® Visual Basic®.

· How to ...

· Clocks

· Controlling Filter Graphs Using C

· Creating a Capture Application

· About Cutlists

· Using Cutlists

· DVD for Title Vendors

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+ Q<M [.] ++ 111.H; Topic Contents '®'*' 1gn+

How to ...

This section gives step-by-step procedures for creating applications, adding features to
applications, and registering DirectShow objects. Topics include how to play a movie from C++,
how to build an application in Visual C++, how to display a filter's property page, and how to
use multimedia streaming, control the video playback window, or enumerate hardware devices
from an application.

· Play a Movie from C++

· Control the Video Playback Window from C++

· Display a Filter's Property Page from C++

· Use Multimedia Streaming in DirectShow Applications

· Play a Movie in a Window Using DirectDrawEx and Multimedia Streaming

203

Application Developer's Guide Page 2of106

·Control an External Device in DirectShow

· Build a Filter or Application with Visual C++ 5.x

• Recompress an AVI File

· Register DirectShow Objects

· Enumerate and Access Hardware Devices in DirectShow Applications

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.l:.ij Topic Contents l@i§i llfttiM

MQl§i[.jlj,M 111.Hj Topic Contents l@i§lllMM

Play a Movie from C++

This article walks through a simple C++ program designed to demonstrate one way to play
movies. It is based on the PlayFile function code, taken from the Playfile.cpp file, which you
can find in the Playfile sample in the Samples\ds\player directory.

The PlayFile function has no control over the filters selected by the filter graph manager to play
the input media file or over the playback window created. This article contains the following
sections.

• Playing a Media File - the basic code to play back a media file.
• Adding Media Seeking - shows the code needed to seek to a particular location in the

media file.

See these related sections to add a particular feature to your playback code:

• Control the Video Playback Window from C++ - demonstrates how to set the playback
window's style and position.

• Display a Filter's Property Page from C++ - demonstrates how to display a filter's
property page, so that the user can change how media files are played back.

Playing a Media File

This section explains the code needed to play a media file from within C/C++. The Playfile
sample contains Playfile.cpp and demonstrates how to create an application window, display a
menu to open a media file, and call the PlayFile function to play the media file. You can
examine the Playfile application in the Samples\ds\player\Playfile directory to see how to use
the PlayFile function. To learn how to build the Playfile sample from Visual C++ 5.x, see
Setting the Visual Studio Include and Lib Directories.

The PlayFile function plays a specified file in a playback window. This function uses the filter

204

Application Developer's Guide Page 3of106

graph manager to automatically render the media clip. The filter graph manager selects the
appropriate filters and constructs the filter graph.

PlayFile function code demonstrates:

• Basic interfaces needed to play and control a media file.
• Instantiating the filter graph manager.
• Calling the filter graph manager to build the filter graph that renders the media file.
• Playing the media file.
• Accessing events to tell when the playback is finished (media file ended).

After any function call that retrieves an interface pointer (CoCreateinstance, RenderFile, and
Oueryinterface), you should insert error-checking code to make sure the interface pointer was
successfully obtained; if it wasn't, release any interfaces pointers already obtained. An
example of error-checking code is:

if (FAILED(hr)) {
goto ObjectRelease; II go to the clean-up section

You can call the PlayFile function from an application with code such as the following:

TCHAR *szFilename = "c:\\dxmedia\\movie\\movie.avi";
PlayFile(szFilename);

Perform the following steps to play a media file from within C/C++. You don't necessarily have
to perform the steps in the order presented.

1. Include the necessary headers.

#include <Windows.h>
#include <mmsystem.h>
#include <Streams.h>
#include "playfile.h"

2. Define a windows message constant and the HELPER_RELEASE macro, which will be used
to release the interfaces from the WndMainProc callback (see the Playfile code for generic
window code).

#define WM GRAPHNOTIFY WM USER+13
#define HELPER_RELEASE(x) T if (x) x->Release(); x NULL; }

3. Declare variables.

HWND ghApp;
HINSTANCE ghinst;
HRESULT hr;
LONG evcode;
LONG evParaml;
LONG evParam2;

205

Application Developer's Guide Page 4of106

The ghApp variable is the handle of window to notify when the graph signals an event.
The ghlnst variable is the HINSTANCE of the window. The evCode variable will hold the
event code, and the evParam1 and evParam2 variables will hold the event parameters.

4. Declare and initialize the necessary interfaces. The reference count of the interfaces is
automatically incremented on initialization, so you don't need to call the
!Unknown: :AddRef method on them. For this example, you need only the four interfaces
shown in the following code. For more information, see the documentation for the
!MediaEventEx, !GraohBuilder, !MediaControl, and !VideoWindow interfaces.

IGraphBuilder *pigb NULL;
IMediaControl *pimc NULL;
IMediaEventEx *pimex NULL;
IVideoWindow *pivw NULL;

5. Define the function. The szFile parameter is the name of the media file that will be
played.

void PlayFile (LPSTR szFile)
{

HRESULT hr;

6. Create a Unicode (wide character) string from the input file name.

WCHAR wFile[MAX_PATH];
MultiByteToWideChar(CP_ACP, 0, szFile, -1, wFile, MAX_PATH) ;

7. Instantiate the filter graph manager, asking for the !GraohBuilder interface.

hr= CoCreateinstance(CLSID_FilterGraph,
NULL,
CLSCTX_INPROC_SERVER,
IID_IGraphBuilder,
(void **)&pigb);

8. Query for the !MediaControl interface (provides the methods to run, pause, and stop the
playback), the !MediaEventEx interface (so you can receive event notifications), and the
!VideoWindow interface to hide the window when the movie is finished playing.

pigb->Queryinterface (I ID_IMediaControl, (void **) &pimc) ;
pigb->Queryinterface (I ID_IMediaEventEx, (void **) &pimex) ;
pigb->Queryinterface(IID_IVideoWindow, (void **)&pivw);

9. Ask the filter graph manager to build the filter graph that renders the input file. This
does not play the media file. (When you play the file with Run, the filter graph will
automatically render the input file's media type. You do not have to specify a renderer
filter.)

hr pigb->RenderFile(wFile, NULL);

206

Application Developer's Guide Page 5of106

10. Use a window to capture graph signal events. This not only improves performance, but
allows your application to run in any threading model.

pimex->SetNotifyWindow((OAHWND)ghApp, WM_GRAPHNOTIFY, O);

The window specified by ghApp will handle messages in response to all events from the
graph. If an event occurs, DirectShow posts a WM_ GRAPH NOTIFY message to the
window.

11. Start playing the media file.

hr = pimc->Run();

Alternatively, if your playback had a pause or stop button (see, for example, the CPlay
sample or Controlling Filter Graohs Using C), you can pause or stop the playback on the
button event with the !MediaControl: :Pause or !MediaControl: :Stoo method, as shown in
the following code.

hr pimc->Pause();
hr pimc->Stop();

The WndMainProc callback function in Playfile handles the filter graph messages and releases
the interfaces when necessary, using the HELPER_RELEASE macro. The GetClipFileName
function gets the movie to be played, while the WinMain function creates the window. These
are all generic windows functions.

This section showed how to play a media file from the beginning. The next section shows how
to control where within a media file to start and stop playing.

Adding Media Seeking

You can use the !MediaPosition or !MediaSeeking interface to seek to a particular place in your
media file. The !MediaPosition: :out CurrentPosition method enables you to specify a start time
within the media file. For example, you can use the following code to rewind to the media file's
beginning.

IMediaPosition *pimp;
hr pigb->Queryinterface(&IID_IMediaPosition, (void **)&pimp);
hr= pimp->put_currentPosition(O);

Time is specified in 100-nanosecond units. The following code seeks into the media file 1
second:

hr = pimp->put_currentPosition(lOOOOOOO);

You can use the !MediaPosition: :out StooTime method to set the time within the media file to
stop playback.

However, with !MediaPosition you can seek only to times within a media file. With the

207

Application Developer's Guide Page 6of106

!MediaSeeking interface, you can set your seeking time format to 100-nanosecond time units,
frames, bytes of data, media samples, or interlaced video fields. You set the format you want
to use with the !MediaSeeking::SetTimeFormat method. Make sure your media file is not
playing when you the set the format.

The term media time refers to positions within a seekable medium. Media time can be
expressed in a variety of units, and indicates a position within the data in the file. The
following table shows the possible media time formats.
Value Description
TIME_FORMAT _MEDIA_ TIME Seeks to the specified time in the media file, in 100-nanosecond

units. Th is is the defa u It.
TIME FORMAT _BYTE
TIME FORMAT _FIELD
TIME FORMAT _FRAME

TIME FORMAT _SAMPLE

Seeks to the specified byte in the stream.
Seeks to the specified interlaced video field.
Seeks to the specified video frame.
Seeks to the specified sample in the stream.

For example, the following code sets the format so that the application seeks for sample
numbers.

IMediaSeeking *pims;
hr pigb->Queryinterface (I ID_IMediaSeeking, (void **)&pi ms) ;
hr= pims->SetTimeFormat(&TIME_FORMAT_SAMPLE);

An application can use the various seeking modes to seek in a stream to a particular video
frame or audio sample without doing time/rate conversions itself. This is useful for editing,
which requires sample-accurate playback. The frame or sample number that the application
specifies is passed through to the AV! or MPEG parser without the risk of rounding errors.

The following steps show how to set which frame in a media file to start playing at and which
frame to stop playing at; for example, to start playing a movie at the fifth frame after its
beginning. You can insert this code into the PlayFile function anywhere after the RenderFile
function has built the filter graph.

1. Access the !MediaSeeking interface.

IMediaSeeking *pims;
hr= pigb->Queryinterface(IID_IMediaSeeking, (void **)&pims);

2. Set the time format. In the following example, the time format is set to seek to frames.

hr= pims->SetTimeFormat(&TIME_FORMAT_FRAME);

3. Declare and initialize the media-seeking variables. In this case, they are frames within
the media file to start and stop playback. The following values set the start frame to 5
and the stop frame to 15.

LONGLONG start = SL;
LONGLONG stop = lSL;

4. Set the start and stop media time with the !MediaSeeking: :SetPositions method. The

208

Application Developer's Guide Page 7of106

AM_SEEKING_AbsolutePositioning flag means that the start and stop frames are absolute
positions within the media file (not relative to the present position in the media file). In
this example, the media file will start playing at frame 5 into the file and stop at frame
15, for a duration of 10 frames. The length of playing time depends on the video's frame
rate.

pims->SetPositions(&start, AM SEEKING AbsolutePositioning, &stop,
AM_SEEKING_AbsolutePositioning) ;

5. Release the IMediaSeeking interface.

pims->Release();

By removing the SetTimeFormat call and setting the values of start and stop as follows, you
can set the media file to start playing 5 seconds into the file and stop 7 seconds into the file,
for a duration of 2 seconds.

LONGLONG start = 50000000L;
LONGLONG stop = 70000000L;

By setting other formats in the SetTimeFormat call, you can seek to frames, sample numbers,
byte, and so on.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

+Qi§i[.]jj,+ 1 !1·Hj Topic Contents l@IJlllMM

Control the Video Playback Window from C++

This article walks through a simple C++ program designed to demonstrate one way to play
movies in a particular playback window. It is based on the PlayMovieinWindow function code
taken from the InWindow.cpp file, which is available in the InWindow sample in the
Samples\ds\player directory. This function is based on the Playfile sample, but has been
expanded to show how an application can control the size and style of the video playback
window.

See these related sections if you want to play back media files or display a property page:

• Play a Movie from C++ - demonstrates the basic code for playing back a media file.
• Adding Media Seeking - shows the code needed to seek to a particular location in the

media file.
• Display a Filter's Property Page from C++ - demonstrates how to display a filter's

property page, so the user can change how media files are played back.

209

Application Developer's Guide Page 8of106

Perform the following steps to play a video file in a particular window from within C/C++. You
don't necessarily have to perform the steps in the order presented.

1. Include the necessary headers.

#include <Windows.h>
#include <mmsystem.h>
#include <Streams.h>
#include "inwindow.h"

2. Define a windows message constant and the HELPER_RELEASE macro, which will be used
to release the interfaces from the WndMainProc callback (see the InWindow code for
generic window code).

#define WM GRAPHNOTIFY WM USER+13
#define HELPER_RELEASE(x) T if (x) x->Release(); x NULL; }

3. Declare variables.

HWND ghApp;
HINSTANCE ghinst;
HRESULT hr;
LONG evcode;
LONG evParaml;
LONG evParam2;
RECT grc;

The ghApp variable is the handle of window to notify when the graph signals an event.
The ghlnst variable is the HINSTANCE of the window. The evCode variable will hold the
event code, and the evParam1 and evParam2 variables will hold the event parameters.
The grc variable will hold the coordinates of the parent window's client area.

4. Declare and initialize the necessary interfaces. The reference count of the interfaces is
automatically incremented on initialization, so you don't need to call the
!Unknown: :AddRef method on them. For this example, you need only the four interfaces
shown in the following code. For more information, see the documentation for the
!MediaEventEx, !GraohBuilder, !MediaControl, and !VideoWindow interfaces.

IGraphBuilder *pigb NULL;
IMediaControl *pimc NULL;
IMediaEventEx *pimex NULL;
IVideoWindow *pivw NULL;

5. Define the function and declare variables. The szFile parameter is the name of the video
file that will be played.

void PlayMovieinWindow (LPCTSTR szFile)
{

6. Create a Unicode (wide character) string from the input file name.

210

Application Developer's Guide Page 9 of 106

WCHAR wFile[MAX_PATH];
MultiByteToWideChar(CP_ACP, 0, szFile, -1, wFile, MAX_PATH) ;

7. Instantiate the filter graph manager, asking for the IGraohBuilder interface.

hr= CoCreateinstance(CLSID_FilterGraph,
NULL,
CLSCTX_INPROC_SERVER,
IID_IGraphBuilder,
(void **)&pigb);

8. Query for the IMediaControl interface (provides the methods to run, pause, and stop the
playback), the IMediaEventEx interface (so you can receive event notifications), and the
IVideoWindow interface to hide the window when the movie is finished playing.

pigb->Queryinterface (I ID_IMediaControl, (void **) &pimc) ;
pigb->Queryinterface (I ID_IMediaEventEx, (void **) &pimex) ;
pigb->Queryinterface(IID_IVideoWindow, (void **)&pivw);

9. Ask the filter graph manager to build the filter graph that renders the input file. This
does not play the media file. (When you play the file with Run, the filter graph will
automatically render the input file's media type. You do not have to specify a renderer
filter.)

hr= pigb->RenderFile(wFile, NULL);

10. Set the ownership of the playback window. This sets ghApp as the owning parent.

piVW->pUt_Owner((OAHWND)ghApp);

11. Set the style of the video window. This step is very important, and you must specify the
WS_CHILD, WS_CLIPCHILDREN, and WS_CLIPSIBLINGS flags.

pivw->put_Windowstyle(WS_CHILD I WS_CLIPCHILDREN WS_CLIPSIBLINGS);

12. Get the coordinates of the parent window's client area.

GetClientRect(ghApp, &grc);

13. Set the playback window's position within parent's client area. In this case, the playback
window fills the client area. If the video being played is smaller than the playback
window it will be stretched to fit the window. If the video is larger, it will be compressed
to fit the window.

pivw->SetWindowPosition(grc.left, grc.top, grc.right, grc.bottom);

14. Start playing the media file.

211

Application Developer's Guide Page 10 of 106

hr = pimc->Run();

The InWindow sample uses the same GetClipFileName function to get the movie to be played
and the same the WinMain function to create the window as the Playfile sample.

The InWindow WndMainProc callback function is similar to the Playfile WndMainProc used to
handle the filter graph messages and release the interfaces when necessary, with one
important difference. The WndMainProc function in InWindow calls the
IVideoWindow:: put Owner method with a NULL value for its parameter. You must do this
before releasing the IGraphBuilder interface and before the video window is destroyed.
Otherwise, messages will continue to be sent to the video playback window but it will have no
parent to forward the messages to, so errors will likely occur.

pivw->put_owner(NULL) ;

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@i§il!MM

+Qi§i[.]11,+ 1!1·Hj Topic Contents l@IJlllMM

Display a Filter's Property Page from C++

This article walks through a simple C++ program designed to demonstrate how to request a
filter to display its property page. It is based on the MPegProp function code in the
MPegProp.cpp file, which you can find in the MPegProp sample in the Samples\ds\player
directory.

This code displays the property page of the MPEG video decoder. This filter has a property page
that enables you to play MPEG files in color or monochrome. You can see this filter's property
page by opening the Filter Graph Editor, choosing the Insert Filters command from the
Graph menu, selecting MPEG Video Decoder from the DirectShow Filters list, and clicking
the Insert Filters button. After you've inserted the filter, right-click anywhere on it to display
its property page.

See these related sections if you want to play back media files or specify the video playback
window:

• Play a Movie from C++ - demonstrates the basic code for playing back a media file.
• Adding Media Seeking - shows the code needed to seek to a particular location in the

media file.
• Control the Video Playback Window from C++ - demonstrates how to display a filter's

property page, so the user can change how media files are played back.

Perform the following steps to control the MPEG video decoder's property page in C/C++. You
don't necessarily have to perform the steps in the order presented.

212

Application Developer's Guide

1. Include the necessary headers.

#include <Windows.h>
#include <mmsystem.h>
#include <Streams.h>
#include "playfile.h"

Page 11of106

2. Define a windows message constant and the HELPER_RELEASE macro, which will be used
to release the interfaces from the WndMainProc callback (see the MPegProp code for
generic window code).

#define WM GRAPHNOTIFY WM USER+13
#define HELPER_RELEASE(x) T if (x) x->Release(); x NULL; }

3. Declare variables.

HWND ghApp;
HINSTANCE ghinst;
HRESULT hr;
LONG evcode;
LONG evParaml;
LONG evParam2;

The ghApp variable is the handle of window to notify when the graph signals an event.
The ghlnst variable is the HINSTANCE of the window. The evCode variable will hold the
event code, and the evParam1 and evParam2 variables will hold the event parameters.

4. Declare and initialize the necessary interfaces. The reference count of the interfaces is
automatically incremented on initialization, so you don't need to call the
!Unknown: :AddRef method on them. For this example, you need only the four interfaces
shown in the following code. For more information, see the documentation for the
!MediaEventEx, !GraohBuilder, !MediaControl, and !VideoWindow interfaces.

IGraphBuilder *pigb
IMediaControl *pimc
IMediaEventEx *pimex

NULL;
NULL;
NULL;

IVideoWindow *pivw NULL;
IFilterGraph *pifg NULL;
IBaseFilter *pifPP NULL;
ISpecifyPropertyPages *pispp NULL;

5. Define the function and declare variables. The szFile parameter is the name of the MPEG
video file that will be played.

void MpegProp (LPSTR szFile)
{

6. Create a Unicode (wide character) string from the input file name.

213

Application Developer's Guide Page 12of106

WCHAR wFile[MAX_PATH];
MultiByteToWideChar(CP_ACP, 0, szFile, -1, wFile, MAX_PATH) ;

7. Instantiate the filter graph manager, asking for the !GraohBuilder interface.

hr= CoCreateinstance(CLSID_FilterGraph,
NULL,
CLSCTX_INPROC_SERVER,
IID_IGraphBuilder,
(void **)&pigb);

8. Query for the !MediaControl interface (provides the methods to run, pause, and stop the
playback), the !MediaEventEx interface (so you can receive event notifications), and the
!VideoWindow interface to hide the window when the movie is finished playing.

pigb->Queryinterface (I ID_IMediaControl, (void **) &pimc) ;
pigb->Queryinterface (I ID_IMediaEventEx, (void **) &pimex) ;
pigb->Queryinterface(IID_IVideoWindow, (void **)&pivw);

9. Ask the filter graph manager to build the filter graph that renders the input file. This
does not play the media file. (When you play the file with Run, the filter graph will
automatically render the input file's media type. You do not have to specify a renderer
filter.)

hr= pigb->RenderFile(wFile, NULL);

10. Use a window to capture graph signal events. This not only improves performance, but
allows your application to run in any threading model.

pimex->SetNotifyWindow((OAHWND)ghApp, WM_GRAPHNOTIFY, O);

The window specified by ghApp will handle messages in response to all events from the
graph. If an event occurs, DirectShow posts a WM_ GRAPH NOTIFY message to the
window.

11. Query for the !FilterGraoh interface. Through IFilterGraph, you will retrieve a pointer to
the !BaseFilter interface on the MPEG Video Codec filter. The easiest way to find the
single MPEG video codec in the graph is through !FilterGraoh: :FindFilterByName.

pigb->Queryinterface(IID_IFilterGraph, (void **)&pifg);

12. Use FindFilterByName to find the MPEG Video Codec. This method returns a pointer
(&pifPP) to the !BaseFilter interface on the MPEG Video Codec.

hr= pifg->FindFilterByName(L"MPEG Video Codec", &pifPP);

13. Retrieve the !SoecifyProoertyPages interface for the MPEG Video Codec. This filter has a
property page that enables you to play MPEG files in color or monochrome.

214

Application Developer's Guide Page 13of106

pif->Queryinterface(IID_ISpecifyPropertyPages, (void **)&pispp);

14. Allocate a counted array of GU!Ds for the property page. The
!SoecifyProoertyPages: :GetPages method uses the COM CAUUID structure to receive an
array of CLS!Ds from the filter for each of its property pages. The structure has two
members, cElems, which holds the number of property pages, and pElems, which points
to an array holding the property page CLS!Ds.

CAUUID caGUID;

15. Using the pointer to the MPEG Video Decoder filter's property page, pispp, call the COM
!SoecifyProoertyPages: :GetPages method to fill the caGUID structure with a counted
array of UU!Ds, where each UUID specifies a property page CLSID.

pispp->GetPages(&caGUID);

16. Release the !SoecifyProoertyPages interface.

HELPER_RELEASE(pispp);

17. Create a modal dialog box to display the MPEG Video Decoder filter's property page. This
dialog box appears before the video is played, enabling the user to choose to play back in
color or monochrome.

OleCreatePropertyFrame(NULL,
0,

II Caption for the dialog box
II Number of filters

0,
L"Filter",
1,
(IUnknown **)&pifPP, II Pointer to the filter whose property

II Pages are being displayed. This can
//be an array of pointers if more than
II one filter's property pages are to

caGUID.cElems,
caGUID.pElems,
0,
0,
NULL);

18. Release the !BaseFilter interface.

HELPER_RELEASE(pifPP);

II be displayed. Note that only
II properties common to all the filters
II can be displayed on the same modal
II dialog.
II Number of property pages
II Pointer to property page CLSIDs

The MPegProp sample uses the same WndMainProc callback function to handle the filter graph
messages, the same GetClipFileName function to get the movie to be played, and the same the
WinMain function to create the window as the Playfile sample. These are all generic windows

215

Application Developer's Guide Page 14 of 106

functions.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents 1@1§111$8

Use Multimedia Streaming in DirectShow
Applications

This section describes and demonstrates how to support multimedia streaming in Microsoft®
DirectShow™ applications. DirectShow applications typically use multimedia streaming to send
audio and video data directly to a Microsoft DirectDraw® surface for rendering, instead of
attaching playback to a specific window. This section has short conceptual explanations of
windowless playback and multimedia streams, as well as additional detail on the multimedia
streaming architecture and a minimal code demonstration of using streams to perform
windowless playback of DirectShow-supported media files.

This section contains the following topics.

• Windowless Playback
• Multimedia Streams
• Code Walk-through of a Simple Application

Programmers who want to use multimedia streaming in their applications should be familiar
with COM programming concepts, DirectDraw and its associated objects, and DirectShow media
playback. For information on DirectDraw, consult the Microsoft DirectX SDK documentation.
The DirectShow SDK documentation includes many examples of media file playback using
CIC++; see About DirectShow and the included samples for more information. If you need
information on programming with COM and OLE, consult reference materials such as Inside
OLE by Kraig Brockschmidt or Understanding ActiveX and OLE by David Chappell.

Windowless Playback

Typically, applications display their video output in a clearly bounded rectangle, - the window.
Each window has certain properties in common with other windows, such as menus, close
buttons, and so forth. This shared behavior is helpful because it provides a measure of
consistency and reliability to programming procedures and the user interface. DirectShow
typically uses windows for media playback, because of the low programming overhead and
consistent interface. However, there are a number of situations where an application developer
wants to divorce media playback from the window and gain complete control over its
appearance. For example, if you were creating a three-dimensional computer model of a
museum tour, complete with moving exhibits and an animated tour guide, it would not be
appropriate (or lifelike) to show each element of the tour in a separate window; you would
need to integrate all of the elements together into a single presentation. By attaching the
media playback to a DirectDraw surface instead of a window, you gain complete control over its
appearance and behavior.

216

Application Developer's Guide Page 15of106

DirectDraw surfaces represent a portion of a system's video memory. Once you designate a
surface as the destination of a movie's video data, you can blit the data to the surface in the
same way you would normally blit color and texture information. Because it is a normal
DirectDraw surface, you can manipulate it in any manner supported by the DirectDraw
interfaces; you can play it back as the background of a game, texture map it into a three­
dimensional environment, and so forth. While this level of control adds some programming
overhead to your application, these effects would be impossible to do in a normal window.

Multimedia Streams

Audio and video data is, at its most basic, a sequence of information that specifies
characteristics like color, resolution, frequency, and volume. Because there are a large number
of devices and data formats related to media, moving data from its origin to its destination is a
very convoluted process; you must know exactly how the original device formats its
information, what characteristics the display format has, and how to convert the device
information from its original format to a format suitable for rendering or storage. Because the
exact steps in this process are different for every device, it is often difficult to handle multiple
devices (such as a video camera, movie data file, and Internet URL) in a single application.
Applications can, however, avoid much of this difficulty by using multimedia streaming as the
data source. The streaming architecture automatically handles the process of data conversion
and formatting, producing a consistently formatted data source ready for rendering or file
storage. Thus, applications only need to handle the presentation of the data and not the data
conversion.

Code Walk-through of a Simple Application

Using multimedia streams in a DirectShow application is fairly straightforward; the following
steps describe the process.

1. Open a media file that DirectShow supports.
2. Create a multimedia stream for each of the file's media types; typically, this will be one

video and one audio stream.
3. Create a DirectDraw surface and associate it with the video stream.
4. Render the stream data, which will then play back on the surface.

The following code sample, which you can find in its entirety in the \Streams\Simple\Main.cpp
file included with the DirectShow SDK, demonstrates these steps. The complete file comprises
three functions: OoenMMStream, RenderStreamToSurface, and main. OpenMMStream creates
the audio and video multimedia streams from the media file, RenderStreamToSurface does the
actual surface rendering, and main calls the other two functions appropriately. Because this
example is a command-line application, you must supply the name of the media file as a
parameter when you run the program. In Main.cpp, the following macro handles error
checking.

#define CHECK_ERROR(x) \
if (FAILED(hr = (x))) \

printf (#x " failed with HRESULT (Ox%8. BX) \n", hr); \
goto Exit; \

Each application that uses multimedia streaming must include the correct header files. The
following list contains the stream-related header files from Main.cpp; the DirectShow SDK
includes all of these header files.

217

Application Developer's Guide Page 16of106

#include 11 ddraw.h 11 II DirectDraw interfaces
#include "mmstream.h" II Multimedia stream interfaces
#include "amstream.h" II Directshow multimedia stream interfaces
#include 11 ddstream.h 11 II DirectDraw multimedia stream interfaces

The code in Main.cpp is intended to be the minimum amount of programming necessary to
implement multimedia streams, so it is appropriate to read it as a series of required steps. The
following instructions illustrate all of the important concepts from Main.cpp, but don't
necessarily include every line of code. For the complete code, refer to Main.cpp.

Creating a Multimedia Stream Linked to a DirectShow File

To create a multimedia stream and link it to a media file, perform the following steps. You do
not necessarily need to perform the steps in the given order.

1) The OpenMMStream function creates a multimedia stream and attaches the stream to a
valid input media file. The pszFileName parameter specifies the name of the media file, whose
type DirectShow must support. The pDD parameter specifies an !DirectDraw interface that
points to the destination DirectDraw object. When this function creates the multimedia stream,
it attaches the stream's video portion to the object by using this pointer. The ppMMStream
parameter represents a global stream pointer. Once this function creates a valid local stream,
it points this parameter to the stream so other functions can use the stream as needed.

HRESULT OpenMMStream(const char * pszFileName, IDirectDraw *pDD,
IMultiMediaStream **ppMMStream) {

2) Declare a local IAMMultiMediaStream pointer, create a stream object, and initialize it. You
should use the local pAMStream pointer during the stream's creation; don't use the global
ppMMStream pointer until you are sure the stream and its media file are valid.

*ppMMStream =NULL; II Initialize global stream pointer to null
IAMMultiMediaStream *pAMStream;
HRESULT hr; //Function's return value

CHECK_ERROR(CoCreateinstance(CLSID_AMMultiMediaStream, NULL,
CLSCTX_INPROC_SERVER, IID IAMMultiMedia~
(void **)&pAMStream));

CHECK_ERROR(pAMStream->Initialize(STREAMTYPE_READ,
AMMSF_NOGRAPHTHREAD, NULL));

3) Now that you have a stream object, add a single audio and video stream to it; typically, you
need only these two streams for media file playback. When the
IAMMultiMediaStream: :AddMediaStream method receives the MSPID_PrimaryVideo flag as its
second parameter, it uses the pointer in the first parameter as the destination surface for
video playback. The audio stream needs no such surface, however, so you pass NULL as the
first parameter when you add audio streams. The AMMSF _ADDDEFAULTRENDERER flag
automatically adds the default sound renderer to the current filter graph.

CHECK_ERROR(pAMStream->AddMediaStream(pDD, MSPID_PrimaryVideo, 0, NULL));
CHECK_ERROR(pAMStream->AddMediaStream(NULL, MSPID_PrimaryAudio,

AMMSF_ADDDEFAULTRENDERER, ~

218

Application Developer's Guide Page 17of106

4) Convert the provided file name to a wide (Unicode) string and open the file. If the file name
specifies a valid media file, DirectShow attaches the audio and video tracks to the streams you
created earlier in the function. Point the ppMMStream parameter to the stream and increment
the pointer's reference count.

WCHAR wPath[MAX_PATH]; II Wide (32-bit) string name
MultiByteToWideChar(CP ACP, o, pszFileName, -1, wPath,

- sizeof(wPath)lsizeof(wPath[O]));

CHECK ERROR(pAMStream->OpenFile(wPath, O));
*ppMMStream = pAMStream; II Set global pointer to local pointer
pAMStream->AddRef(); II Add a reference to the file

Now that you have valid streams and a pointer to them, this function is complete.

Render the Video Data to a DirectDraw Surface

To render the video portion of a multimedia stream to a DirectDraw surface, perform the
following steps. You do not necessarily need to perform the steps in the given order.

1) The RenderStreamToSurface function handles the actual rendering; it creates and initializes
the required DirectDraw surface, and blits the video stream's data to the surface. The pDD
parameter points to a global DirectDraw object, which you later use to create the surface. The
pPrimary parameter is the primary rendering surface; it sends all blitted video data from the
video stream, which the pMMStream parameter points to.

HRESULT RenderStreamToSurface(IDirectDraw *pDD, IDirectDrawsurface *pPrimary,
IMultiMediaStream *pMMStream) {

2) Create local variables for the surface, media streams, and video sample. When you blit data
to the DirectDraw surface, you will use these local variables to store the individual frame and
video sample information.

IMediaStream *pPrimaryVidStream = NULL;
IDirectDrawMediaStream *pDDStream = NULL;
IDirectDrawsurface *pSurface = NULL;
IDirectDrawstreamSample *pSample = NULL;

3) Retrieve the video stream from the global stream, which the pMMStream pointer specifies;
the !MultiMediaStream: :GetMediaStream method associates the local !MediaStream pointer
with the retrieved stream. You can then use that pointer to obtain a DirectDraw media stream
pointer, which you will need to retrieve the video format.

CHECK_ERROR(pMMStream->GetMediaStream(MSPID_PrimaryVideo,
&pPrimaryVidStream));

CHECK_ERROR(pPrimaryVidStream->Queryinterface(
IID_IDirectDrawMediaStream, (void **) &pDDStream));

4) Create a DirectDraw surface and a bounding rectangle to use for playback. Call
!DirectDrawMediaStream: :GetFormat to retrieve the video format and set the dimensions of
the rectangle to match the format dimensions.

219

Application Developer's Guide

DDSURFACEDESC ddsd;
ddsd.dwsize = sizeof(ddsd);

// Surface characteristics

CHECK ERROR(pDDStream->GetFormat(&ddsd, NULL, NULL));
RECT rect; II Playback rectangle
rect.top = rect.left = O;
rect.bottom = ddsd.dwHeight;
rect.right = ddsd.dwWidth;

CHECK_ERROR(pDD->CreateSurface(&ddsd, &pSurface, NULL));

Page 18of106

5) Create the first video sample and attach it to the desired playback surface. You can then blit
all samples from the video stream directly to the surface by calling the DlrectDraw Surface's
Update method in a loop. Each loop iteration throws out the previous video image and grabs
the next image from the stream. The loop breaks once there is no remaining renderable video
data.

CHECK_ERROR(pDDStream->CreateSample(pSurface, NULL, 0, &pSample));

while (true) {
if (pSample->Update(O, NULL, NULL, 0) != S_OK) {

break;
}
pPrimary->Blt(&rect, pSurface, &rect, DDBLT_WAIT, NULL);

6) Release all local pointers.

RELEASE(pPrimaryVidStream);
RELEASE(pDDStream);
RELEASE(pSample);
RELEASE(pSurface);

return hr;

Once DirectShow finishes rendering all available data, the function is complete.

Run the Program

To obtain a valid media filename and run the program, perform the following steps. You do not
necessarily need to perform the steps in the given order.

1) Create a main function to obtain the file name and run the rendering process. The following
example takes the media file name as a command-line parameter.

int main(int argc, char *argv[]) {

2) Create a global DirectDraw object; once you have a valid object, create a surface that you
will later use for video playback. This example calls the Win32 GetDesktopWindow function
to associate the surface with the desktop, reducing the amount of required configuration code.

220

Application Developer's Guide

Coinitialize(NULL); II Initialize the COM objects

II create the DirectDraw object and its interface pointer
IDirectDraw *pDD;
HRESULT hr= DirectDrawcreate(NULL, &pDD, NULL);

if (SUCCEEDED(hr)) { II The object is valid
DDSURFACEDESC ddsd; II surface characteristics
IDirectDrawsurface *pPrimarysurface;

pDD->SetcooperativeLevel(GetDesktopWindow(), DDSCL_NORMAL);
ddsd.dwsize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS;
ddsd.ddsCaps.dwcaps = DDSCAPS_PRIMARYSURFACE;
hr = pDD->Createsurface(&ddsd, &pPrimarysurface, NULL);

Page 19 of 106

3) Create the multimedia stream and call the previously defined functions. Once the functions
finish execution, make sure to release all pointers at the correct times. Once playback is
complete, call the Win32 CoUninitialize function and return. Once DirectShow finishes
playback of the file, it returns control to the command line.

if (SUCCEEDED(hr)) {
IMultiMediastream *pMMStream;
hr= OpenMMStream(argv[l], pDD, &pMMStream);
if (SUCCEEDED(hr)) {

RenderstreamToSurface(pDD, pPrimarysurface, pMMStream);
pMMStream->Release();

}
pPrimarysurface->Release();

}
CoUninitialize();
return o;

II Release COM objects
II success

Now that you know how to direct streamed video data to a DirectDraw surface, you can use
this functionality any way you would normally use DirectDraw surfaces. A typical use would be
to texture map the playback surface onto a Direct3D primitive object and incorporate it as part
of a three-dimensional environment. For information on controlling any part of DirectDraw,
consult the DirectX SDK documentation.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§ill@M

Play a Movie in a Window Using DirectDrawEx
and Multimedia Streaming

This article walks through the MovieWin C++ example code, which plays movies in a window
by rendering to a Microsoft DirectDraw® surface. The MovieWin example code is a Microsoft®

221

Application Developer's Guide Page 20 of 106

Windows® 95 application that is an extension of the ShowStrm Sa mole (Multimedia Streaming
Aoolicationl sample. MovieWin uses multimedia streaming to render a video file to a
DirectDraw surface created through DirectDrawEx. It implements a primary DirectDraw surface
and an offscreen DirectDraw surface to optimize frame blitting. It also attaches a DirectDraw
clipper to the window to process window overlapping.

Contents of this article:

• Necessary Header files and Libraries
• WinMain Function
• Initialize DirectDraw Surfaces and Create the Clipper
• Open a Movie File
• Create the Multimedia Stream Object
• Create the Stream Sample Object
• Render the Multimedia Stream to the DirectDraw Surface
• Release Objects
• WndMainProc Function
• Entire MovieWin Example Code

The example demonstrates a way to render a movie that differs from the traditional method of
instantiating a filter graph directly in your application. The MovieWin example code uses the
multimedia streaming interfaces to automatically negotiate the transfer and conversion of data
from the source to the application, so you don't have to write code to handle the connection,
transfer of data, data conversion, or actual data rendering.

Additionally, the example demonstrates how to create DirectDraw surfaces and how to add
code for a DirectDrawClipper object through DirectDrawEx.

Note that all error checking has been left out of the code walk-through. The Entire MovieWin
Examole Code section provides all of the code with complete error checking.

Necessary Header files and Libraries

This section discusses necessary headers and libraries that need to be included and examines
each function in the MovieWin example code in detail.

To compile the MovieWin example code you must have DirectX Media SDK 5.x or later installed
and you will need to set your include path under Tools/Options/Directories/Include to
c:\DXMedia\Include and your library path to c:\DXMedia\Lib. Also link with the Amstrmid.lib,
the Quartz.lib, the Strmbase.lib, and the Ddraw.lib (DirectDrawEx does not provide its own
library) libraries under Project/Settings/Link.

Include the necessary header files and define the window's name and the window class name.

#include <Windows.h>
#include <mmstream.h> II Multimedia stream interfaces
#include <amstream.h> II Directshow multimedia stream interfaces
#include <ddstream.h> II DirectDraw multimedia stream interfaces
#include <initguid.h> II Defines DEFINE GUID macro and enables GUID initializatic
#include <ddrawex.h> II DirectDrawEx interfaces
#include "resource.h" II Resources for the menu bar

#define APPLICATIONNAME "Multimedia Stream In Window"

222

Application Developer's Guide

#define CLASSNAME "MMSDDRAWEXWINDOW"

Then declare the following global variables:

HWND
HINSTANCE
BOOL

ghWnd;

II The window is active
II There is a file loaded

Page 21of106

RECT

ghinst;
g_bAppactive=FALSE,
g_bFileLoaded = FALSE,
g_bPaused=FALSE;
rect, rect2;

II The movie has been paused
//Rectangles for screen coordinates

The ghWnd variable is the handle of the window to send messages to. The ghlnst variable is
the handle of the instance of the window. The three Boolean values g_bAppactive,
g_bFileloaded, g_bPaused variables are used to determine the various states of the application
and are used extensively by the WndMainProc function. They are declared as global variables
to retain their TRUE or FALSE status. Finally, rect and rect2 are rectangle structures that will
contain the original movie coordinates and the coordinates of the window to show the movie in,
respectively.

Next, declare the DirectDrawEx and multimedia streaming interfaces. The reference count of
the interfaces is automatically incremented on initialization, so you don't need to call the
!Unknown: :AddRef method to increment them. For more information on these interfaces, see
DirectDrawEx, , and the Microsoft DirectX® SDK.

//DirectDrawEx Global interfaces
IDirectDraw *g_pDD=NULL;
IDirectDrawJ *g_pDDJ=NULL;
IDirectDrawFactory *g_pDDF=NULL;
IDirectDrawsurf ace *g_pPrimarysurf ace=NULL,

*g_pDDSOff screen=NULL;
IDirectDrawClipper *g_pDDClipper=NULL;

//Global MultiMedia streaming interfaces
IMultiMediaStream *g_pMMStream=NULL;
IMediaStream *g_pPrimaryVidStream=NULL;
IDirectDrawMediaStream *g_pDDStream=NULL;
IDirectDrawstreamSample *g_psample=NULL;

Finally, declare the function prototypes.

//Function prototypes
int PASCAL WinMain(HINSTANCE hinstc, HINSTANCE hinstP, LPSTR lpCmdLine, int nCmdShc
LRESULT CALLBACK WndMainProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM lPararr
HRESULT InitDDrawEx();
BOOL GetOpenMovieFile(LPSTR szName);
HRESULT RenderFileToMMStream(LPCTSTR szFilename);
HRESULT InitRenderToSurface();
void RenderToSurface();
void ExitCode();

WinMain Function

The WinMain function is a generic Windows function with a few exceptions.

Immediately after the Win32 CreateWindowEx function, the InitDDrawEx function is called to

223

Application Developer's Guide Page 22 of 106

initialize the DirectDrawEx surfaces that the movie will play on and to create a cliooer to attach
to the window. The clipper can only be created after it has a global handle to the window
(ghWnd), and so must be created after the call to the CreateWindowEx function has
returned.

The message pump is a standard Windows message pump containing the TranslateMessage
and the DisoatchMessage functions with an interesting note. Before the code reaches these
functions, it calls the PeekMessage function. The PeekMessage function checks a thread
message queue for a message and places the message (if any) in the specified structure. If
there are messages being passed to the window the code proceeds to the regular GetMessage,
TranslateMessage, and DispatchMessage functions respectively. However if there are no
messages in the message queue, the process will check for the g_bFileLoaded Boolean value,
which specifies whether a file has been loaded. Initially, the value in g_bFileLoaded is FALSE so
the code maintains its loop, waiting for new messages.

After a file has been loaded and rendered to a multimedia stream (see GetOoenMovieFile
function and RenderFileToMMStream function) the g_bFileLoaded value and the g_bAppactive
values are set to TRUE and the message pump will call the RenderToSurface function, which
blits one frame of the movie to the window's coordinates. As the loop continues, the movie
continues to render frame by frame until completion or until it is interrupted the PeekMessage
function with an outside message to the window. If the movie is paused, stopped, or if it
completes on its own, the g_bAppactive variable is set to FALSE, which causes the call to
RenderToSurface to be skipped until g_bAppactive is set to TRUE again.

The following code shows how to create the message pump.

while (1) {
//The PeekMessage function checks a thread message queue
//for a message and places the message (if any) in the specified sl
if(PeekMessage(&msg, NULL, 0,0,PM_NOREMOVE)) {

}
else{

//Quit if WM_QUIT found
if(!GetMessage(&msg,NULL, o, O)) return (msg.wParam);

//Otherwise handle the messages
TranslateMessage(&msg);
DispatchMessage(&msg);

I I Allow input
II Send to approprj

//If there are no other windows messages ...
//Render frame by frame (but only if the App is the activ<
//window and a file is actually loaded)
if (g_bFileLoaded && g_bAppactive) {

RenderToSurface();
}

return msg.wParam;

Initialize DirectDraw Surfaces and Create the Clipper

The InitDDrawEx function initializes a primary DirectDraw surface and an offscreen DirectDraw
surface, as well as a clipper object that is attached to the window. The following code shows
how to do this.

