
Error and Success Codes Page 5 of8

This sample cannot be rendered.
VFW_E_SAMPLE_REJECTED_EOS Ox8004022C 556

This sample cannot be rendered because the end of the stream
has been reached.
VFW_E_DUPLICATE_NAM E Ox8004022D 557

An attempt to add a filter with a duplicate name failed.
VFW_S_DUPLICATE_NAM E Ox0004022D 557

An attempt to add a filter with a duplicate name succeeded with
a modified name.
VFW_E_TIMEOUT Ox8004022E 558

A time-out has expired.
VFW_E_INVALID_FILE_FORMAT Ox8004022F 559

The file format is invalid.
VFW_E_ENUM_OUT_OF_RANGE Ox80040230 560

The list has already been exhausted.
VFW_E_CIRCULAR_GRAPH Ox80040231 561

The filter graph is circular.
VFW_E_NOT _ALLOWED_ TO_SAVE Ox80040232 562

Updates are not allowed in this state.
VFW_E_ TIM E_ALREADY _PASSED Ox80040233 563

An attempt was made to queue a command for a time in the
past.
VFW_E_ALREADY _CANCELLED Ox80040234 564

The queued command was already canceled.
VFW_E_CORRUPT _GRAPH FILE Ox80040235 565

Cannot render the file because it is corrupt.
VFW_E_ADVISE_ALREADY _SET Ox80040236 566

An !Overlay advise link already exists.
VFW_S_STATE_INTERMEDIATE Ox00040237 567

The state transition is not complete.
VFW_E_NO_MODEX_AVAILABLE Ox80040238 568

No full-screen modes are available.
VFW_E_NO_ADVISE_SET Ox80040239 569

This advise cannot be canceled because it was not successfully
set.
VFW_E_NO_FULLSCREEN Ox8004023A 570

Full-screen mode is not available.
VFW_E_IN_FULLSCREEN_MODE Ox8004023B 571

Cannot call !VideoWindow methods while in full-screen mode.
VFW_E_UNKNOWN_FILE_ TYPE Ox80040240 576

The media type of this file is not recognized.
VFW_E_CANNOT _LOAD_SOURCE_FILTER Ox80040241 577

The source filter for this file could not be loaded.
VFW_S_PARTIAL_RENDER Ox00040242 578

Some of the streams in this movie are in an unsupported format.
VFW_E_FILE_ TOO_SHORT Ox80040243 579

2036

Error and Success Codes Page 6 of8

A file appeared to be incomplete.
VFW_E_INVALID_FILE_ VERSION Ox80040244 580

The file's version number is invalid.
VFW_S_SOME_DATA_IGNORED Ox00040245 581

The file contained some property settings that were not used.
VFW_S_CONNECTIONS_DEFERRED Ox00040246 582

Some connections failed and were deferred.
VFW_E_INVALID_CLSID Ox80040247 583

This file is corrupt: it contains an invalid class identifier.
VFW_E_INVALID_M EDIA_ TYPE Ox80040248 584

This file is corrupt: it contains an invalid media type.
VFW_E_SAMPLE_ TIME_NOT _SET Ox80040249 585

No time stamp has been set for this sample.
VFW_S_RESOURCE_NOT_NEEDED Ox00040250 592

The resource specified is no longer needed.
VFW_E_MEDIA_ TIME_NOT _SET Ox80040251 593

No media time stamp was set for this sample.
VFW_E_NO_ TIM E_FORMAT _SET Ox80040252 594

No media time format was selected.
VFW_E_MONO_AUDIO_HW Ox80040253 595

Cannot change balance because audio device is mono only.
VFW_S_M EDIA_ TYPE_IGNORED Ox00040254 596

Could not connect with the media type in the persistent graph.
VFW_E_NO_DECOM PRESSOR Ox80040255 597

Cannot play back the video stream: could not find a suitable
decompressor.
VFW_E_NO_AUDIO_HARDWARE Ox80040256 598

Cannot play back the audio stream: no audio hardware is
available, or the hardware is not supported.
VFW_S_VIDEO_NOT_RENDERED Ox00040257 599

Cannot play back the video stream: could not find a suitable
renderer.
VFW_S_AUDIO_NOT_RENDERED Ox00040258 600

Cannot play back the audio stream: could not find a suitable
renderer.
VFW_E_RPZA Ox80040259 601

Cannot play back the video stream: format 'RPZA' is not
supported.
VFW_S_RPZA Ox0004025A 602

Cannot play back the video stream: format 'RPZA' is not
supported.
VFW_E_PROCESSOR_NOT _SUITABLE Ox8004025B 603

DirectShow cannot play MPEG movies on this processor.
VFW_E_UNSUPPORTED_AUDIO Ox8004025C 604

Cannot play back the audio stream: the audio format is not
supported.

2037

Error and Success Codes Page 7 of8

VFW_E_UNSUPPORTED_VIDEO Ox8004025D 605
Cannot play back the video stream: the video format is not

supported.
VFW_E_MPEG_NOT_CONSTRAINED Ox8004025E 606

DirectShow cannot play this video stream because it falls outside
the constrained standard.
VFW_E_NOT _IN_GRAPH Ox8004025F 607

Cannot perform the requested function on an object that is not in
the filter graph.
VFW_S_ESTIMATED Ox00040260 608

The value returned had to be estimated. Its accuracy can't be
g ua ra nteed.
VFW_E_NO_ TIME_FORMAT Ox80040261 609

Cannot get or set time-related information on an object that is
using a time format of
VFW_E_READ_ONLY Ox80040262 610

Could not make the connection because the stream is read-only
and the filter alters the data.
VFW_S_RESERVED Ox00040263 611

This success code is reserved for internal purposes within
DirectShow.
VFW_E_BUFFER_UNDERFLOW Ox80040264 612

The buffer is not full enough.
VFW_E_UNSUPPORTED_STREAM Ox80040265 613

Cannot play back the file: the format is not supported.
VFW_E_NO_ TRANSPORT Ox80040266 614

Pins cannot connect because they don't support the same
transport.
VFW_S_STREAM_OFF Ox00040267 615

The stream was turned off.
VFW_S_CANT_CUE Ox00040268 616

The graph can't be cued because it lacks data or contains corrupt
data.
VFW_E_BAD_ VIDEOCD Ox80040269 617

The Video CD can't be read correctly by the device or is the data
is corrupt.
VFW_S_NO_STOP _TIME Ox80040270 618

The sample had a start time but not a stop time. In this case, the
stop time returned is set to the start time plus one. The
!MediaSamole: :GetTime method can return this success code.
VFW_E_OUT_OF _VIDEO_MEMORY Ox80040271 619

There is not enough video memory at this display resolution and
number of colors. Reducing resolution might help.
VFW_E_VP _NEGOTIATION_FAILED Ox80040272 620

The video port connection negotiation process has failed.
VFW_E_DDRAW _CAPS_NOT _SUITABLE Ox80040273 621

2038

Error and Success Codes

Either Microsoft DirectDraw® has not been installed or the video
card capabilities are not suitable. Make sure the display is not in 16-
color mode.

Page 8of8

VFW_E_NO_ VP _HARDWARE Ox80040274 622
No video port hardware is available, or the hardware is not

responding.
VFW_E_NO_CAPTURE_HARDWARE Ox80040275 623

No Capture hardware is available, or the hardware is not
responding.
VFW_E_DVD_OPERATION_INHIBITED Ox80040276 624

This user operation is inhibited by DVD content at this time.
VFW_E_DVD_INVALIDDOMAIN Ox80040277 625

This operation is not permitted in the current domain.
VFW_E_DVD_NO_BUTTON Ox80040278 626

Requested button is not available.
VFW_E_DVD_GRAPHNOTREADY Ox80040279 627

DVD-Video playback graph has not been built yet.
VFW_E_DVD_RENDERFAIL Ox8004027a 628

DVD-Video playback graph building failed.
VFW_E_DVD_DECNOTENOUGH Ox8004027b 629

DVD-Video playback graph could not be built due to insufficient
decoders.
CTL_E_CANTSAVEFILETOTEMP Ox800A02DF 735
CTL_E_SEARCHTEXTNOTFOUND Ox800A02E8 744
CTL_E_REPLACEMENTSTOOLONG Ox800A02EA 746
VFW_E_BAD_KEY Ox800403F2 1010

A registry entry is corrupt.

© 1997 Microsoft Corporation . All r ights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.!j Topic Contents l@i§lllMM

2039

Filters and Samples Page 1of1

MQi@[.jjj,M M!i.! 111j Topic Contents l@IJll!MM

Filters and Samples

This topic contains a brief description of the filters and sample applications shipped with
DirectShow. The filters are supplied as binary code only and are available through the Filter
Graph Editor. The samples include source code and demonstrate how to write DirectShow
filters and applications. You can use these filters and samples as they are or modify them for
your own applications.

• DirectShow Filters

· DirectShow Samples

© 1997 Microsoft Corporation . All r ights reserved . Terms of Use.

2040

DirectShow Filters Page 1of24

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

DirectShow Filters

Microsoft® DirectShow™ provides filters and samples as part of the DirectShow Software
Development Kit (SDK). A filter is supplied as binary code only, and is one of the filters listed
in the Filter Graph Editor when you choose Insert Filters from the Graph menu. Filters are
described in this section.

Samples include source code. Some samples are filters and some are applications. Some of the
sample filters are registered and appear in the Filter Graph Editor. Other sample filters must be
built and registered before they will appear in the Filter Graph Editor. Sample filters (and
sample applications) are described in DirectShow Samples.

The DirectShow SDK provides the following filters:

• ACM Audio Compressor
• Analog Video Crossbar
• Audio Capture
• Audio Renderer
• AVI Compressor
• AVI Decompressor
• AVI Draw
• AVI MUX
• AVI Splitter
• AVI/WAV File Source
• Color Space Converter
• Cutlist File Source
• DSound Audio Renderer
• DV Muxer
• DV Splitter
• DV Video Decoder
• DV Video Encoder
• DVD Navigator
• File Source (Async)
• File Source (URL)
• File Stream Renderer
• File Writer
• Full Screen Renderer
• Indeo 4.3 Video Compression
• Indeo 4.3 Video Decompression
• Indeo 5.0 Audio Decompression
• Indeo 5.0 Video Compression
• Indeo 5.0 Video Decompression
• Indeo 5.0 Video Progressive Download Sources
• Internal Script Command Renderer

2041

DirectShow Filters Page 2 of24

• Line 21 Decoder
• Lyric Parser
• MIDI Parser
• MIDI Renderer
• MPEG Audio Decoder
• MPEG Video Decoder
• MPEG-1 Stream Splitter
• Multi-File Parser
• Overlay Mixer
• QuickTime Decompressor
• QuickTime Movie Parser
• SAMI CCC) Parser
• TrueMotion 2.0 Decompressor
• TV Audio
• TV Tuner
• VFW Video Capture
• VGA 16 Color Ditherer
• Video Renderer
• WAVE Parser
• WDM Video Capture

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11¥8

• QIM [.] +• I !!·HM Topic Contents l@i§il/¥8

ACM Audio Compressor

The ACM Audio Compressor filter acts as a container for the Audio Compression Manager
(ACM), integrating the ACM with the DirectShow architecture. It supports the IAMStreamConfiq
interface, which lets you control audio capture or compression information from a filter's
output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 111.J,,[M Topic Contents l@i§i +gMM

Analog Video Crossbar

The WDM-based Analog Video Crossbar filter can select or route analog video. The single
output stream represents a hardware path for analog baseband video. One of the input pins
comes from a TV Tuner (the TV Tuner Filter). Other input pins support video streams.

2042

DirectShow Filters Page 3 of24

The Analog Video Crossbar filter exposes the IAMCrossbar interface, which is used for routine
source selection.

This filter is available through Windows 98 and Windows NT 5.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@IJll!MM

Audio Capture

The Audio Capture (Wavein) filter is installed with the DirectShow run time. If you have audio
capture hardware, this filter is available in the Filter Graph Editor when you choose Insert
Filters from the Graph menu, under the Audio Capture Source category.

Unlike ordinary DirectShow filters, special category filters, such as Audio Capture Source
filters, can work with more than one device. When DirectShow is installed, it will look for
devices installed on your computer that work with the special category filter and list the
options in that category. For example, in the Audio Capture Source filter category, DirectShow
will list all the audio capture cards (which includes sound cards with microphone inputs)
installed on the system. You then need to choose which device to use.

The audio capture filter has one capture output pin and several input pins (one for each type of
input on the card, such as Linein, Mic, CD, and MIDI).

The filter and its input pins each support IAMAudioinputMixer.

The output pin supports IAMStreamConfig.

This filter enables your sound capture card(s). If you have a sound card, it will be listed under
in the Filter Graph Editor's list of filters in the Audio Capture Source category, with a name
indicating the sound card it is enabling.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+;<MM++ 1 11·!:.!i Topic Contents l@IJl +g¥+

Audio Renderer

The Audio Renderer filter is a generic audio rendering filter that you can connect to the output
of any of the following filters, if they contain WAV audio: File Source CAsync), File Source
CURL), MPEG-1 Stream Splitter, AVI Splitter, WAVE Parser, or any audio transform filter. This
filter does not check the audio stream's subtype; the WAVEFORMAT or WAVEFORMATEX
structure passed in the format block contains the information needed to connect to this filter.

2043

DirectShow Filters Page 4 of24

The filter's property sheet contains the following:
Tab Property Values
Audio Input Preferred Media Lists the major type, subtype, and format.
Pin Types
(rendered)
Audio
Renderer

wFormatTag Waveform-audio format type. Many compression algorithms
have registered format tags; the Mmreg.h header file
contains a complete list of these format tags.

nChannels Number of channels in the waveform-audio data. Monaural
data uses one channel and stereo data uses two channels.

nSamplePerSec Rate, in samples per second (hertz), at which each channel
should play or record. If wFormatTag is
WAVE_FORMAT _PCM, then common values for
nSamplePerSec are 8.0 kHz, 11.025 kHz, 22.05 kHz, and
44.1 kHz. For non-PCM formats, you must compute this
member according to the manufacturer's format
specification.

nAvgBytesPerSec Required average data-transfer rate, in bytes per second, for
the format tag. If wFormatTag is WAVE_FORMAT_PCM,
then nAvgBytesPerSec should equal the product of
nSamplesPerSec and nBlockAlign. For formats other than
pulse code modulation (PCM), you must compute this
member according to the manufacturer's format
specification. Playback and record software can estimate
buffer sizes by using the nAvgBytesPerSec member.

nBlockAlign

Rate

Block alignment, in bytes. The block alignment is the
smallest unit of data for the wFormatTag format type. If
wFormatTag is WAVE_FORMAT_PCM, then nBlockAlign
should equal nChannels. For non-PCM formats, this member
must be computed according to the manufacturer's format
specification.

Playback and record software must process a multiple of
nBlockAlign bytes of data at a time. Data written and read
from a device must always start at the beginning of a block.
For example, it is illegal to start playback of PCM data in the
middle of a sample (that is, on a non-block-aligned
boundary).

Specifies the rendering rate for this file. This value acts as a
multiplier; 1.0 represents the authored speed. Read-only.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

MQi§i[.jlj,M 111.Hj Topic Contents •@m• •gnw

AVI Compressor

2044

DirectShow Filters Page 5 of24

The AVI compressor filter has one input pin and one output pin.

The filter supports the IAMVfwCompressDialogs interface.

The output pin supports the IAMStreamConfig and IAMVideoCompression interfaces.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M ill.HM Topic Contents i@faii!MM

AVI Decompressor

The AVI Decompressor filter decompresses AVI input and generates suitable output for a video
rendering filter or an intervening video transform filter.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M ill.HM Topic Contents •@M* 1gnw

AVI Draw

This filter handles IOverlay interface support for an audio-video interleaved (AVI) video data
stream. The AVI Draw filter's input pin connects to a video data output pin from the AVI
Splitter filter. The AVI Draw output pin must connect to a filter that supports overlays;
currently, the Video Renderer filter is the only such filter included with the DirectShow SDK.

DirectShow typically uses this filter to play back motion-JPEG (MJPEG) compressed AVI files on
a computer with hardware support for MJPEG playback. In a general sense, this filter
negotiates connections between specific hardware devices and AVI video streams that rely on
those hardware devices, such as video capture and playback cards. This filter is not needed for
playback or processing of streams that are hardware-independent.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]+• 1 !!·HM Topic Contents l@l§lllMM

AVI MUX

2045

DirectShow Filters Page 6 of24

The AVI MUX filter takes the input from one or more media streams, converts the data if
necessary, and combines it to produce a single output data stream in audio-video interleaved
(AVI) format. This filter's output pin must be connected to the File Writer filter.

The AVI MUX's default behavior produces an AVI 1.0 format interleaved data stream. Use the
IConfiqAviMux interface to change the compatibility index.

The filter's property sheet contains the following:
Tab Property Values
Interleaving Interleaving

Interleaving
Parameters
Throughput
Statistics

AVI Specific Capture Drift:
master stream

AVI Out Preferred Media
Types

Input OX Preferred Media
Types

Controls the level of interleaving between the source media
files; you can specify the level of interleaving: none, capture,
or full.
Sets the audio preroll and interleaving frequency (measured
in milliseconds).
Displays the number of dropped frames on the output data
stream.
Enable and disable Capture Drift on the specified master
stream.
Displays the major type, subtype, and format of the output
data stream.
Displays the major type, subtype, and format of the specified
input data stream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents l@i§i 1gzj+

AVI Splitter

The AVI Splitter filter parses AVl-compressed video data and splits it into the component data
streams. It can be connected to the File Source (async), File Source (URL), or AVI/WAV File
Source filter supplied with DirectShow, or a third-party filter that delivers a compressed AVI
stream and can interface with an asynchronous parser.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents l@i§il!MM

AVl/WAV File Source

The AVI/WAV File Source filter reads AVI and WAV source files and generates the appropriate
output pins for the file type.

For WAV files, the filter creates an audio output pin, which produces an audio stream that can

2046

DirectShow Filters Page 7 of24

be connected to an audio rendering filter or intervening audio transform filter.

For AVI files, the filter creates a video output pin, which produces a compressed AVI stream
suitable for the AVI codec filter, and an audio output pin, which produces an audio stream
suitable for an audio rendering filter or an intervening audio transform filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ 1 !!·HM Topic Contents i@l§ii!MM

Color Space Converter

This transform filter converts from one RGB color type to another, such as between 24-bit and
8-bit RGB color. You can use this filter to convert to a color space used by the video rendering
filter, such as from the AVI Decomoressor filter to the Full Screen Renderer filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ 1 !!·HM Topic Contents i@l§ii!MM

Cutlist File Source

This source filter can output different pieces of different .avi or .wav files seamlessly and
efficiently. It can be used for nonlinear video editing and for audio editing.

Using the CutListGraphBuilder object, the SimpleCutList object, and the VideoFileClip and
AudioFileClip objects, an application can build a cutlist out of pieces of .avi and .wav, and use
the DirectShow Cutlist Source Filter to play it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.jjj,M M!i.! 111M Topic Contents i@l§i +gzj+

DSound Audio Renderer

The DSound Audio Renderer filter is a generic audio rendering filter that you can connect to
the output of any of the following filters, if they contain WAV audio: File Source (Async), .Eil.e.
Source (URL), MPEG-1 Stream Splitter, AVI Splitter, WAVE Parser, or any audio transform
filter. In addition to its basic sound-rendering capabilities, this filter can process Microsoft
DirectX® DirectSound® API calls; use the IAMDirectSound methods to set and retrieve the
window that will handle the sound playback.

2047

DirectShow Filters Page 8 of24

Note that this filter does not check the subtype of the audio stream; the WAVEFORMAT or
WAVEFORMATEX structure passed in the format block contains the information needed to
connect to this filter. The Audio Renderer is the default audio rendering filter for DirectShow;
to use the DSound Audio Renderer filter instead, you must insert it into the filter graph
before rendering the media file.

The filter's property sheet contains the following:
Tab Property Values
Audio Input Preferred Media Lists the major type, subtype, and format
pin Types
(rendered)
Audio
Renderer

wFormatTag

nChannels

Waveform-audio format type. There are many compression
algorithms with registered format tags. You can find a
complete list of format tags in the Mmreg.h header file.
Number of channels in the waveform-audio data. Monaural
data uses one channel and stereo data uses two channels.

nSamplePerSec Rate, in samples per second (hertz), at which each channel
should play or record. If wFormatTag is
WAVE_FORMAT_PCM, then common values for
nSamplesPerSec are 8.0 kHz, 11.025 kHz, 22.05 kHz, and
44.1 kHz. For non-PCM formats, you must compute this
member according to the manufacturer's format
specification.

nAvgBytesPerSec Required average data-transfer rate, in bytes per second, for
the format tag. If wFormatTag is WAVE_FORMAT_PCM,
nAvgBytesPerSec should equal the product of
nSamplesPerSec and nBlockAlign. For non-PCM formats,
you must compute this member according to the
manufacturer's format specification. Playback and record
software can estimate buffer sizes by using the
nAvgBytesPerSec member.

nBlockAlign

Rate

Block alignment, in bytes. The block alignment is the
minimum atomic unit of data for the wFormatTag format
type. If wFormatTag is WAVE_FORMAT _PCM, nBlockAlign
should equal the product of nChannels and
wBitsPerSample divided by 8 (bits per byte). For non-PCM
formats, you must compute this member according to the
manufacturer's format specification.

Playback and record software must process a multiple of
nBlockAlign bytes of data at a time. Data written and read
from a device must always start at the beginning of a block.
For example, it is illegal to start playback of PCM data in the
middle of a sample (that is, on a non-block-aligned
boundary).
This value represents the rate of audio playback, where 1.0
is the authored speed. This value is a multiplier; a value of
2.0 is twice the authored speed and 0.5 is half.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

2048

DirectShow Filters Page 9 of24

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M 111.1 1119 Topic Contents i@l§i +gzj+

DV Muxer

The DV Muxer filter multiplexes compressed DV video with compressed DV audio.

The DV Muxer filter accepts the following input media types:

From the video input pin:
MEDIA TYPE_ Video
MEDIASUBTYPE_dvsd/dvhd/dvsl
FORMAT: VIDEOINFO

From the audio input pin:
MEDIATYPE_Audio
MEDIASU BTYPE_ wave
FORMAT: WAVEFORMATEX/NULL

The DV Muxer filter sends the following output media type:

From the video output pin:
MEDIATYPE_Interleaved(iavs)
MEDIASUBTYPE_dvsd/dvhd/dvsl
FORMAT: DVINFO

To see a diagram of how to use the DV Muxer filter with the DV Video Encoder filter, see DV
Video Encoder.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 111.1 1119 Topic Contents i@l§ii!MM

+;<§1[.]jj,+ 111.],.[9 Topic Contents Mttfjl§ii!MM

DV Splitter

The DV Splitter filter passes a DV stream to a downstream filter (DV Video Decoder and
converts DV audio to PCM audio.

2049

DirectShow Filters

The DV Splitter filter accepts the following input media type:
MEDIATYPE_Interleaved(iavs)
MEDIASUBTYPE_dvsd/dvhd/dvsl
FORMAT: DVINFO

The DV Splitter filter outputs the following output media types:

From the video output pin:
MEDIATYPE_Video

MEDIASUBTYPE_dvsd/dvhd/dvsl
FORMAT: VIDEOINFO

From the audio output pin:
MEDIATYPE_Audio
MEDIASU BTYPE_ wave
FORMAT: WAVEFORMATEX

Page 10of24

To see a diagram of how to use the DV Splitter filter with the DV Video Decoder filter, see DV
Video Decoder.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M l!i.! 11ij Topic Contents

+QiM!.l+' 111.],.[J Topic Contents

DV Video Decoder

The DV Video Decoder filter decodes a DV stream to uncompressed video.

The DV Video Decoder filter accepts the following input media type:
MEDIA TYPE_ Video
MEDIASUBTYPE_dvsd/dvhd/dvsl
FORMAT: VIDEOINFO

The DV Video Decoder filter outputs the following output media type:
MEDIA TYPE_Interleaved
MEDIASUBTYPE_RGB/YUYV/and other RGB and FOURCC subtypes
FORMAT: VIDEOINFO

l@i§lllMM

l@i§lllMM

The following illustration gives an example of how to use DV Video Decoder and DV Splitter
filters.

2050

DirectShow Filters

MEDIATYPE_Interleaved MEDIATYPE_ Video
MEDIASUBTYPE_dvsd/dvhd/dvsl MEDIASUBTYPE_dvsd/dvhd/dvsl
FORMAT: DVINFO ------~ FORMAT: VIDEOINFO

MEDIATYPE_Stream
MEDIASUBTYPE_Avi l

----~

File Source (async) AV! Splitter

MEDIATYPE_Audio
MEDIASUBTYPE_ WAVE

.-------------- !_.----------..
DV Splitter DV Video Decoder

Audio Renderer

FORMAT: WAVEFORMATEX ---------~

MEDIATYPE_ Video
MEDIASUBTYPE_RGB
FORMAT:VIDEOINFO------------------~

HQ!§ 11.i!l,9 Mii.11119

DV Video Encoder

Page 11 of24

Video Renderer

T op1c Contents

The DV Video Encoder filter encodes uncompressed video into a compressed DV stream.

