
Appendixes

MEDIASUBTYPE_Y41P

MEDIASU BTYPE_ YUY2

MEDIASUBTYPE_YVYU

MEDIASUBTYPE_UYVY

MEDIASUBTYPE_Y211

MEDIASUBTYPE_CUR

MEDIASUBTYPE_IF09

MEDIASUBTYPE_CPLA
MEDIASUBTYPE_MJPG
MEDIASU BTYPE_ TVMJ
MEDIASU BTYPE_ WAKE
MEDIASUBTYPE_CFCC
MEDIASU BTYPE_IJ PG
MEDIASUBTYPE_Plum
MEDIASUBTYPE_RGBl
MEDIASUBTYPE_RGB4
MEDIASUBTYPE_RGBS

Page 4 of 53

Y41P format data. A packed YUV format. A Y sample at every
pixel, a U and V sample at every fourth pixel horizontally on
each line; every vertical line sampled. Byte ordering (lowest
first) is UO, YO, VO, Yl, U4, Y2, V4, Y3, Y4, Y5, Y6, Y7, where
the suffix 0 is the leftmost pixel and increasing numbers are
pixels increasing left to right. Each 12-byte block is S image
pixels.
YUY2 format data. Same as UYVY but with different pixel
ordering. Byte ordering (lowest first) is YO, UO, Yl, VO, Y2,
U2, Y3, V2, Y4, U4, Y5, V4, where the suffix 0 is the leftmost
pixel and increasing numbers are pixels increasing left to
right. Each 4-byte block is 2 image pixels.
YVYU format data. A packed YUV format. Same as UYVY but
with different pixel ordering. Byte ordering (lowest first) is YO,
VO, Yl, UO, Y2, V2, Y3, U2, Y4, V4, Y5, U4, where the suffix 0
is the leftmost pixel and increasing numbers are pixels
increasing left to right. Each 4-byte block is 2 image pixels.
UYVY format data. A packed YUV format. A Y sample at every
pixel, a U and V sample at every second pixel horizontally on
each line; every vertical line sampled. Probably the most
popular of the various YUV 4:2:2 formats. Byte ordering
(lowest first) is UO, YO, VO, Yl, U2, Y2, V2, Y3, U4, Y4, V4,
Y5, where the suffix 0 is the leftmost pixel and increasing
numbers are pixels increasing left to right. Each 4-byte block
is 2 image pixels.
YUV 211 format data. A packed YUV format. A Y sample at
every second pixel, a U and V sample at every fourth pixel
horizontally on each line; every vertical line sampled. Byte
ordering (lowest first) is YO, UO, Y2, VO, Y4, U4, Y6, V4, YS,
US, YlO, VS, where the suffix 0 is the leftmost pixel and
increasing numbers are pixels increasing left to right. Each 4-
byte block is 4 image pixels.
Cirrus Logic Jr YUV 411 format with less than S bits per Y, U,
and V sample. Cinepak can produce it and Cirrus 5440 can
produce an overlay with it. A Y sample at every pixel, a U and
V sample at every fourth pixel horizontally on each line; every
vertical line sampled.
Indeo produced YVU9 format with additional information about
differences from the last frame. 9.5 bits per pixel but reported
as 9.
Cinepak UYVY format.
Motion JPEG (MJPG) compressed video.
TrueVision MJPG format.
MJPG format produced by some cards.
MJPG format produced by some cards.
Intergraph JPEG format.
Plum MJPG format.
RGB 1 bit per pixel. Palettized.
RGB 4 bits per pixel. Palettized.
RGB S bits per pixel. Palettized.

2166

Appendixes Page 5 of 53

MEDIASU BTYPE_RG B565 565 format of RGB, 16 bits per pixel. Uncompressed RGB
samples.

MEDIASUBTYPE_RGB555 555 format of RGB, 16 bits per pixel. Uncompressed RGB
samples.

MEDIASU BTYPE_RG B24

MEDIASU BTYPE_RG B32

MEDIASU BTYPE_ Overlay

MEDIASU BTYPE_ QTMovie

MEDIASUBTYPE_QTRpza

MEDIASU BTYPE_ QTSmc

MEDIASUBTYPE_QTRle

MEDIASUBTYPE_QTJpeg

RGB 24 bits per pixel. Uncompressed RGB samples.

RGB 32 bits per pixel. Uncompressed RGB samples.

Video delivered using hardware overlay.

QT Specific compressions.

QT RPZA compressed data.

QT SMC compressed data.

QT RLE compressed data.

QT JPEG compressed data.

MEDIASUBTYPE_dvsd Standard DV format.

MEDIASUBTYPE_dvhd High Definition DV format.

MEDIASUBTYPE_dvsl Long Play DV format.

MEDIASUBTYPE_MPEG1Packet MPEG1 Video Packet.

MEDIASUBTYPE_MPEG1Payload MPEG1 Video Payload.

MEDIASU BTYPE_ VideoPort Data is video port data, used with DVD.

Analog Video Media Types

The following analog video formats were introduced in ActiveMovie™ 1.0 but are currently not
used. Instead, the IAMAnalogVideoDecoder, IAMAnalogVideoEncoder and IAMTVTuner
interfaces use an enumeration called AnaloqVideoStandard defined in Axextend.idl.

The following table describes the analog video media subtypes.
MEDIATYPE_AnalogVideo - Data is various formats of analog video, including
standard NTSC, PAL, and SECAM formats.
MEDIASU BTYPE_Ana logVideo_NTSC_M

MEDIASU BTYPE_Ana logVideo_PAL_B

MEDIASU BTYPE_Ana logVideo_PAL_D

MEDIASU BTYPE_Ana logVideo_PAL_ G

MEDIASU BTYPE_Ana logVideo_PAL_H

MEDIASU BTYPE_Ana logVideo_PAL_I

MEDIASU BTYPE_Ana logVideo_PAL_M

MEDIASU BTYPE_Ana logVideo_PAL_N

MEDIASU BTYPE_Ana logVideo_S ECAM_B

MEDIASU BTYPE_Ana logVideo_S ECAM_D

MEDIASU BTYPE_Ana logVideo_S ECAM_ G

MEDIASU BTYPE_Ana logVideo_S ECAM_H

MEDIASU BTYPE_Ana logVideo_S ECAM_K

MEDIASU BTYPE_Ana logVideo_S ECAM_K1

MEDIASU BTYPE_Ana logVideo_S ECAM_L

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@i§i •11»•
2167

Appendixes Page 6 of 53

+Qi§i[.]ii,+ 1 !!·HM Topic Contents i@l§ii!MM

MPEG-1 Media Types

The following information summarizes the media types used by Microsoft® DirectShow™ for
MPEG data.

MPEG-1 System Stream
Major type: MEDIATYPE_Stream

Minor type: MEDIASUBTYPE_ MPEG1System

Format: None

Sample contents: BYTE stream; no alignment

MPEG-1 System Stream off Video CD
Major type: MEDIATYPE_Stream

Minor type: MEDIASUBTYPE_MPEG1 VideoCD

Format: None

Sample contents: BYTE stream; no alignment

MPEG-1 Audio Packet
Major type: MEDIATYPE_Audio

Minor type: MEDIASUBTYPE_MPEG1Packet

Format: MPEG1WAVEFORMAT

Sample contents: Single MPEG-1 packet including packet header

MPEG-1 Audio payload
Major type: MEDIATYPE_Audio

Minor type: MEDIASUBTYPE_ MPEG1Payload

Format: MPEG1WAVEFORMAT

Sample contents: Byte-aligned MPEG-1 audio data

MPEG-1 Video Packet
Major type: MEDIATYPE_Video

Minor type: MEDIASUBTYPE_MPEG1Packet

2168

Appendixes

Format: VIDEOINFO + Video sequence header

Sample contents: Single MPEG-1 packet including packet header

MPEG-1 Video payload
Major type: MEDIATYPE_Video

Minor type: MEDIASUBTYPE_MPEG1Payload

Format: VIDEOINFO + Video sequence header

Sample contents: Byte-aligned MPEG-1 video data

MPEG-1 Native Video Stream
Major type: MEDIATYPE_Stream

Minor type: MEDIASUBTYPE_ MPEGl Video

Format: None

Sample contents: Array of video stream bytes (no system layer)

MPEG-1 Native Audio Stream
Major type: MEDIATYPE_Stream

Minor type: MEDIASUBTYPE_ MPEG1Audio

Format: None

Sample contents: Array of audio stream bytes (no system layer)

The various filters will support pins as follows:
Filter Direction Media type(s)
System layer
splitter

System layer
splitter
System layer
splitter
Software Audio
CODEC
Software Video
CODEC

Input

Output

Output

Input

Input

MPEG-1 system stream

MPEG-1 system stream off Video CD
MPEG-1 Audio packet or MPEG-1 Audio data

MPEG-1 Video packet or MPEG-1 Video data

MPEG-1 Audio data or MPEG-1 Audio packet

MPEG-1 Video data or MPEG-1 Video packet

Page 7 of 53

Software Audio
CODEC
Software Video
CODEC

Output

Output

PCM audio mono or stereo, input sampling rate, input sampling
rate divided by 2 or input sampling rate divided by 4
Uncompressed video in Y41P, YUY2, UYVY, RGB24, RGB32,
RGB565, RGB555 and RGBS formats

MPEG-1 Video packet and payload media types contain a complete sequence header so that

2169

Appendixes Page 8 of 53

data can be played from the middle of a file without needing a sequence header to initialize the
video playback.

The video sequence header is appended to the video data type for MPEG video so that play can
begin from the middle of a stream. The length of this field is up to 140 bytes (it includes the
sequence header start code-Ox000001B3-at the start and any quantization matrices found in
the first sequence header encountered).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

+Qi@[.jlj,M 111.1 1119 Topic Contents i@i§i i!ftbM

Time Stamps

For more information about time stamps, see section 2.4.1of1501-11172: "The packet header
may contain decoding and/or presentation time stamps (DTS and PTS) that refer to the first
access unit in the packet."

For MPEG_Stream major types, the start time is the byte position of the first byte, rated at 1
byte per second. The stop time is the byte position of the last byte. Thus, consecutive samples
should have the stop time of the first packet equal to the start time of the next packet. For
Video CD data, the origin of the medium must match the format of a video-CD file exposed by
CDFS with the standard RIFF chunk at the start.

For MPEG video packet and payload types, the time stamp is the presentation time for the first
video frame whose picture start code begins in the sample.

For MPEG audio packet and payload types, the time stamp is the presentation time for the first
audio frame whose sync code starts in the sample.

It is assumed that packet and payload data without time stamps can be successfully prerolled
by the handling filters.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents 'ffl!'+* •an•

Sample Properties

MPEG samples have the following properties or notifications.

2170

Appendixes Page 9 of 53

Time stamp Not all samples have start and stop times. The sample stop time for packet and
payload data is not useful; it is usually set to the start time plus one. MPEG
packet or payload data samples will have a start and stop time set if the system
layer packet they are generated from had a valid PTS.

Discontinuity If there is a break in the stream (for example, a gap in the real-time data, or an
error in the data or after a seek), the Discontinuity property is set. This property
is propagated from the MPEG-1 splitter to the stream handlers in the first
sample sent after this property is set in a sample received. This also allows for a
time-stamp discontinuity.

End Of
Stream

This is not a sample property but a separate notification. When this is received,
any buffered data must be forced through the decoder. Logically, any new data
must then start with the Discontinuity property.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w QIM [.] 11,1 Mii.HM Topic Contents •=@• 1gnw

CLSIDs in DirectShow

Microsoft® DirectShow™ defines CLSIDs for many of its most-used components, such as filters
and plug-in distributors. The CLSIDs are defined in Uuids.h. This article gives a brief
description of the most common CLSIDs.

• Plug-in Distributor CLSIDs
• Cutlist CLSIDs
• Filter Category CLSIDs
• Filter and Filter Property Page CLSIDs

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

• QIM [.] +• I !!·HM Topic Contents i@i§ill@iM

Plug-in Distributor CLSIDs

This table lists the CLSIDs of the DirectShow plug-in distributors - COM objects that expose a
control interface and implement it by calling the enumerator of the filter graph manager -
finding which filters expose the control interface and communicating directly with those filters.
The developer generally doesn't implement these interfaces.

2171

Appendixes

CLSID
CLSID_FilterGraph

Page 10 of 53

Description
An object that builds filter graphs. This object implements the
IFi lterG ra ph interface.

CLSID_CaptureGraphBuilder An object that builds capture graphs, preview graphs, and file
compression graphs. This object implements the
ICaptureGraphBuilder interface.

CLSID_AMovie An object that performs as the filter graph manager. This
object implements the IAMovie interface.

CLSID_PersistMonikerPID An object that implements the IPersistMoniker interface, a
standard COM interface that gives objects more control over
the way they bind to their persistent data.

CLSID_FilterMapper An object used by the filter graph manager to look up the
properties of filters when they are loaded. This object
implements the IFilterMapper interface.

CLSID_SystemClock An object that implements the system reference clock in a
filter graph. This object implements the IReferenceClock
interface.

CLSID_SeekingPassThru An object that implements the functionality of the
CPosPassThru class. This object implements the
IMediaSeeking and IMediaPosition interfaces.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] 11,1 Mii.HM Topic Contents •=@• 1gnw

Cutlist CLSIDs

This table lists the CLSIDs related to creating DirectShow cutlists, a collection of audio and
video clips from different sources. Using the CutlistGraphBuilderObject, the SimpleCutlist
object, and the VideoFileClip and AudioFileClip objects, an application can build a cutlist out of
pieces of AVI and WAV files, and use the DirectShow Cutlist File Source filter to play it.
CLSID Description
CLSID_AudioFileClip An object that represents an audio file clip in a cutlist. This

object implements the IAMCutlistElement interface.
CLSID_ VideoFileClip

CLSID_SimpleCutlist

An object that represents a video file clip in a cutlist. This
object implements IAMCutlistElement.

An object that represents a cutlist (a collection of cutlist
elements, each with a relative time and duration). This object
implements the IStandardCutlist interface.

CLSID_CutlistGraphBuilder An object that represents a cutlist filter graph. This object
implements the ICutlistGraphBuilder interface.

CLSID_MTXRiffs Cutlist File Source filter.

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]jj,M 11!.HM Topic Contents lml!§lllMM

2172

Appendixes Page 11of53

Filter Category CLSIDs

This table lists the CLSIDs for the DirectShow filter categories, seen in the Filter Graph Editor
when you choose Insert Filters from the Graph menu. These categories can be used to
enumerate the filters in a certain category.
CLSID
CLSID_AudioinputDeviceCategory or
CLSID_CWaveinClassManager
CLSID_AudioCompressorCategory or
CLSID_CAcmCoClassManager
CLSID_AudioRendererCategory or
CLSID_CWaveOutClassManager
CLSID_LegacyAmFilterCategory or
CLSID_CQzFilterClassManager
CLSID_MidiRendererCategory or
CLSID_CMidiOutClassManager
CLSID_ VideoinputDeviceCategory or
CLSID_CVidCapClassManager
CLSID_ VideoCompressorCategory or
CLSID_CicmCoClassManager
CLSID_ActiveMovieCategories

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

Description

Audio Capture Sources category

Audio Compressors category

Audio Renderers category

DirectShow Filters category

Midi Renderers category

Video Capture Sources category

Video Compressors category

The seven categories of filters in
DirectShow

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

Filter and Filter Property Page CLSIDs

This table lists the CLSIDs for the DirectShow filters, seen in the Filter Graph Editor when you
choose Insert Filters from the Graph menu. It also contains the CLSIDs for the filter property
pages.
CLSID
CLSID_ACMWrapper

CLSID_AudioRender
CLSID_AudioProperties
CLSID_AVIDec
CLSID_AviDest
CLSID_Avi MuxProptyPage

Description
ACM Audio Compressor filter
Audio Renderer filter
Audio Renderer filter's property page
AVI Decompressor filter
AVI MUX filter
AVI MUX filter's first property page

2173

Appendixes

CLSID_AviMUXProptyPagel AVI MUX filter's second property page
AVI Splitter filter

AVl/WAV File Source filter
Color Space Converter filter

Cutlist File Source filter

Page 12 of 53

CLSID_AviSplitter
CLSID_AviDoc
CLSID_Colour
CLSID_MTXRiffs
CLSID_DSoundRender DirectSound Audio Renderer filter, in the Audio Renderers

category

CLSID_DVMUX DV Muxer filter

CLSID_DVMuxPropertyPage DV Muxer filter property page

CLSID_DVSplitter DV Splitter filter

CLSID_DWideoCodec DV Video Decoder filter

CLSID_DVDecPropertiesPage DV Video Decoder filter's property page

CLSID_DWideoEnc DV Video Encoder filter

CLSID_DVEncPropertiesPage DV Video Encoder filter's property page

CLSID_DVDNavigator DVD Navigator filter
File Source (Async) filter

File Source (URL) filter

File Writer filter

Full Screen Renderer filter

Full Screen Renderer filter's property page

Infinite Pin Tee filter

Line21 Decoder filter

MIDI Renderer filter

MPEG Audio Decoder filter

MPEG Video Decoder filter
MPEG-1 Stream Splitter filter

Overlay Mixer filter

Text Display filter

CLSID_AsyncReader
CLSID_URLReader
CLSID_FileWriter
CLSID_ModexRenderer
CLSID_ModexProperties
CLSID_InfTee
CLSID_Line21Decoder
CLSID_AVIMIDIRender
CLSID _CM pegAudioCodec
CLSID_CM pegVideoCodec
CLSID_M PEG !Splitter
CLSID_OverlayMixer
CLSID_ TextRender
CLSID_ VfwCapture
CLSID_CaptureProperties
CLSID_Dither

VFW Capture filter, in the Video Capture Sources category

VFW Capture filter's property page

VGA 16 Color Ditherer filter

Video Renderer filter CLSID_ VideoRenderer
CLSID_AudioRecord Wavein Audio Capture filter, in the Audio Capture Sources

category

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@IJll!MM

MQi§i[.jjj,M 11!.Hj Topic Contents •@m•11mw

DirectShow DVD Support

2174

Appendixes Page 13 of 53

This article outlines the DVD media types and formats. For the definitions of DirectShow
supported interlaced media types and picture aspect ratios, see VIDEOINFOHEADER2.
MPEG2VIDEOINFO also contains relevant information.

The following diagram and tables specify the digital versatile disc (DVD) media types and
formats supported by DirectShow.

Closed-

D Caption m
I

Decoder n m - Video & II Video m Video
llJ Subpicture Port - Decoder Mixer Renderer

Navigator

~ Audio DJ Audio
Decoder Renderer

Connection Majot type Subtype
A MEDIATYPE DVD ENCRYPTED PACK MEDIASUBTYPE MPEG2 ... VIDE0
B
c
c
D
E

F
G
H

MEDIATYPE DVD ENCRYPTED PACK MEDIASUBTYPE DVD SUBPICTURE
MEDIATYPE DVD ENCRYPTED PACK MEDIASUBTYPE DOLBY AC3
MEDIATYPE DVD ENCRYPTED PACK MEDIASUBTYPE DVD LPCM AUDIO

MEDIATYPE AUDIO
MEDIATYPE AUXUne21Data
MEDIATYPEVIDEO
MEDIATYPEVIDEO
MEDIATYPEVIDEO

NULL
MEDIASUBTYPE Une21 GOPPacket
MEDIASUBTYPE ... VideoPort see Note

Standard video subtypes
MEDIASUBTYPE Overlay

Connection Fotmat block type Fotmat block structure
MPEG2VIDEOINFO
MPEG2VIDEOINFO

A FORMAT MPEG2Video
B
c
c
D
E

F
G
H

FORMAT Videoinfo2

FORMAT WaveformatEx WAVEffiRMATEX
FORMAT WaveformatEx WAVEFORMATEX
FORMAT WaveformatEx WAVEFORMATEX
FORMAT ... Videoinfo2 VIDEOINFOHEADER
FORMAT ... Videoinfo2 VIDEOINFOHEADER2
FORMAT ... Videoinfo2 VIDEOINFOHEADER

FORMAT ... Videoinfo

Note: DirectShow determines the appropriate video port pixel formats during transport phase
negotiation with the IVPConfig interface.

HQ!§ 11.i!l,9 Mii.11119 T op1c Contents

2175

Appendixes Page 14 of 53

+Qi§i[.]ii,+ 1 !!·HM Topic Contents i@l§ii!MM

Country Codes and Channel to Frequency
Mappings

The following information provides country codes, analog video standards, and channel to
frequency mappings that are in use by most countries in the world. The IAMTVTuner interface
uses this information to set and view analog broadcast or cable channels that will be viewed
through a Microsoft® DirectShow™ TV Tuner filter.

Contents of this article:

• Country Codes
• Channel to Frequency Mappings for the U.S.
• Channel to Frequency Mappings for Eastern Europe, China, and Russia
• Channel to Frequency Mappings for the French Overseas Territories
• Channel to Frequency Mappings for France and CCIR L System Countries
• Channel to Frequency Mappings for Ireland
• Channel to Frequency Mappings for Italy
• Channel to Frequency Mappings for Japan
• Channel to Frequency Mappings for New Zealand
• Channel to Frequency Mappings for Australia
• Channel to Frequency Mappings for the U.K., Ireland, S. Africa, and Hong Kong
• Channel to Frequency Mappings for Western Europe

Country Codes

The following table provides country code to integer mappings. These mappings are the same
mappings used by the iCountry variable in Win.ini configuration file found in c:\Windows. The
first column represents the actual country code. The second and third columns are cable and
broadcast frequency lists, respectively, and the fourth column is the Analog Video Broadcast
standard used in the country.

1, F_USA_CABLE, F_USA_BROAD, AnalogVideo NTSC M,
17 United States of America
II Anguilla
II Antigua
II Bahamas
II Barbados
II Bermuda
II British Virgin Islands
II Canada
II cayman Islands
II Dominica
II Dominican Republic
II Grenada
II Jamaica
II Montserrat
II Nevis

2176

Appendixes Page 15 of 53

II St. Kitts
II St. Vincent and the Grenadines
II Trinidad and Tobago
II Turks and Caicos Islands
II Barbuda
II Puerto Rico
II Saint Lucia
II United States Virgin Islands

2, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Canada (WIN. INI is bogus

20, F WEU CABLE, F WEU BROAD, AnalogVideo_SECAM_B, II Egypt
212, F FIX CABLE, F FIX BROAD, AnalogVideo_SECAM_B, II Morocco
213, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Algeria
216, F WEU CABLE, F WEU BROAD, AnalogVideo_SECAM_B, II Tunisia
218, F WEU CABLE, F WEU BROAD, AnalogVideo_SECAM_B, II Libya
220, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Gambia - - -
221, F FOT CABLE, F FOT - BROAD, AnalogVideo_SECAM_K, - II Senegal Republic
222, F FIX CABLE, F FIX BROAD, AnalogVideo_SECAM_B, II Mauritania -
223, F FIX CABLE, F USA BROAD, AnalogVideo_SECAM_K, II Mali -
224, F FIX CABLE, F USA BROAD, AnalogVideo_SECAM_K, II Guinea -
225, F FIX CABLE, F - FIX BROAD, AnalogVideo_SECAM_K, II Ivory Coast
226, F FIX CABLE, F USA BROAD, AnalogVideo_SECAM_K, II Burkina Faso -
227, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Niger - - -
228, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Togo - - -
229, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Benin - - -
230 f F WEU CABLE, F WEU BROAD, AnalogVideo_SECAM_B, II Mauritius
231, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Liberia
232, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Sierra Leone
233, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Ghana
234, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Nigeria
235, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Chad
236, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Central African Republic
237 f F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Cameroon
238 f F FIX CABLE, F FIX BROAD, AnalogVideo_FIX~- II Cape Verde Islands - -
239 f F FIX CABLE, F USA - BROAD, AnalogVideo_PAL_B, II Sao Tome and Principe
240 f F FIX CABLE, F FIX BROAD, AnalogVideo_SECAM_B, II Equatorial Guinea - -
241, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Gabon - - -
242, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_D, II Congo - - -
243, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Zaire - -
244 f F FIX CABLE, F FIX BROAD, AnalogVideo_PAL_I, II Angola - -
245, F FIX CABLE, F FIX BROAD, AnalogVideo_FIX~-' II Guinea-Bissau
246, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Diego Garcia
247 f F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Ascension Island -
248 f F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Seychelle Islands
249 f F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Sudan
250, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B,, II Rwanda
251, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Ethiopia
252, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Somalia
253, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Djibouti - - -
254, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Kenya
255, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Tanzania
256, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Uganda
257, F FIX CABLE, F FIX BROAD, AnalogVideo_SECAM_K, II Burundi
258, F FIX CABLE, F FIX BROAD, AnalogVideo_PAL_B, II Mozambique
260, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Zambia
261, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Madagascar - -
262, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Reunion Island
263, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Zimbabwe
264, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_I, II Namibia -
265, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Malawi -
266, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_I, II Lesotho -
267, F FIX CABLE, F USA BROAD, AnalogVideo_SECAM_K, II Botswana -
268, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Swaziland -

2177

Appendixes Page 16 of 53

269, F FIX CABLE, F - USA BROAD, AnalogVideo_SECAM_K, II Mayotte Island
269, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Comoros -
27, F UK CABLE, F UK BROAD, AnalogVideo_PAL_I, II South Africa
290, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II St. Helena -
291, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Eritrea -
297, F FIX CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Aruba
298, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Faroe Islands
299, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Greenland
30, F WEU CABLE, F WEU BROAD, AnalogVideo_SECAM_B, II Greece
31, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Netherlands
32, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Belgium
33, F FRA CABLE, F FRA BROAD, AnalogVideo_SECAM_L, II France
34' F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Spain
350, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Gibraltar
351, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Portugal
352, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Luxembourg
353, F IRE CABLE, F IRE BROAD, AnalogVideo_PAL_I, II Ireland - - -
354, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Iceland
355, F ITA CABLE, F ITA BROAD, AnalogVideo_PAL_B, II Albania
356, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Malta
357, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Cyprus
358, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Finland
359, F EEU CABLE, - F EEU BROAD, AnalogVideo_SECAM_D, II Bulgaria
36, F EEU CABLE, F - EEU BROAD, AnalogVideo_SECAM_D, II Hungary
370, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Lithuania -
371, F FIX CABLE, F USA BROAD, AnalogVideo_SECAM_D, II Latvia -
372, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Estonia -
373, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Moldova -
374, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Armenia -
375, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Belarus
376, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~-' II Andorra
377, F WEU CABLE, F WEU BROAD, AnalogVideo_SECAM_G, II Monaco
378, F ITA CABLE, F ITA BROAD, AnalogVideo_PAL_B, II San Marino -
39, F ITA CABLE, F - ITA BROAD, AnalogVideo_PAL_B, II Vatican City
380, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Ukraine -
381, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Yugoslavia
385, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Croatia
386, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Slovenia
387, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Bosnia and Herzegovina
389, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II F.Y.R.O.M. (Former Yu gos
39, F ITA CABLE, - F ITA BROAD, AnalogVideo_PAL_B, II Italy
40' F EEU CABLE, F EEU BROAD, AnalogVideo_PAL_D, II Romania
41, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Switzerland
41, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Liechtenstein
42, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Czech Republic
42, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Slovak Republic
43, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Austria
44, F UK CABLE, F UK BROAD, AnalogVideo_PAL_I, II United Kingdom
45, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Denmark
46, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Sweden
47' F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Norway
48' F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Poland
49' F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Germany
500, F UK CABLE, F UK BROAD, AnalogVideo_PAL_I, II Falkland Islands
501, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Belize
502, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Guatemala
503, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II El Salvador
504, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Honduras
505, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Nicaragua
506, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Costa Rica
507, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Panama
508, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II St. Pierre and Miquelon - - -
509, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Haiti
51, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Peru

2178

Appendixes Page 17 of 53

52, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Mexico
53, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Cuba
53, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Guantanamo Bay
54' F USA CABLE, F USA BROAD, AnalogVideo_PAL_N, II Argentina
55, F USA CABLE, F USA BROAD, AnalogVideo_PAL_M, II Brazil
56, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Chile
57, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Colombia
58, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Venezuela
590, F FOT CABLE, F - FOT BROAD, AnalogVideo_SECAM_K, II Guadeloupe
590, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II French Antilles
591, F USA CABLE, F USA BROAD, AnalogVideo_PAL_N, II Bolivia
592, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Guyana
593, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Ecuador
594, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II French Guiana - - -
595, F USA CABLE, F USA BROAD, AnalogVideo_PAL_N, II Paraguay
596, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II Martinique
597, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Suriname
598, F USA CABLE, F USA BROAD, AnalogVideo_PAL_N, II Uruguay
599, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Netherlands Antilles
60, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Malaysia
61, F oz CABLE, F oz BROAD, AnalogVideo_PAL_B, II Australia
61, F FIX CABLE, F - USA BROAD, AnalogVideo_FIX~- II Cocos-Keeling Islands
62, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Indonesia -
63, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Philippines
64' F NZ CABLE, F NZ BROAD, AnalogVideo_PAL_B, II New Zealand
65, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Singapore
66, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Thailand
670, F FIX CABLE, F USA - BROAD, AnalogVideo_FIX~- II Saipan Island
670, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Rota Island -
670, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Tinian Island
671, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Guam
672, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Christmas Island -
672, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Australian Antarctic Ter
672, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Norfolk Island
673, F WEU CABLE, F WEU BROAD, AnalogVideo_PAL_B, II Brunei
674, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Nauru -
675, F FIX CABLE, F USA - BROAD, AnalogVideo_PAL_B, II Papua New Guinea
676, F FIX CABLE, F - USA BROAD, AnalogVideo_NTSC_M, II Tonga
677, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Solomon Islands -
678, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Vanuatu -
679, F FIX CABLE, F - USA BROAD, AnalogVideo_NTSC_M, II Fiji Islands
680, F FIX CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Palau -
681, F FIX CABLE, F USA BROAD, AnalogVideo_SECAM_K, II Wallis and Futuna Island -
682, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Cook Islands -
683, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Niue
684, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II American Samoa
685, F FIX CABLE, F USA BROAD, AnalogVideo_PAL_B, II Western Samoa -
686, F FIX CABLE, F - USA BROAD, AnalogVideo_PAL_B, II Kiribati Republic
687, F FOT CABLE, F FOT BROAD, AnalogVideo_SECAM_K, II New Caledonia -
688, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Tuvalu -
689, F FOT CABLE, F - FOT BROAD, AnalogVideo_SECAM_K, II French Polynesia
690, F FIX CABLE, F USA BROAD, AnalogVideo_FIX~- II Tokelau
691, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Micronesia
692, F FIX CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Marshall Islands -
7, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Russia -
7, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Kazakhstan -
7, F EEU CABLE, F - EEU BROAD, AnalogVideo_SECAM_D, II Kyrgyzstan
7, F EEU CABLE, F - EEU BROAD, AnalogVideo_SECAM_D, II Tajikistan
7, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Turkmenistan -
7, F EEU CABLE, F EEU BROAD, AnalogVideo_SECAM_D, II Uzbekistan -

81, F JAP CABLE, F JAP BROAD, AnalogVideo_NTSC_J, II Japan - - -

82, F USA CABLE, F USA BROAD, AnalogVideo_NTSC_M, II Korea (South)

2179

Appendixes Page 18 of 53

84' F_USA_CABLE, F_USA_BROAD, AnalogVideo_NTSC_M, II Vietnam
850 f F_EEU_CABLE, F_EEU_BROAD, AnalogVideo_SECAM_D, II Korea (North)
852, F UK CABLE, F UK_BROAD, AnalogVideo_PAL_I, II Hong Kong
853, F_UK CABLE, F_UK_BROAD, AnalogVideo_PAL_I, II Macau
855, F_USA_CABLE, F_USA_BROAD, AnalogVideo_PAL_B, II Cambodia
856, F_FIX_CABLE, F_USA_BROAD, AnalogVideo_PAL_B, II Laos
86, F_EEU_CABLE, F_EEU_BROAD, AnalogVideo_PAL_D, II China
871, F_FIX_CABLE, F_USA_BROAD, AnalogVideo_FIX __ II INMARSAT (Atlantic-East)
872, F_FIX_CABLE, F_USA_BROAD, AnalogVideo_FIX __ II INMARSAT (Pacific)
873, F_FIX_CABLE, F_USA_BROAD, AnalogVideo_FIX __ II INMARSAT (Indian)
874 f F_FIX_CABLE, F_USA_BROAD, AnalogVideo_FIX __ II INMARSAT (Atlantic-West)
880, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Bangladesh
886, F_USA_CABLE, F_USA_BROAD, AnalogVideo_NTSC_M, II Taiwan Region
90, F_FIX_CABLE, F_USA_BROAD, AnalogVideo_PAL_B, II Turkey
91, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II India
92, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Pakistan
93' F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Afghanistan
94' F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Sri Lanka
95, F_FIX_CABLE, F_USA_BROAD, AnalogVideo_NTSC_M, II Myanmar
960 f F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Maldives
961, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_SECAM_B, II Lebanon
962, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Jordan
963, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_SECAM_B, II Syria
964, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_SECAM_B, II Iraq
965, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Kuwait
966, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_SECAM_B, II Saudi Arabia
967 f F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Yemen
968 f F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Oman
971, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II United Arab Emirates
972, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Israel
973, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Bahrain
974 f F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_PAL_B, II Qatar
975, F_FIX_CABLE, F_USA_BROAD, AnalogVideo_FIX __ , II Bhutan
976, F_EEU_CABLE, F_EEU_BROAD, AnalogVideo_SECAM_D, II Mongolia
977, F_FIX_CABLE, F_USA_BROAD, AnalogVideo_PAL_B, II Nepal
98, F_WEU_CABLE, F_WEU_BROAD, AnalogVideo_SECAM_B, II Iran
994 f F_EEU_CABLE, F_EEU_BROAD, AnalogVideo_SECAM_D, II Azerbaijan
995, F_EEU_CABLE, F_EEU_BROAD, AnalogVideo_SECAM_D, II Georgia

Channel to Frequency Mappings for the U.S.

The following table provides the video carrier frequencies for the United States (U.S.)
Broadcast is provided first, and then cable.

USA CABLE DATA

lL,
158L,

73250000L,
55250000L,
61250000L,
67250000L,
77250000L,
83250000L,

175250000L,
181250000L,
187250000L,
193250000L,
199250000L,
205250000L,

II Lowest channel
II Highest channel

II 1
II 2
II J
II 4
II s
II 6

II 1
II 8
II 9
11 10
11 11
11 12

VHF-LO
VHF-LO

VHF-HI

2180

Appendixes Page 19 of 53

211250000L, II 13

121250000L, II 14 UHF
127250000L, II 15
133250000L, II 16
139250000L, II 17
145250000L, II 18
151250000L, II 19
157250000L, II 20
163250000L, II 21
169250000L, II 22
217250000L, II 23
223250000L, II 24
229250000L, II 25
235250000L, II 26
241250000L, II 27
247250000L, II 28
253250000L, II 29
259250000L, II 30
265250000L, II 31
271250000L, II 32
277250000L, II 33
283250000L, II 34
289250000L, II 35
295250000L, II 36
301250000L, II 37
307250000L, II 38
313250000L, II 39
319250000L, II 40
325250000L, II 41
331250000L, II 42
337250000L, II 43
343250000L, II 44
349250000L, II 45
355250000L, II 46
361250000L, II 47
367250000L, II 48
373250000L, II 49
379250000L, II 50
385250000L, II 51
391250000L, II 52
397250000L, II 53
403250000L, II 54
409250000L, II 55
415250000L, II 56
421250000L, II 57
427250000L, II 58
433250000L, II 59
439250000L, II 60
445250000L, II 61
451250000L, II 62
457250000L, II 63
463250000L, II 64
469250000L, II 65
475250000L, II 66
481250000L, II 67
487250000L, II 68
493250000L, II 69
499250000L, II 70
505250000L, II 71
511250000L, II 72
517250000L, II 73
523250000L, II 74
529250000L, II 75

2181

Appendixes Page 20 of 53

535250000L, II 76
541250000L, II 77
547250000L, II 78
553250000L, II 79
559250000L, II 80
565250000L, II 81
571250000L, II 82
577250000L, II 83
583250000L, II 84
589250000L, II 85
595250000L, II 86
601250000L, II 87
607250000L, II 88
613250000L, II 89
619250000L, II 90
625250000L, II 91
631250000L, II 92
637250000L, II 93
643250000L, II 94

91250000L, II 95 Discontinuity
97250000L, II 96

103250000L, II 97
109250000L, II 98
115250000L, II 99
649250000L, II 100 Discontinuity
655250000L, II 101
661250000L, II 102
667250000L, II 103
673250000L, II 104
679250000L, II 105
685250000L, II 106
691250000L, II 107
697250000L, II 108
703250000L, II 109
709250000L, II 110
715250000L, II 111
721250000L, II 112
727250000L, II 113
733250000L, II 114
739250000L, II 115
745250000L, II 116
751250000L, II 117
757250000L, II 118
763250000L, II 119
769250000L, II 120
775250000L, II 121
781250000L, II 122
787250000L, II 123
793250000L, II 124
799250000L, II 125
805250000L, II 126
811250000L, II 127
817250000L, II 128
823250000L, II 129
829250000L, II 130
835250000L, II 131
841250000L, II 132
847250000L, II 133
853250000L, II 134
859250000L, II 135
865250000L, II 136
871250000L, II 137
877250000L, II 138
883250000L, II 139

2182

Appendixes Page 21of53

889250000L, II 140
895250000L, II 141
901250000L, II 142
907250000L, II 143
913250000L, II 144
919250000L, II 145
925250000L, II 146
931250000L, II 147
937250000L, II 148
943250000L, II 149
949250000L, II 150
955250000L, II 151
961250000L, II 152
967250000L, II 153
973250000L, II 154
979250000L, II 155
985250000L, II 156
991250000L, II 157
997250000L, II 158

USA BROADCAST DATA

2L, II Lowest channel
69L, II Highest channel

55250000L, II 2 VHF-LO
61250000L, II 3
67250000L, II 4
77250000L, II 5
83250000L, II 6

175250000L, II 1 VHF-HI
181250000L, II 8
187250000L, II 9
193250000L, II 10
199250000L, II 11
205250000L, II 12
211250000L, II 13

471250000L, II 14 UHF
477250000L, II 15
483250000L, II 16
489250000L, II 17
495250000L, II 18
501250000L, II 19
507250000L, II 20
513250000L, II 21
519250000L, II 22
525250000L, II 23
531250000L, II 24
537250000L, II 25
543250000L, II 26
549250000L, II 27
555250000L, II 28
561250000L, II 29
567250000L, II 30
573250000L, II 31
579250000L, II 32
585250000L, II 33
591250000L, II 34
597250000L, II 35
603250000L, II 36

2183

Appendixes Page 22 of 53

609250000L, II 37
615250000L, II 38
621250000L, II 39
627250000L, II 40
633250000L, II 41
639250000L, II 42
645250000L, II 43
651250000L, II 44
657250000L, II 45
663250000L, II 46
669250000L, II 47
675250000L, II 48
681250000L, II 49
687250000L, II 50
693250000L, II 51
699250000L, II 52
705250000L, II 53
711250000L, II 54
717250000L, II 55
723250000L, II 56
729250000L, II 57
735250000L, II 58
741250000L, II 59
747250000L, II 60
753250000L, II 61
759250000L, II 62
765250000L, II 63
771250000L, II 64
777250000L, II 65
783250000L, II 66
789250000L, II 67
795250000L, II 68
801250000L, II 69

Channel to Frequency Mappings for Eastern Europe, China, and Russia

The following table provides the video carrier frequencies for Eastern Europe, including China
and Russia. Broadcast is provided first, and then cable.

EAST EUROPE/CHINA/RUSSIA CABLE DATA

lL, II Lowest channel
57L, II Highest channel

49750000L, II 1
57250000L, II 2
65250000L, II 3
77250000L, II 4
85250000L, II 5

168250000L, II 6
176250000L, II 1
184250000L, II 8
192250000L, II 9
200250000L, II 10
208250000L, II 11
216250000L, II 12
471250000L, II 13
479250000L, II 14
487250000L, II 15
493250000L, II 16
503250000L, II 17
511250000L, II 18
519250000L, II 19

2184

Appendixes Page 23 of 53

527250000L, II 20
535250000L, II 21
543250000L, II 22
551250000L, II 23
559250000L, II 24
607250000L, II 25
615250000L, II 26
623250000L, II 27
631250000L, II 28
639250000L, II 29
647250000L, II 30
655250000L, II 31
663250000L, II 32
671250000L, II 33
679250000L, II 34
687250000L, II 35
695250000L, II 36
703250000L, II 37
711250000L, II 38
719250000L, II 39
727250000L, II 40
735250000L, II 41
743250000L, II 42
751250000L, II 43
759250000L, II 44
767250000L, II 45
775250000L, II 46
783250000L, II 47
791250000L, II 48
799250000L, II 49
807250000L, II 50
815250000L, II 51
823250000L, II 52
831250000L, II 53
839250000L, II 54
847250000L, II 55
855250000L, II 56
863250000L, II 57

EAST EUROPE/CHINA/RUSSIA BROADCAST DATA

lL, II Lowest channel
57L, II Highest channel

49750000L, II 1
57250000L, II 2
65250000L, II 3
77250000L, II 4
85250000L, II 5

168250000L, II 6
176250000L, II 1
184250000L, II 8
192250000L, II 9
200250000L, II 10
208250000L, II 11
216250000L, II 12
471250000L, II 13
479250000L, II 14
487250000L, II 15
493250000L, II 16
503250000L, II 17
511250000L, II 18
519250000L, II 19
527250000L, II 20

2185

Appendixes Page 24 of 53

535250000L, II 21
543250000L, II 22
551250000L, II 23
559250000L, II 24
607250000L, II 25
615250000L, II 26
623250000L, II 27
631250000L, II 28
639250000L, II 29
647250000L, II 30
655250000L, II 31
663250000L, II 32
671250000L, II 33
679250000L, II 34
687250000L, II 35
695250000L, II 36
703250000L, II 37
711250000L, II 38
719250000L, II 39
727250000L, II 40
735250000L, II 41
743250000L, II 42
751250000L, II 43
759250000L, II 44
767250000L, II 45
775250000L, II 46
783250000L, II 47
791250000L, II 48
799250000L, II 49
807250000L, II 50
815250000L, II 51
823250000L, II 52
831250000L, II 53
839250000L, II 54
847250000L, II 55
855250000L, II 56
863250000L, II 57

Channel to Frequency Mappings for the French Overseas Territories

The following table provides the video carrier frequencies for the French Overseas Territories.
Broadcast is provided first, and then cable.

FRENCH OVERSEAS TERRITORIES CABLE DATA
lL, II Lowest channel
6L, II Highest channel

175250000L, II 1
183250000L, II 2
191250000L, II 3
199250000L, II 4
201250000L, II 5
215250000L, II 6

FRENCH OVERSEAS TERRITORIES BROADCAST DATA
lL, II Lowest channel
6L, II Highest channel

175250000L, II 1
183250000L, II 2

2186

Appendixes

191250000L,
199250000L,
207250000L,
215250000L,

II 3
II 4
II 5
II 6

Channel to Frequency Mappings for France and CCIR L System Countries

Page 25 of 53

The following table provides the video carrier frequencies for France and CCIR L System
Countries. Broadcast is provided first, and then cable.

FRANCE CABLE DATA

lL, II Lowest channel
69L, II Highest channel

47750000L, II 1
55750000L, II 2
60500000L, II 3
63750000L, II 4

176000000L, II 5
184000000L, II 6
192000000L, II 1
200000000L, II 8
208000000L, II 9
216000000L, II 10

OL, II 11 Not used
OL, II 12 Not used
OL, II 13 Not used
OL, II 14 Not used
OL, II 15 Not used
OL, II 16 Not used
OL, II 17 Not used
OL, II 18 Not used
OL, II 19 Not used
OL, II 20 Not used

471250000L, II 21
479250000L, II 22
487250000L, II 23
495250000L, II 24
503250000L, II 25
511250000L, II 26
519250000L, II 27
527250000L, II 28
535250000L, II 29
543250000L, II 30
551250000L, II 31
559250000L, II 32
567250000L, II 33
575250000L, II 34
583250000L, II 35
591250000L, II 36
599250000L, II 37
607250000L, II 38
615250000L, II 39
623250000L, II 40
631250000L, II 41
639250000L, II 42
647250000L, II 43
655250000L, II 44
663250000L, II 45
671250000L, II 46
679250000L, II 47
687250000L, II 48

2187

Appendixes Page 26 of 53

695250000L, II 49
703250000L, II 50
711250000L, II 51
719250000L, II 52
727250000L, II 53
735250000L, II 54
743250000L, II 55
751250000L, II 56
759250000L, II 57
767250000L, II 58
775250000L, II 59
783250000L, II 60
791250000L, II 61
799250000L, II 62
807250000L, II 63
815250000L, II 64
823250000L, II 65
831250000L, II 66
839250000L, II 67
847250000L, II 68
855250000L, II 69

FRANCE BROADCAST DATA

lL, II Lowest channel
69L, II Highest channel

47750000L, II 1
55750000L, II 2
60500000L, II 3
63750000L, II 4

176000000L, II 5
184000000L, II 6
192000000L, II 1
200000000L, II 8
208000000L, II 9
216000000L, II 10

OL, II 11 Not used
OL, II 12 Not used
OL, II 13 Not used
OL, II 14 Not used
OL, II 15 Not used
OL, II 16 Not used
OL, II 17 Not used
OL, II 18 Not used
OL, II 19 Not used
OL, II 20 Not used

471250000L, II 21
479250000L, II 22
487250000L, II 23
495250000L, II 24
503250000L, II 25
511250000L, II 26
519250000L, II 27
527250000L, II 28
535250000L, II 29
543250000L, II 30
551250000L, II 31
559250000L, II 32
567250000L, II 33
575250000L, II 34
583250000L, II 35

2188

Appendixes Page 27 of 53

591250000L, II 36
599250000L, II 37
607250000L, II 38
615250000L, II 39
623250000L, II 40
631250000L, II 41
639250000L, II 42
647250000L, II 43
655250000L, II 44
663250000L, II 45
671250000L, II 46
679250000L, II 47
687250000L, II 48
695250000L, II 49
703250000L, II 50
711250000L, II 51
719250000L, II 52
727250000L, II 53
735250000L, II 54
743250000L, II 55
751250000L, II 56
759250000L, II 57
767250000L, II 58
775250000L, II 59
783250000L, II 60
791250000L, II 61
799250000L, II 62
807250000L, II 63
815250000L, II 64
823250000L, II 65
831250000L, II 66
839250000L, II 67
847250000L, II 68
855250000L, II 69

Channel to Frequency Mappings for Ireland

The following table provides the video carrier frequencies for Ireland. Broadcast is provided
first, and then cable.

IRELAND CABLE DATA

lL, II Lowest channel
9L, II Highest channel

45750000L, II 1
53750000L, II 2
61750000L, II 3

175250000L, II 4
183250000L, II 5
191250000L, II 6
199250000L, II 7
207250000L, II 8
215250000L, II 9

IRELAND BROADCAST DATA

lL, II Lowest channel
9L, II Highest channel

2189

Appendixes

45750000L,
53750000L,
61750000L,

175250000L,
183250000L,
191250000L,
199250000L,
207250000L,
215250000L,

II 1
II 2
II 3
II 4
II 5
II 6
II 1
II 8
II 9

Channel to Frequency Mappings for Italy

Page 28 of 53

The following table provides the video carrier frequencies for Italy. Broadcast is provided first,
and then cable.

ITALY CABLE DATA

2L, II Lowest channel
llL, II Highest channel

53750000L, II 2 A
62250000L, II 3 B
82250000L, II 4 c

175250000L, II 5 D
183750000L, II 6 E
192250000L, II 1 F
201250000L, II 8 G
210250000L, II 9 H
217250000L, II 10 Hl
224250000L, II 11 H2

Channel to Frequency Mappings for Japan

The following table provides the video carrier frequencies for Japan. Broadcast is provided first,
and then cable.

JAPAN CABLE DATA

13L, II Lowest channel
63L, II Highest channel

109250000L, II 13
115250000L, II 14
121250000L, II 15
127250000L, II 16
133250000L, II 17
139250000L, II 18
145250000L, II 19
151250000L, II 20
157250000L, II 21
165250000L, II 22
223250000L, II 23
231250000L, II 24
237250000L, II 25
243250000L, II 26
249250000L, II 27
253250000L, II 28
259250000L, II 29
265250000L, II 30

2190

Appendixes Page 29 of 53

271250000L, II 31
277250000L, II 32
283250000L, II 33
289250000L, II 34
295250000L, II 35
301250000L, II 36
307250000L, II 37
313250000L, II 38
319250000L, II 39
325250000L, II 40
331250000L, II 41
337250000L, II 42
343250000L, II 43
349250000L, II 44
355250000L, II 45
361250000L, II 46
367250000L, II 47
373250000L, II 48
379250000L, II 49
385250000L, II 50
391250000L, II 51
397250000L, II 52
403250000L, II 53
409250000L, II 54
415250000L, II 55
421250000L, II 56
427250000L, II 57
433250000L, II 58
439250000L, II 59
445250000L, II 60
451250000L, II 61
457250000L, II 62
463250000L, II 63

JAPAN BROADCAST DATA

lL, II Lowest channel
62L, II Highest channel

91250000L, II 1
97250000L, II 2

103250000L, II 3
171250000L, II 4
177250000L, II 5
183250000L, II 6
189250000L, II 1
193250000L, II 8
199250000L, II 9
205250000L, II 10
211250000L, II 11
217250000L, II 12
471250000L, II 13
477250000L, II 14
483250000L, II 15
489250000L, II 16
495250000L, II 17
501250000L, II 18
507250000L, II 19
513250000L, II 20
519250000L, II 21
525250000L, II 22
531250000L, II 23

2191

Appendixes Page 30 of 53

537250000L, II 24
543250000L, II 25
549250000L, II 26
555250000L, II 27
561250000L, II 28
567250000L, II 29
573250000L, II 30
579250000L, II 31
585250000L, II 32
591250000L, II 33
597250000L, II 34
603250000L, II 35
609250000L, II 36
615250000L, II 37
621250000L, II 38
627250000L, II 39
633250000L, II 40
639250000L, II 41
645250000L, II 42
651250000L, II 43
657250000L, II 44
663250000L, II 45
669250000L, II 46
675250000L, II 47
681250000L, II 48
687250000L, II 49
693250000L, II 50
699250000L, II 51
705250000L, II 52
711250000L, II 53
717250000L, II 54
723250000L, II 55
729250000L, II 56
735250000L, II 57
741250000L, II 58
747250000L, II 59
753250000L, II 60
759250000L, II 61
765250000L, II 62

Channel to Frequency Mappings for New Zealand

The following table provides the video carrier frequencies for New Zealand. Broadcast is
provided first, and then cable.

NEW ZEALAND CABLE DATA

lL,
9L,

45250000L,
55250000L,
62250000L,

175250000L,
182250000L,
189250000L,
196250000L,
203250000L,
210250000L,

II Lowest channel
II Highest channel

II 1
II 2
II 3
II 4
II 5
II 6
II 1
II 8
II 9

NEW ZEALAND BROADCAST DATA

2192

Appendixes

lL,
9L,

4S2SOOOOL,
SS2SOOOOL,
622SOOOOL,

17S2SOOOOL,
1822SOOOOL,
1892SOOOOL,
1962SOOOOL,
2032SOOOOL,
2102SOOOOL,

II Lowest channel
II Highest channel

II 1
II 2
II 3
II 4
II s
II 6
II 1
II 8
II 9

Channel to Frequency Mappings for Australia

Page 31of53

The following table provides the video carrier frequencies for Australia. Broadcast is provided
first, and then cable.

AUSTRALIA CABLE DATA

lL, II Lowest channel
14L, II Highest channel

462SOOOOL, II o (1)
S72SOOOOL, II 1 (2)
642SOOOOL, II 2 (3)
862SOOOOL, II 3 (4)
9S2SOOOOL, II 4 (S)

1022SOOOOL, II s (6)
1382SOOOOL, II Sa (7)
17S2SOOOOL, II 6 (8)
1822SOOOOL, II 1 (9)
1892SOOOOL, II 8 (10)
1962SOOOOL, II 9 (11)
2092SOOOOL, II 10 (12)
2162SOOOOL, II 11 (13)
2232SOOOOL, II 12 (14)

AUSTRALIA BROADCAST DATA

lL, II Lowest channel
14L, II Highest channel

462SOOOOL, II o (1)
S72SOOOOL, II 1 (2)
642SOOOOL, II 2 (3)
862SOOOOL, II 3 (4)
9S2SOOOOL, II 4 (S)

1022SOOOOL, II s (6)
1382SOOOOL, II Sa (7)
17S2SOOOOL, II 6 (8)
1822SOOOOL, II 1 (9)
1892SOOOOL, II 8 (10)
1962SOOOOL, II 9 (11)
2092SOOOOL, II 10 (12)
2162SOOOOL, II 11 (13)
2232SOOOOL, II 12 (14)

2193

Appendixes Page 32 of 53

Channel to Frequency Mappings for the U.K., Ireland, S. Africa, and Hong Kong

The following table provides the video carrier frequencies for the United Kingdom (U.K.),
Ireland, South Africa and Hong Kong. Broadcast is provided first, and then cable.

UK CABLE DATA

2L, II Lowest channel
56L, II Highest channel

4S2SOOOOL, II 2
SS2SOOOOL, II J
622SOOOOL, II 4
692SOOOOL, II s SOl
762SOOOOL, II 6 S02
S32SOOOOL, II 1 SOJ

10S2SOOOOL, II s Sl
1122SOOOOL, II 9 S2
1192SOOOOL, II 10 SJ
1262SOOOOL, II 11 S4
1332SOOOOL, II 12 SS
1402SOOOOL, II 13 S6
1472SOOOOL, II 14 S7
1S42SOOOOL, II lS SS
1612SOOOOL, II 16 S9
16S2SOOOOL, II 17 SlO
17S2SOOOOL, II lS ES
1S22SOOOOL, II 19 E6
1S92SOOOOL, II 20 E7
1962SOOOOL, II 21 ES
2032SOOOOL, II 22 E9
2102SOOOOL, II 23 ElO
2172SOOOOL, II 24 Ell
2242SOOOOL, II 2S E12
2312SOOOOL, II 26 Sll
23S2SOOOOL, II 27 S12
24S2SOOOOL, II 2S S13
2S22SOOOOL, II 29 S14
2S92SOOOOL, II 30 SlS
2662SOOOOL, II 31 S16
2732SOOOOL, II 32 S17
2S02SOOOOL, II 33 SlS
2S72SOOOOL, II 34 S19
2942SOOOOL, II JS S20
3032SOOOOL, II 36 S21
3112SOOOOL, II 37 S22
3192SOOOOL, II JS S23
3272SOOOOL, II 39 S24
33S2SOOOOL, II 40 S2S
3432SOOOOL, II 41 S26
3S12SOOOOL, II 42 S27
3S92SOOOOL, II 43 S2S
3672SOOOOL, II 44 S29
37S2SOOOOL, II 4S SJO
3S32SOOOOL, II 46 S31
3912SOOOOL, II 47 S32
3992SOOOOL, II 4S S33
4072SOOOOL, II 49 S34
41S2SOOOOL, II so SJS
4232SOOOOL, II Sl S36
4312SOOOOL, II S2 S37

2194

Appendixes Page 33 of 53

439250000L, II 53 838
447250000L, II 54 839
455250000L, II 55 840
463250000L, II 56 841

UK BROADCAST DATA

2L, II Lowest channel
69L, II Highest channel

45750000L, II 2
53750000L, II 3
61750000L, II 4

175250000L, II 5
183250000L, II 6
191250000L, II 1
199250000L, II 8
207250000L, II 9
215250000L, II 10

OL, II 11 not used
OL, II 12 not used
OL, II 13 not used
OL, II 14 not used
OL, II 15 not used
OL, II 16 not used
OL, II 17 not used
OL, II 18 not used
OL, II 19 not used
OL, II 20 not used

471250000L, II 21
479250000L, II 22
487250000L, II 23
495250000L, II 24
503250000L, II 25
511250000L, II 26
519250000L, II 27
527250000L, II 28
535250000L, II 29
543250000L, II 30
551250000L, II 31
559250000L, II 32
567250000L, II 33
575250000L, II 34
583250000L, II 35
591250000L, II 36
599250000L, II 37
607250000L, II 38
615250000L, II 39
623250000L, II 40
631250000L, II 41
639250000L, II 42
647250000L, II 43
655250000L, II 44
663250000L, II 45
671250000L, II 46
679250000L, II 47
687250000L, II 48
695250000L, II 49
703250000L, II 50
711250000L, II 51
719250000L, II 52
727250000L, II 53

2195

Appendixes Page 34 of 53

73S2SOOOOL, II S4
7432SOOOOL, II SS
7S12SOOOOL, II S6
7S92SOOOOL, II S7
7672SOOOOL, II SS
77S2SOOOOL, II S9
7S32SOOOOL, II 60
7912SOOOOL, II 61
7992SOOOOL, II 62
S072SOOOOL, II 63
S1S2SOOOOL, II 64
S232SOOOOL, II 6S
S312SOOOOL, II 66
S392SOOOOL, II 67
S472SOOOOL, II 6S
SSS2SOOOOL, II 69

Channel to Frequency Mappings for Western Europe

The following table provides the video carrier frequencies for Western Europe. Broadcast is
provided first, and then cable.

WESTERN EUROPE CABLE DATA

2L, II Lowest channel
56L, II Highest channel

4S2SOOOOL, II 2
SS2SOOOOL, II J
622SOOOOL, II 4
692SOOOOL, II s SOl
762SOOOOL, II 6 S02
S32SOOOOL, II 1 SOJ

10S2SOOOOL, II s Sl
1122SOOOOL, II 9 S2
1192SOOOOL, II 10 SJ
1262SOOOOL, II 11 S4
1332SOOOOL, II 12 SS
1402SOOOOL, II 13 S6
1472SOOOOL, II 14 S7
1S42SOOOOL, II lS SS
1612SOOOOL, II 16 S9
16S2SOOOOL, II 17 SlO
17S2SOOOOL, II lS ES
1S22SOOOOL, II 19 E6
1S92SOOOOL, II 20 E7
1962SOOOOL, II 21 ES
2032SOOOOL, II 22 E9
2102SOOOOL, II 23 ElO
2172SOOOOL, II 24 Ell
2242SOOOOL, II 2S E12
2312SOOOOL, II 26 Sll
23S2SOOOOL, II 27 S12
24S2SOOOOL, II 2S S13
2S22SOOOOL, II 29 S14
2S92SOOOOL, II 30 SlS
2662SOOOOL, II 31 S16
2732SOOOOL, II 32 S17
2S02SOOOOL, II 33 SlS
2S72SOOOOL, II 34 S19
2942SOOOOL, II JS S20
3032SOOOOL, II 36 S21

2196

Appendixes Page 35 of 53

311250000L, II 37 S22
319250000L, II 38 S23
327250000L, II 39 S24
335250000L, II 40 S25
343250000L, II 41 S26
351250000L, II 42 S27
359250000L, II 43 S28
367250000L, II 44 S29
375250000L, II 45 S30
383250000L, II 46 S31
391250000L, II 47 S32
399250000L, II 48 S33
407250000L, II 49 S34
415250000L, II 50 S35
423250000L, II 51 S36
431250000L, II 52 S37
439250000L, II 53 S38
447250000L, II 54 S39
455250000L, II 55 S40
463250000L, II 56 S41

WESTERN EUROPE BROADCAST DATA

2L, II Lowest channel
69L, II Highest channel

48250000L, II 2 Note: 2Aisat49.75
55250000L, II 3
62250000L, II 4

175250000L, II 5
182250000L, II 6
189250000L, II 7
196250000L, II 8
203250000L, II 9
210250000L, II 10
217250000L, II 11
224250000L, II 12

OL, II 13 Not used
OL, II 14 Not used
OL, II 15 Not used
OL, II 16 Not used
OL, II 17 Not used
OL, II 18 Not used
OL, II 19 Not used
OL, II 20 Not used

471250000L, II 21
479250000L, II 22
487250000L, II 23
495250000L, II 24
503250000L, II 25
511250000L, II 26
519250000L, II 27
527250000L, II 28
535250000L, II 29
543250000L, II 30
551250000L, II 31
559250000L, II 32
567250000L, II 33
575250000L, II 34
583250000L, II 35

2197

Appendixes Page 36 of 53

5 9 1250000L, II 36
599250000L, II 3 7
607250000L, II 3 8
615250000L, II 39
62 3 250000L, II 40
631250000L, II 41
639250000L, II 42
647250000L, II 4 3
655250000L, II 44
663250000L, II 45
671250000L, II 46
679250000L, II 47
68 72500 0 0L, II 48
695250000L, II 49
70 3 250000L, II 50
7112500 0 0L, II 51
719250000L, II 52
727250000L, II 5 3
7 352500 0 0L, II 54
74 3 250000L, II 55
751250000L, II 56
7 592500 0 0L, II 5 7
767250000L, II 58
775250000L, II 59
7 832500 0 0L, II 60
791250000L, II 61
7 9 9250000L, II 62
8 072500 0 0L, II 63
81525000 0L, II 64
82 3 250000L, II 65
8312500 0 0L, II 66
8 3 925000 0L, II 67
847250000L, II 68
8552500 0 0L, II 69

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.!+• 111.q9 Topic Contents l@!§il!MM

+Qij[.jjj,M 111.1 1119 Topic Contents 1@!§111¥+

Reserved Identifiers

When compiling programs that include the Microsoft® DirectShow™ header files, it is
important to be aware of the following identifiers and their meanings, if they are defined before
the DirectShow headers are included.

These identifiers are, in effect, reserved except as described in the following list.
DEBUG Indicates a debug build. This enables many debug facilities, including message

logging and assertion checking.
PERF Indicates a performance (measurement) build.
VFWROBUST Enables some pointer validation macros in a build of any kind. See

ValidateReadPtr and related macros for more specifics.

2198

Appendixes Page 37 of 53

Build Types

A retail build is the smallest and fastest build, although perhaps not as robust as a debug
build. A retail build is the default if neither a debug build nor a performance build is requested.

A debug build is generally the largest and slowest build. However, it provides better facilities
for debugging new code and tracking problems. Defining the DEBUG identifier requests a
debug build.

A performance build adds measurement capabilities to a retail build. Defining the PERF
identifier requests a performance build. The performance build requires one additional file:
Measure.di I.

Caveat: Mixing Build Types

If debug and retail binaries are mixed, the results are undefined. The results of mixing debug
and retail object files in one binary are also undefined.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 Mii.HM Topic Contents •=@• 1gnw

Further Reading

_CrtSetDbgFlag
Retrieves and/or modifies the state of the _crtDbgFlag flag to control the allocation
behavior of the debug heap manager (debug version only). See the Microsoft® Visual
C++® documentation for more information.

Bit Bit
The BitBlt function performs a bit-block transfer of the color data corresponding to a
rectangle of pixels from the specified source device context into a destination device
context. See the Microsoft Platform SDK documentation for more information.

bi Height
A data member of the BITMAPINFOHEADER structure that specifies the height of a
bitmap, in pixels. If biHeight is positive, the bitmap is a bottom-up DIB (device
independent bitmap) and its origin is the lower left corner. If biHeight is negative, the
bitmap is a top-down DIB and its origin is the upper left corner.

bi Width

BSTR

A data member of the BITMAPINFOHEADER structure that specifies the width of a
bitmap, in pixels.

A 32-bit character pointer. See the Platform SDK documentation for more information.
CAggDirectDraw: :SetDisplayMode

Sets the mode of the display-device hardware. See IDirectDraw2::SetDisplayMode in
the Microsoft DirectX® SDK for more information.

CAggDrawSurface::Blt
Performs a bit block transfer. See IDirectDrawSurface3::Blt in the DirectX SDK for
more information.

CAggDrawSurface::GetDC

2199

Appendixes Page 38 of 53

Creates a GDI-compatible handle of a device context for the surface. See
IDirectDrawSurface3::GetDC in the DirectX SDK for more information.

CClassFactory
A class that implements the IClassFactory interface. The IClassFactory interface
contains two methods intended to deal with an entire class of objects, and so it is
implemented on the class object for a specific class of objects (identified by a CLSID).
The first method, Createinstance, creates an uninitialized object of a specified CLSID,
and the second, LockServer, locks the object's server in memory, enabling quicker
creation of new objects. See the IClassFactory interface documentation in the Platform
SDK.

ClientToScreen
Converts the client coordinates of a specified point to screen coordinates. See the
Platform SDK documentation for more information.

clipper
See DirectDrawCliooer.

CoCreateinstance
Creates a single uninitialized object of the class associated with a specified CLSID. See
the Platform SDK documentation for more information.

CoGetClassObject
Provides a pointer to an interface on a class object associated with a specified CLSID.
CoGetClassObject locates, and if necessary, dynamically loads the executable code
required to do this. See the Platform SDK documentation for more information.

Coinitialize
Initializes the Component Object Model (COM) library. See the Platform SDK
documentation for more information.

COLORREF
A 32-bit value used to specify an RGB color. See the Platform SDK documentation for
more information.

cooperative level
Determines the top-level behavior of the application. See
IDirectDraw2::SetCooperativelevel in the DirectX SDK for more information.

CoTaskMemAlloc
Allocates a block of task memory in the same way that IMalloc::Alloc does. See the
Platform SDK documentation for more information.

CoTaskMemFree

cout

Frees a block of task memory previously allocated through a call to the
CoTaskMemAlloc or CoTaskMemRealloc function. See the Platform SDK
documentation for more information.

AC++ object that controls insertions to the standard output as a byte stream. For more
information, see the Run-Time Library Reference included in the Visual C++ Developer
Studio documentation, or see other books that discuss the C and C++ programming
languages.

CreateDIBSection
Creates a device-independent bitmap (DIB) that applications can write to directly. The
function gives you a pointer to the location of the bitmap's bit values. You can supply a
handle to a file mapping object that the function will use to create the bitmap, or you can
let the operating system allocate the memory for the bitmap. See the Platform SDK
documentation for more information.

CreateEvent
Creates a named or unnamed event object. See the Platform SDK documentation for
more information.

Createfile
Creates or opens various objects and returns a handle that can be used to access the
object. See the Platform SDK documentation for more information.

2200

Appendixes Page 39 of 53

CreateWindow
Creates an overlapped, pop-up, or child window. See the Platform SDK documentation for
more information.

CreateWindowEx
Creates an overlapped, pop-up, or child window with an extended style; otherwise, this
function is identical to the CreateWindow function. See the Platform SDK
documentation for more information.

CRITICAL_SECTION
A critical section object, an object used to synchronize the threads of a single process.
Only one thread at a time can own a critical-section object. See the Platform SDK
documentation for more information.

DDCAPS
A structure that represents the capabilities of the hardware exposed through the
Microsoft DirectDraw® object. See the DirectDraw documentation in the DirectX SDK for
more information.

DDCOLORCONTROL
A structure that defines the color controls associated with a DirectDrawVideoPort object,
an overlay surface, or a primary surface. See the DirectX SDK documentation for more
information.

DDEnumCallback
An application-defined callback function for the DirectDrawEnumerate function. See
the DirectDraw documentation in the DirectX SDK for more information.

DDPIXELFORMAT
A structure that describes the pixel format of a DirectDrawSurface object for the
IDirectDrawSurface3::GetPixelFormat method. See the DirectDraw documentation in
the DirectX SDK for more information.

DDSCAPS
A structure that defines the capabilities of a DirectDrawSurface object. This structure is
part of the DDCAPS structure that is used to describe the capabilities of the DirectDraw
object. See the DirectDraw documentation in the DirectX SDK for more information.

DDSURFACEDESC
A structure that contains a description of the surface to be created. This structure is
passed to the IDirectDraw2::CreateSurface method. The relevant members differ for
each potential type of surface. See the DirectDraw documentation in the DirectX SDK for
more information.

DDVIDEOPORTCONNECT
A structure that describes a video port connection. See the DirectX SDK documentation
for more information.

DefWindowProc
A member function that calls the default window procedure to provide default processing
for any window messages that an application does not process. See the Platform SDK
documentation for more information.

DeleteCriticalSection
A function that releases all resources used by an unowned critical section object. See the
Platform SDK documentation for more information.

DIBSECTION
A structure that contains information about a device-independent bitmap created by
calling the CreateDIBSection function. See the Platform SDK documentation for more
information.

DirectDraw
DirectDraw® is a DirectX® SDK component that enables you to directly manipulate
display memory, the hardware blitter, hardware overlay support, and flipping surface
support. See the DirectX SDK for more information.

DirectDrawClipper
The object that DirectDraw uses to manage clip lists. A clip list is a series of rectangles

2201

Appendixes Page 40 of 53

that describes the visible areas of the surface. A DirectDrawClipper object can be
attached to any surface. A window handle can also be attached to a DirectDrawClipper
object, and DirectDraw updates the DirectDrawClipper clip list with the clip list from the
window as it changes. See the DirectX SDK for more information.

DirectDrawCreate
A function that creates an instance of a DirectDraw object. See the DirectX SDK for more
information.

DirectDrawEnumerate
A function that enumerates the DirectDraw objects installed on the system. See the
DirectX SDK for more information.

DirectDrawSurface
An object that represents an area in memory that holds data to be displayed on the
monitor as images are moved to other surfaces. See "Surfaces" in the "DirectDraw
Essentials" section of the DirectX SDK for more information.

Dispatch Message
A function that dispatches a message to a window procedure. It is typically used to
dispatch a message retrieved by the GetMessage function. See the Platform SDK
documentation for more information.

DISPPARAMS
A structure used by IDispatch::Invoke to contain the arguments passed to a method or
property. See the Platform SDK documentation for more information.

DllCanUnloadNow
A function that determines whether the DLL that implements this function is in use. If
not, the caller can safely unload the DLL from memory. See the Platform SDK
documentation for more information.

DllGetClassObject
A function that is the entry point used by C++ file and stream handlers to create an
instance of the handler. See the Platform SDK documentation for more information.

Dll RegisterServer
A function that instructs an in-process server to create its registry entries for all classes
supported in this server module. See the Platform SDK documentation for more
information.

DllUnregisterServer
A function that instructs an in-process server to remove only those entries created
through DllRegisterServer. See the Platform SDK documentation for more information.

double
The double keyword designates a 64-bit floating-point number. See the Platform SDK
documentation for more information.

DWORD
A 32-bit unsigned integer or the address of a segment and its associated offset. See the
Platform SDK documentation for more information.

en um
An enumerated type is a user-defined type consisting of a set of named constants called
enumerators. See the Platform SDK documentation for more information.

Err object
A Visual Basic object that contains information about run-time errors. When a run-time
error occurs, the Err object's properties are filled with information that identifies the
error. To generate a run-time error in your Visual Basic code, use the Raise method. See
Microsoft Visual Basic® documentation for more information.

FAILED
A function that provides a generic test for failure on any status value. Negative numbers
indicate failure. See the Platform SDK for more information.

FILETIME
A structure that holds an unsigned 64-bit date and time value for a file. This value
represents the number of 100-nanosecond units since the beginning of January 1, 1601.

2202

Appendixes Page 41of53

See the Platform SDK documentation for more information.
FOURCC

A Four-Character Code used to identify Resource Interchange File Format (RIFF) chunks.
A FOURCC is a 32-bit quantity represented as a sequence of one to four ASCII
alphanumeric characters, padded on the right with blank characters. RIFF (Resource
Interchange File Format) is a specification used to define standard formats for
multimedia files and to prevent compatibility problems that often occur when file-format
definitions change over time. Because each piece of data in the file is identified by a
standard header, an application that does not recognize a given data element can skip
over the unknown information. See the Platform SDK documentation for more
information.

GdiFlush
A function that flushes the calling thread's current batch. Batching enhances drawing
performance by minimizing the amount of time needed to call GD! drawing functions that
return Boolean values.

GetClassFile
A function that supplies the CLSID associated with the given file name. See the Platform
SDK documentation for more information.

GetClientRect
A function that retrieves the coordinates of a window's client area. See the Platform SDK
documentation for more information.

GetDDinterface
An IDirectDrawSurface3 method that retrieves an interface to the DirectDraw object
that was used to create the surface. See the DirectX SDK for more information.

Get Last Error
A function that returns the calling thread's last-error code value. See the Platform SDK
documentation for more information.

Get Message
The GetMessage function retrieves a message from the calling thread's message queue
and places it in the specified structure.

GetOpenFileName
A function that creates an Open common dialog box that enables the user to specify the
drive, directory, and the name of a file or set of files to open. See the Platform SDK
documentation for more information.

GetSystemPaletteEntries
A function that retrieves a range of palette entries from the system palette that is
associated with the specified device context. See the Platform SDK documentation for
more information.

GetWindowlong
A function that retrieves information about the specified window. It also retrieves the 32-
bit (long) value at the specified offset into a window's extra window memory. See the
Platform SDK documentation for more information.

HANDLE
The handle of an object. See the Platform SDK documentation for more information.

HBITMAP
The handle of a bitmap. See the Platform SDK documentation for more information.

Win32 HRESULT
A value returned from a function call to an interface, consisting of a severity code,
context information, a facility code, and a status code that describes the result. See the
Platform SDK documentation for more information.

IBindCtx
An interface that provides access to a bind context, which is an object that stores information
about a particular moniker binding operation. See the Platform SDK for more information.
ICAbout
A macro that notifies a video compression driver to display its About dialog box. See the Video

2203

Appendixes

for Windows Development Kit version 1.1 for more information.
ICConfigure

Page 42 of 53

A macro that notifies a video compression driver to display its configuration dialog box. See the
Video for Windows Development Kit version 1.1 for more information.
IClassFactory

An interface that contains two methods intended to deal with an entire class of objects,
and so is implemented on the class object for a specific class of objects (identified by a
CLSID). The first method, Createinstance, creates an uninitialized object of a specified
CLSID, and the second, LockServer, locks the object's server in memory, allowing new
objects to be created more quickly. See the Platform SDK documentation for more
information.

IClassFactory::Createinstance
A method that creates an uninitialized object. See the Platform SDK documentation for
more information.

ICSendMessage
A function that sends a message to a compressor. See the Video for Windows Development Kit
version 1.1 for more information.
ICGetState
A macro that queries a video compression driver to return its current configuration in a block
of memory. You can use this macro or explicitly call the ICM_GETSTATE message. See the
Platform SDK for more information.
IDataObject

An interface that specifies methods that enable data transfer and notification of changes
in data. See the Platform SDK for more information.

IDirectDraw
Applications use the methods of this interface to create DirectDraw objects and work with
system-level variables. See the DirectX SDK for more information.

IDirectDraw::Compact
A method that moves all of the pieces of surface memory on the display card to a
contiguous block to make the largest single amount of free memory available. See
IDirectDraw2::Compact in the DirectX SDK for more information.

IDirectDraw::CreateClipper
A method that creates a DirectDrawClipper object. See IDirectDraw2::CreateClipper
the DirectX SDK for more information.

IDirectDraw::CreatePalette
A method that creates a DirectDrawPalette object for this DirectDraw object. See
IDirectDraw2::CreatePalette in the DirectX SDK for more information.

IDirectDraw::CreateSurface
A method that creates a DirectDrawSurface object for the DirectDraw object. See
IDirectDraw2::CreateSurface in the DirectX SDK for more information.

IDirectDraw::DuplicateSurface
A method that duplicates a DirectDrawSurface object. See
IDirectDraw2::DuplicateSurface in the DirectX SDK for more information.

IDirectDraw::EnumSurfaces
A method that enumerates all of the existing or possible surfaces that meet the search
criterion specified. See IDirectDraw2::EnumSurfaces in the DirectX SDK for more
information.

IDirectDraw::FlipToGDISurface
A method that makes the surface that GD! writes to the primary surface. See
IDirectDraw2::FlipToGDISurface in the DirectX SDK for more information.

IDirectDraw::GetCaps
A method that fills in the capabilities of the device driver for the hardware and the
hardware-emulation layer (HEL). See IDirectDraw2::GetCaps in the DirectX SDK for
more information.

IDirectDraw::GetDisplayMode

2204

Appendixes Page 43 of 53

A method that retrieves the current display mode. See IDirectDraw2::GetDisplayMode
in the DirectX SDK for more information.

IDirectDraw::GetFourCCCodes
A method that retrieves the FOURCC codes supported by the DirectDraw object. This
method can also retrieve the number of codes supported. See
IDirectDraw2::GetFourCCCodes in the DirectX SDK for more information.

IDirectDraw::GetGDISurface
A method that retrieves the DirectDrawSurface object that currently represents the
surface memory that GD! is treating as the primary surface. See
IDirectDraw2::GetGDISurface in the DirectX SDK for more information.

IDirectDraw::GetMonitorFrequency
A method that retrieves the frequency of the monitor being driven by the DirectDraw
object. See IDirectDraw2::GetMonitorFrequency in the DirectX SDK for more
information.

IDirectDraw::EnumDisplayModes
A method that enumerates all the display modes the hardware exposes through the
DirectDraw object that are compatible with a provided surface description. See
IDirectDraw2::EnumDisplayModes in the DirectX SDK for more information.

IDirectDraw::GetScanline
A method that retrieves the scan line that is being drawn on the monitor. See
IDirectDraw2::GetScanline in the DirectX SDK for more information.

IDirectDraw::GetVerticalBlankStatus
A method that retrieves the status of the vertical blank. See
IDirectDraw2::GetVerticalBlankStatus in the DirectX SDK for more information.

IDirectDraw::Initialize
A method that initializes the DirectDraw object that was created by using the COM
CoCreateinstance function. See IDirectDraw2::Initialize in the DirectX SDK for more
information.

I Di rectDraw:: RestoreDisplayMode
A method that resets the mode of the display device hardware for the primary surface to
what it was before the IDirectDraw2::SetDisplayMode method was called. See
IDirectDraw2::RestoreDisplayMode in the DirectX SDK for more information.

IDirectDraw::SetCooperativelevel
A method that determines the application's top-level behavior. See
IDirectDraw2::SetCooperativelevel in the DirectX SDK for more information.

IDirectDraw::SetDisplayMode
A method that sets the mode of the display-device hardware. See
IDirectDraw2::SetDisplayMode in the DirectX SDK for more information.

I Di rectDraw: :WaitForVertical Blank
A method that helps the application synchronize itself with the vertical-blank interval.
See IDirectDraw2::WaitForVerticalBlank in the DirectX SDK for more information.

IDirectDraw2
Applications use the methods of this interface to create DirectDraw objects and work with
system-level variables. See the DirectX SDK for more information.

IDirectDraw2::CreateSurface
A method that creates a DirectDrawSurface object for the DirectDraw object. See the
DirectX SDK for more information.

IDirectDraw2::SetCooperativelevel
A method that determines the application's top-level behavior. See the DirectX SDK for
more information.

IDirectDrawClipper
Applications use the methods of this interface to manage clip lists. See the DirectX SDK
for more information.

IDirectDrawClipper::SetHWnd
A method that sets the window handle that will obtain the clipping information. See the

2205

Appendixes Page 44 of 53

DirectX SDK for more information.
IDirectDrawSurface

An interface used to create DirectDrawSurface objects and work with system-level
variables. See IDirectDrawSurface3 in the DirectX SDK for more information.

IDirectDrawSurface::AddAttachedSurface
A method that attaches a surface to another surface. See
IDirectDrawSurface3::AddAttachedSurface in the DirectX SDK for more information.

IDirectDrawSurface::Blt
A method that performs a bit block transfer. See IDirectDrawSurface3::Blt in the
DirectX SDK for more information.

IDirectDrawSurface::BltBatch
A method that performs a sequence of IDirectDrawSurface3::Blt operations from
several sources to a single destination. See IDirectDrawSurface3::BltBatch in the
DirectX SDK for more information.

IDirectDrawSurface::BltFast
A method that performs a source copy blit or transparent blit by using a source color key
or destination color key. See IDirectDrawSurface3::BltFast in the DirectX SDK for
more information.

IDirectDrawSurface::DeleteAttachedSurface
A method that detaches two attached surfaces. The detached surface is not released. See
IDirectDrawSurface3::DeleteAttachedSurface in the DirectX SDK for more
information.

IDirectDraw3::CreateClipper
A method that creates a DirectDrawClipper object. See IDirectDraw2::CreateClipper in
the DirectX SDK for more information.

IDirectDrawSurface::EnumAttachedSurfaces
A method that enumerates all the surfaces attached to a given surface. See
IDirectDrawSurface3::EnumAttachedSurfaces in the DirectX SDK for more
information.

IDirectDrawSurface::EnumOverlayZOrders
A method that enumerates the overlay surfaces on the specified destination. The
overlays can be enumerated in front-to-back or back-to-front order. See
IDirectDrawSurface3::EnumOverlayZOrders in the DirectX SDK for more
information.

IDirectDrawSurface::Flip
A method that makes the surface memory associated with the DDSCAPS_BACKBUFFER
surface become associated with the front-buffer surface. See
IDirectDrawSurface3::Flip in the DirectX SDK for more information.

IDirectDrawSurface::GetAttachedSurface
A method that obtains the attached surface that has the specified capabilities. See
IDirectDrawSurface3::GetAttachedSurface in the DirectX SDK for more information.

IDirectDrawSurface::GetBltStatus
A method that obtains the blitter status. See IDirectDrawSurface3::GetBltStatus in
the DirectX SDK for more information.

IDirectDrawSurface::GetCaps
A method that retrieves the capabilities of the surface. These capabilities are not
necessarily related to the capabilities of the display device. See
IDirectDrawSurface3::GetCaps in the DirectX SDK for more information.

IDirectDrawSurface::GetClipper
A method that retrieves the DirectDrawClipper object associated with this surface. See
IDirectDrawSurface3::GetClipper in the DirectX SDK for more information.

IDirectDrawSurface::GetColorKey
A method that retrieves the color key value for the DirectDrawSurface object. See
IDirectDrawSurface3::GetColorKey in the DirectX SDK for more information.

IDirectDrawSurface::GetDC

2206

Appendixes Page 45 of 53

A method that creates a GDI-compatible handle of a device context for the surface. See
IDirectDrawSurface3::GetDC in the DirectX SDK for more information.

IDirectDrawSurface::GetFlipStatus
A method that indicates whether the surface has finished its flipping process. See
IDirectDrawSurface3::GetFlipStatus in the DirectX SDK for more information.

IDirectDrawSurface::GetOverlayPosition
A method that retrieves the display coordinates of the surface. See
IDirectDrawSurface3::Get0verlayPosition in the DirectX SDK for more information.

IDirectDrawSurface::GetPalette
A method that retrieves the DirectDrawPalette object associated with this surface and
increments the reference count of the returned palette. See
IDirectDrawSurface3::GetPalette in the DirectX SDK for more information.

IDirectDrawSurface::GetPixelFormat
A method that retrieves the color and pixel format of the surface. See
IDirectDrawSurface3::GetPixelFormat in the DirectX SDK for more information.

IDirectDrawSurface::GetSurfaceDesc
A method that retrieves a DDSURFACEDESC structure that describes the surface in its
current condition. See IDirectDrawSurface3::GetSurfaceDesc in the DirectX SDK for
more information.

IDirectDrawSurface::Initialize
A method that initializes a DirectDrawSurface object. See
IDirectDrawSurface3::Initialize in the DirectX SDK for more information.

IDirectDrawSurface::Islost
A method that determines if the surface memory associated with a DirectDrawSurface
object has been freed. See IDirectDrawSurface3::Islost in the DirectX SDK for more
information.

IDirectDrawSurface::Lock
A method that obtains a pointer to the surface memory. See
IDirectDrawSurface3::Lock in the DirectX SDK for more information.

IDirectDrawSurface::ReleaseDC
A method that releases the handle of a device context previously obtained by using the
IDirectDrawSurface3::GetDC method. See IDirectDrawSurface3::ReleaseDC in the
DirectX SDK for more information.

IDirectDrawSurface::Restore
A method that restores a surface that has been lost. This occurs when the surface
memory associated with the DirectDrawSurface object has been freed. See
IDirectDrawSurface3::Restore in the DirectX SDK for more information.

IDirectDrawSurface::SetClipper
A method that attaches a DirectDrawClipper object to a DirectDrawSurface object. See
IDirectDrawSurface3::SetClipper in the DirectX SDK for more information.

IDirectDrawSurface::SetColorKey
A method that sets the color key value for the DirectDrawSurface object if the hardware
supports color keys on a per surface basis. See IDirectDrawSurface3::SetColorKey in
the DirectX SDK for more information.

IDirectDrawSurface::SetOverlayPosition
A method that changes the display coordinates of an overlay surface. See
IDirectDrawSurface3::Set0verlayPosition in the DirectX SDK for more information.

IDirectDrawSurface::SetPalette
A method that attaches the specified DirectDrawPalette object to a surface. The surface
uses this palette for all subsequent operations. The palette change happens immediately,
without regard to refresh timing. See IDirectDrawSurface3::SetPalette in the DirectX
SDK for more information.

IDirectDrawSurface::Unlock
A method that notifies DirectDraw that the direct surface manipulations are complete.
See IDirectDrawSurface3::Unlock in the DirectX SDK for more information.

2207

Appendixes Page 46 of 53

IDirectDrawSurface::UpdateOverlay
A method that repositions or modifies the visual attributes of an overlay surface. These
surfaces must have the DDSCAPS_OVERLAY value set. See
IDirectDrawSurface3::Update0verlay in the DirectX SDK for more information.

IDirectDrawSurface::UpdateOverlayDisplay
A method that repaints the rectangles in the dirty rectangle list of all active overlays. See
IDirectDrawSurface3::Update0verlayDisplay in the DirectX SDK for more
information.

IDirectDrawSurface::UpdateOverlayZOrder
A method that sets the z-order of an overlay. See
IDirectDrawSurface3::Update0verlayZOrder in the DirectX SDK for more
information.

I Di rectDrawSurface3:: Bit
A method that performs a bit block transfer. See the DirectX SDK for more information.

IDirectSound
Applications use the methods of this interface to create DirectSound objects and set up
the environment. See the DirectX SDK for more information.

IDirectSoundBuffer
Applications use the methods of this interface to create DirectSoundBuffer objects and
set up the environment. See the DirectX SDK for more information.

I Dispatch
An interface that exposes objects, methods, and properties to Automation programming
tools and other applications. A dual interface derives from !Dispatch and uses only
Automation-compatible types. Like the !Dispatch interface, a dual interface supports
early and late binding. However, a dual interface differs in that it also supports vtable
binding. See the Platform SDK documentation for more information.

IDispatch::GetIDsOfNames
A method that maps a single member and an optional set of argument names to a
corresponding set of integer DISP!Ds (dispatch identifiers), which can be used on
subsequent calls to IDispatch::Invoke. See the Platform SDK documentation for more
information.

IDispatch::GetTypeinfo
A method that retrieves the type information for an object, which can then be used to
get the type information for an interface. See the Platform SDK documentation for more
information.

IDispatch::GetTypeinfoCount
A method that retrieves the number of type information interfaces that an object
provides (either 0 or 1). See the Platform SDK documentation for more information.

IDispatch::Invoke
A method that provides access to properties and methods exposed by an object. See the
Platform SDK documentation for more information.

IEnumMoniker
An interface used to enumerate the components of a moniker or to enumerate the
monikers in a table of monikers. See the Platform SDK documentation for more
information.

IEnumVARIANT
A dispatch interface that provides a way to iterate over collection objects. See the
Platform SDK documentation for more information.

IEnumXXXX
A set of enumeration interfaces that enable you to enumerate the number of items of a
given type that an object maintains. There is one interface for each type of item. To use
these interfaces, the client asks an object that maintains a collection of items to create
an enumerator object. The interface on the enumeration object is one of the enumeration
interfaces, all of which have a name of the form !Enumltem_name. The only difference
among the enumeration interfaces is what they enumerate. There must be a separate

2208

Appendixes Page 47 of 53

enumeration interface for each type of item enumerated. All have the same set of
methods, and are used in the same way. See the Platform SDK documentation for more
information.

!Moniker
An interface containing methods that enable you to use a moniker object, which contains
information that uniquely identifies a COM object. An object that has a pointer to the
moniker object's !Moniker interface can locate, activate, and get access to the identified
object without having any other specific information on where the object is actually
located in a distributed system. See the COM documentation in the Platform SDK for
more information.

IMoniker::BindToStorage
A method that retrieves an interface pointer to the storage that contains the object
identified by the moniker. Unlike IMoniker::BindToObject, this method does not
activate the object identified by the moniker. See the COM documentation in the Platform
SDK for more information.

IMoniker::BindToObject
A method that uses the moniker to bind to the object it identifies. The binding process
involves finding the object, putting it into the running state if necessary, and supplying
the caller with a pointer to a specified interface on the identified object. See the COM
documentation in the Platform SDK for more information.

InitializeCriticalSection
A function that initializes a critical section object, which is an object used to synchronize
the threads of a single process. Only one thread at a time can own a critical-section
object. See the Platform SDK documentation for more information.

I Persist
An interface with one method, GetClassID, which is designed to supply the CLSID of an
object that can be stored persistently in the system. You must implement the single
method of !Persist in implementing any one of the other persistence interfaces:
IPersistStorage, IPersistStream, or IPersistFile. You can use !Persist when all that
is required is to obtain the CLSID of a persistent object, as it is used in marshaling. See
the Platform SDK documentation for more information.

I Persist File
An interface that provides methods that permit an object to be loaded from or saved to a
disk file, rather than a storage object or stream. Typically, for example, you would
implement IPersistFile on a linked object. See the Platform SDK documentation for
more information.

IPersistMediaPropertyBag
Documentation for this interface is identical to documentation for IPersistPropertyBag
found in the COM documentation in the Platform SDK except for the following additions:

1.) The Load method can return STG_E_ACCESSDENIED to indicate that the object is
read-only (the AV! parser, for example does this).

2.) The Save method can return E_NOTIMPL. IPersistPropetyBag::Save does not
permit this.

IPersistPropertyBag
An interface that works in conjunction with IPropertyBag and IErrorlog to define an
individual property-based persistence mechanism. See the COM documentation in the
Platform SDK for more information.

IPersistPropertyBag::Load
A method called by the container to load the control's properties. See the COM
documentation in the Platform SDK for more information.

IPersistStream
An interface that provides methods for saving and loading objects that use a simple

2209

Appendixes Page 48 of 53

serial stream for their storage needs. See the Platform SDK documentation for more
information.

IPersistStream::GetSizeMax
A method that returns the size, in bytes, of the stream needed to save the object. See
the Platform SDK documentation for more information.

IPersistStream::IsDirty
A method that checks the object for changes since it was last saved. See the Platform
SDK documentation for more information.

IPersistStream:: Load
A method that initializes an object from the stream where it was previously saved. See
the Platform SDK documentation for more information.

IPersistStream::Save
A method that saves an object into the specified stream and indicates whether the object
should reset its dirty flag. See the Platform SDK documentation for more information.

I Property Bag
An interface that provides an object with a property bag in which the object can
persistently save its properties. See the Platform SDK documentation for more
information.

I Property Page
An interface that provides the main features of a property page object that manages a
particular page within a property sheet. See the Platform SDK documentation for more
information.

IPropertyPage::Active
A method that creates the dialog box window for the property page. See the Platform
SDK documentation for more information.

IPropertyPage::Apply
A method that applies current property page values to underlying objects specified
through the SetObjects method. See the Platform SDK documentation for more
information.

I Property Page:: Deactivate
A method that destroys the window created with the Activate method. See the Platform
SDK documentation for more information.

IPropertyPage::GetPageinfo
A method that retrieves information about the property page. See the Platform SDK
documentation for more information.

IPropertyPage:: Help
A method that invokes Help in response to end-user request. See the Platform SDK
documentation for more information.

IPropertyPage::IsPageDirty
A method that indicates whether the property page has changed since activated or since
the most recent call to the Apply method. See the Platform SDK documentation for more
information.

IPropertyPage:: Move
A method that positions and resizes the property page dialog box within the frame. See
the Platform SDK documentation for more information.

IPropertyPage::SetObjects
A method that provides the property page with an array of !Unknown pointers for
objects associated with this property page. See the Platform SDK documentation for
more information.

IPropertyPage::SetPageSite
A method that initializes a property page and provides the page with a pointer to the
!PropertyPageSite interface, through which the property page communicates with the
property frame. See the Platform SDK documentation for more information.

IPropertyPage::Show
A method that makes the property page dialog box visible or invisible. See the Platform

2210

Appendixes Page 49 of 53

SDK documentation for more information.
IPropertyPage::TranslateAccelerator

A method that provides a pointer to a MSG structure that specifies a keystroke to
process. See the Platform SDK documentation for more information.

IPropertyPageSite
An interface that provides the main features for a property page site object. See the
Platform SDK documentation for more information.

IsBadReadPtr
A Win32 function that verifies that the calling process has read access to the specified
range of memory. See the Platform SDK documentation for more information.

!Specify Property Pages
An interface that indicates that an object supports property pages. See the Platform SDK
documentation for more information.

ISpecifyPropertyPages::GetPages
A method that fills an array of CLS!Ds for each property page that can be displayed in
this object's property sheet. See the Platform SDK COM documentation for more
information.

IStorage::OpenStream
A method that opens an existing stream object within this storage object using the
specified access permissions in the grfMode parameter. See the Platform SDK
documentation for more information.

!Stream
An interface that supports reading and writing data to stream objects. See the Platform
SDK documentation for more information.

ITypeinfo
An interface typically used for reading information about objects. For example, an object
browser tool can use ITypeinfo to extract information about the characteristics and
capabilities of objects from type libraries. See the Platform SDK documentation for more
information.

Load library

long

Long

A function that maps the specified executable module into the address space of the
calling process. See the Platform SDK documentation for more information.

A keyword that designates a 32-bit integer. See the Platform SDK documentation for
more information.

The Visual Basic 32-bit integer. See Visual Basic documentation for more information.
LONG

A 32-bit signed integer. See the Platform SDK documentation for more information.
LONG LONG

A 64-bit signed integer. See the Platform SDK documentation for more information.
LPCTSTR

A pointer to a constant null-terminated Unicode or Windows character string. See the
Platform SDK documentation for more information.

LPDDSURFACEDESC
A LONG pointer to a DDSURFACEDESC structure that contains a description of the
surface to be created. See the DirectDraw documentation in the DirectX SDK for more
information.

LPSTR
A pointer to a null-terminated Windows character string. See the Platform SDK
documentation for more information.

LPWSTR
A pointer to a null-terminated Unicode character string. See the Platform SDK
documentation for more information.

LRESULT

2211

Appendixes Page 50 of 53

A 32-bit value returned from a window procedure or callback function. See the Platform
SDK documentation for more information.

memcmp
AC function that compares characters in two buffers. For more information, see the Run
Time Library Reference included in the Visual C++ Developer Studio documentation, or
see other books that discuss the C and C++ programming languages.

MainAVIHeader
A structure that contains global information for the entire AV! file. See the Platform SDK
documentation for more information.

MoveWindow

MSG

A function that changes the position and dimensions of the specified window. See the
Platform SDK documentation for more information.

A structure that contains message information from a thread's message queue. See the
Platform SDK documentation for more information.

MsgWaitForMultipleObjects
A function that determines whether the wait criteria have been met. See the Platform
SDK documentation for more information.

Multi ByteToWideChar
A function that maps a character string to a wide-character (Unicode) string. See the
Platform SDK documentation for more information.

Number property
A property used to determine the nature of an error that occurred on a remote server or
in the ODBC (Open Database Connectivity) interface. See Visual Basic documentation for
more information.

OleCreatePropertyFrame
A function that invokes a new property frame; that is, a property sheet dialog box, whose
parent is hwndOwner, where the dialog is positioned at the point (x,y) in the parent
window and has the caption lpszCaption. See the Platform SDK documentation for more
information.

OPEN FILENAME
A structure that contains information that the GetOpenFileName and
GetSaveFileName functions use to initialize an Open or Save As common dialog box.
See the Platform SDK documentation for more information.

OutputDebugString
A function that sends a string to the debugger for the current application. See the
Platform SDK documentation for more information.

PALETTE ENTRY
A structure that specifies the color and usage of an entry in a logical color palette. A
logical palette is defined by a LOGPALETTE structure. See the Platform SDK
documentation for more information.

PCMWAVEFORMAT
A structure that describes the data format for PCM waveform-audio data. See the
Platform SDK documentation for more information.

PeekMessage
A function that checks a thread message queue for a message and places the message
(if any) in the specified structure. See the Platform SDK documentation for more
information.

Post Message
A function that places (posts) a message in the message queue associated with the
thread that created the specified window, and then returns without waiting for the thread
to process the message. See the Platform SDK documentation for more information.

printf
AC function that prints formatted output to the standard output stream. For more
information, see the Run-Time Library Reference included in the Visual C++ Developer

2212

Appendixes Page 51of53

Studio documentation, or see other books that discuss the C and C++ programming
languages.

PROPPAGEINFO

RECT

A structure that contains parameters used to describe a property page to a property
frame. See the Platform SDK documentation for more information.

A structure that defines the coordinates of the upper-left and lower-right corners of a
rectangle. See the Platform SDK documentation for more information.

ReleaseSemaphore
A function that increases the count of the specified semaphore object by a specified
amount. See the Platform SDK documentation for more information.

RGBQUAD
A structure that describes a color consisting of relative intensities of red, green, and
blue. See the Platform SDK documentation for more information.

Scale Height
A property that returns or sets the number of units for the vertical measurement of the
interior of an object when using graphics methods or when positioning controls. See
Visual Basic documentation for more information.

Scale Width
A property that retrieves or sets the number of units for the horizontal measurement of
an object's interior when using graphics methods or when positioning controls. See Visual
Basic documentation for more information.

Send Message
A function that sends the specified message to a window or windows. See the Platform
SDK documentation for more information.

SetDIBColorTable
A function that sets RGB (red, green, blue) color values in a range of entries in the color
table of the device-independent bitmap (DIB) that is selected into a specified device
context. See the Platform SDK documentation for more information.

SetDIBitsToDevice
A function that sets the pixels in the specified rectangle on the device that is associated
with the destination device context using color data from a device-independent bitmap
(DIB). See the Platform SDK documentation for more information.

SetDlgitemText
A function that sets the title or text of a control in a dialog box. See the Platform SDK
documentation for more information.

Set Parent
A function that changes the parent window of the specified child window. See the
Platform SDK documentation for more information.

SetWindowlong
A function that changes an attribute of the specified window. The function also sets a 32-
bit (long) value at the specified offset into the extra window memory of a window. See
the Platform SDK documentation for more information.

ShowWindow

SIZE

A function that sets the specified window's show state. See the Platform SDK
documentation for more information.

A structure that specifies the width and height of a rectangle. See the Platform SDK
documentation for more information.

sscanf
AC function that reads formatted data from a string. For more information, see the Run
Time Library Reference included in the Visual C++ Developer Studio documentation, or
other books that discuss the C and C++ programming languages.

StgOpenStorage
A function that opens an existing root storage object in the file system. You can use this

2213

Appendixes Page 52 of 53

function to open compound files, but you can't use it to open directories, files, or
summary catalogs. See the Platform SDK documentation for more information.

Stretch Bit
A function that copies a bitmap from a source rectangle into a destination rectangle,
stretching or compressing the bitmap to fit the dimensions of the destination rectangle, if
necessary. Windows stretches or compresses the bitmap according to the stretching
mode currently set in the destination device context. See the Platform SDK
documentation for more information.

StretchDIBits
A function that copies the color data for a rectangle of pixels in a device-independent
bitmap (DIB) to the specified destination rectangle. If the destination rectangle is larger
than the source rectangle, this function stretches the rows and columns of color data to
fit the destination rectangle. If the destination rectangle is smaller than the source
rectangle, this function compresses the rows and columns by using the specified raster
operation. See the Platform SDK documentation for more information.

SUCCEEDED
A function that provides a generic test for success on any status value. Non-negative
numbers indicate success. See the Platform SDK documentation for more information.

SysAllocString
A function that allocates a new string and copies the passed string into it. See the
Platform SDK documentation for more information.

SysFreeStri ng
A function that frees a previously allocated string. See the Platform SDK documentation
for more information.

timeBeginPeriod
A function that sets the minimum timer resolution for an application or device driver. See
the Platform SDK documentation for more information.

timeGetTime
A function that retrieves the system time, in milliseconds. The system time is the time
elapsed since Windows was started. See the Platform SDK documentation for more
information.

timeSetEvent
A function that starts a specified timer event. The multimedia timer runs in its own
thread. After the event is activated, it calls the specified callback function. See the
Platform SDK documentation for more information.

Translate Message
A function that translates virtual-key messages into character messages. The character
messages are posted to the calling thread's message queue, to be read the next time the
thread calls the GetMessage or PeekMessage function. See the Platform SDK
documentation for more information.

TXTDT_MG
A structure that can contain text descriptions of the video. See Section 4.1.6 and Annex
A of the DVD-Video soecification for more information. To obtain a copy of the
specification, contact Toshiba Corporation at 1-1, Shibaura 1-Chrome, Minato-ku, Tokyo
105-01, Japan, Tel. +81-3-5444-9580, Fax. +81-3-5444-9430.

video Dialog
A function that displays a dialog box used to set configuration parameters for a video
capture device driver. See the Video for Windows Development Kit version 1.1 for more
information.

video Message
A function that sends messages to a video capture device driver. See the Video for
Windows Development Kit version 1.1 for more information.

WaitForMultipleObjects
A Win32 function that determines whether wait criteria have been met. If the criteria
have not been met, the calling thread enters a wait state. The function returns when any

2214

Appendixes Page 53 of 53

one or all of the specified objects are in the signaled state, or when the time-out interval
elapses. See the Platform SDK documentation for more information.

WaitForSingleObject
A Win32 function that checks the current state of the specified object. If the object's
state is nonsignaled, the calling thread enters a wait state. The function returns when
returns when the specified object is in the signaled state, or when the time-out interval
elapses. See the Platform SDK documentation for more information.

WAVE FORMAT
A structure that describes the format of waveform-audio data. See the Platform SDK
documentation for more information.

Win Main
A function called by the system as the initial entry point for a Win32-based application.
See the Platform SDK documentation for more information.

ZeroMemory
A function that fills a block of memory with zeros. See the Platform SDK documentation
for more information.

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I llMM

2215

Glossary Page 1of14

MQi@[.jjj,M l!i.! 11ij Topic Contents l@i§il!MM

Glossary

This glossary primarily defines terms related to Microsoft® DirectShow™. See the Microsoft
Windows NT® or Microsoft Windows 95® online Help for additional information.
A.6..C D .Ef.G. H lJ K.L M NQ£QR.SI.UY W X Y Z

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§il!MM

A

advise
A call that defines a point in time when the caller wants to be notified. See also periodic
advise.

application notification
An event that the controlling application retrieves from the filter graph manager.

asychronous reader filter

ATR

A file source filter that does no parsing on its own, but just reads data off the disk for
playing back media files. This is the source filter used for most DirectShow™ filter
graphs.

Audio tape recorder.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§il!MM

B

backing object
In multimedia streaming, the backing object is either the DirectDraw surface for video or
the IAudioData object for audio.

bi-phase mark
A method of encoding digital data within an analog signal. Bi-phase mark code is self
clocking (signal alternates on entry and exit) and not polarity conscious (identical values
can be on top or bottom). Because it can be read over a wide range of play speeds, it is
used for LTC signals. (originally known as Manchester-! code).

2216

Glossary Page 2of14

Bi-phase Mark Code

Digital Signal

Value

blackburst

blit

bob

c

A video signal that can be used to synchronize multiple video sources. Blackburst
contains the vertical sync, horizontal sync, and the chroma burst information, but no
active picture information.

Bit block transfer. Used to transfer all or part of a bitmap from a source such as memory
or the screen, to a destination such as another memory or display surface.

A method of displaying interlaced video fields on a progressive monitor. See .fieH1 for a
more detailed description. See also weave.

8 31411·11' 9 1 11.1::19 Topic Contents i@i§iit§M

chroma burst
Provides color information about the active line of video to the color decoder.

class factory
A COM object that implements the IClassFactory interface and that creates one or more
instances of an object identified by a given class identifier (CLSID).

class factory template
A template that contains information about a class that iS vital to its framework. The
DirectShow COM framework developers to provide a class factory template for each C+ +
class implementing a COM object. Class factory templates are defined using two global
variables (gTemplates and g cTemplates). For more information, see COM Objects in
DirectShow.

codec
Compressor/decompressor. See compression filter.

compression filter
A specialized type of transform filter. Compression filters (compressors) accept data, use
a compression scheme to transform the data, and pass the compressed data
downstream.

cutllst
A collection of cutlist elements (clips). When you play a cutliSt, it appears as if you're
playing back one media file, but !t is actually composed of clips from one or more media
files. See About Cotlists for more information.

cutllst element
A piece (clip) from a media file. CutliSt elements make up a cutlist. See Atiout Cut lists for
more information.

2217

Glossary Page 3of14

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

D

debug build
The largest and slowest type of build, but one that provides better facilities for debugging
new code and tracking problems.

debug level
A DWORD value indicating the relative importance of a debug output, where zero is the
most important level.

downstream filter
The next filter in line to receive data from an upstream filter. An upstream filter sends
data from its output pin to the connected input pin of the downstream filter.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•Q<M!.l+' Ill.HM Topic Contents I mll§ I I gn.

E

edit decision list
Also known as an EDL. It is a list of items called events that describes a video sequence,
audio sequence, or both, using SMPTE timecode to identify the video and audio source
material. A sample event might look like this:

001 ABC123 V C 03:01:00:00 03:02:20:15 01:00:00:00 01:01:20:15

This means event 001 uses only video from reel ABC123, frames 03:01:00:00 up to but
not including 03:02:20:15, and put it on a record tape as a straight cut starting at frame
01:00:00:00.

effect filter
A filter that applies an effect to media data, but doesn't change the media type.

end-of-stream protocol
A protocol that defines how filters generate and process end-of-stream information and
how the filter graph manager is notified.

error detection and reporting protocol
A protocol that defines how errors are handled by filters and propagated to the filter
graph manager.

event notification
A system-defined event sent from a filter to the filter graph manager. Filters pass these
events to the filter graph manager by using the IMediaEventSink: : Notify method, and

2218

Glossary Page 4of14

F

field

the applicatiOn retrieves them with the IMediaEvent: :GetEvent method. For more
informatiOn, see Event Notification Codes.

+;•;"·II'* e11.1,,19 Topic Contents '@'4M't§+

A portiOn of an interlaced video frame . .r:rrsc. provides a series of 59.94 interlaced fields
per second, each separated by 1/S9.94th of a second, with the scan lines of the even
numbered fields falling spatially halfway between the scan lines of the odd-numbered
fields. No tV'.'O fields are ever displayed on a television at the same time. You always look
at either an even field or an odd field. Two interlaced video display methods are .QQQ and
weave.

Bob displays only one field at a time. In this mode, DirectDraw automatically shifts every
other field by one half pixel vertically, and then stretches each field by a factor of t•No
vertically.

Weave diSplays two successive fields at a time, where the resulting displayed image has
horizontal scan lines that are alternately taken from the two fields. The fields are
"woven" in a single frame. The top scan line of the displayed frame iS the top scan line of
the first field, the second displayed scan line iS the top scan line of the second field, the
third displayed scan line is the second scan line in the first field, and so forth.

The following diagram shows how fields are displayed in an interlaced source, using the
bob and weave interlaced video display methods. In the diagram, top field refers to the
odd, or first, field, and bottom field refers to the even, or second, field.

Bob
Display

Interlaced
Source

Weave
Display

Time
(secs)

2219

Glossary Page 5of14

u l/bU 4:::'./bU ~/bU 4/bU ~/bU

Top Field Bonoin Field Interpoldted Field Inte~poldted Field

file w .. lter

fllte ..
The section of a filter graph that consists of the multiplexer and file writer filters.

A key component in the DirectShow architecture, a filter is a COM object that supports
DirectShow interfaces or base classes. It might operate on streams of data in a variety of
ways, such as reading, copying, modifying, or writing the data to a file. Sources,
transform filters, and renderers are all particular types of filters. A filter contains pins
that it uses to connect to other filters.

fllte .. g .. aph
A collection of filters. Typically, a filter graph contains filters that are connected to
perform a particular operation, such as playing back a media file, or capturing video from
a VCR to the hard disk.

Fllte .. Graph Edi to ..
A graphical tool included with the DirectShow SDK that creates and manages filter
graphs. It enables you to easily create filter graphs by inserting filters, clicking, and
dragging to form connections.

filte .. g .. aph manage ..
A component that oversees the connection of filters in a filter graph, and controls the
media stream's data flow. Filters must be connected in the proper order, and the data
stream must be started and stopped in the proper order. The filter graph manager does
this, and can also search for a set of filters that wm render a particular media type and
build its filter graph. When an application starts, pauses, or stops the media stream,
plays for a partieular duration or seeks to a particular point in the stream, the filter graph
manager calls the appropriate methods on the filters to implement this stream control.

flushing protocol
A protocol that defines how filters flush data through the filter graph.

fo .. mat type
A~ value that indicates what a format block contains. DirectShow defines a number
of major types, for example, the video type. These major types have a format block,
such as VIDEO!NEOHEADER, that describes the media data. The format block for a
particular media type is specified by a GUID in the AM MEDIA TYPE structure. This
GUID is called the fcrmat type. If the format block contains VIDEOINFOHEADER, the
format type GUID wm be FORMAT ... Videoinfo.

frame bllttl ng

G

B!itting (bit block transferring) media data to the client area of the application window on
the primary surface.

Topic Contents '@'!*'t¥"

+31411.111.e 111.1111s T op1c Contents l@i§Mlt§M

2220

Glossary Page 6of14

GUID
A globally unique identifier used to uniquely identify objects, such as interfaces and plug
in distributors. Class identifiers (CLSIDs) and interface identifiers (IIDs) are GUIDs. You
can generate GUIDs with the command-line utility program, UUIDGEN, provided with the
Win32® SDK, or with the Microsoft Foundation Class Library (MFC) sample application,
GUIDGEN, provided with Microsoft Visual C++®.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] 11,1 Mii.HM

H

hue
Color produced by visible light.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

I

input pin
A .Qln that accepts data into the filter.

interlace

• Q<M [.] +• I!!.],.[.

Topic Contents •@M* 1gnw

Topic Contents i@faii!MM

Raster scan involving frames that are composed of two fields. See also bob and weave.
interleaving

The arrangement of corresponding video frames and audio samples in a file. Typically,
one or more frames of video data are intermixed in the file with a certain number of
samples of audio data. The data sequence is audio, followed by video, followed by audio,
followed by video, and so on, rather than all audio data followed by all video data. The
way a file is interleaved affects playback efficiency and the ability to stream the file.

© 1997 Microsoft Corporation . All rjghts reserved. Terms of Use.

MQi§i[.]jj,M 11!.HM Topic Contents i@faii!MM

K

kernel mode
The processor mode that allows full, unprotected access to the system. A driver or thread

2221

Glossary Page 7of14

running in kernel mode has access to system memory and hardware.
keyframe

A frame of video data that contains all the data necessary to construct that frame. In
contrast, delta frames contain data relating to changes from the last keyframe and do
not contain enough information by themselves to construct a complete frame.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmll§lllMM

L

letterbox
DVD-Video display format in which the video is sized as large as possible inside the
display window, without any cropping or stretching. See
DVD PREFERRED DISPLAY MODE.

Linear editing

LTC

A method of editing program material where the final product is built cut by cut in a
sequential or linear fashion. Changes to any edit require re-recording all of the
succeeding edits or using the recorded master as a source. These systems are found at
the very low end and very high end of the editing equipment market. They are comprised
of a control computer, video tape recorders and switchers, and generally do not provide
random access disk-based storage of source material, although connection to a digital
disk recorder will provide limited random access capability.

Linear Timecode (formerly known as Longitudinal Timecode). Timecode is stored on a
separate audio track and is one video frame time in duration.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmll§lllMM

M

major type
A GUID value that describes the overall class of media data for a data stream. Typical
values are MEDIATYPE_ Video, MEDIATYPE_Audio, MEDIATYPE_ Text, and
MEDIATYPE_ Midi.

merit
A value that controls the order in which the filter graph manager accesses your filter as a
result of a call to IGraphBuilder: :Connect, IGraphBuilder:: Render, or
IGraphBuilder:: RenderFile. Possible merit values include MERIT _ PREFERRED,
MERIT _NORMAL, MERIT _UNLIKELY, and MERIT _ DO_NOT _USE. See
IFilterMapper:: RegisterFilter for a description of merit values. When searching for a
rendering configuration, the filter graph manager uses the filter mapper, which reads the
registry and determines the types of filters available. The filter graph manager then

2222

Glossary Page 8of14

attempts to link filters that accept that data type until it reaches a rendering filter. A
merit value is registered with each filter and, of the filters that might be capable of
handling the data, the filters with the highest merit are tried first. The filter graph
manager uses other criteria in the registration to choose between filters with equal merit.
AMovieSetupRegisterFilter2 registers a filter's merit, pins, and media types in the
registry by using the IFilterMapper2 interface.

method
A predefined interface function.

media sample protocol
A protocol that defines the way that media samples are allocated and passed between
filters.

media time
A term used to refer to positions within a seekable medium. Media time can be expressed
in a variety of units, and indicates a position within the data in the file.

mini driver
A hardware-specific DLL that uses a Microsoft-provided class driver to accomplish most
actions through function calls and provides only device-specific controls. Under the
Windows Driver Model (WDM), the minidriver registers each adapter with the class
driver, which creates the device object. The minidriver uses the class driver's device
object to make system calls.

minor type
See subtype (media type).

moniker
An object that implements the !Moniker interface. A moniker acts as a name that
uniquely identifies a COM object. In the same way that a path identifies a file in the file
system, a moniker identifies a COM object in the directory namespace.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] 11,1 Mii.HM Topic Contents •=@• 1gnw

• ; i§i [.] +• I !!·HM Topic Contents l@l§il!MM

N

new segment protocol
A protocol that defines a way to present start and stop times and data rate information
to the filter in advance of the data, so that a filter can adjust its processing accordingly.

nonlinear editing

NTSC

A method of editing program material where the final output product is not generated
until all editorial decisions are made. All edit decisions are maintained in an edit list that
drives a real-time preview. No recording is made until the edit decisions are finalized.
This necessitates a real-time, multievent playback mechanism using digital video and
audio stored on disk drives. These systems are used primarily for offline editing,
although higher-end systems with broadcast-quality video are now available.

National TV Systems Committee analog composite color television standard. Uses a rate
of 29.97 frames per second and 59.94 fields per second. North America, Japan, and
many other countries use NTSC. See also PAL and SECAM.

2223

Glossary Page 9of14

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

0

object register
The list of objects in a debug build that have been created but not yet destroyed in the
CBaseObject class and classes derived from it.

offline editing
The process of using low-cost, nonoutput quality video and audio equipment to make
editorial and creative decisions. This process results in an edit decision list describing the
edits, and it is usually stored on a floppy disk or transferred to other systems over a
network.

online editing
The process of using high-quality mastering equipment to produce a finished program.
When fed by an edit decision list generated by an offline system, the process can be
largely automated, although some high-budget programs bypass the offline process.

output pin
A .Q_io_ that provides data to other filters.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

p

PAL

•Q<M!.l+' MB.HM Topic Contents i@faii!MM

Analog composite color television standard, with a rate of 25 frames per second, and 50
fields per second. Much of Europe, Australia, and other parts of the world use PAL. See
also NTSC and SECAM.

pan-scan
DVD-Video display format in which a 16 x 9 video is cropped for display in a 4 x 3
window, using parameters defined by the video author. See
DVD PREFERRED DISPLAY MODE.

parser filter
A filter that pulls information from a disk by using the asynchronous file reader filter, or
from the Internet by using the URL moniker filter.

performance build
A build that adds performance measurement capabilities to a retail build.

periodic advise

pin
A regular series of advise calls.

A COM object created by the filter that represents a point of connection for a data stream
on the filter. Pins provide interfaces to connect with other pins and transport data. Input

2224

Glossary Page 10of14

pins accept data into the filter, and output pins provide data to other filters. An input pin
typically exposes the IPin and IMeminputPin interfaces. An output pin typically exposes
the IPin, IMediaSeeking, and IQualityControl interfaces. A source filter provides one
output pin for each stream of data in the file. A typical transform filter, such as a
compression/decompression (codec) filter, provides one input pin and one output pin.

plug-in distributor
A COM object that exposes a particular control interface and implements it by calling the
enumerator of the filter graph manager, finding which filters expose the control interface
and communicating directly with those filters. The developer generally doesn't implement
these interfaces directly.

pre roll
The queuing of data in advance of the desired playback time or position. Preroll improves
the accuracy of playback and recording. For example, the initial audio data within AVI
files is often loaded in advance of the first video data to help synchronize the video and
audio data. DirectShow filters often preroll data so they are ready to play immediately.
Prerolling is also important in video editing and device control, because VCRs typically
position the tape to a given "preroll" distance from the point at which to record or
playback so that the recording or playback occurs cleanly.

preroll time
Preroll time is the time prior to the start position at which nonrandom access devices
should start rolling. See preroll.

presentation time
The stream time at which the packets of data that a filter receives should be presented
downstream or rendered. When a filter graph runs, each filter is passed a start time
according to the reference clock, and the packets of data that a filter receives will usually
be time-stamped with the presentation time.

preview section
The portion of the filter graph from the capture filter's preview pin downstream to and
including the video renderer.

primary surface
The area in memory containing the image being displayed on the monitor. In Microsoft
DirectX®, the primary surface is represented by the primary DirectDrawSurface object.

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

• QIM [.] +• I !!·HM Topic Contents i@i§ill@IM

Q

quality management protocol
A protocol that defines how the filter graph adapts dynamically to hardware and network
conditions to increase or decrease the media data flow. The IQualityControl interface is
used to send quality control notifications from a renderer to an upstream filter or directly
to a designated quality control manager, if one exists. (See quality sink.) The base
classes implement passing quality control notifications upstream by providing the
IQualityControl interface on the output pins of filters. Quality control notification uses a
Quality structure, which indicates whether the renderer is overloaded or underloaded.

quality sink

2225

Glossary Page 11of14

A filter object designated by the IQualityControl: :SetSink method to receive quality
messages. When IQualityControl::SetSink is called, the filter is instructed not to send
quality control messages upstream, but rather to send them to the object passed to the
SetSink method. This object is called a quality-control manager. See quality
management protocol.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmll§lllMM

R

reference clock
An object that provides a clock and supports the scheduling of events according to time
as counted by that clock. Any reference clock must support the IReferenceClock
interface. The time of the clock can be obtained by calling the IReferenceClock: :GetTime
method. The time returned by GetTime is defined as a REFERENCE TIME type and
loosely represents the number of 100-nanosecond units that have elapsed since some
fixed start time. The return value should generally increase at a rate of approximately
one per 100 nanoseconds. In exceptional circumstances, the clock can stop for a time.
(This will suspend any filter that was using the clock as a sync source.) The clock can
also jump forward in exceptional circumstances.

reference time
An absolute time established by a reference clock in the filter graph. It refers to some
time value outside the filter graph (for example, perhaps the time since Windows® was
started). The reference time can be obtained by calling the IReferenceClock: :GetTime
method. The time returned is defined as a REFERENCE TIME type and loosely represents
the number of 100-nanosecond units that have elapsed since some fixed start time. Note
that the reference time does not have to bear any permanent relationship to a real time.
It can drift, it can drift at a changing rate, and it need not correct for such drift. In
particular, it does not have to represent a count of the number of 100 nanoseconds that
have passed since some arbitrary time in the past. See Understanding Time and Clocks
in DirectShow for more information.

renderer
A filter that renders media data to any location that accepts media input. Most often,
data is rendered to a computer monitor, sound card, or printer. Renderer filters have
only input pins.

rendering filter
See renderer.

retail build
The smallest and fastest type of build, it is not as robust as a debug build.

run time
The control and a set of DLLs that enable you to play back the supported media types.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

8 4'MM+1 111·!:.!¥ Topic Contents lmll§lllMM

2226

Glossary Page 12of14

s

saturation
Color purity. For example, a color that is completely blue has a 100% saturation, while
white, which is composed of all colors, has a zero saturation.

SE CAM
Analog composite color television standard, with a rate of 25 frames per second, and 50
fields per second. Much of Europe, Australia, and other parts of the world use SECAM.
See also NTSC and PAL.

seekable renderer
A renderer that reports EC COMPLETE once when all seekable streams on that filter have
reached the end of the stream. A seekable renderer is a renderer that supports the
IMediaPosition object from the filter and has only input pins, or is a renderer whose input
pins report that they are rendered. If the filters in a filter graph detect the end of the
stream, the filters report it with the EC_COMPLETE event notification. The filter graph
asks filters if they can report EC_COMPLETE through a seekable renderer.

servo
The electromechanical system that maintains the proper speed and phase of a VCR's
video head and tape transport.

sink file
The current file into which media samples will be written.

source filter
A filter that takes data from some source such as the hard drive, network, or the
Internet, and introduces it into the filter graph.

stream notification
An event that occurs in the media stream and is passed from one filter to the next.

stream time
A time that represents the time the since the filter graph was last started. By definition,
stream time is equivalent to reference time minus start time when the graph is running.
Stream time is relevant only within a running filter graph. When a filter graph is run,
each filter is passed a start time based on the reference clock, and the packets of data
that a filter receives will usually be time-stamped with the stream time.

subtype (media type)
A GUID value that describes the specific format of media data for a data stream. Typical
values include MEDIASUBTYPE_MJPG, MEDIASUBTYPE_RGB8, MEDIASUBTYPE_RGB565,
MEDIASUBTYPE_MPEGPacket, MEDIASUBTYPE_Avi, and MEDIASUBTYPE_WAVE. See
AM MEDIA TYPE for more information.

sync source
See reference clock.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents ittfj(§i 11¥+

MQi@i·li!:+ M!i.1 1119 Topic Contents i@i§i +gzj+

T

2227

Glossary Page 13of14

tearing
A visual rip effect that occurs when one displayed video frame contains parts of two
different source video frames. It is usually caused by improper synchronization between
video rendering and the graphics display. DirectShow uses double- or triple-buffered
DirectDraw overlay surfaces when possible to prevent tearing.

In analog video terms, tearing occurs due to poor synchronization of a video signal at an
edit point.

timecode
SMPTE timecode, more properly known as SMPTE time and control code, is a series of
digital frame address values, flags, and additional data applied to a video or audio
stream, and is defined in ANSI/SMPTE 12-1986. Its purpose is to provide a machine
readable address for video and audio.

time stamp
Time on a media sample indicating when it was recorded and when it should be
scheduled for playback. Time stamps are measured in 100-nanosecond units
(REFERENCE TIME) and are normalized so that zero indicates when the graph is run. See
Time Stamps for more information.

transform filter
A filter that takes data, processes it, and then passes it along to the next filter in the
filter graph.

transform-inplace filter
A transform filter that can perform its operation in place (without copying data or altering
the data's media type).

transport
The mechanism that channels audio data, video data, or both from an external device to
the computer and from the computer to the external device.

trimin
The beginning time (starting position) of a cutlist element or clip within a media file. See
About Cutlists for more information.

trimout
The ending time (position) of a cutlist element or clip within a media file. See About
Cutlists for more information.

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

• QIM [.] +• I !!·HM Topic Contents l@i§i MUMM

u

upstream filter
The filter that passes data from its output pin to the connected input pin of the next filter
in the filter graph.

URL moniker filter

2228

Glossary Page 14of14

A source filter that reads from an Internet server.
userbits

Undefined bits in the SMPTE timecode. These bits can be used for a variety of purposes
such as identifying shot and take numbers, calendar date, client code, or any other
information the user wants to encode so that it travels with the source material
throughout the post-production process. Often, userbits contain original film and audio
tape information. This information is used to generate negative cut lists, so a theatrical
film can be edited electronically.

© 1997 Microsoft Corporation . All rjghts reserved. Terms of Use.

v

VITC

MQi§i[.]11,M '!!·HM Topic Contents lmll§I llMM

Vertical Interval Timecode. Timecode information stored in a video signal's vertical
blanking interval. It is usually located on one or two lines somewhere between lines 10
and 20.

vertical blanking interval

VPE

VTR

A synchronizing period in the video signal when no active picture information is
transmitted.

Video port extensions. Extensions to the DirectDraw API to control the video stream from
the video port, within the context of VGA memory.