1. Declare local variables and initialize the COM subsystem.

224

Application Developer's Guide Page 23 of 106

HRESULT hr=NOERROR;
DDSURFACEDESC ddsd, ddsd2;

Coinitialize(NULL);

2. Create the DirectDrawFactory object and expose the !DirectDrawFactory interface.

CoCreateinstance(CLSID_DirectDrawFactory, NULL, CLSCTX_INPROC_SERVER,
IID_IDirectDrawFactor1

Use the pointer to the !DirectDrawFactory interface to call the
!DirectDrawFactory: :CreateDirectDraw method, which you use to create the DirectDraw
object, set the cooperative level, and get the address of an !DirectDraw interface pointer.

g_pDDF->CreateDirectDraw(NULL, GetDesktopWindow()' DDSCL_NORMAL,
NULL, NULL, &g_pDD);

3. Query for the !DirectDraw3 interface, which you use to create the DirectDraw surfaces.

g_pDD- >QUeryinterface (IID_IDirectDrawJ' (LPVOID*) &g_pDDJ) ;

4. Initialize the DDSURFACEDESC structure for the primary surface. The following is the
minimum code needed to accomplish this. You should also initialize other members of the
structure here if your code must create more sophisticated applications.

ZeroMemory(&ddsd, sizeof(ddsd));
ddsd.dwsize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS;
ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;

5. Call the !DirectDraw3: :CreateSurface method to create the primary DirectDraw surface
and return a pointer to !DirectDrawSurface interface.

g_pDDJ->Createsurface(&ddsd, &g_pPrimarysurface, NULL);

6. Create the offscreen surface where the IStreamSamole: :Uodate method will send the
individual movie frames before they are blitted onto the screen. Using an offscreen
surface optimizes the performance of the video and enables the blits to be processed at a
faster rate. Also the video remains in memory and can be called upon in the event of a
repaint notification.

You must create the offscreen surface with the identical height, width, and pixel format
to the primary surface in order to blit from one to the other. Do this by first getting the
DDSURFACEDESC structure from the primary surface through a call to the
!DirectDrawSurface: :GetSurfaceDesc method.

g_pPrimarysurface->GetsurfaceDesc(&ddsd);

7. Now you can initialize the DDSURFACEDESC structure for the offscreen surface with the
same parameters as the primary surface:

225

Application Developer's Guide Page 24 of 106

ZeroMemory(&ddsd2, sizeof(ddsd2));
ddsd2.dwsize = sizeof(ddsd2);
ddsd2.dwFlags = DDSD_CAPS I DDSD_HEIGHT I DDSD_WIDTH I DDSD_PIXELFORMAT;
ddsd2.ddsCaps.dwCaps = DDSCAPS OFFSCREENPLAIN;
ddsd2.dwHeight = ddsd.dwHeighti //set the height of the surfaces equal
ddsd2.dwWidth = ddsd.dwWidth; //set the width of the surfaces equal
ddsd2.ddpfPixelFormat = ddsd.ddpfPixelFormat; //set the pixel formats equal

8. Call the !DirectDraw3: :CreateSurface method to create the offscreen surface.

g_pDD3->Createsurface(&ddsd2, &g_pDDSOffscreen, NULL)

At this point, you should have two identical DirectDraw surfaces: the offscreen surface
that will be used to update the movie frames on, and the primary surface, which your
user will see. The primary surface will contain the video after the data has been blitted
from the offscreen surface to the primary surface.

9. To give the window the look and feel of a regular window, you must add code for a
clipper. The DirectDrawCliooer object (casually referred to as a "clipper") helps you
prevent blitting to certain portions of a surface or beyond the bounds of a surface.
DirectDrawClipper objects expose their functionality through the !DirectDrawCliooer
interface. You can create a clipper by calling the !DirectDraw3: :CreateCliooer method.

Use the following code to create the clipper object and retrieve a pointer to the
!DirectDrawCliooer interface.

g_pDD3->CreateClipper(O, &g_pDDClipper, NULL);

10. Use the !DirectDrawSurface interface to attach the clipper to the primary surface.

g_pPrimarysurface->SetClipper(g_pDDClipper);

11. Finally, associate the clipper with the window by calling the
!DirectDrawCliooer:: SetHWnd method.

g_pDDClipper->SetHWnd(O, ghWnd);

At this point, you should have two DirectDraw surfaces, and a clipper attached to the primary
surface and to the applications window. The DirectDrawEx initialization is complete and all the
objects are available to the process until the ExitCode function is called to release the objects.

For more information on DirectDrawEx, see DirectDrawEx.

Open a Movie File

The following code shows how to use the GetOpenMovieFile function to display the Open file
dialog box. It initializes the OPEN FILENAME structure and calls the GetOoenFileName AP!.

BOOL GetOpenMovieFile(LPSTR szName)
{

OPENFILENAME

ofn.lStructSize
ofn.hwndowner
ofn. lpstrFil ter
ofn. lpstrFil ter

ofn;

sizeof(OPENFILENAME);
ghWnd;
NULL;
"Video (* .avi; *.mpg;*. mpeg) \O*. avi; *.mpg;*. mpeg\oA:

226

Application Developer's Guide

ofn.lpstrcustomFilter
ofn.nFilterindex
*szName = O;

NULL;
1;

ofn. lpstrFile szName;
ofn.nMaxFile MAX_PATH;
ofn.lpstrinitialDir NULL;
ofn.lpstrTitle NULL;
ofn.lpstrFileTitle NULL;
ofn.lpstrDefExt NULL;
ofn.Flags OFN_FILEMUSTEXIST I OFN_READONLY
return GetOpenFileName((LPOPENFILENAME)&ofn);

Create the Multimedia Stream Object

Page 25 of 106

OFN PATHMUSTEXI:

The RenderFileToMMStream function creates a multimedia stream and attaches the stream to
the file retrieved by the GetOpenMovieFile function. This function uses the
IAMMultiMediaStream interface to expose DirectShow functionality to the application. After the
address of a pointer to the IAMMultiMediaStream interface is retrieved, it will be used to
initialize the stream, add specific media streams to the current filter graph, and open and
automatically create a filter graph for the specified media file.

The following steps show how to do this.

1. Declare the local variables hr and pAMStream, and convert the provided file name to a
wide (Unicode) string.

HRESULT hr;
IAMMultiMediaStream *pAMStream=NULL;
WCHAR wFile[MAX_PATH];
MultiByteToWideChar(CP ACP, o, szFilename, -1, wFile,

- sizeof(wFile)/sizeof(wFile[O]));

2. Create the AMMultiMediaStream object and initialize it.

hr =CoCreateinstance(CLSID_AMMultiMediaStream, NULL, CLSCTX_INPROC_SERVER,
IID_IAMMultiMediaStream, (void **)&pAMSt

hr= pAMStream->Initialize(STREAMTYPE_READ, 0, NULL);

3. Now that you have a stream object, add a single audio and video stream to it; typically,
you need only these two streams for media file playback. When the
IAMMultiMediaStream::AddMediaStream method receives the MSPID_PrimaryVideo flag
as its second parameter, it uses the pointer in the first parameter as the destination
surface for video playback. The audio stream needs no such surface, however, so pass
NULL as the first parameter when you add audio streams. The
AMMSF _ADDDEFAULTRENDERER flag automatically adds the default sound renderer to
the current filter graph.

hr pAMStream->AddMediaStream(g_pDDJ, &MSPID_PrimaryVideo, 0, NULL);
hr pAMStream->AddMediaStream(NULL, &MSPID_PrimaryAudio, AMMSF_ADDDEFAULTRENL

4. Finally, open and create a filter graph for the specified media file and save the local
stream to the global variable g_pMMStream. Don't forget to increase the reference count
on the IAMMultiMediaStream object.

//Opens and automatically creates a filter graph for the specified media file

227

Application Developer's Guide Page 26 of 106

hr= pAMStream->OpenFile(wFile, O);
//save the local stream to the global variable
g pMMStream = pAMStream;
17 Add a reference to the file
pAMStream->AddRef();

Now that you have valid streams and a pointer to them, this function is complete. For more
information on multimedia streams see and Use Multimedia Streaming in DirectShow
APPiications.

Create the Stream Sample Object

The InitRenderToSurface function creates the stream sample that will be associated with the
offscreen DirectDrawSurface object. The stream sample will be used later by the
RenderToSurface function to call the !StreamSamPle:: Update method to perform frame-by­
frame updates of the sample.

The following steps show how to do this.

1. To create and initialize the stream sample, declare the local variables, and then get the
primary video media stream by using the !MultiMediaStream: :GetMediaStream method.

HRESULT hr;
DDSURFACEDESC ddsd;

//Use the multimedia stream to get the primary video media stream
hr= g_pMMStream->GetMediaStream(MSPID_PrimaryVideo, &g_pPrimaryVidStream);

2. After you obtain the primary video stream interface (!MediaStream), you can use it to
query for the !DirectDrawMediaStream interface, which you'll use to create the stream
sample.

hr= g_pPrimaryVidStream->Queryinterface(IID_IDirectDrawMediaStream, (void**)

3. Before you can create the stream sample, you must call the
!DirectDrawMediaStream: :GetFormat method. The trick to watch on this call is that you
must set the dwSize member of the DDSURFACEDESC structure. After the stream
sample has retrieved the height and width of the movie file, you can set the rectangle
that the offscreen surface will use to contain the video data.

ddsd.dwsize = sizeof(ddsd);
hr= g_pDDStream->GetFormat(&ddsd, NULL, NULL, NULL);
rect.top = rect.left = O;
rect.bottom = ddsd.dwHeight;
rect.right = ddsd.dwWidth;

4. Create the stream sample by calling the !DirectDrawMediaStream: :CreateSamPle method
with the offscreen surface and the RECT structure, which was just initialized with the
movie coordinates. This method will retrieve a pointer to the global
!DirectDrawStreamSamPle interface g_pSample.

hr= g_pDDStream->Createsample(g_pDDSOffscreen, &rect, o, &g_psample);

At this point, the !DirectDrawMediaStream: :CreateSamPle method has created a global
!DirectDrawStreamSamPle stream sample and returned a pointer to g_pSample, its interface,
which the RenderToSurface function can use.

228

Application Developer's Guide Page 27 of 106

Render the Multimedia Stream to the DirectDraw Surface

The RenderToSurface function handles the actual rendering and blits the video stream's data to
the primary surface. The main message pump in the WinMain function calls this method. The
RenderToSurface function performs one individual frame update at a time and one blit from the
offscreen surface to the primary surface. When the movie is complete, it will set the stream
state to STOP.

The following steps show how to do this.

1. Declare the local variables.

HRESULT
POINT

hr;
point;

2. Call the !StreamSamole:: Uodate method. Each loop iteration throws out the previous
video image and grabs the next image from the stream.

If the update is successful, the Microsoft Win32® GetClientRect and the ClientToScreen
functions are called to get the rectangle coordinates of the window into which the video
will be displayed. These functions must be called after each update, in case a user has
moved or resized the window.

3. After the window's coordinates have been retrieved, call the !DirectDrawSurface3:: Bit
method to perform a bit block transfer of the movie's video data from the offscreen
surface to the primary surface. The loop breaks and the stream state is set to STOP when
no renderable video data remains.

if (g_psample->Update(O, NULL, NULL, 0) != S_OK) {
g_bAppactive = FALSE;
g_pMMStream->SetState(STREAMSTATE_STOP);

}
else {
//get window coordinates to blit into
GetClientRect(ghWnd, &rect2);
point.x = rect2.top;
point.y = rect2.left;
ClientToScreen(ghWnd, &point);
rect2.left = point.x;
rect2.top = point.y;
point.x = rect2.right;
point.y = rect2.bottom;
ClientToScreen(ghWnd, &point);
rect2.right = point.x;
rect2.bottom= point.y;

//Blit from the offscreen surface to the primary surface
hr= g_pPrimarysurface->Blt(&rect2, g_pDDSOffscreen, &rect, DDBLT_WAI1

This function will be called repeatedly from the WinMain function's message pump as
long as the g_bAppactive and g_bFileloaded Boolean values are TRUE.

Release Objects

The ExitCode function releases all objects that the MovieWin application creates, destroys the
window, and closes the COM library.

229

Application Developer's Guide

Call this function if the application fails or the user quits the program.

void Exi tcode ()
{

//Release MultiMedia streaming Objects
if (g_pMMStream != NULL) {

g_pMMStream->Release();
g_pMMStream= NULL;

}
if (g_psample != NULL) {

g_psample->Release();

}
g_psample = NULL;

if (g_pDDStream != NULL) {
g_pDDStream->Release();
g_pDDStream= NULL;

if (g_pPrimaryVidStream != NULL) {
g_pPrimaryVidStream->Release();
g_pPrimaryVidStream= NULL;

}
//Release DirectDraw Objects
if (g_pDDF !=NULL) {

g_pDDF->Release();
g_pDDF = NULL;

if (g_pPrimarysurface!=NULL) {
g_pPrimarysurface->Release();
g_pPrimarysurface=NULL;

}
if (g_pDDSOffscreen !=NULL) {

g_pDDSOffscreen->Release();

}
g_pDDSOffscreen= NULL;

if (g_pDDClipper !=NULL) {
g_pDDClipper->Release();
g_pDDClipper=NULL;

if (g_pDDJ != NULL) {
g_pDDJ->Release();
g_pDDJ = NULL;

}
if (g_pDD != NULL) {

g_pDD->Release();
g_pDD = NULL;

PostQuitMessage(O);
CoUninitialize();

WndMainProc Function

Page 28 of 106

The WndMainProc callback function handles any messages sent to the window and calls the
ExitCode function when the user quits the application. Users generate messages by selecting
various items from the menu, including Open, Start, Stop, Pause, About, and Exit.

If the user chooses Open, an IDM_OPEN message is generated and the following code runs.

//If a file is already open - call STOP first

230

Application Developer's Guide Page 29 of 106

if (g_bAppactive && g_bFileLoaded) {
g_pMMStream->SetState(STREAMSTATE_o

bOpen GetOpenMovieFile(szFilename);
if (bOpen) {

}
break;

hr = RenderFileToMMStream(szFilenan
hr= InitRenderToSurface();
g bAppactive = g bFileLoaded = TRUI
g -bPaused = FALSE; //T
//Now set the multimedia stream to
hr= g_pMMStream->SetState(STREAMST

This code first checks whether a file is loaded (g_bFileLoaded) and if it is in a running state
(g_bAppactive). If this is the case, the !MultiMediaStream: :SetState method is called to stop
the stream before another one is loaded through a call to the GetOoenMovieFile function. After
the call to GetOpenMovieFile has returned successfully, the RenderFileToMMStream function is
called, followed by the InitRenderToSurface function. If both of these functions are successful,
the g_bFileLoaded and g_bAppactive Boolean values are set to TRUE and g_bPaused is set to
FALSE in case the old file was in a paused state. Finally, the IMultiMediaStream::SetState
method is called to set the state to RUN and now the RenderToSurface function will
automatically be called through the WinMain function's message pump.

If the user chooses Play from the application's menu, an IDM_START message is generated
and the following code runs.

if (g_bAppactive && g_bFileLoaded)
{break;
}
else {

II

if (g_bPaused) { // If its i

else {

g_pMMStream->Seek(StreamTirr
g_pMMStream->SetState(STREP
g_bAppactive = TRUE;
g bPaused = FALSE;
}-

if (g_bFileLoaded) { // If a file is act

}
else

break;

g_bAppactive g_bFileLoaded = TRUI
hr= g_pMMStream->SetState(STREAMST

MessageBox(hWnd, "Please select a n

This code first checks if a file is loaded (g_bFileLoaded) and if it is in a running state
(g_bAppactive). If this is the case, break is called to ignore the message. If the movie is in a
paused state, the !MultiMediaStream: :Seek method is called to seek to the correct location in
the file, and then the !MultiMediaStream: :SetState method is called to set the state to RUN
again. The Boolean values g_bAppactive and g_bPaused are reset again to TRUE and FALSE
respectively.

If a file is loaded but not in a paused state, it must be in a stopped state. Therefore, if this
code succeeds on the if (g_bFileLoaded) call it must restart the movie from the beginning. This

231

Application Developer's Guide Page 30 of 106

involves resetting the g_bAppactive Boolean value to TRUE and calling the
IMultiMediaStream: :SetState method to set the stream state to RUN.

If the user chooses Pause from MovieWin's menu, an IDM_PAUSE message is generated and
the following code runs.

// Pause if not already in a paused state and you have a file loaded
if (!g_bPaused &&g_bFileLoaded) {

}
break;

hr= g_pMMStream->GetTime(&StreamTj
hr= g_pMMStream->SetState(STREAMS1
g_bAppactive FALSE;
g_bPaused = TRUE;

11 If its a

In order for the pause key to do anything, the application must not already be in a paused
stated (!g_bPaused) and a file must be loaded (g_bFileloaded). If these two conditions are
both TRUE, the IMultiMediaStream: :GetTime method is called to store the STREAM TIME at
which the application was paused in the static StreamTime variable, and then the
IMultiMediaStream: :SetState method set the stream state to STOP. Finally, the g_bAppactive
and the g_bPaused global Boolean values must be set to FALSE and TRUE respectively.

If the user chooses Stop from the application's menu, an IDM_STOP message is generated and
the following code executes.

if (g_bFileLoaded)
g_pMMStream->SetState(STREAMSTATE_o
StreamTime = O; II Reset the strean
g_pMMStream->Seek(StreamTime); llR
g_pMMStream->SetState(STREAMSTATE_F
RenderToSurface();
g_pMMStream->SetState(STREAMSTATE_o
StreamTime = O;

g_bAppactive = FALSE;

The preceding code runs if there is a file loaded (g_bFileloaded). In such a case the
IMultiMediaStream: :SetState method sets the stream state to STOP and the global
STREAM TIME value is set to zero. Next, the IMultiMediaStream: :Seek method and the
IMultiMediaStream::SetState method are called to run one frame of the video before the
true stop is called. After the RenderToSurface function renders the frame, the
IMultiMediaStream::SetState method is called a final time to stop the video. This gives the
user the visual experience of seeing the movie rewind to the beginning.

Finally, if the user chooses Exit from the application's menu, an IDM_EXIT message is
generated and the following code runs.

response= MessageBox(hWnd, "Quit the Program?", "Quit", MB_YESNO);
if (response==IDYES) SendMessage(ghWnd, WM
break;

When it runs, this code will prompt the user if he or she really wants to quit the application. If
the user chooses Yes, a WM_DESTROY message is sent, which calls the ExitCode function.

Entire MovieWin Example Code

This is the entire code for the MovieWin example code. To compile this code in Microsoft Visual

232

Application Developer's Guide Page 31of106

StudioTM, create a new Win32 application project and add this code into the project. Follow the
directions in the following code comments on how to set your project libraries and include
paths.

//This application uses a Multimedia stream to render
//a video file to a DirectDrawEx surface contained in
//a window. It implements a primary DirectDraw surface
//and an offscreen DirectDraw surface to optimize individual
// frame blits. It also attaches a DirectDraw clipper to the
//window to process window overlapping.

//To compile this program you must have DXMedia SDK 5.1 installed
//and you will need set your include path under tools/options/directories/include
//to c,\DXMedia\include and your library path to c,\DXMedia\lib
//Also link with the following libraries under project/settings/link ...
//amstrmid.lib quartz.lib strmbase.lib ddraw.lib

#include <Windows.h>
#include <mmstream.h> II Multimedia stream interfaces
#include <amstream.h> II Directshow multimedia stream interfaces
#include <ddstream.h> II DirectDraw multimedia stream interfaces
#include <initguid.h> II Defines DEFINE GUID macro and
#include <ddrawex.h> II DirectDrawEx interfaces
#include "resource.h" II Resources for the menu bar

#define APPLICATIONNAME "Multimedia Stream In Window"
#define CLASSNAME "MMSDDRAWEXWINDOW"

//Global variables
HWND
HINSTANCE

ghWnd;
ghinst;

enables GUID initializatic

BOOL

RECT

g_bAppactive=FALSE, // The window is active
//There is a file loa<

II The movie has bE
II Rectangles for screen cc

g_bFileLoaded FALSE,
g_bPaused=FALSE;

rect, rect2;

//DirectDrawEx Global
IDirectDraw
IDirectDraw3
IDirectDrawFactory
IDirectDrawsurface

interfaces

IDirectDrawClipper

*g_pDD=NULL;
*g_pDDJ=NULL;
*g_pDDF=NULL;
*g_pPrimarysurface=NULL,

*g_pDDSOffscreen=NULL;
*g_pDDClipper=NULL;

//Global MultiMedia streaming interfaces
IMultiMediaStream *g_pMMStream=NULL;
IMediaStream *g_pPrimaryVidStream=NULL;
IDirectDrawMediaStream *g_pDDStream=NULL;
IDirectDrawstreamSample *g_psample=NULL;

//Function prototypes
int PASCAL WinMain(HINSTANCE hinstc, HINSTANCE hinstP, LPSTR lpCmdLine, int nCmdShc
LRESULT CALLBACK WndMainProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM lPararr
HRESULT InitDDrawEx();
BOOL GetOpenMovieFile(LPSTR szName);
HRESULT RenderFileToMMStream(LPCTSTR szFilename);
HRESULT InitRenderToSurface();
void RenderToSurface();
void ExitCode();

233

Application Developer's Guide Page 32of106

void Exi tcode ()
{

//Release MultiMedia streaming Objects
if (g_pMMStream != NULL) {

g_pMMStream->Release();

}
g_pMMStream= NULL;

if (g_psample != NULL) {
g_psample->Release();
g_psample = NULL;

if (g_pDDStream != NULL) {
g_pDDStream->Release();
g_pDDStream= NULL;

}
if (g_pPrimaryVidStream != NULL) {

g_pPrimaryVidStream->Release();

}
g_pPrimaryVidStream= NULL;

//Release DirectDraw Objects
if (g_pDDF !=NULL) {

}

g_pDDF->Release();
g_pDDF = NULL;

if (g_pPrimarysurface!=NULL) {
g_pPrimarysurface->Release();

}
g_pPrimarysurface=NULL;

if (g_pDDSOffscreen !=NULL) {
g_pDDSOffscreen->Release();
g_pDDSOffscreen= NULL;

if (g_pDDClipper !=NULL) {
g_pDDClipper->Release();
g_pDDClipper=NULL;

}
if (g_pDDJ != NULL) {

g_pDDJ->Release();

}
g_pDDJ = NULL;

if (g_pDD != NULL) {
g_pDD->Release();
g_pDD = NULL;

PostQuitMessage(O);
CoUninitialize();

//Create the stream sample which will be used to call updates on the video
HRESULT InitRenderToSurface()
{

hr

hr

HRESULT hr;
DDSURFACEDESC ddsd;

//Use the multimedia stream to get the primary video media stream
= g_pMMStream->GetMediaStream(MSPID_PrimaryVideo, &g_pPrimaryVidStream);
if (FAILED (hr))

j goto Exit;

//Use the media stream to get the IDirectDrawMediaStream
= g_pPrimaryVidStream->Queryinterface(IID_IDirectDrawMediaStream, (void**)&
if (FAILED (hr))
{ goto Exit;

234

Application Developer's Guide

}
//Must set dwsize before calling GetFormat

ddsd.dwsize = sizeof(ddsd);
hr= g_pDDStream->GetFormat(&ddsd, NULL, NULL, NULL);

if (FAILED (hr))

j goto Exit;

rect.top = rect.left = O;
rect.bottom = ddsd.dwHeight;
rect.right = ddsd.dwWidth;

Exit:

//Create the stream sample
hr= g_pDDStream->Createsample(g_pDDSOffscreen,
if (FAILED (hr))

j goto Exit;

if (FAILED (hr))

&rect, o,

Page 33 of 106

&g_psample) ;

{ MessageBox(ghWnd, "Initialization failure in InitRenderToSurface",
return E FAIL;

return NOERROR;

//Perform frame by frame updates and blits. Set the stream
//state to STOP if there are no more frames to update.
void RenderToSurface()
{

HRESULT hr;
POINT point;

//update each frame
if (g_psample->Update(O, NULL, NULL, 0) != S_OK)

g_bAppactive = FALSE;
g_pMMStream->SetState(STREAMSTATE STOP);

}
else {
//get window coordinates to blit
GetClientRect(ghWnd, &rect2);
point.x = rect2.top;
point.y = rect2.left;
ClientToScreen(ghWnd, &point);
rect2.left = point.x;
rect2.top = point.y;
point.x = rect2.right;
point.y = rect2.bottom;
ClientToScreen(ghWnd, &point);
rect2.right = point.x;
rect2.bottom= point.y;

into

//blit from the offscreen surface to the primary surface
hr= g_pPrimarysurface->Blt(&rect2, g_pDDSOffscreen, &rect, DDBLT_WAIT, NUJ
if (FAILED(hr))
MessageBox(ghWnd, "Blt failed", "Error", MB_OK);

ExitCode();

//Renders a file to a multimedia stream
HRESULT RenderFileToMMStream(LPCTSTR szFilename) //IMultiMediaStrean
{

HRESULT hr;

235

Application Developer's Guide Page 34 of 106

IAMMultiMediaStream *pAMStream=NULL;

//Convert filename to Unicode
WCHAR wFile[MAX_PATH];
MultiByteToWideChar(CP_ACP, o, szFilename, -1, wFile,

sizeof(wFile)/sizec

//Create the AMMultiMediaStream object
hr =CoCreateinstance(CLSID_AMMultiMediaStream, NULL, CLSCTX INPROC SERVER,

hr

hr

hr

I ID_ IAMMul tiMediaStream, (void * *) &pAMStream)
if (FAILED (hr))
{ MessageBox(ghWnd, "Could not create a CLSID MultiMediaStream object\n"

"Check you have run regsvr32 amstream.dll\n", "Error", MB_OK);
return E_FAIL;

//Initialize stream
= pAMStream->Initialize(STREAMTYPE_READ, 0, NULL);
if (FAILED (hr))
{ MessageBox(ghWnd, "Initialize failed.", "Error", MB_OK);

return E_FAIL;
}
//Add primary video stream

= pAMStream->AddMediaStream(g_pDDJ, &MSPID_PrimaryVideo, 0, NULL);
if (FAILED (hr))
{ MessageBox(ghWnd, "AddMediaStream failed.", "Error", MB_OK);

return E_FAIL;
}
//Add primary audio stream

= pAMStream->AddMediaStream(NULL, &MSPID_PrimaryAudio, AMMSF_ADDDEFAULTRENDE
if (FAILED (hr))
{ MessageBox(ghWnd, "AddMediaStream failed.", "Error", MB_OK);

return E_FAIL;
}
//Opens and automatically creates a
hr= pAMStream->OpenFile(wFile, O);
if (FAILED (hr))

filter graph for the specified media f

{ MessageBox(ghWnd, "File format not supported.", "Error", MB_OK);
return E_FAIL;

//save the local stream to the global variable
g pMMStream = pAMStream;
17 Add a reference to the file
pAMStream->AddRef();

return NOERROR;

HRESULT InitDDrawEx()
{

HRESULT
DDSURFACEDESC

hr=NOERROR;
ddsd, ddsd2;

Coinitialize(NULL);

//Create a DirectDrawFactory object
hr= CoCreateinstance(CLSID_DirectDrawFactory, NULL, CLSCTX_INPROC_SERVER,

IID_IDirectDrawFactory, (vc
if (FAILED (hr))
{ MessageBox(ghWnd, "Couldn't create DirectDrawFactory", "Error", MB_OK)

return E_FAIL;

236

Application Developer's Guide Page 35of106

//Call the IDirectDrawFactory: :CreateDirectDraw method to create the
//DirectDraw object, set the cooperative level, and get the address
//of an IDirectDraw interface pointer
hr= (g_pDDF->CreateDirectDraw(NULL, GetDesktopWindow(), DDSCL_NORMAL,

NULL, NULL, &g_pDD));

if (FAILED (hr))
{ MessageBox(ghWnd, "Couldn't create DirectDraw object", "Error", MB_OK)

return E_FAIL;

//Now query for the new IDirectDraw3 interface
hr =(g_pDD->QUeryinterface(IID_IDirectDraw3, (LPVOID*)&g_pDDJ));

if (FAILED (hr))
{ MessageBox(ghWnd, "Couldn't get IDirectDraw3", "Error", MB_OK);

return E_FAIL;

//Initialize the DDSURFACEDESC structure for the primary surface
ZeroMemory(&ddsd, sizeof(ddsd));

ddsd.dwsize = sizeof(ddsd);
ddsd.dwFlags = DDSD_CAPS;

ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE;
hr= g_pDDJ->Createsurface(&ddsd, &g_pPrimarysurface, NULL);

if (FAILED (hr))
{ MessageBox(ghWnd, "Couldn't create Primary Surface", "Error", MB_OK);

return E FAIL;

//Now, do the same for the offscreen surface.

//The offscreen surface needs to use the same pixel format
//Query the primary surface to for its pixel format.
hr= g_pPrimarysurface->GetsurfaceDesc(&ddsd);
if (FAILED (hr))

as the primary.

{ MessageBox(ghWnd, "Couldn't GetsurfaceDesc",
return E FAIL;

"Error", MB_OK);

II Now, set the info for the offscreen surface, using the primary's pixel
ZeroMemory(&ddsd2, sizeof(ddsd2));

ddsd2.dwsize = sizeof(ddsd2);
ddsd2.dwFlags = DDSD_CAPS I DDSD_HEIGHT I DDSD_WIDTH I DDSD_PIXELFORMAT;

ddsd2.ddsCaps.dwCaps = DDSCAPS OFFSCREENPLAIN;
ddsd2.dwHeight = ddsd.dwHeighti //set the height of the surfaces equal
ddsd2.dwWidth = ddsd.dwWidth; //set the width of the surfaces equal
ddsd2.ddpfPixelFormat = ddsd.ddpfPixelFormat; //set the pixel formats equal

II Now, create the offscreen surface and query for the latest interface.
hr = g_pDD3->Createsurface(&ddsd2, &g_pDDSOffscreen, NULL);
if (FAILED(hr))
MessageBox(ghWnd, "Couldn't create Offscreen Surface", "Error", MB_OK);

return E FAIL;

//Add code for Clipper
hr = g_pDD3->CreateClipper(O, &g_pDDClipper, NULL);
if (FAILED(hr))

237

Application Developer's Guide Page 36 of 106

MessageBox(ghWnd, "Couldn't create Clipper", "Error", MB_OK);
return E FAIL;

hr= g_pPrimarysurface->SetClipper(g_pDDClipper);
if (FAILED(hr))
MessageBox(ghWnd, "Call to SetClipper failed", "Error", MB_OK);

return E FAIL;

hr = g_pDDClipper->SetHWnd(O, ghWnd);
if (FAILED(hr))
MessageBox(ghWnd, "Call to SetHWnd failed", "Error", MB_OK);

return E FAIL;

return NOERROR;

//Display the open dialog box to retrieve the user-selected movie file
BOOL GetOpenMovieFile(LPSTR szName)//LPSTR szName
{

OPENFILENAME

ofn.lStructSize
ofn.hwndowner
ofn. lpstrFil ter

ofn;

sizeof(OPENFILENAME);
ghWnd;
NULL;

ofn. lpstrFil ter
ofn.lpstrcustomFilter
ofn.nFilterindex

"Video (* .avi; *.mpg;*. mpeg) \O*. avi; *.mpg;*. mpeg\oA:

*szName = O;

NULL;
1;

ofn. lpstrFile szName;
ofn.nMaxFile MAX_PATH;
ofn.lpstrinitialDir NULL;
ofn.lpstrTitle NULL;
ofn.lpstrFileTitle NULL;
ofn.lpstrDefExt NULL;
ofn.Flags OFN FILEMUSTEXIST I OFN_READONLY
return GetOpenFileName((LPOPENFILENAME)&ofn);

OFN PATHMUSTEXI:

LRESULT CALLBACK WndMainProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM lPararr

II WndMainProc //

int
HRESULT
BOOL
static TCHAR
static STREAM TIME

switch (message)
{

case WM COMMAND,
{

switch (wParam)

response;
hr;
bOpen;

szFilename[MAX_PATH];
StreamTime; II Stream time of t

//Program menu option
{

case IDM OPEN:
//If a file is already open - call STOP fir
if (g_bAppactive && g_bFileLoaded) {

g_pMMStream->SetState(STREAMSTATE_o

238

Application Developer's Guide Page 37of106

bOpen = GetOpenMovieFile(szFilename);
if (bOpen) {

break;

case IDM START,

hr = RenderFileToMMStream(szFilenan
if (FAILED(hr)) {

Exi tcode () ;
break;
}

hr InitRenderToSurface();
if (FAILED(hr)) {

Exi tcode () ;
break;
}

g bAppactive = g bFileLoaded = TRUI
g -bPaused = FALSE; //T
//Now set the multimedia stream to
hr= g_pMMStream->SetState(STREAMST
if (FAILED (hr))
J Exi tcode () ;

if (g bAppactive
{break;

&& g_bFileLoaded)
II

}
else {

if (g_bPaused) { // If its i

else {

g_pMMStream->Seek(StreamTirr
g_pMMStream->SetState(STREP
g_bAppactive = TRUE;
g bPaused = FALSE;
}-

if (g_bFileLoaded) { // If a file is act

else

l
break;

case IDM PAUSE,

hr = RenderFileToMMStream(szFilenan
if (FAILED(hr)) {

Exi tcode () ;
break;
}

hr InitRenderToSurface();
if (FAILED(hr)) {

Exi tcode () ;
break;
}

g bAppactive = g bFileLoaded = TRUI
//Now set the multimedia stream to
hr= g_pMMStream->SetState(STREAMST
if (FAILED (hr))
J Exi tcode () ;

MessageBox(hWnd, "Please select a n

71 Pause if not already in a paused state c
if (!g_bPaused &&g_bFileLoaded) {

hr= g_pMMStream->GetTime(&StreamTj

239

Application Developer's Guide

break;
}

break;

case WM DESTROY,
Exi tcode () ;

break;

}
break;

case IDM STOP:

Page 38of106

hr= g_pMMStream->SetState(STREAMS1
g_bAppactive FALSE;
g_bPaused = TRUE;

// If its a

if (g_bFileLoaded)
g_pMMStream->SetState(STREAMSTATE_o
StreamTime = O; // Reset the strean
g_pMMStream->Seek(StreamTime); //R
g_pMMStream->SetState(STREAMSTATE_F
RenderToSurface();
g_pMMStream->SetState(STREAMSTATE_o
StreamTime = O;

g_bAppactive = FALSE;
break;

case IDM ABOUT,
MessageBox(hWnd, "This application uses muJ

" render a video file to a DirectD1
"About" f MB_OK) i

break;

case IDM EXIT:
response = MessageBox(hWnd, "Quit the Prog1
if (response==IDYES) SendMessage(ghWnd, WM
break;

case WM ACTIVATE,
if((BOOL)LOWORD(wParam) == WA_INACTIVE)
{

else
{

}
break;

default,

//App is not active
g_bAppactive = FALSE;

//Set app to active if a file is loaded
g_bAppactive (g_bFileLoaded)?TRUE,FALSE;

return DefWindowProc(hWnd, message, wParam, lParam);

//Window msgs handling

return FALSE;

II WndMainProc //

int PASCAL WinMain(HINSTANCE hinstc, HINSTANCE hinstP, LPSTR lpCmdLine, int nCmdShc

II WinMain //

240

Application Developer's Guide Page 39 of 106

MSG msg;
WNDCLASS WC;

HRESULT hr;

ZeroMemory(&wc, sizeof we);
wc.lpfnWndProc = WndMainProc;
ghinst = wc.hinstance = hinstC;

wc.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH);
wc.lpszClassName = CLASSNAME;
wc.lpszMenuName = MAKEINTRESOURCE(IDR_MENU);
wc.hcursor = Loadcursor(NULL, IDC_ARROW);
Registerclass(&wc);

ghWnd = CreateWindowEx(WS_EX_WINDOWEDGE,
CLASSNAME,

APPLICATIONNAME,
ws VISIBLE 1ws_POPUP 1ws_OVERLAPPEDWINDOW,
150,
150,
280 f

250,
0,
0,
ghinst,
0) ;

if (ghWnd) // If the call to create window sue

}
else

hr InitDDrawEx();
if (FAILED(hr)) {

ExitCode();

// initialize DirectDrawEx

MessageBox(ghWnd, "Couldn't create window.", "Error", MB_OK);
return o;

ShowWindow(ghWnd, SW_NORMAL);
UpdateWindow(ghWnd);

while (1) {
//The PeekMessage function checks a thread message queue
//for a message and places the message (if any) in the specified sl
if(PeekMessage(&msg, NULL, 0,0,PM_NOREMOVE)) {

}
else{

//Quit if WM_QUIT found
if(!GetMessage(&msg,NULL, o, O)) return (msg.wParam);

//Otherwise handle the messages
TranslateMessage(&msg);
DispatchMessage(&msg);

I I Allow input
II Send to approprj

//If there are no other windows messages ...
//Render frame by frame (but only if the App is the activ<
//window and a file is actually loaded)
if (g_bFileLoaded && g_bAppactive) {

RenderToSurface();
}

return msg.wParam;

241

Application Developer's Guide Page 40 of 106

II WinMain II

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lml!§I 11¥8

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

Control an External Device in DirectShow

This article provides background for developers interested in adding external device control
and timecode support to DirectShow applications. It also discusses how timecode is used in the
production environment and lists some typical applications that rely on external devices.
Finally, it describes how external device control is implemented and provides links to the
interfaces available to build VCR control- and timecode-enabled filters in DirectShow.

Contents of this article:

• Introduction
• Understanding SMPTE Timecode
• Typical Uses of Timecode
• Capturing Timecode
• External Device Control
• References and Suggested Reading

Introduction

You can control an external device in DirectShow by implementing device control filters. These
filters control devices or streams of data which are entirely external to the computer and
expose interfaces such as IAMExtDevice, IAMExtTransport, IAMTimecodeGenerator, and
IAMTimecodeReader. Generally, external device control filters do not need to expose pins.
However, an example of a device control filter that does expose pins might be a filter
representing a source of data such as a VCR. A pin-to-pin connection representing the data
flowing from the VCR to the capture board allows the device control filter and the video capture
filter to talk to each other and negotiate data types, athough they do not use the standard
transport and no data would flow between the filters themselves other than control
information. Applications can instantiate and directly control an external device filter, but it is
strongly recommended that they are always instantiated within the context of a filtergraph,
even if they are the only filter in the graph.

External devices can include VCRs, video editing stations, audio tape recorders (ATRs), mixers,
or any other device used in the video capture and editing process. Capture and editing requires
DirectShow external device control filters to provide audio and video synchronization and
precise control. You can accomplish synchronization of audio and video during playback, edit,
and capture with external clocks or Society of Motion Picture and Television Engineers (SMPTE)
timecode. Understanding timecode is the key to understanding external device control.

242

Application Developer's Guide Page 41of106

Understanding SMPTE Timecode

SMPTE timecode is the glue that holds the post-production process together. It identifies video
and audio sources, makes automatic track synchronization possible, and provides a container
for ancillary data related to the production. You will need to understand this data stream and
its application to media production, tool development, or system design.

SMPTE timecode, more properly known as SMPTE time and control code, is a series of digital
frame address values, flags and additional data applied to a video or audio stream, and is
defined in ANSI/SMPTE 12-1986. Its purpose is to provide a machine readable address for
video and audio.

The most common form of a SMPTE timecode data structure an 80-bit frame that contains the
following information:

1. A time stamp in hh:mm:ss:ff (hours:minutes:seconds:frames) format.
2. Eight 4-bit binary groups commonly known as userbits.
3. Various flag bits.
4. Synchronization sequence.
5. Checksum.

The DirectShow TIMECODE SAMPLE structure is an example of a timecode data structure that
contains timecode information for video or audio data.

SMPTE timecode comes in one of two types. Timecode recorded on an analog audio track as a
bi-ohase mark encoded signal is known as LTC, or Linear TimeCode (formerly known as
Longitudinal TimeCode). Each timecode frame is one video frame time in duration. The other
common type of timecode is known as VITC, or Vertical TimeCode. VITC is usually stored on
two lines of a video signal's vertical blanking interval, somewhere between lines 10 and 20 .

.!.IC...timecode is easy to add to a pre-recorded tape, since it is encoded in a separate audio
signal. However, it cannot be read when the tape is paused, moving very slowly, or very
quickly. In addition it consumes one audio channel on non-professional VCRs.

VITC timecode, on the other hand, can be read from speeds of zero to 15 times normal speed.
It can contain field-dependent data and can be read from video capture cards. However, it is
not easily added to a prerecorded tape and often requires expensive hardware.

SMPTE timecode also comes in one of two modes, non-drop frame and drop frame. Non-drop
frame is timecode that is consistently increasing and sequential. It can act as a real-time clock
and works fine for monochrome video that runs at a frame rate of exactly 30 frames per
second.

However, NTSC color video actually runs at a frame rate of 29.97 Hz (frames per second)
because of some compatibility issues with monochrome television. This causes a problem with
non-drop frame timecode because it gets out of step with real-time at the rate of 108 frames
(or 3.6 seconds) per hour. This means that after 1 hour of playback, the timecode would read
00:59:56:12, assuming a start point of 00:00:00:00. This causes problems when trying to
calculate show duration or using "time-of-day" referencing.

A solution to this problem is to skip some frames in the count every so often so the error is
reduced to something tolerable. This compensation method is called "drop frame" and is
implemented by skipping the first two frames from the count at the start of each minute

243

Application Developer's Guide Page 42 of 106

except minutes 00, 10, 20, 30, 40 and 50. The net result is an error of less than 1 frame per
hour, or about 3 frames per 24 hour period.

Drop frame is used more commonly in today's productions, although any implementation
should support mixing both modes.

Typical Uses of Timecode

Applications which provide video capture and editing functionality will typically require control
of external devices. These applications need to identify and index video and audio frames
through references to SMPTE timecode. Linear editing system computers generally control
three or more tape machines, as well as a video switcher and possibly a digital disk recorder.
The controlling computer must execute commands at precise times and therefore must get
videotapes cued to specific places at specific points in time.

Applications typically use timecode in a number of different ways including, but not limited to
the following:

• Tracking of video and audio sources throughout the editorial process so an edit decision
.Li.st, or EDL, may be generated for archival or export to another system. To create an
EDL:

1. Shoot the video.
2. Capture into a nonlinear offline system that uses some form of intraframe-only

compression (MJPEG, DV, etc.).
3. Edit the material and generate an edit decision list (EDL) and offline edited master.
4. Import the EDL to an online system and do an "auto-assembly" using the original

source material to generate the final master, adding titles and effects where
required.

• Synchronizing audio to video. In feature film production, audio is usually recorded on a
separate tape recorder along with timecode. Specially equipped film cameras can also
record timecode on the film in between the sprocket holes. After the filmed image is
electronically transferred to videotape, the timecode is used to align the audio with the
picture in a process known as "synching the dailies". If the audio and video timecodes
are different, VITC and LTC may sometimes be used together, one for video timecode
and the other for audio timecode.

• Synchronization and triggering of multiple devices such as ATRs, digital disk recorder or
players, VCRs, or other similar devices. This is a much broader class of synchronization
than described above, and is most commonly seen in linear editing and nonlinear editing
systems, closed captioning systems, and subtitling systems.