The DV Video Encoder filter accepts the following input media type:
MEDIATYPE ... Video
MEDIASUBTYPE RGB/YUYV/and other RGB and FOURCC subtypes
FORMAT: VIDEOINFO

The DV Video Encoder filter outputs the following output media type:
MEDIATYPE Interteaved
MEDIASUBTYPE dvsd/dvhd/dvs!

FORMAT: VIDEOINFO

The following illustration gives an example of how to use DV Video Encoder and DV Muxer
filters.

MEDIATYPE_Video MEDIATYPE_Interleaved
MEDIASUBTYPE_dvsd/dvhd/dvsl MEDIASUBTYPE_dvsd/dvhd/dvsl

FORMAT: VIDEOINFO -----------] FORMAT: DVINJFO

MEDIATYPE_ Video
MEDIASUBTYPE_RGB
FORMAT: VIDEOINFO -----~

~--~ ----~
File Source (async) AV! Splitter File Writer DV Encoder DV MUX AV! MUX

2051

DirectShow Filters Page 12of24

+Qi§i[.]ii,+ 1 !!·HM Topic Contents i@l§ii!MM

DVD Navigator

The DVD Navigator filter is the source filter for a DVD-Video playback filter graph. It opens all
necessary files in a DVD-Video volume, navigates through the linear DVD-Video .vob files, and
parses the resulting MPEG-2 program stream, splitting the stream into three (video, audio,
subpicture) output pins.

The DVD Navigator filter also implements the IDvdControl and IDvdinfo interfaces that enable
a DVD playback application to control DVD-Video playback.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119 Topic Contents i@l§ii!MM

File Source (Async)

The File Source (async) filter is a generic asynchronous source filter that works with any
source file whose media major type is stream. This includes AVI, MOV, MPEG, and WAV files. It
requires the downstream filter to be a parser, such as the MPEG-1 Stream Splitter, the AVI
Splitter, or the QuickTime Movie Parser.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119 Topic Contents i@l§ii!MM

File Source (URL)

The File Source (URL) filter is a generic asynchronous source filter that works with any source
file that can be identified by a Uniform Resource Locator (URL) and whose media major type is
stream. This includes AVI, MOV, MPEG, and WAV files. It requires the downstream filter to be a
parser, such as the MPEG-1 Stream Splitter, the AVI Splitter, or the QuickTime Movie Parser.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119 Topic Contents i@l§ii!MM

2052

DirectShow Filters Page 13of24

File Stream Renderer

The File Stream Renderer filter renders streams with the major media type MEDIATYPE_File.
The filter hooks up to output pins of type MEDIATYPE_File and renders a separate filename
when the pin is rendered. The filename is contained in the pformat field of the media type.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

File Writer

The File Writer filter writes a stream of bits to disk. The output format matches the input
format. The AVI MUX filter is currently the only filter to which the File Writer can connect, so it
writes all data to the specified file in audio-video interleaved (AVI) format. You can create a
new output file or specify an existing file; if the file already exists, it will be completely
overwritten with the new data.

The time stamps on samples delivered to the file writer are byte offsets in the file. The input
pin exposes the COM !Stream interface and supports a subset of the interface. This enables the
upstream filter to write data when the graph is stopped.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q<@[.jlj,M 111.1 1119 Topic Contents i@i§i i!fttiM

Full Screen Renderer

The Full Screen Renderer filter is a Mode X rendering filter that occupies the entire desktop
when it displays video.

Full-screen rendering is enabled from the filter graph manager, which automatically switches
between the filter graph's video renderer and the Full Screen Renderer when required; you
need not include the Full Screen Renderer in the filter graph beforehand.

The filter's property sheet contains the following:

2053

DirectShow Filters

Tab Property
Quality Frames played

Frames dropped in renderer

Average frame rate achieved

Jitter (std dev frame time)
(mSec)
Average sync offset (mSec)

Std dev sync offset (mSec)

Input Preferred Media Types

Page 14 of 24

Values
Total frames in the video stream
Number of frames dropped during playback
Average frames per second displayed during
playback

Standard deviation frame rate, in milliseconds

Average synchronization offset, in milliseconds

Standard deviation synchronization offset, in
milliseconds
Lists the major type, subtype, and format

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmli§lllMM

Internal Script Command Renderer

The Internal Script Command Renderer filter accepts data in with a major media type of
MEDIATYPE_Text or MEDIATYPE_ScriptCommand, and, when it is time to render a particular
piece of data, files an EC OLE EVENT event with the text or command as the parameters.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmli§lllMM

Indeo 4.3 Video Compression

The Indeo® 4.3 Video Compression filter compresses video data into the Indeo 4.3 format.
This is typically used when writing out a video file for playback in, for example, a capture filter
graph.

For more information about Intel Indeo Video, see the Intel Web site at
http ://develooer.intel.com/ial/indeo l!:I .

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41M+• 111.q9 Topic Contents

Indeo 4.3 Video Decompression

2054

1@!§111$8

DirectShow Filters Page 15of24

The Indeo® 4.3 Video Decompression filter will decompress Indeo 4.3, 4.2, and 4.1 videos.
This filter can be used during playback of Indeo 4.0 video files.

For more information about Intel Indeo Video, see the Intel Web site at:
http://developer.intel.com/ia l/i ndeo ID

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 111j Topic Contents

lndeo 5.0 Audio Decompression

l@i§lllMM

The Indeo® 5.0 Audio Decompression filter decompresses Indeo 5.0 audio. This filter can be
used during playback of Indeo 5.0 audio files.

For more information about Intel Indeo Audio, see the Intel Web site at
http ://developer.intel.com/ial/indeo ID .

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQl§1[.jjj,M 111.],.(j Topic Contents

Indeo 5.0 Video Compression

l@bll!MM

The Indeo® 5.0 Video Compression filter compresses video data using the Indeo 5.0 algorithm.
This is typically used in a video editing filter graph.

For more information about Intel Indeo Video, see the Intel Web site at
http ://developer.intel.com/ial/indeo ID .

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ1§1[.jjj,+ '!!·Hi Topic Contents

lndeo 5.0 Video Decompression

i@i§M MUMM

The Indeo® 5.0 Video Decompression filter decompresses video data using the Indeo 5.0
algorithm. This filter can be used during playback of Indeo 5.0 video files.

2055

DirectShow Filters Page 16of24

© 1997 Microsoft Corporation . All rjghts reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

Indeo 5.0 Video Progressive Download Sources

Indeo® Progressive Download video files can be played as they download. The Indeo Video 5.0
Progressive Download Sources filter enables you to play these files. Lower resolution and
lower-frame-rate video can be viewed almost immediately, while the display of the Progressive
Download file continuously improves in both quality and frame. Indeo Audio Software works
with the Indeo Video 5.0 Progressive Download Sources filter.

For more information about Intel Indeo Video, see the Intel Web site at
http ://develooer.intel.com/ial/indeo IL:l •

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM Topic Contents

Line 21 Decoder

l@l§lllMM

The Line 21 Decoder filter takes Line 21 data (closed captions) and decodes it to produce a
bitmap of media type MEDIATYPE_VIDEO. The output can then be rendered through a video
renderer or mixed in a video mixer, such as the Overlay Mixer.

The Line 21 input data to the filter can be either of two forms: byte-pair data that comes on
Line 21 of a video frame or feed, or DVD Line 21 data. For every group of pictures (GOP) in the
DVD video stream, there can be a user data packet that has that particular GOP's header
information and Line 21 data.

The Line 21 Decoder filter supports the IAMLine21Decoder and IBaseFilter interfaces
externally, and the IAMovieSetup interface internally.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQIM!.l+' 111.],.[M Topic Contents lttfjl§lllMM

Lyric Parser

2056

DirectShow Filters Page 17of24

The Lyric Parser filter parses closed captioning information from simple text files. Also see
SAMI (CC) Parser and the Multi-File Parser.

The Lyric Parser filter file format is as shown in the following example:

;LYRICS
0
1000
5000
10000

Here's some text at the beginning
This shows up after one second
And this after four more seconds
The end.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M l!i.! 111j

MIDI Parser

Topic Contents l@IJll!MM

The MIDI Parser filter parses MIDI data from the File Source (Async) and File Source (URL)
filters. The MIDI Renderer filter can render data from this filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M l!i.! 111j Topic Contents l@i§i 111n•

MIDI Renderer

The MIDI Renderer filter renders MIDI data from the MIDI Parser filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@!.li!:' 111.1::11 Topic Contents l@IJll!MM

MPEG Audio Decoder

The MPEG Audio Decoder filter decompresses MPEG-1 audio data. You usually connect it to the
audio output of the MPEG-1 Stream Splitter filter. The MPEG Audio Decoder filter produces an
audio stream suitable for input to an audio rendering filter or intervening audio transform
filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

2057

DirectShow Filters Page 18of24

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MPEG Video Decoder

The MPEG Video Decoder filter decompresses MPEG-1 video data. Usually, its input comes from
the MPEG-1 Stream Splitter filter and its output goes to a video rendering filter or an
intervening video transform filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MPEG-1 Stream Splitter

The MPEG-1 Stream Splitter filter splits MPEG-1 data into separate audio and video streams.
The upstream filter must be the File Source (Async) filter, File Source CURL) filter, or a
compatible third-party asynchronous source filter. Its output is compressed video and audio
data; you can connect the output to suitable decompressors, such as the MPEG Video Decoder
filter and the MPEG Audio Decoder filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!@i+

Multi-File Parser

The Multi-File Parser filter parses a simple file format that enables multiple actual file names to
be specified as though they were one file. This assists you in combining video and text for
closed captioning. Also see SAMI CCC) Parser and Lyric Parser.

Multi-File Parser files have the format shown in the following example:

;MULTI
http: //server/ share/ video.mpg
http: //server/ share/ captions.smi

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

2058

DirectShow Filters Page 19of24

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

Overlay Mixer

The Overlay Mixer filter provides video port playback support. The filter negotiates the
parameters that control the video port with an upstream proxy filter that controls the video
port driver. It then renders the video on the screen. It can also mix the video content with
closed captions on a second pin, and can be extended to an arbitrary number of pins to add
subpicture data and other video components.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii/¥+

QuickTime Decompressor

The QuickTime Decompressor filter decompresses files using the Apple® QuickTime® file
format. This is typically used during play back of QuickTime files.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents 'ttt!'*' •um•

QuickTime Movie Parser

The QuickTime Movie Parser filter splits Apple® QuickTime® data into audio and video
streams. The input pin connects to a source filter such as the File Source (Async) filter or the
File Source CURL) filter. The Parser uses the Video For Windows (VFW) decompressor to
decompress QuickTime files. If the Video for Windows compressor does not support the
compression method, it cannot render the data. The filter creates one output pin for the video
stream and one output pin for the audio stream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents 'ttt!'*' •um•

2059

DirectShow Filters Page 20 of24

SAMI (CC) Parser

The SAM! Closed-Caption Parser filter parses closed captioning information from SAMI
formatted files. Also see Lyric Parser.

The SAM! (Synchronized Accessible Media Interchange) interchange format is based on
SGML/HTML. Every SAM! document should start with a <SAM!> tag and end with a
</SAMl>tag. The document's class name is "Synchronized Accessible Media Interchange" and
its file extension is .smi or .sami. At its most basic level, SAM! can be used as an intermediate
interchange format for encoding closed captions in the Line-21 for NTSC, MPEG for DVDs, and
!FE-ITV formats, and other similar formats.

The following is a sample SAM! document:

<SAM!>
<HEAD>

<Title>President John F. Kennedy Speech</Title>
<SAMIParam><l--

Copyright=" (C)Copyright 1997, Microsoft Corporation"
Media="JF Kennedy.wav", none
Length=73000
CaptionMetrics=scaleable
CaptionLineLength=lBO
CaptionFontSize=12
CaptionTextLines=3-->

</SAMIParam>

</HEAD>

<STYLE TYPE="text/css"><l--
p {margin-left, 29pt; margin-right, 29pt; font-size, 12pt;
text-align: left; font-family: tahoma, arial, sans-serif;
font-weight, normal; color, white; background-color, black;}

TABLE {Width, "248pt" ;}

.ENUSCC {Name, "English Captions"; lang, en-US-CC;}

#Source {margin-bottom, -lSpt; background-color, silver;
color: black; vertical-align: normal; font-size: 12pt;
font-family: tahoma, arial, sans-serif;
font-weight, normal;}

#Youth {color, greenyellow; font-size, lBpt;)

#BigPrint-1 {color, yellow; font-size, 24pt;)-->
</STYLE>

<BODY><TABLE>

<SYNC Start=O>
<P Class=ENUSCC ID=Source>Pres. John F. Kennedy

<SYNC Start=10>
<P Class=ENUSCC>Let the word go forth,

from this time and place to friend and foe
alike that the torch

<SYNC Start=8800>
<P Class=ENUSCC>has been passed to a new generations of Americans,

2060

DirectShow Filters

born in this century, tempered by war,
<SYNC Start=19500>

<P Class=ENUSCC>disciplined by a hard and bitter peace,

Page 21of24

proud of our ancient heritage, and unwilling to witness
<SYNC Start=28000>

<P Class=ENUSCC>or permit the slow undoing of those human rights
to which this nation has always

<SYNC Start=38000>
<P Class=ENUSCC>been committed and to which we are

committed today at home and around the world.
<SYNC Start=46000>

<P Class=ENUSCC>Let every nation know,
whether it wishes us well or ill,
that we shall pay any price, bare any burden,

<SYNC Start=61000>
<P Class=ENUSCC>meet any hardship, support any friend,

oppose any foe, to ensure the survival and
success of liberty.

<SYNC Start=73000>
<P Class=ENUSCC ID=Source>End of:
<P Class=ENUSCC>President John F. Kennedy Speech

</TABLE></BODY>
</SAM!>

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M l!i.! 111j

MQ<§i[.]i!:+ 111.Hj

TrueMotion 2.0 Decompressor

Topic Contents

Topic Contents

l@i§i •11»•
l@i§lllMM

The TrueMotion Decompressor filter decompresses TrueMotion video. This filter will be used
during playback of TrueMotion video files.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.Hj Topic Contents '®'*' •11»•

TV Audio

The TV Audio filter provides control of television audio decoding, stereo or monoaural selection,
and secondary audio program (SAP) selection.

This filter is available through the Windows 98 and Windows NT 5.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

2061

DirectShow Filters Page 22of24

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

TV Tuner

The TV Tuner filter selects an analog broadcast or cable channel to be viewed. The single
output stream is a hardware path for analog baseband video. This output should be an input to
the Analog Video Crossbar filter. The input pins include an input for cable and an antenna
input.

The TV Tuner filter exposes the IAMTVTuner interface, which is used for channel selection.

This filter is available through the Windows 98 and Windows NT 5.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§i[.]jj,+ +II.HM Topic Contents Mttfjl§i +gn+

VFW Video Capture

The Video Capture filter is installed with the DirectShow run time. If you have video capture
hardware that uses Video For Windows, this filter is available in the Filter Graph Editor when
you choose Insert Filters from the Graph menu, under the Video Capture Sources.

Unlike ordinary DirectShow filters, special category filters, such as Video Capture Source
filters, can work with more than one device. When DirectShow is installed, it will look for
devices installed on your computer that work with the special category filter and list the
options in that category. For example, in the Video Capture Source filter category, DirectShow
will list all the video capture cards installed on the system. You then need to choose which
device to use.

The Video for Windows Video Capture filter has two output pins called Capture and Preview.

The filter supports the IAMVfwCaptureDialogs interface.

The capture output pin supports the IAMStreamConfiq, IAMVideoCompression, and
IAMDroppedFrames interfaces.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]jj,i 111.J,,[M Topic Contents i@l§ii!MM

2062

DirectShow Filters Page 23of24

VGA 16 Color Ditherer

The VGA 16 Color Ditherer filter converts from an RGB color type to a 4-bit color display. You
can use this filter to convert to the color space used by video rendering filter, such as from the
AVI Decompressor filter to the Full Screen Renderer filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 11!·!:.!M Topic Contents l@i§il/¥+

Video Renderer

The Video Renderer filter is a generic video renderer that you can connect to any video
transform filter that produces decompressed video data. This filter has its own plug-in
distributor in the filter graph manager, which enables applications to set and retrieve
properties on the filter by calling the corresponding interface methods on the filter graph
manager. Most other DirectShow™ filters are not visible to applications in this manner.

The Video Renderer filter uses DirectX® methods, if the video card supports them. Full-screen
rendering is enabled from the filter graph manager, which automatically switches between the
Video Renderer and the Full Screen Renderer when appropriate; you need not include the Full
Screen Renderer in the filter graph beforehand.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§i l!ftbM

WAVE Parser

The WAVE Parser filter parses WAV-format audio data. The upstream filter must be the .Eil.e.
Source (Async) filter, File Source (URL) filter, or a compatible third-party asynchronous source
filter that contains WAV audio data. The output stream is uncompressed audio data, which you
can connect directly to an audio rendering filter or to an intervening audio transform filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§i 1gn+

WDM Video Capture

2063

DirectShow Filters Page 24 of24

The Video Capture filter is installed with the DirectShow run time. If you have video capture
hardware that uses WDM (Windows Driver Model) and you have Windows 98 or Windows NT 5
installed, this filter is available in the Filter Graph Editor when you choose Insert Filters from
the Graph menu, under the Video Capture Source category.

Unlike ordinary DirectShow filters, special category filters, such as Video Capture Source
filters, can work with more than one device. When DirectShow is installed, it will look for
devices installed on your computer that work with the special category filter and list the
options in that category. For example, in the Video Capture Source filter category, DirectShow
will list all the video capture cards installed on the system. You then need to choose which
device to use.

The WDM Video Capture filter supports the interfaces and property sets of the WDM capture
drivers. It exposes the IAMAnalogVideoDecoder, IAMVideoProcAmp and
IAMCameraControl interfaces to applications. Depending on the underlying hardware, the
filter exposes one or more output pins that output compressed video, uncompressed video,
timecode, and closed captioning data. The output pins expose the IAMStreamControl interface,
and in the case of compressed video, the IAMVideoComoression interface as well.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

2064

DirectShow Samples Page 1of22

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

DirectShow Samples

This article provides the descriptions of the Microsoft® DirectShow™ samples that are part of
the DirectShow Software Development Kit (SDK). These samples demonstrate how to write
DirectShow filters and applications that use them.

Microsoft® DirectShow™ provides filters and samples as part of the DirectShow Software
Development Kit (SDK). A filter is supplied as binary code only. Samples include source code.
Some samples are filters and some are applications. Some of the sample filters are registered
and appear in the Filter Graph Editor when you choose Insert Filters from the Graph menu.
Other sample filters must be built and registered before they will appear in the Filter Graph
Editor.

The sample paths in this topic refer to the default sample directories created when you install
the DirectX Media SDK.

The following sections describe the purpose and functionality of each sample filter or sample
application.

Source Filters

• Async Sample (Asynchronous Reader Filter)
• Ball Sample (Bouncing Ball Filter)
• Synth Sample (Audio Synthesizer Filter)
• VidCap Sample (Video Capture Filter)

Transform Filters

• Contrast Sample (Video Contrast Filter)
• EzRGB24 Sample (Image Effect Filter)
• Gargle Sample (Gargle Filter)
• Inftee Sample (Infinite-Pin Tee Filter)
• MPGAudio Sample CMPEG Audio Decoder Filter)
• MPGVideo Sample CMPEG Video Decoder Filter)
• Nullip Sample (Null In Place Filter)
• Nullnull Sample (Minimal Null Filter)
• Vcrctrl Sample (VCR Control Filter)

Renderer Filters

• Dump Sample (Dump Filter)
• SampVid Sample (Video Renderer Filter)
• Scope Sample (Oscilloscope Filter)
• TextOut Sample (Text Display Filter)

2065

DirectShow Samples Page 2 of22

Cutlist Sample Applications

• CL Text Sample (Text Cutlist Application)
• Simpled Sample (Cutlist Application)

C/C++-based Sample Applications

• AMCap Sample (DirectShow Capture Application)
• CPlay Sample CC/COM-based Media Player Application)
• Dvdsampl Sample (DVD Player Application)
• InWindow Sample (Window Playback Application)
• !Play Sample (lndeo Player Application)
• MFCPlay Sample (C++/COM-based Media Player Application)
• MPEGProp Sample (MPEG Property Page Display Application)
• PlayFile Sample (Simple Playback Application)
• ShowStrm Sample (Multimedia Streaming Application)
• VidClip Sample (Video Editing Application)

Visual Basic-based Sample Applications

• Visual Basic-Based ActiveX Player
• Visual Basic-Based Filter Graph Builder
• Visual Basic-Based Filter Graph Player
• Visual Basic-Based Player

Miscellaneous Samples

• PID Sample (Plug-In Distributor Application)
• Samp!OS Sample (10Stream Helper Library)

Additional Sample Information

• Structure of Comments in Sample Source Code
• Build Information

Sample Locations

The following table shows the directory location of each sample, assuming the default
installation directory.
Sample
AMCaP Sample CDirectShow Capture APPiication)
Async Sample (Asynchronous Reader Filter)
Ball Sample (Bouncing Ball Filter)

CLText Sample (Text Cutlist APPiication)
Contrast Sample (Video Contrast Filter)
CPlay Sample CC/COM-based Media Player
APPiication)
Dump Sample (Dump Filter)

2066

Directory location
DXMedia\Samples\Ds\Capture\
DXMedia\Samples\Ds\Async\

DXMedia\Samples\Ds\Ball\
DXMedia\Samples\Ds\Cutlist\Cltext

DXMedia\Samples\Ds\Contrast\
DXMedia\Samples\Ds\Player\Cplay\

DXMedia\Samples\Ds\Dump\

DirectShow Samples

Dvdsampl Sample (DVD Player Application)
EzRGB24 Sample (Image Effect Filter)
Gargle Sample (Gargle Filter)
Inftee Sample (Infinite-Pin Tee Filter)
InWindow Sample (Window Playback Application)
!Play Sample (lndeo Player Application)
MFCPlay Sample (C++/COM-based Media Player
Application)
MPGAudio Sample (MPEG Audio Decoder Filter)
MPGVideo Sample (MPEG Video Decoder Filter)
MPEGProp Sample (MPEG Property Page Display
Application)
Nullip Sample (Null In Place Filter)
Nullnull Sample (Minimal Null Filter)
PID Sample (Plug-In Distributor Application)
PlayFile Sample (Simple Playback Application)
SampIOS Sample (IOStream Helper Library)
SampVid Sample (Video Renderer Filter)
Scope Sample (Oscilloscope Filter)
ShowStrm Sample (Multimedia Streaming
Application)
Simplecl Sample (Cutlist Application)
Synth Sample (Audio Synthesizer Filter)
TextOut Sample (Text Display Filter)
Vcrctrl Sample (VCR Control Filter)
VidCap Sample (Video Capture Filter)
VidClip Sample (Video Editing Application)
Visual Basic-Based ActiveX Player
Visual Basic-Based Filter Graph Builder
Visual Basic-Based Filter Graph Player
Visual Basic-Based Player

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

Page 3of22

DXMedia\Samples\Ds\Dvdsampl\
DX Med ia\Sa mp les\Ds\Ezrg b24\
DXMedia\Samples\Ds\Gargle\
DXMedia\Samples\Ds\Inftee\
DX Med ia\Sa mp les\Ds\Player\I nwi ndow\
DXMedia\Samples\Ds\Iplay\
DX Med ia\Sa mp les\Ds\Player\Mfcplay\

DXMedia\Samples\Ds\Mpgaudio\
DX Med ia\Sa mp les\Ds\M pgvideo\
DXMedia\Samples\Ds\Player\Mpegprop\

DXMedia\Samples\Ds\Nullip\
DXMedia\Samples\Ds\Nullnull\
DXMedia\Samples\Ds\pids\Iamovie\
DX Med ia\Sa mp les\Ds\Player\Playfi le\
DXMedia\Samples\Ds\Iostream\
DXMedia\Samples\Ds\Sampvid\
DX Med ia\Sa mp les\Ds\Scope\
DXMedia\Samples\Ds\Showstrm\

DXMedia\Samples\Ds\Cutlist\Simplecl
DXMedia\Samples\Ds\Synth\
DX Med ia\Sa mp les\Ds\ Textout\
DX Med ia\Sa mp les\Ds\Vcrctrl\
DXMedia\Samples\Ds\Vidcap\
DXMedia\Samples\Ds\Vidclip\
DX Med ia\Sa mp les\Ds\Vb\Ocx\
DXMedia\Samples\Ds\Vb\Builder\
DX Med ia\Sa mp les\Ds\Vb\ Vbdemo\
DX Med ia\Sa mp les\Ds\Vb\Player\

MQl@[.jjj,M M!i.! 11!j Topic Contents l@i§lllMM

MQl§i[.jjj,M 111.],.(j Topic Contents l@i§lllMM

Structure of Comments in Sample Source Code

The source code for each sample generally includes a standard introduction in one of the
source files. This introduction consists of a block of comments in one of the source files
describing what the sample illustrates, what base classes it implements, and so on. To find the

2067

DirectShow Samples Page 4of22

introduction to the sample, go to the .cpp file whose name matches the sample. (For samples
written in C, the file name ends in .c instead.) The following template shows this introduction
with standard headings illustrating the elements that might be included.

