
CTransformlnputPin Class

Name
BreakConnect

Description
Informs the derived class when the connection is broken.

Page 2of11

CheckConnect Informs the derived class when the connection process is starting.
CheckMediaType Determines if the pin can use a specified media type.
CheckStreaming Verifies conditions for continuing with a streaming operation.

CompleteConnect Informs the derived class when the connection process has completed.
SetMediaType Informs the derived class when the media type is established for the

connection.

Implemented IPin Methods
Description
Informs the pin to begin a flush operation.

Name
BeginFlush
End Flush Informs the pin to end a flush operation and notifies the pin that it can start

accepting data again.
EndOfStream Informs the input pin that no additional data is expected until a new run

command is issued.
NewSegment Specifies that samples following this call are grouped as a segment with a given

start time, stop time, and rate.
Oueryid Retrieves an identifier for the pin.

Implemented IMeminputPin Methods
Name Description
Receive Receives the next block of data from the stream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j

MQi§i[.jjj,M 1 !1·Hj

CTransformlnputPin::BeginFlush

CTransforminoutPin Class

Informs the pin to begin a flush operation.

HRESULT BeginFlush(void);

Return Values

Returns an HRESULT value.

Remarks

1776

Topic Contents l@i§il!MM

Topic Contents •@m•11mw

CTransformlnputPin Class Page 3of11

This member function implements the I Pin:: BeqinFlush method and overrides the
CBaselnoutPin:: BeqinFlush member function. It checks to see if the pin is connected, and then
calls CBaselnputPin::BeginFlush, and finally calls the CTransformFilter:: BeqinFlush member
function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CTransformlnputPin::BreakConnect

CTransformlnputPin Class

Informs the derived class when the connection is broken.

HRESULT BreakConnect();

Return Values

Returns NOERROR in this implementation.

Remarks

This member function overrides the CBasePin:: BreakConnect member function and calls the
CTransformFilter:: BreakConnect member function. Override
CTransformFilter::BreakConnect to undo anything carried out in
CTransforminputPin: :CheckConnect (such as releasing extra interfaces).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 11!.l:.!9 Topic Contents

CTransformlnputPin::CheckConnect

CTransforminputPin Class

Informs the derived class when the connection process is starting.

HRESULT CheckConnect(
IPin *pPin
);

1777

i@l§ii!MM

CTransformlnputPin Class Page 4of11

Parameters

pPin
Pointer to the IPin interface of the connecting pin.

Return Values

Returns NOERROR by default.

Remarks

This member function overrides the CBasePin: :CheckConnect member function and calls the
CTransformFilter: :CheckConnect member function. Override
CTransformFilter::CheckConnect to add additional interfaces.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

CTra nsforml n putPi n: :CheckMediaType

CTransforminoutPin Class

Determines if the pin can use a specified media type.

HRESULT CheckMediaType(
const CMediaType* mtin
);

Parameters

mtln
Pointer to a media type object.

Return Values

No return value.

Remarks

i@faiilMM

This member function calls the pure-virtual CTransformFilter: :ChecklnputType member
function, which must be overridden when deriving a class from the CTransformFilter class. The
overridden ChecklnputType member function is responsible for determining which media types
the input pin supports.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

1778

CTransformlnputPin Class Page 5of11

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CTransformlnputPin::CheckStreaming

CTransforminputPin Class

Verifies conditions for continuing with a streaming operation.

HRESULT CheckStreaming();

Return Values

Returns one of the following HRESULT values, depending on the state.
Value Meaning
S_FALSE Currently in flushing state.

S_OK Receive or EndOfStream operations can safely proceed.
VFW E NOT CONNECTED The output pin either does not exist or isn't connected.
VFW E RUNTIME ERROR A run-time error occurred when processing a previous sample.

VFW E WRONG STATE The filter is in the State Stopped state.

Remarks

This member function overrides the CBaseinputPin: :CheckStreaming member function and
calls that base class implementation for most of the condition checks. It determines if the pin
is connected, if it is in a paused or running state, and if it is not currently flushing data or
processing a run-time error.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 11!.l:.!9 Topic Contents i@l§ii!MM

+;<§1[.]jj,+ 111.],.[9 Topic Contents Mttfjl§ii!MM

CTransformlnputPin::CompleteConnect

CTransforminputPin Class

Informs the derived class when the connection process has been completed.

HRESULT CompleteConnect(

1779

CTransformlnputPin Class

IPin *pReceivePin
);

Parameters

pReceivePin
Pointer to the input pin being connected to.

Return Values

Returns an HRESULT value.