• Making use of the undefined bits in the timecode, called userbits. Often information such
as dates, ASCII codes, or film industry information is contained in the userbits, however
uses of userbits is limited only to the ingenuity of the user.

It quickly becomes obvious that timecode makes many things possible when properly handled.
Unfortunately, there is also a lot that can go wrong, either because of poor technique or
hardware malfunctions. Some things to look out for on timecoded tapes are:

1. Unstable or drifting timecode relative to video or audio.
2. Poor timecode field integrity. This means an LTC word begins in the middle of a frame

rather than at the beginning, or VITC is not updated on a true frame boundary. The net
result is an ambiguous reference.

3. Unintentional VITC/LTC mismatch.
4. Intermittent dropouts.
5. Missing timecode.

244

Application Developer's Guide Page 43 of 106

6. Poor timecode signal quality.
7. Incremental frame offset from incorrectly made copies.

Capturing Timecode

Timecode can be generated either by an external timecode generator, by a capture card
capable of generating timecode, by the device control filter itself, or by an external device such
as a VCR that has a built-in timecode reader. An RS-422 connection is generally necessary if
the timecode is sent to the host from an external device.

Once timecode is generated, it needs to be captured either in tabular or stream format
concurrently with the video or audio so that it can later be accessed during editing. This is
handled in one of two ways:

1 Build a table that lists the timecode discontinuities indexed to frame position within the
stream, and write the table to the end of the file after capture is complete. The list might be an
array of structures that look like this (NOTE, the following structure is a simplification of the
DirectShow TIMECODE SAMPLE structure and is intended as an example only):

struct
DWORD dwOffset; II offset into stream in frames
char[ll] szTC; II timecode value at offset in hh,mm,ss,ff

II for non drop, hh,mm,ss;ff for drc
} TIMECODE;

For example, given a captured video stream with one timecode break in it, the list might look
like this:

{o, 02,00,00,02),
(16305, 15,21,13,29) II timecode jumps at frame 16305

Using this table, any frame's timecode can be easily calculated.

2 Treat the data as a stream and write it to the file just as video and audio are written. This is
useful for rapidly changing data or even non-timecode data in the vertical blanking interval
(VB!) such as closed captioning data.

Once the timecode data is properly stored with its associated frame data, applications that
edit, composite, synchronize or trigger can access and use a familiar and standard indexing
system.

External Device Control

To understand external device control, it is necessary to understand timecode. The key things
to remember about timecode are:

• SMPTE timecode is a frame addressing system that identifies video and audio frames. It
comes in many types and modes: LTC, VITC, Drop Frame, Non-Drop Frame, and operates
at various frame rates: 24, 25, 29.97, and 30 frames per second.

• SMPTE timecode is used in edit decision lists (EDLs) which are generated for offline
editing and online editing, as a timing reference for synchronizing hardware devices, and
as a vehicle for additional data such as production source or film reference information.

• SMPTE timecode can be stored as a stream or table of discontinuities.
• Timelines are necessary for synchronization, and can be local to the controlling

245

Application Developer's Guide Page 44 of 106

computer, external synchronizer, or the controlled device itself.

Given this background, two fundamental problems exiSt with deviee control. First, hundreds of
different communication protocols exist for all the various devices from all the various
manufacturers. Although some devices are more widely used than others, such as VCRs and
Laserdiscs, almost all have a different remote control interface. As more sophisticated
professional video and audio applications continue to move to the desktop, this problem gets
worse. Due to this myriad of protocols, separate DirectShow filters must be implemented for
each and every external deviee you want to control.

Second, the fundamental problem in the design of professional video and audio systems iS that
events must occur at precise points in time. Taking a systems v~w of this iSsue, consider the
following timing diagram:

Timecode
(LTC)

System Vertical Drive

System Frame Pulse

External Device
Vertical Drive

Digital Video/Audio
Player Vertical Drive

Field times

, /Sync Word , ,

l!Ulr · · · · · · · (' · · · · · · · · · ~!Ulr

1J u-.-------;

t=O t=l t=2

The horizontal axis denotes time in video fields, or roughly 1/60 of a second for NTSC video.
The key point here is that all signals line up in time, that is, timecode starts at the beginning
of a frame (System Frame Pulse). External devices such as tape machines are aligned with the
system reference, as well as digital video playback such as an AVI file run from an AVI-enabled
application.

Conformance to this timing requirement is ach~ved by various means, the most common of
which is a master reference signal distributed to all components in the system. This reference
is known as "blackburst" in the video world, so named because it is a composite video signal
containing no active video aoove black level. The "burst" portion of the name refers to the
color burst portion of the video signal. Each device connected to the reference is responsible
for maintaining its own synchronization. This means for example, that a digital video player
must switch frames during the vertieal blanking interval. a tape machine must switch into
record mode during the vertical blanking interval, commands sent to external devices via a
serial port must be timed to the frame pulse, and all of these and other synchronized events
must occur when the SMPTE timecode hits a predetermined value. Failure to conform to these
rules results in tearing of a video image or edits occurring at the wrong point in time.

AccompliShing all this in the professional video world iS relatively straightforward, but in the
hybrid world of desktop video, it iS very difficult.

Building on the concepts presented so far, the two design examples in the following diagrams
mustrate a potential configuration of external devices.

246

Application Developer's Guide Page 45of106

-D Computer

'
. '
'

DV Recorder/Player/ Serial 1/0
H TIC

Effects Gen/DVE/CG Reader/Gen .. ·T • -
! ' ' ' ' ' ' ' ~' ' VCR ' '

I ;

........ Control L Hand Controller

- Audio/Video

Notes: II Computer Monitor/Mouse/Keyboard omitted for clarity.

6 Timecode reader required for non-timecode-enabled VCRs.

D Computer

······································r·····························

VCR

VCR

......... Control
- Audio/Video

DV Recorder/Player/ ID
Effects Gen/DVE/CG Serial 1/0

•····~····· ··················~
: :

VCR

II T/C
Reader/Gen

·· ··· ······· ····• Hand Controller

Notes: D Computer/Monitor/Mouse/Keyboard omitted for clarity.
6 Timecode reader required for non-timecode-enabled VCR.
Iii Serial 1/0 can be replaced by a more sophisticated

control subsystem (plug-in or external).

The block diagrams show that it iS relatively simple to distribute the reference signal to au of
the boxes. To deal with synchronization that takes place within the computer, for example,
between the timecode reader and digital video player, it is recommended that either a "vertical
drive" hardware interrupt, specialized operating system services, or some other custom
solution be used.

Finally, if you intend to write an external device filter, you should implement the
IAMExtDevice. IAMExtTransoort, IAMTimecodeReader. IAMTimecodeGenerator. and
IAMTimecodeDisp!ay interfaces provided by DirectShow. Additionally if you need to move
binary messages to and from an external device, for example, to download executable code for
the external device's microprocessor to execute, this should be accomplished by implementing
the COM IDataObject interface, which has a complete set of methods for handling binary data
transfers. Use this interface for whatever custom data transfer purposes your filter needs.

For sample code that demonstrates how to implement an external device control filter see the
Samples\DS\Vcrctrl folder in the DirectX Media SDK.

247

Application Developer's Guide Page 46 of 106

References and Suggested Reading

For additional information on SMPTE timecode and external device control, refer to the
following documentation.

1. Proposed revision to ANSI/SMPTE 12M-1986, SMPTE Standard for Television, Audio and
Film Time and Control Code, SMPTE Journal, February 1995.

2. SMPTE RP 135-1990 "Use of Binary User Groups in Motion-Picture Time and Control
Codes"

3. SMPTE RP 169 "Television, Audio and Film Time and Control Code - Auxiliary Time
Address Data in Binary Groups - Dialect Specification of Directory Index Locations"

4. SMPTE RP 179-1994 "Dialect Specification of Page-Line Directory Index for Television,
Audio and Film Time and Control Code for Video-Assisted Film Editing"

5. "Touring the Vertical Interval", Warner Johnston, TV Technology, August 1991
6. "Closed Captioning in Real Time", Marc Oakrand, SMPTE Journal, June 1991
7. Timecode Handbook, 3rd. Edition, Cipher Digital, Inc. (available from Mix Bookshelf)
8. Timecode: A Users Guide, John Ratcliffe (available from Mix Bookshelf)
9. SMPTE RP 138 - Control Message Architecture

10. SMPTE RP 139 - Tributary Interconnection
11. SMPTE RP 163 - System Service Messages
12. SMPTE RP 170 - Video Tape Recorder Type Specific Messages for Digital Control Interface
13. SMPTE RP 171 - Type-Specific Messages for Digital Control Interface of Analog Audio

Tape Recorders
14. SMPTE RP 172 - Common Messages for Digital Control Interface
15. SMPTE 275M - ESlan-1 Remote Control System

Note SMPTE standards and reprints available from SMPTE at (914)761-1100

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§illlj4M

Build a Filter or Application with Visual c++ 5.x

This article describes step-by-step procedures for building your Microsoft® DirectShow™
projects. You can either build your filter or application from the command line, or build it from
within the Visual Studio environment that comes with Microsoft Visual C++®. If you choose to
build a filter from within Microsoft Visual Studio™, you can use the VC5Kit set of files shipped
with the DirectShow SDK, by default, in the dxmedia\tools\VC5Kit directory. This provides an
easy way to configure Visual Studio project settings. You can also set the project settings
within Visual Studio yourself.

The main difference between building a filter and building an application from within Visual
Studio is that for a filter you select Win32 Dynamic-Link Library as the project type, while
for an application you select Win32 Application or Win32 Console Application as the
project type. (You choose the project type in the New Projects dialog box opened by choosing

248

Application Developer's Guide Page 47of106

the New command from the File menu.)

This article includes the following topics.

• Building a Filter or Application from the Command Line
• Using VC5Kit to Build a Filter in Visual Studio
• Setting DirectShow Project Settings in Visual Studio

Building a Filter or Application from the Command Line

Perform the following steps to build a DirectShow project from the command line.

1. Go to the Visual C++ Bin directory.
2. Type VCVARS32.

3. Go to the directory containing the filter you want to build.
4. If you are building a sample filter and the sample filter isn't in the default directory (the

default is \dxmedia\Samples\ds\Samplename; for example,
\dxmedia\Samples\ds\Gargle), set the AXSDK MAKEFILE variable to the top-level
DirectShow directory. For example, at the command prompt, type:

set axsdk=c,\dxmedia

5. At the command prompt, type:

NMAKE

For nondebug versions, type:

NMAKE NODEBUG=l

Using VCSKit to Build a Filter in Visual Studio

This section discusses building filters with Microsoft® Visual C++® version 5.x. The 5.x VC5Kit
is installed by default in the dxmedia\tools\VC5Kit directory.

• Setting the Visual Studio Include and Lib Directories
• Creating a Project Directory and Adding Source Files
• Building the Project in Visual Studio
• Creating a GUID
• Creating a Definition File

Setting the Visual Studio Include and Lib Directories

This topic describes how to set your Visual Studio Include and Lib directories. If you are
building a DirectShow sample application, such as PlayFile, that comes with a makefile or .mak
file, the steps in this topic are the only ones you must perform to build the sample. Once you
set your directories, you can choose Open Workspace from the File menu and select the
existing makefile or .mak file. Visual Studio will wrap the makefile. If you are building a filter,
other steps will probably be necessary.

1. Open Visua I Studio.

249

Application Developer's Guide

2. From the Tools menu, choose Options.
3. Choose the Directories tab.
4. In the Show directories for drop-down list, select Include files.
5. Add the DirectShow include directories (by default: dxmedia\Include and

dxmedia\Classes\Base) to the list.
6. In the Show directories for drop-down list, select Library files.
7. Add the DirectShow library directory (by default C:\dxmedia\Lib).

Creating a Project Directory and Adding Source Files

Follow these steps to create your project directory and add your source files to it:

1. Create an empty directory for your project; for example, C:\Filter.

Page 48 of 106

2. Copy the VC5Kit Filter.def, Filter.dsp, Filter.dsw, and Filter.mak files into the directory.
3. Copy your source files into the directory. This includes .h, .cpp and any other

miscellaneous source files your project requires. If your project has its own .def and .re
files, you can use these rather than the .def and .re files provided with VC5Kit.

Building the Project in Visual Studio

Follow these steps to build your project in Visual Studio:

1. From the File menu in Visual Studio, choose Open Workspace.
2. In the Open Workspace dialog box that appears, browse to the directory you created

and select Filter.dsw.

The project opens.

3. To add your source files to the project, choose Add to Project from the Project menu,
and then choose Files from the submenu that appears. Browse to the directory
containing your source files, select the ones you want to add, and click the OK button.

4. From the Project menu, choose Settings.
5. Choose the Link tab and select General from the Category drop-down list.
6. In the Output file name box, type the name of your filter; for example, Filter.ax.
7. Choose OK to confirm the project settings you've selected.
8. Choose Build Filter.ax from the Build menu. The name Filter.ax is the name you gave

the output file in the Link tab.

Creating a GUID

If you are building your filter using source files from an existing filter, including any samples
filter that ships with DirectShow, you must create a GUID for the new filter.

To create a G..UlQ in Visual Studio:

1. From the Tools menu, choose Create GUID. By default, the GUID is in DEFINE_GUID
format, which is the format you want.

2. Click the Copy button.
3. Delete the old GUID from your source file.
4. Put the cursor in your source file where the old GUID used to be, and choose Paste from

the Edit menu.

Creating a Definition File

250

Application Developer's Guide Page 49 of 106

If your filter implements the DllGetClassObject, DllCanUnloadNow, DllRegisterServer, or
DllUnregisterServer functions, you must include a definition file (.def file) that exports them.
For example (where Filter.ax is the name you gave the output file):

LIBRARY FILTER.AX
DESCRIPTION 'Description of my filter'
PROTMODE
EXPORTS

DllGetClassObject
DllCanUnloadNow
DllRegisterServer
DllUnregisterServer

Setting DirectShow Project Settings in Visual Studio

This section describes how to set project settings in Visual Studio to build your own DirectShow
applications and filters. If you are building samples supplied by DirectShow, you need only set
your Include and Lib directories.

In some cases, you might need to add to these project settings for your particular application.
For example, if you use DirectDraw functions, you must add Ddraw.lib to the list of Link
libraries.

In all cases, you must set the Visual Studio Include and Lib directories as described in Setting
the Visual Studio Include and Lib Directories.

This section contains the following topics.

• Creating a Project
• Adding Files to the Project
• Setting Project Settings For Both Release and Debug Builds
• Setting Project Settings for Debug Builds
• Building a Release or Debug Version of Your Project

Creating a Project

To create a project, perform the following steps.

1. From the File menu, choose New.
2. Choose the Projects tab.
3. If you are building an application, select Win32 Application as the type of project. If

you are building a filter, select Win32 Dynamic-Link Library.
4. Type a name for the project and a location for the project files.

Adding Files to the Project

To add files to the project, perform the following steps.

1. From the Project menu, choose Add to Project. From the submenu that appears,
choose Files.

2. In the Insert Files into Project dialog box that appears, browse for the filter files you
want to add to the project, such as the .cpp, .h, .re, and .def files.

251

Application Developer's Guide Page 50 of 106

3. Select the file or files you want to add and choose OK.

Setting Project Settings For Both Release and Debug Builds

To set project settings for both release and debug builds, perform the following steps.

1. From the Project menu, choose Settings.
2. In the dialog box that appears, select All Configurations in the Settings For drop-down

list.

Follow these steps to set your project general settings:

1. From the Project menu, choose Settings.
2. Choose the General tab.
3. From the Microsoft Foundation Classes drop-down list, select Not Using MFC.

Follow these steps to set your project compiler settings:

1. From the Project menu, choose Settings.
2. Choose the C/C++ tab.
3. In the Category drop-down list, select General.
4. In the Preprocessor definitions text box, insert the following:

INC_OLE2,STRICT,WIN32,_MT,_DLL,_X86_=1,WINVER=OX0400

5. Select the C++ Language category.
6. Select the Enable exception handling check box.
7. Choose the Code Generation category.
8. In the Processor drop-down list, select Blend*.
9. In the Calling convention drop-down list, select _stdcall.

10. In the Use Run-time library drop-down list, select Multithreaded DLL.
11. Select the Precompiled Headers category.
12. Select the Not using precompiled headers option button.

Follow these steps to set your project link settings:

1. From the Project menu, choose Settings.
2. Choose the Link tab.
3. In the Category drop-down list, select General.
4. In the Output file name text box, type the filter's output file name; for example,

Debug/Filter.ax.
5. Add the following libraries to the beginning of the Object/Library modules text box.

quartz.lib strmbase.lib msvcrt.lib

These libraries must be the first libraries in the link list. Depending on the functions your
application accesses, you might need to add other libraries to this list.

6. Select the Ignore all default libraries check box.
7. Select the Customize category.
8. Clear the Use program database check box.
9. Select the Output category.

10. In the Base address text box, type:

252

Application Developer's Guide Page 51 of 106

Oxlc400000

11. In the Entry-point symbol text box, type:

DllEntryPoint@l2

Setting Project Settings for Debug Builds

To set project settings for debug builds, perform the following steps.

1. From the Project menu, choose Settings.
2. Select Win32 Debug in the Settings For drop-down list in the Project Settings dialog

box that appears.
3. Choose the C/C++ tab.
4. In the Category drop-down list, select General.
5. Select the Generate browse info check box.
6. In the Debug info drop-down list, select C7 Compatible.
7. Select the Code Generation category.
8. In the Use Run-time library drop-down list, select Debug Multithreaded DLL.
9. Choose the Link tab.

10. Select the Debug category.
11. Select the Debug info check box.

Building a Release or Debug Version of Your Project

To build a release or debug version of your project:

1. Choose Set Active Configuration from the Build menu, and select Win32 Release or
Win32 Debug from the list that appears.

2. Choose Build Filter.ax from the Build menu. The name Filter.ax is the name you gave
the output file in the Link tab.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.ij Topic Contents l@i§lllMM

MQl§i[.jlj,M 111.],.(j Topic Contents l@bll!MM

Recompress an AVI File

The following sample code shows how to recompress the file c:\Foo.avi to c:\Bar.avi, where the
output file will use Cinepak compression and will include CD-quality audio. Recompression is
useful to change the format of a file from one compression scheme to another. The exact
benefits of recompression depend on the different compressors used to compress the source
and output files and often include producing a smaller output file. In this example the source
file, Foo.avi, might be in a format such as uncompressed RGB with 22 kilohertz (kHz) sound.

The AMCao Sample CDirectShow Capture Application) sample demonstrates a capture

253

Application Developer's Guide Page 52of106

application and uses many of the same concepts as the following code.

Note This sample code fragment introduces concepts only and is not designed to compile. See
the AMCao Sa mole CDirectShow Caoture Aoolicationl sample for actual code. The code
fragment does not perform error checking for the sake of brevity.

II Create a graph builder object.
hr CoCreateinstance((REFCLSID)CLSID_CaptureGraphBuilder,

NULL, CLSCTX_INPROC, (REFIID) IID_ICaptureGraphBuilder,
(void **)&pBuild);

II Create a filter graph, and tell the builder what it is.
hr CoCreateinstance((REFCLSID)CLSID_FilterGraph,

NULL, CLSCTX_INPROC, (REFIID) IID_IGraphBuilder,
(void **) &pFg);

hr pBuild->SetFiltergraph(pFg);

II Obtain a source for c,\foo.avi.
hr CoCreateinstance((REFCLSID)CLSID_AsyncReader,

NULL, CLSCTX_INPROC, (REFIID) IID_IBaseFilter,
(void * *) &pSrc) ;

hr= pSrc->Queryinterface(IID IFileSourceFilter, (void **)&pI);
hr= pl->Load(L"c:\\foo.avi",-NULL);
pI->Release ();
hr= pFg->AddFilter(pSrc, NULL);

//Create a rendering section to create the c:\bar.avi output file.
hr pBuild->SetoutputFileName(&MEDIASUBTYPE_Avi, L"c:\\bar.avi", &pRender,

NULL);

// [... Enumerate the audio compressors with the category CLSID_AudioCompressorcateg
//and pick one. See the Amcap.cpp file in the capture sample directory for an exarr
II how to enumerate a category ...]

//Render the recompressed audio stream
hr = pBuild->RenderStream(NULL, pSrc, pCAud, pRender);

// [... Enumerate a video compressor using the CLSID_Videocompressorcategory enum,
II as seen in Amcap.cpp ...]

pCVid = [.. . IBaseFilter pointer of the chosen Cinepak compressor ...]
hr= pFg->AddFilter(pCVid, NULL);

II Tell it to compress at lOOklsecond data rate.
II Use the current format to set the data rate, but change the data
II rate item in the media type.
hr pBuild->Findinterface(NULL, pCVid, IID_IAMStreamConfig,

(void * *) &pVSC) ;
hr pVSC->GetFormat(&cmt);
((VIDEOINFOHEADER) (cmt.Format()))->dWBitRate 100000;
hr= pVSC->SetFormat(&cmt);
pVSC->Release();

II Request key frames every 4 frames.
hr pBuild->Findinterface(NULL, pCVid, IID_IAMVideoCompression,

(void **)&pVC);
hr pVC->put_KeyFrameRate(4);
pVC->Release();

//Render the recompressed video stream.
hr = pBuild->RenderStream(NULL, pSrc, pCVid, pRender);

254

Application Developer's Guide Page 53 of 106

II All done with these objects now.
psrc->Release ();
pRender->Release();
pCAud->Release () ;
pCVid->Release () ;

II Run the graph.
hr= FG->Queryinterface(IID_IMediacontrol, &MC) ;
MC->RUn() ;

II Wait for EC COMPLETE, and it's all done!
II [... wait for EC_COMPLETE event ... see AMCap sample ...]

pGraphBuilder->Findinterface (pRender, IID IMediaseeking, pMS) ;
II [... While waiting for complete, use IMediaseeking methods to get
II the percentage complete ... IMediaSeeking->GetCurrentPo sition divided by
II GetDuration * 100 will tell you the percent complete at any time ...]

pFg->Release () ;
pBuild->Release () ;

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.li!:M l!i.! 11ij

•;<¥[.]++ MB.HM

Register DirectShow Objects

Topic Contents l@i§i l!lltiM

Topic Contents l@i§lllMM

This section describes the steps you must take to make your Microsoft® DirectShow™ objects
self-registering. It describes the relationships between the registry entry points called by COM,
the globally-defined CFactoryTemplate array elements, and the AMOVIESETUP MEDIATYPE,
AMOVIESETUP PIN, and AMOVIESETUP FILTER structures.

To enable objects in a dynamic-link library (DLL) to register themselves, two COM-defined
entry points must be provided in the DLL and exported:

• DllRegisterServer
• DllUnregisterServer

With these entry points in your DLL, you can use the Regsvr32.exe tool to register and
unregister your DLL or setup tools, or applications can register the filter programmatically.

Implementing Self-Registration

To implement a self-registering filter, carry out the following steps.

1. Add DllRegisterServer and DllUnregisterServer to the export list in your filter's DEF file.
2. Provide implementations for these functions, which call the DirectShow

AMovieDllRegisterServer2 function with parameters of TRUE and FALSE, respectively. For
example:

255

Application Developer's Guide Page 54 of 106

STDAPI DllRegisterServer()
{

return AMovieD11RegisterServer2(TRUE);

HRESULT DllUnregisterServer()
{

return AMovieD11RegisterServer2(FALSE);

You can add code to these functions to set up custom registry entries.

3. Define the setup data structures for each filter based on the AMOVIESETUP MEDIATYPE,
AMOVIESETUP PIN, and AMOVIESETUP FILTER structures.

For example, here are the structures for the Ball.ax sample filter:

II Setup data

const AMOVIESETUP MEDIATYPE sudOpPinTypes
{ &MEDIATYPE_Video
, &MEDIASUBTYPE_NULL };

const AMOVIESETUP PIN sudOpPin
{ L"Output"

FALSE
TRUE
FALSE
FALSE
&CLSID NULL
NULL
1
&sudOpPinTypes };

const AMOVIESETUP FILTER sudBallax
{ &CLSID_BouncingBall

L"Bouncing Ball"
MERIT UNLIKELY
1
&sudOpPin } ;

4. In the CFactoryTemolate g_Templates array that instantiates your class, ensure that the
first parameter has the name of the filter, (for example, "Bouncing Ball") and that the
last parameter has the address of the AMOVIESETUP FILTER structure you defined.

CFactoryTemplate gTemplates[J={
L"Bouncing Ball",
&CLSID_BouncingBall,
CBouncingBall::Createinstance,
NULL,
&sudBallax)

};

II Name of the filter
II CLSID of the filter
II Static function to be called by class f
II
II Address of the AMOVIESETUP FILTER struc

5. Tag the DLL file as self-registering by adding the string "OLESelfRegistering" to its
resource (defining AMOVIE_SELF _REGISTER in your resource file does this automatically
if you are using Activex.rcv and Activex.ver). This string enables applications to

256

Application Developer's Guide Page 5 5 of 106

determine whether the object is self-registering without loading the DLL.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents 1@1§111$8

Enumerate and Access Hardware Devices in
DirectShow Applications

This article explains and demonstrates how to initialize and access system hardware devices by
using interfaces and classes provided by Microsoft® DirectShow. Developers need this
functionality to support many types of hardware in their applications. Typically, DirectShow
applications use the following types of hardware.

• Audio and video capture cards
• Audio or video playback cards
• Audio or video compressors or decompressors (such as an MPEG decoder)

Because developers support these devices in a similar manner (and for the sake of brevity),
they will be referred to as AV devices for the remainder of this article; they will be
distinguished only if a topic applies to a specific type of device.

Three interfaces apply to hardware device support: ICreateDevEnum (documented in the
DirectShow SDK), and IPropertyBag and IPersistPropertyBag (both Microsoft Win32®
interfaces). These interfaces handle hardware device enumeration and the loading and storage
of AV device properties.

Contents of this article:

• How to Enumerate Hardware Devices
• Device Enumeration in the AMCap Sample
• How to Store DirectShow Filter Properties Persistently

Application developers who want to control hardware devices should be familiar with the COM­
based concepts of monikers, enumerators, and the initialization and creation of DirectShow
objects.

How to Enumerate Hardware Devices

Microsoft provides audio and video capture and playback functionality through interfaces,
classes, and samples included in the DirectShow SDK. Because the File Source filters and the
filter graph manager handle the internal work of passing information from component to
component, adding capture capabilities to an application requires a relatively small amount of
additional code. The required additional code enumerates the system's hardware devices and
compiles a list of the devices that can perform a specific task (a list of all video capture cards,

257

Application Developer's Guide Page 56 of 106

for example). You can use the same enumeration process for any hardware device, past or
present; DirectShow automatically instantiates filters for both Win32 and Video for Windows
devices.

To work with AV devices, you must first detect what devices exist on the current system. The
!CreateDevEnum interface, which creates enumerators for any specified type of object,
provides the functionality you need to detect and set up the hardware. Accessing a specific
device is a three-step process, detailed by the following instructions and code fragments.

1. Create a system hardware device enumerator.

First, set aside a pointer for the enumerator, and then create it by using the
CoCreatelnstance function; CLSID_SystemDeviceEnum is the type of object you want to
create (a system hardware device enumerator, in this case) and IID_!CreateDevEnum is
its interface GUID.

ICreateDevEnum *pCreateDevEnum ;
CoCreateinstance(CLSID_SystemDeviceEnum, NULL, CLSCTX_INPROC_SERVER,

IID_ICreateDevEnum, (void**) &pCreateDevEnum) ;

2. Create an enumerator for a specific type of hardware device (such as a video capture
card).

Declare an !EnumMoniker interface pointer and pass it to the
!CreateDevEnum: :CreateClassEnumerator method, called on the system device
enumerator. You can then use the IEnumMoniker interface pointer to access the newly
created enumerator.

IEnumMoniker *pEnumMon ;
pCreateDevEnum->CreateClassEnumerator(

[specify device GUID here]
&pEnumMon, O);

3. Enumerate the list itself until you locate the desired device.

If the previous call to CreateClassEnumerator succeeded, you can call the
!EnumMoniker:: Next method to step through the list of devices. To retrieve the device
itself, call the !Moniker:: BindToObject method on an enumerated device. BindToObject
creates the filter associated with the selected device and loads the filter's properties
(CLSID, FriendlyName, and DevicePath) from the registry. Don't be confused by the (1
== cFetched) portion of the if condition; the Next method will set it to the number of
returned objects (1, if successful) before testing the statement's validity.

ULONG cFetched = O;
!Moniker *pMon ;

if (S_OK == (pEnumMon->Next(l, &pMon, &cFetched)) && (1 == cFetched))
{

pMon->BindToObject(O, o, IID_IBaseFilter, (void **)&[desired interface

Now that you have the !Moniker pointer, you can add the device's filter to the filter
graph. Once you've added the filter, you don't need the !Moniker pointer, device
enumerator, or system device enumerator.

258

Application Developer's Guide Page 57 of 106

pGraph->AddFilter ([desired interface here], L" [filter name here]":
pMon->Release() //Release moniker

pEnumMon->Release() ; //Release the class enumerator
}
pCreateDevEnum->Release();

Device Enumeration in the AMCap Sample

The DirectShow SDK includes an audio and video capture sample application called AMCap, as
well as the sample's source code. Internally, AMCap uses the !CreateDevEnum interface to
construct a list of a system's capture devices. In the application itself, you can access the list
of devices from the Devices menu.

The code that builds AMCap's enumerated list of devices is its InitCapFilters function. This
function demonstrates a typical way to enumerate filters, for both former and current hardware
devices. For the sake of brevity, the following code walk-through contains no error-checking
code; for the complete version, see the Amcap.cpp file in the \Samples\DS\Capture directory
of the SDK. The AMCap sample uses a global variable, gcap, which is a structure from the
Amcap.cpp file that stores a variety of information used by the filter graph. While you generally
want to avoid using global variables, this structure does show the amount of information that
the filter graph manager handles.

struct _capstuff {
char szCaptureFile[_MAX_PATH];
WORD wcapFileSize;
ICaptureGraphBuilder *pBuilder;
IVideoWindow *pVW;
IMediaEventEx *pME;
IAMDroppedFrames *pDF;
IAMVideoCompression *pVC;
IAMVfwCaptureDialogs *pDlg;
IAMAudioStreamconfig *pASC;
IAMVideoStreamconfig *pVSC;
IBaseFilter *pRender;
IBaseFilter *pVCap, *pACap;
IGraphBuilder *pFg;
IFileSinkFilter *pSink;
BOOL fCaptureGraphBuilt;
BOOL fPreviewGraphBuilt;
BOOL fCaptureGraphRunning;
BOOL fPreviewGraphRunning;
BOOL fCapAudio;
int iVideoDevice;
int iAudioDevice;
double FrameRate;
BOOL fWantPreview;
long lCapStartTime;
long lCapStopTime;

gcap;

InitCapFilters starts by defining some basic return and error-checking variables. AMCap uses
the ulndex value to loop through the system's hardware devices later.

BOOL InitCapFilters()
{

HRESULT hr;

259

Application Developer's Guide Page 58of106

BOOL f;
UINT uindex = O;

The MakeBuilder function call creates a filter graph builder. You can find the MakeBuilder
function in Amcap.cpp.

f = MakeBuilder();

The next section handles the video capture device enumeration; this code is very similar to the
code description from the How to Enumerate Hardware Devices section. It first declares an
!CreateDevEnum pointer, then uses CoCreatelnstance to create an enumerator for system
hardware devices.

ICreateDevEnum *pCreateDevEnum;
hr= CoCreateinstance(CLSID_SystemDeviceEnum, NULL, CLSCTX_INPROC_SERVER,

IID_ICreateDevEnum, (void**)&pCreateDevEnum);

After it has a device enumerator, AMCap creates an enumerator specifically for video capture
devices by passing the CLSID_VideolnputDeviceCategory class identifier to
!CreateDevEnum: :CreateClassEnumerator. It can now use the !EnumMoniker pointer to access
the enumerated list of capture devices.

IEnumMoniker *pEm;
hr = pCreateDevEnum->CreateClassEnumerator(CLSID VideoinputDevicecategory, &pErr
pCreateDevEnum->Release() i II we don't need the device enumerc
pEm->Reset(); II Go to the start

Now AMCap needs the actual device; it calls !EnumMoniker:: Next to move through the device
list, and then points pM to each device by calling !Moniker: :BindToObject, which also loads the
device's properties (CLSID, FriendlyName, and DevicePath) from the registry. If you do not
want to automatically create the filter associated with the device, use !Moniker:: BindToStorage
instead of BindToObject.

ULONG cFetched;
!Moniker *pM;
gcap.pVCap = NULL;

II This will access the act

while(hr = pEm->Next(l, &pM, &cFetched), hr==S_OK)
{

if ((int)uindex == gcap.iVideoDevice) {
hr= pM->BindToObject(O, o,

pM->Release();

}

break;

pM->Release ();
uindex++;

pEm->Release();

//This is the one we want. Instantiate it
IID IBaseFilter, (void**)&gcap.pVCap);

- II We don't need the monikE

//We've got the device; don't nee(

After AMCap has a device, it retrieves the interface pointers to measure frames, get the driver
name, and get the capture size. AMCap stores each pointer in the gcap global structure.

II We use this interface to get the number of captured and dropped frames
gcap.pBuilder->FindCaptureinterface(gcap.pVCap,

IID_IAMDroppedFrames, (void **) &gcap.pDF);

//We use this interface to get the name of the driver
gcap.pBuilder->FindCaptureinterface(gcap.pVCap,

IID_IAMVideoCompression, (void **)&gcap.pVC);

260

Application Developer's Guide Page 59 of 106

//We use this interface to set the frame rate and get the capture size
gcap.pBuilder->FindCaptureinterface(gcap.pVCap,

I ID_IAMVideoStreamconf ig, (void * *) &gcap. pVSC) ;

AMCap then gets the media type and sizes the display window to match the size of the video
format.

AM_MEDIA_TYPE *pmt;
gcap.pVSC->GetFormat(&pmt); II Current capture format

ResizeWindow(HEADER(pmt->pbFormat)->biWidth,
HEADER(pmt->pbFormat)->biHeight);

DeleteMediaType(pmt);

This section applies only to earlier Video for Windows devices. Video for Windows devices
support a specific set of dialog boxes, which set the video source, format, and display type. For
additional information on these dialog boxes, see the IAMVfwCaotureDialogs interface
documentation.

hr= gcap.pBuilder->FindCaptureinterface(gcap.pVCap,

if (hr != NOERROR) {
IID_IAMVfwCaptureDialogs, (void **)&gcap.pDlg);

ErrMsg("Error %x: Cannot find VCapture:IAMVfwCaptureDialogs", hr);

Now that AMCap has the video capture device and its relevant information, it repeats the
process with the audio devices and stores the information in the global structure. Note that it
calls !CreateDevEnum: :CreateClassEnumerator with the CLSID_AudiolnputDeviceCategory
CLSID to enumerate audio hardware devices.

hr= CoCreateinstance(CLSID_SystemDeviceEnum, NULL, CLSCTX_INPROC_SERVER,
IID_ICreateDevEnum, (void**)&pCreateDevEnum);

uindex = O;
hr = pCreateDevEnum->CreateClassEnumerator(CLSID_AudioinputDevicecategory,

&pEm, 0);
pCreateDevEnum->Release();

pEm->Reset();
gcap.pACap = NULL;
while(hr = pEm->Next(l, &pM, &cFetched), hr==S_OK)
{

}

if ((int)uindex == gcap.iAudioDevice) {
hr= pM->BindToObject(O, 0, IID_IBaseFilter,

pM- >Release() ;
break;

pM->Release ();
uindex++;

pEm->Release();

II this is the one
(void**)&gcap.pACap);

AMCap also repeats the process of retrieving the format interface, this time for the audio
device.

hr gcap.pBuilder->FindCaptureinterface(gcap.pACap,
IID_IAMAudioStreamconfig, (void **) &gcap.pASC);

261

Application Developer's Guide Page 60 of 106

How to Store DirectShow Filter Properties Persistently

The Win32 IPropertyBag and IPersistPropertyBag interfaces store and retrieve groups ("bags")
of properties for developer-specified objects. Properties stored by these interfaces are
persistent; that is, they remain consistent between different instantiations of the same object.
Filters can store their properties (CLSID, FriendlyName, and DevicePath) persistently. After a
filter stores its properties, DirectShow automatically retrieves them whenever it instantiates
the filter. To add this functionality to your filter, implement the IPersistPropertyBag
interface and its .LQ.a.d method. Your implementation of the Load method should call the
IPropertyBag:: Read method to load the filter's properties into a Win32 VARIANT variable, and
then initialize its input and output pins.

The following code sample demonstrates how the DirectShow VfWCapture filter implements the
IPersistPropertyBag:: Load method. Remember that your filter must supply a valid IPropertyBag
pointer to hold the filter's properties during execution. You can specify an error log to trap
errors generated by the filter's properties, although you can pass in a null value to ignore error
reporting.

STDMETHODIMP CVfwCapture::Load (LPPROPERTYBAG pPropBag, LPERRORLOG pErro rLo g)
{

HRESULT hr ;
CAutoLo ck cObjectLock (m_pLo ck) ;

if (m_pstream)
return E_UNEXPE CTED;

VARIANT var;
var.Vt = VT_I4;
hr= pPropBag->Read (L"VFWindex", &var, O) ;
if (SUCCEEDED (hr))
{

hr = S_OK;
m_iVideo id = var.lVal;
createPins (&hr) ;

return hr;

© 1997 Microsoft Corooration. All rights reserved. Terms of Use.

II Locks the object ; automatically

II If the filter already exists f o 1

II VARIANT from Platform SDK
II four-by te integer (long)
II VFWindex is the private name usE
II If it read the properti e s succe~

II Defaults return value t o SOK
II sto r e s the specified hardware dE

II !nits the pins, replacir

II Returns s OK or an erro r value,

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M

Clocks

This section describes time and synchronization in DirectShow, how to implement a reference
clock in a filter or application, and how to make a reference clock the master clock if a filter
graph has more than one clock.

262

Application Developer's Guide Page 61 of 106

·Synchronization

· Understanding Time and Clocks in DirectShow

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 11ij Topic Contents l@iJI l!lltiM

Synchronization

DirectShow accomplishes synchronization by using a reference clock. A reference clock is an
object that implements the IReferenceClock interface. For example, because sound cards are
often used for reference clocks, the audio renderer filter implements this interface, which
essentially allows any caller to register for the receipt of time notifications.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 11ij Topic Contents l@iJll!MM

Understanding Time and Clocks in DirectShow

This article describes the basic concepts of time used in the filter graph and then goes on to
describe what a reference clock is, how it is implemented by a filter or as a stand-alone clock,
how the filter graph manager decides which clock to use as the master reference clock, and
how to ensure that a reference clock implemented by a filter is used as the master reference
clock.

Contents of this article:

• About Time
• About Reference Clocks

o Characteristics of a Reference Clock
o Using a Reference Clock
o DirectShow Clock Classes
o Multiple Clocks in a Filter Graph

About Time

A few concepts of time come up often in discussions about DirectShow streams,
synchronization to a common clock, and seeking to different places in the stream. Four terms
are defined here:

• Media time

263

Application Developer's Guide Page 62 of 106

• Reference time
• Stream time
• Presentation time

In DirectShow, the term media time is used to refer to positions within a seekable medium
such as a file on disk. Media time can be expressed in a variety of units, such as frames,
seconds, bytes, or 100-nanosecond intervals, and indicates a position within the data in the
file.

Reference time is an absolute time (sometimes called wall-clock time) that is established by a
reference clock in the filter graph. It is a reference to some time value outside the filter graph
(for example, perhaps the number of milliseconds since Windows was started).

Stream time is relevant only within a running filter graph, and represents the time since the
graph was last started. When a filter graph is run, each filter is passed a notional start time
(tStart) according to the reference clock, and the packets of data that a filter receives will
normally be time-stamped with the stream time at which they should be presented. This is
known as the presentation time. Stream time is often called "relative reference time" since, by
definition, stream time is equivalent to reference time minus start time when the graph is
running.

Since a filter graph can start playing a file at an arbitrary position and rate, file source filters
and/or parsers must take these two factors into account when time-stamping the samples that
they pass downstream to renderers. Such filters will calculate the presentation time and will
place that value in the sample. The presentation time is calculated by subtracting the starting
media time (the last time that was seeked to) from the media time of the sample, and dividing
this by the playback rate. Expressed as a formula, this would be:

Presentation Time = (Media Time - Starting Media Time) / playback rate.

For example, consider a media stream with a duration of six seconds that is set to be played at
double speed. What happens when the filter graph is seeked to a sample with a media time of
two seconds and then run? Each media sample read from the disk gets stamped with a
presentation time equivalent to half of the difference of its media time and the start time (two
seconds). Here is how the time stamps would appear at one-second media sample intervals:
Media time (sec) Presentation time stamp (sec)
3 0.5
4

5
6

1.0
1.5
2.0

When finally presented in the renderer, the difference between the actual time the sample is
rendered and the stamped presentation time that was expected can be calculated. In a perfect
graph, this would always be zero. In reality, there is a margin of acceptable tolerance. If this
difference is out of tolerance, then quality-control management will be initiated by the
renderer.

About Reference Clocks

A reference clock is an object that implements the IReferenceClock interface. This interface
supports querying for the current time and scheduling events according to time as counted by
that clock. Event scheduling is achieved by submitting advise requests to the clock. These

264

Application Developer's Guide Page 63 of 106

requests can be for single-shot or periodic events.

Many pieces of hardware can provide time signals. These time signals can be of particularly
high accuracy, or might represent some clock signal significant only to the resolution of a
particular application, such as sound playback.

Filters can expose a hardware time signal to other filters by implementing a reference clock in
the filter graph. A filter graph manager will choose (or be assigned) one of these reference
clocks to be the filter graph reference clock. (By definition, there is only one reference clock
allowed in a filter graph.) If no such reference clocks exist, the filter graph manager can create
a suitable reference clock and use that one instead. A reference clock can be appointed by
calling the filter graph manager's IMediaFilter: :SetSyncSource method. The reference clock is
also called the sync source. A filter graph manager propagates this selection to the filters in its
graph by calling their individual IMediaFilter::SetSyncSource methods.

Developers can provide a reference clock on a filter for purely altruistic reasons; the filter
might simply be in a position to provide a high-accuracy clock. Alternatively, the overall
performance of a filter graph might be determined by which reference clock, of all the possible
reference clocks in the graph, is selected to provide its services to the filter graph. Because
audio hardware cannot easily adjust the rate at which it delivers data, it is often the most
appropriate source of time signals. Therefore, the reference clock of the audio renderer is often
selected to be the filter graph's reference clock.

All clocks in DirectShow report a reference time; that is, a time which would be suitable to use
for the filter graph reference time. The filter graph reference time for the filter graph is the
time of the clock that has been selected as the current sync source.

Characteristics of a Reference Clock

Any reference clock must support the IReferenceClock interface. The time of the clock can be
obtained by calling the IReferenceClock: :GetTime method. The time returned by GetTime is
defined as a REFERENCE TIME type (LONGLONG) and loosely represents the number of 100-
nanosecond units that have elapsed since some fixed start time. This is just a guideline.
Specifically, IReferenceClock::GetTime must adhere to some conditions as follows.