II What this sample illustrates
[brief series of 1-line desc riptions]

I I
II summary

[paragraph on what's in the sample, what it does]
I I
II Demonstration instructions

[how to bring it up, f o r example under GraphEdt, and make it run]
I I
II Implementation

[introduction to the c o de, how it all works together]
I I
II Known problems ("features n ot illustrated by this sample") :

[o ptional]
I I
II Files

[file names and a half-line descriptio n o f each]
I I
II Base classes used (refer to the d ocs for a diagram of what they inherit) :

[list of base c lasses direc tly inherited fro m (summary o f all files)]

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.!+• +11.q9 Topic Contents l@!§il!MM

Source Filters

This article details sample source filters. By definition, each of these source filter samples
provides at least one output pin. (That is part of what makes them source filters as opposed to
other kinds of filters.)

Contents of this article:

• Async Sample (Asynchronous Reader Filter)
• Ball Sample (Bouncing Ball Filter)
• Synth Sample (Audio Synthesizer Filter)
• VidCap Sample (Video Capture Filter)

Async Sample (Asynchronous Reader Filter)

The asynchronous reader sample filter, Async, shows how to implement "progressive
download" in the DirectShow environment. Async implements the IAsyncReader interface,
which is perhaps the most important aspect of asynchronous processing. It also implements
the IFileSourceFilter interface and defines some helper classes to create filters that conform to
the IAsyncReader interface.

The Memfile.exe application uses part of the Async sample code. This program reads a file into

2068

DirectShow Samples Page 5 of 22

memory at a given rate (in kilobytes per second) and plays that file as it comes in.

This filter is not installed in the DirectShow run time and is not included in the list of
DirectShow filters in the Filter Graph Editor. To use this filter, you must build and register it.

Samole Locations

Ball Sample (Bouncing Ball Filter)

The bouncing ball sample source filter, Ball, illustrates format negotiation. Ball also illustrates
the use of the source filter base classes CSource and CSourceStream.

The code in Fball.h and Fball.cpp manages the filter interfaces. Those two files contain
approximately the minimum code required for a source filter. The Ball.hand Ball.cpp files
contain the code that bounces the ball.

This filter has a single output pin, which provides a video stream that shows a ball bouncing
around in the frame. The Ball filter also accepts quality-management requests from the
downstream graph, which illustrates a simple quality-management strategy. This filter
implements the IOualityControl interface for that purpose.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

Synth Sample (Audio Synthesizer Filter)

The audio synthesizer sample filter, Synth, demonstrates usage of the CSource and
CSourceStream classes in an environment that derives its source from audio. You can use the
Synth filter as a source filter to synthesize audio waveforms such as sine waveforms, square
waveforms, sawtooth waveforms, and swept frequency waveforms.

The Synth source filter enables the user to set the waveform, frequency, number of channels,
and other properties. The user can set these properties through the property page. To set
either the upper or lower endpoint of the swept frequency range, hold down SHIFT while
adjusting the frequency slider. The property page enables only the controls that affect the
audio format - for example, channels, bits per sample, and sampling frequency - while the
filter is in a stopped state.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

VidCap Sample (Video Capture Filter)

The VidCap sample video capture filter shows you how to handle special category filters, how
to implement the COM interfaces for video capture, and how to implement miscellaneous other
requirements for video capture.

2069

DirectShow Samples Page 6of22

The VidCap sample filter is not installed with the DirectShow run time. You must install it by
calling Regsvr32.exe for VidCap.ax. The sample video capture filter is not part of the run time,
but is part of the SDK.

A video capture filter with the same capability as VidCap is installed with the DirectShow run
time and can be seen in the Filter Graph Editor when you choose Insert Filters from the
Graph menu, under the Video Capture Sources category. The VidCap sample is included so
that you can view the source code for a video capture filter and see how to write capture
filters.

Unlike ordinary DirectShow filters, special category filters, such as Video Capture Source
filters, can work with more than one device.

Sample Locations

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<MM+• 1 11·1::'¥ Topic Contents i@i§ll!¥+

+Qij[.jlj,M 111.1 1119 Topic Contents i@i§i i!ftbM

Transform Filters

This article details sample transform filters (sometimes called effects). The sample transform
filters include an audio effect, some video effects, some MPEG codecs, a VCR controller, and
various "null" (pass-through) filters.

Contents of this article:

• Contrast Sample (Video Contrast Filter)
• EzRGB24 Sample (Image Effect Filter)
• Gargle Sample (Gargle Filter)
• Inftee Sample (Infinite-Pin Tee Filter)
• MPGAudio Sample CMPEG Audio Decoder Filter)
• MPGVideo Sample CMPEG Video Decoder Filter)
• Nullip Sample (Null In Place Filter)
• Nullnull Sample (Minimal Null Filter)
• Vcrctrl Sample (VCR Control Filter)

Contrast Sample (Video Contrast Filter)

The video contrast sample filter, Contrast, illustrates how to define and implement a simple
custom interface within the structure provided by the DirectShow™ base classes. This filter
demonstrates how to use the CTransformFilter class to implement a simple effect filter.

The Contrast filter also provides a good example of the flexibility of the filter graph

2070

DirectShow Samples Page 7 of22

architecture. This flexibility is demonstrated when the filter is used in conjunction with a tee
filter to produce "before and after" (side-by-side original and modified) video streams.

The Contrast filter is a simple transform filter that adjusts the contrast of the video stream that
is passed through it. It provides a custom interface for adjusting the contrast. The Contrast
filter also uses the CBaseProoertyPage class to provide a property page for applications that do
not provide a user interface.

Note The Contrast filter adjusts the contrast by using a trick with palettes. The color palette of
an image effectively determines how the image is interpreted. By changing the palette, the
filter can change the contrast without changing the image pixels themselves.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

EzRGB24 Sample (Image Effect Filter)

The RGB 24 image effect filter, EzRGB24, is a sample of an image processing filter. This shows
usage of a number of DirectShow classes and interfaces, including CTransformFilter,
CPersistStream, CBaseProoertyPage, and !SoecifyProoertyPages.

This filter's purpose is to provide fast and single stream effects. The EzRGB24 filter also shows
how to add image processing effects using DirectShow. You can use this filter as a component
of an DirectShow video editor. Effects with fast execution were selected to help demonstrate
the power of DirectShow in enabling real-time effects - the idea was to show something that
could not have been built by using Microsoft Video for Windows®.

This filter performs a number of individual video effects. These include red, green, blue,
darken, XOR, blur, gray, and emboss image-processing effects.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

Gargle Sample (Gargle Filter)

The audio processing filter, Gargle, illustrates how to create a simple sound effect. More
sophisticated effects such as echo, flanging, band-pass filtering, and other effects can be
created in a way similar to that demonstrated by the Gargle filter. This sample demonstrates
the CTranslnPlaceFilter, CPersistStream, and CBaseProoertyPage classes. It also shows use of
the ASSERT, DbgBreak, DbgLog, and DbgBreakPoint debug macros.

The Gargle filter modulates the waveform passing through it by multiplying the waveform by
another waveform that is mathematically generated within the filter. The modulating waveform
is, by default, a triangular wave. The property sheet also offers the alternative of a square
wave. You can set the frequency of the modulating wave through the filter's property sheet. At
low frequencies (near 1 Hz), the sound grows and diminishes. At medium frequencies (5 to 15
Hz), the sound has a tremolo quality, which is why it is referred to as gargling. At higher

2071

DirectShow Samples Page 8of22

frequencies (100 Hz and up), the filter generates extra frequencies in the original sound. If a
500 hertz (Hz) sound is played at 100 Hz, then it produces additional frequencies of 400 Hz,
600 Hz, 200 Hz, 800 Hz, and so on.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Sample Locations

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j Topic Contents l@IJll!MM

MQi§i[.jjj,M 1 !1·Hj Topic Contents l@IJll!MM

Inftee Sample (Infinite-Pin Tee Filter)

The Inftee sample infinite-pin tee filter has multiple output pins and passes through type
enumerators from source filters. The filter uses the CAutoLock, CBaseFilter, CBaseinputPin,
CBaseOutputPin, CCritSec, and COutputQueue base classes.

Inftee has one input pin and a variable number of output pins, typically two. It accepts data
samples through the IMeminputPin transport, which it implements. All data samples sent to
the filter are delivered down all paths simultaneously, therefore teeing the input into multiple
separate output streams. The data samples are not type-specific, so the input, for example,
can be text lyrics, video images, or audio buffers.

When considering two output pins, the tee filter sends the same data down both of the pins;
therefore, the pins must have negotiated the same media type during connection. The infinite
pin tee filter handles this negotiation so that the input pin and both output pins converge when
using the same media type. If a suitable media type cannot be found, then the connection is
rejected.

The filter always uses the suggested allocator; the filter that provides the data suggests the
allocator. The data arriving at the input pin is not copied before it is sent to the output pins.
The filter also ensures that the data is delivered to the downstream filters, to guarantee that
both outputs receive timely service. In particular, if one of the outputs can block in the
COutputQueue:: Receive member function, then the tee spins off a thread to deliver the
sample. If there were no thread to deliver the sample, then the thread that delivers the sample
to the tee input pin might pass the data to a downstream filter; at that point, it might block,
keeping data from the other downstream filter for long periods of time.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Sample Locations

2072

DirectShow Samples Page 9 of22

MPGAudio Sample (MPEG Audio Decoder Filter)

The sample MPEG audio codec, MPGAudio, provides a prototype for an MPEG audio decoder. It
uses the CTransformFilter class.

As supplied, this framework just consumes the passed-in audio frames. That is, audio frames
do not produce any output from this framework. You would need to expand the framework with
code specific to the outputs desired.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

MPGVideo Sample (MPEG Video Decoder Filter)

The sample MPEG video codec, MPGVideo, provides a prototype for an MPEG video decoder. It
uses the CTransformFilter class. The MPGVideo filter also shows the processing of quality
management messages.

As supplied, this framework just consumes the passed-in video frames. That is, video frames
do not produce any output from this framework. You would need to expand the framework with
code specific to the outputs desired.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

Nullip Sample (Null In Place Filter)

The null in-place sample filter, Nullip, is an example of a transform-inplace filter. It illustrates
how a transform filter can behave in a relatively transparent manner. Nullip is a simple filter
that passes all data from its input pin to its output pin. No transformations are performed on
the data.

The Nullip filter provides an example of using the CTranslnPlacelnoutPin class. It shows how to
use the CAutoLock class to automatically release critical sections. Other classes used include
CTranslnPlaceFilter, CBaseProoertyPage, CMediaTyoe, and CTranslnPlaceOutoutPin. It also
enables a user to select the media types that it can pass through itself. This filter has one
input pin, one output pin, and performs its transform in place (without copying the data) in the
push thread. In other words, the CTranslnPlaceFilter: :Receive method is called with a buffer,
which it transforms and delivers to the next filter downstream. The Receive method is then
blocked until that filter returns; it subsequently returns to its own calling member function.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

2073

DirectShow Samples Page 10 of 22

Nullnull Sample (Minimal Null Filter)

The minimal null sample filter, Nullnull, illustrates a minimal filter. It does not support the
media type selection that N.iJ.jjjp_ does. The Nullnull filter uses the CTranslnPlaceFilter class.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

Vcrctrl Sample (VCR Control Filter)

The VCR control sample filter, Vcrctrl, is a simple implementation of the external device control
interfaces that DirectShow provides. Vcrctrl provides basic transport control and SMPTE
timecode-reading capabilities for certain Betacam and SVHS videocassette recorders with RS-
422 or RS-232 serial interfaces (see source code for specific machine types supported).

This sample is not intended to be a frame-accurate, system-ready implementation ready for
professional applications. It is designed to show basic device control filter structure, and
therefore does not implement several of the more sophisticated features of the interfaces, such
as edit event control. Frame-accurate control is best achieved by writing a low-level, kernel
mode communications driver underneath the filter. Developers should refer to the Driver
Development Kit (DDK) for the appropriate platform.

Using the Sample

With this sample, you can control a VCR through property pages. You should keep in mind the
following:

• The sample automatically links the transport to the graph's Run, Pause, and Stop
methods. You can unlink the transport on the General property page by removing the
selection from the Link to Graph check box. This is a persistent property, so if you save
the graph the transport will remain unlinked.

• The filter automatically detects the presence of a compatible VCR on COM2. If it can't
find a VCR or if the port is in use, it switches to simulation mode. You can select the port
to use on the Genera I property page.

• The timecode pin can connect either to the text renderer or the timecode renderer
(Tcrender.ax), which accepts the media type
MEDIA TYPE_AuxData/ M EDIASU BTYPE_ Ti mecode.

• The main property page shows the available video and audio inputs, although you can't
select them. The hardware does not support this feature, and it was implemented to
show physical pin property enumeration.

• The device communications class (CDevCom, specified in Cdevcom.h and Cdevcom.cpp)
is thread-safe and handles SMPTE timecodes. On some VCRs, timecode detection is not
supported, so timecode values might not be accurate.

This sample contains the following files:

• Vcrutil.h, .cpp - implementation of the device control interfaces
• Fvcrctrl.h, .cpp - the filter implementation
• Cdevcom.h, .cpp - the communications object that handles device-specific protocols and

2074

DirectShow Samples Page 11of22

the serial port interface
• Ctimecod.h, .cpp - the SMPTE timecode support
• Trprop.h, .cpp - the transport properties
• Vcrprop. h, .cpp - the genera I properties
• Vcrprop.rc - the dialog resources
• Vcrctrl.def - the module definition file
• Vcruids.h - the CLSIDs used by the filter

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Sample Locations

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j Topic Contents l@IJll!MM

MQi§i[.jjj,M 11!.Hj Topic Contents i@MIM!MM

Renderer Filters

This article describes sample renderer filters. The filters render video output, audio output, text
output, and raw file output.

Contents of this article:

• Dump Sample (Dump Filter)
• SampVid Sample (Video Renderer Filter)
• Scope Sample (Oscilloscope Filter)
• TextOut Sample (Text Display Filter)

Dump Sample (Dump Filter)

The sample file dump filter, Dump, illustrates the use of the base filter class CBaseFilter and
the rendered input pin class CRenderedinoutPin. This sample also uses the IFileSinkFilter
interface. The Dump filter demonstrates how to override the Receive method of the rendered
input pin class to process actual media samples. The filter is also a "renderer" of its input
stream. (That is, this filter doesn't fit the traditional definition of rendering audibly or visibly,
although it is a "renderer filter.") The Dump filter delivers the EC COMPLETE notification to the
filter graph when it receives a call to CDumplnputPin::EndOfStream on its input pin.

This filter is a useful debugging tool. For example, you can verify, bit by bit, the results of a
transform filter. You can build a graph manually by using the Filter Graph Editor, and connect
the Dump filter to the output of a transform filter or any other output pin. You can also connect
a tee filter and put the Dump filter on one leg of the tee filter and the typical output on
another leg to monitor the results in a real-time scenario.

2075

DirectShow Samples Page 12 of 22

The Dump filter has a single input pin, which is dumped to a file. The filter prompts the user
for a file name when it is instantiated and closes the file when it is freed.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

SampVid Sample (Video Renderer Filter)

The sample video renderer filter, SampVid, displays video inside a window. SampVid
demonstrates the implementation of a special memory allocator, the C!mageAllocator class,
which uses buffers based on the Microsoft Win32® DIBSECTION structure. This sample shows
use of the CBaseVideoRenderer class, which handles all the seeking, synchronization and
quality management necessary for video renderers. Other base classes used include, among
others:

• CBaseControlVideo
• CBaseControlWindow
• CDrawlmage
• ClmageAllocator
• ClmageDisplay
• ClmagePalette
• CMediaType

This sample also shows the use of the property page interface IOualProp, which addresses
quality management.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Samole Locations

Scope Sample (Oscilloscope Filter)

The oscilloscope sample filter, Scope, illustrates the use of the base filter class CBaseFilter and
the base input pin class CBaselnoutPin.

Other than the video renderer sample, Scope is the only sample filter that has a constantly
active window.

Note The Scope window is implemented as a dialog box, not as an actual window.

Developers creating control panels to alter filter parameters in real time might want to use a
technique like this rather than property pages.

The Scope filter demonstrates setting up a separate thread to process data. In this case, the
data is just copied to a separate buffer on the !MemlnoutPin: :Receive method, and is then
drawn on the Scope window on the separate thread.

2076

DirectShow Samples Page 13 of 22

The filter demonstrates how to apply DirectShow™ outside the rather narrow domain of
multimedia playback. DirectShow has wide application in the diverse areas of:

• Process control
• Factory automation
• Image processing and analysis
• Virtual lab instrumentation

All of these areas have semi real-time requirements, but additionally emphasize user
interaction and the display of gauges, monitors, signal generators, alarms, and other forms of
graphical display of analyzed results.

The Scope filter also enables you to monitor audio output to determine if you are clipping, so
you can adjust the gain.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Sample Locations

TextOut Sample (Text Display Filter)

The sample text renderer filter, TextOut, serves as an example of a renderer filter that is for a
user-defined type. It can render text data found in an AVI file or other source. The TextOut
filter demonstrates the use of the CBaseRenderer class, which handles all the synchronization
and seeking although it doesn't have any quality management implementation. To get quality
management, derive your classes from CBaseVideoRenderer instead. This sample also uses the
CBaseWindow class.

This renderer creates and uses a simple window to display each piece of text it receives.

This filter is installed with the DirectShow run time and is available through the Filter Graph
Editor when you choose Insert Filters from the Graph menu, and select the DirectShow
Filters category.

Sample Locations

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M M!i.! 11!j Topic Contents l@i§lllMM

MQl§i[.jlj,M 111.],.(j Topic Contents l@i§lllMM

Cutlist Sample Applications

This article describes the cutlist sample applications included with the DirectShow SDK.

2077

DirectShow Samples Page 14 of 22

Contents of this article:

• CLText Sample (Text Cutlist Application)
• Simplecl Sample (Cutlist Application)

CL Text Sample (Text Cutlist Application)

The text cutlist (CLText) sample reads a list of up to 150 cutlist elements (video or audio clips)
from a text file and plays them.

This sample demonstrates how to use the ICutListGraphBuilder, IStandardCutList, and IFileClip
interfaces.

Sample Locations

Simpled Sample (Cutlist Application)

The simple cutlist (Simplecl) sample demonstrates how to use cutlists. Simplecl provides a File
Open dialog box from which the user can choose a file to add to a cutlist. For each file, the
user specifies a starting position and ending position for the clip. For every AVI file specified,
the sample tries to add the first video stream and the first audio stream to its respective
cutlist. The user must add at least two files, and then can run the filter graph and see the clips
played sequentially.

This sample demonstrates how to use the ICutListGraphBuilder, IStandardCutList, and IFileClip
interfaces.

Sample Locations

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ 1 !!·HM Topic Contents i@l§ii!MM

C/C++-based Sample Applications

This article details sample applications that are written in C++ or C. The sample applications
implement media players or perform other application-related functions. The differences
between them are mainly the different programming languages, API, or frameworks used.

Some of these samples use the Microsoft® Foundation Classes (MFC).

Contents of this article:

• AMCap Sample (DirectShow Capture Application)
• CPlay Sample CC/COM-based Media Player Application)
• Dvdsampl Sample (DVD Player Application)
• InWindow Sample (Window Playback Application)

2078

DirectShow Samples Page 15 of 22

• !Play Sample (lndeo Player Application)
• MFCPlay Sample (C++/COM-based Media Player Application)
• MPEGProp Sample (MPEG Property Page Display Application)
• PlayFile Sample (Simple Playback Application)
• ShowStrm Sample (Multimedia Streaming Application)
• VidClip Sample (Video Editing Application)

AMCap Sample (DirectShow Capture Application)

The DirectShow capture sample, AMCap, demonstrates the basics of capturing audio and video
from a hardware source to a specified output file or to a preview window.

To see a list of the hardware capture devices on your system, choose the Devices menu;
DirectShow uses the !CreateDevEnum interface to create the list of devices that appears. After
choosing a device, choose the Set Frame Rate command from the Capture menu and set the
desired frame rate; the default value is 30 frames per second. To set an output file for your
capture, pick the Set Capture File command from the File menu. DirectShow uses the File
Writer filter to associate your specified file with the capture session.

If you want to turn audio capturing on or off, choose the Capture Audio command from the
Capture menu. To turn capture previewing on or off, choose the Preview command from the
Options menu. When you are ready to begin capturing, choose the Start Capture command
from the Capture menu. If you want to save your captured data to a file other than the
specified output file, choose the Save Captured Video As command from the File menu.

Note: Before you begin capturing for the first time, choose Allocate File Space from the File
menu to preallocate the capture file. Preallocating the file improves capture performance.
AMCap calls AllocCaPFile to preallocate the capture file.

Sample Locations

CPlay Sample (C/COM-based Media Player Application)

This C/COM-based media player sample, CPlay, is a simple application that renders multimedia
files using DirectShow™ from within the C language. The CPlay sample does not use Microsoft
Foundation Classes (MFC). If you want to see a sample that uses MFC, see MFCPlay Sample
CC++/COM-based Media Player APPiication). The CPlay sample shows how to utilize the
DirectShow components without using the base classes provided with DirectShow. The sample
creates a filter graph (by calling CoCreatelnstance to get a pointer to the !GraPhBuilder
interface), and requests the filter graph to render a file. The filter graph is then controlled by
using the !MediaControl interface. This sample also uses the !MediaEvent and !Media Position
interfaces.

CPlay is a minimal application that implements the following menu commands: Open, Play,
Pause, Stop, and Exit on the File menu, and About on the Help menu.

Sample Locations

Dvdsampl Sample (DVD Player Application)

The DirectShow DVD sample player, Dvdsampl, is a simple application that plays DVD Video
content. It uses the !DvdGraPhBuilder interface to build a DVD filter graph and to obtain
interface pointers for IAMLine21Decoder, !DvdControl, and !Dvdlnfo. It uses those interfaces

2079

DirectShow Samples Page 16 of 22

and enables you to turn closed captioning on and off, play in full screen mode, and display and
select from DVD menus.

Note: Your system must include DVD playback hardware to run this sample.

Samole Locations

InWindow Sample (Window Playback Application)

The InWindow application is a simple sample that shows minimal code required to play back a
media file into a specific window. It builds on the PlayFile samole. Like PlayFile, it provides a
file Open dialog box that enables you to open media files. It also uses !GraohBuilder,
!MediaEventEx, and !MediaControl as PlayFile does. InWindow expands on the PlayFile
functionality by calling !VideoWindow:: out Owner, !VideoWindow:: out WindowStyle, and
!VideoWindow: :SetWindowPosition to direct playback into the main application window.

Samole Locations

!Play Sample (Indeo Player Application)

The Intel® Indeo player sample, !Play, uses DirectShow to render multimedia files and
demonstrates the Indeo Video Interactive application programming interfaces (AP!). !Play
demonstrates how to access the advanced features of the Indeo Video Interactive (IV!) codec.
It is a simple application written in C++ using Microsoft Foundation Classes (MFC). If the file is
an !VI format file, it enables controls for the !VI advanced features. The advanced features
include local decoding, a decoding time limit, and the ability to adjust brightness, saturation,
and contrast.

The Ax_spec.h file defines the interfaces of the !VI codec. The C!PlayDoc: :OnOpenDocument
function demonstrates how to determine if a file is an !VI format file. The C!PlayDoc: :Getxxx
and C!PlayDoc: :Setxxx functions demonstrate how to get and set the !VI playback parameters
for the advanced features.

This sample uses the following interfaces:

• !GraphBuilder - to create a filter graph and render a file
• !FilterGraph - to enumerate the filters in the filter graph
• !MediaControl - to play/pause/stop the playback
• !Media Event - to be notified of EC COMPLETE (playback complete) and other events
• !Media Position - to set the time that the media stream begins
• !VideoWindow - to set the window size/caption/position
• !BasicVideo - to get the native window size.

!Play also implements and uses the IIndeoDecode interface (not part of DirectShow).