Video tape recorder.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•Q<M!.l+' •11·!:.!¥ Topic Contents Mfflll§M " xt•

w

weave
A method of displaying interlaced video fields on a progressive monitor. See field for a
more detailed description. See also bob.

wildcards
Character that is substituted to represent multiple strings. For example, "?" represents
any single character,"*" represents zero or more characters, and"#" represents any
single digit (0-9). Thus, Strmbas? .lib would match both Strmbasd.lib and Strmbase.lib.
Strm*.lib would match Strmbasd.lib, Strmbase.lib, and Strmiids.lib.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

2229

Legal Information Page 1 of 1

����� ��	
����
�

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

���������
��������� ����������� �����

���� �� � ��	
������ �����	�� ��� �� �	 �����	� ����������

 ����� �� ����
 ����	����
 �	
	��	�
���� ���	
�� �� �������� ��� �����
������ �	������ ���� ��� �������� ����������
���� ��
����������	 ������ ������ �� ������	 �� ���� ��������� ��� ������ ���� �� ��� ��� �� ��� ������� �� ���
��� �� ���� �������� ������� ���� ��� ����� ��� ����� �� ��������	 �������	 ����	 ����������	
������ ���� 	
�����
� �
�
�� ��
 ��������� ��� ��
 �� �� ��� ���
��
� �� �
��
�
�� ��� �
��
�����������
������ ����
�� �� ������ ������ ��������� ������ �������� ���� ��� ���
����
��������	 ��� �� 	�� ������������	� �� 	�� ����� �� ���	 �� 	��� �������	 ��� �� ���������� ��
����������	 �� ��� ��� � �� ��� ������ ��������� � ����������� ������ ��� ������� �������
���������� �
 �������
 ����������� �
� �������� ���� ���� ����� �
 ������ �� ���������� ����������
�� ����� ��� 	��
 �� ����
 ��������

�������� �� ���� ��	����� ���	��
 ��� �		�����
 �������� ���� �� ����� �� ������������ ���� �� ���
����������� �� ���� ��	���������� ��
 � ���		����� �� ��
 ��� � �� �		����� �������������� �� ���
���	��������
 �� ����� ��	���������� �� ��������� ��	������ ������� �� ������������
 ��� ��
 �������
���� ����� �		�� ����	��
 �� ������	��
 ���� ����� ���		���	����

��	������ ��
 ���� ������� �� ������� ������ �����	������� ����������� 	��
������� �� �����
�������	���� �������
 ������ 	������� ����	� ������ �� ���� ��	������ ��	��� �� ��������
 �������� ��
��
 ������� ��	���� ��������� ���� ��	������ ����������� ��� ���������� �� ���� ��	����� ���� ���
����
�� ��
 ��	���� �� ����� �������� ����������� 	��
������� �� ����� �������	���� �������
 �������

! "##$%"##& ��	������ ����������� '�� ������ ���������

�����������	 �������	 �������	 ��������	 ���������	 ������	 ������	 ��������	 �������� ����	
��	 ������� ���� ��	
���� �	����� �������� ���
�� ������ ���
�� ���� ���
�� ���� ������

��������
�� ������� ��
� ����� �������� �
���
�� � �
���
�� �� �������� ����
���� ��
��� ��� �	
�� ���� ���	�����

�	��� �� � �������
 ��
���� �� �	��� ��������	�

���� ���� �	
 �����
 ���� �� ��
����� �� ������	� ������� ��������	�

 ��� ��
��� �	
 �����	! 	���� ��	���	�
 ����	 ��! "� ��� ��
����� �� ���� �������#�
�$	���

2230

About This Programmer's Reference Page 1 of 1

����� ��	
 ����������
 ���������

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

���� ���	��	� ���� 	������ �� ��	 ������� �����	����	 !������	�"� #	�	�	��	 ��	�	���
�����	������ �� �	�	
����� ����$�	 ��� ��������� �
���� ��� ��������� ��������

���� ��� ������	
��� �� ��������� �	���	��
�	
 ������
� ���	��	�
 �����
��
���� ���
��
���������
��������� ���������� ��� ������ ���� ��� �� ���� �� �� ���������� ������������
��� �� ���������� �������� � �������! �"���# ������� ���� �� ������� � $�� ���!����

�� ��%%����! ������� ������ ��� ����������� �$��� ���������
��������� ��� ���� �����
������������&

� ���������
��������� �����

� ������������ ��������

� ���������� ��� ���������
��������� ��������

2231

jmi
Rectangle

Broadcast Architecture Defined Page 1 of 1

���������
��������� �����

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

��	 ���������
��������� ����������
��� � �� �������� ���� �� �
� ��������� ������� ��
��������� ����� �������� ���
�������� ������ ������� �������� �� ���� � ��������� �
���� ���

������� ���� �	�
��� ��� ��� ������ ��������� �	�
����

����� ��	
��
� ����������� ����	�
���	�
�� �	������ �

 �	��� �	� �	����� ��������� �
� ��
��������� �
�� ������ ��������� ������� ��� ���� �� ���������� �� ������ ����� �� ������
����������� 	��
�� �
� �
 ����� �����
� ���� �� ���
�	����� �� ����������

2232

Documentation Structure Page 1 of 2

��������	�
�� �������

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

��	 ������� ������	����	 �������	��� �	�	�	��	 ������� ��	 ��

����� �	������

� ��������� �	
���	� ����� ����
��

� �	����
���	 �� ����
��� ��
����
����� ���
�
����� ����

�	
���� �� ����
���
��
����
�����

� ��� ����
��� ��
����
���� ������ ���
� ������� ��
����� ��� ������� �� ����� ���
�������� �� �� ����	�� �	 ��� �������� ���	��� �� ������ ��� ����
��� ��
����
�����

� ����
��� !���	�� ����������	� ��� �� ������ �������� ��� ��� ����
���
���	� �	 ��� "�
������#
��	���# �� �����	
�� �	��� ��
 ��	
��
������ 	��� 	��
��

� ���������
���� ����������� ��������� �� ��������� ������� �� �� ��������� ������

�
���� ������� ���������� ��������� ������� ��� �������� ����� ���������
�� � ��������� ������

� �������� ������ ��������� �� �! !��� ��������� �������� ���� ������ ��
 ��� ������ ���� ������� ��� ��� �������� ����� ����� � ��� �� ����� ��
����� � ����������

� "������ #��� ������ ���������� ������ ���� ������� �� ������� �	
�� ��������
�� �����	�
� ��	���	����� ��

�	���� ���
���
 �� �������� �� ������� ����� �����	�
�
�������� ��
�	����
 �� ������� ����� !���� "����� "�������
� ����� !��� ��#�	�
� ��
����� !�����
� �	���� ��� ������� ����� $���
��� %�����
�

� ��������	 ���� ��������� ���������	 ��� ��������	 ���� �������� � ��������
������������ �
 ��� ������
� ���� ��
����� �
��
����
� ���� ��
����� �
� ����������

������ ������
���

� ���� ����	
��� ��
�	�	�� ��� ����
��� ��� ������� ����	� �� ������
����� �	�������
�	�� �����
������ �� ��� �������� ��	���
 ���	�	�� �
�����

� ���	�	�� ������� �������� ���
������ �� ���	�	�� ������ �����	��� ���� ������� ���
��� ���
��

����� �������

� ���	�	�� ������ ������������� �������� 	� �������� �� ��� ������ 	����������� ��� ��
���	�	�� 	�	 �� �
����� �� ��� �����

� ������� ������� ������ ���
��	������ ��������� ����� 	� �����	����� ������ ��
������� ���	
�����	 � ���� �����
� ������ ��� �����
��� ��
����
�����

� ��������� �
������� �
���� ���
������� ��� ��������� �
������� �
��� ����� ���	�
������� �	�
��
 �������
	 ��� �
� 	��� � ��	����
 ���� ����

� �������� ��	���
 ���	�	�� ������� ���������� ��� ������ ���������� �������� ��	���

���	�	����� �� �����	�
� ��	���	�����

� �
��� �����	�
� ��	���	����� ��������� ����������� �� �� �� �������
������� ��� �����	�
�
��	���	����� ��

�	���� ��	����
 �� ��������� ����	
�

� ��
������� ������ ��
	�

��� �� �� ���
��� ����� ��� ����� �� � 	������� ��� �� ��
������ ����	�
 �

�	����� ��� ������

� ������� � 	
��� �
��� �������� ������� �������� ��� �� ����� ������� ���� ����
���������� ���� ��� ����� ����	�
��

� ��������	
 ��� ����	����� ��������	
 �� �� �������� ���� ���	
���� ���	
 ����
����������	��

� ��������
� ������ ������� ���������� �� � ������ ��� �������� ������������ ����
��������� �� ������� ����� ������ � �� ����� �� �� �������

2233

Documentation Structure Page 2 of 2

� ������� �	�
	� ������������ ��
	���� ��� �� ����	 ����������� ���� �	�� ���� �� ��	 ���
��� ������� �� ��	 ��������� �	������

� �������� �	������ ��������� ������	����	 �	� ��

2234

Prerequisites for Broadcast Architecture Development Page 1 of 6

Prerequisites for Broadcast Architecture
Development
[This is preliminary documentation and subject to change.]

The Broadcast Architecture Programmer's Reference assumes the reader is familiar with general
concepts of programming for Microsoft® Windows® operating systems, such as:

� The Network Driver Interface Specification (NDIS) driver model
� The Windows Sockets (WinSock) application programming interface (API)
� The Microsoft® DirectShow™ API
� Stream class drivers based on the Windows Driver Model (WDM)

To locate more information on these or other subjects related to Broadcast Architecture development,
see Finding Further Information. To locate sample applications that demonstrate concepts described in
this programmer's reference, see Broadcast Architecture Sample Applications. For more information
on working with type libraries in Broadcast Architecture, see Creating Type Libraries for Broadcast
Architecture.

Finding Further Information

[This is preliminary documentation and subject to change.]

Depending on what type of software you are developing, you may need to review information on
programming topics.

You can obtain much of this information, including all documentation in the Platform Software
Development Kit (SDK), through the Microsoft® Developer Network (MSDN). Microsoft strongly
encourages you to enroll in Microsoft Developer Network Level 2 or greater. For enrollment
information, contact your local reseller or call (800) 759-5474. For the most timely development
information from MSDN, connect to the http://www.microsoft.com/msdn/ site.

The following lists indicate where to find documentation or other information on topics referred to in
the Broadcast Architecture Programmer's Reference.

Further General Information

� For information on NDIS, see the Microsoft® Windows NT® version 4.0 DDK. This DDK
contains most NDIS information Broadcast Architecture developers require. Broadcast
Architecture relies on NDIS version 5.0, a recent update; for any information specific to NDIS
5.0, see the NDIS 5.0 specification.

� For information on Windows base services, including the Microsoft® Win32® application

2235

Prerequisites for Broadcast Architecture Development Page 2 of 6

programming interface (API), see the Windows Base Services section of the Platform SDK. For
information on the Win32 error function GetLastError, see the Debugging and Error Handling
section within the Windows Base Services section.

� For information on WinSock version 2.0, see the Windows Sockets 2 section in the Platform
SDK.

� For information on WDM stream class drivers and filters, including those that are part of the
Windows 98 operating system, see the device-driver documentation for Windows 98. This
documentation is provided as part of the Windows 98 beta program.

� For information on how to create show enhancements and other content data, see the Design
Kit for the Microsoft Broadcast Architecture compact disc.

� For information on DirectShow, including information on constructing a custom filter graph and
creating new DirectShow filters, see the DirectShow section in the Platform SDK.

� For information on video card requirements for Broadcast Architecture, see Hardware Design
Guide for Microsoft® Windows® 95, available from Microsoft Press®.

� For information on the Component Object Model (COM) and on Microsoft® ActiveX™
technologies, see the COM and ActiveX Object Services section of the Platform SDK.

� For information on Data Access Objects (DAO), see the DAO SDK documentation supplied
with the Microsoft® Visual C++® development system or with MSDN Level 2.

� For information on Structured Query Language (SQL), see the Microsoft® Jet Database SQL
Reference in the DAO SDK documentation.

� For information on the Microsoft® NetShow™ server, see the Microsoft NetShow section of
the Platform SDK, or the http://www.microsoft.com/netshow/ site.

� For information about the Task Scheduler feature of Microsoft® Windows® 98, see the Task
Scheduler section of the Platform SDK.

� For information on CryptoAPI, see the CryptoAPI 2.0 section of the Platform SDK.
� For information on cryptographic service providers, see the Cryptographic Service Providers

section of the Platform SDK.

Further Information on Television Services for the Client

� For more information on using the Jet database, as required by some functions of Television
System Services (TSS), see the DAO SDK documentation supplied with Visual C++ or with
MSDN Level 2.

� For information on the ITaskTrigger interface and the TASK_TRIGGER structure used with
TSS and with show references, see the Task Scheduler section of the Platform SDK.

� For information on the IDispatch COM interface used by the TSS object library and TV Viewer
applications, see the Automation section of the Platform SDK.

� For information about using the Jet Installable Sequential Access Module (ISAM), see the DAO
SDK documentation.

� For information on the SAFEARRAY and VARIANT data types, see the Automation section
of the Platform SDK.

� For information about the IEnumVARIANT interface used in enumerating collections, see the
Automation section of the Platform SDK.

� For information about ITask interface, see the Task Scheduler section of the Platform SDK.
� For information about the GetActiveObject function used when connecting to TV Viewer, see

the Automation section of the Platform SDK.
� For information about the IOleObject interface and the IOleObject::DoVerb method used by

the Broadcast Architecture ITVControl interface, see the COM section of the Platform SDK.
� For information about the idle processes used by ITVControl, see the OnIdle function topic in

2236

Prerequisites for Broadcast Architecture Development Page 3 of 6

Microsoft® Foundation Classes (MFC) documentation supplied with Visual C++ or with
MSDN Level 2.

� For information on the QueryDef query definition, see the DAO SDK documentation supplied
with Visual C++ or with MSDN Level 2.

Further Information on Program Guide Services for the Client

� For information on accessing the Jet database engine from a Guide database loader when
developing in Microsoft® Visual Basic®, see the Visual Basic documentation supplied with the
product or with MSDN Level 2.

� For information on accessing a Jet database from a Guide database loader when developing in
Visual C++, see the DAO SDK documentation supplied with Visual C++ or with MSDN
Level 2.

� For information on the DAO objects CdbDBEngine, CdbWorkspace, and CdbDatabase and
the DAO function OpenRecordset used with the Guide data object classes, see the DAO SDK
documentation.

� For information on setting the path and file name of the Guide database, on adding or deleting
Guide database users using DAO, and on running a DAO query on the Guide database, see the
DAO SDK documentation.

� For information on specifying a SQL Where clause as part of setting user viewing restrictions,
see the Microsoft Jet Database SQL Reference in the DAO SDK documentation.

� For information about the SendMessageTimeout and PostMessage functions used when
performing event notification for Guide database loaders, see the Windowing section in the
Setup and Systems Management Services section of the Platform SDK.

� For information about using the Jet Installable Sequential Access Module (ISAM) when loading
show enhancements, see the DAO SDK documentation.

Further Information on Streaming Video Services for the Client

� For information about the methods, properties, and events used with the Visual Basic Extender
object when working with the Video control, see the Visual Basic documentation supplied with
the product or with MSDN Level 2.

� For information on the Visual Basic Object Browser, see the Visual Basic documentation.
� For information about the IFontDisp interface used by the Font property of the BPCVid object

for the Video control, see the COM section of the Platform SDK.
� For information on locale identifiers for use with Video control properties, see the International

Features section in the Windows Base Services section of the Platform SDK.
� For more information about the RGB and QBColor methods of Visual Basic, see "Working

with Color" in the Visual Basic documentation.
� For information on the HWnd handle property used with BPCDevices, see the User Interface

Services section of the Platform SDK.
� For information on country codes for use with CountryCode, a property of the

BPCDeviceBase object used with the Video control, see the DirectShow section of the
Platform SDK.

� For information on the BPCDeviceBase property Rate, see the IMediaPosition object
documentation in the DirectShow section of the Platform SDK.

Further Information on Data Services for the Client

2237

Prerequisites for Broadcast Architecture Development Page 4 of 6

� For more information about services in Windows that support the Session Description Protocol
(SDP), see the reference entry for the ITSdp interface in the TAPI Version 3.0 section of the
Platform SDK.

� For information on the relationship between an announcement in Announcement Listener and a
deletion notice for that announcement, see the Session Announcement Protocol (SAP)
specification.

� For information on the IPersistStream interface used by Announcement Listener, see the COM
section of the Platform SDK.

� For information on the stream compiler language and its syntax, see the stream compiler syntax
reference included with the Design Kit for the Microsoft Broadcast Architecture compact disc.

� To find the stream compiler object library, Stream.dll, see the Design Kit for the Microsoft
Broadcast Architecture compact disc.

� For information on File Transfer Service (FTS), a component of NetShow used to transmit
enhancement files and their dependencies, see the Microsoft NetShow section of the Platform
SDK.

� For information on the enhancement stream editor, see the Design Kit for the Microsoft
Broadcast Architecture compact disc.

� For information on designing and creating enhancements for shows and on enhancement design
issues, see the documentation included on the Design Kit for the Microsoft Broadcast
Architecture compact disc.

� For more information on the CSS positioning feature of Dynamic Hypertext Markup Language
(DHTML) for use in enhancement layouts, see the Dynamic HTML section of the Internet
Client SDK or the Internet Explorer Reference section of the Platform SDK.

� For information on the channel subscription mechanism of Microsoft® Internet Explorer version
4.0, used in Internet channel broadcasting, see the Internet Client SDK or the Internet Explorer
Reference section of the Platform SDK. This documentation includes information on channels
and Channel Definition Format (CDF) files.

� For additional information on Internet Explorer 4.0, see the http://www.microsoft.com/ie/ site.
� For the CDF specification and related information, see the

http://www.microsoft.com/standards/cdf-f.htm site. The site
http://www.microsoft.com/workshop/prog/ie4/channels/cdf1-f.htm also provides information
about channels and CDF.

� For more information on Active Server Pages for use in Internet channel broadcasting
development, see the Active Server Pages section of the Platform SDK.

Further Server Information

� For documentation on the WinSock structure FLOWSPEC used with Microsoft Broadcast
Data Network (MSBDN) functions, see the Windows Sockets 2 section of the Platform SDK.

� For information on the speed of the serial interface to use for communication with the TES-3
encoder, information used by the serial VBI output driver, see the documentation for the
Norpak TES-3 encoder.

� For documentation on the Win32 API functions that output driver functions call, see the
Windows Base Services section of the Platform SDK.

� For documentation on the Win32 API function GetTempPath, used in setting system options
for an Internet Channel Broadcast server, see the Files and I/O section in the Windows Base
Services section of the Platform SDK.

� For information on the channel subscription mechanism of Internet Explorer 4.0, used in

2238

Prerequisites for Broadcast Architecture Development Page 5 of 6

Internet channel broadcasting, see the Internet Client SDK or the Internet Explorer Reference
section of the Platform SDK. This documentation includes information on channels and CDF
files.

� For additional information on Internet Explorer 4.0, see the http://www.microsoft.com/ie/ site.
� For the CDF specification and related information, see the

http://www.microsoft.com/standards/cdf-f.htm site. The site
http://www.microsoft.com/workshop/prog/ie4/channels/cdf1-f.htm also provides information
about channels and CDF.

Further Information on Development Tasks in Broadcast Architecture

� For more information on working with display surfaces, also called drawing surfaces, see the
documentation for the Microsoft® DirectDraw® API in the DirectX 5 section of the Platform
SDK.

� For information on the CdbDBEngine object used when creating a custom database loader, see
the DAO SDK documentation supplied with Visual C++ or with MSDN Level 2.

� For information about the GetActiveObject function used when connecting to TV Viewer, see
the Automation section of the Platform SDK.

Broadcast Architecture Sample Applications

[This is preliminary documentation and subject to change.]

A group of sample applications, controls, and libraries for use with Broadcast Architecture is provided
with the Platform SDK and with the Windows 98 beta program.

In the Platform SDK, text files including sources, libraries, and control files needed to create
executable versions of the samples reside in the SDKDIR\Samples\Graphics\Ba directory. Note that
SDKDIR in this path represents either the Mssdk directory on the Platform SDK compact disc, or the
directory you selected for installing the Platform SDK.

If you are a member of the Windows 98 beta program, you can also get these samples by downloading
the file Basamp.zip from the World Wide Web page at http://winbeta.microsoft.com/bpc/.

The samples are as follows:

� Four samples developed in different ways demonstrate how to use the Video control to display
video. These samples are located in the UseVideo subdirectory:

� The Vid_Tune subdirectory contains a Visual Basic group comprising a Visual Basic
control and a Visual Basic project to test the control. The Visual Basic control contains a
Video control as a constituent control.

� The VidCntrl subdirectory contains a Visual Basic project that uses the Video control.
� The VideoMFC subdirectory contains a Visual C++ project workspace that uses the

Video control.
� The WebTune subdirectory contains a Hypertext Markup Language (HTML) document

that Internet Explorer uses to display a Video control.

2239

Prerequisites for Broadcast Architecture Development Page 6 of 6

For more information on how to run each sample, see the Readme.txt file in the directory for
that sample.

� Two samples developed in different ways, Load and Download, demonstrate how to write
Guide database loaders. The Loader subdirectory contains source code for the Load sample, a
simplified loader that gives an unobstructed view of how certain loader functions work. The
Download subdirectory contains source code for the Download sample, which shows how to
write a full-featured loader. For more information on each sample, see the Readme.txt file in the
subdirectory for that sample.

� The sample application Schsamp.dll is an ActiveX component that schedules a show reminder.
It is located in the subdirectory Schsamp. For information on how to compile and run
Schsamp.dll, see the Readme.txt file in that subdirectory.

� The sample MFC application Tvxsamp.exe demonstrates how to connect to and control TV
Viewer. It is located in the subdirectory Tvxsamp. For information on how to compile and run
Tvxsamp.exe, see the Readme.txt file in that subdirectory.

� The sample applications Wsend and Wlisten send and receive multicast data. In addition, Wsend
sends data to the Microsoft Multicast Router using a tunnel. The sample library Brtest includes
functions used by Wsend and Wlisten. These samples are located in the subdirectories Brtest,
Wsend, and Wlisten. For more information on how to compile and run each sample, see the
Readme.txt file in the subdirectory for that sample.

Creating Type Libraries for Broadcast Architecture

[This is preliminary documentation and subject to change.]

Broadcast Architecture does not provide separate type library files for its components. Instead, type
library information is included as a resource in the .dll or .ocx file for the component in question.
Including type library information as a resource ensures that this information is always the correct
version for the object library. To create a type library from a .dll or .ocx file, use the type library
utilities provided by your compiler.

If you are using Visual C++, the type library utility is the ClassWizard available from the View menu.
In Microsoft® Visual J++™, use the Java Type Library Wizard available from the Tools menu. In
Visual Basic, simply create a reference to the object library or add the component to the project.

2240

Introduction to Broadcast Architecture Page 1 of 7

Introduction to Broadcast Architecture
[This is preliminary documentation and subject to change.]

Broadcast Architecture enables personal computers to receive video and digital data from virtually any
broadcast source, including existing satellite, cable, and terrestrial television networks. Effective with
the Microsoft® Windows® 98 operating system, every copy of Windows shipped includes extensions
that support Broadcast Architecture. Any computer running these extensions, and equipped with
enabling hardware, can receive interactive entertainment and information delivered through high-
speed, nationwide broadcast channels.

Broadcast Architecture offers an evolutionary step in the progress of computers and television. By
using Broadcast Architecture, you can build upon your existing content and technologies, while
creating added value by combining them in new ways. At the same time, Broadcast Architecture
suggests new avenues for the distribution of home entertainment, news, information, education,
software, and general retail merchandise.

The following sections introduce the concepts, goals, and implications of Broadcast Architecture:

� Concept: Computers Receive Broadcasts. In a nutshell, Broadcast Architecture allows personal
computers to receive broadcasts transmitted over any kind of network.

� The Broadcast Push Model. Why broadcasting is an efficient way to deliver large amounts of
information.

� Computer Power. As a receiver of television, radio, and data broadcasts, a personal computer
has many advantages over older technologies.

� New Kinds of Television. The combination of television and computers creates a new medium
that not only provides information and entertainment for users, but also offers many new
opportunities for advertisers, broadcasters, network operators, all types of publishers, and
hardware and software manufacturers.

� New Kinds of Data. New types of content can be designed and created specifically for
broadcast clients. At the same time, broadcast client viewers can watch standard television with
top-of-the-line picture quality and sound.

Concept: Computers Receive Broadcasts
[This is preliminary documentation and subject to change.]

Broadcast Architecture relies on Internet Protocol (IP) multicast and other standard technologies to
let a personal computer receive unidirectional digital and analog transmissions over any kind of
television or computer network. Broadcast Architecture is transport independent; in other words,
Broadcast Architecture data can travel over any standard data-transfer system.

2241

Introduction to Broadcast Architecture Page 2 of 7

Following a standard client/server computing model, broadcast-enhanced computers are equipped to
act as "clients." In other words, they serve as data tuners that receive and process streams transmitted
to them by broadcast "servers."

The following diagram illustrates client computers receiving broadcast data over different kinds of
television network.

A broadcast client can easily be equipped with appropriate receiver cards and supporting software to
receive broadcasts in virtually any format from almost any source. Whether the transmission travels by
satellite, cable, conventional terrestrial antenna, or over a computer network, whether the signal is
digital or analog, whether it is a video, audio, or binary data stream, broadcast clients are designed to
accommodate it. Clients accommodate all these types of data in a standard way using the Microsoft®
Windows® 98 operating system. In fact, the same broadcast client can receive almost any combination
of sources and data types.

Almost all the technology and infrastructure needed to create broadcast clients is currently in place. In
particular, broadcast clients rely on broadcast networks and a phone-line back channel that are
inexpensively and reliably available in virtually every home today.

Broadcast clients provide a particularly flexible and cost-effective path to television of the future. Not
only do they have a lot to offer immediately, but also they support low-cost incremental steps to
higher television resolutions, growing back-channel bandwidth, increasing interactivity, and new
multimedia forms of television. For viewers and content producers alike, broadcast clients provide
painless interim solutions at every stage of the path. Rather than becoming obsolete when new

2242

Introduction to Broadcast Architecture Page 3 of 7

technology becomes available, they are designed to incorporate technological advances smoothly.

Broadcast client software has been designed so that some simple, impressive combinations of
television and information content can immediately be delivered in the form of World Wide Web
pages. Broadcasters can thus take advantage of standard Web design tools, scripts built in the
Microsoft® Visual Basic® programming system, and skills they already have to create multimedia
television rapidly and easily. In the cases where Web functionality is insufficient, programmers can
readily take advantage of the power of the operating-system software provided for the broadcast client
to write special-purpose applications.

The Broadcast Push Model
[This is preliminary documentation and subject to change.]

Data transmitted over a computer or broadcast network using a unidirectional "push" model can reach
very large numbers of people much more efficiently than the bidirectional "pull" model used on most
computer networks today.

Computer networks today, including the Internet, generally use a pull model for transmitting data. In a
pull model, a client sends a request for specific data to a server. The server processes the request and
then sends back the requested information. In this model, clients "pull" information from the server.
The process breaks down when too many clients request information at once. This breakdown occurs
because even very powerful servers can handle only a limited number of requests at a time, and they
must send a separate response to every request.

In a true push model, by contrast, the server broadcasts a large amount of information onto the
network on its own schedule, without waiting for requests. The clients scan incoming information and
save the parts users have indicated interest in, while discarding the rest. In this model, one server
transmission can service an unlimited number of clients at once. In cases where many people need the
same information, this push model is a much more efficient use of network bandwidth than the pull
model.

The combination of a true push model and the very high bandwidths of existing broadcast channels
allows Broadcast Architecture to deliver large quantities of data to customers conveniently. Such data
can include video, audio, high-resolution images, large aggregated blocks of World Wide Web pages,
databases, software, and data in other formats. This kind of data is generally too large to send or
receive over telephone connections on a regular basis, even with the fastest modems. Broadcast
Architecture can deliver this data to a client automatically, in the background, without the customer
ever having to dial in, tune in, or download anything.

Soon, satellite broadcast digital data streams with capacities of between 1.2 and 6 megabits per second
will be available on broadcast clients. At 1.2 megabits per second, a channel can transfer over 10
gigabytes every 24 hours, while 6 megabits per second translates into more than 60 gigabytes of
information per day. By contrast, a compact disc today holds about two-thirds of a gigabyte. In future
versions of Broadcast Architecture, a variety of 30-megabit-per-second channels may each deliver

2243

Introduction to Broadcast Architecture Page 4 of 7

over 300 gigabytes per day.

Not only is broadcasting an efficient way to distribute information, existing broadcast networks
already reach an enormous national and international audience. Digital Household Report of August
31, 1996, projected that 96.9 million households in the United States would receive analog and digital
broadcast transmissions by the end of 1996. Broadcasts also reach a growing number of households
internationally as broadcast satellite networks continue to proliferate.

Broadcast Architecture uses the existing standard Internet Protocol (IP) for broadcasting data. Over
the Internet and other computer networks that make use of IP, broadcasts take the form of IP
multicasts sent to many recipients at once, in contrast to usual unicasts, which are directed to a single
recipient. In a corporate context, multicasting can greatly reduce network traffic over intranets when
compared to unicasting the same data to the same recipients. A broadcast client is a perfect client for
corporate multicasts both because of its high-bandwidth capabilities and because Broadcast
Architecture handles all broadcast data as standard IP multicasts.

Computer Power
[This is preliminary documentation and subject to change.]

Broadcast Architecture applies the versatility and power of computers in home or office to provide
capabilities far beyond what televisions equipped with set-top boxes can achieve. Even before new
programming becomes available, broadcast clients provide an appealing integration of excellent
picture and sound quality with a state-of-the-art multimedia computer.

The computer gives viewers a great deal of flexibility in planning television programming, and it
displays Program Guide information very conveniently and clearly. Using a modem connection to the
Internet, data services of all kinds are available today.

State-of-the-Art Computer Capabilities

To start with, you have all the power of a state-of-the-art computer, including multimedia and game
playing. New power-saving instant response technology keeps the system available at all times. The
Internet is fully accessible by modem, and some Internet content is already coordinated with television,
as in the case of the MSNBC news network.

Digital Display Technology for Television Signals

In addition, broadcast clients offer an incremental, flexible, and affordable migration path to higher
resolution television. Instead of buying a whole new, very expensive digital set every time broadcast
technology shifts to a new standard, all users have to do is plug a new card into their computers.

Powerful Control over Programming Choices

Broadcast clients display program guide information of many different sorts in a single form. In this

2244

Introduction to Broadcast Architecture Page 5 of 7

combined program guide, shows can easily be previewed, scheduled, and if appropriate paid for.

Broadcast clients offer the convenience and ease of use of finding, selecting, and scheduling
entertainment and information in one place, using one familiar interface.

New Kinds of Television
[This is preliminary documentation and subject to change.]

Broadcast Architecture transforms television into a multimedia experience. The combination of
television with broadcast digital data displayed on a computer offers a new world of entertainment
possibilities. It gives you the flexibility to become more actively involved in the television programs
you watch, when you want to.

Digital data broadcasts synchronized to television shows can provide all kinds of annotation and
extension of existing television and advertising content, using Hypertext Markup Language (HTML),
Microsoft® Visual Basic® scripts, and controls based on the Microsoft® ActiveX™ technology
platform.

The combination of television and computer content can offer these new possibilities, among many
others:

� During sporting events, you can ask about statistics, track your favorite players or teams, and
scan your preferred syndicated commentary.

� During dramas and comedies, you can locate cast information, recaps of past episodes, links to
related Internet and bulletin board sites, and other such background information.

� Educational programs can supplement their presentations with broader and deeper information
than fits into their time slots, together with links and references to additional resources.

� News and weather reports can be accompanied by local or other specialized information that
satisfies the needs of limited audiences.

� Music-only channels can add background graphics containing song title, album, and artist
information, so you know what you are listening to and how to find it again.

With the addition of a back channel, viewers can interact not only with the computer but also more
directly with broadcasters, advertisers, and other viewers. A secure back channel also offers an
unprecedented opportunity to sell directly into people's homes, letting them purchase from the comfort
of their couches.

Broadcast Architecture Provides Potential for Immediate Viewer Response

Even without a back channel, television and digital data broadcasts can be synchronized and combined
to let viewers interact on-screen with shows so as to play games, obtain supplementary information,
test their knowledge or skills, and so on. Content providers can use common tools for World Wide
Web site design to create enhancements for their shows, delivered as HTML pages.

2245

Introduction to Broadcast Architecture Page 6 of 7

By taking advantage of the low-cost, low-bandwidth back channel offered by the computer's modem,
however, advertisers can also actually solicit real-time responses from viewers. Viewers can, for
example, express product preferences, or they can inquire about products of interest.

Using the back channel, viewers can also vote on issues presented in a show, express opinions, take
part in polls, play along with game shows, enter contests, and take quizzes. In addition, consumers can
use the back channel to purchase products from the comfort of their living rooms.

New Kinds of Data
[This is preliminary documentation and subject to change.]

Broadcast channels provide a fast and inexpensive way of distributing information. The broadcast
client can monitor digital data streams 24 hours a day to keep caches of subscribed information up-to-
date, without using the phone.

Broadcast clients are designed to filter high-bandwidth broadcast data streams and save whatever the
viewer may have subscribed to, requested, or purchased. In combination with the broadcast client's
system security and strong encryption, this capacity provides a reliable and economical channel for
selling even high-priced or confidential digital goods and services.

Digital data can not only be sent over digital networks, it can also be incorporated into analog
television signals in the vertical blanking interval (VBI). Digital data automatically transmitted in the
VBI includes the Program Guide data provided by StarSight and other companies. Digital
transmissions can also use analog bandwidth directly through broadband modems, such as cable
modems.

Digital data broadcasts are ideal for delivering such time-sensitive information as stock prices, local
news and weather, product catalogs, software updates, and much other information provided by
subscription services. For example, frequently visited Internet sites can easily be broadcast in this
fashion and cached on a hard drive. They are thus instantly available in an up-to-date form when a
viewer wants them, perhaps in conjunction with an associated show or advertisement. Caching such
sites eliminates frustrating busy signals, slow server response, and long download times that may be
associated with visiting the sites using a modem.

Not only can broadcasting and caching popular Internet content make visiting useful pages much less
frustrating for consumers, it can also reduce server loads so that other interactions, such as purchases,
can proceed without delay.

In addition, background images, video, and music downloaded over high-bandwidth broadcast
channels can be used to make computer experiences more attractive and fun, particularly in the realm
of entertainment software and educational programs. All kinds of digital information previously
difficult or very time-consuming to acquire can be made immediately available. For example, games or
courseware might be regularly updated with new scenarios, information, backgrounds, and so forth to

2246

Introduction to Broadcast Architecture Page 7 of 7

provide users a constantly changing landscape of interactivity.

2247

How Broadcast Architecture Works Page 1 of 6

How Broadcast Architecture Works
[This is preliminary documentation and subject to change.]

Broadcast Architecture capabilities are achieved through a combination of hardware and software
components that allows personal computers to serve as clients of broadband digital and analog
broadcast networks. The following sections provide more information on these components:

� Overview of the Hardware
� Overview of the Software
� Sticking to Standard Technologies
� System Software Components
� System Software Extensions

Overview of the Hardware
[This is preliminary documentation and subject to change.]

To achieve their purposes, broadcast clients require hardware components of the following sort:

� A digital-ready display. Broadcast clients are intended for home display of television. To achieve
this goal requires a progressive-scan super VGA (SVGA) monitor with a resolution of at least
800 x 600 pixels, a refresh rate of 60 or 120 hertz, and phosphors with matching persistence so
as to minimize flicker while matching the luminance of television picture tubes. Suitable
monitors vary in size from under 17 inches to over 35 inches.

� A network receiver card. The receiver card, installed on a PCI or other high-bandwidth bus,
provides functionality such as data tuning, decryption, demultiplexing, and other capabilities that
permit it to receive signals from specific broadcast sources.

� A video card capable of MPEG-2 compression. A video card with MPEG-1 and MPEG-2 audio
and video decoding capabilities, also installed on a PCI or other high-bandwidth bus, must
provide functionality such as SVGA video display, MPEG decoding, and NTSC or PAL signal
demodulation and encoding. This functionality is needed for digital video disks (DVDs) as well
as for videotape input/output and ordinary television broadcasts.

� A standard modem. Customers require a back channel to purchase pay-per-view movies and
other premium data services and to interact with advertisers and broadcasters. A 14.4-kilobit-
per-second or faster telephone modem provides a low-bandwidth back channel that is more than
adequate for these needs. As Integrated Services Digital Network (ISDN), Asymmetrical
Digital Subscriber Line (ADSL), and cable modems become widely available, faster back
channels will become practical. As they do, more dynamic forms of interactive entertainment
will evolve.

� A keyboard, pointing device, and remote control. Viewers must be able to control a broadcast
client, together with other consumer electronic devices such as a VCR or stereo system,

2248

How Broadcast Architecture Works Page 2 of 6

comfortably and conveniently from a seat some distance from the screen. The keyboard, pointer,
or remote control device or devices that meet this need should be wireless and designed for easy
use on the lap.

� Custom hardware device drivers. Vendors of special-purpose cards to be part of the system
need to provide standard device drivers for their hardware based on the Network Driver
Interface Specification (NDIS).

Detailed minimum and recommended hardware configurations are specified in Client Hardware
Requirements. However, within the given boundaries, alternate configurations are encouraged, as long
as good television and data reception for broadcasts continues to be provided.

Overview of the Software
[This is preliminary documentation and subject to change.]

Broadcast clients must be able to handle a wide variety of very high-bandwidth streams. These streams
require different kinds of special-purpose hardware for reception and processing. The software that
makes this demanding environment work is characterized by three design objectives:

� To use industry-standard technology wherever possible.
� To expose and document extensions specific to Broadcast Architecture.
� To maintain adequate security to protect all parties using Broadcast Architecture.

The software needed to make a broadcast client work can be divided into three categories:

� Operating-system software. The system software provided with Broadcast Architecture is based
on industry standards to ensure its reliability and ongoing development.

� The container for Broadcast Architecture applications. Broadcast Architecture applications all
run within the standard browser container provided by Microsoft® Internet Explorer. This
container allows new applications downloaded by data broadcasters to take full advantage of all
broadcast client capabilities, just as if the applications were integral parts of the system.

� Broadcast Architecture applications. These applications can be controls or scripts associated
with World Wide Web pages, any other Internet application supported by Internet Explorer, or
even ordinary Windows-based programs running outside the Internet Explorer container.
Among the most important Broadcast Architecture applications is the Program Guide control
that lets viewers search, sort, filter, select, and schedule television shows and other content of
all kinds.

To locate documentation on creating specific types of Broadcast Architecture applications, see
Documentation Structure.

2249

How Broadcast Architecture Works Page 3 of 6

Sticking to Standard Technologies
[This is preliminary documentation and subject to change.]

Wherever possible, Broadcast Architecture software relies on standard solutions that are widely
accepted, understood, and supported in the industry. These standards include:

� The Transmission Control Protocol/Internet Protocol (TCP/IP) networking protocol. This
protocol is the one used by the Internet. By using TCP/IP as their primary networking protocol,
broadcast clients make a standard way available to communicate with virtually any network in
the world.

� MPEG-2 compression. This format is becoming the most widely accepted standard for
delivering compressed video and audio and related data.

� The Microsoft® Windows® 98 operating system. In addition to being the successor to the most
widely used and understood 32-bit operating system, Microsoft® Windows® 95, Windows 98
includes a number of components that are becoming or have become standards themselves:

� Windows Sockets (WinSock) version 2.0. This application programming interface (API)
provides a network abstraction layer that allows applications to receive and send network
data without needing any information about the network involved. WinSock also provides
access to TCP/IP.

� Network Driver Interface Specification (NDIS) version 5.0 ports. The NDIS standard
allows hardware device drivers to be written independently of the target operating system.

� CryptoAPI. This API provides an abstraction layer for encryption and decryption
services, so that applications can use different encryption methods without requiring any
information about the hardware or software involved.

� Microsoft® Internet Explorer. By incorporating Internet Explorer technology, the
broadcast client can take advantage of all the latest Internet and Web enhancements.

� Component Object Model (COM). This open standard allows different software modules,
written without information about each other, to work together as if they were part of the
same program.

� Microsoft DirectShow (formerly called Microsoft® ActiveMovie™). This Microsoft®
ActiveX™ technology provides an extremely flexible and capable architecture for
managing and playing interrelated multimedia streams, which the broadcast client relies
on. The key concept of the Microsoft® DirectShow™ API is to connect many
independent filter programs together. Each filter handles a part of the process of
receiving, decoding, transforming, scheduling, and displaying interdependent video,
audio, and data streams.

� Key codes for television remote controls. The remote control buttons included on
keyboards and other devices communicate with broadcast clients by using standard
Windows key codes. Use of standard key codes makes integration of remote functions
into hardware very simple for manufacturers.

The DirectShow technology and the related stream class driver technology, part of the Windows
Driver Model (WDM), is sufficiently important for broadcast clients that its flexibility should be
stressed. DirectShow filters are modular software components that work together to process a data
stream. When one feature of the stream changes, only the filter dealing with that feature need be
replaced. For example, if a stream's encoding changes, only its decoding filter is affected. This

2250

How Broadcast Architecture Works Page 4 of 6

modularity makes it easy to use and support clients that work with virtually any kind of broadcast
possible.

To get the maximum performance, Broadcast Architecture supports DirectShow by using WDM
stream class drivers. These drivers operate on data in kernel mode. DirectShow provides control of
these drivers to applications through the use of proxy filters running in user mode. For example, an
application can call a proxy filter in DirectShow to change channels on a television tuner card. Then
the proxy filter calls the WDM stream class driver, which controls the television tuner card.

To locate more information on how to create and use new DirectShow filters to handle changing
technologies, and on WDM stream class drivers and filters, see Further General Information.

System Software Components
[This is preliminary documentation and subject to change.]

Operating-system software components particularly important to software development for Broadcast
Architecture include:

� The Program Guide control, which gives a user access to the Guide database.
� The TV Viewer, a Microsoft® ActiveX™ container. TV Viewer is the primary user interface of

the Broadcast Architecture component in the Microsoft® Windows® 98 operating system.
� The standard Broadcast Architecture control that parses and displays Hypertext Markup

Language (HTML)

Of these, probably the most visible one is the Program Guide control. In clear graphical form, the
Program Guide control displays information on all broadcast programming available to the user over
various time periods. With this control, the user can search for favorite shows, keep track of episodes,
set up reminders to watch or record shows, and watch previews. This control is continuously updated
with Program Guide information from various providers.

The primary user interface of the Broadcast Architecture system component, TV Viewer, is an
ActiveX container that hosts several important types of control. One type of control can play full-
motion video over some or all of the screen. In other words, ActiveX controls within the TV Viewer
container create the television video and audio that viewers see and hear. Another type of control
displayed in TV Viewer uses Microsoft® Internet Explorer technology to interpret and display Web
pages, either in conjunction with video or on their own.

This control, the standard Broadcast Architecture control that parses and displays HTML data, can
also process scripts and host any ActiveX controls that a broadcaster chooses to include with a show.
Because HTML is the language of the World Wide Web, the presence of this control not only means
that a large amount of Internet data can immediately be combined with television programming, but
also that there are existing, good tools for quickly designing and creating new HTML content without
software development. A broadcaster can use triggers to synchronize the display of HTML material
with television and can add, update, or remove HTML material without any intervention on the

2251

How Broadcast Architecture Works Page 5 of 6

viewer's part.

Furthermore, through scripts and ActiveX controls included with HTML pages, broadcasters and
independent software vendors can take full advantage of the broadcast client's computing capabilities
to enhance a show in new ways, to provide complex interactivity with viewers, and to deliver valuable
services. To locate more information on doing so, see Further General Information.

Although Broadcast Architecture software is designed to be open to developers, great care has been
taken to ensure that system security can be maintained. Broadcast clients can thus provide a secure
platform for commercial transactions.

System Software Extensions
[This is preliminary documentation and subject to change.]

The operating-system software that forms part of Broadcast Architecture is intentionally based on
industry standards, as described in Sticking to Standard Technologies. These standards guarantee
developers, manufacturers, and viewers a stable, well-supported platform that will gracefully evolve to
support new technologies as they appear.

In some areas, extensions to these standard technologies have been required. These extensions
include:

� Extensions to accommodate the very large bandwidth occupied by high-quality digital audio and
video streams, and to provide for flexible control over these streams. These extensions are
special filters based on the Microsoft® DirectShow™ application programming interface (API).
To locate more information on DirectShow, see Further General Information.

� Extensions to support interactions with users. Broadcast clients use specialized software to
control, process, and display high-bandwidth broadcast streams. Some of this software, such as
the Guide database system, also handles user interactions. The Guide database provides a single
secure repository for program data. At the same time, any service provider can deliver
application data to the database by writing a loader program.

� Extensions to support Television System Services (TSS), which allows users to tune to,
schedule, and control available broadcasts. For more information, see Television System
Services.

Microsoft also provides other types of system software extensions, such as a transport layer
specifically designed for broadcast needs. Because such components all function as part of Microsoft®
Windows® 98, third-party programmers can easily write programs that take advantage of them.

Microsoft makes interfaces that support operating-system extensions available through the Platform
Software Development Kit (SDK), the Device-Driver Kit (DDK) for Windows 98, and the Web site
provided by the Windows 98 beta program. The Broadcast Architecture Programmer's Reference and
the Broadcast Architecture DDK document these interfaces.

2252

How Broadcast Architecture Works Page 6 of 6

2253

Broadcast Client Architecture Page 1 of 10

Broadcast Client Architecture
[This is preliminary documentation and subject to change.]

The architecture of the broadcast client enables computers based on the Microsoft® Windows® 98
operating system to be client systems for many types of broadcast network. The broadcast client is a
standard computer enhanced with hardware and software components that enable it to process video,
audio, and data from a variety of sources. Some networks that broadcast clients can support include:

� The Internet's multicast backbone (MBONE), and the networks and telephone lines that support
it — Integrated Services Digital Network (ISDN), Ethernet, Asymmetrical Digital Subscriber
Line (ADSL), and others.

� Cable television networks, such as Comcast and Tele-Communications, Inc. (TCI)
� Wireless cable networks.
� Conventional television networks, and television networks that broadcast digital data to viewers

in the vertical blanking interval (VBI) of the television signal, such as Intel Intercast.

Some networks used by Broadcast Architecture have several unique aspects that must be considered
because they are one-way data streams. These networks cannot run server applications that require a
back channel to receive data from the client. The architecture of the broadcast client allows the use of
another network, such as the Internet, to provide this back channel. Another effect of the one-way
nature of broadcast networks is that the client cannot request that a bad packet be resent. To reduce
this problem, the server must periodically resend data so the client can replace any corrupted or lost
data. Finally, broadcast networks are capable of very high data transfer rates. Devices for broadcast
networks, and the software associated with these devices, must be capable of handling this data rate
without burdening the CPU.

The high bandwidth of many broadcast networks make them ideal for transmission of audio and video
data as well as computing data. Broadcast Architecture uses a set of modular components to receive,
process, and present this data. This modular design means application developers can create
applications without regard for the underlying technology. Hardware vendors can provide drivers to
make their devices compatible with other broadcast client components.

Broadcast Architecture Subsystems Overview
[This is preliminary documentation and subject to change.]

The broadcast client consists of a number of functional subsystems. These subsystems provide the
capabilities needed to receive and use audio, video, and other data from a broadcast server on a client
running the Microsoft® Windows® 98 operating system.

The following illustration shows an overview of the Broadcast Architecture subsystems.

2254

Broadcast Client Architecture Page 2 of 10

Each of these subsystems contains various components. Some of the components are supplied with
Broadcast Architecture while others come from the Microsoft® Windows® 98 operating system or
third party developers. In order to give a complete overview of the broadcast client, the following
sections briefly describe all the components regardless of their source. The subsystems covered are:

� Broadcast Data Receiver Subsystem describes how data is presented to and received by the
other subsystems.

� Data Services Subsystem describes the components that use the portion of the broadcast data
stream that does not present audio or video.

� Broadcast Client Presentation Subsystem describes the Microsoft® DirectShow™ filter graph
used in a broadcast client and the components that present audio and video.

� Television Client Services Subsystem describes components for configuring and controlling
television channels.

� TV Viewer Subsystem describes the TV Viewer application and its components.

Broadcast Data Receiver Subsystem
[This is preliminary documentation and subject to change.]

The broadcast client receives a number of different data streams over one or more broadcast
networks. Drivers in the Microsoft® Windows® 98 operating system, called miniports, allow different
hardware devices to have a common interface to the broadcast client. The miniport conforms to the
Network Driver Interface Specification (NDIS) 5.0 including the Broadcast Architecture NDIS
extensions. The use of NDIS 5.0 not only gives applications a common interface to the hardware, it
also simplifies future porting of Broadcast Architecture to other NDIS compliant operating systems
such as Microsoft® Windows NT®. For more information on Broadcast Architecture NDIS
extensions, see the NDIS Extensions section of the Broadcast Architecture Device-Driver Kit (DDK),
part of the device-driver documentation for Windows 98.

A Broadcast Architecture miniport splits the broadcast data into two streams. The first stream
includes audio and video data sent by way of the Broadcast Architecture transport to the DirectShow
filter graph. Any other data received, such as Hypertext Markup Language (HTML) pages, data files,
or control information, is formatted as IP packets and sent to Windows Sockets (WinSock) version
2.0.

2255

Broadcast Client Architecture Page 3 of 10

Applications that require a back channel to the server can connect to another network by using
WinSock. Routing all data through WinSock simplifies the interface to the server by providing a single
application programming interface (API) for data exchange.

The following illustration shows how the components of the broadcast data receiver fit together.

The following topics briefly describe the components of the Broadcast Data Receiver subsystem.

Windows Sockets

WinSock 2.0, a Windows API, is a Windows 98 system component. It provides a networking standard
that gives applications an abstraction of the networking software below it. In the Broadcast
Architecture, WinSock handles the computing data that may accompany the audio and video data
streams.

TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP) is the industry-standard protocol used by
WinSock 2.0 to send and receive data. WinSock packages and unpackages data into IP packets that it
sends and receives to and from a TCP/IP network.

Broadcast Architecture Transport

The Broadcast Architecture transport is a Broadcast Architecture component. It is a high-bandwidth
transport with special support for features such as channel selection.The Broadcast Architecture
transport allows various system components to move audio and video data through the system. For
more information, see the Broadcast Architecture Transport section of the Broadcast Architecture
Device-Driver Kit (DDK), part of the device-driver documentation for Windows 98.

NDIS 5.0

2256

Broadcast Client Architecture Page 4 of 10

NDIS 5.0 is a Windows 98 and Windows NT device driver standard that provides an operating
system–independent standard for writing network device drivers. NDIS 5.0 allows independent
hardware vendors (IHVs) to extend existing drivers to create hardware specific drivers. The
extensions written by an IHV are called a miniport. In Broadcast Architecture, the NDIS-compliant
miniports provide an interface between the network interface cards (NICs) and other broadcast client
components.

Broadcast Architecture Miniports

A Broadcast Architecture NIC miniport component, provided by independent hardware vendors, is the
adapter-specific portion of an NDIS 5.0 driver. Each type of NIC requires a unique miniport. For
more information, see the NIC Miniport section of the Broadcast Architecture Device-Driver Kit
(DDK), part of the device-driver documentation for Windows 98.

NDIS 802.3 Intermediate Driver

The NDIS 802.3 intermediate driver is a Broadcast Architecture component that translates
Multipacket Transport (MPT) packets, from satellite networks, into Internet Protocol (IP) packets.
This translation makes it possible for WinSock to handle the data as it does any other data carried by
TCP/IP.

Receiver Cards

A receiver card is a component provided by independent hardware vendors. This card receives
incoming broadcast signals and converts them to data the computer can use. In Broadcast
Architecture, it provides a point of entry for broadcast data into the system.

Data Services Subsystem
[This is preliminary documentation and subject to change.]

The Data Services subsystem receives computing data streams from broadcast servers by using
Windows Sockets (WinSock) 2.0 and routes that data to applications. Using Data Services over a
broadcast network allows data to be sent to many users without the need for extra bandwidth that is
required by other networks. Instead of sending separate packets to each client that requests data,
broadcast servers send one packet that is received by all clients that are listening for the data. The
Data Services subsystem listens for broadcasts and stores the data on the client computer. The
following illustration shows how the Data Services components fit together.

2257

Broadcast Client Architecture Page 5 of 10

Announcement Listener

The Announcement Listener is a Broadcast Architecture component that monitors incoming
announcements of upcoming transmissions. The Announcement Listener maintains a list of
announcement filters that it uses to determine what to do with a given announcement. The
announcement filter can handle the announcement itself or it can indicate that it is an announcement
the Announcement Listener should handle. In this case, the Announcement Listener uses the
information in the announcement to set up File Transfer Service (FTS) to receive data.

Announcements indicate when the data will be sent. If the data directly follows the announcement
filter, the Announcement Listener starts the FTS receiver immediately. Otherwise, it can use the Task
Scheduler in the Microsoft® Windows® 98 operating system to start the FTS receiver at the time
indicated in the announcement.

Announcement Filters

Announcement filters are supplied both as components in Broadcast Architecture and from
independent software vendors. These filters are Automation servers used by Announcement Listener
to determine which types of data broadcast to receive. A typical action for an announcement filter is to
schedule the FTS receiver to receive a file.

FTS Receiver

The FTS receiver application is a Broadcast Architecture component that receives data from a
broadcast network. A typical use of the FTS receiver is to receive file packages for the Internet
Channel Broadcast client. Other uses of the FTS receiver are to receive files and database updates.
Depending on options passed to it, FTS can save the data to a disk, pass the data to another
application, or if the data is an executable file load the data into memory and execute it.

2258

Broadcast Client Architecture Page 6 of 10

Internet Channel Broadcast Client

The Internet Channel Broadcast client is a Broadcast Architecture component that receives
information from an Internet Channel Broadcast server. The information that the client receives can be
Hypertext Markup Language (HTML) pages from the World Wide Web or data files. The Internet
Channel Broadcast client includes an announcement filter that checks for announcements about
upcoming data transmissions. A data file called Subscr.dat is a list of the data transmissions the client
should receive.

After the broadcast client receives the data, it runs an unpackaging utility that copies the files into the
Internet Explorer cache or to a directory given in the announcement.

Internet Explorer

Internet Explorer is a Web browser included in Windows 98. Internet Explorer stores Web pages it
has received in a cache on the local harddrive. The Internet Channel Broadcast client puts pages into
this cache so the user can see them.

Broadcast Architecture includes Microsoft® ActiveX™ controls for showing video in Web pages
displayed by Internet Explorer.

Windows File System

The Windows file system is simply the data storage system used by Windows 98.

Broadcast Client Presentation Subsystem
[This is preliminary documentation and subject to change.]

Broadcast clients can work with data streams from a wide range of video and audio devices. To do
this, Broadcast Architecture includes Microsoft® DirectShow™, a component of the Microsoft®
Windows® 98 operating system that lets applications control high-bandwidth data streams.

Broadcast Architecture applications such as TV Viewer use a DirectShow filter graph to control the
presentation of audio and video data. The following illustration shows how the components of the
Broadcast Client Presentation subsystem fit together.

2259

Broadcast Client Architecture Page 7 of 10

DirectShow Filter Graph

The DirectShow filter graph is a Broadcast Architecture component that tells direct show what filters
to use and how they are connected to each other. The filters for Broadcast Architecture represent
Windows Driver Model (WDM) stream class drivers for audio and video devices. Each filter has pins
that represent inputs, outputs, and controls for the driver. The filter graph shows how these pins are
connected to each other and to applications that use the drivers.

DirectDraw

The Microsoft® DirectDraw® application programming interface (API) is a Windows 98 dynamic-
link library (DLL). Broadcast clients use a new feature of DirectDraw called Video Port Extensions
(VPE). VPE provides an application programming interface (API) that accelerates graphics by
providing direct access to bitmaps in off-screen display memory, as well as extremely fast access to
hardware.

Audio Subsystem

The audio subsystem is a component of Windows 98 that provides an API to applications to play
audio.

WDM Stream Class Drivers

WDM stream class drivers are components of Windows 98 used to handle high-bandwidth data
streams. Filters in the DirectShow filter graph let applications control these filters. An important
feature of stream filters is that they can be connected directly to each other to reduce the overhead of
handling the stream data. For example, an audio stream driver for a satellite receiver can be connected
directly to a audio stream driver for a sound card. This direct connection enables the audio to play
without requiring an application to copy data from one device to another.

Television Client Services Subsystem

2260

Broadcast Client Architecture Page 8 of 10

[This is preliminary documentation and subject to change.]

The following sections briefly describe the components of the Television Client Services subsystem.
This subsystem includes a database called the Guide database. Other components in this subsystem use
the Guide database to control TV Viewer and DirectShow filter graph. The following illustration
shows how the Television Client Services components fit together.

Video Access Server

The Video Access server is a Broadcast Architecture component. It runs on the client computer as a
separate process that handles device contention among multiple instances of the TV Viewer ActiveX
control.

Program Guide ActiveX Controls

The Program Guide Microsoft® ActiveX™ controls are Broadcast Architecture components. These
controls display the user interface to the Program Guide. For information on the Program Guide, see
Overview of Program Guide Services.

Guide Database

The Guide database is a Broadcast Architecture component. A Microsoft® Jet database, it stores
current information about broadcast programs from various broadcast networks. For more information
on the Guide database, see Overview of Program Guide Services.

Guide Database Loaders

Guide database loaders are Broadcast Architecture components. Television Client Services also

2261

Broadcast Client Architecture Page 9 of 10

supports the use of third-party loaders. Generally, a vendor of Program Guide information provides a
third-party loader to the broadcast client when a user subscribes to that vendor's service. These
loaders process incoming Program Guide data and load it into the Guide database. The Broadcast
Architecture Programmer's Reference includes a skeleton loader as an example for third-party
developers. For more information on database loaders, see Updating Guide Data.

TV Viewer Subsystem
[This is preliminary documentation and subject to change.]

TV Viewer is a Broadcast Architecture application. It displays enhanced television programs and their
enhancements, if any.

The user first selects a channel using the Program Guide ActiveX controls in the Television Client
Services subsystem. Then TV Viewer displays the program being broadcast on the selected channel.
TV Viewer uses an ActiveX control to display this conventional television program. It also hosts an
HTML browser to display a program's enhanced content.

The following illustration shows how the TV Viewer components fit together.

TV Viewer Executable File

Tvx.exe is a Broadcast Architecture component. It is the application that users run to see television
programs, both enhanced and unenhanced.

TV Viewer HTML Browser

The TV Viewer HTML browser is a Broadcast Architecture component. It displays enhancements
received as HTML pages from the broadcast data stream.

Video Display Controls

The video display controls present audio and video on the screen. The Video control presents audio

2262

Broadcast Client Architecture Page 10 of 10

and video in a variety of environments, such as Web pages and stand-alone applications. The
Enhancement Video control shows video and audio on a Web page displayed by TV Viewer. For
more information about these controls and when to use them, see Which Video Control Should I Use?

2263

Client Hardware Requirements Page 1 of 25

Client Hardware Requirements
[This is preliminary documentation and subject to change.]

The following sections explain the minimum and recommended hardware and operating system
requirements for a broadcast client, including the Microsoft hardware manufacturing policy for such a
client. These requirements extend the Microsoft PC 97 initiative to include requirements for a
broadcast client, as follows:

� Minimum Configuration
� Recommended Configuration
� Windows 98 Requirements
� Hardware Manufacturer Policy
� Client Hardware Architecture

The following sections detail the hardware requirements for each of the components of a broadcast
client:

� Network Receiver Card
� MPEG Decoding and Video Display
� Sound Card
� Monitor
� Input Devices
� Modem
� Related Hardware Information

Minimum Configuration
[This is preliminary documentation and subject to change.]

The minimum hardware requirements for a broadcast client are:

� Intel Pentium 120 megahertz processor or compatible
� High-speed bus with slots adequate to accommodate high-speed broadcast network and video

cards, such as PCI or Universal Serial Bus (USB)
� 16 megabytes (MB) RAM
� 1 gigabyte hard disk
� 27-inch super Video Graphics Array (SVGA) monitor capable of 640 x 480 resolution with a

noninterlaced refresh rate of 60 hertz
� 3.5-inch 1.44 MB floppy disk drive
� Quad-speed CD-ROM drive
� Internal or external modem with a speed of 14,400 baud and compatible with Telephony

2264

Client Hardware Requirements Page 2 of 25

Application Programming Interface (TAPI)
� Standard computer keyboard
� Pointing device with two buttons

For more information on the minimum requirements for the Monitor, the Network Receiver Card, the
Sound Card, and other components of the system, as well as Video Card Recommendations, see the
sections detailing each component.

Recommended Configuration
[This is preliminary documentation and subject to change.]

The recommended hardware configuration for a broadcast client is:

� Intel Pentium 150 megahertz processor.
� PCI bus with at least four slots available.
� Computer case of the consumer electronics type, with low-noise fan or noiseless cooling

system. A user should not perceive broadcast client noise from a distance of 6 feet in a quiet
living-room environment.

� Support for Simply Interactive PC (SIPC) initiatives such as OnNow, Drive Bay, 1394, and
Universal Serial Bus (USB) to provide a more consumer-friendly appearance for the client.

� 16 megabytes (MB) RAM or more.
� Hard disk of 2 gigabytes (GB) or larger with a fast data transfer rate.
� 3.5-inch 1.44 MB floppy drive.
� 6x-speed CD-ROM drive or digital video disk (DVD).
� 31-inch monitor capable of 800 x 600 resolution with a noninterlaced refresh rate of 60 hertz.
� Internal fax modem with a speed of 28,800 baud or higher that is compatible with the AT

command set. Modem functionality can be incorporated on expansion cards for the broadcast
client, so the modem does not need to be a separate peripheral.

� Wireless keyboard that responds to radio or infrared frequencies, that is battery-operated, and
that has a built-in pointing device.

� Wireless, television-style remote control.
� Combination remote control and wireless mouse with power and sleep button, TV buttons

(channel up and down, volume up and down, and mute. This remote control/mouse should be
battery operated.

� Sound-system expansion card with:
� Digital audio, specifically Pulse Code Modulated (PCM) digital input
� MIDI port
� MIDI-controlled wave-table synthesizer
� Multiple analog and digital audio inputs
� Audio mixer and preamplifier that is software-controllable and low-noise
� Multiple audio outputs

Sound-card functionality can be incorporated on motherboard or expansion cards for the
broadcast client, so the sound card does not need to be a separate peripheral.

2265

Client Hardware Requirements Page 3 of 25

� Built-in microphone or a front-mounted microphone jack suitable for teleconferencing,
education, karaoke, and other applications requiring sound input.

� Audio compression using the AC-3 algorithm for DVD compatibility.
� Infrared remote control capable of controlling consumer electronic devices.

For more information on the recommended configuration for the Monitor, the Network Receiver
Card, the Sound Card, and other components of the system, as well as Video Card Recommendations,
see the sections detailing each component.

Windows 98 Requirements
[This is preliminary documentation and subject to change.]

Because Broadcast Architecture uses the Microsoft® Windows® 98 operating system, hardware
designed for it must conform to the Plug and Play architecture. For detailed information on designing
hardware compliant with Plug and Play, see Plug and Play Specifications.

Hardware Manufacturer Policy
[This is preliminary documentation and subject to change.]

Broadcast Architecture components are not sold directly to the end user, with possible future
exceptions being keyboards and pointing devices. Rather, OEMs and hardware vendors license the
technology from a network provider, where applicable. OEMs also license Microsoft Broadcast Data
Network (MSBDN) designs and services from Microsoft.

OEMs and hardware vendors are free to build, sell, install, and service their own products compatible
with Broadcast Architecture. Because hardware designs and software components are available to
numerous OEMs, competition is expected to drive the development of many feature enhancements,
and to create distinct price points from which the end user can choose.

Client Hardware Architecture
[This is preliminary documentation and subject to change.]

The following illustration shows how the data flows through the various components of the broadcast

2266

Client Hardware Requirements Page 4 of 25

client hardware. In this illustration, SVHS is super VHS, SVGA is super Video Graphic Array, MB is
megabyte, ns is nanosecond, K is kilobyte, SRAM is static RAM, DES is Data Encryption Standard,
MPEG is the video standard, I/O is input/output, IDE is integrated device electronics, and STT is
Secure Transaction Technology.

Network Receiver Card
[This is preliminary documentation and subject to change.]

The following sections describe the functionality of a broadcast receiver card and the requirements it
must meet to support Broadcast Architecture:

� Receiver Card Functionality
� Network Interface Connector or Antenna
� Signal Paths
� Receiver Card Requirements
� Other Networks

Receiver Card Functionality

2267

Client Hardware Requirements Page 5 of 25

[This is preliminary documentation and subject to change.]

Because Broadcast Architecture works with many different types of broadcast digital networks, the
exact details of a broadcast receiver card depend on the broadcast network and on network-specific
access-control mechanisms. Broadcast Architecture software requires a specific software driver for
each card. The card vendor or network provider supplies this driver. For more information on such
drivers, see the NIC Miniport section of the Broadcast Architecture Device-Driver Kit (DDK), part of
the device-driver documentation for the Microsoft® Windows® 98 operating system.

Network Interface Connector or Antenna

[This is preliminary documentation and subject to change.]

For a broadcast satellite network, the antenna is typically an outdoor unit. For a cable network
interface, the connector is likely a typical F connector used with standard television cabling. For a
wireless cable system that supports the Multichannel Multipoint Distributed System (MMDS), a
microwave antenna is required.

Signal Paths

[This is preliminary documentation and subject to change.]

The broadcast receiver card must be able to receive both standard broadcast information from
broadcast networks and data stream information, as defined by the MSBDN format for data
transmission, which supports Multipacket Transport (MPT) and Internet Protocol (IP). For more
information on this format, see the MSBDN Receiver section of the Broadcast Architecture Device-
Driver Kit (DDK), part of the device-driver documentation for Windows 98.

Data streams are likely to be on channels, for example cable and Multichannel Multipoint Distributed
System (MMDS) channels, separate from video and audio streams. Similarly, data streams are likely
be on transponders, for example transponders for digital broadcast systems, separate from video and
audio streams. This separation being usual, the broadcast receiver card requires two paths and signal
lines. This section refers to these two paths as the "digital audio-video signal path" and the "digital
data signal path." The following sections describe these signal paths separately to clarify their
differences.

It is anticipated that hardware vendors will eventually combine both signal paths on the same PCI-bus
card and also provide two separate tuners on one PCI-bus card. Such a combination means control,
interface, bus mastering, power, and antenna connector resources can be shared. However, early
versions of the broadcast receiver card need include only one tuner.

2268

Client Hardware Requirements Page 6 of 25

One-tuner versions of the card must receive both data and audio-video signals without user
intervention. However, one-tuner cards need not receive both data and audio-video signals
simultaneously, unless the signals are broadcast on the same channel or transponder. This reception
functionality requires the card to include both network access control circuitry and MSBDN circuitry.
The receiver card can also include a smart card as appropriate.

Digital Audio-Video Signal Path

The digital audio-video signal path contains network-specific technology for tuning, demodulating,
decoding, error-correcting, demultiplexing, decrypting, and controlling access to digital audio and
video signals.

The digital audio-video signal path must be capable of receiving at least four substreams
simultaneously, such as video, audio, data, and Program Guide substreams. The design of the receiver
card must allow transfer of these streams to computer memory with very low CPU utilization (less
than 10 percent). Such a design ensures that the transfer does not interfere with the performance of
applications running on the computer. This design implies that the card uses bus mastering or other
direct memory access techniques.

Certain network designs mandate that particular access control functionality be resident in hardware.
Such access control functionality controls some types of interaction with the consumer, for example
preventing certain users from viewing video of specified ratings. In the broadcast client system, the
software that verifies access for a particular network is divided into a number of parts. Security
functions typically run on a microprocessor on the receiver card. The user interface and any modem
interface functions are implemented in the computer. The different verifier portions communicate with
each other through Broadcast Architecture driver interfaces; these interfaces manage verifier
communication with the user and the network authorization center.

Digital audio-video data is tuned, demodulated, and error-corrected by a module referred to as the
transport. The transport then routes the data to circuitry that selects portions of interest from the total
stream. These portions may be identified by packet identifiers (PIDs). Information of interest can be
passed through MSBDN circuitry for Data Encryption Standard (DES) decryption. After any
required decryption processes, data is bus mastered into CPU memory.

Note that not all data is encrypted by the sender. Such data can bypass the circuitry for DES
decryption.. It is also possible to take selected data directly from the error correction circuitry and bus
master it into memory.

Digital Data Signal Path

The signal path that receives digital data is similar to the existing audio-video path, but it must meet
the extra requirement that the digital data signal path must be able to demultiplex a packet stream into
one or more substreams. In other words, it must be able to separate several combined data streams.
During this demultiplexing process, the path must be able to filter out unwanted packets based on a
field in the packet header.

For a more complete description of the data receiver and of required decryption functionality, see the
MSBDN Receiver section of the Broadcast Architecture Device-Driver Kit (DDK), part of the device-

2269

Client Hardware Requirements Page 7 of 25

driver documentation for Windows 98.

Receiver Card Requirements

[This is preliminary documentation and subject to change.]

The receiver card's interface with the computer should:

� Provide a mechanism for moving data into the computer and for specifying the destination for
that data in computer memory, preferably through bus mastering.

� Control the tuner and retrieve tuner information.
� Control decoding of video, audio, and other data.
� Control the different Viterbi or other decoding rates used by the digital broadcast network.
� Control what packet identifiers (PIDs) are received and what data is routed to the computer.
� Retrieve status information about errors and control error correction.
� Satisfy the requirements for receiving MSBDN packets, which can require additional hardware

beyond that required for audio and video. For more information on receiving MSBDN packets,
see the MSBDN Receiver section of the Broadcast Architecture Device-Driver Kit (DDK), part
of the device-driver documentation for Windows 98.

� Support of at least five PIDs simultaneously. Support of eight is recommended.
� Perform one of the two following tasks:

� Present an advancing 27 megahertz register, a register containing the last-received system
clock reference (SCR) or other reference time stamp, and a register containing the value
of the 27 megahertz register when the last SCR was received.

� Generate an interrupt immediately upon receipt of each SCR and have that SCR read
through the PCI bus.

� Perform PCI bus mastering with support for scatter/gather memory access and unaligned, odd-
byte memory transfers. This requirement includes support for time-critical MPEG packets of
127 bytes and less.

The following illustration shows the receiver card's internal and external data flow. In this illustration,
bps is bits per second, QPSK is Quadrature Phase Shift Keying (a method of encoding digital data in
an analog signal), DEMOD is demodulator, DES is Data Encryption Standard, and Mbps is megabits
per second.

2270

Client Hardware Requirements Page 8 of 25

Other Networks

[This is preliminary documentation and subject to change.]

In the future, cards very similar to the broadcast receiver card will probably be built for the cable,
digital video disk, Asymmetrical Digital Subscriber Line (ADSL), and Multichannel Multipoint
Distributed System (MMDS) environments. Because these network cards will receive broadcast data
rather than individually targeted data, and because they have no back-channel requirement, they will
require minimal support from a network head end.

MPEG Decoding and Video Display
[This is preliminary documentation and subject to change.]

The following sections describe the functionality of an MPEG decoder circuit and a video crossbar
circuit, and the requirements they must meet to support Broadcast Architecture:

� MPEG Decoder Functionality
� MPEG Decoder Requirements
� MPEG Decoder Recommended Configuration
� MPEG Decoder Interface
� Analog Audio and Video Interconnections
� Integration Possibilities

The components described in these sections are part of a video system that includes standard video
cards and sound cards. For functionality recommendations for the standard video card for Broadcast
Architecture, see Video Card Recommendations. For functionality recommendations for the standard
sound card for Broadcast Architecture, see Sound Card Functionality.

MPEG Decoder Functionality

[This is preliminary documentation and subject to change.]

2271

Client Hardware Requirements Page 9 of 25

The MPEG decoder is a video and audio decoder capable of handling MPEG-2 main profile and main
level data rates (15 megabits per second). The decoder combines MPEG video with standard
computer video for display on a super Video Graphics Array (SVGA) monitor. The MPEG decoder
has 2 megabytes (MB) RAM for SVGA, including the frame buffer, and another 2 MB RAM for the
MPEG decoder itself.

The computer supporting the decoder should also offer a television tuner and base-band, S-video
inputs. It should also offer outputs for routing NTSC and PAL signals to and from VCRs, laser disk
players, and other video sources. In addition, the computer must provide encoder and decoder
circuitry. This circuitry converts NTSC or PAL input signals into digital data in the video frame buffer
and converts decoded MPEG video to NTSC or PAL output signals.

The decoder computer must provide separate audio and video outputs that carry audio and video from
video sources, as opposed to computer-generated music and sound effects. These separate outputs are
provided so that video and its associated audio can be recorded without recording computer-
generated music and sound effects. Associated circuitry provides recording control features that can
be activated and deactivated under software control. This recording control includes Macrovision
encoding of NTSC video generated directly from the MPEG decoder.

The video card portion of the MPEG decoder must meet the criteria of the Plug and Play Framework
architecture that is part of the Microsoft® Windows® 95 operating system. Plug and Play provides
specific methods for extending the VGA register set and requirements for the appearance of expanded
video-card resources on the system bus. For more information on Plug and Play, see Plug and Play
Specifications.

The following diagram shows a video system that includes an MPEG decoder. In this illustration,
Comp is composite; SVHS is super VHS; IIC is Inter-Integrated Circuit; SVGA is super Video
Graphics Array; DAC is digital to analog converter; PCM is Pulse Code Modulated digital input;
FIFO is first in, first out; MB is megabytes; K is kilobytes; and VRAM is video RAM.

2272

Client Hardware Requirements Page 10 of 25

MPEG Decoder Requirements

[This is preliminary documentation and subject to change.]

The video card for the MPEG decoder must have the following features:

� Super Video Graphics Array (SVGA) card capable of at least 800 x 600 x 8 bits per pixel, with
a 60 hertz refresh rate.

� Support for high-speed, two-dimensional graphics acceleration, preferably with support for
three-dimensional bitmaps and MPEG textured polygons.

� MPEG-2 decoder chip set, capable of a speed of 15 megabits per second and a screen resolution
of 720 x 480 x YUV 4:2:2.

� Data transfer using bus mastering from memory to the MPEG decoder, at up to 2 megabytes
per second in speed. Such transfer must include support for unaligned, odd byte transfer and
scatter/gather memory access.

� Capture and display of each 720 x 240 video field stretched vertically to 720 x 80 without
decimation.

� Broadcast cable television tuner that supports NTSC or PAL signals.
� Composite super VHS (SVHS) – type chip that decodes NTSC or PAL to YUV, with an

interface to the SVGA chip set.
� Composite SVHS-type chip that encodes data to NTSC or PAL, with a direct interface from the

MPEG decoder.
� Audio and video crossbar switching chips for interconnecting composite and SVHS inputs and

outputs.
� SVGA format that supports capture of YUV frame buffers for prioritized overlay and scaling

with horizontal and vertical interpolation.
� Merging of YUV video frames and SVGA video frames in the digital to analog converter

(DAC) using chroma and color keying.
� Controllable Macrovision video encoding of all composite video signals that are output.
� Decoding of vertical blanking interval (VBI) data for NTSC format, including decoding of such

information as closed captioning, from all composite inputs.
� Encoding of NTSC VBI data (such as closed captioning or time codes) on all composite

outputs.
� Full driver support for the Microsoft® Windows® 98 operating system, including display driver

and MPEG minidriver support.
� Support for the output of audio from video sources to the line input of standard audio cards.

MPEG Decoder Recommended Configuration

[This is preliminary documentation and subject to change.]

2273

Client Hardware Requirements Page 11 of 25

The recommended video card for the MPEG decoder has the features listed in MPEG Decoder
Requirements, plus:

� Super Video Graphics Array (VGA) card capable of at least 800 x 600 x 24 bits per pixel with a
60 hertz refresh rate

� Hardware acceleration compatible with the Microsoft® Direct3D® application programming
interface (API)

� Broadcast cable television tuner that supports NTSC, PAL, and SECAM in foreign and domestic
stereo versions

� Multiple composite and S-video jacks
� Optional decoding of arbitrary vertical blanking interval (VBI) data for NTSC, such as

Intercast, from all composite inputs

MPEG Decoder Interface

[This is preliminary documentation and subject to change.]

The interface between the video card for the MPEG decoder and the computer must have the
following features:

� Conformation to the Plug and Play specification as a PCI multiple-function device, providing
separate spaces for super Video Graphics Array (SVGA), MPEG, and tuner functions

� PCI bus mastering of audio and video MPEG data
� Support for unaligned, odd byte transfers and scatter/gather memory access
� Data buffering control, and provision of status information about data buffering
� MPEG video decoding control, and provision of status information about MPEG video

decoding
� MPEG audio decoding control, and provision of status information about MPEG audio

decoding
� Cable television tuner control, and provision of status information about the cable television

tuner
� Control of and provision of status information about base-band video encoding and decoding
� Control of and provision of status information about audio and video signal paths
� Closed captioning input and output to audio and video signal paths

Analog Audio and Video Interconnections

[This is preliminary documentation and subject to change.]

If a video card supports analog connections, it should allocate connections of input sources to output
sinks. Actual device connections vary somewhat based on consumer equipment. However, some

2274

Client Hardware Requirements Page 12 of 25

connections of inputs to outputs are fixed, in that they interconnect specific devices, such as computer
encoders to decoders. There are many possible input sources and output sinks for analog connections,
such as a VCR for playing, a VCR for recording, a laser disk player, a camcorder, a game console
box, a cable box, a cassette tape deck, and an FM audio tuner.

The following table shows suggested allocations of input lines to output lines for video and matches
video input sources and output sinks with typical uses.

The following table shows suggested allocations of input lines to output lines for audio and matches
audio input sources and output sinks with typical uses.

Integration Possibilities

Video input (8
sources)

Typical input Video output (6
sinks)

Typical output

Composite 1
S-video Y 1
S-video C 1

Computer
MPEG NTSC
TV encoder

Composite 1
S-video Y 1
S-video C 1

Computer NTSC
decoder

Composite 2
S-video Y 2
S-video C 2

Super VHS
(SVHS) VCR

Composite 2
S-video Y 2
S-video C 2

SVHS VCR

Composite 3 Computer TV
tuner

Composite 4 Camcorder

Audio input
(5 stereo
sources)

Typical input Audio output (4
stereo sinks)

Typical output

Left 1 and right
1

Computer
MPEG or AC-3
pulse code
modulation
(PCM) digital to
analog

Left 1 and right 1 Computer sound
board CD-ROM
audio in

Left 2 and right
2

SVHS VCR Left 2 and right 2 SVHS VCR

Left 3 and right
3

Computer TV
tuner

Left 3 and right 3 Surround sound
audio processor

Left 4 and right
4

Camcorder Left 4 and right 4 Headphones

Left 5 and right
5

Computer CD-
ROM audio wire

2275

Client Hardware Requirements Page 13 of 25

[This is preliminary documentation and subject to change.]

Some of the possible audio and video card configurations:

� Super Video Graphics Array (SVGA) card capable of PCI bus mastering, with an integrated
MPEG-2 audio and video decoder, audio-video switching, and an ISA audio adapter compatible
with SoundBlaster

� SVGA card capable of PCI bus mastering, with an integrated MPEG-2 audio and video
decoder, a SoundBlaster chip set, and audio-video switching

Note Either of these configurations works, but they have significant tradeoff issues in terms of the
number of cards and the use of standardized cards. In general, it is better to have fewer cards and to
use more standard cards.

Sound Card
[This is preliminary documentation and subject to change.]

The following sections describe the functionality of a sound card and the requirements it must meet to
support Broadcast Architecture:

� Sound Card Functionality
� Sound Card Requirements
� Sound Card Recommended Features

Sound Card Functionality

[This is preliminary documentation and subject to change.]

Sound components can be laid out on a separate sound card or integrated elsewhere. If sound is laid
out on a separate card, the television and MPEG sound from the video card must be connected to the
sound card's line-in port, and this sound must be controlled with the standard mixer interface in
Microsoft® Windows® operating systems. The video card selects the television-related sound that is
heard by users, and the mixer controls the television volume.

For game support on a broadcast client, sound components compatible with SoundBlaster that
provide wave table synthesis are recommended. The sound components must be capable of a signal-
to-noise ratio of 90 decibels, to maintain the audio quality of the digital broadcast network. It must be
possible to use the sound-card circuitry independent of the digital broadcast audio output — for
example, when the user tape-records a program while playing a video game.

2276

Client Hardware Requirements Page 14 of 25

Although sound and video display components can be laid out on separate cards, achieving the highest
possible sound quality usually requires a digital connection between the video display card and the
sound card.

For compatibility with digital video disk (DVD) audio, an audio decoder with compression to the AC-
3 algorithm is recommended.

Sound Card Requirements

[This is preliminary documentation and subject to change.]

The sound card must have the following features:

� Stereo
� SoundBlaster compatibility
� Signal-to-noise ratio of 90 decibels
� Ability to satisfy the sound requirements of broadcast networks, including digital broadcast

networks
� Ability to mix audio from the computer, the current video source, and reference CD-ROMs

Sound Card Recommended Features

[This is preliminary documentation and subject to change.]

The recommended sound card for the MPEG decoder has the features listed in Sound Card
Requirements, plus:

� Wave-table synthesis
� Separate mixer volume controls for tuner and MPEG audio output
� Support for audio compressed to the AC-3 algorithm

Monitor
[This is preliminary documentation and subject to change.]

The following sections describe the attributes a monitor must possess and the requirements it must
meet to support Broadcast Architecture:

2277

Client Hardware Requirements Page 15 of 25

� Monitor Functionality
� Monitor Requirements
� Recommended Features for the Monitor

For information about video cards for Broadcast Architecture, see Video Card Recommendations

Monitor Functionality

[This is preliminary documentation and subject to change.]

Monitors for a broadcast client should have the following key attributes:

� Support for the minimum resolution, currently 640 x 480. However, 800 x 600 resolution is
recommended. Typical satellite digital broadcasters transmit main level and main profile MPEG-
2 — the middle level of the five possible levels of MPEG-2 encoding for video data. That
transmission level translates into 720 x 480 x 30 frames per second for NTSC. For PAL, this
level translates into 720 x 576 x 25 frames per second. As a result of this transmission type,
display decimation occurs at 640 x 480 resolution, which is why 800 x 600 resolution is strongly
recommended.

� Support for color gamma suitable for display of television and computer data. Diverting an
MPEG stream to a computer monitor can cause color problems. These problems occur because
the MPEG stream is encoded into an abstract color space, then decoded and sent to a computer
monitor with a different, possibly greater color gamma than an NTSC display device.

� Picture tube that is ideal for both computers and televisions. Such a picture tube has high
luminance, analog super Video Graphics Array (SVGA) inputs, medium phosphor persistence,
and a progressive scan of 60 hertz.

� Good corner convergence.
� Large screen size. For an optimal viewing experience, it is recommended that OEMs build large-

screen monitors for Broadcast Architecture, 31 or 33 inches in size measured on the diagonal.
However, the broadcast functionality works on any size computer monitor, leaving the ultimate
configuration up to the OEMs.

� Refresh rate of 60 hertz, or an integral multiple of 60 hertz, for any mode in which video is
displayed. Most source video, such as NTSC or MPEG-2 video and film, is created or adjusted
through temporal rescaling at a 3:2 ratio. This adjustment is performed expressly for 60 hertz
television monitors. Further rescaling to other refresh rates, such as 72 hertz, introduces
unacceptable motion artifacts, such as nonlinear screen motion. By using a refresh rate of 60
hertz or a multiple thereof, the monitor can be balanced with the monitor phosphor.

For a flicker-free viewing experience, a medium-persistence phosphor should be used instead of
a short-persistence phosphor. If the refresh rate is fixed at 120 hertz, the standard computer-
monitor phosphors can be used.

2278

Client Hardware Requirements Page 16 of 25

Monitor Requirements

[This is preliminary documentation and subject to change.]

The monitor must have the following features:

� 27-inch analog monitor that supports super Video Graphics Array (SVGA).
� Minimum of 640 x 480 resolution, although 800 x 600 resolution is strongly recommended,

with a refresh rate of 60 hertz.
� Digitally controlled geometry: skew, rotate, pincushion, size, position.
� Support for the Standard DDC2B VGA Monitor Identification Protocol.
� Television-level brightness and phosphor luminance.
� Maximum 0.75-millimeter dot pitch for true 800 x 600 resolution at a monitor size of 27 inches.

Proportionally higher dot pitch can be provided in larger monitors.
� Medium-persistence phosphors, optimized for 60 hertz with no noticeable flicker.
� Compliance with Energy Star power savings standard.

Recommended Features for the Monitor

[This is preliminary documentation and subject to change.]

The recommended monitor has the features listed in Monitor Requirements, plus:

� Front panel digital controls for contrast, brightness, and degauss.
� Black packaging in styled plastic, suitable for consumer electronics.
� 31-inch or larger analog monitor that supports super Video Graphics Array (SVGA). Such 31-

inch monitors are often labeled at 33 inches.
� Brightness and contrast controls revealed through a driver with a remote-control user interface,

rather than through dials on the monitor case.
� Host control of the monitor by using video cards and drivers compatible with Display Data

Channel (DDC) requirements.
� Adjustable color level appropriate to computer and video applications.
� Ability to select between power at 120 volts alternating current (VAC) and 60 hertz and power

at 240 VAC and 50 hertz.

Input Devices
[This is preliminary documentation and subject to change.]

For Broadcast Architecture, user input devices such as keyboards and mice change to accommodate

2279

Client Hardware Requirements Page 17 of 25

their use in a living room setting. For example, keyboards can be used from the lap or a coffee table.
Pointing devices can be hand-held, because a flat surface might not be available. Users can expect to
use a remote control for channel surfing and other control of entertainment systems.

For further information on input devices suitable for Broadcast Architecture, see the following
sections:

� Connection to the Computer
� Pointing Device/Remote Control
� Keyboard
� New Windows Keys

Connection to the Computer

[This is preliminary documentation and subject to change.]

In Broadcast Architecture, one receiver for all remote controls connects to the computer through the
keyboard, mouse, and possibly joystick ports. Alternatively, the receiver can use a driver supplied by
its hardware vendor that emulates these ports. This design allows each remote device to send data to
each computer port. For example, a remote control might act as a mouse but might also send special
keyboard scan codes. (For more information on these codes, see New Windows Keys.)

The following illustration shows the relationship between the remote controls, the receiver, and the
computer.

Pointing Device/Remote Control

[This is preliminary documentation and subject to change.]

2280

Client Hardware Requirements Page 18 of 25

This section describes the functionality of a remote control and the requirements it must meet to
support Broadcast Architecture.

Functionality for the Pointing Device/Remote Control

The integration of the pointing device and remote control are necessary so broadcast client users can
navigate within computer applications, television programs, and television applications.

Consumers expect the pointing device/remote control to be very durable, with a long battery life. The
type of pointing device used can be a directional keypad, a touch pad, a trackball, or some other
device with similar functionality. The device must be hand-held. It can resemble a standard television
remote control, with the addition of special keys to handle tasks for television and computer
applications. For more information on these keys, see New Windows Keys.

Requirements for the Pointing Device/Remote Control

The pointing device/remote control must have the following features:

� Mouse compatibility.
� Long battery life.
� Numeric keys. Touch tone labeling of numeric keys, as used on telephones, is suggested.
� Television-related keys.
� Navigation keys.
� Compatibility with Simply Interactive PC (SIPC) remote-control guidelines, as described in

SIPC Remote Control Design Guide.

Keyboard

[This is preliminary documentation and subject to change.]

This section describes the functionality of a keyboard and the requirements it must meet to support
Broadcast Architecture.

Keyboard Functionality

The broadcast client keyboard has the same functionality as a standard computer keyboard, with some
additional support for special keys. For more information on these keys, see New Windows Keys.

Consumers expect the keyboard to be very durable, with a long battery life. The keyboard must be
capable of use from the lap or a coffee table. It can possibly be integrated with a pointing device. If the
keyboard is so integrated, radio frequency and infrared create one-way signals to the computer.
Therefore, status lights cannot be controlled on the keyboard.

Keyboard Requirements

2281

Client Hardware Requirements Page 19 of 25

The keyboard must:

� Be wireless
� Have a long battery life
� Support Windows keys
� Support television-related keys
� Optionally, have an integrated pointing device

New Windows Keys

[This is preliminary documentation and subject to change.]

In Broadcast Architecture, keyboards and possibly other input devices have the following additional
keys defined by Microsoft and implemented on the Microsoft® Natural® keyboard:

� Windows (left)
� Windows (right)
� Application

Modem
[This is preliminary documentation and subject to change.]

The following sections describe the functionality of a modem and the requirements it must meet to
support Broadcast Architecture:

� Modem Functionality
� Modem Requirements
� Modem Recommendations

Modem Functionality

[This is preliminary documentation and subject to change.]

The Broadcast Architecture modem is a standard computer-compatible modem. Broadcast
Architecture uses a modem for the following purposes:

2282

Client Hardware Requirements Page 20 of 25

� To communicate billing information to service providers
� To supply an interactive back channel
� To provide dial-up connectivity for user applications, such as online services

Modem Requirements

[This is preliminary documentation and subject to change.]

At a minimum, the modem must support the following:

� The Microsoft® Windows® 98 operating system, including Telephony Application
Programming Interface (TAPI) and communications under the Microsoft® Win32® API. Most
modems are compatible with Windows 98.

A modem is a device used for data or fax transmission. In Windows 98, such a modem uses
TAPI functions for call control and a combination of Win32 communications and Windows
Sockets (WinSock) for data transactions.

If Windows 98 does not support a modem, or the modem is not directly compatible with a
supported model, the modem manufacturer must supply a driver for the modem. This driver
must supply the Service Provider Interface (SPI) functions called by TAPI. However, from a
practical standpoint, such drivers are rarely required. Most commercially available modems
comply with Windows 98, because almost all comply closely with the international standards to
use the UNIMODEM service provider included in Windows 98.

� Dial-up to the billing center for the broadcast network. The modem must be able to
communicate with the network billing center.

� Dial-up connection by the user to online services and Internet service providers, such as the
Microsoft® MSN™ online service. Communications speed of 9600 baud or higher is strongly
recommended.

The modem must also provide the following capabilities as minimum requirements.

Modem Operation Modes

� V.22 operation at 1200 baud
� V.22 bis operation at 2400 baud
� V.32 operation at 9600 baud

Modem Protocol

•V.42 or V.42 bis

Modem Command Set

2283

Client Hardware Requirements Page 21 of 25

•TIA-602 (Hayes compatible)

Connectors

The connection to the modem from the telephone line must be a standard RJ-11 jack.

Modem Recommendations

[This is preliminary documentation and subject to change.]

These optional features, although not required for modem operation, enhance the modem's value and
customer satisfaction:

� VoiceView technical support. This feature permits a voice call to be suspended while modem
data exchanges take place. Generally, the primary users of this feature are telephone support
personnel who want to interrogate or alter a customer's computer during a support call.
Microsoft® Technical Support provides hardware and software tools to enable this feature for
support of products for the Microsoft® Windows® 95 and Windows 98 operating systems.

� Capability to send and receive faxes. If the modem has this feature, it should possess at least
class 1 fax capability, and it should be able to originate and receive group 3 fax calls.

� Packaging within the computer. While an external modem fulfills the minimum requirements for
Broadcast Architecture, use of an internally mounted modem with an ISA bus simplifies user
installation.

Related Hardware Information
[This is preliminary documentation and subject to change.]

This following sections describe additional recommendations for and information about support for
Broadcast Architecture:

� Video Card Recommendations
� Displaying Interleaved Video on Progressive Monitors
� Plug and Play Specifications

Video Card Recommendations

2284

Client Hardware Requirements Page 22 of 25

[This is preliminary documentation and subject to change.]

The following features are recommended for video cards supporting Broadcast Architecture on
computers running the Microsoft® Windows® 98 operating system:

� The standard Video Graphics Array (VGA) page frame and input/output (I/O) address
resources should be static (that is, they cannot be relocated). The VGA basic input/output
system (BIOS), if it exists separately, has the base address fixed at C000h.

� A linear frame buffer should be used. It must be possible to relocate this buffer above the 16
megabyte boundary by using software, where applicable.

� The card BIOS should meet the Display Data Channel 1(DDC1) host requirements documented
in the Video Electronics Standards Association (VESA) DDC standard.

� The video card ROM or virtual display driver should support the VESA BIOS extensions for
power management (that is, the VESA BIOS Extensions/Power Management Standard).

� Color ordering should be blue-green-red, with red as the high byte in displays supporting 16 bits
per pixel and 24 bits per pixel. This ordering takes advantage of Windows 98 graphics
capabilities.

� The VGA BIOS, if it exists separately, should be configurable to two addresses at a minimum.
� Any 24-bit or higher-bit displays should support downloadable entries in random access memory

digital-to-analog converter (RAMDAC) format. Such support allows gamma correction in
hardware.

� The card should connect to a high-speed expansion bus, such as a PCI bus.
� The card should be capable of supporting a monitor resolution of at least 800 x 600 by 8 bits

per pixel.
� The VGA video plane should support color keying.
� If interrupt request 2 (IRQ2) is supported for VGA compatibility, it should be inactive when the

computer is turned on. The computer should not claim IRQ2 as a static resource.
� If extended display resources are used, the card should at a minimum be able to map the I/O

addresses to seven locations and to disable them. However, this functionality is not necessary if
the extended resource addresses are aliases of the standard VGA addresses.

� A software-tunable crystal should be used, so that the 27-megahertz clock driving the MPEG
chip can match the 27-megahertz clock from the broadcaster. Software drivers adjust the
MPEG chip's frequency to match the rate captured by the broadcast receiver card. The range
and number of steps for tunability are based on crystal accuracy and the requirements for NTSC
color signals.

� Both super Video Graphics Array (SVGA) and MPEG video clocks should be based on the
same tunable crystal. This functionality prevents skipped or doubled frames due to slight
differences in frequency between two different crystals.

� For improved picture quality, the card should support horizontal and vertical interpolation as
specified for Comité Consultatif International des Radiocommunications (CCIR) 601 video, 720
x 480 x YUV 4:2:2 screen resolution at 60 hertz.

For more detailed information about these features, refer to Hardware Design Guide for Microsoft®
Windows® 95, available from Microsoft Press®.

Another important point to note is that both the MPEG decoder and the SVGA should be running at
the same 60 frames per second to avoid beat frequency artifacts. One solution is to have the MPEG
decoder and the SVGA share a single clock crystal tunable to a voltage-controlled crystal oscillator

2285

Client Hardware Requirements Page 23 of 25

(VCXO). This crystal is run through a phased lock loop to generate both the 27 megahertz decoder
clock and the SVGA pixel clocks. This clock tuning is necessary to synchronize the clocks to the
MPEG encoder's time base of 60 hertz.

Displaying Interleaved Video on Progressive Monitors

[This is preliminary documentation and subject to change.]

The recommended way of deinterlacing and displaying NTSC video, or NTSC video encoded to
MPEG, is to show each 720 x 240 x YUV field at 60 hertz on the SVGA screen. This display uses
vertical and horizontal interpolation to get at least a full-frame image, that is a 720 x 480 x YUV
image.

In this display, the alternating odd and even fields should be shown such that the odd fields are offset
by one scan line from the even fields after scaling. Every other field is offset to get rid of image jitter
when switching from one field to another. Cropping the extra top and bottom line of the offset fields is
also recommended. This sequential display of offset odd and even fields on a 60-hertz (Hz),
progressive scan SVGA monitor, running at 800 x 600 or greater resolution, simulates the way video
fields appear on a traditional television screen that employs interlacing.

The following table illustrates this technique. Odd-numbered fields have the format of the first field;
even-numbered fields have the format of the second field.

Each field is captured in the display buffer as a 720 x 240 x YUV, 2-byte video plane. The digital to
analog converter (DAC) should perform interpolation. To do so, in the DAC a line store buffer that
has first in, first out (FIFO) format is loaded. This buffer interpolates the lines of a field as the field is
being output. Each video plane requires 345,600 bytes; two planes require 675 kilobytes of video

First field output
(720 x 480 at 60
Hz)

Second field output
(720 x 480 at 60 Hz)

Third field output
(same as first field)

And so
on...

0 (This line should
be cropped)

0 (This line should be
cropped)

(0+2)/2 1 (0+2)/2

2 (1+3)/2 2

(2+4)/2 3 (2+4)/2

4 (3+5)/2 4

…

(n-2 + n)/2 n-3 (n-2 + n)/2

n (n-3 + n-1)/2 n

n-1 (This line should
be cropped)

2286

Client Hardware Requirements Page 24 of 25

memory.

Double buffering is required to prevent the user from seeing incomplete images, which occurs with a
single buffer being updated as it is being output. The double buffers are swapped at the start of the
vertical blanking interval (VBI) if and only if a new buffer has been filled with YUV data.

The fields are offset by one scan line, and the "extra" line on each field should be cropped. This
cropping is performed because the extra line is only shown at 30 hertz, whereas the rest of the lines
are refreshed at 60 hertz. The monitor should be run at 800 x 600 resolution at 60 hertz. This
functionality means the fields are often stretched to fill the full display area but are sometimes shrunk,
such as when video is displayed in a window.

Note that if a single horizontal line appears on only one field of the display surface, it flickers. All
televisions have this problem with NTSC fields. The interlaced approach, though it produces this
flicker, avoids various unpleasant artifacts such as feathering, tearing, and odd-field discarding.

Plug and Play Specifications

[This is preliminary documentation and subject to change.]

Plug and Play technology makes it possible for computer hardware and attached devices work
together automatically. With Plug and Play, a user can simply attach a new device and begin working
without restarting the computer, even while the computer is running. Plug and Play technology is
implemented in hardware, in operating systems, and in support software such as drivers and basic
input/output systems (BIOS).

With Plug and Play technology, users can easily add new capabilities to their computers, such as sound
or fax, without concerning themselves with technical details or problems. For users of mobile
computers who frequently change configurations with docking stations and have intermittent network
connections and so on, Plug and Play technology easily manages their changing hardware
configurations. For all users, Plug and Play reduces the time wasted on technical problems and
increases productivity and satisfaction with computers.

A variety of Plug and Play technologies currently exist, including BIOS, ISA, small computer system
interface (SCSI), integrated drive electronics (IDE) CD-ROM, LPT, Component Object Model
(COM), Personal Computer Memory Card International Association (PCMCIA), and Plug and Play
drivers. Specifications are available for many of these technologies. However, in a nutshell, each
hardware device supporting Plug and Play must:

� Be uniquely identifiable.
� State the services it provides and the resources it requires.
� Identify the driver that supports it.
� Allow itself to be configured by software.

For Broadcast Architecture, there are several hardware units that can reside on a video card, receiver
card, or motherboard. Cards can also combine one or more functions usually provided by separate

2287

Client Hardware Requirements Page 25 of 25

units. For example, a video card may expose separate functions for super Video Graphics Array
(SVGA), MPEG-2, and video tuning.

Cards that include one or more functions should identify themselves as multiple-function cards. This
identification allows device drivers to be created for a single subfunction independent of location,
rather than a monolithic driver being created for each card.

Separate functional components that should support Plug and Play include but are not limited to:

� Broadcast receiver card
� Microsoft Broadcast Data Network (MSBDN) decryptor
� Video display
� MPEG decoder
� Analog tuner
� Infrared remote control

Detailed Plug and Play information can be found on the Internet on the File Transfer Protocol (FTP)
server ftp.microsoft.com in the directory developr/drg/plug-and-play, and in CompuServe's
PLUGPLAY forum.

2288

TV Viewer Page 1 of 70

TV Viewer
[This is preliminary documentation and subject to change.]

TV Viewer is the user interface for Broadcast Architecture. It hosts several controls such as
Microsoft® Internet Explorer and the Microsoft® ActiveX™ control for video (the Video control).
TV Viewer uses these controls to present data such as live video, Program Guide information, and
enhancements. You can expand TV Viewer functionality by writing custom controls that interact with
TV Viewer.

For more information, see the following topics:

� About TV Viewer, which describes TV Viewer and the interfaces it exposes.
� Using TV Viewer, which explains how to use the interfaces exposed by TV Viewer.
� TV Viewer Reference, which provides detailed reference information.

About TV Viewer
[This is preliminary documentation and subject to change.]

TV Viewer, the Broadcast Architecture user interface, hosts an instance of Internet Explorer so as to
display layout pages in Hypertext Markup Language (HTML). These pages contain further controls
that provide such functionality as displaying video or pulling Program Guide information from the
Guide database.

TV Viewer provides two main interfaces that enable your application to interact with it:

� ITVViewer, the primary dispatch interface that exposes methods to programmatically control
TV Viewer. For example, your application can use the ITVViewer::Tune method to tune TV
Viewer to a new channel.

� ITVControl, a notification interface that your application can implement and register with TV
Viewer in order to receive event notifications, such as when TV Viewer tunes to a new channel.

In addition, Broadcast Architecture defines interfaces for objects that wrap episode or channel records
in the Guide database. If you pass an object that wraps a Guide database record to TV Viewer, that
object must implement one of the following interfaces:

� IEPGItem, an abstract interface for an object that wraps a record in the Guide database. The
IEPGEpisode interface inherits from IEPGItem.

� IEPGEpisode, an interface for an object that wraps an episode record in the Guide database.

As an example of when your application needs to implement these interfaces, suppose you want to set

2289

TV Viewer Page 2 of 70

a show reminder using the ITVViewer::SetReminder method. SetReminder takes an episode object
as an input parameter. In this case, you must define, create, and initialize an episode object that
implements the IEPGEpisode interface before you pass that episode object to SetReminder.

Using TV Viewer
[This is preliminary documentation and subject to change.]

You can take advantage of the TV Viewer technology by writing custom World Wide Web controls
that are displayed by and interact with TV Viewer. You can also write a stand-alone application that
either controls or monitors TV Viewer, or both.

If your application monitors TV Viewer, you must ensure that an instance of TV Viewer is running
when your application starts. You must do so because your application cannot create a new instance
of TV Viewer but instead must obtain a reference to a running instance. For more information on how
to do this, see Getting a Pointer to TV Viewer.

Once your application has connected to TV Viewer, it can directly control TV Viewer using the
methods of the ITVViewer interface. Your application can also register a sink for the ITVControl
interface that enables your application to receive event notifications, such as when TV Viewer tunes to
a new channel..

For details about working with TV Viewer, see the following topics:

� Tuning TV Viewer
� Using ITVViewer to Schedule a Show Reminder
� Changing the TV Viewer Display Mode
� Registering an ITVControl Sink
� Running TV Viewer from the command line

The Broadcast Architecture material includes a sample MFC application, Tvxsamp.exe, which
demonstrates how to connect to and control TV Viewer. To locate Tvxsamp.exe, see Broadcast
Architecture Sample Applications.

For additional information on the tasks involved in using TV Viewer with custom controls, see
Creating TV Viewer Controls.

Getting a Pointer to TV Viewer

[This is preliminary documentation and subject to change.]

2290

TV Viewer Page 3 of 70

Before your application can register a ITVControl notification sink or use the methods exposed by
ITVViewer, it must first obtain a reference to the TV Viewer object. Your application cannot create a
new instance of TV Viewer, so instead it must get a reference to a running instance by calling the
GetActiveObject Automation function. To locate more information on GetActiveObject, see
Further Information on Television Services for the Client.

Typically, your application gets this reference to TV Viewer during its initialization. Getting a TV
Viewer reference at initialization ensures that TV Viewer is available before your application attempts
to use it.

The following code obtains a reference to TV Viewer:

IUnknown *punk = NULL;
ITVViewer *ptvx = NULL;

//Get a reference to TV Viewer
GetActiveObject(CLSID_TVViewer, NULL, &punk);

// Check whether a reference to TV Viewer was returned
if (punk != NULL)
{
 'Get a reference to the ITVViewer interface
 punk->QueryInterface(IID_ITVViewer, (void **)&ptvx);

 'Release the TV Viewer object
 punk->Release();
}

Tuning TV Viewer

[This is preliminary documentation and subject to change.]

Once your application has a reference to TV Viewer, as discussed in Getting a Pointer to TV Viewer,
it can call the ITVViewer::Tune method to cause TV Viewer to display a new channel.

The following line of code tunes TV Viewer to the specified channel and tuning space. In this
example, the audio and video subchannel values are each specified as –1, which causes TV Viewer to
use default values.

TVX->Tune(iTuningSpace, iChannel,-1,-1,NULL);

The ITVViewer interface offers two other tuning-related methods,
ITVViewer::GetCurrentTuningInfo and ITVViewer::GetPreviousTuningInfo.
GetCurrentTuningInfo returns information about the channel TV Viewer is currently tuned to, and
GetPreviousTuningInfo returns information about the channel tuned to just previously.

2291

TV Viewer Page 4 of 70

The following example uses GetPreviousTuningInfo and Tune methods to implement a back button,
which when clicked tunes TV Viewer to the previous channel.

void CMyApp::BackButton()
{
 long lTuningSpacePrev;
 long lChannelNumberPrev;
 long lAudioStreamPrev;
 long lVideoStreamPrev;
 CComBSTR bstrIPAddressPrev;

 TVX->GetPreviousTuningInfo(&lTuningSpacePrev, &lChannelNumberPrev,
&lVideoStreamPrev, &lAudioStreamPrev, &bstrIPAddressPrev);

 TVX->Tune(lTuningSpacePrev, lChannelNumberPrev,
lVideoStreamPrev, lAudioStreamPrev, bstrIPAddressPrev);

}

Using ITVViewer to Schedule a Show Reminder

[This is preliminary documentation and subject to change.]

Your application can create a show reminder in the Task Scheduler in the Microsoft® Windows® 98
operating system by calling the ITVViewer::SetReminder method. Calling SetReminder provides
your application the same functionality that TV Viewer uses to set a show reminder.

There are three advantages to calling SetReminder, instead of using the alternative procedure
described in Using IScheduledItems to Schedule a Show Reminder:

� SetReminder causes TV Viewer to display a Set Reminder dialog box to the user. The user
can use this dialog to edit the reminder, for example to make it run daily or weekly, change the
start time, change it remind to record, and so on.

� Reminders set using SetReminder can be viewed and administered from the TV Viewer user
interface. In contrast, reminders set using IScheduledItems cannot be viewed in TV Viewer
unless they meet the standards specified in Setting a Reminder that Appears in TV Viewer.

� SetReminder automatically builds the show reference and adds the correct path for TV Viewer
to the scheduled task. If you use IScheduledItems, your application must compute these
values.

 To set a show reminder using ITVViewer

1. Obtain a pointer to an ITVViewer interface by getting a reference to an active instance of TV
Viewer.

2. Create an EPGEpisode object and set its values. For more information on doing so, see the
IEPGEpisode interface topic.

3. Call the ITVViewer::SetReminder method to set a reminder in the Task Scheduler.

2292

TV Viewer Page 5 of 70

Your application can delete a show reminder by using the ITVViewer::DeleteReminder method. For
more information on the tasks involved in creating show reminders, see Scheduling Show Reminders.

Changing the TV Viewer Display Mode

[This is preliminary documentation and subject to change.]

TV Viewer has two display modes, television and desktop. Television mode displays TV Viewer full-
screen. Desktop mode displays TV Viewer as an application in a window.

Once your application has connected to TV Viewer, as described in Getting a Pointer to TV Viewer,
you can call ITVViewer::SetTVMode to change the display mode from desktop to television or from
television to desktop. The other display-related method TV Viewer provides is
ITVViewer::IsTVMode, which returns a Boolean value indicating whether TV Viewer is currently
displaying full-screen.

The following example combines these methods to implement an event handler for a button that
toggles TV Viewer between full-screen and desktop display.

void CTVXSamp::ClickToggleModeButton()
{
 /* Check whether TV Viewer is currently displaying full-screen */
 if (TVX->IsTVMode())
 {
 /* If so, change to desktop mode */
 TVX->SetTVMode(false);
 }else{
 /* Otherwise, set TV Viewer to full-screen mode */
 TVX->SetTVMode(true);
 }
}

Registering an ITVControl Sink

[This is preliminary documentation and subject to change.]

To receive event notifications from TV Viewer, your application must first implement the
ITVControl interface. Then, when your application runs, it must obtain a reference to TV Viewer, as
described in Getting a Pointer to TV Viewer. After obtaining this reference, your application then
registers its implementation of ITVControl as a notification sink.

Note Currently, TV Viewer only sends notifications to applications running in the same process as
TV Viewer. An example of such an application is an ActiveX control or component called from an

2293

TV Viewer Page 6 of 70

enhancement page that is currently being displayed by TV Viewer.

This process is demonstrated in the following example. Note that m_xTVControl is a member variable
implementation of ITVControl.

IUnknown *punk = NULL;
ITVViewer *ptvx = NULL;
HRESULT hr;
LPCONNECTIONPOINTCONTAINER pcpc = NULL;

//Get the ITVViewer interface
GetActiveObject(CLSID_TVViewer, NULL, &punk);

//If the interface is not found, return VARIANT_FALSE
if (punk == NULL)
 return VARIANT_FALSE;

punk->QueryInterface(IID_ITVViewer, (void **)&pvtx);
punk->Release();

//Get the IID_TVControl connection point
ptvx->QueryInterface(IID_IConnectionPointContainer, (void**)&pcpc);
if (pcpc == NULL)
{
 ptvx->Release();
 ptvx = NULL;
 return VARIANT_FALSE;
}

pcpc->FindConnectionPoint(IID_ITVControl, &pcpTVControl);
pcpc->Release();
if (pcpTVControl == NULL)
{
 ptvx->Release();
 ptvx = NULL;
 return VARIANT_FALSE;
}

//Ask the connection point to advise on m_xTVControl
hr = pcpTVControl->Advise(&m_xTVControl, &dwTVControl);
if (FAILED(hr))
{
 pcpTVControl->Release();
 pcpTVControl = NULL;
 ptvx->Release();
 ptvx = NULL;
 return VARIANT_FALSE;
}

ptvx->Release();
return VARIANT_TRUE;

Running TV Viewer From the Command Line

[This is preliminary documentation and subject to change.]

2294

TV Viewer Page 7 of 70

Typically you do not run TV Viewer from the command line. Instead you use the user interface built
into TV Viewer and Windows 98. However, TV Viewer does support command-line arguments. You
can use this syntax to run TV Viewer from the command-line or to create applications that control TV
Viewer by sending command lines to the shell.

For more information, see the following topics:

� Starting TV Viewer from the Command Line
� Tuning TV Viewer from the Command Line
� Toggling the Display Mode from the Command Line
� Displaying the Program Guide from the Command Line
� Displaying a Reminder from the Command Line
� Displaying a Record Reminder from the Command Line

Starting TV Viewer from the Command Line

[This is preliminary documentation and subject to change.]

The following command line syntax starts TV Viewer. If TV Viewer is already running, this command
does nothing.

You can also specify the channel that TV Viewer tunes to when it starts, for more information see,
Tuning TV Viewer from the Command Line.

<path> Tvx.exe

Where

<path>
The path to the TV Viewer directory, typically "C:\Program Files\TV Viewer". The location of
this directory is stored in the ProductDir value under this registry key:

HKLM\Software\Microsoft\TV Services

If you are running the command line from the TV Viewer directory, you do not need to specify
the path.

Examples

Both of the following command lines start TV Viewer. Note that the second example assumes that
you are running the command line from the TV Viewer directory.

C:\Program Files\TV Viewer\Tvx.exe
Tvx.exe

2295

TV Viewer Page 8 of 70

Tuning TV Viewer from the Command Line

[This is preliminary documentation and subject to change.]

The following command line syntax tunes TV Viewer to the specified channel. If TV Viewer is not
currently running this command line also starts TV Viewer.

<path>Tvx.exe tv:[//] <tuning_identifier>

The double back slash (//) before the tuning identifier is optional.

Where

<path>
The path to the TV Viewer directory, typically "C:\Program Files\TV Viewer". The location of
this directory is stored in the ProductDir value under this registry key:

HKLM\Software\Microsoft\TV Services

If you are running the command line from the TV Viewer directory, you do not need to specify
the path.

<tuning_identifer>
Specifies the channel or station to which TV Viewer should tune. This can be specified either by
the channel number, the network call letters, or the station call letters.

Examples

The following three command lines all tune TV Viewer to channel 32. Note that the last two examples
assume that you are running the command line from the TV Viewer directory.

C:\Program Files\TV Viewer\Tvx.exe tv:32
Tvx.exe tv:32
Tvx.exe tv://32

The next two command lines tune TV Viewer to the local station, KCTS. The channel number
associated with that station will vary in different broadcast areas.

Tvx.exe tv:KCTS
Tvx.exe tv://KCTS

The next two command lines tune TV Viewer to the national network station, NBC. The channel
number associated with that station will vary in different broadcast areas.

Tvx.exe tv:NBC

2296

TV Viewer Page 9 of 70

Tvx.exe tv://NBC

Displaying the Program Guide from the Command Line

[This is preliminary documentation and subject to change.]

The following command line syntax causes TV Viewer to display the program guide. If TV Viewer is
not currently running this command line also starts TV Viewer.

<path>Tvx.exe -g

Where

<path>
The path to the TV Viewer directory, typically "C:\Program Files\TV Viewer". The location of
this directory is stored in the ProductDir value under this registry key:

HKLM\Software\Microsoft\TV Services

If you are running the command line from the TV Viewer directory, you do not need to specify
the path.

Examples

The following line causes TV Viewer to display the program guide.

C:\Program Files\TV Viewer\Tvx.exe -g

Toggling the Display Mode from the Command Line

[This is preliminary documentation and subject to change.]

The following command line syntax toggles TV Viewer between windowed and full-screen display. If
TV Viewer is not currently running this command line also starts TV Viewer.

<path>Tvx.exe -t

Where

<path>
The path to the TV Viewer directory, typically "C:\Program Files\TV Viewer". The location of

2297

TV Viewer Page 10 of 70

this directory is stored in the ProductDir value under this registry key:

HKLM\Software\Microsoft\TV Services

If you are running the command line from the TV Viewer directory, you do not need to specify
the path.

Examples

The following line toggles the TV Viewer display mode. If TV Viewer is displaying as a windowed
application, the command causes it to display full-screen, and vice versa.

C:\Program Files\TV Viewer\Tvx.exe -t

Displaying a Reminder from the Command Line

[This is preliminary documentation and subject to change.]

The following command line syntax causes TV Viewer to display a show reminder dialog box for the
specified episode. If TV Viewer is not currently running this command starts TV Viewer.

<path>Tvx.exe /b "<show_reference>" /u "<user_name>" /a "tvviewer!Remind!<duration>!"

Where

<path>
The path to the TV Viewer directory, typically "C:\Program Files\TV Viewer". The location of
this directory is stored in the ProductDir value under this registry key:

HKLM\Software\Microsoft\TV Services

If you are running the command line from the TV Viewer directory, you do not need to specify
the path.

<show_reference>
The show reference of the episode for which the reminder is set. For more information, see
Show Reference Format. If the show reference is invalid, or the date specified in the show
reference string is not the current date, TV Viewer does not display the reminder. If the show
reference is valid, but is missing some pieces of information, TV Viewer attempts to fill in the
missing information by matching the show reference to an episode in the Guide database.

<user_name>
The name of the user setting the reminder. For version 1.0 of Broadcast Architecture this is
typically "GuestUser".

<duration>
The duration of the show, in minutes.

2298

TV Viewer Page 11 of 70

Note The Task Scheduler uses this command-line syntax when it calls TV Viewer to display a show
reminder. For more information, see Show Reminder Format. To locate more information about the
Task Scheduler feature of Windows 98, see Further General Information.

Examples

The following command line causes TV Viewer to display a show reminder for the show titled Inside
Monster Jam. Note that the syntax below only works if the current date is 11/4/1997.

C:\Program Files\TV Viewer\Tvx.exe /b "1997/11/4!0/0/0!23:30!
0!0!0!0!0!0!0!0!''!'ESN2'!'Cable'!15!Inside Monster Jam"
/u "GuestUser" /a "tvviewer!Remind!30!"

Displaying a Record Reminder from the Command Line

[This is preliminary documentation and subject to change.]

The following command line syntax causes TV Viewer to display a record reminder dialog box for the
specified episode and to tune to the specified channel when the episode starts. If TV Viewer is not
currently running, this command starts TV Viewer.

<path>Tvx.exe /b "<show_reference>" /u "<user_name>" /a "tvviewer!Record!<duration>!"

Where

<path>
The path to the TV Viewer directory, typically "C:\Program Files\TV Viewer". The location of
this directory is stored in the ProductDir value under this registry key:

HKLM\Software\Microsoft\TV Services

If you are running the command line from the TV Viewer directory, you do not need to specify
the path.

<show_reference>
The show reference of the episode for which the reminder is set. For more information, see
Show Reference Format. If the show reference is invalid, or the date specified in the show
reference string is not the current date, TV Viewer does not display the reminder. If the show
reference is valid, but is missing some pieces of information, TV Viewer attempts to fill in the
missing information by matching the show reference to an episode in the Guide database.

<user_name>
The name of the user setting the reminder. For version 1.0 of Broadcast Architecture this is
typically "GuestUser".

<duration>
The duration of the show, in minutes.

2299

TV Viewer Page 12 of 70

Note The Task Scheduler uses this command-line syntax when it calls TV Viewer to display a record
reminder. For more information, see Show Reminder Format. To locate more information about the
Task Scheduler feature of Windows 98, see Further General Information.

Examples

The following command line causes TV Viewer to display a record reminder for the show titled
"Inside Monster Jam". Note that the syntax below will only work if the current date is 11/4/1997.

C:\Program Files\TV Viewer\Tvx.exe /b "1997/11/4!0/0/0!23:30!
0!0!0!0!0!0!0!0!''!'ESN2'!'Cable'!15!Inside Monster Jam"
/u "GuestUser" /a "tvviewer!Record!30!"

TV Viewer Reference
[This is preliminary documentation and subject to change.]

TV Viewer provides two dispatch interfaces, using which your application can interact with TV
Viewer. Declared in Tvdisp.odl, these interfaces are:

� TV Viewer Registry Entries, lists the registry entries used by TV Viewer.
� ITVViewer, the primary dispatch interface that exposes methods that enable you to

programmatically control TV Viewer. For example, using the ITVViewer::Tune method you
can tune TV Viewer to a new channel.

� ITVControl, a notification interface that you can implement in your control and register with
TV Viewer in order to receive event notifications.

In addition, Broadcast Architecture defines the following interfaces that wrap items in the Guide
database. Your application is responsible for declaring and implementing these interfaces in objects
that it creates and passes to TV Viewer. These interfaces are:

� IEPGItem, which is an abstract interface definition for an object that wraps Guide database
information.

� IEPGEpisode, which is an interface for an object that wraps the field data of an episode in the
Guide database.

TV Viewer Registry Entries

[This is preliminary documentation and subject to change.]

2300

TV Viewer Page 13 of 70

TV Viewer uses the following registry entries to store information. These values are stored in subkeys
of this registry key:

HKLM\Software\Microsoft\TV Services\Explorer\

Name Datatype Description

StartRecordingApp String Path and filename of an
application. TV Viewer starts this
application when recording starts.
For a description of the command-
line send to this application, see
Setting a Record Reminder.

EndRecordingApp String Path and filename of an
application. TV Viewer starts this
application when recording ends.
For a description of the command-
line send to this application, see
Setting a Record Reminder.

ClosedCaption DWORD Indicates whether closed
captioning is enabled. If this value
is 1, TV Viewer displays close
captions. If this value is 0, it does
not.

DistanceViewing Binary Indicates whether distance viewing
is enabled. If this value is 0, TV
Viewer is configured for viewing
on a desktop system. If this value
is 1, TV Viewer is configured for
distance viewing.

When TV Viewer is configured for
distance viewing, another registry
entry, NTSC is added.

Enhancements DWORD Indicates whether enhancements
are enabled. If this value is 1, TV
Viewer displays enhancements. If
this value is 0, it does not.

NTSC Binary Indicates the viewing platform
used for distance viewing. If this
value is 1, TV Viewer is
configured for a standard
television. If this value is 0, TV
Viewer is configured for a large
screen monitor.

This value is not used if

2301

TV Viewer Page 14 of 70

ITVViewer

[This is preliminary documentation and subject to change.]

The ITVViewer interface provides methods that your application can use to programmatically control
an instance of TV Viewer.

When to Implement

You do not need to implement this interface. It is implemented by TV Viewer as the primary dispatch
interface.

When to Use

Your application can use this interface to call methods that programmatically control an instance of
TV Viewer.

Methods in Vtable Order

DistanceViewing is zero.

OutputDevice String String value that indicates the
name of an output device. If this
value is present TV Viewer
attempts to find the device and set
full-screen video output to it.

This video output is in addition to
TV Viewer's displaying video on
the screen. This registry value can
be used to set video output to a
device such as a VCR. For
example, if a VCR is installed with
a device name of "AuxOut",
setting OutputDevice to "AuxOut"
would cause TV Viewer to send
video output to the VCR.

IUnknown Methods Description

QueryInterface Returns pointers to supported interfaces

AddRef Increments reference count

Release Decrements reference count

2302

TV Viewer Page 15 of 70

Remarks

Because TV Viewer does not support the IClassFactory COM interface, you cannot create a new
instance of TV Viewer. Instead, you must acquire a pointer to a running instance. For more
information on how to do this, see Getting a Pointer to TV Viewer.

ITVViewer is derived from the IDispatch interface. To locate more information on IDispatch, a
Component Object Model (COM) interface, see Further Information on Television Services for the
Client.

ITVViewer Description

SetTVMode Sets TV Viewer to either television or
desktop display mode.

IsTVMode Returns a value indicating the display mode
that TV Viewer is currently using.

IsChannelBarUp Returns a value indicating whether the TV
banner is currently displayed.

IsModalDialogUp Returns a value indicating whether a modal
dialog box is currently displayed.

IsLoaderActive Returns a value indicating whether a Guide
database loader is running.

GlobalStartTime Returns the earliest start time of any episode
listed in the Guide database.

GlobalEndTime Returns latest end time of any episode listed in
the Guide database.

WantKeys Sets whether TV Viewer control traps
keystrokes or passes them through to the
focus window.

Tune Tunes TV Viewer to the specified channel and
tuning space.

GetCurrentTuningInfo Returns information about the channel to
which TV Viewer is currently tuned.

GetPreviousTuningInfo Returns information about the last channel to
which TV Viewer was tuned.

SetReminder Sets a show reminder in the Task Scheduler
for the specified episode.

HasReminder Returns a value that indicates whether a
reminder is set for the specified episode.

DeleteReminder Deletes a reminder for the specified episode.

HasEnhancement Returns a value that indicates whether the
specified episode has enhancements.

IsCC Returns a value that indicates whether the
broadcast has closed captioning.

2303

TV Viewer Page 16 of 70

ITVViewer also contains the method, ViewerID, which is reserved for future use.

See Also

ITVControl

ITVViewer::DeleteReminder
[This is preliminary documentation and subject to change.]

The DeleteReminder method deletes either a record reminder or all reminders for the specified
episode, or for recurring episodes.

HRESULT DeleteReminder(
 IUnknown *pEpisode,
 VARIANT_BOOL bRecord
);

Parameters

pEpisode
Pointer to the IEPGEpisode interface for the episode.

bRecord
Boolean value that specifies whether to delete a record reminder or all reminders for the
specified episode. This parameter can be one of the following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

If the user has set a reminder for a weekly television broadcast, for example, such for as Star Trek:
Voyager, this method deletes all of the reminders. If overlapping reminders exist, this method deletes

Value Meaning

VARIANT_TRUE Delete the record reminder. Each
episode can have only one record
reminder set.

VARIANT_FALSE Delete all reminders. In other
words, delete the record reminder
and the regular reminder.

2304

TV Viewer Page 17 of 70

only the first reminder for the specified episode.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::GetCurrentTuningInfo
[This is preliminary documentation and subject to change.]

The GetCurrentTuningInfo method returns information about the channel to which TV Viewer is
currently tuned.

HRESULT GetCurrentTuningInfo(
 long *lTuningSpace,
 long *lChannelNumber,
 long *IVideoStream,
 long *lAudioStream,
 BSTR *pbsIPAddress
);

Parameters

lTuningSpace
Pointer to a long that receives the tuning space identifier of the current channel.

lChannelNumber
Pointer to a long that receives the current channel number.

IVideoStream
Pointer to a long that receives the identifier of the current video stream.

lAudioStream
Pointer to a long that receives the identifier of the current audio stream.

pbsIPAddress
Pointer to a BSTR that receives the current IP address TV Viewer is monitoring for triggers.
This address should be in the format xxx.xxx.xxx.xxx\tyyy, where xxx.xxx.xxx.xxx specifies the IP
address, and yyy specifies the port. The IP address and the port values are separated by a tab
character, for example 255.255.255.255\t999.

This parameter must be initialized to NULL when you pass it; otherwise, the method returns an
OLE exception.

Return Values

2305

TV Viewer Page 18 of 70

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::GetPreviousTuningInfo
[This is preliminary documentation and subject to change.]

The GetPreviousTuningInfo method returns information about the channel to which TV Viewer was
previously tuned.

HRESULT GetPreviousTuningInfo(
 long *lTuningSpace,
 long *lChannelNumber,
 long *IVideoStream,
 long *lAudioStream,
 BSTR *psbIPAddress
);

Parameters

lTuningSpace
Pointer to a long that receives the tuning space identifier of the previous channel.

lChannelNumber
Pointer to a long that receive the channel number of the previous channel.

IVideoStream
Pointer to a long that receives the identifier of the previous video stream.

lAudioStream
Pointer to a long that receives the identifier of the previous audio stream.

psbIPAddress
Pointer to a BSTR that receives the IP address on which triggers were sent for the previous
channel. This address should in the format xxx.xxx.xxx.xxx\tyyy, where xxx.xxx.xxx.xxx specifies
the IP address, and yyy specifies the port. The IP address and the port values are separated by a
tab character, for example 255.255.255.255\t999.

This parameter must be initialized to NULL when you pass it to the method; otherwise. the
method returns an OLE exception.

2306

TV Viewer Page 19 of 70

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

This method only returns information about the single channel tuned to just previous to the current
channel. It cannot be used to retrieve information about channels tuned to before that.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::GlobalEndTime
[This is preliminary documentation and subject to change.]

The GlobalEndTime method retrieves the date and time of the latest end time of any episode in the
Guide database.

HRESULT GlobalEndTime(
 DATE *pdate
);

Parameters

pdate
Pointer to a DATE structure that receives the latest end time.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.

2307

TV Viewer Page 20 of 70

 Header: Declared in tvdisp.odl.

ITVViewer::GlobalStartTime
[This is preliminary documentation and subject to change.]