Remarks

Page 6of11

This member function overrides the CBasePin: :CompleteConnect member function. It calls the
base class CBasePin::CompleteConnect member function and then calls
CTransformFilter: :CompleteConnect.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lllMM

CTransformlnputPin::CTransformlnputPin

CTransforminputPin Class

Constructs a CTransforminputPin object.

CTransforminputPin (
TCHAR *pObjectName,
CTra nsfo rm Fi I ter *p TransformFilter,
HRESULT * phr,
LPCWSTR pName
);

Parameters

pObjectName
Name of the CTransforminputPin object.

pTransformFilter

phr
Pointer to the CTransformFilter class.

Pointer to an HRESULT value in which to return resulting information. This should be
modified only if a failure occurs. If it is a failure code on input, construction can be
terminated, but in any case the destructor will be called by the creator when the
HRESULT error is detected.

pName
Name of the pin.

1780

CTransformlnputPin Class Page 7of11

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents l@i§il!MM

MQ<§i[.jlj,M 111.l:.!j Topic Contents l@fail!MM

CTra nsforml n putPi n: :Cu rrentMed iaType

CTransforminoutPin Class

Retrieves the media type currently assigned to the filter.

CMediaType& CurrentMediaType();

Return Values

Returns the value of CBasePin:: m mt.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents l@i§il!MM

CTransformlnputPin::EndFlush

CTransforminputPin Class

Informs the pin to end a flush operation and notifies the pin that it can start accepting data
again.

HRESULT Endflush(void);

Return Values

Returns an HRESULT value.

Remarks

1781

CTransformlnputPin Class Page 8of11

This member function implements the I Pin:: End Flush method and overrides the
CBaselnoutPin:: End Flush member function. It checks to see if the pin is connected, calls the
CBaselnputPin::EndFlush member function, and finally calls the CTransformFilter:: EndFlush
member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CTransformlnputPin::EndOfStream

CTransformlnputPin Class

Informs the input pin that no additional data is expected until a new run command is issued.

HRESULT EndOfStream(void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the I Pin:: EndOfStream method. It calls
CTransforminputPin: :CheckStreaming to see that the filter is in a streaming state and then
calls the CTransformFilter:: EndOfStream member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jij,+ 111.1 1119 Topic Contents i@l§ii!MM

CTransformlnputPin::NewSegment

CTransforminputPin Class

Specifies that samples following this call are grouped as a segment with a given start time,
stop time, and rate.

HRESULT NewSegment(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop,
double dRate
);

1782

CTransformlnputPin Class

Parameters

tStart
Start time of the segment.

tStop
Stop time of the segment.

dRate
Rate of the segment.

Return Values

Returns an HRESULT value.

Remarks

Page 9of11

This member function implements the I Pin:: NewSegment method and overrides the
CBasePin: :NewSegment member function. It calls the base class implementation first
(CBasePin::NewSegment), and then calls CTransformFilter:: NewSegment to pass the
notification on to the next filter downstream.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM

• QIM [.] +• I !1.],.15

CTransformlnputPin::Queryld

CTransformlnputPin Class

Retrieves an identifier for the pin.

HRESULT Queryld(
LPWSTR *Id
);

Parameters

Id
Pin identifier.

Return Values

Returns an HRESULT value.

Remarks

1783

Topic Contents lmll§I 11$8

Topic Contents lfflj(§i MUMM

CTransformlnputPin Class Page 10of11

This member function implements the IPin: :Queryld method and overrides the
CBasePin: :Queryld member function. It returns the name "In". The caller is responsible for
freeing the memory by using the Microsoft® Win32® CoTaskMemFree function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9

CTransformlnputPin::Receive

CTransformlnputPin Class

Receives the next block of data from the stream.

HRESULT Receive(
IMediaSample * pSample
);

Parameters

pSample
Pointer to a media sample.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents l@!§il!MM

This member function implements the IMemlnoutPin:: Receive method. Add a reference to the
block of data if access to it is required after the completion of this method. For instance, some
decoder filters for temporal compression data streams require that the previous sample be
kept in order to decode the current sample.

This member function calls the CTransformFilter:: Receive member function, which does the
work of calling the transform function and then passing the sample on.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119 Topic Contents 1@!§111¥+

CTransformlnputPin::SetMediaType

1784

CTransformlnputPin Class

CTransformlnoutPin Class

Informs the derived class when the media type is established for the connection.

HRESULT SetMediaType(
const CMediaType* mt
);

Parameters

mt
Pointer to an input media type to be used.

Return Values

Returns an HRESULT value.