A reference clock must return values that are monotonically increasing. That is, successive
calls to GetTime must result in values that are greater than or equal to the previous value.

Also, the return value should generally increase at a rate of approximately one per 100
nanoseconds.

In exceptional circumstances, it is allowable for the clock to stop for a time. (This will
effectively suspend any filter that was using the clock as a sync source.) Furthermore, it is
allowable for the clock to jump forward in exceptional circumstances.

Finally, the reference clock must continue to count time even if its containing filter graph is
stopped, and should normally continue to count time if it is paused. (A filter's reference clock
implementation can optionally use a system-supplied clock to fill in during such times, but that
is an implementation decision.)

The reference clock does not have to bear any permanent relationship to any real time. It is
allowed to drift, it can drift at a changing rate, and it need not correct for such drift. In
particular, it does not have to represent a count of the number of 100 nanoseconds that have
passed since some arbitrary time in the past. It is important to remember that this loose

265

Application Developer's Guide Page 64 of 106

description of a reference clock, though it can be helpful, is just a guideline. In some cases, a
strict adherence to the guideline might actually result in a poorer overall look and feel when
the filter graph is running. If you want your clock to adhere strictly to the guideline, you need
to set the clock yourself.

Using a Reference Clock

A filter will always be told to use a specific clock (or, possibly, to use none) by a call to its
!Media Filter: :SetSyncSource method. Filters that require timing information should use the
clock that they are told to use. All filters in a particular filter graph should use the same
reference clock. An application can use a reference clock by calling
!Media Filter: :GetSyncSource on the filter graph manager to obtain a pointer to an
!ReferenceClock, and then invoke methods on that interface. If a null pointer is passed to
SetSyncSource, it implies that the filter should not use any clock and should just run as quickly
as possible without discarding any data. If no clock has been set as the reference clock for the
filter graph, then when the filter graph manager's GetSyncSource is called, the filter graph
manager chooses a clock in the filter graph or creates and appoints a clock of its own. This is
the same logic that applies when the filter graph is first run.

If a new reference clock is appointed, the time as tracked by the old reference clock and the
time as tracked by the new reference clock need bear no relation to each other. As a
consequence, functions that call !ReferenceClock: :GetTime on the current sync source should
not be surprised to see the reported time jump forward or backward. Reference clocks can be
switched only if the filter graph is paused or stopped. When the filter graph next starts to run,
the filters in the filter graph will be given their start times in terms of the new clock. (See
!Media Filter:: Run for details.) Typically, only filters that use advise requests from the reference
clock (that is, use its scheduling facilities) must specifically handle clock differences when then
the filter graph is switched to an alternative sync source.

If a filter (or application) uses a reference clock's scheduling facilities, it is important to
recognize that the advise requests are scheduled against that specific clock in the absolute
time used by that clock. If a filter has set up advise requests against its sync source, and is
then notified of a new sync source, then the filter is normally expected to cancel the advise
requests on the first clock and set them up again on the new one. Applications that use advise
requests should monitor for EC CLOCK CHANGED events. If an EC_CLOCK_CHANGED event
notification is received, then the application should cancel any outstanding advise requests,
call GetSyncSource on the filter graph manager to obtain an interface pointer to the new clock,
and reschedule the advise requests on the new clock (also taking into account that the time on
the old and new clock might be different).

Similarly, when a filter sets up advise requests in stream time (for example, 135 milliseconds
into the media stream), then it is expected that the filter will set up an advise when it is told to
run, cancel the advise if it is told to pause or stop, and recalculate and resubmit the advise
request when it is told to run again.

DirectShow Clock Classes

DirectShow provides three class that are used to implement clocks:

• CBaseReferenceClock, the main clock class that implements !ReferenceClock.
• CAMSchedule, which handles the mechanics of advise list processing and is inherited by

CBaseReferenceClock.
• CSystemClock, a stand-alone minimal clock class derived from CBaseReferenceClock.

266

Application Developer's Guide Page 65 of 106

CBaseReferenceClock provides the event notification functionality (mainly via CAMSchedule)
and a rudimentary clock based on the Win32 timeGetTime function.

The most important aspect of CBaseReferenceClock is a virtual GetPrivateTime method. This
method can be overridden in derived classes to return a time. The
CBaseReferenceClock: :GetTime method calls GetPrivateTime, caches the result, and ensures
that the time it returns to its caller does not go backward. Thus, implementers of
GetPrivateTime can code that method so that it returns a best estimate, and not worry about
time going backward. CBaseReferenceClock::GetTime locks the clock before calling
GetPrivateTime; therefore, implementations of GetPrivateTime need not worry about locking
the clock. If methods in derived classes call GetPrivateTime, they should ensure that the
clock is locked first and released afterward.

A derived clock can basically be implemented in one of two ways:

• It can override GetPrivateTime (and SetTimeDelta if desired) and provide its own clock.
This effectively abandons the clock in CBaseReferenceClock.

• It can call SetTimeDelta from the derived clock to minimally adjust the time of the clock
in CBaseReferenceClock.

CSystemClock is derived from CBaseReferenceClock and implements a stand-alone clock (not
attached to a filter), which can be saved as part of a stored filter graph and used as the filter
graph reference clock when the filter is restored. CSystemClock generates the default time
base generated by CBaseReferenceClock (using the Win32 timeGetTime function).

Multiple Clocks in a Filter Graph

It sometimes happens that a filter graph will be built with more than one clock. Several filters
in the graph might implement clocks or there might even be an independent system clock in
the filter graph. Since only one clock can be the master clock, it is assumed that all other
clocks, when notified of the sync source, will synchronize with it.

The filter graph manager has a default algorithm for choosing the master reference clock, and
a filter uses this to ensure that its own reference clock becomes the master clock. Why would a
filter want to insist on its own reference clock rather than letting the filter graph manager
make the decision? There are several reasons to use a filter's own reference clock. For
example, the filter's clock might:

• Be tied to some external source that the filter graph must be synchronized with.
• Be the most accurate.
• Incur the lowest system overhead while being used.
• Be the only clock that cannot be adjusted to be in sync with the other(s). (Although, it

could be argued that this constitutes a badly designed clock.)

Here are the steps used by the filter graph manager for choosing the master reference clock in
a filter graph:

1. If a call to the filter graph manager's IMediaFilter: :SetSyncSource method has been
made, then that reference clock will be used (or no reference clock will be used if a null
pointer was passed to IMediaFilter::SetSyncSource).

2. If IMediaFilter: :SetSyncSource has never been called for this graph, the sync source is
provided by the first connected filter that exposes the IReferenceClock interface. In this

267

Application Developer's Guide Page 66 of 106

case, the search for the first connected filter goes in roughly upstream order, starting
with the renderers. Connected means the filter has an input pin connected to another
filter. There is no check to see if that stream would actually be active. If more than one
clock is found at the same level in this search, and both are connected, it is undefined
which one will be used as the sync source for this filter graph. The filter graph manager
will choose one of them.

3. If neither of those steps result in a sync source being set, the filter graph manager will
create a freestanding reference clock and use that as the sync source.

A filter can explicitly indicate which reference clock is to be the sync source by having the
filter's IBaseFilter: :JoinFilterGraoh method call IMediaFilter: :SetSyncSource on the filter graph
manager when it joins the filter graph to set the desired clock. In fact, if the filter really needs
its clock to be the reference clock, to the extent that the filter won't function properly if it isn't,
then it should additionally fail the IBaseFilter::JoinFilterGraph call if the
IMediaFilter::SetSyncSource call fails.

Having described how to force a filter's clock to be the system clock, it should be emphasized
that this is not normally required.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.ij Topic Contents l@i§i llfttiM

MQl§i[.jjj,M 111.],.(j Topic Contents 1ww111m+

Controlling Filter Graphs Using C

This article describes how to use the interfaces and methods exposed by the Microsoft®
DirectShow™ dynamic-link library to communicate with the Filter Graph Manager and the
filters in a graph. These interfaces and methods render a stream of time-stamped video data in
applications that are based in Microsoft Windows®. This article provides an overview of the
interfaces and methods to use, and then describes their use in the DirectShow CPlay sample
application.

Contents of this article:

• Interfaces that Access the Filter Graph Manager
• CPlay Tutorial
• Using the Filter Graph Manager

Interfaces that Access the Filter Graph Manager

The stream architecture enables applications to communicate with the filter graph manager,
and the filter graph manager to communicate with individual filters to control the movement of
data through the filter graph. It also enables filters to post events that an application can
retrieve, so an application can, for example, retrieve status information about a special filter it
has installed.

268

Application Developer's Guide Page 67 of 106

This section contains the following topics.

• Implementing Dual Interfaces
• Installing and Registering Quartz.di!
• Instantiating the Filter Graph Manager
• Invoking Methods on the Interfaces

An application communicates with the filter graph manager and the filters in a specific graph
by using the interfaces exposed by either the filter graph manager or the filters. The following
table identifies these interfaces.
Interface
IAMCollection

IBasicAudio
IBasicVideo
I DeferredCom ma nd

!Filterlnfo
!GraohBuilder
!MediaControl

!MediaEvent

!MediaPosition and
I Media Seeking
!MediaTyoelnfo

IOueueCommand

!Pinlnfo
!RegFilterlnfo

!Video Window

Description
Represents a collection of objects of type !Filterlnfo, !RegFilterlnfo,
!MediaTyoelnfo, and !Pinlnfo.
Controls and retrieves current volume setting.
Controls a generic video renderer.
Used in conjunction with IOueueCommand methods to defer the
execution of methods and properties.
Enables an Automation client to set and retrieve filter properties.
Builds the filter graph manager.
Instantiates the filter graph and controls media flow (runs, pauses,
stops).
Enables customized event handling for events such as repainting,
user termination, completion, and so on.
Controls or retrieves start time, stop time, preroll rate, and current
position.
Enables an Automation client to retrieve a media type's major type
and subtype.
Enables an application to queue methods and properties so that the
filter invokes them during rendering of a video stream.
Enables an Automation client to set and retrieve filter properties.
Enables an Automation client to retrieve the name of a registered
filter and add a filter to the filter graph.
Controls window aspects of a video renderer, such as the window's
position and size.

Of all the interfaces for the filter graph manager, C and C++ programmers use the following
most effectively.

• IBasicAudio
• IBasicVideo
• !DeferredCommand
• !GraphBuilder
• !MediaControl
• I Media Event
• !MediaSeeking
• !QueueCommand
• !VideoWindow

269

Application Developer's Guide Page 68 of 106

The remainder are collection interfaces, which enable Automation clients, such as Microsoft
Visual Basic®, to access the properties of filters, pins, and media types that are not otherwise
exposed to Automation clients.

Implementing Dual Interfaces

Most of the interfaces that communicate with the Filter Graph Manager are implemented as
dual interfaces. This means that an application can call the methods in each interface directly
or through Automation (by using the !Disoatch: :Invoke method). DirectShow provides
Automation support for the developer using Visual Basic. The developer using C or C++ can
avoid the indirection (and accompanying overhead) associated with Automation by calling the
methods directly.

DirectShow doesn't implement all interfaces as dual interfaces. An application must call the
methods in these interfaces directly. For example, the following interfaces are not dual
interfaces: IOueueCommand, !DeferredCommand, and !GraohBuilder.

Installing and Registering Quartz.di!

Before you begin using the filter graph manager, you must install and register the Quartz.di!
dynamic-link library. Currently, the DirectShow SDK setup program automates this process.
Run Setup.exe and choose the Runtime option. This program copies Quartz.di! to your
Windows\System directory and adds the appropriate entries to your system's registration
database.

Instantiating the Filter Graph Manager

After you have registered Quartz.di!, you can begin using the filter graph manager in your
Windows-based application. First, initialize the COM library by calling the COM Colnitialize
function. The sample application calls Coinitialize within its InitApplication function in the
Cplay.c file of the CPlay sample application.

Next, instantiate the filter graph manager. Most applications should use the CoCreatelnstance
function to instantiate the filter graph. Both CoCreateinstance and CoGetClassObject can
instantiate an object; however, applications typically use the former to instantiate a single
object and the latter to instantiate multiple instances of an object.

The complete call to CoCreatelnstance appears as follows:

hr= CoCreateinstance(&CLSID_FilterGraph, //Get this document's graph ot
NULL,
CLSCTX_INPROC_SERVER,
& IID_IGraphBuilder,
(void **) &media.pGraph);

The first parameter, CLSID_FilterGraph, is the class identifier (CLSID) for the filter graph
manager. This CLSID is defined in the Uuids.h file, which is installed as part of the DirectShow
SDK. The CLSID is a 128-bit value that the registration database uses to identify the dynamic­
link library (DLL or in-process server). Using this value, COM can locate and then load the
appropriate DLL.

The second parameter is a pointer to the outer !Unknown and is NULL because the Filter Graph
object is not part of an aggregate.

270

Application Developer's Guide Page 69 of 106

The third parameter is the context in which the code that manages the Filter Graph will run,
which is in the same process as the caller of the CoCreatelnstance function.

The fourth parameter passed to the CoCreatelnstance function identifies the interface that the
application will use to communicate with the object. This interface identifier should be
IID_!GraphBuilder; this value is defined internally in the DirectShow sources and then exposed
in the Strmif.h file.

If the call to CoCreatelnstance succeeds, this function returns a pointer to a filter graph
manager object in the media.pGraph variable. After this pointer is returned, the application
begins to call the methods in the !GraohBuilder interface. Typically, the application first calls
the !GraohBuilder: :RenderFile method. This method creates a filter graph for the type of file
that was supplied as one of the parameters. In addition, the application can use the
!GraohBuilder: :Ouerylnterface method to retrieve pointers to any of the interfaces exposed by
the filter graph manager. The IGraphBuilder interface derives from !Unknown.

If you are writing your application in C (rather than C++), you must use a vtable pointer to call
the methods exposed by !GraohBuilder. The following example illustrates a call to the
Ouerylnterface method on the IGraphBuilder interface from within an application written in
c.

hr= media.pGraph->lpVtbl->Queryinterface(media.pGraph,
&IID_IMediaEvent, (void**) &pME);

If you are writing your application in C++, the function is simpler; it requires less indirection
and one less parameter:

hr= m_pGraph->Queryinterface(IID_IMediaEvent, (void**) &pME);

Invoking Methods on the Interfaces

An application can retrieve a pointer to any of the other interfaces exposed by the filter graph
manager by calling the !GraohBuilder: :Ouerylnterface method and supplying a REFIID for the
corresponding interface. After retrieving this interface pointer, the application can begin calling
the interface's methods by using the interface's vtable pointer (just as the !GraohBuilder's
vtable pointer called the IGraphBuilder::Queryinterface method in the previous example).
The application must release an acquired interface by calling the !Unknown: :Release method
on that interface.

CPlay Tutorial

This section's tutorial describes CPlay, a sample included in the DirectShow SDK that plays a
media file. The source files for this application are in the Samples\DS\Player\CPlay
subdirectory of the DirectShow SDK project.

This section contains the following topics.

• CPlay Sample Application
• Files in CPlay

This tutorial does not describe the Microsoft Windows® AP! code found in the source files.
Instead, it focuses almost exclusively on the code that shows:

271

Application Developer's Guide Page 70 of 106

• How to instantiate a filter graph for a particular file type.
• How to process media events.
• How to run, pause, and stop the media stream.
• How to set a global variable to indicate the valid media state (running, paused, or

stopped).
• How to release the resources and clean up the variables used by the filter graph.

CPlay Sample Application

You can use the CPlay sample application to open a media file and then run, pause, or stop the
corresponding media stream. The applieation's user internice consists of menus and a toolbar.
The menus include File, Media, and Help. The toolbar includes Play, Pause, and Stop buttons .

.Eile Media !ielp

After you open a file and click Play, the filter graph renders the video stream in its default
window.

Flies In CPlay

The sample applicatiOn consiSts of six source files. Each file contains source code that
accomplishes a specific set of tasks. For example, the About.c module contains the code that
displays the About dialog box. The following table identifies each source file and describes its

Des<:.-lptlon
Displays the About dialog box.

purpose.
File
About.c
Assert.c Displays a message box with debugging information.
Cplay.c Processes user input.
File.c Displays the File Open dialog box.
Media.c Instantiates the filter graph; invokes the filter graph methods to run, pause, and

stop the video rendering.
Toolbar.c Draws the toolbar buttons.

The remainder of thiS article focuses primarily on the code found in the Media.c file; however,
references to other files appear when describing some of the tasks accomplished by this
application.

Using the Fllte.- G.-aph Manage.-

The Media.c file contains initialization, destruction and cleanup, command handling, and state
change code. The initialization code instantiates a filter graph for a particular file type. The
destructiOn code releases the resources and cleans up the variables used by the filter graph.
The command handling code invokes the methods required to play, pause, or stop the video
rendering. The state change code sets a global variable that indicates valid media states (that
is, can stop, can pause, can play).

272

Application Developer's Guide Page 71of106

This section contains the following topics.

• Initializing the Filter Graph Manager and the Filter Graph
• Playing, Pausing, and Stopping the Video Stream
• Handling Events

Initializing the Filter Graph Manager and the Filter Graph

The following code illustrates how to create the filter graph manager and the filter graph,
including including how to enable event handling, and how to open the media file that the filter
graph will render.

First, instantiate the filter graph manager. The CreateFilterGraph function in Media.c
instantiates the filter graph manager by calling the COM CoCreateinstance function. It saves
the pointer returned by CoCreateinstance in the pGraph member of a global media structure
(defined in Media.h in the CPlay sample included in the SDK).

BOOL CreateFilterGraph()
{

HRESULT hr;

hr= CoCreateinstance(&CLSID_FilterGraph, // CLSID of object
NULL, // outer unknown.
CLSCTX_INPROC_SERVER, //Type of server.
&IID_IGraphBuilder, // Interface wanted.

(void**) &media.pGraph); //Pointer to IGraphBuilder.

Next, enable event handling. Using the pointer returned by CoCreateinstance, the
CreateFilterGraph function retrieves a pointer to the IMediaEvent interface by calling the
!Unknown: :Oueryinterface method. The interface pointer retrieves an event notification handle
by calling the IMediaEvent: :GetEventHandle method. The main message loop uses this handle
(the DoMainloop function in CPlay.c). After GetEventHandle obtains the handle,
CreateFilterGraph releases the pointer to the IMediaEvent interface by calling the
!Unknown:: Release method.

IMediaEvent *pME;

hr= media.pGraph->lpVtbl->Queryinterface(media.pGraph, &IID_IMediaEvent, (void**)
if (FAILED(hr)) {

Deletecontents(); //Releases the pointer media.pGraph.
return FALSE;

hr pME->lpVtbl- >GetEventHandle (pME, (OAEVENT*) &media. hGraphNotifyEvent) ;
pME->lpVtbl->Release(pME);

After instantiating the Filter Graph Manager and enabling event handling, open the media file
to be rendered. In the CPlay sample application, a user opens a multimedia file. The file name
extension (for example, .avi or .mpg) is unimportant, because the DirectShow filter graph
examines the file header to ensure that the file is a multimedia file.

273

Application Developer's Guide Page 72 of 106

When the user opens a file by choosing Open from the File menu, this action calls the
OpenMediaFile function in Media.c, which displays the File Open common dialog box.

void OpenMediaFile(HWND hwnd, LPSTR szFile){
// File .. Open has been selected

static char szFileName[MAX PATH];
static char szTitleName[MAX FNAME + MAX EXT l;
//The user has already chosen a file.
if(szFile!=NULL && RenderFile(szFile)){

LPSTR szTitle;

//Work out the full path name and the file name from the
//specified file.
GetFullPathName(szFile, MAX_PATH, szFileName, &szTitle) ;
strncpy(szTitleName, szTitle, _MAX_FNAME + MAX EXT) ;
szTitleName[MAX FNAME + _MAX_EXT -1 l = '\0';

//Set the main window title and update the state.
SetTitle(hwnd, szTitleName);
ChangeStateTo(Stopped) ;

//The user hasn't already chosen a file, so display the Open File
//dialog box. The DoFileOpenDialog function is in file.c in the CPlay
II sample.

} else if(DoFileOpenDialog(hwnd, szFileName, szTitleName)
&& RenderFile(szFileName)) {

//Set the main window title and update the state.
SetTitle(hwnd, szTitleName);
ChangeStateTo(Stopped) ;

After the file has been opened, render the file. The OpenMediaFile function passes the name of
the user's chosen file to the RenderFile function in Media.c. The RenderFile function in turn
calls the CreateFilterGraph function to instantiate the filter graph manager. After creating the
filter graph manager, the RenderFile function calls the !GraohBuilder: :RenderFile method to
create the actual filter graph:

BOOL RenderFile(LPSTR szFileName)
{

HRESULT hr;
WCHAR wPath[MAX_PATH];
Deletecontents(); //Release the pointer media.pGraph if it exists,

//because the call to CreateFilterGraph will
//retrieve a new pointer.

//Create the filter graph manager
if (!CreateFilterGraph()) {

PlayerMessageBox(IDS CANT INIT_QUARTZ) ;
return FALSE;

MultiByteToWideChar(CP_ACP, 0, szFileName, -1, wPath, MAX PATH) ;
Setcursor(Loadcursor(NULL, IDC WAIT)) ; //Put up the hour-glass

II while the media file
II loads.

//Create the actual filter graph
hr= media.pGraph->lpVtbl->RenderFile(media.pGraph, wPath, NULL);
Setcursor(Loadcursor(NULL, IDC ARROW)); //Turn the cursor back

274

Application Developer's Guide Page 73 of 106

II to an arrow.
if (FAILED(hr)) {

PlayerMessageBox(IDS CANT RENDER FILE) ;
return FALSE;

return TRUE;

Playing, Pausing, and Stopping the Video Stream

After the application creates the filter graph manager and the filter graph, it can expose the
user interface, which enables the user to play, pause, and stop video rendering. In the case of
CPlay, the toolbar buttons (Play, Pause, and Stop) are redrawn in color after the user chooses
a valid file.

When the user clicks Play, the OnMediaPlay function is called. This function accomplishes the
following tasks sequentially.

1. Examines the global state variable in the media structure to ensure that the video can be
rendered.

2. Retrieves a pointer to the IMediaControl interface.
3. Invokes the IMediaControl: :Run method.
4. Releases the IMediaControl interface.
5. Sets the global state variable.

The OnMediaPlay function appears as follows:

void OnMediaPlay(void) {
if(CanPlay()){

HRESULT hr;
IMediaControl *pMC;

II Obtain the interface to our filter graph.
hr = media.pGraph->lpVtbl->Queryinterface(media.pGraph,

&IID_IMediaControl, (void **) &pMC);

if(SUCCEEDED(hr)) {
II Ask the filter graph to play and release the interface.
hr= pMC->lpVtbl->RUn(pMC);
pMC->lpVtbl->Release(pMC);

if(SUCCEEDED(hr)){
ChangeStateTo(Playing);
return;

// Inform the user that an error occurred.
PlayerMessageBox(IDS CANT PLAY) ;

The code that handles pausing and stopping the video stream is nearly identical to the code
that plays the media stream. The actual functions that handle these tasks are OnMediaPause
and OnMediaStop, respectively. You can find all this code in the Media.c file.

Handling Events

275

Application Developer's Guide Page 74of106

The !Media Event interface enables an application to receive events that the filter graph or
individual filters within the graph raise. Following are some of the possible events and
corresponding event notification messages.
Event notification message Description
EC COMPLETE The video has finished rendering.
EC USERABORT A user forced the termination of a requested operation.
EC ERRORABORT
EC PALETTE CHANGED
EC REPAINT

An error forced the termination of a requested operation.
The video palette changed.
The display should be repainted.

The sample application tracks the EC COMPLETE, EC USERABORT, and EC ERRORABORT
events by using the !Media Event: :GetEvent method. The application calls this method from
within the OnGraphNotify function. The application calls the OnGraphNotify function (in
Media.cl from within the application's main message loop function (DoMainLoop), which you
can find in the Cplay.c file.

If any of these events are raised, OnGraphNotify immediately stops video rendering by calling
the OnMediaStop function.

The OnGraphNotify function accomplishes the following tasks sequentially.

1. Declares the !Media Event interface pointer and the variables for the event code and
event parameters.

2. Retrieves a pointer to the !Media Event interface by calling !Unknown: :Ouerylnterface.
3. Calls the !Media Event: :GetEvent method to retrieve the next event notification. The

retrieved event is stored in the IEventCode variable and the event parameters are stored
in the IParaml and 1Param2 variables. The time-out value is set to zero, which means
that GetEvent will not wait for an event to occur, but only return an already waiting
event.

4. Checks the event type stored in IEventCode and takes the appropriate action, if GetEvent
retrieves an event. See Event Notification Codes for a list of the system-supplied events
that DirectShow supports. Note that if the event parameters are declared as type BSTR
instead of LONG, !Media Event:: FreeEventParams should be called free the BSTRs.

void OnGraphNotify(void) {
IMediaEvent *pME;

long lEventcode, lParaml, 1Param2;

ASSERT(media.hGraphNotifyEvent != NULL) ;

if(SUCCEEDED(media.pGraph->lpVtbl->Queryinterface(media.pGraph,
&IID_IMediaEvent, (void **) &pME))) {

if(SUCCEEDED(pME->lpVtbl->GetEvent(pME, &lEventCode, &lParaml,
&1Param2, o))

&& (lEventCode == EC COMPLETE
I I lEventcode EC USERABORT
I I lEventcode EC ERRORABORT
)

OnMediaStop();
pME->lpVtbl->Release(pME) ;
}

276

Application Developer's Guide Page 7 5 of 106

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lml!§I 11¥8

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

Creating a Capture Application

Microsoft® DirectShow™ provides the capability to capture and preview both video and audio
data from an application, when combined with the appropriate capture hardware. The data
source might include a VCR, camera, TV tuner, microphone, or other source. An application can
display the captured data immediately (preview) or save it to a file for later viewing either
inside or outside of the application.

DirectShow takes advantage of new capture drivers that are written as DirectShow filters, and
also uses existing Video for Windows-style drivers.

Note This article relies heavily on the AMCap Sample (DirectShow Capture Application) sample
application. See the AMCap sample code (Amcap.cpp) in the Samples\DS\Capture directory of
the DirectShow SDK for complete sample code, because this article does not present AMCap
Sample (DirectShow Capture Application) in its entirety.

The AMCap Sample CDirectShow Capture Application) sample application performs video and
audio capture, similar to the VidCap sample from Video for Windows®. It uses the
ICaptureGraphBuilder interface to handle the majority of the capture work. In your own
capture application, you'll use the same methods and interfaces that AMCap uses. This article
focuses on AMCap's use of ICaptureGraphBuilder to perform video and audio capture and
presents relevant code excerpts from AMCa p.

This article assumes you are familiar with the DirectShow filter graph architecture and the
general layout of a capture filter graph. See Filter Graph Manager and Filter Graphs and Ab.o..!.!.t
Capture Filter Graphs for more information.

Contents of this article:

• Introduction to ICaptureGraphBuilder
• Device Enumeration and Capture Interfaces
• Building the Capture and Preview Filter Graph
• Controlling the Capture Filter Graph
• Obtaining Capture Statistics
• Saving the Captured File
• Displaying Property Pages

Introduction to ICaptureGraphBuilder

The ICaptureGraphBuilder interface provides a filter graph builder object that applications use
to handle some of the more tedious tasks involved in building a capture filter graph, which

277

Application Developer's Guide Page 76 of 106

frees the application to focus on capture. You access the graph builder object by calling
methods on ICaptureGraphBuilder. The variety of methods satisfies the basic requirements
for capture and preview functionality.

The Findlnterface method searches for a particular capture-related interface in the filter graph.
The method handles the complexities of filter graph traversal for you, which enables you to
access the functionality of a particular interface without having to enumerate pins and filters in
the filter graph looking for the interface. The RenderStream method connects source filters to
rendering filters, optionally adding other needed intermediate filters. The ControlStream
method independently control sections of the graph for frame-accurate start and stop.

Additional methods deal with allocating space for the capture file (AllocCaoFile), specifying a
name for it and building up the file writer section of the graph, which consists of the
multiplexer and file writer filters (SetOutoutFileName), and saving the captured data to
another file (CooyCaotureFile). Finally, SetFiltergraoh and GetFiltergraoh enable the application
to provide a filter graph for the graph builder to use or retrieve the filter graph already in use.

Device Enumeration and Capture Interfaces

AMCap's InitCapFilters function enumerates the capture devices on the system by using the
!CreateDevEnum: :CreateClassEnumerator method. After enumerating a capture device and
instantiating a DirectShow filter to use that device, the sample calls the
!CaotureGraohBuilder:: Findlnterface method several times to obtain interface pointers for the
IAMDroooedFrames, IAMVideoComoression, IAMStreamConfig, and IAMVfwCaotureDialogs
capture-related interfaces. The AMCap code saves all of these interface pointers for later use in
the gcap global structure and uses gcap structure members throughout the code.

Note: IAMVfwCaotureDialogs is designed for you to use only with the Microsoft-supplied video
capture filter and only when using a former Video for Windows device.

For your convenience, the declaration of the gcap structure follows:

struct _capstuff {
char szCaptureFile[_MAX_PATH];
WORD wcapFileSize; // size in Meg
ICaptureGraphBuilder *pBuilder;
IVideoWindow *pVW;
IMediaEventEx *pME;
IAMDroppedFrames *pDF;
IAMVideoCompression *pVC;
IAMVfwCaptureDialogs *pDlg;
IAMStreamconfig *pASC; //for audio cap
IAMStreamconfig *pVSC; //for video cap
IBaseFilter *pRender;
IBaseFilter *pVCap, *pACap;
IGraphBuilder *pFg;
IFileSinkFilter *pSink;
IConf igAviMux *pConf igAviMux;
int iMasterStream;
BOOL fCaptureGraphBuilt;
BOOL fPreviewGraphBuilt;
BOOL fCapturing;
BOOL fPreviewing;
BOOL fCapAudio;
int iVideoDevice;
int iAudioDevice;
double FrameRate;

278

Application Developer's Guide

BOOL fWantPreview;
long lCapStartTime;
long lCapStopTime;
char achFriendlyName[120];
BOOL fUseTimeLimit;
DWORD dwTimeLimit;

gcap;

Page 77 of 106

AMCap's InitCapFilters function stores several interface pointers in the gcap structure. Be sure
to properly release all interface pointers when they are no longer needed as shown in the
following example.

if (gcap.pBuilder)
gcap.pBuilder->Release();

gcap.pBuilder = NULL;
if (gcap.pSink)

gcap.pSink->Release();
gcap.pSink = NULL;
if (gcap.pConfigAviMux)

gcap.pConfigAviMux->Release();
gcap.pConfigAviMux = NULL;
if (gcap.pRender)

gcap.pRender->Release();
gcap.pRender = NULL;
if (gcap.pVW)

gcap.pVW->Release();
gcap.pVW = NULL;
if (gcap.pME)

gcap.pME->Release();
gcap.pME = NULL;
if (gcap.pFg)

gcap.pFg->Release();
gcap.pFg = NULL;

See Enumerate and Access Hardware Devices in DirectShow APPiications for more information
about device enumeration.

Building the Capture and Preview Filter Graph

AMCap includes a BuildCaptureGraph function that builds up a capture graph with both capture
and preview components. Most applications will perform the same tasks sequentially as
described in the following topics contained in this section.

• Set the Capture File Name
• Create a Graph Builder Object
• Set the Output File Name
• Retrieve the Current Filter Graph
• Add the Capture Filters to the Filter Graph
• Render the Capture Pins
• Render the Video Preview Pin
• Configure the Video Preview Window

These tasks are explained in greater detail later in this section.

AMCap also includes a BuildPreviewGraph function that is essentially a version of
BuildCaptureGraph that deals only with preview. Another difference between

279

Application Developer's Guide Page 78 of 106

BuildCaptureGraph and BuildPreviewGraph is that the latter uses
!CaotureGraohBuilder: :SetFiltergraoh to provide a filter graph object (!GraohBuilder interface)
for the capture graph builder object (!CaotureGraohBuilder interface) to use. You probably
won't need to call SetFiltergraoh as the graph builder object creates a filter graph to use by
default. Use this method only if you have already created your own filter graph and want the
graph builder to use your filter graph. If you call this method after the graph builder has
created a filter graph, this method will fail. BuildPreviewGraph calls CoCreatelnstance to create
a new filter graph object, if necessary, as shown in the following example.

hr CoCreateinstance(CLSID_FilterGraph, NULL, CLSCTX_INPROC,
IID_IGraphBuilder, (LPVOID *)&gcap.pFg);

hr gcap.pBuilder->SetFiltergraph(gcap.pFg);
if (hr != NOERROR) {

ErrMsg("Cannot give graph to builder");
goto SetupPreviewFail;

The details of each important task performed by BuildCaptureGraph follow.

Set the Capture File Name

AMCap's SetCaptureFile function displays the common Open File dialog box to enable the user
to select a capture file. If the specified file is a new file, it calls the application-defined
AllocCaptureFile function that prompts the user to allocate space for the capture file. This
"preallocation" of file space is important, because it reserves a large block of space on disk.
This speeds up the capture operation when it occurs, because the file space doesn't have to be
allocated while capture takes place (it has been preallocated). The
!CaotureGraohBuilder: :AllocCaoFile method performs the actual file allocation.
!FileSinkFilter: :SetFileName instructs the file writer filter to use the file name that the user
chose. The code assumes you've called !CaotureGraohBuilder: :SetOutoutFileName to add the
file writer to the filter graph. See Set the Outout File Name for more information.

The AMCap-defined SetCaptureFile and AllocCaptureFile functions follow:

I*
* Put up a dialog to allow the user to select a capture file.
*I

BOOL SetCaptureFile(HWND hWnd)
{

if (OpenFileDialog(hWnd, gcap.szCaptureFile, _MAX_PATH))
OFSTRUCT os;

II We have a capture file name.

I*
* If this is a new file, then invite the user to
* allocate some space.
*I

if (OpenFile(gcap.szCaptureFile, &os, OF_EXIST) HFILE_ERROR)

II Bring up dialog, and set new file size.
BOOL f = AllocCaptureFile(hWnd);
if (!f)

return FALSE;

280

Application Developer's Guide Page 79 of 106

else {
return FALSE;

SetAppCaption(); II Need a new app caption.

II Tell the file writer to use the new file name.
if (gcap.pSink) {

WCHAR wach[_MAX_PATH];
MultiByteToWideChar(CP_ACP, MB PRECOMPOSED, gcap.szCaptureFile, -1,

wach, _MAX_PATH);
gcap.pSink->SetFileName(wach, NULL);

return TRUE;

II Preallocate the capture file.
II
BOOL AllocCaptureFile(HWND hWnd)
{
II We'll get into an infinite

if (gcap.szCaptureFile[O]
return FALSE;

loop in the dlg proc setting a value.
== 0)

I*
* Show the allocate file space dialog to encourage
* the user to pre-allocate space.
*I

if (DoDialog(hWnd, IDD_AllocCapFileSpace, AllocCapFileProc, O)) {

// Ensure repaint after dismissing dialog before
II possibly lengthy operation.
UpdateWindow(ghwndApp);

II User has hit OK. Alloc requested capture file space.
BOOL f = MakeBuilder();
if (!f)

return FALSE;
WCHAR wach[_MAX_PATH];
MultiByteToWideChar(CP_ACP, MB PRECOMPOSED, gcap.szCaptureFile, -1,

wach, _MAX_PATH);
if (gcap.pBuilder->AllocCapFile(wach,

gcap.wCapFileSize * 1024L * 1024L) != NOERROR) {
MessageBoxA(ghwnd.App, "Error",

"Failed to pre-allocate capture file space",
MB OK I MB_ICONEXCLAMATION);

return FALSE;
}

return TRUE;
} else {

return FALSE;
}

Create a Graph Builder Object

AMCap's MakeBuilder function creates a capture graph builder object and obtains an
!CaotureGraohBuilder interface pointer by calling CoCreatelnstance. If you already have a
capture graph builder object, you can call Ouerylnterface to obtain an interface pointer. AMCap
stores the object pointer in the pBuilder member of the global gcap structure.

281

Application Developer's Guide Page 80 of 106

II Make a graph builder object we can use for capture graph building.
II
BOOL MakeBuilder()
{

II We have one already.
if (gcap.pBuilder)

return TRUE;

HRESULT hr CoCreateinstance((REFCLSID)CLSID_CaptureGraphBuilder,
NULL, CLSCTX_INPROC, (REFIID)IID_ICaptureGraphBuilder,
(void **)&gcap.pBuilder);

return (hr NOERROR) ? TRUE ' FALSE;

Set the Output File Name

AMCap creates the rendering section of the filter graph, consisting of the AV! MUX
(multiplexer) and the File Writer. It also provides the filter graph with the previously specified
file name to which to save the captured data. See About Caoture Filter Graohs for more
information about capture filter graph in general.

!CaotureGraohBuilder: :SetOutoutFileName signals to add the multiplexer and file writer to the
filter graph, connects them, and sets the file name. The following example illustrates a call to
SetOutoutFileNa me.

II
//We need a rendering section that will write the capture file out in AVI
11 file format.
II

WCHAR wach[_MAX_PATH];
MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, gcap.szCaptureFile, -1, wach,

_MAX_PATH);
GUID guid = MEDIASUBTYPE_Avi;
hr= gcap.pBuilder->SetoutputFileName(&guid, wach, &gcap.pRender,

&gcap. pSink) ;
if (hr != NOERROR) {

ErrMsg("Error %x: Cannot set output file", hr);
goto SetupCaptureFail;

In the above code fragment the value of the first parameter, pType, in the call to
SetOutoutFileName is MEDIASUBTYPE_Avi, indicating that the capture graph builder object will
insert an AV! multiplexer filter. Consequently, the file writer that is connected to the
multiplexer will write the data to the capture file in AV! file format.

The second parameter, lpwstrFile, specifies the file name. The last two parameters contain
pointers to the multiplexer filter and the file writer filter, respectively, and are initialized for
you by the capture graph builder object upon return from SetOutoutFileName. AMCap stores
these pointers in the pRender and pSink members of its gcap structure. Internally, the capture
graph builder object creates a filter graph object which exposes the !GraohBuilder interface
and inserts these two filters into that filter graph. It tells the file writer to use the specified file
when writing to disk.

Alternatively, if you want filters besides the multiplexer and file writer in the rendering section

282

Application Developer's Guide Page 81of106

of your filter graph, call IFilterGraoh: :Add Filter to explicitly add the necessary filters. You
might need to remember the pointer to the IBaseFilter interface of the first filter in your
custom rendering chain so you can use it in calls such as RenderStream.

Retrieve the Current Filter Graph

Because the capture graph builder object created a filter graph in response to
SetOutoutFileName and you must put the necessary filters in the same filter graph, call the
ICaotureGraohBuilder: :GetFiltergraoh method to retrieve the newly created filter graph. The
pointer to the filter graph's IGraohBuilder interface is returned in the function's parameter.

II
II The graph builder created a filter graph to do that. Find out what it is,
II and put the video capture filter in the graph too.
II

hr= gcap.pBuilder->GetFiltergraph(&gcap.pFg);
if (hr != NOERROR) {

ErrMsg("Error %x: Cannot get filtergraph", hr);
goto SetupCaptureFail;

Add the Capture Filters to the Filter Graph

Call IFilterGraoh: :AddFilter to add the capture filters to the filter graph as shown in the
following example.

hr= gcap.pFg->AddFilter(gcap.pVCap, NULL);
if (hr != NOERROR) {

ErrMsg("Error %x: Cannot add vidcap to filtergraph", hr);
goto SetupPreviewFail;

hr= gcap.pFg->AddFilter(gcap.pACap, NULL);
if (hr != NOERROR) {

ErrMsg("Error %x: Cannot add audcap to filtergraph", hr);
goto SetupCaptureFail;

Render the Capture Pins

The ICaotureGraohBuilder:: RenderStream method connects the source filter's pin to the
rendering filter. It connects intermediate filters if necessary. The pin category is optional, but
typically specifies either a capture pin (PIN CATEGORY CAPTURE) or a preview pin
(PIN CATEGORY PREVIEW). The following example connects the capture pin on the video
capture filter (represented by the gcap.pVCap variable) to the renderer (represented by
gcap.pRender).

II
//Render the video capture and preview pins - we may not have preview, so
//don't worry if it doesn't work.
II

hr gcap.pBuilder->RenderStream(&PIN_CATEGORY_CAPTURE, gcap.pVCap,
NULL, gcap.pRender);

283

Application Developer's Guide Page 82 of 106

II Error checking.

Call ICaotureGraohBuilder:: RenderStream again to connect the audio capture filter
(represented by gcap.pACap) to the audio renderer as in the following example.

II
II Render the audio capture pin?
II

if (gcap.fCapAudio) {
hr = gcap.pBuilder->RenderStream(&PIN CATEGORY_CAPTURE, gcap.pACap, NULL, gca

II Error checking. -

Render the Video Preview Pin

Call ICaotureGraohBuilder:: RenderStream again to render the graph from the capture filter's
preview pin to a video renderer as in the following example.

hr gcap.pBuilder->RenderStream(&PIN_CATEGORY_PREVIEW, gcap.pVCap,
NULL, NULL) ;

Configure the Video Preview Window

By default, the video preview window will be a separate window from your application window.
If you want to change the default behavior, call ICaotureGraohBuilder:: Findinterface to obtain
a pointer to the IVideoWindow interface. The first parameter, pCategory specifies the output
pin category to search for a connected filter that supports the desired interface. The code
fragment below uses PIN CATEGORY PREVIEW to indicate a search beginning with all preview
pins, and continuing to any pins and filters that connect to the preview pins. The second
parameter, specified by the gcap.pVCap variable below, represents the video capture filter. The
third (riid) is the identifier for the desired interface (IID_IVideoWindow), and the last will be
filled upon return from this function to give you the IVideoWindow interface. After you have
the IVideoWindow interface, you can call IVideoWindow methods such as out Owner,
out WindowStyle, or SetWindowPosition to take ownership of the video preview window, make
it a child of your application, or to position it as desired.

//This will go through a possible decoder, find the video renderer it's
// connected to, and get the IVideoWindow interface on it.

hr= gcap.pBuilder->Findinterface(&PIN_CATEGORY_PREVIEW, gcap.pVCap,

if (hr != NOERROR) {
IID_IVideoWindow, (void **)&gcap.pVW);

ErrMsg("This graph cannot preview");
else {
RECT re;
gcap.pVW->put owner((long)ghwndApp); II We own the window now.
gcap.pVW->put-Windowstyle(WS CHILD); II You are now a child.
//Give the preview window all our space but where the status bar is.
GetClientRect(ghwndApp, &re);
cyBorder = GetsystemMetrics(SM_CYBORDER);
cy = statusGetHeight() + cyBorder;
re.bottom -= cy;
gcap.pVW->SetWindowPosition(O, o, re.right, re.bottom); II Be this big.
gcap.pVW->pUt_Visible(OATRUE);

284

Application Developer's Guide Page 83 of 106

Now that you've built the entire capture filter graph, you can preview video, audio, or actually
capture data.