The GlobalStartTime method retrieves the date and time of the earliest start time of any episode in
the Guide database.

HRESULT GlobalStartTime(
 DATE *pdate
);

Parameters

pdate
Pointer to a DATE structure to receive the global start time.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::HasEnhancement
[This is preliminary documentation and subject to change.]

The HasEnhancement method checks the specified episode to see whether it is enhanced.

HRESULT HasEnhancement(
 IUnknown *pEpisode
 VARIANT_BOOL *bEnhanced
);

2308

TV Viewer Page 21 of 70

Parameters

pEpisode
Pointer to the IEPGEpisode interface of the episode.

bEnhanced
Pointer to a boolean variable that receives the enhancement information. This can be one of the
following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::HasReminder
[This is preliminary documentation and subject to change.]

The HasReminder method returns a value specifying whether a reminder is set for the specified
episode.

HRESULT HasReminder(
 IUnknown *pEpisode,
 VARIANT_BOOL bRecord
 VARIANT_BOOL *bReminder
);

Parameters

pEpisode
Pointer to the IEPGEpisode interface of the episode. Your application must implement an
episode object that supports IEPGEpisode. Your application initializes the object's properties
with the episode data.

Value Meaning

VARIANT_TRUE The episode is enhanced.

VARIANT_FALSE The episode is not enhanced.

2309

TV Viewer Page 22 of 70

bRecord
Boolean value that indicates the type of reminder to look for. This can be one of the following
values.

bReminder
Pointer to a boolean variable that receives the reminder information. This can be one of the
following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::IsCC
[This is preliminary documentation and subject to change.]

The IsCC method returns a value that indicates closed captioning is enabled.

HRESULT HasEnhancement(
 VARIANT_BOOL *pbCC
);

Parameters

pbCC
Pointer to a boolean variable that receives the closed captioning information. This can be one of
the following values.

Value Meaning

VARIANT_TRUE A reminder to record the show.

VARIANT_FALSE A reminder to watch the show.

Value Meaning

VARIANT_TRUE A reminder is set for the episode.

VARIANT_FALSE No reminder is set for the episode.

2310

TV Viewer Page 23 of 70

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::IsChannelBarUp
[This is preliminary documentation and subject to change.]

The IsChannelBarUp method returns a value that specifies whether the TV Viewer menu bar is
currently displayed.

HRESULT IsChannelBarUp(
 VARIANT_BOOL *pfBarUp
);

Parameters

pfBarUp
Pointer to a boolean variable that receives the TV banner information. This can be one of the
following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Value Meaning

VARIANT_TRUE Closed captioning is enabled..

VARIANT_FALSE Closed captioning is disabled.

Value Meaning

VARIANT_TRUE The TV banner is currently
displayed.

VARIANT_FALSE The TV banner is hidden.

2311

TV Viewer Page 24 of 70

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::IsLoaderActive
[This is preliminary documentation and subject to change.]

The IsLoaderActive method returns a value indicating whether a Guide database loader application is
running.

HRESULT IsLoaderActive(
 VARIANT_BOOL *pfLoaderActive
);

Parameters

pfLoaderActive
Pointer to a boolean variable that receives the loader activity information. This can be one of the
following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

Value Meaning

VARIANT_TRUE A Guide database loader is running.

VARIANT_FALSE No Guide database loader components are
running.

2312

TV Viewer Page 25 of 70

ITVViewer::IsModalDialogUp
[This is preliminary documentation and subject to change.]

The IsModalDialogUp method returns a value specifying whether a modal dialog box is currently
displayed.

HRESULT IsModalDialogUp(
 VARIANT_BOOL *pfModalUp
);

Parameters

pfModalUp
Pointer to a boolean variable that receives the information on dialog box display. This can be
one of the following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::IsTVMode
[This is preliminary documentation and subject to change.]

The IsTVMode method returns a value specifying whether TV Viewer currently displays in television
or desktop mode.

Value Meaning

VARIANT_TRUE A modal dialog box is currently
displayed.

VARIANT_FALSE No modal dialog boxes are
currently displayed.

2313

TV Viewer Page 26 of 70

HRESULT IsTVMode(
 VARIANT_BOOL *pfTVmode
);

Parameters

pfTVmode
Pointer to a boolean variable that receives the television mode information. This can be one of
the following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::SetReminder
[This is preliminary documentation and subject to change.]

The SetReminder method sets a reminder for the specified episode. The reminder is set as a task in
the Task Scheduler.

HRESULT SetReminder(
 IUnknown *pEpisode,
 VARIANT_BOOL bRecord
);

Parameters

pEpisode

Value Meaning

VARIANT_TRUE TV Viewer is currently displaying in
TV, or full-screen, mode.

VARIANT_FALSE TV Viewer is currently displayed in
desktop, or window, mode.

2314

TV Viewer Page 27 of 70

Pointer to an IEPGEpisode interface. Your application must implement an episode object that
supports IEPGEpisode. Your application initializes the object's properties with data that
reflects the episode to schedule.

bRecord
Boolean value that specifies whether the reminder should be a record reminder. This can be one
of the following values.

Remarks

If the reminder is a record reminder, you should use the Task Scheduler to set the
TASK_FLAG_SYSTEM_REQUIRED flag for the reminder. This causes TV Viewer to tune to the
channel even if the system is sleeping. Otherwise, if the system is sleeping, TV Viewer will not wake
up to run the record reminder.

In addition, if the record reminder has an application associated with it that automates tuning the VCR
this application should be specified in the StartRecordingApp and/or EndRecordingApp values
under this registry key:

HKLM\Software\Microsoft\TV Services\Explorer\

The TASK_FLAG_SYSTEM_REQUIRED flag should not be set for standard show reminders.
Version 1.0 of Broadcast Architecture does not handle show reminders that go off while the system is
sleeping.

For more information see Setting a Show Reminder and Setting a Record Reminder.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::SetTVMode

Value Meaning

VARIANT_TRUE Set a reminder to record a
broadcast.

VARIANT_FALSE Set a reminder to watch a
broadcast.

2315

TV Viewer Page 28 of 70

[This is preliminary documentation and subject to change.]

The SetTVMode method displays TV Viewer in the specified mode, either television or desktop.

HRESULT SetTVMode(
 VARIANT_BOOL fTVMode
);

Parameters

fTVMode
Boolean value that indicates the mode. This can be one of the following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVViewer::Tune
[This is preliminary documentation and subject to change.]

The Tune method tunes the TV Viewer display to the specified channel.

HRESULT Tune(
 long lTuningSpace,
 long lChannelNumber,
 long lVideoStream,
 long lAudioStream,
 BSTR bsIPStream
);

Value Meaning

VARIANT_TRUE Television mode. The control displays full-
screen.

VARIANT_FALSE Desktop mode. The control displays in a
desktop window.

2316

TV Viewer Page 29 of 70

Parameters

lTuningSpace
Tuning space of the input. Typically, each input device uses a separate tuning space.

lChannelNumber
Channel number.

lVideoStream
Video input stream. If you pass – 1, TV Viewer uses the default video stream as defined by the
broadcast content provider. To access alternate video streams, pass the video stream identifier
specified by the content provider.

lAudioStream
Audio input stream. A single video input stream may have several audio streams associated with
it. If you pass in a value of – 1, TV Viewer uses the default audio stream, as defined by the
broadcast content provider.

This functionality is useful because, for example, a television station with a Hispanic audience
might define a Spanish-language audio stream as the default but also define an English-language
version as an alternate audio stream. To access the English-language version in this case, an
application passes the audio stream identifier that the content provider specifies for that version.

bsIPStream
String that contains information about the IP stream used by triggers. This string must be in the
format "xxx.xxx.xxx.xxx yyy.yyy.yyy.yyy:zzz preloadURL&overlayCSS", where xxx.xxx.xxx.xxx
specifies the netcard address, yyy.yyy.yyy.yyy specifies the announcement IP address, zzz
specifies the announcement port, preloadURL specifies the preload URL and overlayCSS
specifies the overlay style sheet. For example: "255.255.255.255 123.25.433.1:1701
basepage.htm&basestyle.css"

The preloadURL and overlayCSS parameters are optional, and can be left out of the string. For
example, "255.255.255.255 123.25.433.1:1701".

If no trigger stream exists, this value is set to NULL.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

2317

TV Viewer Page 30 of 70

ITVViewer::WantKeys
[This is preliminary documentation and subject to change.]

The WantKeys method sets whether TV Viewer traps keystrokes or passes them to the window with
focus.

HRESULT WantKeys(
 int nKeys
);

Parameters

nKeys
A flag that specifies which type of key events TV Viewer passes to the focus window. This can
be a combination of the following values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

The default behavior is for TV Viewer to trap number keys and use them as input to change the
channels.

The nKeys flags may be ORed together. For example, the following call to WantKeys causes TV
Viewer to pass both number keys and PageUp/PageDown keys to the focus window.

WantKeys (keNumKeys | kePageKeys);

Because WantKeys causes TV Viewer to send key events to the focus window, a control should
ensure that it has focus before it calls this method. Otherwise, the key events will be sent to the focus

Value Meaning

keNumKeys TV Viewer passes number key (0-
9) events to the focus window.

kePageKeys TV Viewer passes page key
(PageUp/PageDown) events to the
focus window.

keNoKeys TV Viewer traps both page and
number key events.

keChannelKeys TV Viewer passes channel key
events to the focus window.

2318

TV Viewer Page 31 of 70

application, not the control, possibly resulting in unpredictable behavior.

TV Viewer's behavior, whether it traps or forwards key events, is set by the most recent call to
WantKeys. Furthermore, the key event behavior is set for all controls on the broadcast client. In other
words, you cannot cause TV Viewer to forward key events to some controls and not others. For
example, if control control A calls WantKeys, setting nKeys to keNumKeys, and then control B calls
WantKeys, setting nKeys to keNoKeys, TV Viewer will use the most recent key event setting,
keNoKeys, and neither control will receive key events.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

ITVControl

[This is preliminary documentation and subject to change.]

The ITVControl interface is a sink that enables objects to receive notifications of changes in the state
of TV Viewer.

When to Implement

Implement ITVControl if you are developing a television-aware control that resides in the TV Viewer
container, or if your control needs notification of TV Viewer events.

Note Currently, TV Viewer only sends notifications to applications running in the same process as
TV Viewer. An example of such an application is an ActiveX control or component called from an
enhancement page that is currently being displayed by TV Viewer.

When to Use

TV Viewer calls the methods of ITVControl to notify registered objects of a change in the TV
Viewer state.

Methods in Vtable Order

IUnknown Methods Description

QueryInterface Returns pointers to supported interfaces

AddRef Increments reference count

Release Decrements reference count

2319

TV Viewer Page 32 of 70

Remarks

After your object has registered a sink, it should advise on the ITVControl connection point when it
is user interface–activated, able to interact with the user, and revoke the connection point when it is
user interface–deactivated, or hidden. In other words, the control should advise when it receives a
IOleObject::DoVerb method call specifying the value OLEVERB_UIACTIVATE,
OLEVERB_INPLACEACTIVATE, or OLEVERB_PRIMARY, and the control should revoke the
connection point when it receives a IOleObject::DoVerb call specifying the value OLEVERB_HIDE.

To locate more information about the IOleObject interface and the DoVerb method, see Further
Information on Television Services for the Client.

ITelevisionServices is derived from the IDispatch interface. To locate more information on
IDispatch, a Component Object Model (COM) interface, see Further Information on Television
Services for the Client.

See Also

ITVViewer

ITVControl Description

OnIdle Advises that idle-time processing is
available.

Tune Advises that TV Viewer has tuned to a new
channel.

TearDown Advises that TV Viewer is closing the
current World Wide Web page.

SyncEvent Advises that a sync event has occurred.

EpisodeStatusChanged Advises that the status of an episode has
changed.

PowerChange Advises that the system power is turning on
or turning off.

OnTVFocus Advises that TV Viewer has gotten focus.

SetOutput Advises that the control should set an
additional output device, for example a
VCR.

GetCC Returns the closed-captioning status of the
control.

SetCC Advises that the closed-captioning status has
changed in TV Viewer.

EnableVideo Advises that the control that the status of
the video display has changed.

2320

TV Viewer Page 33 of 70

ITVControl::EnableVideo
[This is preliminary documentation and subject to change.]

The EnableVideo method advises that the status of the video display has changed.

HRESULT EnableVideo(
 VARIANT_BOOL bEnable,
 int iReason
);

Parameters

bEnable
A boolean value that indicates whether the control should display video. If bEnable is
VARIANT_TRUE, video should be enabled. If bEnable is VARIANT_FALSE, video should be
disabled.

iReason
If bEnable is VARIANT_FALSE, this parameter contains a value indicating the reason that
video is disabled. If bEnable is VARIANT_TRUE, this parameter is not used. The supported
values are listed in the following table:

Return Values

TV Viewer ignores the value returned by this method.

Remarks

TV Viewer calls EnableVideo on all registered ITVControl sinks when the status of video display
changes. For example, in a multiple-monitor environment if the user drags the TV Viewer window off
of the primary monitor, video is no longer available because video is not supported on secondary
monitors. In that case, TV Viewer calls EnableVideo(FALSE, kePrimaryMonitor) on all registered
controls to inform them that video is disabled. The iReason parameter contains extended information
explaining the reason that video was disabled. The control can then handle the event, presenting a
message box to the user explaining why video was lost. When the TV Viewer window is moved back

Value Description

kePrimaryMonitor Video is not supported off of the
primary monitor.

This can occur in a multiple-
monitor environment when the user
drags the TV Viewer window from
the primary monitor to a secondary
montor. Because video is not
supported on secondary monitors, it
is disabled.

2321

TV Viewer Page 34 of 70

onto the primary monitor and video support is regained, TV Viewer calls EnableVideo
(VARIANT_TRUE, 0) on all registered controls to advise them that video is re-enabled.

If a control registers an ITVControl sink while video is disabled, TV Viewer immediately sends an
EnableVideo(FALSE, iReason) notification to the control. If the control does not receive this
notification, it should assume that video is enabled. TV Viewer does not send a EnableVideo(TRUE,
0) message to newly registered controls. TV Viewer only calls EnableVideo(TRUE, 0) when video
is re-enabled following a previous call to EnableVideo(FALSE, iReason).

ITVControl::EpisodeStatusChanged
[This is preliminary documentation and subject to change.]

The EpisodeStatusChanged method advises that the status of an episode has changed.

HRESULT EpisodeStatusChanged(
 int iChange,
 IUnknown *pEpisode
);

Parameters

iChange
Change identifier. This identifier can be one of the following values.

pEpisode
Pointer to the IEPGEpisode interface of an EPGEpisode object that contains information
about the episode whose status has changed.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

Value Meaning

keReminderStatus Specifies that a reminder has either been set
or deleted for the episode.

kePurchaseStatus Reserved.

keDSSEmailStatus Reserved.

keEnhancementStatus Specifies that the enhancement status has
changed. Typically, this indicates that an
episode or channel enhancement is now
available.

2322

TV Viewer Page 35 of 70

TV Viewer calls this method.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

ITVControl::GetCC
[This is preliminary documentation and subject to change.]

The GetCC method retrieves the closed-captioning status of the control.

HRESULT GetCC(
 VARIANT_BOOL *bCC
);

Parameters

bCC
Pointer to a boolean variable that receives the closed-captioning status of the control. This can
contain one of the following values.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

TV Viewer calls this method.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.

Value Meaning

VARIANT_TRUE The control is in closed-captioning mode.

VARIANT_FALSE The control is not in closed-captioning mode.

2323

TV Viewer Page 36 of 70

 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

ITVControl::OnIdle
[This is preliminary documentation and subject to change.]

The OnIdle method advises that idle-time processing is available.

HRESULT OnIdle(
 VARIANT_BOOL *pbIdle
);

Parameters

pbIdle
Pointer to a boolean that contains the idle information. This can contain one of the following
values.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

TV Viewer calls OnIdle when it receives an on idle message from the operating system. Calling
OnIdle enables registered controls to perform idle-time processing.

When the operating system has idle time available, it calls the OnIdle method for the main windows of
the running applications. If an application indicates it needs more idle time by setting *pbIdle to
VARIANT_TRUE, the system calls the OnIdle method for that application again during the next idle
loop. Otherwise, the Microsoft® Windows® operating system does not call OnIdle for that
application until after the application processes another normal message.

When the system calls the TV Viewer implementation of OnIdle, it in turn calls the
ITVControl::OnIdle method implemented by any registered sinks. If your application sets *pbIdle to
VARIANT_TRUE, indicating that it needs additional idle time processing, TV Viewer passes this
value to the operating system. Passing this value causes all controls registered with TV Viewer to get
another OnIdle call during the next system idle loop. The frequency of idle calls depends on system

Value Meaning

VARIANT_TRUE The object needs additional idle processing time.

VARIANT_FALSE The object does not additional idle processing
time.

2324

TV Viewer Page 37 of 70

activity.

For more information about idle processes, see Further Information on Television Services for the
Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

ITVControl::OnTVFocus
[This is preliminary documentation and subject to change.]

The OnTVFocus method advises that TV Viewer has gotten focus.

HRESULT OnTVFocus(void);

Parameters

None.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

TV Viewer calls this method when it gets focus. Your control can use this method to force focus to a
specific window.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

2325

TV Viewer Page 38 of 70

ITVControl::PowerChange
[This is preliminary documentation and subject to change.]

The PowerChange method advises that broadcast client is turning on or turning off.

HRESULT PowerChange(
 VARIANT_BOOL bPowerOn,
 VARIANT_BOOL bUIAllowed
);

Parameters

bPowerOn
Boolean value that specifies whether the power is turning on or off, which can be one of the
following.

bUIAllowed
Boolean value that specifies whether the control can present a user interface to the viewer. For
example, when power is shut off, a control might query the user whether it should save data to
disk. This value can be one of the following.

Return Values

If the power is turning on, TV Viewer ignores the return value.

If the power is turning off, your control should return one of the following values.

Remarks

Value Meaning

VARIANT_TRUE The system power is turning on.

VARIANT_FALSE The system power is turning off.

Value Meaning

VARIANT_TRUE The control can present a user interface.

VARIANT_FALSE The control cannot present a user interface.

Value Meaning

S_OK The system can power off.

S_FALSE The system should not power off. If
the bUIAllowed parameter is
VARIANT_FALSE, the system does
not honor the control's request for
power to stay on.

2326

TV Viewer Page 39 of 70

TV Viewer calls this method when the power status of the system changes.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

ITVControl::SetCC
[This is preliminary documentation and subject to change.]

The SetCC method advises that the closed-captioning status has changed in TV Viewer.

HRESULT SetCC(
 VARIANT_BOOL bCC
);

Parameters

bCC
Boolean value that indicates the closed captioning state, which can be one of the following.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

TV Viewer calls this method when the closed-captioning status of TV Viewer changes.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.

Value Meaning

VARIANT_TRUE Closed captioning is turned on.

VARIANT_FALSE Closed captioning is turned off.

2327

TV Viewer Page 40 of 70

 Import Library: user-defined.

ITVControl::SetOutput
[This is preliminary documentation and subject to change.]

The SetOutput method advises that the control should set an additional output device, for example a
VCR.

HRESULT SetOutput(
 BTR bsDeviceName
);

Parameters

bsDeviceName
Value that specifies the name of the output device to set. TV Viewer looks in the registry for a
device that matches this name.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

TV Viewer calls this method so that the control can set an additional output device, in addition to
regular video. For example, TV Viewer can call this method to request that a control set VCR output.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

ITVControl::SyncEvent
[This is preliminary documentation and subject to change.]

2328

TV Viewer Page 41 of 70

The SyncEvent method advises that a synchronization event has occurred.

HRESULT SyncEvent(
 int iEvent,
 BSTR pParm1,
 BSTR pParm2
);

Parameters

iEvent
TV Viewer event that occurred, which can be any of the following.

Event Description

keCurrentViewerChannelListChange A current viewer's channel lineup has
changed. Controls should refresh any
cached channel information.

EPGLDR_ACTIVE_COMMIT_ENDING A Guide database loader has finished
committing data to the database.
Controls can now access the database
and should refresh any cached data.

EPGLDR_ACTIVE_COMMIT_STARTING A Guide database loader has begun to
commit changes to the database.
Controls should not access the
database until the
keEpgLdrActiveCommitEnding event
is sent.

EPGLDR_ENDING A Guide database loader has stopped
running.

EPGLDR_PASSIVE_COMMIT_ENDING A Guide database loader has finished
committing data to the database.
Controls can now access the database
but do not need to refresh any cached
data.

EPGLDR_PASSIVE_COMMIT_STARTING A Guide database loader has begun to
commit data to the database. Controls
should not access the database until
the keEpgLdrPassiveCommitEnding
event is sent.

EPGLDR_STARTING A Guide database loader has begun
running. Controls can still access data
in the database.

keSysTimeChange The system time has been updated.

keViewerChange Reserved.

keViewerLogin Reserved.

2329

TV Viewer Page 42 of 70

Note Note that the loader events, those that start with EPGLDR_ are defined in Epgldrx.h.

pParm1
New viewer name, if a keViewerChange event has been sent. Other events do not use this
parameter.

pParm2
New viewer password, if a keViewerChange event has been sent. Other events do not use this
parameter.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

TV Viewer calls this method when a TV Viewer event occurs, as described in the table preceding.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

ITVControl::TearDown
[This is preliminary documentation and subject to change.]

The TearDown method advises that TV Viewer is closing the current Web page.

HRESULT Teardown(void);

Parameters

None.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

2330

TV Viewer Page 43 of 70

This method is called by TV Viewer before it navigates to a new HTML page. Calling TearDown
enables your control to clean up or persistently store its state before the Web page is closed.

TV Viewer displays Web pages using the browser component of Microsoft® Internet Explorer. TV
Viewer calls TearDown before it calls the browser to navigate to a new Web page. Note that TV
Viewer waits for registered applications to return a value. Thus, your control should return a value
promptly, so as not to delay TV Viewer in navigating to the new page.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

ITVControl::Tune
[This is preliminary documentation and subject to change.]

The Tune method advises that TV Viewer has tuned to a new channel.

HRESULT Tune(
 Long ltsNew,
 Long lcnNew,
 Long IvsNew,
 Long lasNew,
 BSTR bslPNew,
 Long ltsPrev,
 Long lcnPrev,
 Long IvsPrev,
 Long lasPrev,
 BSTR bslPPrev
);

Parameters

ltsNew
Tuning space of the new channel.

lcnNew
Channel number of the new channel.

IvsNew
Video subchannel of the new channel. A value of – 1 indicates the default video subchannel, as
defined by the broadcast content provider.

lasNew

2331

TV Viewer Page 44 of 70

Audio subchannel of the new channel. A value of – 1 indicates the default audio subchannel, as
defined by the broadcast content provider.

bslPNew
String that contains information about the IP stream used by triggers on the new channel. This
string must be in the format "xxx.xxx.xxx.xxx yyy.yyy.yyy.yyy:zzz preloadURL&overlayCSS",
where xxx.xxx.xxx.xxx specifies the netcard address, yyy.yyy.yyy.yyy specifies the announcement
IP address, zzz specifies the announcement port, preloadURL specifies the preload URL and
overlayCSS specifies the overlay style sheet. For example: "255.255.255.255
123.25.433.1:1701 basepage.htm&basestyle.css"

The preloadURL and overlayCSS parameters are optional, and can be left out of the string. For
example, "255.255.255.255 123.25.433.1:1701".

If no trigger stream exists, this value is set to NULL.

ltsPrev
Tuning space of the previous channel.

lcnPrev
Channel number of the previous channel.

IvsPrev
Video subchannel of the previous channel. A value of – 1 indicates the default video subchannel,
as defined by the broadcast content provider.

lasPrev
Audio subchannel of the previous channel. A value of – 1 indicates the default audio subchannel,
as defined by the broadcast content provider.

bslPPrev
String that contains information about the IP stream used by triggers on teh previous channel.
The string is formatted as described in bsIPNew.

If no trigger stream exists, this value is set to NULL.

Return Values

TV Viewer ignores the value returned by this method.

Remarks

TV Viewer calls this method when tuning information changes. This method is also called when an
object first registers an ITVControl sink with TV Viewer.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tvdisp.odl.
 Import Library: user-defined.

2332

TV Viewer Page 45 of 70

IEPGItem

[This is preliminary documentation and subject to change.]

The IEPGItem interface provides methods to retrieve program guide data from an object.

When to Implement

Implement IEPGItem in objects that wrap Guide database records. These objects are required as
input parameters during calls to methods such as ITVViewer::SetReminder

When to Use

You can call the methods of IEPGItem to retrieve field data from the object.

Methods in Vtable Order

IUnknown Methods Description

QueryInterface Returns pointers to supported interfaces

AddRef Increments reference count

Release Decrements reference count

IEPGItem Description

TuningInfo Gets the tuning space identifier and channel.

StartTime Gets the starting time.

EndTime Gets the ending time.

Length Gets the length of the item, in minutes.

OnNow Returns a value indicating whether the item is
being broadcast now. In other words, this method
indicates whether the current system time is later
than the item's starting time and earlier than the
item's ending time.

Title Gets the title.

BodyText Gets the description.

PreviewGraphic Gets the file name of the preview graphic.

NumIcons Returns the total number of icons.

GetIcon Gets the file name of the specified icon.

NumOptions Returns the total number of options.

OptionPrompt Gets the option prompt.

GetOption Gets the specified option.

2333

TV Viewer Page 46 of 70

Remarks

IEPGItem is an abstract interface is inherited by objects that wrap records stored in the Guide
database. The IEPGEpisode interface inherits from IEPGItem.

See Also

ITVViewer::DeleteReminder, ITVViewer::HasEnhancement, ITVViewer::HasReminder,
ITVViewer::SetReminder, ITVControl::EpisodeStatusChanged

IEPGItem::BodyText
[This is preliminary documentation and subject to change.]

The BodyText method gets the description of the item. Typically, the description text retrieved by
BodyText is the as stored in the Guide database.

HRESULT BodyText (
 BSTR* pstrBodyText
);

Parameters

pstrBodyText
Pointer to a BSTR that receives the item description.

Remarks

The subject of the description depends on the object implementating IEPGItem. For example, in an
episode object, one that implements IEPGEpisode, the BodyText method retreives a description of
the episode.

Typically, the description text for an episode object is the same text stored in the Guide database. For
an object that correponds to an episode in the Guide database, the description text is stored in the E
Description field of the Episode table.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

2334

TV Viewer Page 47 of 70

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::EndTime
[This is preliminary documentation and subject to change.]

The EndTime method gets the ending time of the item.

HRESULT EndTime(
 DATE* pEndTime
);

Parameters

pEndTime
Pointer to a DATE structure that receives the date and time the item ends.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::GetIcon
[This is preliminary documentation and subject to change.]

The GetIcon method retrieves the file name of the specified icon associated with the item.

HRESULT GetIcon (

2335

TV Viewer Page 48 of 70

 long iIconNumber,
 BSTR* pstrIconName
);

Parameters

iIconNumber
Zero-based identifier of the icon. This value cannot be greater than the value returned by the
IEPGItem::NumIcons method – 1.

pstrIconName
Pointer to a BSTR that receives the file name of the icon identified by the iIconNumber
parameter.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

Icons of the type retrieved by GetIcon represent additional information about the broadcast, such as
its rating and pay-per-view status and whether it has closed captioning.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::GetOption
[This is preliminary documentation and subject to change.]

The GetOption method retrieves the specified option, or command, from the item.

HRESULT GetOption (
 long iOptionNumber,
 long* plID,
 BSTR* pstrText
);

Parameters

2336

TV Viewer Page 49 of 70

iOptionNumber
A long that specifies the zero-based identifier of the option to retrieve. This value cannot be
greater than IEPGItem::NumOptions – 1.

plID
Pointer to a long that receives the interface identifier (IID) of the option specified by the
iOptionNumber parameter.

pstrText
Pointer to a BSTR that receives the name of the command. This name is the same text as
displayed on the option buttons in the Program Guide, such as Watch, Remind, or Other
Times.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::Length
[This is preliminary documentation and subject to change.]

The Length method returns the length, in minutes, of the item.

HRESULT Length (
 long* pLength
);

Parameters

pLength
Pointer to a long that receives the length of the item, in minutes.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

2337

TV Viewer Page 50 of 70

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::NumIcons
[This is preliminary documentation and subject to change.]

The NumIcons method counts the icons associated with the item.

HRESULT NumIcons (
 long* pNumIcon
);

Parameters

pNumIcon
Pointer to a long that receives the total number of icons.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

Icons of the type counted by NumIcons represent additional information about the broadcast, such as
its rating and pay-per-view status and whether it has closed captioning.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

2338

TV Viewer Page 51 of 70

IEPGItem::NumOptions
[This is preliminary documentation and subject to change.]

The NumOptions method counts the number of commands that can run on an item.

HRESULT NumOptions (
 long* pNumOptions
);

Parameters

pNumOptions
Pointer to a long that receives the total number of options.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

The available options for a broadcast vary over time. For example, you can watch an episode that is on
now, but you can only set a reminder for one that is on later.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::OnNow
[This is preliminary documentation and subject to change.]

The OnNow method returns a Boolean specifying whether the item is currently being broadcast.

HRESULT OnNow (
 VARIANT_BOOL* pOnNow
);

2339

TV Viewer Page 52 of 70

Parameters

pOnNow
Pointer to a boolean that indicates whether this item is currently being broadcast. If the received
value is VARIANT_TRUE, the item is currently being broadcast. If the value is
VARIANT_FALSE, it is not.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::OptionPrompt
[This is preliminary documentation and subject to change.]

The OptionPrompt method retrieves a string that explains the options available.

HRESULT OptionPrompt (
 BSTR* pstrPrompt
);

Parameters

pstrPrompt
Pointer to a BSTR that receives the option prompt message.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.

2340

TV Viewer Page 53 of 70

 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::PreviewGraphic
[This is preliminary documentation and subject to change.]

The PreviewGraphic method gets the file name of a graphic to display when the item is not currently
being broadcast.

HRESULT PreviewGraphic (
 BSTR* pstrPreviewGraphic
);

Parameters

pstrPreviewGraphic
Pointer to a BSTR that receives the file name. If no preview graphic exists, the method returns
a NULL BSTR.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

For example, a preview graphic could be displayed as a placeholder for live video from a channel that
is currently off the air.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::StartTime
[This is preliminary documentation and subject to change.]

2341

TV Viewer Page 54 of 70

The StartTime method gets the starting time of the item.

HRESULT StartTime(
 DATE* pStartTime
);

Parameters

pStartTime
Pointer to a DATE structure that receives the date and time the item starts.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::Title
[This is preliminary documentation and subject to change.]

The Title method gets the title of the item.

HRESULT Title (
 BSTR* pstrTitle
);

Parameters

pstrTitle
Pointer to a BSTR that receives the title.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

2342

TV Viewer Page 55 of 70

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGItem::TuningInfo
[This is preliminary documentation and subject to change.]

The TuningInfo method gets tuning information associated with the item.

HRESULT TuningInfo (
 LONG* plTuningSpace,
 LONG* plChannelNumber
);

Parameters

plTuningSpace
Pointer to a long that receives the tuning space identifier.

plChannelNumber
Pointer to a long that receives the channel number.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode

[This is preliminary documentation and subject to change.]

2343

TV Viewer Page 56 of 70

The IEPGEpisode interface enables applications such as TV Viewer to retrieve data from an episode
object.

When to Implement

Implement IEPGEpisode in objects that wrap episode records in the Guide database.

When to Use

You can call the methods of IEPGEpisode to retrieve episode field data from the object.

Methods in Vtable Order

IUnknown Methods Description

QueryInterface Returns pointers to supported interfaces

AddRef Increments reference count

Release Decrements reference count

IEPGEpisode Description

TimeSlotID Gets the time-slot identifier. This value maps to
the starting and ending time of the episode.

ChannelID Gets the channel identifier.

EpisodeID Gets the episode identifier.

PayPerView Retrieves a Boolean value indicating whether
the episode is pay-per-view.

RatingID Gets the rating identifier.

CallLetters Retrieves the call letters of the station.

IsRemindItem Returns a value indicating whether a show
reminder is set for the episode.

IsRecordItem Returns a value indicating whether a record
reminder is set for the episode.

Repetition Counts the number of times that the episode
appears in the Guide database.

RemindRecordIdx Returns an index into the cache of show
reminders in TV Viewer. This method is only
valid for episodes for which the IsRemindItem
or IsRecordItem method returns
VARIANT_TRUE.

IsContinuous Returns a value indicating whether the episode
is continuous, in other words whether there is a
single on-going episode for the channel.

2344

TV Viewer Page 57 of 70

Remarks

The IEPGEpisode interface enables applications such as TV Viewer to retrieve data from an episode
object. An episode object is one that wraps the data of an episode record in the Guide database.
IEPGEpisode inherits from the IEPGItem interface. IEPGItem must be implemented in episode
objects passed to TV Viewer.

TV Viewer creates its own episode objects and initializes them with data from the Guide database. For
example, TV Viewer can query the Guide database to open a recordset of all the episodes that have
"great" in the title. For each record in the recordset, TV Viewer creates an episode object, initializing
its values to the record's field values.

Pointers to IEPGEpisode interfaces are passed as parameters to the ITVViewer::SetReminder and
ITVViewer::HasEnhancement methods. To use these methods, your application must implement an
episode object that supports IEPGEpisode.

TV Viewer returns an IEPGEpisode pointer when it calls the ITVControl::EpisodeStatusChanged
method.

The IEPGEpisode interface also contains the following methods, which are reserved for future use.

� IsListGuideItem
� IsPurchasable
� IsPurchaseItem
� PPVCanBeCancelled
� PPVTapeCost
� PPVTokenAddress
� PPVViewCost
� PurchaseIdx

See Also

IEPGItem

IsOnLater Returns a value indicating whether the episode
is on later.

IsOnSoon Returns a value indicating whether the episode
is on within the next five minutes.

ThemeID Gets the episode's theme identifier.

AbbreviatedTitle Gets the abbreviated version of the episode
title.

HasEnhancement Gets a value indicating whether the episode is
enhanced.

Layout Gets the enhancement layout information.

2345

TV Viewer Page 58 of 70

IEPGEpisode::AbbreviatedTitle
[This is preliminary documentation and subject to change.]

The AbbreviatedTitle method gets the short version of the episode title.

HRESULT AbbreviatedTitle(
 BSTR* pstrAbbrevTitle
);

Parameters

pstrAbbrevTitle
Pointer to a BSTR that receives the abbreviated title.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

The abbreviated title contains the content-provider's recommended abbreviation of the episode title.
The abbreviated version of the title should be used in user interfaces where there is insufficient space
to display the full title. For example, "The Great Adventures of Mulligan" might have an abbreviated
title of "Adventures of Mulligan".

IEPGEpisode::CallLetters
[This is preliminary documentation and subject to change.]

The CallLetters method gets the call letters associated with the episode. This information
corresponds to the S Call Letters field in the Guide database.

HRESULT CallLetters(
 BSTR* ppszCallLetters
);

Parameters

ppszCallLetters
Pointer to a BSTR that receives the call letters.

2346

TV Viewer Page 59 of 70

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::ChannelID
[This is preliminary documentation and subject to change.]

The ChannelID method retrieves the channel identifier of the episode. This information corresponds
to the TS Channel ID field in the Guide database.

HRESULT ChannelID(
 long* lChannelID
);

Parameters

lChannelID
Pointer to a long that receives the channel identifier.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

2347

TV Viewer Page 60 of 70

IEPGEpisode::EpisodeID
[This is preliminary documentation and subject to change.]

The EpisodeID method retrieves the identifier of the episode. This information corresponds to the TS
Episode ID field in the Guide database.

HRESULT EpisodeID(
 long* lEpisodeID
);

Parameters

lEpisodeID
Pointer to a long that receives the episode identifier.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::HasEnhancement
[This is preliminary documentation and subject to change.]

The HasEnhancement method gets a value indicating whether the episode is enhanced. If the episode
is enhanced, this method retrieves identifiers specifying the enhancement.

HRESULT HasEnhancement(
 VARIANT_BOOL *pf,
 long * lTSEnhMappingID,
 long * lEpiEnhMappingID
);

Parameters

2348

TV Viewer Page 61 of 70

pf
Pointer to a boolean value that receives VARIANT_TRUE if the episode is enhanced, or
VARIANT_FALSE otherwise.

lTSEnhMappingID
Pointer to a long that receives the time slot enhancement mapping identifier. This value is only
set if the episode is enhanced.

lEpiEnhMappingID
Pointer to a long that receives the episode enhancement mapping identifier. This value is only
set if the episode is enhanced.

Remarks

You can pass in NULL for either or both of the enhancement identifiers. In this case,
HasEnhancement will still return a value that indicates whether the episode is enhanced, however it
does not get values for the identifiers. The following code is an example of this usage:

pEPGEpisode->HasEnhancement(&fHasEnh, NULL, NULL)

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

IEPGEpisode::IsContinuous
[This is preliminary documentation and subject to change.]

The IsContinuous method returns a value that indicates whether the episode is continuous.

HRESULT IsContinuous(
 VARIANT_BOOL * pf
);

Parameters

pf
Pointer to a variable that receives VARIANT_TRUE if the episode is continuous, and
VARIANT_FALSE otherwise.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

2349

TV Viewer Page 62 of 70

Remarks

If an episode is continuous, it means there is a single on-going episode for the channel broadcasting
that episode. For example, the Program Guide channel broadcasts one continuous episode.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::IsOnLater
[This is preliminary documentation and subject to change.]

The IsOnLater method returns a value indicating whether the episode is on later.

HRESULT IsOnLater(
 VARIANT_BOOL * pf
);

Parameters

pf
Pointer to a variable that receives VARIANT_TRUE if the episode is on later, and
VARIANT_FALSE otherwise.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

2350

TV Viewer Page 63 of 70

IEPGEpisode::IsOnSoon
[This is preliminary documentation and subject to change.]

The IsOnSoon method returns a value that indicates whether the episode will be broadcast in the next
five minutes.

HRESULT IsOnSoon(
 VARIANT_BOOL * pf
);

Parameters

pf
Pointer to a variable that receives VARIANT_TRUE if the episode will be broadcast in the next
five minutes, and VARIANT_FALSE otherwise.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::IsRecordItem
[This is preliminary documentation and subject to change.]

The IsRecordItem method returns a value indicating whether the episode is a record item.

HRESULT IsRecordItem(
 VARIANT_BOOL * pf
);

Parameters

pf

2351

TV Viewer Page 64 of 70

Pointer to a variable that receives VARIANT_TRUE if a record reminder is set for the episode,
and VARIANT_FALSE otherwise.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

TV Viewer sets record items. Some record items, typically episodes that are for display purposes only,
do not have a valid time slot associated with them — in other words, their TS Time Slot ID field
equals zero. If the time slot identifier is zero, but IsRecordItem returns S_OK, this indicates that a
record reminder is set but that there are no shows matching this record reminder in the Program
Guide.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::IsRemindItem
[This is preliminary documentation and subject to change.]

The IsRemindItem method returns a value indicating whether the episode is a remind item.

HRESULT IsRemindItem(
 VARIANT_BOOL * pf
);

Parameters

pf
Pointer to a variable that receives VARIANT_TRUE if a reminder is set for the episode, and
VARIANT_FALSE otherwise.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

2352

TV Viewer Page 65 of 70

Remarks

Remind items are set by TV Viewer. Some remind items, typically episodes that are for display
purposes only, do not have a valid time slot associated with them — in other words, their TS Time
Slot ID fields equal zero. If the time slot identifier is zero, but IsRemindItem returns S_OK, this
indicates that a reminder is set but that there are no shows matching this reminder in the Program
Guide.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::Layout
[This is preliminary documentation and subject to change.]

The Layout method returns additional information about the episode's enhancement.

HRESULT Layout (
 long lEnhMappingID,
 BSTR * EnhTitle,
 BSTR * EnhLayout,
 BSTR * EnhAddress
);

Parameters

lEnhMappingID
Long that contains the enhancement mapping identifier. This corresponds to either the
lTSEnhMappingID or lEpiEnhMappingID value returned by the
IEPGEpisode::HasEnhancement method.

EnhTitle
Pointer to a string that receives the title of the enhanced show.

EnhLayout
Pointer to a string that receives the starting or default HTML layout page for the enhancement.

EnhAddress
Pointer to a string that recieves the enhancement IP address. Triggers for the enhancement will
be sent to this address.

Remarks

2353

TV Viewer Page 66 of 70

This method is only valid for episodes that have enhancements. To test whether an episode is
enhanced, call IEPGEpisode::HasEnhancement.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

IEPGEpisode::PayPerView
[This is preliminary documentation and subject to change.]

The PayPerView method returns a value indicating whether the episode is a pay-per-view episode.
This information corresponds to the TS Pay Per View field in the Guide database.

HRESULT PayPerView (
 VARIANT_BOOL * pf
);

Parameters

pf
Pointer to a variable that receives VARIANT_TRUE if the episode is a pay-per-view episode,
and VARIANT_FALSE otherwise.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::RatingID

2354

TV Viewer Page 67 of 70

[This is preliminary documentation and subject to change.]

The RatingID method gets the rating identifier associated with the episode. This information
corresponds to the E Rating ID field in the Guide database.

HRESULT RatingID(
 long* lRatingID
);

Parameters

lRatingID
Pointer to a long that receives the rating identifier.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::RemindRecordIdx
[This is preliminary documentation and subject to change.]

The RemindRecordldx method returns an index into the cache of show reminders in TV Viewer.
This method is only valid for episodes for which the IsRemindItem or IsRecordItem method returns
VARIANT_TRUE.

HRESULT RemindRecordIdx(
 long* idxRR
);

Parameters

idxRR
Pointer to a long that receives the index value. If the episode is not a record or a remind item,
this value is –1.

2355

TV Viewer Page 68 of 70

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::Repetition
[This is preliminary documentation and subject to change.]

The Repetition method returns a value indicating the frequency, or type, of the reminder. This
method is only valid for episodes for which the IsRemindItem or IsRecordItem method returns
VARIANT_TRUE.

HRESULT Repetition(
 int* iRep
);

Parameters

iRep
Pointer to an int that receives the repetition type flag. This flag can be one of the following
named values.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.

Value Meaning

REMIND_DAILY The reminder repeats each day.

REMIND_NONE The reminder doesn't occur. This value may
indicate that the episode does not have a
show or record reminder set.

REMIND_ONCE The reminder occurs once.

REMIND_WEEKDAYS The reminder repeats each weekday.

REMIND_WEEKLY The reminder repeats every week.

2356

TV Viewer Page 69 of 70

Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::ThemeID
[This is preliminary documentation and subject to change.]

The ThemeID method retrieves the theme identifier of the episode. This information corresponds to
the T Theme ID field in the Guide database.

HRESULT ThemeID(
 long* lThemeID
);

Parameters

lThemeID
Pointer to a long that receives the theme identifier.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

IEPGEpisode::TimeSlotID
[This is preliminary documentation and subject to change.]

2357

TV Viewer Page 70 of 70

The TimeSlotID method retrieves the time slot identifier of the episode. This information corresponds
to the TS Time Slot ID field in the Guide database.

HRESULT TimeSlotID(
 long* lTimeSlotID
);

Parameters

lTimeSlotID
Pointer to a long that receives the time slot identifier.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Import Library: user-defined.

2358

Television System Services Page 1 of 48

Television System Services
[This is preliminary documentation and subject to change.]

The object library for Television System Services (TSS), Tssadmin.dll, provides television-related
utility methods for Broadcast Architecture, as well as a television-related collection. Using the TSS
object library, you can:

� Retrieve information about the Broadcast Architecture installation.
� Create and parse show references.
� Generate queries from a show reference that returns a list of all episodes that match the show

reference.
� Load enhancement information into the Guide database.
� Set and delete show reminders.

For more information on using this library, see About Television System Services and Using
Television System Services.

TSS contains methods that are not supported and are reserved for future use. For more information,
see Reserved Methods in Television System Services.

Reserved Methods in Television System
Services
[This is preliminary documentation and subject to change.]

The object library for Television System Services (TSS), Tssadmin.dll, contains the following methods
that are not supported and are reserved for future use:

� ITelevisionServices::CreateUser
� ITelevisionServices::DeleteUser
� ITelevisionServices::RestrictionQueryName

About Television System Services
[This is preliminary documentation and subject to change.]

2359

Television System Services Page 2 of 48

The TSS object library, Tssadmin.dll, provides a variety of television-related utility methods, as well as
a television-related collection. The following topics group these items by related functionality:

� About the Property Methods describes methods used to return information about the Broadcast
Architecture system.

� About the Enhancement-Loading Methods describes methods that load enhancement
information into the Guide database.

� About the Show Reference Methods describes methods to create and parse show references.
� About the Scheduled Items Collection describes the collection of show reminders.

For related reference information on TSS, see the sections on the ITelevisionServices and
IScheduledItems interfaces.

About the Property Methods

[This is preliminary documentation and subject to change.]

The methods described in this topic retrieve information about the properties of the current TSS
installation. The property methods are as follows:

� ITelevisionServices::get_SystemFile
� ITelevisionServices::get_DatabaseFile
� ITelevisionServices::get_ScheduledItems
� ITelevisionServices::get_ClipboardFormat
� ITelevisionServices::get_ClipboardFormatName

Your application can use these methods to locate database and system files on the user's computer,
retrieve the show reference clipboard format and access the collection of currently-scheduled show
reminders.

For example, Broadcast Architecture stores security information in Microsoft® Access database and
workgroup files. You can get the path and filename of these files using the
ITelevisionServices::get_SystemFile and ITelevisionServices::get_DatabaseFile methods.

Broadcast Architecture defines show reminders, a special type of task-scheduler task that reminder the
user when a specific show is about to begin. You can retrieve a collection of all currently scheduled
show reminders by calling ITelevisionServices::get_ScheduledItems method. For more information
about this collection, see About the Scheduled Items Collection.

When Broadcast Architecture is installed, it saves information about a new clipboard format for show
references in the registry. If your application knows the show reference format it can use the clipboard
to cut and paste show references. The TSS object library provides two methods,
ITelevisionServices::get_ClipboardFormat and
ITelevisionServices::get_ClipboardFormatName, that you can use to retrieve the identifier and

2360

Television System Services Page 3 of 48

name of the show reference clipboard format.

For more information, see the following topics:

� Getting Information About TSS
� Getting Scheduled Reminders
� Using IScheduledItems to Schedule a Show Reminder

About the Enhancement-Loading Methods

[This is preliminary documentation and subject to change.]

The TSS object library, Tssadmin.dll, provides methods that you can use to load enhancement
information into the Guide database. The enhancement methods are as follows:

� ITelevisionServices::LoadEnhancement
� ITelevisionServices::LoadEnhancementsFromFile
� ITelevisionServices::DeleteEnhancementFromID
� ITelevisionServices::DeleteOldEnhancements
� ITelevisionServices::RemapEnhancements

An enhancement is additional content, typically HTML, that can be displayed to "enhance" or extend a
show. When an application loads enhancement HTML files onto the user's machine, information about
the enhancement, such as the location of the HTML files and which file to display first, should be
loaded into the Guide database. This enables TV Viewer to properly display the enhancement.

There are two types of enhancements: episode and channel. An episode enhancement applies to a
particular episode or set of episodes. A channel enhancement applies to all the shows on a particular
channel. For example, a channel dedicated to science fiction might have an enhancement that enables
the user to browse through a database of science fiction trivia. If a show has both an episode and a
channel enhancement, TV Viewer displays the episode enhancement.

When TV Viewer tunes to a new channel, it queries the Guide database to see whether any of the
enhancements listed in the database match the episode currently showing. TV Viewer displays the
episode using the first matching enhancement file listed. If no episode enhancements exist for the
show, TV Viewer searches for a channel enhancement listing. If neither an episode nor a channel
enhancement apply to the current show, TV Viewer displays the broadcast using the default full-
screen video layout.

If multiple enhancements exist for the current show, users can select which enhancement to view from
the TV banner. The TV banner is a toolbar that displays across the top of the screen when the user
clicks F10. It displays the channel number, episode title, show time, and informational icons. When the
user clicks on the enhancement icon in the TV banner, a list of the available enhancements appears.
From the list, users can select which enhancement TV Viewer displays with the show.

2361

Television System Services Page 4 of 48

The HTML files that define an enhancement's layout can be loaded to the user's computer in two
ways:

� Through digital data transmission means such as Internet channel broadcasting or encoding in
the vertical blanking interval (VBI)

� As part of loading current Program Guide information into the Guide database

Typically, each set of enhancement layout files is stored in a separate directory. The default top-level
directory for enhancement storage is C:\Program Files\TV Viewer\Layouts\, and layouts are typically
stored in its subdirectories. For example, an episode of Star Trek might store its enhancement files in
C:\Program Files\TV Viewer\Layouts\Trek123\.

Once the enhancement layout files reside on the user's computer, information about the enhancement
files, such as their location and filename, must be stored in the Guide database. This enables TV
Viewer to query the Guide database and locate the enhancement files associated with a particular
show.

If the enhancement files were loaded onto the user's machine during an update of the Guide database,
the Loadstub component of Broadcast Architecture loads information about the enhancement files into
the Guide database. It does this by calling the ITelevisionServices::LoadEnhancementsFromFile
method. For more information about Loadstub, see Updating the Guide Database.

If the enhancement files were loaded onto the user's machine through VBI encoding, the content
provider sends an announcement trigger through the broadcast stream to the Enhancement Filter to
indicate that a show is enhanced. (For more on announcements, see Announcements Overview.) When
the Enhancement Filter receives information about a show's enhancement, it calls the
ITelevisionServices::LoadEnhancement method to load this information into the Guide database.

If your application loads enhancement files onto the user's computer, it should also load information
about these files into the Guide database by calling either LoadEnhancement or
LoadEnhancementsFromFile methods.

TSS also provides the method ITelevisionServices::DeleteEnhancementFromID, which enables
applications such as Announcement Listener to delete enhancement data from the Guide database.
Typically, you do not need to call this method. Instead enhancement information is automatically
deleted from the Guide database after it expires. Obsolete enhancement data is also periodically
removed from the Guide database by Loadstub. To enable such cleanup, you must set an expiration
date for any enhancement data that you load. You specify the enhancement data's expiration date in
the dateExpire parameter of LoadEnhancement or in the Expiration Date column of the text file read
by LoadEnhancementsFromFile.

You can delete expired enhancement data from the Guide database by calling
ITelevisionServices::DeleteOldEnhancements.

The ITelevisionServices::RemapEnhancements method maps enhancements to their corresponding
channels and episodes.

For more information about using the enhancement methods, see Loading Enhancement Information.

2362

Television System Services Page 5 of 48

For more information about enhancements, see Video Enhancements.

About the Show Reference Methods

[This is preliminary documentation and subject to change.]

Broadcast Architecture defines a data format, the show reference, to describe a broadcast episode or
episodes using such information as the time and channel of the show and so on. A show reference is an
ASCII string that contains multiple fields. Each field is separated from the next by an exclamation
mark (!).

The TSS object library provides methods that build a show reference from its constituent fields, parse
show references, and build database queries from a show reference. These queries can then be run
against the Guide database to return the collection of episodes to which the show reference refers.

The show reference methods are as follows:

� ITelevisionServices::MakeLocalBroadcastSchedule
� ITelevisionServices::MakeRemoteBroadcastSchedule
� ITelevisionServices::SplitBroadcastSchedule
� ITelevisionServices::SplitSimpleBroadcastSchedule
� ITelevisionServices::ResolveBroadcast
� ITelevisionServices::ResolveBroadcastInclusively
� ITelevisionServices::ResolveScheduledReminders
� ITelevisionServices::TuningSpaceNameFromNumber
� ITelevisionServices::TuningSpaceNumberFromName

The ITelevisionServices::MakeLocalBroadcastSchedule method builds a show reference where a
show's channel number, tuning space, and station are known. The
ITelevisionServices::MakeRemoteBroadcastSchedule method also builds a show reference but
substitutes wildcard values for the channel number, tuning space, and station.

You can use MakeLocalBroadcastSchedule if you are certain that all users will be located in your
local broadcast area. Otherwise, you can use MakeRemoteBroadcastSchedule, which substitutes
wildcard characters for the local broadcasting information, such as station and channel number. TV
Viewer queries the user's Guide database to fill in the wildcard values with local broadcasting
information when it uses a show reference created by MakeRemoteBroadcastSchedule.

A show reference is composed of several fields that contain information about the episode. Your
application can access this information, for example the episode title, by parsing the show reference.
To parse show references, the TSS object library offers the
ITelevisionServices::SplitBroadcastSchedule method, which splits a show reference into its
constituent fields. SplitBroadcastSchedule returns an ITaskTrigger interface pointer that specifies
the date and task trigger information, such as run at 7:00 PM on day 23 of every month, starting

2363

Television System Services Page 6 of 48

7/22/97. The ITelevisionServices::SplitSimpleBroadcastSchedule method performs the same
service but returns the date information as a DATE variable. Although
SplitSimpleBroadcastSchedule provides less information than SplitBroadcastSchedule,
SplitSimpleBroadcastSchedule can be called by programs in the Microsoft® Visual Basic®
programming system that cannot access ITaskTrigger.

The ITelevisionServices::ResolveBroadcast method generates a query from a show reference. By
running this query on the Guide database, you can retrieve the episode or the list of episodes that
match a particular show reference. This functionality is useful in situations where a reference refers to
several episodes, which occurs if some of the reference's fields are wildcard values. For example, a
show reference that specifies the time and title, but not the date, of a show can refer to all the weekly
or monthly episodes of that show.

The ITelevisionServices::ResolveBroadcastInclusively method is identical in function to
ResolveBroadcast except that it returns all matching episodes playing during the specified time in the
show reference, instead of starting at that time.

The ITelevisionServices::ResolveScheduledReminders method returns a Data Access Objects
(DAO) QueryDef query definition that generates a list of the show reminders scheduled. To locate
more information on DAO, see Further General Information.

In addition, the TSS object library provides two methods,
ITelevisionServices::TuningSpaceNameFromNumber and
ITelevisionServices::TuningSpaceNumberFromName, which map the number of a tuning space in
the Guide database to its human-readable name, such as cable, TV tuner, or satellite, and vice versa.
You could use these methods to convert the tuning space identifiers into the device names to display a
list to the user. When the user has selected a device name, you could call
TuningSpaceNumberFromName to recover the tuning space in order to reference the tuning space
in the Guide database or to tune to a channel in that tuning space.

To locate more information about ITaskTrigger, see Further Information on Television Services for
the Client.

For more information, see the following topics:

� Creating a Show Reference
� Parsing a Show Reference
� Resolving a Show Reference
� Mapping a Tuning Space Name to an Identifier

About the Scheduled Items Collection

[This is preliminary documentation and subject to change.]

A show reminder is a task scheduler task that runs just before a show starts and displays a dialog box

2364

Television System Services Page 7 of 48

to the user, informing the user the show is about to begin. The currently set reminders are enumerated
by the Scheduled Items collection returned by the ITelevisionServices::get_ScheduledItems method.

Once you have a reference to the collection, you can use the methods of the IScheduledItems
interface to set, delete, or enumerate the scheduled shows. For more information, see Using
IScheduledItems to Schedule a Show Reminder.

However, show reminders set using IScheduledItems do not appear in the TV Viewer user interface.
In other words, users cannot search for or set reminders using the TV Viewer search page. To create
scheduled reminders that are visible from TV Viewer, you must use the ITVViewer::SetReminder
method. For more information, see Using ITVViewer to Schedule a Show Reminder.

Using Television System Services
[This is preliminary documentation and subject to change.]

The TSS object library, Tssadmin.dll, provides a variety of utility methods for Broadcast
Architecture–aware applications. The following topics describe how to use the different areas of
functionality provided by these methods:

� Getting Information About TSS
� Loading Enhancement Information
� Creating a Show Reference
� Parsing a Show Reference
� Resolving a Show Reference
� Mapping a Tuning Space Name to an Identifier
� Getting Scheduled Reminders
� Using IScheduledItems to Schedule a Show Reminder

Getting Information About TSS

[This is preliminary documentation and subject to change.]

The TSS object library provides methods that you can use to acquire information about the current
Broadcast Architecture installation.

To get the path and name of the system workgroup information file that is used for TSS database
security, your application calls the ITelevisionServices::get_SystemFile method. With this
information, you can set the system database of the Jet database engine. The path and file name of the
Guide database can be retrieved by calling the ITelevisionServices::get_DatabaseFile method. With
this information, you can open the database. To locate more information on working with Jet

2365

Television System Services Page 8 of 48

databases, see Further Information on Television Services for the Client.

Broadcast Architecture saves information about a new clipboard format for show references in the
registry. The TSS object library provides methods to retrieve information about this format. With this
information, your applications can cut and paste show references using the clipboard. To retrieve the
clipboard format identifier, your application calls the ITelevisionServices::get_ClipboardFormat
method. To retrieve the clipboard format name, your application calls
ITelevisionServices::get_ClipboardFormatName.

For more information, see About the Property Methods.

Loading Enhancement Information

[This is preliminary documentation and subject to change.]

When TV Viewer displays an enhanced show, it looks up information about the enhancements, such as
which layout files to use and in which directory they are stored, in the Guide database. In order for the
enhanced show to display properly, this information about the enhancement files must be loaded into
the Guide database before the show is broadcast.

The ITelevisionServices interface provides two methods that you can use to load enhancement
information into the Guide database, ITelevisionServices::LoadEnhancement and
ITelevisionServices::LoadEnhancementsFromFile.

LoadEnhancement loads information about a single enhancement into the database, as specified by
parameters passed in the method call. For example, if you were writing an application that
downloaded a set of enhancement files for a show onto the user's computer, you could then call
LoadEnhancement to store information about those files in the Guide database so that TV Viewer
would be able to locate and properly display the enhancements.

If you are loading information about multiple enhancements you can use the
LoadEnhancementsFromFile method. It loads information into the database about multiple
enhancements, as listed in the text file the method call points to. Because
LoadEnhancementsFromFile uses the JET text Installable Sequential Access Module (ISAM) to
parse the text file, you must include a Schema.ini file in the same directory as the text file that contains
enhancement information. For examples of valid Schema.ini files, see the Remarks section of the
LoadEnhancementsFromFile reference entry.

Both LoadEnhancement and LoadEnhancementsFromFile programmatically determine whether an
enhancement applies to a channel or to a specific episode. If the show reference parameter contains an
episode title, the method sets the indicated enhancement to apply to the specified episode or episodes.

If the show reference parameter does not contain an episode title, the enhancement is assumed to be a
channel enhancement. In this case, LoadEnhancement or LoadEnhancementsFromFile searches
the tuning space for the union of station, network, and channel number specified in

2366

Television System Services Page 9 of 48

bstrShowReference or Show Reference. The method then sets the enhancement to apply to all channel
records that match this union.

A third function, ITelevisionServices::DeleteEnhancementFromID, enables you to remove
enhancement information from the Guide database. You could, for example write a trigger event
handler that would respond to a delete-enhancement event sent by the broadcast provider and delete
the specified enhancement information from the database. However, this method is not often used.
Typically enhancements are deleted automatically when they expire by internal components of the
Broadcast Architecture system.

You can delete expired enhancement data from the Guide database by calling
ITelevisionServices::DeleteOldEnhancements.

For more information, see About the Enhancement-Loading Methods.

Creating a Show Reference

[This is preliminary documentation and subject to change.]

To create a show reference from episode data, you can use either the
ITelevisionServices::MakeLocalBroadcastSchedule or
ITelevisionServices::MakeRemoteBroadcastSchedule method. With the first method, you must
pass in local broadcast information, including the channel number, local station, and tuning space.
With the second, you can create a show reference that substitutes wildcard values for these entries.
Substituting wildcard values causes applications with functionality like that of TV Viewer to query the
Guide database to match an episode or episodes using only the episode title, network, and show time.

MakeRemoteBroadcastSchedule is useful when you do not know which broadcast area might be
local. For example, you can access a Web application from any broadcast area. If your Web
application does not know or calculate in the user's broadcast area, it should call
MakeRemoteBroadcastSchedule.

Note that you can achieve the same effect by calling MakeLocalBroadcastSchedule and passing in
wildcard values for the Channel, Station, and TuningSpace parameters.

For more information, see the following topics:

� Show Reference Format
� Resolving a Show Reference
� About the Show Reference Methods

Parsing a Show Reference

2367

Television System Services Page 10 of 48

[This is preliminary documentation and subject to change.]

A show reference is composed of several fields that contain information about the episode or episodes.
Your application can access the episode information, for example the episode title, by parsing the
show reference. To do this, you can use either the ITelevisionServices::SplitBroadcastSchedule or
ITelevisionServices::SplitSimpleBroadcastSchedule method. Both methods split a show reference
into its constituent fields. However, the first method returns the trigger information, date information,
or both as a pointer to a ITaskTrigger interface, and the second returns only the date information in a
DATE variable.

If you are using the Microsoft® Visual Basic® programming system to write your application, you
should use SplitSimpleBroadcastSchedule instead of SplitBroadcastSchedule. Although
SplitSimpleBroadcastSchedule returns less information about the show reference, it is preferred for
Visual Basic applications, which cannot access ITaskTrigger.

For more information on show reference fields, see Show Reference Format. To locate more
information about ITaskTrigger, see Further Information on Television Services for the Client.

For more information, see About the Show Reference Methods.

Resolving a Show Reference

[This is preliminary documentation and subject to change.]

You can use the ITelevisionServices::ResolveBroadcast method to generate a Guide database query
that lists all the episodes that match a show reference. Doing so is useful, for example, if your
application needs to resolve a reference created with MakeRemoteBroadcastSchedule to the correct
local broadcast information.

To generate a query that lists all the matching episodes that have started before and ended after a
particular time, you can call the ITelevisionServices::ResolveBroadcastInclusively method.

For more information, see Creating a Show Reference and About the Show Reference Methods.

Mapping a Tuning Space Name to an Identifier

[This is preliminary documentation and subject to change.]

A tuning space is a Broadcast Architecture feature that enables a broadcast client to resolve
overlapping channel numbers from multiple broadcast sources. For example, suppose a computer has
both an analog television tuner and a satellite tuner card installed. If the two broadcast systems each

2368

Television System Services Page 11 of 48

have a channel 1, conflicts occur. To prevent such conflicts, Broadcast Architecture defines each input
source as a separate tuning space, assigning it a unique identifier.

Each tuning space has both a unique numerical identifier, and a human-readable name such as analog
tuner, cable, or satellite.

You can use methods of the TSS object library to map a tuning space identifier to its user-readable
name and vice versa. For example, if your application needed to present a list of tuning spaces to the
user, you could look up the tuning spaces in the Guide database, and then map each tuning space to a
human-readable name. Conversely, when the user selected a tuning space, your application would
need to map the tuning space name back to its identifier before it could tune to a channel in that tuning
space.

To map an identifier to the tuning space name, your application calls
ITelevisionServices::TuningSpaceNameFromNumber. To map a name to its corresponding
identifier, your application calls ITelevisionServices::TuningSpaceNumberFromName.

For more information, see Overlapping Channels and About the Show Reference Methods.

Getting Scheduled Reminders

[This is preliminary documentation and subject to change.]

You can use the TSS object library to retrieve a collection or enumeration of all currently scheduled
show reminders, or a list of the reminders set. You can then set, edit, and delete the scheduled
reminders.

To access all scheduled reminders, your application calls the
ITelevisionServices::get_ScheduledItems method. Doing so populates and returns a collection of
ScheduledItems objects, each one corresponding to a scheduled reminder. Your application can then
set, edit, and delete reminders using the methods of the IScheduledItems interface.

To retrieve a list of scheduled reminders set, your application calls the
ITelevisionServices::ResolveScheduledReminders method. Doing so generates a DAO QueryDef
query, which you can then run on the Guide database to generate the list of reminders set.

For more information, see About the Scheduled Items Collection.

Using IScheduledItems to Schedule a Show Reminder

[This is preliminary documentation and subject to change.]

2369

Television System Services Page 12 of 48

As described in Scheduling Show Reminders, Broadcast Architecture provides two ways to
programmatically schedule show reminders. The first process is described in Using ITVViewer to
Schedule a Show Reminder. You can also create a show reminder by using the IScheduledItems
interface.

Using IScheduledItems is better for applications that do not connect to TV Viewer. For example, an
enhancement that is a Microsoft® ActiveX™ control or Java applet on a World Wide Web page can
schedule a reminder for the show related to the enhancement by using IScheduledItems.
IScheduledItems is much simpler to start, load, and release than the ITVViewer interface. For more
information on connecting to TV Viewer, see Connecting to TV Viewer.

However, reminders set using IScheduledItems are not always visible in the the TV Viewer user
interface. In other words, they do not automatically appear in the MyReminders list of the search
page in TV Viewer. In order for a TSS-set reminder to be visible in TV Viewer it must meet certain
standards. These standards are specified in Setting a Reminder that Appears in TV Viewer.

If a reminder set using IScheduledItems does not appear in the TV Viewer reminders list, users will
be unable to delete the reminder using TV Viewer. In this case, you should set an expiration date for
such a reminder by creating a TASK_TRIGGER structure and specifying values for the wEndYear,
wEndMonth, and wEndDay members. Alternatively, you can provide an application that the user can
use to delete the reminder. To locate more information about TASK_TRIGGER, see Further
Information on Television Services for the Client.

Although you cannot view a reminder set with Add or AddFromQuery from TV Viewer, you can
still use TV Viewer to display that reminder to the user when it runs. To do so, simply specify TV
Viewer (Tvx.exe) as the reminder application when you set the show reminder.

Before you set a reminder, you must gather information about the show reminder you wish to set. This
information is passed into the parameters of the Add or AddFromQuery method. The method
formats this information into the show reminder format and then schedules the reminder with the Task
Scheduler.

 To gather information for show reminder parameters

1. Create a show reference by passing the episode information to either the
ITelevisionServices::MakeLocalBroadcastSchedule or
ITelevisionServices::MakeRemoteBroadcastSchedule method.

2. If you know the duration of the episode in minutes, add this information to the
TVViewerParameters string, later to be passed to the Add method in the Parameters parameter.
If you do not know the episode duration, specify TVViewerParameters as

"Flag!Type!"

where
Flag

Indicates whether to display this reminder in the TV Viewer reminders list. If the flag is
set to tvviewer, and the reminder meets the standards specified in Setting a Reminder that
Appears in TV Viewer, TV Viewer displays the reminder in its list. Otherwise it does not.

2370

Television System Services Page 13 of 48

Type
Indicates the type of reminder set, either Remind or Record.

If the reminder is a record reminder, you should use the Task Scheduler to set the
TASK_FLAG_SYSTEM_REQUIRED flag for the reminder. This causes TV Viewer to
tune to the channel even if the system is sleeping. Otherwise, if the system is sleeping, TV
Viewer will not wake up to run the record reminder.

In addition, if the record reminder has an application associated with it that automates
tuning the VCR this application should be specified in the StartRecordingApp and/or
EndRecordingApp values under this registry key:

HKLM\Software\Microsoft\TV Services\Explorer\

The TASK_FLAG_SYSTEM_REQUIRED flag should not be set for standard show
reminders. Version 1.0 of Broadcast Architecture does not handle show reminders that go
off while the system is sleeping.

For more information see Setting a Show Reminder and Setting a Record Reminder.

Example: "tvviewer!Remind!" or "tvviewer!Record!"

3. If the application to display the reminder is TV Viewer, specify the path for Tvx.exe as path in
the string pathTvx.exe. Your application later passes this information to Add in the Directory
parameter. You can retrieve this information by calling the
ITelevisionServices::get_DatabaseFile method to locate the Guide database, installed in the
same directory as Tvx.exe.

If the reminder application is not TV Viewer, specify the application's working directory and
name as the string pathfilename, where path is the path and filename the file name.

Note Record reminders using TV Viewer should not specify Tvx.exe as their display application.
Instead, they should use the application listed in this registry value:

HKLM\Software\Microsoft\TV Services\Explorer\HelperApp

If that value is not defined, they should use Tvwakeup.exe.

4. Determine the number of minutes before the scheduled show that the reminder should be
displayed, later to be passed to Add in the AdvanceMinutes parameter.

5. Schedule the show reminder by calling Add.

When the reminder runs, the application that you specified in the show reminder parameters, usually
TV Viewer, displays to the user a notification that the show is on. The details of the show reminder
that you specified when setting the reminder are passed to the reminder application as command-line
arguments when it runs the reminder. For more information about show reminder details passed to the
reminder application, see Show Reminder Format.

The application should use the ITelevisionServices::ResolveBroadcast method to resolve the

2371

Television System Services Page 14 of 48

passed-in show reference to a television episode.

For more information, see About the Scheduled Items Collection and Scheduling Show Reminders.

Television System Services Reference
[This is preliminary documentation and subject to change.]

The primary Automation class in Television System Services (TSS), Tssadmin.dll, is
ITelevisionServices, derived from the IDispatch interface. For error handling, ITelevisionServices
supports the IErrorInfo Automation interface, described in the Automation component in the
Platform Software Development Kit (SDK).

TSS also provides the IScheduledItems interface, which contains methods that you can use to set,
edit, or delete show reminders.

ITelevisionServices

[This is preliminary documentation and subject to change.]

ITelevisionServices provides the following methods to enable your application to retrieve read-only
properties associated with this interface.

When to Implement

ITelevisionServices is implemented in Tssadmin.dll.

When to Use

Call the methods of ITelevisionServices to access television service-related utilities.

Methods in Vtable Order

IUnknown Methods Description

QueryInterface Returns pointers to supported
interfaces

AddRef Increments reference count

Release Decrements reference count

2372

Television System Services Page 15 of 48

ITelevisionServices Description

get_SystemFile This read-only property contains the
name of the Microsoft® Jet
database .mdw file that provides the
security model for TSS. Applications
that use TSS must open the database
file with this system file, not the
default system file recorded in the
registry. Applications do so by
setting the SystemDB property of
the Data Access Object (DAO)
database engine before opening the
database.

get_DatabaseFile This read-only property contains the
name of the Jet .mdb file that
contains the Program Guide data.

get_ScheduledItems This read-only property returns the
IScheduledItems collection. These
are all the reminders currently active
in the system.

ResolveBroadcast Creates a DAO QueryDef that
represents the specified show
reference, for a show that starts at
the specified start time

SplitBroadcastSchedule Parses a show reference into its
constituent parts

SplitSimpleBroadcastSchedule Performs the same function as the
SplitBroadcastSchedule method,
except that the time returned is a
single date

MakeLocalBroadcastSchedule Returns a correctly formatted show
reference

MakeRemoteBroadcastSchedule Provides a wrapper for the
MakeLocalBroadcastSchedule
method that substitutes wildcard
values for computer- or locality-
specific members

TuningSpaceNameFromNumber Maps the numeric representation of
a video source in the Guide database
to a user-readable string (such
"Viacom")

TuningSpaceNumberFromName Maps a user-readable string denoting
a tuning space (such as "Viacom") to
the index by which that tuning space
is known in the Guide database

2373

Television System Services Page 16 of 48

Remarks

ITelevisionServices is derived from the IDispatch interface. To locate more information on
IDispatch, a Component Object Model (COM) interface, see Further Information on Television
Services for the Client.

See Also

IScheduledItems

ITelevisionServices::get_ClipboardFormat
[This is preliminary documentation and subject to change.]

The get_ClipboardFormat method returns the registration identifier of the Clipboard format for
show references. The registration identifier is the value returned by the RegisterClipboardFormat

ResolveScheduledReminders Creates a DAO QueryDef that
represents the television shows that
match the scheduled reminders

LoadEnhancement Loads data about an enhancement
into the Guide database.

LoadEnhancementsFromFile Loads data about multiple
enhancements into the Guide
database.

DeleteEnhancementFromID Deletes data about an enhancement
from the Guide database.

DeleteOldEnhancements Deletes expired enhancement
information from the Guide
database.

RemapEnhancements Remaps enhancement information in
the Guide database.

get_ClipboardFormat Returns the identifier for the
Clipboard format for show
references

get_ClipboardFormatName Returns the registered name of the
Clipboard format for show
references

ResolveBroadcastInclusively Creates a DAO QueryDef that
represents the specified show
reference, which contains the
specified start time

2374

Television System Services Page 17 of 48

function, part of the Microsoft® Win32® application programming interface (API), when the show
references format is registered.

HRESULT get_ClipboardFormat(
 long * plRetVal // out
);

Parameters

plRetVal
Pointer to a long value that identifies the registered show references Clipboard format.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

ITelevisionServices::get_ClipboardFormatName
[This is preliminary documentation and subject to change.]

The get_ClipboardFormatName method returns the name under which the show references
Clipboard format has been registered using the Win32 RegisterClipboardFormat function.

HRESULT get_ClipboardFormatName(
 BSTR * pbstrName // out
);

Parameters

pbstrName
Pointer to a string containing the name under which the show references Clipboard format is
registered.

Return Values

2375

Television System Services Page 18 of 48

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

ITelevisionServices::get_DatabaseFile
[This is preliminary documentation and subject to change.]

The get_DatabaseFile function retrieves a read-only value that specifies the name of the Jet .mdb file
that contains the Program Guide data.

HRESULT get_DatabaseFile(
 BSTR *pbstrRetVal
);

Parameters

pbstrRetVal
A pointer to a BSTR that receives the file name.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

2376

Television System Services Page 19 of 48

ITelevisionServices::get_ScheduledItems
[This is preliminary documentation and subject to change.]

The get_ScheduledItems function returns a read-only IScheduledItems collection that contains all
the reminders currently active in the system.

HRESULT get_ScheduledItems(
 IScheduledItems **ppScheduledRet
);

Parameters

ppScheduledRet

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

ITelevisionServices::get_SystemFile
[This is preliminary documentation and subject to change.]

The get_SystemFile function retrieves a read-only value that specifies the name of the Jet .mdw file
used by TSS. Applications that use TSS must open the database file with this system file, not the
default system file recorded in the registry. Applications do so by setting the SystemDB property of
the DAO database engine before opening the database.

HRESULT get_SystemFile(
 BSTR *pbstrRetVal
);

Parameters

2377

Television System Services Page 20 of 48

pbstrRetVal
A pointer to a BSTR that receives the file name.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

ITelevisionServices::MakeLocalBroadcastSchedu
[This is preliminary documentation and subject to change.]

The MakeLocalBroadcastSchedule method returns a correctly formatted show reference. The
MakeLocalBroadcastSchedule parameters contain all the information necessary for making such a
reference.

HRESULT MakeLocalBroadcastSchedule(
 BSTR EpisodeTitle, // in
 short Channel, // in
 BSTR Network, // in
 BSTR Station, // in
 long TuningSpace, // in
 VARIANT Time, // in
 BSTR *pbstrRetVal // out
);

Parameters

EpisodeTitle
Title for the show reference.

Channel
Channel for the show reference. To specify any channel, set this parameter to the wildcard value
of –1.

Network
Network for the show reference.

Station

2378

Television System Services Page 21 of 48

Station for the show reference. To specify any station, set this parameter to the wildcard value
of NULL.

TuningSpace
Tuning space for the show reference. To specify any tuning space, set this parameter to the
wildcard value of –1.

Time
Time for the show reference. The Time parameter is a VARIANT that can contain either a
DATE value or an ITaskTrigger pointer. The former can be used from the Microsoft® Visual
Basic® programming system; the latter permits repeating, or ambiguous schedules.

You can create a show reference with an ambiguous date or time by passing in a ITaskTrigger
object where the unspecified date and/or time members of the TASK_TRIGGER structure are
set to –1. For more information, see Ambiguous Triggers.

The DATE data type does not support ambiguous date or time values.

pbstrRetVal
Address where this method returns a properly formatted show reference.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

The MakeLocalBroadcastSchedule method does not perform any validation of the existence of the
show or shows specified or more than rudimentary validation of its arguments.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

MakeRemoteBroadcastSchedule, SplitBroadcastSchedule, SplitSimpleBroadcastSchedule

ITelevisionServices::MakeRemoteBroadcastSche
[This is preliminary documentation and subject to change.]

2379

Television System Services Page 22 of 48

The MakeRemoteBroadcastSchedule method is a wrapper for the MakeLocalBroadcastSchedule
method that substitutes wildcard values for computer- or locality-specific members.

HRESULT MakeRemoteBroadcastSchedule(
 BSTR EpisodeTitle, // in
 BSTR Network, // in
 VARIANT Time, // in
 BSTR *pbstrRetVal // out
);

Parameters

EpisodeTitle
Title for the show reference.

Network
Network for the show reference.

Time
Time for the show reference. The Time parameter is a VARIANT that can contain either a
DATE value or an ITaskTrigger pointer. The former can be used from Visual Basic; the latter
permits repeating, or ambiguous schedules.

You can create a show reference with an ambiguous date or time by passing in a ITaskTrigger
object where the unspecified date and/or time members of the TASK_TRIGGER structure are
set to –1. For more information, see Ambiguous Triggers.

The DATE data type does not support ambiguous date or time values.

pbstrRetVal
Address where this method returns a properly formatted show reference.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

The MakeRemoteBroadcastSchedule method does not perform any validation of the existence of
the show or shows specified or more than rudimentary validation of its arguments.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

2380

Television System Services Page 23 of 48

See Also

MakeLocalBroadcastSchedule, SplitBroadcastSchedule, SplitSimpleBroadcastSchedule

ITelevisionServices::ResolveBroadcast
[This is preliminary documentation and subject to change.]

The ResolveBroadcast method creates a DAO QueryDef definition that represents the specified
show reference.

HRESULT ResolveBroadcast(
 BSTR Workspace, // in
 BSTR QueryName, // in
 BSTR ShowReference // in
);

Parameters

Workspace
Name of the DAO workspace in which to create the query. This can be either a preexisting, or
newly created workspace.

QueryName
Name of the new query.

ShowReference
Show reference used to generate the query.

If ShowReference is unambiguous, the query generated will represent a single episode.

In contrast, ambiguous show references can represent multiple or repeating broadcasts. For
example, if you wanted to generate a query that returned each weekly episode of a show, you
could specify the time and channel of that show, leaving the date ambiguous.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

If a QueryDef of the same name already exists, calling ResolveBroadcast deletes it. The method
ResolveBroadcast can return an error. The QueryDef can have an empty result set if the
ShowReference specified does not match anything in the database without causing an error. The caller
of this method must delete the QueryDef object after use.

2381

Television System Services Page 24 of 48

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

ITelevisionServices::ResolveBroadcastInclusively
[This is preliminary documentation and subject to change.]

The ResolveBroadcastInclusively method creates a DAO QueryDef definition that represents the
specified show reference. If a start time is specified in the show reference, this method returns all
matching episodes started before or ending after that time. The ResolveBroadcastInclusively
functionality differs from ResolveBroadcast, which only returns matching episodes started at the
specified start time.

HRESULT ResolveBroadcastInclusively(
 BSTR Workspace, // in
 BSTR QueryName, // in
 BSTR ShowReference // in
);

Parameters

Workspace
Name of the DAO workspace in which to create the query. This can be either a preexisting, or
newly created workspace.

QueryName
Name of the new query.

ShowReference
Show reference used to generate the query. If ShowReference is unambiguous, the query
generated represents a single episode. In contrast, an ambiguous show reference can represent
multiple or repeating broadcasts. For example, to generate a query that returns each weekly
episode of a show, specify the time and channel of that show leaving the date ambiguous.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

2382

Television System Services Page 25 of 48

This method is called internally by the enhancement filter.

As an example of ResolveBroadcastInclusively functionality, if the start time specified in the show
reference is 11:15 A.M., ResolveBroadcastInclusively creates a QueryDef that returns shows that
start any time before and end any time after 11:15 A.M. If a QueryDef of the same name already
exists, calling ResolveBroadcastInclusively deletes it.

ResolveBroadcastInclusively can return an error. The QueryDef can have an empty result set if the
ShowReference specified does not match anything in the database without causing an error. The caller
of this method must delete the QueryDef object after use.

ResolveBroadcastInclusively ignores the show reference's end time value.

ITelevisionServices::ResolveScheduledReminders
[This is preliminary documentation and subject to change.]

The ResolveScheduledReminders method creates a DAO QueryDef definition that represents the
television shows that match the scheduled reminders.

HRESULT ResolveScheduledReminders(
 BSTR Workspace, // in
 BSTR QueryName, // in
 BSTR Reserved // in
);

Parameters

Workspace
Name of the DAO workspace in which to create the query. This can be either a preexisting, or
newly created workspace.

QueryName
Name of the new query.

Reserved
This parameter should be an empty string.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

The caller of the ResolveScheduledReminders method must delete the QueryDef object after use.

2383

Television System Services Page 26 of 48

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

ITelevisionServices::SplitBroadcastSchedule
[This is preliminary documentation and subject to change.]

The SplitBroadcastSchedule method parses a show reference into its constituent parts.

HRESULT SplitBroadcastSchedule(
 BSTR ShowReference, // in
 BSTR * EpisodeTitle, // out
 short * Channel, // out
 BSTR * Network, // out
 BSTR * Station, // out
 long * TuningSpace, // out
 IUnknown ** TaskTrigger // out
);

Parameters

ShowReference
Show reference to parse.

EpisodeTitle
Pointer to a BSTR where this method returns the title for the show reference.

Channel
Pointer to a short where this method returns the channel for the show reference.

Network
Pointer to a BSTR where this method returns the network for the show reference.

Station
Pointer to a BSTR where this method returns the station for the show reference.

TuningSpace
Pointer to a long where this method returns the tuning space for the show reference.

TaskTrigger
Pointer to an interface pointer where this method returns the time information for the show
reference.

Return Values

2384

Television System Services Page 27 of 48

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

The SplitBroadcastSchedule method returns an error if the syntax of the show reference string is
faulty.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

MakeLocalBroadcastSchedule, MakeRemoteBroadcastSchedule,
ITelevisionServices::SplitSimpleBroadcastSchedule

ITelevisionServices::SplitSimpleBroadcastSchedu
[This is preliminary documentation and subject to change.]

The SplitSimpleBroadcastSchedule method parses a show reference into its constituent parts. It
performs the same function as the SplitBroadcastSchedule method, except that the time returned is a
single date.

HRESULT SplitSimpleBroadcastSchedule(
 BSTR ShowReference, // in
 BSTR * EpisodeTitle, // out
 short * Channel, // out
 BSTR * Network, // out
 BSTR * Station, // out
 long * TuningSpace, // out
 DATE * Time // out
);

Parameters

ShowReference
Show reference to parse.

EpisodeTitle

2385

Television System Services Page 28 of 48

Pointer to a BSTR where this method returns the title for the show reference.
Channel

Pointer to a short where this method returns the channel for the show reference.
Network

Pointer to a BSTR where this method returns the network for the show reference.
Station

Pointer to a BSTR where this method returns the station for the show reference.
TuningSpace

Pointer to a long where this method returns the tuning space for the show reference.
Time

Pointer to a DATE where this method returns the time information for the show reference.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h.

Remarks

The SplitSimpleBroadcastSchedule method is provided for Visual Basic programmers who cannot
manipulate objects with the ITaskTrigger interface. This method returns an error if the syntax of the
show reference string is faulty.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

MakeLocalBroadcastSchedule, MakeRemoteBroadcastSchedule,
ITelevisionServices::SplitBroadcastSchedule

ITelevisionServices::TuningSpaceNameFromNum
[This is preliminary documentation and subject to change.]

The TuningSpaceNameFromNumber method maps the numeric representation of a video source in
the Program Guide database to a user-readable string (for example, "Viacom").

HRESULT TuningSpaceNameFromNumber(
 long TuningID, // in

2386

Television System Services Page 29 of 48

 BSTR * pbstrRetVal // out
);

Parameters

TuningID
Numeric identifier of the tuning space.

pbstrRetVal
Address where this method returns the tuning-space name string.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

TuningSpaceNumberFromName

ITelevisionServices::TuningSpaceNumberFromN
[This is preliminary documentation and subject to change.]

The TuningSpaceNumberFromName method maps a user-readable string denoting a tuning space
(for example, "Viacom") to the index by which that tuning space is known in the Program Guide
database.

HRESULT TuningSpaceNumberFromName(
 BSTR Name, // in
 long * plRetVal // out
);

Parameters

Name
Name of the video source for the tuning space.

2387

Television System Services Page 30 of 48

plRetVal
Address where this method returns the tuning space index.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

TuningSpaceNameFromNumber

ITelevisionServices::LoadEnhancement
[This is preliminary documentation and subject to change.]

The LoadEnhancement function loads a single enhancement into the Guide database.

HRESULT LoadEnhancement(
 Workspace *piDAOWorkspace,
 BSTR bstrEnhancementID,
 BSTR bstrShowReference,
 BSTR bstrTitle,
 BSTR bstrPreloadURL,
 BSTR bstrAddress,
 DATE dateExpire,
 DWORD fLoud
);

Parameters

piDAOWorkspace
A pointer to a DAO workspace. This can be either a preexisting, or newly created workspace.

bstrEnhancementID
Specifies a unique identifier for the enhancement.

If you specify bstrEnhancementID as an empty string (""), the LoadEnhancement method

2388

Television System Services Page 31 of 48

automatically generates a unique identifier (GUID) for the enhancement. This option should
only be used if the calling application has no need to further reference the enhancement entry.

bstrShowReference
The show reference string of the broadcast to which the enhancement applies. You can create a
show reference by calling either the ITelevisionServices::MakeLocalBroadcastSchedule or
ITelevisionServices::MakeRemoteBroadcastSchedule methods.

If bstrShowReference contains an episode title, the enhancement is treated as an episode
enhancement, and is only set for the episode(s) specified.

If the show reference contains an empty episode title (""), it is assumed to be a channel
enhancement, and the ITelevisionServices::LoadEnhancement and
ITelevisionServices::LoadEnhancementsFromFile methods search the tuning space for the
union of the station, network, and channel number parameters specified in bstrShowReference.
The method then sets an enhancement for all matching channel records.

Example: "1997/7/29!26673/7175/9690!0:30!0!0!0!0!9690!9690!4096!7040!''!'CBUT'!3!54!
Fresh Prince of Bel-Air".

For an exact description of show reference string syntax, see Show Reference Format.

bstrTitle
Specifies the title of the enhancement.

This value is displayed by TV Viewer when an episode has more than one enhancement
available. When the user clicks the enhancement icon in the TV banner, TV Viewer displays a
list of the enhancement titles, enabling the user to select which enhancement to display.

Example: "Fresh Prince Enhanced"

bstrPreloadURL
Specifies the URL of the HTML file that contains the Layout of the enhancement. If you do not
specify a complete path, such as "C:\MyEnhance\", the URL is resolved relative to "C:\Program
Files\TV Viewer\Layouts".

For example, if you specify bstrPreloadURL as "Cspan\Cspan.htm" it will be resolved to
C:\Program Files\TV Viewer\Layouts\Cspan\Cspan.htm".

bstrAddress
A string that specifies the network card address, multicast address and port information used to
connect to the enhancement stream. It must have the following format:
"netcard_address\tmulticast_address\tmulticast_port".

Example: "125.125.125.125\t225.225.225.255\t10024"

dateExpire
The date on which the enhancement expires.

2389

Television System Services Page 32 of 48

All enhancements should have an expiration date. This enables Loadstub to delete obsolete
enhancement data from the Guide database.

fLoud
DWORD that indicates additional behavior for LoadEnhancement. This can be one or more
of the following flags:

If this value is S_TRUE, TV Viewer is notified. If this value is S_FALSE, TV Viewer is not
notified.

Note that even when fLoud is set to S_TRUE, TV Viewer is notified only if the loaded
enhancmenent matches current program guide data. For example, if an enhancement for a
December show is loaded in October, the enhancement is saved in the database, but TV Viewer
is not notified. This is because the data is for the December episode is not yet listed in the Guide
database.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

Value Description

LE_LOUD If this flag is set,
LoadEnhancement sends a
Windows broadcast message to
information applications that the
data has changed.

Otherwise, LoadEnhancement
does not send a message.

LE_DONTOVERWRITE If this flag is set, and the
enhancement data already exists in
the database, LoadEnhancement
does not re-load the data.

The value of bstrEnhancementID is
used to determine whether the data
is already loaded in the database.

2390

Television System Services Page 33 of 48

ITelevisionServices::LoadEnhancementsFromFile,
ITelevisionServices::DeleteEnhancementFromID

ITelevisionServices::LoadEnhancementsFromFil
[This is preliminary documentation and subject to change.]

The LoadEnhancementsFromFile method loads the enhancements listed in a text file into the Guide
database.

HRESULT LoadEnhancementsFromFile(
 Workspace *piDAOWorkspace,
 BSTR bstrEnhancementsFile
);

Parameters

piDAOWorkspace
A pointer to a DAO workspace. This can be either a preexisting, or newly created workspace.

bstrEnhancementsFile
Specifies the filename of the comma- or tab-delimited text file that lists the enhancements.

Because this file is parsed using the JET text Installable Sequential Access Module (ISAM), it
cannot deviate from the following format:

Where each column contains the following data:
GUID

Specifies a unique identifier for the enhancement.

If you specify this parameter as an empty string (""), the LoadEnhancementsFromFile
method automatically generates a unique identifier (GUID) for the enhancement. This
option should only be used if the calling application has no need to further reference the
enhancement entry.

Title
Specifies the title of the enhancement.

This value is displayed by TV Viewer when an episode has more than one enhancement
available. When the user clicks the enhancement icon in the TV banner, TV Viewer
displays a list of the enhancement titles, enabling the user to select which enhancement to
display.

GUID Title Show Reference Preload URL Address Expiration Date

2391

Television System Services Page 34 of 48

Example: "Fresh Prince Enhanced"

Show Reference
The show reference string for the broadcast that the enhancement applies to. You can
obtain a show reference by calling either the
ITelevisionServices::MakeLocalBroadcastSchedule or
ITelevisionServices::MakeRemoteBroadcastSchedule methods.

If bstrShowReference contains an episode title, the enhancement is treated as an episode
enhancement, and is only set for the episode(s) specified.

If the show reference contains an empty episode title (""), it is assumed to be a channel
enhancement, and the LoadEnhancement and LoadEnhancementsFromFile methods
search the tuning space for the union of the station, network, and channel number
parameters specified in bstrShowReference. The method then sets an enhancement for all
matching channel records.

Example: "1997/7/29!26673/7175/9690!0:30!0!0!0!0!9690!9690!4096!7040!''!'CBUT'!3!
54!Fresh Prince of Bel-Air".

For an exact description of show reference string syntax, see Show Reference Format.

Preload URL
Specifies the URL of the HTML file that contains the Layout of the enhancement. If you
do not specify a complete path, such as "C:\MyEnhance\", the URL is resolved relative to
"C:\Program Files\TV Viewer\Layouts".

For example, if you specify bstrPreloadURL as "Cspan\Cspan.htm" it will be resolved to
C:\Program Files\TV Viewer\Layouts\Cspan\Cspan.htm".

Address
A string that specifies the network card address, multicast address and port information
used to connect to the enhancement stream. It must have the following format:
"netcard_address\tmulticast_address\tmulticast_port".

Example: "125.125.125.125\t225.225.225.255\t10024"

Expiration Date
The date on which the enhancement expires.

All enhancements should have an expiration date. This enables Loadstub to delete
obsolete enhancement data from the Guide database.

To locate more information about the Jet ISAM, see Further Information on Television Services for
the Client.

Return Values

2392

Television System Services Page 35 of 48

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

In addition to creating a properly-formatted text file, ISAM also requires you to include a schema file
in the same directory. The schema file must be named Schema.ini and specify the name of the
enhancement text file in its first line, enclosed in brackets ([]).

For example, if you wanted to load E:\Windows\Attach.txt, you must also create a file named
Schema.ini in the e:\windows directory, with '[Attach.txt]' as the first line in the Schema.ini.

The following schema file is valid for comma-delimited files. Replace Attachments.txt with the name of
your enhancement text file.

----------Schema.ini-----------
[Attachments.txt]
Format=CSVDelimited
ColNameHeader=False
CharacterSet=ANSI
Col1=ID Text
Col2=Title Text
Col3="Show Reference" Text
Col4="Preload URL" Text
Col5=Address Text
Col6="Expire Date" DateTime

The following schema file is valid for tab-delimited files. Replace Attachments.txt with the name of
your enhancement text file.

-------Schema.ini--------
[Attachments.txt]
Format=TabDelimited
ColNameHeader=False
CharacterSet=ANSI
Col1=ID Text
Col2=Title Text
Col3="Show Reference" Text
Col4="Preload URL" Text
Col5=Address Text
Col6="Expire Date" DateTime

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

2393

Television System Services Page 36 of 48

ITelevisionServices::LoadEnhancement, ITelevisionServices::DeleteEnhancementFromID

ITelevisionServices::DeleteEnhancementFromID
[This is preliminary documentation and subject to change.]

The DeleteEnhancementFromID method deletes the specified enhancement record from the Guide
database. This method does not delete the corresponding HTML layout files.

HRESULT DeleteEnhancementFromID(
 Workspace *piDAOWorkspace,
 BSTR bstrEnhancementID
);

Parameters

piDAOWorkspace
A pointer to a DAO workspace. This can be either a preexisting, or newly created workspace.

bstrEnhancementID
The unique enhancement identifier.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

In order to use the DeleteEnhancementFromID method to remove enhancement data from the
Guide database, you must know the unique identifier of the enhancement. Typically this method is
only called by the applications that originally loaded the enhancement data.

For example, a broadcast provider can send an delete announcement that causes the announcement
filter to remove enhancement data from the database. In this case, a list of that broadcaster's
enhancement identifiers is maintained at the head end and the appropriate identifier is sent with the
delete announcement.

It is not necessary to use the DeleteEnhancementFromID method to delete obsolete enhancement
data from the database. This is done periodically by Loadstub. To enable automatic deletion of
enhancement data, you must set an expiration date for the enhancement data at the time that you load
it into the Guide database.

QuickInfo

2394

Television System Services Page 37 of 48

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

ITelevisionServices::LoadEnhancement, ITelevisionServices::LoadEnhancementsFromFile

ITelevisionServices::DeleteOldEnhancements
[This is preliminary documentation and subject to change.]

The DeleteOldEnhancements method deletes expired enhancement data from the Guide database.
This method does not delete the corresponding HTML layout files.

Expired enhancements are those which have an expiration date, specified in the EN Expired Date field,
that is earlier than the current date. The expiration date of enhancement data is set when the data is
loaded into the Guide database, typically by using either ITelevisionServices::LoadEnhancement or
ITelevisionServices::LoadEnhancementsFromFile.

HRESULT DeleteEnhancementFromID(
 Workspace *piDAOWorkspace,
);

Parameters

piDAOWorkspace
A pointer to a DAO workspace. This can be either a preexisting, or newly created workspace.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

2395

Television System Services Page 38 of 48

ITelevisionServices::RemapEnhancements
[This is preliminary documentation and subject to change.]

The RemapEnhancements method maps enhancements loaded in the database to their corresponding
channels and episodes, setting the appropriate values for the Enhancement Mapping ID field of the
Channel and Episode tables in the Guide database.

HRESULT RemapEnhancements(
 Workspace *piDAOWorkspace,
);

Parameters

piDAOWorkspace
Pointer to a DAO workspace. This can be either a preexisting, or newly created workspace.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

This method is called automatically by Loadstub whenever new Program Guide data is loaded into the
Guide database. It is unlikely that your application will ever need to call this method explicitly.

As an example of the use of RemapEnhancements, suppose a content provider transmits
enhancement data for a future episode. The enhancement filter stores the data in the Episode
Enhancements table of the Guide database, even though the corresponding episode data is not yet
loaded in the Guide database. However, when the program data is loaded, the new episodes are not
matched to the previously loaded enhancement data. In other words, the E Enhancement Mapping ID
is blank. To correct this, Loadstub calls RemapEnhancements to map the preexisting enhancements
with the new episodes.

IScheduledItems

[This is preliminary documentation and subject to change.]

The ScheduledItems collection enumerates the currently-scheduled show reminders. For more

2396

Television System Services Page 39 of 48

information, see Show Reminders.

When to Implement

IScheduledItems is implemented in Tssadmin.dll.

When to Use

Call the methods of IScheduledItems to retrieve, delete, or set show reminders.

Methods in Vtable Order

Remarks

The ScheduledItems collection is part of the Television System Services (TSS) object library,
tssadmin.dll. It contains the scheduled show reminders and has the usual methods of a collection
interface: get_Count, get__NewEnum, and Item. The indices into the collection are strings that are
the file names of tasks in Task Scheduler. TSS uses Task Scheduler for all scheduling. You obtain a
reference to the IScheduledItems collection using the ITelevisionServices::get_ScheduledItems
method.

IScheduledItems is derived from the IDispatch interface. To locate more information on IDispatch,
a Component Object Model (COM) interface, see Further Information on Television Services for the

IUnknown Methods Description

QueryInterface Returns pointers to supported interfaces

AddRef Increments reference count

Release Decrements reference count

IScheduledItems Description

Item Returns for a show reminder the specified
show reference, application to start,
working directory, time when advance
notification should occur, and any optional
command-line parameters.

get_Count Returns the number of currently scheduled
reminders in the collection.

Add Schedules one or more broadcasts.

Remove Deletes a scheduled show reminder.

AddFromQuery Schedules reminders for all of the
television shows in the result set of the
specified query definition.

get__NewEnum Returns an reference to an enumerator
that iterates through a list of the scheduled
reminders.

2397

Television System Services Page 40 of 48

Client.

See Also

ITelevisionServices

IScheduledItems::Add
[This is preliminary documentation and subject to change.]

The Add method schedules one or more show reminders.

HRESULT Add(
 BSTR Workspace, // in
 BSTR ShowReference, // in
 BSTR Application, // in
 BSTR Directory, // in
 unsigned long AdvanceMinutes, // in
 BSTR Parameters, // in
 VARIANT * pSafeArray // out
);

Parameters

Workspace
Name of a DAO workspace. This can be either a preexisting, or newly created workspace.

ShowReference
Show reference string. You can create a show reference by calling either
ITelevisionServices::MakeLocalBroadcastSchedule or
ITelevisionServices::MakeRemoteBroadcastSchedule.

Application
Name and path of the application that displays the reminder to the user when the scheduled
show is on. Typically, TV Viewer is used to display reminders, and this value is set to
"C:\Program Files\TV Viewer\Tvx.exe".

You can get the path to the client's installation of TV Viewer by calling
ITelevisionServices::get_DatabaseFile and stripping "Tss.mdb" off of the end of the returned
string. This path is also stored in this registry value:

HKLM\Software\Microsoft\TV Services\ProductDir

Directory
Name of the working directory that contains the reminder application.

AdvanceMinutes
Interval, in minutes, before the show's start that the reminder should occur.

2398

Television System Services Page 41 of 48

Parameters
Optional command-line arguments to pass to the reminder application when it runs the
reminder. The command-line syntax for these arguments is as follows:

application /b "showreference" /u "username" otherarguments

The following table lists and defines the possible values for these arguments.

pSafeArray
Pointer to a VARIANT that receives an IEnumVARIANT interface that enumerates the string
indices of the scheduled tasks.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

If the time and date specified in the ShowReference parameter are unambiguous, the Add method
schedules a single show reminder.

Ambiguous show references can represent multiple or repeating broadcasts. For example, if you
wanted to schedule a reminder for each weekly episode of a show, you could specify the time and
channel of that show, leaving the date ambiguous. The show reference would then apply to all weekly
episodes. In contrast, an unambiguous show reminder would specify the date, and thus apply to only a
single episode.

Placeholder Description

application The name and path of the application that displays
the show reminder to the user.

showreference The string denoting the show or shows being
scheduled, in the show reference format.

username The name of the owner of the DAO workspace
used to schedule the reminder, typically
"GuestUser"..

otherarguments Additional command-line arguments for
application. The format and number of these
arguments depends on application. otherarguments
is passed to application as command-line
arguments.

For example, if you are using a custom application
to display the reminder to the user, and this
application has three styles of reminder dialog
boxes, otherarguments could be used to specify the
reminder style.

2399

Television System Services Page 42 of 48

If the show reference is ambiguous, the Add method uses the
ITelevisionServices::ResolveBroadcast method to produce a query that matches ShowReference. In
other words, a query for all episodes that match the ambiguous date or channel value. For example, if
the show reference specified channel 27 at 5:00pm on Fridays, the generated query would return a
listing of each episode in the Guide database that matched those parameters.

The Add method would then call the IScheduledItems::AddFromQuery method to schedule all of
the rows returned by the query.

Reminders set using IScheduledItems::Add are not automatically visible in the the TV Viewer user
interface. In order for a TSS-set reminder to be visible in TV Viewer it must meet certain standards.
These standards are specified in Setting a Reminder that Appears in TV Viewer.

If the reminder you are adding is a record reminder, you should use the Task Scheduler to set the
TASK_FLAG_SYSTEM_REQUIRED flag for the reminder. This causes TV Viewer to tune to the
channel even if the system is sleeping. Otherwise, if the system is sleeping, TV Viewer will not wake
up to run the record reminder.

In addition, if the record reminder has an application associated with it that automates tuning the VCR
this application should be specified in the StartRecordingApp and/or EndRecordingApp values under
this registry key:

HKLM\Software\Microsoft\TV Services\Explorer\

The TASK_FLAG_SYSTEM_REQUIRED flag should not be set for standard show reminders.
Version 1.0 of Broadcast Architecture does not handle show reminders that go off while the system is
sleeping.

For more information see Setting a Show Reminder and Setting a Record Reminder.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

IScheduledItems::AddFromQuery, IScheduledItems::Remove,
ITelevisionServices::ResolveBroadcast

IScheduledItems::AddFromQuery

2400

Television System Services Page 43 of 48

[This is preliminary documentation and subject to change.]

The AddFromQuery method schedules reminders for all of the television shows in the result set of
the QueryDef definition named by the QueryName parameter.

HRESULT AddFromQuery(
 BSTR Workspace, // in
 BSTR QueryName, // in
 BSTR Application, // in
 BSTR Directory, // in
 unsigned long AdvanceMinutes, // in
 BSTR Parameters, // in
 VARIANT * pSafeArray // out
);

Parameters

Workspace
Name of the DAO workspace. This can be either a preexisting, or newly created workspace.

QueryName
Name of the QueryDef definition. Use the ITelevisionServices::ResolveBroadcast method to
create a DAO QueryDef definition from a show reference.

Application
Name and path of the application that displays the reminder to the user when the scheduled
show is on. Typically, TV Viewer is used to display reminders, and this value is set to
"C:\Program Files\TV Viewer\Tvx.exe".

You can get the path to the client's installation of TV Viewer by calling
ITelevisionServices::get_DatabaseFile and stripping "Tss.mdb" off of the end of the returned
string. This path is also stored in this registry value:

HKLM\Software\Microsoft\TV Services\ProductDir

Directory
Name of the working directory for Application.

AdvanceMinutes
Interval, in minutes, before the show's start that the reminder should occur.

Parameters
Additional command-line arguments for Application. The format and number of these
arguments depends on Application. Parameters is passed to Application as command-line
arguments.

For example, if you are using a custom application to display the reminder to the user, and this
application has three styles of reminder dialog boxes, Parameters could be used to specify the
reminder style.

pSafeArray
Pointer to a VARIANT that receives an IEnumVARIANT interface that enumerates the string
indices of the scheduled tasks.

2401

Television System Services Page 44 of 48

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

The AddFromQuery method iterates through the result set of the defined query, composing a show
reference for each row and scheduling a reminder for that show reference. Typically, you use the
queries created by ITelevisionServices::ResolveBroadcast as the QueryName parameter for
AddFromQuery.

Reminders set using IScheduledItems::AddFromQuery are not automatically visible in the the TV
Viewer user interface. In order for a TSS-set reminder to be visible in TV Viewer it must meet certain
standards. These standards are specified in Setting a Reminder that Appears in TV Viewer.

To locate more information on the SAFEARRAY data type, see Further Information on Television
Services for the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

IScheduledItems::Add, IScheduledItems::Remove, ITelevisionServices::ResolveBroadcast

IScheduledItems::get__NewEnum
[This is preliminary documentation and subject to change.]

The get__NewEnum method returns an reference to an enumerator that iterates through a list of the
scheduled reminders.

HRESULT get__NewEnum(
 IUnknown ** ppUnk // out
);

Parameters

2402

Television System Services Page 45 of 48

ppUnk
Reference to an enumerator that you can use to iterate through the scheduled reminders. The
returned object implements the VARIANT enumerator interface, IEnumVARIANT.

To locate more information about enumerating collections using IEnumVARIANT, see
Further Information on Television Services for the Client.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

get_Count, Item

IScheduledItems::get_Count
[This is preliminary documentation and subject to change.]

The get_Count method returns the number of currently scheduled reminders in the ScheduledItems
collection.

HRESULT get_Count(
 long * plRetVal // out
);

Parameters

plRetVal
Pointer to a long that receives the number of reminders.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.

2403

Television System Services Page 46 of 48

Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

get__NewEnum, Item

IScheduledItems::Item
[This is preliminary documentation and subject to change.]

The Item method returns for a show reminder the show reference, application to be started, working
directory, advance notification interval, and any optional command-line parameters.

HRESULT Item(
 BSTR Index, // in
 BSTR * User, // out
 BSTR * ShowReference, // out
 BSTR * Application, // out
 BSTR * Directory, // out
 unsigned long * AdvanceMinutes, // out
 BSTR * Parameters, // out
 VARIANT * Task // out
);

Parameters

Index
Index of the show reminder for which to retrieve information.

User
Pointer to a BSTR that receives the name of the owner of the DAO workspace used to schedule
the reminder.

ShowReference
Pointer to a BSTR where this method returns the show reference string. For more information
about the format of this string, see Show Reference Format.

Application
Pointer to a BSTR that receives the name and path of the application used to display the
reminder to the user. Typically, TV Viewer is used to display reminders, and this value is set to
"C:\Program Files\TV Viewer\Tvx.exe".

2404

Television System Services Page 47 of 48

Directory
Pointer to a BSTR that receives the working directory of Application.

AdvanceMinutes
Pointer to a long that receives the interval, in minutes, before the show's start that the reminder
should be displayed .

Parameters
Pointer to a BSTR that receives the additional command-line arguments set for Application.
The format and number of these arguments depends on Application.

Task
Address where this method returns a VARIANT data type containing an ITask object, from
which you can obtain the ITaskTrigger object. The ITaskTrigger object contains additional
information about when and how the scheduled reminder will run.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

The Task parameter is returned as a VARIANT instead of a Task object to enable Visual Basic
programmers to safely use the IScheduledItems::Item method. Visual Basic cannot access the ITask
interface; if this object was not returned as a VARIANT Visual Basic programmers would not be able
to correctly release the Task object returned by Item.

If you are programming in C++, simply cast the VARIANT to an ITask interface variable.

If you are programming in Visual Basic, you should create a variable of type Variant and pass it as
the Task parameter. Do not use this variable after you call the Item method. When the variable goes
out of scope, Visual Basic releases the task object it references. It is recommended that you declare
the Variant variable as local in a function that calls the Item method. Such a declaration causes the
task object to be released quickly.

To locate more information on ITask and VARIANT, see Further Information on Television Services
for the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

get__NewEnum, get_Count

2405

Television System Services Page 48 of 48

IScheduledItems::Remove
[This is preliminary documentation and subject to change.]

The Remove method deletes a scheduled show reminder.

HRESULT Remove(
 BSTR Index // in
);

Parameters

Index
Index of the show reminder to delete from the collection.

Return Values

Returns an HRESULT indicating success or failure. If the method succeeds it returns S_OK.
Otherwise it returns an error code. For specific error code values see Winerror.h and Dbdaoerr.h.

Remarks

You can obtain the index for a scheduled show reminder from the enumerator method
IScheduledItems::get__NewEnum, or as a return value from the IScheduledItems::Add or
IScheduledItems::AddFromQuery method.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in tssadmin.odl.
 Import Library: Included as a resource in tssadmin.dll.

See Also

IScheduledItems::Add, IScheduledItems::AddFromQuery, IScheduledItems::get__NewEnum

2406

Show References Page 1 of 5

Show References
[This is preliminary documentation and subject to change.]

To support the programmatic exchange of references to television shows, Television System Services
(TSS) has a data format to specify television shows, called a show reference. Show references are
strings that you can use to specify a single broadcast of a show, recurring broadcasts, or a time and a
channel that can be matched to a broadcast at a later time. Show references also provide various other
ways to specify shows, as described in the following sections.

You create a show reference by calling either the
ITelevisionServices::MakeLocalBroadcastSchedule or
ITelevisionServices::MakeRemoteBroadcastSchedule method of the ITelevisionServices
interface, passing a task trigger object. To create a show reference for a recurring broadcast, you must
pass an ambiguous trigger to the ITelevisionServices methods.

For more information, see the following topics:

� Show Reference Format
� Ambiguous Triggers

Note The description of the show reference format is for debugging purposes only. This format may
change in future versions of Broadcast Architecture. Developers should compose and parse show
references using the methods of the ITelevisionServices interface.

Show Reference Format
[This is preliminary documentation and subject to change.]

A show reference is a null-terminated ASCII string containing fields delimited by exclamation marks
(!). Numerical fields are spelled out in ASCII digits.

The syntax of a show reference string is as follows:

yyyy/mm/dd!yyyy/mm/dd!hh:MM!du!in!fl!type!w!w!w!w!'network'!'station'!
'TuningSpace'!channel!title

The following table describes the placeholders in show reference syntax. All times are specified in
coordinated universal time (UTC) in a 24-hour clock.

2407

Show References Page 2 of 5

Placeholder Description

yyyy The year. If this field contains the five digits 65535, it
means any year. The first yyyy field in the syntax is for the
start date; the second is for the end date.

mm The month. If this field contains the digits 65535, it means
any month. The first mm field is for the start date; the
second is for the end date.

dd The day of the month. If this field contains the digits
65535, it means any day. The first dd field is for the start
date; the second is for the end date.

network The network affiliate of the station. This affiliate can be the
same as the station in some cases — for example, Home
Box Office (HBO) or Cable News Network (CNN). In
other situations, a national network such as Public
Broadcasting System (PBS) is the affiliate for a local
station.

hh The hour portion of the time at which the show begins. If
this field contains the digits 65535, it means any hour of
the day.

MM The minute portion of the time at which the show begins.
If this field contains the digits 65535, it means any minute
of the hour.

du The duration of the show in minutes. This value is valid
only if the
TASK_TRIGGER_FLAG_KILL_AT_DURATION_END
flag is set in the fl parameter of the show reference.

in The interval at which to run the show reminder. Because a
typical show reminder only runs once, this value is usually
zero.

fl Flags for interpretation of the preceding dates. These flags
are the same as the ones in the TASK_TRIGGER
structure of the Task Scheduler :
TASK_TRIGGER_FLAG_HAS_END_DATE,
TASK_TRIGGER_FLAG_KILL_AT_DURATION_END,
and TASK_TRIGGER_FLAG_DISABLED.

type This parameter is set as the TriggerType member of the
TASK_TRIGGER structure. It takes a
TASK_TRIGGER_TYPE data type. To locate more
information on TASK_TRIGGER, see Further
Information on Television Services for the Client.

w This parameter is set as the Type member of the
TASK_TRIGGER structure. It takes a
TRIGGER_TYPE_UNION data type.

2408

Show References Page 3 of 5

Note This description of the show reference format is for debugging purposes only. This format may
change in future versions of Broadcast Architecture. Developers should compose and parse show
references using the MakeLocalBroadcastSchedule and MakeRemoteBroadcastSchedule methods
of the ITelevisionServices interface.

Ambiguous Triggers
[This is preliminary documentation and subject to change.]

The Broadcast Architecture supports a custom implementation of the ITaskTrigger interface of
Internet Client that enables an application to create ambiguous task trigger objects. An ambiguous
trigger is one where the date and/or time parameters are not known at the time of the trigger's
creation. You can also use the Broadcast Architecture implementation of ITaskTrigger to create a
trigger where the time and date are fully specified.

You can use ambiguous triggers to represent a range of shows. For example, if a show appears every
weeknight at 7 p.m., you can create a date-ambiguous trigger that represents all episodes of the show.
For information on how to do this, see Creating an Ambiguous Trigger.

Once an ambiguous trigger is created, it can be passed to either the
ITelevisionServices::MakeLocalBroadcastSchedule or
ITelevisionServices::MakeRemoteBroadcastSchedule method to create a show reference that

station The station's call letters, for example KDKA. This field can
be empty.

TuningSpace A string that contains the name of the source, or tuning
space, of the broadcast. An empty string ('') in this field
means any source. Tuning space names are strings, such as
'Cable', that represent a tunable video source, for example,
cable, satellite broadcast, or terrestrial analog broadcast.
Tuning space names are stored as named values under the
\HKLM\Software\Microsoft\TVServices\Tuning
Spaces\TuningSpaceNumber registry key where
TuningSpaceNumber indicates the numerical identifier of
the tuning space.

channel An integer denoting the channel in the tuning space. If this
field contains –1 (minus one), it means any channel.

title The title of the television show. This title must not contain
double quotation marks ("). The title field can be a
limited regular expression with the syntax and semantics
defined in Structured Query Language (SQL). Thus, "*"
means any title, "*News*" means any title with "News" in
it, and so on. To locate more information on SQL, see
Further General Information.

2409

Show References Page 4 of 5

represents multiple episodes. You can then schedule a show reminder for each episode by calling the
IScheduledItems::Add method and passing this multiepisode show reference.

The Broadcast Architecture implementation of ITaskTrigger implements both the
ITaskTrigger::SetTrigger and the ITaskTrigger::GetTrigger methods. These are functionally
equivalent to the methods implemented by the Task Scheduler. They differ only in that they support
ambiguous triggers.

However, the Broadcast Architecture implementation does not support the
ITaskTrigger::GetTriggerString method. Calling this method produces an error.

To locate more information about ITaskTrigger, see Further Information on Television Services for
the Client.

Creating an Ambiguous Trigger
[This is preliminary documentation and subject to change.]

To create an ambiguous trigger, first create a TASK_TRIGGER structure and set the ambiguous
time or date members to –1. Then set this structure to a trigger object by calling the
ITaskTrigger::SetTrigger method.

The following example creates an ambiguous trigger where the starting time, 7 p.m., is known but the
day, month, and year are not. This trigger can be used, for example, to represent multiple episodes of
a show that is broadcast every weeknight at 7 p.m.:

ITaskTrigger *pTaskTrig;
TASK_TRIGGER tt;
HRESULT hr;

memset(&tt, 0, sizeof(tt));
tt.cbTriggerSize = sizeof(TASK_TRIGGER);
tt.TriggerType = TASK_TIME_TRIGGER_ONCE;
tt.rgFlags = 0;
tt.wStartMinute = 0;
//Set the ambiguous time members
tt.wBeginYear = -1;
tt.wBeginMonth = -1;
tt.wBeginDay = -1;
//set the starting time to 7pm
tt.wStartHour = 19;

//Create an instance of a task trigger
if (FAILED(hr = CoCreateInstance(CLSID_TaskTrigger, NULL, CLSCTX_INPROC_SERVER, IID
 return hr;

//Set the ambiguous trigger in the task
if (FAILED(hr = pTaskTrigger->SetTrigger(&tt)))
{
 pTaskTrigger->Release();

2410

Show References Page 5 of 5

 return hr;
}
else
{
 //... Additional code that uses the trigger

 pTaskTrigger->Release();
 return NOERROR;
}

You can set any number of the TASK_SCHEDULER structure members to –1. For example, you
can make a trigger that is ambiguous only in the day, or the month, or the year. So, if you know that a
show was on during January 1998 but don't know what day, you can set the month to 1, the year to
1998, and the day to –1.

To determine whether a trigger is ambiguous, you can call the ITaskTrigger::GetTrigger method
and check whether any of the date or time members in the TASK_TRIGGER structure are set to –1.

To locate more information about TASK_TRIGGER and the ITaskTrigger interface, see Further
Information on Television Services for the Client.

2411

Show Reminders Page 1 of 3

Show Reminders
[This is preliminary documentation and subject to change.]

Show reminders are Task Scheduler tasks that remind a user to watch or record a television broadcast.
Show reminders are set by TV Viewer. You can also write an application to set, modify, or delete
show reminders.

For more information, see the following topics:

� About Show Reminders, which describes show reminder functionality and the format used to
schedule a reminder in the Task Scheduler.

� Scheduling Show Reminders, which explains how to programmatically schedule a show
reminder.

� IScheduledItems, which describes the ScheduledItems collection of scheduled show
reminders.

About Show Reminders
[This is preliminary documentation and subject to change.]

TV Viewer schedules show reminders as tasks in the Task Scheduler. These tasks specify the
application to run, in this case TV Viewer, the command-line arguments that specify the user who set
the reminder, and the show that the user requested the reminder for.

When the Task Scheduler runs a show reminder task, it sends these command-line parameters to TV
Viewer or other specified application. If TV Viewer is not currently running, the Task Scheduler starts
it. In either case, TV Viewer presents a dialog box to the user reminding the user of the show and
asking whether TV Viewer should tune to the show broadcast.

If TV Viewer was not previously running and the user elects not to view the show, TV Viewer exits.

For more information on the parameters an application must set to create a show reminder, see Show
Reminder Format.

Show Reminder Format
[This is preliminary documentation and subject to change.]

2412

Show Reminders Page 2 of 3

You can use the following syntax to launch a show reminder, either from the command line or
programmatically as a task in the Task Scheduler. The TV Viewer creates show reminders by setting
the parameters shown in the Run property of tasks that it schedules in the Task Scheduler. For more
information, see Scheduling Show Reminders.

Show Reminder Syntax

The following shows the syntax for TV Viewer show reminders.

pathTvx.exe /b ShowReference /u User /a TVViewerParameters

Show Reminder Parameters

The following lists and describes the parameters used in show reminder syntax.

Path
String that specifies the location of TV Viewer on the user's machine, for example C:\Program
Files\TV Viewer\. When the reminder runs, TV Viewer will display the show reminder to the
user.

ShowReference
String that contains a properly formatted show reference. For more information about the show
reference format, see Show References.

You can create a show reference programmatically by calling either the
ITelevisionServices::MakeLocalBroadcastSchedule or
ITelevisionServices::MakeRemoteBroadcastSchedule method.

User
String containing the name of the user that set the reminder.

TVViewerParameters
String that contains additional parameters. This string should be formatted as follows:

"tvx!Type![ShowDuration!]"
Type

Flag value that specifies the type of reminder. The following table lists and describes the
possible values for Type.

ShowDuration

Value Meaning

Remind A reminder to watch a show. This flag causes
TV Viewer to remind a viewer a show is on. The
viewer can then tune manually to the show.

Record A reminder to record a show. This flag causes
TV Viewer to tune to a show automatically. If
the viewer sets a recording device to receive
output at that time, the show is recorded.

2413

Show Reminders Page 3 of 3

Optional parameter that specifies the length of the show, in minutes.

Your application can obtain the TV Viewer path information programmatically by calling the
ITelevisionServices::get_DatabaseFile method to find the location of the database, which is installed
in the same location as the TV Viewer executable file, Tvx.exe. Your application must then remove
the database file name from the string that the ITelevisionServices::get_DatabaseFile method
returns.

Show Reminder Example

The following example demonstrates how to run TV Viewer from the command line. Note that there
are quotation marks around the path and file name. The quotation marks are necessary because the
directory, Program Files, contains a space character.

"C:\Program Files\TV Viewer\Tvx.exe" /b "1997/4/22!73/1/0
!2:0!0!0!0!0!0!0!0!0!''!'LIFE'!'Cable'!38!Intimate Portrait"
/u "GuestUser" /a "tvx!Remind!60!"

2414

Overview of Program Guide Services Page 1 of 1

�������� �	
����� ����� ��������

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

��	 ������ ����	 ������	� �� ������� ������	����	 ����
�� �	
	������ �� �������� �� �	����	�
��� ������� �	
	������ ���	��
	 ���������� �� ��	 ��	�� �� ������� ��	 ��	� �� ��	 ��	 ������
����	 �� ���	 �� ��	����� ���! �� ��	 ���	��
	 �� ���	��
	 �	����	�� �� !��� ���!�

���� ���	
�����
� �� ������� ���������
�	�� �� � ��
 �� ���
���� ��
������� ����� �� ���������
������ ���	
��� ���� ���� ���	
����

� �������� �����
���

� �����
��
��� �� ��������
��� 	
��
���

� ���������	
��	��
�����	�� �� �����		�� ��� ��� �	��	�� �� ��
���	���

��� ��� ����	
�
�� ����� ���	
��� ��� �������
�� ��� ������� �� ����	
�
�� �����
� ��������
�� �
��
��� �����	
 ����� �	���� ���	��	�� ����� ��
������� �	� ��� �������� �����
 ��������
��������� 	
� �������	� ��	����� ���	�� �� ����� �	
� ����� ���	��� ��� �	� ��������� �������	�
����	�
��� ���	�� ��� 	
� ����� ������ �����

�
� ��� � ����	��� ���!!��� ��	����� ��"#� �� ������$�� 	
���
 ��	�!�	���% �� !�	
��� ���
 � �	��� �� 	
� ����������	
������� �������	� ��
 ��� ��������� �����������	�
� �������	�

��� �����	
 ����
	��	�� ������� ����
	��� 	���� �����	
 ��������� � 	 ��������� ���

��������� 	��
���
 ������ �������� ������� ����������� ��������� ������� ��� ����� ��������
���� ����	
� �� ����� �
������ ��� �� �
�����
 ���	�� ��	� ����	�	�	�� �� ����� 	� ��� ��	��
� ����
 ����	���	���

��� ������	
� ��	�� ����	
� ���	��� ������� ��	�� ����	����

� ��������
���� ��� ��������� ��� ������� �������� �������� �� ����������� �������
����
����������� ���� �������� �������� ��� ��� ������������ �������	
 ��
� ��� �	 �
	� �� ����
���� ���� ��	 ������
	
��������� ��	 ������� ����	�

� ������ ��	�����
 ������
 ��� ��
�
 ���� ��� ����� ����	�
� ����� ��
� ������� �� �������

����

��� �� ��� 	������
� ������ ���

������ �
� ������
 �����
 �	��� ��� �� ����� �
��
��� ����� �����������

� ����� ���� �	����
 ������ � ��	 �
 �����	� 	�	 �������	���� ��� 	� ��	����� �� ��	 ������ �� 	�
����� ����	�
��

� ����� ����	�
� ����� �������
 � �������� ��
�������� �� ��� ��	��
 ��� �����
 �� ��� �����
����	�
��

� ������� ����� ����
��� ������
 ������
 ��� ������
 ������� �� ���
�
��� ����
��� ��� ������
���	
� ��� ����	 �

������� ����	 ����������
�

2415

Updating Guide Data Page 1 of 4

Updating Guide Data
[This is preliminary documentation and subject to change.]

As viewers tune to various channels on various broadcast sources, they expect the Program Guide to
give them current information about programs being broadcast from all sources available to them.
Meeting this information need poses several challenges.

For more information on how this need is met, see the following topics:

� Multiple Data Sources describes possible sources of Program Guide data.
� Overlapping Channels explains how to integrate Program Guide data from multiple and possibly

conflicting data sources into a single data set.
� Moving Data to the Program Guide discusses dynamic-link libraries (DLLs) used by the loader

application to map various Program Guide data formats to the single model used by the
broadcast client.

� Updating the Guide Database describes the general process by which a database loader DLL
moves Program Guide data into the Broadcast Architecture database.

Multiple Data Sources
[This is preliminary documentation and subject to change.]

The Program Guide can obtain program data from various suppliers and in various formats. A satellite
service provider may supply Program Guide data over one of the provided satellite channels. A local
cable operator may supply Program Guide data through a vendor who sells subscriptions to such data
downloaded from the Internet nightly. Satellite broadcast schedules may arrive as data packets from
the satellite, and cable TV program data may arrive as a downloaded file or data transmitted over the
vertical blanking interval (VBI) in the analog television signal.

The following illustration shows some of the various possible data sources feeding the Guide database.

2416

Updating Guide Data Page 2 of 4

Overlapping Channels
[This is preliminary documentation and subject to change.]

The Program Guide may have to combine information about multiple broadcast sources. For example,
Program Guide data from the local cable company may have to reside in the Program Guide along
with Program Guide data from a satellite service provider. This potential requirement can be
problematic when channels from different systems use the same channel numbers.

To deal with issues arising from overlapping channel numbers, Broadcast Architecture implements the
idea of tuning spaces. A tuning space is a set of nonoverlapping channels that are all available through
the same type of physical channel tuner, such as an analog cable tuner. A broadcast client with
multiple tuning devices may provide channels from multiple tuning spaces.

A physical device may support more than one tuning space. For example, if someone moves an analog
receiver from San Francisco to Seattle, that person finds that TV broadcast channel 3 is different in the
two cities. A viewer with both a cable connection and a conventional broadcast antenna, using a
switch box to select between providers, has inputs that represent two tuning spaces.

The Program Guide must be able to handle and display information for more than one tuning space.

In addition, a channel in a single tuning space can be shared by multiple broadcast content providers.
For example, channel 21 might broadcast network 1 from 9 p.m. to 9 a.m., and network 2 from 9 a.m.
to 9 p.m. The Program Guide must also be able to handle and display such shared channels.

Moving Data to the Program Guide
[This is preliminary documentation and subject to change.]

For any given broadcast service, one or more sources may provide Program Guide data. Because of
the number of sources and formats for Program Guide data, it would be unwieldy for the Program
Guide to directly receive Program Guide data. There are simply too many variations.

To maintain current information, new data must be uploaded to the Guide database. The job of
updating the database belongs to a set of Guide database loaders. Each tuning space has an associated
Guide database loader.

2417

Updating Guide Data Page 3 of 4

A Guide database loader may process multiple tuning spaces. For example, a database loader for
analog networks may process data for both cable and over-the-air broadcasts.