Remarks

Page 11of11

This member function overrides the CBasePin: :SetMediaTyoe member function. It calls the
base class CBasePin::SetMediaType member function, which returns NOERROR, and then
calls CTransformFilter: :SetMediaTyoe, which the derived class can override to be informed
when the media type is set.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1785

CTransform OutputPin Class Page 1 of 10

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CTransformOutputPin Class

CBaseObject

INonDelegatingUnknown

CUnknown

CBasePin

CBaseOutputPin

CTransformOutputPin

The CTransformOutputPln class implements the output pin of a simple transform filter. It is
the class assigned to them pOotpirt data member of the CTranstonuFi!ter class. Typically, you
can create objects of a class derived from CTransformFllter without modifying the
CTransformOutputPln class. If you want to override this class and derive a class from
CTransformFllter, use the class and then override the CTransformfilter: :GetPin member
function to create pins of your derived class.

Protecte<I Data Members
Name Des<:riptlon
m_pTransformFllter Pointer to the owning CTransformfilter object.

Public Data Members
Name Des<:rlptlon
m_pPosltlon Pointer to a CPosPassThru object that implements the lMediaPosition interface

to pass media position commands on to the upstream filter.

Member Functions
Name Des<:rlptlon
CTransfonu011tp1 rt Pin Constructs a CTransfonu011tp1 rt Pin object.
CummtMediaTuoe Retrieves the media type currently assigned to the filter.

Overrldable Member Functions

1786

CTransformOutputPin Class

Name
BreakConnect

Description
Informs the derived class when the connection is broken.

Page 2of10

CheckConnect Informs the derived class when the connection process is starting.
CheckMediaType Determines if the pin can use a specified media type.

CompleteConnect Informs the derived class when the connection process has completed.
DecideBufferSize Determines the number and size of buffers required.
GetMediaType Returns the media type that the output pin uses.
SetMediaType Informs the derived class when the media type is established for the

connection.

Implemented IQualityControl Methods
Name Description
Notify Receives a quality-control notification, typically from a downstream filter. This method

is inherited from the IOualityControl interface through the CBasePin class.

Implemented IPin Methods
Name Description
Queryid Retrieves an identifier for the pin.

Implemented INonDelegatingUnknown Methods
Name Description
NonDelegatingQueryinterface Returns an interface and increments the reference count.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

MQi§1[.]1!,i 1 !!·HM Topic Contents i@faii!MM

CTransformOutputPin::BreakConnect

CTra nsformOutputPi n Class

Informs the derived class when the connection is broken.

HRESULT BreakConnect();

Return Values

Returns NOERROR.

Remarks

This member function overrides the CBaseOutputPin:: BreakConnect member function and calls

1787

CTransformOutputPin Class Page 3of10

the CTransformFilter:: BreakConnect member function. It then calls the base class
implementation in CBaseOutputPin::BreakConnect. Override
CTransformFilter::BreakConnect to undo anything carried out in the
CTransformOutputPin : :CheckConnect member function (for example, releasing interfaces
previously added to the reference count).

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents

CTra nsformOutputPi n: :CheckCon nect

CTra nsformOutputPi n Class

Informs the derived class when the connection process is starting.

HRESULT CheckConnect(
IPin *pPin
);

Parameters

pPin
Pointer to the IPin interface of the connecting pin.

Return Values

Returns NOERROR by default.

Remarks

lmll§lllMM

This member function overrides the CBasePin: :CheckConnect member function and calls the
CTransformFilter: :CheckConnect member function. It then calls the base class implementation
in CBaseOutputPin: :CheckConnect. Override CTransformFilter::CheckConnect to add
additional interfaces.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmll§lllMM

CTra nsformOutputPi n: :CheckMediaType

CTra nsformOutputPi n Class

1788

CTransformOutputPin Class

Determines if the input pin supports a specified media type.

HRESULT CheckMediaType(
const CMediaType* mtln
);

Parameters

mtln
Pointer to a media type object.

Return Values

No return value.

Remarks

Page 4of10

This member function calls the pure-virtual CTransformFilter: :CheckTransform member
function, which must be overridden when deriving a class from the CTransformFilter class. The
overridden CTransformFilter::CheckTransform member function determines which media
types the output pin supports.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 11!.l:.!j Topic Contents l@i§lllMM

CTra nsformOutputPi n: :Com pleteCon nect

CTra nsformOutputPi n Class

Informs the derived class when the connection process has completed.

HRESULT CompleteConnect(
IPin *pReceivePin
);

Parameters

pReceivePin
Pointer to the output pin that is being connected to.

Return Values

Returns an HRESULT value.