Controlling the Capture Filter Graph

Because a capture filter graph constructed by the !CaotureGraohBuilder interface is simply a
specialized filter graph, controlling a capture filter graph is much like controlling any other kind
of filter graph: you use the !MediaControl interface's Run, Pause, and Stoo methods. You can
use the CBaseFilter:: Pause method to cue things up, but remember that capture and
recompression only happen when the graph is running. In addition, ICaptureGraphBuilder
provides the ControlStream method to control the start and stop times of the capture filter
graph's streams. Internally, ControlStream calls the IAMStreamControl: :StartAt and
IAMStreamControl: :StooAt methods to start and stop the capture and preview portions of the
filter graph for frame-accurate control.

Note: This method might not work on every capture filter because not every capture filter
supports IAMStreamControl on its pins.

The !CaotureGraohBuilder: :ControlStream method's first parameter (pCategory) is a pointer to
a G..UlQ that specifies the output pin category. This value is normally either
PIN CATEGORY CAPTURE or PIN CATEGORY PREVIEW. See the Pin Prooerty Set for a
complete list of categories. Specify NULL to control all capture filters in the graph.

The second parameter (pFilter) in !CaotureGraohBuilder: :ControlStream indicates which filter
to control. Specify NULL to control the whole filter graph as AMCap does.

To run only the preview portion of the capture filter graph, prevent capture by calling
!CaotureGraohBuilder: :ControlStream with the capture pin category and the value MAX_ TIME
as the start time (third parameter, pstart). Call the method again with preview as the pin
category, and a NULL start value to start preview immediately. The fourth parameter indicates
the desired stop time (pstop, as with start time, NULL means immediately). MAX_ TIME is
defined in the DirectShow base classes as the maximum reference time, and in this case
means to ignore or cancel the specified operation.

The last two parameters, wStartCookie and wStopCookie are start and stop cookies
respectively. These cookies are arbitrary values set by the application so that it can
differentiate between start and stop times and tell when specific actions have been completed.
AMCap doesn't use a specific time in !CaotureGraohBuilder: :ControlStream, so it doesn't need
any cookies. If you use a cookie, use !Media Event to get event notifications. See
IAMStreamControl for more information.

The following code fragment sets preview to start immediately, but ignores capture.

//Let the preview section run, but not the capture section.
II (There might not be a capture section.)
REFERENCE TIME start = MAX TIME, stop = MAX TIME;
//Show uS a preview first? but don't capture quite yet ...
hr = gcap.pBuilder->ControlStream(&PIN_CATEGORY_PREVIEW, NULL,

gcap.fWantPreview ? NULL : &start,
gcap.fWantPreview ? &stop , NULL, o, O);

if (SUCCEEDED(hr))
hr = gcap.pBuilder->ControlStream(&PIN_CATEGORY_CAPTURE, NULL, &start,

NULL, 0, O);

285

Application Developer's Guide Page 84 of 106

The same concept applies if you want only to capture and not preview. Set the capture start
time to NULL to capture immediately and set the capture stop time to MAX_ TIME. Set the
preview start time to MAX_ TIME, with an immediate (NULL) stop time.

The following example tells the filter graph to start the preview stream now (the pstart (third)
parameter is NULL). Specifying MAX_ TIME for the stop time (pstop) means disregard the stop
time.

gcap.pBuilder->ControlStream(&PIN_CATEGORY_PREVIEW, NULL, NULL, MAX_TIME, 0, 0)

Calling !MediaControl: :Run runs the graph.

II Run the graph.
IMediaControl *pMC = NULL;
HRESULT hr= gcap.pFg->Queryinterface(IID IMediaControl, (void **)&pMC);
if (SUCCEEDED(hr)) { -

}

hr = pMC->Run();
if (FAILED(hr)) {

II Stop parts that ran.
pMC->Stop();

pMC->Release ();

if (FAILED (hr))
ErrMsg("Error %x: Cannot run preview graph", hr);
return FALSE;

If the graph is already running, start capture immediately with another call to
!CaotureGraohBuilder: :ControlStream. For example, the following call controls the whole filter
graph (NULL pFilter (second) parameter), starts now (NULL pstart (third) parameter), and
never stops (pstop (fourth) parameter initialized to MAX_ TIME).

REFERENCE_TIME stop = MAX_TIME;

II NOW!
gcap.pBuilder->ControlStream(&PIN_CATEGORY_CAPTURE, NULL, NULL, &stop, 0, 0);

AMCap uses this approach to start capture in response to the user clicking a button.

To stop the capture or preview operation, call !MediaControl: :Stoo, much as you called
!MediaControl:: Run to run the filter graph.

II Stop the graph.
IMediaControl *pMC = NULL;
HRESULT hr= gcap.pFg->Queryinterface(IID IMediaControl, (void **)&pMC);
if (SUCCEEDED(hr)) { -

hr= pMC->Stop();
pMC->Release ();

Obtaining Capture Statistics

AMCap calls methods on the IAMDroooedFrames interface to obtain capture statistics. It

286

Application Developer's Guide Page 85 of 106

determines the number of frames dropped (IAMDroooedFrames: :GetNumDroooed) and
captured (IAMDroooedFrames: :GetNumNotDroooed), and uses the Win32 timeGetTime
function at the beginning and end of capture to determine the capture operation's duration.
The IAMDroooedFrames: :GetAverageFrameSize method provides the average size of captured
frames in bytes. Use the information from IAMDroppedFrames::GetNumNotDropped,
timeGetTime, and IAMDroppedFrames::GetAverageFrameSize to obtain the total bytes
captured and calculate the sustained frames per second for the capture operation.

Saving the Captured File

The original preallocated capture file temporarily holds capture data so you can capture as
quickly as possible. When you want to save the data you captured to a more permanent
location, call !CaotureGraohBuilder: :CooyCaotureFile. This method transfers the captured data
out of the previously allocated capture file to another file you choose. The resulting new file
size matches the size of the actual captured data rather than the preallocated file size, which is
usually very large.

The !CaotureGraohBuilder: :CooyCaotureFile method's first parameter, lpwstrO/d, is the file
you're copying from (typically the very large, preallocated file you always use for capture). The
second parameter, lpwstrNew, is the file to which you want to save your captured data. Setting
the third parameter, fAl/owEscAbort, to TRUE indicates that the user is allowed to abort the
copy operation by pressing Esc. The last parameter, pCallback, is optional and enables you to
supply a progress indicator, if desired, by implementing the IAMCooyCaotureFileProgress
interface. The following example demonstrates a call to CooyCaotureFile.

hr= pBuilder->CopyCaptureFile(wachSrcFile, wachDstFile,TRUE,NULL);

The SaveCaptureFile function defined by AMCap prompts the to enter a new file name in the
Open File common dialog box, uses the Win32 MultiByteToWideChar function to convert the file
name to a wide string, and saves the captured data to the specified file using
!Ca otureGra ohBuilder: : CooyCa otureFile.

I*
* Put up a dialog to allow the user to save the contents of the capture file
* elsewhere.
*I

BOOL SaveCaptureFile(HWND hWnd)
{

HRESULT hr;
char achDstFile[_MAX_PATH];
WCHAR wachDstFile[_MAX_PATH];
WCHAR wachSrcFile[_MAX_PATH];

if (gcap.pBuilder == NULL)
return FALSE;

if (OpenFileDialog(hWnd, achDstFile, _MAX_PATH)) {

II We have a capture file name.
MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, gcap.szCaptureFile, -1,

wachSrcFile, _MAX_PATH);
MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, achDstFile, -1,

wachDstFile, _MAX_PATH);
statusUpdatestatus(ghwndStatus, "Saving capture file - please wait ... ");

//We need our own graph builder because the main one might not exist.

287

Application Developer's Guide Page 86 of 106

ICaptureGraphBuilder *pBuilder;
hr= CoCreateinstance((REFCLSID)CLSID_CaptureGraphBuilder,

NULL, CLSCTX_INPROC, (REFIID)IID_ICaptureGraphBuilder,
(void **)&pBuilder);

if (hr == NOERROR) {

}

//Allow the user to press ESC to abort ... don't ask for progress.
hr= pBuilder->CopyCaptureFile(wachSrcFile, wachDstFile,TRUE,NULL);
pBuilder->Release();

if (hr == S_OK)
statusUpdatestatus(ghwndStatus, "Capture file saved");

else if (hr == S_FALSE)
statusUpdatestatus(ghwndStatus, "Capture file save aborted");

else
statusUpdatestatus(ghwndStatus, "Capture file save ERROR");

return (hr== NOERROR? TRUE ' FALSE);

} else {
return TRUE; II They canceled or something.

}

See Amcap.cpp and Status.cpp from the AMCap sample for more details about capturing media
files and obtaining capture statistics.

Displaying Property Pages

DirectShow provides a number of interfaces to customize the settings of a capture filter graph
including: IAMStreamConfig, IAMVideoCompression, IAMCrossbar, IAMTVTuner,
IAMTVAudio, IAMAnalogVideoDecoder, IAMCameraControl, IAMVideoProcAmp.
Creating a property page is one way of allowing users to interact with these settings.

To bring up the settings associated with an object on a property page, use an interface on the
object to query for the !SpecifyPropertyPages interface. Use this interface to obtain a list of
property page CLS!Ds that this object supports. The CLSID list can be later passed to
OleCreatePropertyFrame or OleCreatePropertyFramelndirect to invoke a property sheet. This
will supply your application with the custom property pages a filter has in addition to the
standard pages.

There are at least 9 objects that can have property pages in capture applications. Capture
applications usually have 2 of these objects at least; the video capture filter and the audio
capture filter (call them pVCap and pACap). These objects expose the IBaseFilter interface
which can be used to query for the !SpecifyPropertyPages interface. You can obtain a pointer to
the other 7 objects as follows:

1. The video capture filter's capture pin. Get this by calling

Findinterface(&PIN_CATEGORY_CAPTURE, pVCap, IID_IPin, &pX);

2. The video capture filter's preview pin. Get this by calling:

Findinterface(&PIN_CATEGORY_PREVIEW, pVCap, IID_IPin, &pX);

3. The audio capture filter's capture pin. Get this by calling:

Findinterface(&PIN_CATEGORY_CAPTURE, pACap, IID_IPin, &pX);

288

Application Developer's Guide Page 87 of 106

4. The crossbar connected to the video capture filter. Get this by calling:

Findinterface(NULL, pVCap, IID_IAMCrossbar, &pX) i

5. The crossbar connected to the audio capture filter. This might be the same as object #4.
Compare their !Unknown interfaces to find out. Get this by calling:

Findinterface(NULL, pACap, IID_IAMCrossbar, &pX) i

6. The TV Tuner connected to the video capture filter. Get this by calling:

Findinterface(NULL, pVCap, IID_IAMTVTuner, &pX);

7. The TV Audio connected to the audio capture filter. Get this by calling:

Findinterface(NULL, pACap, IID_IAMTVAudio, &pX);

If you do not wish to create your property page using the ISpecifyPropertyPages interface
and the OleCreatePropertyFrame function, you can create your own custom property pages and
use the results of your page to call the interfaces programmatically.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]I!:+ +!!.HM Topic Contents i@l§ii!MM

MQij[.jlj,M M!i.1 1119 Topic Contents i@l§i 11111+

About Cutlists

This article introduces cutlists and discusses interfaces that provide cutlist support. See lis.i.o9.
Cutlists for information about the limitations of the current cutlist implementation and sample
code for using cutlists in an application.

Contents of this article:

• What Are Cutlists?
• Cutlist Objects and Interfaces

What Are Cutlists?

A cutlist is a list of audio or video clips (cutlist elements) you want to play back sequentially.
For each clip, the cutlist element contains the file name from which to create the clip, and
details about the clip including start and stop time within that file. A cutlist is either video- or
audio- specific, and that video or audio data must all be of the same media type. The
beginning time for the clip, relative to the source file, is called the trimin position and the
ending time for the clip is the trimout position.

289

Application Developer's Guide Page 88of106

You use cutlists to edit pieces of AVI and WAV files together. For instance a video cutlist could
contain video clips (elements) with characteristics as follows:
Clip # File Name Start Time Stop Time Type Stream #

1 Venus.avi 5 seconds 10 seconds video 0
2 Ma rs.avi 15 seconds 20 seconds video 0
3 Venus.avi 15 seconds 30 seconds video 0

In the preceding example, the first and third clips are both taken from the same file. One clip
is from seconds 5 through 10 of Venus.avi, while another is from seconds 15 through 30 of the
same file. Between those clips, the cutlist contains seconds 15 through 20 of Mars.avi. All clips
are taken from the first video stream (stream 0) in their respective files. The clips play back
sequentially (1, 2, and then 3).

Cutlist Objects and Interfaces

Microsoft® DirectShow™ defines the following objects that implement the specified interfaces.
Applications use these objects and interfaces to create, manipulate, and play cutlists.
Object Supported Description

interfaces
CLSI D Sim oleCutList I Sta nda rdCutList Cuti ist object
CLSID VideoFileClip

CLSID AudioFileClip

IFileClip

IFileClip

Cutlist element (individual clip) object for
video
Cutlist element (individual clip) object for
audio

CLSID CutListGraphBuilder ICutListGraphBuilder Cutlist graph builder object

These interfaces enable application writers to construct filter graphs without having to worry
about the specifics of each cutlist object. They provide a simple way to create and manipulate
cutlists, and to create a filter graph to play an edited movie in real time. In addition, a single
cutlist filter calls these interfaces - the application must be aware of the different cutlist filters
that are installed and generate the proper filter graph.

If you need cutlist functionality that the preceding interfaces don't provide, such as detailed
cutlist or cutlist element information, see the following interfaces.

• IAMAudioCutListElement
• IAMCutListElement
• IAM Fi leC utListElement
• IAMVideoCutListElement

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§ill@M

290

Application Developer's Guide Page 89 of 106

Using Cutlists

This article summarizes the steps necessary to create and play a cutlist. It also lists the
limitations of the current cutlist implementation and provides sample code for using cutlists in
an application. See What Are Cutlists? for an introduction to cutlists.

Contents of this article:

• Cutlist Limitations
• Creating a Video Cutlist
• Creating Both Video and Audio Cutlists
• Cutlist Sample Code (Simpled)

To use cutlists, you must first explicitly include the cutlist.h header file in your project. Then
you can create cutlist objects and use the interfaces they expose. The following list
summarizes the steps for creating and playing back cutlists in your application. Creating a
Video Cutlist presents the example code from this section as one unit rather than many
separate fragments.

1. Create a standard cutlist object (CLSID SimoleCutlist) for each cutlist. Each cutlist can
contain only one media type, so if you want both audio and video you must create one
standard cutlist for all of your video clips, and one standard cutlist for all of your audio
clips.

CoCreateinstance((REFCLSID)CLSID_SimpleCutList, NULL, CLSCTX_INPROC,
(REFIID)IID_IStandardCutList, (void**)&pVCutList);

2. Create a video file clip object (CLSID VideoFileClip) or an audio file clip object
(CLSID AudioFileClip), as appropriate, for each stream in each AV! or WAV file you will
use as the source for clips. If you want to play back both video and audio from the same
file, you must still create separate video and audio file clip objects because the file clip
objects are based upon one stream (either a video stream or an audio stream) within a
file.

CoCreateinstance((REFCLSID)CLSID_VideoFileClip, NULL, CLSCTX_INPROC,
(REFIID) IID_IFileClip, (void**) &pVFileClip);

3. Tell the file clip object what file and stream in that file to use by calling the
!FileClio: :SetFileAndStream method as follows. The first video and audio streams (stream
0) are the only streams that DirectShow supports.

hr= pVFileClip->SetFileAndStream(L"jupiter.avi", O);

4. Create one or more cutlist elements (individual clips) from each file clip by calling the
!FileClip: :CreateCut method. Each file clip represents a stream of data, and you can
create more than one clip from each data stream. For instance, the example in What Are
Cutlists? specifies two elements from Venus.avi, and one element from Mars.avi.

5. Add each cutlist element to the cutlist by calling the IStandardCutlist: :AddElement

291

Application Developer's Guide Page 90 of 106

method.

The following example creates two cutlist elements from the file clip and adds them to
the cutlist. The file clip is the first video stream (stream zero) of Jupiter.avi, as specified
previously in !FileClio: :SetFileAndStream. The first element plays seconds 5 through 10
of Jupiter.avi and the second element plays second 0 through 5 of the same file.

hr pVFileClip->Createcut(&pVElementl,S*SCALE,lO*SCALE,O,S*SCALE,O);
hr pVCutList->AddElement(pVElementl,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr pVFileClip->Createcut(&pVElement2,0,S*SCALE,O,S*SCALE,O);
hr pVCutList->AddElement(pVElement2,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

The first three parameters of !FileClio: :CreateCut are the important ones. The first,
ppE/ement, specifies the element, and is filled in for you. The second (mtTrimin) and
third (mtTrimOut) specify, respectively, the start and stop times for the clip relative to
the original file (Jupiter.avi in this case). The last three parameters must always be zero,
mtTrimOut minus mtTrimin, and zero, respectively. A scale value of 10,000,000 scales
the start and stop times to seconds.

The first parameter in the IStandardCutlist: :Add Element call, pE/ement, is the element
obtained from the call to !FileClio: :CreateCut. The last two parameters must be
CL_DEFAULT_TIME to indicate that the element should be added to the end of the
current cutlist, and its duration is the same as its duration in the original file.

6. Create a cutlist graph builder object (CLSID CutlistGraohBuilder) and use it to build a
filter graph that will play your cutlists. Give it a standard cutlist object by using the
ICutlistGraohBuilder: :AddCutlist method, and then call the
ICutlistGraohBuilder:: Render method to build a filter graph that can play the cutlist. The
following code fragment illustrates these calls.

CoCreateinstance((REFCLSID)CLSID_CutListGraphBuilder,NULL,CLSCTX_INPROC,

(REFIID)IID_ICutListGraphBuilder, (void**)&pGraphBuilder);

II Give the cutlist to the graph builder
hr= pGraphBuilder->AddCutList(pVCutList, NULL);

II Tell the cutlist graph builder to build the graph
hr = pGraphBuilder->Render();

7. Play the cutlist filter graph and clean up resources as in the following example. Be sure
to stop the graph before you remove the cutlist from the graph using
ICutlistGraohBuilder:: RemoveCutlist.

II Get the filter graph the builder just made
hr= pGraphBuilder->GetFilterGraph(&pGraph);

II Now get some useful graph interfaces
pGraph->Queryinterface(IID_IMediaControl, (void**)&pControl);
pGraph->Queryinterface (IID_IMediaEvent, (void**) &pEvent);
pGraph->Release();

292

Application Developer's Guide

II Run the graph
pControl->Run();

//Arbitrarily assumes 10000 millisecond timeout
pEvent->WaitForCompletion(lOOOO, &lEventcode);
pControl->Stop();
pEvent->Release();
pControl->Release();

11 Cleanup
hr= pGraphBuilder->RemovecutList(pVCutList);
pVElementl->Release();
pVElement2->Release();
pVCutList->Release();
pVFileClip->Release();
pGraphBuilder->Release();

Page 91of106

See the cutlist examples later in this article for more complete sample code illustrating these
steps.

Cutlist Limitations

The following list discusses limitations that you should be aware of when using DirectShow's
current cutlist implementation.

1. All clips in a cutlist must be the same format (media type).

For video cutlists, this means that all the video clips must be of the same compression
type, size, dimensions, bit depth, and so forth. In other words, all video clips in the
cutlist must be represented by the same BITMAPINFOHEADER structure. For audio
cutlists, this means they must all use the same compression format, sampling rate, bit
depth, and number of channels. In other words all audio clips in the cutlist must be
represented by the same WAVEFORMATEX structure.

The first clip you add to a cutlist determines the cutlist's media type, and the media type
required for all other clips you add to the cutlist. The IStandardCutlist: :AddElement
method returns an invalid media type error (VFW E INVALIDMEDIATYPE) if you try to
add a clip of a different media type to an existing cutlist.

2. All cuts must begin on a keyframe. If not, there will be an unwanted "fade in" effect at
the cut point, instead of a clean switch from one clip to the next. The biggest limitation is
that the first frame of the entire cutlist must be a keyframe. Otherwise, the file will be
corrupt if you write the resulting cutlist to a file.

3. There is no way to save (persist) a cutlist. Every time your application runs, you must
build the cutlist by hand. There is no file format for saving a cutlist you have previously
constructed.

4. Audio cuts not made during silence might cause an audible "click" sound at the cut point
if there is low to moderate volume and sparse audio at the cut point.

5. You can only create file clip objects from either the first video or audio stream of an AV!
file. Extra streams in files with multiple video or audio streams are ignored.

6. WAV files and AV! files are the only types of files that you can use as source material for
a cutlist. DirectShow doesn't support other formats, such as MPEG.

7. You can't identify WAV or AV! files used in cutlists by a universal network connection
(UNC) network name. For example, the file name "x:\Venus.wav" is valid, but
"\ \Server\Sha re\Venus. wav" is not.

8. Cutlists with audio NULL elements (gaps in the audio track) can't be written correctly to a

293

Application Developer's Guide Page 92 of 106

file or played properly with the audio renderer included with DirectShow. Unless you have
custom filters that can handle gaps in the audio stream, do not use audio NULL elements.

9. Cutlists work only with PCM audio, not compressed audio.
10. Cutlist support is currently not implemented for RLE compressed files.

Creating a Video Cutlist

The following code creates and plays a cutlist consisting of two video clips from one AV! file. It
plays seconds 5 through 10 of the file followed by seconds 0 through 5. The code fragment
contains no error checking for the sake of brevity. See Cutlist Sa mole Code CSimolecll for an
example that performs error checking.

HRESULT
ICutListGraphBuilder
!Media Control
IMediaEvent
IGraphBuilder
IStandardcutList
IFileClip
IAMCutListElement
LONG

Coinitialize(NULL);

hr;
*pGraphBuilder;
*pControl;
*pEvent;
*pGraph;
*pVCutList;
*pVFileClip;

*pVElementl, *pVElement2;
lEventcode=OL;

II we need these 3 objects
CoCreateinstance((REFCLSID)CLSID_CutListGraphBuilder,NULL,CLSCTX INPROC,

(REFIID)IID_ICutListGraphBuilder, (void**)&pGraphBuilder);
CoCreateinstance((REFCLSID)CLSID_VideoFileClip, NULL, CLSCTX_INPROC,

(REFIID) IID_IFileClip, (void**)&pVFileClip);
CoCreateinstance((REFCLSID)CLSID_SimpleCutList, NULL, CLSCTX_INPROC,

(REFIID)IID_IStandardCutList, (void**)&pVCutList);

II Tell the clip what file to use as a source file
hr= pVFileClip->SetFileAndStream(L"jupiter.avi", O);

II Create some cutlist elements and add them to the standard cutlist
II from 5 to 10 seconds, then from o to 5 seconds
hr pVFileClip->Createcut(&pVElementl,S*SCALE,lO*SCALE,O,S*SCALE,O);
hr pVCutList->AddElement(pVElementl,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr pVFileClip->Createcut(&pVElement2,0,S*SCALE,O,S*SCALE,O);
hr pVCutList->AddElement(pVElement2,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

II Give the cutlist to the graph builder
hr= pGraphBuilder->AddCutList(pVCutList, NULL);

II Tell the cutlist graph builder to build the graph
hr= pGraphBuilder->Render();

II Get the filter graph the builder just made
hr= pGraphBuilder->GetFilterGraph(&pGraph);

II Now get some useful graph interfaces
pGraph->Queryinterface(IID_IMediaControl, (void**)&pControl);
pGraph->Queryinterface(IID_IMediaEvent, (void**)&pEvent);
pGraph->Release();

II Run the graph
pControl->Run();

//Arbitrarily assumes 10000 millisecond timeout
pEvent->WaitForCompletion(lOOOO, &lEventcode);
pControl->Stop();

294

Application Developer's Guide

pEvent->Release();
pControl->Release();

II Cleanup
hr= pGraphBuilder->RemovecutList(pVCutList);
pVElementl->Release();
pVElement2->Release();
pVCutList->Release();
pVFileClip->Release();
pGraphBuilder->Release();

CoUninitialize();

11 Exit
PostMessage(WM_QUIT, o, O);

Page 93 of 106

The preceding example uses video only. The example in the next section uses both audio and
video.

Creating Both Video and Audio Cutlists

The following code takes a file name from the command line and plays five different pieces of
that AV! file back to back, with both sound and video synchronized. The code fragment
contains no error checking for the sake of brevity. See Cutlist Sa mole Code CSimolecll for an
example that performs error checking.

HRESULT
ICutListGraphBuilder
!Media Control
IMediaEvent
IGraphBuilder
IStandardcutList
IFileClip
IFileClip
IAMCutListElement
IAMCutListElement
IAMCutListElement
IAMCutListElement
IAMCutListElement
IAMCutListElement
IAMCutListElement
IAMCutListElement
IAMCutListElement
IAMCutListElement
LONG
WCHAR

Coinitialize(NULL);

hr;
*pGraphBuilder;
*pControl;
*pEvent;
*pGraph;
*pVCutList, *pACutList;
*pAFileCl ipl;
*pVFileCl ipl;

*pVElementl;
*pVElement2;
*pVElement3;
*pVElement4;
*pVElementS;
*pAElementl;
*pAElement2;
*pAElement3;
*pAElement4;
*pAElementS;

lEventcode=OL;
lpwstr[256];

CoCreateinstance((REFCLSID)CLSID CutListGraphBuilder,NULL,CLSCTX_INPROC,
(REFIID)IID_ICutListGraphBuilder, (void**)&pGraphBuilder);

CoCreateinstance((REFCLSID)CLSID_AudioFileClip, NULL, CLSCTX_INPROC,
(REFI ID) I ID_IFileClip' (void**) &pAFileClipl) ;

CoCreateinstance((REFCLSID)CLSID_VideoFileClip, NULL, CLSCTX_INPROC,
(REFI ID) I ID_IFileClip' (void**) &pVFileClipl) ;

CoCreateinstance((REFCLSID)CLSID_SimpleCutList, NULL, CLSCTX_INPROC,
(REFIID)IID_IStandardCutList, (void**)&pVCutList);

CoCreateinstance((REFCLSID)CLSID_SimpleCutList, NULL, CLSCTX_INPROC,

295

Application Developer's Guide

(REFIID)IID_IStandardCutList, (void**)&pACutList);

//Get the Unicode file name to use from the command line
MultiByteToWideChar(CP ACP, o, m lpCmdLine, strlen(m lpCmdLine)+l,

lpwstr, sizeof(lpwstr)lsizeof(*lpwstr));

II tell the clips what file they are reading from
hr pVFileClipl->SetFileAndStream(lpwstr, O);
hr = pAFileClipl->SetFileAndStream(lpwstr, O);

II Create some cuts and add them the cutlist

II from 2 to 6 seconds
hr pVFileClipl->Createcut(&pVElementl,2*SCALE,6*SCALE,0,4*SCALE,O);
hr pVCutList->AddElement(pVElementl,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr pAFileClipl->Createcut(&pAElementl,2*SCALE,6*SCALE,0,4*SCALE,O);
hr pACutList->AddElement(pAElementl,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

II from 20 to 24 seconds
hr pVFileClipl->Createcut(&pVElement2,20*SCALE,24*SCALE,0,4*SCALE,O);
hr pVCutList->AddElement(pVElement2,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr pAFileClipl->Createcut(&pAElement2,20*SCALE,24*SCALE,0,4*SCALE,O);
hr pACutList->AddElement(pAElement2,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

II from 65 to 69 seconds
hr pVFileClipl->Createcut(&pVElement3,65*SCALE,69*SCALE,0,4*SCALE,O);
hr pVCutList->AddElement(pVElement3,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr pAFileClipl->Createcut(&pAElement3,65*SCALE,69*SCALE,0,4*SCALE,O);
hr pACutList->AddElement(pAElement3,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

II from 35 to 39 seconds
hr pVFileClipl->Createcut(&pVElement4,35*SCALE,39*SCALE,0,4*SCALE,O);
hr pVCutList->AddElement(pVElement4,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr pAFileClipl->Createcut(&pAElement4,35*SCALE,39*SCALE,0,4*SCALE,O);
hr pACutList->AddElement(pAElement4,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

II from 12 to 16 seconds
hr pVFileClipl->Createcut(&pVElement5,12*SCALE,16*SCALE,0,4*SCALE,O);
hr pVCutList->AddElement(pVElement5,CL_DEFAULT_TIME,CL_DEFAULT_TIME);
hr pAFileClipl->Createcut(&pAElement5,12*SCALE,16*SCALE,0,4*SCALE,O);
hr pACutList->AddElement(pAElement5,CL_DEFAULT_TIME,CL_DEFAULT_TIME);

II Add the cutlists to the graph
hr pGraphBuilder->AddCutList(pVCutList, NULL);
hr= pGraphBuilder->AddCutList(pACutList, NULL);

II Tell the cutlist graph builder to build the graph
hr= pGraphBuilder->Render();

II Get the filter graph the builder just made
hr= pGraphBuilder->GetFilterGraph(&pGraph);

II Now get some useful graph interfaces
pGraph->Queryinterface(IID_IMediaControl, (void**)&pControl);
pGraph->Queryinterface(IID_IMediaEvent, (void**)&pEvent);
pGraph->Release();

II Run the graph
pControl->Run();

//Arbitrarily assumes 10000 millisecond timeout
pEvent->WaitForCompletion(lOOOO, &lEventcode);

pControl->Stop();

296

Page 94 of 106

Application Developer's Guide

pEvent->Release();
pControl->Release();

II cleanup

II Remove the cutlist from the graph
hr= pGraphBuilder->RemovecutList(pVCutList);
hr= pGraphBuilder->RemovecutList(pACutList);

pVElementl->Release();
pVElement2->Release();
pVElementJ->Release();
pVElement4->Release();
pVElementS->Release();
pAElementl->Release();
pAElement2->Release();
pAElementJ->Release();
pAElement4->Release();
pAElementS->Release();

pACutList->Release();
pVCutList->Release();

pAFileClipl->Release();
pVFileClipl->Release();

pGraphBuilder->Release();

CoUninitialize();

11 Exit
PostMessage(WM_QUIT, o, O);

Page 95of106

The preceding example obtains video and audio clips from the same file. The next example
adds a user interface and error checking, and it is available in the DirectShow SDK.

Cutlist Sample Code (Simpled)

The Simolecl Sa mole CCutlist Aoolicationl (Simpled) from the DirectShow SDK demonstrates
how to create and play back cutlists. By default, the DirectShow setup program installs
Simpled in the DXMedia\Samples\DS\cutlist\simplecl directory. Simpled provides a File Open
dialog box from which the user can chose a file to add to a cutlist. For each file, the user
specifies a starting (trimin) position for the clip and an ending (trimout) position for the clip.
For every AV! file specified, the sample tries to add the first video stream and the first audio
stream to its respective cutlist. The user must add at least two files, and then can run the filter
graph and see the clips played sequentially.

The DirectShow SDK also includes a sample that reads a list of cuts from a text file and plays
them, much like Simpled does. That sample, Cltext, is installed in the
DXMedia\Samples\DS\cutlist\cltext directory by default.

The following code excerpts are from the Simplecl.h and Simplecl.cpp sample files. The sample
includes error checking.

Simplecl.h declares a few global variables, including a ClipDetails structure to manage the
user's file and clip start and stop time choices, and a ClipCollection structure to group the clip
details. It also defines a SCALE constant to scale all user-specified times in one-second

297

Application Developer's Guide Page 96 of 106

increments. The HELPER_RELEASE macro releases objects only if they exist, and then sets the
object pointer to NULL to guard against releasing the same object multiple times. The following
example contains fragments from Simplecl.h.

#define MAX CLIPS 150
#define SCALE 10000000 //scale for 1 second of reference time

II Clip (element) details
struct ClipDetails

{
TCHAR szFilename[MAX_PATH];
REFERENCE TIME start;
REFERENCE TIME stop;

II name of file containing clip
II Start (Trim In) position of clip within file
II Stop (Trim out) position of clip within file

}; -

II cutlist is a collection of clips (elements)
struct ClipCollection

{
int nNumClips;
ClipDetails List[MAX CLIPS];

}; -

#define HELPER_RELEASE(x) { if (x) X->Release(); x

ClipCollection gTheSet; 11 Cutlist

The application initializes the user input structure as follows:

II ... in WinMain ...
ZeroMemory(&gTheSet, sizeof gTheSet);

NULL; }

Simpled keeps track of the name of the media file that the user chooses as the source of a
clip, tracks the number of files chosen, and displays a dialog box for the user to enter the start
and stop times for each clip. The following code fragments relate to tracking the user input for
clips:

II ... in WndMainProc

case IDM ADDFILE,

if (GetClipFileName(gTheSet.List[gTheSet.nNumClips] .szFilename))

11 Add file

TCHAR szTitleBar[200];

DialogBox(ghinst, MAKEINTRESOURCE(wDlgRes = IDD_MEDIATIMES)'
ghApp, (DLGPROC)DialogProc);

gTheSet.nNumClips = gTheSet.nNumClips + 1;
wsprintf(szTitleBar, "SimpleCutList - %d clips(s) added.",

gTheSet.nNumClips);
SetWindowText(ghApp, szTitleBar);

11 Add file

298

Application Developer's Guide

II ... in DialogProc
case IDOKTIMES,

gTheList.List[gTheSet.nNumClips] .start= GetDlgitemint(h,
IDC_TRIMIN2, NULL, FALSE);

gTheList.List[gTheSet.nNumClips] .stop= GetDlgitemint(h,
IDC_TRIMOUT2, NULL, FALSE);

EndDialog(h,1);
break;

Page 97 of 106

The real work of the Simpled sample is in the SimpleCutlist function. If the user has chosen
more than one clip, and then chooses Run from the Cutlist menu, then Simpled builds and
plays the cutlist. The following code checks the number of clips chosen, and calls SimpleCutlist
if more than one clip was chosen.

case IDM RUN:
if (gTheSet.nNumClips > 1)

SimpleCutList();
else

DialogBox(ghinst, MAKEINTRESOURCE(wDlgRes
ghApp, (DLGPROC)DialogProc);

IDD_LESSTHAN2),

break;

After the user has entered the file and clip choices, the SimpleCutlist function creates and
plays the cutlist as follows:

void SimpleCutList ()

II SimpleCutList II

WCHAR wFile[MAX_PATH]; II File name

// Initialize video and audio file clips and elements to NULL
// so we can easily free objects later.
for (int x = O; x < MAX_CLIPS; ++x)

pVidFileClip [x]
pAudFileClip [x]

pVidCLElem[x]
pAudCLElem[x]

NULL;
NULL;
NULL;
NULL;

II Create cutlist graph builder object
hr= CoCreateinstance(CLSID_CutListGraphBuilder, NULL,

CLSCTX_INPROC, IID_ICutListGraphBuilder,
(void**)&pCLGraphBuilder);

if (FAILED (hr))
{ II CoCreateinstance of cutListGraphBuiler failed

MessageBox(ghApp,
"CoCreateinstance of cutListGraphBuiler failed",
APPLICATIONNAME, MB_OK);

TearDownTheGraph();
return;
II CoCreateinstance of cutListGraphBuiler failed

II Create simple (standard) cutlist object for video
hr CoCreateinstance(CLSID_SimpleCutList, NULL,

299

Application Developer's Guide

if (FAILED (hr))

CLSCTX_INPROC, IID_IStandardCutList,
(void**)&pVideoCL);

{ II CoCreateinstance of video SimpleCutList failed
MessageBox(ghApp,

"CoCreateinstance of video SimpleCutList failed",
APPLICATIONNAME, MB_OK);

TearDownTheGraph();
return;
II CoCreateinstance of video SimpleCutList failed

II Create simple (standard) cutlist object for audio
hr CoCreateinstance(CLSID_SimpleCutList, NULL,

CLSCTX_INPROC, IID_IStandardCutList,
(void**)&pAudioCL);

if (FAILED (hr))
{ II CoCreateinstance of audio SimpleCutList failed

MessageBox(ghApp,
"CoCreateinstance of audio SimpleCutList failed",
APPLICATIONNAME, MB_OK);

TearDownTheGraph();
return;
II CoCreateinstance of audio SimpleCutList failed

II Create the individual clips and add them to the cutlist
nVidElems = nAudElems = O;
for (x = O; x < gTheSet.nNumClips; ++x)

II Individual clips

MultiByteToWideChar(CP_ACP, 0,
gTheSet.List[x] .szFilename,
-1, wFile, MAX_PATH) ;

Page 98 of 106

II Create a video clip object and give it the file and stream
II to read from.
II SetFileAndStream will fail if we call it from a video clip
II object and the clip is not a video clip.
hr CoCreateinstance(CLSID_VideoFileClip, NULL,

CLSCTX_INPROC, IID_IFileClip,
(void**)&pVidFileClip[nVidElems]);

hr pVidFileClip[nVidElems] ->SetFileAndStream(wFile, O);

if (SUCCEEDED(hr))

II Create video cut and add the clip (element) to the cutlist

hr pVidFileClip[nVidElems] ->Createcut(&pVidCLElem[nVidElems],
gTheSet.List[x] .start*SCALE,
gTheSet.List[x] .stop*SCALE,
0,
(gTheSet.List[x] .stop-gTheSet.List[x] .start)*SCALE,
0) ;

if (SUCCEEDED(hr))

II Add the element to the cutlist

hr = pVideoCL->AddElement(pVidCLElem[nVidElems]' CL_DEFAULT_TIME,

300

Application Developer's Guide Page 99 of 106

else

if (SUCCEEDED(hr))
++nVidElems;

else

II AddElement failed so release associated objects

HELPER_RELEASE(pVidCLElem[nVidElems]);
HELPER_RELEASE(pVidFileClip[nVidElems]);
MessageBox(ghApp, "AddElement (video) failed!", APPLICATIONNA

} II AddElement failed so release associated objects
II Add the element to the cutlist

else MessageBox(ghApp, "Createcut (video) failed!", APPLICATIONNAME,

II Create video cut

//Problems creating video stream

HELPER_RELEASE(pVidFileClip[nVidElems]);
MessageBox(ghApp, "SetFileAndStream (video) failed!", APPLICATIONNAME

//Problems creating video stream

II Create an audio clip object and give it the file and stream
II to read from.
II SetFileAndStream will fail if we call it from an audio clip
II object and the clip is not an audio clip
hr CoCreateinstance(CLSID_AudioFileClip, NULL,

CLSCTX_INPROC, IID_IFileClip,
(void**)&pAudFileClip[nAudElems]);

hr pAudFileClip[nAudElems] ->SetFileAndStream(wFile, O);

if (SUCCEEDED(hr))

II Create audio cut and add the clip (element) to the cutlist

hr pAudFileClip[nAudElems] ->Createcut(&pAudCLElem[nAudElems],
gTheSet.List[x] .start*SCALE,
gTheSet.List[x] .stop*SCALE,
0,
(gTheSet.List[x] .stop-gTheSet.List[x] .start)*SCALE,
0) ;

if (SUCCEEDED(hr))

II Add the element to the cutlist

hr pAudioCL->AddElement(pAudCLElem[nAudElems],
CL_DEFAULT_TIME,
CL_DEFAULT_TIME);

if (SUCCEEDED(hr))
++nAudElems;

else

II AddElement failed so release associated objects

HELPER_RELEASE(pAudCLElem[nAudElems]);

301

Application Developer's Guide Page 100of106

HELPER_RELEASE(pAudFileClip[nAudElems]);
MessageBox(ghApp, "AddElement (audio) failed!", APPLICATIONNA

II AddElement failed so release associated objects

II Add the element to the cutlist

else MessageBox(ghApp, "Createcut (audio) failed!", APPLICATIONNAME,

II Create audio cut

//Problems creating audio stream
else

//Problems creating audio stream

HELPER_RELEASE(pAudFileClip[nAudElems]);
MessageBox(ghApp, "SetFileAndStream (audio) failed!", APPLICATIONNAME

//Problems creating audio stream

II Individual clips

II Add the video cutlist to the filter graph
hr= pCLGraphBuilder->AddCutList(pVideoCL, NULL);

if (FAILED(hr)) II AddCutList (video) failed
MessageBox(ghApp, "AddCutList (video) failed", APPLICATIONNAME, MB_OK);

II Add the audio cutlist to the filter graph
hr= pCLGraphBuilder->AddCutList(pAudioCL, NULL);

if (FAILED(hr)) II AddCutList (audio) failed
MessageBox(ghApp, "AddCutList (audio) failed", APPLICATIONNAME, MB_OK);

if ((!pVideoCL) && (!pAudioCL))

II Clean up

TearDownTheGraph();
return;

II Clean up

II Let the filter graph manager construct the appropriate graph
II automatically
hr = pCLGraphBuilder->Render();

if (FAILED (hr))
{ II Problems rendering the graph

if (!AMGetErrorText(hr, gszscratch, 2048))
MessageBox(ghApp, "Problems rendering the graph!", APPLICATIONNAME, MB

else
MessageBox(ghApp, gszScratch, APPLICATIONNAME, MB_OK);

TearDownTheGraph();
return;
II Problems rendering the graph

II Retrieve the filter graph and useful interfaces
hr= pCLGraphBuilder->GetFilterGraph(&pigb);

if (FAILED (hr))
{ II Problems retrieving the graph pointer

if (!AMGetErrorText(hr, gszscratch, 2048))

302

Application Developer's Guide Page 101 of 106

MessageBox(ghApp, "Problems retrieving the graph pointer!", APPLICATION
else

MessageBox(ghApp, gszScratch, APPLICATIONNAME, MB_OK);
TearDownTheGraph();
return;
II Problems retrieving the graph pointer

// Queryinterface for some basic interfaces
pigb->Queryinterface(IID_IMediaControl, (void **)&pimc);
pigb->Queryinterface(IID_IMediaEventEx, (void **)&pimex);
pigb- >Queryinterface (IID_IVideoWindow, (void **)&pi vw) ;

II Decrement the ref count on the filter graph
pigb->Release();

// Prepare to play in the main application window's client area

RECT re;
GetClientRect(ghApp, &re);
hr pivw->put owner((OAHWND)ghApp);
hr pivw->pUt=Windowstyle(WS_CHILDIWS_CLIPSIBLINGS);
hr pivw->SetWindowPosition(rc.left, re.top, re.right, re.bottom);

//Have the graph signal event via window callbacks for performance
pimex->SetNotifyWindow((OAHWND)ghApp, WM_GRAPHNOTIFY, 0);

II Run the graph if RenderFile succeeded
pimc- >Run() ;

II SimpleCutList II

Simplecl's TearDownTheGraph function releases all objects and cleans up as follows.

void TearDownTheGraph (void)

II TearDownTheGraph II

if (pimc)
pimc->Stop ();

if (pivw)

II Hide the playback window first thing

pivw->put_Visible(OAFALSE);
pivw->put_owner(NULL);

II
HELPER_RELEASE(pimex);
HELPER_RELEASE(pimc);
HELPER_RELEASE(pivw);

//Remove the video cutlist from the filter graph to free resources
if (pCLGraphBuilder && pVideoCL)

pCLGraphBuilder->RemovecutList(pVideoCL);

//Remove the audio cutlist from the filter graph to free resources
if (pCLGraphBuilder && pAudioCL)

pCLGraphBuilder->RemovecutList(pAudioCL);

for (int x = O; x < nAudElems; ++x)

303

Application Developer's Guide

II Release audio objects

HELPER_RELEASE (pAudCLElem[x]) ;
HELPER_RELEASE (pAudFileClip[x]) i

II Release audio objects

f o r (x = O; x < nVidElems; ++x)

{ II Release video objects

HELPER_RELEASE (pVidCLElem[x]) ;
HELPER_RELEASE (pVidFileClip[x]) i

II Release video objects

HELPER RELEASE(pVideoCL) ;
HELPER=RELEASE (pAudioCL) ;
HELPER_RELEASE(pCLGraphBuilder) ;

II TearDownTheGraph II

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9

+Qij[.jjj,M 111.1 1119

DVD for Title Vendors

Page 102of106

Topic Contents 1@1§111¥+

Topic Contents l@i§illlj4M

DVD-Video discs typically contain programs such as feature films, interactive games, or video
reference materials like encyclopedias. The end user can play back those programs on a DVD­
Video player or on a DVD-ROM-equipped computer. Some of the features of DVD-Video include
support for multiple languages, parental control, different camera angles, and closed
captioning.