A database loader:

� Accesses available sources of Program Guide data.
� Receives new data.
� Maps data to tables and fields in the Guide database.
� Loads the new data into the Guide database.

The following illustration shows the relationship between a database loader and the Guide database.

Updating the Guide Database
[This is preliminary documentation and subject to change.]

The process of loading current information into the Guide database begins with the Loadstub
component. This component calls the loader library specified in its arguments to load data into the
Guide database.

Typically, you set the Loadstub component as a task in the Task Scheduler. Making this component a
task causes the Program Guide data for the tuning space associated with the specified loader to be
automatically updated at regular intervals. The task for a particular tuning space specifies the
Loadstub component that should be run and the globally unique identifier (GUID) of the appropriate
database loader DLL.

At the designated time, the Task Scheduler runs the stub program (Loadstub.exe), passing the GUID
of the Guide database loader DLL along with other command options. The stub program reads entries
in the computer registry to identify the location and file name of the loader DLL, based on the DLL's
specified GUID.

The following illustration shows how the system starts the loader DLL.

2418

Updating Guide Data Page 4 of 4

For details about the information that needs to be in the registry to support tuning spaces and Guide
database loaders, see Program Guide Registry Entries.

When an application needs extensions to the Guide database, it must add any new fields or tables to
the database during installation. Providers must design any software that updates the database to
safely ignore references to fields or tables that are not present or that have an unclear purpose.

2419

Loader Libraries Page 1 of 9

Loader Libraries
[This is preliminary documentation and subject to change.]

For each tuning space, a corresponding Guide database loader exists. A database loader typically:

� Accesses the Guide database.
� Acquires Program Guide data from a specified source.
� Maps data from the Program Guide source to the appropriate fields in the Guide database.
� Updates the database with the new data.

Guide database loaders are DLLs. The specifics of creating a Guide database loader vary depending
on:

� Tuning spaces supported.
� Source of the Program Guide data (for example, downloaded from the Internet versus broadcast

live).
� Format of the Program Guide data.
� Correlation between the provided data and the Guide database schema.

Updating the Guide database involves accessing the Microsoft® Jet database engine from the DLL.
For more information on creating and working with loaders, see the following topics:

� Loaders Provided by Broadcast Architecture
� Writing a Custom Loader

To locate information on accessing a Jet database, see Further General Information.

Loaders Provided by Broadcast Architecture
[This is preliminary documentation and subject to change.]

Broadcast Architecture currently provides a loader that adds StarSight programming data to the Guide
database. This loader operates on a data file.

For this loader, a data location may be stored in an entry under the loader's registry key. This data
location is the name of the file to use for input, for example C:\ProgramFiles\Program
GuideData\ss.bin.

The data file created for the StarSight loader can come by a number of means, for example the
television tuner signal or Internet channel broadcasting.

2420

Loader Libraries Page 2 of 9

Writing a Custom Loader
[This is preliminary documentation and subject to change.]

Broadcast Architecture provides a sample loader framework that you can use to quickly develop a
custom loader. This sample loader, Load.cpp, implements a class CLoadApp that contains all of the
functionality of a database loader. It demonstrates the use of the Guide data objects to create a new
show and schedule it. This set of objects provides a programmatic interface to the data in the Guide
database, using which you can easily create records, delete records, retrieve field values, and set field
values. To locate the sample loader, see Broadcast Architecture Sample Applications.

To make your own loader based on the sample, all you need to do is modify the CLoadApp::Handle
method to load your data into the Guide database using the Guide data objects.

Even if you do not use the provided loader framework, it is recommended that you use the Guide data
objects. These objects are fully tested and debugged and save you from having to reimplement their
functionality.

Loader Responsibilities

[This is preliminary documentation and subject to change.]

Because your loader DLL runs in the context of Broadcast Architecture, it should implement the
following functionality:

� Sending loader event notifications
� Performing tuning space maintenance
� Processing quit events

In addition to the preceding, it is recommended that your loader DLL, if appropriate, support
the /I:data_location command-line argument. This argument enables users to override the location of
Program Guide data in the registry. For more information, see Loadstub Command-line Parameters.

Loader Event Notifications

[This is preliminary documentation and subject to change.]

2421

Loader Libraries Page 3 of 9

Your loader DLL should send broadcast window messages when loader events occur. These messages
can be sent using either the SendMessageTimeout or PostMessage function. To locate more
information about the SendMessageTimeout and PostMessage functions, see Further Information on
Program Guide Services for the Client.

The following table lists and describes these messages and their corresponding events.

Note A loader DLL should use the SendMessageTimeout method rather than PostMessage to send
EPGLDR_ACTIVE_COMMIT_START and EPGLDR_EXCLUSIVE_START messages. For
EPGLDR_ACTIVE_COMMIT_START, this is because PostMessage can cause the message to
arrive at applications monitoring events after updating has begun. This message's arrival after updating
starts may result in an application attempting to query the database while updating is taking place. For
EPGLDR_EXCLUSIVE_START, the loader needs to work on the assumption that all other
applications have released themselves from the Guide database before the loader continues with its
exclusive operation (which may include database repair, compaction, and so on).

Message Event

EPGLDR_STARTING The loader starts to run. This message is
sent by the Loadstub component and does
not need to be sent by your loader DLL.

EPGLDR_ENDING The loader finishes. This message is sent
by the Loadstub component and does not
need to be sent by your loader DLL.

EPGLDR_EXCLUSIVE_START The loader is beginning an operation that
requires exclusive access to the Guide
database. This message is sent by the
Loadstub component and does not need to
be sent by your loader DLL.

EPGLDR_ EXCLUSIVE _END The loader has finished an operation that
requires exclusive access to the Guide
database. This message is sent by the
Loadstub component and does not need to
be sent by your loader DLL.

EPGLDR_ACTIVE_COMMIT_START The loader is beginning to update records.
Applications that cache Program Guide
data will need to refresh their queries.

EPGLDR_ACTIVE_COMMIT_END The loader has finished updating records.
Applications that cache Program Guide
data should refresh their queries.

EPGLDR_PASSIVE_COMMIT_START The loader is beginning to update records.
Applications that cache Program Guide
data do not need to refresh their queries.

EPGLDR_PASSIVE_COMMIT_END The loader has finished updating records.
Applications that cache guide data do not
need to refresh their queries.

2422

Loader Libraries Page 4 of 9

Tuning Space Maintenance

[This is preliminary documentation and subject to change.]

Each loader DLL should clean up its corresponding tuning space. This cleanup consists of the
following actions:

� Deletion of dangling references in the Channel, Episode, Station and Theme tables.
� Deletion of expired records from the Time Slot table. These are defined as records whose end

time is more than one day in the past.
� Deletion of duplicate time slots from the Time Slot table. For example, if a show is listed as

broadcasting on a particular channel from 10 a.m. to 12 p.m., and the loader adds a new time
slot for that show from 10:30 to 11:30 a.m., one of time slot entries should be removed.

The preceding actions can be performed by running the cleanup queries defined in the Guide database.
For more information, see Guide Database Query Reference.

Guide Database Query Reference

[This is preliminary documentation and subject to change.]

The Guide database contains several queries that your application can run in order to remove unused
or out-of-date data records. These queries can be run programmatically from the loader library by
using the CLoadApp::ExecuteActionQuery method. This method is implemented in the sample
loader provided with Broadcast Architecture. For more information, see Writing a Custom Loader.

The Guide database contains the following cleanup queries.

Query Action

Delete Dangling Channel Deletes all records from the Channel table
that do not have a matching entry in the
Time Slot table.

Delete Dangling Episode Deletes all records from the Episode table
that do not have a matching entry in the
Time Slot table.

Delete Dangling Station Deletes all records from the Station table
that do not have a matching entry in the
Channel table.

2423

Loader Libraries Page 5 of 9

Processing Quit Events

[This is preliminary documentation and subject to change.]

When the loader library is loading data into the Guide database using the CLoadApp::Handle
method, the loader is no longer in the operating system message loop. Thus, there is no way for the
loader to receive a quit processing notification.

Instead, the Loadstub component monitors the operating system message queue for quit messages. At
convenient times in loader processing, for example between adding records or executing queries, your
loader should call the pfnForceQuit function that Loadstub.exe passes to the loader DLL. This
function enables Loadstub to forward quit event notifications to the loader so that the loader can stop
processing, if necessary.

Your loader can implement this functionality by calling the following code whenever loader processing
can be gracefully stopped

if ((*pfnForceQuit()){
 //Code to clean up and gracefully exit the loader
}

where pfnForceQuit was passed at the entry point.

Implementing the Entry-Point Function

[This is preliminary documentation and subject to change.]

A database loader DLL must implement a standard entry point to be called by Loadstub. The call to
that entry point starts the DLL code that loads Program Guide data into the database. The entry point

Delete Dangling Theme Deletes all records from the Theme table
that do not have a matching entry in the
Episode table.

Delete Omitted Time Slot Deletes duplicate time slots. The query
deletes the Time Slot with an older Last
Updated time. For efficiency, pass the start
time and end time of the period for which
you want to eliminate duplicates, and also
the tuning space.

Delete Expired Time Slot Deletes all time slots with end times older
than the specified time.

2424

Loader Libraries Page 6 of 9

function must be named Program Guide_DBLoad.

The prototype for this function is

Typedef BOOL (*PFNFORCEQUIT)(VOID);
APIENTRY Program Guide_DBLoad(int &argc, _TCHAR **argv, CdbEngine &db, PFNFORCEQUIT

where the first two parameters provide support for standard command line processing, the next
parameter is a reference to the database, and the final parameter is the quit processing callback
function.

Note The sample loader, Load.cpp, already contains an implementation of Program
Guide_DBLoad. Thus, if you build your loader using this framework, you do not need to implement
this method.

Loadstub
[This is preliminary documentation and subject to change.]

The Loadstub component, Loadstub.exe, starts a loader DLL. Typically, Loadstub is automatically
started as a task in the Task Scheduler in the Microsoft® Windows® 98 operating system. Using a
stub application provides a common interface for loader DLLs that themselves may be quite divergent
in approach.

For more information, see the following topics:

� Running Loadstub, which describes how to start Loadstub and details what it does.
� Loadstub Command-line Parameters, which details the command-line parameters you can set

for Loadstub.

Running Loadstub

[This is preliminary documentation and subject to change.]

Guide database loaders are all called as needed by a standard loader stub program. This stub program,
Loadstub.exe, is scheduled to run at appropriate times to update the Guide database. For more
information on Loadstub options, see Loadstub Command-Line Parameters.

When the stub program starts, it:

1. Parses the command line for recognized options:

2425

Loader Libraries Page 7 of 9

1. Executes the /X command line option, if it exists.
2. Starts the Microsoft® Jet engine.
3. Executes the /R command line option to repair the database, if this option exists, and

does a quick check and repair of corruption errors if it does not.
4. Executes the /C command line option to compact the database, if the option exists. If

there is no /R option, the program also repairs the database before compaction.
5. Executes the /LEF command line option to load the specified enhancements file, if the

option exists.
2. Uses option information to extract the name of the loader DLL from the registry.
3. Extracts user and password information.
4. Opens a workspace as LoaderWSP and a user as loader.
5. Creates a window message by calling the RegisterWindowMessage function. On the

RegisterWindowMessage call, Loadstub passes the string representation of the loader's
globally unique identifier (GUID).

6. Broadcasts an EPGLDR_STARTING message to notify client applications that the database is
receiving updated data.

7. Starts the loader DLL.
8. Broadcasts an EPGLDR_ENDING message to notify client applications that the database

update is completed and to indicate success or failure.
9. Updates the LastAttempt and LastRun entries in the Program Guide Loaders key of the

system registry.

Loadstub Command-Line Parameters

[This is preliminary documentation and subject to change.]

The Loadstub component is typically run as a task by the Task Scheduler. When this is the case, you
specify the following syntax in the Run field of a scheduled task.

PathLoadstub.exe /L:Loader_GUID [OptionalArguments]

Parameters

Path
Path to the Loadstub.exe component. If the path contains spaces, the path and file name must be
surrounded by quotation marks ("), for example "C:\Program Files\TV
Viewer\Loadstub.exe"

Loader_GUID
GUID of the loader component. This parameter is required.

Optional Arguments
Additional optional arguments. These can be any combination of the following.

2426

Loader Libraries Page 8 of 9

Examples

The following example runs the StarSight loader, loading data from C:\Windows\Temporary Internet
Files\ssdata.bin instead of the location specified in the registry.

"C:\Program Files\TV Viewer\LOADSTUB.EXE" /L:{C94D1940-9F69-11d0-BDB8-0000F8027346}

Note that because the path to the data contains spaces, it is surrounded by quotation marks. You can
also use the short directory names, as shown following:

C:\Progra~1\TV Viewer\LOADSTUB.EXE /L:{C94D1940-9F69-11d0-BDB8-0000F8027346} /P /I:

Argument Description

/C Specifies to repair and compact the database.

/R Specifies to repair the database.

/X Specifies to replace the database. The replacement
file is specified by the registry entry
DBReplacementFile, right next to the current
DBFile entry. Specifying DBReplacementFile
enables an application to replace a database
programmatically.

/P Specifies a partial update. This option allows a
loader to implement a "quick" mode and a normal
mode. For example, in partial update mode, a
loader might only gather the next four hours of
guide data, rather than the next two and a half
days.

Note: Because the data format varies between
loader libraries, this parameter is not handled by
the Loadstub component. Instead, Loadstub
passes the parameter as an argument to the
loader. Thus, in order for this parameter to work,
it must be supported by the loader.

/I:data_location Specifies the location of the data file. If this
parameter is not set, Loadstub uses the location
stored in the registry. For the StarSight loader,
this parameter specifies the name of the data file.

Note: Because the type of data passed into this
command-line parameter varies, this parameter is
not handled by the Loadstub component. Instead,
Loadstub passes the parameter as an argument to
the loader. Thus, in order for this parameter to
work, it must be supported by the loader.

/LEF filename Loads the named enhancement file.

2427

Loader Libraries Page 9 of 9

2428

Guide Data Objects Page 1 of 1

����� ��	�
���	�

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

��	 ����	 �� ���	��� �	 �	� �� ���	��� ��� ��
������� �� ��	 �� �	���	�	 �� �	� �
�	� �� ��	
����	 ����	� ��	� ��� ��	 �� ���	�� ���	�� ���! ���	 �	�	���� �� ��	�� ��	 ����	
����	"� �	����� �� ��	
���

#� �� �	����	��	� ��� ����
��	� ��
������ ��	 ��	 ����	 �� ���	��� �	���	 ��	� ������	
����	��	�� �� �	��	� ���������� ���	���	 �� ��	 �	����� �� ��	
�� �� ��	 ����	 ����	�

����� ����	
� ��� ��� ���� ��
����� ��
�� �� ������ ����	�
��� ���
�� ��
����� �����
�����������	 ��	������ ��� ��� �������	� �������������

��� ���� ������������ 	�� ��� �������� �����	�

� ����� ��	�
���	 ������	���� ���� �������� 	�� ����	�	��� ��� ������	��� �� 	�� �����
��	� ����	��

� ����� 	�� ����� ��	�
���	�� ���� �������� ��� 	� ��� 	�� ����� ��	� ����	� 	� ��������	�
	�� ������ ��� ������ �� 	�� ����� ��	������

� ����� ��	�
���	 ��������� ���� �������� ��	����� ������	���� �� 	�� ��	���� ������� �
	�� ����� ��	� ����	��

!� ������ �������� 	��	 �	���"� 	�� ����� ��	�
���	�� 	�� ����	��� ������ ���� ���	 �� �� 	��
������� ��	��
�	� � ���	 ����� �������	� ��� ���
 ���� ������� �����	 ���� �	 ���� 	���	���
 �����

���� ��� ��	
 ��� 	����	� �	�����
� �	���	� ��	 ��������	�
������ ��� �������� ����	
�� �
��������� 	�
 ���
� ��� �� ���������

2429

Guide Database Schema Page 1 of 48

Guide Database Schema
[This is preliminary documentation and subject to change.]

The collection of data describing current and upcoming broadcast video events is stored in a
Microsoft® Jet database file called the Guide database. Broadcast Architecture uses a Jet database to
take advantage of a widely accepted database format that is easily programmed from various
development tools, including the Microsoft® Visual C++® development system and the Microsoft®
Visual Basic® programming system. The Jet database engine provides several advantages. It:

� Provides a high-level interface, called Data Access Objects (DAO), supported by various
versions of Visual Basic and Visual C++.

� Supports Structured Query Language (SQL) for easy definition of complex queries.
� Is an Automation server.

The Guide database schema contains the following tables.

Table Description

AdTrack Stores information about rotating advertisements.

Broadcast Property Gives names for various broadcast properties,
such as closed captioning

Channel Defines for each tuning space all properties and
all channels that can be tuned to

Channel Property Specifies properties associated with individual
channels

Channel Stream Lists the data streams available on a specific
channel

Enhancement Describes the links between enhancements and
the show to be enhanced

Episode Describes each television program episode

Episode Property Specifies properties associated with individual
episodes

Genre Provides names for categories of episodes

Network Defines various broadcast networks, such as
ABC, CBS, NBC, and so on

Rating Defines names for individual ratings used in
various rating systems

Rating System Identifies various rating systems, such as the
Motion Picture Association of America (MPAA)
system

Station Defines individual broadcast providers

2430

Guide Database Schema Page 2 of 48

For more information on how to examine the Guide database schema, see Viewing the Schema.

Viewing the Schema
[This is preliminary documentation and subject to change.]

To investigate and print out the details of the Guide database schema, including field descriptions, field
sizes, and referential integrity rules, you can make a copy of the empty database installed by the
broadcast client installation program. You can then examine the copy using Microsoft® Access, as
described in the following procedure.

 To examine the Guide database schema in detail

1. Open Microsoft® Windows® Explorer.
2. Open the TV Viewer folder within the folder where the broadcast client software resides on

your computer.
3. Select the two database files, Tss.mdb and Tss.mdw.
4. Copy these files to a different folder convenient to your development project.
5. Use Access to open these files, and explore and print out the database structure as explained in

the Access documentation.

For improved performance and ease of navigation, many of the tables in the Guide database schema
are referentially linked with automatically generated counters. The referential integrity of these counter
fields is guaranteed by:

� The Microsoft® Jet database engine.
� The schema structure.
� The behavior of the database loader.

You can use these automatically generated identifier (ID) fields in queries and code that navigate
among the tables. However, you should never store these identifier fields externally to the database,
because their values are subject to ongoing change when the database loaders add and delete records

Stream Type Gives names for all data streams available on a
specific channel

Sub-Genre Provides names for subcategories within a genre

Theme Defines unique pairs of genres and subgenres to
help classify episodes

Theme ID Mapping Maps genres and subgenres defined by broadcast
content providers to standard genre-subgenre
pairs in the Theme table

Time Slot Defines time slot and channel information for
each episode

2431

Guide Database Schema Page 3 of 48

as part of updating the database. If an application must save an external reference to an item in the
database, it must use one of the key fields flagged as external to do so.

AdTrack Table
[This is preliminary documentation and subject to change.]

The AdTrack table in the Guide database contains information about rotation ads. The AdTrack table
contains the following fields.

AdName

[This is preliminary documentation and subject to change.]

The AdName field provides the name of the advertisement. This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Text
Field size: 20 characters
Default value: Not applicable
Required: Yes

Impressions

[This is preliminary documentation and subject to change.]

The Impressions field provides the number of times, or impressions, that the advertisement is displayed
to the user. This field's values are as follows:

Field Description

AdName Name of the advertisement.

Impressions Number of times the advertisement
appears.

PageGroup File name for the advertisement
schedule.

2432

Guide Database Schema Page 4 of 48

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

PageGroup

[This is preliminary documentation and subject to change.]

The PageGroup field provides the name of the advertisement schedule file. The Program Guide uses
the advertisement schedule file to determine what advertisements to show. This field's values are as
follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Text
Field size: 20 characters
Default value: Not applicable
Required: Yes

Broadcast Property Table
[This is preliminary documentation and subject to change.]

The Broadcast Property table in the Guide database gives names for various broadcast properties,
such as closed captioning. The Broadcast Property table contains the following fields.

Field Description

BP Abbreviation Short name for this property.

BP Broadcast Property ID Unique identifier for this broadcast
property record.

BP Display Order Priority of this item when there is not room
to display all properties.

BP Name Name for this property.

BP Pictogram Moniker File name of the bitmap associated with this
property.

2433

Guide Database Schema Page 5 of 48

BP Abbreviation

[This is preliminary documentation and subject to change.]

The BP Abbreviation field contains the short name for this property, restricted to 4 bytes in length (for
example, cc, st, or ppv). This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 4 characters
Default value: Zero-length string
Required: Yes

BP Broadcast Property ID

[This is preliminary documentation and subject to change.]

The BP Broadcast Property ID field contains the unique identifier for this broadcast property record.
This field's values are as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

BP Display Order

[This is preliminary documentation and subject to change.]

The BP Display Order field identifies the priority of this item when there is not room to display all
properties. This field's values are as follows:

BP Tuning Space Tuning space to which this broadcast
property belongs.

2434

Guide Database Schema Page 6 of 48

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

BP Name

[This is preliminary documentation and subject to change.]

The BP Name field contains the name for this property (for example, closed captioned, stereo, or pay-
per-view). This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 128 characters
Default value: Zero-length string
Required: No

BP Pictogram Moniker

[This is preliminary documentation and subject to change.]

The BP Pictogram Moniker field contains the file name of the bitmap associated with this property.
This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 255 characters
Default value: Zero-length string
Required: No

BP Tuning Space

2435

Guide Database Schema Page 7 of 48

[This is preliminary documentation and subject to change.]

The BP Tuning Space field identifies the tuning space to which this broadcast property belongs. This
field's values are as follows:

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

Channel Table
[This is preliminary documentation and subject to change.]

The Channel table in the Guide database defines for each tuning space all properties and all channels
that can be tuned to. The Channel table contains the following fields.

Field Description

C Channel ID Internally generated unique identifier
for this channel.

C Channel Number Tuning identifier for the channel's
input stream.

C Description Extended description of this channel.

C Display Mask Reserved for future use.

C End Time Time when this channel becomes
unavailable on the network.

C Enhancement Mapping ID Mapping identifier from the
Enhancement table.

C Last Update Last time this row in the table was
updated.

C Length Length of the time the channel is
available, in minutes.

C Payment Address Reserved for future use.

C Payment Token Reserved for future use.

C Rating ID Foreign key from the Rating table.

C Start Time Time when this channel becomes
available on the network.

2436

Guide Database Schema Page 8 of 48

C Channel ID

[This is preliminary documentation and subject to change.]

The C Channel ID field provides an internally generated unique identifier for this channel. This field's
values are as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

C Channel Number

[This is preliminary documentation and subject to change.]

The C Channel Number field provides the tuning identifier for the channel's input stream. This field's
values are as follows:

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

C Station ID Station mapped to this channel
during the specified time period.

C Tunable Value that specifies whether the
channel can be tuned to.

C Tuning Space Logical identifier of the network type
for the physical broadcast (for
example, broadcast tuner, satellite,
and so on).

2437

Guide Database Schema Page 9 of 48

C Description

[This is preliminary documentation and subject to change.]

The C Description field provides an extended description of this channel. This field's values are as
follows:

Key: Not applicable
Index: No
Data type: Memo
Field size: Not applicable
Default value: Zero-length string
Required: No

C Display Mask

[This is preliminary documentation and subject to change.]

Reserved for future use.

C End Time

[This is preliminary documentation and subject to change.]

The C End Time field provides the time when this channel becomes unavailable on the network. This
field's values are as follows:

Key: Not applicable
Index: No
Data type: Date/time
Field size: Not applicable
Default value: NULL date
Required: No

C Enhancement Mapping ID

[This is preliminary documentation and subject to change.]

2438

Guide Database Schema Page 10 of 48

The C Enhancement Mapping ID field provides the identifier of the enhancement in the Enhancement
Mapping table. This field's values are as follows:

Key: Foreign key
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

C Last Update

[This is preliminary documentation and subject to change.]

The C Last Update field identifies the last time this row in the table was updated. This field's values
are as follows:

Key: Not applicable
Index: No
Data type: Date/time
Field size: Not applicable
Default value: Not applicable
Required: No

C Length

[This is preliminary documentation and subject to change.]

The C Length field provides the length of the time the channel is available, in minutes. This value is
useful when channels are available only during certain times. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

2439

Guide Database Schema Page 11 of 48

C Payment Address

[This is preliminary documentation and subject to change.]

Reserved for future use.

C Payment Token

[This is preliminary documentation and subject to change.]

Reserved for future use.

C Rating ID

[This is preliminary documentation and subject to change.]

The C Rating ID field is a foreign key from the Rating table. This field's values are as follows:

Key: Foreign
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

C Start Time

[This is preliminary documentation and subject to change.]

The C Start Time field provides the time when this channel becomes available on the network. This
field's values are as follows:

Key: Not applicable
Index: No
Data type: Date/time
Field size: Not applicable
Default value: NULL date

2440

Guide Database Schema Page 12 of 48

Required: No

C Station ID

[This is preliminary documentation and subject to change.]

The C Station ID field provides the station mapped to this channel during the specified time period.
This field's values are as follows:

Key: Foreign
Index: Yes (duplicates okay)
Data type: Number
Field size: Not applicable
Default value: Zero
Required: Yes

C Tunable

[This is preliminary documentation and subject to change.]

The C Tunable field specifies whether the channel represents a broadcast that can be tuned to. For
example, users cannot tune to some Program Guide channels.

This field enables applications to quickly determine whether a channel can be tuned to without having
to query the Channel Property table. This field is provided to enhance performance, as are the
property fields in the Episode table.

This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Yes/no
Field size: Not applicable
Default value: Yes
Required: No

C Tuning Space

2441

Guide Database Schema Page 13 of 48

[This is preliminary documentation and subject to change.]

The C Tuning Space field provides the logical identifier of the network type of the physical broadcast
(for example, broadcast tuner, satellite, and so on). This field's values are as follows:

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

Channel Property Table
[This is preliminary documentation and subject to change.]

The Channel Property table in the Guide database specifies properties associated with individual
channels. The Channel Property table contains the following fields.

CP Broadcast Property ID

[This is preliminary documentation and subject to change.]

The CP Broadcast Property ID field contains a foreign key from the Broadcast Property table. This
field's values are as follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Not applicable
Required: No

Field Description

CP Broadcast Property ID Foreign key from the Broadcast
Property table.

CP Channel ID Foreign key from the Channel table.

2442

Guide Database Schema Page 14 of 48

CP Channel ID

[This is preliminary documentation and subject to change.]

The CP Channel ID field contains a foreign key from the Channel table. This field's values are as
follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

Channel Stream Table
[This is preliminary documentation and subject to change.]

The Channel Stream table in the Guide database lists the data streams available on a specific channel.
The Channel Stream table contains the following fields.

CSR Channel ID

[This is preliminary documentation and subject to change.]

The CSR Channel ID field contains the unique identifier for this channel. This field's values are as
follows:

Key: Primary, foreign
Index: No

Field Description

CSR Channel ID Unique identifier for this channel.

CSR Name Name of the stream.

CSR Stream Type ID Unique identifier for this stream type.

CSR SubChannel Subchannel relative to the channel
specified by CSR Channel ID.

2443

Guide Database Schema Page 15 of 48

Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

CSR Name

[This is preliminary documentation and subject to change.]

The CSR Name field contains the user-oriented label used to identify this stream in this configuration.
The CSR Name value overrides the description in the Stream Type table. This field's values are as
follows:

Key: Not applicable
Index: No
Data type: Memo
Field size: Not applicable
Default value: Zero-length string
Required: No

CSR Stream Type ID

[This is preliminary documentation and subject to change.]

The CSR Stream Type ID field contains the unique identifier for this stream type. This field's values
are as follows:

Key: Primary, foreign
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

CSR SubChannel

[This is preliminary documentation and subject to change.]

2444

Guide Database Schema Page 16 of 48

The CSR SubChannel field contains the subchannel number used to identify this stream relative to the
channel. This field's values are as follows:

Key: Primary
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

Enhancement Table
[This is preliminary documentation and subject to change.]

The Enhancement table in the Guide database contains information used by TV Viewer to link shows
to their enhancements. The Enhancement table contains the following fields.

EN Address

[This is preliminary documentation and subject to change.]

Field Description

EN Address Internet Protocol (IP) address of the
enhancement stream.

EN Enhancement ID Identifying name for this
enhancement.

EN Expire Date Expiration date extracted from a
show reference. This date can be
used in a deletion query to update
this table.

EN Mapping ID Identifier used by TV Viewer for
efficient display of enhancements.

EN Preload URL Home or start page for this
enhancement.

EN Show Reference Value that identifies one or more
episodes to be enhanced.

EN Title Title used to display the enhancement
in the user interface.

2445

Guide Database Schema Page 17 of 48

The EN address field is the IP address of the enhancement data. This field's values are as follows:

Key: Primary
Index: No
Data type: Memo
Field size: Not applicable
Default value: Zero-length string
Required: No

EN Enhancement ID

[This is preliminary documentation and subject to change.]

The EN Enhancement ID field contains a unique identifier for the enhancement. This field's values are
as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: Text
Field size: 38 characters
Default value: Zero-length string
Required: Yes

EN Expire Date

[This is preliminary documentation and subject to change.]

The EN Expire Date field is used to determine when to remove this enhancement from the database.
This field's values are as follows:

Key: Primary
Index: No
Data type: Date
Field size: Long integer
Default value: NULL date
Required: No

2446

Guide Database Schema Page 18 of 48

EN Mapping ID

[This is preliminary documentation and subject to change.]

The EN Mapping ID field is used by TV Viewer for the efficient display of enhancements. This field is
automatically generated when the enhancement record is created. This field's values are as follows:

Key: Primary
Index: Yes
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

EN Preload URL

[This is preliminary documentation and subject to change.]

The EN Preload URL field is the Uniform Resource Locator (URL) of the data to download for this
enhancement. Preloading this data enables the enhancement to include more data than the available
bandwidth otherwise allows. This field's values are as follows:

Key: Primary
Index: No
Data type: Memo
Field size: Not applicable
Default value: Zero-length string
Required: No

EN Show Reference

[This is preliminary documentation and subject to change.]

The EN Show Reference field is the identifier of the show that uses this enhancement. This field's
values are as follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Memo
Field size: Not applicable

2447

Guide Database Schema Page 19 of 48

Default value: Zero-length string
Required: No

EN Title

[This is preliminary documentation and subject to change.]

The EN Title field is the title of the enhancement. This field's values are as follows:

Key: Primary
Index: Yes
Data type: String
Field size: 255 characters
Default value: Zero-length string
Required: No

Episode Table
[This is preliminary documentation and subject to change.]

The Episode table in the Guide database describes each television program episode. The Episode table
contains the following fields.

Field Description

E Abbreviation Bit field that indicates how to
abbreviate episode titles for smaller
display areas.

E Description Extended description of this episode.

E Display Mask Reserved for future use.

E Episode ID Internally generated unique identifier
for this episode.

E Last Update Last time this row in the table was
updated.

E Rating ID Foreign key from the Rating table.

E Theme ID Foreign key from the Theme table.

E Title Program title.

2448

Guide Database Schema Page 20 of 48

E Abbreviation

[This is preliminary documentation and subject to change.]

The E Abbreviation field contains a bit field that indicates how to abbreviate episode titles for smaller
display areas. For example, "How to Succeed in Business Without Even Trying" appears as "Succeed
Business Without Even Trying" when this field has a binary value of 0010111. This field's values are
as follows:

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

E Description

[This is preliminary documentation and subject to change.]

The E Description field contains an extended description of this episode (for example, "Mail order
diplomas investigated"). This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 255 characters
Default value: Zero-length string
Required: No

E Display Mask

[This is preliminary documentation and subject to change.]

Reserved for future use.

2449

Guide Database Schema Page 21 of 48

E Enhancement Mapping ID

[This is preliminary documentation and subject to change.]

The E Attachment field contains a URL or application associated with this episode. This field's values
are as follows:

Key: Not applicable
Index: No
Data type: Memo
Field size: Not applicable
Default value: Zero-length string
Required: No

E Episode ID

[This is preliminary documentation and subject to change.]

The E Episode ID field provides an internally generated unique identifier for this episode. This field's
values are as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

E Last Update

[This is preliminary documentation and subject to change.]

The E Last Update field contains the last time this row in the table was updated. This field's values are
as follows:

Key: Not applicable
Index: No
Data type: Date/time
Field size: Not applicable
Default value: Not applicable

2450

Guide Database Schema Page 22 of 48

Required: No

E Rating ID

[This is preliminary documentation and subject to change.]

The E Rating ID field contains a foreign key from the Rating table. This field's values are as follows:

Key: Foreign
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

E Theme ID

[This is preliminary documentation and subject to change.]

The E Theme ID field contains a foreign key from the Theme table. This field's values are as follows:

Key: Foreign
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

E Title

[This is preliminary documentation and subject to change.]

The E Title field contains the program title (for example, Frontline). This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Text
Field size: 255 characters

2451

Guide Database Schema Page 23 of 48

Default value: Not applicable
Required: Yes

Episode Property Table
[This is preliminary documentation and subject to change.]

The Episode Property table in the Guide database specifies properties associated with individual
program episodes. The Episode Property table contains the following fields.

Broadcast Property ID

[This is preliminary documentation and subject to change.]

The Broadcast Property ID field contains a foreign key from the Broadcast Property table. This field's
values are as follows:

Key: Foreign
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Not applicable
Required: Yes

Episode ID

[This is preliminary documentation and subject to change.]

The Episode ID field contains a foreign key from the Episode table. This field's values are as follows:

Key: Foreign
Index: Yes (duplicates okay)

Field Description

Broadcast Property ID Foreign key from the Broadcast
Property table.

Episode ID Foreign key from the Episode table.

2452

Guide Database Schema Page 24 of 48

Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

Genre Table
[This is preliminary documentation and subject to change.]

The Genre table in the Guide database provides names for different categories of program episodes.
The Genre table contains the following fields.

G Genre ID

[This is preliminary documentation and subject to change.]

The G Genre ID field contains the unique identifier for this genre. This field's values are as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

G Name

[This is preliminary documentation and subject to change.]

Field Description

G Genre ID Unique identifier for this record.

G Name Name of this genre (for example,
movies, television series, and so on).

G Tuning Space Numeric identifier for the data source
that defines this genre.

2453

Guide Database Schema Page 25 of 48

The G Name field contains the name of this genre (for example, movies, television series, and so on).
This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Text
Field size: 50 characters
Default value: Not applicable
Required: No

G Tuning Space

[This is preliminary documentation and subject to change.]

The G Tuning Space field contains a numeric identifier for the data source that defines this genre. This
value identifies which loader handles the source data. This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

Network Table
[This is preliminary documentation and subject to change.]

The Network table in the Guide database defines information about various broadcast networks. The
Network table contains the following fields.

Field Description

N LogoMoniker Name of the image file that contains the network
logo.

N Name Name of the network.

N Network ID Automatically generated unique identifier for the
network.

2454

Guide Database Schema Page 26 of 48

N LogoMoniker

[This is preliminary documentation and subject to change.]

The N LogoMoniker field provides the name of the bitmap file containing the logo for this network.
This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 255 characters
Default value: Not applicable
Required: No

N Name

[This is preliminary documentation and subject to change.]

The N Name field provides the name of this network. This field's values are as follows:

Key: Not applicable
Index: Yes (no duplicates)
Data type: Text
Field size: 50 characters
Default value: Zero-length string
Required: No

N Network ID

[This is preliminary documentation and subject to change.]

The N Network ID field provides an internally generated unique identifier for this network. This field's
values are as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented

2455

Guide Database Schema Page 27 of 48

Required: Yes

Rating Table
[This is preliminary documentation and subject to change.]

The Rating table in the Guide database defines rating names for individual ratings used in various
rating systems. Any time an application changes an entry in the Rating table, that application must
update the .rat file with new descriptions. Each record in the Rating table is roughly equivalent to a
label entry in a Platform for Internet Content Selection (PICS) rating file. The Rating table contains
the following fields.

R Description

[This is preliminary documentation and subject to change.]

The R Description field contains the name of this rating (for example, PG-13) in the rating system.
This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 50 characters
Default value: Not applicable
Required: No

Field Description

R Description Name of this rating (for example,
PG-13) in the rating system.

R Pictogram Moniker File name of the bitmap associated
with this rating.

R Rating Numerical value used to rank this
rating in the rating system.

R Rating ID Unique identifier for this record.

R Rating System ID Identifier for the rating system that
uses this rating entry.

2456

Guide Database Schema Page 28 of 48

R Pictogram Moniker

[This is preliminary documentation and subject to change.]

The R Pictogram Moniker field contains the file name of the bitmap associated with this rating. This
field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 255 characters
Default value: Zero-length string
Required: No

R Rating

[This is preliminary documentation and subject to change.]

The R Rating field contains the numerical value used to rank this rating in the rating system. This
field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Number
Field size: Single
Default value: Zero
Required: No

R Rating ID

[This is preliminary documentation and subject to change.]

The R Rating ID field contains a unique identifier for this rating. This field's values are as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

2457

Guide Database Schema Page 29 of 48

R Rating System ID

[This is preliminary documentation and subject to change.]

The R Rating System ID field contains an identifier for the rating system using this rating entry. This
field's values are as follows:

Key: Foreign
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

Rating System Table
[This is preliminary documentation and subject to change.]

The Rating System table in the Guide database provides names for MPAA-style ratings. The Rating
System table contains the following fields.

RS Description

[This is preliminary documentation and subject to change.]

The RS Description field contains the description of this rating system. This field's values are as
follows:

Field Description

RS Description Description of the rating system.

RS Name Name of the rating system.

RS Rating System ID Unique identifier for this record.

RS Tuning Space Data source defining this rating
system.

2458

Guide Database Schema Page 30 of 48

Key: Not applicable
Index: No
Data type: Text
Field size: 128 characters
Default value: No
Required: No

RS Name

[This is preliminary documentation and subject to change.]

The RS Name field contains the name of this rating system (for example, MPAA). This field's values
are as follows:

Key: Not applicable
Index: Yes (no duplicates)
Data type: Text
Field size: 50 characters
Default value: Not applicable
Required: No

RS Rating System ID

[This is preliminary documentation and subject to change.]

The RS Rating System ID field contains the unique identifier for this rating system. This field's values
are as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Not applicable
Default value: Automatically incremented
Required: Yes

RS Tuning Space

2459

Guide Database Schema Page 31 of 48

[This is preliminary documentation and subject to change.]

The RS Tuning Space field contains the data source defining this rating system. This value identifies
which loader handles the source data. This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

Station Table
[This is preliminary documentation and subject to change.]

The Station table in the Guide database defines individual broadcast content providers. The Station
table contains the following fields.

S Call Letters

[This is preliminary documentation and subject to change.]

The S Call Letters field provides the call letters of this station (HBOW, for example). This field's

Field Description

S Call Letters Call letters of this station (HBOW,
for example).

S Description Extended description of the
programming provided by this
station.

S Logo Name of the file that contains the
logo bitmap for this station.

S Name Name of this station (Home Box
Office West, for example).

S Network ID Foreign key from the Network table.

S Station ID Internally generated unique identifier
for this station.

2460

Guide Database Schema Page 32 of 48

values are as follows:

Key: Not applicable
Index: Yes (no duplicates)
Data type: Text
Field size: 5 characters
Default value: Not applicable
Required: Yes

S Description

[This is preliminary documentation and subject to change.]

The S Description field provides an extended description of the programming provided by this station.
This field's values are as follows:

Key: Not applicable
Index: No
Data type: Memo
Field size: Not applicable
Default value: Zero-length string
Required: No

S Logo

[This is preliminary documentation and subject to change.]

The S Logo field provides the name of the file containing the logo bitmap for this station. The file
suffix is not included in this string. For example, the S Logo value for the Program Guide record is
Msepg, not Msepg.bmp. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 255 characters
Default value: Zero-length string
Required: No

2461

Guide Database Schema Page 33 of 48

S Name

[This is preliminary documentation and subject to change.]

The S Name field provides the name of this station (Home Box Office West, for example). This field's
values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 50 characters
Default value: Zero-length string
Required: No

S Network ID

[This is preliminary documentation and subject to change.]

The S Network ID field is a foreign key from the Network table. This field's values are as follows:

Key: Foreign
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

S Station ID

[This is preliminary documentation and subject to change.]

The S Station ID field provides an internally generated unique identifier for this station. This field's
values are as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

2462

Guide Database Schema Page 34 of 48

Stream Type Table
[This is preliminary documentation and subject to change.]

The Stream Type table in the Guide database gives names for all data streams available on a specific
channel. The Stream Type table contains the following fields.

SR Category

[This is preliminary documentation and subject to change.]

The SR Category field specifies the category for the stream. This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

SR Description

Field Description

SR Category Value that specifies the category of
the stream.

SR Description Name of this stream (for example,
video, data, and so on).

SR Locale ID Locale identifier of the stream.

SR Stream Type ID Unique identifier for this stream type.

SR Tuning Space Value that identifies the source that
defines this stream.

SR Value Integer passed to the driver when
requesting a specific video stream.

2463

Guide Database Schema Page 35 of 48

[This is preliminary documentation and subject to change.]

The SR Description field contains the name of this stream (for example, video, data, and so on). This
field's values are as follows:

Key: Not applicable
Index: No
Data type: Memo
Field size: Not applicable
Default value: Zero-length string
Required: No

SR Locale ID

[This is preliminary documentation and subject to change.]

The SR Locale ID field specifies the locale identifier for the stream. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

SR Stream Type ID

[This is preliminary documentation and subject to change.]

The SR Stream Type ID field contains the unique identifier for this stream type. This field's values are
as follows:

Key: Primary
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

2464

Guide Database Schema Page 36 of 48

SR Tuning Space

[This is preliminary documentation and subject to change.]

The SR Tuning Space field identifies the source that defines this stream. This field's values are as
follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

SR Value

[This is preliminary documentation and subject to change.]

The SR Value field contains the integer passed to the driver when requesting a specific video stream.
This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

Sub-Genre Table
[This is preliminary documentation and subject to change.]

The Sub-Genre table in the Guide database provides names for subcategories within a genre. The Sub-
Genre table contains the following fields.

Field Description

SG Name Name of this subgenre (for example,
science fiction).

SG Sub Genre ID Unique identifier for this record.

2465

Guide Database Schema Page 37 of 48

SG Name

[This is preliminary documentation and subject to change.]

The SG Name field contains the name of this subgenre (for example, science fiction). This field's
values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Text
Field size: 50 characters
Default value: Not applicable
Required: No

SG Sub Genre ID

[This is preliminary documentation and subject to change.]

The SG Sub Genre ID field contains the unique identifier for this subgenre. This field's values are as
follows:

Key: Not applicable
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

Theme Table
[This is preliminary documentation and subject to change.]

The Theme table in the Guide database defines information about themes. A theme allows an episode
to be associated with multiple genre/subgenre pairs, because genre/subgenre pairs can share the same
T Theme ID field.

For example, the motion picture Aliens might have a T Theme ID of 2, placed in the E Theme ID field

2466

Guide Database Schema Page 38 of 48

of the Episode table. In the Theme table, the genre/subgenre pair Science Fiction/Movie and the
genre/subgenre pair Movie/Action can both share that same T Theme ID of 2.

The Theme table contains the following fields.

T Genre ID

[This is preliminary documentation and subject to change.]

The T Genre ID field contains a foreign key from the Genre table. This field's values are as follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

T Sub Genre ID

[This is preliminary documentation and subject to change.]

The T Sub Genre ID field contains a foreign key from the Sub Genre table. This field's values are as
follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

Field Description

T Genre ID Foreign key from the Genre table.

T Sub Genre ID Foreign key from the Sub-Genre
table.

T Theme ID Internally generated unique identifier
for this record.

2467

Guide Database Schema Page 39 of 48

T Theme ID

[This is preliminary documentation and subject to change.]

The T Theme ID field contains the internally generated unique identifier for this theme. This field's
values are as follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: Yes

Theme ID Mapping Table
[This is preliminary documentation and subject to change.]

The Theme ID Mapping table in the Guide database maps a genre, subgenre, or genre/subgenre pair to
a corresponding theme identifier. The Theme ID Mapping table contains the following fields.

Field Description

TM Genre Identifier Identifier of the genre to map. Either
this field or the TM Genre Name field
can be used to specify the genre.

TM Genre Name Name of the genre to map. Either this
field or the TM Genre Identifier field
can be used to specify the genre.

TM SubGenre Identifier Identifier of the subgenre to map.
Either this field or the TM SubGenre
Name field can be used to specify the
subgenre.

TM SubGenre Name Name of the subgenre to map. Either
this field or the TM SubGenre
Identifier field can be used to specify
the subgenre.

TM Theme ID Theme identifier.

TM Tuning Space Tuning space that this mapping
applies to.

2468

Guide Database Schema Page 40 of 48

TM Genre Identifier

[This is preliminary documentation and subject to change.]

The TM Genre Identifier field specifies the genre to map. Either this field or TM Genre Name can be
use to specify the genre. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

TM Genre Name

[This is preliminary documentation and subject to change.]

The TM Genre Name field specifies the genre to map. Either this field or TM Genre Identifier can be
use to specify the genre. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 255 characters
Default value: Not applicable
Required: No

TM SubGenre Identifier

[This is preliminary documentation and subject to change.]

The TM SubGenre Identifier field specifies the subgenre to map. Either this field or TM SubGenre
Name can be use to specify the subgenre. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Number

2469

Guide Database Schema Page 41 of 48

Field size: Long integer
Default value: Zero
Required: No

TM SubGenre Name

[This is preliminary documentation and subject to change.]

The TM SubGenre Name field specifies the subgenre to map. Either this field or TM SubGenre
Identifier can be use to specify the subgenre. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Text
Field size: 255 characters
Default value: Not applicable
Required: No

TM Theme ID

[This is preliminary documentation and subject to change.]

The TM Theme ID field specifies the theme identifier to which the genre, subgenre, or genre/subgenre
pair should be mapped to. This field's values are as follows:

Key: Not applicable
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Not applicable
Required: No

TM Tuning Space

[This is preliminary documentation and subject to change.]

The TM Tuning Space field specifies the tuning space for which this mapping applies. This field's
values are as follows:

2470

Guide Database Schema Page 42 of 48

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Not applicable
Required: No

Time Slot Table
[This is preliminary documentation and subject to change.]

The Time Slot table in the Guide database defines time slot and channel information for each program
episode. The Time Slot table contains the following fields.

Field Description

TS Alternate Audio Exists Value that indicates whether an
alternate audio stream is available.

TS Alternate Data Exists Value that indicates whether an
alternate data stream is available.

TS Channel ID Foreign key from the Channel table.

TS Closed Caption Value that specifies whether the
broadcast has closed captions.

TS End Time Ending time for this time slot.

TS Episode ID Foreign key from the Episode table.

TS Last Update Last time this row in the table was
updated.

TS Length Length of this time slot, in minutes.

TS Other Properties Exist Value that indicates whether
additional properties exist for the
broadcast.

TS Pay Per View Reserved for future use.

TS Payment Address Reserved for future use.

TS Payment Token Reserved for future use.

TS Rerun Value that specifies whether the
broadcast is a rerun.

TS Start Time Beginning time for this time slot.

TS Stereo Value that specifies whether the
broadcast is in stereo.

TS Tape Inhibited Reserved for future use.

2471

Guide Database Schema Page 43 of 48

TS Alternate Audio Exists

[This is preliminary documentation and subject to change.]

The TS Alternate Audio Exists field indicates whether an alternate audio stream is available. This
field's values are as follows:

Key: Not applicable
Index: No
Data type: Yes/no
Field size: Not applicable
Default value: Zero
Required: No

TS Alternate Data Exists

[This is preliminary documentation and subject to change.]

The TS Alternate Data Exists field indicates whether an alternate data stream is available. This field's
values are as follows:

Key: Not applicable
Index: No
Data type: Yes/no
Field size: Not applicable
Default value: Zero
Required: No

TS Channel ID

[This is preliminary documentation and subject to change.]

The TS Channel ID field contains a foreign key from the Channel table. This field's values are as
follows:

TS Time Slot ID Unique identifier for this time slot
record.

2472

Guide Database Schema Page 44 of 48

Key: Primary, foreign
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

TS Closed Caption

[This is preliminary documentation and subject to change.]

The TS Closed Caption field specifies whether the broadcast has closed captions. This field's values
are as follows:

Key: Not applicable
Index: No
Data type: Yes/no
Field size: Not applicable
Default value: Zero
Required: No

TS End Time

[This is preliminary documentation and subject to change.]

The TS End Time field contains the ending time for this time slot. This field's values are as follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Date/time
Field size: Not applicable
Default value: Not applicable
Required: Yes

TS Episode ID

[This is preliminary documentation and subject to change.]

2473

Guide Database Schema Page 45 of 48

The TS Episode ID field contains a foreign key from the Episode table. This field's values are as
follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

TS Last Update

[This is preliminary documentation and subject to change.]

The TS Last Update field contains the last time this row in the table was updated. This field's values
are as follows:

Key: Not applicable
Index: No
Data type: Date/time
Field size: Not applicable
Default value: Not applicable
Required: Yes

TS Length

[This is preliminary documentation and subject to change.]

The TS Length field contains the length of this time slot in minutes. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Number
Field size: Long integer
Default value: Zero
Required: No

2474

Guide Database Schema Page 46 of 48

TS Other Properties Exist

[This is preliminary documentation and subject to change.]

The TS Other Properties Exist field indicates whether additional properties exist for the broadcast.
This field's values are as follows:

Key: Not applicable
Index: No
Data type: Yes/no
Field size: Not applicable
Default value: Zero
Required: No

TS Pay Per View

[This is preliminary documentation and subject to change.]

Reserved for future use.

TS Payment Address

[This is preliminary documentation and subject to change.]

Reserved for future use.

TS Payment Token

[This is preliminary documentation and subject to change.]

Reserved for future use.

TS Rerun

2475

Guide Database Schema Page 47 of 48

[This is preliminary documentation and subject to change.]

The TS Rerun field specifies whether the broadcast is a rerun. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Yes/no
Field size: Not applicable
Default value: Zero
Required: No

TS Start Time

[This is preliminary documentation and subject to change.]

The TS Start Time field contains the beginning time for this time slot. This field's values are as
follows:

Key: Primary
Index: Yes (duplicates okay)
Data type: Date/time
Field size: Not applicable
Default value: Not applicable
Required: Yes

TS Stereo

[This is preliminary documentation and subject to change.]

The TS Stereo field specifies whether the broadcast is in stereo. This field's values are as follows:

Key: Not applicable
Index: No
Data type: Yes/no
Field size: Not applicable
Default value: Zero
Required: No

2476

Guide Database Schema Page 48 of 48

TS Tape Inhibited

[This is preliminary documentation and subject to change.]

Reserved for future use.

TS Time Slot ID

[This is preliminary documentation and subject to change.]

The TS Time Slot ID field contains a unique identifier for this time slot record. This field's values are
as follows:

Key: Not applicable
Index: Yes (no duplicates)
Data type: AutoNumber
Field size: Long integer
Default value: Automatically incremented
Required: Yes

2477

Program Guide Registry Entries Page 1 of 1

������� �	
�� ��
���� ����
��

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

����� ����	�
� �������	
� ��
���� �� ��������	 ������ �� �������
��� �
���� ��
�� �����
����
���������
�� �������� ������� ��� ������� ���� ���������� �� ����� �� ��� ��������� ���������

� ������ ��	
��

� �	����

2478

Video Control Page 1 of 70

Video Control
[This is preliminary documentation and subject to change.]

In Broadcast Architecture, you can use the Microsoft® ActiveX™ control for video (the Video
control, Vid.ocx) to manage and display multimedia streams in Web pages and applications. Although
the Video control can also be used to display video in enhancement layout pages, it is usually more
convenient to use the Enhancement control. For more information, see Which Video Control Should I
Use?

The following topics describe the Video control, explain how to use it in an application, and outline
reference information for the object classes implemented by the Video control:

� About the Video Control
� Using the Video Control
� Video Control Reference

About the Video Control
[This is preliminary documentation and subject to change.]

Your application can use the Microsoft® ActiveX™ control for video (the Video control, Vid.ocx) to
manage audio and video streams. This control also enables your application to interact with the Video
Access server, Vidsvr.exe, to manage user purchase of broadcast items, such as pay-per-view shows.

The input stream that the Video control displays can be a live stream, such as an analog television
broadcast received through a television tuner card.

For more information, see the following topics:

� Available Devices
� Event Notification
� Device Contention
� Reserved Classes, Events, and Properties

Available Devices

[This is preliminary documentation and subject to change.]

2479

Video Control Page 2 of 70

When a broadcast client system starts, the Video Access server creates a list of the devices available
on the client. Using this list, your application can programmatically query and control individual
devices.

This list is available to the Video control through the BPCDevices collection. Each BPCDeviceBase
object in this collection represents a particular device on the client. The properties and methods of
BPCDeviceBase can programmatically query and control these devices.

The Video Access server builds this list of available multimedia devices using the Plug and Play
enumeration in the Microsoft® DirectShow™ application programming interface (API). You can then
set the Video control input device to one of the enumerated devices.

Event Notification

[This is preliminary documentation and subject to change.]

The Video control sends events relating to itself such as BPCVid.DblClick, which is raised when a
user double-clicks inside the control, to your application. The Video control uses events to implement
device contention resolution. It uses the BPCVid.GotControl and BPCVid.LostControl methods to
notifiy applications when they have or lose control of a particular device. For more information, see
Device Contention.

To receive event notifications from the Video control, you must implement event-handler methods in
your application. These methods are called by the Video control when an event occurs.

Device Contention

[This is preliminary documentation and subject to change.]

The Video control uses a cooperative mechanism to prevent device conflicts. This prevents multiple
instances of the Video control from attempting to control a particular device at the same time, which
would cause unpredictable results.

The BPCVid.GotControl and BPCVid.LostControl event notifications are used to inform an
application that it has control or must relinquish control of a particular device.

For example, if your application needs to use a particular device it must first request control of the
device by setting the input or output property of the Video control equal to the device. Your
application should then wait until it receives a GotControl notification before it uses the device. If the
application attempts to access the device before it has control, unexpected behavior can occur.

2480

Video Control Page 3 of 70

Similarly, if your application receives a LostControl notification, it should immediately stop using the
device in question until it can regain control. Otherwise, unexpected behavior occurs when multiple
applications access the device.

Thus, in order to handle device contention, your application must implement GotControl and
LostControl event handlers.

The device contention protocol also implements priority levels for application access to devices. These
priority levels are used when two applications are in contention for a device. In this case, control is
given to the application with higher priority. If both applications have equal priority, the application
that currently has control of the device retains control. You can set the priority for an instance of the
Video control using the BPCVid.Priority property.

Reserved Classes, Events, and Properties

[This is preliminary documentation and subject to change.]

The Video control contains several classes, events, and properties that are not supported and are
reserved for future use.

The following object classes are reserved:

� BPCPurchase
� BPCHistoryItemsCollection
� BPCMessage
� BPCEmailMessage
� BPCEmailMessageCollection

The following properties and methods of BPCDeviceBase are reserved:

� Status
� Filename
� HasFilename
� BuyItem
� CancelItem
� CurrentState
� EmailMessages
� HandleCardChaining
� HasCA
� HistoryItems
� ItemDetails
� ProviderEPGMask
� ProviderRating
� ProviderStatus

2481

Video Control Page 4 of 70

� ResetProviderSystem
� Run
� Stop
� Pause

The following methods and events of BPCVid and BPCDevices are reserved:

� Login
� Logout
� Run
� Stop
� Pause
� BlackedOut
� CAFail
� CAFault
� CannotPurchase
� CardInvalid
� CardMissing
� CASuccess
� ColdStart
� CopyCard
� CostExceeded
� EPGFilterChanged
� HandlePurchaseOffer
� NewEmail
� NoSubscriber
� NotReady
� OSDRequest
� PasswordCleared
� RatingExceeded
� Ready
� Retry
� RevokeEvent
� SignalLost
� StateChange
� TapingControlChanged
� TuningChanged
� WrongCard

Using the Video Control
[This is preliminary documentation and subject to change.]

The Microsoft® ActiveX™ control for video (the Video control) is a dual-interface ActiveX control.
This functionality means you can use the control from a variety of programming environments, such as

2482

Video Control Page 5 of 70

World Wide Web pages, applications built in the Microsoft® Visual Basic® programming system,
Java applets and applications, and C++ applications.

For details on working with the Video control to display video streams, manage devices, and interact
with the Video Access server, see:

� Setting an Input Device
� Setting an Output Device
� Setting a Input Channel
� Suspending the Video Server

For additional information on the tasks involved in using the Video control, see Displaying Video. In
addition, Broadcast Architecture material includes sample applications that demonstrate use of the
Video control. To locate these samples, see Broadcast Architecture Sample Applications.

Setting an Input Device

[This is preliminary documentation and subject to change.]

In order to display a video stream, your application must first set an input device or source for that
stream. Your application does this by setting the BPCVid.Input property of the Video control equal
to one of the available devices in the BPCDevices collection.

There are many different types of input devices. Your application must ensure that any device it
selects as an input device supports the operations that it is trying to perform. To do so, your
application can use properties of the form HasXxxx, which indicate whether the current device
supports the property Xxxx.

For example, the BPCDeviceBase.HasChannel indicates whether the device supports channels and
can be tuned by calling BPCDeviceBase.Channel. The HasChannel property of a television tuner
card is True.

If there are multiple tuners available on a broadcast client, your application can use the
BPCDeviceBase.ChannelAvailable method to determine whether a device can tune to the specified
channel.

Once your application has selected a device that supports the intended video stream from
BPCDevices, your application can set that device as the input device. This process is illustrated in the
following example:

Dim Device

'Search the collection for a device that
'supports channels. When one is found, set the
'that device as the input device.

For Each Device In MyVid.Devices

2483

Video Control Page 6 of 70

 If Device.HasChannel Then
 MyVid.Input = Device
 Exit For
 End If
Next

Setting an Output Device

[This is preliminary documentation and subject to change.]

You can also use the Video control to send video streams to an output device. For example, your
application can record a television broadcast by setting a tuner card as the input device and a VCR as
the output device.

Note Broadcast Architecture does not support functionality to enable infrared (IR) frequency
transmission, such as might be used to emulate a remote control signal and control consumer
electronics. Thus, although you can set a VCR or other output device to receive a video stream, the
user still has to turn on the VCR and start recording manually.

Setting an output device is similar to setting an input device, but instead of using the BPCVid.Input
property your application uses the BPCVid.Output property.

The following example searches the Devices collection for a device that supports output. When one is
found, the example sets that device as the output device.

Dim Device

For Each Device In MyVid.Devices
 If Device.IsOutput Then
 MyVid.Output = Device
 Exit For
 End If
Next

Setting a Input Channel

[This is preliminary documentation and subject to change.]

Once you have set an input device for the Video control that supports channels, as described in Setting
an Input Device, you can use the BPCDeviceBase.Channel property to set the device to the
appropriate channel.

However, if multiple tuning spaces are defined on a broadcast client, as happens when there are

2484

Video Control Page 7 of 70

multiple tuner cards installed, a particular device might not be able to tune to the specified channel.
You can check whether a device supports a channel by using the BPCDeviceBase.ChannelAvailable
method.

The following example loops through the BPCDevices collection, searching for a device that supports
the specified channel. If such a device is found, the script sets that device as the input device and sets
the device's Channel property.

Dim Device
Dim MyChannel = 12

For Each Device In MyVid.Devices
 If MyVid.Input.HasChannel Then
 If Device.ChannelAvailable(MyChannel)

MyVid.Input = Device
MyVid.Input.Channel = MyChannel
Exit For

 End If
 End If
Next

Suspending the Video Server

[This is preliminary documentation and subject to change.]

You can use the BPCSuspend object to suspend background data capture and cause the video server
to release its devices for use by other applications.

To do this you create an instance of BPCSuspend and call its DeviceRelease method. If the video
server successfully releases all devices the method returns a valid BPCSuspended object. Otherwise,
it returns Nothing. If Nothing is returned, it means that the video server was unable to release some
devices because they are currently being used by client video applications.

Your application should handle the case where DeviceRelease returns Nothing as it would a device
busy or device open type of failure. Your application can wait and try again, or signal the user to shut
down video applications.

When your application is done using the devices, it should destroy the BPCSuspended object. This
notifies the video server that it can resume using the devices and return to background data capture.

Dim susp As BPCSuspend
Dim suspended As BPCSuspended
Set susp = New BPCSuspend

'Attempt to suspend the video server
susp.DeviceRelease(0, suspended)

'Test whether the video server was suspended
If suspended = Nothing Then

2485

Video Control Page 8 of 70

 'Handle the case where devices cannot be released
Else
 'Use the devices
End If

'Release suspended to enable the video server to use the devices
Set suspended = Nothing

Note If you are developing applications using C/C++, you can use the wrapper class implemented in
Bpcsusp.h to provide suspend functionality.

Video Control Reference
[This is preliminary documentation and subject to change.]

The following sections document the programmatic interfaces of the Microsoft® ActiveX™ control
for video (the Video control, Vid.ocx) and the Video Access server, Vidsvr.exe. These reference
topics assume use by developers in the Microsoft® Visual Basic® programming system and
Microsoft® Visual Basic® Scripting Edition (VBScript) scripting language. Therefore, only Visual
Basic language syntax is shown.

The following objects are provided by the MSBPCVideo object library, Vid.ocx.

Object References

[This is preliminary documentation and subject to change.]

In the object reference topics, the syntax placeholder object refers to an object expression that
evaluates to one of the classes specified.

Object Description

BPCVid The Video control.

BPCDevices A collection of all available devices on
the user's computer.

BPCDeviceBase A device.

BPCSuspend Object that can be used to suspend the
video server and get it to release all
devices.

BPCSuspended Object that indicates whether the video
server is suspended.

2486

Video Control Page 9 of 70

The Input and Output properties of the Video control are each assigned DeviceBase objects when
setting the properties' values. You can specify the properties of a DeviceBase object in either property
with the following syntax:

Vid1.Devices(index).property

where Vid1, index, and property are placeholders respectively for the:

� Specific Video control.
� Index to the specific DeviceBase object in the Devices collection.
� Property you want to use.

You can also specify DeviceBase object properties after you assign them to the Input or Output
properties of the Video control. These are also valid object expressions that reference a property of a
DeviceBase object:

Vid1.Input.property
Vid1.Output.property

where Vid1 and property are the respective placeholders for the specific Video control you are using
and the property to set of the associated DeviceBase object.

Visual Basic Extender Object

[This is preliminary documentation and subject to change.]

Some properties of a control are provided by the container rather than the control; these are extender
properties. The control still needs information on, and sometimes needs to change the value of, these
properties. To provide this functionality, Visual Basic provides an Extender object to access these
properties. Some extender properties are standard; others are specific to certain containers.

The Extender object has several standard properties that affect the Video control. Visual Basic
provides additional extender methods, properties, and events that may not be available in other
containers. The following tables list and describe these Extender object and Visual Basic–specific
properties, methods, and events. The properties are as follows.

Property Description

Container Object that represents the visual container of
the control.

DragIcon Picture that specifies the icon to use when the
control is dragged.

2487

Video Control Page 10 of 70

The Extender object methods and Visual Basic–specific extender methods are listed following.

DragMode Integer that specifies if the control
automatically drags, or if the application using
the control must call the Drag method.

Enabled Boolean value that specifies whether the
control is enabled.

Height Integer that specifies the height of the control
in the container's scale units.

HelpContextID Integer that specifies the context identifier to
use when the F1 key is pressed and the control
has the focus.

Index Integer that specifies the position in a control
array this instance of the control occupies.

Left Integer that specifies the position of the left
edge of the control relative to the left edge of
the container, specified in the container's scale
units.

Name String that contains the user-defined name of
the control.

Parent Object that represents the container of the
control, such as a form in Visual Basic.

TabIndex Integer that specifies the position of the
control in the tab order of the controls in the
container.

TabStop Boolean value that specifies if the tab stops on
the control.

Tag String that contains a user-defined value.

ToolTipText String that contains the text to be displayed
when the cursor hovers above the control for
more than a second.

Top Integer that specifies the position of the upper
edge of the control relative to the upper edge
of the container, specified in the container's
scale units.

Visible Boolean value that specifies whether the
control is visible.

WhatThisHelpID Context identifier to use when the "What's
This" pop-up is used to provide information on
the control.

Width Width of the control in the container's scale
units.

2488

Video Control Page 11 of 70

The Extender object events and Visual Basic–specific extender events are listed following.

To locate more information about these methods, properties, and events, see Further Information on
Streaming Video Services for the Client.

BPCVid

[This is preliminary documentation and subject to change.]

The BPCVid class defines the Microsoft® ActiveX™ object which provides streaming video
functionality. It is designed to be forward-compatible with the Microsoft® DirectShow™ version 1.0
ActiveX control.

Note Version 1.0 of Broadcast Architecture is not compatible with the DirectShow 1.0 ActiveX
control.

For more information, see the following topics:

� BPCVid Properties
� BPCVid Methods
� BPCVid Events

Method Description

Drag Begins, ends, or cancels an operation in which
the control is dragged.

ShowWhatsThis Displays a selected topic in a Help file using
the "What's This" pop-up provided by Help.

Move Moves the position of the control.

ZOrder Places the control at the front or back of the z-
order within its graphical level.

SetFocus Sets the focus to the control.

Event Description

DragDrop Occurs when another control on the form is
dropped on this control.

LostFocus Occurs when the control loses focus.

DragOver Occurs when another control on the form is
dragged over this control.

GotFocus Occurs when the control gets focus

2489

Video Control Page 12 of 70

BPCVid Properties

[This is preliminary documentation and subject to change.]

The BPCVid object stores the following properties:

The following properties are not stored locally in the BPCVid object; instead, they are passed to
BPCVid object's corresponding BPCDevices object. However, you must set them using BPCVid. If
you attempt to set them using a reference to BPCDevices, BPCVid is not updated, and future
behavior is undefined.

Property Description

ClosedCaption A value that indicates whether closed
captioning is turned on.

Debug A value that indicates whether debugging
information is displayed.

DeviceCount The number of devices currently available.

Devices A collection of the devices currently available
on the user's computer.

DisplayMode A value that indicates whether the current
position in the video is displayed in number of
frames displayed or time elapsed.

Font The font used in the title window.

LocaleID The locale identifier. This property supports
the country codes of Microsoft® Windows®
operating systems and determines which
control character set to display, which date and
currency formats to use, and so on.

MovieWindowSetting A value that sizes the window displaying the
images associated with a multimedia stream.

StartTime The starting position in the multimedia stream.

StopTime The ending position in the multimedia stream.

Property Description

ColorKey The color to use for color keying.

HWnd A handle to the window hosting the Video
control.

Input The input device.

Output The output device.

2490

Video Control Page 13 of 70

The following properties of BPCVid are passed to current input device. However, you should set
them in the BPCVid object instead of accessing the BPCDevice base object directly. Otherwise, the
Video control is not properly updated, and future behavior is undefined.

The following properties of BPCVid are passed to the Visual Basic Extender object. To locate more
information about Extender properties, see Further Information on Streaming Video Services for the
Client.

Priority The priority of this application. This value is
used to resolve device conflicts.

VideoOn A value that indicates whether video is
displayed on the control.

Property Description

Balance The current audio balance between left and
right speakers.

CurrentPosition The current position in the multimedia stream.

Duration The duration of the multimedia stream.

ImageSourceHeight The authored height of the source image.

This value does not change if the user resizes
the control.

ImageSourceWidth The authored width of the source image.

This value does not change if the user resizes
the control.

Power A value that indicates whether the device is
currently turned on.

PrerollTime A value that indicates the amount of time to
allow a tape to roll before starting to record.

Rate The rate of the multimedia stream.

Volume The current audio volume level.

Property Description

Container Object that represents the visual container of
the control.

DragIcon Picture that specifies the icon to use when the
control is dragged.

DragMode Integer that specifies if the control
automatically drags, or if the application using
the control must call the Drag method.

Height Integer that specifies the height of the control
in the container's scale units.

2491

Video Control Page 14 of 70

BPCVid.ClosedCaption
[This is preliminary documentation and subject to change.]

The ClosedCaption property indicates whether closed captioning is turned on.

Syntax

HelpContextID Integer that specifies the context identifier to
use when the F1 key is pressed when the
control has the focus.

Index Integer that specifies the position in a control
array this instance of the control occupies.

Left Integer that specifies the position of the left
edge of the control relative to the left edge of
the container, specified in the container's scale
units.

Name String that contains the user-defined name of
the control.

Parent Object that represents the container of the
control, such as a form in Visual Basic.

TabIndex Integer that specifies the position of the
control in the tab order of the controls in the
container.

TabStop Boolean value that specifies if the tab stops on
the control.

Tag String that contains a user-defined value.

ToolTipText String that contains the text to be displayed
when the cursor hovers above the control from
more than a second.

Top Integer that specifies the position of the upper
edge of the control relative to the upper edge
of the container, specified in the container's
scale units.

Visible Boolean value that specifies whether the
control is visible.

WhatThisHelpID Context identifier to use when the "What's
This" pop-up is used to provide information on
the control.

Width Width of the control in the container's scale
units.

2492

Video Control Page 15 of 70

object.ClosedCaption [= boolean]

Parts

object
Object expression that resolves to a BPCVid object.

boolean
Boolean expression that is True if closed captioning is enabled and False if it is disabled.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.Debug
[This is preliminary documentation and subject to change.]

The Debug property specifies whether debugging information is displayed on-screen.

Syntax

object.Debug [= boolean]

Parts

object
Object expression that resolves to a BPCVid object.

boolean
Boolean value that is True if debugging information is shown on-screen in the Video control
and False if it is not.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

2493

Video Control Page 16 of 70

BPCVid.DeviceCount
[This is preliminary documentation and subject to change.]

The DeviceCount property is a read-only property that returns the number of objects in the
BPCDevices collection.

Syntax

object.DeviceCount

Parts

object
Object expression that resolves to a BPCVid object.

Settings

A Long that specifies the number of objects in the Devices collection.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

Devices

BPCVid.Devices
[This is preliminary documentation and subject to change.]

The Devices property is a read-only property that returns a BPCDevices collection of the available
devices.

2494

Video Control Page 17 of 70

Syntax

object.Devices

Parts

object
Object expression that resolves to a BPCVid object.

Settings

A BPCDevices object.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.DisplayMode
[This is preliminary documentation and subject to change.]

The DisplayMode property specifies the current position in the video is displayed in number of frames
displayed or time elapsed.

Syntax

object.DisplayMode [= DisplayMode]

Parts

object
Object expression that resolves to a BPCVid object.

DisplayMode
Specifies the mode. The mode can be one of the following values:

Value Meaning

modeFrames The current position is measured in frames.

modeTime The current position is measured in time.

2495

Video Control Page 18 of 70

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.Font
[This is preliminary documentation and subject to change.]

The Font property specifies the font used in the title bar of the Video control.

Syntax

object.Font [= Font]

Parts

object
Object expression that resolves to a BPCVid object.

Font
An IFontDisp interface that specifies the font. To locate more information about IFontDisp,
see Further Information on Streaming Video Services for the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.LocaleID
[This is preliminary documentation and subject to change.]

The LocaleID property sets or returns the identifier for the current locale.

2496

Video Control Page 19 of 70

Syntax

object.LocaleID [= long]

Parts

object
Object expression that resolves to a BPCVid object.

long
Long that specifies the locale identifier.

Remarks

This property supports the country codes of the Windows operating systems. The locale determines
which control character set to display, which formats to use for dates and currency, and so on. To
locate more information on locale identifiers, see Further Information on Streaming Video Services for
the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.MovieWindowSetting
[This is preliminary documentation and subject to change.]

The MovieWindowSetting property sets or returns a value that sizes the window displaying the
images associated with a multimedia stream. This property is not fully implemented. The size is always
the specified window size adjusted down to the nearest 4/3 aspect ratio.

Syntax

object.MovieWindowSetting [= setting]

Parts

object
Object expression that resolves to a BPCVid object.

2497

Video Control Page 20 of 70

setting
Integer or constant to specify the window size, as described in the following table.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

ImageSourceHeight, ImageSourceWidth

BPCVid.StartTime
[This is preliminary documentation and subject to change.]

The StartTime property sets or returns the starting position in the multimedia stream.

Syntax

object.StartTime [= double]

Parts

Value Meaning

movieDefaultSize Uses the default authored size.

movieDoubleSize Increases the image to twice the
authored size.

movieFullScreen Projects the image onto a full-
screen control window.

movieHalfSize Sizes the image to fit half the
screen.

movieMaximizeSize Projects the image onto a
maximized control window.

moviePermitResizeNoRestrict Enables the user to resize the
image without restriction.

moviePermitResizeWithAspect Enables the user to resize the
image, while maintaining a 4/3
aspect ratio.

2498

Video Control Page 21 of 70

object
Object expression that resolves to a BPCVid object.

double
Double that specifies the starting position of the multimedia stream. The default value is 0
(zero).

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCDeviceBase.Duration, BPCVid.StopTime

BPCVid.StopTime
[This is preliminary documentation and subject to change.]

The StopTime property sets or returns the ending position in the multimedia stream.

Syntax

object.StopTime [= double]

Parts

object
Object expression that resolves to a BPCVid object.

double
Double that specifies the ending position of the multimedia stream. The default value is the
value of the Duration property.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

2499

Video Control Page 22 of 70

See Also

BPCDeviceBase.Duration, BPCVid.StartTime

BPCVid Methods

[This is preliminary documentation and subject to change.]

The following methods are implemented in the BPCVid object.

The following methods are implemented in the BPCVid object as wrappers for the equivalent
methods in the BPCDevices object.

The following methods are implemented in the BPCVid object as wrappers for the equivalent
methods in the BPCDeviceBase object.

The following methods are implemented in the BPCVid object as wrappers for the equivalent
methods in the Visual Basic Extender object.

Method Description

AboutBox Displays version and copyright information about the
Video control.

Close Sets all inputs and outputs to NULL.

Method Description

AutoScan Returns the signal strength of the channel.

Tune Selects an input device based on the tuning space
parameter, sets the current input device to the
selected device, and tunes the current input device to
the specified channel.

TSDeviceCount Returns the number of devices available for a given
tuning space.

Method Description

Refresh Forces an update to the current window size, position,
and visibility.

2500

Video Control Page 23 of 70

BPCVid.AboutBox
[This is preliminary documentation and subject to change.]

The AboutBox method displays version and copyright information about the control.

Syntax

object.AboutBox

Parameters

object
Object expression that resolves to a BPCVid object.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.Close
[This is preliminary documentation and subject to change.]

Method Description

Drag Begins, ends, or cancels an operation in which
the control is dragged.

ShowWhatsThis Displays a selected topic in a Help file using
the "What's This" pop-up provided by Help.

Move Moves the position of the control.

ZOrder Places the control at the front or back of the z-
order within its graphic level.

SetFocus Set the focus to the control.

2501

Video Control Page 24 of 70

The Close method sets all inputs and outputs to NULL.

Syntax

object.Close

Parameters

object
Object expression that resolves to a BPCVid object.

Remarks

This method does not affect device tuning.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid Events

[This is preliminary documentation and subject to change.]

The DBPCVidEvents interface is implemented on the BPCVid object and is used to send event
notifications to the application or container hosting the Video control.

The following events are sent by the Video control.

Event Description

Click A user clicked in the control.

DblClick A user double-clicked in the control.

Error An error has occurred in the control or in the
control's input or output device.

ErrorMessage An error has occurred. This event is not implemented.

GotControl The control receiving this notification has requested a
device and now has the highest priority for that
device.

KeyDown The user pushed a key down.

2502

Video Control Page 25 of 70

BPCVid.Click
[This is preliminary documentation and subject to change.]

The Click event occurs when the user clicks the Video control with the left or right mouse button.

Syntax

Private Sub object_Click

Parameters

object
Object expression that resolves to a BPCVid object.

Remarks

To distinguish between the left, right, and middle mouse buttons, use the BPCVid.MouseDown and
BPCVid.MouseUp events.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

KeyPress The user pressed a key.

KeyUp The user released a key.

LostControl An application with higher priority than the current
application requested the control's input or output
device. The instance of the Video control receiving
this event must release the device.

MouseDown The user clicked a mouse button over the Video
control.

MouseMove The user moved the mouse over the Video control.

MouseUp The user has released a mouse button over the Video
control.

2503

Video Control Page 26 of 70

BPCVid.DblClick
[This is preliminary documentation and subject to change.]

The DblClick event occurs when the user double-clicks the Video control.

Syntax

Private Sub object_DblClick

Parameters

object
Object expression that resolves to a BPCVid object.

Remarks

To distinguish between the left, right, and middle mouse buttons, use the BPCVid.MouseDown and
BPCVid.MouseUp events.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.Error
[This is preliminary documentation and subject to change.]

The Error event occurs when an asynchronous error occurs in the Video control or the control's input
or output device.

Syntax

Private Sub object_Error(Number As Integer, _
 ByVal Description As String, ByVal SCode As Integer, _
 ByVal Source As String, HelpFile As String, _
 HelpContext As Long, CancelDisplay As Boolean)

2504

Video Control Page 27 of 70

Parameters

object
Object expression that resolves to a BPCVid object.

Number
Integer that contains the low WORD of the SCode parameter.

Description
String describing the error that occurred.

SCode
Error code.

Source
String containing the control's name.

HelpFile
String containing the Help file name.

HelpContext
A Long that indicates the Help context.

CancelDisplay
Value that may be set by the client to cancel the default error messages.

Remarks

Broadcast Architecture does not currently generate asynchronous errors.

The Error event occurs when the Video control reports an error during playback. By default, the
control displays a message box containing the description string. To avoid displaying this box, set the
CancelDisplay parameter of the Error event to False.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.ErrorMessage
[This is preliminary documentation and subject to change.]

The ErrorMessage event passes an error message to the container application hosting the Video
control. This event is not implemented.

Syntax

2505

Video Control Page 28 of 70

Private Sub object_ErrorMessage(iMessage As Long, Text As String)

Parameters

object
Object expression that resolves to a BPCVid object.

iMessage
Long that indicates the error number.

Text
String that describes the error.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCVid.GotControl
[This is preliminary documentation and subject to change.]

The GotControl event notifies an instance of the Video control that the instance has control of a
device.

Syntax

Private Sub object_GotControl

Parameters

object
Object expression that resolves to a BPCVid object.

Remarks

This event occurs if the control requests a device that is not currently being used by an application
with higher priority. If two devices have the same priority, the current control retains the device.

Your application must wait until it receives a GotControl event before it uses a device. Otherwise,
applications currently using the device do not release the device, and unexpected behavior can occur.

2506

Video Control Page 29 of 70

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

LostControl

BPCVid.KeyDown
[This is preliminary documentation and subject to change.]

The KeyDown event occurs when the user presses a key while the Video control has the focus.

Syntax

Private Sub object_KeyDown(keycode As Integer, shift As Integer)

Parameters

object
Object expression that resolves to a BPCVid object.

keycode
Key code, such as vbKeyF1 (the F1 key) or vbKeyHome (the HOME key). To specify key
codes, use the constants in the Visual Basic object library in the Visual Basic Object Browser.

shift
Integer that corresponds to the state of the shift, ctrl, and alt keys at the time of the event. The
shift parameter is a bit field with the least-significant bits corresponding to the shift key (bit 0),
the ctrl key (bit 1), and the alt key (bit 2). These bits correspond to the values 1, 2, and 4,
respectively. Some, all, or none of the bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both ctrl and alt are pressed, the value of shift is 6.

Remarks

To locate more information on the Visual Basic Object Browser, see Further Information on
Streaming Video Services for the Client.

QuickInfo

2507

Video Control Page 30 of 70

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCVid.KeyPress, BPCVid.KeyUp

BPCVid.KeyPress
[This is preliminary documentation and subject to change.]

The KeyPress event occurs when the user presses and releases an ANSI key while the Video control
has focus.

Syntax

Private Sub object_KeyPress(keyascii As Integer)

Parameters

object
Object expression that resolves to a BPCVid object.

keyascii
Integer that returns a standard numeric ANSI keycode. Changing keyascii to 0 cancels the key
stroke so the object is not assigned a character.

Remarks

A KeyPress event can involve any printable keyboard character, the ctrl key combined with a character
from the standard alphabet or one of a few special characters, and the enter or backspace key.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

2508

Video Control Page 31 of 70

BPCVid.KeyDown, BPCVid.KeyUp

BPCVid.KeyUp
[This is preliminary documentation and subject to change.]

The KeyUp event occurs when the user releases a pressed key while the Video control has the focus.

Syntax

Private Sub object_KeyUp(keycode As Integer, shift As Integer)

Parameters

object
Object expression that resolves to a BPCVid object.

keycode
Key code, such as vbKeyF1 (the F1 key) or vbKeyHome (the HOME key). To specify key
codes, use the constants in the Visual Basic object library in the Visual Basic Object Browser.

shift
Integer that corresponds to the state of the shift, ctrl, and alt keys at the time of the event. The
shift parameter is a bit field with the least-significant bits corresponding to the shift key (bit 0),
the ctrl key (bit 1), and the alt key (bit 2). These bits correspond to the values 1, 2, and 4,
respectively. Some, all, or none of the bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both ctrl and alt are pressed, the value of shift is 6.

Remarks

To locate more information on the Visual Basic Object Browser, see Further Information on
Streaming Video Services for the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCVid.KeyDown, BPCVid.KeyPress

2509

Video Control Page 32 of 70

BPCVid.LostControl
[This is preliminary documentation and subject to change.]

The LostControl event notifies an instance of the Video control that it has lost control of the input
device.

Syntax

Private Sub object_LostControl

Parameters

object
Object expression that resolves to a BPCVid object.

Remarks

This event occurs when an application with a higher priority requests the device. Your application
must honor this request and immediately release the device. If an application continues to manipulate a
device after it has received a LostControl notification, unexpected behavior can occur.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCVid.GotControl

BPCVid.MouseDown
[This is preliminary documentation and subject to change.]

The MouseDown event occurs when the user presses a mouse button while the Video control has

2510

Video Control Page 33 of 70

focus.

Syntax

Private Sub object_MouseDown(button As Integer, shift As Integer, _
 x As OLE_XPOS_PIXELS, y As OLE_YPOS_PIXELS)

Parameters

object
Object expression that resolves to a BPCVid object.

button
Integer that on return identifies the button pressed to cause the event. The button parameter is
a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and middle
button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits
is set, indicating the button that caused the event.

shift
Integer that corresponds to the state of the shift, ctrl, and alt keys at the time of the event. The
shift parameter is a bit field with the least-significant bits corresponding to the shift key (bit 0),
the ctrl key (bit 1), and the alt key (bit 2). These bits correspond to the values 1, 2, and 4,
respectively. Some, all, or none of the bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both ctrl and alt are pressed, the value of shift is 6.

x
Number that on return specifies the x-coordinate of the current mouse pointer location.

y
Number that on return specifies the y-coordinate of the current mouse pointer location.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCVid.MouseMove, BPCVid.MouseUp

BPCVid.MouseMove
[This is preliminary documentation and subject to change.]

The MouseMove event occurs when the user moves the mouse.

2511

Video Control Page 34 of 70

Syntax

Private Sub object_MouseMove(button As Integer, shift As Integer, _
 x As OLE_XPOS_PIXELS, y As OLE_YPOS_PIXELS)

Parameters

object
Object expression that resolves to a BPCVid object.

button
Integer that on return identifies the button pressed to cause the event. The button parameter is
a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and middle
button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits
is set, indicating the button that caused the event.

shift
Integer that corresponds to the state of the shift, ctrl, and alt keys at the time of the event. The
shift parameter is a bit field with the least-significant bits corresponding to the shift key (bit 0),
the ctrl key (bit 1), and the alt key (bit 2). These bits correspond to the values 1, 2, and 4,
respectively. Some, all, or none of the bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both ctrl and alt are pressed, the value of shift is 6.

x
Number that on return specifies the x-coordinate of the current mouse pointer location.

y
Number that on return specifies the y-coordinate of the current mouse pointer location.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCVid.MouseDown, BPCVid.MouseUp

BPCVid.MouseUp
[This is preliminary documentation and subject to change.]

The MouseUp event occurs when the user releases a pressed mouse button.

2512

Video Control Page 35 of 70

Syntax

Private Sub object_MouseUp(button As Integer, shift As Integer, _
 x As OLE_XPOS_PIXELS, y As OLE_YPOS_PIXELS)

Parameters

object
Object expression that resolves to a BPCVid object.

button
Integer that on return identifies the button pressed to cause the event. The button parameter is
a bit field with bits corresponding to the left button (bit 0), right button (bit 1), and middle
button (bit 2). These bits correspond to the values 1, 2, and 4, respectively. Only one of the bits
is set, indicating the button that caused the event.

shift
Integer that corresponds to the state of the shift, ctrl, and alt keys at the time of the event. The
shift parameter is a bit field with the least-significant bits corresponding to the shift key (bit 0),
the ctrl key (bit 1), and the alt key (bit 2). These bits correspond to the values 1, 2, and 4,
respectively. Some, all, or none of the bits can be set, indicating that some, all, or none of the
keys are pressed. For example, if both ctrl and alt are pressed, the value of shift is 6.

x
Number that on return specifies the x-coordinate of the current mouse pointer location.

y
Number that on return specifies the y-coordinate of the current mouse pointer location.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCVid.MouseDown, BPCVid.MouseMove

BPCDevices

[This is preliminary documentation and subject to change.]

The BPCDevices object is a collection of all the devices currently available on the computer. In other
words, BPCDevices is a collection of BPCDeviceBase objects.

2513

Video Control Page 36 of 70

The Video Access server creates an instance of one of these objects for each BPCVid object.

For more information, see the following topics:

� BPCDevices Properties
� BPCDevices Methods

BPCDevices Properties

[This is preliminary documentation and subject to change.]

The BPCDevices object has the following properties.

BPCDevices.ColorKey
[This is preliminary documentation and subject to change.]

The ColorKey property specifies the color to use for color keying. This property is not fully
implemented. Currently, the ColorKey value is always set to magenta (0x00FF00FF).

Property Description

ColorKey The color to use for color keying.

Count The number of devices currently available.

HWnd A reference to the handle of the window hosting the
Video control.

Input The input device.

LCID The locale identifier. This property supports the country
codes of Windows operating systems and determines
which control character set to display, which date and
currency formats to use, and so on.

Notify A reference to the interface to send internal events to.

Output The output device.

Priority The application priority. This value is used to resolve
device contention.

VideoOn A value that indicates whether video is displayed through
the control.

2514

Video Control Page 37 of 70

Syntax

object.ColorKey [= colorval]

Parts

object
Object expression that resolves to a BPCVid or BPCDevices object.

colorval
A Long or constant that determines the color to use for color keying. The following table lists
and describes the possible values for the colorval parameter.

Remarks

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a number
in this range equals zero; the lower three bytes, from least to most significant byte, determine the
amount of red, green, and blue, respectively. The red, green, and blue components are each
represented by a number between 0 and 255 (&HFF). If the high byte isn't zero, Visual Basic uses the
system colors, as defined in the user's Control Panel settings and by constants listed in the object
library in the Object Browser.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices.Count

Value Meaning

Normal RGB colors Colors specified by using the Color palette
or programmatically by using the RGB or
QBColor functions. For more information,
see Further Information on Streaming Video
Services for the Client.

System default colors Colors specified by system color constants
listed in the object library in the Visual Basic
Object Browser. As needed, Windows
substitutes the user's color choices for
default colors as specified in the Control
Panel settings.

2515

Video Control Page 38 of 70

[This is preliminary documentation and subject to change.]

The Count property returns the number of devices currently available on the user's computer. This
property is read-only.

Syntax

object.Count

Parts

object
Object expression that resolves to a BPCDevices object.

Settings

A Long that indicates the number of BPCDeviceBase objects in the BPCDevices collection.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices.HWnd
[This is preliminary documentation and subject to change.]

The HWnd property contains a reference to the window hosting the Video control.

Syntax

object.HWnd [= lHwnd]

Parts

object
Object expression that resolves to a BPCVid or BPCDevices object.

lHwnd
A Long that specifies the handle of the host window.

2516

Video Control Page 39 of 70

Remarks

Windows identifies each form and control in an application by assigning it a handle, or HWnd. The
HWnd property is used with Microsoft® Win32® API calls, most often as a parameter.

Because Windows may change the value of HWnd, your application must not change the HWnd
value or store it in a variable. To locate more information on using HWnd, see Further Information on
Streaming Video Services for the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices.Input
[This is preliminary documentation and subject to change.]

The Input property sets or returns information on the device supplying input to the Video control.

Syntax

object.Input [= deviceobject]

Parts

object
Object expression that resolves to a BPCVid or BPCDevices object.

deviceobject
Object expression that resolves to a BPCDeviceBase object.

Remarks

Once you assign a BPCDeviceBase object to the Input property, the media stream from the input
device is displayed by the control. To suppress the display, set the BPCDevices.VideoOn property to
False. Alternatively, you can set the Visible property to False to hide the entire window. The Visible
property is implemented by the Extender object; for more information, see Visual Basic Extender
Object.

QuickInfo

2517

Video Control Page 40 of 70

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCDeviceBase, BPCDevices.Output, BPCDevices.VideoOn

BPCDevices.LCID
[This is preliminary documentation and subject to change.]

The LCID property returns the locale identifier.

Syntax

object.LCID

Parts

object
Object expression that resolves to a BPCDevices object.

Settings

A Long that indicates the locale identifier. Your application must not change this value.

Remarks

This property supports the country codes of Windows operating systems and determines which
control character set to display, which date and currency formats to use, and so on. To locate more
information on locale identifiers, see Further Information on Streaming Video Services for the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

2518

Video Control Page 41 of 70

BPCDevices.Notify
[This is preliminary documentation and subject to change.]

The Notify property sets the instance of the Video control to receive event notifications. Your
application must not change this value.

Syntax

object.Notify [= oDevice]

Parts

object
Object expression that resolves to a BPCDevices object.

oDevice
BPCDevices object.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices.Output
[This is preliminary documentation and subject to change.]

The Output property sets or returns the device to which the Video control sends output.

Syntax

object.Output[= deviceobject]

Parts

2519

Video Control Page 42 of 70

object
Object expression that resolves to a BPCVid or BPCDevices object.

deviceobject
Object expression that resolves to a BPCDeviceBase object.

Remarks

When you set this property to a valid output device, the media stream coming from the Input
property is:

� Sent to this device.
� Displayed in the control window.

To suppress this output, set this property to the value Nothing or to the BPCDeviceBase object
named Null in the BPCDevices collection.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCDevices.Input

BPCDevices.Priority
[This is preliminary documentation and subject to change.]

The Priority property sets or returns a value that defines the priority of an instance of the Video
control in the system.

Syntax

object.Priority [= long]

Parts

object
Object expression that resolves to a BPCVid or BPCDevices object.

2520

Video Control Page 43 of 70

long
A Long that determines priority for this control instance.

Remarks

Use this property to surrender or require control of a resource. To relinquish any claim to a resource,
set the BPCDevices.Input or BPCDevices.Output property to Nothing.

This property is used to resolve device conflicts. When two control instances are in contention for a
device, control is given to the application with higher priority. If both instances have equal priority, the
instance that currently has control of the device retains control.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices.VideoOn
[This is preliminary documentation and subject to change.]

The VideoOn property sets or returns a value indicating whether video is displayed on the control.

Syntax

object.VideoOn [= state]

Parts

object
Object expression that resolves to a BPCVid or BPCDevices object.

state
Boolean expression that is True if multimedia data from the device indicated by the
BPCDevices.Input property is displayed by the Video control, and False if it is not displayed.
True is the default.

Remarks

You can use this property to turn off video when your application needs to pass the contents of the
current input device to the output device without displaying anything on-screen. For example, you can
use VideoOn if your application is scheduling a recording in the background.

2521

Video Control Page 44 of 70

To route media data from the device indicated by Input to the device indicated by the
BPCDevices.Output property without displaying the media data, set VideoOn to False.

To play audio-only content, set VideoOn to True and set the BPCDevices.Height and
BPCDevices.Width properties to zero.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCDevices.Input

BPCDevices Methods

[This is preliminary documentation and subject to change.]

BPCDevices.AutoScan
[This is preliminary documentation and subject to change.]

The AutoScan method returns the signal strength of the current channel.

Syntax

object.AutoScan

Method Description

AutoScan Returns the signal strength of the current channel.

Item Returns an item from the BPCDevices collection.

TSDeviceCount Returns the number of devices associated with a
tuning space.

Tune Tunes the current input device.

2522

Video Control Page 45 of 70

Parameters

object
Object expression that resolves to a BPCDevices object.

Return Values

A Long indicating the signal strength. The value returned depends on the device. If a channel is
present but the device does not support signal strength measurements, this method returns 1.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices.Item
[This is preliminary documentation and subject to change.]

The Item method returns a reference to the specified BPCDeviceBase object in the BPCDevices
collection. This property is read-only.

Syntax

object.Item(v)

Parameters

object
Object expression that resolves to a BPCDevices object.

v
VT_BSTR value that contains the device name of the BPCDeviceBase object.

Return Values

The specified BPCDeviceBase object.

QuickInfo

 Windows NT: Unsupported.

2523

Video Control Page 46 of 70

 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices.TSDeviceCount
[This is preliminary documentation and subject to change.]

The TSDeviceCount method returns the number of devices for a specified tuning space.

Syntax

object.TSDeviceCount(lTuningSpace)

Parameters

object
Object expression that resolves to a BPCVid or BPCDevices object.

lTuningSpace
A Long that specifies the tuning space identifier. This identifier is the same value as that
specified in the Guide database.

Return Values

A Long that indicates the number of devices.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices.Tune
[This is preliminary documentation and subject to change.]

The Tune method tunes the current input device to the specified channel.

2524

Video Control Page 47 of 70

Syntax

object.Tune(lTuningSpace, Channel, VideoSubchannel, AudioSubchannel)

Parameters

object
Object expression that resolves to a BPCVid or BPCDevices object.

lTuningSpace
A Long that specifies the tuning space identifier. This identifier is the same value as that
specified in the Guide database.

Channel
A Long that specifies the channel number.

VideoSubchannel
A Long that specifies the video subchannel.

AudioSubchannel
A Long that specifies the audio subchannel.

Remarks

You can use either BPCVid.Tune method or BPCVid.Input.Channel property to set the channel
displayed by the Video control. If you are simply trying to tune the Video control to a particular
channel and do not care which device provides the channel you can use the Tune method. This
method automatically sets BPCVid.Input to the appropriate device, as identified by ITuningSpace.
However, if it is important that your application set the Input property to a particular device, you can
use the BPCVid.Input.Channel syntax.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDevices Events

[This is preliminary documentation and subject to change.]

The following events are sent by the Video Access server. The Video control passes these on to the
application that is hosting it.

2525

Video Control Page 48 of 70

BPCDeviceBase

[This is preliminary documentation and subject to change.]

The BPCDeviceBase object contains information about an individual device on the user's computer.
The BPCDevices collection enumerates these objects.

For more information, see the following topics:

� BPCDeviceBase Properties
� BPCDeviceBase Methods

Remarks

There is no tuning space property for BPCDeviceBase. Instead the tuning space value associated with
a particular device is stored as a registry key of the form, \\HKLM\Software\Microsoft\Tv
Services\Tuning Spaces\<tuning_space>, where <tuning_space> is a number that is the identifier of
the tuning space.

A single device can provide multiple tuning spaces. For example an analog tuner might provide both
the cable and antenna broadcast tuning spaces.

BPCDeviceBase Properties

[This is preliminary documentation and subject to change.]

The BPCDeviceBase class defines the following properties:

Event Description

GotControl The control receiving this notification has
requested a device, and now has the highest
priority.

LostControl An application with higher priority requested
the control's input or output device. The control
receiving this notification is losing control.

2526

Video Control Page 49 of 70

Property Description

AudioFrequency The frequency of the audio stream.

AudioSubchannel The audio subchannel.

Balance The current audio balance between left and right
speakers.

Channel The channel that the device is currently tuned to.

CountryCode The international dialing code that specifies the
geographical location of the computer.

CurrentPosition The current position in the multimedia stream.

DefaultAudioType The default type for the audio stream.

DefaultVideoType The default type for the video stream.

Duration The duration of the multimedia stream

HasChannel A value that indicates whether the device supports
channels.

ImageSourceHeight The height of the source image.

ImageSourceWidth The width of the source image.

IsInput A value that indicates whether the device is set as
the input device.

IsOutput A value that indicates whether the device is set as
the output device.

Name A unique name for the device.

OverScan The percent of pixels to trim from the edge of the
video screen.

Power The power state of the device, either on or off.

PrerollTime The lead time in seconds for a tape or other
recording device to start before it begins
recording.

ProdName The product name of the device. This name does
not have to be unique.

Rate The playback speed multiplier relative to the
normal playback rate.

UserName The user-specified name for the device. This
property is not currently implemented.

VideoFrequency The frequency of the video stream.

VideoSubchannel The video subchannel.

Volume The volume setting for the device.

2527

Video Control Page 50 of 70

BPCDeviceBase.AudioFrequency
[This is preliminary documentation and subject to change.]

The AudioFrequency property specifies the frequency of the audio signal. This property is read-only.

Syntax

object.AudioFrequency

Parts

object
Object expression that resolves to a BPCDeviceBase object.

Settings

A Long that specifies the frequency, in hertz.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.AudioSubchannel
[This is preliminary documentation and subject to change.]

The AudioSubchannel property sets or retrieves the audio stream subchannel of a device.

Syntax

object.AudioSubchannel [= lSubChannel]

Parts

object
Object expression that resolves to a BPCDeviceBase object.

2528

Video Control Page 51 of 70

lSubChannel
A Long that specifies the subchannel.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.Balance
[This is preliminary documentation and subject to change.]

The Balance property sets or retrieves a value that controls the multimedia stream's audio balance
between left and right speakers.

Syntax

object.Balance [= long]

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

long
A Long that specifies the balance value. The number must be from –10,000 through +10,000.
The default value is zero.

Remarks

The default value of zero indicates equal balance between left and right.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

2529

Video Control Page 52 of 70

BPCDeviceBase.Volume

BPCDeviceBase.Channel
[This is preliminary documentation and subject to change.]

The Channel property sets or returns the channel that the device is currently tuned to.

Syntax

object.Channel [= lChannel]

Parts

object
Object expression that resolves to a BPCDeviceBase object.

lChannel
Channel number tuned to.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.CountryCode
[This is preliminary documentation and subject to change.]

The CountryCode property enables you to set or retrieve the country identifier for the device.

Syntax

object.CountryCode [= lCode]

Parts

2530

Video Control Page 53 of 70

object
Object expression that resolves to a BPCDeviceBase object.

lCode
A Long that specifies the country code.

Remarks

This property is an international dialing code that specifies the geographical location of the computer.
This location information is used to set the frequency and format of analog video — for example, to
choose between NTSC, PAL, and SECAM. This property is only available for analog tuners.

To locate more information on this property, see Further Information on Streaming Video Services for
the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.CurrentPosition
[This is preliminary documentation and subject to change.]

The CurrentPosition property sets or retrieves the current position within the multimedia stream.

Syntax

object.CurrentPosition [= double]

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

double
Double variable that designates the new position within the stream.

Remarks

The new value must be within the range specified by the properties BPCVid.StartTime and
BPCVid.StopTime.

2531

Video Control Page 54 of 70

Setting CurrentPosition at run time is similar to performing a seek operation. Setting this property
changes the position to the specified point in the multimedia stream.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.DefaultAudioType
[This is preliminary documentation and subject to change.]

The DefaultAudioType property specifies the default audio type for the device.

Syntax

object.DefaultAudioType [= lDefAudioType]

Parts

object
Object expression that resolves to a BPCDeviceBase object.

lDefAudioType
A Long that indicates the default audio type. The audio types are device-specific types that
allow the tuner to choose an appropriate subchannel if a default subchannel of –1 is specified.
These types are defined in the Stream Type table of the Guide database.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.DefaultVideoType

2532

Video Control Page 55 of 70

[This is preliminary documentation and subject to change.]

The DefaultVideoType property specifies the default video type for this device.

Syntax

object.DefaultVideoType [= lDefaultVideoType]

Parts

object
Object expression that resolves to a BPCDeviceBase object.

lDefaultVideoType
A Long that indicates the default video type. The video types are device-specific types that
allow the tuner to choose an appropriate subchannel if a default subchannel of –1 is specified.
These types are defined in the Stream Type table of the Guide database.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.Duration
[This is preliminary documentation and subject to change.]

The Duration property returns the duration of the multimedia stream in seconds. This is a read-only
property.

Syntax

object.Duration

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

Return Values

2533

Video Control Page 56 of 70

A Double that gives the duration in seconds.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.HasChannel
[This is preliminary documentation and subject to change.]

The HasChannel property indicates whether the device supports channels. This property is read-only.

Syntax

object.HasChannel

Parts

object
Object expression that resolves to a BPCDeviceBase object.

Settings

A Boolean value that is True if the device supports channels and False if it does not.

Remarks

A television tuner card, for example, has a HasChannel property of True.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

2534

Video Control Page 57 of 70

BPCDeviceBase.ImageSourceHeight
[This is preliminary documentation and subject to change.]

The ImageSourceHeight property contains the height of the source image. This property is read-only.

Syntax

object.ImageSourceHeight

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

Settings

A Long that represents the height of the source image.

Remarks

This is a read-only property. The value of this property is independent of the projected image size,
which is determined by the BPCVid.MovieWindowSetting property.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCDeviceBase.ImageSourceWidth, BPCVid.MovieWindowSetting

BPCDeviceBase.ImageSourceWidth
[This is preliminary documentation and subject to change.]

The ImageSourceWidth property contains the authored width of the source image. This property is
read-only.

2535

Video Control Page 58 of 70

Syntax

object.ImageSourceWidth

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

Settings

A Long that represents the width of the source image.

Remarks

This is a read-only property. The value of this property is independent of the projected image size,
which is determined by the BPCVid.MovieWindowSetting property.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

See Also

BPCDeviceBase.ImageSourceHeight, BPCVid.MovieWindowSetting

BPCDeviceBase.IsInput
[This is preliminary documentation and subject to change.]

The IsInput property indicates whether this device is the input device for the Video control. This
property is read-only.

Syntax

object.IsInput

Parts

2536

Video Control Page 59 of 70

object
Object expression that resolves to a BPCDeviceBase object.

Settings

A Boolean expression that is True if the device is the input device, and False if it is not.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.IsOutput
[This is preliminary documentation and subject to change.]

The IsOutput property indicates whether this device is the output device for the Video control. This
property is read-only.

Syntax

object.IsOutput

Parts

object
Object expression that resolves to a BPCDeviceBase object.

Settings

A Boolean expression that is True if the device is the output device, and False if it is not.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

2537

Video Control Page 60 of 70

BPCDeviceBase.Name
[This is preliminary documentation and subject to change.]

The Name property returns the name of the current instance of the Video control. This property is
read-only.

Syntax

object.Name

Parts

object
Object expression that resolves to a BPCDeviceBase object.

Settings

String expression that identifies the control.

Remarks

This is a read-only property at run time. This property is the name given to the instance when it is
created. This name is extended to the control when used in Visual Basic, and it may or may not be
supported in other ActiveX control containers.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.OverScan
[This is preliminary documentation and subject to change.]

The OverScan property sets the percentage of pixels to crop from the edges of the video picture.

2538

Video Control Page 61 of 70

Syntax

object.OverScan [= lCutPercentage]

Parts

object
Object expression that resolves to a BPCDeviceBase object.

lCutPercentage
A Long that contains the percent of pixels that should be trimmed from the edges of the video
display. For example, if you set this value to 5 on a 100 x 100 pixel image, 5 percent of the
pixels (in this case 5 pixels) is trimmed from each edge. The default value is 4.

Remarks

Setting this property enables your application to display on a computer precisely the same image a
viewer sees on a television set.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.Power
[This is preliminary documentation and subject to change.]

The Power property sets or returns a value that controls whether an external device has power on or
not.

Syntax

object.Power [= state]

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

state

2539

Video Control Page 62 of 70

Boolean expression that is True if the device is on and False if it is off.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.PrerollTime
[This is preliminary documentation and subject to change.]

The PrerollTime property specifies the time, in seconds, that a tape or other recording device should
run before the multimedia stream starts.

Syntax

object.PrerollTime [= dRollTime]

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

dRollTime
Double that specifies the number of seconds the tape should run before the stream starts.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.ProdName
[This is preliminary documentation and subject to change.]

2540

Video Control Page 63 of 70

The ProdName property contains the product name of the device. This property is read-only.

Syntax

object.ProdName

Parts

object
Object expression that resolves to a BPCDeviceBase object.

Settings

String that contains the product name.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.Rate
[This is preliminary documentation and subject to change.]

The Rate property sets or returns the playback rate for the multimedia stream relative to the usual
playback rate.

Syntax

object.Rate [= double]

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

double
Double that represents the playback rate. This value is a multiplier value that allows the stream
to be played in slow motion or in fast motion. The default value of 1.0 indicates the usual speed
(the authored speed). The audio track becomes difficult to understand at rates lower than 0.5

2541

Video Control Page 64 of 70

and higher than 1.5.

Remarks

To locate more information on this property, see Further Information on Streaming Video Services for
the Client.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.UserName
[This is preliminary documentation and subject to change.]

The UserName property enables you to set or retrieve the user name for this device.

Syntax

object.UserName [= String]

Parts

object
Object expression that resolves to a BPCDeviceBase object.

String
String that contains the user name.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

2542

Video Control Page 65 of 70

BPCDeviceBase.VideoFrequency
[This is preliminary documentation and subject to change.]

The VideoFrequency property specifies the frequency of the video transmission. This property is
read-only.

Syntax

object.VideoFrequency

Parts

object
Object expression that resolves to a BPCDeviceBase object.

Settings

A Long that specifies the frequency, in hertz.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.VideoSubchannel
[This is preliminary documentation and subject to change.]

The VideoSubchannel property enables you to set or retrieve the subchannel for the video stream of
this device.

Syntax

object.VideoSubchannel [= lSubChannel]

Parts

2543

Video Control Page 66 of 70

object
Object expression that resolves to a BPCDeviceBase object.

lSubChannel
A Long that specifies the subchannel.

Remarks

The subchannel values are set in the Stream table of the Guide database.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.Volume
[This is preliminary documentation and subject to change.]

The Volume property sets or retrieves a value that controls the loudness of the multimedia stream.

Syntax

object.Volume [= long]

Parts

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

long
A Long that specifies the audio volume. The possible values range from –10,000 to 0. The
default value, zero, represents full volume. The value –10,000 represents minimum volume.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

2544

Video Control Page 67 of 70

See Also

BPCDeviceBase.Balance

BPCDeviceBase Methods

[This is preliminary documentation and subject to change.]

The BPCDeviceBase object has the following methods.

BPCDeviceBase.ChannelAvailable
[This is preliminary documentation and subject to change.]

The ChannelAvailable method returns a value indicating whether the specified channel has a valid
signal.

Syntax

object.ChannelAvailable(nChannel, SignalStrength)

Parameters

object
Object expression that resolves to a BPCDeviceBase object.

nChannel
A Long that specifies the channel number.

SignalStrength
A Long that receives the signal strength.

Return Values

Method Description

ChannelAvailable Determines if the specified channel has a valid
signal.

DisplayConfigDialog Displays a dialog box for configuration of
devices.

Refresh Refreshes the device.

2545

Video Control Page 68 of 70

A Boolean expression that is True if the specified channel has a valid signal and False if it does not.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.DisplayConfigDialog
[This is preliminary documentation and subject to change.]

The DisplayConfigDialog method displays a dialog box that enables the user to configure the device.

Syntax

object.DisplayConfigDialog

Parameters

object
Object expression that resolves to a BPCDeviceBase object.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCDeviceBase.Refresh
[This is preliminary documentation and subject to change.]

The Refresh method refreshes the device.

2546

Video Control Page 69 of 70

Syntax

object.Refresh

Parameters

object
Object expression that resolves to a BPCVid or BPCDeviceBase object.

Remarks

This method forces an update to the current window size, position, and visibility.

QuickInfo

 Windows NT: Unsupported.
 Windows: Use Windows 98 and later.
 Windows CE: Unsupported.
 Header: Declared in vidsvr.odl.
 Import Library: Included as a resource in vid.ocx.

BPCSuspend

[This is preliminary documentation and subject to change.]

The BPCSuspend object contains a single method, DeviceRelease, which you can use to suspend the
video server and cause it to release all devices. For more information, see Suspending the Video
Server.

See Also

BPCSuspended

BPCSuspend.DeviceRelease
[This is preliminary documentation and subject to change.]

The DeviceRelease method causes the video server to attempt to release all devices.

2547

Video Control Page 70 of 70

Syntax

object.DeviceRelease(Priority, pps)

Parameters

object
Object expression that resolves to a BPCSuspend object.

Priority
Long that indicates the priority of the suspension request.

pps
Reference to a BPCSuspended object. If the video server successfully releases all video
devices, this will contain a valid BPCSuspended object. Otherwise, this object contains
Nothing.

See Also

BPCSuspended

BPCSuspended

[This is preliminary documentation and subject to change.]

The BPCSuspended object indicates whether the video server has released all video devices.

This object is returned by the BPCSuspend.DeviceRelease method. If the method is sucessful and the
Video server releases all video devices, the method returns a valid instance of BPCSuspended. The
video server will remain suspended as long as this object instance exists.

To unsuspend the video server, release the BPCSuspended object by setting it to Nothing. The
destruction of the BPCSuspended object notifies the video server that it can once again connect to
devices. Otherwise, the video server will be re-enabled when the object variable goes out of scope or
the application closes.

See Also

BPCSuspend

2548

Enhancement Video Control Page 1 of 3

Enhancement Video Control
[This is preliminary documentation and subject to change.]

The Enhancement Video control displays video within an enhancement. For example, in a multiframe
enhancement layout you can use the Enhancement Video control to display the television show in one
frame, while interactive content appears in the other frames. To display video using this control, you
create an instance of the control in an enhancement page..

The Enhancement Video control is similar to the Video control in that both controls display video
from an HTML page. However, two important differences exist between the Enhancement Video
control and the Video control:

� The Enhancement Video control can be used only in HTML pages displayed by TV Viewer. In
constrast, the Video control can be used in World Wide Web pages and stand-alone applications
as well as in TV Viewer.

� The Enhancement Video control automatically handles the connection between itself and TV
Viewer. Whereas, the Video control does not automatically handle such a connection.

If you are writing enhancement HTML pages that will only be displayed by TV Viewer, it is much
simpler to use the Enhancement Video control than the Video control.

For more information on the Enhancement Video control, see the following topics:

� About the Enhancement Video Control
� Using the Enhancement Video Control
� Which Video Control Should I Use?

About the Enhancement Video Control
[This is preliminary documentation and subject to change.]

The Enhancement Video control displays video in HTML enhancement pages hosted by TV Viewer.
This control is implemented as the Msepg4 class in the Msepg.ocx object library. The Enhancement
Video control wraps the Video control, extending its functionality by automatically creating and
handling a connection to TV Viewer when it is created.

Note The classes in Msepg.ocx other than Msepg4 are reserved for use by Broadcast Architecture
and are not supported for use by external applications.

The Enhancement Video control accepts an HTML parameter, INTENT, which indicates how the
Enhancement Video control is used in the current Web page. If you use the Enhancement Video

2549

Enhancement Video Control Page 2 of 3

control to display video in an enhancement, INTENT should be set to the value ENHANCE_VIDEO.
For more information, see Using the Enhancement Video Control.

Using the Enhancement Video Control
[This is preliminary documentation and subject to change.]

To add video to an enhancement page using the Enhancement Video control, place an instance of the
control in the HTML page in the location where you want the video to appear. The INTENT
parameter of the control instance must be set to ENHANCE_VIDEO.

You can add an instance of the Enhancement Video control to your enhancement page by using
HTML code such as the following:

<OBJECT
 ID=Vid
 CLASSID="clsid:a74e7f00-c3d2-11cf-8578-00805fe4809b"
 BORDER=0
 VSPACE=0
 HSPACE=0
 ALIGN=TOP
 HEIGHT=100%
 WIDTH=100%
>
 <PARAM NAME="INTENT" VALUE=ENHANCE_VIDEO>
</OBJECT>

To see an example of how TV Viewer uses the Enhancement Video control in its layout pages, view
the source code for the Msvideo.htm and Video.htm layout files. Video.htm is a layout file used to
display full-screen video. By default, these files are installed in the C:\Program Files\TV
Viewer\Layouts\ directory.

Note The value FULL_SCREEN_VIDEO for the INTENT parameter is reserved for use by the
default full-screen video layout of TV Viewer. This use is the only situation in which INTENT should
be set to this value. Enhancement layout files must always set INTENT to ENHANCE_VIDEO.

Which Video Control Should I Use?
[This is preliminary documentation and subject to change.]

To display video in an HTML file, you can use either the Video control or the Enhancement Video
control.

2550

Enhancement Video Control Page 3 of 3

The Video control is a general-purpose control that can be used in TV Viewer enhancements, World
Wide Web pages, and stand-alone applications. In contrast, the Enhancement Video control is a TV
Viewer–aware control that can only be used in TV Viewer enhancements. For example, you cannot
use the Enhancement Video control to display video in an HTML file viewed by a Web browser.

However, because the Enhancement Video control implements functionality that interacts with TV
Viewer, it is much simpler to use the Enhancement Video control to display video in enhancements
than the Video control. To add video to an enhancement file using the Enhancement Video control, all
you need do is create an instance of the control on an enhancement page. Video from the current
channel is then automatically displayed.

In contrast, if you use the Video control instead of the Enhancement Video control you must write
code or script to determine the enhanced show's channel number in the user's cable or satellite system
and to set that channel as the control's input.

Using the Video control is more work than simply creating an instance of the Enhancement Video
control, but the Video control provides the advantage that your application can programmatically
control the tuning or video input. For example, a Video Valet application might keep a list of a user's
preferred television line-up and automatically tune the Video control to the correct channel for each of
the user's favorite shows.

To summarize:

� Use the Video control to display video in Web pages or stand-alone applications, or in
enhancement files that require programmatic control over video input.

� Use the Enhancement Video control to display video in enhancement files that will only be
displayed in TV Viewer and that do not require programmatic control over video input.

2551

DirectShow Filter Reference Page 1 of 2

DirectShow Filter Reference
[This is preliminary documentation and subject to change.]

This section documents features of the filters based on the Microsoft® DirectShow™ application
programming interface (API) found on the broadcast client. Applications access these filters through
the Microsoft® ActiveX™ control for video (the Video control). Applications use these filters to
control playback and display of video and audio. In addition to the filters described here, broadcast
clients use filters that are part of the Microsoft® Windows® 98 operating system. To locate a
description of these filters, see Further General Information.

Note For reference purposes, each filter description following includes the name of the file containing
that filter. However, you do not typically address a filter through that file name. Instead, you rely on
the Video control to work with the Video Access server to set the connections for your application.

Digital Crossbar Filter
[This is preliminary documentation and subject to change.]

File Name

Tssxbar.ax

Filter Type

Utility filter

The following illustration shows a digital crossbar filter, with control interfaces and data pins.

Summary

2552

DirectShow Filter Reference Page 2 of 2

The Digital Crossbar filter represents a digital video hardware multiplexer (MUX). Through this filter,
a video source can be chosen and routed to the VGA device.

Data Pins

Control Interfaces

Name Direction Description

Video Input Video type; UncompressedDigitalVideo subtype

Video Output Video type; UncompressedDigitalVideo subtype

Name Purpose

IFilter Provides run, stop, and pause capabilities

ICrossbarSwitch Controls the switch

2553

Announcement Listener Page 1 of 39

Announcement Listener
[This is preliminary documentation and subject to change.]

The Announcement Listener and its supporting components enable the broadcast client to receive
announcements of upcoming data, and to programmatically filter incoming data at the network
interface to select the data that the client computer should receive.

The following sections provide further information about the Announcement Listener:

� Announcements Overview
� Announcement Listener Components
� Creating an Announcement Filter
� Adding a Filter Programmatically
� Using a File Receiver Application
� Specifying an Announcement Stream Source

Announcements Overview
[This is preliminary documentation and subject to change.]

The broadcast of any data stream must be preceded by an announcement of the impending broadcast,
describing the sender, address, time, contents, and other pertinent details. By examining these
announcements, the broadcast client can select which data streams to keep and which data streams to
ignore.

The Announcement Listener and its supporting components are designed to provide interfaces for
capturing and processing data introduced by specific announcements.

The Announcement Listener enables installation of custom-defined filters to select announcements.
Filters can be enabled and disabled individually. The Announcement Listener allows arbitrary data
formats, both streaming and file-based.

The following sections provide an overview of announcements:

� Announcement Channels
� Announcement Format
� Recommended Announcement Fields
� Sequence of Events

2554

Announcement Listener Page 2 of 39

Announcement Channels

[This is preliminary documentation and subject to change.]

To inform clients of the data broadcasts available on a network, broadcasts must be preceded by an
announcement. An announcement is a small datagram containing information about the upcoming
broadcast.

Announcements are sent on publicly known addresses. There may be more than one announcement
address and port for any given network, and a broadcast client may be connected to more than one
network on which announcements are sent.

While there is one well-known address on which general-interest announcements appear, it is expected
that different data services residing on a single network may each have their own announcement
channel for announcements that pertain only to those people that have subscribed to that service. On
any network service, several vendors might each be offering various types of electronic data to their
subscribers. Each vendor has its own announcement channel.

Segregating announcements into those that are of general interest and those that are of interest only to
certain subscribers eases the load on users who do not subscribe to a particular service.

Regardless of the number of announcement channels, only one instance of the Announcement Listener
need be running. The Announcement Listener is designed to listen on a very large number of Internet
Protocol (IP) announcement addresses. (Each socket is listening on one IP announcement address.)

Announcement Format

[This is preliminary documentation and subject to change.]

Session announcements are formatted according to Session Description Protocol (SDP) and its
associated Session Announcement Protocol (SAP). These protocols are described in work-in-progress
Internet draft documents produced by the Multiparty Multimedia Session Control (MMUSIC)
working group of the Internet Engineering Task Force. As such, they may be updated, replaced, or
made obsolete by other documents at any time.

To learn the current status of any Internet-Draft, please check the "1id-abstracts.txt'' listing contained
in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
munnari.oz.au (Pacific Rim), ds.internic.net (U.S. East Coast), or ftp.isi.edu (U.S. West Coast). The
SDP and SAP draft proposals are described in the documents draft-ietf-mmusic-sdp-03.txt and draft-
ietf-mmusic-sap-00.txt, respectively. For example, in the United States, the SDP document can be
found at:

ftp://ftp.isi.edu/internet-drafts/draft-ietf-mmusic-sdp-03.txt

2555

Announcement Listener Page 3 of 39

SAP is a header in binary format that precedes the SDP description, and is described in the SAP draft
document. Both the SAP and SDP message announcements may be encrypted.

SDP is a textual protocol. It consists of series of lines of text, with each line beginning with a single
letter followed by an equal sign, followed by a text line formatted appropriately, followed by a new
line.

In the Microsoft® Windows® 98 operating system and version 4.0 of the Microsoft® Windows NT®
operating system, the SDP protocol is wrapped inside a set of Component Object Model (COM)
components and interfaces to send and receive announcements of multiparty multimedia conferences.
For more information about SDP services in Windows, see Further Information on Data Services for
the Client.

Recommended Announcement Fields

[This is preliminary documentation and subject to change.]

Session Description Protocol (SDP) specifies a number of required and recommended fields (for more
information, see Announcement Format).

In addition to these, the following attribute is available with Broadcast Architecture:

•a=hidden

Indicates that an announcement is not intended for human eyes — that is, it is intended for a
programmatic filter.

Sequence of Events

[This is preliminary documentation and subject to change.]

This overview describes how the various elements of the Announcement Listener work in time
sequence.

First, an application installs a filter on the client computer. A filter is an Automation server, which can
be either an in-process server implemented as a DLL (dynamic link library) file, or a local server
implemented as an executable file.

The installation program causes the filter to register itself (using the DLLRegisterServer function, in
the case of a DLL). The setup program then connects to the Announcement Listener, starting it if
necessary, and invokes the IFilterCollection::Add method, supplying the programmatic identifier

2556

Announcement Listener Page 4 of 39

(ProgID) of the registered filter. This method creates an instance of the filter (a running filter), and
includes the instance in the list of filters recognized by the Announcement Listener.

When an announcement arrives on a socket associated with a well-known multicast announcement
address, the Announcement Listener parses the announcement packet and puts the elements of the
announcement in arrays of text lines, then wraps the arrays in an object (an instance of the
IBroadcastAnnouncement method). The Listener checks that this announcement has not already
been passed to the filters, and if not, it then hands that object to the filters. Each filter executes its own
code to determine whether or not the announcement meets its criteria. The filter is called using the
method IBroadcastFilter::Match.

If a filter returns a flag indicating it does not match, the Announcement Listener asks the next filter in
turn, until all the filters have been asked.

If a filter returns with the match flag set to true, the Announcement Listener adds the announcement's
unique identifier to a list, so that if the same announcement is rebroadcast later, the Announcement
Listener does not ask the filters again.

If a filter returns a flag indicating that it has found a match, the filter also returns a second flag that can
specify whether the Announcement Listener should schedule the launch of an application to receive
the data at the expected time. In most cases, the filter makes this request. However, if the data is
expected to arrive imminently, the filter can directly call an external process designed to receive the
data. In this case, the filter sets the Schedule flag to "false," so that the Announcement Listener does
not schedule a future event. Because the match flag is true, the Announcement Listener still treats the
announcement as matched, and does not present the same announcement to the filters again.

If the Schedule flag is true, the Announcement Listener calls the filter's second method,
IBroadcastFilter::GetDisposition. Through this method, the filter returns to the Announcement
Listener the information it needs to schedule a future task to receive the data. This information
includes what application to launch, the working directory, the command line, and how far in advance
of receipt of the data the application should be launched.

In this case, the Announcement Listener provides the Task Scheduler with the announcement and the
other information provided by GetDisposition. (For more information, see Scheduling Data
Reception.)

After each announcement has been matched by a filter, or fails to be matched by any of the filters, the
announcement is discarded.

At the appointed time, the Task Scheduler (a component of Windows 98) starts the receiver
application, passing to it the appropriate Internet Protocol (IP) addresses and command line
parameters.

The Announcement Listener also accepts announcements that cancel a previous announcement.

2557

Announcement Listener Page 5 of 39

Announcement Listener Components
[This is preliminary documentation and subject to change.]

The following sections describe components of the Announcement Listener:

� Announcement Listener System Service
� Announcement Filters
� Receiver Applications
� Receiver Application Command Line
� Scheduling Data Reception

Announcement Listener System Service

[This is preliminary documentation and subject to change.]

The Announcement Listener system service comprises a number of components that operate together
to capture, filter, and process broadcast data.

The primary Announcement Listener system service adheres to the IDataListener interface. It runs
constantly unless explicitly disabled or halted by the user, receiving announcements from sockets on
well-known Internet Protocol (IP) address and port pairs, passing those announcements to its installed
filters, and scheduling the receipt of any announcements that a filter selects.

Announcement Filters

[This is preliminary documentation and subject to change.]

Filters are used by the Announcement Listener to distinguish between announcements that are of
interest to a user and those that are not. No individual wants to receive the data associated with every
announcement, and no single computer has the capacity to do so.

The Announcement Listener maintains a list of filters. Each filter, when presented with an
announcement, can register interest in the receipt of the data associated with the announcement. If a
filter registers interest and requests the Announcement Listener to schedule future reception, it must
also provide the name of an application to receive that data.

A filter is an Automation server that supports a number of interfaces. (For more information, see
Creating an Announcement Filter.) Applications may add, remove, enable, or disable filters in the
Announcement Listener through Automation, and users may do the same through the Announcement

2558

Announcement Listener Page 6 of 39

Filter Manager. Filters have persistent states, and multiple instances of a given filter may be running
simultaneously with each instance matching different criteria.

The Announcement Listener presents announcements sequentially to all the filters. However, once a
filter registers interest in an announcement, that announcement and any rebroadcasts of it are not
presented to any filter, to reduce the unnecessary overhead of calling filters that are not interested in
the announcement. (The exception is when the ListenAll property of a filter is set to TRUE; for more
information, see the IBroadcastFilter:get_ListenAll method.)

Future releases of Broadcast Architecture will ship with a simple, reprogrammable, generic filter class,
which will suffice for many applications' filtering needs. It is expected that multiple instances of this
generic filter will be run at the behest of different applications, each instance with its own criteria for
matching announcements and its own rules for the disposition of the data received. An application that
needs to perform simple filtering tasks that can be handled by the generic filter will be able to install a
copy of that filter in the Announcement Listener and program that instance of the filter to match the
announcements desired by the installing application.

Receiver Applications

[This is preliminary documentation and subject to change.]

When an Announcement Listener filter registers interest in receiving a data stream, it must provide the
name of an application for the actual capture (and possible storage) of that stream. The only defined
interface between a filter and a receiver application is that of command line parameters, though
obviously, if allied more tightly in their designs they can share richer communications.

The Announcement Listener spawns a receiver application before the broadcast of the desired data
stream, and provide the receiver application with the Internet Protocol (IP) address and port of that
stream as a command line parameter. The receiver application is then solely responsible for
interpreting the format of the data stream, storing the data stream if desired, launching other
applications, and taking any other appropriate actions. For more information, see Receiver Application
Command Line.

Future releases of the Broadcast Architecture software will provide a generic receiver application for
the transfer of files. This application would capture a file or files broadcast in the broadcast-
architecture format, and optionally, either spawn a second application, passing the file names of the
received file or files to it, or attempt to launch the files themselves (using the file associations for
Microsoft® Windows® family of operating systems).