Remarks

1789

CTransformOutputPin Class Page 5of10

This member function overrides the CBaseOutoutPin: :ComoleteConnect member function and
calls the CTransformFilter: :ComoleteConnect member function, which returns NOERROR by
default. It then calls the base class implementation in CBaseOutputPin::CompleteConnect.
Override the CTransformFilter::CompleteConnect member function to retrieve any
additional interfaces not retrieved by the base class that your output pin might need from the
connected pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§l 1!1¥1M

CTra n sformO utputPi n:: CTra nsformOutputPi n

CTra nsformOutputPi n Class

Constructs a CTransformOutputPin object.

CTransformOutputPin(
TCHAR *pObjectName,
CTransformFilter *pTransformFilter,
HRESULT * phr,
LPCWSTR pName
);

Parameters

pObjectName
Name of the CTransformOutputPin object.

pTransformFilter
Pointer to the CTransformFilter class.

phr
Pointer to an HRESULT value in which to return resulting information. This should be
modified only if a failure occurs. If it is a failure code on input, construction can be
aborted, but in any case the destructor will be called by the creator when the HRESULT
error is detected.

pName
Name of the pin.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§il!MM

+;<§1[.]lj,M 111.H9 Topic Contents l@i§il!MM

1790

CTransformOutputPin Class Page 6of10

CTra nsformOutputPi n: :Cu rrentMed iaType

CTra nsformOutputPi n Class

Retrieves the media type currently assigned to the filter.

CMediaType& CurrentMediaType();

Return Values

Returns the value of CBasePin:: m mt.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CTransformOutputPin::DecideBufferSize

CTra nsformOutputPi n Class

Determines the number and size of buffers required.

HRESULT DecideBufferSize(
IMemAllocator * pAl/oc,
ALLOCATOR_PROPE RTIES * ppropinputRequest
);

Parameters

pAl/oc
Allocator assigned to the transfer.

ppropinputRequest
Requested allocator properties for count, size, and alignment, as specified by the
ALLOCATOR PROPERTIES structure.

Return Values

Returns an HRESULT value.

Remarks

This member function overrides the CBaseOutputPin:: DecideBufferSize member function and
calls the pure virtual CTransformFilter:: DecideBufferSize member function, which your derived

1791

CTransformOutputPin Class Page 7of10

class must override and implement. This member function is called from the CBaseOutputPin
class during the connection process.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• A Mi[.]"'' I![.],.[. Topic Contents

CTra nsformOutputPi n: :GetMed iaType

CTra nsformOutputPi n Class

Returns the media type for the output pin to use.

HRESULT GetMediaType(
int iPosition,
CMediaType *pMediaType
);

Parameters

iPosition
Position of the media type in the media type list.

pMediaType
Returned media type object.

Return Values

•@M* 1gnw

Returns an HRESULT value that depends on the implementation of the pure virtual
CTransformFilter: :GetMediaType member function. HRESULT can include one of the following
constants.
Value
NO ERROR
S FALSE

Meaning
A media type is returned.
Although the iPosition parameter typically is valid, it does not
correspond to a media type that is currently valid.

VFW S NO MORE ITEMS The iPosition parameter is beyond the valid range.

Use other standard error values, such as E_INVALIDARG, for error cases.

Remarks

This member function overrides the CBasePin: :GetMediaType member function and calls the
pure virtual CTransformFilter: :GetMediaType member function, which must be overridden to
return media types supported by your filter. This is part of the implementation of
CBasePin: :EnumMediaTypes.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1792

CTransformOutputPin Class Page 8of10

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M M!i.1 1119 Topic Contents i@l§ii!MM

CTransformOutputPin::NonDelegatingQuerylnteri

CTra nsformOutputPi n Class

Returns an interface and increments the reference count.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void** ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful. If the query
is unsuccessful and the requested interface is IMediaPosition or IMediaSeeking, returns an
HRESULT from a call to CreatePosPassThru. If the query is unsuccessful and the interface is
not IMediaPosition or IMediaSeeking, returns E_NOINTERFACE.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryinterface
method. It overrides the CBasePin:: NonDelegatingQueryinterface member function and passes
references to the IPin, IQualityControl, IMediaPosition, IMediaSeeking, and IUnknown
interfaces. Override this class to return other interfaces on the object in the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!l.l:.19 Topic Contents i@l§ii!MM

CTransformOutputPin::Notify

1793

CTransformOutputPin Class

CTra nsformOutputPi n Class

Notifies the recipient that a quality change is requested.

HRESULT Notify(
IBaseFilter * pSelf,
Quality q
);

Parameters

pSelf
Pointer to the filter that is sending the quality notification.

q
Quality notification structure.

Return Values

Default base class implementation returns E_FAIL.