Samole Locations

MFCPlay Sample (C++/COM-based Media Player Application)

The C++/COM-based media player sample, MFCPlay, is a simple application that renders
multimedia files using DirectShow from within C++ and Microsoft Foundation Classes (MFC). It
demonstrates how to connect the DirectShow components by using the interfaces provided

2080

DirectShow Samples Page 17 of22

with DirectShow and MFC. The sample creates a filter graph (by calling CoCreatelnstance to
get a pointer to the !GraohBuilder interface), and requests the filter graph to render a file. The
filter graph is then controlled by using the !MediaControl interface. This sample also uses the
!Media Event and !MediaPosition interfaces.

The MFCPlay application implements the following menu commands: Open, Play, Pause, Stop,
and Exit on the File menu, and About on the Help menu.

Samole Locations

MPEGProp Sample (MPEG Property Page Display Application)

The MPEGProp sample application demonstrates how to display a filter's property page.

When you open MPEGProp, choose Open from the File menu and select an MPEG media file
from the standard Open dialog box. After you select an appropriate file, MPEGProp calls
CoCreatelnstance to create a new filter graph and renders the chosen source file. MPEGProp
calls !FilterGraoh::FindFilterByName to locate the MPEG Video Codec filter, and then calls
OleCreateProoertyFrame with the codec pointer to display the filter's property page.

Samole Locations

Playfile Sample (Simple Playback Application)

The PlayFile application is a simple sample that shows minimal code required to play back a
media file. It provides a file Open dialog box that enables you to open files including file types
such as AV!, MPEG, MOV, and QT. PlayFile uses the !GraohBuilder:: RenderFile method to
render the filter graph for the chosen media file, !MediaEventEx to handle signaling of events,
!MediaControl:: Run to play the resulting filter graph, and !MediaControl:: Stoo to stop
playback. The sample calls !VideoWindow to control whether the playback window is visible.
Video follows the default behavior and plays back in a separate window rather than in the main
application window.

See InWindow Sa mole (Window Playback Aoolicationl for a sample that builds on PlayFile and
plays back video into the main application window.

Samole Locations

ShowStrm Sample (Multimedia Streaming Application)

The ShowStrm application demonstrates how to use a Microsoft® DirectDraw® surface to blit a
multimedia stream. It is a console application that sends a movie out to the surface when
invoked from the command line with the following syntax:

SHOWSTRM Name of Movie

For example, to play Angry.avi, you could use the command:

c,\>SHOWSTRM angry.avi

Samole Locations

2081

DirectShow Samples Page 18 of 22

VidClip Sample (Video Editing Application)

The VidClip application demonstrates how to use the multimedia streaming interfaces and how
to support rudimentary video editing. The VidClip sample reads from multiple streams and
writes to a single stream. For more information on the multimedia streaming interfaces, see
List of Multimedia Streaming Interfaces.

On the Video menu in the VidClip application, choose the Add Clip command to add clips to
your list; you can include start and stop times, if you want to add only a portion of a clip.
Choose the Edit Clip command to edit existing clips in the list, and the Delete Clip command
to delete clips. The Make a Movie command combines the clips into one stream.

On the File menu, choose the Settings command to set the height, width, depth, and
compression for the stream data. Choose the Save command to save the settings to a file in
your project.

Sample Locations

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM

+QiM!.l+' 111.],.[J Topic Contents l@i§lllMM

Visual Basic-based Sample Applications

This article describes the Microsoft® Visual Basic® version 5.0 samples in the Microsoft
DirectShow™ Software Development Kit (SDK).

Contents of this article:

• Visual Basic-Based ActiveX Player
• Visual Basic-Based Filter Graph Builder
• Visual Basic-Based Filter Graph Player
• Visual Basic-Based Player

Visual Basic-Based ActiveX Player

This ActiveX sample, Ocxvb01, demonstrates an application that uses the ActiveMovie Control.
It has a form that contains menus and controls to demonstrate the access of various properties
of the video control. See Using the ActiveMovie Control in Visual Basic for a detailed description
of this sample.

The sample has a menu command that enables you to create the control by opening a video
file, and to use Run, Pause, and Stop commands to programmatically control the ActiveMovie
Control. All of the ActiveMovie Control Panel features, such as selection controls, position
controls, and the trackbar control, can be made visible selectively, and enabled or disabled

2082

DirectShow Samples Page 19 of 22

from menu commands in the sample application. Other properties, such as the rate and
current position, can also be changed from the application, and you can set the image in the
video control to various sizes such as half, default, double, and full-screen.

Samole Locations

Visual Basic-Based Filter Graph Builder

The filter graph builder sample, Builder, demonstrates how a Visual Basic-based application
uses the collection interfaces that the filter graph manager exposes to build and connect a
custom filter graph. The collection interfaces are composed of the following interfaces.

• IAMCollection
• I Reg Fi lterl nfo
• !Filterlnfo
• !Pinlnfo
• !MediaTypelnfo

These interfaces appear as objects in the ActiveMovie Control type library in the Visual Basic
development environment and enable the registry to be searched, filters to be added, and pins
to be connected, among other things. See Constructing Filter Graohs Using Visual Basic for a
detailed description of this sample.

The Builder sample presents a form that enables the user to see a list of filters in the registry
and add filters to the filter graph. It also enables the user to examine the names and
properties of pins on the filter, the media types on the pins, and to connect the pins. The
sample has an additional sample routine, accessed by a menu, that automatically builds a filter
graph. The filter graph is built using the collection interface objects, to better demonstrate the
more typical use of these objects in a Visual Basic-based application. The sample also enables
you run the constructed filter graph.

Sample Locations

Visual Basic-Based Filter Graph Player

The filter graph player, VBDemo, demonstrates how to use the DirectShow Visual Basic objects
that control the playback of video and that adjust properties of various components. See
Controlling Filter Graphs Using Visual Basic for a detailed description of this sample.

The VBDemo sample enables you to open a video file. Use the Play, Pause, and Stop buttons to
control the video. It positions the video window as a child window of the main form and
displays the movie's length and elapsed time. It also enables you to set the start position and
rate. Use two sliders to adjust the audio renderer's volume and balance.

Samole Locations

Visual Basic-Based Player

The sample player, Player, is a short Visual Basic-based program that demonstrates the
minimum requirements for playing back a DirectShow media file without using the ActiveMovie
Control. It uses the same DirectShow object library as the VBDemo sample, but provides only
three buttons (Open, Play, and Stop) and a slider for indicating position.

2083

DirectShow Samples Page 20of22

Sample Locations

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H+* 1 11·!:.!M Topic Contents lfflj(§i 11¥+

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§111¥+

PIO Sample (Plug-In Distributor Application)

The IAMovie sample shows the implementation of the IAMovie interface for a plug-in
distributor (PID). A PID is used to extend the filter graph manager. The filter graph manager
distributes the actions of interface methods to the appropriate filters. This distribution enables
applications to have a single point of control to perform the basic operations.

In the IAMovie sample, the PID exposes the IAMovie interface and implements it by calling the
enumerator of the filter graph manager, finding which filters expose the interface (see
EnumFiltersByinterface), and communicating directly with those filters. PIDs are supplied for
the standard control interfaces. Independent software vendors (ISVs) can replace these
supplied PIDs and add others.

See Plug-in Distributors for information on plug-in distributors.

Sample Locations

SampIOS Sample (IOStream Helper Library)

The IOStream helper library provides text output of the IBaseFilter interface and other
DirectShow™ objects. This sample code is provided as a header file (SampIOS.h) and a source
file (SampIOS.cpp) that can be built into a library (SampIOS.lib). You can use the library
functions in your DirectShow filters and applications. The functions are designed to help
retrieve information in text format about the objects in the filter graph. The text output is
intended to aid in debugging.

SampIOS.h declares debug output functions that you can call from C. For example,
DumpFilterinfo sends information on the given filter interface. See the header file
(SampIOS.h) for the syntax of each call. The DumpXxx functions require the cout output
stream to be valid in the environment in which you are working, as they implicitly output to
cout. The DumpXxx functions are included in the following list.

• DumpFilterinfo
• DumpPininfo
• DumpAllPins
• DumpAllFilters
• DumpFilterGraph

Extensions to the C++ IOStream library are included, so you can write code like the following

2084

DirectShow Samples Page 21of22

to dump information to cout.

cout << piFilterGraph << endl;

The C++ callable functions declared by SampIOS.h include the following abilities to provide
output to an ostream. (The standard C++ ostream class provides the basic capability for
sequential and random-access output.) See the header file (SampIOS.h) for the syntax of each
call.

• Provide output of a wide string.
• Build and provide output of a textual version of a GUID.
• Provide output of filter information.
• Provide output of filter information for all filters left in an enumerator.
• Provide output of filter and connection details.
• Provide output of pin details (including connection information).
• Provide output of pin details (including connection information) for all pins left in the

enumerator.
• Provide output of the pin information for all pins on the supplied filter.

Sample Locations

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M ill.HS Topic Contents i@fa111¥M

MQi§i[.]jj,i l!!·!:.19 Topic Contents l@l§ill¥M

Build Information

To use some of the filters and applications supplied as DirectShow samples, you need to build
them into executable or DLL (.ax) files. To build, you need various tools. And after you build a
filter, you need to register it with a unique identifier to make it appear in the Filter Graph
Editor. This section contains the following topics:

• Tools for Building the Samples
• Building the Samples
• Setting Up the Registry

Tools for Building the Samples

The tools you need to build the filters and applications supplied as DirectShow samples are
included in the following list. This list contains both required and optional tools.

• Microsoft® DirectShow™ Software Development Kit (required).
• ANSI-compatible C/C++ compiler, such as Microsoft Visual C++® version 5.x or later

(required).

2085

DirectShow Samples Page 22of22

• Microsoft Win32® headers and libraries (required).
• Microsoft NMAKE (supplied with Visual C++), if you want to use the supplied makefiles

(optional).
• Microsoft Foundation Classes (MFC), if you want to build the two sample applications that

use MFC (optional).

Building the Samples

All samples in the SDK have been provided with a makefile that is compatible with NMAKE. In
some cases, a Visual C++ project makefile is also included.

To build the samples using the standard makefiles, you must first set up your build tools (for
example, Microsoft Visual C++), the Win32 headers and libraries, and the DirectShow SDK.
The DirectShow SDK makefiles expect to locate the standard Windows® and Win32 include
files and libraries on the INCLUDE and LIB paths. The makefiles handle all DirectShow-specific
files on a project-by-project basis.

The makefiles provided for each individual sample use ActiveX.mak, which is provided with the
DirectShow SDK. If you are using ActiveX.mak to build for any machine, other than the default
x86, you must set the CPU environment variable to indicate which kind of machine. The
allowable values for the CPU are i386, ALPHA, and PPC.

Performance Note If you copy any sample makefile to create a new dynamic-link library
(DLL) (including filters and PIDs) make sure that you change the base address to avoid
collisions with other DLLs. A collision of DLL load address results in one of the DLLs having to
be relocated during load time, thereby increasing the duration of load time. In the sample
makefiles, the base address is set in DLL_ BASE, which is used in ActiveX.mak. Do not let
ActiveX.mak use the default value for DLL_BASE, as this will almost certainly cause collisions.

A makefile that builds all the samples is provided in the Samples directory.

Setting Up the Registry

The source directory for each sample contains a registry file (.reg). Sample filters are
registered by default. You can re-register all filters in the sample by opening this file. The
samples also use the preferred self-registration capabilities provided by the IAMovieSetup
interface. See Register DirectShow Objects for more information.

Caution: If you modify a registry file and then use it to update your registry, you will affect
the sample filter that is already installed on your system. For example, if you modify Ball.reg,
you might lose access to the Ball filter (Ball.ax) in the Filter Graph Editor.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M ill.HS Topic Contents i@faii!MM

2086

Multimedia Streaming Page 1of66

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

Multimedia Streaming

This section describes the multimedia streaming interfaces, which automatically negotiate the
transfer and conversion of data from a source to an application. It includes reference entries
for the multimedia streaming data types, interfaces, and interface methods. It also includes
sample code and a description of multimedia streaming component objects along with their
CLSIDs and the interfaces they support.

· About the Multimedia Streaming Architecture

· List of Multimedia Streaming Interfaces

· Multimedia Streaming Reference

· Multimedia Streaming Component Objects

· Multimedia Streaming Sample Code

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]i!,+ 1 !!·Hi Topic Contents l@IJll!MM

About the Multimedia Streaming Architecture

This article describes the architecture of multimedia streaming and how software developers
typically use streams in their tools and applications. It also covers the advantages of streaming
as a base for data transfer and how to address multimedia programming issues, such as data
transfer, performance optimization, and time stamping in streaming applications. Programmers
who want to use multimedia streaming should be familiar with COM programming concepts.

Contents of this article:

• Advantages of Multimedia Streaming
• Object Hierarchy
• Creating Multimedia Stream Objects and Stream Samples
• Using Multimedia Streams in Applications
• Sharing Data Between Streams

Advantages of Multimedia Streaming

When developers use multimedia streaming in their applications, it greatly reduces the amount

2087

Multimedia Streaming Page 2 of 66

of format-specific programming needed. Typically, an application that must obtain media data
from a file or hardware source must know everything about the data format and the hardware
device. The application must handle the connection, transfer of data, any necessary data
conversion, and the actual data rendering or file storage. Because each format and deviee is
slightly different, this process iS often complex and cumbersome. Multimedia streaming, on the
other hand, automatically negotiates the transfer and conversion of data from the source to
the applicatiOn. The streaming interfaces provide a uniform and predictable method of data
access and control, which makes it easy for an application to play back the data, regardless of
its original source or format.

The following steps show how to implement streaming, from hardware device to rendered
playback.

1. A source of video data, such as Microsoft® DirectShow "', exposes the streaming
interfaces.

2. The application developer uses the multimedia streaming interfaces to handle data
format conversion.

3. The application developer uses the Microsoft DirectDraw® interfaces to render the
resulting data.

The specification for multimedia streams comprises several interfaces; each interface includes
methods that control a certain aspect of the streaming process or handle a certain type of
data. See! ist of Mu!tjmedja Streaming Interfaces for additional information.

Object Hierarchy

The following diagram shows the basic object hierarchy used in multimedia streaming.

Multimedia
stream

I I
I I

Media stream Media stream
(video) (audio)

I I I
I I

Stream Stream Stream
sample sample sample

There are three basic object types defined in the multimedia streaming architecture:

1. A multimedia stream, which supports the IMu!tiMediaStream interface.
2. Media streams support the IMediaStream interface and are data specific. Every

multimedia stream contains one or more of these media streams.
3. Stream samples support the IStreamSamp!e interface and are created by a media

stream. These objects represent a basic unit of work for the stream.

Creating M1.1ltlm~la Stream Objects and Stream Samples

Objects that support the IMultiMediaStream interface are the basic containers for multimedia
data streams. The IM1.1ltlM~laStream interface includes methods that enumerate the
object's data streams; these streams are typically video and audio data, but can include data
of any format, such as closed-captioning, plain text, or SMTPE timecode. The

2088

Multimedia Streamiug Page 3 of 66

IMultiMediaStream interface is a generic container, however; developers can create other
versions of the interface that support specific data formats. Objects that implement the
IAMMultiMediaStream interface, for example, can enumerate and control streams of any
DirectShow data format. Because individual data streams are format specific, they support at
least two different interfaces: one generic and one data-specific. Every stream supports the
!MediaStream interface, which provides methods to retrieve its format and a pointer to the
stream itself. The !DirectDrawMediaStream interface, on the other hand, has methods that
deal specifically with rendering video data. Any interface derived from IMultiMediaStream
also supports the creation of stream samples, the basic units of streaming data.

A multimedia sample is a reference to an object containing the media data. For a video image,
this is a DirectDraw surface. The sample's exact content varies, depending on the type of
media (sound, text, and so on). Because a sample is only a reference to the data object, any
number of stream samples can refer to the same object. The IStreamSamPle interface provides
methods that get and set a sample's characteristics, such as its start and stop time, status,
and stream association. The IStreamSamPle: :Update method refreshes the sample's data in
the case of readable streams. For writable streams, it will write the sample's data to the
stream. Typically, you use the Update method in a loop that renders, transfers, or stores
streaming data. See Use Multimedia Streaming in DirectShow APPiications for a practical
example of this method in source code.

Using Multimedia Streams in Applications

The multimedia streaming interfaces greatly simplify the process of manipulating multimedia
data by removing the dependency on specific characteristics of the hardware or software
source and providing support for all Microsoft DirectX® media formats. Streams abstract the
data to a very high level; applications can even move data from one stream to another without
knowing anything about the data's format.

Perform the following steps to create a multimedia stream:

1. Create the multimedia stream. The method of creation and initialization of the stream is
architecture specific. DirectShow supports the IAMMultiMediaStream interface, which is
used to initialize the stream. Other in-process server implementations of
!MultiMediaStream will be created and initialized using different mechanisms.

2. After the multimedia stream object is initialized, the application will use Ouerylnterface
to retrieve the !MultiMediaStream interface for the object. Use this interface to determine
the stream's properties and enumerate the streams themselves. You can retrieve a
specific stream by calling the !MultiMediaStream: :GetMediaStream method with a
specific purpose ID. MSPID_PrimaryVideo and MSPID_PrimaryAudio, which represent the
primary video and audio streams, are the most commonly used purpose IDs.

3. Call !Unknown::Ouerylnterface for an interface specific to the stream's media type. If
you want to render a video stream, for example, retrieve its !DirectDrawMediaStream
interface. Media-specific interfaces define additional methods necessary for taking full
advantage of a format's capabilities.

4. Create one or more samples from the stream data. Every media stream supports the
!MediaStream: :CreateSharedSamPle method for sample creation. The resulting sample
supports the !StreamSamPle interface, which provides control over the sample and its
characteristics. Typically, the media stream supports a format-specific method of sample
creation that is more powerful than the aforementioned IStreamSample methods.
!DirectDrawMediaStream, for example, can create samples attached to a desired
DirectDraw surface and clipping rectangle. In some situations, however, you must handle
data without knowing about its data format, such as when constructing a cutlist. If you
want to stream data independent of its format, use the
IMediaStream::CreateSharedSample method to create the data samples.

2089

Multimedia Streaming Page 4of66

5. After creating all desired stream samples, start the stream by calling the
IMultiMediaStream: :SetState method and pass in the STREAMSTATE_RUN flag as its
parameter.

6. Call IStreamSample:: Update to update the stream sample. When the
IStreamSample::Update method exits, you can access the sample's data. The code
sample in Use Multimedia Streaming in DirectShow Applications uses the
IStreamSample::Update method in a loop to render a stream of video data. If you
want a trigger a specific event or function call when the update returns, pass the
appropriate pointers to the IStreamSample::Update method.

For more information on the multimedia streaming interfaces, see.

Sharing Data Between Streams

Processing multimedia data typically requires a great deal of system resources; therefore, you
should avoid copying data whenever possible. The streaming architecture supports shared
stream samples, a mechanism that moves data from one stream to another without copying it.
This buffer enables the efficient transportation of data between two streams even if the
destination stream doesn't specifically support the underlying data format.

For example, assume that you have a multimedia stream with three data streams: video and
audio, and URL data time-stamped to match the video content. You want to write an
application that adds a copyright notice on every video frame and writes the data to another
stream for storage, but your application doesn't understand any data formats except the video
stream. For the video stream, you create a sample attached to the desired DirectDraw surface.
You can then create an output stream by calling either the
IDirectDrawMediaStream: :CreateSample method with that pointer to the same surface, or
IMediaStream: :CreateSharedSample. In both cases, the input and output streams share the
DirectDraw surface. Because you understand the video format, you can access this surface as
needed.

To retrieve the other source stream pointers (audio and URL), enumerate the source container
stream and grab pointers to the nonvideo streams. Each of these source streams has an
associated output stream in the output stream container. Retrieve these output pointers by
calling the IMultiMediaStream: :GetMediaStream method on the output container with each of
the source stream pointers. The following steps describe this process.

1. Call IMultiMediaStream: :EnumMediaStreams to retrieve a pointer to a source stream.
Make sure that it's not the video stream, because your application already understands
its format.

2. Call IMultiMediaStream: :GetMediaStream on the output container stream with the
pointer from step 1. This returns a pointer to the desired output stream.

3. Call AllocateSample on the source stream.
4. Call CreateSharedSample on the output stream.
5. Call Update on the source stream to read the data.
6. Ca II Update on the output stream to write the data.

Repeat these steps for each stream whose format you don't support. When both samples finish
updating, the output stream has all data from the source stream and you are done.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H+* 1 !!·HM Topic Contents ittfj(§i 11¥+

2090

Multimedia Streaming Page 5 of 66

+Qi§i[.]ii,+ 1 !!·HM Topic Contents i@l§ii!MM

List of Multimedia Streaming Interfaces

Multimedia streaming comprises a number of interfaces; this article provides a brief description
of each interface. For additional information about multimedia streaming, see About the
Multimedia Streaming Architecture.

Contents of this article:

• Base Multimedia Streaming Interfaces
• DirectDraw Streaming Interfaces
• Audio Streaming Interfaces
• DirectShow Multimedia Streaming Interfaces

Base Multimedia Streaming Interfaces

The DirectX Media SDK includes reference documentation for the multimedia streaming
interfaces; the interfaces and their methods provide a programatic way of access multimedia
streams. However using a base interface to access a specific type of data can limit the amount
of control you have over the data, so media developers should create derived versions of these
interfaces that provide more powerful control over the unique capabilities of their media type.

IMultiMediaStream
This interface defines how to access the highest-level multimedia stream object; this
object contains and provides access to other stream objects. IMultiMediaStream has
methods that enumerate or retrieve specific streams, as well as checking the stream's
total time duration and seeking within the stream.

IMediaStream
This interface defines a generic stream object. Use its methods to retrieve a pointer to
the stream, get information about the stream, and create samples from the stream data.
You can also create shared stream samples, which multiple streams can access without
duplicating the sample's data.

IStreamSample
This interface controls the behavior of a specific stream sample. You can retrieve the
stream that created the sample, check the sample's start and end times and completion
status, and perform a user-defined function on the sample itself (through the Update
method). Typically, the Update method processes the sample data in an appropriate
manner, such as rendering video data or playing back audio data.

DirectDraw Streaming Interfaces

If you use Microsoft® DirectDraw-supported video formats in your streams, the following
interfaces give you more powerful control over the data than the more generic base interfaces.

I DirectDrawMed iaStrea m
This interface derives from IMediaStream; it sets and retrieves the stream format and
the DirectDraw® object associated with the media stream. You can also use this

2091

Multimedia Streaming Page 6of66

interface to create video samples.
I DirectDrawStrea mSa mple

This interface derives from the IStreamSample interface and enables you to attach video
samples to DirectDraw surfaces. Each attached surface includes a clipping rectangle to
make rendering easier.

Audio Streaming Interfaces

I Aud ioMed ia Stream
The IAudioMediaStream interface controls audio media streams. This interface inherits
from the IMediaStream interface and is used to create one or more IAudioStreamSample
objects. It is also used to set and retrieve the current format of the stream data.

I Aud ioStrea mSa m pie
The IAudioStreamSample interface retrieves information from the underlying IAudioData
data objects.

IMemoryData
The IMemoryData interface contains methods which set and retrieve memory data on
audio data objects. Audio data objects provide the underlying data which stream samples
access. This interface provides a way to initialize memory buffers and to set actual
amounts of audio data in the objects. Additionally, the IMemoryData: :Getinfo method
can be used to retrieve audio memory data.

IAudioData
The IAudioData interface provides methods which allow applications to set and get the
underlying audio data that audio streams will reference. The audio data format is set in
the WAVEFORMATEX structure.

DirectShow Multimedia Streaming Interfaces

The following interfaces expose Microsoft DirectShow™ functionality to multimedia stream
developers. Application developers should implement only the IAMMultiMediaStream interface
in their applications; DirectShow uses the other two interfaces internally.

IAMMultiMediaStream
This interface controls connections between streams and DirectShow filter graphs. It
provides methods that instantiate filter graphs, open DirectShow-supported media files,
and generate an appropriate filter graph for playback. The CLSID_ActiveMovieMMStream
class identifier supports this interface.

IAMMediaStream
This interface is a DirectShow-specific derivation of the IMediaStream interface. It
handles the internal negotiation of connections between multimedia streams and
DirectShow filter graphs. Application developers should not use or implement this
interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M M!i.! 11!j Topic Contents l@i§lllMM

MQl§i[.jjj,M l!l.Hj Topic Contents l@i§lllMM

Multimedia Streaming Reference

2092

Multimedia Streaming Page 7of66

This section contains reference entries for all the multimedia streaming interfaces and their
methods, including those that DirectShow supports. It also includes a list of multimedia
streaming data types that the interfaces use, and a list of error and success codes that the
methods return.