Thus, with the generic filter and generic receiver application, an application or individual is able to
monitor announcements, receive files, and start arbitrary programs with those files. Only those
applications that require more sophisticated filtration or receipt needs to implement their own filters
and recipients.

2559

Announcement Listener Page 7 of 39

Receiver Application Command Line

[This is preliminary documentation and subject to change.]

A receiver application is an executable application that is intended to be launched by the Task
Scheduler at the appropriate time to receive the information previously announced. You can use the
generic receiver application or write one of your own. (For more information, see Receiver
Applications.)

At the appropriate time, the Task Scheduler launches the receiver application. The Task Scheduler
provides three command line arguments to the receiver application. These arguments are prepended to
the Parameters string provided by the IBroadcastFilter::GetDisposition or
IDataListener::SubmitAnnouncement method. These command-line arguments are:

� /J job_name — the task name in the IJobScheduler interface that launched this process. For
example:

/J BFTP_JOB_234

� /IPD destination_address_and_port_of_multicast. For example:

/IPD 224.45.38.92:3256

� /IPL local_address_of_network_card_receiving_multicast. For example:

/IPL 192.78.38.92

The destination address is the Internet Protocol (IP) address to which the data is broadcast. The local
address is the IP address of the NIC that receives the data; this allows a distinction to be made
between a satellite receiver card and any other type of network interface when more than one card is
present.

For example, suppose the arguments supplied by a filter to the Announcement Listener by
IBroadcastFilter::GetDisposition are as follows:

WorkingDirectory = C:\Games\
Application = GameRecv.exe
Parameters = /o
AdvanceMinutes = 2

At the appointed time, Task Scheduler launches the specified receiver application with the following
command line:

GameRecv /J "BFTP_JOB_234" /IPD 224.45.38.92:3256 / IPL 192.78.38.92 3A45F /o

In this case, GameRecv.exe is an application designed to receive multicast data on the specified
address, and /o is an additional parameter that is being passed to the receiver application.

2560

Announcement Listener Page 8 of 39

The receiver application can be the final receiver of the data (as in the example preceding), or it can be
a simple shell that launches the final receiver of the data (for more information, see Using the Generic
File Receiver Application).

Scheduling Data Reception

[This is preliminary documentation and subject to change.]

The Announcement Listener must maintain a time-ordered queue of pending broadcasts and start the
receiver applications sufficiently before their broadcasts so that they are loaded and ready when the
data become available. If an announcement precedes its broadcast by a significant length of time, some
client computers may be rebooted during that span. This means that the queue for broadcasts must be
persistent.

Task Scheduler is a resource included with Windows 98. Task Scheduler enables the Announcement
Listener to launch receiver applications at pre-specified times. The queue is stored on the hard disk,
and thus persists across machine reboots. (Other components of the Broadcast Architecture also use
the Task Scheduler for reminders of television shows.)

The Task Scheduler has a programmatic Component Object Model (COM) interface, as well as a
simple user interface. The Announcement Listener uses only the programmatic interface.

Creating an Announcement Filter
[This is preliminary documentation and subject to change.]

In order to respond to an incoming announcement, an appropriate filter must be created and installed
on the client computer.

Announcement filters are instances of the class IBroadcastFilter. This interface has no intrinsic
implementation by itself. Instead, implementations of particular filters are written for particular
purposes. The generic filter is one such example.

 To write a filter

� Register the filter as supporting component categories.

For information on adding the filter to the list of announcements used by the announcement, see
Adding a Filter Programmatically.

2561

Announcement Listener Page 9 of 39

Registering Filters for Component Categories

[This is preliminary documentation and subject to change.]

Filters must register as supporting the component categories CATID_PersistsToStream and
CATID_BpcFilter. CATID_PersistToStream is a standard category identifier in the Microsoft®
Windows® family of operating systems, by which the filter advertises that it supports the interfaces
necessary to save its data as a compound document stream.

The CATID_BpcFilter category identifier is unique to Broadcast Architecture. Components that
register this class must adhere to the filter provided by the IBroadcastFilter interface.

The Announcement Listener registers these two categories upon startup.

Every filter must register the fact that it implements categories by calling
RegisterClassImplCategories. Only filter classes that have been registered as supporting these two
interfaces appear in the Filter Manager Add Filter dialog box. (The Browse dialog box causes a new
file to register itself, so that it then appears in the list.)

Each instance of a filter must also register itself upon being created. The following code, written in the
Microsoft® Visual C++® development system using Microsoft® Foundation Classes (MFC),
illustrates how a filter must register the category IDs.

The InitInstance call performs the initialization of the filter. Because the filter is implemented in a
dynamic linked library (that is, an in-process server), it calls the COleObjectFactory::RegisterAll
method, which tells the system that it supports IBroadcastFilter and is a generic filter.

BOOL CFilterApp::InitInstance()
{
 HRESULT hr;
 // Register all OLE server (factories) as running. This enables
 // OLE libraries to create objects from other applications.
 COleObjectFactory::RegisterAll();
 // Create instance of the standard Component Categories Manager
 if (FAILED(hr = CoCreateInstance(CLSID_StdComponentCategoriesMgr,

NULL,
CLSCTX_INPROC_SERVER,
IID_ICatRegister,
(LPVOID *) &m_pCatRegister)))

 {
AfxMessageBox(GetSystemMessage(hr,

IDS_CANT_LOAD_COMP_MAN),
MB_ICONSTOP|MB_OK);

return FALSE;
 }
 // Register the component categories: specify the class ID of this
 // implementation of the filter, how many categories it supports,
 // and an array of the categories supported.
 else if (FAILED(hr = m_pCatRegister->

2562

Announcement Listener Page 10 of 39

RegisterClassImplCategories(CLSID_GenericBroadcastFilter,
CGenericFilter::m_cImplCat,
CGenericFilter::m_rgImplCat)))

 // If registering class categories, display message box://
 {

AfxMessageBox(GetSystemMessage(hr,
IDS_CANT_ADD_CATEGORY),
MB_ICONSTOP|MB_OK);

return FALSE;
 }
 // Otherwise return TRUE, indicating successful initialization.//
 else

return TRUE;
}

This completes the registering of the categories.

Adding a Filter Programmatically

[This is preliminary documentation and subject to change.]

To add a new filter to the Announcement Filter Manager list of filters using programming code, first
make sure the filter has already been registered as an Automation server. Then use the
IFilterCollection::Add method.

(For development and testing, you may add a filter manually by using the Announcement Filter
Manager.)

The following C++ code example illustrates the process of installing an announcement filter:

extern CLSID CLSID_MyFilter;

HRESULT hr;
IDataListener *pDataListener;
IFIlterCollection *pFilterCollection;
IBroadcastFilter *pNewFilter;
long lFiltIndex;
LPOLESTR lpszProgID = NULL;
BSTR bstrProgID = NULL;

// Create an instance of the data listener:
hr = CoCreateInstance(CLSID_DataListener, NULL, CLSCTX_SERVER,

IID_IDataListener, (LPVOID *) &pDataListener);
if (FAILED(hr) || (NULL == pDataListener))
{
 return FALSE;
}
// Get pointer to data listener's filter collection:
else if (FAILED(hr = pDataListener->get_Filters(&pFilterCollection))

|| (NULL == pFilterCollection))
{
 pDataListener->Release();
 return FALSE;

2563

Announcement Listener Page 11 of 39

}
// Retrieve the ProgID for the filter:
hr = ProgIDFromCLSID(CLSID_MyFilter, &lpszProgID);
if (FAILED(hr))
{
 pDataListener->Release();
 pFilterCollection->Release();
 return FALSE;
}
bstrProgID = SysAllocString(lpszProgID);
CoTaskMemFree(lpszProgID); // Free memory allocated by ProgIDFromCLSID
if (NULL == bstrProgID)
{
 pDataListener->Release();
 pFilterCollection->Release();
 return FALSE;
}
// Create a running filter and add it to the filter collection:
hr = pFilterCollection->Add(bstrProgID, &pNewFilter, &lFiltIndex);
SysFreeString(bstrProgID);
if (FAILED(hr))
{
 pDataListener->Release();
 pFilterCollection->Release();
 return FALSE;
}
else
{
 pDataListener->Release();
 pFilterCollection->Release();
 pNewFilter->Release();
 return TRUE;
}

For more information, see the documentation for the IFilterCollection::Add method.

Using a File Receiver Application
[This is preliminary documentation and subject to change.]

The following sections describe using a file receiver application:

� Using the Generic File Receiver Application
� Creating a Receiver Application
� Retrieving Announcement Attributes

Using the Generic File Receiver Application

2564

Announcement Listener Page 12 of 39

[This is preliminary documentation and subject to change.]

The Generic File Receiver is designed to capture a file or files that have been broadcast. The Generic
File Receiver may also optionally spawn a second application, passing the file names of the received
file or files to it, or attempt to launch the files themselves (using the file associations for the
Microsoft® Windows® family of operating systems).

The Generic File Receiver expects to find the /J, /IPD, and /IPL options in the command line passed
to it by the Task Scheduler, as described in Receiver Application Command Line.

In addition, the /s option may be used with the Generic File Receiver to spawn the received file. The /s
string may be supplied in the Parameters string returned by IBroadcastFilter::GetDisposition.
Without the /s option, the Generic File Receiver simply receives the file and saves it in the specified
working directory.

For example, to launch the file received, the command line is:

GenRecv /J "BFTP_JOB_234" /IPD 224.45.38.92:3256 /IPL 192.78.38.92 /s

(The preceding example assumes that the Generic File Receiver has been named GenRecv.exe; in fact
it has not yet been named.)

Any text on the command line of the Generic File Receiver beyond the /J, /IPD, /IPL, and /s options
is treated as a new command line, with the name of the received file appended at the end of the
command line arguments. For example, the command line:

GenRecv /J "BFTP_JOB_234" /IPD 224.45.38.92:3256 /IPL 192.78.38.92 Excel.exe

causes the Generic File Receiver to launch Microsoft® Excel with the file received. Assuming that the
transmitted file was Sample.xls, this results in the following command line being launched:

Excel.exe Sample.xls

If a /s option appears with other arguments beyond the /J, /IPD, and /IPL on the command line, the /s
are presented along with the other arguments as the new command line, rather than spawning the
received file. For example:

GenRecv /J "BFTP_JOB_234" /IPD 224.45.38.92:3256 /IPL 192.78.38.92 Excel.exe /s

launches the following (assuming that the transmitted file was Sample.xls)

Excel.exe /s sample.xls

(In this case, /s is assumed to be a parameter intended for Excel.exe.)

2565

Announcement Listener Page 13 of 39

If the Generic File Receiver runs successfully, it deletes its job from the Task Scheduler, even if there
are later scheduled broadcasts (if there are no later scheduled broadcasts, the
JOB_FLAG_DELETE_WHEN_DONE value causes the job to be deleted automatically, whether it
succeeded or failed). If the Generic File Receiver fails and IJob::GetNextRunTime returns the value
S_OK, then the job is left in the scheduler to run again.

Creating a Receiver Application

[This is preliminary documentation and subject to change.]

If the Generic File Receiver application proves insufficient for the needs of your application, you can
create a custom receiver application.

The application must be able to appropriate process the /J, /IPD, and /IPL options in the command
line passed to it by the Task Scheduler, as described in Receiver Application Command Line.

Typically, a receiver application may ignore the /J option. The application must open a Windows
Sockets (WinSock) socket using the address specified by /IPD and bind it to the address specified
by /IPL. The application can then receive data over the broadcast connection and process it any way
that is desired.

The receiving application may access various attributes that were included in the original
announcement, as described in Retrieving Announcement Attributes.

Retrieving Announcement Attributes

[This is preliminary documentation and subject to change.]

A receiving application, when spawned, may need to access any number of attributes from the original
announcement. For example, when a stock ticker application is launched in response to
announcement, it should display an appropriate title, depending on an attribute in the announcement
(such as a = market:NYSE).

When the application is spawned, however, the original announcement is no longer available.
Fortunately, the Task Scheduler stores the full text of the announcement, including all session
attributes, in the user data for the task. The Task Scheduler supplies the name of the task that
launched the receiving application in the command line passed to the receiving application. (For more
information, see Receiver Application Command Line.)

The most convenient way to access the attributes in the task is to create a new broadcast
announcement and fill it with the stored information from the task. Calling the ITask::GetUserData

2566

Announcement Listener Page 14 of 39

method in the Task Scheduler interface, and passing the result to the
IBroadcastAnnouncement::Load method, fills an empty broadcast announcement with data from
the Task Scheduler. The resulting announcement appears as though it had just been received by the
Announcement Listener over an announcement channel.

The application is now able to access the attributes using the same announcement interface that
announcement filters use.

Specifying an Announcement Stream Source
[This is preliminary documentation and subject to change.]

Announcements are broadcast on one or more streams. Each stream is associated with a particular
data service, and is broadcast on a separate Internet Protocol (IP) address and port. The
Announcement Listener can listen to more than one announcement stream at a time.

The names and addresses of the announcement streams are stored in the system registry, under the
key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\TV Services\Announcements

The Registry Editor (RegEdit) provides access to the names and addresses of announcement streams,
and enables new announcement streams to be added.

In the Announcements key, each announcement stream is represented by a value. The Name of the
value should reflect the name of the data service being announced. This name appears in dialog boxes
and error messages. The Data field consists of the IP address and port of the announcement stream,
expressed in the format byte.byte.byte.byte:port, as shown in the following illustration.

In the example shown, a data service called "Webcast" is being announced on IP address 227.37.32.1,
port 22701.

Typically, the installation program for a data service programmatically installs a new value into the
Announcements key, reflecting the name of the service and the address and port of its announcement

2567

Announcement Listener Page 15 of 39

stream.

Announcement Listener Reference
[This is preliminary documentation and subject to change.]

The following sections provide reference material for the Announcement Listener:

� Filter Interfaces
� Announcement Listener Interfaces

Filter Interfaces

[This is preliminary documentation and subject to change.]

Every broadcast filter installed in the Announcement Listener must be an Automation server
supporting the following interfaces: IBroadcastFilter and IPersistStream. A filter supporting the
interfaces IGenericFilter and its helper interfaces IFields and IField will be shipped with a future
release of the Broadcast Architecture, but other filters are not required to support these interfaces.

Filters must have the normal registry entries for Microsoft® ActiveX™ components that share their
functionality with other applications (local or in-process). In addition, they must register as supporting
the component categories CATID_PersistsToStream and CATID_BpcFilter. For more information,
see Registering Filters for Component Categories.

Dual Interfaces

You can write your filter in any language that can implement dual interfaces. Choosing a language
involves many considerations: familiarity with the language, tools support, run-time performance,
threading models, code complexity, and the size of the compiled code. Languages and products that
can be used to write Automation server components include Microsoft® Visual C++®, the
Microsoft® Visual Basic® programming system, and Java.

Announcement Listener Filter Interfaces

� IBroadcastFilter
� IPersistStream
� IGenericBroadcastFilter
� IFilterFields
� IFilterField

2568

Announcement Listener Page 16 of 39

IBroadcastFilter : IDispatch
[This is preliminary documentation and subject to change.]

The IBroadcastFilter interface has three purposes: to perform the actual filtration of broadcast
announcements, to provide a user interface to a filter, and to provide methods and properties
necessary for the enabling, disabling, or deletion of a filter.

Every filter must support Automation and the IBroadcastFilter interface. Each filter supplies the
functionality for the methods in the table following, which are called by the Announcement Listener.

Quick Info

Called by: Announcement Listener

Interface definition: Dual

Method Description

Delete The Announcement Listener invokes this
method to notify the filters of an announcement
deletion message.

get_Enabled Indicates whether the Announcement Listener
calls this filter. A filter may be disabled but still
reside in the filter list.

get_Hidden Returns a property that, if true, suppresses the
display of the filter in the Filter Manager user
interface. The filter still is accessible
programmatically through the collection in the
IDataListener. Hidden filters cannot be
enabled, disabled, or removed by users. One
use for a hidden filter is to listen for upgrades
to the Broadcast Architecture software itself.

get_LastMatched Property indicating the last time this filter
selected an announcement. Used by the Filter
Manager.

get_ListenAll A property that, when true, causes all
announcements to be presented to a filter, even
if they have been matched previously by
another filter. A filter with the ListenAll
property set to TRUE receives all
announcements, whether or not another filter
has already registered to receive the associated

2569

Announcement Listener Page 17 of 39

IBroadcastFilter::Delete
[This is preliminary documentation and subject to change.]

IBroadcastFilter::Delete is the method by which a filter is notified of an announcement deletion.
Filters which schedule their data reception through the Announcement Listener need not respond.

However, filters which schedule their own data reception should authenticate the deletion packet and,
assuming it is valid, remove any self-scheduled data receipts which were initiated by the announcement
being deleted. Such filters must maintain a list of the origin lines (for example, o=) and source
addresses from any announcements it receives. When a deletion is presented to the filter, the filter
must ascertain that the deletion pertains to some announcement which it matched, and remove the
scheduled receipt of the data from any queue the filter maintains.

Certain security verifications are required to ensure that an announcement deletion is legitimate. To
locate more information on the relationship between an announcement and a deletion notice for that
announcement, see Further Information on Data Services for the Client.

If a filter schedules tasks with the Announcement Listener, then the Announcement Listener provides
all authentication.

broadcast data. This permits special filters to be
created for monitoring or debugging.

get_Name Returns the name of this instance of the filter.
Used by the Filter Manager.

get_NumberMatched The total number of announcements the filter
has selected. Used by the Filter Manager.

GetDisposition Returns to the Announcement Listener the
information it needs to schedule a future task to
receive the data, including what application to
launch, the working directory, the command
line, and how far in advance of receipt of the
data should the application be launched.

Match Checks whether the announcement describes a
data transmission that should be received, and
if so, whether the Announcement Listener
should schedule a task to receive the data.
Used by the Announcement Listener.

put_Enabled Sets the Enabled property of the filter.

ShowProperties The Announcement Listener invokes this
method to request the filter to display its
properties (if any) in a dialog box.

2570

Announcement Listener Page 18 of 39

HRESULT Delete(
 IBroadcastAnnouncement *Announcement // pointer to the object

// containing the deletion
// announcement, as specified
// by SAP.

);

Return Values

Returns an HRESULT indicating success or failure.

IBroadcastFilter::get_Enabled
[This is preliminary documentation and subject to change.]

This method retrieves the value of the Enabled property.

HRESULT get_Enabled(
 BOOL *pfEnabledRet // pointer to flag indicating whether this

// filter is enabled.
);

Return Values

Returns an HRESULT indicating success or failure.

Remarks

The Enabled property specifies whether the Announcement Listener is to call this filter when a new
announcement arrives. A filter may be disabled but still reside in the filter list.

IBroadcastFilter::get_Hidden
[This is preliminary documentation and subject to change.]

The Hidden property, if true, suppresses the display of the filter in the Filter Manager user interface.
The filter is still accessible programmatically through the collection in the IDataListener. Hidden
filters cannot be enabled, disabled, or removed by users through the user interface, although they can
be manipulated programmatically. One use for a hidden filter is to listen for upgrades to the Broadcast
Architecture software itself.

2571

Announcement Listener Page 19 of 39

HRESULT get_Hidden(
 BOOL *lpfReturn // pointer to flag that indicates this filter is

// hidden.
);

Return Values

Returns an HRESULT indicating success or failure.

IBroadcastFilter::get_LastMatched
[This is preliminary documentation and subject to change.]

This method returns the LastMatched property through a pointer.

The LastMatched property contains a date representing the last time this filter selected an
announcement. Used by the Filter Manager.

HRESULT get_LastMatched(
 DATE *lpdateReturn // pointer to the LastMatched flag.
);

Return Values

Returns an HRESULT indicating success or failure.

See Also

IBroadcastFilter::get_NumberMatched

IBroadcastFilter::get_ListenAll
[This is preliminary documentation and subject to change.]

This method returns the ListenAll property through a pointer.

The ListenAll property, when true, causes all announcements to be presented to a filter, even if they
have been matched previously by another filter. A filter with the ListenAll property set to TRUE
receives all announcements, whether or not another filter has already registered to receive the

2572

Announcement Listener Page 20 of 39

associated broadcast data. This permits monitoring or debugging filters to be written.

HRESULT get_ListenAll(
 boolean *lpfReturn pointer to the ListenAll flag.
);

Return Values

Returns an HRESULT indicating success or failure.

IBroadcastFilter::get_Name
[This is preliminary documentation and subject to change.]

The IBroadcastFilter::get_Name method returns the name of this instance of the filter. Used by the
Filter Manager.

HRESULT Name(
 BSTR *lpbstrReturn // out
);

Parameters

lpbstrReturn
Name of this instance of the filter.

Return Values

Returns S_OK on success.

IBroadcastFilter::get_NumberMatched
[This is preliminary documentation and subject to change.]

This method returns the NumberMatched property through a pointer.

The NumberMatched property contains the total number of announcements the filter has selected.
Used by the Filter Manager.

HRESULT get_NumberMatched(

2573

Announcement Listener Page 21 of 39

 long *lplReturn // pointer to the number of matches.
);

Return Values

Returns an HRESULT indicating success or failure.

See Also

IBroadcastFilter::get_LastMatched

IBroadcastFilter::GetDisposition
[This is preliminary documentation and subject to change.]

The IBroadcastFilter::GetDisposition method enables the filter to specify the information that the
Announcement Listener needs to schedule a future task to receive the data, including what application
to launch, the working directory, the command line, and how far in advance of receipt of the data
should the application be launched.

HRESULT GetDisposition(
 BSTR * WorkingDirectory, // out
 BSTR * Application, // out
 BSTR * Parameters, // out
 long * AdvanceMinutes // out
);

Parameters

WorkingDirectory
Working directory in which to launch the target application.

Application
File name of the application to be launched.

Parameters
String to be appended to the command line following the application name.

AdvanceMinutes
Number of minutes prior to the time the announced data arrives to launch the application.

Return Values

Returns an HRESULT indicating success or failure.

See Also

2574

Announcement Listener Page 22 of 39

IBroadcastFilter::Match

IBroadcastFilter::Match
[This is preliminary documentation and subject to change.]

The IBroadcastFilter::Match method checks whether the announcement describes a data
transmission that should be received, and if so, whether the Announcement Listener should schedule a
task to receive the data. If Match returns TRUE and the Schedule parameter is also TRUE, then the
Announcement Listener creates a task in the Task Scheduler in the Microsoft® Windows® 98
operating system. This task receives the associated data. If Match returns TRUE and the Schedule
parameter is FALSE, the announcement is treated as if it had been matched and scheduled, but no task
is created.

HRESULT Match(
 IBroadcastAnnouncement *Announcement, // in
 BOOL AlreadyMatched, // in
 BOOL *Schedule, // out
 BOOL *lpfReturn // out, retval
);

Parameters

Announcement
Pointer to the object containing the announcement.

AlreadyMatched
Flag that indicates to a filter whether the announcement has already been matched by another
filter. (This flag is of interest only to a filter designed for monitoring or debugging. For a filter
that is not ListenAll, this parameter is always FALSE.)

Schedule
Pointer to a flag used by the filter to request the Announcement Listener to schedule a task for
future receipt of the data. Necessary scheduling information can be obtained by using the
IBroadcastFiler::GetDisposition method.

lpfReturn
Pointer to a flag used by the filter to indicate that the filter has found a match on the
announcement data.

Return Values

Returns an HRESULT indicating success or failure of the call.

See Also

IBroadcastFilter::GetDisposition

2575

Announcement Listener Page 23 of 39

IBroadcastFilter::put_Enabled
[This is preliminary documentation and subject to change.]

This method stores the value of the Enabled property.

HRESULT put_Enabled(
 BOOL Enable // flag indicating whether this filter is enabled.
);

Return Values

Returns an HRESULT indicating success or failure.

Remarks

The Enabled property specifies whether the Announcement Listener is to call this filter when a new
announcement arrives. A filter may be disabled but still reside in the filter list.

Filters must shutdown any threads the filter is using when the Annoucement Listener calls
put_Enabled with the Enable argument set to VARIANT_FALSE. This allows the Annoucment
listener to properly shutdown.

IBroadcastFilter::ShowProperties
[This is preliminary documentation and subject to change.]

IBroadcastFilter::ShowProperties is a method by which the Announcement Filter Manager may
request a filter to display its properties with a dialog box. This method must be implemented by all
filters, but the method need not necessarily display a dialog box.

Filters that contain properties that can be set by the user but cannot otherwise be edited can use this
feature to display a dialog box through the Announcement Filter Manager. Hidden filters, and those
filters with no editable properties, may implement this method with no action.

Filters that use this method to display a user interface should create a modal dialog box with the owner
window set to the HWND parameter to the call. The filter must continue to service OLE requests,
particularly calls to Match while the dialog box is displayed. This requirement implies that the call to
ShowPropertiesDialog must return before the dialog box is displayed, because calling

2576

Announcement Listener Page 24 of 39

OleBlockServer is not acceptable.

This may be accomplished either by using a modeless dialog box or by spawning another thread which
creates a modal dialog box.

The following code must be included in all filters, at a minimum:

// In the class definition of your IBroadcastFilter implementation
STDMETHOD(ShowProperties)(OLE_HANDLE Window);

// In the implementation file.
STDMETHODIMP
CGenericFilter::XFilter::ShowProperties(OLE_HANDLE Window)
{
 METHOD_PROLOGUE(CGenericFilter, Filter)
 try
 {

return E_NOTIMPL;
 }
 CATCH_DUAL_EXCEPT()
}

IPersistStream
[This is preliminary documentation and subject to change.]

IPersistStream is a standard interface for saving and restoring the state of an object. Each filter, when
created, may receive an IStream from which to initialize itself. The Announcement Listener uses this
interface to request filters to save their states into a different IStream on shutdown, and to restore
their states from that IStream on start-up.

At a minimum, a filter must save the number of announcements it has matched, and the date of the last
announcement it matched. Any other state persistence is entirely at the option of the filter.

To locate more information on the IPersistStream interface, see Further Information on Data
Services for the Client.

IGenericBroadcastFilter
[This is preliminary documentation and subject to change.]

The generic filter will be provided in future releases of the Broadcast Architecture software. It will be
programmable to match any announcement field, either as a regular or numeric expression. The

2577

Announcement Listener Page 25 of 39

disposition of the broadcast (receiving application, working directory, etc.) will also be settable.

This interface is currently in development, pending decisions on the announcement protocol.

The current version of the generic filter allows matching for any arbitrary line. In contrast, the ISDP
interface contains specified properties including telephone, address, start time, stop time, and so on.
With this interface, searching is not required; instead the generic filter will contain properties that
roughly correspond to those of the ISDP interface, except that search strings, rather than values, are
specified.

For example, the generic filter will include a URL match string which corresponds to the session URL
string in the ISDP interface. The URL match string might contain http://www.microsoft.com/*.* to
indicate all files at the Microsoft site. Each of these fixed properties will have a regular expression for
matching.

For extensible attributes, the a field allows arbitrary fields. An arbitrary field can contain anything. The
interfaces supports as many a lines as needed. The line may take either of the following forms:

a=flag
a=attribute:value

For example, the line a=difficulty:friendly specifies friendly as the value of the attribute difficulty.

IFilterFields
[This is preliminary documentation and subject to change.]

This interface is the collection of fields in a generic filter that have been set to match announcement
fields. With this collection, one can add or remove fields for matching, or iterate through the fields
currently used by the filter.

Following is a preliminary description of the interface.

interface IFilterFields : IDispatch
{
// The Index parameter is numeric index or the name
[id(DISPID_VALUE)]
HRESULT Item([in] VARIANT Index, [out, retval] IFilterField ** lppifReturn);
[id(1), propget]
HRESULT Count([out, retval] long *lplReturn);
[id(2)]
HRESULT Add([in] BSTR Name);
[id(3)]
HRESULT Remove([in] BSTR Name);
[id(DISPID_NEWENUM), restricted]
HRESULT _NewEnum([out, retval] IUnknown **pUnkRetVal);
};

2578

Announcement Listener Page 26 of 39

The Item method can take either a BSTR for the field name, or a numeric index.

IFilterField
[This is preliminary documentation and subject to change.]

This is the heart of the generic filter; the interface through which the numeric or regular expression to
match a field in an announcement can be set or retrieved.

Following is a preliminary description of the interface.

enum BPC_FieldType {AddressField, PatternField, NumericField, UndefinedField};

interface IFilterField : IDispatch
{
[id(DISPID_VALUE), propget] HRESULT MatchString([out, retval] BSTR *MatchString);
[id(DISPID_VALUE), propput] HRESULT MatchString([in] BSTR MatchString);
[id(1), propput] HRESULT FieldType([in] BPC_FieldType FieldType);
[id(3), propget] HRESULT Name([out, retval] BSTR* lpbstrReturn);
};

When added, a field has type BPC_FieldType::UndefinedField. The filter then only requires that the
field be present in an announcement, without regard to its content. If a field is given a type of
BPC_FieldType:PatternField or BPC_FieldType:NumericField then the MatchString is interpreted as
a regular expression to be matched, or a numeric expression to be evaluated for truth or falsehood,
respectively.

The numeric expression evaluator accepts the following operators: <, >, >=, <=, ==, !=, +, -, /, *,), (,
&&, ||, &, ~, |, ^, and !. Their meaning is similar to the same in the C language. Anywhere that a
question mark appears in the expression, it is replaced by the numeric value of the field. All operations
are carried out with double precision floating point numbers.

The regular expression evaluator uses accept the same patterns as the one in the Visual C++ version
4.1 IDE. This should be specified more completely in a future version of this document.

If a field type is set to BPC_FieldType:AddressField, then the value of the field is parsed as an
Internet Protocol (IP) address. A variety of formats may be supported for this type.

Announcement Listener Interfaces

[This is preliminary documentation and subject to change.]

2579

Announcement Listener Page 27 of 39

The Announcement Listener supports Automation so that other applications can share its
functionality. The Announcement Listener makes its methods available to other components through
the following interfaces:

� IDataListener
� IFilterCollection
� IBroadcastAnnouncement

IDataListener : IDispatch
[This is preliminary documentation and subject to change.]

This is the main interface of the Announcement Listener. The methods can enable or disable the
program in its entirety, return the collection of filters, or submit a broadcast announcement to the
scheduling queue without calling any filters.

Method Description

get_AutoStart Retrieves the AutoStart property, which
determines whether the Announcement
Listener is included in the system startup.

get_Filters A pointer to the collection of filters that are
installed in the Announcement Listener.

get_Running Determines whether the reception of
announcements is enabled.

IsBpcTask Returns TRUE if a task name from the Task
Scheduler was created by the Announcement
Listener, and FALSE if it was not. Task
Scheduler is a component of Windows 98.

put_AutoStart Stores the AutoStart property, which
determines whether the Announcement
Listener is included in the system startup.

put_Running Enables or disables the reception of
announcements from the announcement
socket.

SubmitAnnouncement Causes the Announcement Listener to
unconditionally schedule the receipt of a
broadcast, without the announcement being
sent to the public announcement address.

2580

Announcement Listener Page 28 of 39

IDataListener::get_AutoStart
[This is preliminary documentation and subject to change.]

HRESULT AutoStart(
 boolean *AutoStart // pointer to the Autostart property
);

Return Values

Returns an HRESULT indicating success or failure.

IDataListener::get_Filters
[This is preliminary documentation and subject to change.]

The IDataListener::get_Filters method retrieves a pointer to the collection of filters that are installed
in the Announcement Listener.

HRESULT Filters(
 IFilterCollection **ppFiltersRetVal // Pointer to the collection

// of filters
);

Return Values

Returns an HRESULT indicating success or failure.

IDataListener::get_Running
[This is preliminary documentation and subject to change.]

This method retrieves the value of the Running property.

HRESULT Running(
 BOOL *Run // pointer to flag that indicates whether the

// Announcement Listener is running.
);

2581

Announcement Listener Page 29 of 39

Return Values

Returns an HRESULT indicating success or failure.

IDataListener::IsBpcTask
[This is preliminary documentation and subject to change.]

Given the name of a task in the Windows 98 Task Scheduler, this method indicates whether the task
was submitted by the Announcement Listener. This method is not used by any other component of the
Broadcast Architecture, but may be used by some other application.

HRESULT IsBpcTask(
 BSTR TaskName, // in
 boolean *pfRetVal // out, retval
);

Parameters

TaskName
String containing a Task Scheduler task name, such as BFTP_JOB_234.

pfRetVal
Pointer to a flag that is TRUE only if the task was created by the Announcement Listener.

Return Values

Returns an HRESULT indicating success or failure.

IDataListener::put_AutoStart
[This is preliminary documentation and subject to change.]

HRESULT AutoStart(
 boolean AutoStart // the Autostart property
);

Parameters

AutoStart

2582

Announcement Listener Page 30 of 39

Boolean value. Setting the AutoStart property to FALSE causes the Announcement Listener to
remove itself from the system startup; setting the value for the property to TRUE adds the
program to the system startup. Neither value affects the currently enabled or disabled state of
the program.

Return Values

Returns an HRESULT indicating success or failure.

IDataListener::put_Running
[This is preliminary documentation and subject to change.]

This method stores the value of the Running property.

HRESULT Running(
 BOOL Run // flag that indicates whether the Announcement Listener

// is running.
);

Return Values

Returns an HRESULT indicating success or failure.

IDataListener::SubmitAnnouncement
[This is preliminary documentation and subject to change.]

The IDataListener::SubmitAnnouncement method allows an application to schedule the reception
of a broadcast without an announcement being sent to the public announcement address. This method
has two primary uses: to allow announcements to be distributed by other means, such as the Internet
or in email, and to permit filters to store announcements for presentation to a user for approval.

For example, an application might consist of a filter to store announcements that may be of interest to
a user, present them to the user at some later date, and register the announcement for receipt of its
broadcast at that time. Announcements delivered by this mechanism are not presented to the filters,
but scheduled unconditionally for the receipt of their broadcasts.

The input parameters to this method are equivalent to the output parameters of
IBroadcastFilter::Match and IBroadcastFilter::GetDisposition.

2583

Announcement Listener Page 31 of 39

In addition to the passed parameters, SubmitAnnouncement, must be able to access the local IP
address by calling the IBroadcastAnnouncment::get_LocalAddress function. Therefore;
applications that use SubmitAnnouncement, must call
IBroadcastAnnouncment::put_LocalAddress prior to calling SubmitAnnouncement.

HRESULT SubmitAnnouncement(
 IBroadcastAnnouncement * Announcement, // in
 BSTR WorkingDirectory, // in
 BSTR Application, // in
 BSTR Parameters, // in
 long AdvanceMinutes // in
);

Parameters

Announcement
Pointer to the object containing the announcement.

WorkingDirectory
Working directory in which to launch the target application.

Application
File name of the application to be launched.

Parameters
String to be appended to the command line following the application name.

AdvanceMinutes
Number of minutes prior to the time the announced data arrives to launch the application.

Return Values

Returns an HRESULT indicating success or failure.

See Also

IBroadcastFilter::GetDisposition, IBroadcastFilter::Match

IFilterCollection : IDispatch
[This is preliminary documentation and subject to change.]

The IFilterCollection interface represents the collection of filters that are installed in the
Announcement Listener. This object has methods to add a filter, remove a filter, and iterate through all
filters. It has the usual methods and properties for a collection: Count, _NewEnum, and Item.

2584

Announcement Listener Page 32 of 39

IFilterCollection::_NewEnum
[This is preliminary documentation and subject to change.]

Returns an IenumVARIANT of filters.

HRESULT _NewEnum(
 IUnknown **ppUnk // out, retval
);

Parameters

ppUnk
Address of an interface pointer where this method returns the IEnumVariant.

Return Values

Returns an HRESULT indicating success or failure.

See Also

IFilterCollection::Count, IFilterCollection::Item

IFilterCollection::Add
[This is preliminary documentation and subject to change.]

Method Description

_NewEnum Returns an IenumVARIANT of filters.

Add Takes the Programmatic identifier of a filter as
an argument and creates a new instance of the
filter.

Count Returns the number of currently installed
filters in the collection.

Item Returns a pointer to the indexed filter.

Remove Removes the specified filter from the list.

2585

Announcement Listener Page 33 of 39

The IFilterCollection::Add method is the means by which the Announcement Listener creates a new
instance of a given filter.

Add takes the programmatic identifier (ProgID) of a filter as an argument (for example,
BPC.GenericFilter for the generic filter). Using the programmatic identifier (ProgID), Add then
looks up the corresponding class identifier (CLSID), and calls CoCreateInstance, which makes a
running instance of the object. If the filter is an in-process server, it runs in the process of the
Announcement Listener.

HRESULT Add(
 BSTR ProgID, // in
 IBroadcastFilter ** NewFilter, // out
 long *plRetVal // out, retval
);

Parameters

ProgID
Programmatic identifier of the filter to be added.

New Filter
Pointer to the running filter than has been created as a result of the Add method.

plRetVal
Index into the collection. This index can later be passed back as an argument to Item or
Remove.

Return Values

Returns an HRESULT indicating success or failure.

See Also

IFilterCollection::Remove

IFilterCollection::Count
[This is preliminary documentation and subject to change.]

The Count property returns the number of currently installed filters in the collection.

HRESULT Count(
 long *plRetVal // out, retval
);

2586

Announcement Listener Page 34 of 39

Parameters

plRetVal
Pointer to the number of filters.

Return Values

Returns an HRESULT indicating success or failure.

See Also

IFilterCollection::Item, IFilterCollection::_NewEnum

IFilterCollection::Item
[This is preliminary documentation and subject to change.]

This method returns a pointer to the indexed filter.

HRESULT Item(
 long Index, // in
 IBroadcastFilter ** ppFilterRetVal // out, retval
);

Parameters

Index
Index of the filter from which to retrieve information.

ppFilterRetVal
Pointer to the indexed filter.

Return Values

Returns an HRESULT indicating success or failure.

See Also

IFilterCollection::Count, IFilterCollection::_NewEnum

2587

Announcement Listener Page 35 of 39

IFilterCollection::Remove
[This is preliminary documentation and subject to change.]

The Remove method takes an index into the collection, and removes the specified filter from the list.

HRESULT Remove(
 long Index // in
);

Parameters

Index
Index into the collection specifying the filter to remove.

Return Values

Returns an HRESULT indicating success or failure.

See Also

IFilterCollection::Add

IBroadcastAnnouncement
[This is preliminary documentation and subject to change.]

An IBroadcastAnnouncement object encapsulates the Session Announcement Protocol (SAP) and
Session Description Protocol (SDP) sections of an announcement. This interface wraps the
Component Object Model (COM) object ISDP, which in turn encapsulates the SDP COM object and
some SAP fields.

This interface is currently in development, pending decisions on the announcement protocol.

Announcement Filter Manager
[This is preliminary documentation and subject to change.]

2588

Announcement Listener Page 36 of 39

The Announcement Filter Manager (Annui.exe) serves as a user interface to the Announcement
Listener.

This tool provides developers of broadcast client applications with an overview of the state of running
announcement filters. Using Announcement Filter Manager, you can install a filter manually, without
using an installation setup routine, and manually remove, enable and disable filters. Usually, installing
and enabling a filter is done programmatically, rather than through Announcement Filter Manager.

The Announcement Filter Manager interface is analogous to the Microsoft® Windows NT® Task
Manager in that it is useful for programmers or advanced users, but typically it is not available from a
shortcut or menu item.

The following topics provide more information about Announcement Filter Manager:

� Announcement Filter Manager Main Window
� Announcement Filter Manager Toolbar
� Adding a Filter with the Filter Manager

Announcement Filter Manager Main Window

[This is preliminary documentation and subject to change.]

The main window of the Announcement Filter Manager, shown in the following illustration, displays
the names of and details about the installed announcement filters in a list. The main window also
includes menus with commands that add, remove, enable, and disable filters, a toolbar that duplicates
some menu functions, and a status bar.

The columns in the filter list are:

� Filter Name — the full name of a particular filter.
� Enabled — whether or not this filter is enabled.
� Listen All — whether this filter is configured to be notified of all incoming announcements,

even when another filter has registered interest in those announcements. Filters that have this
property enabled can be used for monitoring or debugging announcements.

2589

Announcement Listener Page 37 of 39

� Last Match — the date and time when this filter last matched an announcement (if ever).
� # Matched — how many times this filter has registered a match.

To select a filter in the list, click it. When a filter is selected, options for manipulating that filter
become available on the toolbar.

Announcement Filter Manager Toolbar

[This is preliminary documentation and subject to change.]

As shown in the illustration in Announcement Filter Manager Main Window, the Announcement Filter
Manager features a toolbar with the following buttons:

� Add Filter — adds a new filter to Announcement Listener's filter list. For more information, see
Adding a Filter with the Filter Manager.

� Remove Filter — removes the selected filter from Announcement Listener's filter list. Clicking
this button does not delete any information about the filter from the registry, or delete any files.

� Enable Filter — sets a filter property so that the Announcement Listener calls this filter when a
new announcement arrives. You cannot click this button unless the selected filter is disabled.

� Disable Filter — sets a filter property so that the Announcement Listener does not call this
filter when a new announcement arrives. You cannot click this button unless the selected filter is
enabled.

� Start Announcement Listener — starts reception of data announcements and announcement
processing. You can only click this button when the Announcement Listener is stopped.

� Stop Announcement Listener — stops all reception of data announcements. Clicking this
button disables all announcement processing until the computer is restarted, but it does not stop
the receipt of previously scheduled broadcasts. You can click this button only when the
Announcement Listener is running.

� Auto Start — adds the Announcement Listener to the startup (RunServices) section of the
registry, so that the Announcement Listener is launched when the machine is restarted. (Usually
a broadcast client is configured to launch Announcement Listener at startup.)

� No Auto Start — removes the Announcement Listener from the startup section of the registry.
� About Dialog Box — displays the About Announcement Listener dialog box.

Adding a Filter with the Filter Manager

[This is preliminary documentation and subject to change.]

The following procedures describe how you can use Announcement Filter Manager to create new
instances of running filters and to add these running filters to the list of running filters maintained by
the Announcement Listener.

2590

Announcement Listener Page 38 of 39

 To add a new announcement filter to the list of running filters

1. Click the Add Filter button, or select Add Filter from the File menu.

Either of these options displays the Add Filter dialog box, shown following.

The Available Filter Classes list includes all filter classes that have been entered in the computer's
registry with a category identifier of CATID_BpcFilter.

2. Click the appropriate filter class in the Available Filter Classes list.
3. Click OK.

 To add a new filter from a filter class that is not yet registered

1. Click Browse.

A Browse dialog box appears.

2. Click the name of the filter file you want to register and add. The file may be an executable
(.exe) or dynamic-link library (.dll) file.

3. Click OK to register the selected filter class.

Announcement Filter Manager enters information about the type library for the filter class in the
registry. The new class appears in the list of available filter classes.

4. To create a running filter from this new class, click OK.

Note that the Add Filter dialog box lists all possible classes of filters, as opposed to all filters
currently running. A filter object is an instance of a filter class, and more than one instance of a filter
class might be running concurrently. For example, the generic filter class is listed only once in the Add
Filter dialog box, but many instances of the generic filter might be running. To see a list of all

2591

Announcement Listener Page 39 of 39

currently running filters, check the Announcement Filter Manager main window.

2592

Video Enhancements Page 1 of 95

Video Enhancements
[This is preliminary documentation and subject to change.]

The term enhanced video refers to the combination of a video program and multimedia elements such
as hypertext links, graphics, text frames, sounds, and animations.

This section is directed to those who plan to create or display enhanced video using Broadcast
Architecture.

The sections listed following provide an overview the enhancement components and their interactions,
instructions on using the enhancement components to create and receive enhancement streams, and
reference information for the enhancement components.

� About Enhancements explains what enhancements are and describes the various components of
the enhancement system.

� Using Enhancements explains how to create, transmit, and display enhanced shows.
� Enhancement Reference contains reference material relating to enhancements and the objects

used to create and view them.

About Enhancements
[This is preliminary documentation and subject to change.]

The following topics describe the components and procedures used with enhancements:

� Enhanced Shows explains what an enhanced show is and lists some of the features you can
implement.

� Enhancement Stream discusses the script used to synchronize enhancements with video.
� Stream Compiler Objects describes objects you can use to build enhancement stream editing

tools.
� Enhancement Sender Object describes the object used to transmit enhancement events and files

across a multicast router or LAN.
� Enhancement Client Architecture illustrates the reception and flow of enhancement data on the

Broadcast Architecture client.
� Enhancement Client Controls, describes the controls used to receive and display enhanced video

on the client.
� Location of Enhancement Files on the Client explains where enhancement files are stored on the

client computer.
� Enhancement Filter describes the enhancement filter and the programmable objects that interact

with it.

2593

Video Enhancements Page 2 of 95

Enhanced Shows

[This is preliminary documentation and subject to change.]

An enhanced show is one where the video is accompanied by interactive Web-style content. This
content can take many forms: simple text, rotating advertisements, links to Internet content, even
interactive chat controls that enable viewers to discuss the show with other viewers.

Because Broadcast Architecture uses HTML and Web technology as the basis for enhancements, any
type of content that can be delivered over the Web can also be used to build an enhanced show.

An enhancement can use functionality such as rotating content, hyperlinks, Applets, and Microsoft®
ActiveX™ controls. Enhancements can even interact with TV Viewer by scripting a .dll that
implements an ITVControl sink.

Enhancement Stream

[This is preliminary documentation and subject to change.]

The enhancement stream is a script that synchronizes enhancement events with specific times during
the enhanced show. An enhancement event changes the enhancement state and usually requires a
response by the client.

For example, an enhancement announcement sends data about a future enhanced show to the client.
Controls on the client handle this event and update the show listing in the Guide database.

There are three types of enhancement events currently defined:

� Enhancement announcements, which transmit information about an upcoming enhanced show.
� FTS downloads, which use FTS protocol to download enhancement files and dependencies.
� Triggers, which command the client to perform pre-defined actions. For example, one type of

trigger causes TV Viewer to automatically display a new enhancement page.

When an enhancement stream is saved to a file, the enhancement events are stored as stream compiler
statements. To locate more information about the stream compiler syntax, see Further Information on
Data Services for the Client.

Enhancement Announcements

2594

Video Enhancements Page 3 of 95

[This is preliminary documentation and subject to change.]

Enhancement announcements inform the client that a show is enhanced. They provide details about the
enhancement such as the enhancement identifier, the show that it enhances, and the starting page.

When the enhancement filter receives an enhancement announcement, it stores the enhancement
information in the Guide database. The presence of enhancement data in a show listing indicates that
the show is enhanced. Each time that a user tunes TV Viewer to a new channel, TV Viewer checks
the Guide database, to see if the new show is enhanced. If it is, and the user has enhancements
enabled, TV Viewer will display the show as enhanced.

There are two types of enhancement announcements, announcements for future enhanced shows and
announcements for enhanced shows that are currently being broadcast.

For more information, see the following topics:

� Future Enhancement Announcements
� Current Enhancement Announcements

FTS Downloads

[This is preliminary documentation and subject to change.]

The enhancement files and their dependencies are transmitted to the client computers using File
Transfer Service (FTS). FTS is a component of Microsoft® NetShow™ server that can send files
using a multicast transfer mechanism that includes forward error correction. NetShow is a component
of Microsoft® Site Server.

For more information about FTS, see Further Information on Data Services for the Client.

Triggers

[This is preliminary documentation and subject to change.]

Triggers are notifications that are sent to the client at specific times during the show. They instigate or
trigger an action on the client. For example, you can use triggers to automatically change the displayed
content, as in an advertisement rotator.

There are fours types of triggers currently supported by Broadcast Architecture:

� FTSData, causes the client to tune to a specified IP address and port to receive File Transfer
Service (FTS) data

2595

Video Enhancements Page 4 of 95

� NavBase, displays the specified HTML file as the top frame. In other words, the file is displayed
as if the user had clicked on an HREF hyperlink that used the parameter TARGET = TOP.

� NavFrame, displays a new page in a particular HTML frame.
� UserTrigger, sends a user trigger event. The functionality of a user trigger is defined by the

content provider. The content provider should implement scripts in the enhancement page to
handle custom triggers they define.

Triggers are received by the enhancement control, EnhCtrl which handles Broadcast Architecture-
defined triggers and passes user-defined triggers to scripts and, and if applicable, the user trigger
control, EnhUser.

Dependencies

[This is preliminary documentation and subject to change.]

Enhancement pages, like Web pages, are typically composed of several files. For example an
enhancement file, MyEnh.htm, can contain .gif and .jpeg graphic images, ActiveX controls,
FutureSplash animations, and other such files that must be downloaded for the enhancement page to
display properly. These additional files are MyEnh.htm's dependencies.

You must ensure that the enhancement's dependency files are stored on the client computers before
the enhancement is displayed. There are several strategies for handling dependencies:

� Allocate broadcast bandwidth to download the dependencies.
� Use another data transmission method, such as webcasting, to get the files onto the user's

computer.
� Have the user explicitly download and/or install the dependency files, either from a Web site or

portable media such as a CD-ROM.

Note that the first method, while the most elegant, requires careful budgeting of the bandwidth. You
must also handle the situation where a user tunes to a television show in the middle of a broadcast,
possibly missing transmission of some or all of the enhancement files. Typically, this problem is
handled by repeatedly transmitting files during the show.

The enhancement stream editor provides functionality to assist you in budgeting bandwidth for
enhancements and their dependencies. To locate more information on the enhancement stream editor,
see Further Information on Data Services for the Client.

Stream Compiler Objects

[This is preliminary documentation and subject to change.]

2596

Video Enhancements Page 5 of 95

The stream compiler objects are a set of COM objects that provide functionality to load, edit, and save
enhancement streams. Using these objects, you can create enhancement stream authoring tools. For
example, you can create applications such as an enhancement stream editor to compile enhancement
streams or a stream player to view and test the enhanced show.

Note The stream compiler object library, Stream.dll, is not part of the software supporting the
Broadcast Architecture Programmer's Reference. To locate this library, see Further Information on
Data Services for the Client.

The stream compiler object library contains the following objects:

� Event, an object that wraps information about a particular enhancement event, such as an
announcement, FTS data transfer, or trigger.

� Events, a collection of Event objects. Using this object, you can manipulate the entire stream of
events, rearrange events, search for a specific event, set default values, load or save the stream
to a file, and so on.

Another object that is useful if you are writing enhancement tools is the enhancement sender object,
ipsend. This object connects to the broadcast medium and can transmit all three types of enhancement
events: enhancement announcements, FTS downloads, and triggers.

Enhancement Sender Object

[This is preliminary documentation and subject to change.]

The enhancement sender object, ipsend, is an object that you can use to transmit the enhancement
stream over a broadcast medium such as a multicast router or LAN. The ipsend object supports three
separate IP connections, one each for: enhancement announcements, triggers, and FTS downloads.

For more information, see Broadcasting Enhancements.

Note The stream compiler object library containing ipsend, Stream.dll, is not part of the software
supporting the Broadcast Architecture Programmer's Reference. To locate this library, see Further
Information on Data Services for the Client.

Enhancement Client Architecture

[This is preliminary documentation and subject to change.]

On the broadcast client (the home viewer's personal computer), data is received as Internet data. From
this incoming stream, the video and audio data are extracted and sent to the video control, which

2597

Video Enhancements Page 6 of 95

resides in the page displayed by TV Viewer or a Web browser. At the same time, the enhancements
and triggers are received by the enhancement client controls. These controls are ActiveX controls that
respond to enhancement stream events. The following illustration shows this process.

You can extend the functionality of the client enhancement controls by scripting applications using
Microsoft® Visual Basic® Scripting Edition (VBScript) or Microsoft® JScript™ development
software that run in the client environment. Typically this is done by implementing scripts that handle
trigger events. For more information, see Handling Triggers.

Enhancement Client Controls

[This is preliminary documentation and subject to change.]

The enhancement client controls are ActiveX controls that can be embedded in enhancement pages.
These controls receive and respond to triggers, and send trigger events.

The main client-side control is the enhancement control, EnhCtrl. This control monitors the
enhancement trigger stream and responds to triggers that the content provider broadcasts. For
example, if the content provider sends an FTSData trigger, signaling an impending FTS broadcast,
EnhCtrl creates an internal object to tune to the specified IP address and port and receive the data.

If EnhCtrl receives a trigger that it does not recognize, in other words a user trigger, it sends a
trigger event that can be handled by scripts. There is also a user trigger control, EnhUser, that sends
user trigger events. You can create EnhUser on pages where you wish to script user-trigger event
handlers. This object is useful because unlike EnhCtrl, which can only be created once in a given
enhancement, you can create multiple instances of EnhUser.

For more information, see the following topics:

� Enhancement Control

2598

Video Enhancements Page 7 of 95

� User Trigger Control

Enhancement Control

[This is preliminary documentation and subject to change.]

The enhancement control, EnhCtrl, is a control that you can create in enhancement pages to receive
and handle broadcast triggers.

When TV Viewer displays an enhanced show, it tunes EnhCtrl to the IP address and port specified in
the enhancement data stored in the Guide database. (This is the enhancement data that was stored
during a prior enhancement announcement.) EnhCtrl monitors this IP stream for triggers. When
EnhCtrl receives a trigger, it handles Broadcast Architecture triggers, and sends an event for user
triggers. For example, if the content provider sends a NavBase trigger, EnhCtrl will cause TV Viewer
to display the enhancement's base page.

Note that you should only have one instance of EnhCtrl created at a time. This is because multiple
instances can result in redundant file reception and navigation. For example, if you create three
instances of EnhCtrl, one on each frame of an enhancement, each instance of EnhCtrl will perform
the action commanded by incoming triggers. A trigger to display a new page in the left-hand frame
will cause all three instances to load the new page into the frame. This limitation does not apply to
EnhUser, you can create as many instances of each as you want.

For more information, see Receiving Triggers.

User Trigger Control

[This is preliminary documentation and subject to change.]

The user trigger control, EnhUser, is a control that you can add to enhancement pages to generate
trigger events for user-defined triggers. It sends a UserTrigger event each time the client receives a
user trigger.

You can script event-handling routines on an enhancement page containing a EnhUser object. This
enables you, the content provider, to define and implement handler for custom triggers.

For more information, see Handling User Triggers.

Location of Enhancement Files on the Client

2599

Video Enhancements Page 8 of 95

[This is preliminary documentation and subject to change.]

Enhancement files may be located in either of two directory structures, the spool folder or the base
page folder.

Spool Folder

The spool folder serves as the location where all enhancement files are received during a broadcast.
The spool folder is created during the installation of Broadcast Architecture and can be found through
the system registry. For each enhanced show that is received, the client control creates a subfolder,
called an episode folder, within the spool folder, and gives the episode folder a unique name. The
client control then saves the enhancement files for the specific episode in the episode folder.

The episode folder can be further divided into subfolders. File names are specified relative to the
episode folder. For example, if the client control receives the transmitted file Images\Logo.jpg, then
the client control creates a folder called Images within the episode folder, if it does not already exist,
and writes the file Logo.jpg to that folder.

Base Page Folder

The base page folder is the folder that contains the HTML page that resides at the top level of pages
loaded into the Web browser. The client trigger control examines the Uniform Resource Locator
(URL) of the top-level page, extracts the path information from the URL, and considers that path to
indicate the base page folder. If the top-level page has been broadcast along with other enhancements,
then the base page folder is the same as the episode folder. However, the top-level page can also
reside in some other directory on the broadcast client.

For example, the top-level page might be a file that was installed initially along with the Broadcast
Architecture, such as a generic frame structure. These generic pages reside in the Program
Files\TVViewer\Layouts folder. Alternately, the top-level page may have been downloaded by the
viewer from a Web site prior to the start of the broadcast. In this case, the base page folder is the
folder where the viewer saved the top-level page.

When the enhancement client control receives a trigger to navigate to a file, the control first looks for
that file in the episode folder, or a subfolder if specified. If the file is not found there, the control next
looks in the base page folder, if different than the episode folder. An enhanced show may use a
combination of files from either or both the episode folder and the base page folder.

If the file is not found in either location, the client control displays an error message when in authoring
mode and does nothing in normal mode.

For more information, see the Remarks section in the EnhCtrl topic.

Enhancement Filter

2600

Video Enhancements Page 9 of 95

[This is preliminary documentation and subject to change.]

The enhancement filter is an Announcement Listener filter that processes enhancement
announcements. Enhancement announcements contain data about an enhanced show, such as the
filename of the base page, the name of the enhancement, and the show reference of the enhanced
show.

When the enhancement filter receives an announcement, it calls the enhancement loader proxy object
to load the enhancement data into the Guide database. Applications such as TV Viewer check for this
information to determine whether a show is enhanced and locate its base page.

Note The data passed to the enhancement filter through announcements only specifies the parameters
of the enhancement. It does not contain content such as enhancement HTML files. These files are
broadcast to the user's computer by means such as File Transfer Service (FTS) transmission, Internet
channel broadcasting, and so on.

There are two types of enhancement announcements, announcements for future enhanced shows and
announcements for enhanced shows that are currently being broadcast. For more information, see
Future Enhancement Announcements and Current Enhancement Announcements.

The following diagram illustrates the flow of enhancement data from the announcement stream to the
Guide database.

There should be only one instance of the enhancement filter running on the computer at any time.
Additional instances after the first do not receive enhancement announcements and slow performance.
This is because the Announcement Listener compares the type of each incoming announcement
against all registered filters. If there are multiple enhancement filters, this increases the number of
comparisons the Announcement Listener must perform.

2601

Video Enhancements Page 10 of 95

Future Enhancement Announcements

[This is preliminary documentation and subject to change.]

Future enhancement announcements contain information about the enhancements of an upcoming
broadcast. These announcements fully specify all data, including multicast address, port, ending time,
base page, and show reference. The enhancement filter simply loads this data into the Guide database
by calling the enhancement loader proxy object.

Current Enhancement Announcements

[This is preliminary documentation and subject to change.]

Announcements for current broadcasts are used to match an enhancement to an episode that the
viewer has tuned to in the middle of the broadcast. In this case, the client has not received the initial
enhancement trigger at the beginning of the show. Current enhancement announcements provide a
method for applications such as TV Viewer to start an enhancement with an episode in midstream.

Current announcements can also be used when the show time is not known. An example of this is the
case where video and its enhancement stream (which includes the announcements) is recorded to tape
for later broadcast. Using current announcements ensures the announcements will work no matter
when the show is broadcast.

Current announcements expire immediately; in other words, their expiration date is the same as their
transmission date. This ensures the Announcement Listener re-receives each broadcast of the current
enhancement announcement. Otherwise, the default behavior of the Announcement Listener is to
ignore duplicate announcements.

Current enhancement announcements are different from future enhancements in that they specify the
ending time as the show length plus five minutes instead of as a fixed time in the show reference. For
example, a future enhancement announcement might specify the ending time as 1/26/98 12:00:00,
whereas a current enhancement announcement might specify it as 35 minutes.

When the enhancement filter receives a current enhancement announcement, it calculates the ending
time and passes the connection information to the enhancement loader proxy object. If the show
reference or the base page of the enhancement, the preload URL, is not specified in the announcement,
the enhancement loader proxy gets the show reference and preload URL values of the current show
from the enhancement control. When the enhancement information is complete, the enhancement
loader proxy loads the enhancement data into the Guide database.

2602

Video Enhancements Page 11 of 95

Enhancement Loader Proxy

[This is preliminary documentation and subject to change.]

The enhancement loader proxy, EnhLoaderProxy, is an object that loads data from an enhancement
announcement into the Guide database. The enhancement filter creates and calls an instance of this
object to load the data from enhancement announcements into the Guide database. This is the same
data that TV Viewer checks to determine whether a show is enhanced.

You can use EnhLoaderProxy in applications where you need to explicitly load enhancement data
into the Guide database. For example, if you created a Web site where users can download
enhancement files, your application could call EnhLoaderProxy to update the user's Guide database
with the new enhancement data.

Using Enhancements
[This is preliminary documentation and subject to change.]

By adding enhancements to video, you can make a presentation richer in content and more interactive.
This section explains the technical details required to create, transmit, and receive an enhanced show.
To locate information on design issues, see Further Information on Data Services for the Client.

The following topics describe the processes involved in creating an enhanced show:

� Creating Enhancement Files, explains how to create enhancement pages.
� Creating an Enhancement Stream describes how to create a script that synchronizes the

download and display of your enhancements with the enhanced show.
� Flattening an Enhancement Stream describes flattened and unflattened stream syntax and

explains how to flatten a enhancement stream.
� Broadcasting Enhancements, describes the process of broadcasting enhancements to clients.
� Receiving Enhancements on the Client describes how to use the client controls in enhancement

pages to enable users to receive the various types of enhancement data.
� Displaying Enhancement Pages in TV Viewer, describes how TV Viewer recognizes an

enhanced episode and what you must do to register your enhancement with TV Viewer.
� Handling Triggers, explains how to use the enhancement client controls to handle trigger events.
� Controlling Navigation in Enhancements, describes how to use navigation triggers and

Microsoft® Visual Basic® Scripting Edition (VBScript) subroutines to display synchronized
enhancements in the appropriate frames. This section also explains how to implement viewer-
initiated enhancements.

2603

Video Enhancements Page 12 of 95

Creating Enhancement Files

[This is preliminary documentation and subject to change.]

The following topics describe the steps necessary to create video enhancements:

� Creating Enhancement Pages
� Creating the Framework

After you have created the enhancement files, you can reference those files as you create the
enhancement stream. An enhancement stream is a script that maps enhancement events, such as
displaying a new page, to specific times in the enhanced show. For more information, see Creating an
Enhancement Stream.

Creating Enhancement Pages

[This is preliminary documentation and subject to change.]

Enhancement pages are HTML files that format the enhancement content for display. If you already
know how to create interactive World Wide Web pages and you want to develop applications that
receive interactive television content, you already have most of the information you need. Broadcast
Architecture enhanced video is based on technologies you already know: Hypertext Markup Language
(HTML), Microsoft® ActiveX™ controls, and Microsoft® Visual Basic® Scripting Edition
(VBScript) or Microsoft® JScript™ development software.

To locate additional information about designing and creating enhancements for shows, see Further
Information on Data Services for the Client.

Creating the Framework

[This is preliminary documentation and subject to change.]

Typically, enhancements are displayed in multiple frames. One of which plays the video, while the
other frame(s) contain the enhancement content. Enhancement frames are built using exactly the same
syntax that you use for building framed Web pages.

The example following creates a three-frame structure, as shown.

2604

Video Enhancements Page 13 of 95

The HTML page following builds the three frames.

<HTML>
<head><Title>Simple Navigation</Title>
</head>
<BODY bgcolor="black" leftmargin=0 topmargin=0 link="#FFFFFF">
 <table width=800 height=600 cellpadding=0 cellspacing=0
 bordercolor="yellow" border=1>

<tr><!-- Begin left frame (left 300 pixels) -->
<td rowspan=2 width=300 height=600 >
<IFRAME src="Side.htm" name="Side" width=300 height=600

scrolling="no" frameborder=0 vspace=0 NORESIZE> </IFRAME>
</td>

<!-- Begin video screen frame (right 500 pixels) -->
<td width=500 height=375 align="left" valign="top">
<!-- The follow tag creates an instance of the Enhancement

Video control -->
<OBJECT
ID=myEnhVideo
CLASSID="clsid:a74e7f00-c3d2-11cf-8578-00805fe4809b"
BORDER=0
VSPACE=0
HSPACE=0
ALIGN=TOP
HEIGHT=100%
WIDTH=100%

>
<PARAM NAME="INTENT" VALUE=ENHANCE_VIDEO>

</OBJECT>
<tr><!-- Begin bottom-right frame -->

<td>
<IFRAME src="Under.htm" name="Under" width=500 height=225
scrolling="no" frameborder=0 vspace=0 NORESIZE> </IFRAME>
</td></tr>

</TABLE>

2605

Video Enhancements Page 14 of 95

<!-- This is the Broadcast Architecture EnhCtrl Object -->
<OBJECT
CLASSID="clsid:3A263EF8-D768-11D0-911C-00A0C91F37E3"
WIDTH=0 HEIGHT=0 ID=EnhCtrl>
</OBJECT>

</BODY>
</HTML>

For more information about the object created in the preceding example, see Enhancement Video
Control.

In addition to frames, you can also use overlays to create an enhancement layout. Overlays, also know
as CSS positioning, are a feature of Dynamic Hypertext Markup Language (DHTML) that define the
placement of elements on a page. You can use overlays in enhancement pages to position the video
and enhancement content on the same page. Overlays provide better performance that HTML frames.

To locate more information about CSS positioning, see Further Information on Data Services for the
Client.

Creating an Enhancement Stream

[This is preliminary documentation and subject to change.]

An enhancement stream is a script that synchronizes enhancement events with specific times in the
enhanced show. The script is written in stream compiler syntax and stored as a text file. If you are
planning to broadcast an enhanced show, you will need to create an enhancement stream.

The enhancement stream coordinates enhancement actions with the video. For example, your script
can ensure that files are transmitted prior to their display, triggers occur at specific times during the
show, and that important files are repeatedly transmitted so they are always available to the viewer.

There are three methods that you can use to build an enhancement stream:

� Write the stream explicitly using stream compiler syntax and save it as a text file. This method
requires fluency in the stream syntax language and advanced knowledge of the client system.
You may still want to use a tool to validate your syntax and/or flatten the stream. For more
information about the stream compiler syntax, see Flattening an Enhancement Stream or Further
Information on Data Services for the Client.

� Use the enhancement stream editor to create an enhancement stream. This tool displays the
enhancement stream as a time line and assists you in budgeting the available bandwidth. To
locate more information on the enhancement stream editor, see Further Information on Data
Services for the Client.

� Create a custom stream editor tailored to your needs, and use that to create an enhancement
stream.

2606

Video Enhancements Page 15 of 95

The order and composition of your enhancement stream depends on the content and structure of your
enhanced show. However, you should keep in mind the following guidelines when composing an
enhancement stream:

� Send an enhancement announcement for the enhanced show before it begins and repeatedly
during the show. This loads the enhancement information into the Guide database, where it can
be retrieved and used by TV Viewer.

� Schedule dependencies to be broadcast before the enhancement page that requires them.
� Ensure that files referred to by NavBase and NavFrame triggers are broadcast to the client

before you broadcast the trigger. This ensures that you only redirect TV Viewer to display files
that are available.

� Repeatedly transmit critical enhancement events. If the user tunes to the enhanced show in the
middle of the episode, she or he may miss events broadcast earlier in the show. Repeatedly
broadcasting enhancement files and triggers enables TV Viewer to receive and display
enhancements even when the user was tuned to another channel for part of the episode.

Flattening an Enhancement Stream

[This is preliminary documentation and subject to change.]

The Stream Compiler syntax can be written in either high-level, unflattened format or low-level,
flattened format. Writing the stream in unflattened format makes the syntax compact and easy to
understand. However before you can broadcast the stream using ipsend, you must flatten the stream
to low-level format.

Using unflattened statements you can specify functionality such as 'transmit this trigger every 60
seconds' or 'transmit this file and all its dependencies' in a single statement. When the stream is
flattened, each transmission required to implement those requests is specified explicitly in a separate
statement.

For example, the following statement uses unflattened syntax to indicate that a file and its
dependencies should be repeatedly broadcast at 60-second intervals throughout the show:

before 00:10:30.00 trigger (3 "Left" "Left_07.htm") repeat 60 until ShowLength;

When this statement is flattened, it is converted into the following set of statements (assuming that
Pretty.gif is a dependency of Left_07.htm):

00:10:19:00 "Pretty.gif";
00:10:26:00 "Left_07.htm" only;
00:10:30:00 trigger 1 "Left_07.htm" only;
00:11:19:00 "Pretty.gif";
00:11:26:00 "Left_07.htm" only;
00:11:30:00 trigger 1 "Left_07.htm" only;
00:12:19:00 "Pretty.gif";
00:12:26:00 "Left_07.htm" only;

2607

Video Enhancements Page 16 of 95

00:12:30:00 trigger 1 "Left_07.htm" only;

and so on.

You can use the Events.Flatten method of the Stream Compiler Objects to flatten an enhancement
stream.

Note The stream compiler object library, Stream.dll, is not part of the software supporting the
Broadcast Architecture Programmer's Reference. To locate this library, see Further Information on
Data Services for the Client.

For example, the following code loads an enhancement stream from the file, EnhStr.txt, flattens it, and
then saves the flattened stream to the file, EnhStrFlat.txt.

Dim evs As IEvents
Set evs = New Events
evs.Load("C:\EnhTools\EnhStr.txt")
evs.Flatten
evs.Store("C:\EnhTools\EnhStrFlat.txt")

Broadcasting Enhancements

[This is preliminary documentation and subject to change.]

Once you have created your enhancement files and compiled and flattened an enhancement stream, the
next step is to broadcast the enhancements and video to clients.

You can use the enhancement sender object, ipsend, to broadcast enhancement data, such as
announcements, FTS data, and triggers, to clients. Enhancements can be broadcast over any transport
that supports IP protocol, including the multicast routers and LAN networks.

The following function broadcasts events from an enhancement stream, using ipsend to transmit those
events. This example assumes that a global instance of ipsend, isend, has already been created and
connected to the outgoing IP streams.

Function SendEvent(e As IEvent) As String

 If e.IsTrigger Then

'If the trigger is a NavFrame trigger and is missing the
'initial '&' character, add it, otherwise do not
If Mid$(e.Name, 1, 1) = "&" Or e.trigger <> 3 Then

x$ = ""
Else

x$ = "&"
End If

'Transmit the trigger

2608

Video Enhancements Page 17 of 95

'(For triggers, Event.Name contains the trigger data)
isend.SendTrigger e.Trigger, x$ + e.Name

 Else

If e.IsAnnounce Then
'Transmit the announcement
'(For announcements, Event.Name contains the name and
' path of the announcement file)
isend.SendAnnouncement e.Name

Else
'Transmit the file, using FTS
'(For FTS events, Event.Name contains the source filename)
'In this example the source and destination
'filenames are the same.
isend.SendFTSFile e.Name, e.Name

End If

 End If

End Function

Note The enhancement stream must be flattened before the preceding function runs. For more
information, see Flattening an Enhancement Stream. This step is not necessary if you have written the
enhancement stream using only flat syntax.

To use a function such as SendEvent in an application, you could create a timer routine that
compares the start time of the next event in an enhancement stream with the current time elapsed in
the show. When the time for the event arrives, the timer routine could call SendEvent to broadcast
the event.

Receiving Enhancements on the Client

[This is preliminary documentation and subject to change.]

Computers that have the TV Viewer component of the Microsoft® Windows® 98 operating system
installed can receive enhanced video. Enhancement announcements are automatically received and
handled by the enhancement filter. If your enhancements need triggers or to receive FTS data, you can
easily add this functionality by including the enhancement client controls in your enhancement pages.

The following lists the uses of the various client controls:

� To receive and handle triggers and FTS downloads, create an instance of the enhancement
control, EnhCtrl, in one of your enhancement pages. For more information, see Receiving
Triggers.

� To handle custom triggers on a page other than the one that contains EnhCtrl, create an
instance of the user trigger object, EnhUser. For more information, see Handling User
Triggers.

2609

Video Enhancements Page 18 of 95

Displaying Enhancement Pages in TV Viewer

[This is preliminary documentation and subject to change.]

TV Viewer is the television viewing component of Windows 98. Typically, this is the application in
which the users will view your enhanced show.

When the user tunes TV Viewer to a new channel, it checks the Guide database to see whether the
new show or channel is enhanced. If it finds enhancement information, and the user has not disabled
enhancement viewing, TV Viewer uses the information to display the enhancement.

If you want your enhancements to be able to be displayed by TV Viewer, you must load information
about the enhancement into the guide database. This is done with enhancement announcements.

An enhancement announcement is sent at some point before the client receives the enhancements, such
as before the show is broadcast. It contains data about the enhancement, such as the enhancement
identifier, the show reference of the show or channel that it enhances, and the filename of the initial
enhancement page.

The Announcement Listener receives all the announcements sent to the client. It routes enhancement
announcements to the enhancement filter. The filter in turn calls the EnhLoaderProxy object to load
the enhancement data into the Guide database.

You can add an enhancement announcement to the enhancement stream in one of several ways:

� Use the Announcement Wizard feature of the enhancement stream editor. To locate more
information on the enhancement stream editor, see Further Information on Data Services for the
Client.

� Write the announcement specification in stream compiler syntax. For example, adding the
following statement to the enhancement stream causes the announcement specified in
Myshow.ann to be transmitted prior to the one-minute mark of a show.

before 00:01:00:00 announcement "Myshow.ann";

� Use the stream compiler objects, or a tool based on those objects to schedule an announcement.
For example, the following Visual Basic code creates an announcement identical to the one in
the preceding example.

'Add a new event using stream compiler syntax
evs.AddText("before 00:01:00:00 ""Myshow.ann"" announcement;")

In addition to adding a new event, you can use the stream compiler objects to change the text of
an existing event to the announcement text.

2610

Video Enhancements Page 19 of 95

'e1 is a previously-created enhancement event
evs.Add(60, "First Announcement")
Set e1 = evs.LastAdd
...
'Set the text of the e1 to specify the announcement
e1.Text = "before 00:01:00:00 ""Myshow.ann"" announcement;"

Note The format of the announcement file, Myshow.ann in the preceding examples, is described in the
topic, Enhancement Announcement Format.

For more information about the stream compiler syntax, see Stream Compiler Objects and Further
Information on Data Services for the Client.

Handling Triggers

[This is preliminary documentation and subject to change.]

To receive broadcast video, broadcast data, announcements, and triggers, the HTML pages on the
broadcast client must contain special ActiveX controls that tune to the appropriate network channels
and respond appropriately. These controls are included with Broadcast Architecture

There are two controls that you can use to generate trigger events: the enhancement control and the
user trigger control, EnhUser. EnhCtrl is the enhancement control. It handles Broadcast Architecture
triggers and sends an event for each user trigger it receives. EnhUser does not handle any triggers, it
only sends an event when the client receives a user trigger. EnhUser is useful in situations where you
need to generate user-trigger events on a page in the enhancement other than the one that contains
EnhCtrl.

For details on how to use these controls in a Web page and implement scripts that handle the trigger
events, see the following topics:

� Receiving Triggers
� Handling Broadcast Architecture Triggers
� Handling User Triggers

Receiving Triggers

[This is preliminary documentation and subject to change.]

In order for your enhancement pages to receive triggers, you must create an instance of the
enhancement control, EnhCtrl. The enhancement control, EnhCtrl, monitors the enhancement IP
stream for triggers. This control interacts with TV Viewer or the Web browser that is hosting it to

2611

Video Enhancements Page 20 of 95

handle Broadcast Architecture triggers.

To create an instance of EnhCtrl in an enhancement or Web page, use the following HTML:

<!-- Creating the EnhCtrl Object -->
<OBJECT
CLASSID="clsid:3A263EF8-D768-11D0-911C-00A0C91F37E3"
WIDTH=0 HEIGHT=0 ID=myEnhCtrl>
</OBJECT>

Note There must be only one of EnhCtrl on any set of framed enhancement pages. Multiple instances
of this control causes multiple navigation calls and other errors. For example, if there are two
instances of the enhancement control, a single NavBase trigger will cause the specified page to load
twice.

Handling Broadcast Architecture Triggers

[This is preliminary documentation and subject to change.]

Broadcast Architecture defines a set of triggers with specific functionality. These triggers command
the client to do such actions as display new content in a frame, display the enhancement's starting
page, or receive an FTS download.

The enhancement control, EnhCtrl, automatically handles Broadcast Architecture triggers,
performing the specified action. For example, if the client receives a trigger to display change the
content displayed in a specific frame, EnhCtrl interacts with TV Viewer or the Web browser hosting
it, to display the new content.

For more information about the types of triggers defined by Broadcast Architecture, see Enhancement
Triggers.

Handling User Triggers

[This is preliminary documentation and subject to change.]

User triggers open essentially unlimited possibilities for control over your enhanced production.
Because user triggers can invoke subroutines that you create in VBScript or JScript, you can perform
any type of action, including the use of client-side decision branches and dynamic generation of
HTML, based on receipt of a particular trigger message.

You can use either EnhCtrl or EnhUser in a page to receive user triggers and send an event that calls
a VBScript subroutine. If an instance of EnhCtrl is already present in the page, you do not need to
use EnhUser. However, you can create other pages within the enhanced show that include instances

2612

Video Enhancements Page 21 of 95

of the EnhUser control. (Only one instance of EnhCtrl can run at once, but any number of instances
of EnhUser can run simultaneously.)

The following code example defines a subroutine that is invoked when the control receives a user
trigger. The example works on the assumption that the following code appears in the same file
EnhCtrl is embedded in.

The subroutine is initiated by the occurrence of a user trigger. The subroutine first examines the
integer key and performs a case statement to determine the appropriate action based on the key. In
this example, if the key is 1001 the trigger is assumed to refer to a Macromedia Flash animation
elsewhere in the frame structure. In this case, the script then examines the string to determine what
action to take. The script sets the animation to the frame number specified by the contents of the
string.

<SCRIPT LANGUAGE="VBScript">
<!--
Sub myEnhCtrl_onTrigger(lkey, lpszTrigger)
 Select Case lKey

Case 1001 ' Set skyline animation
if lpszTrigger = "Day" then

parent.frames(0).MainAni.framenum=10
elseif lpszTrigger = "Dusk" then

parent.frames(0).MainAni.framenum=11
elseif lpszTrigger = "Night" then

parent.frames(0).MainAni.framenum=12
end if

Case 1002
MsgBox "Another case"

Case Else
End Select

End Sub

-->
</SCRIPT>

Other user trigger numbers (1,002 and so on) might be used for other effects. User triggers can be
numbered from 1,000 to 2,147,483,647.

Controlling Navigation in Enhancements

[This is preliminary documentation and subject to change.]

Navigation refers to directing HTML pages to appear in various frames, either under control of the
broadcast show or of the viewer. Loosely, navigation refers to creating a set of frames and controls
that interact with one another to create an enhanced show.

The following topics provide an overview of the options you have for navigation within enhanced
video:

2613

Video Enhancements Page 22 of 95

� Synchronous Navigation Using Triggers
� Handling Viewer-Initiated Navigation

Synchronous Navigation Using Triggers

[This is preliminary documentation and subject to change.]

To illustrate synchronous navigation using triggers, suppose you want a series of different
enhancements to appear in the Side frame, shown in Creating the Framework, at specific moments
during the show. To produce this effect, you create a page that responds to a trigger. The trigger is
broadcast at the proper moment during the show.

The type of trigger that produces the necessary action is called a NavFrame trigger. A NavFrame
trigger specifies both a Uniform Resource Locator (URL) to display and the frame in which to display
it. To respond to the NavFrame trigger, you embed the object EnhCtrl into the Web page, as shown
in Creating the Framework. The ActiveX control EnhCtrl automatically performs the navigation
when it receives a trigger of this type. For more information, see Enhancement Client Controls.

Once EnhCtrl is embedded, the process is complete. Assuming that the NavFrame triggers are
broadcast with the target frame specified as Side, the specified pages appear in those frames during the
show.

Handling Viewer-Initiated Navigation

[This is preliminary documentation and subject to change.]

Some shows support two different types of enhancements. Synchronous enhancements appear when
triggers are received during the course of the show. Viewer-initiated enhancements are caused by the
person watching the show. For example, when the viewer clicks Cast in the menu control, an
animation featuring the cast of the show appears in the left frame, replacing the current synchronous
enhancement.

Suppose a new synchronous enhancement is triggered to appear in the left frame while the viewer
interacts with user-initiated enhancements in the same frame. The EnhCtrl control handles this
situation by saving the Uniform Resource Locator (URL) of the synchronous enhancement but not
displaying the enhancement immediately. When the viewer switches back to watching the show, the
appropriate synchronous enhancement appears.

To control whether synchronous enhancements should appear, use the EnhCtrl.FrameSync property.
The syntax is:

EnhCtrl.FrameSync(framename) = [True|False]

2614

Video Enhancements Page 23 of 95

For example, the following statement sets the control so that if any subsequent NavFrame trigger
occurs with the Side frame as the destination, the file name of the synchronous trigger is retained but
not displayed:

EnhCtrl.FrameSync("Side") = False

The next statement sets the control so that the file most recently named by a NavFrame trigger is
immediately displayed, and so that subsequent NavFrame triggers that name the Side frame as the
destination immediately display the file:

EnhCtrl.FrameSync("Side") = True

The following HTML example shows how synchronous enhancements can be turned on and off under
user control. Because the buttons exist in Under.htm, which is a subframe of the page that contains the
control, the script must reference the control in the outer page by preceding the control name with
parent.

<form method="POST" NAME="TestForm">
 <input type=button maxlength=256 name="Synchronous" value="Synchronous">

<SCRIPT FOR="Synchronous" EVENT="onClick" LANGUAGE="VBScript">
' This button turns synchronous enhancements on.
parent.EnhCtrl.FrameSync("Side") = True

</SCRIPT>
 <input type=button maxlength=256 name="Viewer" value="Viewer">

<SCRIPT FOR="Viewer" EVENT="onClick" LANGUAGE="VBScript">
' This button turns synchronous enhancements off and
' displays a viewer navigation page.
parent.EnhCtrl.FrameSync("Side") = False
parent.frames(0).location.href="Viewer.htm"

</SCRIPT>

Enhancement Reference
[This is preliminary documentation and subject to change.]

The following topics provide reference information about the enhancement-related objects and
libraries:

� Enhancement Announcement Format describes the format used in enhancement announcements.
� Enhancement Triggers describes the types and formats of enhancement triggers.
� Enhancement Daemon 1.0 Type Library discusses the enhancement control and other objects

that can be used in enhancement Web pages.
� EnhLoaderProxy describes the object called by the enhancement filter to load enhancement

information into the Guide database.

2615

Video Enhancements Page 24 of 95

� Stream Compiler Object Library describes the programmable COM objects exposed by the
compiler that creates and edits the enhancement stream.

� ipsend details an object you can use to transmit enhancement events.

Note The preceding object references are documented using syntax for the Microsoft® Visual Basic®
development system . However, because the enhancement objects implement COM, you can use them
from any COM-supporting language, including Java and the Microsoft® Visual C++® development
system.

Enhancement Announcement Format

[This is preliminary documentation and subject to change.]

Enhancement announcements are formatted using Session Description Protocol (SDP). For more
information, see Announcement Format. This topic discusses only the SDP fields used by
enhancement announcements.

The following is a sample enhancement announcement for a future show:

v=0
o=enhfilt 248 56132 IN IP4 157.55.106.31
s=Fresh Prince Enhanced
c=IN IP4 231.31.17.1
t=31557167 31449234
a=EnhID:{9E2E8B20-083E-11d1-898F-00C04FBBDEBC}
a=ShowRef:1997/7/29!26673/7175/9690!0:30!0!0!0!0!9690!9690!4096!7040!''!'CBUT'!3!54
a=PreloadURL:show\default.htm
a=FutureEnh:
m=data 3456 udp 0

where

v =
Announcement protocol version.

o =
Owner of the announcement, in this case the enhancement filter, and session identifier.

s =
Name of the enhancement. This string should be used as the enhancement title in any user
interface relating to the enhancement.

c =
Connection information.

t =
Time the session is active.

a =
Attribute fields, of which there can be zero or more. The enhancement announcement format
specifies the following attribute fields:
a = EnhID

2616

Video Enhancements Page 25 of 95

Identifies the announcement as an enhancement announcement and specifies a unique
identifier for the enhancement.

a = ShowRef
Specifies the show reference of the enhanced episode or episodes. This field is required
for future announcements. If this field is not present, the filter assumes the announcement
is for a current broadcast. For more information, see Show Reference Format.

a = PreLoad
Specifies the Uniform Resource Locator (URL) of the HTML file that contains the layout
of the enhancement. This field is optional for a future announcement and is not used for
current announcements. If you do not specify a complete path, such as C:\MyEnhance\,
the URL is resolved relative to C:\Program Files\TV Viewer\Layouts. For example, if you
specify Cspan\Cspan.htm, this path is resolved to C:\Program Files\TV
Viewer\Layouts\Cspan\Cspan.htm.

a=FutureEnh
Indicates that the announcement is for a future enhancement. This field is required for
future enhancements and is not used for current enhancements.

m =
Specifies the media name and transport address.

Enhancement Triggers

[This is preliminary documentation and subject to change.]

Each type of trigger sent to the enhancement control has a specific format associated with it. The basic
trigger format is a string that contains two parts, a key or numerical identifier, and the trigger data.
The key is separated from the data by white space, typically a space or tab character.

"Key TriggerData"

For example, the following string might be specified in a NavBase trigger:

"2 http://www.microsoft.com/default.htm"

The following table lists the trigger formats currently supported.

Key Name Description

0 Error No action is taken.

1 FTSData Receives File Transfer Service
(FTS) data at the specified
address and port.

2 NavBase Displays the specified page as
the top-level frame.

2617

Video Enhancements Page 26 of 95

FTSData Trigger

[This is preliminary documentation and subject to change.]

FTSData triggers indicate that File Transfer Service (FTS) data, such as an HTML enhancement file,
is about to be transmitted. They are formatted as shown following

"1 strIPAddress"

where strIPAddress is a String that contains the IP address and port that the FTS data will be
transmitted on. This address and port must be in the following format: xxx.xxx.xxx.xxx:yyyy, where
xxx.xxx.xxx.xxx is the IP address, and yyyy specifies the port.

When the enhancement control receives a FTSData trigger, it creates an instance of an internal object
to receive the file. Multiple files may be received at the same time on different IP address and port
combinations.

All files transmitted on the specified IP address and port are placed into the spool directory.

NavBase Trigger

[This is preliminary documentation and subject to change.]

NavBase triggers store preload URL data in the enhancement control for later use. NavBase triggers
are formatted as shown following

"2 strPreloadURL"

where strPreloadURL is a String that contains the location of the enhancement's initial HTML page.
This location can be either a fully specified URL, or a URL relative to the spool directory, C:\Program
Files\TV Viewer\Enhspool\.

The NavBase trigger, when received by the EnhCtrl control, navigates to the highest-level window of
the Web browser to the specified URL. (This functionality produces the same result as setting

3 NavFrame Displays the specified page in
the specified frame.

4 – 999 Reserved Key values reserved for future
trigger functionality.

1,000 and
up

UserTrigger Sends user trigger event.

2618

Video Enhancements Page 27 of 95

TARGET="_top" in an HREF link.) This trigger can be used to reset the entire enhanced show.

However, usually you do not need this trigger. This trigger usually is not necessary because the
Program Guide contains the base URL for each show and updates the container automatically when
the viewer changes channels, or when a new show begins on the same channel.

NavFrame Trigger

[This is preliminary documentation and subject to change.]

NavFrame triggers cause the enhancement control to display a new HTML page in the specified
frame. They are formatted as shown following

"3 &strFrame&strURL"

where strFrame is a String that contains the name of the frame to display the new content, and
strURL is a String that contains the location of the HTML page to display. This location can be either
a fully specified URL, or a URL relative to the spool directory, C:\Program Files\TV
Viewer\Enhspool\.

Using a NavFrame trigger, you can sequence complex enhanced Web content without any scripting.

The results of this trigger depend on the state of the FrameSync property of the EnhCtrl control.
When this property is set to False, the control does not navigate immediately to the specified URL but
does save the URL. When this property is once again set to True, the control navigates to the URL
most recently specified.

The directory for URLs specified by Navigate Base and NavFrame triggers is the spool directory.

UserTrigger Trigger

[This is preliminary documentation and subject to change.]

User triggers are custom triggers sent by the broadcast provider. They are formatted as show
following

"lKeyID strData"

where lKeyID is a Long that indicates the trigger identifier, whose value is defined by the content
provider and must be greater than 1,000, and strData is a String that contains the trigger information.
The trigger information data is parsed and used by the event handler that processes the user trigger.

2619

Video Enhancements Page 28 of 95

Enhancement Daemon 1.0 Type Library

[This is preliminary documentation and subject to change.]

The Enhancement daemon 1.0 type library, Entrig.dll, provides the following objects:

� EnhCtrl, the enhancement control.
� EnhUser, the user trigger object.

EnhCtrl

[This is preliminary documentation and subject to change.]

EnhCtrl, provided by Entrig.dll, is the enhancement control. It receives an incoming Internet Protocol
(IP) data stream, responds to navigation triggers, and makes user triggers available to scripted
routines. This control must appear in one of the files belonging to the enhanced show.

The enhancement control provides the following properties.

Property Description

Address IP address used to connect to the enhancement
stream.

EnableErrorMsg Value that specifies whether the enhancement
control displays error messages to the user.

EnableNavBase Value that specifies whether the enhancement
control responds to NavBase triggers

EnhancedShow Value that specifies whether the enhancement
control has the information that enhancements are
currently being displayed.

FrameSync Value set to enable or disable synchronous
triggers.

NetCard Network card address used to connect to the
enhancement stream.

Port Port used to connect to the enhancement stream.

TriggerSource Reference to the trigger source object. Set
EnhUser.TriggerSource equal to this value to
enable the user trigger object to receive triggers.

2620

Video Enhancements Page 29 of 95

The enhancement control provides the following methods.

The enhancement control provides the following events.

Remarks

There must be only one instance of this control on any set of enhancement pages. Multiple instances of
this control causes multiple navigation calls. For example, if there are two instances of the
enhancement control, a single NavBase trigger will cause the specified page to load twice.

The enhancement control operates in any of three modes, normal, loopback, and authoring. In normal
mode, the client monitors for triggers and enhancement files on an IP multicast address. Error
conditions such as missing files are ignored. In loopback mode, the client monitors for triggers and
enhancement files on a loopback IP address. In other words, the source is the broadcast client itself.
Error conditions such as missing files are ignored. In authoring mode, the client monitors the loopback
address, and error conditions such as missing files are reported with error messages.

The mode is determined by the situation in which the enhancement client control is created. If the
control is created in TV Viewer and IP information is provided, the control runs in normal mode. If
the control is created in TV Viewer but no IP information is given, the control runs in loopback mode.
Finally, if the control is created under a stand-alone instance of Internet Explorer, the control runs in
authoring mode.

See Also

Method Description

InitiateConnection Connects the enhancement control to the trigger
stream.

SendTrigger Generates a "virtual" trigger. This method is
typically used for testing.

Event Description

BeforeNavFrame The control is about to navigate a frame to a new
Web page in response to a NavFrame trigger.

DisplayOverlay This event is always sent following an
OnNewOverlay event.

HideOverlay This event is always sent preceding an
OnRemoveOverlay event.

OnNewOverlay The control has received a NavBase trigger that
specifies an overlay.

OnRemoveOverlay The control has received a trigger navigating it
back to full-screen video or the program guide.

OnTrigger The control has received a user trigger from the
Announcement Listener.

2621

Video Enhancements Page 30 of 95

EnhUser

Examples

The following HTML creates an instance of a EnhCtrl object on a Web or enhancement page.

<!-- This is the Broadcast Architecture EnhCtrl Object -->
 <OBJECT
 CLASSID="clsid:3A263EF8-D768-11D0-911C-00A0C91F37E3"
 WIDTH=0 HEIGHT=0 ID=myEnhCtrl>
 </OBJECT>

EnhCtrl.Address
[This is preliminary documentation and subject to change.]

The Address property specifies the multicast IP address used to connect to the enhancement stream.

Syntax

object.Address [= strAddress]

Parts

object
Object expression that resolves to the EnhCtrl object.

strAddress
String that specifies the IP address on which the enhancement is received. This address should
be in the format xxx.xxx.xxx.xxx, for example 255.255.255.255.

Remarks

This property should only set if your application does not use TV Viewer. If you call the
ITVViewer::Tune method, the address parameter specified during the method call overrides the
value set in EnhCtrl.Address.

EnhCtrl.EnableErrorMsg
[This is preliminary documentation and subject to change.]

2622

Video Enhancements Page 31 of 95

The EnableErrorMsg property indicates whether the enhancement control displays error messages to
the user.

Syntax

object.EnableErrorMsg [= lEnable]

Parts

object
Object expression that resolves to the EnhCtrl object.

lEnable
Long that indicates whether error messages should be enabled. If this value is non-zero, error
messages are enabled. If this value is zero, they are not.

EnhCtrl.EnableNavBase
[This is preliminary documentation and subject to change.]

The EnableNavBase property indicates whether to respond to NavBase triggers.

Syntax

object.EnableNavBase [= lNavBase]

Parts

object
Object expression that resolves to the EnhCtrl object.

lEnable
Long that indicates whether NavBase triggers should be enabled. If this value is non-zero, error
messages are enabled. If this value is zero, they are not.

EnhCtrl.BeforeNavFrame
[This is preliminary documentation and subject to change.]

The BeforeNavFrame event occurs before the enhancement control navigates a frame to a new HTML

2623

Video Enhancements Page 32 of 95

page, typically in response to a NavFrame trigger.

Syntax

Private Sub object_BeforeNavFrame(bstrFrame, bstrURL, lCancel)

Parameters

object
Object expression that resolves to the EnhCtrl object.

pbstrFrame
String that contains the name of the HTML frame in which the Web page should appear.

pbstrURL
String that contains the URL of the Web page to display. Typically, this URL points to a page
stored in the enhancements directory of the user's computer.

bCancel
Long that receives a value from the event handler that indicates whether to cancel the frame
navigation. If this value is non-zero, the navigation should be canceled. If it is zero, it should not
be canceled.

Remarks

Your application can handle this event to prevent the enhancement control from navigating to the
HTML page specified in the NavFrame trigger.

EnhCtrl.EnhancedShow
[This is preliminary documentation and subject to change.]

The EnhancedShow property specifies whether enhancements are currently being displayed.

Syntax

object.EnhancedShow [= lEnhanced]

Parts

object
Object expression that resolves to the EnhCtrl object.

lEnhanced
Long that indicates whether the enhancement control should display enhancements. If this value
is non-zero, the control displays enhancements. If it is zero, it hides enhancements.

2624

Video Enhancements Page 33 of 95

Remarks

The default value for this property is True. If you set EnhancedShow to False, the enhancement
control attempts to initialize TV Viewer with the information required to display enhancements for the
current show.

Because setting EnhancedShow to False updates the TV Viewer database, potentially disrupting any
currently displayed enhancements, it is recommended that you not set this property.

EnhCtrl.FrameSync
[This is preliminary documentation and subject to change.]

The FrameSync property indicates whether the enhancement control should display synchronous, or
content provider–triggered, enhancements during the course of the show.

Syntax

object.FrameSync(bstrFrame) [= lMode]

Parts

object
Object expression that resolves to the EnhCtrl object.

bstrFrame
String that specifies the HTML frame to which the FrameSync setting applies.

lMode
Long that indicates whether the enhancement control should display synchronous
enhancements. If this value is non-zero, the control displays synchronous enhancements. If it is
zero, the control hides them.

Remarks

If a user clicks on a link in an enhancement page and synchronous triggers are not disabled, a
synchronous trigger can fire, causing a page other than the user-selected page to display. By turning
synchronous triggers off during user interactions, you can avoid this type of navigational conflict.

EnhCtrl.InitiateConnection

2625

Video Enhancements Page 34 of 95

[This is preliminary documentation and subject to change.]

The InitiateConnection method connects the enhancement control to the trigger stream.

Syntax

object.InitiateConnection()

Parameters

object
Object expression that resolves to the EnhCtrl object.

Remarks

The connection is made using the IP address, network card, and port specified during the call to the
ITVViewer::Tune method. If your application does not use TV Viewer, you can set these values in
the EnhCtrl.Address, EnhCtrl.Port, and EnhCtrl.NetCard properties.

EnhCtrl.NetCard
[This is preliminary documentation and subject to change.]

The NetCard property specifies the network card address used to connect to the enhancement stream.

Syntax

object.NetCard [= strNetCard]

Parts

object
Object expression that resolves to the EnhCtrl object.

strNetCard
String that contains the network card address. This address should be in the format
xxx.xxx.xxx.xxx, for example 125.125.125.125.

Remarks

This property should only set if your application does not use TV Viewer. If you call the
ITVViewer::Tune method, the network card parameter specified during the method call overrides the
value set in EnhCtrl.NetCard.

2626

Video Enhancements Page 35 of 95

EnhCtrl.Port
[This is preliminary documentation and subject to change.]

The Port property specifies the port used to connect to the enhancement stream.

Syntax

object.Port [= iPort]

Parts

object
Object expression that resolves to an EnhCtrl object.

iPort
Integer that specifies the port, for example 80.

Remarks

This property should only set if your application does not use TV Viewer. If you call the
ITVViewer::Tune method, the port parameter specified during the method call overrides the value
set in EnhCtrl.Port.

EnhCtrl.TriggerSource
[This is preliminary documentation and subject to change.]

The TriggerSource property contains a reference to the trigger source object. This is an internal
object that parses triggers received by the client.

Syntax

object.TriggerSource [= unkSource]

Parts

object
Object expression that resolves to an EnhCtrl object.

2627

Video Enhancements Page 36 of 95

unkSource
Unknown that contains a reference to the internal trigger source object.

Remarks

You can use this property to connect a user trigger object to the trigger stream. Simply set
EnhUser.TriggerSource = EnhCtrl.TriggerSource.

See Also

EnhUser.TriggerSource

EnhCtrl.SendTrigger
[This is preliminary documentation and subject to change.]

The SendTrigger method causes the enhancement control to act as if it has received a trigger of the
specified type.

Syntax

object.SendTrigger(strTrigger)

Parameters

object
Object expression that resolves to the EnhCtrl object.

strTrigger
String that contains the trigger. This trigger should be in standard trigger format. For more
information, see Enhancement Triggers.

Remarks

This method can be used to test enhancement client applications when usual trigger broadcasting is
not available.

EnhCtrl.DisplayOverlay
[This is preliminary documentation and subject to change.]

2628

Video Enhancements Page 37 of 95

The DisplayOverlay event always occurs following an OnNewOverlay event.

Syntax

Private Sub object_DisplayOverlay()

Parts

object
Object expression that resolves to the EnhCtrl object.

See Also

EnhCtrl.HideOverlay, EnhCtrl.OnNewOverlay

EnhCtrl.HideOverlay
[This is preliminary documentation and subject to change.]

The HideOverlay event always occurs preceding an OnRemoveOverlay event.

Syntax

Private Sub object_HideOverlay()

Parts

object
Object expression that resolves to the EnhCtrl object.

See Also

EnhCtrl.DisplayOverlay, EnhCtrl.OnRemoveOverlay

EnhCtrl.OnNewOverlay
[This is preliminary documentation and subject to change.]

2629

Video Enhancements Page 38 of 95

The OnNewOverlay event occurs when the enhancement control receives a NavBase trigger that
specifies an overlay page.

Syntax

Private Sub object_OnNewOverlay(bstrOverlayURL As String, _
bstrOverlayCSS As String)

Parts

object
Object expression that resolves to the EnhCtrl object.

bstrOverlayURL
String that specifies the URL of the DHTML overlay page.

bstrOverlayCSS
String that contains the style sheet of the overlay page.

EnhCtrl.OnRemoveOverlay
[This is preliminary documentation and subject to change.]

The OnRemoveOverlay event occurs when the EnhCtrl object receives a trigger that causes it to
navigate from an overlay back to full-screen video or the program guide.

Syntax

Private Sub object_OnRemoveOverlay()

Parts

object
Object expression that resolves to the EnhCtrl object.

EnhCtrl.OnTrigger
[This is preliminary documentation and subject to change.]

The OnTrigger event occurs when the EnhCtrl object receives a user-defined trigger.

2630

Video Enhancements Page 39 of 95

Syntax

Private Sub object_OnTrigger(lKey As Long, pbstrData As String)

Parts

object
Object expression that resolves to the EnhCtrl object.

lKey
Long that indicates the key, or identifier, of the user trigger. Valid values for this parameter are
defined by the broadcast content provider that created the trigger.

pbstrData
String that contains the user trigger data.

Remarks

A user trigger is defined by the content provider and is transmitted to the client. By implementing
event handlers in the enhancement Web pages, the broadcast client can support these provider-specific
user triggers.

User triggers can also be intercepted and sent by the EnhUser object.

EnhUser

[This is preliminary documentation and subject to change.]

EnhUser, provided by Entrig.dll, is the user trigger object. This object sends an event when it receives
a user trigger. User triggers are defined by the content provider and can be used to implement triggers
not provided by Broadcast Architecture. A user-defined trigger includes two parameters, an integer
key and a string. The meaning of the integer and the string parameter depends on the broadcast
content provider's implementation of the trigger.

You can use either an EnhCtrl or EnhUser control in a page to receive user triggers and send user
trigger events. One advantage of using EnhUser is that multiple instances of EnhUser can run in
different files within the enhanced show, whereas only one instance of EnhCtrl can exist on the client.

For example, one instance of EnhUser may be running in the left frame and respond only to triggers
that apply to that frame. At the same time, another instance of the control in the bottom frame might
respond to triggers that apply to that frame.

EnhUser provides a single event, OnTrigger, which the control sends when it receives a user trigger.
EnhUser also has one property, TriggerSource, which contains a reference to the internal trigger
source object.

2631

Video Enhancements Page 40 of 95

Examples

The following HTML creates an instance of a EnhUser object on a Web or enhancement page.

<!-- Creating the EnhUser Object -->
<OBJECT
CLASSID="clsid:3A263EFA-D768-11D0-911C-00A0C91F37E3"
WIDTH=0 HEIGHT=0 ID=myEnhUser>
</OBJECT>

EnhUser.OnTrigger
[This is preliminary documentation and subject to change.]

The OnTrigger event occurs when the EnhUser object receives a user trigger.

Syntax

Private Sub object_OnTrigger(lKey As Long, pbstrData As String)

Parameters

object
Object expression that resolves to the EnhUser object.

lKey
Long that indicates the key, or identifier, of the user trigger. This key is defined by the content
provider that sent the trigger. Valid key identifiers are those in the range 1,000 and above.
Values less than 1,000 are reserved for internal use by Broadcast Architecture.

pbstrData
String that contains the user trigger data.

Remarks

A user trigger is defined by the content provider and is transmitted to the client. By implementing
event handlers in the enhancement Web pages, the broadcast client can support these provider-specific
user triggers.

User triggers can also be intercepted and sent by the EnhCtrl object.

2632

Video Enhancements Page 41 of 95

EnhUser.TriggerSource
[This is preliminary documentation and subject to change.]

The TriggerSource property contains a reference to the trigger source object. This is an internal
object that parses triggers received by the client.

Syntax

object.TriggerSource [= unkSource]

Parts

object
Object expression that resolves to an EnhUser object.

unkSource
Unknown that contains a reference to the internal trigger source object.

Remarks

You can use this property to connect a user trigger object to the trigger stream. Simply set
EnhUser.TriggerSource = EnhCtrl.TriggerSource.

See Also

EnhCtrl.TriggerSource

EnhLoaderProxy

[This is preliminary documentation and subject to change.]

The EnhLoaderProxy object, implemented in EnhLoad.exe, loads and deletes enhancement
information in the Guide database. The enhancement filter calls this object to load the data it receives
from announcements.

EnhLoaderProxy provides the following methods.

2633

Video Enhancements Page 42 of 95

EnhLoaderProxy provides the following events.

Remarks

EnhLoadProxy uses the enhancement-loading methods of Television System Services (TSS) to load
the enhancement data.

See Also

Enhancement Filter

EnhLoaderProxy.DeleteEnhancement
[This is preliminary documentation and subject to change.]

The DeleteEnhancement method deletes the specified enhancement information from the Guide
database.

Syntax

Method Description

LoadEnhancement Loads information about an
enhancement into the Guide
database.

DeleteEnhancement Deletes information about an
enhancement from the Guide
database.

Event Description

GetPreloadURL EnhLoaderProxy has received a
current enhancement announcement
that does not contain a preload URL.

GetShowRef EnhLoaderProxy has failed to load
a current enhancement announcement
based on identification information
contained in the announcement.

SetMulticastIP EnhLoaderProxy has matched an
announcement and set the multicast
IP address to the value specified in
the announcement.

2634

Video Enhancements Page 43 of 95

object.DeleteEnhancement(strID)

Parameters

object
Object expression that resolves to the EnhLoaderProxy object.

strID
Unique identifier of the enhancement.

Remarks

This method is basically a wrapper for ITelevisionServices::DeleteEnhancementFromID.

EnhLoaderProxy.GetPreloadURL
[This is preliminary documentation and subject to change.]

The GetPreloadURL event occurs when the EnhLoaderProxy object receives a current enhancement
announcement that does not contain a preload URL.

Syntax

Private Sub object_GetPreloadURL(dateReceived As Date, _
 pbstrPreloadURL As String, pblsOverlay as Long, pbLoud As Long)

Parts

object
Object expression that resolves to the EnhLoaderProxy object.

dateReceived
Date that specifies when the enhancement control received the NavBase trigger.

pbstrPreloadURL
String that contains the location of the enhancement's initial HTML page. This location can be
either a fully specified URL, or a URL relative to the spool directory, C:\Program Files\TV
Viewer\Enhspool\.

pblsOverlay
Long that indicates whether the preload URL is an overlay. If this value is non-zero, the URL
specified by pbstrPreloadURL is an overlay. If it is zero, it is not.

pbLoud
Long that indicates whether to notify TV Viewer of the change in the viewing state. If this
value is non-zero, TV Viewer is notified. If it is zero, TV Viewer is not notified.

2635

Video Enhancements Page 44 of 95

Remarks

If the EnhLoaderProxy is called to load data from an announcement that does not contain a preload
URL, it requests the preload URL information for the currently-displayed show from the enhancement
control. The content provider can set the preload URL value that the enhancement control returns by
sending a NavBase trigger.

EnhLoaderProxy.GetShowRef
[This is preliminary documentation and subject to change.]

The GetShowRef event occurs when EnhLoaderProxy fails to load a current enhancement
announcement based on identification information contained within the announcement, such as the
show identifier or show reference.

Syntax

Private Sub object_GetShowRef(dateReceived As Date, _
 lTuningSpace As Long, sChannel As Integer)

Parameters

object
Object expression that resolves to the EnhLoaderProxy object.

dateReceived
Date that specifies when the enhancement control received the show reference trigger.

lTuningSpace
Long that contains the tuning space of the current show.

sChannel
Integer that contains the channel number of the current show.

Remarks

EnhLoaderProxy requests this information after it fails to load data into the Guide database for a
current enhancement announcement. EnhLoaderProxy creates the show reference by using the time
the announcement was received and the tuning space and channel to which TV Viewer is tuned, as
specified by the event.

EnhLoaderProxy.LoadEnhancement

2636

Video Enhancements Page 45 of 95

[This is preliminary documentation and subject to change.]

The LoadEnhancement method loads enhancement information into the Guide database.

Syntax

object.LoadEnhancement(strID, strShowID, strShowRef, strTitle, _
 strNetCard, strMultiIP, iPort, strPreloadURL, dateExpire, _
 dateReceived, lShowLength, bCurrentShow)

Parameters

object
Object expression that resolves to the EnhLoaderProxy object.

strID
Unique identifier for the enhancement. This identifier is specified in the owner (o=) field of the
SDP announcement.

strShowID
Reserved for future use.

strShowRef
String that contains the show reference. If the announcement is for a show being currently
broadcast, this value may be NULL. If the strShowRef parameter is NULL, EnhLoaderProxy
gets the show reference of the current show from EnhCtrl.

strTitle
String that contains the enhancement title. This value is displayed by TV Viewer when an
episode has more than one enhancement available. When the user clicks the enhancement icon in
the channel banner, TV Viewer displays a list of the enhancement titles, in which the user can
click which enhancement to display, for example Fresh Prince Enhanced

strNetCard
String that contains the network card address used to connect to the enhancement stream. This
address should be in the format xxx.xxx.xxx.xxx, for example 125.125.125.125.

strMultiIP
String that contains the IP multicast address used to connect to the enhancement stream. This
address should be in the format xxx.xxx.xxx.xxx, for example 255.255.255.255.

iPort
Integer that specifies the port used to connect to the enhancement stream, for example 10024.

strPreloadURL
URL of the HTML file that contains the enhancement layout. If you do not specify a complete
path, such as C:\MyEnhance\, the URL is resolved relative to C:\Program Files\TV
Viewer\Layouts. For example, if you specify strPreloadURL as Cspan\Cspan.htm, it resolves to
C:\Program Files\TV Viewer\Layouts\Cspan\Cspan.htm.

If the announcement is for a show being currently broadcast, this value may be NULL. If
strPreloadURL is NULL, EnhLoaderProxy gets the preload URL of the current show from
EnhCtrl.

dateExpire
Date that specifies when the enhancement expires. All enhancements should have an expiration

2637

Video Enhancements Page 46 of 95

date. This date enables the Loadstub component to delete obsolete enhancement data from the
Guide database.

If the enhancement is for a current show, this value is not specified. In this case,
EnhLoaderProxy calculates a fixed expiration date using the date received and show length
information.

dateReceived
Date that specifies the time the enhancement announcement was received. This value is not used
for future enhancements.

lShowLength
Long that specifies the number of minutes until the show ends. This value does not need to be
exact, as long as it is equal to or greater than the number of minutes left in the show. This value
is not used for future enhancements.

bCurrentShow
Boolean that indicates whether this is an announcement for an enhanced show that is currently
being broadcast. This Boolean can be one of the following values.

Remarks

For current enhancements, this method calculates the ending time. If the show reference and preload
URL values are not specified, LoadEnhancement uses the show reference and preload URL of the
current show. It gets these values by querying the enhancement control, EnhCtrl.

This method is essentially a wrapper for ITelevisionServices::LoadEnhancement. Once the
enhancement data is resolved, EnhLoaderProxy.LoadEnhancement calls
ITelevisionServices::LoadEnhancement to load the data into the Guide database.

EnhLoaderProxy.SetMulticastIP
[This is preliminary documentation and subject to change.]

The SetMulticastIP event occurs when EnhLoaderProxy receives an enhancement announcement for
the currently displayed show. EnhLoaderProxy tunes the enhancement control to the IP address
specified in the event. This enables the enhancement control to immediately start receiving triggers.

Value Meaning

True Current enhancement. In this case,
EnhLoaderProxy calculates the expiration date and,
if necessary, gets the show reference and preload
URL data from EnhCtrl before loading the data into
the Guide database.

False Future enhancement. In this case, EnhLoaderProxy
loads the data into the Guide database.

2638

Video Enhancements Page 47 of 95

Syntax

Private Sub object_SetMulticastIP(bstrNetcard As String, _
 bstrAddress As String, iPort As Integer)

Parts

object
Object expression that resolves to the EnhLoaderProxy object.

bstrNetcard
String that contains the network card address. This address should be in the format
xxx.xxx.xxx.xxx, for example 125.125.125.125.

bstrAddress
String that contains the IP address specified in the matching announcement.

iPort
Integer that specifies the IP port specified in the matching announcement.

Stream Compiler Object Library

[This is preliminary documentation and subject to change.]

The stream compiler object library, Stream.dll, is a component that loads, stores, and edits
enhancement streams. The stream can then be transmitted to the client as an IP stream by the
enhancement listener control.

Note The stream compiler object library, Stream.dll, is not part of the software supporting the
Broadcast Architecture Programmer's Reference. To locate this library, see Further Information on
Data Services for the Client.

The stream compiler exposes the following COM objects. Using these, you can write a custom stream
editor or an enhancement stream player.

Event

[This is preliminary documentation and subject to change.]

Object Description

Event An enhancement event object.

Events A collection of enhancement event objects.

2639

Video Enhancements Page 48 of 95

The Event object stores information about an enhancement stream event.

Property Description

Before A value that indicates whether the compiler should
download all dependencies of the event before the
event's start time.

Handle A unique identifier for the event. This property is
read-only.

HRef Indicates whether HTML hyperlinks should be
treated as dependencies for this event.

IsAnnounce Indicates whether the event is an enhancement
announcement.

IsTrigger Indicates whether the event is a trigger.

Length Length of the file, in bytes. This property is read-
only.

Name Name or text value of the event.

onefile Indicates whether to send the file and all its
dependencies as a single FTS file transmission.

Only Indicates whether dependencies, such as images and
animations, should be resolved for this event.

Priority FTS priority value.

This property is not yet implemented.

Repeat The interval, specified in seconds, between
repetitions of the event.

Start Start time of the event, in seconds.

Text Stream language text of the event.

Timeout Time at which the event is garbage collected.

This method is not implemented in version 1.0 of
Broadcast Architecture.

Trigger Numerical identifier that identifies the trigger type.

Until Duration of the event repetition, in seconds.

XMitDuration Time that it will take to transmit the event. This
value is read-only.

XMitName Filename of the file on the client. In other words,
the destination filename. This property is read-only.

Method Description

Delete Removes the event from the Events collection.

2640

Video Enhancements Page 49 of 95

Note The stream compiler object library supplying the Event object class, Stream.dll, is not part of
the software supporting the Broadcast Architecture Programmer's Reference. To locate this library,
see Further Information on Data Services for the Client.

Event.XMitDuration
[This is preliminary documentation and subject to change.]

The XMitDuration property contains the time required to transmit the event. This property is read-
only.

Syntax

[dDuration =] object.XMitDuration

Parts

object
Object expression that resolves to an Event object.

lDuration
Double that receives the number of seconds required to transmit the event.

Remarks

XmitDuration is calculated based on the redundancy, length, and available bandwidth. The following
equation is used to calculate the time required to transmit the event:

XmitDuration = ((1 + 1/Redundancy) * Length) / (Bandwidth/8)

See Also

Event.XMitName, Event.Name, Event.Length, Events.Overhead, Events.Redundancy,
Events.Bandwidth

Event.onefile
[This is preliminary documentation and subject to change.]

The onefile property indicates whether the enhancement file and its dependencies should be
transmitted as a single file.

2641

Video Enhancements Page 50 of 95

Syntax

object.onefile [= lfile]

Parts

object
Object expression that resolves to an Event object.

lfile
Long that indicates whether to transmit the file and its dependencies as a single file. If this value
is non-zero, the files are transmitted as a single file. If this value is zero, they are not.

Remarks

Transmitting the enhancement file and its dependencies as a single file saves bandwidth. This is
because the FTS protocol imposes a high overhead, 5 KB per file, for each file it transmits. Packing
the files together reduces the amount of wasted bandwidth.

When onefile is set to a non-zero value, the stream compiler resolves the enhancement file's
dependencies, and creates a CAB file that packages the file with its dependencies. This CAB file is
transmitted to the client and unpackaged by the enhancement control, EnhCtrl.

See Also

Dependencies, Event.Only

Event.IsAnnounce
[This is preliminary documentation and subject to change.]

The IsAnnounce property indicates whether the event is an enhancement announcement.

Syntax

object.IsAnnounce [= lAnnc]

Parts

object
Object expression that resolves to an Event object.

lAnnc
Long that indicates whether the event is an announcement. If this value is non-zero, the event is

2642

Video Enhancements Page 51 of 95

an announcement. If it is zero, the event is not an announcement.

See Also

Event.IsTrigger, Event.Name

Event.HRef
[This is preliminary documentation and subject to change.]

The HRef property indicates when HTML hyperlink dependencies should be transmitted.

Syntax

object.HRef [= lhref]

Parts

object
Object expression that resolves to an Event object.

lhref
Long that specifies when dependencies should be resolved. This can a value in one of the
following ranges:

Remarks

If this property is not set, the value in Events.HRef is used.

If Events.HRef value is also not set, the default is 0, which causes the compiler not to schedule
transmission of hyperlink dependencies.

See Also

Dependencies, Events.HRef

Value Description

< 0 Transmit hyperlink dependencies before the event.

0 Do not transmit hyperlink dependencies.

> 0 Transmit hyperlink dependencies after the event.

Values of lhref greater than 0 are not supported in
version 1.0 of Broadcast Architecture.

2643

Video Enhancements Page 52 of 95

Event.XMitName
[This is preliminary documentation and subject to change.]

The XMitName property indicates the name of the transmitted file at the destination. This property is
read-only.

Syntax

[sName =] object.XMitName

Parts

object
Object expression that resolves to an Event object.

sName
String that receives the filename.

Remarks

This is value that ipsend should use as the sDstFilename parameter of the SendFTSFile method.

The value of XmitName is created from the values of Events.ShowName and the filename of the
transmitted file as follows:

XmitName = "ShowName/FileName"

For example, if the title of the show's enhancements is "My Enhanced Show" and the file being
transmitted is "File1.htm" the value of Event.XmitName is "My Enhanced Show/File1.htm"

See Also

Event.XMitDuration, Events.ShowName

Event.Handle
[This is preliminary documentation and subject to change.]

The Handle property is a unique identifier for the event. This property is read-only.

2644

Video Enhancements Page 53 of 95

Syntax

[lhandle =] object.Handle

Parts

object
Object expression that resolves to an Event object.

lhandle
Long that uniquely identifies the event.

Remarks

Events.FindHandle searches the Events collection to return the event with the specified handle.

Examples

The following example uses Event.Handle to save a handle to an event in the enhancement stream,
and then uses Events.FindHandle to recall the event.

'Declare variables
Dim Ev As IEvents
Dim e As IEvent
Dim lHandle As Long

'create the collection
Set Ev = New Events

'add an event to the collection
Call Ev.Add(15, "EventA")

'save a handle to EventA,
'(which is currently the last-added event)
lHandle = Ev.LastAdd.Handle

...

'recall EventA from the collection using the previously-saved handle
Set e = Ev.FindHandle(lHandle)

Event.Text
[This is preliminary documentation and subject to change.]

The Text property contains the stream language text for the event.

2645

Video Enhancements Page 54 of 95

Syntax

object.Text [= sText]

Parts

object
Object expression that resolves to an Event object.

sText
String that contains the stream language text of the event. To locate more information about
stream compiler language syntax, see Further Information on Data Services for the Client.

See Also

Events.AddText

Event.Trigger
[This is preliminary documentation and subject to change.]

The Trigger property contains an identifier that specifies the trigger type of this event. This property
is only valid if Event.IsTrigger is non-zero.

Syntax

object.Trigger [= lTrigger]

Parts

object
Object expression that resolves to an Event object.

lTrigger
Long that specifies the type of trigger. For more information about trigger identifiers and
format, see Enhancement Triggers.

See Also

Event.IsTrigger

2646

Video Enhancements Page 55 of 95

Event.Before
[This is preliminary documentation and subject to change.]

The Before property indicates whether the compiler should ensure that all dependencies of the event
are transmitted before the event's start time, as specified in Event.Start.

Note that verifying the event's readiness can include transmitting HTML hyperlink dependencies if
Href is non-zero.

Syntax

object.Before [= lBefore]

Parts

object
Object expression that resolves to an Event object.

lBefore
Long that indicates whether the event should be verified before it is fired. If this value is non-
zero, the event should be verified. If it is zero, it should not.

See Also

Dependencies

Event.Timeout
[This is preliminary documentation and subject to change.]

The Timeout property indicates the number of seconds after the Event.Start time that the event
should be deleted by the client application. This value overrides the value set in Events.TimeOut.

This property is not implemented in version 1.0 of Broadcast Architecture.

Syntax

object.Timeout [= dTimeout]

Parts

2647

Video Enhancements Page 56 of 95

object
Object expression that resolves to an Event object.

dTimeout
Double that indicates the number of seconds after the start time that the event should be
deleted. If this value is not set, the default is 0.

Remarks

If no value is specified for this property, the default value for the enhancement stream, specified in
Events.TimeOut, is used.

See Also

Event.Priority, Events.Priority

Event.Priority
[This is preliminary documentation and subject to change.]

The Priority property specifies the FTS priority.

This property is not implemented in version 1.0 of Broadcast Architecture.

Syntax

object.Priority [= lPriority]

Parts

object
Object expression that resolves to an Event object.

lPriority
Long that specifies the priority. If this value is not set, the default is 5.

Remarks

The compiler uses the priority value during optimization, when it fills available bandwidth. This value
is also used during an interleaved transmission of multiple files. The file with greater weight will be
proportionally transmitted more often.

See Also

Events.Priority

2648

Video Enhancements Page 57 of 95

Event.Length
[This is preliminary documentation and subject to change.]

The Length property specifies the length of the file, in bytes. This property is read-only.

Syntax

[lLength =] object.Length

Parts

object
Object expression that resolves to an Event object.

lLength
Long that receives the file length, in bytes. If the file cannot be opened, either because the file
does not exist or because you do not have permissions, the length is 0.

See Also

Event.XmitDuration

Event.Until
[This is preliminary documentation and subject to change.]

The Until property specifies the end time for a repeated event, in seconds. In other words, unless
Event.Repeat is zero, the event will repeat for Until seconds.

Syntax

object.Until [= dUntil]

Parts

object
Object expression that resolves to an Event object.

dUntil

2649

Video Enhancements Page 58 of 95

Double that specifies the number of seconds.

Remarks

The value of Until is ignored if Event.Repeat is zero.

If Repeat is nonzero and Until is not specified or is set to zero, the repetition continues for the
duration of the show, as specified in Events.ShowLength.

Event.Repeat
[This is preliminary documentation and subject to change.]

The Repeat property specifies the number of seconds between repetitions of the event.

Syntax

object.Repeat [= dRepeat]

Parts

object
Object expression that resolves to an Event object.

dRepeat
Double that specifies the repeat interval, in seconds. A value of 0, indicates that the event
should not be repeated. If this value is not zero, it must be greater than 0.1 seconds.

Values less than zero are not supported.

Remarks

Events are typically transmitted repeatedly so that if a user misses an enhancement transmission due to
line noise or because they tuned to another channel, they will be able to receive a subsequent
transmission.

See Also

Event.Until

Event.IsTrigger

2650

Video Enhancements Page 59 of 95

[This is preliminary documentation and subject to change.]

The IsTrigger property indicates whether the event is a trigger.

Syntax

object.IsTrigger [= lTrig]

Parts

object
Object expression that resolves to an Event object.

lTrig
Long that indicates whether the event is a trigger. If the value is non-zero, the event is a trigger.
If the value is zero, it is not.

See Also

Event.IsAnnounce, Event.Trigger

Examples

The following example searches through the enhancement stream until it finds a trigger event. When it
finds a trigger, it stores the trigger's handle in an array.

Dim num As Integer
Dim TrigArray() As Long
ReDim TrigArray(0 To evs.Count - 1)

For i = 0 to evs.Count-1
 If (evs.Item(i).IsTrigger) Then

TrigArray[num] = evs.Item(i).Handle
num = num + 1

 End If
Next i

The reason that the handle is stored instead of the trigger's index value, is that the handle uniquely
identifies the trigger and does not change. Because the collection is sorted by start time, the trigger's
index value can change as events are added or deleted.

Event.Only
[This is preliminary documentation and subject to change.]

2651

Video Enhancements Page 60 of 95

The Only property indicates whether the client application should transmit dependencies for the event.

Syntax

object.Only [= lOnly]

Parts

object
Object expression that resolves to an Event object.

lOnly
Long that indicates whether dependencies should be transmitted for the event. If this value is
non-zero, dependencies should be not be transmitted. If it is zero, they should be.

Remarks

You set the Only property to non-zero to prevent the stream compiler from scheduling transmission
of dependent files such as GIFs and FutureSplash animations. This is useful, for example, in cases
where the dependencies already reside on the client machine, either transmitted by some other means
such as webcasting, a previous event, or installed explicitly by the user.

Event.Name
[This is preliminary documentation and subject to change.]

The Name property specifies the name or text of the event. An example of using this property to store
event text is a stock ticker enhancement where Name stores the stock name and price.

Syntax

object.Name [= sName]

Parts

object
Object expression that resolves to an Event object.

sName
String that contains the name of the event.

Remarks

The default content of Name varies with the type of event. See the following table for specifics.

2652

Video Enhancements Page 61 of 95

Event.Start
[This is preliminary documentation and subject to change.]

The Start property specifies the time of the event, in seconds. This is specified in relation to the start
time of the episode that the event enhances.

Syntax

object.Start [= dStart]

Parts

object
Object expression that resolves to an Event object.

dStart
Double that specifies the start time of the event. This is expressed as the number of seconds
after the episode's start time.

Remarks

Typically, the time specified by StartTime is the starting time of the event. However for some events,
such as those where the stream syntax stored in Event.Text is of the form before time package; this
time is the end time of the event.

See Also

Event.Text

Event.Delete

Event Type Content

Announcement The path and filename of the file that
specifies the announcement.

Trigger The trigger data.

FTS data The source filename.

2653

Video Enhancements Page 62 of 95

[This is preliminary documentation and subject to change.]

The Delete method removes an event from the Events collection.

Syntax

object.Delete()

Parts

object
Object expression that resolves to an Event object.

Remarks

The Delete method deletes the instance of the Event object that it removes from the collection.

Events

[This is preliminary documentation and subject to change.]

The Events object is a collection of Event objects. Using the methods and properties of the Events
interface you can create or parse an enhancement stream.

The Events object has the following properties and methods:

Property Description

Bandwidth Bandwidth of the transmission medium, in bits per
second.

Count Number of Event objects in the collection.

This property is read-only.

DependLength Length of a file and its dependencies, in bytes.

ErrorCount Number of syntax errors in the enhancement stream.

ErrorList Retrieves a syntax error from the error array.

FindHandle Returns the event associated with the specified handle.

FindTime Returns the event starting at the specified time.

FPS Frames per second of the enhancement stream.

FrameName Retrieves a name from frame name array.

2654

Video Enhancements Page 63 of 95

Note The stream compiler object library supplying the Event object class, Stream.dll, is not part of
the software supporting the Broadcast Architecture Programmer's Reference. To locate this library,
see Further Information on Data Services for the Client.

HRef Indicates when HTML hyperlink dependencies should
be resolved.

Item Retrieves the specified event from the collection.

LastAdd Retrieves the event last added to the collection.

LeadTime Specifies the amount of time, in seconds, to wait
between downloading the last dependency of an
trigger event before firing the trigger.