This article discusses the unique features of DVD that are not available in pure MPEG-2 (its
parent format) and outlines the interfaces and methods DirectShow provides in support of
those features.

DVD-unique features include the following:

• Better seeking
• Subpictures
• Multiple language support
• Variable speed play (forward/backward scan)
• Consumer DVD interactivity
• Seamless video angle change
• Parental control

304

Application Developer's Guide Page 103of106

Title vendors can create feature-rich applications by taking advantage of these DVD-Video
features.

Note This release of DirectShow supports DVD-Video. It does not support pure MPEG-2.

See Additional DVD Resources on the Web for a list of DVD resources on the Web.

Contents of this article:

• DVD Interfaces
• DVD Control Data Structure
• DVD Features

o Seeking in DVD
o Subpicture
o Multiple Language Support
o Variable Speed Play
o Consumer DVD Interactivity
o Seamless Video Angle Change
o Parental Control

• Additional DVD Resources on the Web

DVD Interfaces

DirectShow provides the following DVD-related interfaces.
Interface Purpose
!DvdGraphBuilder Allows the DVD application writer to easily build a filter graph for DVD-Video

playback.
!DvdControl

!Dvdlnfo

Controls the playback and search mechanisms of a DVD-Video disc that
contains one or more video movies.
Allows an application to query for attributes of available DVD-Video titles
and the DVD player status. It also allows for control of a DVD player beyond
Annex J in the DVD specification.

Later sections of this article group methods from these interfaces into functional categories.

DirectShow also provides a number of events. See DVD Events for more information.

DVD Control Data Structure

DVD-Video contains a nested hierarchy that provides search capabilities at several levels in the
DVD data. This nested "control data" points to the real video and audio data. The following
table outlines the structure of the control data for a DVD-Video volume. Each DVD volume can
contain from one to 99 video title sets, which can contain one or more titles, which can contain
one or more program chains. This nested structure continues to the smallest unit, which is the
"pack." DirectShow provides seeking capabilities for DVD at three distinct levels, as outlined in
Seeking in DVD.

DVD-Video Volume Structure

305

Application Developer's Guide Page 104ofl06

Control Data
Video Title Set
(VTS)

Title

Program Chain
(PGC)
Chapter/Part of
Title (PTT)

Program (PG)
Cell

Cell-Part

Description
Collection of movies. A single volume can contain one to 99 video title sets.

Individual movie. This may be a simple linear movie, consisting of one
program chain, or it might consist of several program chains.
A collection of programs (often chapters in a movie).

Collection of programs. Can delimit scenes or provide optional scenes from
which to choose. Possible options include different ratings, camera angles,
or a different storyline.
Collection of cells, which normally make up a scene.
Collection of Video Object Units. Typically all the video and audio data from
a certain number of Video Object Units.
Stream of data (multi-angle only).

Video Object Unit Usually half a second of video.
(VOBU)
Pack 2KB of data, consisting of only one media type (such as video or audio).

Pure MPEG-2 supports only the title and pack from the list above.

DVD Features

This section outlines features specific to DVD-Video and lists the DirectShow methods that
provide these features.

Seeking in DVD

DirectShow enables you to seek at several different levels within the DVD content. Because
pure MPEG-2 supports only title and pack control data, it does not provide the flexibility in
seeking that DVD does.

The following table shows the DirectShow DVD methods for seeking at various levels.
Seeking Control data IDvdControl methods
level
Title
Seeks

Chapter
Seeks

Time
Seeks

Video Title Set (VTS),
Title, Program Chain
(PGC)
Chapter/Part of Title
(PTT), Program (PG),
Cell
Cell-Part, Video Object
Unit (VOBU), Pack

Subpicture

Title Play

ChaoterPlay (specifying title and chapter number),
ChaoterSearch (search for a chapter within the same
title), PrevPGSearch, TooPGSearch, NextPGSearch
TimePlay (start playing specified title from specified time),
TimeSearch (start playing from specified time within the
same title)

Subpicture is an extra media type that is decoded and alpha blended. The data on the alpha
channel could be text for closed-captioning, buttons to provide a user interface, menus,
subtitles, credits, and so on.

306

Application Developer's Guide Page 105of106

Methods relating to sub picture include the following:

• !DvdControl:: SubpictureStreamChange
• !Dvdlnfo: :GetCurrentSubpicture
• !Dvdlnfo: :GetSubpicturelanguage
• !Dvdlnfo: :GetCurrentSubpictureAttributes

Multiple Language Support

DVD-Video provides support of up to eight audio tracks to accommodate various languages. It
also supports text in different languages for statistics related to the DVD title such as cast,
crew, or title.

Methods relating to language support include the following:

• !DvdControl:: MenulanguageSelect
• !Dvdlnfo: :GetAudiolanguage
• !Dvdlnfo: :GetSubpicturelanguage

Variable Speed Play

DirectShow provides variable speed play through the !DvdControl: :ForwardScan and
!DvdControl: : Backwa rdSca n methods:

Consumer DVD Interactivity

The consumer of a DVD title can interact with the title by selecting and activating buttons,
displaying menus, and using the mouse to select and activate buttons.

Methods relating to consumer interactivity include the following:

• !DvdControl:: MenuCall
• !DvdControl:: UpperButtonSelect
• !DvdControl: : LowerButtonSelect
• !DvdControl: : LeftButtonSelect
• !DvdControl:: RightButtonSelect
• !DvdControl: : ButtonActivate
• !DvdControl: : ButtonSelectAndActivate
• !DvdControl: : MouseActivate
• !DvdControl: : MouseSelect
• !Dvdlnfo: :GetCurrentButton

Seamless Video Angle Change

DVD-Video supports up to nine camera angles. These angles can be completely independent
video streams, or different camera angles of the same scene. The fast seeking of the DVD disc
allows switching angles seamlessly.

Methods relating to video angles include !DvdControl: :AngleChange and
!Dvdlnfo: :GetCurrentAngle.

307

Application Developer's Guide Page 106of106

Parental Control

Parental control provides security for parents who want to prevent children from viewing
certain types of content. Content might be authored at a particular level, or might contain the
same scene shot at different rating levels to provide a viewing alternative for children.

Methods relating to parental control include the following:

• IDvdControl: : Pa renta I Level Select
• IDvdControl:: ParentalCountrySelect
• IDvdinfo: :GetPlayerParentalLevel
• IDvdinfo: :GetTitleParentalLevels

Additional DVD Resources on the Web

The following list contains links to a few of the Web sites that provide DVD information. Search
the Web for other DVD resources. Note that most of these external links point to servers that
are not under Microsoft's control. Please read Microsoft's official statement regarding other
servers.

• http: //www.microsoft.com/hwdev/devdes/dvdwp.htm contains a whitepaper titled "DVD
and Microsoft Operating Systems" which outlines the planned support for DVD under
future Windows operating systems.

• ICl http://www.unik.no/"'robert/hifi/dvd/ includes links to many other DVD sites, news
stories, and other resources.

• ICl http://reality.sgi.com/nemec/dvd.html contains notes from a DVD technical forum.
• ICl http://www.c-cube.com/technology/dvd.html contains a whitepaper on DVD.
• ICl http://www.icdia.org/dvdfag02.html contains a DVD frequently asked questions list.
• ICl http://www.videodiscovery.com/vdyweb/dvd/dvdfag.html contains a DVD frequently

asked questions list which is also available from alt.video.dvd Usenet newsgroup.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ii!¥M

308

Filter Developer's Guide Page 1of83

MQi@[.jjj,M l!i.! 11ij Topic Contents l@i§il!MM

Filter Developer's Guide

If you are developing a filter for use in a DirectShow filter graph, read the articles in this
section.

· How to ...

· Stream Architecture

· Plug-in Distributors

• DirectShow and COM

· File Formats

· Transform Filters

· About Effect Filters

· Video Renderers

· Exposing Capture and Compression Formats

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.!j Topic Contents l@i§il!MM

+Qi§i[.jjj,+ 111.],.[j Topic Contents 1wm111m+

How to ...

This section gives step-by-step procedures for writing and using different kinds of filters,
including a video capture filter, an audio capture filter, and a transform filter.

· Write a Video Capture Filter

· Write an Audio Capture Filter

· Write a Transform Filter in C/C++

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

309

Filter Developer's Guide Page 2 of 83

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

Write a Video Capture Filter

This article outlines important points to consider when writing a video capture filter. The
Microsoft® DirectShow™ SDK includes a standard VFW Video Caoture filter.

Contents of this article:

• Capture and Preview Pin Requirements
• Optimizing Capture Versus Preview (Optional)
• Registering a Video Capture Filter
• Producing Data
• Controlling Individual Streams
• Time Stamping
• Necessary Interfaces

Capture and Preview Pin Requirements

The capture pin and preview pin (if there is one) of the capture filter must support the
IKsPropertySet interface. Applications call this interface to ask "what category of pin are you?"
by getting the AMPROPERTY PIN CATEGORY value of the AMPROPSETID Pin property set. The
value you return is typically either the PIN CATEGORY CAPTURE or PIN CATEGORY PREVIEW
.G..lli.Q.. (See Pin Property Set for a complete list of pin categories.) A capture filter must support
IKsPropertySet or an application can't tell how to connect the filter in a filter graph.

You can name the pin anything you want and you can have other output pins for any additional
purposes that you want. If your pin name begins with the tilde (rv) character, the filter graph
will not automatically render that pin when an application calls IGraphBuilder:: RenderFile. For
instance, if you have a capture filter with both a capture pin and a preview pin, you might want
to name the capture pin """capture" and the preview pin "preview." Given those names, if an
application renders that filter in a graph, the preview pin will be connected to a video renderer,
and nothing will be connected to the capture filter, which is probably what you want to happen
by default. This can also apply to pins that are just informational and are not meant to be
rendered, or need to be enumerated so that their properties can be set.

The tilde ("") prefix only affects the behavior of RenderFile and intelligent connect
(IGraphBuilder: :Connect). Note that intelligent connect can still be used to connect pins with
this property if they implement the I Pin: :Connect method. However, output pins of
intermediate filters which are being used to complete the connection which have the tilde at
the start of their name will not be connected as part of the intelligent connection attempt.

See Audio Capture Pin Requirements for more details about audio capture filters.

The following sample code demonstrates how to implement IKsPropertySet on a capture pin.

II

310

Filter Developer's Guide Page 3 of 83

II PIN CATEGORIES - let the world know that we are a CAPTURE pin
II
HRESULT CMyCapturePin,,set(REFGUID guidPropSet, DWORD dwPropID, LPVOID pinstanceDat
{

return E_NOTIMPL;

II To get a property, the caller allocates a buffer which the called
// function fills in. To determine necessary buffer size, call Get with
II pPropData=NULL and cbPropData=O.
HRESULT CMyCapturePin,,Get(REFGUID guidPropSet, DWORD dwPropID, LPVOID pinstanceDat
{

if (guidPropSet != AMPROPSETID_Pin)
return E_PROP_SET_UNSUPPORTED;

if (dwPropID != AMPROPERTY_PIN_CATEGORY)
return E_PROP_ID_UNSUPPORTED;

if (pPropData == NULL && pcbReturned
return E_POINTER;

if (pcbReturned)
*pcbReturned = sizeof(GUID);

if (pPropData == NULL)
return S_OK;

if (cbPropData < sizeof(GUID))
return E_UNEXPECTED;

NULL)

*(GUID *)pPropData
return S_OK;

PIN CATEGORY_CAPTURE;

II Querysupported must either return E_NOTIMPL or correctly indicate
II if getting or setting the property set and property is supported.
II S_OK indicates the property set and property ID combination is
HRESULT CMyCapturePin,,QuerySupported(REFGUID guidPropSet, DWORD dwPropID, DWORD ·~

{
if (guidPropSet != AMPROPSETID_Pin)

return E_PROP_SET_UNSUPPORTED;

if (dwPropID != AMPROPERTY_PIN_CATEGORY)
return E_PROP_ID_UNSUPPORTED;

if (pTypeSupport)
*pTypeSupport

return S_OK;
KSPROPERTY_SUPPORT_GET;

Optimizing Capture Versus Preview (Optional)

When your filter is running and capturing data, you must send a copy of the frame from your
preview pin as well as from your capture pin. If you can do hardware-assisted preview -
through an overlay, for example - and if you have a preview pin, you can use the !Overlay
interface transport for your preview pin instead of the !MemlnoutPin interface. Using !Overlay
is optional. If you can't do hardware-assisted preview, only send a frame out the preview pin if
you have some spare time. Don't do it if it will make you drop any frames - the capture pin
has priority.

311

Filter Developer's Guide Page 4 of 83

For example, you might deliver a frame from the preview pin only if you have nothing to send
from the capture pin right now and the downstream filter has released all buffers previously
delivered from the capture pin.

If you can capture only one format of data, and the preview and capture pins must therefore
produce the same media type, or if you want information about how to properly reconnect
pins, read on. Otherwise, skip this section.

Send data of the same format from the preview and capture pins. If the filter graph manager
reconnects your capture pin with a different format, you must reconnect your preview pin with
the same format to make it work. If your capture pin is connected but your preview pin is not,
you must allow only your preview pin to connect with the same media type as the capture pin.
They must match.

Note: If your preview pin is producing 8-bit RGB and must reconnect using 16-bit RGB, the
reconnect might fail. This failure might occur if you are connected to a video renderer, because
the renderer might need a color converter filter inserted between the filters to convert the 16-
bit RGB to 8-bit RGB. In this case, calling the !FilterGraoh: :Reconnect method will fail. You
must do a full-fledged connect again (with CBasePin: :Connect). If you only change between
different sizes of motion JPEG, don't worry; a simple reconnect will always work.

The following sample code shows how the more complicated reconnection would work.

II Capture pin is being told to use a certain media type
II
ccapturePin, ,setMediaType(CMediaType *pmt);
{

if (m_pMyPreviewPin->IsConnected()) {

//We need to reconnect our preview pin with this media type
if (m_pMyPreviewPin->Getconnected()->QueryAccept(pmt) == NOERROR)

II The other filter that the preview pin is connected to
// can accept this new media type, so we simple reconnect
m pGraph->Reconnect(m pMyPreviewPin);

} else { - -
II The other filter WON'T accept this new time. Time to do
// the connection all over again, possibly pulling in new
II filters to help connect them
!Pin *pPin = m_pMyPreviewPin->Getconnected();
m_pGraph->Disconnect(pPin); // disconnect upstream first
m pGraph->Disconnect(m pMyPreviewPin);
17 The sample code belOw will make sure the new connection
//happens with the same media type as we are using
hr= m_pGraph->Connect(m_pMyPreviewPin, pPin);
if (FAILED(hr))

; 11 UH OH ! ! !

CPreviewPin, ,checkMediaType(CMediaType *pmt)
{

CMediaType cmt = m_pMyCapturePin->m_mt;
if (m pMyCapturePin->IsConnected() && *pmt != cmt)

- II Sorry, our preview pin is only allowed to connect with
II the same format as the capture pin

312

Filter Developer's Guide Page 5 of 83

return E_INVALIDARG;

else if (!m pMyCapturePin->IsConnected())
II You decide if you like this media type or not, maybe by
II knowing what the capture pin will connect with. But don't
//worry, when the capture pin is connected, we will be
// reconnected to use the same format

// if our capture pin is connected, and this is the same media type,
11 we are OK.
return NOERROR;

Registering a Video Capture Filter

You must register your filter in the video capture filter category. See AMovieDllRegisterServer2
for more information.

Producing Data

Produce data on capture and preview pins only when the filter graph is in a running state. You
do not send data from your pins when the filter graph is paused. This will confuse the filter
graph unless you return VFW S CANT CUE from the CBaseFilter: :GetState function, warning
the filter graph that you do not send data when paused. The following code shows you what to
do.

CMyVidcapFilter,,GetState(DWORD dw, FILTER STATE *State)
{ -

*State = m_State;
if (m_State == State_Paused)

return VFW_S_CANT_CUE;
else

return S_OK;

Controlling Individual Streams

All output pins should support the IAMStreamControl interface, so an application can turn each
pin on or off individually (for instance, to preview without capturing). IAMStreamControl
enables you to switch between preview and capture without rebuilding a different graph.

Time Stamping

When you capture a frame and are sending it, time stamp the frame with the time the graph's
clock says it is when the frame is captured. The end time is the start time plus the duration.
For example, if you are capturing at 10 frames per second, and the graph's clock says
200,000,000 units at the time the frame is captured, the sample is stamped (200000000,
201000000) (there are 10,000,000 units per second).

A preview frame should have no time stamp because of latency problems. The latency is due to
the fact that, if the time of the sample is the graph's time when it leaves the preview pin, by
the time the sample gets to the renderer, it will be late. Therefore the renderer may choose
not to draw the sample in order to save time and "catch up", which can't happen for a live
stream. Implementing IAMStreamControl requires time stamps, so you can choose not to
implement stream control on the preview pin, only time stamp the preview pin sample when
there are outstanding requests to start or stop, or live with the latency problem. See the

313

Filter Developer's Guide Page 6 of 83

source code for the VidCap Sample (Video Capture Filter) sample for details.

You should set the media time of the sample you deliver; also set the regular time stamp for
your capture pin. The media time is the frame number of the sample. For example, if you are
capturing and sending frames and frame 3 gets dropped, you would set the media time values
to be (0,1) (1,2) (2,3) (4,5) (5,6) and so on. This informs the downstream filters if any video
frames were dropped even when the regular time stamps are a little random because the clock
being used is not the video digitizing clock.

Also, if you are in a running state, and then pause, and then run again, you must not send a
sample with a time stamp less than the last one you sent before pausing. Time stamps can
never go back in time, not even back to before a pause occurred.

Necessary Interfaces

Read about the following interfaces and consider implementing them. You should implement
these interfaces to provide functionality that applications might rely on, so these interfaces are
strongly recommended.

• Implement IAMDroppedFrames on your filter or on each output pin that sends data.
• Implement IAMStreamConfig on each output pin that sends video data.
• Implement IAMStreamControl on each output pin that sends data.
• Implement IAMVideoCompression on each output pin that sends video data.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11!j Topic Contents l@i§illlj4M

w QIM !.l ++ Mii.HJ Topic Contents i@faiillj4M

Write an Audio Capture Filter

This article outlines important points to consider when writing an audio capture filter. The
Microsoft® DirectShow™ SDK includes a standard Audio Capture filter.

Contents of this article:

• Audio Capture Pin Requirements
• Registering an Audio Capture Filter
• Producing Data
• Controlling Individual Streams
• Time Stamping
• Necessary Interfaces

Audio Capture Pin Requirements

The capture filter's capture pin and preview pin (if there is one) must support the

314

Filter Developer's Guide Page 7 of 83

!KsProoertySet interface. See Caoture and Preview Pin Requirements for more details and
sample code for implementing IKsPropertySet on your capture pin.

You must have one input pin for every sound source the capture card can mix before it
digitizes the audio. For instance, if your sound card has a line in, microphone in, and CD-ROM
input, you would have three input pins. You don't typically connect these input pins to any
other filters - you just support the IAMAudiolnoutMixer interface on each pin and an
application will set recording levels, balance, treble, and so on, on each pin using that
interface.

Registering an Audio Capture Filter

You must register your filter in the audio capture filter category. See the
AMovieDllRegisterServer2 function for more information.

Producing Data

Produce data on the capture pin only when the filter graph is in a running state. Do not send
data from your pins when the filter graph is paused. This will confuse the filter graph unless
you return VFW S CANT CUE from the CBaseFilter: :GetState function, which warns the filter
graph that you do not send data when paused. The following code sample shows how to do
this.

CMyVidcapFilter,,GetState(DWORD dw, FILTER STATE *State)
{ -

*State = m_State;
if (m_State == State_Paused)

return VFW_S_CANT_CUE;
else

return S_OK;

Controlling Individual Streams

All output pins should support the IAMStreamControl interface, so an application can turn each
pin on or off individually (for instance, to preview without capturing). IAMStreamControl
enables you to switch between preview and capture without rebuilding a different graph. See
the source code for the VidCao Samole (Video Caoture Filter) sample for details.

Time Stamping

When you send captured audio samples, the starting time stamp for each group equals the
start time of the graph's clock when the first sample in the packet was captured. The ending
time stamp equals the start time plus the duration that the audio packet represents. If your
audio capture filter is not providing the clock, the time stamps won't match up exactly (where
the end of one package is the same as the beginning time stamp of the next package), but
that's okay. See Write a Video Caoture Filter and the source code for the VidCao Sa mole (Video
Caoture Filter) sample for time stamping examples.

You should also set the media time of the sample you deliver, as well as the regular time
stamp. The media time is the sample number in the packet. So if you are sending one-second
packets of 44.1 kilohertz (kHz) audio, you would set media time values of (0, 44100) (44100,
88200), and so on. This enables the downstream filters to know if any audio samples were
dropped, even when the regular time stamps are a little random because the clock being used

315

Filter Developer's Guide Page 8 of 83

is not the audio digitizing clock.

One other thing: If the filter graph is in a running state, and then paused, and then run again,
you must not produce a sample with a time stamp less than the last one you produced before
pausing. Time stamps can never go back in time, not even back to before a pause occurred.

Necessary Interfaces

Read about the following interfaces and consider implementing them. You should implement
these interfaces to provide functionality that applications might rely on, so these interfaces are
strongly recommended.

• Implement IAMDroppedFrames on your filter or on each output pin that sends data.
• Implement IAMStreamConfiq on each output pin that sends data.
• Implement IAMStreamControl on each output pin that sends data.
• Implement IAMAudioinputMixer on your filter and on each input pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§illlj4M

Write a Transform Filter in C/C++

A transform filter takes media input and alters it in some way. When you design a transform
filter, your filter class derives from one of the transform base classes, CTransformFilter,
CTransinPlaceFilter, or CVideoTransformFilter, or from the more generic CBaseFilter class.
Which base class you choose depends on whether your filter must copy media samples or can
transform them in place. See Determine Which Base Classes to Use for more information.

The filter graph manager can use the functions of the base classes your filter derives from to
fit your filter into the filter graph and automatically create the connections between your
filters. The filter mapper uses your filter's registry information to configure the filter graph.

For the simplest transform filter (for example, one that has only one input pin and one output
pin), you can derive your filter class from CTransformFilter and override only the Transform
and ChecklnputType functions. If you need custom features, you can override additional
functions to create your own connections, pins, and other filter features and capabilities. See
Override the Base Class Member Functions for more information. You can also derive your filter
class from CBaseFilter and override its methods.

This section discusses how to:

• Define and Instantiate Your Filter Class
• Override CheckinputType (does not apply to filter classes derived from CBaseFilter)
• Override the Transform Function(does not apply to filter classes derived from

CBaseFilter)

316

Filter Developer's Guide Page 9 of 83

• Access Additional Interfaces
• Create Registry Information

Every transform filter must implement code to perform all the preceding steps except access
additional interfaces.

For background information about transform filters, see:

• Determine Which Base Classes to Use
• Override the Base Class Member Functions

For information on building a filter, see Build a Filter or APPiication with Visual C++ 5.x. For
information on registering a filter or making it self-registering, see Register DirectShow
Objects.

Define and Instantiate Your Filter Class

The following steps show you how to define and instantiate your filter class.

1. Determine the base classes from which to derive your filter class (and pin classes, if
necessary). Typically, your transform filter class derives from the CTransformFilter,
CTranslnPlaceFilter, or CVideoTransformFilter transform base classes, or from the more
generic CBaseFilter class. If you want to transform video media (especially AV! data),
derive from CVideoTransformFilter. If your filter must copy the input media samples,
derive from CTransformFilter. If you filter can transform the sampled media in place,
derive from CTransinPlaceFilter. If you don't want the simple transform filter support
provided in the transform base classes, but prefer to implement your own member
functions, derive from CBaseFilter. See Determine Which Base Classes to Use for more
information.

In the following example, the filter class derives from CTranslnPlaceFilter.

class CMyFilter : public CTransinPlaceFilter

2. Implement the !Unknown interface for your object.

In the public section of your filter class definition, create an instance of CUnknown, and
then call the DECLARE !UNKNOWN macro.

public,
static CUnknown *WINAPI Createinstance (LPUNKNO'lii1N punk, HRESUL'.

*phr);
DECLARE_IUNKNOWN;

3. Define your constructor. Also, define your Transform and ChecklnPutTyPe functions (this
does not apply if your filter class is derived from CBaseFilter).

In the private section of your filter class definition, define your constructor by calling the
constructor of the transform filter class you derived from, and then add code to perform
the transform and check the input type. For example:

317

Filter Developer's Guide

//Define your constructor by calling the constructor of
//CTransinPlaceFilter
CMyFilter(TCHAR *tszName, LPUNKNOWN punk, HRESULT *phr)
, CTransinPlaceFilter (tszName, punk, CLSID MyFilter, phr)
{ } -

//Add the transform code
HRESULT Transform(IMediaSample *pSample){
//Transform code here
}

//Add code to check the input type
HRESULT CheckinputType(const CMediaType* mtin) {
//Input checking code here
}

Page 10 of 83

4. Implement Createinstance for your filter object. Typically, Createinstance calls the
constructor of your filter class. For example:

CUnknown * WINAPI CMyFilter, ,createinstance(LPUNKNOWN punk, HRESULT *]
CMyFilter *pNewObject = new CMyFilter(NAME("Description of My Filter"
if (pNewObject == NULL) {

*phr = E_OUTOFMEMORY;

return pNewObject;
}

5. Declare a global array g_Templates of CFactoryTemolate objects to inform the default
class factory code how to access the Createinstance function:

CFactoryTemplate g Templates[]=

};

{ L''My Filter'' -
&CLSID _ MyFil ter
CMyFilter,,createinstance //Function called by class factor:
NULL
&sudMyFilter } //Address of the AMOVIESETUP_FILTER structur<

//or NULL if no structure exists

int g_cTemplates = sizeof(g_Templates)/sizeof(g_Templates[O]);

The g_cTemplates variable defines the number of class factory templates for the filter.
Each of these templates provides a link between COM and the filter and are used to
create the base object for the filter. At a minimum, the filter has one template that
provides the address of its own Createinstance function, which, when called, creates
the base object.

You can add additional parameters to the CFactoryTemolate templates to add property
pages. See the Gargle sample for example code. See Register DirectShow Objects for
information about using CFactoryTemplate in registration.

6. Generate a GUID for your filter object.

For information about generating G..UlQs in general, see "GUID Creation and
Optimizations" and "The uuidgen Utility" in the Platform SDK.

To generate a GUID in Microsoft® Visual C++® 5.x, choose Create GUID from the
Tools menu. By default, the GUID is in DEFINE_GUID format, which is the format you

318

Filter Developer's Guide Page 11of83

want. Click the Copy button. Put the cursor in your source file beneath the include
statements, and choose Paste from the Edit menu. The inserted code will look like the
following example, except that it will have its own unique number and CLSID. Insert the
code before your class definition in the header file or main file.

II {3FASD260-AF2F-lld0-AE9C-OOAOC91F0841}
DEFINE_GUID(CLSID_MyFilter,
Ox3fa5d260, Oxaf2f, OxlldO, Oxae, Ox9c, oxo, Oxao, Oxc9, Oxlf, oxs, o:

Override CheckinputType

You must override the CheckinputType function to determine if the proposed input to your
filter is valid. (This does not apply to filter classes derived from CBaseFilter.) Your
implementation should return an error for media types it can't support. The media types your
filter supports are listed in the AMOVIESETUP MEDIATYPE structure. For example:

HRESULT CMyFilter,,checkinputType(const CMediaType *pmt)
{
if (pmt->majortype != MEDIATYPE_Video)

return S_FALSE;

else return S_OK;

Override the Transform Function

To perform the desired transformation on your input media, your must override the
Transform function of your transform base class, or implement your own transformation
functions. (This does not apply to filter classes derived from CBaseFilter.) Examples of
transformations are MPEG audio/video decoders (see the MPGAudio and MPGVideo samples),
visual effects (see the Contrast and EzRGB24 samples), and audio effects (see the Gargle
sample).

For example, consider the following code from the Contrast sample. You override the
CContrast: :Transform function as follows:

HRESULT ccontrast, ,Transform(IMediaSample *pin, IMediaSample *pout)
{

HRESULT hr = Copy(pin, pout);
if (FAILED(hr)) {

return hr;

return Transform(pOut);

The first CContrast: :Transform function copies the media data, and then passes the copy
(pointed to by the pOut parameter) to a second Transform function. The first Transform
function in the Contrast sample is an overloaded function, and the second form of the
Transform function performs an in-place transform on the copy of the input media, as shown in
the following code fragment.

HRESULT ccontrast, ,Transform(IMediaSample *pMediaSample)

319

Filter Developer's Guide

{
signed char ContrastLevel;
ContrastLevel = m_ContrastLevel;
AM_MEDIA_TYPE *pAdjustedType = NULL;

pMediaSample->GetMediaType(&pAdjustedType);
HRESULT hr = Transform(&AdjustedType, ContrastLevel);
pMediaSample->SetMediaType(&AdjustedType);
return NOERROR;
}

Page 12 of 83

Note that the second form of the overloaded Transform function calls a third form of the
overloaded Transform function.

Access Additional Interfaces

If your filter implements any interfaces that aren't implemented in the base classes, you must
override the NonDelegatingQueryinterface function and return pointers to the implemented
interfaces.

1. In the public section of your filter class definition, declare
Non DelegatingQueryinterface:

STDMETHODIMP NonDelegatingQueryinterface(REFIID riid, void ** ppv);

2. In the implementation section of your class, implement the
NonDelegatingQueryinterface function. For example:

//Reveal persistent stream and property pages
STDMETHODIMP CMyFilter, ,NonDelegatingQueryinterface(REFIID riid, void
{
if (riid == IID IPersiststream)
AddRef() ; //-Add a reference count. Be sure to release when done.
*ppv = (void *) (IPersiststream *) this;
return NOERROR;
}
else if (riid == IID_ISpecifyPropertyPages)

return Getinterface((ISpecifyPropertyPages *) this, ppv);
}
else
return CTransinPlaceFilter: :NonDelegatingQueryinterface(riid, ppv);

l
Create Registry Information

The filter graph manager uses your filter's registry entries to configure your filter and its
connections. You provide your filter's registry information in the AMOVIESETUP MEDIATYPE,
AMOVIESETUP PIN, and AMOVIESETUP FILTER structures. Typically, these structures are at
the beginning of your filter implementation code. See Register DirectShow Objects for more
information about using these structures.

Perform the following steps to provide the three structures you need for filter registration.

1. Provide the AMOVIESETUP MEDIATYPEstructure. This structure holds registry
information about the media types your filter supports. For example:

320

Filter Developer's Guide

const AMOVIESETUP MEDIATYPE sudPinTypes =
{-&MEDIATYPE_Video
I &MEDIASUBTYPE_NULL}

Page 13 of 83

II MajorType
I I MinorType

The possible major types are MEDIATYPE_Stream, MEDIATYPE_Video, and
MEDIATYPE_Audio.

2. Provide the AMOVIESETUP PIN structure. This structure holds registry information about
the pins your filter supports.

3. Provide the AMOVIESETUP FILTER structure. This structure holds registry information
about your filter object: its CLSID, description, number of pins, the pin structure's name,
and your filter's merit. The merit controls the order in which the filter graph manager
accesses your filter. Possible merit values are MERIT_PREFERRED, MERIT_NORMAL,
MERIT _UNLIKELY, and MERIT _DO_NOT _USE. See IFilterMapper:: ReqisterFilter for a
description of merit values. The following code shows an example of an
AMOVIESETUP _FILTER structure.

c o nst AMOVIESETUP FILTER
sudMyFilter = { &CLSID_MyFilter

, L"My Filter Description"
MERIT UNLIKELY
2

, sudpPins };

© 1997 Microsoft Corooration. All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

Stream Architecture

II els ID
II strName

II dwMerit
I I nPins

II lpPin

Topic Contents i@fa111¥M

Topic Contents i@fai11¥M

This section describes the DirectShow stream architecture and connection model. Topics
include connecting filters, using pins, and negotiating data types.

· About Stream Architecture

· Connection Model

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

About Stream Architecture

321

Filter Developer's Guide Page 14 of 83

Stream architecture defines objects and interfaces that exchange streams of time-based data.
In particular, it defines interfaces for the following requirements.

• Connecting filters to other filters.
• Negotiating data types.
• Transporting data between filters.
• Synchronizing presentation of data.
• Graceful degradation of rendering in cases of insufficient resources (that is, quality­

control management).

See Filters and Pins for more information.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

Connection Model

This article provides an overview of the filter connection architecture in a Microsoft®
DirectShow™ filter graph by examining the behavior of the base classes that implement
connection. Because filters connect to other filters using pins, the architecture describes pin
connection. Consequently, the CBasePin, CBaseOutputPin, and CBaseinputPin base classes and
the IPin interface are discussed. This article describes the connection process and the default
functionality built into these classes.

Contents of this article:

• Connection Process
• How the Base Classes Implement Connection

o The Filter Graph Manager Starts the Connection
o Negotiating Media Types with CBasePin: :AgreeMediaType
o Determining a Media Type with CBasePin: :TryMediaTypes

• When a Reconnection Should Occur

Connection Process

When building a filter graph, the filter graph manager connects pins between filters. It also
selects filters based on the media type in the file it has been given to render or selects a
predetermined configuration for the filter graph it is assembling. The filter graph manager can
be asked specifically to add a filter by using the IFilterGraph: :AddFilter method. The filter
graph manager calls the IBaseFilter: :JoinFilterGraph method on the filter to notify it that it has
joined the filter graph. The added filter can then be connected like any other filter. When
connecting filters, the filter graph manager requests the filters to enumerate their pins and
then, for each connection required, requests that an output pin connect to an input pin.

The base classes handle much of the connection mechanism. However, it is important to

322

Filter Developer's Guide Page 15 of 83

understand the connection process when writing a filter so that you can identify what to
override and what is expected of your filter. Before two connected filters are prepared to pass
media between them, the following connection and negotiation processes must occur in this
order.

1. The initial pin connection occurs.
2. The output pin of one filter retrieves interfaces from the connected input pin.
3. Both pins negotiate for a common media type.
4. Both pins negotiate for an appropriate transport to pass the media.

In the first step, the filter graph manager informs the output pin of one filter to connect to a
specified input pin of another filter. This results in an exchange of !Pin interface pointers.
Filters should never connect to other filters by themselves. The filter graph manager must
always be the agent that initiates a connection, because deadlocks can occur otherwise. A filter
or an application can instruct the filter graph manager to connect two pins (through the
!GraohBuilder: :Connect or !FilterGraoh: :ConnectDirect method), or the filter graph manager
can determine to connect filters when rendering a filter by using the !GraohBuilder:: Render or
!GraohBuilder:: RenderFile method.

In the second step, the output pin may request the !MemlnoutPin interface from the connected
input pin. This is in preparation for the fourth step, where the output pin will use
IMeminputPin to retrieve a memory allocator from the input pin. If the output pin already
has a memory allocator (or some other transport in the case of hardware filters), it can skip
this step or can request some other interface in a proprietary design.

In the third step, media types are tried until one is found that is acceptable to both pins or the
pins run out of types to try (in which case the connection fails). First, the output pin asks the
connected input pin to propose its list of media types. If none of these are acceptable to the
output pin, the output pin proposes its own types.

In the fourth step, the output pin asks the connected input pin for an allocator interface. The
output pin then either accepts the allocator, or proposes its own allocator and notifies the input
pin of the selection. The output pin makes the final determination.

How the Base Classes Implement Connection

The CBasePin class and its derived base classes, CBaseOutoutPin and CBaselnoutPin,
implement most of the mechanism for the most common connection scenarios, much of which
can be overridden by the derived filter class for more control of the process.

The connection procedure relies on the implementation of four interfaces:

1. !Pin, which is implemented by the CBasePin class and inherited by the CBaselnoutPin
and CBaseOutoutPin classes.

2. !EnumMediaTyoes, which is implemented by the CEnumMediaTyoes class and passed out
by the !Pin::EnumMediaTyoes method.

3. !MemlnoutPin, which is implemented by the CBaselnoutPin class.
4. !MemAllocator, which is implemented by the CBaseAllocator class and passed out by the

I Me ml no utPi n: : GetAI locator method.

The !MemlnoutPin and !MemAllocator interfaces are necessary only if the filter belonging to
the connecting input pin (called the downstream filter) is expected to provide a shared memory
allocator for transporting samples between the pins. However, the base class implementation
in CBaselnoutPin assumes this condition and implements IMeminputPin to provide an

323

Filter Developer's Guide Page 16 of 83

allocator object to a connected output pin that requests it.

In the connection scenario of the default base class, the pin classes derived from
CBaselnoutPin and CBaseOutoutPin need only to override and implement a few member
functions and can let the base classes do the remaining work. Base classes derived from these
classes, such as CTransformlnoutPin and CTransformOutoutPin, do much of the required
implementation to provide a default connection scheme.

Pin classes derived from CBaselnoutPin and CBaseOutoutPin need only to override the
following member functions to enable pin connection.

• CBasePin: :CheckMediaType, which is called for every media type proposed by the media
type enumerator. The overriding member function must accept or reject the proposed
media type.

• CBasePin: :GetMediaType, which is called by the media type of the output pin enumerator
to suggest media types already agreed on by the input pin for transform filters. This
member function also presents the type of media a source filter will produce.

Additionally, the output pin derived from the CBaseOutputPin class must override the
CBaseOutputPin: :DecideBufferSize member function. This is called by the base classes to let
the output pin inform any acquired allocator of the size and type of media samples that the
output pin will provide. This is done by the output pin of the filter because the derived filter
class should know the type and size of the data it will send to the input pin of the connected
filter.

To see the context of these overriding functions, it is helpful to step through the execution of
the connection code in the class library. All connection takes place in the scope of one
CBasePin: :Connect member function.

The Filter Graph Manager Starts the Connection

The connection starts when the filter graph manager calls the !Pin: :Connect method on the
output pin, passing it a pointer to the input pin to which it is connecting. The filter graph
manager has previously retrieved pointers to the !Pin interfaces of both filters, for example, by
calling the !BaseFilter:: EnumPins method on each connecting filter. The EnumPins method
creates a CEnumPins object to enumerate the pins, which the enumerator does by repeatedly
calling the CBaseFilter: :GetPin member function of the derived filter, which the derived filter
must implement.

The CBasePin: :Connect implementation of !Pin: :Connect does much of the work in this case. It
calls the following functions.

• CheckConnect, which is overridden by CBaseOutputPin.
• AgreeMediaType, which is implemented by CBasePin.

The CBasePin: :CheckConnect implementation simply determines that the pin directions are
different. The overriding CBaseOutputPin: :CheckConnect member function calls the
!Unknown: :Ouerylnterface method of the connected input pin to retrieve a pointer to the
!MemlnputPin interface of that pin. This will be used later in the connection process to request
an allocator from the connected input pin. (Your derived class can override
CBaseOutputPin::CheckConnect and omit retrieving the IMeminputPin interface if the
output pin already has an allocator; for example, it might want to use the allocator from an
upstream filter to eliminate copying.)

324

Filter Developer's Guide Page 17 of 83

Negotiating Media Types with CBasePin::AgreeMediaType

The CBasePin: :AgreeMediaTyoe member function is called next and attempts to negotiate a
media type that both pins agree on. It does this by trying to find a media type presented by
the connected input pin with which the output pin agrees. If that fails, it tries to find a media
type preferred by the output pin that the connected input pin agrees with.

CBasePin: :AgreeMediaTyoe calls the following member functions and methods.

• !Pin:: EnumMediaTypes on the connected pin.
• CBasePin: :TryMediaTypes in the derived output pin class.

The !Pin: :EnumMediaTyoes method of the connected input pin is called to return a media type
enumerator (!EnumMediaTyoes). This allows the output pin to examine the list of preferred
media types belonging to the input pin.

The !EnumMediaTyoes:: Next method of the enumerator calls the GetMediaTyoe member
function of the derived input pin to retrieve each media type. If GetMediaType is not
implemented, the base class implementation returns an error but this does not necessarily
break the connection. (Pins are not required to have a preferred media type if one pin or the
other can propose a type that they both accept. If neither pin can propose types, the
connection will fail.)

Determining a Media Type with CBasePin::TryMediaTypes

CBasePin: :AgreeMediaTyoe calls CBasePin: :TryMediaTyoes next. The TryMediaTyoes member
function cycles through the preferred media types of the connected input pin and calls the
CBasePin: :CheckMediaTyoe member function of the derived output pin class for each one it
finds. CheckMediaTyoe must be implemented by your derived output pin class. If
CheckMediaType accepts the media type, the !Pin:: ReceiveConnection method of the
connected input pin is called with the media type to determine if the connected input pin
accepts this media type. If so, TryMediaTypes calls the CBaseOutoutPin: :ComoleteConnect
member function to finish the connection to the input pin.

If the input pin has no media types that the output type can use, CBasePin: :AgreeMediaTyoe
repeats the entire process, using the enumerator for the media types of the output pin. (That
is, it gets its own enumerator and calls TryMediaTyoes with each of its preferred media types.)
Again, the enumerator calls GetMediaTyoe for each media type in the list. In this case,
GetMediaType should be implemented to provide a media type. If the filter is a source filter,
it will have a definite media type to export. If the filter is a transform filter, the media type will
be established between the filter's input pin and its connected pin; the transform filter should
query for that media type or simply use the enumerator of the upstream filter (unless the
transform filter changes the media type from input pin to output pin).

CheckMediaType is called by CBasePin: :TryMediaTypes, even when TryMediaTypes enumerates
the list of the preferred media types of the output pin. This is because the owning filter might
be a transform-inplace filter that is simply using the media type (and enumerator) of an
upstream filter; this is the point at which the filter determines if the media type is compatible.
The input pin of this transform filter might defer selecting a media type when it is connected,
in which case it would be up to the output pin of the transform filter to ensure the media type
is compatible with its transform.

325

Filter Developer's Guide Page 18 of 83

If a media type can be established, TryMediaTyoes eventually calls the
CBaseOutoutPin: :ComoleteConnect member function to negotiate a memory allocator.

First, the CBaseOutoutPin: :ComoleteConnect member function calls the
CBaseOutoutPin:: DecideAllocator member function. This member function negotiates a shared
memory allocator with the input pin. It does this by first calling the
!MemlnoutPin: :GetAllocator method of the connected input pin, which retrieves a pointer to an
!MemAllocator interface provided by the input pin.