· IMultiMediaStream Interface

· IMediaStream Interface

· IStreamSample Interface

· ID i rectD raw Media Stream Interface

· ID i rectD rawStrea mSa m pie Interface

· IAudioMediaStream Interface

· IAudioStreamSample Interface

· IMemoryData Interface

· IAudioData Interface

· IAMMultiMediaStream Interface

· IAMMediaStream Interface

· Multimedia Streaming Data Types

· Error and Success Codes for Multimedia Streaming

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@i·il!:+ l!i.! 11ij Topic Contents l@i§i •11»•
•;<¥[.]++ MB.HM Topic Contents l@i§lllMM

IMultiMediaStream Interface

The IMultiMediaStream interface provides methods that control a multimedia stream and
provide access to its underlying media streams. A multimedia stream is the highest-level
streaming object and can contain one or more media streams. While each media stream is
media-type specific (audio, video, and so on), multimedia streams are generic across all types
because they must provide access to a number of streams that can have different media types.
IMultiMediaStream interface methods enable you to enumerate and retrieve pointers to the
specific streams; IMediaStream interface methods provide specific control over the media

2093

Multimedia Streaming Page 8of66

stream behavior.

For sample code which implements the multimedia streaming interfaces see Multimedia
Streaming Samole Code.

When to Implement

Implement this interface when you want create containers for a specific type of media stream.

When to Use

Use this interface when your application must enumerate and control a multimedia stream's
underlying, type-specific streams.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release

IMultiMediaStream
methods

Decrements the reference count.

GetI nformation

GetMediaStream
En u mMed ia Streams

GetState
SetState
GetTime

GetDuration
Seek

Description

Retrieves the capabilities and stream type of a multimedia
stream.
Retrieves a media stream that has the specified purpose ID.
Retrieves a media stream from a multimedia stream by zero
based index.
Retrieves the multimedia stream's current state.
Sets the media stream to either a running or stopped state.
Retrieves the current time from the multimedia stream's clock,
if it has a clock.
Retrieves the media stream's duration.
Sets the seek location of all derived media streams to the
specified time.

GetEndOfStreamEventHandle Retrieves the handle for the event triggered when the stream
completes playback.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa11!¥M

MQi§1[.]+• 1 11·1::'¥ Topic Contents i@fa11!¥M

IMultiMediaStream::EnumMediaStreams

IMultiMediaStream Interface

2094

Multimedia Streaming

Retrieves a media stream from a multimedia stream by zero-based index.

HRESULT EnumMediaStreams(
long Index,
IMediaStream** ppMediaStream)

Parameters

Index
[in] Index of the stream array to check.

ppMediaStream

Page 9of66

[out] Address of a pointer to an IMediaStream interface object. On return, it contains a
pointer to the stream at the specified index.

Return Values

Returns one of the following values.
Value Meaning
E_POINTER The ppMediaStream pointer is invalid.

S_FALSE Index is out of range; no streams are left to enumerate. When the method returns
this value, it also sets ppMediaStream to NULL.

SOK Success.

Remarks

You should call this method until it returns S_FALSE, which indicates that the stream
enumeration is complete.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.!j

MQl§i[.jlj,M 111.],.(j

IMultiMediaStream::GetDuration

IMultiMediaStream Interface

Returns the media stream's duration.

HRESULT GetDuration(
STREAM_TIME *pDuration
)

Parameters

2095

Topic Contents l@i§lllMM

Topic Contents l@i§lllMM

Multimedia Streaming Page 10of66

pDuration
[out] Pointer to a STREAM TIME value that will contain the media duration.

Return Values

Returns one of the following values.
Value Meaning
E_ POINTER The value of pDuration is invalid.
MS_E_WRITESTREAM The media stream is writable and therefore has no duration.

S FALSE Stream contains live data or this method couldn't determine the
duration. On return, this method sets pDuration to zero.

S_OK Stream contains recorded media. On return, pDuration contains
duration of media.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

• QIM [.] +• I !1.],.15 Topic Contents lfflj(§i MUMM

IMultiMediaStream::GetEndOfStreamEventHandlE

IMultiMediaStream Interface

Retrieves the handle for the event triggered when the stream completes playback.

HRESULT GetEndOfStreamEventHandle(
HANDLE* phEOS
)

Parameters

phEOS
[out] Pointer to an event HANDLE returned by the current object when it completes
playback. If no HANDLE is associated with the object, this value will be NULL.

Return Values

Returns S_OK if successful or E_POINTER if one or more of the required parameters are NULL.

Remarks

The Microsoft® Win32® WaitForSinqleObject and WaitForMultioleObjects functions use the
retrieved handle to watch for completion of playback.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

2096

Multimedia Streaming Page 11of66

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

IMultiMediaStream::Getlnformation

IMultiMediaStream Interface

Retrieves the capabilities of a media stream that matches the specified media type.

HRESULT Getlnformation(
DWORD *pdwF/ags,
STREAM_ TYPE *pStream Type
);

Parameters

pwdF/ags
[out] Pointer to a value that will contain a combination of one or more of the following
flags. Can be NULL.
Value Meaning
MMSSF _ASYNCHRONOUS The stream supports asynchronous sample updates. All

implementations of IMultiMediaStream will support the
asynchronous updates; this flag confirms it.

MMSSF _ HASCLOCK The stream has a clock.
MMSSF _SUPPORTS EEK The stream supports seeking.

pStreamType
[out] Pointer to a STREAM TYPE enumeration type that will contain the media type
information for the derived media streams. Can be NULL.

Return Values

Returns S_OK if successful.

Remarks

A stream's capabilities include whether it has a clock, if it supports seeking, and whether it
supports asynchronous updating.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 111.J,,[9 Topic Contents i@l§ii!MM

+Qij[.jjj,+ 111.1 1119 Topic Contents i@l§lllMM

2097

Multimedia Streaming

IMultiMediaStream::GetMediaStream

IMultiMediaStream Interface

Retrieves a media stream that has the specified purpose ID.

HRESULT GetMediaStream(
REFMSPID idPurpose,
IMediaStream **ppMediaStream
);

Parameters

idPurpose
Value that specifies the desired stream.

ppMediaStream

Page 12 of 66

Address of a pointer to an IMediaStream interface that will point to the desired media
stream.

Return Values

Returns one of the following values.
Value Meaning
E_ POINTER The ppMediaStream pointer is invalid.
MS_ E_NOSTREAM No stream has the specified purpose ID.

S OK Success.

Remarks

If a stream exists that matches the purpose ID in idPurpose, the ppMediaStream parameter
points to the stream and increments its reference count.

MSPID_PrimaryVideo and MSPID_ PrimaryAudio, which represent the primary video and audio
streams, are the most commonly used purpose IDs.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

IMultiMediaStream::GetState

IMultiMediaStream Interface

2098

Multimedia Streaming

Retrieves the multimedia stream's current state.

HRESULT GetState(
STREAM_STATE* pCurrentState
)

Parameters

pCurrentState

Page 13 of 66

[out] Pointer to the STREAM STATE enumerated type that will contain the current
multimedia stream's state.

Return Values

Returns S_OK if successful or E_POINTER if pCurrentState is invalid.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

IMultiMediaStream::GetTime

IMultiMediaStream Interface

Retrieves the current time from the multimedia stream's clock, if it has a clock.

HRESULT GetTime(
STREAM_ TIME* pCurrentTime
)

Parameters

pCurrentTime
[out] Pointer to a STREAM_ TIME value that will contain the current time, if the media
stream has a clock.

Return Values

Returns one of the following values.
Value Meaning
E_POINTER The pCurrentTime pointer is invalid.
S_FALSE Stream doesn't have a clock; *pCurrentTime is zero.
S_OK Stream has a clock and the method succeeded; pCurrentTime contains the current

time.

Remarks

2099

Multimedia Streaming Page 14 of 66

If the stream doesn't have a clock, this method sets *pCurrentTime to zero and returns
S_FALSE. If a stream has a clock, the stream sample times are relative to the stream's clock.

STREAM_ TIME is defined as a LONGLONG value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents

MQi§i[.jlj,M 1 !1·Hj Topic Contents

IMultiMediaStream::Seek

IMultiMediaStream Interface

Sets the seek location of all contained media streams to the specified time.

H RESULT Seek(
STREAM_ TIME SeekTime
)

Parameters

Seek Time
[in] STREAM TIME value that specifies the seek time.

Return Values

Returns one of the following values.
Value Meaning
E_POINTER One of the pointers is invalid.
MS_E_NOSEEKING One or more media streams don't support seeking.

l@IJll!MM

l@IJll!MM

MS_E_WRITESTREAM The streams are writable and therefore don't support seeking.
S_OK Success.

Remarks

This method won't work on streams that don't support seeking. Before calling this method,
retrieve the stream's capabilities by calling IMultiMediaStream: :Getinformation; if the
retrieved value includes the MMSSF _SUPPORTSEEK flag, you can call this method.

When seeking a stream that has a clock, the current time can change to an unpredictable
value, including a time before the desired seek time. This causes the method to fail.

This method seeks to the specified time in all the media streams derived from the multimedia

2100

Multimedia Streaming

stream object.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

8 4'MM+1 111·!:.!¥

8 4'41M+• 111.q9

IMultiMediaStream::SetState

IMultiMediaStream Interface

Sets the media stream to either a running or stopped state.

HRESULT SetState(
STREAM_STATE NewState
)

Parameters

New State

Page 15 of 66

Topic Contents lmll§lllMM

Topic Contents 1@!§111$8

[in] A STREAM STATE enumeration value that specifies the new media stream state.

Return Values

Returns S_OK.

Remarks

When you set the stream to STREAMSTATE_STOP, this method deletes all data still pending.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41M+1 1 1!·],,[¥ Topic Contents 1@!§111$8

IMediaStream Interface

The IMediaStream interface provides access to the characteristics of a media stream, such as
the stream's media type and purpose ID. It also has methods that create data samples.

For sample code that implements the multimedia streaming interfaces, see Multimedia
Streaming Sample Code.

2101

Multimedia Streaming Page 16 of 66

When to Implement

Implement this interface when you want to add media type-specific functionality to your media
stream. This interface is implemented on multimedia stream objects. IMediaStream provides
generic sample-creation methods, but you usually want to write a more powerful version of
these methods that will take advantage of your media type's specific characteristics.

When to Use

Use this interface when your application needs to access a stream's media type information
and create data samples.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IMediaStream Description
methods
GetMultiMediaStream Retrieves a pointer to the multimedia stream that contains the

specified media stream.
Getinformation Retrieves the stream's purpose ID and media type.
SetSameFormat Sets the media stream the same format as a previous stream.
AllocateSample Allocates a new stream sample object for the current media stream.
CreateSharedSample Creates a new stream sample that shares the same backing object as

the existing sample.
SendEndOfStream Forces the current stream to end. If the current stream isn't writable,

this method does nothing.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents

MQi§i[.jlj,M 11!.Hj Topic Contents

IMediaStrea m: :AllocateSa mple

IMediaStream Interface

Allocates a new stream sample object for the current media stream.

HRESULT AllocateSample(
DWORD dwF/ags,
IStreamSample **ppSample
)

2102

l@i§il!MM

l@IJll!MM

Multimedia Streaming

Parameters

dwF/ags
[in] Flags. Must be zero.

pp Sample

Page 17of66

[out] Pointer to the newly created stream sample's IStreamSample interface.

Return Values

Returns one of the following values.
Value Meaning
E_OUTOFMEMORY There isn't enough memory available to create a stream sample.
E_POINTER A parameter is invalid.
S_OK Success.

Remarks

This method allocates the sample and its associated backing object or buffer. The backing
object is either the DirectDraw surface for video or the IAudioData object for audio.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

MQi§1[.]1!,i 1 !!·HM Topic Contents i@faii!MM

IMediaStrea m: :CreateSha red Sample

IMediaStream Interface

Creates a new stream sample that shares the same backing object as the existing sample.

HRESULT CreateSharedSample(
IStreamSample* pExistingSample,
DWORD dwF/ags ,
IStreamSample* * ppNewSample
)

Parameters

pExistingSample
[in] Pointer to the existing sample.

dwF/ags
[in] Reserved for flag data. Must be zero.

ppNewSample
[out] Address of a pointer to an IStreamSample interface that will point to the newly

2103

Multimedia Streaming Page 18 of 66

created shared sample.

Return Values

Returns one of the following values.
Value Meaning
E_OUTOFMEMORY There isn't enough memory available to create the sample.
E_POINTER One of the parameters is invalid.
MS_E_INCOMPATIBLE The existing sample isn't compatible with the specified media stream.
S_OK Success; ppNewSample points to the newly created sample.

Remarks

This method calls IUnknown: :Oueryinterface on the existing sample to retrieve the media
type-specific information, which it uses to create the shared sample.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

MQij[.jlj,M M!i.1 1119

IMediaStrea m: :GetI nformation

IMediaStream Interface

Retrieves the stream's purpose ID and media type.

HRESULT Getlnformation(
MSPID* pPurposeid,
STREAM_ TYPE* pType
)

Parameters

pPurpose!d

Topic Contents i@l§ii!MM

Topic Contents i@l§ii!MM

[out] Pointer to an MSPID value that will contain the stream's purpose ID. If this
parameter is NULL on entry, the method won't retrieve the purpose ID.

pType
[out] Pointer to a STREAM TYPE enumerated data type value that will contain the
stream's media type. If this parameter is NULL on entry, the method won't retrieve the
media type.

Return Values

Returns S_OK if successful or E_POINTER if one of the parameters is invalid.

2104

Multimedia Streaming Page 19 of 66

Remarks

The value retrieved in the pPurposeid parameter will usually be either MSPID_PrimaryVideo,
which identifies the primary video stream, or MSPID_PrimaryAudio, which identifies the
primary audio stream; however, you can define other values if necessary.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

IMediaStream::GetMultiMediaStream

IMediaStream Interface

Retrieves a pointer to the multimedia stream that contains the specified media stream.

HRESULT GetMultiMediaStream(
IMultiMediaStream** ppMultiMediaStream
)

Parameters

ppMultiMediaStream
[out] Address of a pointer to an IMultiMediaStream interface object that will point to the
multimedia stream from which the current media stream was created.

Return Values

Returns S_OK if successful or E_POINTER if ppMultiMediaStream is invalid.

Remarks

This method increments the reference count of the retrieved object pointer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

IMediaStrea m: :SendEndOfStrea m

IMediaStream Interface

2105

Multimedia Streaming Page 20of66

Forces the current stream to end. If the current stream isn't writable, this method does
nothing.

HRESULT SendEndOfStream(
DWORD dwF/ags
)

Parameters

dwF/ags
[in] Reserved for flag data. Must be zero.

Return Values

Returns S_OK if successful or MS_ E_INCOMPATIBLE if the existing sample isn't compatible
with the current media stream.

Remarks

Applications do not call this internal method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

IMediaStream::SetSameFormat

IMediaStream Interface

Sets the media stream the same format as a previous stream.

HRESULT SetSameFormat(
IMediaStream *pStream ThatHasDesiredFormat,
DWORD dwF/ags
);

Parameters

pStreamThatHasDesiredFormat

Topic Contents

[in] Pointer to a media stream object that has the same format.
dwF/ags

[in] Reserved for flag data. Must be zero.

Return Values

Returns S_OK if successful or E_POINTER if one of the parameters is invalid.

2106

l@i§il!MM

Multimedia Streaming Page 21of66

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

IStreamSample Interface

The IStreamSample interface provides control over the behavior of stream samples. You can
retrieve the media stream that created the sample, set or retrieve sample start and stop times,
check the sample's completion status, and perform a developer-specified function on the
sample itself.

When to Implement

Implement this interface when you implement a media stream for a new media type. The
interface is exposed on sample objects created by media streams.

When to Use

Use this interface when you want to control data samples created by IMediaStream or its
derived interfaces.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef
Release

IStreamSample
methods
GetMediaStream

GetSampleTimes
SetSampleTimes
Update

CompletionStatus

Retrieves pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

Retrieves a pointer to the media stream object that created the current
sample.
Retrieves the current sample's start and end times.
Sets the current sample's start and end times.
Performs a synchronous or an asynchronous update on the current
sample.
Retrieves the status of the current sample's latest asynchronous
update. If the update isn't complete, you can force it to complete.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 111M Topic Contents l@i§lllMM

MQi§i[.]11,M Ill.HM Topic Contents •@M* 1gnw

2107

Multimedia Streaming Page 22of66

IStrea mSa m pie: :Com pletionStatus

IStreamSample Interface

Retrieves the status of the current sample's latest asynchronous update. If the update isn't
complete, you can force it to complete.

HRESULT CompletionStatus(
DWORD dwF/ags,
DWORD dwMilliseconds
)

Parameters

dwF/ags
[in] Value that specifies whether to forcibly complete the update. This value is a
combination of one or more of the following flags.
Value Meaning
COMPSTAT _NOUPDATEOK Force the update to complete as soon as possible, even if the
(Ox01) sample update isn't yet complete. If the sample is updating

and you didn't set the COMPSTAT _WAIT flag, the method
returns MS_S_ PENDING. If the sample is waiting to be
updated, this method removes it from the queue and returns
MS_S_NOTUPDATED.

COMPSTAT _WAIT (Ox02) Wait until the sample finishes updating before returning from
th is method.

COMPSTAT _ABORT (Ox04) Forces the update to complete, even if it's currently
updating. This leaves the sample data in an undefined state.
Combine this value with the

dwMilliseconds

COMPSTAT _WAITFORCOMPLETION flag to ensure that the
update canceled.

[in] If the dwF/ags parameter is COMPSTAT _WAIT, this value is the number of
milliseconds to wait for the update to complete. Specify INFINITE to indicate that you
want to wait until the sample updates before this call returns.

Return Values

Returns one of the following values.
Value Meaning
E_ABORT The update aborted.

MS_S_ ENDOFSTREAM The sample wasn't updated because it reached the end of the stream.
MS_S_ NOUPDATE The update was forcibly completed; the sample was not updated by the

stream.
MS_S_ PENDING
S_OK

An asynchronous update is pending.

Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

2108

Multimedia Streaming Page 23 of 66

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M 111.1 1119 Topic Contents i@l§ii!MM

IStreamSample::GetMediaStream

IStreamSample Interface

Retrieves a pointer to the media stream object that created the current sample.

HRESULT GetMediaStream(
IMediaStream** ppMediaStream
)

Parameters

ppMediaStream
[in] Address of a pointer to an IMediaStream interface that will point to the media stream
that created the current sample.

Return Values

Returns S_OK if successful or E_POINTER if ppMediaStream is invalid.

Remarks

If successful, this method increments the reference count of the media stream specified by
ppMediaStream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 111.1 1119 Topic Contents i@l§ii!MM

IStreamSample::GetSampleTimes

IStreamSample Interface

Retrieves the current sample's start and end times. If the sample is updating, this method
returns the times after the update completes.

HRESULT GetSampleTimes(
STREAM_ TIME* pStartTime,

2109

Multimedia Streaming

STREAM_ TIME* pEndTime,
STREAM_ TIME* pCurrentTime
)

Parameters

pStartTime

Page 24of66

[out] Pointer to a STREAM TIME value that will contain the sample's start time.
pEndTime

[out] Pointer to a STREAM TIME value that will contain the sample's end time.
pCurrentTime

[out] Pointer to a STREAM TIME value that will contain the media stream's current media
time.

Return Values

Returns S_OK if successful or E_POINTER if one of the parameters is invalid.

Remarks

For streams that have a clock, the start and end times will be relative to the stream's current
time. If the stream doesn't have a clock, the times are media-relative and the current time will
be zero.

The pCurrentTime parameter enables you to conveniently track the media stream's current
time, so you don't have to call IMultiMediaStream: :GetTime. Unlike GetTime, however, this
method returns S_OK if the stream doesn't have a clock; GetTime returns S_FALSE. The value
assigned to pCurrentTime is the same as the value produced by the following code fragment.

pSample->GetMediaStream(&pMediaStream) ;
pMediastream->GetMultiMediastream(&pMultiMediastream);
pMediastream->Release () ;
pMultiMediaStream->GetTime(&pCurrentTime) ;
pMultiMediastream->Release();

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j

MQi§i[.jjj,M 1 !1·Hj

Topic Contents

Topic Contents

IStrea mSa m pie: :SetSa m pie Ti mes

IStreamSamole Interface

l@i§il!MM

l@IJll!MM

Sets the current sample's start and end times. You can call this method prior to updating the
sample.

2110

Multimedia Streaming

HRESULT SetSampleTimes(
const STREAM_ TIME* pStartTime,
const STREAM_ TIME* pEndTime
)

Parameters

pStartTime

Page 25 of 66

[in] Pointer to a STREAM TIME value that contains the sample's new start time.
pEndTime

[in] Pointer to a STREAM TIME value that contains the sample's new end time.

Return Values

Returns S_OK if successful or E_POINTER if one of the parameters is NULL.

Remarks

For streams that have a clock, the times must be relative to the stream's current time. If the
stream doesn't have a clock, the times should be relative to the media.

This method only applies to writable streams.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11!j Topic Contents

IStreamSample::Update

IStreamSample Interface

Performs a synchronous or an asynchronous update on the current sample.

HRESULT Update(
DWORD dwF/ags,
HANDLE hEvent,
PAPCFUNC pfnAPC,
DWORD dwAPCData
)

Parameters

dwF/ags

l@i§lllMM

[in] Flag that specifies whether the update is synchronous or asynchronous. The
SSUPDATE_ASYNC flag specifies an asynchronous update, which you can set if both
hEvent and pfnAPC are NULL. Use SSUPDATE_CONTINUOUS to continuously update the
sample until you call the IStreamSample: :CompletionStatus method.

2111

Multimedia Streaming Page 26of66

hEvent
[in] Handle to an event that this method will trigger when the update is complete.

pfnAPC
[in] Pointer to a Win32 asynchronous procedure call (APC) function that this method will
call after it completes the sample update.

dwAPCData
[in] Value that this method passes to the function specified by the pfnAPC parameter.

Return Values

Returns one of the following values.
Value Meaning
E_ABORT The update aborted.
E_I NV ALI DARG One of the parameters is invalid.
E_POINTER One of the parameters is invalid.
MS_E_BUSY This sample already has a pending update.
MS_S_ENDOFSTREAM Reached the end of the stream; the sample wasn't updated.
MS_S_PENDING The asynchronous update is pending.
S_OK Success.

Remarks

This method can be used to perform a synchronous or asynchronous update of a sample. If
both hEvent and pfnAPC are NULL then the update will be synchronous unless either of the
SSUPDATE_ASYNC or SSUPDATE_CONTINUOUS flags is specified. When a synchronous update
returns, the result of the function contains the I/0 completion status.

You can't specify values for both hEvent and pfnAPC; the method will fail.

Asynchronous updates might complete before the update returns; in that case, the return
value is S_OK. If you specify an event and the update returns S_OK, this method sets the
event on return. If you specify an APC function and the update returns S_OK, the APC will not
be queued and the function will not be called.

Asynchronous updates that don't complete prior to returning will return a value of
MS_S_PENDING.

Applications that create multiple streams must read from each of them to avoid having their
data blocked.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@IJll!MM

MQi§i[.jjj,M 11!.Hj Topic Contents •@m•11mw

IDirectDrawMediaStream Interface

2112

Multimedia Streaming Page 27of66

The IDirectDrawMediaStream interface controls media streams that appear on Microsoft
DirectDraw® surfaces. To stream to a DirectDraw surface, DirectDraw must support the video
stream format.

For sample code that implements the multimedia streaming interfaces see Multimedia
Streaming Sample Code.

When to Implement

This interface isn't intended for implementation by application developers. It is exposed on
DirectDraw media streams that can be added to a DirectShow multimedia stream.

When to Use

Use this interface when you want to output a video stream to a DirectDraw surface.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IDirectDrawMediaStream Description
methods
Get Format

SetFormat

GetDirectDraw

SetDi rectDraw
CreateSamole

GetTimePerFrame

Retrieves the current media stream's format and, optionally,
its desired format.
Sets the current media stream's format. If the stream already
has allocated samples and the sample format doesn't match
the specified format, this method fails.
Retrieves a pointer to the DirectDraw object used by the
current media stream.
Sets the current media stream's DirectDraw object.
Creates a stream sample using the specified DirectDraw
surface object.
Retrieves the average frames per second from a video stream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents l@!§il!MM

+Qij[.jlj,M 111.1 1119 Topic Contents 1@!§111¥+

IDirectDrawMediaStream::CreateSample

I DirectDrawMed iaStrea m Interface

2113

Multimedia Streamiug

Creates a stream sample using the specified DirectDraw surface object.