Overhead FTS overhead for file transmission, in bytes.

ParseTime Converts an extended SMPTE time string into a
Double.

Priority Default transmission priority for the enhancement
stream. This property is not yet implemented.

Redundancy FTS redundancy, stored as the reciprocal of the extra
duration.

ShowLength Length of the show associated with this enhancement
stream, in seconds.

ShowName Name of the show or episode associated with the
enhancement stream.

Style Reserved. This property is not yet implemented.

TimeOut Default time-out interval for the enhancement stream.

TimeStr Converts a Double into an extended SMPTE time
string.

Title Title of the enhancement stream.

Method Description

Add Add an event object to the enhancement stream.

AddText Add an event to the enhancement stream by specifying
stream language text.

Clear Remove all objects from the enhancement stream.

Flatten Convert high-level events into low-level events. This
includes such functionality as scheduling transmission
of dependencies and building repetition cycles.

Load Load an enhancement stream from a file.

Store Save the enhancement stream to a file.

2655

Video Enhancements Page 64 of 95

Events.Title
[This is preliminary documentation and subject to change.]

The Title property contains the title of the enhancement stream.

Syntax

object.Title [= sTitle]

Parts

object
Object expression that resolves to an Events object.

sTitle
String that contains the title. If this value is not set, the default is an empty string ("").

Remarks

Title specifies the title of the enhancement stream, not the enhanced episode. The title of the enhanced
episode is stored in Events.ShowName.

Events.Redundancy
[This is preliminary documentation and subject to change.]

The Redundancy property contains the FTS redundancy.

Syntax

object.Redundancy [= lRedun]

Parts

object
Object expression that resolves to an Events object.

lRedun
Long that indicates the FTS redundancy. The default value is 5.

Remarks

2656

Video Enhancements Page 65 of 95

The value of Redundancy is the reciprocal of the amount of extra bandwidth used for forward error
correction. For example, if you set the redundancy to 10, the amount of bandwidth allotted to forward
error correction is 1/10, or 10%. In other words, an additional number of bytes, equal to 10% of the
original file, will be transmitted for error correction.

See Also

Events.Overhead, Event.XmitDuration

Events.Overhead
[This is preliminary documentation and subject to change.]

The Overhead property specifies the fixed overhead for FTS transmission, in bytes.

Syntax

object.Overhead [= lOverhead]

Parts

object
Object expression that resolves to an Events object.

lOverhead
Long that contains the FTS overhead, in bytes. The default value is 5120.

See Also

Event.Length, Events.Redundancy, Event.XmitDuration

Events.Style
[This is preliminary documentation and subject to change.]

The Style property is reserved for use in future versions of Broadcast Architecture.

Syntax

object.Style [= lStyle]

2657

Video Enhancements Page 66 of 95

Parts

object
Object expression that resolves to an Events object.

lStyle
Long. The value default is 0.

Remarks

This property is not currently used.

Events.HRef
[This is preliminary documentation and subject to change.]

The HRef property indicates when HTML hyperlink dependencies should be resolved.

Syntax

object.HRef [= lHref]

Parts

object
Object expression that resolves to an Events object.

lhref
Long that specifies when dependencies should be resolved. This can be a value in one of the
following ranges:

Remarks

This value can be overridden by individual events by setting the Event.HRef property. If neither value
is set, the default is 0.

Value Description

< 0 Resolve dependencies before the event.

0 Do not resolve dependencies.

> 0 Resolve dependencies after the event.

Values of lhref greater than 0 are not supported in
version 1.0 of Broadcast Architecture.

2658

Video Enhancements Page 67 of 95

Events.ShowName
[This is preliminary documentation and subject to change.]

The ShowName property is the name of the show or episode associated with the event stream.

Syntax

object.ShowName [= sName]

Parts

object
Object expression that resolves to an Events object.

sName
String that contains the name of the show. If this value is not set, the default is an empty string
("").

Remarks

This property is used to compute Event.XmitName.

See Also

Events.Title

Events.FPS
[This is preliminary documentation and subject to change.]

The FPS property retrieves or sets the frames per second.

Syntax

object.FPS [= dfps]

Parts

2659

Video Enhancements Page 68 of 95

object
Object expression that resolves to an Events object.

dfps
Double that indicates the frames per second.

See Also

Events.ParseTime

Events.FrameName
[This is preliminary documentation and subject to change.]

The FrameName property retrieves or sets the names of HTML frames. These values are stored in an
array.

Syntax

object.FrameName(lIndex) [= sName]

Parts

object
Object expression that resolves to an Events object.

lIndex
Long that indicates which element of the 0-based array to set or retrieve.

sName
String that contains the name of the HTML frame.

Remarks

For example, in a multiframe enhancement, you can use FrameName to store the names of the
enhancement frames. Your application can then retrieve the name of a particular frame from the array,
instead of explicitly referencing the frames by name.

Using the FrameName property instead of explicit frame names makes your application more portable
and easier to maintain. If the names of the enhancement frames change, you will only have to update
them once.

Examples

The following example uses FrameName to store the names of three HTML frames names. It then
retrieves the name of the first frame to add a NavBase trigger event.

2660

Video Enhancements Page 69 of 95

'store the frame names in the array
evs.FrameName(0) = "Left"
evs.FrameName(1) = "Video"
evs.FrameName(2) = "Bottom"

evs.AddText("00:10:30:00 trigger (3 "+evs.FrameName(0)+" ""NewEnh.htm"") only;")

Events.TimeStr
[This is preliminary documentation and subject to change.]

The TimeStr method converts a double into a SMPTE time string. This property is read-only.

Syntax

[sTime =] object.TimeStr(dTime)

Parts

object
Object expression that resolves to an Events object.

dTime
Double that specifies the time.

sTime
String that receives the time specified in dTime as an SMPTE time string, of the format
"hh:mm:ss.dd".

Examples

The following example sets the variable sTime to "00:05:42.00".

Dim sTime As String
Dim evs As Events
Set evs = new Events

sTime = evs.TimeStr(342.0)

See Also

Events.ParseTime

2661

Video Enhancements Page 70 of 95

Events.ParseTime
[This is preliminary documentation and subject to change.]

The ParseTime method converts a SMPTE time string into a Double. This property is read-only.

Syntax

[dTime =] object.ParseTime(sTime)

Parts

object
Object expression that resolves to an Events object.

sTime
String that specifies the time as an SMPTE time string. This can be one of the following
formats, depending on the current frame rate.

dTime
Double that receives the time specified in sTime in numerical format.

Remarks

You can set the frame rate using Events.FPS.

Examples

The following example sets the variable dTime to 342.0.

Dim dTime As Double
Dim evs As Events
Set evs = new Events

dTime = evs.ParseTime("00:05:42:00")

See Also

Events.TimeStr

SMPTE time format Format Example

30 frames per second hh:mm:ss:ff 01:00:30:15

drop frame (29.97
frames per second)

hh:mm:ss;ff 01:00:30;15

fractional seconds hh:mm:ss.dd 01:00:30.5

2662

Video Enhancements Page 71 of 95

Events.DependLength
[This is preliminary documentation and subject to change.]

The DependLength property contains the length of a file and its dependencies, in bytes. This property
is read-only.

Syntax

[lLength =] object.DependLength(sFilename)

Parts

object
Object expression that resolves to an Events object.

sFilename
String that contains the name of the file.

lLength
Long that receives the total number of bytes in the file and all its dependencies.

See Also

Dependencies, Event.Length, Event.XmitDuration

Events.FindHandle
[This is preliminary documentation and subject to change.]

The FindHandle property returns a reference to the event that has the specified handle. This property
is read-only.

Syntax

Set oEvent = object.FindHandle (lHandle)

Parts

object
Object expression that resolves to an Events object.

lHandle

2663

Video Enhancements Page 72 of 95

Long that contains the event handle. This value will be compared to each event's Event.Handle
property until a match is found. If a match is not found, FindHandle returns an error

oEvent
Event that receives the event specified by lHandle.

Examples

The following example saves a handle to an event in the enhancement stream, and then uses
FindHandle to recall that event.

'Declare variables
Dim Ev As IEvents
Dim e As IEvent
Dim lHandle As Long

'create the collection
Set Ev = New Events

'add an event to the collection
Call Ev.Add(15, "EventA")

'save a handle to EventA,
'(which is currently the last-added event)
lHandle = Ev.LastAdd.Handle

...

'recall EventA from the collection using the previously-saved handle
Set e = Ev.FindHandle(lHandle)

See Also

Events.FindTime

Events.LeadTime
[This is preliminary documentation and subject to change.]

The LeadTime property specifies the time to wait after downloading a trigger event's dependency
files before firing the trigger.

Syntax

object.LeadTime [= dTime]

Parts

2664

Video Enhancements Page 73 of 95

object
Object expression that resolves to an Events object.

dTime
Double that specifies the number of seconds the transmitter should wait. This must be a positive
value. The default value is 5.

See Also

Dependencies

Events.FindTime
[This is preliminary documentation and subject to change.]

The FindTime property returns a reference to the event that starts at the specified time. This property
is read-only.

Syntax

Set oEvent = object.FindTime(dTime)

Parts

object
Object expression that resolves to an Events object.

dTime
Double that specifies the start time. This value will be compared to each events Event.Start
property until a match is found. If a match is not found, FindTime returns an error.

oEvent
Event object that receives the reference to the event with the start time specified by dTime.

Examples

The following example looks up an event in the Events collection by start time.

'Declare variables
Dim Ev As IEvents
Dim e As IEvent
Dim lHandle As Long

'create the collection
Set Ev = New Events

'add events to the collection
Call Ev.Add(15, "EventA")

2665

Video Enhancements Page 74 of 95

Call Ev.Add(45, "EventB")
Call Ev.Add(25, "EventC")

'find EventB in the collection by specifying
'its start time.
Set e = Ev.FindTime(45)

Events.AddText
[This is preliminary documentation and subject to change.]

The AddText method adds an event to the enhancement stream using the stream language.

Syntax

object.AddText(sText)

Parts

object
Object expression that resolves to an Events object.

sText
String that contains the stream language. This value is used to initialize the Event.Text
property of the new event. If this string is empty (""), the event is not added.

To locate more information about stream compiler language syntax, see Further Information on
Data Services for the Client.

Remarks

You can also use this method to set the value of enhancement stream global variables, namely
BandWidth, Href, FrameName, Overhead, Priority, FPS, Redundancy, TimeOut, LeadTime, Style,
ShowLength, and ShowName. The value of these global variables are wrapped by the Events
properties of the same name.

For example, you can set the value of Events.Redundancy to 10 with the following:

evs.AddText("Redundancy = 10;")

Examples

The following example adds a NavBase trigger event to the enhancement stream. Note that because
the only keyword is specified, the file NewEnh.htm is assumed to already exist on the client's
computer and is not scheduled to be transmitted.

2666

Video Enhancements Page 75 of 95

evs.AddText("00:10:30:00 trigger (3 ""Left"" ""NewEnh.htm"") only;")

See Also

Events.Add

Events.Flatten
[This is preliminary documentation and subject to change.]

The Flatten method converts high-level enhancement stream events into low-level ones. This method
can cause the stream compiler to add new events and change event times slightly.

It is recommended that your application call Flatten before it transmits the enhancement stream.

Syntax

object.Flatten()

Parts

object
Object expression that resolves to an Events object.

Remarks

The Flatten method resolves high-level events into low-level ones. For example, if you had defined an
FTS-download event for an HTML file that contained four GIFs, the Flatten method would turn this
event into five FTS-download events, one for the main file and each image dependency.

Events.LastAdd
[This is preliminary documentation and subject to change.]

The LastAdd property returns a reference to the event that was last added to the enhancement
stream. This property is read-only.

Syntax

2667

Video Enhancements Page 76 of 95

[Set oEvent =] object.LastAdd

Parts

object
Object expression that resolves to an Events object.

oEvent
Event that receives the last event added to the collection.

Examples

The following example displays a message box containing the text Second Event, because that was the
event most recently added to the collection.

'Declare variables
Dim Ev As IEvents
Dim e As IEvent

'Create the Events collection
Set Ev = New Events

'Add two events to the collection
Call Ev.Add(35, "First Event")
Call Ev.Add(25, "Second Event")

'retrieve the last-added event
Set e = Ev.LastAdd

'display the name of the last-added event
MsgBox e.Name

See Also

Event.Handle, Events.Add, Events.AddText, Events.FindHandle, Events.FindTime

Events.ErrorCount
[This is preliminary documentation and subject to change.]

The ErrorCount property contains a count of the syntax errors in the enhancement stream. It counts
the syntax errors discovered in the last call to Events.Load or Events.AddText. This property is
read-only.

Syntax

[lCount =] object.ErrorCount

2668

Video Enhancements Page 77 of 95

Parts

lCount
Long that receives the number of syntax errors.

object
Object expression that resolves to an Events object.

Remarks

The Events.ErrorList property contains an array of strings that describe the syntax errors. The error
information includes the line number that contains the syntax error. The line number specifies the line
in the enhancement stream file loaded by Events.Load.

Examples

The following example displays a message box indicating the number of syntax errors currently in the
enhancement stream.

Msgbox "Number of syntax errors:"+CStr(evs.ErrorCount)

Events.Errorlist
[This is preliminary documentation and subject to change.]

The Errorlist property retrieves a specific error from the syntax error array created during a call to
Events.Load or Events.AddText. This property is read-only.

Syntax

[sList =] object.Errorlist(lIndex)

Parts

sList
String that describes the syntax error.

object
Object expression that resolves to an Events object.

lIndex
Long that indicates which element of the array to return.

Remarks

2669

Video Enhancements Page 78 of 95

The ErrorList property contains an array of strings that describe the syntax errors. The error
information includes the line number that contains the syntax error. The line number specifies the line
in the enhancement stream file loaded by Events.Load.

To fix a syntax error, you would typically open and edit the stream syntax file in a text error such as
Notepad.

See Also

Events.ErrorCount

Events.Priority
[This is preliminary documentation and subject to change.]

The Priority property indicates the default priority for the events in the enhancement stream. This
property is not yet implemented.

Syntax

object.Priority [= lPriority]

Parts

object
Object expression that resolves to an Events object.

lPriority
Long that indicates the default priority.

Remarks

This property can be overridden for an individual event by setting Event.Priority. If neither value is
set, the default priority is 5.

Events.TimeOut
[This is preliminary documentation and subject to change.]

The TimeOut property indicates the default number of seconds after which events are deleted from

2670

Video Enhancements Page 79 of 95

the enhancement spool directory.

Syntax

object.TimeOut [= dTimeout]

Parts

object
Object expression that resolves to an Events object.

dTimeout
Double that indicates the number of seconds for garbage collection. The default value is 0.

Remarks

You can override this value for individual events by setting the Event.Timeout property.

The deletion of expired enhancements is automatically handled by the enhancement control, EnhCtrl,
on the client computer.

See Also

Events.ShowLength

Events.ShowLength
[This is preliminary documentation and subject to change.]

The ShowLength property specifies the length of the enhanced episode, in seconds.

Syntax

object.ShowLength [= dLength]

Parts

object
Object expression that resolves to an Events object.

dLength
Double that indicates the show length, in seconds. The default value is 0.

See Also

2671

Video Enhancements Page 80 of 95

Event.Timeout

Events.Bandwidth
[This is preliminary documentation and subject to change.]

The Bandwidth property indicates the bandwidth of the transmission medium.

Syntax

object.Bandwidth [= dBps]

Parts

object
Object expression that resolves to an Events object.

dBps
Double that specifies the transmission rate, in bits per second. If this value is not set, the default
is 9600.

Remarks

This value is used by the stream compiler during flattening and optimization of the stream.

See Also

Event.Length, Events.Overhead, Events.Redundancy, Event.XMitDuration

Events.Add
[This is preliminary documentation and subject to change.]

The Add method creates an event and adds it to the enhancement stream.

Syntax

Call object.Add(dTime, sName)

2672

Video Enhancements Page 81 of 95

Parts

object
Object expression that resolves to an Events object.

dTime
Double that contains the start time of the event, in seconds. This value is used to initialize the
Event.Start property of the new object.

sName
String that contains the event name. This value is used to initialize the Event.Name property of
the new event.

Remarks

The Visual Basic implementation of Add does not return a reference to the newly added event.
However, you can retrieve the event from the collection by using the LastAdd, FindTime, or
FindHandle properties. Once you have a reference to the object, you can edit its properties or delete
it from the collection.

Examples

The following example creates an Events collection and adds two enhancement events to the
collection.

'Declare variables
Dim Ev As IEvents
Dim e As IEvent

'Create the Events collection
Set Ev = New Events

'Add two events to the collection
Call Ev.Add(35, "EventA")
Call Ev.Add(25, "EventB")

See Also

Events.AddText

Events.Clear
[This is preliminary documentation and subject to change.]

The Clear method removes all events from the enhancement stream. The event objects are destroyed.

Syntax

2673

Video Enhancements Page 82 of 95

object.Clear()

Parts

object
Object expression that resolves to an Events object.

Remarks

If you load an enhancement stream from a file without first clearing the current enhancement stream,
the two streams are merged.

For example, if you had a stream with events A and B occurring at 15 and 30 seconds, and a second
stream with events C and D occurring at 20 and 45 seconds, the merged stream would have events in
the following order: A, C, B, and D.

See Also

Events.Load

Events.Store
[This is preliminary documentation and subject to change.]

The Store method saves the enhancement stream to a text file. The stream is stored in stream compiler
syntax language.

Syntax

object.Store(sFilename)

Parts

object
Object expression that resolves to an Events object.

sFilename
String that specifies the filename.

Remarks

If this file specified by sFilename does not currently exist, it is created. If the file exists, it is
overwritten.

2674

Video Enhancements Page 83 of 95

Examples

The following example stores the enhancement stream in a file named Stream.txt.

evs.Store ("Stream.txt")

See Also

Events.Load

Events.Load
[This is preliminary documentation and subject to change.]

The Load method loads an enhancement stream from a file into an Events collection.

Syntax

object.Load(sFilename)

Parts

object
Object expression that resolves to an Events object.

sFilename
String that specifies the filename.

Remarks

If there are syntax errors in the stream compiler syntax loaded from the file, these are enumerated in
Events.ErrorCount. Additional information about the errors is stored in Events.ErrorList.

If you load an enhancement stream from a file without first clearing the current enhancement stream,
the two streams are merged.

For example, if you had a stream with events A and B occurring at 15 and 30 seconds, and a second
stream with events C and D occurring at 20 and 45 seconds, the merged stream would have events in
the following order: A, C, B, and D.

Examples

The following example loads the stream stored in the file Stream.txt into an events collection.

2675

Video Enhancements Page 84 of 95

evs.Load("Stream.txt")

See Also

Events.Store, Events.Clear

Events.Item
[This is preliminary documentation and subject to change.]

The Item property returns the specified event from the enhancement stream. This property is read-
only.

Syntax

Set oEvent = object.Item(lIndex)

Parts

object
Object expression that resolves to an Events object.

lIndex
Long that indicates the 0-based index of the event to retrieve.

Examples

The following example retrieves the first event in the enhancement stream. Because events are ordered
in the collection by start time, this event is the first event that occurs.

Set e = evs.Item(0)

This could also be written as:

Set e = evs(0)

Note that because events are stored as a 0-based list, the index of the first item is 0.

See Also

Events.Count

2676

Video Enhancements Page 85 of 95

Events.Count
[This is preliminary documentation and subject to change.]

The Count property indicates the number of events in the enhancement stream. This property is read-
only.

Syntax

[lCount =] object.Count

Parts

object
Object expression that resolves to an Events object.

lCount
Long that indicates the number of events.

Examples

The following example uses the count property to return the last event in the collection.

Set e = evs.Item(evs.Count - 1)

Note that because events are stored as a 0-based list, the index of the last item is Count – 1.

See Also

Events.Item

ipsend

[This is preliminary documentation and subject to change.]

The ipsend object, provided by IPEnhSnd.dll, is the enhancement listener's counterpart at the head
end. This objects transmits the enhancement events, triggers, announcements, and data, over the
broadcast medium.

You can call the methods and properties of the ipsend object to programmatically control what is

2677

Video Enhancements Page 86 of 95

sent.

The ipsend object has the following properties and methods.

Remarks

Note The stream compiler object library supplying the ipsend object class, Stream.dll, is not part of
the software supporting the Broadcast Architecture Programmer's Reference. To locate this library,
see Further Information on Data Services for the Client.

ipsend.ConnectTrigger
[This is preliminary documentation and subject to change.]

The ConnectTrigger method establishes a connection for sending triggers.

Property Description

AnnouncementAddress IP address on which announcements are sent.

AnnouncementPort IP port on which announcements are sent.

FTSAddress IP address on which FTS transmissions are
sent.

FTSPort IP port on which FTS transmissions are sent.

NetCard Specifies the net card used for transmission.

TriggerAddress IP address on which triggers are sent.

TriggerPort IP port on which triggers are sent.

Method Description

ConnectAnnouncement Establishes a connection for transmitting
announcements.

ConnectFTS Establishes a connection for transmitting
FTS files.

ConnectTrigger Establishes a connection for transmitting
triggers.

SendAnnouncement Transmits an announcement.

SendDeleteAnnouncement Transmits a delete announcement. A delete
announcement removes enhancement data
from the Guide database.

SendFTSFile Transmits an FTS file.

SendTrigger Transmits a trigger.

2678

Video Enhancements Page 87 of 95

Syntax

object.ConnectTrigger(sAddress, sPort)

Parts

object
Object expression that resolves to an ipsend object.

sAddress
String that specifies the IP address. This address should be in the format xxx.xxx.xxx.xxx, for
example 255.255.255.255.

sPort
String that specifies the IP port.

Remarks

You should call this method before calling ipsend.SendTrigger.

ConnectTrigger sets the values returned by ipsend.TriggerAddress and ipsend.TriggerPort.

See Also

ipsend.ConnectAnnouncement, ipsend.ConnectFTS

ipsend.SendTrigger
[This is preliminary documentation and subject to change.]

The SendTrigger method sends a trigger over the broadcast medium.

Syntax

object.SendTrigger(lKey, sData)

Parts

object
Object expression that resolves to an ipsend object.

lKey
Long that contains the trigger identifier. For more information about trigger identifiers and
format, see Enhancement Triggers.

sData

2679

Video Enhancements Page 88 of 95

String that contains the trigger data. The format of the data depends on the type of trigger sent.

Remarks

Before you call this method, you must call ipsend.ConnectTrigger to establish a connection.

See Also

ipsend.SendFTSFile, ipsend.SendAnnouncement

ipsend.TriggerAddress
[This is preliminary documentation and subject to change.]

The TriggerAddress property specifies the IP address over which triggers will be sent. This property
is read-only.

Syntax

[sIPAddr =] object.TriggerAddress

Parts

object
Object expression that resolves to an ipsend object.

sIPAddr
String that receives the IP address. This address will be in the format xxx.xxx.xxx.xxx, for
example 255.255.255.255.

Remarks

The value returned by TriggerAddress is set when you call ipsend.ConnectTrigger.

See Also

ipsend.TriggerPort, ipsend.SendTrigger

ipsend.TriggerPort
[This is preliminary documentation and subject to change.]

2680

Video Enhancements Page 89 of 95

The TriggerPort property specifies the IP port over which triggers are sent. This property is read-
only.

Syntax

[iIPPort =] object.TriggerPort

Parts

object
Object expression that resolves to an ipsend object.

iIPPort
Integer that receives the port.

Remarks

The value returned by TriggerPort is set when you call ipsend.ConnectTrigger.

See Also

ipsend.TriggerAddress, ipsend.SendTrigger

ipsend.NetCard
[This is preliminary documentation and subject to change.]

The NetCard property specifies the network card from which the enhancement stream, including
triggers, FTS file transmissions, and announcements, is transmitted.

Syntax

object.NetCard [= sNetcard]

Parts

object
Object expression that resolves to an ipsend object.

sNetcard
String that contains the network card address. This address should be in the format
xxx.xxx.xxx.xxx, for example 125.125.125.125.

2681

Video Enhancements Page 90 of 95

ipsend.FTSAddress
[This is preliminary documentation and subject to change.]

The FTSAddress property specifies the IP address over which FTS transmissions are sent. This
property is read-only.

Syntax

[sIPAddr =] object.FTSAddress

Parts

object
Object expression that resolves to an ipsend object.

sIPAddr
String that receives the IP address. This address will be in the format xxx.xxx.xxx.xxx, for
example 255.255.255.255.

Remarks

The value returned by FTSAddress is set when you call ipsend.ConnectFTS.

See Also

ipsend.FTSPort, ipsend.SendFTSFile

ipsend.FTSPort
[This is preliminary documentation and subject to change.]

The FTSPort property specifies the IP port over which FTS transmissions are sent. This property is
read-only.

Syntax

[iIPPort =] object.FTSPort

Parts

2682

Video Enhancements Page 91 of 95

object
Object expression that resolves to an ipsend object.

iIPPort
Integer that contains the port.

Remarks

The value returned by FTSPort is set when you call ipsend.ConnectFTS.

See Also

ipsend.FTSAddress, ipsend.SendFTSFile

ipsend.ConnectFTS
[This is preliminary documentation and subject to change.]

The ConnectFTS method establishes a connection for the transmission of FTS data.

Syntax

object.ConnectFTS(sAddress, iPort)

Parts

object
Object expression that resolves to an ipsend object.

sAddress
String that contains the IP address. This address should be in the format xxx.xxx.xxx.xxx, for
example 255.255.255.255.

iPort
Integer that contains the IP port.

Remarks

You must call this method before calling ipsend.SendFTSFile.

See Also

ipsend.ConnectAnnouncement, ipsend.ConnectTrigger, ipsend.FTSAddress, ipsend.FTSPort

2683

Video Enhancements Page 92 of 95

ipsend.SendFTSFile
[This is preliminary documentation and subject to change.]

The SendFTSFile method sends FTS data.

Syntax

object.SendFTSFile(sSrcFilename, sDstFilename)

Parts

object
Object expression that resolves to an ipsend object.

sSrcFilename
String that contains the name of the file at the transmission source or head-end.

sDstFilename
String that contains the name of the file on the client.

Remarks

Before you call this method, you must call ipsend.ConnectFTS to establish a connection.

See Also

ipsend.SendAnnouncement, ipsend.SendTrigger, ipsend.FTSAddress, ipsend.FTSPort,
FTSData Trigger

ipsend.AnnouncementPort
[This is preliminary documentation and subject to change.]

The AnnouncementPort property is the IP port to use when sending announcements. This property is
read-only.

Syntax

[iIPPort =] object.AnnouncementPort

Parts

2684

Video Enhancements Page 93 of 95

object
Object expression that resolves to an ipsend object.

iIPPort
Integer that receives the IP port.

See Also

ipsend.AnnouncementAddress, ipsend.ConnectAnnouncement, ipsend.SendAnnouncement

ipsend.AnnouncementAddress
[This is preliminary documentation and subject to change.]

The AnnouncementAddress property is the IP address to use when sending announcements. This
property is read-only.

Syntax

[sIPAddr =] object.AnnouncementAddress

Parts

object
Object expression that resolves to an ipsend object.

sIPAddr
String that receives the IP address. This address will be in the format xxx.xxx.xxx.xxx, for
example 255.255.255.255.

See Also

ipsend.AnnouncementPort, ipsend.ConnectAnnouncement, ipsend.SendAnnouncement

ipsend.ConnectAnnouncement
[This is preliminary documentation and subject to change.]

The ConnectAnnouncement method establishes a connection over which announcements can be
sent.

2685

Video Enhancements Page 94 of 95

Syntax

object.ConnectAnnouncement(sIPAddress, iIPPort)

Parts

object
Object expression that resolves to an ipsend object.

sIPAddress
String that contains the IP multicast address used to connect to the announcement stream. This
address should be in the format xxx.xxx.xxx.xxx, for example 255.255.255.255.

iIPPort
String that contains the IP port.

Remarks

You should call this method before calling ipsend.SendAnnouncement.

See Also

ipsend.ConnectFTS, ipsend.ConnectTrigger, ipsend.AnnouncementAddress,
ipsend.AnnouncementPort

ipsend.SendAnnouncement
[This is preliminary documentation and subject to change.]

The SendAnnouncement method sends an enhancement announcement over the broadcast medium.

Syntax

object.SendAnnouncement(sAnncFilename)

Parts

object
Object expression that resolves to an ipsend object.

sAnncFilename
String that contains the source filename of the announcement. This file is a text file that
specifies the announcement in SDP/SAP protocol. For more information, see Enhancement
Announcement Format.

2686

Video Enhancements Page 95 of 95

Remarks

Before you call this method, you must call ipsend.ConnectAnnouncement to establish a connection.

See Also

ipsend.SendTrigger, ipsend.SendFTSFile, ipsend.SendDeleteAnnouncement

ipsend.SendDeleteAnnouncement
[This is preliminary documentation and subject to change.]

The SendDeleteAnnouncement method sends a delete announcement over the broadcast medium. A
delete announcement removes data about a specific enhancement from the Guide database.

Syntax

object.SendDeleteAnnouncement(sAnncFilename)

Parts

object
Object expression that resolves to an ipsend object.

sAnncFilename
String that contains the source filename of the delete announcement. This file is a text file that
specifies the announcement in SDP/SAP protocol. For more information, see Enhancement
Announcement Format.

Remarks

This method deletes data for the enhancement specified in the file, sAnncFilename. Note that the
content of this file is identical to the content of the file specified in the call to
ipsend.SendAnnouncement. In other words, you can use the same file to delete enhancement data
from the Guide database that you used to set it.

Before you call this method, you must call ipsend.ConnectAnnouncement to establish a connection.

See Also

ipsend.SendTrigger, ipsend.SendFTSFile, ipsend.SendAnnouncement

2687

Internet Channel Broadcast Client Page 1 of 12

Internet Channel Broadcast Client
[This is preliminary documentation and subject to change.]

Internet channel broadcasting is an architecture that enables World Wide Web sites to be collected,
packaged, and then broadcast to multiple subscribers simultaneously.

Currently, the Web operates on a one-to-one basis. Each user who wants to view a site must create a
separate connection to that site. If too many users try to access a site at the same time, the server is
unable to handle all of the requests. In contrast, Internet channel broadcasting operates on a one-to-
many basis. Web sites are broadcast to many users at once and stored in each user's cache until the
user is ready to view them.

The Internet Channel Broadcast client is a component of the Microsoft® Windows® 98 operating
system. This client receives broadcast updates of Web sites that the user has subscribed to and stores
the updated files in the Web browser cache. The client extends the Microsoft® Internet Explorer
subscription model to a one-to-many broadcast architecture.

For more information, see the following topics:

� About the Internet Channel Broadcast Client, which describes the architecture and functionality
of the Internet Channel Broadcast client.

� Using the Internet Channel Broadcast Client, which explains how to use and programmatically
extend the Internet Channel Broadcast client.

� Internet Channel Broadcast Client Reference, which details the registry keys and announcement
format used by the Internet Channel Broadcast client.

About the Internet Channel Broadcast Client
[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast client software is part of the Microsoft® Windows® 98 operating
system and is installed when you select the Broadcast Data Services component. The client uses an
Announcement Listener filter to monitor announcements from the Internet Channel Broadcast server.
These announcements describe forthcoming Web channel broadcasts.

When the Internet channel broadcast filter receives an announcement about the upcoming broadcast of
a Internet channel, it queries Microsoft® Internet Explorer to determine whether the user has
subscribed to that channel. If the user has, the filter elects to receive the packaged files. The filter
stores received packages in the receiving directory for Internet channel broadcasting, typically
C:\Program Files\Webcast\Recv. After a package is received, the filter unpackages it, reconstructs the
files, and moves them to the Internet Explorer cache. The user can then view the files in the ordinary

2688

Internet Channel Broadcast Client Page 2 of 12

fashion, using a Web browser.

For more information, see the following topics:

� Internet Channels
� Subscriptions
� Internet Channel Broadcasting Overview
� Internet Channel Broadcast Filter

Internet Channels

[This is preliminary documentation and subject to change.]

An Internet channel is a subscribable Web site, in other words a Web site users can subscribe to. A
Web site administrator can make a site subscribable by creating a Channel Definition Format (CDF)
file and publishing it on the Web. The CDF file lists the Web files that make up the channel. These files
can be part or all of those in the Web site.

A user subscribes to an Internet channel using Internet Explorer version 4.0. Subscribing enables a
user to receive notifications or updates when the channel content changes. For more information on
subscribing, see Subscriptions and Subscribing to a Channel.

For more information about Internet Explorer 4.0 and CDF files, see Further Information on Data
Services for the Client.

Subscriptions

[This is preliminary documentation and subject to change.]

Internet channels are subscribable Web sites. When a user subscribes to a channel, the user can elect to
receive notifications or updated files when the channel content changes.

Subscriptions are created and managed using Internet Explorer 4.0. When a user subscribes to a
channel, Internet Explorer adds an entry to the user's subscriptions folder, C:\Windows\Subscriptions.
The entry lists information about the channel and its subscription schedule. Once users have subscribed
to a channel, they periodically receive updated files or notifications about changes.

Windows 98 provides two mechanisms to provide the user with updated content from subscribed
channels: the Internet Explorer 4.0 model, in which the browser periodically connects to the Web and
downloads channel updates, and Internet channel broadcasting, in which channel updates are
broadcast to clients.

2689

Internet Channel Broadcast Client Page 3 of 12

Internet channel broadcasting provides these advantages:

� Users can receive Web content without being connected to the Internet. For example, if your
laptop is equipped with a analog television tuner and a local television station broadcasts
Internet channels over the vertical blanking interval (VBI), you can receive updates of your
favorite Web sites while traveling.

� Web channels are broadcast to clients in a one-to-many transmission. This type of broadcast
enables many subscribers to receive Web updates at once without increasing server load. For
users, this means that they can view the latest versions of their favorite Web sites immediately,
without downloading files over an Internet connection.

For more information about Internet Explorer 4.0, see Further Information on Data Services for the
Client.

Internet Channel Broadcasting Overview

[This is preliminary documentation and subject to change.]

Internet channel broadcasting starts at the service provider. The service provider maintains an Internet
Channel Broadcast server. This server gathers channels from the Web, packages them, and at
scheduled intervals transmits the packaged files over a broadcast medium, such as a local area network
(LAN) or analog television signal, to the client.

The Internet Channel Broadcast client monitors announcements, electing to receive updates of
channels to which the user is subscribed. Broadcasts of channels the user has not subscribed to are
ignored. The client unpackages the updated channel files into the Web browser's cache.

The following diagram illustrates the flow of data through the Internet channel broadcast architecture.

2690

Internet Channel Broadcast Client Page 4 of 12

Internet Channel Broadcast Filter

[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast filter, Webfilt.dll, is the heart of the client application. This filter
interacts with other Windows 98 components, such as Internet Explorer and the Microsoft®
NetShow™ server, to filter and receive incoming channel updates. This filter is an Announcement
Listener filter that recognizes and responds to announcements about Internet channels to be
broadcast.

When the filter receives an announcement about an upcoming broadcast of a Internet channel, it
queries Internet Explorer to determine whether the user has subscribed to that channel. If the user has,
the filter calls the NetShow File Transfer Service (FTS) receiver, Nsfts.dll, to receive the packaged
files and store them in the receiving directory, by default C:\Program Files\Webcast\Recv. If the user
has not subscribed to the channel, the filter ignores the transmission.

After the FTS receiver has stored the packaged files in the receiving directory, the client filter
unpackages and reconstructs the files and stores them in the Internet Explorer cache. If a package
transfer is unsuccessful, the incomplete package file is deleted. The files that the filter stores in the
cache are marked as Subscription Content so they will not be inadvertantly deleted if the cache
becomes full.

Note When the filter unpackages the received files, it prevents unpackaged files from specifying a
destination directory above the receive directory. In other words, an incoming file cannot specify a
destination directory such as ..\..\..\Windows\System. Files will only be unpackaged to the receive
directory and its subdirectories.

Once the subscription update is received, the filter indicates that the channel has been updated by
adding a gleam, or red dot, to the channel icons in the channel bar and in the Favorites/Channels menu.
The filter also checks whether the subscription update schedule is set to manual. If it is not, the filter
changes the setting to manual. This prevents Internet Explorer from collecting the subscription content
from the Web. Since the subscription is being updated by Internet Channel Broadcasting, it would be
redundant for Internet Explorer to also update the subscription files.

The following illustration shows the function of the Internet Channel Broadcast filter in the client
architecture.

2691

Internet Channel Broadcast Client Page 5 of 12

Under typical operation, the Internet Channel Broadcast filter is automatically started when the
Broadcast Architecture client software is installed. The filter usually does not require any further
maintenance after installation. However, if you need to stop or start the filter, or to check when the
filter last matched an announcement to a file group, you can use the Announcement Filter Manager.
You can also pause the filter by right-clicking the Announcement Listener icon on the taskbar and
clicking Pause Announcement Listener. Note that doing so pauses all announcement filters running
on the broadcast client.

Transfer events are logged in the log directory, typically C:\Program Files\Webcast\Logs. By default,
this directory is not created during installation. If you want the Internet Channel Broadcast client to
generate log files, you must create the log directory manually. You can change the location of the log
directory by changing the value of the log_dir registry key. For more information, see Internet
Channel Broadcast Client Registry Keys and Testing Data Reception.

Using the Internet Channel Broadcast Client
[This is preliminary documentation and subject to change.]

The following topics describe how to use and programmatically extend the Internet Channel Broadcast
client.

� Configuring a Service Provider
� Subscribing to a Channel
� Editing a Subscription
� Deleting a Subscription
� Creating a Custom Client Application
� Detecting an Internet Channel Broadcast Client
� Testing Data Reception

2692

Internet Channel Broadcast Client Page 6 of 12

Configuring a Service Provider

[This is preliminary documentation and subject to change.]

An Internet Channel Broadcast service provider is a person or organization that administers an
Internet Channel Broadcast server, which transmits channel announcements and updates. The Internet
Channel Broadcast client supports multiple service providers.

Before the client can receive announcements from a service provider, the provider's announcement
address must be configured in the client computer's registry. This configuration is done by adding a
string value to this registry key:

HKLM\Software\Microsoft\TV Services\Announcements

This value must be formatted as xxx.xxx.xxx.xxx:yyyy where xxx.xxx.xxx.xxx specifies the Internet
Protocol (IP) address over which the service provider transmits announcements, and yyyy is the
corresponding port.

A service provider should provide a mechanism to add this announcement configuration string to a
user's registry when the user signs up for the service. If such a mechanism is not provided, the user
must add the value to the registry manually.

Subscribing to a Channel

[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast client uses the channel subscription model provided by Microsoft®
Internet Explorer version 4.0. This model means that you can create subscriptions for Internet channel
broadcasting in exactly the same manner that you create Internet Explorer subscriptions.

 To subscribe to a channel

1. In Internet Explorer, click the Channels button on the toolbar.
2. In the Explorer bar, click Channel Guide, and then follow the instructions on your screen.

For more information about creating subscriptions with Internet Explorer 4.0, see Further Information
on Data Services for the Client.

Future releases of Broadcast Architecture may provide a means to configure a service provider at the
same time that the user subscribes to a channel. In this scenario, when a user with Broadcast
Architecture installed subscribes to a Web site, future versions may present a list of service providers.

2693

Internet Channel Broadcast Client Page 7 of 12

These service providers may include, for example, local television stations broadcasting Internet
channels over the vertical blanking interval (VBI). The user might then select from the list a provider
from which to receive updated channel information. At that point, the service provider settings might
be configured automatically. For more information, see Configuring a Service Provider.

Editing a Subscription

[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast client uses the Internet Explorer 4.0 channel subscription model. This
model means that you can edit Internet channel broadcast subscriptions in exactly the same manner
that you edit Internet Explorer subscriptions.

 To edit a subscription

1. In Internet Explorer, click Manage Subscriptions on the Favorites menu.
2. Right-click the subscription you want to update, and then click Properties.
3. Specify the settings you want for receiving and scheduling the subscription.

For more information about editing subscriptions with Internet Explorer 4.0, see Further Information
on Data Services for the Client.

Deleting a Subscription

[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast client uses the Internet Explorer 4.0 channel subscription model. This
model means that you can delete Internet channel broadcast subscriptions in exactly the same manner
that you delete Internet Explorer subscriptions.

 To delete a subscription

1. In Internet Explorer, click Manage Subscriptions on the Favorites menu.
2. Right-click the subscription you want to update, and then click Delete.

For more information about deleting subscriptions with Internet Explorer 4.0, see Further Information
on Data Services for the Client.

2694

Internet Channel Broadcast Client Page 8 of 12

Creating a Custom Client Application

[This is preliminary documentation and subject to change.]

If the functionality provided by the Internet Channel Broadcast client does not suit your needs, you
can create a custom client application or custom subscription application.

A client application must include an announcement filter able to receive Internet channel broadcast
announcements. The client application must be able to discern whether the user is subscribed to a
particular channel, and to receive and unpackage File Transfer Service (FTS) transmissions from the
Internet Channel Broadcast server.

A subscription application should display a list of channels available for subscription, enable users to
subscribe to channels, maintain an inventory of subscribed channels, and provide a mechanism by
which users can delete or edit their subscriptions.

Detecting an Internet Channel Broadcast Client

[This is preliminary documentation and subject to change.]

Internet content providers can parse the HTTP headers transmitted by incoming browsers to test
whether the browser is running on a computer that has the Broadcast Data Services component of the
Microsoft® Windows® 98 operating system installed. This enables Web servers to return different
content depending on whether the user can receive broadcast data.

For example, a Web server that provides Internet subscription channels could redirect a broadcast-
enabled user to a channel definition file (CDF) that contains more and bigger files, knowing that the
user will be able to use high-bandwidth broadcast delivery instead of downloading over the Internet.

To detect whether a Web browser is running on an broadcast-enabled computer, check whether the
HTTP_ACCEPT header string contains "application/MS-BPC". If this string is present, the computer
is a broadcast client.

The following example uses Active Server Pages to test whether a user has the Broadcast Data
Services component of Windows 98 installed. If they do, the server displays a link to a broadcast-
enriched Internet channel. Otherwise, the server displays a link to a default channel.

<HTML>
<HEAD><TITLE>ICS Client Test Page</TITLE></HEAD>
<BODY BGCOLOR="#FFFFFF">
<%
 Dim acptstr, resstr

 'read in the HTTP_ACCEPT header string
 acptstr = Request.ServerVariables("HTTP_ACCEPT")

2695

Internet Channel Broadcast Client Page 9 of 12

 'check whether "MS-BPC" is included in the header string
 'if "MS-BPC" is present, the client is broadcast-enabled
 resstr = InStr(1, acptstr, "MS-BPC")

 If resstr = 0 Then
 'Insert non-broadcast enabled code
 Response.Write ("You are not broadcast-enabled.")
 Response.Write ("Click here to subscribe.")
 Else
 'Insert broadcast-enabled code
 Response.Write ("You are broadcast-enabled.")
 Response.Write ("Click here to subscribe.")
 End If
%>
</BODY>
</HTML>

For more information about Active Server Pages, see Further Information on Data Services for the
Client.

Testing Data Reception

[This is preliminary documentation and subject to change.]

The following section is intended for users who wish to test whether their Internet Channel Broadcast
Client is correctly receiving subscription data. The techniques described could be used by content
providers checking their transmission process, or users who want to verify that their installation and
configuration of the client.

In order to ensure that the subscription content that arrives on your client computer is being received
from an Internet Channel Broadcast Server instead of by some other means, such as Internet Explorer
webcasting, you should set the subscription to be updated manually. This prevents Internet Explorer
from updating the files in your cache, and still allows the subscription files to be updated by the
broadcast client.

 To set a subscription to manual update

1. In Windows Explorer, open the C:\Windows\Subscriptions\ directory.
2. Right-click the subscription you want to set to manual update and select Properties from the

menu that appears.
3. Click the Schedule tab.
4. Click the Manually radio button, and click OK. The subscription is only automatically updated

by the Internet Channel Broadcast client.

You can easily tell when the client updates a subscription. The client will mark the icon of updated
subscription with a gleam, or red dot. The gleam appears on both the the Channel-bar icon for the
subscribed item as well as the icon displayed on the Favorites/Channel menu for the subscribed item.

2696

Internet Channel Broadcast Client Page 10 of 12

If you require more details about the client's data reception, you can enable the logging feature of the
Internet Channel Broadcast client. This feature causes the client to write status information to a text
file each time it receives incoming data.

 To enable client logging

1. Create a directory in the location specified by the
HKLM/Software/Microsoft/Webcast/General\log_dir registry value. Typically, this is
"C:\Program Files\Webcast\Logs".

2. Using Regedit.exe, add a new DWORD value named loglev under
HKLM/Software/Microsoft/Webcast/General. Set this value to the log level that corresponds to
the level of verbosity you want. A setting of 1 indicates normal logging, whereas a setting of 3
indicates a higher level of detail. Note that setting the logging level to a value such as 5 can
quickly fill up your computer's storage.

3. Restart your computer.

The client will now write log data to the newly-created log directory.

 To view logged data

� Open the file in the log directory using a text editor.

Internet Channel Broadcast Client Reference
[This is preliminary documentation and subject to change.]

The following sections provide reference information for the Internet Channel Broadcast client:

� Internet Channel Broadcast Client Registry Keys
� Internet Channel Broadcast Announcement Format

Internet Channel Broadcast Client Registry Keys

[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast client reads the registry to initialize its settings. The following keys
are added to the registry when the Broadcast Data Services component of the Microsoft® Windows®
98 operating system is installed. Unless a user or application changes these values, these keys contain
the default values specified in the following tables.

2697

Internet Channel Broadcast Client Page 11 of 12

Internet channel broadcasting entries are found in this key:

HKLM\Software\Microsoft\Webcast\

This key contains two subkeys with values that affect the Internet Channel Broadcast client, \General
and \client.

The following client values are found in the \General subkey.

The subkey \client contains the following values.

Note When you open a file, Microsoft® Internet Explorer attempts to determine whether the files in
its cache need to be refreshed from the Internet. In other words, when you open a cached Web file,

Value Type Meaning

bin_dir String The directory that contains the Internet Channel
Broadcast filter and other executable files used
by the Internet Channel Broadcast client. The
default is C:\Program Files\Webcast\Bin.

log_dir String The directory to which the Internet Channel
Broadcast client writes log files. The default is
C:\Program Files\Webcast\Logs. By default, the
log directory is not created on the user's
computer when the client is installed. If you
want the client to log status, you must manually
create a log directory.

webcast_dir String The directory where the Internet Channel
Broadcast client is installed. If this directory is
not set, the default is C:\Program Files\Webcast.

Value Type Meaning

recv_dir String The directory where received files are put
until they are unpackaged. The default is
C:\Program Files\Webcast\Recv.

loglev DWORD A value that sets the level of verbosity for
information sent to the log file. Zero
specifies no logging; 1 (one) is usual
verbosity; values up to 6 are increasingly
verbose.

Note that setting the log level to a high
value can quickly fill up your hard drive.
For example, a loglev setting of 5 can
easily generate a 10 megabyte file
overnight.

2698

Internet Channel Broadcast Client Page 12 of 12

Internet Explorer connects to the Internet. If an updated version of the file is available, Internet
Explorer automatically downloads it. This functionality can make it difficult to test the Internet
Channel Broadcast client. To prevent Internet Explorer from automatically updating cached files when
you open them, click Work Offline on the File menu in Internet Explorer.

Internet Channel Broadcast Announcement Format

[This is preliminary documentation and subject to change.]

Internet channel broadcast announcements are transmitted to the client by the Store-and-Forward
server operated by the content provider. These announcements inform the client of upcoming data
transmissions.

The announcements are formatted using Session Description Protocol (SDP) protocol. For more
information, see Announcement Format. This topic discusses only the SDP fields used by Internet
channel broadcast announcements.

The following is a sample Internet channel broadcast announcement:

v=0
o=Webcast3 3084034855 3084023432 IN IP4 157.56.137.117
s=Webcast package, group ChannelName
i=Webcast package, group ChannelName, URL range http://FirstFile.htm to http://Last
u=http://Channel.cdf
c=IN IP4 233.17.43.2/1
t=3084034855 3084035155
a=webcast_version:4.10.1592
a=length: 1067
a=urlroot: http://Channel.cdf
a=group: ChannelName
a=package-type: CDF_CHANNEL
a=cdf-update: TRUE
a=first-url: http://FirstFile.htm
a=last-url: http://LastFile.htm
a=page-count: 1
a=pkg-version: 3
m=webcast 1781 FTS 0

2699

Broadcast Server Architecture Page 1 of 3

Broadcast Server Architecture
[This is preliminary documentation and subject to change.]

The following sections provide an overview of the type of server architecture used to transmit
broadcast data over a broadband network to broadcast clients in the home. The head end in this
discussion is the physical infrastructure that gathers, coordinates, and broadcasts data over such a
network.

The head-end server architecture relies on the following three software components to deliver
broadcast data to transport mediums such as cable systems, satellite uplinks, or terrestrial antennas:

� Content server application. This application, written by a content provider and running on a
computer at the head end, gathers, schedules, and sends data to the Microsoft Multicast Router
(MMR), as described in Writing Content Server Applications.

� Microsoft Multicast Router (MMR). This program routes data from the content server
application to the output driver. The MMR can forward Internet Protocol (IP) multicast packets
directly to the output driver or it can forward packets embedded in a Transmission Control
Protocol (TCP) stream from the content server application.

� Output system software. This software is a dynamic-link library (DLL) file that the MMR calls
to send data to the transport medium. Each transport medium requires a unique output driver
DLL. A single MMR program can use more that one output driver DLL to enable it to send
data on multiple transport media.

Content Server Application
[This is preliminary documentation and subject to change.]

A content server application generates a data stream that is sent to the broadcast client. An example of
a content server application is the Internet Channel Broadcast Server, which sends World Wide Web
pages. This application collects Hypertext Markup Language (HTML) pages from the Web, using a
mechanism based on Internet Explorer version 4.0 channels. Then, the server encapsulates the pages in
Transmission Control Protocol/Internet Protocol (TCP/IP) packets and passes them to the MMR.

There are many factors to consider when developing a content server application. Such factors include
the amount of data to send, how often the data should be resent, and the security the data requires.
For information on how these and other factors affect the design of a content server application, see
Writing Content Server Applications.

2700

Broadcast Server Architecture Page 2 of 3

Microsoft Multicast Router
[This is preliminary documentation and subject to change.]

The Microsoft Multicast Router (MMR) receives data from the content server application and routes
it to the output driver. The MMR program is divided into two parts that are covered in the following
sections.

� The Router Service Program is a server process that handles network packets.
� The Router Manager is a program that you use to control the router service program.

For more information about using the MMR, see Working with the Microsoft Multicast Router.

The Router Service Program

[This is preliminary documentation and subject to change.]

The router service program (Mrouter.exe) is the program that listens for packets coming from the
content server application and forwards broadcast data to the output driver.

There are two possible ways for a content server application to send data to the MMR. The first is by
sending IP multicast packets using an IP address on which the MMR expects data. The MMR passes
these packets directly to the output driver for transmission. The content server is responsible for
sending data at times and speeds that are acceptable to the transmission medium. For example, if the
output driver is designed to send data to a vertical blanking interval (VBI) data inserter, the content
server application must send the data at a rate slow enough for the VBI data inserter to keep up. In
addition, if there is another content server application using the same output driver, both content
server applications must be designed so that they do not send data at the same time.

The second way for a content server to send data to the MMR is through a TCP/IP tunnel. A TCP/IP
tunnel is a TCP/IP connection between two applications that is used to carry other network data. In
the case of the MMR, this data is UDP packets destined for the output driver. The advantage of using
a TCP/IP tunnel is that it gives the MMR an opportunity to send messages back to the content server
application. These messages tell the content server application when it is sending too much data or
sending data at the wrong time.

The Router Manager

[This is preliminary documentation and subject to change.]

2701

Broadcast Server Architecture Page 3 of 3

The router manager (Mmradm.exe) is a program that lets you monitor the status and set parameters
for the router service program. Mmradm.exe does not have to run on the same computer as the router
service program. The only requirement is that a network connection exists between Mmradm.exe and
the system running Mrouter.exe.

Output System Software
[This is preliminary documentation and subject to change.]

The output driver is a dynamic-link library (DLL) file that contains routines that the MMR can call to
send packets to the broadcast hardware. The MMR keeps a list of which packets go to which output
driver. For example, you can use Mmradm.exe to setup the MMR to send all packets arriving through
a certain tunnel to the VBI output driver. The output driver copies the packets to the VBI device and
signals the MMR when it can accept more data. To read about how to write an output driver module,
see Sample Output Driver DLL.

2702

Writing Content Server Applications Page 1 of 10

Writing Content Server Applications
[This is preliminary documentation and subject to change.]

Before establishing a data service using Broadcast Architecture, a content provider must generally
create or acquire computer software to manage the delivery of the data from its source to its audience.
This topic discusses some of the design and programming issues that a development team needs to
address when creating a data service system.

The best programming strategy depends to some extent on what kind of data is involved, as is
discussed in two sections reviewing the possible kinds of broadcast data:

� Broadcast Data Categories
� Broadcast Data Characteristics

The section Main Office Software describes the software that content providers must write or aquire
to process and broacast data.

Also, where appropriate, a content provider must establish an online server for managing viewer
subscriptions, purchases, and responses. Although the needs of such a server should be taken into
account when planning development, the specific functions of any given server are beyond the scope
of this document.

Broadcast Data Categories
[This is preliminary documentation and subject to change.]

Data intended for the Broadcast Architecture falls into three general categories:

� Internet channel broadcasting
� Enhanced television
� Subscription data

The first two categories are handled using special-purpose tools supplied with Microsoft® Site Server.
The Internet Channel Broadcast Server handles the first catagory, and most enhanced television
broadcasts will initially be created in existing television studios and transmitted as analog NTSC
streams carrying the enhancement data in the vertical blanking interval (VBI). For more information
on Internet channel broadcasting, see Internet Channel Broadcast Client and Internet Channel
Broadcast Server. For more information on VBI enhancements, see Serial VBI.

The third category, subscription data, here means any content other than World Wide Web content
and television enhancements that the user of a broadcast client chooses to receive. The choice to

2703

Writing Content Server Applications Page 2 of 10

subscribe need not carry a price, and the choice may not even necessarily be explicit. For example,
tuning to a given channel at a given time might be interpreted as expressing interest in receiving
related data.

Subscription data can take many different forms, including the following:

� Digital video for sale or rental
� Computer software, including games
� High-resolution still images or animations
� Digital magazines or newspapers
� Digital mail-order catalogs or advertisements

Because subscription data can vary so much in format, audience, and purpose, custom software is
required to manage its broadcast.

Broadcast Data Characteristics
[This is preliminary documentation and subject to change.]

Data suitable for broadcast falls into many different categories and can have a variety of formats. The
following general characteristics of different data have important implications for the software needed
to generate, transmit, and receive the corresponding broadcast streams:

� Value. How much is the data worth? A very high value probably justifies better encryption,
more error correction, and more frequent transmission. Low value may allow higher
compression and less frequent transmission.

� Precision. How much of the data's value depends on its complete and accurate transmission?
When a software program is transmitted, for example, every bit must be correctly received and
verified, or the data is useless. When a bitmap graphic is transmitted, on the other hand, a good
deal of data can usually be lost without compromising the value of the image. Note that because
the client cannot notify the host of lost data in Broadcast Architecture, incomplete and damaged
data is always discarded. Partial data and data containing irrecoverable errors is simply not
received.

� Transience. Some data loses its value soon after it is transmitted, for example stock prices or
enhancements to a television show. Other data loses value very slowly, for example a software
program or reference work.

� Urgency. How important is it that viewers receive the data within a given time-frame? Urgency
can be understood as a function of value and transience, but it also has a psychological
component deriving from viewers' perceptions. For example, a user purchasing a new software
program expects it to come shortly after she pays for it. If, on the other hand, the user purchases
regular updates to her encyclopedia articles, she does not expect an immediate response.

� Expiration. How long may a viewer keep the data? Transient data is usually used immediately
upon reception and discarded, but other data may be kept indefinitely. The viewer's rights to
store and use data are often limited by licensing agreements, as in the case of software rentals,
pay-per-view programs, or limited subscriptions.

2704

Writing Content Server Applications Page 3 of 10

� Segmentation. How is the data divided up, particularly from a subscription standpoint? A viewer
might sign up for a persistent stream of information, as in the case of a stock-price or news
service; for individual files, as in the case of downloading software; or perhaps for filtered
subsets of a complex data stream.

� Homogeneity. How homogeneous is the data? Stock price data, at one extreme, usually consists
of small, uniform data objects that all have exactly the same size and format. A news stream, at
the other extreme, might consist of many different types of data objects of radically different
sizes and formats.

Analyzing a data service in terms of these characteristics is useful in determining what software is
needed in the content provider's studio, at the broadcast head end, and on the home computer in order
to manage the data most effectively.

Main Office Software
[This is preliminary documentation and subject to change.]

The software tools for content development typically run on computers located in the content
provider's own facilities and vary widely with the type, source, and design of the content itself. Some
of these tools are off-the-shelf commercial products, while others are special-purpose applications.

Some of the tasks content providers may need to perform follow:

� Creating Content Data
� Assembling Content Data
� Storing and Cataloging Content Data
� Synchronizing Enhancements with Television
� Scheduling Broadcasts
� Specifying Announcements
� Forwarding Content data to the Microsoft Multicast Router

Creating Content Data

[This is preliminary documentation and subject to change.]

Much content data used to enhance television will probably be created from scratch, using existing
World Wide Web design and programming tools. To locate more information on creating content
data, see Further General Information.

2705

Writing Content Server Applications Page 4 of 10

Assembling Content Data

[This is preliminary documentation and subject to change.]

This step may involve collecting data from the World Wide Web, from a data warehouses, or files on a
corporate network. It is important to develop an efficient strategy for collecting data to be broadcast,
whatever its source.

Storing and Cataloging Content Data

[This is preliminary documentation and subject to change.]

The first step in processing broadcast data is to catalog it. This is true whether the data is analog
television, digital video, or any other form of digital data. This task can be accomplished using a
database that contains information about what data is available and where to find it.

The diagrams following provide a schematic representation of two possible systems that catalogs
content. The first diagram, following, illustrates cataloging and storing digital television or audio
content. The content librarian system is a computer that an operator uses to collect the digital content,
characterize it with key words and descriptive text, and store the content data and related information.

The following diagram illustrates cataloging and storing analog television content. In this case the
content data is not directly available to the content librarian system, so the content lookup database
must include identifying information. This information could include the title of the video, a tape ID,
or a description.

2706

Writing Content Server Applications Page 5 of 10

The following diagram illustrates cataloging and storing other digital content. This system is similar to
the digital audio and video system. The difference is that the content data comes from other sources
source as web page gatherers or image libraries.

Synchronizing Enhancements with Television

[This is preliminary documentation and subject to change.]

The step of synchronizing television enhancements to shows is primarily relevant for digital
enhancements to television and audio programming.

One way to synchronize digital broadcast data with television is to embed hidden triggers in the
broadcast data stream. A program running on the broadcast client can check for triggers and display
the appropriate digital enhancements when they arrive. To take advantage of this technique, a content
provider must insert appropriate triggers in the broadcast data stream and settle on a way to associate
each trigger with corresponding enhancement data.

2707

Writing Content Server Applications Page 6 of 10

In early implementations of Broadcast Architecture, digital enhancements for television will usually be
stored in the vertical blanking interval (VBI) of analog television signals. However, in later
implementations of Broadcast Architecture, there may be alternate, richer data steams broadcast in
parallel with the television show across digital channels.

Furthermore, even early implementations of Broadcast Architecture may broadcast in advance of a
show one or more digital files of subscription data, so these files are available when the show airs. This
last possibility is particularly attractive to advertisers because it allows more graphics and information
to be transmitted than would fit in the VBI bandwidth available..

Tools to synchronize such ancillary enhancements with television should update the content lookup
database so that the link between the television show and the enhancements is recorded in that
database. This link can be used to make sure that the enhancements for a particular show get
transmitted in time to be used during the show. The following diagrams show such a synchronization
process. The first illustration shows how digital data is combined with enhancements. First, an
enhancement creation system sends the enhancements to the synchronization workstation. This
workstation uses information in the content lookup database to combine the television data from the
content storage array with the enhancement data. Then the synchronization workstation returns the
combined data and any separate enhancement streams, to the content storage array.

In following illustration enhancements are synchronized with analog television. The enhancement
creation system, synchronization workstation, and content lookup database function in the same way
as the previous illustration. The difference is in the source of the video data and how the final output is
stored. With analog video, only the separate enhancement streams are stored in the content storage
disk array. The synchronization workstation gets video from a video tape or other video feed and
passes it to a VBI system. At the same time, the synchronization workstation passes the VBI triggers
and enhancements to a VBI bridge that, in turn, passes the data to the VBI system. The VBI system
combines the video with the VBI data and outputs the NTSC television with triggers and
enhancements.

2708

Writing Content Server Applications Page 7 of 10

Scheduling Broadcasts

[This is preliminary documentation and subject to change.]

In some cases, scheduling when broadcast data is transmitted can be trivial. In the case of a stock
ticker service, for example, the data is transmitted as soon as it arrives. In many cases, however,
scheduling is an extremely complex task, particularly if bandwidth is limited. Trade-offs may need to
be made balancing value, urgency, precision, and data size. For example, if a data file is large, you may
have to send it less often, sacrificing speedy delivery and the amount of error correction data that can
be sent. Tools to facilitate this process will be extremely useful. Some considerations regarding
creating such tools follow.

When the decision is made to broadcast a specific content file, relevant information must be placed in
the content lookup database. This information includes the data service over which the broadcast is to
occur, any authentication information required to secure bandwidth on that data service, the time or
times of broadcast, the amount of bandwidth required for the broadcast, and any other information
needed to ensure that the broadcast goes out over the right channel at the right time.

A scheduling system should also take into account any dependencies recorded in the content lookup
database, allowing an operator to schedule these dependencies at the same time. For example, if a
television show required some enhancements to be preloaded, the scheduling system should transmit
such enhancements before the show.

2709

Writing Content Server Applications Page 8 of 10

Because scheduling is a common and repetitive task, as much as possible of the relevant scheduling
information should be stored in a scheduling database. Applications running on the head end can
retrieve this information automatically to support scheduling of individual content files.

The following diagram illustrates the components of this kind of scheduling process.

Specifying Announcements

[This is preliminary documentation and subject to change.]

Not only does a broadcast need to be scheduled, but its announcement strategy needs to be
determined, and its announcement text specified.

Typically, two types of announcement are available for every broadcast: a global announcement and a
local announcement. A global announcement is usually issued infrequently over a broad range of
tuning space, so as to alert client machines that a given content file will be broadcast over a given
channel at a given time.

A local announcement, on the other hand, is usually sent frequently for a short period before a
broadcast occurs, over the same channel on which the broadcast will occur. Its purpose is to alert a
client that the broadcast is imminent and to provide any last-minute tuning information that may be
needed.

Both types of announcement must be formatted as Session Announcement Protocol (SAP)/Session
Description Protocol (SDP) pairs

The following diagram illustrates an announcement generation system. For more information on the
use of a scheduling database, see Scheduling Broadcasts; for more information on the use of a content
lookup database, see Storing and Cataloging Content Data.

2710

Writing Content Server Applications Page 9 of 10

An announcement generation system should enable an operator to choose the timing and frequency of
both global and local announcements, to specify associated Internet Protocol (IP) addresses for each
type of announcement, and to determine the content of each type of announcement. This information
can then be stored in the content lookup database in SAP/SDP format, ready to use.

For more information on how Broadcast Architecture works with announcements, see Announcement
Listener.

Forwarding Content Data to the Microsoft Multicast Router

[This is preliminary documentation and subject to change.]

A content server program forwards a file to be broadcast to the Microsoft Multicast Router at times,
and on IP addresses indicated in the content lookup database.

The information used to determine what time and IP address to use might include:

� The data service and channel on which the stream of data from the file should be broadcast.
� Bandwidth assurance information: Should bandwidth be reserved, or can this stream be

broadcast opportunistically?
� Bandwidth requirements: If bandwidth needs to be reserved, how much and for how long?
� The specific IP multicast address to be reserved, if one is necessary.
� The time or times this stream should be broadcast.
� The global announcement associated with this stream, if any, along with a specification of when,

how many times, and at what intervals the announcement should be sent.
� The local announcement associated with this stream, if any, along with a specification of when,

how many times, and at what intervals the announcement should be sent.
� Stream reuse information: Should this stream be saved for future broadcast or deleted after

sending?

The content server application is responsible for such things as error checking, and error correction,
encryption, key generation, and key encryption, when this is appropriate.

The content service provider communicates with the Microsoft Multicast Router (MMR) through

2711

Writing Content Server Applications Page 10 of 10

TCP/IP. Using TCP/IP lets the content server application run on any computer that has a TCP/IP
network connection to the MMR computer.

2712

Working with the Microsoft Multicast Router Page 1 of 30

Working with the Microsoft Multicast Router
[This is preliminary documentation and subject to change.]

The Microsoft Multicast Router (MMR) is a network server application that provides services to
forward network traffic from a local computer network to a variety of unidirectional broadcast
encoders.

For more information about the MMR, including how to install and run it, see the following topics:

� About the Microsoft Multicast Router
� Installing the Microsoft Multicast Router
� Configuring the Microsoft Multicast Router

About the Microsoft Multicast Router
[This is preliminary documentation and subject to change.]

The Microsoft Multicast Router (MMR) enables content servers to send data over your broadcast
head end. The MMR is made up of a router program (Mrouter.exe), an operator interface
(Mmradm.exe), and an output driver. The router program receives packets to be transmitted and
passes them on to the output driver according to the operator instructions. Each type of transmission
uses a specific output driver. For example, to send data in the vertical blanking interval of a television
signal, the MMR uses Vbi_out.dll.

Note Some beta versions of the Microsoft Multicast Router call output drivers virtual interfaces
(VIFs) or output subsystems.

Installing the Microsoft Multicast Router
[This is preliminary documentation and subject to change.]

The requirements for the Microsoft Multicast Router (MMR) are:

� A computer based on a Pentium 150-megahertz, or faster, CPU.
� At least 32 megabytes of RAM are required. 64 megabytes of RAM are recommended
� Microsoft® Windows NT® Server version 4.0, or newer, operating system with the remote

procedure call (RPC) service installed

2713

Working with the Microsoft Multicast Router Page 2 of 30

� A network card connected to a local source network
� Appropriate hardware to interface with the broadcast head end

 To install the MMR software

To install Mrouter.exe, run the setup program to copy the MMR files to the server computer, then
enter this command from the install directory:

mrouter -install

If you configure the MMR to forward multicast packets, you must install the MSDBN NDIS Packet
Driver in Windows NT. Follow these steps to install the driver:

1. In the Windows NT Control Panel, double-click Network.
2. Click the Protocols tab.
3. Click Add button to bring up the Select Network Protocol dialog box.
4. Click the Have Disk button.
5. Type the path to the broadcast server files, and click OK.
6. Select MSBDN NDIS Packet Driver from the list of components.
7. Follow the prompts to install the component.
8. Restart the computer.

Configuring the Microsoft Multicast Router
[This is preliminary documentation and subject to change.]

The Microsoft Multicast Router (MMR) uses the program Mmradm.exe to monitor the status of the
MMR and to set configuration parameters. You can use Mmradm.exe to configure any running copies
of Mrouter.exe on a local area network from any computer on the network.

The first step in configuring the MMR is to add the MMR to the list of routers in the main window of
Mmradm. If Mmradm is running on the same computer as the MMR, the router automatically appears
in the window. Otherwise you can select add from the file menu to add a router.

The next step is to select the router and use the configure command from the file menu. There are
several tabs in the configuration dialog box that let you set various parameters for the router. Each
router must have at least one output driver before it can send data. Use the Output Subsystem tab to
add the output driver to the router.

MSBDN Reference

2714

Working with the Microsoft Multicast Router Page 3 of 30

[This is preliminary documentation and subject to change.]

This section documents Microsoft Broadcast Data Network (MSBDN) functions. A content server
application running at a broadcast system head end would use these functions to transmit data across
a Microsoft Multicast Router (MMR) to the broadcast network.

These functions include:

� Tunnel functions
� Data transfer functions

For an overview of the head-end server architecture within which the MSBDN functions operate, see
Broadcast Server Architecture.

For more information about how to design a content server application, see Writing Content Server
Applications.

Tunnel Functions

[This is preliminary documentation and subject to change.]

Tunnels are Windows Socket connects that contain other data channels. In the case of content server
applications, the content server application can open a tunnel to the MMR that contains the IP
multicast packets to transmit. The purpose for using a tunnel instead of directly multicasting is to
provide a back channel from the MMR to the content server application. The MMR can use this back
channel to control the rate at which the content server application send data.

msbdnOpenTunnel
[This is preliminary documentation and subject to change.]

The msbdnOpenTunnel function opens a tunnel to the MMR.

Function Description

msbdnOpenTunnel Opens a tunnel to the MMR

msbdnClose Closes a tunnel

msbdnOpenTunnelEx Opens a tunnel to the MMR using a
specific reservation

2715

Working with the Microsoft Multicast Router Page 4 of 30

EXTERN_C MSBDNAPI HBDNCONN msbdnOpenTunnel(
 LPCSADDR_INFO lpcsMMRAddr,
 LPSOCKET_ADDRESS lpDestAddr,
 WORD wTTL,
 DWORD dwReservationID
);

Parameters

lpcsMMrAddr
The name of the MMR to connect to.

lpDestAddr
The socket address to use for the tunnel.

wTTL
Time to live value to use with the socket interface.

dwReservation ID
Identify the bandwidth reservation to use.

Return Values

Returns a handle to the tunnel connection or NULL if the connection cannot be made. Use
GetLastError() to get more information when msbdnOpenTunnel returns NULL.

See Also

msbdnClose, msbdnSend

msbdnClose
[This is preliminary documentation and subject to change.]

The msbdnClose function closes a connection to the MMR

MSBDNAPI BOOL WINAPI msbdnClose(
 HBDNCONN hBdnCon
);

Parameters

hBdnCon
Handle to the connection to close.

Return Values

If an error occurs while closing the connection, msbdnClose returns SOCKET_ERROR.

2716

Working with the Microsoft Multicast Router Page 5 of 30

See Also

msbdnOpenTunnel, msbdnOpenTunnelEx

msbdnOpenTunnelEx
[This is preliminary documentation and subject to change.]

The msbdnOpenTunnelEx function opens a tunnel to the MMR using a specific reservation.

MSBDNAPI HBDNCONN WINAPI msbdnOpenTunnelEx(
 LPCSTR lpcsMMrAddr,
 LPCSTR lpDestAddr,
 WORD wDestPort,
 WORD wTTL,
 DWORD dwReservationID
);

Parameters

lpcsMMrAddr
The name of the MMR to connect to.

lpDestAddr
The socket address to use for the tunnel.

wTTL
The time to live value to use for the socket connection.

dwReservation ID
Identify the bandwidth reservation to use.

Return Values

Returns a handle to the tunnel connection or NULL if the connection cannot be made. Use
GetLastError() to get more information when msbdnOpenTunnel returns NULL.

See Also

msbdnOpenTunnel

Data Transfer Functions

[This is preliminary documentation and subject to change.]

2717

Working with the Microsoft Multicast Router Page 6 of 30

Content server applications send data to the MMR using TCP/IP sockets. The functions in this section
handle sending data to the sockets.

msbdnSend
[This is preliminary documentation and subject to change.]

The msbdnSend function sends data to the MMR using a tunnel or a multicast socket

MSBDNAPI INT WINAPI msbdnSend(
 HBDNCONN hBdnConnection,
 LPVOID lpBuffer,
 WORD wSize
);

Parameters

hBdnConnection
Handle to the connection to the MMR.

lpBuffer
Pointer to the data to send.

wSize
Number of bytes in the buffer to send.

Return Values

If there is an error sending the data to the MMR, msbdnSend returns SOCKET_ERROR.

See Also

msbdnOpenTunnel

About Output Drivers
[This is preliminary documentation and subject to change.]

An output driver is a user-mode dynamic-link library (DLL) that the Microsoft Multicast Router

Function Description

msbdnSend Send data to the MMR

2718

Working with the Microsoft Multicast Router Page 7 of 30

(MMR) requires to route data packets to a specific output device. This driver packages the data into
network and hardware-specific formatting. Because this packaging is performed by the output driver
and not the MMR, the MMR software does not need to be rewritten if the network or hardware
changes. You can configure new multicast routers simply by changing the MMR registry entries and
the output driver .dll file.

Note Some beta versions of the Microsoft Multicast Router call output drivers virtual interfaces
(VIFs) or output subsystems.

The following diagram illustrates how a data stream flows from the content server to a broadcast
output system.

Each head-end server infrastructure requires an output driver specific to its system. During testing of
the MMR, Microsoft has created the following output drivers:

� Local Area Network
� Serial VBI

For information on the specific functions that must be implemented in an output driver, see Output
Driver Reference.

Local Area Network

[This is preliminary documentation and subject to change.]

The Local Area Network (LAN) output driver can be used to test broadcast server and client
applications without using a satellite. Instead of forwarding data packets to particular head-end
equipment, it sends them over an Ethernet LAN in the form of Internet Protocol (IP) multicast
packets.

Driver File

Mc_out.dll

Output Options

The MMR can query and set the options in the following table by calling the following dynamic
configuration functions for this driver: msbdnOutputGetValue, msbdnOutputGetValueCount, and
msbdnOutputSetValue.

2719

Working with the Microsoft Multicast Router Page 8 of 30

Serial VBI

[This is preliminary documentation and subject to change.]

This output driver connects a computer serial port to a Norpak TES-3 encoder, which encodes data
into the vertical blanking interval (VBI). This connection enables the Norpak encoder to transmit
Internet Protocol (IP) multicast packets in a standard analog television signal. The Norpak encoder
must be configured to use the Norpak "Bundle FEC (Forward Error Correction)" mode of
transmission. The encoder must also be configured to indicate the lines of the VBI to use. The rate
encoded data is sent is determined by the number of lines of the television signal that are used.

Driver File

Vbi_out.dll

Output Options

The MMR can query and set the options in the following table by calling the following dynamic
configuration functions for this driver: msbdnOutputGetValue, msbdnOutputGetValueCount, and
msbdnOutputSetValue.

Value Type Meaning

Multicast
TTL

Dword
(DWORD)

The time-to-live (TTL) value at which this
driver transmits multicast packets through
the output system. The default value is 1,
which restricts transmission to the local
network.

Interface
Address

IPAddress
(IN_ADDR)

The address of the network interface card
from which this driver transmits multicast
packets. If this option is not specified, the
operating system uses a default interface.
The interface address specified must be in
Internet dotted notation (xxx.xxx.xxx.xxx).

Value Type Meaning

Serial Port String
(LPWSTR)

The communications resource, such as the
serial port COM1, to use for
communication with the TES-3 encoder.

2720

Working with the Microsoft Multicast Router Page 9 of 30

Output Driver Reference
[This is preliminary documentation and subject to change.]

This section documents the functions that make up the interface between the Microsoft multicast
router (MMR) and an output driver, which sends data streams to a broadcast output device. Such an
output driver communicates with the input unit of a broadcast data encoder. This section also
documents structures that hardware vendors use to implement the output driver.

The output driver interface is documented in four groups:

� Output Driver Functions
� MMR Functions
� Output Driver Structures
� Sample Output Driver DLL

Output Driver Functions

Serial Port Bit
Rate

Dword
(DWORD)

The speed in bits per second of the serial
port to use for communication with the
TES-3 encoder. To locate more information
on determining this speed, see Further
Server Information.

Debug Log
Filename

String
(LPWSTR)

The name and path of a file to which this
driver writes debugging data.

Debug Log
Enable

Boolean
(BOOL)

Turns on or off packet dump mode, causing
or preventing the contents of packets to be
displayed in the output log file specified by
the Debug Log Filename option. Setting
this value to TRUE turns on packet dump
mode, and setting this value to FALSE
turns off packet dump mode.

Use Old
Framing
Mode

Boolean
(BOOL)

If set to TRUE, encodes packets in a way
that is compatible with the initial
experiments by Microsoft with VBI
encoding. If set to FALSE, encodes packets
using the Microsoft UDP/IP compression
algorithm. Note that a FALSE value is not
yet completely supported.

2721

Working with the Microsoft Multicast Router Page 10 of 30

[This is preliminary documentation and subject to change.]

Hardware vendors should implement the output driver functions described in this section. These
functions package data from a stream into a specific format, so a particular broadcast encoder can
transmit the data stream over a particular network.

Hardware vendors should build their output drivers as dynamic-link libraries (DLLs) that the MMR
loads at run time. An output driver DLL must implement all the functions listed following that are
specified as required. Only output driver DLLs that support dynamic configuration must implement
the functions listed following that are specified as optional. An output driver DLL that supports
dynamic configuration enables the MMR to query or set any number of values defined by the output
driver. Implementation of dynamic configuration is strongly encouraged.

Each output driver must be able to safely host multiple instances of an output system. In other words,
the MMR should be able to load an output driver more than once with separate parameters and route
different packet streams to such different instances of an output driver. The MMR should be able to
independently start and stop each instance of an output driver; that is, the MMR should be able to load
and unload a driver instance from the MMR's address space.

At run time, the MMR loads the appropriate output driver DLL with an output loader. The output
loader calls the RegQueryValueEx function, which is part of the Microsoft® Win32® application
programming interface (API). The output loader passes RegQueryValueEx the string OutputDLL to
retrieve the file name of the output driver DLL. The output loader then calls the LoadLibrary Win32
function and passes this file name to retrieve a handle to the output DLL. The output loader uses this
handle in calls to the GetProcAddress Win32 function. These calls get the address of each exported
function of the output driver DLL. To locate documentation on these Win32 API functions that the
output loader calls, see Further Server Information.

The following table lists and describes the output driver functions.

Function Description

msbdnOutputCreate Creates and initializes a single instance of
an output driver. This function is
required.

msbdnOutputDestroy Destroys an instance of an output driver.
This function is required.

msbdnOutputFreeBuffer Frees a buffer returned by
msbdnOutputGetValue. This function
is optional.

msbdnOutputGetStatus Retrieves the status of an output driver.
This function is required.

msbdnOutputGetValue Retrieves a configuration value of an
output driver. This function is optional.

msbdnOutputGetValueCount Retrieves the number of configuration
values supported by an output driver.
This function is optional.

2722

Working with the Microsoft Multicast Router Page 11 of 30

msbdnOutputCreate
[This is preliminary documentation and subject to change.]

The msbdnOutputCreate function creates and initializes a single instance of an output driver.

HRESULT msbdnOutputCreate(
 OUT MSBDN_OUTPUT_SUBSYSTEM *Subsystem,
 IN DWORD ApiVersion
);

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that is to receive details about the
output driver implementation. This function fills the structure with information about the output
driver and the output device that the MMR is to send data to.

ApiVersion
Highest version of the output driver interface that the caller can use. The high-order bytes
specify the minor version number, for example version x.1. The low-order bytes specify the
major version number, for example version 1.

Return Values

Returns zero if the function was successful. If the function fails, the return value is non-zero. If this
function is unable to allocate memory for an instance of the output driver, this function should return
E_OUTOFMEMORY.

Remarks

After loading an output driver DLL, the MMR immediately calls the msbdnOutputCreate function.
This function is only called once, and no other output driver functions are called until this function
returns.

The msbdnOutputCreate function should create any synchronization objects that it requires and try
to connect to and initialize the appropriate output system or device drivers it will use. If an output
driver DLL stores values in the registry when the DLL starts, msbdnOutputCreate should call the
RegQueryValueEx Win32 function for each configuration value and pass the open registry key
contained in the Subsystem parameter, the name of the configuration value to retrieve, and a buffer to

msbdnOutputSendPacket Sends all packets of a data stream to the
output system. This function is required.

msbdnOutputSetValue Assigns a configuration value to an
output driver. This function is optional.

2723

Working with the Microsoft Multicast Router Page 12 of 30

hold the configuration data. The msbdnOutputCreate function could also provide default data for
each configuration value. The msbdnOutputCreate function should then store retrieved or provided
configuration data in values defined by the output driver. When the MMR requires a dynamic value
from the output driver's configuration, the MMR calls msbdnOutputGetValue to retrieve such a
value.

If msbdnOutputCreate cannot initialize an instance of the output driver, it should return a failure
condition. The msbdnOutputCreate function should only return a failure condition if there is some
condition that prevents the output driver from ever running correctly. For example, the output driver
should not return an error condition if some configuration parameter prevents the hardware from
functioning because the output driver can only change configuration parameters of the hardware if this
function succeeds.

The msbdnOutputCreate function allows the MMR to specify the version of the output driver
interface that a particular output driver is required to support. The function also allows the MMR to
retrieve details about the output driver's implementation.

In order for the MMR to support future implementations of the output driver interface that might have
functionality different from that current, a negotiation should take place in msbdnOutputCreate. The
MMR and the particular output driver DLL indicate to each other the highest interface version that
they can support. Each confirms that the other's highest version is acceptable, if it is.

To do so, the output driver DLL examines the version requested by the MMR. If this version is equal
to or higher than the lowest version supported by the DLL, the call succeeds. On a successful call, the
DLL returns the highest version it supports in the Version member of
MSBDN_OUTPUT_SUBSYSTEM. In the structure's Version member, the output driver DLL
returns either the highest version it supports or the version number that the MMR is requesting,
whichever is lower.

After msbdnOutputCreate returns, the output driver DLL works under the assumption that the
MMR uses the interface version returned in Version. If the MMR cannot work with this version, the
MMR does not call any other output driver functions.

This negotiation allows both an output driver DLL and the MMR to support a range of function
versions. The MMR can successfully use an output driver DLL if there is any overlap in the version
ranges.

See Also

msbdnOutputDestroy, msbdnOutputGetValue, MSBDN_OUTPUT_SUBSYSTEM

msbdnOutputDestroy
[This is preliminary documentation and subject to change.]

2724

Working with the Microsoft Multicast Router Page 13 of 30

The msbdnOutputDestroy function shuts down the output system and deletes the instance of the
output driver DLL before unloading the DLL.

HRESULT msbdnOutputDestroy(
 IN MSBDN_OUTPUT_SUBSYSTEM *Subsystem
);

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that contains details about the
output driver implementation.

Return Values

Should always return zero for a successful status.

Remarks

The msbdnOutputDestroy function is the last output driver function that the MMR calls before
exiting. When msbdnOutputDestroy is called, the output driver DLL should stop all data
transmissions, close any devices it has opened, free all packet queues, and release all resources that it
allocated such as synchronization objects. The msbdnOutputDestroy function must complete any
PACKET_BUFFER handles which it has queued. Because msbdnOutputDestroy is the last
function that the MMR calls before exiting, msbdnOutputDestroy should block other functions'
processing until it is done with all cleanup.

See Also

msbdnOutputCreate, MSBDN_OUTPUT_SUBSYSTEM, PacketBufferComplete,
PACKET_BUFFER

msbdnOutputFreeBuffer
[This is preliminary documentation and subject to change.]

The msbdnOutputFreeBuffer function frees string storage that the MMR obtained from a call to the
msbdnOutputGetValue function.

HRESULT msbdnOutputFreeBuffer(
 IN MSBDN_OUTPUT_SUBSYSTEM *Subsystem
 IN LPVOID Buffer
);

2725

Working with the Microsoft Multicast Router Page 14 of 30

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that contains details about the
output driver implementation.

Buffer
Memory storage containing a null-terminated string that this function frees.

Return Values

Should always return zero for a successful status.

Remarks

An output driver DLL should implement msbdnOutputFreeBuffer so that the MMR can configure
the DLL dynamically. Typically, the implementation for msbdnOutputFreeBuffer should free string
storage by calling the free C function, the delete C++ function, or the GlobalFree Microsoft®
Win32® base services function. The particular implementation for an output driver DLL's string
memory management is left up to the hardware vendor.

See Also

msbdnOutputGetValue, MSBDN_OUTPUT_SUBSYSTEM

msbdnOutputGetStatus
[This is preliminary documentation and subject to change.]

The msbdnOutputGetStatus function retrieves the current status of the output driver DLL for the
MMR.

HRESULT msbdnOutputGetStatus(
 IN MSBDN_OUTPUT_SUBSYSTEM *Subsystem,
 OUT HRESULT *Status
);

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that contains details about the
output driver implementation.

Status
Pointer to a value specifying the current status of the output driver DLL.

2726

Working with the Microsoft Multicast Router Page 15 of 30

Return Values

Returns zero if the function was successful. If the function fails, the return value is non-zero.

Remarks

The output driver DLL should return a status of S_OK in the Status parameter if it is working
properly, and otherwise should return an error value.

See Also

MSBDN_OUTPUT_SUBSYSTEM

msbdnOutputGetValue
[This is preliminary documentation and subject to change.]

The msbdnOutputGetValue function retrieves a specific dynamic value of the output driver DLL's
configuration for the MMR.

HRESULT msbdnOutputGetValue(
 IN MSBDN_OUTPUT_SUBSYSTEM *Subsystem,
 IN/OUT MSBDN_OUTPUT_VALUE *Value
);

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that contains details about the
output driver implementation.

Value
Address of an MSBDN_OUTPUT_VALUE structure that is to receive details about a dynamic
value of the output driver's configuration specified by the Index member of
MSBDN_OUTPUT_VALUE. This function fills the structure with information about the
specified value.

Return Values

Returns zero if the function was successful. If the function fails, the return value is non-zero. If the
Index member of MSBDN_OUTPUT_VALUE in the Value parameter is not valid,
msbdnOutputGetValue should return E_INVALIDARG.

Remarks

2727

Working with the Microsoft Multicast Router Page 16 of 30

The MMR calls msbdnOutputGetValue to obtain a dynamic value from the output driver's
configuration with the value's index. The msbdnOutputGetValue function should set the name and
data type of the configuration value and the member of the union within
MSBDN_OUTPUT_VALUE in the Value parameter corresponding to the correct data type.

If the output driver specifies the data type as a string, the output driver DLL must allocate this string
on the heap. The output driver should never return a pointer to global storage; this practice is not safe
in a multithreaded environment. To release memory storage for this string, the MMR calls
msbdnOutputFreeBuffer.

See Also

msbdnOutputFreeBuffer, msbdnOutputSetValue, MSBDN_OUTPUT_SUBSYSTEM,
MSBDN_OUTPUT_VALUE

msbdnOutputGetValueCount
[This is preliminary documentation and subject to change.]

The msbdnOutputGetValueCount function retrieves the upper bound on the number of indexes of
configuration values that the output driver DLL supports.

HRESULT msbdnOutputGetValueCount(
 IN MSBDN_OUTPUT_SUBSYSTEM *Subsystem,
 OUT DWORD *ValueCount
);

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that contains details about the
output driver implementation.

ValueCount
Address of a value that specifies the upper bound on the number of indexes of configuration
values that the output driver DLL supports. Usually, this value is a constant.

Return Values

Should always return zero for a successful status.

Remarks

The MMR calls msbdnOutputGetValueCount to obtain the number of dynamic configuration
parameters the output system might support. For example, if an output system supports a serial-port

2728

Working with the Microsoft Multicast Router Page 17 of 30

value, a bit-rate value, and a framing-mode value, msbdnOutputGetValueCount should store the
number three in the memory to which the ValueCount parameter points.

See Also

msbdnOutputGetValue, MSBDN_OUTPUT_SUBSYSTEM

msbdnOutputSendPacket
[This is preliminary documentation and subject to change.]

The msbdnOutputSendPacket function sends all packets of a data stream to the output system.

HRESULT msbdnOutputSendPacket(
 IN MSBDN_OUTPUT_SUBSYSTEM *Subsystem,
 IN PACKET_BUFFER *Packet
);

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that contains details about the
output driver implementation.

Packet
Address of a PACKET_BUFFER structure that describes a packet of data.

Return Values

Returns zero if the output driver successfully transmitted the packet. If the function fails, the return
value is non-zero.

Remarks

While a stream is active, the stream functionality of the MMR calls the msbdnOutputSendPacket
function in the output driver DLL. The MMR does so to send a stream's data packets to the broadcast
encoder or to other output systems. The msbdnOutputSendPacket function is responsible for
translating protocol types, generating network-specific addresses, and reformatting data to follow
network-specific protocols.

The output driver can alter the Start and End members of a PACKET_BUFFER structure and can
alter the memory to which the Data member of PACKET_BUFFER points. However, the output
driver must not alter the information within the Data member itself. The MMR stores the actual data
that the output driver transmits in the buffer to which the Data member of PACKET_BUFFER
points. The data that the output driver transmits begins at the index given by the Start member of

2729

Working with the Microsoft Multicast Router Page 18 of 30

PACKET_BUFFER and ends at the index given by the End member of PACKET_BUFFER. The
buffer for transmitted packets is structured in this manner to allow output drivers to efficiently add or
remove packet headers and trailers without requiring that the output driver copy the entire packet
elsewhere in memory.

The length of the actual packet data is determined by subtracting the PACKET_BUFFER's Start
member from its End member. Provided that there is sufficient space at the beginning of the packet
buffer, the output driver could decrease the value of the PACKET_BUFFER's Start member and
then store new data in that memory location. The output driver could also extend the packet by
increasing the PACKET_BUFFER's End member. However, the output driver must never increase
the value of the PACKET_BUFFER's End member beyond its Max member. The output driver can
also change the values of the PACKET_BUFFER's Start and End members to decrease the length
of the packet.

Examples of the output driver manipulating packets include:

� Removing an IP and then a UDP header in order to extract just the UDP body data
� Encapsulating an IP packet in a larger frame

The output driver can accomplish these tasks without copying the packet data, which facilitates high-
speed applications.

The output driver must "complete" the packet buffer when it is done processing it. If the output driver
can finish processing the packet immediately, it should complete the packet buffer before returning
from msbdnOutputSendPacket; this operation is synchronous. Otherwise, the output driver might
store the packet in a queue and complete the packet later in a different thread; this operation is
asynchronous.

If the MMR receives data with protocol types it cannot decipher, it forwards the data to the output
driver without modification.

See Also

MSBDN_OUTPUT_SUBSYSTEM, PacketBufferComplete, PACKET_BUFFER

msbdnOutputSetValue
[This is preliminary documentation and subject to change.]

The msbdnOutputSetValue function assigns a dynamic value to an output driver DLL's
configuration specified by the MMR.

HRESULT msbdnOutputSetValue(
 IN MSBDN_OUTPUT_SUBSYSTEM *Subsystem,
 IN MSBDN_OUTPUT_VALUE *Value

2730

Working with the Microsoft Multicast Router Page 19 of 30

);

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that contains details about the
output driver implementation.

Value
Address of an MSBDN_OUTPUT_VALUE structure. This structure contains details about a
dynamic value for the output system's configuration that the MMR requires set.

Return Values

Returns zero if the function was successful. If the function fails, the return value is non-zero. If the
Index member of MSBDN_OUTPUT_VALUE in the Value parameter is not valid or the Type
member is not correct, msbdnOutputGetValue should return E_INVALIDARG.

Remarks

The MMR calls msbdnOutputSetValue to set a specific dynamic configuration value. The index of
the value is stored in the Index member of MSBDN_OUTPUT_VALUE in the Value parameter. The
output driver DLL should look up the dynamic configuration value corresponding to this index, check
to make sure that the data type passed by the MMR is correct for this value, set its own internal value
for this configuration value, and should store this configuration value in persistent storage. An output
driver usually stores values in the registry. If this configuration value affects communication with
external equipment, such as setting a bitrate divisor, this change should take place immediately,
provided doing so does not cause other problems.

If an output driver stores values in the registry, msbdnOutputSetValue should call the
RegSetValueEx Win32 function and pass the open registry key contained in the Subsystem parameter,
the name of the configuration value to set, and the buffer containing the configuration data. The buffer
that holds this configuration data contains the address of the union member of
MSBDN_OUTPUT_VALUE in the Value parameter.

See Also

msbdnOutputGetValue, MSBDN_OUTPUT_SUBSYSTEM, MSBDN_OUTPUT_VALUE

MMR Functions

[This is preliminary documentation and subject to change.]

The Microsoft Multicast Router (MMR) also is a dynamic-link library (DLL), which output driver
DLLs bind to at run time. In this library, the MMR exports a callback function that allows output
driver DLLs to report internal events and a completion function that allows the output driver to report

2731

Working with the Microsoft Multicast Router Page 20 of 30

that it has finished with a packet.

Hardware vendors should implement their output driver code by including the Bridge.h header file and
by calling the MMR functions described in this section. When vendors build output driver DLLs, they
should link their output driver code to the Bdnapi.lib library.

The following table lists and describes the MMR functions.

msbdnBridgeReportEvent
[This is preliminary documentation and subject to change.]

The msbdnBridgeReportEvent function informs the MMR to record output driver events directly in
the system event log.

HRESULT msbdnBridgeReportEvent(
 IN MSBDN_OUTPUT_SUBSYSTEM *Subsystem,
 IN WORD wType,
 IN DWORD dwErrorCode,
 IN LPCSTR szMessage
);

Parameters

Subsystem
Address of an MSBDN_OUTPUT_SUBSYSTEM structure that contains details about the
output driver implementation.

wType
A value that can be one of the following three standard Win32 error types:
EVENTLOG_INFORMATION_TYPE, EVENTLOG_ERROR_TYPE, or
EVENTLOG_WARNING_TYPE.

dwErrorCode
A value that can be a Win32 error code, a Windows Sockets error code, a standard system
HRESULT value, or one of status codes defined in the Brerror.h header file. If this value is an
error code, then the full textual description of the error message will be included with the event
in the szMessage parameter.

szMessage

Function Description

msbdnBridgeReportEvent Informs the MMR to record output
driver events directly in the system event
log.

PacketBufferComplete Informs the MMR that the output driver
is done processing a packet.

2732

Working with the Microsoft Multicast Router Page 21 of 30

A Unicode string containing the message to record in the event log.

Return Values

Returns zero if the function was successful. If the function fails, the return value is non-zero. To get
extended error information, call the Win32 function GetLastError. To locate more information on
GetLastError, see Further General Information.

Remarks

The msbdnBridgeReportEvent function allows an output driver to easily record events in the event
log. An output driver can also call the functions of the underlying Win32 event logging application
programming interface (API). Using msbdnBridgeReportEvent reduces overhead for an output
driver implementation.

The MMR implements msbdnBridgeReportEvent as an inline function in the Bridge.h header file.
The msbdnBridgeReportEvent implementation calls the ReportEvent member of the
MSBDN_BRIDGE_CALLBACKS structure for a specific output driver instance defined by an
MSBDN_OUTPUT_SUBSYSTEM structure. An inline function by definition is a function whose
code gets substituted in place of the actual call to that function. That is, whenever the compiler
encounters a call to that function, it merely replaces it with the code itself, thereby saving overhead.

See Also

MSBDN_BRIDGE_CALLBACKS, MSBDN_OUTPUT_SUBSYSTEM

PacketBufferComplete
[This is preliminary documentation and subject to change.]

The PacketBufferComplete function informs the MMR that the output driver is done processing a
packet and provides status on the completed packet.

void PacketBufferComplete(
 IN PACKET_BUFFER *Packet,
 IN DWORD dwStatus
);

Parameters

Packet
Address of a PACKET_BUFFER structure that describes a packet the output driver is finished
with.

dwStatus
Value specifying the status of the completed packet. The following table lists and describes the

2733

Working with the Microsoft Multicast Router Page 22 of 30

valid status values.

Return Values

None

Remarks

The MMR implements PacketBufferComplete as an inline function in the Packet.h header file; the
Bridge.h header file includes Packet.h. The PacketBufferComplete implementation calls the
CompletionFunc member of the PACKET_BUFFER structure for the passed in packet.

Output driver DLLs can be implemented for particular output systems that use first-in-first-out (FIFO)
chips of a fixed-length in the range of 32 to 64 slots. If such an output driver fills the output system's
FIFO before transmitting all the packet data, then the output driver must inform the MMR that it is
done processing the packet with a status value of PACKET_COMPLETE_OVERFLOW.

See Also

PACKET_BUFFER

Output Driver Structures

[This is preliminary documentation and subject to change.]

To write output drivers that format and send data to a broadcast encoder or other output systems, you
can use the structures discussed in this section. These structures describe specific output systems and
drivers and the data packets that output drivers send to their systems. The following table lists and
describes these structures.

Value Meaning

PACKET_COMPLETE_FAILURE A failure occurred in processing
the packet.

PACKET_COMPLETE_NO_ROUTE The output driver was unable to
route the packet.

PACKET_COMPLETE_OVERFLOW The output driver cannot
process the packet
synchronously and lacks queue
space to process the packet
asynchronously.

PACKET_COMPLETE_SUCCESS Processing of the packet
completed successfully.

2734

Working with the Microsoft Multicast Router Page 23 of 30

MSBDN_BRIDGE_CALLBACKS
[This is preliminary documentation and subject to change.]

The MSBDN_BRIDGE_CALLBACKS structure contains information about pointers to callback
functions exported by the MMR that allow output driver DLLs to report internal status.

typedef struct MSBDN_BRIDGE_CALLBACKS {
 DWORD Version;
 HRESULT (*ReportState) (struct MSBDN_OUTPUT_SUBSYSTEM *,

DWORD state, LPCSTR message);
 HRESULT (*ReportActivity) (struct MSBDN_OUTPUT_SUBSYSTEM *,

WORD type, DWORD amount);
 HRESULT (*ReportEvent) (struct MSBDN_OUTPUT_SUBSYSTEM *,

WORD, DWORD, LPCWSTR);
} MSBDN_BRIDGE_CALLBACKS;

Members

Version
Version number of the MMR callback reference.

ReportState
Pointer to a function that an output driver calls to inform the MMR about the state of such
output driver.

ReportActivity
Pointer to a function that an output driver calls to inform the MMR about real-time bandwidth
usage and minor problems with the output system.

ReportEvent
Pointer to a function that an output driver calls to inform the MMR of an output driver event.

See Also

Structure Description

MSBDN_BRIDGE_CALLBACKS Contains information about pointers
to callback functions exported by the
MMR

MSBDN_OUTPUT_SUBSYSTEM Contains information representing a
specific output system

MSBDN_OUTPUT_VALUE Contains information about a
configuration value

PACKET_BUFFER Contains information about a packet
of data that an output driver transmits

2735

Working with the Microsoft Multicast Router Page 24 of 30

msbdnBridgeReportEvent

MSBDN_OUTPUT_SUBSYSTEM
[This is preliminary documentation and subject to change.]

The MSBDN_OUTPUT_SUBSYSTEM structure contains information representing a specific
output system that an output driver can configure dynamically and to which an output driver sends
data packets.

typedef struct MSBDN_OUTPUT_SUBSYSTEM {
 DWORD Version;
 MSBDN_BRIDGE_CALLBACKS BridgeCallbacks;
 MSBDN_SUBSYSTEM_ID OutputSubsystemID;
 HKEY RegistryKey;
 LPVOID DriverContext;
} MSBDN_OUTPUT_SUBSYSTEM;

Members

Version
Version of the output driver interface that the output driver requires the MMR to support.

BridgeCallbacks
An MSBDN_BRIDGE_CALLBACKS structure containing information about pointers to
callback functions exported by the MMR that allow output driver DLLs to report internal
status.

OutputSubsystemID
A value that identifies a particular output system. This value uniquely identifies an instance of an
output driver DLL. An MSBDN_SUBSYSTEM_ID data type is defined as a DWORD data
type.

RegistryKey
The handle of an open registry key that the output driver can use to retrieve any previously
stored configuration data and to store new configuration data. The output driver can use this
registry key handle but should not close or alter it. This value should not be NULL.

DriverContext
Reserved for the output driver to use. Typically, this member points to a structure defined by
the output driver DLL that contains all of the internal state information of an instance of an
output system such as configuration data, synchronization objects, and device handles.

Remarks

In every output driver function call, the MMR passes a pointer to
MSBDN_OUTPUT_SUBSYSTEM in order to uniquely identify a specific instance of an output
driver DLL.

2736

Working with the Microsoft Multicast Router Page 25 of 30

See Also

MSBDN_BRIDGE_CALLBACKS

MSBDN_OUTPUT_VALUE
[This is preliminary documentation and subject to change.]

The MSBDN_OUTPUT_VALUE structure contains information about a dynamic value for an
output driver's configuration.

typedef struct MSBDN_OUTPUT_VALUE {
 DWORD Index;
 DWORD Type;
 LPWSTR Name;
 union {

DWORD Dword;
LPWSTR String;
IN_ADDR IPAddress;
BOOL Boolean;

 };
} MSBDN_OUTPUT_VALUE;

Members

Index
Index number of a dynamic value for an output driver's configuration.

Type
Value specifying the type of information stored as configuration data. The following table lists
and describes the valid values.

Name
A null-terminated string containing the name of a dynamic value for an output driver's
configuration.
Dword

Member of the union contained in MSBDN_OUTPUT_VALUE that can hold a 32-bit
number (DWORD) as configuration data.

String

Value Meaning

MSBDN_OUTPUT_VALUE_BOOLEAN BOOL data type

MSBDN_OUTPUT_VALUE_DWORD DWORD data type

MSBDN_OUTPUT_VALUE_IPADDRESS IN_ADDR data type

MSBDN_OUTPUT_VALUE_STRING LPWSTR data type

2737

Working with the Microsoft Multicast Router Page 26 of 30

Member of the union contained in MSBDN_OUTPUT_VALUE that can hold a Unicode
string (LPWSTR) as configuration data.

IPAddress
Member of the union contained in MSBDN_OUTPUT_VALUE that can hold an IP
address (IN_ADDR) as configuration data.

Boolean
Member of the union contained in MSBDN_OUTPUT_VALUE that can hold a Boolean
value (BOOL) as configuration data.

See Also

msbdnOutputGetValue, msbdnOutputSetValue

PACKET_BUFFER
[This is preliminary documentation and subject to change.]

The PACKET_BUFFER structure contains information about a packet of data that an output driver
sends to its output system.

typedef struct PACKET_BUFFER {
 LPBYTE Data; // storage for packet data
 DWORD Start; // where the data begins
 DWORD End; // where the data ends
 DWORD Max; // the physical length of Data
 DWORD Context;
 WORD Protocol;
 WORD AddressLength;
 BYTE Address[16];
 PACKET_COMPLETION_FUNC CompletionFunc;
} PACKET_BUFFER;

Members

Data
Buffer containing the data that the output driver transmits.

Start
The beginning memory location of the transmitted data.

End
The ending memory location of the transmitted data.

Max
The maximum physical length of the transmitted data. The End member can never be increased
beyond the value of Max.

Context
Value specifying the context of the transmitted data.

Protocol

2738

Working with the Microsoft Multicast Router Page 27 of 30

Value specifying the format of the data. The following table lists and describes the valid format
values.

AddressLength
Size, in bytes, of the Address array. If Address is null, AddressLength is zero.

Address
An array of bytes specifying an address to which the packet belongs. This array can be no longer
than 16 bytes.

CompletionFunc
Pointer to a function that an output driver DLL calls to inform the MMR that the DLL is done
processing the packet buffer. In this call, the DLL provides status on the completed packet.

Remarks

The MMR keeps track of packets with the PACKET_BUFFER structure. An output driver uses
PACKET_BUFFER to route packets from the MMR to a specific output system.

The PACKET_BUFFER structure provides output drivers with an easy way to add or remove
packet headers without requiring memory allocation and copy operations. For example, to remove an
IP header from a packet, advance the Start member of PACKET_BUFFER by the length of the IP
header. To add an Ethernet frame header to the front of a packet, first insure that there is sufficient
space at the beginning of the packet buffer by checking to make sure that the Start member is greater
than or equal to the length of an Ethernet header. Then, subtract the length of the Ethernet header
from the Start member and fill in the appropriate members in the Ethernet header.

When the MMR calls the msbdnOutputSendPacket function on a specific instance of an output
driver, such an output driver takes responsibility for the passed PACKET_BUFFER while processing
it. This output driver must eventually call the PacketBufferComplete function to indicate to the
MMR that the output driver is done processing.

See Also

msbdnOutputSendPacket, PacketBufferComplete

Value Meaning

PACKET_BUFFER_PROTOCOL_IP The packet body is a full IP
packet, including header and body.
Output drivers should extract an
IP address from the message body.
The Address member of
PACKET_BUFFER is not used.

PACKET_BUFFER_PROTOCOL_VBI_RAW The packet is a VBI frame. The
Address member of
PACKET_BUFFER is not used.

2739

Working with the Microsoft Multicast Router Page 28 of 30

Sample Output Driver DLL
[This is preliminary documentation and subject to change.]

This section describes source code for the sample output driver dynamic-link libraries (DLLs) that are
provided as part of the beta program for the Microsoft® Windows® 98 operating system and the
Platform Software Development Kit (SDK) to give hardware vendors assistance in writing their own
output driver DLLs. To be of maximum value, this section requires the user to have the Main.cpp
source-code files under the Mc_out and Nulloss directories close at hand.

Note Output driver DLLs are components of a broadcast server and therefore only run on
Microsoft® Windows NT® Server version 4.0, or newer, operating system.

The following sections describe:

� Sample Output Driver Overview
� Sample Output Driver Anatomy
� Sample Output Driver Walk-through

Sample Output Driver Overview

[This is preliminary documentation and subject to change.]

The beta program for the Microsoft® Windows® 98 operating system and the Platform SDK provide
the source code for two sample output drivers described as follows.

The source code for the Mc_out.dll sample demonstrates an output driver that broadcasts over a local
area network (LAN). Such an output driver can be used to test broadcast server and client
applications without using a satellite or a vertical blanking interval (VBI) transmitter. Instead of
forwarding data packets from the Microsoft Multicast Router (MMR) to particular head-end
equipment, Mc_out.dll sends them over an Ethernet LAN in the form of Internet Protocol (IP)
multicast packets. The source code for the Mc_out.dll shows implementations for the optional
functions that support dynamic configuration in addition to the required functions. The required and
optional functions for an output driver are described in Sample Output Driver Anatomy.

The source code for the Nulloss.dll sample demonstrates an output driver that is useful for debugging
purposes. Such an output driver can collect packets from the MMR, and rather than forwarding those
packets to particular head-end equipment, periodically display the bandwidth of the packets. Because
the Nulloss.dll sample does not have any configuration values, it does not export the optional
functions that support dynamic configuration and its source code does not show implementations for
those functions.

2740

Working with the Microsoft Multicast Router Page 29 of 30

Sample Output Driver Anatomy

[This is preliminary documentation and subject to change.]

After installing the Broadcast Architecture Programmer's Reference material, the Main.cpp files for
both samples are available. These sample files aid the user in understanding the purpose of each
sample and its relationship to the MMR. The following table shows how the MMR calls and the uses
of the exported output driver functions. Documentation for the following exported output driver
functions can be found in the Output Driver Functions section.

Function Description
HRESULT msbdnOutputCreate(
 MSBDN_OUTPUT_SUBSYSTEM * subsystem,
 DWORD version);

Creates and initializes a
single instance of an
output driver. This
function is required.

HRESULT msbdnOutputDestroy(
 MSBDN_OUTPUT_SUBSYSTEM * subsystem);

Destroys an instance of
an output driver. This
function is required.

HRESULT msbdnOutputFreeBuffer(
 MSBDN_OUTPUT_SUBSYSTEM * subsystem,
 LPVOID buffer);

Frees a buffer returned
by msbdnOutput
GetValue. This function
is optional.

HRESULT msbdnOutputGetStatus(
 MSBDN_OUTPUT_SUBSYSTEM * subsystem,
 HRESULT * status);

Retrieves the status of
an output driver. This
function is required.

HRESULT msbdnOutputGetValue(
 MSBDN_OUTPUT_SUBSYSTEM * subsystem,
 MSBDN_OUTPUT_VALUE * value);

Retrieves a
configuration value of
an output driver. This
function is optional.

HRESULT msbdnOutputGetValueCount(
 MSBDN_OUTPUT_SUBSYSTEM * subsystem,
 DWORD * count);

Retrieves the number of
configuration values
supported by an output
driver. This function is
optional.

HRESULT msbdnOutputSendPacket(
 MSBDN_OUTPUT_SUBSYSTEM * subsystem,
 PACKET_BUFFER * packet);

Sends all packets of a
data stream to the
output system. This
function is required.

HRESULT msbdnOutputSetValue(
 MSBDN_OUTPUT_SUBSYSTEM * subsystem,
 MSBDN_OUTPUT_VALUE * value);

Assigns a configuration
value to an output
driver. This function is
optional.

2741

Working with the Microsoft Multicast Router Page 30 of 30

Sample Output Driver Walk-through

[This is preliminary documentation and subject to change.]

The following steps briefly describe creation, use, and destruction for the Mc_out.dll sample. The
Mc_out.dll functions mentioned in this section are described in greater detail in Output Driver
Functions.

1. At run time, the MMR loads Mc_out.dll with an output loader and retrieves the address of each
exported function of the DLL. The MMR then calls the msbdnOutputCreate function and
specifies the version of the required output system so it can retrieve details of the specific
output driver implementation. The msbdnOutputCreate function then connects to the
appropriate output system with specific options obtained from the output driver's configuration
and configures the output system. The msbdnOutputCreate function calls the WinSock socket
function to create a socket that uses UDP for the Internet address family and then calls the
WinSock bind function to bind a local address to such a socket. If the socket could not be
bound to a UDP/IP port, msbdnOutputCreate calls the msbdnBridgeReportEvent function
and passes the EVENTLOG_ERROR_TYPE error type and the error value provided by
WinSock to inform the MMR to record the error directly in the system event log.

2. When the MMR requires dynamic values of the output driver's configuration, it calls the
msbdnOutputGetValueCount and msbdnOutputGetValue functions.

3. When the MMR assigns a dynamic value to an output driver's configuration, it calls the
msbdnOutputSetValue function.

4. When the MMR has data to send, it calls the msbdnOutputSendPacket function to send a
packet of a data stream to the output system. After msbdnOutputSendPacket has finished
processing the packet, it informs the MMR by calling the PacketBufferComplete function and
provides status on the completed packet.

5. Before exiting, the MMR calls the msbdnOutputDestroy function to stop all data
transmissions and free all resources that the output driver allocated.

2742

Internet Channel Broadcast Server Page 1 of 40

Internet Channel Broadcast Server
[This is preliminary documentation and subject to change.]

Internet channel broadcasting refers to an architecture that enables World Wide Web sites to be
collected, packaged, and then broadcast to multiple subscribers simultaneously.

Currently, the Web operates on a one-to-one basis. Each user who wants to view a site must create a
separate connection to that site. If too many users try to access a site at the same time, the server is
unable to handle all of the requests. In contrast, Internet channel broadcasting operates on a one-to-
many basis. Web sites are broadcast to many users at once and stored in each user's cache until the
user is ready to view them.

For more information, see the following sections:

� System Requirements
� Overview of Internet Channel Broadcasting
� Internet Channel Broadcasting Architecture
� Internet Channel Broadcast Server Architecture
� Components and Options for the Internet Channel Broadcast Server
� Using Internet Channel Broadcast Server
� Internet Channel Broadcast Server Reference

System Requirements
[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast server software runs on the Microsoft® Windows NT® operating
system, version 4.0 or greater. In addition, the server requires that the following software components
be installed:

� Service Pack 3 for version 4.0 of the Microsoft® Windows NT® operating system
� Microsoft® Access 97 or Data Access Objects (DAO) version 3.5
� Microsoft® Internet Explorer version 4.0

Overview of Internet Channel Broadcasting
[This is preliminary documentation and subject to change.]

2743

Internet Channel Broadcast Server Page 2 of 40

There are two parts to the Internet channel broadcasting system:

� Internet Channel Broadcast server
� Internet Channel Broadcast client

The server is administered by a service provider that supports Internet channel broadcasting. This
server gathers files from the Web channels specified in the Scheduler Database and caches these files.
The server then packages the files for transmission. The packaged files are transmitted using a
broadcast medium, for example as a signal coded into the vertical blanking interval (VBI) of an
analog television broadcast, or as packets over a local area network (LAN).

The Internet Channel Broadcast client runs on the user's computer. It decodes and filters broadcasts
from the Internet Channel Broadcast server. When a Web site that the user has subscribed to is
transmitted, the client unpacks the transmission into the Web browser cache.

The following illustration provides an overview of the Internet channel broadcasting architecture.

At the server end, a Gatherer component collects files from the Web and stores them in a cache
directory. The Packager component packages files from that directory and stores the packages in the
package directory. These packages are then transmitted to the client over the broadcast medium.
When the client receives the packages, it unpackages and reconstructs them into the browser cache.

For a more details on the Internet channel broadcasting system, see Internet Channel Broadcasting
Architecture, Internet Channel Broadcast Client, and Internet Channel Broadcast Server Architecture.

Internet Channel Broadcasting Architecture
[This is preliminary documentation and subject to change.]

2744

Internet Channel Broadcast Server Page 3 of 40

The following illustration shows, in detail, the flow of data in a Internet channel broadcasting system
from the Web to a user's computer.

2745

Internet Channel Broadcast Server Page 4 of 40

For more information, see Internet Channel Broadcast Client and Internet Channel Broadcast Server
Architecture.

Internet Channel Broadcast Server
Architecture
[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast server is administered by a service provider. This server gathers files
from specified Web sites, caches them, packages them for transmission, and stores them. The
packaged files are then broadcast using the fault-tolerant, one-way File Transfer Service (FTS)
protocol. The files can be broadcast over any medium that supports Internet Protocol (IP) multicast.
These media currently include local area networks (LANs), for which files are broadcast as packets,
and analog television, for which files are encoded in the vertical blanking interval (VBI).

The Internet Channel Broadcast Server can be broken down into two main areas of functionality:

� Collection and packaging of files
� Storage and transmission of file packages

The Scheduler, Gatherer, Cache Server, and Packager collect and package files. The Store-and-
Forward (SAF) Server stores and transmits file packages.

The server process goes as follows. The Scheduler checks the entries in the Scheduler database. When
a file channel is ready to be collected, the Scheduler calls the Gatherer to get that channel from the
Web. The Gatherer checks the files already in the cache against those on the Web and updates only
those that have changed. The Cache Server manages the files in the cache. After all the updated files
for a channel have been gathered, the Packager packages the channel files. When packaging is
complete, the Packager stores the packaged files in the package directory.

The following illustration shows how the various server components work together to collect and
package channels of files from the Web.

2746

Internet Channel Broadcast Server Page 5 of 40

The SAF Server uses a simple round-robin mechanism to decide when packaged channels should be
broadcast to clients. When all of the currently packaged channels have been broadcast, the SAF Server
starts again at the first channel and rebroadcasts the channels. In a future version of Internet channel
broadcasting, users will be able to specify times for package broadcasts by using the Scheduler
database.

The SAF Server generates announcements for the packaged channels in the package store and
broadcasts the packages to clients over the broadcast medium. The following illustration shows how
the SAF Server moves packaged files from the package directory to broadcast medium.

Components and Options for the Internet
Channel Broadcast Server
[This is preliminary documentation and subject to change.]

There are five components in the Internet Channel Broadcast server architecture:

� Scheduler, which manages the Gatherer and Packager.
� Gatherer, which collects specified sites from the Web.
� Cache Server, which manages the server directory storing those sites.
� Packager, which combines site files into the package files that are broadcast.
� Store-and-Forward Server, which multicasts package files.

2747

Internet Channel Broadcast Server Page 6 of 40

The Scheduler is a utility with a graphical interface. The other four modules run at the command
prompt and make up the core of the server technology.

For more information, see the following topics:

� Internet Channel Broadcast Server Architecture
� Scheduler Database
� Scheduler Database Schema
� Internet Channel Broadcast Server Manager
� System Options for Internet Channel Broadcasting
� Using Internet Channel Broadcast Server

Scheduler

[This is preliminary documentation and subject to change.]

The Scheduler, Wbcsched.exe, is a component that coordinates the Gatherer and Packager to collect
and package channels of files from the Web. It uses the Scheduler database, Groupdb.mdb, to store
information about these file channels and how often they should be collected.

The Scheduler checks the records in the Scheduler database to find channels that need to be collected.
When a channel is ready to be collected, the Scheduler calls the Gatherer to retrieve the files. Once the
files have been gathered, the Scheduler calls the Packager to package the channel.

The Scheduler window displays which files are currently being or are scheduled to be gathered,
packaged, or transmitted. Watching the Scheduler, you can follow a channel's progress through the
Internet channel broadcasting system.

2748

Internet Channel Broadcast Server Page 7 of 40

Scheduler Database

[This is preliminary documentation and subject to change.]

The Scheduler uses a database, Groupdb.mdb, to store information about the channels that the
Internet Channel Broadcast server broadcasts and about how often they should be collected and
transmitted. The Internet channel broadcasting options stored in the Scheduler database are described
in Scheduler Database Schema.

You can create and update channel records in the Scheduler database using Microsoft® Access. For
more information, see Specifying Channels to Broadcast.

After a Web site is entered into the Scheduler database, the gathering, packaging, and forwarding of
the site is handled automatically by other components of the Internet Channel Broadcast server.

Scheduler Database Schema

[This is preliminary documentation and subject to change.]

The following channel options are stored in the fields of the Scheduler database. You can add or
delete channels and edit channel broadcasting options in the database using Microsoft Access 97.

Field Description

Title A unique name for the Internet channel.

Package Type An enumerated value that specifies the type
of content being broadcast. Typically, this is
set to CDF_CHANNEL. For a complete list
of supported values, see Package Types.

URL Spec The Uniform Resource Locator (URL) that
points to the Channel Definition Format file
that defines this channel.

DoCollect A value that indicates whether the Gatherer
collects this channel.

2749

Internet Channel Broadcast Server Page 8 of 40

NextCollect The next time the Gatherer will collect this
channel. The time is specified in the format
mm/dd/yy hh:min where mm is month, dd
day, yy year, hh hour, and min minute.
Deleting the value in this field causes the
channel to be gathered immediately.

LastCollect The last date and time the channel was
gathered.

CollectPeriodSeconds The interval, in seconds, between the times at
which the channel should be gathered. The
default is that the channel is gathered every
24 hours, or 86,400 seconds.

DoTransmit A value that indicates whether the Packager
should package this channel.

NextTransmit The next time the Store-and-Forward Server
will transmit this channel. The time is
specified in the format noted previously.
Deleting the value in this field causes the
channel to be transmitted immediately.

LastTransmit The last date and time the channel was
transmitted.

TransmitPeriodSeconds The interval, in seconds, between the times at
which the channel should be transmitted. The
default is that the channel is gathered every
24 hours, or 86,400 seconds.

ObjInfo Additional information about the channel,
typed in the format key:value where each
key-value pair is separated from the next by a
newline character. Currently, the only
supported key is dest-dir.

This key is used to transmit files that are
stored in the client's file system instead of the
browser cache. The dest-dir key should be
set for files that are not appropriate for the
browser cache, for example, files that the
content provider wants to remain persistent
on the client.

The dest-dir key specifies a subdirectory
under the directory specified in the recv_dir
registry key of the client computer. The Web
site files will be unpackaged and stored in
this subdirectory.

Note that the Internet Channel Broadcasting
filter on the client prevents does not allow

2750

Internet Channel Broadcast Server Page 9 of 40

Package Types

[This is preliminary documentation and subject to change.]

The Package Type field in the Scheduler database schema describes the type of content being
broadcast for a particular channel. The package type is passed to the Internet Channel Broadcast client
in the announcement header. The client uses the package type information to determine how to
unpackage the files and their storage location. The following table lists and describes possible package
types.

servers to use specify destination directories
that are higher than \Recv in the directory
structure. In other words, you cannot use
specify a destination directory such as,
..\..\..\Windows\System, in order to place
files in C:\Windows\System. Only \Recv and
its subdirectories are valid destination
directories.

MaxSize The size, in kilobytes, of the storage space
allowed in the cache directory for this
channel. If this value is exceeded while the
channel is being gathered, any remaining files
are not collected.

Size The total size, in kilobytes, of storage space
required to store the files gathered for this
channel.

Status A value that indicates whether the Gatherer
successfully retrieved all of the channel files
on its last attempt. The possible values are
Failed and Success.

DeltaLevel This field is reserved.

CDFImage The name of the .gif file for the icon to
display for this channel.

Package type Description

AD Rotating advertisements. This
package type is reserved for use by
Broadcast Architecture to update the
rotating advertisements that appear in
the Program Guide.

CAB A .cab file.

2751

Internet Channel Broadcast Server Page 10 of 40

Gatherer

[This is preliminary documentation and subject to change.]

The Gatherer, Crawler.exe, is a component that runs at the command prompt and gathers a channel
from the Web and passes it to the Cache Server. The Gatherer collects all the files specified in the
Channel Definition Format (CDF) file defining the Internet channel.

If the Gatherer is unsuccessful at gathering a channel, it attempts to regather the channel five minutes
later.

The Gatherer supports three modes of operation, allowing the following network environments:

� The Gatherer is installed on a computer directly connected to the Internet, with a correctly
operating Domain Name System (DNS). In this mode, the Gatherer has full functionality with
Hypertext Transport Protocol (HTTP) and File Transfer Protocol (FTP). No additional
configuration is required.

� The Gatherer is installed on a local area network (LAN) using the Microsoft® Proxy Server
with the Windows Sockets (WinSock) Proxy. If the WinSock Proxy is set up to pass HTTP and
FTP requests and to provide name service, the Gatherer has full functionality with HTTP and
FTP. No additional configuration is required.

� The Gatherer is installed on a LAN behind a firewall without WinSock Proxy, using a standard
HTTP proxy server compatible with the CERN standard. In this mode, the Gatherer is not able
to gather any FTP sites or HTTP sites whose server is set to redirect requests to Internet
Protocol (IP) addresses. In this case, you must configure the system options to use an HTTP
proxy. You can do this using the Internet Channel Broadcast Server Manager.

The Gatherer does not gather files for a channel that is currently being packaged. If the Packager is
packaging a channel that the Gatherer is scheduled to gather, the Gatherer waits until the Packager has
finished packaging the channel files. This functionality ensures that all packaged files originate from
the same version of the gathered channel.

Cache Server

[This is preliminary documentation and subject to change.]

CDF_CHANNEL An Internet channel. The client
unpackages the files for this channel
in the Web browser cache.

CDF_SW_DST_CHANNEL This type is reserved for future use.

INVALID Invalid content.

2752

Internet Channel Broadcast Server Page 11 of 40

The Cache Server, Wc_serv.exe, is a component that runs at the command prompt and manages the
files collected from the Web by the Gatherer. The Cache Server communicates with the Scheduler,
Gatherer, and Packager to coordinate the collection, storage, and packaging of file channels. The
Cache Server also indexes the files and stores auxiliary information about the gathered items. It stores
the files in the cache directory. This directory is specified during the Internet Channel Broadcast server
installation. The cache directory location is stored in the cache_dir registry entry, discussed under
System Options for Internet Channel Broadcasting.

In the cache directory, cached files are organized by channel into subdirectories. For example, if the
server is installed and the cache directory location remains the default location, the files for the
Microsoft® Sidewalk™ channel are stored in C:\Program
Files\Webcast\Webcache\www.sidewalk.com.

Only one instance of the Cache Server should run on any specified computer. If you start another
instance, the second instance stops immediately.

Cache Server supports commands typed at the command prompt. For more information, see Cache
Server Commands for Command-Line Use.

Packager

[This is preliminary documentation and subject to change.]

The Packager, Xmitter.exe, is a component that runs at the command prompt and packages files for
efficient transmission. After the channel files are gathered and stored in the cache directory, the
Packager automatically packages the files and forwards the packaged files to the package directory.

Packaging formats the files into a format suitable for efficient File Transfer Service (FTS)
transmission. Packager adds header information that specifies information about the packaged files,
such as the Internet channel the files were gathered for and the date and time they were gathered. The
most efficient package size for the Internet channel broadcasting system is 1 megabyte. The Packager
creates packages as close to 1 megabyte in size as possible while maintaining the channel's file
structure.

Each time the Packager is run for a channel, it creates a unique directory within the destination
directory, usually within the Store-and-Forward Server directory. The Packager writes the package
files to this directory, naming them sequentially, for example 000.pkg, 001.pkg, and so on.

The Packager does not package files for a channel that is currently being gathered. If the Gatherer
starts gathering a channel that the Packager is packaging, the Packager stops and wait until the
Gatherer has updated the channel files. This functionality ensures that packaged files originate from
the same version of the channel and contain the latest content.

2753

Internet Channel Broadcast Server Page 12 of 40

Store-and-Forward Server

[This is preliminary documentation and subject to change.]

The Store-and-Forward (SAF) Server, Saf.exe, monitors the directory where the Packager places files.
The SAF Server sends announcements about these files using Session Announcement Protocol/Session
Description Protocol (SAP/SDP). The server also sends the files themselves, using the File Transfer
Service (FTS) protocol to transmit the files as multicast packets on a LAN or to a Microsoft Multicast
Router (MMR) for the head end. In the latter case, the head end then broadcasts the Internet channel
content to users.

The SAF Server constantly sends files. When all files in the directory have been sent, the SAF Server
resends them again, starting with the first file in the directory. This round-robin mechanism ensures
that updated files are continuously broadcast to the clients.

The SAF server uses a pool of IP addresses and ports to transmit packaged files. This enables the filter
on the client to validate the package and prevents the client from locking up in the event that a
package is dropped.

For further information on the SAF Server, see the following topics:

� SAF Server Organization
� IP Address Setup for SAF Server
� SAF Server and File Management
� SAF Server Modes

SAF Server Organization

[This is preliminary documentation and subject to change.]

Packaged files in the SAF Server directory are organized in subdirectories named for the channels
being gathered. For example, if the packaged file directory is C:\Program Files\Webcast\Pkgs\, the
Sidewalk channel packaged files are stored in a directory such as "C:\Program
Files\Webcast\Pkgs\Group-Sidewalk-19970924185304," where the numbers after the group name
specify the date that the files were packaged.