Then, ComoleteConnect calls the pure virtual CBaseOutoutPin:: DecideBufferSize member
function, which your derived output pin class must override and implement because only the
derived class can determine the required buffer size for its media type.

Finally, ComoleteConnect calls the !MemlnoutPin:: NotifyAllocator method of the connected pin
to inform the input pin of the allocator to use and to provide a pointer to it. The input pin can
reject this allocator, in which case the output pin can retry with a different allocator or fail the
connection. If your derived class is not using the allocator of the connected input pin, override
CBaseOutoutPin:: DecideAllocator in your derived class to call the NotifyAllocator member
function with an allocator.

When a Reconnection Should Occur

Reconnection is always performed through the !FilterGraoh interface on the filter graph
manager. Reconnect by calling the !FilterGraoh2: :ReconnectEx method or the
!FilterGraoh:: Reconnect method, both of which pass the !Pin interfaces of the two pins to be
reconnected. The ReconnectEx method specifies a media type and thus removes the burden of
remembering what type to reconnect with from the pins, which makes the reconnection more
likely to succeed.

Filters are typically connected with the upstream filter first and the downstream filter second.
Therefore, the filter negotiates the connection on its input pin before information is available
about the filter being connected to its output pin. When the output pin of the filter connects, it
may become clear that the media type or allocator that was established for the input pin of the
filter are not appropriate. In this case, the input connection can be broken and reconnected.

For example, consider the following connection scenario. An audio effects filter (for example, a
reverberation effect) is inserted between an MPEG-audio decompressor filter and another audio
effects filter. During the upstream connection to the decompressor filter, a media type is
chosen-for example, 22.05 kHz, 16-bit mono. However, in this scenario, when the
reverberation filter connects its output pin, the downstream filter will accept only an 11.025
kHz, 16-bit mono media type. Therefore, after connecting with the downstream filter, the
reverberation effects filter must then reconnect with the upstream filter and negotiate for an
11.025 kHz media type.

But media types are not the only reason for reconnection. In many cases, the filter is a
transform-inplace filter; that is, a filter that does not require that it either alters the media
type or copies the data. Such a filter can be designed to use an allocator of some other filter
(upstream or downstream), and likewise use the media type of another filter. That is, the filter
is doing its transform "in place" in the buffer of another filter (for example, in the file buffer of
the source filter or the video buffer of the rendering filter).

The general rule is that filters of this type should offer the allocator of the downstream filter to
the upstream filter, once the allocator has been established for the output pin. This requires a

326

Filter Developer's Guide Page 19 of 83

reconnection of the input pin so that, when the input pin is asked for an allocator (in
IMeminputPin: :GetAllocator) by the upstream output pin, it can offer the allocator retrieved
from the downstream filter by the output pin of the transform filter. Therefore, in-place
transforms always reconnect.

There are a couple of important rules to follow when requesting a reconnection.

First, a filter must never request a reconnection unless it is certain that the reconnection will
succeed. If the reconnection fails, it causes an asynchronous error in the filter graph for which
there is no obvious cleanup. Any error that occurs (for example, from incompatible media
types) should occur when the pins are connected the first time, when there are ample retry
options available at more than one level (by the filter graph manager or the application at
least).

Second, a filter should request a reconnection on the same thread as the call to IPin: :Connect.
For example, the following scenario attempts reconnection on a separate thread and will cause
problems.

1. The filter graph manager calls Connect on a pin.
2. The filter pin carries out the Connect method and creates a thread, which starts to

determine whether everything is okay for the connection.
3. Connect returns to the filter graph manager.
4. The filter graph manager returns to the application.
5. The application calls the IMediaControl:: Run method of the filter graph manager to start

the filter graph, and the filters start running.
6. The thread from the initial connection calls the IFilterGraph2:: ReconnectEx or

IFilterGraph: :Reconnect method and the filter graph manager attempts to carry out
reconnection.

7. Failure occurs because the filters cannot reconnect while in the running state.

The filter graph has code to prevent this failure as long as the IFilterGraph2: :ReconnectEx or
IFilterGraph:: Reconnect method takes effect while the filter graph is still processing the
IGraphBuilder: :Connect method. Calling the filter graph to reconnect before returning from the
I Pin: :Connect method is the best way to ensure this problem does not occur. The best way to
achieve this is to perform all of this on the same thread.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§illlj4M

w QiM [.] ij,+ 111.Hj Topic Contents i@faiillj4M

Plug-in Distributors

This article describes the plug-in distributor architecture and provides some rules assumed by
the default Microsoft® DirectShow™ control distributors.

Contents of this article:

327

Filter Developer's Guide Page 20 of 83

• Plug-in Distributors and Extensibility
• Control Distributors

Plug-in Distributors and Extensibility

The filter graph manager exports control interfaces; it also distributes the actions of interface
methods to the appropriate filters. For example, the !MediaControl: :Run method on the filter
graph manager is called by an application to run the filter graph; this command is distributed
to the !Media Filter:: Run method of each filter method by the filter graph manager. This
distribution allows applications to have a single point of control to perform the basic
operations.

To allow the filter graph manager to be extensible, a mechanism known as a plug-in distributor
(PID) is used. This is a Component Object Model (COM) object that exposes a particular control
interface and implements it by calling the enumerator of the filter graph manager, finding
which filters expose the control interface and communicating directly with those filters. P!Ds
are supplied for the standard control interfaces; independent software vendors (ISVs) can
replace these supplied P!Ds and also add others.

When the filter graph manager is asked for an interface that it does not recognize, it searches
the registry for a PID. This is an unnamed value under the following key.

HKEY_CLASSES_ROOT\Interface\<IID>\Distributor

This value provides the class identifier (CLSID) of an object that can distribute the interface
identifier (IID). The filter graph manager then instantiates that object as an aggregated object,
specifying the !Unknown implementation of the filter graph manager as the outer !Unknown,
and asking for the IID. The object will then be able to use its outer !Unknown pointer to
obtain an !FilterGraoh interface. With this interface, it can enumerate the filters to implement
its control interface methods and properties; it will also be able to use the !MediaControl
implementation of the filter graph manager for correctly ordered and synchronized state
changes (run, pause, stop, and so on).

Control Distributors

A control distributor is a PID that is used to control the data flow in the filter graph; for
example, starting or stopping playback of a media stream. The standard control distributors
supplied with DirectShow directly implement their distribution. These distributors make the
following assumptions:

• Applications that connect filters directly without informing the filter graph manager will
get unexpected results if they also use the distributors of the filter graph manager. For
example, a deadlock might occur if an application calls a filter's !BaseFilter:: Run method
directly, because the filter graph manager contains a distributor that implements
!MediaControl: :Run and passes calls on to each filter's IBaseFilter::Run method.

• Properties that can be aggregated directly can be read and written to through the control
interface, even when exposed by multiple filters. For example, duration can be reported
as the longest of all individual durations, with all streams treated as running in parallel.

• Where a property is exposed by several different filters, applications will either use the
filter graph manager to set and get the property or will communicate with the individual
filters, but will not mix the two methods. An application that communicates with two
audio renderers to reset the volume and then queries the !BasicAudio implementation of

328

Filter Developer's Guide Page 21of83

the filter graph manager for the volume, will get undefined results. (In practice, it will
probably retrieve the Volume property of the first audio renderer with no attempt to
combine this with the other stream.) If the application sets the property through the
interface of the filter graph manager, the same value will be set to all the individual
filters that expose it.

• The filter graph manager will expose the IMediaControl interface (through a non­
replaceable distributor) as the main application method for starting and stopping graphs.
This is a slightly higher-level, more simplified interface than IMediaFilter and is suitable
for Automation clients and applications. The IMediaFilter implementation on the filter
graph manager should not be called by applications. IMediaControl is implemented by
calling the IMediaFilter interface implemented by the filter graph manager and by
individual filters. Individual filters expose IMediaFilter through the IBaseFilter interface,
which inherits it.

PIDs must keep track of the filters in the filter graph. This is done by implementing the
IDistributorNotify interface on the distributor. IDistributorNotify has the same Run, Pause,
and Stop methods as !Media Filter, all of which are called before the calling the filter. It also
has a IDistributorNotify:: NotifyGraphChange method, which notifies the distributor when any
filters are added or removed from the filter graph, or connections change.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]i!,+ '!!·HM Topic Contents i@l§ii!MM

MQi@i·li!:+ M!i.1 1119 Topic Contents i@l§i i!lltiM

DirectShow and COM

Microsoft® DirectShow™ provides a framework that simplifies the creation of Component
Object Model (COM) objects. This article describes this framework and most of what you need
to know about COM to create a filter or plug-in distributor using the C++ class library. The
article assumes the reader is familiar with C++. An understanding of COM would be helpful,
but is not essentia I.

Contents of this article:

• COM Objects in DirectShow
• Reviewing the Instantiation Process
• Creating Filters
• Creating Plug-in Distributors
• Implementing the Class Factory
• Using an Object-Oriented Model

COM Objects in DirectShow

DirectShow filters, the filter graph manager, plug-in distributors, and enumerators are all COM
objects. A general design has been adopted for the way in which DirectShow implements COM
objects. This design is available to help you implement your own filters and plug-in distributors

329

Filter Developer's Guide Page 22 of 83

(or any COM object).

DirectShow components are supplied as in-process servers; that is, servers that run in the
same address space as your application. They are packaged in a single dynamic-link library
(DLL), Quartz.di!. Use the COM framework of DirectShow to build your own in-process COM
servers, which you can package in your own DLL(s).

Typically, a single C++ class implements a single COM class. The DirectShow COM framework
requires that C++ classes implementing COM objects conform to a few simple rules. One of
these rules is that the developer provides a class factory template for each such class. The
class factory template contains information about the class that is vital to the framework. Class
factory templates are defined in the DLL using two global variables (g_Templates and
g_cTemplates) as shown in the following example.

CFactoryTemplate g Templates[]=
{ {L"My class naiTie 11

, &CLSID_MyClass,
{L"My class name2", &CLSID_MyClass2,
};

CMyClass: :Createinstance,
CMyClass2,,createinstance}

int g_cTemplates sizeof(g_Templates)/sizeof(g_Templates[O]);

CMyClass, , Ini t}

The names and types of these variables must be as they appear in the previous example.
Because any DLL might contain several COM classes, each of which will require a class factory
template, the factory templates are defined in an array and the number of elements in the
array is recorded in another variable. Each element of the array contains the following fields.

• A textual description of the class (using wide characters, therefore the "L" prefix).
• A pointer to the class identifier of the class (CLSID).
• A pointer to a static method of the class that can create instances of the class

(CFactoryTemolate: : Createlnsta nee).
• A pointer to a static method of the class. This method is called when the DLL is loading or

unloading and can perform one-time initialization and termination. If this method is not
required, this can be omitted, will default to NULL, and will be ignored.

• A pointer to an AMOVIESETUP FILTER structure. This is required when using filter self­
registration services.

The DirectShow COM framework uses the information in these class factory templates to create
instances of the specific class, and to register and unregister the COM classes.

The following example demonstrates a simple C++ class implementing a COM class using the
DirectShow framework.

class CMyClass : public IMyinterface, public CUnknown
{
private:

/* private attributes */
protected,

-CMyClass ()

public,

{ /* release private attributes */ }
CMyClass(TCHAR *pName, LPUNKNOWN punk, HRESULT *phr)
, CUnknown(pName, punk, phr)
{ /* set up private attributes */ }

DECLARE IUNKNOWN

330

Filter Developer's Guide

static CUnknown *Createinstance(LPUNKNOWN punk, HRESULT *phr)
{
CUnknown * result = O;
result= new CMyClass(NAME("CMyClass"), punk, phr);
if (!result) *phr = E_OUTOFMEMORY;
return result;
}

STDMETHODIMP NonDelegatingQueryinterface(REFIID iid, void ** ppv)
{
if (iid == IID IMyinterface)
{ -

return Getinterface(static_cast<IMyinterface *>(this), ppv) ;
}

else

Page 23 of 83

return CUnknown: :NonDelegatingQueryinterface(iid, ppv);

/* My interface methods */

This is not a typical filter example, because filters will normally derive from more specialized
base classes than CUnknown. However, because all base filter classes eventually derive from
CUnknown, this example demonstrates what is essential in a more generic manner. (The
example is probably more typical for a DirectShow plug-in distributor (PID), which extends the
functionality of the filter graph manager, or for a framework for implementing an arbitrary
COM object.)

In this example, the NonDelegatingOueryinterface method is implemented. The more
specialized filter base classes that derive from CUnknown are responsible for implementing
NonDelegatingQueryinterface for the required interfaces; this is only necessary in the
derived filter class if it adds some interfaces that are not in the base classes. In this case, it
adds its own interface, IMyinterface.

INonDelegatingUnknown: :NonDelegatingOueryinterface is a method that allows other objects
to access interfaces on the COM object. All COM objects support !Unknown: :Oueryinterface to
do this, and the DirectShow class library supplies the DECLARE !UNKNOWN macro to enable
the !Unknown interface. The DirectShow framework goes one step further and makes it easy to
aggregate objects (make them part of a larger COM object) by implementing an
INonDelegatingUnknown interface. Even if your object is not aggregated, it uses the
INonDelegatingUnknown interface, which is mapped to the !Unknown interface by the
base classes.

Although aggregation is handled for all objects by the DirectShow class framework, it is
typically not used by filters in current DirectShow filter graphs. Plug-in distributors do,
however, require aggregation (as is described later in this article), and future filter graphs
might incorporate filter objects that are composed of collections of aggregated filters.

With this in mind, it might be helpful to explore more of the details of the previous example.
First, a brief review of some COM basics might be helpful. COM objects are created by their
class factories, are reference counted during their lifetimes, and self-destruct when their
reference counts drop to zero. COM objects can be created in isolation, or can be aggregated
with an already existing COM object. In this second case, the existing object (referred to as the
outer object) maintains the reference count. The created object (referred to as the inner
object) is not reference counted, but will be destroyed by the outer object during the
destruction of the outer object. The application cannot directly manipulate COM objects; an

331

Filter Developer's Guide Page 24 of 83

application can only invoke the methods, which the object chooses to expose through its
interfaces. Typically, COM objects make several interfaces available. All COM objects must
support the !Unknown interface.

All classes using the DirectShow framework must inherit from CUnknown either directly (as in
the previous example) or indirectly, through one of the other supplied base classes.
CUnknown, with the DECLARE !UNKNOWN macro and the NonDelegatingOueryinterface
method, provide the !Unknown interface with the required reference counting and support for
COM aggregation.

NonDelegatingOueryinterface is a method on INonDelegatingUnknown, which is supported by
CUnknown. NonDelegatingQueryinterface is overridden in derived classes that support new
interfaces, such as IMyinterface in the previous example. The method should check for all the
interfaces known to be implemented on the object and return appropriate pointers to these
interfaces. Requests for unrecognized interfaces should be passed to the
NonDelegatingQueryinterface of CUnknown. The call to the Getlnterface method (of
CUnknown) copies the interface into the ppv parameter and ensures that the correct
reference count is incremented.

The methods in INonDelegatingUnknown mirror those in !Unknown. For more information
about CUnknown, the INonDelegatingUnknown interface, and the
NonDelegatingOueryinterface method, see the CUnknown section in the reference material.
INonDelegatingUnknown is defined in Combase.h; CUnknown is implemented in
Combase.cpp.

When an instance of the class is required, the framework, using the information in the class
factory template, calls the derived class's Createinstance member function. The framework
passes a pointer to an outer unknown (if the object will be part of an aggregate object)
through the pUnkparameter, and passes a pointer to an HRESULT value through the phr
parameter. The constructor of an inherited class can set this value if an error occurs. The phr
parameter should not be initialized; this is the calling application's responsibility. The
Createinstance member function constructs an instance of the class by calling the
constructor. The name passed to the constructor is wrapped with the NAME macro supplied by
DirectShow. When building debugging versions, NAME passes the textual name on to the
constructor. When building nondebugging versions, NAME results in a null pointer, thus saving
space in versions that are not for debugging purposes.

The class constructor and destructor are declared protected. This prohibits the creation of the
object using C++ language constructs. Instances of this class can be created only by calling
the Createinstance member function.

The class constructor needs to construct the inherited CUnknown. The pName parameter points
to a string that is available for debugging purposes. It is vital that the string referenced by
pName is in static storage, because the constructor for CUnknown will not copy it.

Reviewing the Instantiation Process

It might be helpful at this point to consider the normal process of instantiating a COM object,
and examine how the DirectShow COM framework supports this process. First, a look at the
entry points required of an in-process server DLL (such as a filter or plug-in distributor) is in
order.

In-process server DLLs must export certain standard functions so that COM can interact with
them. The DirectShow framework provides these functions for you. The module definition file

332

Filter Developer's Guide Page 25 of 83

for the DLL must list these functions in its EXPORTS section, and link to Strmbase.lib. The
functions are: DllGetClassObject and DllCanUnloadNow. (The source code for these functions is
supplied in Dllentry.cpp.)

A DirectShow object can define DLL entry points that facilitate the automatic registration of
COM classes. These entry points are DllRegisterServer and DllUnregisterServer. Although the
framework does not directly provide these entry points, it does provide a function, called
AMovieDllRegisterServer2, that can implement these entry point functions. These functions
take care of registering and unregistering all COM objects for which you have provided class
factory templates in the g_Templates array. You can add a DllRegisterServer function to your
module that simply calls AMovieDllRegisterServer2, or you could do the same for
DllUnregisterServer. For more information on self-registering DirectShow COM objects, see
Register DirectShow Objects.

Registry entries are required to link the class identifier (CLSID) of the COM object to the DLL in
which the class is implemented. The framework provides entry points in the DLL that support
the automatic registration of class identifiers in the registry, using the information provided in
the class factory templates.

Following are the steps that occur during initialization, which require the entry points
mentioned previously.

1. When the DLL is loaded, the DllMain entry point is called to perform any initialization.
The framework provides this function. During its execution, any initialization routines
referenced in the class factory templates will be called.

2. When an application calls CoCreatelnstance or CoGetClassObject, COM calls the
DllGetClassObject function in the appropriate DLL to obtain a pointer to a class factory
that can instantiate objects of the CLSID requested by the application. The framework
supplies this function. Using the information in the class factory template, the framework
creates a class factory. (If the requested CLSID cannot be found in the array of class
factory templates, an error is returned to the application.)

3. The class factory is called to instantiate an object that supports the interface identifier
(IID) requested by the application. At this point, the class factory will call the static
method referenced in the class factory template.

4. During the DLL's lifetime, the Ouerylnterface method might be called on the !Unknown
interface of the object (or owning object if aggregated), requesting some interface on
that object. By deriving the object class from CUnknown, overriding
NonDelegatingOuerylnterface, and using the DEFINE_IUNKNOWN macro to declare the
!Unknown interface, both COM aggregation and reference counting are addressed.

5. During the life of the DLL, DllCanUnloadNow might be called to see if it is safe to unload
the DLL. Typically, this returns S_FALSE if any class factory is locked, or if any of the
objects that have been created still exist. The framework implements
DllCanUnloadNow.

Creating Filters

When creating filters, you can take advantage of one of the richer classes that DirectShow
provides, such as CTransformFilter or CBaseRenderer, instead of deriving from CUnknown.
These supplied classes are derived from CUnknown, but provide additional functionality
specific to various types of filters. However, building filters also requires an understanding of
the DirectShow connection model (see Connection Model) and the pin classes. For more
information about creating filters, see Creating a Transform Filter.

Creating Plug-in Distributors

333

Filter Developer's Guide Page 26 of 83

The filter graph manager can perform operations at a high level, treating the filter graph as a
single entity. These operations can be distributed across an entire filter graph, or perhaps
confined to just a single filter in the filter graph. The filter graph manager, of itself, only
exposes a few interfaces. A feature called a plug-in distributor allows the filter graph manager
to be extended with additional interfaces. When the filter graph manager receives a request for
an interface which it does not support, it tries to find a plug-in distributor (PID) that does
support it. If it succeeds in finding such a PID, then that PID is instantiated as an aggregate
object within the filter graph manager. By doing so, the filter graph manager appears to
support many more interfaces. Plug-in distributors are aggregated with the filter graph
manager, but all the aggregation logic is provided by CUnknown, allowing you to concentrate
on the PID logic.

A PID is designed to be aggregated into a filter graph manager; it will call on the services of its
owning filter graph manager. Because the PID is unlikely to function correctly without an
owning filter graph, it checks for an outer unknown in the constructor of the PID. To make this
determination, add the following line to the body of the constructor illustrated in the previous
example.

if (!pUnk) *phr = VFW_E_NEED_OWNER;

To be even more defensive against being used without an owner, the PID could also request an
!FilterGraoh or !GraohBuilder interface from the outer unknown during construction, because
these interfaces are known to be only on the filter graph manager.

If the PID obtains any interface pointers from the filter graph manager, the pointers should be
released immediately. Because the PID is an aggregate object, its lifetime is within the lifetime
of its containing object, the filter graph manager, so there is no need to maintain a lock on it.
Furthermore, maintaining a lock introduces a circular reference count that would not allow the
destruction of the filter graph manager.

Implementing the Class Factory

The concept of a class factory is not specific to DirectShow; it is a common design that appears
when the underlying type of the object being created is not known to the client that requests
its creation. With COM objects, clients request interface pointers but know little about the
underlying objects that implement that interface.

In C++, there are two means of implementing a class factory. One is to implement it as a
genuine class, the other is to implement it as a static method on the class that the class
factory will manage. The first method provides better separation of responsibilities and data
hiding, and is the approach adopted by COM. The second method allows for a simpler
implementation.

The DirectShow COM framework provides the best of both worlds. It exposes a genuine COM
factory class to its clients while allowing the developer to implement the body of the class
factory as a static method of your class. The bridge between these two approaches is two
global variables, g_Templates and g_cTemplates, which were described previously.

The DirectShow framework defines two classes for implementing the class factory:
CFactoryTemolate and CClassFactory. A CFactoryTemplate object holds information regarding
a specific class, including a pointer to the static factory method of the class. When
CClassFactory is instantiated, it must be given reference to a CFactoryTemplate instance.
The CClassFactory instance will then act as a class factory for the class described in its

334

Filter Developer's Guide Page 27 of 83

associated CFa<:toryTemplate instance. The following illustration demonstrates the
relationship between these classes, their instances, and the objects they create.

IClassFactory CBaseObject

Inherits from ' Impletnents

CClassFactory CFactoryTemplate

Insta~ce of
1 • Represents 1~---~
1

Factory template
11 1

Some class I Class factory : Uses
Uses

~-------------~· 7
Insta~ce of

Produces ._ Instance of
~--------------..., some class

The DirectShow SDK includes a module, Dl!Entry.cpp, whieh provides the DUGetClassOQject
function. ThiS function uses the process described previously to create a class factory that can
produce instances of a class.

Using an Object-Oriented Model

AU components of the DirectShow filter graph architecture af<! implemented as COM objects.
This includes the filters through which data is passed, and filter components that serve as a
connection between filters or allocate memory. Each object implements one or more interfaces,
each of whieh contains a predefined set of functions, called methCd$. An applieation calls a
method, or other component objects, to communicate with the object exposing the interface.
For example, the application calls methods on the IMediaControl interface on the object of the
filter graph manager, such as the .Rl.ln. method, whieh starts a media stf<!am. The filter groph
manager, in tum, calls the Run method on the IBaseFilter interface exposed by each of the
filters.

Filter g roph architecture uses COM interfaces because they have the following properties.

• COM interfaces are publicly defined. This means that any filter that implements the
correct predefined interfaces will work in a filter graph without any knowledge about the
other filters, because au filters af<! built with the same interface specifications.

• COM interfaces do not change alter <Jefinition. A base set of interfaces af<! guaranteed to
work; additional interfaces can be introduced to cover additional services. This definition
prevents version problems.

• COM interfaces must have all metho<Js implemented by any object that exposes them
(even if the implemented method simply returns E NOTIMPL). This assures that calling a
method on the interface of an object wm not generate an error.

• COM interfaces are discoverable. AU COM objects support a method called Ouervinterface
that allows an external component to discover if an interface is pr<!sent and retrieve a
pointer to it.

• COM interfaces are implemented by the object that exposes the interface (they do not
contain an implementatiOn themselves). The interface iS essentially a controct for the
functiOnality. Objects like the filter graph manager, or Microson filters, have
implemented interfaces that can be accessed. When you write a filter, you implement the
interfaces.

To make filter development easier, DirectShow provides a set of C+ + classes that help you

335

Filter Developer's Guide Page 28 of 83

implement the interfaces required by the objects you create.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lll¥8

8 4'41M+• 111.q9 Topic Contents 1@1§111¥8

File Formats

This section describes file formats in different files used in DirectShow, including the format of
saved DirectShow graph files, DirectShow extensions to the AVI 2.0 file format, and how to
register custom files so that the DirectShow file-reader filters can read them.

· DirectShow Graph File Format

• DV Data in the AVI File Format
AVI 2.0 File Format Extensions

· Registering a Custom Fi le Type

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41M+• 1 1!·],,[¥

DirectShow Graph File Format

The format of a saved DirectShow™ graph file is as follows:

Topic Contents 1@1§11/¥8

The docfile (storage file) contains a stream called ActiveMovieGraph. This single stream
contains within it all the filters, filter names, file names, connections, and so on.

To load such a graph, either:

or:

• Pass the storage file name to RenderFile. It will recognize that this is not a media file but
a saved graph, and will restore the graph.

1. Open the storage file (by using StgOpenStorage).
2. Query the filter graph manager for IPersistStream.
3. Open the L"ActiveMovieGraph" stream (by using !Storage: :OpenStream).
4. Pass the stream to the filter graph (by using IPersistStream:: Load).

336

Filter Developer's Guide Page 29 of 83

The syntax of the graph within the stream follows:

<graph> : := <Version3><filters><Connections><Clock>END I <Version2><filters><Connec
<Version3> : := 0003\r\n
<Version2> : := 0002\r\n
<Clock> : := CLOCK <required><Clockid>\r\n
<required> ' '= 1 Io
<Clockid> : := <n>l<class id>
<filters ''=FILTERS [<filter list>]
<Connections> : := CONNECTIONS [<Connection list>]
<filter list> : := [<filter>] <filter list>
<Connection list> ::= [<connection>]<connection list>
<filter> ::= <Il>"<name>"<Class id>[<file>]<length><bl><filter data>
<file> SOURCE "<name>" I SINK "<name>"
<Class id> : := class id of the filter in standard string form
<name> : := any sequence of characters NOT including "
<length> ::=character string representing unsigned decimal number, for example, 23

this is the number of bytes of data that follow the following space.
 : := any combination of space, \t, \r, or \n
<bl> : := exactly one space character
<Il> : := an identifier that will in fact be an integer, 0001, 0002, 0003, etc.
<Connection> : := <Ill>"<pinl id>"<Il2>"<pin2 id>" <media type>
<Ill> : := identifier of first filter
<Il2> : := identifier of second filter
<pinl id> : := <name>
<pin2 id> : := <name>
<media type> : := <major type><SUb type><flags><length><bl><format>
<major type> : := <Class id>
<Sub type> : := <Class id>
<flags> : := <FixedSizeSampleS><TemporalCompression>
<FixedSizeSamples> : := llO
<Temporalcompression> : := llO
<Format> ::= <SampleSize><FormatType><FormatLength><bl><FormatData>
<FormatType> : := class id of the format in standard string form
<FormatLength> ::=character string representing unsigned decimal number

this is the number of bytes of data that follow the following space.
<FormatData> : := binary data

On output there will be a new line (\r\n) per filter, one per connection, and one for each of the
keywords FILTERS and CONNECTIONS. Each other case of will be a single space. The
keywords FILTERS, CONNECTIONS, and END are not localizable. Note also that the filter data
and the format data are binary, so they might contain incorrect line breaks, null values, and so
on.

The following approximates what the output looks like (a connection line is long and so has
been split for presentation here, <with comments enclosed like this>).

0002
<Version 2 of the syntax>
FILTERS
0001 "Source" { 00000000-0000-0000-0000-000000000001} SOURCE "MyFile. mpg" 0000000000
<id name guid of the filter (need this to load it) source file name no priv
0002 "another filter" {00000000-0000-0000-0000-000000000002} ooooooooos XXXXXXXX
<id name guid (this one is not a file source or sink) 8 bytes private data>
CONNECTIONS
0001 "Output pin" 0002 "In" <no line break here>
<filter id pin id filter id pin id (output pin is first, then input pin)>

0000000172 {oooooooo-oooo-oooo-0000-000000000003) <no line break here>

337

Filter Developer's Guide Page 30 of 83

<Sample size, media type major-type>
{00000000-0000-0000-0000-000000000004} 1 o <no line break here>

<media type sub-type, fixed size samples, no temporal compression>
0000000093 {00000000-0000-0000-0000-ooooooooooos} 18 YYYYYYYYYYYYYYYYYY

<length of format format type 18 bytes of binary format data>
END

where:

• XXX ... represents filter data
• YYY ... represents format data

The strings and characters in the file are always in Unicode.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fai11¥M

DV Data in the AVI File Format

Microsoft has specified the format for storage of digital video (DV) data in AVI files. Conforming
to this specification will ensure that the AVI files authored in this format will be compatible
with future versions of the Microsoft® DirectShow™ digital video architecture for the Microsoft
Windows® platform.

This article provides background information to understand the format of audio-video
interleaved (AVI) files containing DV audio and video data, or information for programmers
who use DV-AVI files on other platforms. Applications that read or write AVI files should use
the File Source (Async) filter with the AVI Splitter filter and the AVI MUX filter with the .Eil.e.
Writer filter and their associated interfaces provided in the DirectShow architecture, rather
than developing the routines to perform these services. These filters simplify the programming
requirements for accessing these files.

This article also describes the format of AVI files containing DV data. Specific FOURCCs (four­
character codes) for interleaved DV data streams and DV compressor/decompressor stream
handlers are defined. The stream format structure for DV data is defined. Specifications for two
methods of storing DV data in the AVI file format are specified.

It is assumed that the reader is familiar with the DV data format. (This format is defined in the
Specification of Consumer-use Digital VCRs, also called the Blue Book).

Contents of this article:

• Types of DV AVI Files
• AVI RIFF File Reference
• AVI 2.0 File Format Extensions

338

Filter Developer's Guide Page 31of83

For more information about resource interchange file format (RIFF) files, see the Windows
Software Development Kit (SDK) Multimedia Programmer's Guide and Multimedia
Programmer's Reference.

For more information about AV! files, see Chapter 6 of the Microsoft Video for Windows
Development Kit version 1.1 Programmer's Guide and version 1.02 of the OpenDML AVI File
Format Extensions published by the OpenDML AV! M-JPEG File Format Subcommittee, February
28, 1996.

For more information on compressors and decompressors, see the Video Compression and
Decompression Drivers section of the Windows DDK Documentation in the MSDN Library.

Types of DV AVI Files

There are two types of DV AV! files:

• AV! Files Containing One DV Data Stream
• AV! Files Containing DV Video as a 'vids' Stream and DV Audio as 'auds' Streams

AVI Files Containing One DV Data Stream

Interleaved DV data can be stored in its native format as a single stream within an AV! RIFF
file. This has the advantage of using the minimum amount of data storage for DV. The primary
disadvantage is that this file format is not backward-compatible with Video for Windows,
because it doesn't contain either a video 'vids' or an audio 'auds' stream. Support is provided
for the interleaved DV stream through the DV Muxer and DV Solitter filters provided with
DirectShow.

DV data can be stored in a single stream within an AV! RIFF file by specifying the
'iavs' (interleaved audio and video stream) FOURCC (four-character code) in the fccType
member and either of the 'dvsd', 'dvhd', or 'dvsl' FOURCCs in the fccHandler member of the
'strh' stream header chunk. The frames per second of the video stream must be specified in
the dwRate and dwScale members and the total number of video blocks in the 'movi' chunk
in the dwlength member.

The 'dvsd' stream handler FOURCC specifies that the DV data is as defined in Part 2 of the
Specification of Consumer-use Digital VCRs. Video is in the format of 525 lines at 29.97 Hz
(525-60) or 625 lines at 25.00 Hz (625-50).

The 'dvhd' stream handler FOURCC specifies that the DV data is as defined in Part 3 of the
Specification of Consumer-use Digital VCRs. Video is in the format of 1125 lines at 30.00 Hz
(1125-60) or 1250 lines at 25.00 Hz (1250-50).

The 'dvsl' stream handler FOURCC specifies that the DV data is as defined in Part 6 of
Specification of Consumer-use Digital VCRs. Video is in the format of high-compression SD
(SDL).

Note The remainder of this article provides definitions for 'dvsd' streams.

The stream header chunk must be followed by DVINFO stream format chunk. The DVINFO
stream format has the following data structure defined for it:

339

Filter Developer's Guide

typedef struct tag DVINFO {
DWORD dwDVAAuxSrc;
DWORD dwDVAAuxCtl;
DWORD dwDVAAuxSrcl;
DWORD dwDVAAuxCtll;
DWORD dwDVVAuxSrc;
DWORD dwDVVAuxCtl;
DWORD dwDVReserved[2];

DVINFO, *PDVINFO;

Page 32 of 83

cfWDVAAuxSrc Specifies tM Audio Auxiliary Data Source Pack forthe first audiO block (first
5 DV DIF sequences for 525-60 systems or 6 DV DIF sequences for 625-50
systems) of a frame. A DIF sequence iS a data block that contains 150 DIF
blocks. A DIF block consists of 50 bytes. The AudiO Auxiliary Data Sou~e
Pack is defined in section D. 7.1 of Part 2, Annex D, "The Pack Header Table
and Contents of Packs" of the Specificati<in of C</n$umer-u$e Digit<1l VCR$.

cfWDVAAuxCtl Specifies the Audio Auxiliary Data Source Control Pack for the first audio
block of a frame. The Audio Auxiliary Data Control Pack iS defined in section
D.7.2 of Part 2, Annex D, "The Pack Header Table and Contents of Packs" of
the Specification of C</n$umer·C1$e Digit<il VCR$.

crwov AAuxSrcl Specifies the Audio Auxiliary Data Source Pack for the second audio block
(second 5 DV DIF sequences for 525-60 systems or 6 DV DIF sequences for
625-50 systems) of a frame.

cfWDVAAuxCtll Specifies the Audio Auxiliary Data Source Control Pack for the second audio
block of a frame.

cfWDVVAuxSrc Specifies the Video Auxiliary Data Sou~e Pack as defined in section D.5.1 of
Part 2, Annex D, "The Pack Header Table and Contents of Packs" of the
SpecifiCiltion of C</n$umer·U$e Digit<ll VCR$.

cfWDVVAuxCtl Specifies the Video Auxiliary Data Sou~e Control Pack as defined in section
D.5.2 of Part 2, Annex D, "The Pack Header Table and Contents of Packs" of
the Specification of C</n$umer·u$e Digit<il VCR$.

DwDVReserved Reserved. Set this array to :zero.
(2)

The actual DV data is stored as '##de' chunks in the •movi' chunk (the## in the format
represents the stream identifier). Each chunk contains one frame of data, either 10 or 12 DV
DIF sequences for 525-60 or 625-50 systems, respectively. The DV SD ('dvsd') DIF sequence
format is defined in Part 2 of the Specification of C</n$umer·U$e Digit<1l VCR$.

The following diagram illustrates the playback of an AVI file with one DV data stream using a
DirectShow filter graph (the DV So!itter and DV Video Decoder filters are included in
DirectShow specifical~/ to deal with DV data). The table that follows the diagram defines the
media types.

DV Video II Video - Decoder Renderer

II
filter filter

File Source II AV! II DV -(async) Splitter Splitter m Audio
filter filter filter Renderer

filter

340

Filter Developer's Guide

DV media types table
Media Majo.- type

Page 33 of 83

Subtype

A MEDIATYPE.Stream MEDIASUBTYPE AVI none
B MEDIATYPEjavs MEDIASUBTYPE dvsd, MEDIASUBTYPE dvhd, or DVINEO

MEDIASUBTYPE dvsl
c MEDIATYPEVIDEO MEDIASUBTYPE dvsd, MEDIASUBTYPE dvhd, or DVINFO

D
E

MEDIASUBTYPE dvsl
MEDIATYPE AUDIO NULL
MEDIATYPEVIDEO standard Video types

WAVEEORMATEX
VIDEOINEO

The following diagram illustrates the creation of an AVI file with one DV data stream by using a
DirectShow filter graph (the DV Video Encoder and DV Muxer filters are included in DirectShow
specifically to deal with DV data). The preceding table defines the media types. Upstream
filters (not shown) can be of any combination to produce the proper media types, D and E.

~ DV Video a
Encoder

~ filter

m DV II AV! El File Writer MUX MUX filter filter filter

The following diagram illustrates the creation of an AVI file with one DV data stream using a
source filter that communicates through hardware device drivers with a DV device (such as a
1394-oosed DV camcorder) for DV data input, by using a DirectShow filter graph (the source
filter is included in DirectShow specifically to deal with DV data). The preceding table defines
the media types.

"Source" II AV! El File Writer MUX
filter filter filter

T
DV Device

The following diagram illustrates the output of an AVI file with one DV data stream using a sink
filter that communicates through hardware device drivers with a DV device (such as a 1394-
based DV camcorder) for DV data output, by using a DirectShow filter graph (the sink filter is
included in DirectShow specifically to deal with DV data). The preceding table defines the
media types.

File Source El AV! II "Sink" (async) Splitter
filter filter filter

~

DV Device

The following example shows the AIFF RIFF form for an AVI file with one DV data stream,
expanded with completed header chunks:

341

Filter Developer's Guide Page 34 of 83

00000000 RIFF (OFAE35D4) 'AVI '
OOOOOOOC LIST (00000106) 'hdrl'
00000018 avih (00000038)

dwMicroSecPerFrame 33367
dwMaxBytesPerSec 3728000
dwPaddingGranularity , o
dwFlags Ox810 HASINDEX I TRUSTCKTYPE

00000058
00000064

OOOOOOA4

oooooocc
OFADACD4

dwTotalFrames 2192
dwinitialFrames : o
dws treams : 1
dwsuggestedBufferSize 120000
dwWidth 720
dwHeight
dwReserved

LIST (0000006C) 'strl'
strh (00000038)

fccType
fccHandler
dwFlags
wPriority
wLanguage
dwinitialFrames

480
oxo

'iavs'
'dvsd'
oxo
0
oxo undefined
0

dwscale 100 (29.970 Frames/Sec)
dwRate 2997
dwstart , o
dwLength 2192
dwsuggestedBufferSize 120000
dwQuali ty , o
dwsampleSize : o
re Frame

strf (00000020)
dwDVAAuxsrc
dwDVAAuxCtl
dwDVAAuxsrcl
dwDVAAuxCtll
dwDVVAuxsrc
dwDVVAuxCtl
dwDVReserved[2]

LIST (OFADACOO) 'movi'
idxl (00008900)

0,0,720,480

Ox
Ox
Ox
Ox
Ox
Ox
0,0

AVI Files Containing DV Video as a 'vids' Stream and DV Audio as 'auds' Streams

Interleaved DV data can be split into a video stream and one to four audio streams within an
AV! RIFF file. This has the advantage of being backward-compatible with Video for Windows,
because it contains a standard video 'vids' stream and at least one standard audio 'auds'
stream The primary disadvantage is that this file format requires the audio data to be
redundantly stored as audio streams. The "video" stream is actually the native interleaved DV
data stream. However, as a standard 'vids' stream with a handler type of 'dvsd', the DV Video
Decoder is used. This format also requires that "captured" files are split by using the DV
Solitter filter before they are written as AV! files.

DV data can be stored as a video stream with a separate number of audio streams in an AV!
RIFF file. The video stream is specified with a standard video stream header (the fccType
member value is 'vids'). The fccHandler member is specified as 'dvsd', 'dvhd', or 'dvsl'. The
frames per second of the video stream must be specified in the dwRate and dwScale
members and the total number of video blocks in the 'movi' chunk in the dwlength member.

342

Filter Developer's Guide Page 35 of 83

In this AVI file containing DV video as a 'vids' stream and DV audio as 'auds' streams form of
DV, the video stream format chunk is a standard BITMAPINFOHEADER structure. The stream
format chunk can be optionally extended to include the DVINFO structure, by increasing the
stream format chunk size from 40 bytes (size of the BITMAPINFOHEADER structure) to 72
bytes (size of BITMAPINFOHEADER plus DVINFO structures) and immediately following the
BlTMAPlNFOHEADER data structure with a DVINFO data structure.

The audio stream(s) iS specified with a standard audio stream header (the fccType member
value is 'auds'). The fccHandler member is not used for audio streams.

The DV video data iS stored as '##de' chunks, as defined in the preceding description of an AVI
file with one DV data, and the audio data is stored as '##wb' chunks in the 'movi' chunk.

The following diagram illustrates the playback of an AVI file containing DV video as a 'vids'
stream and DV audio as 'auds' streams, by using a DirectShow filter graph (the DV Video
Decoder filter iS included in DirectShow specifically to deal with DV data). The DV media types
.l:all!e defines the media types.

DV Video II Video - Decoder - Renderer

II
filter filter

File Source 11 AV! ,.__
(async) Splitter m Audio
filter filter Renderer

filter

The following diagram illustrates the creation of an AVI file containing DV video as a 'vids'
stream and DV audio as 'auds' streams, using a DirectShow filter graph (the ov Video Decoder
is included in DirectShow specifically to deal with DV data). The DV media types table defines
the media types. Upstream filters (not shown) can be of any combination to produce the
proper media types, D and E.

~ DV Video
Encoder

111 filter

m AV! 11 File Writer MUX filter filter

The following diagram illustrates the creation of an AVI file containing DV video as a 'vids'
stream and DV audio as 'auds' streams using a source filter that communicates through
hardware device drivers with a DV deviee (such as a 1394-based DV camcorder) for DV data
input, by using a DirectShow filter graph (the source and DV Splitter filters are included in
DirectShow specifically to deal with DV data). The DV media types table defines the media
types.

343

Filter Developer's Guide Page 36 of 83

''Source" Iii DV =... AV! a File Writer
filter

Splitter m MUX - filter filter - filter

T
DV Device I

The following diagram rnustrates the output of an AVI file containing DV video as a 'vids'
stream and DV audio as 'auds' streams using a sink filter that communicates through hardware
device drivers with a DV device (such as a 1394-based DV camcorder) for DV data output, by
using a DirectShow filter graph (the DV Muxer and sink filters af<! included in DirectShow
specifically to deal with DV data). The DV media tyoes table defines the media types.