Remarks

Page 9of10

This member function implements the IQualityControl: :Notify method and overrides the
CBasePin: :Notify member function. It calls the CTransformFilter: :AlterQuality member function
to determine if the filter can do something to adjust the quality of the media stream (such as
discarding samples). If that member function returns S_FALSE, it calls the
CBasel n D utPi n: : Pass Notify member function, which passes the notification to the upstream
filter after verifying that it is connected upstream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

CTra nsformOutputPi n: :Queryld

CTra nsformOutputPi n Class

Retrieves an identifier for the pin.

HRESULT Queryld(
LPWSTR *Id
);

Parameters

Id
Pin identifier.

1794

Topic Contents l@i§il!MM

CTransformOutputPin Class Page 10of10

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IPin: :Ouervld method and overrides the
CBasePin: :Oueryld member function. It returns the name "Out". The caller is responsible for
freeing the memory by using the Microsoft® Win32® CoTaskMemFree function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

CTra nsformOutputPi n: :SetMediaType

CTra nsformOutputPi n Class

Sets the media type for the connection to use.

HRESULT SetMediaType(
const CMediaType* mt
);

Parameters

mt
Pointer to an output media type to be used.

Return Values

Returns an HRESULT value (NOERROR by default).

Remarks

ifflj[§ii!¥M

This member function overrides the CBasePin:: SetMediaTyoe member function and calls the
CTra nsform Filter: : Set Med iaTyoe member function with the direction set to output. Override
CTransformFilter::SetMediaType to handle any conditions that you want handled at this
time in the connection process.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1795

CTransinPI aceFil ter Class Page 1of11

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CTra nsin PlaceFi lter Cl ass

(CBaseObject),

I INonDelegatingUnknown I
Ll.(CUnknown)i

I IAMovieSetup I

I IMediaFilter I
I IBaseFilter I

...__..__.I-{~ CBasefilter

~ CTransformfilter

~ CTranslnPlacefilter)1

CTtansinPlaceFlltet iS an abstract base class that provides support for a simple transform
filter with a single input and a single output. It is derived from the C!lnkoowo class, and
supports the IBaseFilter interface, the IMediaFilter interface, and two pins. Each pin supports
the !Pin interface and uses the shared memory transport based on the IMeminoutPin interface.
The filter uses classes derived from the caaseMediafi!ter class to support IBaseFiltet and
IMedlaFiltet. The input pin is derived from the CBaseinputPin class, and the output pin iS
derived from the CBaseOutputPin class.

For more information about using this class to create a transform filter, see Creating a
Transform Filter.

Ptotected Data Members
Name Desctlptlon
m_ldTranslnPlace Performance-measuring identifier.

Membet Functions
Name Description
~ Returns a pointer to an identieal copy of a media sample.
CTransinPlaceFi!ter Constructs a CTransinPlaceFilter object.
InputPin Returns a pointer to the input pin associated with the filter.
OutputPin Returns a pointer to the output pin associated with the filter.

Ovettldable Membe.- Functions

1796

CTranslnPlaceFilter Class Page 2of11

Name Description
CheckTransform Verifies that the media type is supported by input and output pins.
CompleteConnect Reconnects the input or output pin if necessary.
DecideBufferSize Determines the size of the transport buffer.
GetMediaType Returns the media type to be used by the output pin.

Returns a pin if an index is specified. GetPin
Receive Receives the sample, calls the derived class's Transform member function,

and then delivers the sample.
RegisterPerfld
Transform

Registers a performance measurement identifier (if PERF is defined).

Performs transformation operations in place on the IMediaSample interface
(pure virtual).

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents

8 4'41M+• 111.q9 Topic Contents

CTra n sl n Pia ceFi lter:: C heckTra n sform

CTra nsl n PlaceFi lter Class

Verifies that the media is supported by input and output pins.

HRESULT CheckTransform(
const CMediaType *mtln,
const CMediaType *mtOut
);

Parameters

mtin
Input pin media type.

mtOut
Output pin media type.

Return Values

Returns S_OK by default.

Remarks

lmll§lllMM

1@!§111$8

This member function overrides the CTransformFilter: :CheckTransform member function. The
base class functions that call this member function are overridden in this class to call the
CTransformFilter: :ChecklnputType member function that is overridden in the derived class,
with the assumption that the type does not change. Usually there is no reason for this member

1797

CTranslnPlaceFilter Class Page 3of11

function to be called. In debug builds some calls will be made, and returning S_OK ensures
that these calls do not assert.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• A Mi[.]"'' I![.],.[. Topic Contents

CTra n sl n Pia ceFi lter:: Com pleteCon nect

CTra nsI n PlaceFi lter Class

Reconnects the input or output pin if necessary.