The Internet Channel Broadcast server architecture separates the packaging and forwarding functions
into the Packager and the SAF Server. This functionality means you can remotely administer the
Internet Channel Broadcast server and yet maintain reliable transmissions of packaged Internet channel
broadcasting files.

For example, if it is inconvenient to maintain the Internet Channel Broadcast server at the broadcast
head end, you can install all of the server components except the SAF Server on a remote computer.

2754

Internet Channel Broadcast Server Page 13 of 40

The SAF Server you might then install at the head end, or on a computer with a reliable connection to
the head end. In this case, if the connection between the main server and the SAF Server fails the SAF
Server can continue to rebroadcast files in the SAF Server directory until the network connection to
the server is reinstated. This organization ensures continuous broadcasts of Internet channel
broadcasting files.

If the SAF Server and Packager were not separated, you would either have to administer the server at
the head end to maintain reliable transmissions of files, or accept the fact that your Internet channel
broadcasting transmissions would stop whenever the connection to the head end was lost.

Installing the Packager and the SAF Server on separate servers also helps distribute the computing and
storage loads.

IP Address Setup for SAF Server

[This is preliminary documentation and subject to change.]

The SAF Server uses several Internet Protocol (IP) multicast address and port pairs, one for sending
announcements about forthcoming files and a pool of IP addresses and ports for sending the actual
files. The client constantly monitors the announcement address to determine whether to accept a
particular file arriving at the file address. When the client receives an announcement about a file that it
wishes to receive it uses the File Transfer Service (FTS) receiver, Nsfts.dll, in the Microsoft®
NetShow® server to receive the packaged files.

The SAF server transmits packages using a rotating pool of IP addresses. This enables the client to
better validate the incoming packages, and to timeout should a package fail to arrive. For example, if
the SAF server is configured to use a pool of two IP addresses, and the file IP address and port are
configured to 233.17.43.1 and 1781, the first package will be transmitted on 233.17.43.1/1781, the
second package on 233.17.43.2/1782, the third package on 233.17.43.1/1781, and so on.

You must be careful when setting up IP addresses and ports for the SAF server. The Internet Channel
Broadcast client cannot run on a LAN where more than one SAF Server uses the same file IP address
or port option. Both the IP address and port option must be unique for each SAF Server.

In addition, the announcement IP address must be unique on the LAN, because clients can potentially
receive multicast packets from multiple sources. A unique IP address ensures that the client can
receive all the packages of a transmission together. If the IP address is not unique and two sources
transmit packages on the same IP address, the client might receive two packages named 001.pkg and
be unable to distinguish the two sets of packaged files.

SAF Server and File Management

[This is preliminary documentation and subject to change.]

2755

Internet Channel Broadcast Server Page 14 of 40

If you run the Packager but not the SAF Server, the storage medium that holds the SAF Server
directory or other destination directory for packaged files fills up. The SAF Server deletes a packaged
file when it determines that a different file has a newer version of the same information. If the SAF
Server is not running, files with older information are not deleted.

If you discontinue gathering and transmitting a channel, you should either enable a Packager garbage
collector or manually delete the packaged files for that channel. To enable a Packager garbage
collector, set the registry value gc_period to nonzero. For more information on how to do so, see
Configuring System Options and System Options for Internet Channel Broadcasting.

Note If you set gc_period to a nonzero value, you must stop and restart the Packager to make the
change take effect.

SAF Server Modes

[This is preliminary documentation and subject to change.]

The SAF Server can run in two different modes. It either multicasts directly to a local Ethernet (the
default mode), or it makes a Transmission Control Protocol/Internet Protocol (TCP/IP) connection to
an MMR that forwards the packets to a service provider's broadcast system.

For more information, see Starting and Stopping the Server.

Internet Channel Broadcast Server Manager

[This is preliminary documentation and subject to change.]

Using the Internet Channel Broadcast Server Manager, shown in the following illustration, you can
start and stop the Internet Channel Broadcast server and change the settings for system options for
Internet channel broadcasting.

The following dialog box appears when you start the server manager. You can use the Start and Stop
buttons to start and stop the entire Internet Channel Broadcast server as a unit.

2756

Internet Channel Broadcast Server Page 15 of 40

The ICS Status box indicates the status of the server. When the server is stopped, the box is red.
When the server is running without errors, the box is green. When the server encounters an error, the
box turns yellow and displays a short message describing the problem, as shown in the following
illustration.

If you need to administer the Internet Channel Broadcast server components individually, for example
if you installed the SAF Server on a separate computer than the rest of the server components, click
the Details check box to select it. Doing so displays the dialog box shown following. Using this dialog
box, you can start and stop the server components individually.

2757

Internet Channel Broadcast Server Page 16 of 40

When a server component starts, a number appears in the Internet Channel Broadcast Server
Manager dialog box to the left of the button under Status. This number indicates how many instances
of the component are currently running.

For more information on using the server manager, see the following topics:

� Starting and Stopping the Server
� Starting and Stopping Server Components
� Configuring System Options
� Specifying Critical Components
� Restarting Server Components

System Options for Internet Channel Broadcasting

[This is preliminary documentation and subject to change.]

The following system options can be set by clicking the Settings button in the Internet Channel
Broadcast Server Manager and changing option settings in the dialog box that appears. If you do not
set these values, the server uses the default values set during the server installation.

The values you set for these options are stored in the registry, in subkeys of
HKLM\Software\Microsoft\Webcast\. Therefore, if you change an option setting you must stop and
restart the corresponding server component before the changes take effect. For more information on
stopping and restarting the server, see Starting and Stopping the Server.

The following table lists and describes options you can set on the General tab. These options affect
the server as a whole. The values you set are stored in the \General subkey in the registry.

Option Registry key Description

ICS Path bin_dir
(String)

The directory that contains the server
executable files. The default is
C:\Program Files\Webcast\Bin.

2758

Internet Channel Broadcast Server Page 17 of 40

The following table lists and describes options you can set on the Connection tab. The values you set
are stored in the \crawler and \saf subkeys in the registry.

Logging
Directory

logdir
(String)

The directory where the Internet
channel broadcasting component writes
log files containing status and error
messages. The default directory is
C:\Program Files\Webcast\Logs.

Cache
Directory

cache_dir
(String)

The Cache Server directory in which
the server stores gathered files prior to
packaging. The default is C:\Program
Files\Webcast\Webcache.

Packing
Directory

pkg_dir
(String)

The Packager directory, where
packaged files are stored to be picked
up by the Store-and-Forward Server.
To specify a remote computer, enter a
universal naming convention (UNC)
path, for example
\\HeadEnd\PackageDir.The default is
C:\Program Files\Webcast\Pkgs.

Database
Directory

webcast_dir
(String)

The directory that contains the
Scheduler database. The default is
C:\Program Files\Webcast.

Option Registry key Description

HTTP Proxy proxy
(String)

The Hypertext Transport Protocol
(HTTP) proxy server to use. If you do
not specify a proxy here, the Gatherer
works as if a direct connection exists to
the Internet.

Bridge Server
Name

bdnserver
(String)

The name of the Microsoft Multicast
Router (MMR) to use. If you do not
specify an MMR here, the server does
not tunnel through an MMR.

Announce
Address

annaddr
(String)

The Internet Protocol (IP) multicast
address to which announcements are
sent. This value is initially set to
233.17.43.1. If the default value
conflicts with an address on the local
network, specify a nonconflicting
address for this option and also specify
a nonconflicting address for the client
in the Announcement Listener registry
settings.

2759

Internet Channel Broadcast Server Page 18 of 40

Announce
Port

annport
(DWORD)

A value indicating the multicast port to
which announcements are sent. The
port value is initially set to 1780. If the
default value conflicts with the value of
a port in use on the local network,
specify a nonconflicting port for this
option and also specify a nonconflicting
address for the client in the
Announcement Listener registry
settings.

Max.
Throughput

kbps
(DWORD)

The maximum kilobits of data per
second for multicast. The default rate is
100 kilobits per second (Kbps) over a
LAN and 800 Kbps when tunneling to
an MMR.

Maximum
Connects

maxconns
(DWORD)

The maximum number of simultaneous
connections the Gatherer can make to a
single Web host. Typically, unless a
service provider has made special
arrangements with the Web server
administrator, this option should be set
to 1.

Local Address localaddr
(String)

The IP address of the network interface
the SAF Server uses send multicast
packets. The local address enables the
SAF Server to run on multihomed
computers, in other words computers
that have more than one network
interface and address. This value is
ignored when tunneling through an
MMR.

Multicast
Address

fileaddr
(String)

The IP multicast address to which data
is sent. This value is initially set to
233.17.43.2. If the default value
conflicts with an address on the local
network, specify a nonconflicting
address for this option.

Multicast Port fileport
(DWORD)

A value indicating the multicast port to
which data is sent. The port value is
initially set to 1781. If the default value
conflicts with the value of a port in use
on the local network, specify a
nonconflicting port value for this
option.

2760

Internet Channel Broadcast Server Page 19 of 40

The following table lists and describes options you can set on the Advanced tab. The values you set
are stored in the \xmitter and \wc_serv registry subkeys.

Time-To-Live ttl
(DWORD)

The time-to-live field for multicast
packets. The default value is 1; to
multicast through routers over a LAN,
enter a higher value. The time to live
can be any of the following values:

0 Restricted to same host

1 Restricted to same subnetwork

32 Restricted to same site

64 Restricted to same region

128 Restricted to same continent

256 Unrestricted in scope

GC Period gc_period
(DWORD)

The interval between garbage
collection attempts in seconds.
Garbage collection in this context
means checking the Scheduler database
and removing items from the package
store that no longer appear in the
schedule. By default this number is
zero, meaning that garbage collection is
not performed.

Option Registry key Description

Pkg Buffer
Height

buffer_height
(DWORD)

The number of lines in the buffer for
the Packager's Command Prompt
window. If this value is greater than
the value for the Pkg Window
Height option, the window appears
with a scroll bar. The Pkg Buffer
Height value must be greater than or
equal to the Pkg Window Height
value. The default value is 50 lines.

Pkg Window
Height

window_height
(DWORD)

The number of lines displayed in the
Packager's Command Prompt
window. The default value is 50
lines.

2761

Internet Channel Broadcast Server Page 20 of 40

Pkg Window
Width

window_width
(DWORD)

The characters per line in the
Packager's Command Prompt
window. The default value is 110
characters per line.

Pkg Error
Level

window_height
(DWORD)

The minimum amount of free space,
in megabytes, required on the disk
that stores the packaged files. If the
amount of free space drops below
this value, the Packager displays an
error message to the user. The
default is 1 megabyte.

Pkg Warn
Level

pkg_warn_level
(DWORD)

The recommended amount of free
space, in megabytes, on the disk that
stores the packaged files. If the
amount of free space drops below
this value, the Packager displays a
warning. The default is 2 megabyte.

Cache Static
Lines

cache_static_
lines
(DWORD)

The number of lines reserved at the
top of the Cache Server's Command
Prompt window to display
connections to other Internet channel
broadcasting components, such as the
Packager.

Cache Buffer
Height

buffer_height
(DWORD)

The number of lines in the buffer for
the Cache Server's Command Prompt
window. If this value is greater than
the value for the Cache Window
Height option, the window appears
with a scroll bar. The Cache Buffer
Height value must be greater than or
equal to the Cache Window Height
value. The default value is 50 lines.

Cache
Window
Height

window_height
(DWORD)

The number of lines displayed in the
Cache Server's Command Prompt
window. The default value is 50
lines.

Cache
Window
Width

window_width
(DWORD)

The characters per line in the Cache
Server's Command Prompt window.
The default value is 110 characters
per line.

Temp Error
Level

temp_error_
level (DWORD)

The minimum amount of free space,
in megabytes, required on the disk
that stores the temporary files
generated by the Packager during the
file-packing process. The path to this
directory is retrieved using the
Microsoft® Win32® application

2762

Internet Channel Broadcast Server Page 21 of 40

The following table lists server options you cannot set using Webcast Server Manager. These values
can only be changed by editing the registry values directly. They are stored in the \saf subkey.

The following table lists server options you cannot set using Webcast Server Manager. These values

programming interface (API)
function GetTempPath, which reads
the environment variables. If the
amount of free space drops below
this value, the Packager displays an
error message. The default value is 1
megabyte.

Temp Warn
Level

temp_warn_
level (DWORD)

The recommended amount of free
space, in megabytes, on the disk that
stores the temporary files generated
by the Packager during the file-
packing process. The path to this
directory is retrieved using
GetTempPath, which reads the
environment variables. If the amount
of free space drops below this value,
the Packager displays a warning. The
default value is 2 megabytes.

Option Registry key Description

N/A delay_time The number of milliseconds between
the time that the SAF server an
announcement and the time that it
sends the packaged files.

N/A ippoolsize The number of IP address and port
pairs to allocate for file transmission.
The SAF server increments the values
of fileaddr and fileport to rotate
through the pool of IP addresses.

For example, if the SAF server is
configured to use a pool of two IP
addresses, and fileaddr is 233.17.43.1
and fileport is 1781, the SAF server
transmits the first package on
233.17.43.1/1781, the second package
on 233.17.43.2/1782, the third package
on 233.17.43.1/1781, and so on.

N/A session_time The number of seconds in the SDP
session time. In other words, the
announcement will time out after
session_time seconds.

2763

Internet Channel Broadcast Server Page 22 of 40

control the logging behavior of the server. They can only be changed by editing the registry values
directly.

Note You can override existing option settings by specifying arguments when the Internet Channel
Broadcast server is started from the command line. This approach is typically used only when testing
the Internet Channel Broadcast server components. For more information, see Command-Line
Initialization for the Internet Channel Broadcast Server.

To locate documentation on GetTempPath, see Further Server Information.

Using Internet Channel Broadcast Server
[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast server is a set of components administered by a service provider. The

Option Registry key Description

N/A loglev This value controls the amount of
detail written to the log files. A setting
of 1 indicates normal log details,
whereas a setting of 3 indicates a
higher level of detail. Note that setting
the logging level to a value such as 5
can quickly fill up your computer's
storage.

This value is set under the subkey
corresponding to the component for
which you are setting the verbosity.
For example, to set the SAF server
verbosity, add a loglev value to the \saf
subkey.

N/A logsize The maximum size of log files, in bytes.
This value is set under the \General
subkey. When a server component
exceeds this limit it closes the current
log file and creates a new one. The
server only keeps the three most
current log files for any component.
Older log files are deleted.

The default value for logsize is
2048000, or 2 MB. The minimum size
of log files is 1MB.

2764

Internet Channel Broadcast Server Page 23 of 40

server gathers files from the Web, packages them for transmission, and then transmits them using a
broadcast medium, for example as a signal coded into the vertical blanking interval (VBI) of an
analog television broadcast or as packets over a local area network (LAN).

For information about how to use the Internet Channel Broadcast server, see the following topics:

� Installing the Server
� Configuring System Options
� Starting and Stopping the Server
� Starting and Stopping Server Components
� Restarting Server Components
� Specifying Critical Components
� Specifying Channels to Broadcast
� Logging Server Events

Installing the Server

[This is preliminary documentation and subject to change.]

The Internet Channel Broadcast server components require the Microsoft® Windows NT® operating
system, version 4.0 or higher.

 To install the Internet Channel Broadcast server software

1. Run the installation program, Webcast.exe. You can do this either from the command prompt,
or by double-clicking the icon in Windows NT Explorer.

A dialog box appears that asks if you want to install the Internet Channel Broadcast server.

2. Click Yes.

A second dialog box appears that asks in which directory the server software should be
installed.

3. Enter a directory, or use the default value displayed in the text box, C:\Program Files\Webcast,
and click OK.

If the directory that you specified does not already exist, a dialog box appears asking you if you
wish to create the directory. Click Yes.

4. The installation program installs the server files. A dialog box appears asking if you want to
restart your computer.

5. Click Yes.

When the computer restarts, the server installation is complete.

2765

Internet Channel Broadcast Server Page 24 of 40

The Scheduler database is installed in the directory that you specified in step 3 preceding. During
installation, the following subdirectories are created under the directory where you installed the
Internet Channel Broadcast server:

� \Bin, which contains the binary files for the Internet Channel Broadcast server.
� \Pkgs, which is where the Internet Channel Broadcast server stores packaged files.
� \Webcache, which is where the Internet Channel Broadcast server stores files prior to packaging

them for broadcast.
� \Logs, which is where the components of the Internet Channel Broadcast server write status and

error messages.

Both the Cache Server directory (by default, C:\Program Files\Webcast\Webcache) and the Packager
directory (by default, C:\Program Files\Webcast\Pkgs) must have sufficient storage space to contain
all of the Web sites specified in the Scheduler database. The amount of space required depends on the
number and size of the files the Internet Channel Broadcast server is gathering and transmitting. The
Cache Server directory may require more space than expected because it stores many small files,
especially on a partition formatted in 16-bit file allocation table (FAT) format.

For these reasons, you may prefer to install the Store-and-Forward (SAF) Server and the Packager on
different computers.

 To install the SAF Server and Packager on different computers

1. Run the installation program on both computers, as described preceding in "To install the
Internet Channel Broadcast server software."

2. Start the Gatherer, Cache Server, Packager, and Scheduler on the first computer.
3. Start only the SAF Server on the second computer.
4. On the first computer, specify the directory to hold packaged files in the system settings using

universal naming convention (UNC) format, for example:

\\Saf_machine\Share_dir\Webcast\Pkgs

The Internet Channel Broadcast server is now configured to forward the packaged files to the
SAF Server computer.

5. If you used Internet Channel Broadcast Server Manager to start the components, close the
server manager by clicking Quit. If you started the components from the command line, no
further action is necessary.

Configuring System Options

[This is preliminary documentation and subject to change.]

The current settings for system options are stored in the registry. You can use the Internet Channel

2766

Internet Channel Broadcast Server Page 25 of 40

Broadcast Server Manager to change these settings, as shown in the following illustration.

 To configure the Internet Channel Broadcasting system options

1. Start the Internet Channel Broadcast Server Manager, either by running Serv_mgr.exe from the
command line, or by double-clicking the Server Manager icon in Windows NT Explorer.

2. Click the Settings button. The ICS System Settings dialog box appears, as shown in the
preceding illustration.

3. Click the tab that corresponds to the type of option you want to set, either General,
Connections, or Advanced.

4. Edit the option settings. For more information on specific option settings, see Scheduler
Database Schema.

5. Click Save. The server manager updates the Internet Channel Broadcasting registry entries with
the new values.

6. Stop and restart the components affected by the changes by clicking the Restart All button.
Restarting the components is necessary for the new settings to take effect. For more
information, see Starting and Stopping the Server.

7. Click Quit to close the server manager.

For more information about the configuration options, see Scheduler Database Schema.

Starting and Stopping the Server

2767

Internet Channel Broadcast Server Page 26 of 40

[This is preliminary documentation and subject to change.]

Before you start the server, you must create a list of the channels you plan to broadcast in the
Scheduler database, Groupdb.mdb. You can add, delete, or modify these entries using Microsoft®
Access. For more information about the information contained in the Scheduler database, see
Scheduler Database Schema.

Once you have configured the Scheduler database, you can start the server components. Typically,
you start and stop the server components by using the Internet Channel Broadcast Server Manager,
shown in the following illustration.

 To start the Internet Channel Broadcast server

1. Click Start.
2. If you do not need to further administer the server, click Quit to close the server manager.

 To stop the Internet Channel Broadcast server

1. Click Stop.
2. Click Quit to close the server manager.

For information on other options for starting and stopping the Internet Channel Broadcast server, see
the following topics:

� Starting and Stopping Server Components
� Command-Line Initialization for the Internet Channel Broadcast Server

2768

Internet Channel Broadcast Server Page 27 of 40

Starting and Stopping Server Components

[This is preliminary documentation and subject to change.]

In addition to starting and stopping the entire Internet Channel Broadcast server as a unit, you can
start and stop the individual server components. Doing so is useful, for example, if you installed the
SAF Server on a separate computer than the rest of the server components

You can start individual components either from the Internet Channel Broadcast Server Manager or
the command line. For information about starting the server components from the command line, see
Command-Line Initialization for the Internet Channel Broadcast Server.

You must start the server components in the following order:

1. Scheduler
2. Cache Server
3. Gatherer
4. Packager
5. Store-and-Forward Server

 To start a server component

1. In the Internet Channel Broadcast Server Manager dialog box, check the Details check box.

The Details dialog box appears, as shown in the following illustration.

2. Click the Start button to the right of the component's name.

2769

Internet Channel Broadcast Server Page 28 of 40

3. If you do not need to further administer the server, click Quit to close the server manager.

 To stop a server component

1. From the Details dialog box, click the Stop button to the right of the component's name.
2. Click Quit to close the server manager.

Remote administration is not currently implemented in the Internet Channel Broadcast Server
Manager. Thus, if server components are installed on multiple computers, the configuration and
administration possible with each instance of the server manager varies depending on the components
installed on the computer the instance resides on.

For example, if you install the Scheduler, Cache Server, Gatherer, and Packager on one computer and
the SAF Server on another, you can start the first four components using the server manager running
on the first computer. However, you start the SAF Server using the server manager running on the
second computer.

Restarting Server Components

[This is preliminary documentation and subject to change.]

You can use the Internet Channel Broadcast Server Manager to restart one or more of the server
components at a time. Restarting the components is necessary, for example, when you have changed
the system configuration options. The new settings do not take effect until the affected component is
restarted.

 To restart a single server component

1. Click to select the Details check box in the server manager. The Details dialog box appears.
2. Click Stop to the right of the component that you want to restart.
3. Click Start to the right of that component.

 To restart all of the server components

� Click Restart All.

If multiple instances of a component are running when you click Restart All, all instances are shut
down and then restarted. For example, if two instances of the Gatherer are running when you click
Restart All, both instances shut down and the server manager creates two new instances.

Note The components cannot send output to the command prompt when running in select mode. In
select mode, you can highlight text for cut-and-paste operations. For example, suppose you right-click
the icon for the Microsoft® MS-DOS® operating system at the top left of a Command Prompt
window. You then click Edit and then Mark. The window is now set to select mode.

2770

Internet Channel Broadcast Server Page 29 of 40

The server manager monitors the mode of the Command Prompt windows that the Internet channel
broadcasting components run in. To alert you that a window is in select mode and therefore blocked
from displaying output, the server manager causes the title bar of the Command Prompt window to
flash.

Specifying Critical Components

[This is preliminary documentation and subject to change.]

You can specify a Internet Channel Broadcast server component as critical. The server manager
monitors all instances of critical components and automatically restarts any instances that shut down in
atypical fashion. Typical shutdown, such as when you click the Stop button, does not cause the server
manager to automatically restart the component.

 To specify a server component as critical

� In the Details dialog box of Internet Channel Broadcast Server Manager, click to select the Crit
check box associated with the component you want to specify as critical.

The component remains a critical component until you specify it as noncritical or close the server
manager.

 To specify a server component as noncritical

� In the Details dialog box, click to clear the Crit check box associated with the component you
want to specify as noncritical.

The component is no longer a critical component.

Specifying Channels to Broadcast

[This is preliminary documentation and subject to change.]

Before the Internet Channel Broadcast server can start collecting and broadcasting files, you must
create a list of channels to be broadcast in the Scheduler database and set options that describe how
each channel is collected and broadcast.

You can use Microsoft Access to administer the database file, Groupdb.mdb. To configure a new
channel for broadcasting, simply open the Groups table in Groupdb.mdb and add a record. Specify
values for the fields as described in the topic Scheduler Database Schema. When you are finished,

2771

Internet Channel Broadcast Server Page 30 of 40

close the database.

Note that the service provider, the person or organization administering the Internet Channel
Broadcast server, does not usually create the Internet channels that are broadcast. The server can
collect and broadcast any Web site that has created a Channel Definition Format (CDF) file and
published it on the Web. This functionality is analogous to television broadcasting, in which a local
television station broadcasts content that it has not created.

Logging Server Events

[This is preliminary documentation and subject to change.]

Each component of the Internet Channel Broadcast server logs data about its status and actions to a
text file in the log directory. The location of this directory is specified in the
HKLM\Softwar\Microsoft\Webcast\General\logdir registry value.

You can set the amount of detail logged by a component and the maximum log file size for the server.
To do this configure the loglev and logsize regitry values. For more information, see System Options
for Internet Channel Broadcasting.

When a server component's log file reaches the maximum size, the component closes the current log
file and opens a new one. The server keeps only the three most recent log files for any components.
Older log files are deleted.

Internet Channel Broadcast Server Reference
[This is preliminary documentation and subject to change.]

The following topics provide reference information on specific Internet Channel Broadcast server
components:

� Cache Server Commands for Command-Line Use
� Command-Line Initialization for the Internet Channel Broadcast Server
� Command-Line Initialization for the Scheduler
� Command-Line Initialization for the Gatherer
� Command-Line Initialization for the Cache Server
� Command-Line Initialization for the Packager
� Command-Line Initialization for the Store-and-Forward Server
� Internet Channel Broadcast Announcement Format

2772

Internet Channel Broadcast Server Page 31 of 40

Cache Server Commands for Command-Line Use

[This is preliminary documentation and subject to change.]

When Cache Server is running, it supports entry of commands at its command prompt. The following
table lists and describes these commands. In the following descriptions, gspec is a channel
specification following the rules for the Spec field described in Group Specification Format.

Command Description

debug Lists the location where the Cache Server is logging
status and error messages.

debuglev N Lists the current verbosity setting for the debugging
display, or sets the verbosity to the value specified by
N. Zero specifies no display; 1 is usual verbosity;
values up to 6 are increasingly verbose. If N is higher
than the current value for the loglev command, the
loglev value is changed to match N. If N is not
specified, the debug level is set to 1.

exit Closes the Cache Server.

groups Lists the names of the channels currently present in
the Internet channel broadcasting cache.

help Lists the available commands.

list gspec Lists the files currently in the cache for the channel
specified by gspec.

loglev N Lists the current verbosity setting for information sent
to the log file, or sets the verbosity to the value
specified by N. Zero specifies no logging; 1 is default
verbosity; values up to 6 are increasingly verbose. For
example, a verbosity of 1 logs a message when you
set the logging directory. In contrast, a verbosity of 6
logs information about each step in the process of
setting the directory, including the status of individual
threads.

objinfo url Lists information about the URL specified by url.
This URL must be fully qualified.

quiet Sets the debugging display verbosity to level 1.

quit Closes the Cache Server.

remove gspec Deletes all cache files for the channel specified by
gspec.

sh Sets the debugging display verbosity to level 1.

2773

Internet Channel Broadcast Server Page 32 of 40

Command-Line Initialization for the Internet Channel
Broadcast Server

[This is preliminary documentation and subject to change.]

Typically, you use the Internet Channel Broadcast Server Manager to start and stop the various
components of the Internet Channel Broadcast server. However, you can also start these components
from the command line.

To do so, you must first enter records for all Internet channels in the Scheduler database. Then, from
the directory that contains the Internet channel broadcasting components, start each component in the
following order using the following commands:

� start wbcsched, to start the Scheduler
� start wc_serv, to start the Cache Server
� start crawler, to start the Gatherer
� start xmitter, to start the Packager
� start saf, to start the Store-and-Forward Server

For more information, see the following topics:

� Command-Line Initialization for the Scheduler
� Command-Line Initialization for the Cache Server
� Command-Line Initialization for the Gatherer
� Command-Line Initialization for the Packager
� Command-Line Initialization for the Store-and-Forward Server

Command-Line Initialization for the Scheduler

[This is preliminary documentation and subject to change.]

sitemap Lists the names of the sites currently present in the
cache. Each site is paired with the name of its
associated Internet channel.

sites Lists the names of the sites currently present in the
cache, for example www.microsoft.com.

size gspec Lists the size, in bytes, of all files in the channel
specified by gspec.

stats gspec Displays the cached files matching the gspec
specification, and their sizes.

2774

Internet Channel Broadcast Server Page 33 of 40

Typically, you start the Scheduler by using the Internet Channel Broadcast Server Manager. However,
you can also start the Scheduler from the command line. You typically do so when testing the Internet
Channel Broadcast server.

To start the Scheduler from the command line, use the following syntax:

wbcsched

Command-Line Initialization for the Gatherer

[This is preliminary documentation and subject to change.]

Typically, you start the Gatherer by using the Internet Channel Broadcast Server Manager. When the
Gatherer is started this way, it connects to the Scheduler to find out what channels need to be
collected from the Web. In this case, the Scheduler must already be running when the Gatherer is
started.

However, for testing purposes you can start the Gatherer from the command line, specifying directly
the files it should gather. In this case, you do not need to have previously started the Scheduler.

To start the Gatherer from the command line, use the following syntax:

crawler arguments

The following table lists and describes possible values for the optional command-line arguments
specified by arguments.

Argument Description

-maxgroups N The maximum number of channels that a single
instance of the Gatherer can retrieve, as
specified by N. When this number is reached,
the Gatherer stops retrieving Web pages and
creates another Gatherer instance. This new
Gatherer retrieves any remaining channels. If
the -maxgroups argument is not entered at the
command line, the Gatherer uses the
maxgroups value specified in the registry. For
more information, see System Options for
Internet Channel Broadcasting.

2775

Internet Channel Broadcast Server Page 34 of 40

Note When you start the Gatherer from the command line, you must ensure the file channel and
specification indicated by the gname and gspec arguments already exist in the Scheduler database. The
Gatherer does not verify gname and gspec.

Command-Line Initialization for the Cache Server

[This is preliminary documentation and subject to change.]

Typically, you start the Cache Server by using the Internet Channel Broadcast Server Manager. When
the Cache Server is started this way, it connects to the registry to initialize its settings.

However, you can also start the Cache Server from the command line, specifying settings to use
instead of those stored in the registry. You typically do so when testing the Internet Channel
Broadcast server.

To start the Cache Server from the command line, use the following syntax:

wc_serv arguments

The following table lists and describes possible values for the optional command-line arguments
specified by arguments.

-name gname gspec A file group, where gname is the channel's
name as listed in the Scheduler database and
gspec is the URL that specifies what files
should be gathered for this channel. The gspec
argument uses the same format as described in
Group Specification Format.

Argument Description

-cache_dir path Sets the location to store gathered files to the
path indicated by path. This value supersedes the
location entry in the registry.

-debuglev N Lists debug information at the command prompt
at the verbosity indicated by N. If N is higher
than the current value for the loglev argument,
the loglev value is changed to match N. If N is
not specified, the debug level is set to 1.

-logdir directory Sets the logging directory to directory.

2776

Internet Channel Broadcast Server Page 35 of 40

Cache Server also supports entry of commands at its command prompt while it is running. For more
information, see Cache Server Commands for Command-Line Use.

Only a single instance of the Cache Server can run on any specified computer. If you try to start
another instance on the same computer, the second instance exits immediately.

Command-Line Initialization for the Packager

[This is preliminary documentation and subject to change.]

Typically, you start the Packager by using the Internet Channel Broadcast Server Manager. When the
Packager is started this way, it connects to the Scheduler to determine which channels to package. In
this case, you must start the Scheduler before the Packager.

However, for testing purposes you can start the Packager from the command line, specifying directly
the files it should package. In this case, you do not need to have previously started the Scheduler.

To start the Packager from the command line, use the following syntax:

xmitter gname arguments

In addition to the required argument gname, you can specify optional command-line arguments. The
following table lists and describes the possible arguments.

-loglev N Sets the level of verbosity for information sent to
the log file to the level indicated by N. Zero
specifies no logging; 1 is default verbosity;
values up to 6 are increasingly verbose. For
example, a verbosity of 1 logs a message when
you set the logging directory. In contrast, a
verbosity of 6 logs information about each step
in the process of setting the directory, including
the status of individual threads.

Argument Description

gname Sets the channel to package, where gname is the
channel name as listed in the Scheduler database.

-clear_saf Clears out the package store before new packaged
items are stored there. If this argument is specified,
the package store contains only items packaged by
the current instance of the Packager.

2777

Internet Channel Broadcast Server Page 36 of 40

Command-Line Initialization for the Store-and-Forward Server

[This is preliminary documentation and subject to change.]

Typically, you start the Store-and-Forward (SAF) Server by using the Internet Channel Broadcast
Server Manager. When the SAF Server is started this way, it connects to the registry to initialize its
settings.

However, you can also start the SAF Server from the command line, specifying settings to use instead
of those stored in the registry. You typically do so when testing the Internet Channel Broadcast
server.

-debuglev N Lists logging information at the command prompt at
the verbosity indicated by N. If N is higher than the
current value for the loglev argument, the loglev
value is changed to match N. If N is not specified, the
debug level is set to 1.

-gc_period N Specifies the interval between garbage collection
attempts in seconds, as specified by N. Garbage
collection in this context means checking the
Scheduler database and removing items from the
package store that no longer appear in the schedule.
By default this number is zero, meaning that garbage
collection is not performed.

-loglev N Sets the level of verbosity for information sent to the
log file to the level indicated by N. Zero specifies no
logging; 1 is default verbosity; values up to 6 are
increasingly verbose. For example, a verbosity of 1
logs a message when you set the logging directory. In
contrast, a verbosity of 6 logs information about each
step in the process of setting the directory, including
the status of individual threads.

-pkg_dir path Sets the location to store packaged files to the path
indicated by path. This value supersedes the location
entry in the registry.

-pthreads N Sets the number of possible Packager threads to the
value indicated by N. The default value is 5. Faster
performance is possible if the -pthreads value is
larger, but at higher computing overhead.

-quit Closes the Packager after startup. The -quit
argument is useful only with the -clear_saf argument.
When both arguments are specified, the contents of
the package store are deleted and then the Packager
quits.

2778

Internet Channel Broadcast Server Page 37 of 40

To start the SAF Server from the command line, use the following syntax:

saf arguments

The following table lists and describes possible values for arguments.

Argument Description

-annaddr address Sends announcements to the IP address specified by
address instead of the address listed in the registry.

-annport port Sends announcements to the port specified by port
instead of the port listed in the registry.

-bdnserver
MMRname

Connects to the Microsoft Multicast Router
(MMR) specified by MMRname. If this argument is
not used, the SAF Server multicasts over the LAN.

-debuglev N Lists logging information at the command prompt at
the verbosity indicated by N. If N is higher than the
current value for the loglev argument, the loglev
value is changed to match N. If N is not specified,
the debug level is set to 1.

-fileaddr address Broadcasts files to the IP address specified by
address instead of the address listed in the registry.

-fileport port Sends files to the port specified by port instead of
using the value set in the Multicast Port system
option.

-kbps N Sets the amount of bandwidth to use for
transmitting files, in kilobits per second, to the value
N instead of the value listed in the registry.

-localaddr address Sets the IP address of the network interface the
SAF Server uses to send multicast packets to the
address indicated by address. The local address
enables the SAF Server to run on multihomed
computers, in other words on computers that have
more than one network interface and address. This
value is ignored when tunneling through an
Microsoft Multicast Router (MMR).

-loglev N Sets the level of verbosity for information sent to
the log file to the level indicated by N. Zero
specifies no logging; 1 is default verbosity; values
up to 6 are increasingly verbose. For example, a
verbosity of 1 logs a message when you set the
logging directory. In contrast, a verbosity of 6 logs
information about each step in the process of setting
the directory, including the status of individual
threads.

2779

Internet Channel Broadcast Server Page 38 of 40

Group Specification Format

[This is preliminary documentation and subject to change.]

Previous versions of Internet channel broadcasting (formerly called webcasting in Broadcast
Architecture) used the group specification format to specify which Web files should be gathered and
broadcast. The current version uses Internet channels.

However, the Cache Server and Gatherer command-line commands still use the older group
specification format. For more information on these commands, see Command-Line Initialization for
the Gatherer and Cache Server Commands for Command-Line Use.

The following table describes the group specification format.

-pkg_dir path Sets the location to store packaged files to the path
indicated by path instead of the location listed in the
registry. If this argument is used, the directory
section of the path must be the same as that
specified on the Packager command line.

-ttl N Sets the time-to-live field for multicast packets to
the integer N, instead of the value listed in the
registry. N can be any of the following values:

0 Restricted to same host

1 Restricted to same subnetwork

32 Restricted to same site

64 Restricted to same region

128 Restricted to same continent

256 Unrestricted in scope

Group
specification Effect

2780

Internet Channel Broadcast Server Page 39 of 40

Note A valid group specification must end with /, %*, or %*:n, where n is as described preceding.

In addition, you can also combine two or more of the group specifications listed preceding under a
single channel name. You use a plus sign to combine group specifications; surround the plus sign with
spaces so that the URLs are interpreted correctly. The format is:

URLspec + URLspec + ...

For example, if you want to deliver files from the Microsoft® MSN™ online service together with
files from the Microsoft corporate Web site in a channel called MS-Total, you can specify the
following:

http://www.msn.com/%* + http://www.microsoft.com/%*:2

Note When the Gatherer collects the files for a group, it collects all files that match your group
specification and that can be retrieved using HTTP. Such collection includes HTML files with the
extensions .asp, .htp, and .shtml, as well as binary data and image files. The Gatherer, however, does
not support the HTTPS security protocol and is thus unable to gather secure Web sites.

URL/ Gathers only the specified location. For example,
entering http://www.microsoft.com/ causes the
Gatherer to collect all the Web pages in that directory
but no pages from any of its subdirectories. In this
example, http://www.microsoft.com/default.html is
collected but http://www.microsoft.com/iis/roadmap.asp
is not.

URL/%* Gathers all pages that start with URL. For example,
entering http://www.microsoft.com/%* causes the
Gatherer to collect all Web pages that start with
http://www.microsoft.com/

URL/%*:n Gathers all pages n or fewer levels under the specified
root node. In other words, entering this value specifies
to gather all pages with URLs that start with URL/ that
have n – 1 or fewer further slashes.

For example, entering http://home.microsoft.com/%
*:2 causes the Gatherer to collect all pages that are two
or fewer levels beneath http://home.microsoft.com. In
other words, this value causes Gatherer to collect Web
pages whose URL match the form
http://home.microsoft.com/*/* where * represents any
number of characters.

Thus, in this case the Gatherer collects
http://home.microsoft.com/default.html and
http://home.microsoft.com/reading/news.asp but not
http://home.microsoft.com/reading/more/news.asp

2781

Internet Channel Broadcast Server Page 40 of 40

2782

Using Broadcast Architecture Page 1 of 1

����� ��	
��
� ����������

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

��	 ��

����� �	������ �	�����	 ��� �� �	����� �	�	
���	�� ���� ������ ��	� ������� ����
������� ������	����	�

� ���������	 ����

� ������	 � ������ ���� ������� �����

� ��������	 ���� �������

� ������	 �� ���� ��������

� ������	 ���� ������������

��� ������� �� ������ ���	���� ���� �� �������� ���������� ����� ������������ �������
���� �� !���"��� ��"���� �������� #�� $��#% ��� �� ��� ���	��� "�� �� &������"�'
�������' �� �����	
�� �	��� �� ����	� 	��� ����� ����
��	
��� �� �������	 ����
	��	���
������ ����
��	
���

2783

Displaying Video Page 1 of 5

Displaying Video
[This is preliminary documentation and subject to change.]

To present audio and video on a computer display or to manage all the devices associated with video,
you can use the Microsoft® ActiveX™ control for video in Broadcast Architecture (the Video
control, Vid.ocx). You can use the Video control in applications written using Microsoft® Foundation
Classes (MFC) or with the Microsoft® Visual Basic® programming system. You can also embed the
Video control in the page of a World Wide Web browser or use it as a constituent control in a control
that you create.

If you want, you can create your own television viewing application. Your television viewer might
consist of the Video control along with an interface enabling users to select frequently viewed
television channels.

The following topics describe in order implementation tasks that are necessary to use the Video
control in an application, in another control, or while it is embedded in a container:

1. Getting Available Devices
2. Setting Video Input
3. Setting Video Output
4. Tuning to a Channel
5. Setting Video Priority

The Broadcast Architecture material includes four sample applications developed in different ways to
demonstrate how to use the Video control. To locate these samples, see Broadcast Architecture
Sample Applications.

For more information about the Video control, how to use it, and the interfaces it supports, see About
the Video Control, Using the Video Control, and Video Control Reference.

Getting Available Devices
[This is preliminary documentation and subject to change.]

Before your application can enable users to run the Microsoft® ActiveX™ control for video (the
Video control) in all its possible ways, users must be aware of all of the devices available for video on
their computers. A possible point at which your application can get and list available devices is when it
starts. Doing so initially provides users a listing of the capabilities of their computers.

For your application to get these devices, it must first declare and allocate storage for variables of
BPCDevices and BPCDeviceBase object types. Your application then assigns the collection of all the

2784

Displaying Video Page 2 of 5

available input and output devices to the BPCDevices variable with the BPCVid object's Devices
property and enters a loop to get each BPCDeviceBase object that represents an available device for
video. Your application can use the BPCVid object's DeviceCount property to determine the number
of times to loop. Your application obtains a string representing the name of each available video
device with the Name property of the BPCDeviceBase object and adds those strings to a list box on
the user interface or to an array of string elements. In applications written using MFC, you must
generate the CBPCVid, CBPCDevices, and CBPCDeviceBase classes when you add the Video
control to your application. You must also include the header files that define those classes in any
source files that use them.

The best way to add initialization functionality to your application depends on how you develop your
application. With the Microsoft® Visual Basic® programming system, you implement initialization in
the Form_Load procedure. With MFC, you implement initialization in the OnInitDialog method of
your dialog class. With a Hypertext Markup Language (HTML) document, you implement
initialization in the script that runs when a Web browser loads the page.

In this release of Broadcast Architecture, the Video control only supports sending analog video to the
digital VGA display surface of the control itself. Therefore, the Video control cannot set an output
device; it can only set which input device to receive video from. If a user's computer has an analog
television tuner card installed and your application provides a list of available devices, the friendly
name of the WDM stream class minidriver for the tuner device will be listed as an input source. WDM
here stands for (Microsoft®) Windows® Driver Model.To locate more information on working with
display surfaces, see Further Information on Development Tasks in Broadcast Architecture.

Setting Video Input
[This is preliminary documentation and subject to change.]

Before your application can display video, it must first assign an input device as a source for the video
stream. If your application initially provides a list of names of available devices on its user interface or
has these names stored in an array of strings, a user can select a device from the list or array. Then,
through a command button on the user interface, the user can set the device as the input source for
video.

For your application to set an input, it must first declare and allocate storage for variables of
BPCDevices and BPCDeviceBase object types. Your application then assigns the collection of all the
available input and output devices to the BPCDevices variable with the BPCVid object's Devices
property and enters a loop to get each BPCDeviceBase object representing an available video device.
Your application obtains a string representing the name of each device with the Name property of the
BPCDeviceBase object and compares the string with the name of the device selected from the list or
array. If the string values are the same, your application can assign the selected device as the input
source with the Input property of the BPCVid object. Before setting the device as the input source,
your application can confirm that the selected device is for video input with the IsInput property of
the BPCDeviceBase object.

2785

Displaying Video Page 3 of 5

Setting Video Output
[This is preliminary documentation and subject to change.]

In future releases of Broadcast Architecture, when the Microsoft® ActiveX™ control for video (the
Video control) supports different outputs for video, your application will be able to assign an output
device to receive the video stream. An application sets the video output the same way as it sets the
video input, as described in Setting Video Input, except for the following differences:

� Your application assigns the selected device to be the output source with the Output property
of the BPCVid object.

� To confirm that a selected device is for video output, your application should use the IsOutput
property of the BPCDeviceBase object.

Tuning to a Channel
[This is preliminary documentation and subject to change.]

To display video from a specific broadcast channel, your application must either assign a channel to
the device that was set as the input source for video or tune to a channel in a specific tuning space. In
either case, the end result is that the device tunes to the channel and the received video displays on the
surface of the Microsoft® ActiveX™ control for video (the Video control). The following topics
describe these two ways of tuning to a channel:

� Setting a Channel Number
� Tuning to a Channel in a Tuning Space

You can set the BPCVid object's VideoOn property in your application to either TRUE or FALSE to
display video or to stop video from displaying. Setting this property is only effective when the input
source is a tuner. Your application can stop an input source from sending video by calling the
BPCVid object's Close method.

To locate more information on working with display surfaces, see Further Information on
Development Tasks in Broadcast Architecture.

Setting a Channel Number

2786

Displaying Video Page 4 of 5

[This is preliminary documentation and subject to change.]

To set a channel number through elements on the user interface, your application must first determine
if the input source for video is from a tuner with the HasChannel property of the BPCDeviceBase
object. If your application determines that the input device is a tuner with this property, your
application assigns the specified channel to the tuner with the BPCDeviceBase object's Channel
property. You can also use the ChannelAvailable method of the BPCDeviceBase object in your
application to determine whether a tuner can tune to the specified channel before actually tuning to the
channel.

Tuning to a Channel in a Tuning Space

[This is preliminary documentation and subject to change.]

To tune to a channel in a specific tuning space, such as the tuning space for analog cable TV, through
elements on the application's user interface, your application should first determine if the user's
computer contains a tuner that supports that tuning space. To get information about or tune to a
channel in a specific tuning space, you must first obtain the number that identifies such a tuning space.
You obtain such a tuning space number from the following registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\TV Services\Tuning Spaces

To obtain the description of a tuning space in the registry to determine if it is the one you want, click
the tuning space number to select it. Details about the tuning space then appear in the right section of
the registry's window.

To make this determination, your application should call the BPCVid object's TSDeviceCount
method and specify the tuning space number. If this method returns a number greater than zero, your
application can then call the BPCVid object's Tune method and specify the tuning space number, the
channel number to tune to, and the default values for the video and audio subchannels. As shown in
the video sample applications, the default value for both is –1, which allows the tuner to choose an
appropriate subchannel.

Setting Video Priority
[This is preliminary documentation and subject to change.]

You might want to set the priority for the Microsoft® ActiveX™ control for video (the Video
control) in your application to a high level to allow it to retain control of its input device in the event
that another application containing an instance of the Video control starts. On the other hand, you

2787

Displaying Video Page 5 of 5

might not want the Video control in your application to retain control. In that case, you set its priority
to a low level.

You can set the priority level of the Video control in your application with the Priority property of
the BPCVid object. For more information about priority levels of the Video control, see Device
Contention and BPCDevices.Priority.

2788

Writing a Custom Guide Database Loader Page 1 of 5

Writing a Custom Guide Database Loader
[This is preliminary documentation and subject to change.]

The Guide database stores information about what television programming is available through
Broadcast Architecture applications. The information for the Guide database comes from many
sources, such as the Internet, vertical blanking interval (VBI) transmissions, and satellite data
streams. The database is a Microsoft® Jet database that can be accessed using Microsoft® Data
Access Objects (DAO). To locate more information on DAO, see Further General Information.

To streamline access to the database, Broadcast Architecture uses loader programs. The two sample
applications described in this section, Load and Download, show how to write custom database loader
programs. To locate the source code for these sample applications, see Broadcast Architecture Sample
Applications.

These sample loaders are written using Microsoft® Foundation Classes (MFC) and several libraries
from Broadcast Architecture. Each sample has the same general structure and shows the important
functions of a loader application. The sample called download reads programming information from a
text file and adds it to the Program Guide database. This sample shows how to write a full featured
loader. The sample called load, a simplified example, gives an unobstructed view of how loader
functions for adding channels and shows work.

The following topics describe, in order, the tasks involved in loading data into the Program Guide:

1. Getting Data to the Client discusses possible sources of Program Guide data and how to get it
to the broadcast client.

2. Making a Loader DLL describes the required features of a Guide database loader.
3. Using Guide Data Objects to Access the Database shows how to use functions in Broadcast

Architecture to simplify the loader.
4. Entering Data shows specific examples of how to edit records in the Guide database.
5. Removing Records Using Special Functions describes how to use special queries in the Guide

database to perform housekeeping functions.
6. Installing and Running Your Loader shows how to use the Loadstub.exe component and the

Task Scheduler in the Microsoft® Windows® 98 operating system to run the loader.

Getting Data to the Client
[This is preliminary documentation and subject to change.]

The first step to updating the Guide database is to get information about what television programming
is on what channel. The procedure for this depends on the source of the data. For example, if the data
is in a file on the Internet, you can send it over the VBI of a predetermined television channel by using

2789

Writing a Custom Guide Database Loader Page 2 of 5

Internet channel broadcasting. The user can then subscribe to the appropriate Internet channel, and
the file appears in the designated file directory. Then a loader can read the file and transfer the results
into the Guide database.

Many other possible sources of data exist, such as e-mail and World Wide Web pages. You can even
write a program that associates VCR Plus codes, used with some VCRs to specify channels and times
to be recorded, with program names to make your own custom show. In this example, the data is
hard-coded into the loader. Hard-coding data into the loader means you can see how the loader works
without getting bogged down with the details of a particular source. To locate the source code for
Load, see Broadcast Architecture Sample Applications.

Making a Loader DLL
[This is preliminary documentation and subject to change.]

A loader is a dynamic-link library (DLL) that can be called by Loadstub.exe, a component that starts a
loader application. The prototype for an entry-point function for a loader is:

ExitCodeList APIENTRY
EPG_DBLoad(int &argc, _TCHAR **argv, CdbDBEngine &db
 , PFNFORCEQUIT pfnForceQuit);

The first two arguments, argc and argv, contain the command-line arguments that Loadstub does not
handle itself. You can pass any arguments you like here. For example, you can pass the user's zip code
to select the channels to load for a given region.

In addition to such loader-specific arguments, Loadstub can pass a /c argument to request that the
loader compact the database, or a /p argument to request a partial database update. For more
information on how to handle these arguments, see Removing Records Using Special Functions.

Another command-line argument you can specify is /L, which tells the loader about the source of the
data. The format of this argument depends on the data source. For example, if the data comes from
the Internet, the argument can be the Uniform Resource Locator (URL) of the data source.

The third argument for the entry-point function, db, is a reference to the DAO database engine. This
value must be passed to any function that accesses the Guide database. To locate more information on
the CdbDBEngine object used in this argument, see Further Information on Development Tasks in
Broadcast Architecture. The sample loader saves the value in a member of the application object
called m_pDAODB.

The last argument, pfnForceQuit, is a pointer to a function that returns a value that is true if the
operating system is trying to shut down the loader. Your loader should check this function from time
to time to see if the loader should shut down. Doing so prevents the operating system from forcing the
loader to exit without performing cleanup operations such as closing databases and releasing system
resources.

2790

Writing a Custom Guide Database Loader Page 3 of 5

Using Guide Data Objects to Access the
Database
[This is preliminary documentation and subject to change.]

It is possible to access the Guide database directly through the CdbDBEngine variable passed to the
loader. You can avoid having to deal with the details of the database by using the Broadcast
Architecture component library Dbsets.dll. This library provides objects that give access to each of the
tables in the database information on shows displayed in the Program Guide. For more information,
see Guide Data Objects.

The application object in the sample loader includes pointers to each of the objects defined in
Dbsets.dll. The member function OpenTables initializes these pointers. After calling OpenTables, the
loader can access any table in the database by using the appropriate object.

Entering Data
[This is preliminary documentation and subject to change.]

The sample loader Load enters data into the database by using the method Handle in its application
object. As mentioned in Getting Data to the Client, Load uses hard-coded values. Your loader should
include code to read the data source in its implementation of a similar method.

The sample loader creates objects for each record to add to the database, then uses the corresponding
Guide data object to update the record. Notice that several of the created objects require objects or
identifiers from other objects. For example, when adding a channel you must supply the identifier of
the station record. Supplying the identifier means that you must have a station record before you can
create a channel record.

Be careful when using dates and times. The database stores times in coordinated universal time
(UTC). You must convert this to or from local time when appropriate. You can use the member
variable m_odtsTimeZoneAdjust to make the conversion.

While the Handle method is running, the loader is not receiving system messages. This means that if
the system tries to shut down the application, you do not know about it. If the system terminates the
loader application process, loading may stop while files are open or other system resources are in use.
This may have disastrous results. To prevent the problem, you should call the pfnForceQuit function
to see if a shutdown message is in the message queue. If this function returns TRUE, do whatever
processing is required to safely terminate the function. In the sample loader, the address in

2791

Writing a Custom Guide Database Loader Page 4 of 5

pfnForceQuit is stored in the application object's member variable m_pfnForceQuit.

Removing Records Using Special Functions
[This is preliminary documentation and subject to change.]

There are several special functions that a loader can use on the database. These functions are stored in
the database as queries. For more information about what queries are available, see Guide Database
Query Reference.

The loader executes queries by calling the application object's member function
ExecuteActionQuery. The ClearOldEntries member function uses these queries to remove excess
records from the database. Removing excess records is important for keeping the database from
growing too large.

Installing and Running Your Loader
[This is preliminary documentation and subject to change.]

In order to run your loader, you must tell the TV Viewer component Loadstub.exe about it. You do
this by adding an entry to the registry that describes your loader and passing this entry to
Loadstub.exe.

Loadstub.exe searches for the entry in the following registry key:

HKEY_LOCAL_MACHINE\Software\Microsoft\TV Services\Guide\Loaders.

The name of the entry should be the globally unique identifier (GUID) for the loader, enclosed within
curly braces ({}). If you have installed TV Viewer, you can use the entry for the default loader as an
example. You must add a name string value to the new entry that gives the complete path to your
loader. You can also include any parameters your loader requires in this entry. Loadstub.exe adds
values for the last attempted run time, the last completed run time, and the last completed result.

Once the registry contains the new entry, you can run your loader with the following command line:

loadstub /L:{00000000-0000-0000-0000-000000000000}

When you have verified that your loader is working properly, you can set it to run at regular intervals.
You do so by adding the preceding command line to the scheduled tasks list in the Task Scheduler
within the Microsoft® Windows® 98 operating system.

2792

Writing a Custom Guide Database Loader Page 5 of 5

2793

Scheduling Show Reminders Page 1 of 7

Scheduling Show Reminders
[This is preliminary documentation and subject to change.]

A show reminder is a special-purpose task scheduled in Task Scheduler, a feature of the Microsoft®
Windows® 98 operating system. When a show reminder runs, it calls an application that displays a
message informing the user that a television show is about to begin. TV Viewer is typically used to
display show reminders, but you can also write custom display applications to display your show
reminders. For example, your custom application can play music or animate the show reminder
message.

Users can set show reminders in the TV Viewer user interface. In addition, Broadcast Architecture
exposes several interfaces that you can use to programmatically set, modify, or delete show reminders.
For example, you can create a control for an enhancement page that automatically schedules a
reminder for next week's episode of a particular television program.

The following topics describe in order the basic tasks involved in creating a show reminder:

1. Getting and Working with Episode Data
2. Setting a Show Reminder
3. Setting a Record Reminder
4. Setting a Reminder that Appears in TV Viewer
5. Displaying a Show Reminder
6. Deleting a Show Reminder

The software supporting Broadcast Architecture includes the sample application Schsamp.dll, a
Microsoft® ActiveX™ component that schedules a show reminder. To locate Schsamp.dll, see
Broadcast Architecture Sample Applications.

To locate more information about Task Scheduler, see Further General Information.

Getting and Working with Episode Data
[This is preliminary documentation and subject to change.]

Before you can set a show reminder, your application must obtain information about the episode or
episodes for which you are scheduling the reminder. Obtaining information can be as simple as using
known episode data hard-coded into a script or application, or as complicated as implementing an
episode object in your application and then querying the Guide database to populate the object's
properties.

How you handle episode data depends largely on your application and on which Broadcast

2794

Scheduling Show Reminders Page 2 of 7

Architecture interfaces it calls to set show reminders. For example, if you are creating a show
reminder from a temporary enhancement page, hard-coding the data into the Microsoft® Visual
Basic® Scripting Edition (VBScript) script that sets the reminder may be sufficient. This is because in
this case, the application only needs to set a reminder for a specific show, the enhanced show, not for
shows in general.

However, if you are calling ITVViewer::SetReminder method to set a show reminder, you must pass
in a pointer to an IEPGEpisode interface. (SetReminder is implemented by ITVViewer, the TV
Viewer dispatch interface.) Thus, your application must implement IEPGEpisode and populate that
interface's property values with the data for the episode in question. This population can be done using
data from the Guide database.

For more information, see the following topics:

� Episode Data Format, which describes the format of the episode data you must specify when
setting a reminder.

� Retrieving Episode Data from the Guide Database, which explains ways to retrieve data from
the Guide database.

� The entry on the user trigger object EnhUser.

Episode Data Format

[This is preliminary documentation and subject to change.]

The amount and type of episode data that your application must provide varies depending on which of
the reminder-setting methods described in Setting a Show Reminder you use, either calling the
SetReminder method of ITVViewer, or by adding a reminder to the ScheduledItems collection of
Television System Services (TSS).

If you are using the IScheduledItems::Add method to schedule a show reminder you must provide a
fully specified show reference. For more information, see Show Reference Format.

If you are using ITVViewer::SetReminder to schedule a show reminder, your application must
implement the IEPGEpisode interface and populate its property values with data about the episode
for which you are setting a reminder. For more information, see IEPGEpisode.

Retrieving Episode Data from the Guide Database

[This is preliminary documentation and subject to change.]

The Guide database stores Program Guide information about future shows. You can query this
database for information about an episode.

2795

Scheduling Show Reminders Page 3 of 7

For example, when gathering data about an episode for a show reminder, your application might query
the Guide database for episode records with a specific title and start date. Once you find a matching
record in the database, you can fill in the rest of the episode information for the reminder, such as
channel, network, and ending time, from the record's fields.

To enable applications to retrieve or set episode and other records and fields in the Guide database,
Broadcast Architecture provides the Guide data objects. These objects wrap the Data Access Objects
(DAO) code necessary to access the Guide database's records and fields. Specifically, you can use the
CEpisodeTRecordset object to select and create episode records in the Guide database. The
CEpisodeTRecordset contains a collection of CEpisodeT objects, each of which wraps the field
information about an individual episode record.

For more information, see the following topics:

� Guide Data Objects.
� Using the Guide Data Objects.
� Episode Table in the Guide Database Schema. The Episode Table contains episode information.

To locate information on DAO, see Further General Information.

Setting a Show Reminder
[This is preliminary documentation and subject to change.]

A show reminder is a task set in Task Scheduler that at a specific time starts an application to remind
users a show is about to begin. Broadcast Architecture provides two technologies that you can use to
set a show reminder, TV Viewer and Television System Services (TSS).

The process of setting a reminder that appears in the TV Viewer user interface is identical to the
process that occurs when a user sets a reminder by clicking a Remind button in the Program Guide
user interface displayed by TV Viewer. To set such a show reminder, your application calls the
ITVViewer dispatch interface exposed by TV Viewer . A show reminder set using this interface is
visible from the TV Viewer search page. Such a reminder also causes an icon indicating that the
reminder has been set to appear in the Program Guide.

The disadvantage to using TV Viewer to set a reminder is that the programming is more complex.
Your application must ensure that TV Viewer is currently running, get a reference to ITVViewer, and
implement the IEPGEpisode interface. For more information on this process, see Using ITVViewer
to Schedule a Show Reminder.

If your application is relatively simple, for example a Microsoft® ActiveX™ control or Java applet on
an enhancement page, you may find it more convenient to use TSS to schedule your show reminders.
If you want TSS-set reminders to appear in the TV Viewer user interface as icons or on the search
page, you must set reminders that meet the standards described in Setting a Reminder that Appears in

2796

Scheduling Show Reminders Page 4 of 7

TV Viewer. TV Viewer only displays reminders set by TV Viewer in these fashions.

You can, however, use TV Viewer to display a message for a TSS-set reminder to the user, regardless
of whether the TSS-set show reminders meet these standards. In other words, if you specify Tvx.exe
in the command line for the reminder, TV Viewer will always attempt to display a reminder message
when the reminder runs.

For more information about setting a show reminder using TSS, see Using IScheduledItems to
Schedule a Show Reminder and Setting a Reminder that Appears in TV Viewer.

Setting a Record Reminder
[This is preliminary documentation and subject to change.]

A record reminder is a task set in Task Scheduler that at a specific time starts an application that
controls a VCR or similiar device to record a show. Record reminders are set in the same manner as
show reminders save for a few additional steps. These are listed below:

1. You should not specify Tvx.as the display application for a record reminder. Instead, the record
reminder should use the application specified in this registry value:

HKLM\Software\Microsoft\TV Services\Explorer\HelperApp

If that value is not set, the reminder should use Tvwakeup.exe.

2. Set the TASK_FLAG_SYSTEM_REQUIRED flag for the reminder. This can be done using the
Task Scheduler. This flag causes TV Viewer to tune to the channel even if the system is
sleeping. Note that this does not wake up the display if the system is sleeping, so that recording
can be done quietly.

Note The TASK_FLAG_SYSTEM_REQUIRED flag should not be set for standard show reminders.
Version 1.0 of Broadcast Architecture does not support standard show reminders that go off while the
system is sleeping.

3. If the record reminder has associated helper applications, for example applications that
automatically tunes or turn off a VCR, these applications should be listed in the
StartRecordingApp and/or EndRecordingApp values in the registry. These values appear
under this registry key:

HKLM\Software\Microsoft\TV Services\Explorer\

Two minutes before the show begins, TV Viewer checks for the StartRecordingApp value,
and if found, starts that application with the following command line syntax:

<application> -f <function> -d <duration> -c <channel> -s <tuning_space> -t <title> -r

2797

Scheduling Show Reminders Page 5 of 7

<show_reference>

Where
<application>

Is the path and filename of the application specified in either StartRecordingApp or
EndRecordingApp. If recording is starting this value is the application in
StartRecordingApp, if recording is ending, this value is the application in
EndRecordingApp.

<function>
Indicates whether recording is starting or ending. If recording is starting this value is
"start", if recording is ending, this value is "end".

<duration>
Is the duration, in minutes, of the show being recorded. The call to the end recording
application always specifies a duration of 0.

<channel>
Is the channel number.

<tuning_space>
Specifies the name of the tuning space. For example, "Cable"

<title>
Specifies the title of the show being recorded.

<show_reference>
The show reference as specified in the record reminder.

Two minutes after the show ends, TV Viewer checks for the EndRecordingApp value, and if found,
starts that application with a command line as described preceding.

For example, if you have set the value of StartRecordingApp to "C:\Startrec.exe" and
EndRecordingApp to "C:\Endrec.exe" then when recording starts TV Viewer starts Startrec.exe
with a command line such as the following:

C:\Startrec.exe -f "start" -d 30 -c 6 -s "Cable" -t "Tale Spin"
-r "1997/11/6!0/0/0!23:00!0!0!0!0!0!0!0!0!0!''!'DISN'!'Cable'!2!Tale Spin"

When recording ends, TV Viewer starts Endrec.exe with a command line such as the following:

C:\Endrec.exe -f "end" -d 0 -c 6 -s "Cable" -t "Tale Spin"
-r "1997/11/6!0/0/0!23:00!0!0!0!0!0!0!0!0!0!''!'DISN'!'Cable'!2!Tale Spin"

Setting a Reminder That Appears in TV
Viewer
[This is preliminary documentation and subject to change.]

TV Viewer provides a user interface that displays a information about currently set reminders. These

2798

Scheduling Show Reminders Page 6 of 7

reminders appear when the user opens the search page in TV Viewer and clicks My Reminders in the
list of categories. In addition, a reminder icon appears in the Program Summary panel when the user
clicks an episode in the Program Guide for which a reminder is set.

Users can use the MyReminders list to view, edit, or delete show reminders. The reccommended way
to set reminders that appear in the TV Viewer use interface is to use ITVViewer::SetReminder.

However, you can use the IScheduledItems::Add method of TSS to set reminders that appear in TV
Viewer if the reminders meet the following standards:

� Ensure that the show reference contains the start date, channel number, tuning space, station
call letters and title.

� Set the the application flag to tvviewer. For more information, see Using IScheduledItems to
Schedule a Show Reminder.

� Only set one-time, weekly or daily reminders.
� If it is a record reminder, follow the procedures described in Setting a Record Reminder.
� Limit the number of reminders you add. The reminder list displayed by TV Viewer has a limit of

fifty reminders.
� Do not add duplicate reminders that specify the same show reference.
� Set the reminder to run no more than 30 minutes before the show starts.

Displaying a Show Reminder
[This is preliminary documentation and subject to change.]

A show reminder is simply a task set in Task Scheduler. As such, it does not provide a user interface.
When it runs, it calls a display application, such as TV Viewer, to parse its show reference and display
a reminder message to the user. When that display application is TV Viewer, the application also
offers the user the opportunity to tune immediately to the channel on which the episode is broadcast.
Your application specifies which display application to use when it sets the reminder.

If your application requires a custom reminder dialog box or special functionality, you can write a
custom display application to handle show reminders. For example, you can write an application that
displays an image of the show's cast and plays the theme song when it reminds the user the show is
about to begin.

To be compatible with Broadcast Architecture show reminders, a custom display application should
accept a show reference as input. It should then parse the show reference to obtain the episode data
and display the reminder to the user. For more information on show references, see Show Reference
Format.

To locate more information on Task Scheduler, see Further General Information.

2799

Scheduling Show Reminders Page 7 of 7

Deleting a Show Reminder
[This is preliminary documentation and subject to change.]

Show reminders are deleted during the course of successful completion. When a show reminder runs,
unless it is a recurring show reminder, the Task Scheduler deletes the reminder from the Tasks folder.

In addition, show reminders can also be deleted by the following:

� You can delete a show reminder programmatically using either ITVViewer::DeleteReminder
or by removing the item corresponding to the reminder from the IScheduledItems collection.

� Invalid show reminders, those having an invalid show reference or incorrect command line
syntax, are deleted automatically by TV Viewer.

� If the show reminder is one that appears in the TV Viewer reminders list, you can use the TV
Viewer user interface to delete a show reminder.

� You can delete a show reminder by opening the Tasks folder, typically C:\Windows\Tasks,
right-clicking the task for the reminder, and selecting Delete.

Note Reminders are scheduled as hidden tasks. Therefore they will not appear in the Tasks folder
unless you have set your viewing options to show hidden files. To do this, go to the Tasks directory,
typically C:\Windows\Tasks, and type attrib –h *.*.

2800

Creating TV Viewer Controls Page 1 of 1

��������
� ������ ������

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

�� ��	�	�� ������	�� �� ��	 ���������� �������� ! ��	����� ����	�� �� ��	 ��	� ���	���	 ���
���������
���������� �� ���� ����� ����� ��������� ���� �� ������ ������� ��� ��
���������	 ������� ������� ��� ���� ��� ���� ��������� ���� �� ��� �� ����� ���� ���� �� ���
����� ������� �	
�� �������	���
 ��� ����������

��� ��� �	
���
�� �������
 �����
��
��� ���� ��
������ �� ���
��� ���
�� ���
����
��
 ��� ���
�� ��
�� ������� 	�
��� 	����
�� ��
����
���� �� � ������ ���� �� ��������� 	
����
���
��
������ �	
 �� ��
 ����
����� �
����� � �	��
	� �	
 �� �����
 � � ����� � �
����� �� ������� �	��
	��

�������� 	�
 ���� �� ��� ����� �� ������ ������� ��� ��������� �� ������ 	�
� ������ �
�������� 	��
 ��� �� ��� ����� �� ���	�� ���� ��� ������ ��������������� ����� ��� ��� �������
����� ������	
����� ��� ��� ��� 	
�� ��� �� ������ ������
	�� ���
�� �����
��� �
���
�� ��
�
�������� �	
 �� ��� ����������	
��� ���������� ���������

��� ����	
�� �� ��� ����� � ������
 ���� ������ ��� ����� �� �� ������ �� ������� � ����� �������
������� 	��� �
�������
 ����� �� ���� ������� �� ����� � ��� ������ �
� ���
 �� ������
� �����
���������� �
�� �
� ���� ��
� ������ �
� ���������� ��
� ���� �� ���������� �
����
 �
� ����

������� �� ������	
��
 ��� ������
� ������ ����	���
� �� ������ ���� �� ���	�� 	�������	�� �����
����� ����	
�� ��� 	�� �����������

��� �	��	���� �	����
������� ����� �	�� �� ������ �	���	� ��� ��������

� �	�������� �	 �� ������

� �	���	����� �� ������

� ��������� 	���
� ��� �� �����

��� ���
��� �����
��� �������
 ����
��
�� ��������
�� ������ �������
����
��
 ��� ��
� ��
������ �� ����
�
���� �������� ��� �������
 ����
��
�� ������ �������
�����

�� ��� ������
��� � ��
 �� ����� ���
�� ��
������ �
� �!������ ��� �� ����� ���
��
��������� ��� ����	
��	� �����	�
���

2801

Some Useful Objects Page 1 of 2

Some Useful Objects
[This is preliminary documentation and subject to change.]

Brtest is a library that includes several objects that applications can use to send data to the MMR. The
following table lists the objects:

CData

[This is preliminary documentation and subject to change.]

The CData class is a base class for objects that contain data. It includes member functions for locking
the data in order to control access to the data in multithreaded applications.

CString

[This is preliminary documentation and subject to change.]

The CString class is derived from the CData class. The data in this object is a null-terminated string.

CSession

[This is preliminary documentation and subject to change.]

The CSession class is an abstract base class for a connection to the MMR. This class should not be
used directly. Instead, use CMulticast or CTunnel depending on the type of connection.

Object Description

CData Base class for data storage

CString CData-derived class for strings

CSession Base class for connections to the MMR

CMulticast Multicast session

CTunnel Tunneling session

2802

Some Useful Objects Page 2 of 2

CMulticast

[This is preliminary documentation and subject to change.]

The CMulticast class is derived from CSession. It includes a method to broadcast multicast packets
that the MMR can route to an output driver.

CTunnel

[This is preliminary documentation and subject to change.]

The CTunnel class is derived from CSession. The constructor opens a socket connection to the
MMR called a tunnel. The send method sends data through this tunnel to the MMR. Using a tunnel
allows the MMR to control the rate that the server application sends the data.

2803

Key Routines in Wsend Page 1 of 2

Key Routines in Wsend
[This is preliminary documentation and subject to change.]

The Wsend program uses the objects in the Brtest library to send data to the MMR. This program can
use either tunneled access or send IP multicast packets.

Much of the code in Wsend.cpp is meant to handle saving and restoring data from the registry and also
to handle the user interface. The operation of these functions is not covered in this chapter.

The functions that illustrate how to connect to the MMR and send data are described in Multicasting
Functions and Tunneling Functions.

Multicasting Functions

[This is preliminary documentation and subject to change.]

When you start a multicast session in WSend, it calls the OnStartMulticast function. This function
starts a thread that multicasts data using the MulticastWorkerThread function.

The MulticastWorkerThread function runs until you stop the session. The OnStopMulticast
function handles stopping the session by setting an abort event, waiting for the event to be handled by
the thread, then shutting down the thread.

The MulticastWorkerThread function handles sending the multicast packets. It calls the
BandwidthThrottleSend function repeatedly to send the data. The BandwidthThrottleSend
function computes the speed for sending data based on the amount of data to send and the bandwidth
of the output driver. The result of the speed computation is the number of milliseconds to wait
between send operations. While waiting, BandwidthThrottleSend checks for abort events, to know
when to stop sending.

Tunneling Functions

[This is preliminary documentation and subject to change.]

When you open a tunnel session in WSend it calls the OnOpenTunnel function. This function opens a
tunnel to the MMR and, if the tunnel opens without error, starts a thread that sends data through the
tunnel. The OnCloseTunnel function stops the transfer by setting an abort event, waiting for the
thread to process the abort event, and shutting down the thread.

2804

Key Routines in Wsend Page 2 of 2

The TunnelWorkerThread function is nearly identical to the MulticastWorkerThread function.
The difference is that the send function in BandwidthThrottleSend uses a tunnel to send the data to the
MMR instead of broadcasting multicast packets.

2805

Key Routines in Wlisten Page 1 of 1

��� ����	
�� 	
 �	���

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

�
���	��	�	 ���� ��� ��	����	� ��
����� ���	�� �� ����
�� ���������� ���� ��	�� ��	 �	�
�������� �� ���� ������ �� �����������	� � �����	
 ���� ��	� �� � ���
� ��
	 �����
	 �� ����
	�	�
��� ��������� ����
���

�����������	 ������ �� ��	��
�� �� 		�� ����
��
���	� ��	� ��	 ����	�
� ��
����	 ��� �	��
��� ��	
���� ���� �	
��
���� ���
� 	�
��� ����
 � � ������
��� ����
� �	 �
 ����
�� ��� ����
�
�����������	 ����� ���� ��	
 ��� �	��� ��� ��	������ ��� ���� �	 �� ��� �� ���������� ���� ���
���� ����� �	
� ������� ��� ��	���� ���� � �	�����	� ����� ���� ������ �����������	 �� �����

��	
 �
� ����

2806

Numbers Page 1 of 1

�������

����� �� ��	
������ �����	������ �� ����	�� �� ����	��

����� ��	
��
��	
 ���
�

� ������� 	�
��� �������� ����
�
���
� ��	���
������
��� ��
��� ����
� � ������� ��
��������� ����
�������� ��
� ��
��� ��������� ����
������ �������� �� �� ������� ���� ������
��
�������
�� ������ ������� �� � �������� ��
� �������
� �����
� ����
!�� ��� "
����
������� �"
����� �� ����� ��� ���� ��
� ���� �# ����� ���� ����
�� !# �����
��
� $�����
 �������%������ ������� ��$ %� ��

2807

Numbers Page 1 of 26

Numbers
[This is preliminary documentation and subject to change.]

802.3 intermediate driver
A Network Driver Interface Specification (NDIS) intermediate driver that is a component of
Broadcast Architecture. This driver translates Multipacket Transport (MPT) packets from
satellite networks into Internet Protocol (IP) packets. This translation makes it possible for
Windows Sockets (WinSock) to handle the data as it does any other data carried by
Transmission Control Protocol/Internet Protocol (TCP/IP).

A
[This is preliminary documentation and subject to change.]

ActiveX control
A reusable software component that can quickly add specialized functionality to World Wide
Web sites, desktop applications, development tools, and enhanced video programs. These
controls typically provide user interface elements, such as buttons. Microsoft® ActiveX™
controls were previously known as OLE custom controls or OCXes.

Address Resolution Protocol
(ARP) The protocol that maps Internet Protocol (IP) addresses to the physical hardware
addresses of specific networks. This protocol operates at the level of network operating systems
and is not generally accessible to applications.

ADSL
See Asymmetrical Digital Subscriber Line.

analog television tuner card
A type of broadcast receiver card that receives and processes analog video signals.

analog video
Video transmitted by an analog signal, such as an NTSC, PAL, or SECAM transmission.

announcement filter
In the Announcement Listener, one of a collection of dynamic-link libraries (DLLs) or
executable files that act as Automation servers. An announcement filter distinguishes between
announcements that are of interest to a particular broadcast client's user and those that are not.
Multiple filters can exist for different kinds of data; for example, in Broadcast Architecture
Internet channel broadcasting and enhancements have their own filters.

Announcement Listener
A operating-system service that receives announcements of upcoming data. Using
Announcement Listener, the broadcast client can filter incoming data at the network interface
(that is, at the broadcast receiver card) so the client only receives data of interest.

API
See application programming interface.

2808

Numbers Page 2 of 26

application
A computer program designed to help people perform a certain type of work. An application
differs from an operating system (which runs a computer), a utility (which performs
maintenance or general-purpose chores), and a programming language (with which computer
programs are created). An application can manipulate text, numbers, graphics, or a combination
of these elements. In the context of Broadcast Architecture, potential applications might enable
users to shop at home, find information, order movies, and so on.

application layer
The seventh and highest layer in the International Organization for Standardization's Open
Systems Interconnection (OSI) model. The application layer contains the signals sent during
interaction between user and application and that perform useful work for the user, such as file
transfer. See also data link layer, transport layer.

application programming interface
(API) An interface exposed by a software module as a means for other software modules to
interact with it. For example, applications generally interact with an operating system by way of
the APIs the operating system exposes. In the case of Microsoft® Windows® 98 and
Microsoft® Windows NT®, the APIs consist of functions that an application uses to request
operating-system services, such as screen management, keyboard input, printer output, and so
forth.

ARP
See Address Resolution Protocol.

ASCII
(American Standard Code for Information Interchange) A coding scheme that assigns numeric
values to letters, numbers, punctuation marks, and certain other characters. By standardizing the
values used for these characters, ASCII enables computers and computer programs to exchange
information. Although it lacks accent marks, special characters, and non-Roman characters,
ASCII is the most universal character-coding system.

Asymmetrical Digital Subscriber Line
(ADSL) A technology that allows data to be sent over ordinary twisted-pair telephone lines at
T1 trunk-line speeds, currently up to 1.544 megabits per second, and to be returned at a current
rate of 16 kilobits per second. ADSL provides a bidirectional voice signal while data is sent.

authorization key
A Triple DES key used to encrypt session keys.

B
[This is preliminary documentation and subject to change.]

back channel
The segment of a two-way communications system that flows from the consumer back to the
content provider, or to a system component, to provide feedback.

backbone
The top level in a hierarchical network.

bandwidth
Literally, the frequency range of an electromagnetic signal, measured in hertz (cycles per

2809

Numbers Page 3 of 26

second). The term has come to refer more generally to the capacity of a channel to carry
information, as measured in data transferred per second. Transfer of digital data, for example, is
measured in bits per second.

bandwidth reservation
The process of setting aside bandwidth on a specific broadcast channel for a specific data
transmission. A content server application reserves bandwidth on a Microsoft Multicast Router
by calling the msbdnReserveBandwidth function. This function forwards the request to a
bandwidth reservation server. The server returns a unique reservation identifier if the bandwidth
can be reserved. See also IP multicast address assignment.

baseband
Describes transmissions using the entire spectrum as one channel. Alternatively, baseband
describes a communication system in which only one signal is carried at any time. An example of
the latter is S-video or a composite video signal that is not modulated to a particular television
channel. See also broadband.

baud
Number of bits per second, a measure of data-transmission speed. Baud was originally used to
measure the transmission speed of telegraph equipment but now most commonly measures
modem speed. The measurement is named after the French engineer and telegrapher Jean
Maurice-Emile Baudot.

broadband
Describes high-frequency transmissions over coaxial cable or optical fibers, involving sending
several data streams simultaneously. Broadband is also sometimes used to describe high-speed
networks in general. See also baseband.

broadcast
In general terms, a transmission sent simultaneously to more than one recipient. In Internet
terminology, a transmission sent to a single address to be forwarded to many recipients. In
practice, Internet broadcasts only function on local networks, because routers do not forward
them. Broadcast Architecture uses a refinement of this Internet technique known as multicast, in
which routers forward transmissions. In multicast, each transmission is assigned its own Internet
Protocol (IP) multicast address, allowing clients to filter incoming data for specific packets of
interest at the network interface card.

Broadcast Architecture
The Microsoft computer software and hardware design that enables personal computers to
serve as clients of broadband digital and analog broadcast networks.

Broadcast Architecture subsystems
The functional parts that make up Broadcast Architecture. These include the Broadcast and
Data Receiver subsystem, the Data Services subsystem, the Video and Display subsystem, the
User Interface subsystem, and the Television Client Services subsystem. For more information,
see the Broadcast Client Architecture section of the Broadcast Architecture Programmer's
Reference.

broadcast client
A versatile personal computer that can receive and display broadband digital and analog
broadcasts, blending television with new forms of information and entertainment. Broadcast
client programming can include television, audio, World Wide Web pages, and computer data
content.

Broadcast Cryptography API
Broadcast Architecture functions that help CryptoAPI decrypt content using encryption keys.

broadcast data encoder
A hardware subsystem provided by an independent hardware vendor that encodes data for

2810

Numbers Page 4 of 26

broadcast, for example pay-per-view shows that only subscribers may watch. A broadcast data
encoder receives data streams from the Microsoft Multicast Router through an output driver.

broadcast receiver card
A printed circuit board or adapter that can be plugged into a computer to receive and process
broadcast signals, such as television or other broadcast data. One type of broadcast receiver
card is a satellite receiver card. Another is an analog television tuner card.

broadcast server
A computer that sends broadcast programming across a broadcast channel to broadcast clients,
in some cases forwarding data over the Microsoft Multicast Router. The programming sent can
include television, audio, World Wide Web pages, and digital data such as stock prices,
multimedia magazines, and computer software.

Broadcast Architecture transport
A Broadcast Architecture component that manages broadcast data received through a broadcast
receiver card. The Broadcast Architecture transport binds to the Broadcast Architecture NIC
miniports, which control and retrieve data in formats such as MPEG, audio, Microsoft
Broadcast Data Network (MSBDN), or any arbitrary format.

C
[This is preliminary documentation and subject to change.]

CDF
See Channel Definition Format.

CERN
(Conseil Europeen pour le Recherche Nucleaire, or European Laboratory for Particle Physics),
a research laboratory with headquarters in Geneva, Switzerland. CERN pioneered work in
developing the World Wide Web. CERN intended the Web to help scientists share information.

channel
In general, a path or link through which information passes between two devices. For example,
a television channel carries a specific sequence of television programming. In Microsoft®
Internet Explorer version 4.0, a channel is a subscription to a World Wide Web site defined by
means of a Channel Definition Format (CDF) file.

Channel Definition Format
(CDF) A specification developed by Microsoft and presented to the World Wide Web
Consortium (W3C) that allows applications to send World Wide Web pages to users. Once a
user subscribes to a CDF channel, any software that supports the CDF format automatically
receives any new content posted on the channel's Web server. The default client subscription
application for Internet channel broadcasting in Broadcast Architecture stores subscription
information as CDF files.

chroma
The color portion of the video signal that includes hue and saturation information. Hue refers to
a tint or shade of color. Saturation indicates the degree to which the color is diluted by
luminance or illumination. See also YUV.

class
In general terms, a category. In programming languages, a class is a means of defining the

2811

Numbers Page 5 of 26

structure of one or more objects. See also device class.
class driver

A standard driver provided with the operating system that provides hardware-independent
support for a given class of devices. Such a driver communicates with a corresponding
hardware-dependent minidriver using a set of device control requests defined by the operating
system. These requests are specific to the particular device class. A class driver can also define
additional device control requests itself. A class driver provides an interface between a
minidriver and the operating system.

client
Generally, one of a group of computers that receive shared information sent by a computer
called a server over a broadcast or point-to-point network. The term client can also apply to a
software process, such as an Automation client, that similarly requests information from a server
process and that appears on the same computer as that server process, or even within the same
application.

client subscription application
A client subscription application provides an interface that enables a user to subscribe or cancel
a subscription to one or more channels in Internet Explorer 4.0.

closed captioning
Real-time, written annotation of the currently displayed audio content. Closed captioning
usually provides subtitle information to hearing-impaired viewers or to speakers of a language
other than that on the audio track.

color keying
A display technique in which a selected Video Graphics Array (VGA) color is replaced with
video wherever that color appears on the screen. For example, television news programs
commonly use color keying to replace a blue backdrop mounted behind a weather announcer
with a video picture of a weather map.

COM
See Component Object Model.

commit
To allocate a device data stream and tune a specified connection to that device data stream.
Such commitment is performed by a NIC miniport.

common library interface functions
Software routines supplied by Broadcast Architecture that add network driver functionality to a
broadcast receiver card and manage computer memory resources for hardware-specific code.
To use these common library interface functions, a hardware vendor building a NIC miniport
should link the miniport code to the common library.

Component Object Model
(COM) An object-oriented programming model for building software applications made up of
modular components. COM allows different software modules, written without information
about each other, to work together as a single application. COM enables software components
to access software services provided by other components, regardless of whether they involve
local function calls, operating system calls, or network communications.

content producer
A person or company creating broadcast content. Content can include television programming,
data, World Wide Web sites, and software applications.

content provider
A person or company delivering broadcast content. Content can include television
programming, data, World Wide Web sites, and software applications.

content server application

2812

Numbers Page 6 of 26

An application written by a content provider and running on a computer at the broadcast head
end that gathers, schedules, and sends data to the appropriate Microsoft Multicast Router. For
more information, see the Writing Content Delivery Software section of the Broadcast
Architecture Programmer's Reference.

content subnet
A network located at a broadcast head end that connects one or more content server
applications to one or more Microsoft Multicast Routers.

CPU
Central processing unit. The computational and control unit of a computer; this device, usually a
single chip, interprets and executes instructions. Examples include the Intel Pentium processor.

CRC
See cyclic redundancy check.

CryptoAPI
An application programming interface (API) that provides an abstraction layer for encryption
and decryption services provided by a cryptographic service provider. Because CryptoAPI
furnishes this layer, applications can use different encryption methods without requiring
information about the hardware or software involved. This API also provides a way of
protecting sensitive key data. See also Broadcast Cryptography API.

cryptographic service provider
(CSP) An independent software module that contains cryptography algorithms or services that
are integrated into CryptoAPI. Many CSPs are Microsoft® Win32® application programming
interface (API) service programs, managed by the Win32 service control manager. Some, such
as a smart card or secure coprocessor, reside in hardware.

CSP
See cryptographic service provider.

cyclic redundancy check
(CRC) A common technique for detecting errors in data transmission. In CRC error checking,
the sending device calculates a number based on the data transmitted. The receiving device
repeats the same calculation after transmission. If both devices obtain the same result, it is
assumed the transmission was error-free. The procedure is known as a redundancy check
because each transmission includes not only data but additional, redundant values for error
checking.

D
[This is preliminary documentation and subject to change.]

Data Encryption Standard
(DES) A standard defined by the National Bureau of Standards for encryption of digital data
transmissions within the United States.

data link layer
The second of the seven layers in the International Organization for Standardization's Open
Systems Interconnection (OSI) model for standardizing computer-to-computer
communications. The data link layer is one level above the physical layer. It is involved in
packaging and addressing information and in controlling the flow of separate transmissions over

2813

Numbers Page 7 of 26

communications lines. The data link layer is the lowest of the three layers (data link, network,
and transport) that help move information from one device to another. See also transport layer.

data service
A mechanism provided by a service provider for sending broadcast data to broadcast clients.
Such data can include Program Guide information, World Wide Web pages, software, and other
digital information. The data service mechanism can be any broadcast process, including
Internet channel broadcasting.

data stream
See stream.

datagram
One packet of information and associated delivery information, such as the destination address,
that is routed through a packet-switching network. In a packet-switching network, data packets
are routed independently of each other and may follow different routes and arrive in a different
order from which they were sent. An Internet Protocol (IP) multicast packet is an example of a
datagram.

DBS
See direct broadcast satellite.

DES
See Data Encryption Standard.

DES decryptor
A hardware device that converts cipher text encrypted to the Data Encryption Standard (DES)
back to plain text.

device
A unit of hardware, for example an audio adapter. For hardware used with the Microsoft®
Windows® 98 operating system, such a unit can be detected by Plug and Play. See also device
class, device driver, and device object.

device class
A group into which devices and buses are placed for the purposes of installing and managing
device drivers and allocating resources. The hardware registry tree is organized by device class.
Windows 98 uses class installers to install the drivers for the different classes of hardware.

device driver
A software component that allows an operating system to communicate with one or more
specific hardware devices attached to a computer.

device object
A programming object used to represent a physical, logical, or virtual hardware device whose
device driver has been loaded into the operating system.

direct broadcast satellite
(DBS) A satellite communications technology that allows use of a very small (18 inches to 3
feet in diameter) receiver dish packaged as a consumer electronics product, enabling consumers
to directly receive satellite television signals.

DirectShow
The Microsoft® DirectShow™ (formerly Microsoft® ActiveMovie™) application
programming interface (API) is a multimedia technology designed to play video, audio, and
other multimedia streams in a variety of formats that are stored locally or acquired from Internet
servers. DirectShow relies on a modular system of pluggable components called filters arranged
in a configuration called a filter graph. A component called the filter graph manager oversees the
connection of these filters and controls the data flow of the stream.

DirectShow filter
A Microsoft® DirectShow™ component that processes data streams. Each filter handles part of

2814

Numbers Page 8 of 26

the operation involved in receiving, decoding, transforming, scheduling, and displaying
interdependent video, audio, or other data streams. Filters connect to each other in a
configuration called a filter graph.

A DirectShow filter is a user-mode entity that is an instance of a Component Object Model
(COM) object, usually implemented by a dynamic-link library (DLL). A Broadcast Architecture
DirectShow filter can be a source filter, a transform filter, a renderer filter, or a utility filter.

See also KSProxy filter.

DLL
See dynamic-link library.

downstream
One-way data flow from head end to broadcast client. See also upstream.

dynamic-link library
(DLL) A file with the file name extension .dll that contains one or more functions compiled,
linked, and stored separately from the computing processes that use them.

E
[This is preliminary documentation and subject to change.]

encryption key
A specific value used by an encryption algorithm to encode and decode data.

enhancement
A multimedia element, such as a hypertext link to a World Wide Web page, a graphic, a text
frame, a sound, or an animated sequence, added to a broadcast show or other video program.
Many such elements are based on Hypertext Markup Language (HTML).

episode
A discrete narrative portion of an ongoing television or radio show, usually viewed in one
continuous showing. Generally, an episode forms a coherent story in itself.

F
[This is preliminary documentation and subject to change.]

field
In broadcast television, one of two sets of alternating lines in an interlaced video frame. In one
field, the odd-numbered lines of video are drawn; in the other, the even-numbered lines are
drawn. When interlaced, the two fields combine to form a single frame of on-screen video.

File Transfer Protocol

2815

Numbers Page 9 of 26

(FTP) A protocol that supports file transfers to and from remote systems on a network using
Transmission Control Protocol/Internet Protocol (TCP/IP), such as the Internet. FTP supports
several commands that allow bidirectional transfer of binary and ASCII files between systems.
See also Hypertext Transport Protocol (HTTP).

File Transfer Service
(FTS) A component of Microsoft® NetShow™ server that can send files using a multicast
transfer mechanism that includes forward error correction. NetShow is a component of
Microsoft Site Server.

filter
See announcement filter, DirectShow filter, or KSProxy filter.

filter graph
A connected set of DirectShow filters that processes media data by controlling KSProxy filters.

filter graph manager
An object that controls how a filter graph is assembled and how data is moved through it.
Applications can use the filter graph manager implicitly, allowing it to construct an appropriate
filter graph for a specified media format. Applications can also access the filter graph manager
explicitly — for example, to add a proprietary filter to a filter graph.

forward error correction
A system of error correction that incorporates redundancy into data so transmission errors can,
in many cases, be corrected without requiring retransmission.

frame
In broadcast television, a single screen-sized image that can be displayed in sequence with other
slightly different images to animate drawings. For NTSC video, a video frame consists of two
interlaced fields of 525 lines; NTSC video runs at 30 frames per second. For PAL or SECAM
video, a video frame consists of two interlaced fields of 625 lines; PAL and SECAM video runs
at 25 frames per second. In comparison, film runs at 24 frames per second.

FTP
See File Transfer Protocol.

FTS
See File Transfer Service.

G
[This is preliminary documentation and subject to change.]

genre
In Broadcast Architecture, a category of broadcast programs, typically related by style, theme,
or format, for example movies or television series.

global announcement
A general message that is sent to all broadcast clients. Global announcements alert clients that
information of a specified type will be broadcast at a certain Internet Protocol (IP) address at a
certain time, or that a particular type of service is available. Global announcements are intended
to be transmitted on all possible channels, so they can be received regardless of what channel a
client is tuned to. Such announcements are sent relatively infrequently and may be human-
readable. See also local announcement.

2816

Numbers Page 10 of 26

guaranteed bandwidth
Bandwidth that is reserved only if the requested bandwidth is available for the requested period.
Once reserved, such bandwidth can be relied upon to be available. See also opportunistic
bandwidth.

Guide database
In Broadcast Architecture, the database in which Program Guide information is maintained. This
database is stored on the broadcast client.

H
[This is preliminary documentation and subject to change.]

hardware-specific interface functions
A set of routines that a hardware vendor must implement to add broadcast network
functionality.

HDTV
See high-definition television.

head end
The origin of signals in a terrestrial, cable, satellite, or network broadcast system. In Broadcast
Architecture, the server infrastructure that gathers, coordinates, and broadcasts data is generally
located at the broadcast head end.

high-definition television
(HDTV) Television that is delivered at a higher screen resolution than NTSC, PAL, SECAM, or
other existing standards provide for.

HTML
See Hypertext Markup Language.

HTTP
See Hypertext Transport Protocol.

Hypertext Markup Language
(HTML) A markup language used to create hypertext documents that are portable from one
platform to another. HTML files are text files with embedded codes, or markup tags, that
indicate formatting and hypertext links. HTML is used for formatting documents on the World
Wide Web.

Hypertext Transport Protocol
(HTTP) The underlying, application-level protocol by which World Wide Web clients and
servers communicate on the Internet. See also File Transfer Protocol.

I
[This is preliminary documentation and subject to change.]

2817

Numbers Page 11 of 26

ICP
Independent content provider. See content provider.

IHV
See independent hardware vendor.

independent hardware vendor
(IHV) A person or company that develops and sells hardware, in this case for Broadcast
Architecture.

independent software vendor
(ISV) A person or company that develops and sells software, in this case for Broadcast
Architecture.

infrared
(IR) Defines a spectrum of electromagnetic radiation with frequencies in the spectrum less than
those of visible light. Remote control units usually communicate with home televisions and
VCRs by using infrared signals.

integrated receiver/decoder
(IRD) A subscriber terminal, such as the set-top box used for satellite television systems. In the
case of Broadcast Architecture, the IRD is the broadcast receiver card.

Integrated Services Digital Network
(ISDN) A type of phone line used to enhance data transmission speed. Data can be transmitted
over ISDN lines at speeds of 64 or 128 kilobits per second, whereas standard phone lines
generally limit modems to top speeds of 20 to 30 kilobits per second. An ISDN line must be
installed by the phone company.

interface
In computing in general, the point where two elements connect so that they can work with one
another, for example the connection between an application and an operating system or between
an application and a user (the user interface).

In C++ programming, a collection of related methods exposed by a given class of objects. The
methods in an interface are procedures that can be performed on or by those objects.

The Component Object Model (COM) architecture has become the foundation for interfaces
that work with the Microsoft® Windows® 98 and Microsoft Windows NT operating systems.
In earlier programming for Windows, an application programming interface (API) consisted of
functions that one piece of software could call to gain access to services provided by another
piece of software.

interlacing
A video display technique, used in current analog televisions, in which the electron beam
refreshes (updates) all odd-numbered scan lines in one field and all even-numbered scan lines in
the next. Interlacing takes advantage of both the screen phosphor's ability to maintain an image
for a short time before fading and the human eye's tendency to average subtle differences in light
intensity. By refreshing alternate lines, interlacing halves the number of lines to update in one
screen sweep. An alternative video display technique, used in computer monitors, is progressive
scanning. In progressive scanning, the image is refreshed one line at a time.

Internet
Generically, a collection of networks interconnected with routers. "The Internet" is the largest
such collection in the world. The Internet has a three-level hierarchy composed of backbone
networks, midlevel networks, and stub networks.

2818

Numbers Page 12 of 26

Internet channel broadcasting
A technology to gather and redistribute World Wide Web content. Applications that use
Internet channel broadcasting package a series of Web pages or sites and deliver them to
broadcast clients at regular intervals. They can provide this content to a broadcast server for
retail delivery to subscribing clients, or they can provide the content on a local area network
(LAN).

Internet Protocol
(IP) The primary network layer of Internet communication, responsible for addressing and
routing packets over the network. IP provides a best-effort, connectionless delivery system that
does not guarantee that packets arrive at their destination or that they are received in the
sequence in which they were sent. See also Transmission Control Protocol/Internet Protocol
and User Datagram Protocol/Internet Protocol.

IP
See Internet Protocol.

IP multicast address assignment
The process by which transient Class D Internet Protocol (IP) multicast addresses are allocated.
Each address must be assigned uniquely across the system for a specific time period. Once that
time period elapses, the address returns to the available pool. In Broadcast Architecture, these
addresses are used to identify data streams being broadcast, both at the head end and in
broadcast client systems in the home.

IR
See infrared.

IR/D
See integrated receiver/decoder.

ISDN
See Integrated Services Digital Network.

ISV
See independent software vendor.

J
[This is preliminary documentation and subject to change.]

Java
A object-oriented, platform-independent computer programming language developed by Sun
Microsystems. The Applet subclass of Java can be used to create Internet applications.

K
[This is preliminary documentation and subject to change.]

2819

Numbers Page 13 of 26

kernel mode
Software processing that occurs at the level of the operating system closest to the computer,
ring 0. Kernel-mode software resides in protected memory at all times and provides basic
operating-system services. Kernel-mode software may activate hardware directly or interface to
another software layer that drives hardware. See also user mode.

KSProxy filter
A WDM streaming component that processes data streams. A KSProxy filter is a kernel-mode
entity usually implemented by a driver within the operating system. See also DirectShow filter.

L
[This is preliminary documentation and subject to change.]

local announcement
A specific message that is intended to be sent over a particular broadcaster's own transponder.
Most local announcements are not human-readable. Local announcements are generally sent at
frequent intervals a short time before the broadcast they announce. See also global
announcement.

local area network
(LAN) A network dispersed over a relatively limited area and connected by a communications
link that enables each device on the network to interact with any other. See also wide area
network.

log on
To provide a user name and password that identifies you to a computer network.

luminance
A measure of the degree of brightness or illumination radiated by a given source. Alternatively,
the perceived brightness component of a given color, as opposed to its chroma. See also YUV.

M
[This is preliminary documentation and subject to change.]

MBONE
See multicast backbone.

merchant server
A server that enables user purchases in a secure fashion.

Microsoft Broadcast Data Network
(MSBDN) A high-bandwidth broadcast network, capable of sending 2 to 25 megabits per
second, or 22 to 270 gigabits per day. MSBDN is designed to use strong Data Encryption
Standard (DES) encryption to secure valuable goods and services so that only paying

2820

Numbers Page 14 of 26

subscribers have access to them. This high level of security will make MSBDN a suitable
channel for delivery of software and other expensive digital goods and services that would
otherwise be vulnerable to theft.

Microsoft Multicast Router
(MMR) A component that enables a content server to send a data stream to a multiplexer or
other broadcast output device. The MMR calls an output driver to package and transmit a
stream at the appropriate rate and in the appropriate packet format.

miniport
Software that communicates with a specific piece of peripheral hardware through a port. A
miniport translates all applicable commands that come through the port from the computer into
the appropriate hardware commands. This miniport functionality means the port does not
require extensive information about each piece of hardware it supports. See also NIC miniport.

miniport driver
See miniport.

minidriver
A hardware-specific dynamic-link library (DLL) that uses a Microsoft-provided class driver to
accomplish most actions and provides only device-specific controls. In Windows Driver Model
(WDM), the minidriver registers each device with the class driver, which creates an object for
each device. The minidriver uses these device objects to make calls to the operating system.

MMDS
See Multichannel Multipoint Distributed System.

MMR
See Microsoft Multicast Router.

MPEG
(Motion Pictures Experts Group standard) MPEG-1 is a standard designed for video playback
of NTSC quality from CD-ROM. MPEG-1 provides video and audio compression at rates up to
1.8 megabits per second. MPEG-2 provides higher video resolutions and interlacing for
broadcast television and high-definition television (HDTV). Both standards were created by the
Motion Pictures Experts Group, an International Standards Organization/International
Telegraph and Telephone Consultative Committee (ISO/CCITT) group set up to develop
motion video compression standards.

MPT
See Multipacket Transport.

MSBDN
See Microsoft Broadcast Data Network.

MTS
A stereo encoding standard used with analog audio and video transmissions.

multicast
A point-to-many networking model in which a packet is sent to a specific address, and only
those computers that are set to receive information from this address receive the packet. On the
Internet, the possible IP multicast addresses range from 224.0.0.0 through 239.255.255.255.
Computer networks typically use a unicast model, in which a different version of the same
packet is sent to each address that must receive it. The multicast model greatly reduces traffic
and increases efficiency on such networks.

multicast backbone
(MBONE) A virtual, multicast-enabled network that works on top of the Internet. The most
popular application for the MBONE is video conferencing, including audio, video and
whiteboard conferencing. However, the essential technology of the MBONE is simply multicast
— there is no special support for continuous media such as audio and video. The MBONE has

2821

Numbers Page 15 of 26

been set up and maintained on a cooperative, volunteer basis.
Multichannel Multipoint Distributed System

(MMDS) Also known as wireless cable, this system broadcasts terrestrial or satellite microwave
transmissions directly to consumers' homes. The Federal Communications Commission (FCC)
invented this system in the 1980s to provide competition to traditional cable television
companies. There are currently 33 MMDS channels allocated, most in the 2.5-gigahertz band.

multihomed computer
A computer connected to two or more networks or having two or more addresses on one
network. For example, a network server may be connected to multiple local area networks
(LANs). Generally, a multihomed computer may send and receive data over any of its
connections but does not necessarily route traffic for other computers.

multimedia
Online material that combines text and graphics with sound, animation, or video, or some
combination of the three.

Multipacket Transport
(MPT) A data link adaptation layer developed by Microsoft that resides above the data link
layer of a network with large, fixed-size packets, such as a satellite system. MPT allows higher-
layer protocols such as Internet Protocol (IP) to exist independently of, and be unaffected by,
the underlying network.

multiplexer
In general terms, a device for funneling several different streams of data over a common
communications line. In the case of Broadcast Architecture, a multiplexer combines multiple
television channels and data streams for a single transponder.

N
[This is preliminary documentation and subject to change.]

NABTS
See North American Basic Teletext Specification.

NDIS
See Network Driver Interface Specification.

NDIS extension
An addition to the Network Driver Interface Specification (NDIS) that provides supplementary
functionality. Broadcast Architecture supplies NDIS extensions that must be supported by all
NIC miniports written to control broadcast receiver cards and by all transports that work with
and access broadcast receiver cards.

network
In computing, a data communications system that interconnects a group of computers and
associated devices at the same or different sites. See also local area network, wide area
network.

In television broadcasting, a chain of radio or television broadcasting stations linked by wire or
microwave relay, or a company that produces the programs for these stations.

2822

Numbers Page 16 of 26

Network Driver Interface Specification
(NDIS) In Microsoft® Windows® networking, the Microsoft/3Com specification for the
interface between device drivers and a network. All transports call the NDIS interface to access
and work with network interface cards (NICs). Using NDIS, developers can write hardware
device drivers that are independent of a target operating system. Broadcast Architecture
supports NDIS version 5.0.

network interface card
(NIC) An printed circuit board, adapter or other device used to connect a computer to a
network.

NIC
See network interface card.

NIC miniport
Miniport for the Broadcast Architecture network interface card (NIC). The NIC miniport
supports Network Driver Interface Specification (NDIS).

NIC miniport driver
See NIC miniport.

North American Basic Teletext Specification
(NABTS) An open standard for transmission of data over the television vertical blanking
interval (VBI). NABTS is an established standard for television data transmission, and it is in
use by broadcasters and systems integrators in North America, Europe, South America, and the
Far East.

NTSC
(National Television System Committee standard) Standard regulating analog television signals
in North America, Japan, and parts of South America, originated by the National Television
System Committee. North America and Japan established NTSC color standards to make
signals compatible with black and white transmissions. NTSC is based on the 60-hertz rate of
U.S. electrical mains. An NTSC set can display 525 scan lines at approximately 30 frames per
second, but nonpicture lines and interlaced scanning methods make for an effective resolution
limit of about 340 lines. NTSC bandwidth is 4.2 megahertz. See also PAL, SECAM.

O
[This is preliminary documentation and subject to change.]

object
A computer programming term describing a software component that contains data or functions
accessed through one or more defined interfaces. In Java and C++, an object is an instance of a
object class.

octet
A group of eight bits capable of representing 256 different values. Internet Protocol (IP)
addresses are typically represented in dotted-decimal notation — that is, with the decimal values
of each octet of the address separated by periods, for example 138.57.7.27.

operating system
Software responsible for controlling the allocation and usage of computer hardware resources

2823

Numbers Page 17 of 26

such as memory, CPU time, disk space, and peripheral devices.
opportunistic bandwidth

Bandwidth granted whenever possible during the requested period, as opposed to guaranteed
bandwidth, which is actually reserved for a given transmission.

output driver
A dynamic-link library that a Microsoft Multicast Router calls to package and transmit a stream
in the format required by a particular broadcast output device. An output driver is valid only for
the hardware and software configuration for which it was created, and thus each type of
broadcast output device requires a different output driver.

P
[This is preliminary documentation and subject to change.]

packet
A unit of information transmitted as a whole from one device to another on a network. In
packet-switching networks, a packet is defined more specifically as a transmission unit of fixed
maximum size that consists of binary digits representing both data and a header containing an
identification number, source and destination addresses, and sometimes error-control data.

PAL
(Phase Alternation by Line standard) The analog television standard for much of Europe,
excepting France, Russia, and most of Eastern Europe, which use SECAM. As with SECAM,
PAL is based on a 50-hertz power rate, but it uses a different encoding process. It displays 625
scan lines and 25 frames per second and offers slightly better resolution than the NTSC standard
used in the North America and Japan. PAL bandwidth is 5.5 megahertz.

pay per view
(PPV) A revenue-enhancing system in which cable or satellite customers are charged for
watching a single movie or event. This system contrasts with premium cable services, which are
paid for monthly regardless of usage.

PC 97
The system and peripheral design elements required for a computer to bear the 1997–1998
"Designed for Microsoft® Windows®" logo. PC 97 Hardware Design Guide defines these
requirements.

PC 98
The system and peripheral design elements required for a computer to bear the 1998–1999
"Designed for Microsoft® Windows®" logo. PC 98 Checklist, an addendum to PC 97
Hardware Design Guide, defines these requirements.

pin
In the Component Object Model (COM), an object that represents the point where a
unidirectional data stream connects to a filter. An input pin receives media samples, and an
output pin passes media samples to the next filter.

Plug and Play
A design philosophy and set of specifications that describe changes to hardware and software
for the personal computer and its peripherals. These changes make it possible to automatically
identify and arbitrate resource requirements among all devices and buses on a computer. Plug

2824

Numbers Page 18 of 26

and Play specifies a set of application programming interface (API) elements that are used in
addition to existing driver architectures.

port
Generally, the address at which a device such as a network interface card (NIC), serial adapter,
or parallel adapter communicates with a computer. Data passes in and out of such a port. In
Internet Protocol, however, port signifies an arbitrary value used by the Transmission Control
Protocol/Internet Protocol (TCP/IP) and User Datagram Protocol/Internet Protocol (UDP/IP)
to supplement an IP address so as to distinguish between different applications or protocols
residing at that address. Taken together, an IP address and a port uniquely identify a sending or
receiving application or process. See also port driver.

port driver
An interface library of functions and services provided to a minidriver so that the minidriver can
communicate with the operating system. The MPEG port driver is one example.

PPV
See pay per view.

Program Guide
An on-screen guide that lists television and cable programs and broadcast time slots. This
Broadcast Architecture component receives current information about program schedules and
maintains these in the Guide database. The Program Guide enables the viewer to review, select,
and control what programs will be watched.

push model
A broadcast model in which a server sends information to a large number of clients on its own
schedule, without waiting for requests. The clients scan the incoming information, save the parts
they have been instructed to save, and discard the rest. Because the push model eliminates the
need for requests, it allows one server to handle as much data as it has bandwidth to send. The
push model contrasts with the pull model, in which each client requests information from a
server. The pull model is more efficient for interactively selecting specific data to receive but
uses excessive bandwidth when many clients request the same information.

Q
[This is preliminary documentation and subject to change.]

query
A request that specific data be retrieved, modified, or deleted.

R
[This is preliminary documentation and subject to change.]

radio frequency

2825

Numbers Page 19 of 26

(RF) The portion of the electromagnetic spectrum with frequencies between 10 kilohertz and
300 gigahertz. This portion includes the frequencies used for radio and television transmission.

RAM
Random access memory. RAM is semiconductor-based memory within a personal computer or
other hardware device that can be rapidly read and written to by a computer's microprocessor or
other devices. It does not generally retain information when the computer is turned off. See also
ROM.

rating
A category applied to movies and other programs to reflect the age appropriateness of their
content, particularly to help parents decide whether children should view the shows. Possible
Motion Picture Association of America (MPAA) ratings include NR (not rated), G (general),
PG (parental guidance suggested), PG-13 (parents strongly cautioned), R (restricted), NC-17
(no children under 17).

registry
In the Microsoft® Windows® 98 and Microsoft® Windows NT® operating systems, a
hierarchical database that provides a repository for information about a computer's hardware
and software configuration.

renderer filter
A filter that renders the contents of a stream on an output device such as a computer monitor,
sound card, or printer. Renderer filters have only input pins.

resource
A piece of static data, such as a dialog box, that can be used by more than one application or in
more than one place within an application. Alternatively, any part of a computer or network,
such as a disk drive, printer, or memory, that can be used by a program or process.

RF
See radio frequency.

ring 0
The operating system kernel or core—in other words, the portion that allocates system
resources; manages memory, files, and peripheral devices; maintains the time and date; and
starts applications. See also kernel mode.

ring 3
The application layer. Ring 3 includes applications, dynamic-link libraries (DLLs), and
DirectShow filters.

ROM
Read-only memory. ROM is semiconductor-based memory within a personal computer or other
hardware device that contains instructions or data that can be read but not modified. See also
RAM.

router
A device that helps local area networks (LANs) and wide area networks connect and
interoperate. A router can connect LANs that have different network topologies, such as
Ethernet and token ring. Routers choose the best path for a packet, optimizing network
performance.

S

2826

Numbers Page 20 of 26

[This is preliminary documentation and subject to change.]

satellite receiver card
A broadcast receiver card that receives and processes data sent by satellite.

satellite uplink
The system that transports a signal to a satellite for broadcast. Signals usually come to the
uplink through multiplexers.

SECAM
(Sequential Couleur á Memoire, or Sequential Color with Memory) The television standard for
France, Russia, and most of Eastern Europe. As with PAL, SECAM is based on a 50-hertz
power rate, but it uses a different encoding process. Devised earlier than PAL, its standards
reflect earlier technical limitations. See also NTSC.

Secure Electronic Transaction
(SET) The Microsoft standard for safely transmitting Visa or Mastercard information to support
electronic commerce over the Internet.

server
On a network, a computer running software that provides data and services to clients over the
network. The term server can also apply to a software process, such as an Automation server,
that similarly sends information to clients and that appears on the same computer as a client
process, or even within the same application.

server lookup
The process by which a content server application finds for a specified data service the names of
the appropriate Microsoft Multicast Router, address reservation server, and bandwidth
reservation server, along with the Internet Protocol (IP) multicast addresses reserved for global
and local announcements for that data service. Because there are likely to be backup machines
for the servers and the router, these names can each resolve to more than one actual IP address.
For more information, see the MSBDN Services Overview section of the Broadcast
Architecture Programmer's Reference. See also IP multicast address assignment.

service provider
In Broadcast Architecture, a business that provides a broadcast data service.

Session Announcement Protocol
(SAP) An Internet protocol for announcements that defines a header in binary format that
precedes the Session Description Protocol (SDP) portion of an announcement. A draft
document about SAP has been produced by the Internet Engineering Task Force (IETF).

Session Description Protocol
(SDP) A textual Internet protocol for the announcements intended to announce and initiate
multimedia sessions. Currently a work in progress, SDP is defined in a draft document produced
by the Internet Engineering Task Force (IETF). See also Session Announcement Protocol.

session key
A Triple DES key used to encrypt broadcast data content.

SET
See Secure Electronic Transaction.

set-top box
In standard cable or satellite systems, this device converts and decodes the incoming signal into
a form that can be received by a standard television set. The device usually sits on top of the
viewer's television.

show reference
A data format that specifies different information about television shows, such as the time the

2827

Numbers Page 21 of 26

show is broadcast, the channel the show is broadcast on, and the show's duration. Show
references allow software based on Broadcast Architecture to exchange references to television
shows.

show reminder
Tasks in Task Scheduler that remind a user to watch or record a television broadcast. Show
reminders can be set by TV Viewer and by applications developed by independent software
vendors.

signal-to-noise ratio
(S/N) The amount of power by which a signal exceeds the amount of channel noise at the same
point in transmission. This amount is measured in decibels and indicates the clarity or accuracy
with which communication can occur.

smart card
A circuit board the size of a credit card with built-in logic, memory, or firmware that gives it
storage and decision-making ability, generally for purposes of purchasing, funds transfer, or
identification and validation.

S/N
See signal-to-noise ratio.

source filter
A filter that receives data from a source, such as an MPEG file, and introduces it into a filter
graph. Source filters have one or more output pins.

spin lock
A data type that provides a synchronization mechanism for protecting resources shared by
kernel-mode threads. A thread acquires a spin lock before accessing protected resources. The
spin lock keeps any thread but the one holding the spin lock from using the resource. A thread
waiting for the spin lock loops, attempting to acquire the spin lock, until it is released by the
thread that holds the lock.

station
An establishment equipped for radio or television transmission.

stream
A collection of data sent over a data channel in a sequential fashion. The bytes are typically sent
in small packets, which are reassembled into a contiguous stream of data. Alternatively, the
process of sending such small packets of data.

streaming architecture
A model for interconnection of stream-processing components, in which applications
dynamically load data as they output it. Dynamic loading means data can be broadcast
continuously. See also WDM streaming.

streaming data
Data continuously broadcast to an application. For example, a broadcast client's user might
subscribe to continuously broadcast sports scores.

string
Data composed of a sequence of characters, usually representing human-readable text.

stub network
A network that carries packets only to and from local devices. Even if a stub network has paths
to more than one network, it does not carry traffic for other networks.

subgenre
In Broadcast Architecture, a subset within a genre, for example science fiction, Western, or
soap opera.

super VGA
(SVGA) A video standard established by the Video Electronics Standards Association (VESA)

2828

Numbers Page 22 of 26

to provide high-resolution color display on IBM-compatible computers. SVGA supports the
Video Graphics Array (VGA) standard.

SVGA
See super VGA.

S-video
Video in which chrominance and luminance signals are sent separately. This separate
transmission produces a sharper video image than composite video, because it has no color
artifacts. For example, S-video has no traveling dots or shimmering along color-change lines.

T
[This is preliminary documentation and subject to change.]

Task Scheduler
A scheduling service and user interface that is available as a common resource with the
Microsoft® Windows® 98 operating system. Windows 98 includes Task Scheduler as a
Component Object Model (COM) interface. Task Scheduler manages all aspects of job
scheduling: starting jobs, enumerating currently running jobs, tracking job status, and so on. In
Task Scheduler, the user works with a folder under My Computer called Scheduled Tasks,
which lists currently scheduled items and enables creation of new tasks. The Task Scheduler
replaces the Microsoft® Windows® 95 System Agent.

TCP/IP
See Transmission Control Protocol/Internet Protocol.

Television System Services
(TSS) An Automation interface designed to enable developers to write Windows 98 – based
applications that use broadcast television. TSS provides a user model with password security
and interapplication scheduling of television shows for viewing or recording. TSS is designed to
be used with the Guide database, the Video control or its underlying Microsoft® DirectShow™
filters, the Video Access server, and Guide database loaders. See also Broadcast Architecture
subsystems.

theme
A category to which individual television programs are assigned within the Guide database. A
theme allows a program episode to be associated with multiple genre/subgenre pairs.

thread
One of several paths of execution in a program or process in which all paths can execute in
parallel. Each thread can perform a different function, or many threads can cooperate to perform
a larger task.

time to live
(TTL) A value in the range 0 through 255 that defines the scope within which multicast packets
should be sent over a network using Internet Protocol (IP). The scope is defined in terms of
how local or remote a packet's destination is. Each router decrements the TTL by one. When
the value reaches a predefined lower limit, the router throws the packet away. Current multicast
backbone (MBONE) requirements, available at the ftp://ftp.isi.edu/mbone/faq.txt site, define the
following standard scopes: local network, 1; local site, 15; region, 63; world, 127. Other
settings may have local meaning; for example, 31 might indicate all sites within a particular

2829

Numbers Page 23 of 26

organization.
transform filter

A filter that modifies the contents of a stream. Transform filters usually have both input and
output pins.

Transmission Control Protocol/Internet Protocol
(TCP/IP) A networking protocol that provides reliable communications across interconnected
networks made up of computers with diverse hardware architectures and operating systems.
The TCP portion of the protocol, a layer above IP, is used to send a reliable, continuous stream
of data and includes standards for automatically requesting missing data, reordering IP packets
that might have arrived out of order, converting IP datagrams to a streaming protocol, and
routing data within a computer to make sure the data gets to the correct application. The IP
portion of the protocol includes standards for how computers communicate and conventions for
connecting networks and routing traffic. See also User Datagram Protocol/Internet Protocol
(UDP/IP).

transponder
A device on a satellite that receives and amplifies uplink signals in radio frequencies that come
from an earth station. Once the signal is received, the transponder redirects it back toward its
destination earth station within the particular satellite's footprint. Each transponder is
responsible for a small frequency range, and a satellite is typically made up of 10 to 40
transponders. Unlike in traditional broadcast television, each transponder has enough bandwidth
to carry multiple television channels, as well as data. Any one transponder might carry anywhere
from 10 low resolution television channels to 2 high-definition television (HDTV) channels, or
some combination. See also multiplexer.

transport layer
The fourth of the seven layers in the International Organization for Standardization's Open
Systems Interconnection (OSI) model for standardizing computer-to-computer
communications. The transport layer is one level above the network layer and is responsible for
error detection and correction, among other tasks. Error correction ensures that the bits
delivered to the receiver are the same as the bits transmitted by the sender, in the same order
and without modification, loss, or duplication. The transport layer is the highest of the three
layers (data link, network, and transport) that help move information from one device to
another. See also data link layer.

Triple DES
A method of encryption in which the Data Encryption Standard (DES) algorithm is applied
three times in a row using three different session keys. These three keys are combined into one
Triple DES session key. Triple DES encryption is much more resilient to differential and
plaintext attacks than DES.

TSS
See Television System Services.

tuner
An electronic component that locks onto a selected channel and filters signals such as audio and
video from that frequency for amplification and display.

tuning space
A set of nonoverlapping channels that are all available through the same type of physical channel
tuner, such as a broadcast receiver card or analog cable tuner. A broadcast client with multiple
tuning devices can provide channels from multiple tuning spaces.

TV Viewer
A Broadcast Architecture component that enables users to select television channels and that
displays enhanced television programs. TV Viewer uses an ActiveX control to display

2830

Numbers Page 24 of 26

conventional television shows, and it hosts a Hypertext Markup Language (HTML) browser to
display enhanced content for those shows at the same time.

twisted-pair cable
A communications medium consisting of two thin, insulated wires, generally made of copper,
that are twisted together. Standard telephone connections are often referred to as "twisted pair."

U
[This is preliminary documentation and subject to change.]

unicast
A point-to-point networking model in which a packet is duplicated for each address that needs
to receive it. See also multicast.

upstream
One-way data flow from broadcast client to head end. See also downstream.

User Datagram Protocol/Internet Protocol
(UDP/IP) A networking protocol used to send large unidirectional packets across
interconnected networks made up of computers with diverse hardware architectures and
operating systems. The UDP portion of the protocol, a networking layer above IP, is used to
send unidirectional packets of up to 64 kilobytes in size and includes standards for routing data
within a single computer so it reaches the correct client application. The IP portion of the
protocol includes standards for how computers communicate and conventions for connecting
networks and routing traffic. See also Transmission Control Protocol/Internet Protocol.

user mode
Software processing that occurs at the application layer, ring 3.

utility filter
A filter that supports the processing of audio and video without necessarily directly
manipulating the broadcast stream. See also renderer filter, source filter, and transform filter.

V
[This is preliminary documentation and subject to change.]

VBI
See vertical blanking interval.

vertical blanking interval
(VBI) The time period in which a television signal is not visible on the screen because of the
vertical retrace (that is, the repositioning to top of screen to start a new scan). Data services can
be transmitted using a portion of this signal. In a standard NTSC signal, perhaps 10 scan lines
are potentially available per channel during the VBI. Each scan line represents a data
transmission capacity of about 9600 baud.

2831

Numbers Page 25 of 26

VGA
See Video Graphics Array.

Video Access server
An out-of-process server that handles device contention among multiple instances of the TV
Viewer ActiveX control. Device contention is conflict over which process controls a particular
device. The Video Access server also checks viewer permissions when viewers tune to
television programs.

Video control
A Broadcast Architecture component that applications use to control how the Video Access
server displays audio and video streams.

Video Graphics Array
(VGA) A video standard created by IBM that supports several modes, including a graphics
mode of 640 horizontal pixels by 480 vertical pixels with 2 or 16 simultaneous colors and a
graphics mode of 320 horizontal pixels by 200 vertical pixels with 256 colors. The term VGA
chip is often used generically to refer to a video controller chip.

virtual device driver
(VxD) A 32-bit, protected-mode driver that manages a system resource, such as a hardware
device or installed software, so that more than one application can use the resource at the same
time. VxD refers to a general virtual device driver — the x represents the type of device driver.
For example, a virtual device driver for a display device is known as a VDD, a virtual device
driver for a timer device is a VTD, a virtual device driver for a printer device is a VPD, and so
on.

VxD
See virtual device driver.

W
[This is preliminary documentation and subject to change.]

WDM
See Windows Driver Model.

wide area network
(WAN) A communications network that connects geographically separated areas. See also local
area network.

WDM streaming
An extension of the Microsoft® DirectShow™ application programming interface (API) based
on the Windows Driver Model (WDM). WDM streaming provides the kernel connection and
streaming services used by the WDM stream class driver and by components of Microsoft®
Windows NT® and Microsoft Windows® 98. In these operating systems, WDM streaming
provides low-level services in Ring 0 for the lowest latency streaming. DirectShow provides
higher-level features and control.

Windows Driver Model
(WDM) A Microsoft 32-bit driver model based on the driver model within the Microsoft®
Windows NT® operating system. WDM provides a common architecture of input/output (I/O)
services and device drivers for specific driver classes. Both Windows NT and the Microsoft®

2832

Numbers Page 26 of 26

Windows® 98 operating system support WDM.
Windows Sockets

(WinSock) An application programming interface that provides access to multiple transport
protocols, including Transmission Control Protocol/Internet Protocol (TCP/IP), the Internet
standard. WinSock provides a network abstraction layer that allows applications to receive and
send network data without requiring information about the network involved. WinSock also
supports networking capabilities such as real-time multimedia communications.

World Wide Web
(the Web) A hypertext-based, distributed information system created in Switzerland and used
for exploring the Internet. Users may create, edit, or browse hypertext documents on the Web.

wrapper
A function that provides an interface to another function.

Y
[This is preliminary documentation and subject to change.]

YUV
True-color encoding that uses one luminance value (Y) and two chroma values (UV).

2833

README.TXT Page 1 of 86

README.TXT
For information on system requirements for Broadcast Architecture, see the Client H

NOTE: For the Broadcast Architecture samples to have maximum value, you should have
following components installed:

1. Microsoft Windows 98, including the optional TV Viewer component.

2. Microsoft Visual Basic version 5.0. For more information on installing
and using Visual Basic 5.0, see the Visual Basic 5.0 documentation.

3. Microsoft Visual C++ version 5.0. For more information on installing
and using Visual C++ 5.0, including the Microsoft Foundation Class
(MFC) Library, see the Visual C++ 5.0 documentation.

README.TXT
Loader DLL to demonstrate loading data into the Guide database

SUMMARY
=======

Load is a sample loader that shows how to create a loader that edits data for the G

MORE INFORMATION
================

The following information describes the Load sample.

Requirements

Load.exe must be compiled using Microsoft Visual C++ 5.0 with Microsoft Foundation

You must configure your environment before compiling Load.exe. First, make sure tha

To Compile Load

Use the following command to compile the sample:

 nmake load.mak

For make options, see the makefile header comments.

If the build tools cannot find Sdkutil.lib, use the Samples\Com\Common sample to bu

To Run Load

Load runs under the Broadcast Architecture program Loadstub.exe. The first step is

2834

README.TXT Page 2 of 86

Here is an example of a registry entry:

HKEY_LOCAL_MACHINE\Software\Microsoft\TV Services\Guide\Loaders\{1234 9ABC 9998 DDD
Namec:\Windows\Program Files\TV Viewer\Load.dll

Now you can run Loadstub with the GUID in the /L: command line parameter. Here is t

loadstub /L:{1234 9ABC 9998 DDD}

Load Files

Load.cpp is the main program file for the loader. It contains the entry function ca

CMDPROC.H
///
// cmdproc.h
// Copyright (C) 1996 Microsoft Corp.
//
// more flexible replacement for mfc CCommandLineInfo

///
// CCommandLineInfo

#ifndef CMDPROC_H
#define CMDPROC_H

class CCommandLineProc : public CObject
{
public:
 // process the command line for switch based arguments
 BOOLEAN ProcessCommandLine(int iSC, int &argc, _TCHAR **argv);
protected:
 typedef void (CCommandLineProc::*PMFNCmdProc)(CString &csArg);
 class CArgProcTable {
 public:

int m_iIDS; // string resource of command switch
PMFNCmdProc m_Cmd; // argument processing function

 };
 friend CArgProcTable;
 static CArgProcTable acapArgs[];
 // remove any desired positional arguments
 virtual BOOLEAN GetPositionalArgs(int &argc, _TCHAR **argv);

 // this function deletes the argument at iPos by copy the remaining
 // elements of argv 1 to the left
 inline void CCommandLineProc::DeleteArg(int iPos, int &argc, _TCHAR **argv)
 {

for (int k = iPos + 1; k < argc; k++) {
argv[k - 1] = argv[k];
}
argc--;

 }

2835

README.TXT Page 3 of 86

};

#endif
// end of file - cmdproc.h

CMDPROC2.CPP
// cmdproc.cpp : replacement for mfc CCommandLineInfo
//
//
// This is a part of the Microsoft Foundation Classes C++ library.
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// See the reference for detailed information regarding
// Broadcast Architecture.