HRESULT CreateSample(
IDirectDrawSurface* pSurface,
const RECT *pRect,
DWORD dwF/ags,
IDirectDrawStreamSample** ppSample
)

Parameters

pSurface
[in] Pointer to an existing DirectDraw surface.

pRect

Page 28 of 66

[in] Pointer to the clipping rectangle you want to use with the specified surface. Set this
parameter to NULL if you want to use the entire surface.

dwF/ags
[in] Flag that specifies whether the render should be progressive. To perform a
progressive render, set this value to DDSFF _PROGRESSIVERENDER. If you don't set this
flag, sample updates will copy the sample data to the surface.

ppSample
[out] Address of a pointer to an !DirectDrawStreamSamole interface that will point to the
newly created sample.

Return Values

Returns one of the following values.
Value Meaning
DDERR_INVALIDPIXELFORMAT The specified pixel format is incompatible with the stream

format.
DDERR_INVALIDRECT The specified clipping rectangle is invalid.
DDERR_INVALIDSURFACETYPE The specified surface is incompatible with the stream format.
E_POINTER One or more of the required parameters is invalid.
MS E SAMPLEALLOC The stream already has allocated samples and the surface

doesn't match the sample format.
S_OK Success.

Remarks

This method creates a sample from the current stream and attaches the sample to this
surface.

If the stream doesn't have an allocated surface and the specified surface doesn't match the
stream's format, this method calls the !DirectDrawMediaStream: :SetFormat method on the
stream so the two will match.

To perform a progressive render, create a single sample and repeatedly use that sample for
successive frames of video. Video decompressors use this technique to do partial updates to
the previous frame.

Note, the pRect parameter should match the format of the stream (see

2114

Multimedia Streaming Page 29of66

IDirectDrawMediaStream: :GetFormat). If the wrong clip rectangle is set or no clip rectangle is
set, and the surface size does not match the movie size, the movie may not play. If a primary
surface is used it is advisable to use a clipping rectangle because the primary surface size may
change if the user changes their display settings.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I llMM

MQl§i[.jjj,M 111.],.[M Topic Contents lfflj(§i MUMM

IDirectDrawMediaStream::GetDirectDraw

I DirectDrawMed iaStrea m Interface

Retrieves a pointer to the DirectDraw object used by the current media stream.

HRESULT GetDirectDraw(
IDirectDraw** ppDirectDraw
)

Parameters

ppDirectDraw
[out] Address of a pointer to an IDirectDraw interface that will contain the current media
stream's associated DirectDraw object.

Return Values

Returns S_OK if successful or E_POINTER if the parameter is invalid.

Remarks

If you haven't initialized the stream yet, the retrieved pointer will be NULL and the method will
return S_OK. If you have initialized the stream, this method increments the retrieved pointer's
reference count.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM Topic Contents l@i§i MUMM

I Di rectDrawMed iaStrea m: :GetFormat

2115

Multimedia Streamiug

!DirectDrawMediaStream Interface

Retrieves the current media stream's format and, optionally, its desired format.

HRESULT Getformat(
DDSURFACEDESC *pDDSDCurrent,
IDirectDrawPalette **ppDirectDrawPalette,
DDSURFACEDESC *pDDSDDesired,
DWORD* pdwF/ags
)

Parameters

pDDSDCurrent

Page 30 of 66

[out] Pointer to a DirectDraw surface description that will contain the current media
stream's format.

ppDirectDrawPalette
[out] Address of a pointer to an IDirectDrawPalette interface if one exists.

pDDSDDesired
[out] Pointer to a DirectDraw surface description that will contain the current media
stream's desired format.

pdwF/ags
[out] Pointer to the flags set in a DDSURFACEDESC structure. Fields of interest include.

Meaning Value
DDSD_HEIGHT Indicates that the height member of the structure is valid.
DDSD_WIDTH Indicates that the width member of the structure is valid.
DDSD_PIXELFORMAT Indicates that the pixel format member of the structure is valid.
DDSD_CAPS Indicates that the surface capability member of the structure is

valid.

Return Values

Returns one of the following values.
Value Meaning
DDERR_INVALIDPARAMS One of the DirectDraw surface parameters is invalid.
E_POINTER One or more of the required parameters is invalid.
S_OK Success.

Remarks

After you call this method, you can either conform to the current format or attempt to change
the format by calling the !DirectDrawMediaStream: :SetFormat method.

All of this method's parameters are optional; set any of them to NULL to indicate that you don't
want to retrieve that information.

To perform a progressive render, create a single sample and repeatedly use that sample for
successive frames of video. Video decompressors use this technique to do partial updates to
the previous frame.

You must initialize the dwSize member of the DDSURFACEDESC structure before calling this

2116

Multimedia Streaming Page 31of66

method.

The DDSD_CAPS flag will return one of the values listed in the DDSCAPS structure or
DDSCAPS_DATAEXCHANGE, which is defined as
DDSCAPS_SYSTEMMEMORYI DDSCAPS_ VIDEOMEMORY in Ddrawex.h.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jlj,M M!i.! 111M Topic Contents i@l§ii!MM

IDirectDrawMediaStream::GetTimePerFrame

I DirectDrawMed iaStrea m Interface

Retrieves the average frames per second from a video stream.

HRESULT GetTimePerFrame(
STREAM_ TIME *pFrame Time
)

Parameters

pFrameTime
[out] STREAM TIME value that indicates the average time per frame in 100-nanosecond
units.

Return Values

Returns S_OK if successful or E_POINTER if the pointer is invalid.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§i[.]ii,+ +II.HM Topic Contents Mttfjl§i +gn+

I Di rectDrawMed iaStrea m: :Set Di rectDraw

I DirectDrawMed iaStrea m Interface

Sets the current media stream's DirectDraw object.

HRESULT SetDirectDraw(

2117

Multimedia Streaming Page 32 of 66

IDirectDraw* pDirectDraw
)

Parameters

pDirectDraw
[in] Address of a pointer to an IDirectDraw interface that contains the media stream's
new DirectDraw object.

Return Values

Returns S_OK if successful.

Remarks

This method fails if the current stream already has allocated samples and its DirectDraw object
differs from the specified one. It will always succeed if the specified DirectDraw object matches
the stream's current object.

If this stream has no allocated samples, you can set pDirectDraw to NULL. This forces the
stream to release its reference to the current DirectDraw object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

I Di rectDrawMed iaStrea m: :Setf ormat

I DirectDrawMed iaStrea m Interface

Sets the format of the current media stream.

HRESULT Setformat(
const DDSURFACEDESC *pDDSurfaceDesc,
IDirectDrawPalette *pDirectDrawPalette
)

Parameters

pDDSurfaceDesc

i@l§ii!MM

[in] Pointer to a DirectDraw surface description that contains the new format.
pDirectDrawPalette

[in] Optional parameter that is a pointer to an IDirectDrawPalette interface.

Return Values

Returns one of the following values.

2118

Multimedia Streaming Page 33 of 66

Value Meaning
S_OK Success.
DDERR_INVALIDSURFACETYPE The specified format is incompatible with the current stream.

MS E SAMPLEALLOC Can't change the format because one or more stream samples
are already allocated for this stream.

Remarks

If the stream already has allocated samples and the sample format doesn't match the specified
format, this method fails. This method always succeeds if the specified format matches the
current format.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j Topic Contents l@IJll!MM

MQi§i[.jjj,M 1 !1·Hj Topic Contents •@m•11mw

IDirectDrawStreamSample Interface

The IDirectDrawStreamSample interface provides methods that set and retrieve pointers to
the DirectDraw surface associated with the current stream sample.

When to Implement

This interface isn't intended for implementation by application developers. It is exposed by
sample objects created by the DirectDraw stream.

When to Use

Use this interface when applications need to set clipping rectangles and retrieve the rendering
surface for DirectDraw stream samples.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IDirectDrawStreamSample Description
methods
GetSurface

SetRect

Retrieves pointers to the current sample's DirectDraw
surface and associated clipping rectangle.
Changes the clipping rectangle for a sample.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

2119

Multimedia Streaming Page 34of66

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M 111.1 1119 Topic Contents i@l§ii!MM

IDirectDrawStreamSample::GetSurface

IDirectDrawStreamSample Interface

Retrieves pointers to the current sample's DirectDraw surface and associated clipping
rectangle.

HRESULT GetSurface(
IDirectDrawSurface ** ppDirectDrawSurface,
RECT * pRect
);

Parameters

ppDirectDrawSurface
[out] Address of a pointer to an IDirectDrawSurface interface that specifies the sample's
new surface. Set this parameter to NULL if you don't want to specify a new surface.

pRect
[out] Pointer to a RECT structure that will contain the current sample's clipping
rectangle. Set this parameter to NULL if you don't want to retrieve the clipping rectangle.

Return Values

Returns S OK if successful.

Remarks

Both parameters are optional. All implementations of this interface must support null values as
valid parameters. If you retrieve a surface pointer, this method increments its reference count,
so you must release the reference.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M 111.1 1119 Topic Contents i@l§ii!MM

IDirectDrawStreamSample::SetRect

IDirectDrawStreamSample Interface

2120

Multimedia Streaming

Changes the clipping rectangle for a sample.

HRESULT SetRect (
const RECT * pRect
)

Parameters

pRect

Page 35 of 66

[in] Pointer to a RECT structure that specifies the stream's new clipping rectangle.

Return Values

Returns one of the following values.
Value Meaning
DDERR_INVALIDPIXELFORMAT The stream isn't compatible with the pixel format.
DDERR_INVALIDRECT The specified rectangle is invalid.
DDERR_INVALIDSURFACETYPE The stream isn't compatible with the surface.
E_POINTER One of the pointers is invalid.

MS_ E_SAMPLEALLOC The stream format doesn't match the surface and samples are
currently allocated to the stream.

SOK Success.

Remarks

Both parameters are optional; set either to NULL to avoid changing that value. If the surface
format doesn't match the stream format, this method fails.

If the new rectangle's size isn't the same as the current rectangle, a call to this method will
fail.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

IAudioMediaStream Interface

The IAudioMediaStream interface controls audio media streams by providing methods that
set and get the stream's format. This interface inherits from the IMediaStream interface and is
used to create one or more IAudioStreamSample objects. You can also use it to set and
retrieve the stream data's current format.

This interface is currently defined only for PCM format audio data.

2121

Multimedia Streaming Page 36 of 66

For sample code that implements the audio streaming interfaces, see Multimedia Streaming
Sample Code.

When to Implement

Like video, audio is contained in a self-describing container object. Implement this interface
when an object needs to control streaming audio.

When to Use

Use this interface when you want to generate audio in your application.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IAudioMediaStream methods Description
GetFormat Retrieves the stream data's current format.
SetFormat Sets the format for the stream.
CreateSample Creates an audio stream sample for use with this stream.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents

MQi§1[.]1!,i 1 !!·HM Topic Contents

IAudioMed iaStrea m: :CreateSa m pie

IAudioMediaStream Interface

Creates an audio stream sample for use with the specified stream.

HRESULT CreateSample(
IAudioData *pAudioData,
DWORD dwF/ags,
IAudioStreamSample **ppSample
);

Parameters

pAudioData

•@M* 1gnw

i@faii!MM

[in] Pointer to an IAudioData container. IAudioData objects can be referenced by
samples in more than one stream.

2122

Multimedia Streaming

dwF/ags
[in] Reserved for flag data. Must be zero.

ppSample
[out] Address of a pointer to the new IAudioStreamSample interface.

Return Values

Page 37of66

Returns S_OK if successful or E_POINTER if one or more of the required parameters are NULL.

Remarks

The pAudioData object defines the data's format.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents l@!§il!MM

+Qij[.jjj,M 111.1 1119 Topic Contents 1@!§111¥+

IAudioMed iaStrea m: :GetFormat

IAudioMediaStream Interface

Retrieves the stream data's current format.

HRESULT Getformat(
WAVEFORMATEX *pWaveFormatCurrent);

Parameters

p WaveFormatCurrent
[out] Pointer to a WAVEFORMATEX structure that contains the stream data's current
format.

Return Values

Returns S_OK if successful or E_POINTER if the required parameter is NULL.

Remarks

Currently, DirectShow only supports PCM wave data.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,M 111.1 1119 Topic Contents 1@!§111¥+

2123

Multimedia Streaming

IAudioMed iaStrea m: :SetFormat

IAudioMediaStream Interface

Sets the format for the stream.

HRESULT Setformat(
const WAVEFORMATEX *lpWaveFormat
);

Parameters

lpWaveFormat

Page 38 of 66

[in] Pointer to a WAVEFORMATEX structure that contains stream format information.

Return Values

Returns an HRESULT value, which can include the following values or others not listed.
Value Meaning
MS_E_INCOMPATIBLE Format of the IAudioData object is not compatible with stream.
E_POINTER Null pointer argument.
E_I NV ALI DARG
S_OK

Invalid argument.
Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11!j

M QiM [.] jj,M I !I.HJ

IAudioStreamSample Interface

Topic Contents l@i§lllMM

Topic Contents '®'*' 1gnw

The IAudioStreamSample interface retrieves information from the underlying IAudioData
data objects.

For sample code that implements the audio streaming interfaces, see Multimedia Streaming
Sample Code.

When to Implement

Implement this interface on audio stream sample objects when they need access to an
IAudioData object's data .

When to Use

2124

Multimedia Streaming Page 39 of 66

Use this interface when your application needs to access an IAudioData object's data for its
audio stream.

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAudioStreamSample Description
methods
GetAudioData Retrieves the address of a pointer to the IAudioData object

associated with the sample.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@i§il!MM

MQi§i[.jlj,M 1 !1·Hj Topic Contents •@m•+imw

IAudioStrea mSa mple: :GetAud ioData

IAudioStreamSamole Interface

Retrieves the address of a pointer to the IAudioData object associated with the sample.

HRESULT GetAudioData(
IAudioData **ppAudio);

Parameters

ppAudio
[out] Address of a pointer to the IAudioData object.

Return Values

Returns S_OK if successful or E_POINTER if the parameter is NULL.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQl§i[.jlj,M 111.J,,[j Topic Contents

IMemoryData Interface

2125

l@IJll!MM

Multimedia Streaming Page 40of66

The IMemoryData interface contains methods that set and retrieve memory data on audio
data objects. Audio data objects provide the underlying data which stream samples access.
This interface provides a way to initialize memory buffers and to set actual amounts of audio
data in the objects. Additionally, the Getinfo method can be used to retrieve audio memory
data.

When to Implement

Implement this interface on underlying audio data objects that audio stream sample objects
will access.

When to Use

Typically these methods are called by the IAudioMediaStream or IAudioStreamSample object,
rather than by the application.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IMemoryData methods Description
SetBuffer Initializes a memory buffer with a pointer to memory and length.

Getinfo
SetActual

Retrieves information describing an audio data object.
Sets the amount of audio data currently in the object, in bytes.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

MQi§1[.]++ 1 !!·H¥

IMemoryData::Getlnfo

IMemoryData Interface

Retrieves information describing an audio data object.

HRESULT Getlnfo(
DWORD *pdwLength,
BYTE **ppbData,
DWORD *pcbActua/Data);

Parameters

2126

Topic Contents i@fa11!¥M

Topic Contents i@fa11!¥M

Multimedia Streaming

pdwLength
[out] Length of memory in bytes, if non-NULL.

ppbData
[out] Pointer to the memory, if non-NULL.

pcbActua/Data
[out] Length of data in bytes, if non-NULL.

Return Values

Returns S OK if successful.

Remarks

Page 41of66

This method determines how much data is actually in the object at the moment as last set by
SetActual.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

MQ<§i[.jlj,M 111.l:.!j

IMemoryData: :SetActua I

IMemoryData Interface

Sets the amount of audio data currently in the object.

HRESULT SetActual(
DWORD cbDataValid
);

Parameters

cbDataValid
[in] Amount of data, in bytes.

Return Values

Topic Contents

Topic Contents

Returns S_OK if successful or E_POINTER if the required parameter is NULL.

Remarks

l@i§il!MM

i@faii!MM

This method is usually called by the IAudioMediaStream or IAudioStreamSample object, rather
than by the application.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

2127

Multimedia Streaming

+Qi§1[.]++ 1 !!·HM Topic Contents

IMemoryData: :SetBuffer

IMemoryData Interface

Initializes a memory buffer with a pointer to memory and length.

HRESULT SetBuffer(
DWORD cbSize,
BYTE *pbData,
DWORD dwF/ags);

Parameters

cbSize
[in] Size of memory pointed to by pbData, in bytes.

pbData
[in] Pointer to memory that this object will use.

dwF/ags
[in] Reserved for flag data. Must be zero.

Return Values

Page 42of66

i@l§ii!MM

Returns S_OK if successful or E_INVALIDARG if cbSize is zero or pbData is NULL.

Remarks

This method can be called more than once.

Do not call this method when the IStreamSample:: Update method is processing a sample.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ +!i.! 111M Topic Contents i@l§ii!MM

+Qi§i[.]ii,+ 1 !1·HM Topic Contents Mttfjl§ii!MM

IAudioData Interface

The IAudioData interface provides methods that enable applications to set and get the
underlying audio data that audio streams will reference. The audio data format is set in the

2128

Multimedia Streaming Page 43of66

WAVEFORMATEX structure.

When to Implement

Implement this interface on underlying audio data objects that audio stream sample objects
will access.

When to Use

Applications use this interface to set and retrieve information on underlying data objects that
an audio stream will reference.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IAudioData methods Description
Get Format
SetFormat

Retrieves the current data format.
Sets the current data format.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

MQ<§i[.jlj,M lh.l:.!j

IAudioData::GetFormat

IAudioData Interface

Retrieves the current data format.

HRESULT GetFormat(
WAVEFORMATEX *pWaveFormatCurrent);

Parameters

p WaveFormatCurrent

Topic Contents

Topic Contents

l@i§il!MM

i@faii!MM

[out] Pointer to a WAVEFORMATEX structure that contains the current data format.

Return Values

Returns S_OK if successful or E_POINTER if pointer is invalid.

Remarks

2129

Multimedia Streaming Page 44of66

Currently, DirectShow only supports PCM wave data.

See Also

IAudioData: :SetFormat

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 Mii.HM Topic Contents •@M* 1gnw

IAudioData::SetFormat

IAudioData Interface

Sets the current data format.

HRESULT SetFormat(
const WAVEFORMATEX */pWaveFormat);

Parameters

lpWaveFormat
[in] Pointer to a WAVEFORMATEX structure that will contain the current data format.

Return Values

Returns an HRESULT value, which can include the following values.
Value Meaning
E_POINTER Invalid pointer argument.
E_INVALIDARG Invalid format.
S_OK Success.

See Also

IAudioData: :GetFormat

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents i@faii!MM

• Q<M [.] +• I !!·HM Topic Contents •@M* 1gnw

2130

Multimedia Streaming Page 45 of 66

IAMMultiMediaStream Interface

The IAMMultiMediaStream interface exposes Microsoft® DirectShow™ functionality to
multimedia stream developers. You can use its methods to automatically generate filter
graphs, open files or monikers for playback or capture of incoming data, and render a given
filter graph.

When to Implement

Implement this interface when you want to provide multimedia stream-based support for
DirectShow media types in your applications.

When to Use

Use this interface when you want to control DirectShow-supported media playback in your
multimedia streaming applications.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IAM Multi MediaStream Description
methods
Initialize

GetFilterGraph

Get Filter
AddMediaStream
Open File

Open Moniker

Render

Sets the stream type. If the pFilterGraph parameter is non-NULL
the filter graph passed in is used for the stream.
Retrieves the associated filter graph's IGraphBuilder interface.
Retrieves the specified filter from the current filter graph.

Adds the specified media stream to the current filter graph.
Opens and automatically creates a filter graph for the specified
media file. If DirectShow doesn't support the file format, this
method does nothing.
Opens a file or device moniker; you can read media data from
this moniker if DirectShow supports the media type.
Renders the current filter graph.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

IAM Multi Med iaStrea m: :AddMediaStrea m

2131

Multimedia Streamiug

!AM Multi Media Stream Interface

Adds the specified media stream to the current filter graph.

HRESULT AddMediaStream(
!Unknown* pStreamObject,
const MSPID *pPurposeID,
DWORD dwF/ags,
IMediaStream** ppNewStream
)

Parameters

pStreamObject

Page 46 of 66

[in] Pointer to an !Unknown interface that points to either the media stream or
underlying stream object you want to add to the current filter graph.

pPurposeID
[in] Pointer to the purpose ID for the newly added media stream.

dwF/ags
[in] Value that modifies the media stream's behavior; it is a combination of one or more
of the following values.
AMMSF _ADDDEFAULTRENDERER Add a default renderer.
AMMSF _CREATEPEER Create a peer stream based on the same object as a

pStrea mObject.
ppNewStream

[out] Address of a pointer to an !MediaStream interface that will point to the newly
added media stream. This parameter is optional.

Return Values

Returns an HRESULT value, which can include the following values:
Value Meaning
MS_E_PURPOSEID Stream being added has a different purpose ID from the one specified or a

stream with the specified purpose ID already exists.
E_POINTER

S_OK

Remarks

Null pointer argument.
Success.

If dwFlags specifies AMMSF _ADDDEFAULTRENDERER then the default renderer for the given
purpose Id is created if possible. Currently the only default renderer supported is for audio
using DirectSound. In this case the pStreamObject parameter must be NULL and any calls to
the !MultiMediaStream: :GetMediaStream or !MultiMediaStream: :EnumMediaStreams methods
wi 11 not recognize the stream.

If dwF/ags specifies AMMSF _CREATEPEER then a Media Stream is created using pStreamObject
and added to the current multimedia stream. pStreamObject varies depending on the stream
type. In general pStreamObject can point to an !MediaStream object, in which case a stream
with the sample purpose ID and format is created. For IDirectDraw streams it can also be a
pointer to an IDirectDraw object.

2132

Multimedia Streaming Page 47of66

If neither flag is set then pStrea mObject can be one of the following:
An IAMMediaStream This stream is then added to the streams in the multimedia stream.
object
NULL In this case a default IMediaStream object is added to the stream

with a default underlying object if required.
A pointer to an
underlying object

This is used to construct default streams. For video streams this
can be an IDirectDraw pointer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM

+Q<@[.]ij,+ 111.1 1119

IAMMultiMediaStream::GetFilter

IAMMultiMediaStream Interface

Retrieves the specified filter from the current filter graph.

HRESULT Getfilter(
IMediaStreamFilter** ppFilter
)

Parameters

ppFilter

Topic Contents ifflj[§ii!¥M

Topic Contents 1@1§11!¥+

[out] Address of a pointer to an IMediaStreamFilter interface that will point to the
current filter.

Return Values

Returns S_OK if successful or E_POINTER if one or more of the required parameters are NULL.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

+;<§1[.]ij,+ +II.HM Topic Contents i@fa11!¥M

IAM Multi Med iaStrea m: :Get Fi lterGra ph

IAMMultiMediaStream Interface

2133

Multimedia Streaming

Retrieves the associated filter graph's IGraphBuilder interface.

HRESULT GetFilterGraph(
IGraph Builder **ppGraphBuilder
);

Parameters

ppGraphBuilder

Page 48of66

[out] Address of a pointer to an IGraphBuilder interface that will point to the current
filter graph.

Return Values

Returns S_OK if successful or E_POINTER if one or more of the required parameters are NULL.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

IAM Multi Med iaStrea m: :In itia I ize

IAMMultiMediaStream Interface

Sets the stream type. If the pFilterGraph parameter is non-NULL the filter graph passed in is
used for the stream.

HRESULT Initialize(
STREAM_ TYPE StreamType,
DWORD dwF/ags,
IGraphBuilder * pFilterGraph
)

Parameters

Stream Type
[in] STREAM TYPE enumeration value that specifies the new filter graph's stream type.

dwF/ags
[in] Either contains the AMMSF _NOGRAPHTHREAD flag, which creates a filter graph
object on the current thread, or zero.

pFilterGraph
[in] [optional] Address of an IGraphBuilder interface that will point to the new filter
graph. This parameter is optional; only pass in a valid pointer if you must access the
filter graph at a later time.

Return Values

2134

Multimedia Streaming Page 49of66

Returns S_OK if successful or E_POINTER if one or more of the required parameters are NULL.

Remarks

Using the AMMSF _ NOGRAPHTHREAD flag is safe provided the current thread does not exit
before the stream object is released by the application and the current thread processes
window messages.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

MQl§i[.jjj,M 111.],.[5 Topic Contents lfflj(§i MUMM

IAMMultiMediaStream::OpenFile

IAMMultiMediaStream Interface

Opens and automatically creates a filter graph for the specified media file. If DirectShow
doesn't support the file format, this method does nothing.

HRESULT Openfile(
LPCWSTR pszFileName,
DWORD dwF/ags
)

Parameters

pszFileName
[in] Name of the file you want to open.

dwFlags
[in] Value that modifies how the filter graph will render the specified file. This value is a
combination of one or more of the following flags:
Value Meaning
AMMSF _ RENDERTOEXISTING Only render to existing streams
AMMSF _RENDERALLSTREAMS Render all streams, including those that do not have an

existing media stream.
AMMSF _ NOREN DER Open the file, but do not render any streams. This flag

should always be accompanied with the AMMSF _ RUN flag.
AM MSF _NOCLOCK
AMMSF _ RUN

Return Values

Returns one of the following values.