HRESULT CompleteConnect(
PIN_DIRECTION direction,
IPin *pReceivePin
);

Parameters

direction
Pin direction.

pReceivePin
Pointer to the output pin to which to connect.

Return Values

•@M* 1gnw

Returns NOERROR if successful; otherwise, returns VFW_E_NOT _IN_GRAPH if the filter is not
part of a graph, or returns an HRESULT that indicates the error. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.

Remarks

This member function overrides the CTransformFilter: :CompleteConnect member function. It is
called by one of the pin classes at the end of a successful connection. Because the input and
output pins must both use the same allocator, this member function reconnects the opposite
pin if necessary.

When the input pin is first connected, the output pin has not yet been connected and the
downstream filter's allocator is unknown, so the allocator for the input pin is chosen to be the
upstream pin's allocator. When the transform filter's output pin is connected, however, it has
access to the downstream filter's allocator and should force a reconnect on the input pin and

1798

CTranslnPlaceFilter Class Page 4of11

offer that allocator. When the input pin is reconnected, it forces a reconnect on the output pin
if the allocator chosen for the input pin's connection differs from the output pin's connection.
This member function supplies the reconnection for either output or input pins.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQl§i[.jjj,M MB.HS

MQi§1[.]+• 1 !!·H¥

CTranslnPlaceFilter: :Copy

CTra nsI n PlaceFi lter Class

Creates a copy of the specified media sample.

IMediaSample * CTransinPlaceFilter::Copy(
IMediaSample *pSource
);

Parameters

pSource

Topic Contents

Topic Contents

Pointer to an object that implements the IMediaSample interface.

Return Values

Returns a pointer to the new sample.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;<@[.]+• lh.1::1¥ Topic Contents

i@fa11!¥M

i@fai1!¥M

i@fa11!¥M

CTra n sl n Pia ceFi lter:: CTra n sl n PlaceFi lter

CTra nsI n PlaceFi lter Class

Constructs a CTransinPlaceFilter object.

CTransin Placefilter(
TCHAR * pObjectName,
LPUNKNOWN lpUnk,
REFCLSID clsid,

1799

CTranslnPlaceFilter Class

HRESULT * phr
);

Parameters

pObjectName
Name given to the CTranslnPlaceFilter object.

lpUnk
Pointer to LPUNKNOWN.

els id
Class identifier of the CTranslnPlaceFilter class.

phr
Pointer to the HRESULT value for resulting information.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

MQij[.jlj,M M!i.1 1119

Topic Contents

Topic Contents

CTra nsln PlaceFi lter:: DecideBufferSize

CTra nsl n PlaceFi lter Class

Determines the size of the transport buffer.

HRESULT DecideBufferSize(
IMemAllocator * pAl/oc,
ALLOCATOR_PROPERTIES * pProperties
);

Parameters

pAl/oc
Pointer to the IMemAllocator object used by the output pin.

pProperties

Page 5of11

i@l§ii!MM

i@l§ii!MM

Requested allocator properties for count, size, and alignment, as specified by the
ALLOCATOR PROPERTIES structure.

Return Values

Returns NOERROR if successful; otherwise, returns an HRESULT value indicating the error.
HRESULT can be one of the following standard constants, or other values not listed:

1800

CTranslnPlaceFilter Class

Value
E FAIL

Meaning
Failure.

E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

Remarks

Page 6of11

This member function overrides the CTransformFilter: :DecideBufferSize member function. It is
called when the filter must provide its own allocator. Allocator requirements are obtained from
the filter's input pin and passed to the output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j Topic Contents

MQi§i[.jjj,M 1 !1·Hj Topic Contents

CTra n sl n Pia ceFi lter:: Get Med iaType

CTra nsI n PlaceFi lter Class

Returns the media type to be used by the output pin.

HRESULT GetMediaType(
int iPosition,
CMediaType *pMediaType
);

Parameters

iPosition
Position of the media type in the media type list.

pMediaType
Returned media type object.

Return Values

Returns E_UNEXPECTED because it is not expected to be called.

Remarks

l@i§il!MM

•@m•+imw

In the CTransformFilter class, this member function is called by the associated input or output
pin class's GetMediaType member function to retrieve the next media type in the list and
return it to the pin's CBasePin:: EnumMediaTypes member function.