#include "stdafx.h"
#include "cmdproc.h"

BOOLEAN
CCommandLineProc::ProcessCommandLine(int iSC, int &argc, _TCHAR **argv)
{
 CString csSwitchChars;
 csSwitchChars.LoadString(iSC);
 CString csParam;

 if(acapArgs[0].m_Cmd == NULL)
{

return TRUE;
 }
 int i = 1;
 while(i < argc)
{

csParam = argv[i];
if(!_tcscspn(csParam, csSwitchChars))
{

// its a switch
// remove flag specifier
csParam = csParam.Right(csParam.GetLength() - 1);

// find the function for this switch
CString csSwitch, csArg;

for(int j = 0; acapArgs[j].m_Cmd != NULL; j++)
{

csSwitch.LoadString(acapArgs[j].m_iIDS);
if(!_tcsnccmp(csParam, csSwitch, csSwitch.GetLength()))

{
break;

}
}
if(acapArgs[j].m_Cmd != NULL)

{

2836

README.TXT Page 4 of 86

csArg = csParam.Right(csParam.GetLength() - csSwitch.GetLength());
(this->*(acapArgs[j].m_Cmd))(csArg);
DeleteArg(i, argc, argv);

}
else
{

i++; // skip this one
}

}
else
{

// its positional so skip it.
i++;

}

}
 return GetPositionalArgs(argc, argv);
}

BOOLEAN
CCommandLineProc::GetPositionalArgs(int &argc, _TCHAR **argv)
{
 // default implementation provides no positional args
 return TRUE;
}

LOAD.CPP
// load.cpp : Guide database loader sample program
//
//
// This is a part of the Microsoft Foundation Classes C++ library.
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// See the reference for detailed information regarding
// Broadcast Architecture.

#include "stdafx.h"
#include "Load.h"
#include "tssutil.h"

///
// CLoadApp

BEGIN_MESSAGE_MAP(CLoadApp, CWinApp)
//{{AFX_MSG_MAP(CLoadApp)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

///

2837

README.TXT Page 5 of 86

// CLoadApp construction

CLoadApp::CLoadApp()
{
// TODO: add construction code here,
// Place all significant initialization in InitInstance
}

///
// The one and only CLoadApp object

CLoadApp theApp;

//
// This is the external entry point defined in the .DEF file that is used by
// the generic loader app to call into the Sample loader.
//
extern "C"
{
ExitCodeList APIENTRY
EPG_DBLoad(int &argc, _TCHAR **argv, CdbDBEngine &db, PFNFORCEQUIT pfnForceQuit)
{

 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 ExitCodeList rc = theApp.EPG_DBLoad(argc, argv, db, pfnForceQuit);

if(theApp.m_lpfnDaoTerm)
(*theApp.m_lpfnDaoTerm)();

return rc;
}
};

CLoadApp::CLoadCommandLineProc::CLoadCommandLineProc(void)
{
 m_fPartial = FALSE;
m_csRead = "";
}

void
CLoadApp::CLoadCommandLineProc::Partial(CString &csArg)
// Process the cmd line switch that allows us to be
// told to do a partial update
{
 m_fPartial = TRUE;
 return;
}

void
CLoadApp::CLoadCommandLineProc::Read(CString &csArg)
// Process the cmd line switch that gives a location to read loader data from
{
 m_csRead = csArg;
 return;
}

void

2838

README.TXT Page 6 of 86

CLoadApp::CLoadCommandLineProc::Help(CString &csArg)
// Display the command line usage
{
 AfxMessageBox(IDS_USAGE, MB_OK | MB_ICONSTOP);
 return;
}

// This table tells the command line processor what to do for each valid argument.
CLoadApp::CLoadCommandLineProc::CArgProcTable
CLoadApp::CLoadCommandLineProc::acapArgs[] =
{
 IDS_SWPARTIAL, (void (CCommandLineProc::*)(class CString &))CLoadApp::CLoadComm
 IDS_SWREAD, (void (CCommandLineProc::*)(class CString &))CLoadApp::CLoadCommand
 IDS_SWHELP, (void (CCommandLineProc::*)(class CString &))CLoadApp::CLoadCommand
 -1, NULL,
};

BOOLEAN
CLoadApp::CLoadCommandLineProc::GetPositionalArgs(int &argc, _TCHAR **argv)
{
 return TRUE;
}

// This is the main entry point into the loader class.
ExitCodeList
CLoadApp::EPG_DBLoad(int &argc, _TCHAR **argv, CdbDBEngine &db
, PFNFORCEQUIT pfnForceQuit)
{
ExitCodeListrc;

 if(!m_clpCmds.ProcessCommandLine(IDS_SWITCHCHARS, argc, argv))
return EXIT_USAGE;

theApp.m_pDAODB = &db;
theApp.m_pfnForceQuit = pfnForceQuit;

 try
 {

if(EXIT_OK != (rc = InitMembers()))
return (rc);

rc = ProcessInput(m_clpCmds.m_fPartial, db);

return (rc);
 }
 catch (CException *e)
 {

e->Delete();

return (EXIT_FAIL_CEXCEPTION);
 }
 catch (CdbException cdbe)
 {
return (EXIT_FAIL_DBEXCEPTION);
 }
catch (ExitCodeList rc)
 {
return (rc);
 }
 catch (...)
 {

2839

README.TXT Page 7 of 86

return (EXIT_FAIL);
 }
}

// This reinitializes certain app class members
ExitCodeList
CLoadApp::InitMembers(void)
{
DWORD rc;

 // Incoming data is all gmt. Set up app class time info
 // for conversions
 TIME_ZONE_INFORMATION tzi;
 DWORD tzrc;
 tzrc = ::GetTimeZoneInformation(&tzi);

 CTimeSpan bias(0, 0, tzi.Bias, 0);
 switch(tzrc)
{
 case TIME_ZONE_ID_UNKNOWN:
 break;
case TIME_ZONE_ID_DAYLIGHT:
{
CTimeSpan temp(0, 0, tzi.DaylightBias, 0);
bias += temp;

break;
}
case TIME_ZONE_ID_STANDARD:
{

CTimeSpan temp(0, 0, tzi.StandardBias, 0);
bias += temp;

break;
}
 default:
THROWASSERT(0, EXIT_FAIL_GETTIMEZONE);

break;
}
 m_odtsTimeZoneAdjust.SetDateTimeSpan(bias.GetDays(), bias.GetHours(), bias.GetM
m_codtGuideStartTime.SetStatus(COleDateTime::invalid);
m_codtGuideEndTime.SetStatus(COleDateTime::invalid);

 DWORD dwBytes = sizeof(m_lTuningSpace);
 rc = TSS_GetTuningIDs(SZDTVLOADGUID, (DWORD *)&m_lTuningSpace, dwBytes);
 if((!rc) /*|| (dwBytes != sizeof(m_lTuningSpace)) GFS - How cound this be true?

return EXIT_FAIL_GETTUNINGSPACE;

m_covTuningSpace = m_lTuningSpace;

 //aux
 rs = NULL;
 r = NULL;
 bp = NULL;
 g = NULL;
 sg = NULL;
 sr = NULL;
 // main
 n = NULL;
 s = NULL;
 c = NULL;
 cp = NULL;
 csr = NULL;
 e = NULL;
 ep = NULL;

2840

README.TXT Page 8 of 86

 ts = NULL;
 t = NULL;

 return EXIT_OK;
}

ExitCodeList CLoadApp::ProcessInput(BOOLEAN fPartialUpdate, CdbDBEngine &db)
{
 ExitCodeList rc = EXIT_OK;

 COleDateTime m_odtStart(COleDateTime::GetCurrentTime());
 m_covNow = m_odtStart + m_odtsTimeZoneAdjust;

CString csWSP;
csWSP.LoadString(IDS_LOADERWORKSPACE);

 try
 {
OpenTables();

db[csWSP].BeginTrans();

Handle(fPartialUpdate);

ClearOldEntries(db); // delete anything from mpg time span that wasn't ref

ClearDanglingRefs(db); // cleanup unused auxiliary records

BlockCommit(db, EPGLDR_ACTIVE_COMMIT_STARTING, EPGLDR_ACTIVE_COMMIT_ENDING);

CloseTables();
}
 catch (CException *e)
 {

e->Delete();

db[csWSP].Rollback();

return (EXIT_FAIL_CEXCEPTION); // failed
 }
 catch (CdbException cdbe)
 {
db[csWSP].Rollback();

return (EXIT_FAIL_DBEXCEPTION);
 }
catch (ExitCodeList rc)
 {
db[csWSP].Rollback();

return (rc);
 }
catch (...)
 {
db[csWSP].Rollback();

return (EXIT_FAIL);
 }

#ifdef _DEBUG
 if (afxTraceFlags & traceDatabase)
 {

2841

README.TXT Page 9 of 86

COleDateTime end_parse(COleDateTime::GetCurrentTime());
COleDateTimeSpan duration(end_parse - m_odtStart);
afxDump << "end parse. length = " << ((ULONG)duration.GetTotalSeconds()) <<

 }
#endif

 return rc;
}

// execute deletes on each table in proper order for
// all records whose last tx hasn't been updated and
// who's attached to stuff that overlaps in the mpg's time frame
void CLoadApp::ClearOldEntries(CdbDBEngine &db)
{
CString csWSP;
csWSP.LoadString(IDS_LOADERWORKSPACE);

 try
 {
CdbDatabase database = db[csWSP][(LONG) 0];
db[csWSP].BeginTrans();

COleDateTime codtStartTimeMinusDay = m_codtGuideStartTime;
COleDateTimeSpan codtsDelta;
codtsDelta.SetDateTimeSpan(1, 0, 0, 0);

codtStartTimeMinusDay -= codtsDelta;

// delete old timeslots with end time < mpg start time
// this removes any showings that are finished

ExecuteActionQuery(database, IDS_DELETE_EXPIRED_TS, & (COleVariant) m_lTuni

// delete unupdated timeslots with last update < now and start time < guide
// this removes any showings that were in the mpg last time the loader ran
// but that aren't there now
ExecuteActionQuery(database, IDS_DELETE_OMITTED_TS, & (COleVariant) m_lTuni

&m_covNow, & (COleVariant) m_codtGuideStartTime, & (COleVariant) m_codtGuideEndTime

// the previous actions may have left episode or channels records which are
// by any time slots.

Commit(db);

#ifdef _DEBUG
if (afxTraceFlags & traceDatabase)

TRACE0("clear old entries committed\r\n");
#endif
 }
 catch (CException *e)
 {

e->Delete();

db[csWSP].Rollback();

#ifdef _DEBUG
afxDump << "ClearOldEntries CException catch handler\r\n";
#endif

throw e;
 }
 catch (...)
 {
db[csWSP].Rollback();

2842

README.TXT Page 10 of 86

#ifdef _DEBUG
afxDump << "ClearOldEntries ... catch handler\r\n";
#endif

throw (EXIT_FAIL);
 }
}

// execute deletes on each table in proper order for
// all auxiliary record which aren't used by anyone
// we now delete these dangling records and this completes the differencing portion
// of the partial update
void CLoadApp::ClearDanglingRefs(CdbDBEngine &db)
{
CString csWSP;
csWSP.LoadString(IDS_LOADERWORKSPACE);

try
{
CdbDatabase database = db[csWSP][(LONG) 0];
db[csWSP].BeginTrans();

ExecuteActionQuery(database, IDS_DELETE_DANGLING_C);
ExecuteActionQuery(database, IDS_DELETE_DANGLING_E);
ExecuteActionQuery(database, IDS_DELETE_DANGLING_S);

ExecuteActionQuery(database, IDS_DELETE_DANGLING_THEME);

Commit(db);

#ifdef _DEBUG
if (afxTraceFlags & traceDatabase) {

TRACE0("dangling deletes committed\r\n");
}

#endif
 }
 catch (CException *e)
 {

e->Delete();

db[csWSP].Rollback();

#ifdef _DEBUG
afxDump << "ClearDanglingRefs CException catch handler\r\n";
#endif

throw e;
 }
catch (...)
{
db[csWSP].Rollback();

#ifdef _DEBUG
afxDump << "ClearDanglingRefs ... catch handler\r\n";
#endif

throw (EXIT_FAIL);
 }
}

// This method executes a query in the database
void
CLoadApp::ExecuteActionQuery(CdbDatabase &qd, int iStringID, COleVariant *p0
, COleVariant *p1, COleVariant *p2, COleVariant *p3)
{
 CString csDelQuery;

2843

README.TXT Page 11 of 86

 if ((*m_pfnForceQuit)())
throw (EXIT_ABORT);

csDelQuery.LoadString(iStringID);

CdbQueryDef qdbdd;

qdbdd = qd.QueryDefs.Item((LPCTSTR) csDelQuery);
 if (p0 != NULL)

qdbdd.Parameters[(LONG) 0].SetValue(*p0);
 if (p1 != NULL)

qdbdd.Parameters[(LONG) 1].SetValue(*p1);
 if (p2 != NULL)

qdbdd.Parameters[(LONG) 2].SetValue(*p2);
 if (p3 != NULL)

qdbdd.Parameters[(LONG) 3].SetValue(*p3);

 qdbdd.Execute();

 return;
}

void
CLoadApp::Commit(CdbDBEngine &db, LONG lStartMessage, LONG lEndMessage)
{
UINT uiMessage = RegisterWindowMessage(SZLOADERSTUBGUID);

if(0 != lStartMessage)
::PostMessage(HWND_BROADCAST, uiMessage, lStartMessage, 0);

CString csWSP;
csWSP.LoadString(IDS_LOADERWORKSPACE);
db.Idle();
db[csWSP].CommitTrans();

if(0 != lEndMessage)
::PostMessage(HWND_BROADCAST, uiMessage, lEndMessage, 0);
}

void
CLoadApp::BlockCommit(CdbDBEngine &db, LONG lStartMessage, LONG lEndMessage)
{
UINT uiMessage = RegisterWindowMessage(SZLOADERSTUBGUID);

if(0 != lStartMessage)
::SendMessageTimeout(HWND_BROADCAST, uiMessage, lStartMessage, 0,
SMTO_NORMAL, 5 * 1000, NULL);
CString csWSP;
csWSP.LoadString(IDS_LOADERWORKSPACE);
db.Idle();
db[csWSP].CommitTrans();

if(0 != lEndMessage)
::PostMessage(HWND_BROADCAST, uiMessage, lEndMessage, 0);
}

// Open recordsets for each of the tables
// Set each recordset to proper index
void

2844

README.TXT Page 12 of 86

CLoadApp::OpenTables(VOID)
{
 // aux
 rs = new CRatingSystemRecordset();
 rs->OpenIndexed(IDS_RS_ADDKEY, dbOpenTable, NULL, 0);

 r = new CRatingRecordset();
 r->OpenIndexed(IDS_R_ADDKEY, dbOpenTable, NULL, 0);

 bp = new CBroadcastPropertyRecordset();
 bp->OpenIndexed(IDS_BP_ADDKEY, dbOpenTable, NULL, 0);

 g = new CGenreRecordset();
 g->OpenIndexed(IDS_G_ADDKEY, dbOpenTable, NULL, 0);

 sg = new CSubGenreRecordset();
 sg->OpenIndexed(IDS_SG_ADDKEY, dbOpenTable, NULL, 0);

 sr = new CStreamTypeRecordset();
 sr->OpenIndexed(IDS_SR_ADDKEY, dbOpenTable, NULL, 0);

 // main
 n = new CNetworkRecordset();
 n->OpenIndexed(IDS_N_ADDKEY, dbOpenTable, NULL, 0);

 s = new CStationRecordset();
 s->OpenIndexed(IDS_S_ADDKEY, dbOpenTable, NULL, 0);

 c = new CChannelTRecordset();
 c->OpenIndexed(IDS_C_ADDKEY, dbOpenTable, NULL, 0);

 cp = new CChannelPropertyRecordset();
 cp->OpenIndexed(IDS_CP_ADDKEY, dbOpenTable, NULL, 0);

 csr = new CChannelStreamRecordset();
 csr->OpenIndexed(IDS_CSR_ADDKEY, dbOpenTable, NULL, 0);

 e = new CEpisodeTRecordset();
 e->OpenIndexed(IDS_E_ADDKEY, dbOpenTable, NULL, 0);

 ep = new CEpisodePropertyRecordset();
 ep->OpenIndexed(IDS_EP_ADDKEY, dbOpenTable, NULL, 0);

 ts = new CTimeSlotRecordset();
 ts->OpenIndexed(IDS_TS_ADDKEY, dbOpenTable, NULL, 0);

 t = new CThemeRecordset();
 t->OpenIndexed(IDS_T_ADDKEY, dbOpenTable, NULL, 0);
}

// close all of the tables
void
CLoadApp::CloseTables(void)
{
 //aux
 if (rs != NULL) {

rs->CloseRecordset();
delete rs;
rs = NULL;

 }
 if (r != NULL) {

r->CloseRecordset();

2845

README.TXT Page 13 of 86

delete r;
r = NULL;

 }
 if (bp != NULL) {

bp->CloseRecordset();
delete bp;
bp = NULL;

 }
 if (g != NULL) {

g->CloseRecordset();
delete g;
g = NULL;

 }
 if (sg != NULL) {

sg->CloseRecordset();
delete sg;
sg = NULL;

 }
 if (sr != NULL) {

sr->CloseRecordset();
delete sr;
sr = NULL;

 }
 // main
 if (n != NULL) {

n->CloseRecordset();
delete n;
n = NULL;

 }
 if (s != NULL) {

s->CloseRecordset();
delete s;
s = NULL;

 }
 if (c != NULL) {

c->CloseRecordset();
delete c;
c = NULL;

 }
 if (cp != NULL) {

cp->CloseRecordset();
delete cp;
cp = NULL;

 }
 if (csr != NULL) {

csr->CloseRecordset();
delete csr;
csr = NULL;

 }
 if (e != NULL) {

e->CloseRecordset();
delete e;
e = NULL;

 }
 if (ep != NULL) {

ep->CloseRecordset();
delete ep;
ep = NULL;

 }
 if (ts != NULL) {

ts->CloseRecordset();
delete ts;
ts = NULL;

2846

README.TXT Page 14 of 86

 }
 if (t != NULL) {

t->CloseRecordset();
delete t;
t = NULL;

 }
}

// Put data into the Guide Database
VOID
CLoadApp::Handle(BOOL fPartialUpdate)
{
// Add a station
CStationcs(AFX_RFX_LONG_PSEUDO_NULL, "WGFS", "Sample Station"
, 0// Network ID
, "mylogo"// Logo
, "The Sample station");// Description
s->UpdateRS(cs);

// Add a channel
COleDateTime codtDummy = COleDateTime(1999, 12, 30, 0, 0, 0);
CChannelTcct(AFX_RFX_LONG_PSEUDO_NULL
, -2// Tuning space
, 241// Channel number
, codtDummy// Start time
, codtDummy// End time
, 0// Length
, cs.StationID()// Station ID
, "The Sample Channel"// Description
, 0// Enhancement ID
, 0// Rating ID
, 0// Display mask
, 0// Payment address
, 0// Payment token
, COleDateTime::GetCurrentTime() + m_odtsTimeZoneAdjust); // Last update

c->UpdateRS(cct);

// Add an episode
CEpisodeT cet(AFX_RFX_LONG_PSEUDO_NULL
, "The Sample Show"// Title
, "Bringing you samples from around the world"// Description
, 0// Enhancement ID
, 0// Display mask
, 0// Theme ID
, 0// Rating ID
, 255// Abbreviation
, COleDateTime::GetCurrentTime() + m_odtsTimeZoneAdjust);// last update
e->UpdateRS(cet);

// Put the show in a time slot
// Start the show at the top of the next hour
COleDateTime codtStart = COleDateTime::GetCurrentTime();
codtStart.SetDateTime(codtStart.GetYear(), codtStart.GetMonth(), codtStart.GetDay()
, codtStart.GetHour()+1, 0, 0);
// Make it a half hour show
COleDateTime codtEnd = codtStart + COleDateTimeSpan(0, 0, 30, 0);

ts->UpdateRS(CTimeSlot(AFX_RFX_LONG_PSEUDO_NULL
, cct.ChannelID()// Channel ID
, cet.EpisodeID()// Eppisode ID
, codtStart// Start time

2847

README.TXT Page 15 of 86

, codtEnd// End time
, 30// Length
, 0// Payment address
, 0// Payment token
, COleDateTime::GetCurrentTime() + m_odtsTimeZoneAdjust// Last update
, FALSE// Pay-per-view
, FALSE// Closed caption
, FALSE// Stereo
, FALSE// Re-run
, FALSE// Tape inhibited
, FALSE// Other properties
, FALSE// Alternate data
, FALSE));// Alternate audio

}

LOAD.H
// Load.h : main header file for the LOAD DLL
//

#ifndef __AFXWIN_H__
#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h"// main symbols

// turn off warning about debug info truncation
#pragma warning(disable:4786)

#include <epgldrx.h>
#include <cmdproc.h>
#include "RatingSy.h"
#include "Rating.h"
#include "BrProp.h"
#include "Genre.h"
#include "SubGenre.h"
#include "StreamTy.h"
#include "ChannelT.h"
#include "ChProp.h"
#include "ChanStr.h"
#include "EpisodeT.h"
#include "EpProp.h"
#include "TimeSlot.h"
#include "Station.h"
#include "Network.h"
#include "Theme.h"

typedef unsigned char UBYTE;

#ifdef _DEBUG
#define THROWASSERT(f, errorcode)ASSERT(f)
#endif

2848

README.TXT Page 16 of 86

#ifdef NDEBUG
#define THROWASSERT(f, errorcode) \
do \
{ \
if (!(f)) \
throw (errorcode); \
} while (0);
#endif

///
// CLoadApp
// See Load.cpp for the implementation of this class
//

class CLoadApp : public CWinApp
{
public:
CLoadApp();

ExitCodeList EPG_DBLoad(int &argc, _TCHAR **argv, CdbDBEngine &db, PFNFORCEQUIT pfn

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CLoadApp)
//}}AFX_VIRTUAL

//{{AFX_MSG(CLoadApp)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

protected:
 LONGm_lTuningSpace;
 COleVariant m_covTuningSpace, m_covNow;
 COleDateTimeSpan m_odtsTimeZoneAdjust;
 COleDateTimem_codtGuideStartTime, m_codtGuideEndTime;
 WORDm_wGuideLength;

CdbDBEngine *m_pDAODB;
 PFNFORCEQUIT m_pfnForceQuit;

 ExitCodeList InitMembers(void);
ExitCodeList ProcessInput(BOOLEAN fPartialUpdate, CdbDBEngine &db);

VOIDHandle(BOOL fPartialUpdate);

void Commit(CdbDBEngine &db, LONG lStartMessage = 0, LONG lEndMessage = 0);
void BlockCommit(CdbDBEngine &db, LONG lStartMessage = 0, LONG lEndMessage = 0);
 void OpenTables(VOID);
 void ClearOldEntries(CdbDBEngine &db);
 void ClearDanglingRefs(CdbDBEngine &db);
 void ExecuteActionQuery(CdbDatabase &db, int iStringID, COleVariant *p0 = NULL,
 void CloseTables();

 // aux
CRatingSystemRecordset *rs;
 CRatingRecordset *r;
 CBroadcastPropertyRecordset *bp;
 CGenreRecordset *g;
 CSubGenreRecordset *sg;
 CStreamTypeRecordset *sr;

2849

README.TXT Page 17 of 86

 CThemeRecordset *t;
 // main
 CNetworkRecordset *n;
 CStationRecordset *s;
 CChannelTRecordset *c;
 CChannelPropertyRecordset *cp;
 CChannelStreamRecordset *csr;
 CEpisodeTRecordset *e;
 CEpisodePropertyRecordset *ep;
 CTimeSlotRecordset *ts;

 class CLoadCommandLineProc : public CCommandLineProc
 {
 public:

BOOLEAN m_fPartial;
CString m_csRead;
CLoadCommandLineProc(void);

 protected:
void Read(CString &csArg);
void Partial(CString &csArg);
void Help(CString &csArg);
friend CCommandLineProc::CArgProcTable;
BOOLEAN GetPositionalArgs(int &argc, _TCHAR **argv);

 } m_clpCmds;
};

///

CMDPROC.CPP
///
// cmdproc.cpp
// Copyright (C) 1996 Microsoft Corp.
//
// more flexible replacement for mfc CCommandLineInfo

///
// CCommandLineProc

#include "stdafx.h"
#include "cmdproc.h"

// NOTE: this member should be used from inside a set of try/catch
// since there is a remote chance that some of the string handling
// could throw memory exceptions
BOOLEAN CCommandLineProc::ProcessCommandLine(int iSC, int &argc, _TCHAR **argv)
{
 CString csSwitchChars;
 csSwitchChars.LoadString(iSC);
 CString csParam;

 if (acapArgs[0].m_Cmd == NULL) {
return TRUE;

 }
 int i = 1;

2850

README.TXT Page 18 of 86

 while (i < argc) {
csParam = argv[i];

if (!_tcscspn(csParam, csSwitchChars))
{

// its a switch
// remove flag specifier
csParam = csParam.Right(csParam.GetLength() - 1);

// find the function for this switch
CString csSwitch, csArg;

for (int j = 0; acapArgs[j].m_Cmd != NULL; j++) {
csSwitch.LoadString(acapArgs[j].m_iIDS);
if (!_tcsnccmp(csParam, csSwitch, csSwitch.GetLength())) {

break;
}

}
if (acapArgs[j].m_Cmd != NULL) {

csArg = csParam.Right(csParam.GetLength() - csSwitch.GetLength());
(this->*(acapArgs[j].m_Cmd))(csArg);
DeleteArg(i, argc, argv);

} else {
i++; // skip this one

}
} else {

// its positional so skip it.
i++;

}

}
 return GetPositionalArgs(argc, argv);
}

BOOLEAN CCommandLineProc::GetPositionalArgs(int &argc, _TCHAR **argv)
{
 // default implementation provides no positional args
 return TRUE;
}

RESOURCE.H
//{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by Load.rc
//
#define IDS_SWPARTIAL 102
#define IDS_SWHELP 103
#define IDS_SWITCHCHARS 104
#define IDS_USAGE 105
#define IDS_S_ADDKEY 135
#define IDS_BP_ADDKEY 136
#define IDS_C_ADDKEY 137
#define IDS_CP_ADDKEY 138
#define IDS_CSR_ADDKEY 139
#define IDS_E_ADDKEY 140
#define IDS_EP_ADDKEY 141
#define IDS_G_ADDKEY 142

2851

README.TXT Page 19 of 86

#define IDS_R_ADDKEY 143
#define IDS_RS_ADDKEY 144
#define IDS_SC_ADDKEY 145
#define IDS_SR_ADDKEY 146
#define IDS_TS_ADDKEY 147
#define IDS_SG_ADDKEY 148
#define IDS_N_ADDKEY 149
#define IDS_DELETE_GENRE 201
#define IDS_DELETE_STREAM 202
#define IDS_DELETE_EPISODE 203
#define IDS_DELETE_CHANNEL 204
#define IDS_DELETE_DANGLING_BP 205
#define IDS_DELETE_DANGLING_S 206
#define IDS_DELETE_DANGLING_THEME 207
#define IDS_DELETE_DANGLING_E 208
#define IDS_DELETE_DANGLING_C 209
#define IDS_DELETE_EXPIRED_TS 210
#define IDS_DELETE_OMITTED_TS 211
#define IDS_CC 236
#define IDS_CC_NAME 237
#define IDS_CC_PICTOGRAM 240
#define IDS_T_ADDKEY 245
#define IDS_MISC 246
#define IDS_C_SEEK 247
#define IDS_STEREO 249
#define IDS_STEREO_NAME 250
#define IDS_STEREO_PICTOGRAM 251
#define IDS_PPV 252
#define IDS_PPV_NAME 253
#define IDS_PPV_PICTOGRAM 254
#define IDS_RERUN 255
#define IDS_RERUN_NAME 256
#define IDS_RERUN_PICTOGRAM 257
#define IDS_RERUN_PARSE 258
#define IDS_BLACKWHITE 259
#define IDS_NUDITY 260
#define IDS_VIOLENCE 261
#define IDS_ADULT_SITUATIONS 262
#define IDS_ADULT_THEMES 263
#define IDS_ADULT_LANGUAGE 264
#define IDS_DESCRIPTION_START 265
#define IDS_DESCRIPTION_MID 266
#define IDS_DESCRIPTION_END 267
#define IDS_RATING_SYSTEM_NAME 268
#define IDS_RATING_SYSTEM_DESC 269
#define IDS_LOADERWORKSPACE 270
#define IDS_SWREAD 271

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 129
#define _APS_NEXT_COMMAND_VALUE 32771
#define _APS_NEXT_CONTROL_VALUE 1000
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif

2852

README.TXT Page 20 of 86

STDAFX.CPP
// stdafx.cpp : source file that includes just the standard includes
//SSLoad.pch will be the pre-compiled header
//stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

STDAFX.H
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//

#define VC_EXTRALEAN// Exclude rarely-used stuff from Windows headers
#define _AFX_NO_DB_SUPPORT
#define _AFX_NO_DAO_SUPPORT

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions

#ifndef _AFX_NO_OLE_SUPPORT
#include <afxole.h> // MFC OLE classes
#include <afxdisp.h> // MFC OLE automation classes
#endif // _AFX_NO_OLE_SUPPORT

#include <dbdao.h>

README.TXT
ActiveX component that schedules a Broadcast Architecture show reminder.

This Readme contains the following sections:
* Summary Briefly describes the sample
* More InformationDetails how to compile and run the sample
* About SCHSAMPDescribes the sample in more detail.
* Using SCHSAMPExplains how to use SCHSAMP from a Web page.

For more information about how to write applications that schedule show reminders,

SUMMARY
=========
The SCHSAMP sample, Schsamp.dll, is an ActiveX component that schedules a show remi

SCHSAMP was developed using Visual Basic 5.0.

2853

README.TXT Page 21 of 86

MORE INFORMATION
================
Before you can compile or use this sample, you must first install the
Broadcasting Architecture. This installs and registers
Microsoft Television System Services and TV Viewer, both of which are
required for SCHSAMP to run.

The following information describes the SCHSAMP sample.

To Compile SCHSAMP

Open the SCHSAMP project file, Schsamp.vdp, in Visual Basic 5.0.
From the File menu, select Make SchSamp.dll.

To compile the component into a .Cab file for distribution
on the internet, use the Application Setup Wizard provided with
Visual Basic 5.0. Choose Create Internet Download Setup.

This control is unsigned. If you wish to distribute a version of
SCHSAMP on the Web you should sign the component. For instructions on
how to sign a .Cab file, see the Internet Client SDK.

To Set Up the Programming Environment
--
First, create a new ActiveX DLL project. Set the class to global, multiuse. Then se
You must also set a reference to Microsoft DAO 3.5 Object library. This enables you

To Run SCHSAMP

The SCHSAMP sample includes a version of the component that has already
been compiled into a .Cab file for delivery through a web page. The .Cab
file has not been signed, and thus in order to run the sample you must set
security in Internet Explorer 4.0 to allow unsigned controls to run.

To do this, go to the View menu and select Internet Options. Click the
Security tab. Set Security settings for the appropriate zone. If you plan
to run SCHSAMP from your machine, this should be Local Intranet zone.

Once the security is properly set, open SHCSAMP.HTML with Internet Explorer 4.0.
The SCHSAMP component will automatically download and install on your machine.
To run the script that sets the show reminder, click the Schedule Reminder button.

-------NOTE --------NOTE ----------NOTE ----------NOTE ---------NOTE ---
Note that you cannot set a reminder for a show that has already occurred.
The HTML Web currently is scripted to set a reminder for the show "Maid to Order"
on 8/5/97 at 3:00PM. If the current date is after 8/5/97, the sample will not run.
To correct this, edit the following lines of the HTML file:

SchSamp.Episode = "Maid to Order"
SchSamp.Network = ""
SchSamp.Duration = "120"
SchSamp.ShowTime = "8/5/97 3:00:00 PM"

Change the preceeding lines to reflect a future episode.

For best results, choose an episode from the
TV Viewer program guide. This will enable SCHSAMP to match the episode in
the Guide database and obtain description and tuning information.
-------NOTE --------NOTE ----------NOTE ----------NOTE ---------NOTE ---

Because SCHSAMP uses the IScheduledItems interface, you cannot use the
Search page of TV Viewer to view a sample set with SCHSAMP. To test whether
the reminder was set, follow the instructions detailed in Schsamp.htm.

2854

README.TXT Page 22 of 86

SCHSAMP Files

SCHSAMP.HTML is an HTML/VBScript file uses SCHSAMP to set a show reminder.

SCHSAMP.CAB contains a compiled version of SCHSAMP.

SCHSAMP.VBP is the Visual Basic project file.

SCHSAMP.CLS contains the Visual Basic class module

ABOUT SCHSAMP
===============
SchSamp is an ActiveX component that schedules a TV Viewer reminder for a broadcast
This component could be used, for example, on an television enhancement page to ena

-------NOTE --------NOTE ----------NOTE ----------NOTE ---------NOTE ---
Reminders that are set by any means other than ITVViewer::SetReminder cannot be vie
-------NOTE --------NOTE ----------NOTE ----------NOTE ---------NOTE ---

USING SCHSAMP
==============
Because SchSamp is implemented as an ActiveX component, it can be called from a var

-------NOTE --------NOTE ----------NOTE ----------NOTE ---------NOTE ---
The SchSamp component is not signed. In order to run the sample you must set securi
-------NOTE --------NOTE ----------NOTE ----------NOTE ---------NOTE ---

The following topics describe how to create an instance of SchSamp, pass in episode

Inserting SCHSAMP in a Web Page
--
You can call the SchSamp component from a Web page. To create an instance of the co

<OBJECT ID="MySchSamp"
CLASSID="CLSID:BE521C45-08DA-11D1-98AE-080009DC95C5"
CODEBASE="SchSamp.CAB#version=1,0,0,0">
</OBJECT>

Set the ID parameter to specify a name for this instance of the control. In the pr

Specifying Episode Data

The SchSamp component contains the following properties.

PropertyData typeDescription
--
EpisodeStringTitle of the episode.
NetworkStringIf applicable, the network on which the episode appears.
DurationStringLength of the episode, in minutes.
ShowTimeStringTime and date that the episode starts.
PreTimeLongThe number of minutes early that the reminder should run.

These properties store data about the episode for which you wish to set a reminder.
The following example uses VBScript in a Web page to set values for the SchSamp pro

<SCRIPT LANGUAGE = VBScript>
Sub SetIt_OnClick

'set the show's properties
SchSamp.Episode = "Maid to Order"
SchSamp.Network = ""
SchSamp.Duration = "120"

2855

README.TXT Page 23 of 86

SchSamp.ShowTime = "8/5/97 3:00:00 PM"
SchSamp.PreTime = 5

'Schedule the reminder
SchSamp.SetReminder

End Sub
</SCRIPT>

Note that you cannot set a reminder for a show that has already occurred. The HTML
For best results, choose an episode from the TV Viewer program guide. This will ena

Scheduling the Show Reminder

Once the properties of SchSamp are set as described in the Broadcast Architecture S

<SCRIPT LANGUAGE = VBScript>
 'Schedule the reminder
 SchSamp.SetReminder
</SCRIPT>

README.TXT
An MFC sample that connects to and controls TV Viewer.

Summary
=======
TVXSamp is an MFC application that connects to and controls an instance of TV Viewe

For more information, see `` TV Viewer `` and `` Creating TV Viewer Controls ``
in the Broadcast Architecture Programmer's Reference.

More Information
================
The following information describes the TVXSamp sample.

To Compile TVXSamp

From the command prompt, use the following command:

nmake

To Run TVXSamp

You must start TV Viewer before you run TVXSamp.exe. Otherwise, TVXSamp will not be

Start TVXSamp.exe either from the command line by typing "TVXSamp", or by double-cl

[Toggle TV Mode]
Toggles TV Viewer between full screen and desktop mode.

[Tune to TV Config]
Tunes TV Viewer to the TV Config channel, 1.

2856

README.TXT Page 24 of 86

[Tune Back to Previous Channel]
Tunes TV Viewer to the previous channel. This is the same
functionality as a Back button in a Web browser.

TVXSamp Files
=============

Tvdisp.h
This is the header file for the TV Viewer dispatch interface.
It is created from Tvdisp.odl

TVXSamp.h
 This is the main header file for the application. It includes other
 project specific headers (including Resource.h) and declares the
 CTVXSampApp application class.

TVXSamp.cpp
 This is the main application source file that contains the application
 class CTVXSampApp.

TVXSamp.rc
 This is a listing of all of the Microsoft Windows resources that the
 program uses. It includes the icons, bitmaps, and cursors that are stored
 in the RES subdirectory. This file can be directly edited in Microsoft
Developer Studio.

res\TVXSamp.ico
 This is an icon file, which is used as the application's icon. This
 icon is included by the main resource file TVXSamp.rc.

res\TVXSamp.rc2
 This file contains resources that are not edited by Microsoft
Developer Studio. You should place all resources not
editable by the resource editor in this file.

TVXSamp.reg
 This is an example .REG file that shows you the kind of registration
 settings the framework will set for you. You can use this as a .REG
 file to go along with your application.

TVXSamp.odl
 This file contains the Object Description Language source code for the
 type library of your application.

TVXSamp.clw
 This file contains information used by ClassWizard to edit existing
 classes or add new classes. ClassWizard also uses this file to store
 information needed to create and edit message maps and dialog data
 maps and to create prototype member functions.

///

AppWizard creates one dialog class and automation proxy class:

TVXSampDlg.h, TVXSampDlg.cpp - the dialog
 These files contain your CTVXSampDlg class. This class defines
 the behavior of your application's main dialog. The dialog's
 template is in TVXSamp.rc, which can be edited in Microsoft
Developer Studio.

2857

README.TXT Page 25 of 86

DlgProxy.h, DlgProxy.cpp - the automation object
 These files contain your CTVXSampDlgAutoProxy class. This class
 is called the "automation proxy" class for your dialog, because it
 takes care of exposing the automation methods and properties that
 automation controllers can use to access your dialog. These methods
 and properties are not exposed from the dialog class directly, because
 in the case of a modal dialog-based MFC application it is cleaner and
 easier to keep the OLE automation object separate from the user interface.

///
Other standard files:

StdAfx.h, StdAfx.cpp
 These files are used to build a precompiled header (PCH) file
 named TVXSamp.pch and a precompiled types file named StdAfx.obj.

Resource.h
 This is the standard header file, which defines new resource IDs.
 Microsoft Developer Studio reads and updates this file.

DLGPROXY.H
// DlgProxy.h : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
// implementation file
//
//

#if !defined(AFX_DLGPROXY_H__FF52102B_0CE4_11D1_98AE_080009DC95C5__INCLUDED_)
#define AFX_DLGPROXY_H__FF52102B_0CE4_11D1_98AE_080009DC95C5__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CTVXSampDlg;

///
// CTVXSampDlgAutoProxy command target

class CTVXSampDlgAutoProxy : public CCmdTarget
{
DECLARE_DYNCREATE(CTVXSampDlgAutoProxy)

CTVXSampDlgAutoProxy(); // protected constructor used by dynamic creation

// Attributes
public:

2858

README.TXT Page 26 of 86

CTVXSampDlg* m_pDialog;

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CTVXSampDlgAutoProxy)
public:
virtual void OnFinalRelease();
//}}AFX_VIRTUAL

// Implementation
protected:
virtual ~CTVXSampDlgAutoProxy();

// Generated message map functions
//{{AFX_MSG(CTVXSampDlgAutoProxy)
// NOTE - the ClassWizard will add and remove member functions here.
//}}AFX_MSG

DECLARE_MESSAGE_MAP()
DECLARE_OLECREATE(CTVXSampDlgAutoProxy)

// Generated OLE dispatch map functions
//{{AFX_DISPATCH(CTVXSampDlgAutoProxy)
// NOTE - the ClassWizard will add and remove member functions here.
//}}AFX_DISPATCH
DECLARE_DISPATCH_MAP()
DECLARE_INTERFACE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_DLGPROXY_H__FF52102B_0CE4_11D1_98AE_080009DC95C5__INCLUDED_)

DLGPROXY.CPP
// DlgProxy.cpp : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
// implementation file
//

#include "stdafx.h"
#include "TVXSamp.h"
#include "DlgProxy.h"
#include "TVXSampDlg.h"

2859

README.TXT Page 27 of 86

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CTVXSampDlgAutoProxy

IMPLEMENT_DYNCREATE(CTVXSampDlgAutoProxy, CCmdTarget)

CTVXSampDlgAutoProxy::CTVXSampDlgAutoProxy()
{
EnableAutomation();

// To keep the application running as long as an OLE automation
//object is active, the constructor calls AfxOleLockApp.
AfxOleLockApp();

// Get access to the dialog through the application's
// main window pointer. Set the proxy's internal pointer
// to point to the dialog, and set the dialog's back pointer to
// this proxy.
ASSERT (AfxGetApp()->m_pMainWnd != NULL);
ASSERT_VALID (AfxGetApp()->m_pMainWnd);
ASSERT_KINDOF(CTVXSampDlg, AfxGetApp()->m_pMainWnd);
m_pDialog = (CTVXSampDlg*) AfxGetApp()->m_pMainWnd;
m_pDialog->m_pAutoProxy = this;
}

CTVXSampDlgAutoProxy::~CTVXSampDlgAutoProxy()
{
// To terminate the application when all objects created with
// with OLE automation, the destructor calls AfxOleUnlockApp.
// Among other things, this will destroy the main dialog
AfxOleUnlockApp();
}

void CTVXSampDlgAutoProxy::OnFinalRelease()
{
// When the last reference for an automation object is released
// OnFinalRelease is called. The base class will automatically
// deletes the object. Add additional cleanup required for your
// object before calling the base class.

CCmdTarget::OnFinalRelease();
}

BEGIN_MESSAGE_MAP(CTVXSampDlgAutoProxy, CCmdTarget)
//{{AFX_MSG_MAP(CTVXSampDlgAutoProxy)
// NOTE - the ClassWizard will add and remove mapping macros here.
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

BEGIN_DISPATCH_MAP(CTVXSampDlgAutoProxy, CCmdTarget)
//{{AFX_DISPATCH_MAP(CTVXSampDlgAutoProxy)
// NOTE - the ClassWizard will add and remove mapping macros here.
//}}AFX_DISPATCH_MAP
END_DISPATCH_MAP()

// Note: we add support for IID_ITVXSamp to support typesafe binding
// from VBA. This IID must match the GUID that is attached to the

2860

README.TXT Page 28 of 86

// dispinterface in the .ODL file.

// {FF521024-0CE4-11D1-98AE-080009DC95C5}
static const IID IID_ITVXSamp =
{ 0xff521024, 0xce4, 0x11d1, { 0x98, 0xae, 0x8, 0x0, 0x9, 0xdc, 0x95, 0xc5 } };

BEGIN_INTERFACE_MAP(CTVXSampDlgAutoProxy, CCmdTarget)
INTERFACE_PART(CTVXSampDlgAutoProxy, IID_ITVXSamp, Dispatch)
END_INTERFACE_MAP()

// The IMPLEMENT_OLECREATE2 macro is defined in StdAfx.h of this project
// {FF521022-0CE4-11D1-98AE-080009DC95C5}
IMPLEMENT_OLECREATE2(CTVXSampDlgAutoProxy, "TVXSamp.Application", 0xff521022, 0xce4

///
// CTVXSampDlgAutoProxy message handlers

RESOURCE.H
//{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by tvxsamp.rc
//
#define IDP_OLE_INIT_FAILED 100
#define IDD_TVXSAMP_DIALOG 102
#define IDR_MAINFRAME 128
#define IDC_BUTTON1 1000
#define IDC_BUTTON2 1001
#define IDC_BUTTON4 1003

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 129
#define _APS_NEXT_COMMAND_VALUE 32771
#define _APS_NEXT_CONTROL_VALUE 1004
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif

STDAFX.CPP
// stdafx.cpp : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.

2861

README.TXT Page 29 of 86

// implementation file
//
//
//TVXSamp.pch will be the pre-compiled header
//stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

STDAFX.H
// stdafx.h : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//

#if !defined(AFX_STDAFX_H__FF52102E_0CE4_11D1_98AE_080009DC95C5__INCLUDED_)
#define AFX_STDAFX_H__FF52102E_0CE4_11D1_98AE_080009DC95C5__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#define VC_EXTRALEAN// Exclude rarely-used stuff from Windows headers

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <afxdisp.h> // MFC OLE automation classes
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h>// MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT

// This macro is the same as IMPLEMENT_OLECREATE, except it passes TRUE
// for the bMultiInstance parameter to the COleObjectFactory constructor.
// We want a separate instance of this application to be launched for
// each OLE automation proxy object requested by automation controllers.
#ifndef IMPLEMENT_OLECREATE2
#define IMPLEMENT_OLECREATE2(class_name, external_name, l, w1, w2, b1, b2, b3, b4,
AFX_DATADEF COleObjectFactory class_name::factory(class_name::guid, \
RUNTIME_CLASS(class_name), TRUE, _T(external_name)); \
const AFX_DATADEF GUID class_name::guid = \
{ l, w1, w2, { b1, b2, b3, b4, b5, b6, b7, b8 } };
#endif // IMPLEMENT_OLECREATE2

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_STDAFX_H__FF52102E_0CE4_11D1_98AE_080009DC95C5__INCLUDED_)

2862

README.TXT Page 30 of 86

TVDISP.CPP
// tvdisp.cpp : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//

#include "stdafx.h"
#include "tvdisp.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// ITVViewer properties

///
// ITVViewer operations

void ITVViewer::SetTVMode(BOOL fTVMode)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0xfa1, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 fTVMode);
}

BOOL ITVViewer::IsTVMode()
{
BOOL result;
InvokeHelper(0xfa2, DISPATCH_METHOD, VT_BOOL, (void*)&result, NULL);
return result;
}

BOOL ITVViewer::IsChannelBarUp()
{
BOOL result;
InvokeHelper(0xfa3, DISPATCH_METHOD, VT_BOOL, (void*)&result, NULL);
return result;
}

BOOL ITVViewer::IsModalDialogUp()
{
BOOL result;
InvokeHelper(0xfa4, DISPATCH_METHOD, VT_BOOL, (void*)&result, NULL);
return result;
}

2863

README.TXT Page 31 of 86

BOOL ITVViewer::IsLoaderActive()
{
BOOL result;
InvokeHelper(0xfa5, DISPATCH_METHOD, VT_BOOL, (void*)&result, NULL);
return result;
}

DATE ITVViewer::GlobalStartTime()
{
DATE result;
InvokeHelper(0xfa6, DISPATCH_METHOD, VT_DATE, (void*)&result, NULL);
return result;
}

DATE ITVViewer::GlobalEndTime()
{
DATE result;
InvokeHelper(0xfa7, DISPATCH_METHOD, VT_DATE, (void*)&result, NULL);
return result;
}

LPUNKNOWN ITVViewer::ChannelList()
{
LPUNKNOWN result;
InvokeHelper(0xfa8, DISPATCH_METHOD, VT_UNKNOWN, (void*)&result, NULL);
return result;
}

long ITVViewer::ViewerID()
{
long result;
InvokeHelper(0xfa9, DISPATCH_METHOD, VT_I4, (void*)&result, NULL);
return result;
}

void ITVViewer::WantNumKeys(BOOL fWantNumKeys)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0xfaa, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 fWantNumKeys);
}

void ITVViewer::Tune(long lTuningSpace, long lChannelNumber, long lVideoStream, lon
{
static BYTE parms[] =
VTS_I4 VTS_I4 VTS_I4 VTS_I4 VTS_BSTR;
InvokeHelper(0xfab, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 lTuningSpace, lChannelNumber, lVideoStream, lAudioStream, bsIPStream);
}

void ITVViewer::GetCurrentTuningInfo(long* lTuningSpace, long* lChannelNumber, long
{
static BYTE parms[] =
VTS_PI4 VTS_PI4 VTS_PI4 VTS_PI4 VTS_PBSTR;
InvokeHelper(0xfac, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 lTuningSpace, lChannelNumber, lVideoStream, lAudioStream, pbsIPAddress);
}

void ITVViewer::GetPreviousTuningInfo(long* lTuningSpace, long* lChannelNumber, lon
{
static BYTE parms[] =
VTS_PI4 VTS_PI4 VTS_PI4 VTS_PI4 VTS_PBSTR;

2864

README.TXT Page 32 of 86

InvokeHelper(0xfad, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 lTuningSpace, lChannelNumber, lVideoStream, lAudioStream, pbsIPAddress);
}

void ITVViewer::SetReminder(LPUNKNOWN pEpisode, BOOL bRecord)
{
static BYTE parms[] =
VTS_UNKNOWN VTS_BOOL;
InvokeHelper(0xfae, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 pEpisode, bRecord);
}

BOOL ITVViewer::HasReminder(LPUNKNOWN pEpisode, BOOL bRecord)
{
BOOL result;
static BYTE parms[] =
VTS_UNKNOWN VTS_BOOL;
InvokeHelper(0xfaf, DISPATCH_METHOD, VT_BOOL, (void*)&result, parms,
pEpisode, bRecord);
return result;
}

void ITVViewer::DeleteReminder(LPUNKNOWN pEpisode, BOOL bRecord)
{
static BYTE parms[] =
VTS_UNKNOWN VTS_BOOL;
InvokeHelper(0xfb0, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 pEpisode, bRecord);
}

BOOL ITVViewer::HasEnhancement(LPUNKNOWN pEpisode)
{
BOOL result;
static BYTE parms[] =
VTS_UNKNOWN;
InvokeHelper(0xfb1, DISPATCH_METHOD, VT_BOOL, (void*)&result, parms,
pEpisode);
return result;
}

BOOL ITVViewer::IsCC()
{
BOOL result;
InvokeHelper(0xfb2, DISPATCH_METHOD, VT_BOOL, (void*)&result, NULL);
return result;
}

///
// ITVControl properties

///
// ITVControl operations

BOOL ITVControl::OnIdle()
{
BOOL result;
InvokeHelper(0xbb9, DISPATCH_METHOD, VT_BOOL, (void*)&result, NULL);
return result;
}

void ITVControl::Tune(long ltsNew, long lcnNew, long lvsNew, long lasNew, LPCTSTR b
{

2865

README.TXT Page 33 of 86

static BYTE parms[] =
VTS_I4 VTS_I4 VTS_I4 VTS_I4 VTS_BSTR VTS_I4 VTS_I4 VTS_I4 VTS_I4 VTS_BSTR;
InvokeHelper(0xbba, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 ltsNew, lcnNew, lvsNew, lasNew, bsIPNew, ltsPrev, lcnPrev, lvsPrev, lasPrev, bsIPP
}

void ITVControl::TearDown()
{
InvokeHelper(0xbbb, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void ITVControl::SyncEvent(long iEvent, LPCTSTR pParm1, LPCTSTR pParm2)
{
static BYTE parms[] =
VTS_I4 VTS_BSTR VTS_BSTR;
InvokeHelper(0xbbc, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 iEvent, pParm1, pParm2);
}

void ITVControl::EpisodeStatusChanged(long iChange, LPUNKNOWN pEpi)
{
static BYTE parms[] =
VTS_I4 VTS_UNKNOWN;
InvokeHelper(0xbbd, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 iChange, pEpi);
}

void ITVControl::PowerChange(BOOL bPowerOn, BOOL bUIAllowed)
{
static BYTE parms[] =
VTS_BOOL VTS_BOOL;
InvokeHelper(0xbbf, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 bPowerOn, bUIAllowed);
}

void ITVControl::OnTVFocus()
{
InvokeHelper(0xbc0, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void ITVControl::SetOutput(LPCTSTR bsDeviceName)
{
static BYTE parms[] =
VTS_BSTR;
InvokeHelper(0xbc1, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 bsDeviceName);
}

BOOL ITVControl::GetCC()
{
BOOL result;
InvokeHelper(0xbc2, DISPATCH_METHOD, VT_BOOL, (void*)&result, NULL);
return result;
}

void ITVControl::SetCC(BOOL bCC)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0xbc3, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 bCC);
}

2866

README.TXT Page 34 of 86

TVDISP.H
// tvdisp.h : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
///
// ITVViewer wrapper class

class ITVViewer : public COleDispatchDriver
{
public:
ITVViewer() {}// Calls COleDispatchDriver default constructor
ITVViewer(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
ITVViewer(const ITVViewer& dispatchSrc) : COleDispatchDriver(dispatchSrc) {}

// Attributes
public:

// Operations
public:
void SetTVMode(BOOL fTVMode);
BOOL IsTVMode();
BOOL IsChannelBarUp();
BOOL IsModalDialogUp();
BOOL IsLoaderActive();
DATE GlobalStartTime();
DATE GlobalEndTime();
LPUNKNOWN ChannelList();
long ViewerID();
void WantNumKeys(BOOL fWantNumKeys);
void Tune(long lTuningSpace, long lChannelNumber, long lVideoStream, long lAudioStr
void GetCurrentTuningInfo(long* lTuningSpace, long* lChannelNumber, long* lVideoStr
void GetPreviousTuningInfo(long* lTuningSpace, long* lChannelNumber, long* lVideoSt
void SetReminder(LPUNKNOWN pEpisode, BOOL bRecord);
BOOL HasReminder(LPUNKNOWN pEpisode, BOOL bRecord);
void DeleteReminder(LPUNKNOWN pEpisode, BOOL bRecord);
BOOL HasEnhancement(LPUNKNOWN pEpisode);
BOOL IsCC();
};
///
// ITVControl wrapper class

class ITVControl : public COleDispatchDriver
{
public:
ITVControl() {}// Calls COleDispatchDriver default constructor
ITVControl(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
ITVControl(const ITVControl& dispatchSrc) : COleDispatchDriver(dispatchSrc) {}

2867

README.TXT Page 35 of 86

// Attributes
public:

// Operations
public:
BOOL OnIdle();
void Tune(long ltsNew, long lcnNew, long lvsNew, long lasNew, LPCTSTR bsIPNew, long
void TearDown();
void SyncEvent(long iEvent, LPCTSTR pParm1, LPCTSTR pParm2);
void EpisodeStatusChanged(long iChange, LPUNKNOWN pEpi);
void PowerChange(BOOL bPowerOn, BOOL bUIAllowed);
void OnTVFocus();
void SetOutput(LPCTSTR bsDeviceName);
BOOL GetCC();
void SetCC(BOOL bCC);
};

TVDISPID.H
// tvdispid.h : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.

#ifndef __TVDISPID_H__
#define __TVDISPID_H__

#ifdef __MKTYPLIB__

// Sync event notifications
typedef enum tvsyncevent
{
//Loader sync events
//Corresponding messages from epgldrx.h
//EPGLDR_STARTING
//EPGLDR_ACTIVE_COMMIT_STARTING
//EPGLDR_ACTIVE_COMMIT_ENDING
//EPGLDR_PASSIVE_COMMIT_STARTING
//EPGLDR_PASSIVE_COMMIT_ENDING
//EPGLDR_ENDING

//Viewer sync events
keViewerLogin= 107,
keViewerChange= 108,
keCurrentViewerChannelListChange= 109,

//Other sync events
keSysTimeChange= 110
} TVSYNCEVENT;

// EpisodeStatusChanged notification enums

2868

README.TXT Page 36 of 86

typedef enum episodestatus
{
keReminderStatus= 1,
kePurchaseStatus= 2,
keDSSEmailStatus= 3
} EPISODESTATUS;

#endif

// Dispatch IDs

// ITVControl

#define dispidOnIdle3001
#define dispidTuneControl3002
#define dispidTearDown3003
#define dispidSyncEvent3004
#define dispidEpisodeStatusChanged3005
#define dispidPowerChange3007
#define dispidOnTVFocus 3008
#define dispidTVSetOutput3009
#define dispidGetCC 3010
#define dispidSetCC 3011

// ITVExplorer

#define dispidSetTVMode4001
#define dispidIsTVMode4002
#define dispidIsChannelBarUp4003
#define dispidIsModalDialogUp4004
#define dispidIsLoaderActive4005
#define dispidGlobalStartTime4006
#define dispidGlobalEndTime4007
#define dispidChannelList4008
#define dispidViewerID4009
#define dispidWantNumKeys4010
#define dispidTVXTune4011
#define dispidGetCurrentTuningInfo4012
#define dispidGetPreviousTuningInfo4013
#define dispidSetReminder4014
#define dispidHasReminder4015
#define dispidDeleteReminder4016
#define dispidHasEnhancement 4017
#define dispidIsCC 4018

#endif // __TVDISPID_H__

TVXSAMP.CPP
//---
// TVXSampDlg.cpp : TV Viewer sample application
//---
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.

2869

README.TXT Page 37 of 86

// For more information about writing applications that interact
// with TV Viewer, see `` Creating TV Viewer Controls ``
// in the Broadcast Architecture Programmer's Reference.
//
//

#include "stdafx.h"
#include "TVXSamp.h"
#include "TVXSampDlg.h"
#include "Tvdisp.h"
#include <initguid.h>

DEFINE_GUID(IID_ITVViewer,0x3F8A2EA1L,0xC171,0x11CF,0x86,0x8C,0x00,0x80,0x5F,0x2C,0
DEFINE_GUID(IID_ITVDisp, 0x3F8A2EA1L, 0xC171,0x11cf,0x86,0x8C,0x00,0x80,0x5F,0x2C,0
DEFINE_GUID(CLSID_TVViewer,0x5543DD10L,0xB41D,0x11CF,0x86,0x82,0x00,0x80,0x5F,0x2C,

extern ITVViewer *TVX;

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CTVXSampApp

BEGIN_MESSAGE_MAP(CTVXSampApp, CWinApp)
//{{AFX_MSG_MAP(CTVXSampApp)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
//}}AFX_MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)
END_MESSAGE_MAP()

///
// CTVXSampApp construction

CTVXSampApp::CTVXSampApp()
{
// TODO: add construction code here,
// Place all significant initialization in InitInstance
}

///
// The one and only CTVXSampApp object

CTVXSampApp theApp;

///
// CTVXSampApp initialization

BOOL CTVXSampApp::InitInstance()
{
// Initialize OLE libraries
if (!AfxOleInit())
{
AfxMessageBox(IDP_OLE_INIT_FAILED);
return FALSE;
}

AfxEnableControlContainer();

2870

README.TXT Page 38 of 86

//--------------< code that gets a reference to TV Viewer >-------------
//---
/*
The following code gets a reference to TV Viewer which
TVXSamp uses to call the ITVViewer methods.
This is implemented during TVXSamp's initialization
to ensure that it connects to TV Viewer before
calling the ITVViewer methods.

TV Viewer must be running or else the following code will fail.
*/
HRESULT hr = 0;
IUnknown *punk;
IDispatch *dispatch;

hr = GetActiveObject(CLSID_TVViewer,NULL,&punk);
if (SUCCEEDED(hr))
{
hr=punk->QueryInterface(IID_IDispatch,(void**) &dispatch);
punk->Release();
if (SUCCEEDED(hr))
{
TVX=new ITVViewer(dispatch);
}
}

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

// Parse the command line to see if launched as OLE server
if (RunEmbedded() || RunAutomated())
{
// Register all OLE server (factories) as running. This enables the
// OLE libraries to create objects from other applications.
COleTemplateServer::RegisterAll();
}
else
{
// When a server application is launched stand-alone, it is a good idea
// to update the system registry in case it has been damaged.
COleObjectFactory::UpdateRegistryAll();
}

CTVXSampDlg dlg;
m_pMainWnd = &dlg;
int nResponse = dlg.DoModal();
if (nResponse == IDOK)
{
// TODO: Place code here to handle when the dialog is
// dismissed with OK

}
else if (nResponse == IDCANCEL)
{
// TODO: Place code here to handle when the dialog is
// dismissed with Cancel

}

2871

README.TXT Page 39 of 86

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE;
}

TVXSAMP.H
// TVXSamp.h : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
//
//

#if !defined(AFX_TVXSAMP_H__FF521027_0CE4_11D1_98AE_080009DC95C5__INCLUDED_)
#define AFX_TVXSAMP_H__FF521027_0CE4_11D1_98AE_080009DC95C5__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __AFXWIN_H__
#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h"// main symbols

///
// CTVXSampApp:
// See TVXSamp.cpp for the implementation of this class
//

class CTVXSampApp : public CWinApp
{
public:
CTVXSampApp();

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CTVXSampApp)
public:
virtual BOOL InitInstance();
//}}AFX_VIRTUAL

// Implementation

//{{AFX_MSG(CTVXSampApp)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

2872

README.TXT Page 40 of 86

};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_TVXSAMP_H__FF521027_0CE4_11D1_98AE_080009DC95C5__INCLUDED_)

TVXSAMPDLG.CPP
//---
// TVXSampDlg.cpp : TV Viewer sample application
//---
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For more information about writing applications that interact
// with TV Viewer, see `` Creating TV Viewer Controls ``
// in the Broadcast Architecture Programmer's Reference.
//
//

#include "stdafx.h"
#include "TVXSamp.h"
#include "TVXSampDlg.h"
#include "DlgProxy.h"
#include "Tvdisp.h"
#include <atlbase.h>

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

ITVViewer *TVX;

///
// CTVXSampDlg dialog

IMPLEMENT_DYNAMIC(CTVXSampDlg, CDialog);

CTVXSampDlg::CTVXSampDlg(CWnd* pParent /*=NULL*/)
: CDialog(CTVXSampDlg::IDD, pParent)
{
//{{AFX_DATA_INIT(CTVXSampDlg)
// NOTE: the ClassWizard will add member initialization here
//}}AFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
m_pAutoProxy = NULL;
}

2873

README.TXT Page 41 of 86

CTVXSampDlg::~CTVXSampDlg()
{
// If there is an automation proxy for this dialog, set
// its back pointer to this dialog to NULL, so it knows
// the dialog has been deleted.
if (m_pAutoProxy != NULL)
m_pAutoProxy->m_pDialog = NULL;
}

void CTVXSampDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CTVXSampDlg)
// NOTE: the ClassWizard will add DDX and DDV calls here
//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CTVXSampDlg, CDialog)
//{{AFX_MSG_MAP(CTVXSampDlg)
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_WM_CLOSE()
ON_BN_CLICKED(IDC_BUTTON1, OnButton1)
ON_BN_CLICKED(IDC_BUTTON2, OnButton2)
ON_BN_CLICKED(IDC_BUTTON4, OnButton4)
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CTVXSampDlg message handlers

BOOL CTVXSampDlg::OnInitDialog()
{
CDialog::OnInitDialog();

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE);// Set big icon
SetIcon(m_hIcon, FALSE);// Set small icon

// TODO: Add extra initialization here

return TRUE; // return TRUE unless you set the focus to a control
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CTVXSampDlg::OnPaint()
{
if (IsIconic())
{
CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect);
int x = (rect.Width() - cxIcon + 1) / 2;

2874

README.TXT Page 42 of 86

int y = (rect.Height() - cyIcon + 1) / 2;

// Draw the icon
dc.DrawIcon(x, y, m_hIcon);
}
else
{
CDialog::OnPaint();
}
}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CTVXSampDlg::OnQueryDragIcon()
{
return (HCURSOR) m_hIcon;
}

// Automation servers should not exit when a user closes the UI
// if a controller still holds on to one of its objects. These
// message handlers make sure that if the proxy is still in use,
// then the UI is hidden but the dialog remains around if it
// is dismissed.

void CTVXSampDlg::OnClose()
{
if (CanExit())
CDialog::OnClose();
}

void CTVXSampDlg::OnOK()
{
if (CanExit())
CDialog::OnOK();
}

void CTVXSampDlg::OnCancel()
{
if (CanExit())
CDialog::OnCancel();
}

BOOL CTVXSampDlg::CanExit()
{
// If the proxy object is still around, then the automation
// controller is still holding on to this application. Leave
// the dialog around, but hide its UI.
if (m_pAutoProxy != NULL)
{
ShowWindow(SW_HIDE);
return FALSE;
}

return TRUE;
}

//-----------< event handler that toggles TV Viewer mode >-----------
//---
/*
The following code implements an event handler
that toggles TV Viewer between desktop and full
screen mode when the user clicks Button1. It checks
which mode TV Viewer is displaying in, and toggles

2875

README.TXT Page 43 of 86

it to the other mode. For example, if TV Viewer is
in desktop mode, this method sets it to full screen
mode and vide versa.
*/

void CTVXSampDlg::OnButton1()
{

//check whether TV Viewer is in
//full screen mode
if (TVX->IsTVMode())
{
//if it is,
//change the mode to desktop
TVX->SetTVMode(false);
}
else
{
//if it is not,
//change the mode to full screen
TVX->SetTVMode(true);
}

}

//-----< event handler that tunes TV Viewer to a new channel >------
//---
/*
The following code implements an event handler
that tunes TV Viewer to the TV configuration
channel when they click Button2.

The TV configuration channel was chosen for
this example because it is installed with TV Viewer
and is present on all client machines.
*/
void CTVXSampDlg::OnButton2()
{

//Tune TVViewer to channel 1 of tuning space -2
//the audio and video substreams have been set to
//-1, causing TV Viewer to use the default values.

TVX->Tune(-2,1,-1,-1,NULL);

}

//---------< event handler that tunes to a previous channel >-----------
//---
/*
The following code implements an event handler that
tunes TV Viewer to the previously displayed channel
when the user clicks Button4.
*/

void CTVXSampDlg::OnButton4()
{
long lTuningSpacePrev;
long lChannelNumberPrev;
long lAudioStreamPrev;
long lVideoStreamPrev;

2876

README.TXT Page 44 of 86

BSTR bstrIPAddressPrev;

//get the tuning information about the previous channel
//from TV Viewer
TVX->GetPreviousTuningInfo(&lTuningSpacePrev, &lChannelNumberPrev,
 &lVideoStreamPrev, &lAudioStreamPrev, &bstrIPAddressPrev);

if ((lTuningSpacePrev != NULL) && (lChannelNumberPrev != NULL))
{
//Tune TV Viewer to the previous channel
TVX->Tune(lTuningSpacePrev, lChannelNumberPrev,
lVideoStreamPrev, lAudioStreamPrev, (LPCTSTR) bstrIPAddressPrev);
}

}

TVXSAMPDLG.H
// TVXSampDlg.h : TV Viewer sample application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
//
//

#if !defined(AFX_TVXSAMPDLG_H__FF521029_0CE4_11D1_98AE_080009DC95C5__INCLUDED_)
#define AFX_TVXSAMPDLG_H__FF521029_0CE4_11D1_98AE_080009DC95C5__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

class CTVXSampDlgAutoProxy;

///
// CTVXSampDlg dialog

class CTVXSampDlg : public CDialog
{
DECLARE_DYNAMIC(CTVXSampDlg);
friend class CTVXSampDlgAutoProxy;

// Construction
public:
CTVXSampDlg(CWnd* pParent = NULL);// standard constructor
virtual ~CTVXSampDlg();

// Dialog Data
//{{AFX_DATA(CTVXSampDlg)

2877

README.TXT Page 45 of 86

enum { IDD = IDD_TVXSAMP_DIALOG };
// NOTE: the ClassWizard will add data members here
//}}AFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CTVXSampDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);// DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:
CTVXSampDlgAutoProxy* m_pAutoProxy;
HICON m_hIcon;

BOOL CanExit();

// Generated message map functions
//{{AFX_MSG(CTVXSampDlg)
virtual BOOL OnInitDialog();
afx_msg void OnPaint();
afx_msg HCURSOR OnQueryDragIcon();
afx_msg void OnClose();
virtual void OnOK();
virtual void OnCancel();
afx_msg void OnButton1();
afx_msg void OnButton2();
afx_msg void OnButton4();
afx_msg void OnSetReminder();
//}}AFX_MSG
DECLARE_MESSAGE_MAP()
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_TVXSAMPDLG_H__FF521029_0CE4_11D1_98AE_080009DC95C5__INCLUDED

README.TXT
--
 Microsoft Broadcast Architecture SDK UseVideo Readme File

August 1997
--

(c) Copyright Microsoft Corporation, 1997

CONTENTS
========

Using the Video ActiveX Control

SUMMARY
=======

The UseVideo samples demonstrate presenting audio and video

2878

README.TXT Page 46 of 86

in an application, a Web browser, and in a control you create.
The following four programs are contained in the UseVideo sample:

1. Video Test Project (VidCntrl) demonstrates a project containing a
standard Visual Basic form that hosts and manipulates an instance
of the Video ActiveX control.

2. Video Web Page (WebTune) demonstrates embedding and using the
Video ActiveX control in a Web page.

3. Video Test Control (Vid_Tune) demonstrates creating a control that
contains the Video ActiveX control as a constituent control.

4. Video MFC Test describes building an application for Windows with
C++ classes from the Microsoft Foundation Class Library (MFC).

In addition to presenting audio and video, these samples show how to embed
a Video ActiveX control in your program and how to select different devices
to provide input to such a control. If your computer contains a tuner card,
these samples show how to tune to a channel.

///
MORE INFORMATION
================

The following information describes running the UseVideo samples.
For information on system requirements, see the Client Hardware Requirements
section of the the Broadcast Architecture Device-Driver Development Kit (DDK).

NOTE: For these samples to have maximum value, you should have the
following components installed:

1. Microsoft Windows 98, including the optional TV Viewer component.

2. Microsoft Visual Basic version 5.0. For more information on installing
and using Visual Basic 5.0, see the Visual Basic 5.0 documentation.

3. Microsoft Visual C++ version 5.0. For more information on installing
and using Visual C++ 5.0, including the Microsoft Foundation Class
(MFC) Library, see the Visual C++ 5.0 documentation.

///
To Run VidCntrl

1. Start Microsoft Visual Basic 5.0.

2. When the New Project dialog box appears, select the Existing tab and
open the VidCntrl.vbp project file.

3. From the Run menu, select Start.

4. When the Video Control Test form appears in run mode, click the
File Source (Async.) item in the list box to select it for the
video control s input source. Enter the file name of a particular
MPEG-1 file along with the required path to locate such file in
the text box and click the Set Input command button to assign the
file you specified as the input source for audio and video. Click the
Play button to play the file, click the Pause button to temporarily
suspend playing, click the Stop command button to stop the file.
Click the Volume slider to change the intensity of the video control s
sound and the Balance slider to change the video control s stereo balance.

2879

README.TXT Page 47 of 86

5. If your computer contains a tuner card for analog television, click
the WDM TvTuner item in the list box to select it for the video control s
input source. Enter a channel number in the text box and click the
Set Input button to tune your card to the channel number you specified.

VidCntrl Files

VidCntrl.frm
 This file contains the form image in addition to the images of all the
 elements on the form and the code to manipulate the video control.
 The form's code uses the following properties and methods of the video control
 and other objects associated with video control:

a. Declares and allocates storage for variables of BPCDevices and
BPCDeviceBase object types.

b. Obtains a reference to each device of the video control's Devices property.
c. Obtains the name of each device with the BPCDeviceBase Name property.
d. Determines if the computer contains any tuner cards that supports the tuning

space for Analog Cable TV with the video control's TSDeviceCount method.
e. If so, tunes to a channel with the video control's Tune method.
f. Sets the video control's Input property equal to one of the devices in

the video control's Devices property.
g. Determines if the video control's input source is from a tuner with the

BPCDeviceBase HasChannel property.
h. If so, sets the channel number of the tuner with the BPCDeviceBase Channel

property.
i. Determines if the the video control's input source is from a file with the

BPCDeviceBase HasFilename property.
j. If so, sets the name of the file with the BPCDeviceBase filename property.
k. For file sources, plays, pauses, stops, changes the volume and balance with

video control's Run, Pause, Stop, Volume, and Balance properties respectivel

VidCntrl.vbp
 This file is the makefile for the project.

///
To Run WebTune

1. Start Microsoft Internet Explorer 4.0 (IE4).

2. In IE4, select the menu command File, Open.
When the Open dialog box appears, click on Browse and locate
the Vid_Test.htm file, and then click Open. When the Open
dialog box reappears, click OK.

3. When the Web page loads and IE4 displays the page's text and objects,
enter the file name of a particular MPEG-1 file along with the required
path to locate such file in the text box. Click the Set File button to
assign the file you specified as the input source for audio and video
and to play the file and click the Stop File button to stop the file.

4. If your computer contains a tuner card for analog television, enter
a channel number in the text box and click the Set Chan button to
tune your card to the channel number you specified.

WebTune File

Vid_Test.htm
 This file is an HTML document that contains the text, input elements,

2880

README.TXT Page 48 of 86

 the Video ActiveX control object, and code written in VBScript that
 manipulates the video control. The code enclosed in the SCRIPT tag
 uses all the same properties and methods as those used in the VidCntrl.frm
 code.

///
To Run Vid_Tune

1. Start Microsoft Visual Basic 5.0.

2. When the New Project dialog box appears, select the Existing tab and
open the Vid_Tune.vbg group project file.

3. From the Run menu, select Start.

4. When the form for the video test control appears in run mode, enter
the file name of a particular MPEG-1 file along with the required path
to locate such file in the text box.

5. Click the File button to assign the MPEG-1 file you specified as the
input source for audio and video and to play the file and click the Stop
button to stop playing the file.

6. If your computer contains a tuner card for analog television, click any
of the channel buttons to assign the WDM TvTuner as the input source for
audio and video and to tune your card to the channel number specified by
the button.

Vid_Tune Files

Vid_Tune.ctl
 This file contains the images of all the elements on the control's
 designer and the code to manipulate the video control. The designer's code
 uses all the same properties and methods as those used in the VidCntrl.frm
 code. In addition, code in the designer exposes custom properties, creates
 and raises a click event, and creates the MyTune method.

Test_Vid.frm
 This file contains the form image, the image of the Video Test control,
 and the code to manipulate the Video Test control. The form's code contains
 the click event procedure that calls the Video Test control's MyTune method.

Vid_Tune.vbp
 This file is the makefile for the Video Test Control project.

Test_Vid.vbp
 This file is the makefile for the test project that verifies the Video
 Test Control.

Vid_Tune.vbg
 This file is the group file containing the Control project and the test
 project.

///
To Run VideoMFC

1. Start Microsoft Visual C++ 5.0.

2881

README.TXT Page 49 of 86

2. From the File menu, select Open Workspace.

3. When the Open Workspace dialog box appears, go to the appropriate
directory and open the VdMFC.mak file.

4. From the Build menu, select the Win32 Release configuration from
the Set Active Configuration menu item. After setting the project
configuration, select Build VdMFC.exe from the Build menu. After
building the project, select Execute VdMFC.exe from the Build menu.

5. When the VdMFC application starts, click the File Source (Async.)
item in the list box to select it for the Vid control's input source.
Enter the file name of a particular MPEG-1 file along with the required
path to locate such file in the edit box. Click the Set Input command
button to assign the MPEG-1 file you specified as the input source for
audio and video. Click the Set File Name and then Play command buttons
to start playing the MPEG-1 file you specified. Click the Pause command
button to temporarily suspend playing. Click the Stop command button to
stop playing the file.

6. If your computer contains a tuner card for analog television, click the
WDM TvTuner item in the list box and then the Set Input command button
to select it for the video control's input source. Enter a channel number
in the edit box and then click the Set Channels command button to tune
your card to the channel number you specified. Click the On/Off Video
command button to allow the Vid control to receive video or to prevent it
from receiving video.

///
To Run VideoMFC from the command line

1. Open a Command Prompt window, switch to the directory on your
computer that contains the makefile (VdMFC.mak) and the source files
for the video MFC application, and then type the following exactly
as shown including the case of the text:
NMAKE /f "VdMFC.mak" CFG="VdMFC - Win32 Release"

2. To run the built VdMFC application, switch to the \Release directory
created within the directory containing the source files and type VdMFC.

VideoMFC Files

The MFC AppWizard created all but one of the skeleton files for the VdMFC
application. Most of the files did not require modification. The following
summaries of the contents of each of the files that make up VdMFC are divided
into either the group requiring modifications or not.

NOT CREATED BY MFC APPWIZARD

Vidtypes.h
 This file contains the definitions for all the constants and interfaces
 that make up the Vid control. This file was not generated by the MFC
 AppWizard. This file was added to the project.

NO EDITING REQUIRED

VdMFC.h
 Main header file for the application that includes other project-specific
 headers (including Resource.h) and defines the CVdMFCApp application class.
 This file was generated by the MFC AppWizard and did not require editing.

2882

README.TXT Page 50 of 86

VdMFC.cpp
 This is the main application source file that contains the application
 class CVdMFCApp. This file was generated by the MFC AppWizard and did not
 require editing.

VdMFC.rc
 Lists all of the Microsoft Windows resources that the VdMFC application
 uses including the icon stored in the RES subdirectory. This file was
 generated by the MFC AppWizard and did not require editing.

res\VdMFC.ico
 This is an icon file, which is used as the application's icon. This
 icon is included by the main resource file VdMFC.rc.

res\VdMFC.rc2
 This file contains resources that are not edited by Microsoft Developer
 Studio. This file was generated by the MFC AppWizard and did not
 require editing.

VdMFC.mak
 This file is the makefile for the project.

VdMFC.dsp
 This file is the project file.

StdAfx.h, StdAfx.cpp
 These files are used to build a precompiled header (PCH) file
 named VdMFC.pch and a precompiled types file named StdAfx.obj.
 These files were generated by the MFC AppWizard and did not
 require editing.

Resource.h
 This is the standard header file, which defines new resource IDs.
 This file was generated by the MFC AppWizard and did not
 require editing.

bpcvid.h, bpcvid.cpp
 These files contain the CBPCVid class, which defines the behavior
 of the object that provides streaming video functionality. These
 files were generated by the MFC AppWizard and did not require editing.

bpcbase.h, bpcbase.cpp
 These files contain the CBPCDeviceBase class, which defines the behavior
 of the object that represents either an input or an output device for
 the Vid control. These files were generated by the MFC AppWizard and
 did not require editing.

EDITING REQUIRED

VdMFCDlg.h, VdMFCDlg.cpp - the dialog
 These files contain the CVdMFCDlg class. This class defines the
 behavior of the application's main dialog. These files were generated
 by the MFC AppWizard. The following additions were made to these files:

a. Includes the header files that define the CBPCVid, CBPCDevices, and
CBPCDeviceBase classes and the data types and interfaces for the Vid
control.

b. ClassWizard was used to create variable names for the Vid control and
for values typed in the edit box for setting channels (m_channel) and
for strings typed in the edit box for setting file names (m_filename).
The class definition was edited to create protected variables for the
list box (box) and an available input or output device for the Vid

2883

README.TXT Page 51 of 86

control (m_id). The class definition was also edited to create a private
variable for a pointer to the IBPCDeviceBase interface.

c. The constructor for this class initializes the channel and file name
variable.

d. The DoDataExchange() method for this class associates the variable names
with the appropriate elements.

e. The class definition declares methods to be associated with click events
for elements of the user interface. The class implementation associates
the click events with the ON_BN_CLICKED() macro.

f. The OnInitDialog() method for this class was edited to:
Assign the list-box control of the user interface to the CListBox
variable, box.
Obtain pointers to unknown and enumerate-variant objects that are part
of the MFC library.
Declare and allocate a CBPCDevices object and assign the collection of
all the available input and output devices for the Vid control to it.
Assign the unknown object to the value returned from the custom
CBPCDevices::GetNewEnum() method.
Query the unknown object to obtain an enumerate-variant object and then
release the unknown object.
Enter a while loop set to repeat until there are no more variants in
the enumerate-variant object.
Get the next variant in the enumerate-variant object and obtain a dispatch
for such a variant. Declare and allocate a CBPCDeviceBase object and assign
the dispatch value of the obtained variant to such an object. Retrieve the
name of the device-base object with the CBPCDeviceBase::GetName() method
and add it to the list box. Clear the variant.
After exiting the while loop, release the enumerate-variant object.

g. The OnSetInput() and OnSetOutput() methods for this class were implemented t
Obtain pointers to unknown and enumerate-variant objects.
Obtain an interface pointer to IBPCDeviceBase defined in Vidtypes.h.
Declare and allocate a CBPCDevices object and assign the collection of
all the available input and output devices for the Vid control to it.
Assign the unknown object to the value returned from the custom
CBPCDevices::GetNewEnum() method.
Query the unknown object to obtain an enumerate-variant object and then
release the unknown object.
Enter a for loop set to repeat the number of times determined by the
CBPCVid::GetDeviceCount() method.
For each iteration of the loop:
Obtain the next variant in the enumerate-variant object.
Query the variant object to obtain an IBPCDeviceBase interface pointer.
Get the name property of the device with the interface's get_Name() method
Gets the selected item in the list box and then gets the string
associated with the item.
If this string is the same as the device name, assign the video control's
input and output to that particular device with the SetInput() and
SetOutput() methods of the CBPCVid class. Also, assign the device to
the private member variable for the device, m_pDeviceBase.

h. The OnSetChannel() method for this class was implemented to dispatch a
pointer to the selected item of the list box, then attach such pointer
to a CBPCDeviceBase variable with the CBPCDeviceBase::AttachDispatch()
method, and then assign the channel number specified in the edit box with
the CBPCDeviceBase::SetChannel() method.

i. The OnVideoOn() method for this class was implemented to reverse the
VideoOn value of the Vid control by first retrieving such value and then
setting it to the opposite value.

j. The OnSetFile() method for this class was implemented to assign the file
name specified in the edit box with the CBPCVid::SetFileName() method.

k. The OnPlay(), OnPause(), and OnStop() methods for this class were
implemented to play, suspend play, and stop the file with the Run(),
Pause(), and Stop() methods respectively of the CBPCVid class.

2884

README.TXT Page 52 of 86

bpcdev.h, bpcdev.cpp
 These files contain the CBPCDevices class, which defines the behavior
 of the object that represents a collection of all the available input
 and output devices for the Vid control. These files were generated
 by the MFC AppWizard.
 A declaration and an implementation were added for the GetNewEnum()
 method. This method retrieves an unknown object that refers to an
 enumerate-variant object.

VID_TUNE.TXT
The Vid_Tune directory contains a Visual Basic group comprising
a Visual Basic control and a Visual Basic project to test the
control. The Visual Basic control contains a Video ActiveX control
as a constituent control.

VIDCNTRL.TXT
The VidCntrl directory contains a Visual Basic project
that uses the Video ActiveX control.

VIDEOMFC.TXT
The VideoMFC directory contains a Visual C++ project
workspace that uses the Video ActiveX control.

BPCBASE.H
//
// bpcbase.h: Defines the CBPCDeviceBase class
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
#if !defined(AFX_BPCDEVICEBASE_H__4E088A12_0E75_11D1_A073_00A0C9054174__INCLUDED_)

2885

README.TXT Page 53 of 86

#define AFX_BPCDEVICEBASE_H__4E088A12_0E75_11D1_A073_00A0C9054174__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000
// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by
// Microsoft Visual C++, your modifications will be overwritten.

///
// CBPCDeviceBase wrapper class

class CBPCDeviceBase : public COleDispatchDriver
{
public:
CBPCDeviceBase() {}// Calls COleDispatchDriver default constructor
CBPCDeviceBase(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
CBPCDeviceBase(const CBPCDeviceBase& dispatchSrc) : COleDispatchDriver(dispatchSrc)

// Attributes
public:

// Operations
public:
CString GetName();
BOOL GetHasFilename();
BOOL GetHasCA();
BOOL GetIsInput();
BOOL GetIsOutput();
BOOL GetHasChannel();
long GetStatus();
CString GetProdName();
CString GetFileName();
void SetFileName(LPCTSTR lpszNewValue);
long GetChannel();
void SetChannel(long nNewValue);
BOOL GetChannelAvailable(long nChannel);
long GetImageSourceWidth();
long GetImageSourceHeight();
long GetCurrentState();
double GetCurrentPosition();
void SetCurrentPosition(double newValue);
double GetDuration();
double GetPrerollTime();
void SetPrerollTime(double newValue);
double GetRate();
void SetRate(double newValue);
long GetCountryCode();
void SetCountryCode(long nNewValue);
long GetVideoFrequency();
long GetAudioFrequency();
long GetDefaultVideoType();
void SetDefaultVideoType(long nNewValue);
long GetDefaultAudioType();
void SetDefaultAudioType(long nNewValue);
long GetVideoSubchannel();
void SetVideoSubchannel(long nNewValue);
long GetAudioSubchannel();
void SetAudioSubchannel(long nNewValue);
void SetVolume(long nNewValue);
long GetVolume();
void SetBalance(long nNewValue);

2886

README.TXT Page 54 of 86

long GetBalance();
void SetPower(BOOL bNewValue);
BOOL GetPower();
void SetOverScan(long nNewValue);
long GetOverScan();
long GetProviderRating();
BOOL GetProviderStatus();
long GetProviderEPGMask();
LPDISPATCH GetHistoryItems();
LPDISPATCH GetEmailMessages();
CString GetUserName_();
void SetUserName(LPCTSTR lpszNewValue);
CString GetUserArea();
void SetUserArea(LPCTSTR lpszNewValue);
LPDISPATCH GetItemDetails(long Priority, LPDISPATCH pInDetails);
long Command(long nCommand);
void Run();
void Pause();
void Stop();
void Refresh();
void ResetProviderSystem();
LPDISPATCH BuyItem(long Priority, LPDISPATCH pInDetails);
LPDISPATCH CancelItem(LPDISPATCH pInDetails);
void DisplayConfigDialog();
void HandleCardChaining(BOOL fOK);
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_BPCDEVICEBASE_H__4E088A12_0E75_11D1_A073_00A0C9054174__INCLU

BPCDEV.CPP
//
// bpcdev.cpp: Implements the CBPCDevices class
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by
// Microsoft Visual C++, your modifications will be overwritten.

#include "stdafx.h"
#include "bpcdev.h"

// Dispatch interfaces referenced by this interface
#include "BPCBase.h"

2887

README.TXT Page 55 of 86

///
// CBPCDevices properties

///
// CBPCDevices operations

long CBPCDevices::GetCount()
{
long result;
InvokeHelper(0x5dd, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

LPUNKNOWN CBPCDevices::GetNewEnum()
{
LPUNKNOWN lpUnk = NULL;
InvokeHelper(-4, DISPATCH_PROPERTYGET, VT_UNKNOWN, (void*)&lpUnk, NULL);
return lpUnk;
}

void CBPCDevices::SetHWnd(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x5de, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

void CBPCDevices::SetLcid(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x5df, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

void CBPCDevices::SetNotify(LPDISPATCH newValue)
{
static BYTE parms[] =
VTS_DISPATCH;
InvokeHelper(0x5e0, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

long CBPCDevices::GetColorKey()
{
long result;
InvokeHelper(0x5e2, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDevices::SetColorKey(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x5e2, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCDevices::GetPriority()
{
long result;

2888

README.TXT Page 56 of 86

InvokeHelper(0x5e3, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDevices::SetPriority(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x5e3, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

CBPCDeviceBase CBPCDevices::GetInput()
{
LPDISPATCH pDispatch;
InvokeHelper(0x5e4, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&pDispatch, NULL);
return CBPCDeviceBase(pDispatch);
}

void CBPCDevices::SetInput(LPDISPATCH newValue)
{
static BYTE parms[] =
VTS_DISPATCH;
InvokeHelper(0x5e4, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

CBPCDeviceBase CBPCDevices::GetOutput()
{
LPDISPATCH pDispatch;
InvokeHelper(0x5e5, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&pDispatch, NULL);
return CBPCDeviceBase(pDispatch);
}

void CBPCDevices::SetOutput(LPDISPATCH newValue)
{
static BYTE parms[] =
VTS_DISPATCH;
InvokeHelper(0x5e5, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

BOOL CBPCDevices::GetVideoOn()
{
BOOL result;
InvokeHelper(0x411, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

void CBPCDevices::SetVideoOn(BOOL bNewValue)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0x411, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 bNewValue);
}

CBPCDeviceBase CBPCDevices::Item(const VARIANT& v)
{
LPDISPATCH pDispatch;
static BYTE parms[] =
VTS_VARIANT;
InvokeHelper(0x5dc, DISPATCH_METHOD, VT_DISPATCH, (void*)&pDispatch, parms,

2889

README.TXT Page 57 of 86

&v);
return CBPCDeviceBase(pDispatch);
}

void CBPCDevices::Tune(long lTuningSpace, long Channel, long VideoSubchannel, long
{
static BYTE parms[] =
VTS_I4 VTS_I4 VTS_I4 VTS_I4;
InvokeHelper(0x5e6, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 lTuningSpace, Channel, VideoSubchannel, AudioSubchannel);
}

long CBPCDevices::TSDeviceCount(long lTuningSpace)
{
long result;
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x5e7, DISPATCH_METHOD, VT_I4, (void*)&result, parms,
lTuningSpace);
return result;
}

BPCDEV.H
//
// bpcdev.h: Defines the CBPCDevices class
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
#if !defined(AFX_BPCDEVICES_H__4E088A11_0E75_11D1_A073_00A0C9054174__INCLUDED_)
#define AFX_BPCDEVICES_H__4E088A11_0E75_11D1_A073_00A0C9054174__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000
// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by
// Microsoft Visual C++, your modifications will be overwritten.

// Dispatch interfaces referenced by this interface
class CBPCDeviceBase;

///
// CBPCDevices wrapper class

class CBPCDevices : public COleDispatchDriver
{
public:
CBPCDevices() {}// Calls COleDispatchDriver default constructor

2890

README.TXT Page 58 of 86

CBPCDevices(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch) {}
CBPCDevices(const CBPCDevices& dispatchSrc) : COleDispatchDriver(dispatchSrc) {}

// Attributes
public:

// Operations
public:
long GetCount();
void SetHWnd(long nNewValue);
void SetLcid(long nNewValue);
void SetNotify(LPDISPATCH newValue);
long GetColorKey();
void SetColorKey(long nNewValue);
long GetPriority();
void SetPriority(long nNewValue);
CBPCDeviceBase GetInput();
void SetInput(LPDISPATCH newValue);
CBPCDeviceBase GetOutput();
void SetOutput(LPDISPATCH newValue);
BOOL GetVideoOn();
void SetVideoOn(BOOL bNewValue);
CBPCDeviceBase Item(const VARIANT& v);
void Tune(long lTuningSpace, long Channel, long VideoSubchannel, long AudioSubchann
long TSDeviceCount(long lTuningSpace);
LPUNKNOWN GetNewEnum();
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_BPCDEVICES_H__4E088A11_0E75_11D1_A073_00A0C9054174__INCLUDED

BPCVID.CPP
//
// bpcvid.cpp: Implements the CBPCVid class
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by
// Microsoft Visual C++, your modifications will be overwritten.

#include "stdafx.h"
#include "bpcvid.h"

// Dispatch interfaces referenced by this interface
#include "BPCBase.h"

2891

README.TXT Page 59 of 86

#include "BPCDev.h"

///
// CBPCVid

IMPLEMENT_DYNCREATE(CBPCVid, CWnd)

///
// CBPCVid properties

///
// CBPCVid operations

BOOL CBPCVid::GetPower()
{
BOOL result;
InvokeHelper(0x3f0, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

void CBPCVid::SetPower(BOOL bNewValue)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0x3f0, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 bNewValue);
}

double CBPCVid::GetStartTime()
{
double result;
InvokeHelper(0x3ea, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

void CBPCVid::SetStartTime(double newValue)
{
static BYTE parms[] =
VTS_R8;
InvokeHelper(0x3ea, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

double CBPCVid::GetStopTime()
{
double result;
InvokeHelper(0x3eb, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

void CBPCVid::SetStopTime(double newValue)
{
static BYTE parms[] =
VTS_R8;
InvokeHelper(0x3eb, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

BOOL CBPCVid::GetVideoOn()
{
BOOL result;
InvokeHelper(0x3ec, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;

2892

README.TXT Page 60 of 86

}

void CBPCVid::SetVideoOn(BOOL bNewValue)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0x3ec, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 bNewValue);
}

BOOL CBPCVid::GetClosedCaption()
{
BOOL result;
InvokeHelper(0x3ed, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

void CBPCVid::SetClosedCaption(BOOL bNewValue)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0x3ed, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 bNewValue);
}

BOOL CBPCVid::GetDebug()
{
BOOL result;
InvokeHelper(0x3ee, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

void CBPCVid::SetDebug(BOOL bNewValue)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0x3ee, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 bNewValue);
}

long CBPCVid::GetDeviceCount()
{
long result;
InvokeHelper(0x3e9, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

CBPCDeviceBase CBPCVid::GetInput()
{
LPDISPATCH pDispatch;
InvokeHelper(0x3fc, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&pDispatch, NULL);
return CBPCDeviceBase(pDispatch);
}

void CBPCVid::SetInput(LPDISPATCH newValue)
{
static BYTE parms[] =
VTS_DISPATCH;
InvokeHelper(0x3fc, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

CBPCDeviceBase CBPCVid::GetOutput()

2893

README.TXT Page 61 of 86

{
LPDISPATCH pDispatch;
InvokeHelper(0x3fd, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&pDispatch, NULL);
return CBPCDeviceBase(pDispatch);
}

void CBPCVid::SetOutput(LPDISPATCH newValue)
{
static BYTE parms[] =
VTS_DISPATCH;
InvokeHelper(0x3fd, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

long CBPCVid::GetColorKey()
{
long result;
InvokeHelper(0x3f4, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCVid::SetColorKey(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x3f4, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

CString CBPCVid::GetFileName()
{
CString result;
InvokeHelper(0x3f5, DISPATCH_PROPERTYGET, VT_BSTR, (void*)&result, NULL);
return result;
}

void CBPCVid::SetFileName(LPCTSTR lpszNewValue)
{
static BYTE parms[] =
VTS_BSTR;
InvokeHelper(0x3f5, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 lpszNewValue);
}

long CBPCVid::GetPriority()
{
long result;
InvokeHelper(0x3f6, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCVid::SetPriority(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x3f6, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCVid::GetVolume()
{
long result;
InvokeHelper(0x3f9, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);

2894

README.TXT Page 62 of 86

return result;
}

void CBPCVid::SetVolume(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x3f9, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCVid::GetBalance()
{
long result;
InvokeHelper(0x3fa, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCVid::SetBalance(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x3fa, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCVid::GetImageSourceHeight()
{
long result;
InvokeHelper(0x3fb, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

long CBPCVid::GetImageSourceWidth()
{
long result;
InvokeHelper(0x3f2, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

short CBPCVid::GetMovieWindowSetting()
{
short result;
InvokeHelper(0x3f3, DISPATCH_PROPERTYGET, VT_I2, (void*)&result, NULL);
return result;
}

void CBPCVid::SetMovieWindowSetting(short nNewValue)
{
static BYTE parms[] =
VTS_I2;
InvokeHelper(0x3f3, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCVid::GetCurrentState()
{
long result;
InvokeHelper(0x3fe, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

double CBPCVid::GetCurrentPosition()

2895

README.TXT Page 63 of 86

{
double result;
InvokeHelper(0x3ff, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

void CBPCVid::SetCurrentPosition(double newValue)
{
static BYTE parms[] =
VTS_R8;
InvokeHelper(0x3ff, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

double CBPCVid::GetDuration()
{
double result;
InvokeHelper(0x400, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

double CBPCVid::GetPrerollTime()
{
double result;
InvokeHelper(0x3f1, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

void CBPCVid::SetPrerollTime(double newValue)
{
static BYTE parms[] =
VTS_R8;
InvokeHelper(0x3f1, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

double CBPCVid::GetRate()
{
double result;
InvokeHelper(0x402, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

void CBPCVid::SetRate(double newValue)
{
static BYTE parms[] =
VTS_R8;
InvokeHelper(0x402, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

long CBPCVid::GetLocaleID()
{
long result;
InvokeHelper(0x403, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCVid::SetLocaleID(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x403, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,

2896

README.TXT Page 64 of 86

 nNewValue);
}

LPDISPATCH CBPCVid::GetFont()
{
LPDISPATCH result;
InvokeHelper(DISPID_FONT, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&result, NULL);
return result;
}

void CBPCVid::SetFont(LPDISPATCH newValue)
{
static BYTE parms[] =
VTS_DISPATCH;
InvokeHelper(DISPID_FONT, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

short CBPCVid::GetDisplayMode()
{
short result;
InvokeHelper(0x401, DISPATCH_PROPERTYGET, VT_I2, (void*)&result, NULL);
return result;
}

void CBPCVid::SetDisplayMode(short nNewValue)
{
static BYTE parms[] =
VTS_I2;
InvokeHelper(0x401, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCVid::GetHWnd()
{
long result;
InvokeHelper(DISPID_HWND, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

CBPCDevices CBPCVid::GetDevices()
{
LPDISPATCH pDispatch;
InvokeHelper(0x409, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&pDispatch, NULL);
return CBPCDevices(pDispatch);
}

void CBPCVid::Run()
{
InvokeHelper(0x404, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCVid::Pause()
{
InvokeHelper(0x405, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCVid::Stop()
{
InvokeHelper(0x406, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCVid::Close()

2897

README.TXT Page 65 of 86

{
InvokeHelper(0x407, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCVid::Open(LPCTSTR FileName)
{
static BYTE parms[] =
VTS_BSTR;
InvokeHelper(0x408, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 FileName);
}

void CBPCVid::Login(LPCTSTR UserName, LPCTSTR Password)
{
static BYTE parms[] =
VTS_BSTR VTS_BSTR;
InvokeHelper(0x3f8, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 UserName, Password);
}

void CBPCVid::Tune(long lTuningSpace, long Channel, long VideoSubchannel, long Audi
{
static BYTE parms[] =
VTS_I4 VTS_I4 VTS_I4 VTS_I4;
InvokeHelper(0x40b, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 lTuningSpace, Channel, VideoSubchannel, AudioSubchannel);
}

long CBPCVid::TSDeviceCount(long lTuningSpace)
{
long result;
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x40c, DISPATCH_METHOD, VT_I4, (void*)&result, parms,
lTuningSpace);
return result;
}

void CBPCVid::Refresh()
{
InvokeHelper(DISPID_REFRESH, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCVid::AboutBox()
{
InvokeHelper(0xfffffdd8, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

BPCVID.H
//
// bpcvid.h: Defines the CBPCVid class
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the

2898

README.TXT Page 66 of 86

// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
#if !defined(AFX_BPCVID_H__4E088A10_0E75_11D1_A073_00A0C9054174__INCLUDED_)
#define AFX_BPCVID_H__4E088A10_0E75_11D1_A073_00A0C9054174__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000
// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by
// Microsoft Visual C++, your modifications will be overwritten.

// Dispatch interfaces referenced by this interface
class CBPCDeviceBase;
class CBPCDevices;

///
// CBPCVid wrapper class

class CBPCVid : public CWnd
{
protected:
DECLARE_DYNCREATE(CBPCVid)
public:
CLSID const& GetClsid()
{
static CLSID const clsid
= { 0x31263ec0, 0x2957, 0x11cf, { 0xa1, 0xe5, 0x0, 0xaa, 0x9e, 0xc7, 0x97, 0x0 } };
return clsid;
}
virtual BOOL Create(LPCTSTR lpszClassName,
LPCTSTR lpszWindowName, DWORD dwStyle,
const RECT& rect,
CWnd* pParentWnd, UINT nID,
CCreateContext* pContext = NULL)
{ return CreateControl(GetClsid(), lpszWindowName, dwStyle, rect, pParentWnd, nID);

 BOOL Create(LPCTSTR lpszWindowName, DWORD dwStyle,
const RECT& rect, CWnd* pParentWnd, UINT nID,
CFile* pPersist = NULL, BOOL bStorage = FALSE,
BSTR bstrLicKey = NULL)
{ return CreateControl(GetClsid(), lpszWindowName, dwStyle, rect, pParentWnd, nID,
pPersist, bStorage, bstrLicKey); }

// Attributes
public:

// Operations
public:
BOOL GetPower();
void SetPower(BOOL bNewValue);
double GetStartTime();
void SetStartTime(double newValue);
double GetStopTime();
void SetStopTime(double newValue);
BOOL GetVideoOn();
void SetVideoOn(BOOL bNewValue);
BOOL GetClosedCaption();
void SetClosedCaption(BOOL bNewValue);

2899

README.TXT Page 67 of 86

BOOL GetDebug();
void SetDebug(BOOL bNewValue);
long GetDeviceCount();
CBPCDeviceBase GetInput();
void SetInput(LPDISPATCH newValue);
CBPCDeviceBase GetOutput();
void SetOutput(LPDISPATCH newValue);
long GetColorKey();
void SetColorKey(long nNewValue);
CString GetFileName();
void SetFileName(LPCTSTR lpszNewValue);
long GetPriority();
void SetPriority(long nNewValue);
long GetVolume();
void SetVolume(long nNewValue);
long GetBalance();
void SetBalance(long nNewValue);
long GetImageSourceHeight();
long GetImageSourceWidth();
short GetMovieWindowSetting();
void SetMovieWindowSetting(short nNewValue);
long GetCurrentState();
double GetCurrentPosition();
void SetCurrentPosition(double newValue);
double GetDuration();
double GetPrerollTime();
void SetPrerollTime(double newValue);
double GetRate();
void SetRate(double newValue);
long GetLocaleID();
void SetLocaleID(long nNewValue);
LPDISPATCH GetFont();
void SetFont(LPDISPATCH newValue);
short GetDisplayMode();
void SetDisplayMode(short nNewValue);
long GetHWnd();
CBPCDevices GetDevices();
void Run();
void Pause();
void Stop();
void Close();
void Open(LPCTSTR FileName);
void Login(LPCTSTR UserName, LPCTSTR Password);
void Tune(long lTuningSpace, long Channel, long VideoSubchannel, long AudioSubchann
long TSDeviceCount(long lTuningSpace);
void Refresh();
void AboutBox();
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_BPCVID_H__4E088A10_0E75_11D1_A073_00A0C9054174__INCLUDED_)

RESOURCE.H

2900

README.TXT Page 68 of 86

// resource.h: Header file defining new resource IDs.
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
//{{NO_DEPENDENCIES}}
// Microsoft Developer Studio generated include file.
// Used by VdMFC.rc
//
#define IDD_VDMFC_DIALOG 102
#define IDR_MAINFRAME 128
#define IDC_LISTBOX 1000
#define IDC_EDITFILENAME 1004
#define IDC_SETINPUT 1005
#define IDC_SETOUTPUT 1006
#define IDC_VIDCNTRL 1007
#define IDC_EDITCHANNEL 1008
#define IDC_SETFILENAME 1009
#define IDC_SETCHANNEL 1010
#define IDC_VIDEOON 1011
#define IDC_PLAY 1012
#define IDC_PAUSE 1013
#define IDC_STOP 1014

// Next default values for new objects
//
#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 130
#define _APS_NEXT_COMMAND_VALUE 32771
#define _APS_NEXT_CONTROL_VALUE 1006
#define _APS_NEXT_SYMED_VALUE 101
#endif
#endif

STDAFX.CPP
// stdafx.cpp : source file that includes just the standard includes
//VdMFC.pch will be the pre-compiled header
//stdafx.obj will contain the pre-compiled type information
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//

#include "stdafx.h"

2901

README.TXT Page 69 of 86

STDAFX.H
// stdafx.h : include file for standard system include files,
// or project specific include files that are used frequently, but
// are changed infrequently
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//

#if !defined(AFX_STDAFX_H__4E088A0A_0E75_11D1_A073_00A0C9054174__INCLUDED_)
#define AFX_STDAFX_H__4E088A0A_0E75_11D1_A073_00A0C9054174__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#define VC_EXTRALEAN// Exclude rarely-used stuff from Windows headers

#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions
#include <afxdisp.h> // MFC OLE automation classes
#ifndef _AFX_NO_AFXCMN_SUPPORT
#include <afxcmn.h>// MFC support for Windows Common Controls
#endif // _AFX_NO_AFXCMN_SUPPORT

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_STDAFX_H__4E088A0A_0E75_11D1_A073_00A0C9054174__INCLUDED_)

VDMFC.CPP
// VdMFC.cpp : Defines the class behaviors for the application.
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//

#include "stdafx.h"

2902

README.TXT Page 70 of 86

#include "VdMFC.h"
#include "VdMFCDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CVdMFCApp

BEGIN_MESSAGE_MAP(CVdMFCApp, CWinApp)
//{{AFX_MSG_MAP(CVdMFCApp)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
//}}AFX_MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)
END_MESSAGE_MAP()

///
// CVdMFCApp construction

CVdMFCApp::CVdMFCApp()
{
// TODO: add construction code here,
// Place all significant initialization in InitInstance
}

///
// The one and only CVdMFCApp object

CVdMFCApp theApp;

///
// CVdMFCApp initialization

BOOL CVdMFCApp::InitInstance()
{
AfxEnableControlContainer();

// Standard initialization
// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

#ifdef _AFXDLL
Enable3dControls();// Call this when using MFC in a shared DLL
#else
Enable3dControlsStatic();// Call this when linking to MFC statically
#endif

CVdMFCDlg dlg;
m_pMainWnd = &dlg;
int nResponse = dlg.DoModal();
if (nResponse == IDOK)
{
// TODO: Place code here to handle when the dialog is
// dismissed with OK
}
else if (nResponse == IDCANCEL)
{
// TODO: Place code here to handle when the dialog is

2903

README.TXT Page 71 of 86

// dismissed with Cancel
}

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
return FALSE;
}

VDMFC.H
// VdMFC.h : main header file for the VDMFC application
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//

#if !defined(AFX_VDMFC_H__4E088A06_0E75_11D1_A073_00A0C9054174__INCLUDED_)
#define AFX_VDMFC_H__4E088A06_0E75_11D1_A073_00A0C9054174__INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endif // _MSC_VER >= 1000

#ifndef __AFXWIN_H__
#error include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h"// main symbols

///
// CVdMFCApp:
// See VdMFC.cpp for the implementation of this class
//

class CVdMFCApp : public CWinApp
{
public:
CVdMFCApp();

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CVdMFCApp)
public:
virtual BOOL InitInstance();
//}}AFX_VIRTUAL

// Implementation

//{{AFX_MSG(CVdMFCApp)
// NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !
//}}AFX_MSG

2904

README.TXT Page 72 of 86

DECLARE_MESSAGE_MAP()
};

///

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_VDMFC_H__4E088A06_0E75_11D1_A073_00A0C9054174__INCLUDED_)

VDMFCDLG.CPP
//
// VdMFCDlg.cpp: Implements the CVdMFCDlg class, which is
// the application's main dialog.
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//

#include "stdafx.h"
#include <initguid.h>
#include "VdMFC.h"
#include "VdMFCDlg.h"

#ifdef _DEBUG
#define new DEBUG_NEW
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

///
// CVdMFCDlg dialog

CVdMFCDlg::CVdMFCDlg(CWnd* pParent /*=NULL*/)
: CDialog(CVdMFCDlg::IDD, pParent)
{
//{{AFX_DATA_INIT(CVdMFCDlg)
m_channel = 0;
m_filename = _T("");
//}}AFX_DATA_INIT
// Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);
}

void CVdMFCDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CVdMFCDlg)
DDX_Control(pDX, IDC_VIDCNTRL, m_CVid);
DDX_Text(pDX, IDC_EDITCHANNEL, m_channel);

2905

README.TXT Page 73 of 86

DDX_Text(pDX, IDC_EDITFILENAME, m_filename);
//}}AFX_DATA_MAP
}

BEGIN_MESSAGE_MAP(CVdMFCDlg, CDialog)
//{{AFX_MSG_MAP(CVdMFCDlg)
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_SETINPUT, OnSetInput)
ON_BN_CLICKED(IDC_SETOUTPUT, OnSetOutput)
ON_BN_CLICKED(IDC_SETCHANNEL, OnSetChannel)
ON_BN_CLICKED(IDC_SETFILENAME, OnSetFile)
ON_BN_CLICKED(IDC_PLAY, OnPlay)
ON_BN_CLICKED(IDC_PAUSE, OnPause)
ON_BN_CLICKED(IDC_STOP, OnStop)
ON_BN_CLICKED(IDC_VIDEOON, OnVideoOn)
//}}AFX_MSG_MAP
END_MESSAGE_MAP()

///
// CVdMFCDlg message handlers

BOOL CVdMFCDlg::OnInitDialog()
{
CDialog::OnInitDialog();

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE);// Set big icon
SetIcon(m_hIcon, FALSE);// Set small icon

// Assign the list-box control to the CListBox variable and
// then verify.
VERIFY(box.SubclassDlgItem(IDC_LISTBOX, this));

// Obtain pointers to unknown and enumerate-variant objects.

LPUNKNOWN lpunk;
LPENUMVARIANT lpenumvar;

// Declare and allocate a Devices object and assign the
// collection of all the available input and output devices
// for the video control to this object.
CBPCDevices pDevices = m_CVid.GetDevices();

// Assign the unknown object to the value returned from the
// GetNewEnum function. GetNewEnum is a custom function added
// to the CBPCDevices class.
lpunk = pDevices.GetNewEnum();

// Query the unknown object to obtain an enumerate-variant
// object and then release the unknown object.
if(lpunk == NULL)
return FALSE;

VERIFY(SUCCEEDED(lpunk->QueryInterface(IID_IEnumVARIANT, (void**)&lpenumvar)
lpunk->Release();

long celt;
COleVariant var;

// While there are still devices that can provide input or
// output for the video control, construct a DeviceBase object

2906

README.TXT Page 74 of 86

// from the next variant obtained from the enumerate-variant
// object and add the device's name to the list box.
while(S_OK == lpenumvar->Next(1, &var, (unsigned long*)&celt))
{
ASSERT(var.vt == VT_DISPATCH);
CBPCDeviceBase id(var.pdispVal);
box.AddString(id.GetName());

var.Clear();
}

// Release the enumerate-variant object.
lpenumvar->Release();

return TRUE; // return TRUE unless you set the focus to a control
}

// If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this is automatically done for you by the framework.

void CVdMFCDlg::OnPaint()
{
if (IsIconic())
{
CPaintDC dc(this); // device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);

// Center icon in client rectangle
int cxIcon = GetSystemMetrics(SM_CXICON);
int cyIcon = GetSystemMetrics(SM_CYICON);
CRect rect;
GetClientRect(&rect);
int x = (rect.Width() - cxIcon + 1) / 2;
int y = (rect.Height() - cyIcon + 1) / 2;

// Draw the icon
dc.DrawIcon(x, y, m_hIcon);
}
else
{
CDialog::OnPaint();
}
}

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.
HCURSOR CVdMFCDlg::OnQueryDragIcon()
{
return (HCURSOR) m_hIcon;
}

void CVdMFCDlg::OnSetInput()
{
LPUNKNOWN lpunk;
LPENUMVARIANT lpenumvar;
BOOL bFound = FALSE;
IBPCDeviceBase* pDevice;

CBPCDevices pDevices = m_CVid.GetDevices();
lpunk = pDevices.GetNewEnum(); //GetNewEnum custom function see
 //details

2907

README.TXT Page 75 of 86

if(lpunk == NULL)
return;

VERIFY(SUCCEEDED(lpunk->QueryInterface(IID_IEnumVARIANT, (void**)&lpenumvar)
lpunk->Release();

for(int i = 0; i < m_CVid.GetDeviceCount(); i++)
{
long celt;
COleVariant var;

if(SUCCEEDED(lpenumvar->Next(1, &var, (unsigned long*)&celt)))
{
var.punkVal->QueryInterface(IID_IBPCDeviceBase, (void**)&pDevice);

if(pDevice != NULL)
{
BSTR bsDeviceName;
pDevice->get_Name(&bsDeviceName);
CString str(bsDeviceName);
SysFreeString(bsDeviceName);

CString string;
int sel = box.GetCurSel();

if(sel == LB_ERR)
{
AfxMessageBox("Please select a device from the list");
pDevice->Release();
lpenumvar->Release();
var.Clear();
return;
}
box.GetText(sel, string);

if(str == string)
{
m_CVid.SetInput(pDevice);
m_pDeviceBase = pDevice;
bFound = TRUE;
}
pDevice->Release();
}
var.Clear();
}
if(bFound)
break;
}
ASSERT(lpenumvar != NULL);
lpenumvar->Release();
}

void CVdMFCDlg::OnSetOutput()
{
LPUNKNOWN lpunk;
LPENUMVARIANT lpenumvar;
BOOL bFound = FALSE;
IBPCDeviceBase* pDevice;

CBPCDevices pDevices = m_CVid.GetDevices();
lpunk = pDevices.GetNewEnum(); //GetNewEnum custom function see
 //details

2908

README.TXT Page 76 of 86

if(lpunk == NULL)
return;

VERIFY(SUCCEEDED(lpunk->QueryInterface(IID_IEnumVARIANT, (void**)&lpenumvar)
lpunk->Release();

for(int i = 0; i < m_CVid.GetDeviceCount(); i++)
{
long celt;
COleVariant var;

if(SUCCEEDED(lpenumvar->Next(1, &var, (unsigned long*)&celt)))
{
var.punkVal->QueryInterface(IID_IBPCDeviceBase, (void**)&pDevice);

if(pDevice != NULL)
{
BSTR bsDeviceName;
pDevice->get_Name(&bsDeviceName);
CString str(bsDeviceName);
SysFreeString(bsDeviceName);

CString string;
int sel = box.GetCurSel();

if(sel == LB_ERR)
{
AfxMessageBox("Please select a device from the list");
pDevice->Release();
lpenumvar->Release();
var.Clear();
return;
}
box.GetText(sel, string);

if(str == string)
{
m_CVid.SetOutput(pDevice);
m_pDeviceBase = pDevice;
bFound = TRUE;
}
pDevice->Release();
}
var.Clear();
}
if(bFound)
break;
}
ASSERT(lpenumvar != NULL);
lpenumvar->Release();
}

void CVdMFCDlg::OnVideoOn()
{
m_CVid.SetVideoOn(!m_CVid.GetVideoOn());

}

void CVdMFCDlg::OnSetChannel()
{
UpdateData(TRUE);
 CBPCDeviceBase id;

2909

README.TXT Page 77 of 86

id.AttachDispatch(m_pDeviceBase, FALSE);
id.SetChannel(m_channel);
}

void CVdMFCDlg::OnSetFile()
{
UpdateData(TRUE);
m_CVid.SetFileName(m_filename);

}

void CVdMFCDlg::OnPlay()
{
m_CVid.Run();

}

void CVdMFCDlg::OnPause()
{
m_CVid.Pause();

}

void CVdMFCDlg::OnStop()
{
m_CVid.Stop();

}

VDMFCDLG.H
//
// VdMFCDlg.h: Defines the CVdMFCDlg class, which defines the
// behavior of the application's main dialog.
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
//{{AFX_INCLUDES()
#include "bpcvid.h"
#include "bpcbase.h"
#include "bpcdev.h"
#include "vidtypes.h"
//}}AFX_INCLUDES

#if !defined(AFX_VDMFCDLG_H__4E088A08_0E75_11D1_A073_00A0C9054174__INCLUDED_)
#define AFX_VDMFCDLG_H__4E088A08_0E75_11D1_A073_00A0C9054174__INCLUDED_

#if _MSC_VER >= 1000
#pragma once

2910

README.TXT Page 78 of 86

#endif // _MSC_VER >= 1000

///
// CVdMFCDlg dialog

class CVdMFCDlg : public CDialog
{
// Construction
public:
CVdMFCDlg(CWnd* pParent = NULL);// standard constructor

// Dialog Data
//{{AFX_DATA(CVdMFCDlg)
enum { IDD = IDD_VDMFC_DIALOG };
CBPCVidm_CVid;
longm_channel;
CStringm_filename;
//}}AFX_DATA

// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CVdMFCDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX);// DDX/DDV support
//}}AFX_VIRTUAL

// Implementation
protected:
CListBox box;
CBPCDeviceBase m_id;
HICON m_hIcon;

// Generated message map functions
//{{AFX_MSG(CVdMFCDlg)
virtual BOOL OnInitDialog();
afx_msg void OnPaint();
afx_msg HCURSOR OnQueryDragIcon();
afx_msg void OnSetChannel();
afx_msg void OnPause();
afx_msg void OnVideoOn();
afx_msg void OnStop();
afx_msg void OnSetInput();
afx_msg void OnSetOutput();
afx_msg void OnPlay();
afx_msg void OnSetFile();
//}}AFX_MSG

DECLARE_MESSAGE_MAP()
private:
IBPCDeviceBase* m_pDeviceBase;
};

//{{AFX_INSERT_LOCATION}}
// Microsoft Developer Studio will insert additional declarations immediately befor

#endif // !defined(AFX_VDMFCDLG_H__4E088A08_0E75_11D1_A073_00A0C9054174__INCLUDED_)

BPCBASE.CPP

2911

README.TXT Page 79 of 86

//
// bpcbase.cpp: Implements the CBPCDeviceBase class
//
// Copyright (C) 1997 Microsoft Corporation
// All rights reserved.
//
// This source code is only intended as a supplement to the
// Broadcast Architecture Programmer's Reference.
// For detailed information regarding Broadcast
// Architecture, see the reference.
//
// Machine generated IDispatch wrapper class(es) created by Microsoft Visual C++

// NOTE: Do not modify the contents of this file. If this class is regenerated by
// Microsoft Visual C++, your modifications will be overwritten.

#include "stdafx.h"
#include "bpcbase.h"

///
// CBPCDeviceBase properties

///
// CBPCDeviceBase operations

CString CBPCDeviceBase::GetName()
{
CString result;
InvokeHelper(0x3e9, DISPATCH_PROPERTYGET, VT_BSTR, (void*)&result, NULL);
return result;
}

BOOL CBPCDeviceBase::GetHasFilename()
{
BOOL result;
InvokeHelper(0x3ed, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

BOOL CBPCDeviceBase::GetHasCA()
{
BOOL result;
InvokeHelper(0x410, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

BOOL CBPCDeviceBase::GetIsInput()
{
BOOL result;
InvokeHelper(0x3ea, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

BOOL CBPCDeviceBase::GetIsOutput()
{
BOOL result;
InvokeHelper(0x3eb, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

2912

README.TXT Page 80 of 86

BOOL CBPCDeviceBase::GetHasChannel()
{
BOOL result;
InvokeHelper(0x3ec, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

long CBPCDeviceBase::GetStatus()
{
long result;
InvokeHelper(0x3ef, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

CString CBPCDeviceBase::GetProdName()
{
CString result;
InvokeHelper(0x3f0, DISPATCH_PROPERTYGET, VT_BSTR, (void*)&result, NULL);
return result;
}

CString CBPCDeviceBase::GetFileName()
{
CString result;
InvokeHelper(0x3f1, DISPATCH_PROPERTYGET, VT_BSTR, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetFileName(LPCTSTR lpszNewValue)
{
static BYTE parms[] =
VTS_BSTR;
InvokeHelper(0x3f1, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 lpszNewValue);
}

long CBPCDeviceBase::GetChannel()
{
long result;
InvokeHelper(0x3f2, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetChannel(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x3f2, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

BOOL CBPCDeviceBase::GetChannelAvailable(long nChannel)
{
BOOL result;
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x3f5, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, parms,
nChannel);
return result;
}

long CBPCDeviceBase::GetImageSourceWidth()
{

2913

README.TXT Page 81 of 86

long result;
InvokeHelper(0x3f7, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

long CBPCDeviceBase::GetImageSourceHeight()
{
long result;
InvokeHelper(0x3f8, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

long CBPCDeviceBase::GetCurrentState()
{
long result;
InvokeHelper(0x412, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

double CBPCDeviceBase::GetCurrentPosition()
{
double result;
InvokeHelper(0x3f9, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetCurrentPosition(double newValue)
{
static BYTE parms[] =
VTS_R8;
InvokeHelper(0x3f9, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

double CBPCDeviceBase::GetDuration()
{
double result;
InvokeHelper(0x3fa, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

double CBPCDeviceBase::GetPrerollTime()
{
double result;
InvokeHelper(0x3fb, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetPrerollTime(double newValue)
{
static BYTE parms[] =
VTS_R8;
InvokeHelper(0x3fb, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

double CBPCDeviceBase::GetRate()
{
double result;
InvokeHelper(0x3fc, DISPATCH_PROPERTYGET, VT_R8, (void*)&result, NULL);
return result;
}

2914

README.TXT Page 82 of 86

void CBPCDeviceBase::SetRate(double newValue)
{
static BYTE parms[] =
VTS_R8;
InvokeHelper(0x3fc, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 newValue);
}

long CBPCDeviceBase::GetCountryCode()
{
long result;
InvokeHelper(0x3fd, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetCountryCode(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x3fd, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCDeviceBase::GetVideoFrequency()
{
long result;
InvokeHelper(0x3fe, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

long CBPCDeviceBase::GetAudioFrequency()
{
long result;
InvokeHelper(0x3ff, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

long CBPCDeviceBase::GetDefaultVideoType()
{
long result;
InvokeHelper(0x400, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetDefaultVideoType(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x400, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCDeviceBase::GetDefaultAudioType()
{
long result;
InvokeHelper(0x401, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetDefaultAudioType(long nNewValue)
{
static BYTE parms[] =
VTS_I4;

2915

README.TXT Page 83 of 86

InvokeHelper(0x401, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCDeviceBase::GetVideoSubchannel()
{
long result;
InvokeHelper(0x402, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetVideoSubchannel(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x402, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCDeviceBase::GetAudioSubchannel()
{
long result;
InvokeHelper(0x403, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetAudioSubchannel(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x403, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

void CBPCDeviceBase::SetVolume(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x407, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCDeviceBase::GetVolume()
{
long result;
InvokeHelper(0x407, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetBalance(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x408, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCDeviceBase::GetBalance()
{
long result;
InvokeHelper(0x408, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

2916

README.TXT Page 84 of 86

void CBPCDeviceBase::SetPower(BOOL bNewValue)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0x40b, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 bNewValue);
}

BOOL CBPCDeviceBase::GetPower()
{
BOOL result;
InvokeHelper(0x40b, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetOverScan(long nNewValue)
{
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x413, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 nNewValue);
}

long CBPCDeviceBase::GetOverScan()
{
long result;
InvokeHelper(0x413, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

long CBPCDeviceBase::GetProviderRating()
{
long result;
InvokeHelper(0x51d, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

BOOL CBPCDeviceBase::GetProviderStatus()
{
BOOL result;
InvokeHelper(0x51e, DISPATCH_PROPERTYGET, VT_BOOL, (void*)&result, NULL);
return result;
}

long CBPCDeviceBase::GetProviderEPGMask()
{
long result;
InvokeHelper(0x519, DISPATCH_PROPERTYGET, VT_I4, (void*)&result, NULL);
return result;
}

LPDISPATCH CBPCDeviceBase::GetHistoryItems()
{
LPDISPATCH result;
InvokeHelper(0x520, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&result, NULL);
return result;
}

LPDISPATCH CBPCDeviceBase::GetEmailMessages()
{
LPDISPATCH result;
InvokeHelper(0x521, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&result, NULL);

2917

README.TXT Page 85 of 86

return result;
}

CString CBPCDeviceBase::GetUserName_()
{
CString result;
InvokeHelper(0x51b, DISPATCH_PROPERTYGET, VT_BSTR, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetUserName(LPCTSTR lpszNewValue)
{
static BYTE parms[] =
VTS_BSTR;
InvokeHelper(0x51b, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 lpszNewValue);
}

CString CBPCDeviceBase::GetUserArea()
{
CString result;
InvokeHelper(0x51c, DISPATCH_PROPERTYGET, VT_BSTR, (void*)&result, NULL);
return result;
}

void CBPCDeviceBase::SetUserArea(LPCTSTR lpszNewValue)
{
static BYTE parms[] =
VTS_BSTR;
InvokeHelper(0x51c, DISPATCH_PROPERTYPUT, VT_EMPTY, NULL, parms,
 lpszNewValue);
}

LPDISPATCH CBPCDeviceBase::GetItemDetails(long Priority, LPDISPATCH pInDetails)
{
LPDISPATCH result;
static BYTE parms[] =
VTS_I4 VTS_DISPATCH;
InvokeHelper(0x518, DISPATCH_PROPERTYGET, VT_DISPATCH, (void*)&result, parms,
Priority, pInDetails);
return result;
}

long CBPCDeviceBase::Command(long nCommand)
{
long result;
static BYTE parms[] =
VTS_I4;
InvokeHelper(0x3f4, DISPATCH_METHOD, VT_I4, (void*)&result, parms,
nCommand);
return result;
}

void CBPCDeviceBase::Run()
{
InvokeHelper(0x40c, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCDeviceBase::Pause()
{
InvokeHelper(0x40e, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

2918

README.TXT Page 86 of 86

void CBPCDeviceBase::Stop()
{
InvokeHelper(0x40d, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCDeviceBase::Refresh()
{
InvokeHelper(0x40f, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCDeviceBase::ResetProviderSystem()
{
InvokeHelper(0x515, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

LPDISPATCH CBPCDeviceBase::BuyItem(long Priority, LPDISPATCH pInDetails)
{
LPDISPATCH result;
static BYTE parms[] =
VTS_I4 VTS_DISPATCH;
InvokeHelper(0x516, DISPATCH_METHOD, VT_DISPATCH, (void*)&result, parms,
Priority, pInDetails);
return result;
}

LPDISPATCH CBPCDeviceBase::CancelItem(LPDISPATCH pInDetails)
{
LPDISPATCH result;
static BYTE parms[] =
VTS_DISPATCH;
InvokeHelper(0x517, DISPATCH_METHOD, VT_DISPATCH, (void*)&result, parms,
pInDetails);
return result;
}

void CBPCDeviceBase::DisplayConfigDialog()
{
InvokeHelper(0x51a, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
}

void CBPCDeviceBase::HandleCardChaining(BOOL fOK)
{
static BYTE parms[] =
VTS_BOOL;
InvokeHelper(0x523, DISPATCH_METHOD, VT_EMPTY, NULL, parms,
 fOK);
}

WEBTUNE.TXT
The WebTune directory contains an HTML document that
Internet Explorer uses to display a Video ActiveX control.

2919

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