Run the stream with no clock.
Set the stream into the run state.

2135

Multimedia Streaming Page 50 of 66

Value Meaning
E_INVALIDARG The dwFlags parameter is invalid.
E_ POINTER This method tried to access an invalid pointer.

S_OK Success.

Remarks

The AMMSF _RENDERALLSTREAMS flag will create default rendering filters for video and audio if
they do not exist. However, these default filters cannot be accessed by the
IStreamSample: :GetMediaStream method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

MQ<§i[.jlj,M 111.l:.!j Topic Contents i@faii!MM

IAMMultiMediaStream::OpenMoniker

IAMMultiMediaStream Interface

Opens a file or device moniker; you can read media data from this moniker if DirectShow
supports the moniker.

HRESULT OpenMoniker(
IBindCtx *pCtx,
!Moniker* pMoniker,
DWORD dwF/ags
)

Parameters

pCtx
[in] Pointer to the bind context associated with the moniker.

pMoniker
[in] Pointer to an IMoniker interface that specifies the moniker you want to open.

dwF/ags
[in] Value that modifies how the filter graph will render the specified file. This value is a
combination of one or more of the following flags:
Value Meaning
AMMSF _RENDERTOEXISTING Only render to existing streams
AMMSF _RENDERALLSTREAMS Render all streams, including those that do not have an

existing media stream.
AMMSF _NORENDER Open the file, but do not render any streams. This flag

should always be accompanied with the AMMSF _RUN flag.
AM MSF _NOC LOCK Run the stream with no clock.

2136

Multimedia Streaming Page 51of66

AMMSF_RUN Set the stream into the run state.

Return Values

Returns S_OK if successful or E_INVALIDARG if the dwF/ags parameter is invalid.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9

+Qij[.jlj,M 111.1 1119

IAMMultiMediaStream::Render

IAMMultiMediaStream Interface

Renders the current filter graph.

HRESULT Render(
DWORD dwF/ags
)

Parameters

dwF/ags

Topic Contents l@!§il!MM

Topic Contents 1@!§111¥+

[in] Value that specifies how the filter graph renders the current multimedia stream. This
value currently must be AMMSF _NOCLOCK.

Return Values

Returns S_OK if successful or E_INVALIDARG if the dwFlags parameter is invalid.

Remarks

This method renders each of the source streams for a stream of type STREAMTYPE_WRITE.
This can be called several times, for instance, each time a source stream is added, the stream
is not set into running mode. Use the IMultiMediaStream: :SetState method to set the stream
into running mode after calling this method.

The AMMSF _RENDERALLSTREAMS flag will create default rendering streams for video and
audio if they do not exist.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

+Qi§1[.jlj,M Ill.HM Topic Contents l@!§il!MM

2137

Multimedia Streaming Page 52 of 66

IAMMediaStream Interface

The IAMMediaStream interface handles the internal connections between DirectShow filters
and filter graphs in applications that use multimedia streaming. This enables applications to
automatically negotiate the transfer and conversion of data from the source to the application
without having to write code to handle the connection, transfer of data, data conversion, and
actual data rendering or file storage. This provides a uniform and predictable method of data
access and control.

When to Implement

This interface isn't intended for implementation by application developers.

When to Use

This interface isn't intended for use by application developers.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IAM MediaStream Description
methods
Initialize Creates and initializes a new media stream with the specified

stream type and purpose ID.

SetState Sets the filter state.
JoinAMMultiMediaStream The IAMMultiMediaStream: :AddMediaStream method calls this

method, which adds the specified media stream to the current
multimedia stream.

Join Filter

JoinFilterGraph

Connects a media stream to a media stream filter in the underlying
filter graph.

Connects a media stream filter to a filter graph.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa11!¥M

MQi§1[.]++ 1 11·1::'¥ Topic Contents i@fa11!¥M

IAMMediaStream::lnitialize

IAMMediaStream Interface

2138

Multimedia Streaming Page 53 of 66

Creates and initializes a new media stream with the specified stream type and purpose ID.

HRESULT Initialize(
!Unknown *pSourceObject,
DWORD dwF/ags,
REFMSPID PurposeID,
STREAM_ TYPE StreamType
)

Parameters

pSourceObject
[in] Pointer to an IUnknown source object.

dwF/ags
[in] Flags. Must be zero.

Purpose!D
[in] Purpose ID for the new media stream.

Stream Type
[in] A STREAM TYPE enumeration value that specifies the new media stream's media
type.

Return Values

Returns S_OK if successful or E_POINTER if one or more of the required parameters are
invalid.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

MQi§1[.]1!,i 1 !!·HM Topic Contents i@faii!MM

IAMMediaStream::JoinAMMultiMediaStream

IAMMediaStream Interface

The IAMMultiMediaStream: :AddMediaStream method calls this method, which adds the
specified media stream to the current multimedia stream.

HRESULT JoinAMMultiMediaStream(
IAM Multi MediaStream * pAMMultiMediaStream
)

Parameters

pAMMultiMediaStream
[in] Specifies the IAMMultiMediaStream object to add the current media stream to.

2139

Multimedia Streaming Page 54 of 66

Return Values

Returns S_OK if successful or MS_E_SAMPLEALLOC if the media stream already has allocated
stream samples.

Remarks

Don't increment the reference count of the supplied multimedia stream because it is already
accounted for when created.

Applications should not call this method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents l@!§il!MM

IAMMediaStream::JoinFilter

IAMMediaStream Interface

Connects a media stream to a media stream filter in the underlying filter graph.

HRESULT Joinfilter()

Return Values

Returns S_OK if successful or E_POINTER if one or more of the required parameters are NULL.

Remarks

Don't increment the reference count for the specified media stream filter.

Applications should not call this method.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQl§1[.jlj,M 111.J,,[j Topic Contents l@!§il!MM

IAM Med iaStrea m: :Join Fi lterGra ph

IAMMediaStream Interface

2140

Multimedia Streaming

Connects a media stream filter to a filter graph.

HRESULT JoinFilterGraph(
IFilterGraph* pGraph
)

Parameters

pGraph

Page 55 of 66

[in] Indicates the current media stream filter to add to the specified filter graph.

Return Values

Returns S_OK if successful or E_POINTER if one or more of the required parameters are NULL.

Remarks

Don't increment the reference count of the specified filter graph.

Applications should not call this method.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥

IAMMediaStream::SetState

IAMMediaStream Interface

Sets the filter state.

HRESULT SetState(
FILTER_STATE State
)

Parameters

State

Topic Contents lmli§lllMM

[in] Sets the filter's state, as specified by the FILTER STATE enumerated type.

Return Values

Returns S_OK if successful or E_INVALIDARG if the State parameter is invalid ..

Remarks

Applications should not call this method.

2141

Multimedia Streaming Page 56 of 66

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

Multimedia Streaming Data Types

This section describes the Microsoft® DirectShow™ multimedia streaming data types.
Data type Description
MSPID Media stream purpose IDs define the purpose of a media stream. A purpose

ID is simply typedefed as a GUID.

STREAM STATE Describes the state of the stream.
STREAM_ TIME Stream time measured in 100-nanosecond increments. This type is defined to

be a 64-bit integer (LONGLONG).
STREAM TYPE Defines the direction of data flow for the stream.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

STREAM_STATE

Multimedia Streaming Data Types

Describes the state of the stream.

typedef enum {
STREAMSTATE STOP
STREAMSTATE RUN

} STREAM_STATE;

Values

STREAMSTATE_STOP
Stop state.

STREAMSTATE_RUN
Run state.

Remarks

0,
1

•Q<M!.l+' MB.HM Topic Contents

Change the state by calling the IMultiMediaStream: :SetState method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

2142

i@faii!MM

Multimedia Streaming

+Qi§1[.]++ 1 !!·HM

STREAM_ TYPE

Multimedia Streaming Data Types

Defines the direction of data flow for the stream.

typedef enum {
STREAMTYPE READ -
STREAMTYPE WRITE -
STREAMTYPE TRANSFORM= 2

STREAM_TYPE;

Values

STREAMTYPE_READ
Application can read the stream.

STREAMTYPE_WRITE

0,
1,

Application can write to the stream.
STREAMTYPE_TRANSFORM

Application reads and writes the stream.

Remarks

Topic Contents

Transform streams are read/write where the sample is updated in place.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 111.],.[9 Topic Contents

Error and Success Codes for Multimedia
Streaming

Page 57 of 66

i@l§ii!MM

i@l§ii!MM

The following list contains error messages and success notifications for applications that use
the multimedia streaming interfaces. This list does not contain all possible errors; the errors
shown apply specifically to DirectShow implementation of the multimedia streaming interfaces.
Note that success codes start with MS_S and return TRUE from the SUCCEEDED COM macro
and FALSE from the COM FAILED macro.

2143

Multimedia Streaming

Message

MS_S_PENDING

MS_S_NOUPDATE

MS_S_ENDOFSTREAM

MS_E_SAM PLEALLOC

MS_E_PURPOSEID

MS_E_NOSTREAM

MS_E_NOSEEKING

MS_E_INCOM PATIBLE

MS_E_BUSY

MS_E_NOTINIT

Page 58 of 66

Hexadecimal Meaning
code
Ox00040001 Sample update is not yet complete.
Ox00040002 Sample was not updated after forced

completion.

Ox00040003 End of stream. Sample not updated.
Ox80040401 An IMediaStream object could not be

removed from an IMultiMediaStream
object because it still contains at least
one allocated sample.

Ox80040402

Ox80040403

Ox80040404

Ox80040405
Ox80040406
Ox80040407

The specified purpose id cannot be used
for the call.
No stream can be found with the
specified attributes.
Seeking not supported for this
IMultiMediaStream object.
The stream formats are not compatible.
The sample is busy.

The object cannot accept the call
because its initialize function or
equivalent has not been called.

MS_E_SOURCEALREADYDE FIN ED Ox80040408
MS_E_INVALI DSTREAMTYPE Ox80040409

Source already defined.
The stream type is not valid for this
operation.

MS_E_NOTRU N NING Ox8004040A The IMultiMediaStream object is not in
running state.

© 1997 Microsoft Corporation . All rjqhts reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

• QIM [.] +• I !!·HM Topic Contents i@i§ill@iM

Multimedia Streaming Component Objects

This article provides a table that describes the various components that Microsoft®
DirectShow™ supports. These objects support the multimedia streaming interfaces. This article
also includes a diagram that shows the hierarchy of component objects.

Contents of this article:

• Component Objects Table
• Object References Diagram

Component Objects Table

2144

Multimedia Streaming Page 59 of 66

This section describes the various components that are support:ed by DirectShow.
Object Description Interfaces s1.1pported
CLSID AMMultiMediaStream DirectShow implementation of IAMMultiMediaStream,

multimedia stream. IMultiMediaStream
CLSID ... MediaStreamfilter Provides multimedia streaming IBasefi!ter

fUnctionality for the
CLSID AMMultiMediaStream
object through the
IAMMultiMediaStream interface.

CLSID AMDirectDrawStream DirectDraw® media stream that
can be added to a DirectShow
multimedia stream.

Samples created by the
DirectDraw stream.

CLSID AMMediaTypeStream

Samples created by the
CLSID AMMediaTypeStream
object
CLSID AMAudioData

Object References Diagram

Can create media samples for
any DirectShow-support:ed data
type

Implementation of IAodjoData
audio container object

IAMMediaStream,
IMediaStream.
IDirectDrawMediaStream,
IPin, IMeminoutPin
IStreamSamole,
IDirectDrawStreamSample,
IMediaSample
IAMMediaStream,
IMediaStream. IPin.
IMemin pi rtpjo
IStreamSample,
IMediaSample.
IMediaSample2
IAod joData

The hierarchy of objects creates some interesting circular references between the DirectShow
objects. The following diagram shows all the objects and their references. Strong references
(those that increment the referenced object) are indicated by solid lines. Weak references
(those that do not AddRef the referenced object) are indicated by a dotted line.

.. Multimedia ,__.. Filter graph stream

7 ~

Stream
,._

Media stream filter -·
T

- Sample ,_. Data object

Samples hold strong references to the multimedia stream object, while the media streams do
not.

MAI§ "·ii'·' +:1.1 .. 19 T op1c Contents i@i§Mit§M

2145

Multimedia Streaming Page 60of66

+Qi§i[.]ii,+ 1 !!·HM Topic Contents i@l§ii!MM

Multimedia Streaming Sample Code

This article provides sample code that implements the Multimedia Streaming interfaces. The
video streaming sample code demonstrates how to read a file and render it to a primary
Microsoft® DirectDraw® surface. This code has no error checking; see Use Multimedia
Streaming in DirectShow APPiications for a more thorough, line by line, description of the video
streaming code.

The second code sample demonstrates how to use the audio streaming interfaces to stream
audio data.

Contents of this article:

• Video Streaming Sample Code
• Audio Streaming Sample Code

Video Streaming Sample Code

This sample code reads a file and renders it to a primary DirectDraw surface.

#include <StdiO.h>
#inc lude "ddraw.h" II DirectDraw interfaces
#include "mmstream.h" I I Multimedia stream interfaces
#include "amstream.h" II Directshow multimedia stream interfaces
#inc lude "ddstream.h" II DirectDraw multimedia stream interfaces

void RenderstreamToSurface (IDirectDrawsurface *pSurface, IMultiMediastream *pMMStre
{

IMediaStream *pPrimaryVidStream;
IDirectDrawMediastream *pDDStream;
IDirectDrawstreamsample *pSample ;
RECT rect;
DDSURFACEDESC ddsd;

pMMStream- >GetMediaStream (MSPID_PrimaryVideo, &pPrimaryVidStream) ;
pPrimaryVidStream- >Queryinterface(IID_IDirectDrawMediastream, (v o id **) &pDI
ddsd.dwsize = sizeof (ddsd) ;
pDDStream- >GetFormat (&ddsd, NULL, NULL, NULL) ;
rect.top = rect.left = O;
rect.bo ttom = ddsd.dwHeight;
rect.right = ddsd.dwWidth;
pDDStream->Createsample (pSurface, &rect, o, &psample) ;

pMMStream- >SetState (STREAMSTATE_RUN) ;
while (pSample->Update(O, NULL, NULL, NULL)
pMMStream->Setstate (STREAMSTATE_STOP);

psample->Release () ;

2146

S_OK) ;

Multimedia Streamiug Page 61of66

pDDStream->Release();
pPrimaryVidStream->Release();

void RenderFileToMMStream(const char * szFileName, IMultiMediaStream **ppMMStream,
{

IAMMultiMediaStream *pAMStream;
CoCreateinstance(CLSID_AMMultiMediaStream, NULL, CLSCTX_INPROC SERVER,

IID IAMMultiMediaStream, (void **)&pAMStream);
WCHAR wPath[MAX=PATH]; II Wide (32-bit) string name
MultiByteToWideChar(CP ACP, o, szFileName, -1, wPath,

- sizeof(wPath)lsizeof(wPath[O]));

pAMStream->Initialize(STREAMTYPE_READ, AMMSF_NOGRAPHTHREAD, NULL);
pAMStream->AddMediaStream(pDD, &MSPID_PrimaryVideo, 0, NULL);
pAMStream->AddMediaStream(NULL, &MSPID_PrimaryAudio, AMMSF ADDDEFAULTRENDEI
pAMStream->OpenFile(wPath, O);
*ppMMStream = pAMStream;

int CRTAPil main(int argc, char *argv[])
{

if (argc < 2)
printf ("Usage
exit(O);}

showstrm movie.ext\n");

DDSURFACEDESC ddsd;
IDirectDraw *pDD;
IDirectDrawsurface *pPrimarysurface;
IMultiMediaStream *pMMStream;

Coinitialize(NULL);

DirectDrawcreate(NULL, &pDD, NULL);
pDD->SetcooperativeLevel(GetDesktopWindow(), DDSCL_NORMAL);
ddsd.dwsize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS;
ddsd.ddsCaps.dwCaps = DDSCAPS PRIMARYSURFACE;
pDD->Createsurface(&ddsd, &pPrimarysurface, NULL);
RenderFileToMMStream(argv[l], &pMMStream, pDD);
RenderStreamToSurface(pPrimarysurface, pMMStream);
pMMStream->Release();
pPrimarysurface->Release();
pDD->Release();

CoUninitialize();
return O;

Audio Streaming Sample Code

The following code sample demonstrates how to stream audio data using the
!AudioMediaStream, !AudioStreamSamole, !MemoryData, and !AudioData interfaces.

#include <Windows.h>
#include <mmsystem.h>
#include <amstream.h>

/**

Trivial wave player stuff

**/

2147

Multimedia Streamiug

class cwaveBuffer;

class cwaveBuff er {
public,

cwaveBuff er() ;
-cwaveBuffer();
BOOL Init(HWAVEOUT hWave, int Size);
void Done();
BOOL Write(PBYTE pData, int nBytes, int& BytesWritten);
void Flush() ;

private:
WAVEHDR
HWAVEOUT
int

m_Hdr;
m_hwave;
m_nBytes;

class cwaveout {

/*

*/

public,
cwaveout(LPCWAVEFORMATEX Format, int nBuffers, int BufferSize);
-cwaveout();
void Write(PBYTE Data, int nBytes);
void Flush() ;
void Wait();
void Reset();

private:
const HANDLE
const int
int
BOOL
cwaveBuffer
HWAVEOUT

cwaveBuffer

m_hsem;
m_nBuffers;

m_CurrentBuffer;
m_NoBuffer;

*m_Hdrs;
m_hwave;

cwaveBuffer, ,cwaveBuffer()

j
BOOL CWaveBuffer, ,rnit(HWAVEOUT hWave, int Size)
{

m hWave
m_nBytes

hWave;
O;

/* Allocate a buffer and initialize the header */
m Hdr.lpData = (LPSTR)LocalAlloc(LMEM FIXED, Size);
if (m_Hdr.lpData == NULL) { -

return FALSE;

m_Hdr.dwBufferLength
m_Hdr.dwBytesRecorded
m_Hdr.dwUser = O;
m_Hdr.dwFlags = O;
m_Hdr.dwLoops = O;
m_Hdr.lpNext = O;
m Hdr.reserved = O;

/* Prepare it */

Size;
0;

waveoutPrepareHeader(hWave, &m_Hdr, sizeof(WAVEHDR));

2148

Page 62 of 66

Multimedia Streamiug

return TRUE;

cwaveBuffer, ,-cwaveBuffer()
if (m_Hdr.lpData) {

waveoutUnprepareHeader(m_hWave, &m_Hdr, sizeof(WAVEHDR));
LocalFree(m_Hdr.lpData);

void cwaveBuffer, ,Flush()
{

//ASSERT(m_nBytes != 0);
m_nBytes = o;
waveoutWrite(m_hWave, &m_Hdr, sizeof(WAVEHDR));

BOOL cwaveBuffer, ,write(PBYTE pData, int nBytes, int& BytesWritten)
{

//ASSERT((DWORD)m_nBytes != m_Hdr.dwBufferLength);

Page 63 of 66

BytesWritten = min((int)m_Hdr.dwBufferLength - m_nBytes, nBytes);
CopyMemory((PVOID) (m_Hdr.lpData + m_nBytes), (PVOID)pData, BytesWritten);
m_nBytes += BytesWritten;
if (m nBytes == (int)m Hdr.dwBufferLength)

!* Write it! */ -
m_nBytes = O;
waveoutWrite(m_hWave, &m_Hdr, sizeof(WAVEHDR));
return TRUE;

return FALSE;

void CALLBACK Wavecallback(HWAVEOUT hWave, UINT uMsg, DWORD dwUser, DWORD dwl, DWOR
{

/*

*/

if (uMsg == WOM_DONE) {
ReleaseSemaphore((HANDLE)dwUser, 1, NULL);

cwaveout

cwaveout, ,cwaveout(LPCWAVEFORMATEX Format, int nBuffers, int BufferSize)
m_nBuffers(nBuffers),
m_CurrentBuffer(O),
m_NoBuffer(TRUE)'
m_hsem(Createsemaphore(NULL, nBuffers, nBuffers, NULL)),
m_Hdrs(new cwaveBuffer[nBuffers]),
m_hwave (NULL)

/* Create wave device */
waveoutopen(&m_hwave,

WAVE_MAPPER,
Format,
(DWORD)Wavecallback,
(DWORD)m_hSem,
CALLBACK_FUNCTION);

/* Initialize the wave buffers */
for (int i = O; i < nBuffers; i++) {

m_Hdrs[i] .Init(m_hwave, BufferSize);

2149

Multimedia Streamiug

cwaveout, , -cwaveout ()
{

/* First get our buffers back */
waveoutReset(m_hWave);

/* Free the buffers */
delete [] m_Hdrs;

/* Close the wave device */
waveoutclose(m_hwave);

/* Free our semaphore */
CloseHandle(m_hSem);

void cwaveout, ,Flush()
{

if (!m_NoBuffer) {
m_Hdrs[m_CurrentBuffer] .Flush();
m_NoBuffer = TRUE;
m CurrentBuffer (m_CurrentBuffer + 1) % m_nBuffers;

void cwaveout, ,Reset()
{

waveoutReset(m_hWave);

void cwaveout, ,write(PBYTE pData, int nBytes)
{

while (nBytes != O) {
/* Get a buffer if necessary */
if (m_NoBuff er) {

WaitForSingleObject(m_hSem,
m NoBuffer = FALSE;

/* Write into a buffer */
int nWritten;

INFINITE);

if (m_Hdrs[m_CurrentBuffer] .Write(pData, nBytes, nWritten))
m_NoBuffer = TRUE;
m_CurrentBuffer = (m_CurrentBuffer + 1) % m_nBuffers;
nBytes -= nWritten;
pData += nWritten;

else {
//ASSERT(nWritten nBytes);
break;

void cwaveouto,wait()
{

/* Send any remaining buffers */
Flush();

/* Wait for our buffers back */
for (int i = O; i < m_nBuffers; i++) {

WaitForSingleObject(m_hSem, INFINITE);
}
LONG lPrevcount;

2150

Page 64 of 66

Multimedia Streamiug Page 65 of 66

Releasesemaphore(m_hsem, m_nBuffers, &lPrevcount);

/**

End of wave player stuff

**/

HRESULT RenderStreamToDevice(IMultiMediaStream *pMMStream)
{

WAVEFORMATEX wfx;
#define DATA_SIZE 5000
PBYTE pBuffer = (PBYTE)LocalAlloc(LMEM_FIXED, DATA_SIZE);

IMediaStream *pStream;
IAudioStreamSample *pSample;
IAudioMediaStream *pAudioStream;
IAudioData *pAudioData;

pMMStream->GetMediaStream(MSPID_PrimaryAudio, &pStream);
pStream->Queryinterface(IID_IAudioMediaStream, (void **)&pAudioStream);
pAudioStream->GetFormat(&wfx);
CoCreateinstance(CLSID_AMAudioData, NULL, CLSCTX_INPROC_SERVER,

IID_IAudioData, (void **)&pAudioData);
pAudioData->SetBuffer(DATA_SIZE, pBuffer, 0);
pAudioData->SetFormat(&wfx);
pAudioStream->Createsample(pAudioData, o, &pSample);
HANDLE hEvent = CreateEvent(FALSE, NULL, NULL, FALSE);
cwaveout Waveout(&wfx, 4, 2048);
int iTimes;
for (iTimes = O; iTimes < 3; iTimes++)

DWORD dwstart = timeGetTime();
for (; ;) {

}

HRESULT hr= pSample->Update(O, hEvent, NULL, 0);
if (FAILED (hr) 11 MS s ENDOFSTREAM == hr)

break;
}
WaitForSingleObject(hEvent, INFINITE);
DWORD dwTimeDiff = timeGetTime() - dwstart;
II We'll get bored after about 10 seconds
if (dwTimeDiff > 10000) {

break;
}
DWORD dwLength;
pAudioData->Getinfo(NULL, NULL, &dwLength);
Waveout.Write(pBuffer, dwLength);

pMMStream->Seek(O);

pAudioData->Release();
pSample->Release();
pStream->Release();
pAudioStream->Release();
LocalFree((HLOCAL)pBuffer);

return S_OK;

HRESULT RenderFileToMMStream(WCHAR * pszFileName, IMultiMediaStream **ppMMStream)
{

IAMMultiMediaStream *pAMStream;

2151

Multimedia Streaming Page 66of66

CoCreateinstance(CLSID_AMMultiMediaStream, NULL, CLSCTX_INPROC_SERVER,
IID_IAMMultiMediastream, (void **)&pAMStream);

pAMStream->Initialize(STREAMTYPE READ, AMMSF NOGRAPHTHREAD, NULL) i

pAMStream->AddMediaStream(NULL, &MSPID_PrimaryAudio, 0, NULL) i

pAMStream->OpenFile(pszFileName, AMMSF_RUN) i

*ppMMStream = pAMStream;
return S_OK;

int CRTAPil main(int argc, char *argv[])
{

IMultiMediastream *pMMStream;
Coinitialize(NULL);
WCHAR wszName[lOOO] i

MultiByteToWidechar(CP ACP, o, argv[l], -1, wszName,
sizeof(wszName) / sizeof(wszName[O]));

RenderFileToMMStream(wszName, &pMMStream);
RenderstreamToDevice(pMMStream);
pMMStream->Release();
couninitialize();
return O;

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.!+• +11.q9 Topic Contents

2152

l@!§il!MM

DirectDrawEx Page 1of10

MQi@[.jjj,M l!i.! 11ij Topic Contents l@i§il!MM

DirectDrawEx

This section contains an overview of the DirectDrawEx dynamic-link library, which extends the
current functionality of Microsoft® DirectDraw®. It also contains reference material for the
DirectDrawEx interfaces, IDirectDrawFactory and IDirectDraw3.