1801

CTranslnPlaceFilter Class Page 7of11

However, in the CTransinPlaceFilter class, the pin classes override the
CBasePin: :EnumMediaTyoes member function so that it bypasses the filter and calls the
enumerator of the opposite connected pin. (For example, the output pin enumerator uses the
upstream filter's enumerator, and the input pin uses the connected downstream filter's
enumerator.) Therefore, this member function should never be called by the inplace pin
classes. It is implemented to prevent "undefined pure virtual" compiler warnings.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i 111.],.[9

CTra nsln PlaceFi lter: :Get Pin

CTra nsI n PlaceFi lter Class

Returns a pin if an index is specified.

virtual CBasePin * GetPin(
int n
);

Parameters

n
Index of the pin to return.

Return Values

Returns a pointer to a CBasePin object.

Remarks

Topic Contents lfflj(§l l!l¥1M

This member function is implemented and need not be overridden unless one or more of the
transform pin classes (CTransinPlaceinputPin or CTransinPlaceOutputPin) are being
overridden.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H+• 1 11·1::'¥ Topic Contents lfflj(§il!¥M

CTra nsln PlaceFi lter: :In putPi n

CTra nsI n PlaceFi lter Class

1802

CTranslnPlaceFilter Class Page 8of11

Retrieves a pointer to the input pin associated with the filter.

CTransinPlaceinputPin *InputPin();

Return Values

Returns a pointer to a CTranslnPlacelnoutPin object.

Remarks

This member function is protected.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11¥8

CTra nsln PlaceFi lter: :OutputPi n

CTra nsl n PlaceFi lter Class

Retrieves a pointer to the output pin associated with the filter.

CTransinPlaceOutputPin *OutputPin();

Return Values

Returns a pointer to a CTranslnPlaceOutputPin object.

Remarks

This member function is protected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM Topic Contents lfflj[§ill¥M

CTranslnPlaceFilter::Receive

CTra nsl n PlaceFi lter Class

Receives the media sample, calls the CTranslnPlaceFilter: :Transform member function, and
then delivers the media sample.

1803

CTranslnPlaceFilter Class

HRESULT Receive(
IMediaSample *pSample
);

Parameters

pSample
Sample to deliver.

Return Values

Page 9of11

Returns an HRESULT value that depends on the implementation of the derived class' Transform
function. HRESULT can be one of the following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

This member function overrides the CTransformFilter: :Receive member function. Override it
only if you need more control of the process.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§l l!l¥1M

+Qij[.jlj,M 111.l:.!9 Topic Contents l@i§lllMM

CTra nsln PlaceFi lter:: Reg isterPerfid

CTra nsl n PlaceFi lter Class

Registers a performance measurement identifier.

virtual void RegisterPerfid();

Return Values

No return value.

Remarks

1804

CTranslnPlaceFilter Class Page 10of11

By default, this member function registers the performance identifier (m idTransform) with the
string "TransinPlace". Override this member function to register a performance measurement
with a less generic string. This should be done to avoid confusion with other filters. This
member function is enabled only when PERF is defined.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

CTra nsln PlaceFi lter: :Transform

CTra nsI n PlaceFi lter Class

Transforms the data in pSample in place.

virtual HRESULT Transform(
IMediaSample *pSample
) PURE;

Parameters

pSample
Pointer to the input IMediaSample interface.

Return Values

Topic Contents i@l§ii!MM

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

You must supply this member function in the derived class to perform the actual work of your
filter. This member function is called by CTransinPlaceFilter: :Receive before passing the
sample on to the downstream filter. Transform can return S_FALSE to indicate that the
sample should not be delivered downstream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

1805

CTransinPlaceFilter Class Page 11of11

1806

CTransinPI aceinputPin Cl ass Page 1 of8

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CTra nsin Placein putPi n Class

CBaseObject

INonDelegatingUnknown

CUnknown

CBasePin

CBaselnputPin

CTransformlnputPin

CTranslnPlacelnputPin

The CTranslnPlacelnputPln class implements the input pin of a transform-inplace filter
(CTraosinP!acefi!ter). ThiS is part of a transform filter that transforms data in place rather than
making a copy of it. The CTransinPlacefilter:: InoutPin member functiOn returns a pointer to
CTranslnPlacelnputPln object.

Typically, you can create objects of a class derived from CTranslnPlacelnputPln without
modifying this class. That is, you can usually override member functions in the
CTransinPlacefi!ter class that member functions of the CTransinPlacelnputPln class call,
and not have to derive your own classes for either of the pin classes.

However, if you want to override this class and derive your filter class from
CTransinPlacefi!ter, you must override the CTransinP!acefi!ter: :GetPin member function to
create pins of your derived class.

Protected Data Members
Name Description
m_bReadOnly flag to indicate if the stream is read-only.
m_pTIPFllter Pointer to the CTraosinP!acefi!ter object that owns this pin.