File Source II
(async)

filter

~-~· AV!
Splitter r.ol

filter a
DV

MUX
filter

"Sink"
filter

The following example shows the AIFF RIFF form for an AVI file containing DV video as a 'vids'
stream and DV audio as 'auds' streams expanded with completed header chunks (including
optional ovmEO data following the BITMAPINEO in the 'strf' sub-chunk for the 'vids' stf<!am):

00000000
oooooooc
00000018

00000058
00000064

OOOOOOA4

RIFF (103E2920) 'AV! '
LIST (00000146) 'hdrl'

avih (00000038)
dwMicroSecPerFrame
dwMaxBytesPerSec
dwPaddingGranularity
dwFlags
d\.;Tota lFrames
dwinitialFrames
dwStreams
dwSuggestedBufferSize
dwWidth
dwHeight
dwReserved

LIST (00000094) 'str 1 '
strh (00000038)

fee Type
fccHandler
dwFlags
wPriority
wLanguage
dwinitialFrames
dwScale
dwRate
dwStart

33367
3728000
0
Ox810
2192

HASINDEX I TRUSTCKTYPE

0
2
120000
720
480
OxO

'vids'
'dvsd'
OxO
0
OxO undefined
0
100 (29.970 Frames/Sec)
2997
0

dwLength
dwSuggestedBufferSize
dwQuality
dwSarrpleSize

2192
120000
0
0

rcFrame
strf (00000048)

bi Size

344

0,0, 720,480

40

Filter Developer's Guide

OOOOOOF4
00000100

bi Width
biHeight
bi Planes
biBitCount

720
480

' 1
24

biCompression Ox64737664 'dvsd'
biSizeimage 120000
biXPelsPerMeter : o
biYPelsPerMeter : o
biClrUsed , o
biClrimportant , o
dwDVAAuxsrc ox
dwDVAAuxCtl Ox
dwDVAAuxsrcl ox
dwDVAAuxCtll Ox
dwDVVAuxsrc ox
dwDVVAuxCtl Ox
dwDVReserved[2]

LIST (OOOOOOSE) 'strl'
0,0

'auds'

oxo
0
oxo undefined
0

Page 37 of 83

strh (00000038)
fccType
fccHandler
dwFlags
wPriority
wLanguage
dwinitialFrames
dwscale
dwRate

1 (32000.000 Samples/Sec)
32000

00000140

00000814
103D1710

dwstart ' 0
dwLength 2340474
dwsuggestedBufferSize 4272
dwQuali ty , o
dwsampleSize : 4
rcFrame o,o,o,o

strf (00000012)
wFormatTag
nchannels

1 PCM
' 2

nSamplesPerSec 32000
nAvgBytesPerSec 128000
nBlockAlign , 4
wBitsPerSample 16
cbSize : o

LIST (103DOEF4) 'movi'
idxl (00011210)

AVI RIFF File Reference

The Microsoft audio-video interleaved (AV!) file format is a RIFF file specification used with
applications that capture, edit, and play back audio-video sequences. In general, AV! files
contain multiple streams of different types of data. Most AV! sequences use both audio and
video streams. A simple variation for an AV! sequence uses video data and does not require an
audio stream.

Modifications to the original AV! file specification made in the OpenDML AV! File Format
Extensions are not discussed in this section. For further information on these extensions, see
version 1.02 of the OpenDML AVI File Format Extensions published by the OpenDML AV! M­
JPEG File Format Subcommittee, February 28, 1996.

This section contains the following topics:

• AV! RIFF Form

345

Filter Developer's Guide Page 38 of 83

• AV! Main Header
• AV! Stream Headers
• Stream Data (LIST 'movi' Chunk)
• BITMAPINFOHEADER Structure
• WAVEFORMATEX Structure

AVI RIFF Form

AV! files use the AV! RIFF form. The AV! RIFF form is identified by the FOURCC (four­
character code) 'AV! '. All AV! files include two mandatory LIST chunks. These chunks define
the format of the stream and stream data. AV! files might also include an index chunk. This
optional chunk specifies the location of data chunks within the file. An AV! file with these
components has the following form:

RIFF ('AVI
LIST ('hdrl'

LIST ('movi'

[' idxl '<AVI Index>]

The LIST chunks and the index chunk are subchunks of the RIFF 'AV! 'chunk. The 'AV! ' chunk
identifies the file as an AV! RIFF file. The LIST 'hdrl' chunk defines the format of the data and
is the first required LIST chunk. The LIST 'movi' chunk contains the data for the AV! sequence
and is the second required LIST chunk. The 'idxl' chunk is the index chunk. AV! files must
keep these three components in the proper sequence.

The LIST 'hdrl' and LIST 'movi' chunks use subchunks for their data. The following example
shows the AV! RIFF form expanded with the chunks needed to complete the LIST 'hdrl' and
LIST 'movi' chunks:

RIFF ('AVI
LIST ('hdrl'

'avih' (<Main AVI Header>)
LIST ('strl'

'strh' (<Stream header>)
'strf' (<Stream format>)
'strd' (<additional header data>)
'strn' (<Stream name>)

LIST ('movi'
(subchunk I LIST ('rec '

Subchunkl
Subchunk2

346

Filter Developer's Guide Page 39 of 83

[' idxl '<AVI Index>]

AVI Main Header

This and following sections describe the chunks contained in the LIST 'hdrl' and LIST 'movi'
chunks. The 'idxl' chunk is not described in this document. For more information on the 'idxl'
chunk and indexes in AV! files, see version 1.02 of the OpenDML AVI File Format Extensions
published by the OpenDML AV! M-JPEG File Format Subcommittee, February 28, 1996.

The file begins with the main header. In the AV! file, this header is identified by the 'avih'
FOURCC (four-character code). The header contains global information for the entire AV! file,
such as the number of streams within the file and the width and height of the AV! sequence.
The AV! main header structure is defined as follows:

typedef struct {
DWORD dwMicroSecPerFrame;
DWORD dwMaxBytesPerSec;
DWORD dwReservedl;
DWORD dwFlags;
DWORD dwTotalFrames;
DWORD dwinitialFrames;
DWORD dwstreams;
DWORD dwsuggestedBufferSize;
DWORD dwWidth;
DWORD dwHeight;
DWORD dwReserved[4];

MainAVIHeader;

dwMicroSecPerFrame

dwMaxBytesPerSec

dwReservedl
dwflags

Specifies the number of microseconds between frames. This value
indicates the overall timing for the file.
Specifies the approximate maximum data rate of the file. This
value indicates the number of bytes per second the system must
handle to present an AV! sequence as specified by the other
parameters contained in the main header and stream header
chunks.
Reserved. Set this to zero.
Contains any flags for the file. The following flags are defined:
AVIF _HASINDEX - Indicates the AV! file has an 'idxl' chunk
containing an index at the end of the file. For good performance, all
AV! files should contain an index.

347

Filter Developer's Guide

dwTotal Frames
dwinitialFrames

Page 40 of 83

AVIF _MUSTUSEINDEX - Indicates that the index, rather than the
physical ordering of the chunks in the file, should be used to
determine the order of presentation of the data. For example, you
could use this to create a list of frames for editing.
AVIF _ISINTERLEAVED - Indicates the AV! file is interleaved.
AVIF _WASCAPTUREFILE - Indicates the AV! file is a specially
allocated file used for capturing real-time video. Applications should
warn the user before writing over a file with this flag set because
the user probably defragmented this file.
AVIF _COPYRIGHTED - Indicates the AV! file contains copyrighted
data and software. When this flag is used, software should not
permit the data to be duplicated.
Specifies the total number of frames of data in the file.
Specifies the initial frame for interleaved files. Noninterleaved files
should specify zero. If you are creating interleaved files, specify the
number of frames in the file prior to the initial frame of the AV!
sequence in this member. For more information about the contents
of this member, see "Special Information for Interleaved Files" in
the Video for Windows Programmer's Guide.

dwStreams Specifies the number of streams in the file. For example, a file with
audio and video has two streams.

dwSuggestedBufferSize Specifies the suggested buffer size for reading the file. Generally,
this size should be large enough to contain the largest chunk in the
file. If set to zero, or if it is too small, the playback software will
have to reallocate memory during playback, which will reduce
performance. For an interleaved file, the buffer size should be large
enough to read an entire record, and not just a chunk.

dwWidth Specifies the width of the AV! file in pixels.
dwHeight
dwReserved[4]

Specifies the height of the AV! file in pixels.
Reserved. Set this array to zero.

AVI Stream Headers

The main header is followed by one or more 'strl' chunks. (A 'strl' chunk is required for each
data stream.) These chunks contain information about the streams in the file. Each 'strl' chunk
must contain a stream header and stream format chunk. Stream header chunks are identified
by the FOURCC (four-character code) 'strh' and the stream format chunks are identified by the
FOURCC 'strf'. In addition to the stream header and stream format chunks, the 'strl' chunk
might also contain a stream-header data chunk and a stream name chunk. Stream-header
data chunks are identified by the FOURCC 'strd'. Stream name chunks are identified by the
FOURCC 'strn'.

The stream header structure contains header information for a single stream of a file.

typedef struct
FOURCC f ccType;
FOURCC fccHandler;
DWORD dwFlags;
DWORD dwPriority;
DWORD dwinitialFrames;
DWORD dwscale;
DWORD dwRate;
DWORD dwstart;

348

Filter Developer's Guide Page 41of83

DWORD dwLength;
DWORD dwsuggestedBufferSize;
DWORD dwQuality;
DWORD dwSampleSize;
RECT rcFrame;

AVIStreamHeader;

The stream header specifies the type of data the stream contains, such as audio or video, by
means of a FOURCC.
fccType

fee Handler

dwflags

dwPriority

dwinitialFrames

dwScale

dwRate
dwStart

Contains a FOURCC that specifies the type of the data contained in
the stream. The following standard AV! values for video and audio
a re defined:
'vids' - Indicates the stream contains video data. The stream
format chunk contains a BITMAPINFO structure that can include
palette information.
'auds' - Indicates the stream contains audio data. The stream
format chunk contains a WAVEFORMATEX or PCMWAVEFORMAT
structure.
'txts' - Indicates the stream contains text data.
Optionally, contains a FOURCC that identifies a specific data
handler. The data handler is the preferred handler for the stream.
For audio and video streams, this specifies the installable
compressor or decompressor.
Contains any flags for the data stream. The bits in the high-order
word of these flags are specific to the type of data contained in the
stream. The following standard flags are defined:
AVISF _DISABLED - Indicates this stream should not be enabled
by default.
AVISF _ VIDEO_PALCHANGES - Indicates this video stream
contains palette changes. This flag warns the playback software
that it will need to animate the palette.
Specifies priority of a stream type. For example, in a file with
multiple audio streams, the one with the highest priority might be
the default stream.
Specifies how far audio data is skewed ahead of the video frames in
interleaved files. Typically, this is about 0.75 seconds. If you are
creating interleaved files, specify the number of frames in the file
prior to the initial frame of the AV! sequence in this member. For
more information about the contents of this member, see "Special
Information for Interleaved Files" in the Video for Windows
Programmer's Guide.
Used with dwRate to specify the time scale that this stream will
use. Dividing dwRate by dwScale gives the number of samples
per second. For video streams, this rate should be the frame rate.
For audio streams, this rate should correspond to the time needed
for nBlockAlign bytes of audio, which for PCM audio simply
reduces to the sample rate.
See dwScale.
Specifies the starting time of the AV! file. The units are defined by
the dwRate and dwScale members in the main file header.
Usually, this is zero, but it can specify a delay time for a stream
that does not start concurrently with the file.

349

Filter Developer's Guide

dwlength

Page 42 of 83

Specifies the length of this stream. The units are defined by the
dwRate and dwScale members of the stream's header.

dwSuggestedBufferSize Specifies how large a buffer should be used to read this stream.

dwQuality

dwSampleSize

rcframe

Typically, this contains a value corresponding to the largest chunk
present in the stream. Using the correct buffer size makes playback
more efficient. Use zero if you do not know the correct buffer size.
Specifies an indicator of the quality of the data in the stream.
Quality is represented as a number between 0 and 10,000. For
compressed data, this typically represents the value of the quality
parameter passed to the compression software. If set to -1, drivers
use the default quality value.
Specifies the size of a single sample of data. This is set to zero if
the samples can vary in size. If this number is nonzero, then
multiple samples of data can be grouped into a single chunk within
the file. If it is zero, each sample of data (such as a video frame)
must be in a separate chunk. For video streams, this number is
typically zero, although it can be nonzero if all video frames are the
same size. For audio streams, this number should be the same as
the nBlockAlign member of the WAVEFORMATEX structure
describing the audio.
Specifies the destination rectangle for a text or video stream within
the movie rectangle specified by the dwWidth and dwHeight
members of the AV! main header structure. The rcframe member
is typically used in support of multiple video streams. Set this
rectangle to the coordinates corresponding to the movie rectangle
to update the whole movie rectangle. Units for this member are
pixels. The upper-left corner of the destination rectangle is relative
to the upper-left corner of the movie rectangle.

The last eight members describe the playback characteristics of the stream. These factors
include the playback rate (dwScale and dwRate), the starting time of the sequence
(dwStart), the length of the sequence (dwlength), the size of the playback buffer
(dwSuggestedBuffer), an indicator of the data quality (dwQuality), and the sample size
(dwSampleSize).

Some of the members in the stream header structure are also present in the main header
structure. The data in the main header applies to the whole file, while the data in the stream
header structure applies only to a stream.

A stream format ('strf') chunk must follow a stream header ('strh') chunk. The stream format
chunk describes the format of the data in the stream. For video streams, the information in
this chunk is a BITMAPINFO structure (including palette information if appropriate). For audio
streams, the information in this chunk is a WAVEFORMATEX or PCMWAVEFORMAT structure.
(The WAVEFORMATEX structure is an extended version of the WAVEFORMAT structure.) For
more information about this structure and other stream types, see the New Multimedia Data
Types and Data Techniques Standards Update.

The 'strl' chunk might also contain an additional stream-header data ('strd') chunk. If used,
this chunk follows the stream format chunk. The format and content of this chunk is defined by
installable compression or decompression drivers. Typically, drivers use this information for
configuration. Applications that read and write RIFF files do not need to decode this
information. They transfer this data to and from a driver as a memory block.

350

Filter Developer's Guide Page 43 of 83

The optional 'strn' stream name chunk provides a zero-terminated text string describing the
stream. (The AV! file functions can use this chunk to let applications identify the streams they
want to access by their names.)

An AV! player associates the stream headers in the LIST 'hdrl' chunk with the stream data in
the LIST 'movi' chunk by using the order of the 'strl' chunks. The first 'strl' chunk applies to
stream 0, the second applies to stream 1, and so forth.

For example, if the first 'strl' chunk describes the wave audio data, the wave audio data is
contained in stream 0. Similarly, if the second 'strl' chunk describes video data, then the video
data is contained in stream 1.

Stream Data (LIST 'movi' Chunk)

Following the header information is a LIST 'movi' chunk that contains chunks of the actual data
in the streams - that is, the pictures and sounds themselves. The data chunks can reside
directly in the LIST 'movi' chunk or they might be grouped into 'rec' chunks. The 'rec' grouping
implies that the grouped chunks should be read from disk all at once. This is used only for files
specifically interleaved to play from CD-ROM.

Like any RIFF chunk, the data chunks contain a FOURCC (four-character code) to identify the
chunk type. A FOURCC is a 32-bit quantity represented as a sequence of one to four ASCII
alphanumeric characters, padded on the right with blank characters. The FOURCC that
identifies each chunk consists of the stream number and a two-character code that defines the
type of information encapsulated in the chunk. For example, a waveform chunk is identified by
a two-character code of 'wb'. If a waveform chunk corresponded to the second LIST 'hdrl'
stream description, it would have a FOURCC of 'Olwb'.

Note While two-character codes are a convenient way to describe a stream, do not expect
them to be recognized by other applications. Use FOURCCs when creating a stream or
transferring the information to other applications.

Because all the format information is in the header, the audio data contained in these data
chunks does not contain any information about its format. An audio data chunk has the
following format (the ## in the format represents the stream identifier):

WAVE Bytes '##wb'
BYTE abBytes[];

Video data can be compressed or uncompressed D!Bs. An uncompressed DIB has BI_RGB
specified for the biCompression member in its associated BITMAPINFO structure. A
compressed DIB has a value other than BI_RGB specified in the biCompression member. For
more information about compression formats, see the description of the BITMAPINFOHEADER
data structure in the Microsoft Windows Programmer's Reference.

A data chunk for an uncompressed DIB contains RGB video data. These chunks are identified
by a two-character code of 'db' (db is an abbreviation for DIB bits). Data chunks for a
compressed DIB are identified by a two-character code of 'de' (de is an abbreviation for DIB
compressed). Neither data chunk will contain any header information about the D!Bs. The data
chunk for an uncompressed DIB has the following form:

351

Filter Developer's Guide

DIB Bits '##db'
BYTE abBits[];

The data chunk for a compressed DIB has the following form.

Compressed DIB Bits '##de'
BYTE abBits[];

Page 44 of 83

Video data chunks can also define new palette entries used to update the palette during an AV!
sequence. For more information on specifying palette information, see Video for Windows
Programmer's Guide.

Text streams can use arbitrary two-character codes.

BITMAPINFOHEADER Structure

The BITMAPINFOHEADER structure contains information for the video stream of an AV! RIFF
file. This structure has the following members:

typedef struct tagBITMAPINFOHEADER
DWORD biSize;
LONG biWidth;
LONG biHeight;
WORD biPlanes;
WORD biBitCount;
DWORD biCompression;
DWORD biSizeimage;
LONG biXPelsPerMeter;
LONG biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrimportant;

BITMAPINFOHEADER;

biSize Specifies the number of bytes required by the structure.
biWidth Specifies the width of the bitmap, in pixels.
biHeight Specifies the height of the bitmap, in pixels. If biHeight is positive, the

bitmap is a bottom-up DIB (device-independent bitmap) and its origin is
the lower left corner. If bi Height is negative, the bitmap is a top-down DIB
and its origin is the upper left corner.

biPlanes Specifies the number of planes for the target device. This value must be
set to 1.

biBitCount Specifies the number of bits per pixel. Some compression formats need this
information to properly decode the colors in the pixel.

biCompression Specifies the type of compression used or requested. Both existing and new
compression formats use this member.

biSizeimage Specifies the size, in bytes, of the image. This can be set to 0 for
uncompressed RGB bitmaps.

biXPelsPerMeter Specifies the horizontal resolution, in pixels per meter, of the target device
for the bitmap. An application can use this value to select a bitmap from a
resource group that best matches the characteristics of the current device.

biYPelsPerMeter Specifies the vertical resolution, in pixels per meter, of the target device for
the bitmap.

352

Filter Developer's Guide Page 45 of 83

biClrUsed Specifies the number of color indices in the color table that are actually
used by the bitmap. If this value is zero, the bitmap uses the maximum
number of colors corresponding to the value of the biBitCount member for
the compression mode specified by biCompression.

biClrimportant Specifies the number of color indices that are considered important for
displaying the bitmap. If this value is zero, all colors are important.

When the value in the biBitCount member is set to greater than eight, video drivers can
assume bitmaps are true color and they do not use a color table.

When the value in the biBitCount member is set to less than or equal to eight, video drivers
can assume the bitmap uses a palette or color table defined in the BITMAPINFO data
structure. This data structure has the following members:

typedef struct tagBITMAPINFO {
BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[l];

} BITMAPINFO;

The BITMAPINFO bmiheader member specifies a BITMAPINFOHEADER structure. The
BITMAPINFO bmiColors member specifies an array of RGBQUAD data types that define the
colors in the bitmap.

WAVEFORMATEX Structure

The WAVEFORMATEX structure contains information for the audio stream(s) of an AV! RIFF
file. This structure has the following members:

typedef struct waveformat_extended_tag
WORD wFormatTag;
WORD nchannels;
DWORD nSamplesPerSec;
DWORD nAvgBytesPerSec;
WORD nBlockAlign;
WORD wBitsPerSample;
WORD cbSize;

WAVEFORMATEX;

wFormatTag Defines the audio waveform type of the audio stream. A complete list of
format tags can be found in the MMREG.H header file included with
Microsoft Visual C++ and other Microsoft products.

nChannels Specifies the number of channels in the audio stream, 1 for mono, 2 for
stereo.

nSamplesPerSec Specifies the frequency of the sample rate of the audio stream in
samples/second (Hz). Examples are 11,025, 22,050, or 44,100.

nAvgBytesPerSec Specifies the average data rate. Playback software can estimate the buffer
size by using this value.

nBlockAlign Specifies the block alignment of the data, in bytes. Playback software
must process a multiple of nBlockAlign bytes of data at a time, so that
the value of nBlockAlign can be used for buffer alignment.

353

Filter Developer's Guide Page 46 of 83

wBitsPerSample Specifies the number of bits per sample per channel data. Each channel is
assumed to have the same sample resolution. If this field is not needed,
then you should set it to zero.

cbSize Specifies the size, in bytes, of the extra information in the format header,
not including the size of the WAVEFORMATEX structure. For example, in
the wave format corresponding to the wFormatTag
WAVE_ FORMAT _IMA_ADPCM, cbSize is calculated as sizeof
(IMAADPCMWAVEFORMAT) - sizeof(WAVEFORMATEX), which yields two.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM

MQl§i[.jlj,M 111.l:.!j Topic Contents •@m• •gnw

AVI 2.0 File Format Extensions

DirectShow currently supports the following AVI 2.0 file format extensions:

• Increased AVI file size (greater than 1 GB)
• Hierarchical indexing

See the specification in version 1.02 of the OpenDML AV! File Format Extensions published by
the OpenDML AVI M-JPEG File Format Subcommittee, February 28, 1996.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij Topic Contents l@i§lllMM

Registering a Custom File Type

This topic describes how to register a new file type so that file-reader source filters can
recognize it. The mechanism used here is taken from the Microsoft® Win32® GetClassFile
function, which is used to return the CLSID associated with the given file name. Microsoft
DirectShow™ media types use the same quadruple set of values in the registry that are used
for GetClassFile FileType registrations, but associate a file matching this criteria with a media
type rather than a file type. Also, the registry entry for a DirectShow media type provides the
CLSID of a source filter that can be used to read this media type.

For both FileType and MediaType registration, a pattern in the registry contains a series of
entries of the form:

regdb key = offset, cb, mask, value

354

Filter Developer's Guide Page 47 of 83

The media type is defined as a CLSID pair, {Majortype clsid, Subtype clsid}. If the data in the
file at the specified offset or offsets matches a pattern in HKEY _CLASSES_ROOT\Media
Type\{ <major type>}\{ <subtype>}, the media type CLSID pair associated with that pattern is
the media type of the file.

The parameters of the registry key are interpreted as follows. The value of the offset item is an
offset from the beginning or end of the file, and the cb item is a length in bytes. These two
decimal values represent a particular byte range in the file. (A negative value for the offset
item is interpreted from the end of the file.) The mask value is a hexadecimal bit mask that is
used to perform a logical AND operation, with the byte range specified by offset and cb. The
result of the logical AND operation is compared with the value item. If the mask is omitted, it
is assumed to be all ones. The number of hexadecimal digits in mask and value must be twice
the va I ue of cb (because cb is in bytes).

Each pattern in the registry is compared to the file in the order of the patterns in the database.
The first pattern where each of the value items matches the result of the AND operation
determines the media type of the file.

Note that each entry can have multiple quadruples, all of which must match the data in the file
for the media type to be associated with the file. An example of using multiple quadruples in a
single entry might be to match the byte sequence at the beginning and at the end of the file.
The following example shows a pattern of AB CD 12 34 as the first 4 bytes in the file and AB
AB 00 AB as the last 4 bytes in the file (no masks applied here). All elements must match for
the pattern to match a file with a media type.

0 = REG_SZ 0, 4, , ABCD1234, -4, 4, , ABABOOAB

Additionally, there can be multiple entries specified under a single media type, a match to any
one of which will associate the file with the media type.

For example, the pattern contained in the following entries of the registry requires that the
first three bytes be AB CD 12, that the fourth byte be 32, 33, 34, or 35, and that the last 4
bytes be FE FE FE FE:

HKEY CLASSES ROOT - -
Media Type

(12345678-0000-0001-C000-000000000095}
(87654321-0000-0001-C000-000000000095}

0 = REG_SZ 0, 4, FFFFFFFE, ABCD1234, -4, 4, , FEFEFEFE
1 = REG SZ 0, 4, FFFFFFFE, ABCD1232, -4, 4, , FEFEFEFE
Source Filter = {56781234-0000-0001-C000-000000000095}

If a file contains such a pattern, the media type {12345678-0000-0001-C000-000000000095}
{87654321-0000-0001-C000-000000000095} will be associated with this file. The file source
filter for the media type is identified by the CLSID of the Source Filter value under the key for
the media type.

The media type can be used to find filter handlers for the file in order to render it. A handler
for a type performs a more exact test of the file to be sure of the type before attempting to
render the data.

Note that this scheme allows for a set of alternative masks (for instance, .wav files) that might
or might not have a RIFF header.

355

Filter Developer's Guide Page 48 of 83

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lml!§I 11¥8

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

Transform Filters

This section describes how to create a transform filter, types of transform filters, how to use
the transform base classes, which base class member functions to override and when, and how
to connect transform filters.

· Creating a Transform Filter

· Using the CTransformFilter and CTransinPlaceFilter Transform Base Classes

· Connecting Transform Filters

· About Compression Filters

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 111M Topic Contents 'ffl!'+* •un•

Creating a Transform Filter

Transform filters transform the media data that comes into their input pins and send the
transformed data out their output pins. Transform filters can be used to compress and
decompress data, to split audio and visual data, or to apply effects, such as contrast or
warbling, to media data. DirectShow contains several sample transform filters that perform
different kinds of transformations. See DirectShow Filters for a description of the transform
filters supplied by DirectShow. See Write a Transform Filter in C/C++ for instructions on how
to write your own transform filters in C++. See Using the CTransformFilter and
CTransinPlaceFilter Transform Base Classes for a discussion of the CTransformFilter and
CTransinPlaceFilter transform filter base classes. See Connecting Transform Filters for a
discussion of connecting to a transform filter.

This article steps through the process of creating a transform filter for a Microsoft®
DirectShow™ filter graph that uses the DirectShow C++ class library. It covers five basic
steps, and in the last step shows how to override the required member functions in your
derived class to implement the transform filter. It answers two common questions that arise
when creating transform filters: Which base class do I use? and How do I override member
functions?

356

Filter Developer's Guide Page 49 of 83

Contents of this article:

• Writing a Transform Filter
• Determine if the Filter Must Copy Media Samples
• Determine Which Base Classes to Use
• Instantiate the Filter
• Make Added Interfaces Available Through NonDelegatingOuerylnterface
• Override the Base Class Member Functions

o Overriding the Transform Member Function
o Overriding the ChecklnputType Member Function
o Overriding the CheckTransform Member Function
o Overriding the DecideBufferSize Member Function
o Overriding the GetMediaType Member Function
o Overriding Pin Member Functions
o Overriding the CBaseOutput:: DecideAllocator Member Function

Writing a Transform Filter

Writing a transform filter can be broken into the following discrete steps.

1. Determine if the filter must copy media samples or can handle them in place.

The fewer copies in the media stream, the better. However, some filters require a copy
operation; this influences the choice of base classes.

2. Determine which base classes to use and derive the filter class (and pin classes, if
necessary) from the base classes.

In this step, create the header or headers for your filter. In many cases, you can use the
transform base classes, derive your class from the correct transform filter class, and
override a few member functions. In other cases, you can use the more generic base
classes. These classes implement most of the connection and negotiation mechanism;
but these classes also allow more flexibility at the cost of overriding more member
functions.

3. Add the code necessary to instantiate the filter.

This step requires adding a static Createinstance member function to your derived
class and also a global array that contains the name of the filter, a CLSID, and a pointer
to that member function.

4. Add a NonDelegatingQueryinterface member function to pass out any unique
interfaces in your filter.

This step addresses the Component Object Model (COM) aspects of implementing
interfaces, other than those in the base classes.

5. Override the appropriate base class member functions.

This includes writing the transform function that is unique to your filter and overriding a
few member functions that are necessary for the connection process, such as setting the

357

Filter Developer's Guide Page 50 of 83

allocator size or providing media types.

Determine if the Filter Must Copy Media Samples

Because every copy operation uses valuable CPU cycles, filter developers are encouraged to
avoid copying the media samples, if possible. It is best to write the filter to modify media
samples in place on an allocator acquired from another filter. In some cases, this is not
possible, and a copy operation must be performed.

Where no copy is needed, the run-time overhead of a transform-inplace filter is scarcely more
than that of a function; however, by packaging the transform as a filter, you get the full
flexibility of the filter graph architecture.

Some reasons that a filter might be written as a copy transform filter rather than a transform­
inplace filter include the following:

• If the transformation generates more data on output than space provided in the allocator
of the input (for example, a decompressor filter), or if the transformation generates less
data on output and must consolidate memory.

• If the original media data must be preserved; this is the case with the splitter, where the
transform filter splits off a stream of data.

• If a decompressor filter is performing temporal compression, relying on adjacent frames
for delta information. In this case, a separate copy must be made, primarily because the
decompressor cannot allow another filter to have access to the original data to modify it.

• If the filter relies on a queue; for example, a filter that creates a queue to help smooth
the delivery of irregularly spaced video frames would need to copy the samples.

Determine Which Base Classes to Use

Before choosing a base class for your transform filter, you must first decide whether your filter
needs more than one input and output pin. If it does, you should derive your filter class from
CBaseFilter.

If your filter needs to perform a video transform, you should derive your filter class from
CVideoTra nsformFilter.

Otherwise, you should derive your filter class from CTransformFilter or CTransinPlaceFilter. To
determine which one to use, you must decide whether your filter must copy media samples or
can transform them in place. Because every copy operation uses valuable CPU cycles, filter
developers should avoid copying media samples, if possible. It is best to write a filter to modify
media samples in place on an allocator acquired from another filter. In some cases, this isn't
possible, and you must perform a copy operation.

Where no copy is needed, the run-time overhead of a transform-inplace filter isn't much more
than that of a function. However, by packaging the transform as a filter, you get the full
flexibility of the filter graph architecture.

Some reasons that you might write a filter as a copy transform filter rather than a transform­
inplace filter are:

• If the transformation generates more data on output than there is space already
allocated for the input (for example, a decompressor filter), or if the transformation
generates less data on output and must consolidate memory.

358

Filter Developer's Guide Page 51of83

• If the original media data must be preserved. This is the case with the splitter, where the
transform filter splits off a stream of data.

• If a decompressor filter is performing temporal compression, relying on adjacent frames
for information about what has changed frame to frame. In this case, you must make a
separate copy, primarily because the decompressor can't allow another filter to have
access to the original data to modify it.

• If the filter relies on a queue; for example, a filter that creates a queue to help smooth
the delivery of irregularly spaced video frames would need to copy the samples.

Once you determine whether the transform filter will copy media samples or transform them in
place, you must decide which base class or classes to use and which member functions you
must override and implement. You can then define your derived classes.

Some member functions in the base classes must be overridden in your derived class because
they are either declared as pure virtual in the base classes (they have no implementation), or
have default implementations that do nothing but return an error value.

You derive your filter class from the transform base classes CTransformFilter,
CTranslnPlaceFilter, or CVideoTransformFilter, or from the more generic CBaseFilter filter class.
Most of the connection, media type, and allocator negotiation code is handled in the base
classes and inherited by the transform classes. The transform classes make it possible to
create a filter by deriving just one filter class (no pin classes). The transform classes make
assumptions about the workings of transform filters that make the process of creating a
transform filter easier.

To learn more about CTransformFilter and CTranslnPlaceFilter and which of their member
functions are typically overridden by the derived class, see Using the CTransformFilter and
CTranslnPlaceFilter Transform Base Classes.

Instantiate the Filter

All filters must add code to let the base classes instantiate the filter. To instantiate a filter, you
must include two pieces of code in your filter: a static Createinstance member function in
the derived filter class, and a means of informing the class factory in the base classes how to
access this function.

Typically, the Createinstance member function calls the constructor for the derived filter
class. The following is the Createinstance member function from the Gargle sample filter.

CUnknown *CGargle, ,createinstance(LPUNKNOWN punk, HRESULT *phr) {

CGargle *pNewObject =new CGargle(NAME("Gargle Filter"), punk, phr);
if (pNewObject == NULL) {

*phr = E_OUTOFMEMORY;

return pNewObject;
II Createinstance

To communicate with the class factory, declare a global array of CFactoryTemolate objects as
g_Templates and provide the name of your filter, the class identifier (CLSID) of your filter, and
a pointer to the static Createinstance member function that creates your filter object. The
Gargle sample filter does this as follows:

359

Filter Developer's Guide Page 52 of 83

mechanism II Needed for the Createinstance
CFactoryTemplate g Templates[2]=

{ { L"Gargle filter"
, { L"Gargle filter Property

&CLSID_Gargle , CGargle::Createinstance
Page", &CLSID_GargProp, CGargleProperties: :Create!

};

int g_cTemplates sizeof(g_Templates)lsizeof(g_Templates[O]);

You can add additional parameters to the CFactoryTemolate templates if you want your filter to
be self-registering. For more information on this, see Register DirectShow Objects.

Finally, link your filter to strmbase.lib and export DllGetClassObject and DllCanUnloadNow
using a .def file.

Make Added Interfaces Available Through NonDelegatingQueryinterface

Only filters that add interfaces that are not in the base classes, such as those required for
creating property pages, need implement the !Unknown member functions (called
!NonDelegatingUnknown in the base classes). The base classes provide default
implementations of the !Unknown methods. !Unknown methods in any COM-based code
retrieve interfaces from an object, and increment and decrement the reference counts of those
interfaces. For example, the !Unknown: :Ouerylnterface method retrieves interfaces from an
object.

DirectShow defines a special !Unknown class called !NonDelegatingUnknown, whose methods
do the same thing as !Unknown. (The reason for the name change is so that objects can be
aggregated.) The NonDelegatingOuerylnterface method is called whenever some object or
application wants to query a pin or filter for any interfaces it implements. If your filter
implements any interface outside those listed in the base class implementation, you will need
to override the NonDelegatingQueryinterface method to return a pointer to the
implemented interface. For example, the following code example illustrates how the Gargle
sample overrides the member function to distribute references to the !SoecifyProoertyPages
and !PersistStream interfaces.

//Reveal our persistent stream, property pages, and !Gargle interfaces
STDMETHODIMP CGargle, ,NonDelegatingQueryinterface(REFIID riid, void **ppv)

if (riid == IID_IGargle) {

}

return Getinterface((IGargle *) this, ppv);
else if (riid == IID_ISpecifyPropertyPages) {

return Getinterface((ISpecifyPropertyPages *) this, ppv);
else if (riid == IID_IPersiststream) {

AddRef(); II Add a reference count to ourselves
*ppv = (void *) (IPersiststream *)this;
return NOERROR;

else {
return CTransinPlaceFilter: :NonDelegatingQueryinterface(riid, ppv);

II NonDelegatingQueryinterface

Note This sample calls the CTranslnPlaceFilter implementation of the member function to
finish up.

360

Filter Developer's Guide Page 53 of 83

Override the Base Class Member Functions

When you determine which base class to use(see Determine Which Base Classes to Use), you
write the header and define which member function to implement. You decide either to derive
your filter class from the transform base classes (CTransformFilter or CTransinPlaceFilter), or
from the more generic CBaseFilter filter class. In this section, you learn how to override the
following member functions.

• Overriding the Transform Member Function
• Overriding the CheckinputType Member Function
• Overriding the CheckTransform Member Function
• Overriding the DecideBufferSize Member Function
• Overriding the GetMediaType Member Function
• Overriding Pin Member Functions
• Overriding the CBaseOutput:: DecideAllocator Member Function

Overriding the Transform Member Function

The Transform member function in your derived class is called each time the
IMeminoutPin: :Receive method on the input pin of the filter is called to transfer another
sample. Place the code that performs the actual purpose of the filter in this member function,
or in the functions called from here. Copy transform filters will likely have a private CQQ¥
member function associated with the transform code, while transform-inplace functions will
simply modify the code in one buffer.

Overriding the CheckinputType Member Function

During the pin connection, the CheckMediaType member function of the input pin is called to
determine whether the proposed media type is acceptable. The
CTransforminputPin: :CheckMediaType member function is implemented to call the
CheckinputType member function of the derived filter class with the media type. You must
implement this to accommodate the media types your filter can handle. The following code
sample outlines part of the CGargle,, checkinputType member function, which rejects any
media type but MEDIATYPE_Audio.

HRESULT CGargle,,checkinputType(const CMediaType *pmt) {

II reject non-Audio type
if (pmt->majortype != MEDIATYPE_Audio)

return E_INVALIDARG;

Overriding the CheckTransform Member Function

Copy transform filters can transform the media type from the input pin to output pin.
Therefore, if the output pin is connected (so its media type is known), when the
CTransforminoutPin: :CheckMediaTyoe member function is called during connection, the
CheckTransform member function of the derived class is called to verify that the transform
from the input type to the output type is valid. It is also called when
CTransformOutoutPin: :CheckMediaTyoe is called.

In the CTransinPlaceFilter class, this member function is implemented in the base class header
file to simply return S_OK, because the functions from CTransformFilter that call this member

361

Filter Developer's Guide Page 54 of 83

function are overridden in CTransinPlaceFilter to call CheckinputType instead. This
assumes that the media type doesn't change in a transform-inplace filter, as it might in a copy
transform filter.

Overriding the DecideBufferSize Member Function

Copy transform filters might be required to set the properties of the allocator into which they
are copying. This is likely if the downstream filter has provided a newly created allocator (that
is, one that hasn't passed an allocator from farther downstream), or if the output pin is forced
to create its own allocator. In this case, the pure virtual CBaseOutputPin:: DecideBufferSize
member function is called from the CBaseOutputPin::DecideAllocator member function, and the
derived class fills in the requirements for the buffer by calling the
I MemAI locator: : SetProperties method on the a I locator object to which it has a reference.

The CTransinPlaceFilter:: DecideBufferSize method is never called, because the allocator of
another filter is always in use. It is implemented in the base class header file to return
E_UNEXPECTED.

Overriding the GetMediaType Member Function

Pins provide enumerators to enable other objects to determine the pin's media type. A pin
provides the media type enumerator (the IEnumMediaTypes interface), which the pin base
classes implement to call the GetMediaType member function in the pin class. In the copy
transform filter classes, each pin's CTransformOutputPin: :GetMediaType member function
simply calls the virtual CTransformFilter: :GetMediaType member function in the filter class.
Your derived class must implement this member function to provide each supported media
type in a list of media types.

In the transform-inplace classes, the enumerators form a transparent channel between the
filters upstream and downstream from the transform filter. If the transform filter's input pin
must perform an enumeration, it obtains an enumerator from the downstream filter's input pin.
If the output pin must perform an enumeration, it obtains an enumerator from the upstream
filter's output pin. One consequence of this is that transform-inplace filters can't connect to
each other unless at least one of them is connected to something else, because neither of the
transform-inplace filters can propose any media type for the connection.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M

Overriding Pin Member Functions

If you derived your filter class from the transform classes and want more than one input or
output pin, you must override the pin class (for example, CTransforminputPin or
CTransformOutputPin). If you override the pin class, you must also override the GetPin
member function of CTransformFilter or CTransinPlaceFilter, so that you can create pin objects
from your derived classes. If you override one of the pin classes (for example,

362

Filter Developer's Guide Page 55 of 83

CTransformlnputPin) and override GetPin to create the pin object, you must also override
GetPin to create the other pin object of the same base class (for example,
CTransformOutputPin).

If you want more than one input or output pin, it is often simpler to derive your filter from
CBaseFilter rather than from one of the transform classes.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

Overriding the CBaseOutput::DecideAllocator
Member Function

The base classes implement CBaseOutputPin: :DecideAllocator to let the output pin
automatically use the downstream pin's allocator. One of the most common alterations in the
derived class is to force the use of an object's own allocator (or one from an upstream filter).
In the DirectShow model, for example, a source filter pushes media samples onto the next
filter and requires its own allocator. For example, if you write a transform-inplace filter and
insert it between a source filter and a decompressor filter, the transform filter must present
the source filter's allocator to the decompressor. Therefore, you must override the
CBaseOutputPin::DecideAllocator member function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Q'41!.l+1 1 !1·HM Topic Contents i@l§ii!¥M

Using the CTransformFilter and
CTranslnPlaceFilter Transform Base Classes

This article describes the classes provided for creating a transform filter. It is background
information that you should read before reading the article Creating a Transform Filter, which
walks through the steps of creating a transform filter.

Contents of this article:

• Introducing the CTransformFilter and CTransinPlaceFilter Classes
• What the Derived Class Must Provide
• A Sample Transform Filter Declaration

Introducing the CTransformFilter and CTranslnPlaceFilter Classes

The easiest solution for writing a transform filter is to use the transform filter classes, which

363

Filter Developer's Guide Page 56 of 83

work well for most types of transform filters. Typically, a noncopying transform filter is derived
from the CTransinPlaceFHter class and its associated pin classes; a copy transform filter is
derived from the CTranstormfi!ter filter class and its associated pin classes.

Transform filter classes are hierarchieal, with the transform-inplace classes at the bottom of
the hierarchy tree. CTransinP!aceFHter is derived from CTransformFHter. which is derived from
CBaseFHter. as shown in the following illustration.

(CBaseObject);

I INonDelegatingUnknown I
Li(CUnknown

I IAMovieSetup I
I IMediaFilter

I IBaseFilter I
~~1...,"- CBasefilter

~ CTransformfilter)i

~ CTranslnPlacefilter);

The CTransinPlaceinputPin class is derived from the CTransforminputPin class. The
CTransforminputPln class is derived from the CBaseinputPin class, as shown in the following
illustration.

CBaseObject

CUnknown

IQualityControl

CBasePin

CBaselnputPin

CTransformlnputPin

CTranslnPlacelnputPin

The CTransinP!aceOotpotpjo class is derived from the CTranstormOotp1rtpjo class. The
CTransformOutputPln class is derived from the CBaseOutputPin class, as shown in the
following illustration.

364

Filter Developer's Guide Page 57 of 83

(CBaseObject),

I INonDelegatingUnknown I
Ll.(CUnknown)i

I IQualityControl I

I !Pin M

~~1-<, CBasePin)i

~ CBaseOutputPin);

l.(CTransformOutputPin),

~ CTranslnPlaceOutputPin)>

Copy transform and transform-inplace classes share many features, because the transform­
inplace classes derive almost au member functions from the copy transform classes. The
principal additions made by the transform classes over the base classes is that au required pin
member functiOns are implemented so for default implementation, you need only to derive a
main filter class (from CTransinP!acefilter or CTransformfi!ter).

What the Derive(! Class Must Provide

The derived filter class must provide a few member functions, typically to:

• Determine if the filter accepts the media type.
• Specify the count and size of any required allocators (for copy transforms only).
• Provide the transform functionality of the filter.

AU derived filter classes must implement a static Cfactoryremp!atw ·Createinstance function.
You can also choose to override the CBasefilter: :GetSetupData member fUnction to make your
filter self-registering. Beyond this, your classes must override a few member functiOns in the
transform base classes. For more informatiOn about instantiating the filter, see Creating a
Transform filter.

If your derived filter class is based on the CTransformfi!ter class, you must override the
following member functiOns.
Member function Des<:rlptlon
Transform Implement transform.
CheckinputTupe Verify support of media type.
CheckTransform Verify support for transforming this type (for debugging builds only).
DecideB!JfferSize Set size and count when copying.
GetMedia Type Suggest media types for the output pin.

If your derived filter class is based on the CiransinP!aceFi!ter class, override the following
member functiOns.

365

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