· Using DirectDrawEx

· IDirectDrawFactory Interface

· IDirectDraw3 Interface

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§il!MM

Using DirectDrawEx

This article provides a brief overview of DirectDrawEx and how it extends the functionality of a
DirectDraw object as described in the Microsoft DirectX® SDK.

Contents of this article:

• What Is DirectDrawEx?
• Advantages of Using DirectDrawEx
• Creating DirectDraw Objects and Surfaces with DirectDrawEx
• Distinctions Between DirectDraw and DirectDrawEx

What Is DirectDrawEx?

DirectDrawEx is a dynamic-link library (DLL) that extends current functionality of DirectDraw,
enhancing existing features and providing new functionality. DirectDrawEx also exposes new
interfaces that applications can use when you include the Ddrawex.h header file.

To create a DirectDraw object that can use the extended features provided by DirectDrawEx,
you must create the object by using the IDirectDrawFactory interface. A DirectDraw object
created with the IDirectDrawFactory interface will support the IDirectDraw3 interface,
aggregation of DirectDraw surfaces, data exchange, and palette mapping, in addition to the
features of DirectDraw objects described in the DirectX SDK.

Advantages of Using DirectDrawEx

2153

DirectDrawEx Page 2of10

The primary advantage of creating a DirectDraw object through the !DirectDrawFactory
interface is that it exposes the !DirectDraw3 interface. The IDirectDraw3 interface inherits all
the functionality of the !DirectDraw and the !DirectDraw2 interfaces and provides a new
method that can retrieve a pointer to an !DirectDrawSurface interface, given a handle to a
device context.

To obtain the !DirectDraw3 interface, you must call the !DirectDrawFactory: :CreateDirectDraw
method to create the DirectDraw object and expose the !Unknown and !DirectDraw interfaces.
Applications can then call Ouerylnterface to obtain a pointer to the IDirectDraw3 interface.
To view sample code that demonstrates this, see Creating DirectDraw Objects and Surfaces
with DirectDrawEx.

Another advantage of using DirectDrawEx over using DirectDraw is that you can now aggregate
inner objects with outer objects by using the !DirectDraw3: :CreateSurface method. Formerly,
!DirectDraw: :CreateSurface and !DirectDraw2: :CreateSurface did not provide COM aggregation
features. For a thorough description of how !DirectDraw3 implements aggregation see,
IDirectDraw3::CreateSurface.

Finally, DirectDrawEx now also provides the DDSCAPS_DATAEXCHANGE flag for the DDSCAPS
structure's dwcaps member. When a surface is created using the DDSCAPS_DATAEXCHANGE
flag, the surface will automatically be moved into video memory if there is enough video
memory available, otherwise a system memory surface will be created. This stabilizes video
memory surfaces and ensures that they will not be lost, even if system memory decides to
move them into video memory in the future.

Creating DirectDraw Objects and Surfaces with DirectDrawEx

The following sample code demonstrates how to create a DirectDraw object by using
DirectDrawEx, and get a pointer to the !DirectDraw3 interface. The code shows how to create
and call DirectDraw objects.

#include ddrawex.h

void CreateDDEx()
{

//Declarations
HRESULT hr;
IDirectDraw *pDD;
IDirectDraw3 *pDD3;
IDirectDrawFactory *pDDF;

//Initialize COM library
Coinitialize(NULL);

//Create a DirectDrawFactory object and get
//an IDirectDrawFactory interface pointer.
CoCreateinstance(CLSID_DirectDrawFactory, NULL, CLSCTX_INPROC_SERVER,

IID_IDirectDrawFactory, (vc

//Call the IDirectDrawFactory: :CreateDirectDraw method to create the
//DirectDraw surface, set the cooperative level, and get the address
//of an IDirectDraw interface pointer.
hr = (pDDF->CreateDirectDraw(NULL, GetDesktopWindow()' DDSCL_NORMAL,

NULL, NULL, &pDD));

2154

DirectDrawEx Page 3of10

if (hr !=DD_OK) {//erro r chec king
}

//Now query for the new IDirectDraw3 interface, and release the old one.
hr = (pDD->QUeryinterface (IID_IDirectDraw3, (LPVOID*) &pDD3)) i

if (hr !=SOK) {//error checking
} -

//Release IDirectDraw.
pDD->Release ();
pDD= NULL;

// Initialize the DDSURFACEDESC structure for the primary surface.
zeroMemory (&ddsd, sizeof(ddsd)) ;

ddsd.dwSize = sizeof (ddsd) ;
ddsd.dwFlags = DDSD_CAPS;

ddsd.ddsCaps.dwcaps = DDSCAPS PRIMARYSURFACE ;
hr= pDD3->CreateSurfac e (&ddsd, &pPrimarySurfac e, NULL) ;

//Do whatever you need to do in y our application here with yo ur
//DirectDraw surface.

//Release IDirectDraw3, IDirec tDrawFactory, and the Direc tDraw surface.
pDD3- >Release () ;
pDDF->Release () ;
pPrimarySurface->Release () ;

//Clo se the COM library
CoUninitialize () ;

Distinctions Between DirectDraw and DirectDrawEx

One important distinction to note between DirectDrawEx and DirectDraw is that applications
that have created multiple DirectDrawSurface objects through a DirectDrawEx surface must
release every DirectDraw surface.

Also, calling the GetDDinterface method from any surface created under DirectDrawEx will
return a pointer to the IUnknown interface instead of a pointer to an IDirectDraw interface.
Applications must use the IUnknown: :Querylnterface method to retrieve the IDirectDraw,
IDirectDraw2, or IDirectDraw3 interfaces.

Finally, DirectDrawEx does not currently support blitting between surfaces created by
DirectDrawEx and surfaces created by DirectDraw. Applications should blit only between similar
surfaces.

© 1997 Microsoft Corooratjon. All rights reserved. Terms of Use.

MQ<§i[.jjj,M ill.HS Topic Contents i@fa111¥M

MQi§i[.]jj,i l!!·!:.19 Topic Contents l@l§ill¥M

IDirectDrawFactory Interface

2155

DirectDrawEx Page 4of10

The IDirectDrawFactory interface is used to create and enumerate DirectDraw objects that
support the extended features of DirectDrawEx (see Using DirectDrawEx for more information).

When to Implement

Do not implement this interface; DirectDrawEx implements it for you.

When to Use

Use this interface in an application when you want to create a DirectDrawEx object.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IDirectDrawFactory Description
methods
CreateDirectDraw Creates a DirectDraw object and retrieves pointers to the

!Unknown and the IDirectDraw interfaces.

DirectDrawEn u merate Enumerates the DirectDraw surfaces installed on the system.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa11!¥M

MQi§1[.]+• 1 !!·H¥ Topic Contents i@fa11!¥M

I Di rectDrawFactory: :CreateDi rectDraw

IDirectDrawFactory Interface

Creates a DirectDraw object and retrieves pointers to the !Unknown and IDirectDraw
interfaces.

STDMETHOD CreateDirectDraw(
GUID * pGUID,
HWND hWnd,
DWORD dwCoopLeve/Flags,
DWORD dwReserved,
!Unknown *pUnkOuter,
IDirectDraw **ppDirectDraw
) PURE;

2156

DirectDrawEx Page 5of10

Parameters

pGUID

hWnd

[out] Pointer to the globally unique identifier (.G..UlQ) that represents the driver to be
created. Set this to NULL to indicate the active display driver, or you can pass one of the
following flags to restrict the active display driver's behavior for debugging purposes:
Value Meaning
DDCREATE_EMULATIONONLYThe DirectDraw object will use emulation for all features;

it will not take advantage of any hardware-supported
features.

DDCREATE_HARDWAREONLY The DirectDraw object will never emulate features not
supported by the hardware. Attempts to call methods that
require unsupported features will fail, returning
DDERR_UNSUPPORTED (operation not supported).

[in] Window handle to the application.
dwCoopLeve/Flags

[in] Application's top-level behavior. Specify one or more of the following flags:
Value Meaning
DDSCL_ALLOWMODEX Enables the use of Mode X display modes. You must use

this flag with the DDSCL_EXCLUSIVE and
DDSCL_FULLSCREEN flags.

DDSCL_ALLOWREBOOT

DDSCL_EXCLUSIVE

DDSCL_FULLSCREEN

DDSCL_NORMAL

Enables the user to reboot by pressing CTRL+ALT+DEL while
the application is in full-screen exclusive mode.
Requests the exclusive level. You must use this flag with
the DDSCL_FULLSCREEN flag. At the full screen and
exclusive cooperative level, you can use the hardware to
its fullest. In this mode, you can set custom and dynamic
palettes, change display resolutions, compact memory,
and implement page flipping. The exclusive (full-screen)
mode does not prevent other applications from allocating
surfaces, nor does it exclude them from using DirectDraw
or GD!. However, it does prevent applications other than
the one currently with exclusive access from changing
the display mode or palette.
Indicates that the exclusive-mode owner will be in control
of the entire primary surface. You must use this flag with
the DDSCL_EXCLUSIVE flag.
Indicates that the application will function as a regular
Windows® application. You can't use this flag with the
DDSCL_ALLOWMODEX, DDSCL_EXCLUSIVE, or
DDSCL_FULLSCREEN flags.

DDSCL_NOWINDOWCHANGES Indicates that DirectDraw can't minimize or restore the
application window when the application is activated.

dwReserved
[in] Reserved for future use. Must be NULL.

pUnkOuter
[in] Pointer to an !Unknown interface on an outer object that will be aggregated with an
inner object's !Unknown interface.

ppDirectDraw
[out] Address of a pointer to an !DirectDraw interface.

2157

DirectDrawEx Page 6of10

Return Values

Returns DD_OK if successful, or one of the following error values otherwise:
Value Meaning
E_OUTOFMEMORY There isn't enough memory available to create a

DirectDraw object.
DDERR_GENERIC There is an undefined error condition.
DDERR_UNSUPPORTED DirectDraw doesn't support the operation.
DDERR_DIRECTDRAWALREADYCREATED A DirectDrawEx object representing this driver has

already been created for this process.
DDERR_INVALIDDIRECTDRAWGUID The .G..UlQ passed to this method is not a valid

Di rectDrawEx driver identifier.
DDERR_INVALIDPARAMS One or more of the parameters passed to the method

are incorrect.
DDERR_NODIRECTDRAWHW Hardware-only DirectDrawEx object creation isn't

possible; the driver doesn't support any hardware.

Remarks

This method creates DirectDraw objects in the same way that the DirectDrawCreate function is
used to create DirectDraw objects, and sets cooperative levels the same way the
IDirectDraw2:: SetCooperativeLevel method sets cooperative levels. However, in addition to
creating a DirectDraw object, successful calls to the IDirectDrawFactory::CreateDirectDraw
method will obtain a pointer to the !Unknown and IDirectDraw interfaces, which are exposed
on the DirectDraw object. Applications can now query the DirectDraw object to obtain the
address of a pointer to an IDirectDraw3 interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@i§ii!MM

MQij[.jlj,M M!i.1 1119 Topic Contents i@i§ii!MM

I Di rectDrawFactory:: Di rectDrawEn u merate

IDirectDrawFactory Interface

Enumerates the DirectDraw objects installed on the system.

STDM ETHOD DirectDrawEnumerate(
LPDDENUMCALLBACK lpCallback,
LPVOID lpContext
) PURE;

Parameters

2158

DirectDrawEx Page 7of10

Ip Callback
[in] Pointer to a DDEnumCallback function that will be called with a description of each
DirectDrawEx-enabled hardware abstraction layer (HAL) installed in the system.

lpContext
[in] Address of an application-defined structure that the system will pass to the callback
function each time the function is called.

Return Values

Returns DD~OK if successful, or DDERR~INVALIDPARAMS otherwise.

Remarks

This method functions in a similar manner to the DirectDrawEnumerate function, defined in
the DirectX SDK.

Your application can call this method only after a successful call to the
IDirectDrawFactory: :CreateDirectDraw method.

© 1997 Microsoft Corooratjon. All rights reserved. Terms of Use.

MQ<§i[.jjj,M ill.HS Topic Contents

IDirectDraw3 Interface

i@faii!MM

The IDirectDraw3 interface is available to applications that have created a DirectDraw object
through the IDirectDrawFactory: :CreateDirectDraw method. This method retrieves the address
of a pointer to an IDirectDraw interface, which your application can use to query for the
IDirectDraw3 interface.

The IDirectDraw3 interface extends the IDirectDraw and the IDirectDraw2 interfaces by
adding the IDirectDraw3: :GetSurfaceFromDC method and providing new behavior for the
IDirectDraw3: :CreateSurface method (formerly IDirectDraw2: :CreateSurface). This section
provides information on the new behavior of the CreateSurface method. See the DirectX SDK
for information on the original behavior of this and all other IDirectDraw and IDirectDraw2
methods as they relate to DirectDraw objects.

For more information on additional functionality provided by DirectDrawEx, see .LJ.s.io9.
DirectDrawEx.

When to Implement

Do not implement this interface; DirectDrawEx implements it for you.

When to Use

Applications use this interface when they have created a DirectDraw object through a
successful call to the IDirectDrawFactory: :CreateDirectDraw method. Applications can use this

2159

DirectDrawEx Page 8of10

interface to get an IDirectDrawSurface interface pointer directly from a handle to a device
context.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef
Release

IDirectDraw3
methods

Retrieves pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

CreateSurface
GetSurfaceFromDC

Creates a DirectDrawSurface object from a DirectDraw object.
Retrieves a pointer to an IDirectDrawSurface interface from a handle
to a device context.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

MQij[.jlj,M M!i.1 1119

IDirectDraw3::CreateSurface

IDirectDraw3 Interface

Creates a DirectDrawSurface object from a DirectDraw object.

STDM ETHOD CreateSurface(
LPDDSURFACEDESC lpDDSurfaceDesc,
LPDIRECTDRAWSURFACE FAR *lpDDSurface,
!Unknown FAR *pUnkOuter
) PURE;

Parameters

lpDDSurfaceDesc

Topic Contents i@l§ii!MM

Topic Contents i@l§ii!MM

[in] Pointer to the DDSURFACEDESC structure that describes the requested surface. You
should set any unused members of DDSURFACEDESC to zero before calling this
method. A DDSCAPS structure is a member of DDSURFACEDESC.

lpDDSurface
[out] Address of a pointer to be initialized with a valid DirectDrawSurface pointer if the
call succeeds.

pUnkOuter
[in] Pointer to an !Unknown interface on an outer object that will be aggregated with an
inner object's !Unknown interface.

Return Values

2160

DirectDrawEx Page 9of10

Returns DD_OK if successful, or one of the following error values otherwise:
Value Meaning
DDERR_INCOMPATIBLEPRIMARY The primary surface creation request does not

match the existing primary surface.
DDERR_INVALIDCAPS One or more of the capability bits passed to the

callback function are incorrect.
DDERR_INVALIDOBJECT

DDERR_INVALIDPARAMS

DDERR_INVALIDPIXELFORMAT
DDERR_NOALPHAHW

DDERR_NOCOOPERATIVELEVELSET

DDERR_NODIRECTDRAWHW

DDERR_NOEMULATION
DDERR_NOEXCLUSIVEMODE

DDERR_NOFLIPHW
DDERR_NOMIPMAPHW

DDERR_NOOVERLAYHW

DDERR_NOZBU FFERHW

DDERR_OUTOFMEMORY

DirectDraw received a pointer to an invalid
DirectDraw object.
One or more of the parameters passed to the
method are incorrect.
The pixel format was invalid as specified.
No alpha acceleration hardware is present or
available, which caused the requested operation to
fail.
The !DirectDraw2: :SetCoooerativeLevel method
was not called before the surface was created.
Hardware-only DirectDraw object creation isn't
possible; the driver doesn't support any hardware.
Software emulation isn't available.
The operation requires the application to have
exclusive mode, but the application doesn't have
exclusive mode.
Flipping visible surfaces isn't supported.
The operation can't be carried out because no
mipmap texture mapping hardware is present or
available.
The operation can't be carried out because no
overlay hardware is present or available.
The operation to create a z-buffer in display
memory or to perform a blit using a z-buffer can't
be carried out because there is no hardware
support for z-buffers.
DirectDraw doesn't have enough available memory
to perform the operation.

DDERR_OUTOFVIDEOMEMORY DirectDraw doesn't have enough display memory
to perform the operation.

DDERR_PRIMARYSURFACEALREADYEXISTS The application has already created a primary
surface.

DDERR_UNSUPPORTEDMODE The operation isn't supported.

Remarks

Passing in NULL for the pUnkOuter parameter will return the address of a DirectDraw surface in
the lpDDSurface parameter. However, if you pass in a pointer to an outer interface you want to
aggregate with an inner interface, you will get back an !Unknown pointer for the lpDDSurface
parameter.

DirectDrawEx now also provides the DDSCAPS_DATAEXCHANGE flag for the dwcaps member of
the DDSCAPS structure, which is defined as a combination of DDSCAPS_SYSTEMMEMORY and

2161

DirectDrawEx Page 10of10

DDSCAPS_VIDEOMEMORY in Ddrawex.h. When a surface is created using the
DDSCAPS_ DATAEXCHANGE flag, the surface will be automatically moved into video memory if
there is enough video memory available; otherwise, a system memory surface will be created.
Also, setting this flag in conjunction with the DDSCAPS_OWNDC flag enables applications to
call the IDirectDrawSurface: :GetDC method to lock the device context for as long they require,
without holding a lock on the surface.

This method calls the IDirectDraw: :CreateSurface and IDirectDraw2: :CreateSurface methods.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9 Topic Contents l@!§il!MM

+Qij[.jlj,M 111.1 1119 Topic Contents l@!§lllMM

I Di rectDraw3: :GetSu rfaceFromDC

IDirectDraw3 Interface

Retrieves a pointer to an IDirectDrawSurface interface from a handle to a device context.

STDMETHOD GetSurfaceFromDC(
HOC hdc,
IDirectDrawSurface **ppSurface
) PURE;

Parameters

hdc
[in] Handle of the device context (DC).

ppSurface
[out] Address of a pointer to an IDirectDrawSurface interface.

Return Values

Returns S_OK if successful, or one of the following values otherwise:
Value Meaning
E_ POINTER Invalid pointer to IDirectDrawSurface.
DDERR_NOTFOUND The requested item wasn't found.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Q'41!.l+1 1 !1·HM Topic Contents

2162

l@!§il!MM

Appendixes Page 1of53

MQi@[.jjj,M l!i.! 11ij Topic Contents l@i§il!MM

Appendixes

This section contains lists of the media types supported by DirectShow, the various MPEG
media types, reserved identifiers in DirectShow, DVD video formats, and further reading.

· Media Types

• MPEG-1 Media Types

· Time Stamps

· Sample Properties

· CLSIDs in DirectShow

· DirectShow DVD Support

· Country Codes and Channel to Frequency Mappings

· Reserved Identifiers

· Further Reading

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§il!MM

MQl§i[.jjj,M 111.],.(j Topic Contents l@bll!MM

Media Types

Microsoft® DirectShow™ uses the AM MEDIA TYPE structure to describe media samples. This
structure includes GUID fields for major type, subtype, and format type, as well as fields
specifying other sample features, such as whether the samples are compressed. This article
summarizes the major type and subtype options registered by DirectShow. These media types
are defined in Uuids.h.

• Media Types with No Subtype
• Audio Media Types
• Line21 Media Types

2163

Appendixes

• MPEG2 Media Types
• Stream Media Types
• Video Media Types
• Analog Video Media Types

Media Types with No Subtype

The following table describes the media types with no subtype.
MEDIATYPEs with no MEDIASUBTYPEs

Analog audio connection
Media type is a file, used closed captions.

Page 2 of 53

MEDIA TYPE_Ana logAud io
MEDIATYPE_File

MEDIATYPE_Interleaved
MEDIATYPE_Midi

MEDIATYPE_ScriptCommand
MEDIA TYPE_ Text
MEDIATYPE_ Timecode

Data is interleaved, used by Digital Video (DV).
Data is MIDI format.

Audio Media Types

Data is a script command, used by closed captions.
Data is text.
Data is timecode data.

The wFormatTag field in the WAVEFORMATEX structure specifies the audio format type. The
format type is generally FORMAT _WaveFormatEx. Media samples are generally whole number
of samples as specified in the wBitsPerSample field in the WAVEFORMATEX structure. This is
not necessarily true for MPEG audio samples that can come from packetized streams and are
therefore not necessarily packaged on sample/ frame boundaries. For MPEG audio the time
stamp in a media sample is the time stamp for the first frame whose first byte is contained in
the media sample.

Media subtypes are defined for each wFormatTag as follows:

• The Datal subfield of the Media Subtype is the same as the wFormatTag value.
• The Data 2 field is 0.
• The Data 3 field is Ox0010.
• The Data 4 field is Ox80, OxOO, OxOO, OxAA, OxOO, Ox38, Ox9B, Ox71.

Thus, for PCM audio the subtype GUID would be:

{00000001-oooo-0010-sooo-00AA00Js9B71}

Older filters may still use GUID_NULL as the subtype so this should be checked for. However,
registration of a filter with the explicit subtype greatly improves the speed of graph loading,
especially when the given filter is not required. The CreateAudioMediaTyoe function supplied in
the DirectShow SDK can be used to create an AM MEDIA TYPE structure from a
WAVEFORMATEX Structure.

The following table describes the audio media subtypes.
MEDIATYPE_Audio Data is audio
MEDIASUBTYPE_PCMAudio PCM audio
MEDIASUBTYPE_MPEG1Packet MPEGl Audio packet
MEDIASUBTYPE_MPEG1Payload MPEGl Audio Payload

2164

Appendixes Page 3 of 53

Line21 Media Types

The following table describes the Line21 closed captioning media subtypes.
MEDIATYPE_AUXLine21Data Data is Line21 type, used by closed captions
MEDIASUBTYPE_Line21_BytePair Line21 data as byte pairs
MEDIASUBTYPE_Line21_GOPPacket Line21 data in DVD GOP Packet
MEDIASUBTYPE_Line21_VB!RawData Line21 data in raw VB! format

MPEG2 Media Types

The following table describes the MPEG2 media subtypes.
MEDIATYPE_MPEG2_PES Data is MPEG2 format, used by DVD
MEDIASUBTYPE_DVD_SUBPICTURE Subpicture data
MEDIASUBTYPE_DOLBY _AC3 Dolby data
MEDIASUBTYPE_MPEG2_AUDIO MPEG2 audio data
MEDIASUBTYPE_DVD_LPCM_AUDIO DVD audio data

Stream Media Types

Time stamps are byte positions* 10000000 (notionally 1 byte per second) rather than real
times.

The following table describes the stream media subtypes.
MEDIATYPE_Stream Data is a non-timestamped byte stream
MEDIASUBTYPE_Avi Data from AV! file
MEDIASUBTYPE_WAVE Data from WAV file
MEDIASUBTYPE_AU Data from AU file
MEDIASUBTYPE_AIFF Data from AIFF file
MEDIASUBTYPE_MPEGl Video MPEG video
MEDIASUBTYPE_MPEG1System MPEG system
MEDIASUBTYPE_MPEGl VideoCD MPEG video CD
MEDIASUBTYPE_MPEG1Audio MPEG audio
MEDIASUBTYPE_DssVideo Dss Video
MEDIASUBTYPE_DssAudio Dss Audio

Video Media Types

The following table describes the video media subtypes.
MEDIATYPE_Video Data is video
MEDIASUBTYPE_YVU9 Standard YVU9 format uncompressed data. A planar YUV

format. A Y sample at every pixel, a U and V sample at every
fourth pixel horizontally on each line; a Y sample on every
vertical line, a U and V sample at every fourth vertical line. 9
bits per pixel.

MEDIASUBTYPE_Y411 YUV 411 format data. Same as Y41P.

2165

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