Member Functions
Name Descrl ptlon
CTranslnP!aceinp1rtpjo Constructs a CTransinP!aceinpotpjo object.
Pee!<A!!ocator Returns a pointer to the default allocator.
ReadQn!y Returns m bReadOnly to indicate whether or not a stream is read-only.

1807

CTranslnPlacelnputPin Class

Overridable Member Functions
Name Description
CheckMediaType Determines if the pin can use a specified media type.

Implemented IPin Methods
Name Description
EnumMediaTypes Provides a media type enumerator from the downstream filter.

Implemented IMeminputPin Methods
Name
GetAllocator

Description
Retrieves the upstream allocator.

GetAllocatorRequirements Passes requests for allocator requirements downstream.

Page 2of8

NotifyAllocator Receives notification of which allocator the connected output pin
will use.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmli§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

CTranslnPlacelnputPin::CheckMediaType

CTransinPlaceinputPin Class

Determines if the media type is acceptable.

HRESULT CheckMediaType(
const CMediaType* pmt
);

Parameters

pmt
Media type being checked.

Return Values

Returns an HRESULT value that depends on the implementation of the owning filter's
CTransformFilter: :CheckinputType member function. HRESULT can be one of the following
standard constants, or other values not listed:

1808

CTranslnPlacelnputPin Class

Value
E FAIL
E_ POINTER

Meaning
Failure.
Null pointer argument.

E INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

Page 3of8

This member function overrides the CTransformlnputPin: :CheckMediaType member function. It
first calls the owning filter's ChecklnputType member function. (This is a purely virtual function
which must be overridden when deriving a class from the CTransformFilter class. The
overridden ChecklnputType member function determines which media types the input pin
supports.) Then, if the filter's output pin is not connected, this member function agrees to any
media type. If the output pin is connected, it asks the downstream connected input pin if it
accepts this type and returns the result.

The ChecklnputType member function must be overridden by the class of the owning filter.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

• QIM [.] +• I !1.],.15 Topic Contents lfflj(§i MUMM

CTranslnPlacelnputPin::CTranslnPlacelnputPin

CTranslnPlacelnputPin Class

Constructs a CTranslnPlacelnputPin object.

CTransinPlaceinputPin(
TCHAR *pObjectName,
CTransin Placefilter *pFilter,
HRESULT * phr,
LPCWSTR pName
);

Parameters

pObjectName
Name of the CTranslnPlacelnputPin class object.

pFilter

phr
Pointer to the CTranslnPlaceFilter class.

Pointer to an HRESULT value in which to return resulting information. This should be
modified only if a failure occurs. If it is a failure code on input, construction can be

1809

CTranslnPlacelnputPin Class Page 4of8

terminated; but in any case the destructor will be called by the creator when the
H RESULT error is detected.

pName
Name of the pin.

Return Values

No return value.

Remarks

This member function doesn't create the pins. The pins are created when they are first
required. All external attempts to access pins (by enumeration or by CBaseFilter:: Find Pin) go
through CTranslnPlaceFilter: :GetPin, which creates the pins initially.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

CTransinPlaceinputPin::EnumMediaTypes

CTranslnPlacelnputPin Class

Provides an enumerator for media types by retrieving one from downstream.

HRESULT EnumMediaTypes(
I En um MediaTypes **ppEnum
);

Parameters

ppEnum
[out] Pointer to an enumerator for the media types.

Return Values

Returns NOERROR if successful, VFW_ E_ NOT _CONNECTED if there is no connection, or an
HRESULT that indicates an error with the enumerator, such as E_POINTER or
E_OUTOFMEMORY.

Remarks

This member function overrides the CBasePin:: EnumMediaTypes member function and
implements the I Pin:: EnumMediaTypes method. Transform-in place filters use the media type
enumerator from adjacent filters because they do not change the media type. When asked by a
connected output pin of the upstream filter for this pin's media type enumerator, this member

1810

CTranslnPlacelnputPin Class Page 5of8

function simply retrieves the allocator from the input pin connected to its output pin (if it is
connected).

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• A Mi[.]"'' I![.],.[. Topic Contents

CTranslnPlacelnputPin::GetAllocator

CTransinPlaceinoutPin Class

Retrieves the upstream a I locator.

HRESULT GetAllocator(
IM em Allocator * * ppAl/ocator
);

Parameters

ppAl/ocator
Returned allocator.

Return Values

•@M* 1gnw

Returns a NOERROR if the method retrieves an allocator being used by the downstream filter.
If no such allocator exists, returns S_OK if the method retrieves an allocator being used by the
output pin of the in-place transform filter. If neither of these types of allocators can be
retrieved, returns VFW_E_NO_ALLOCATOR.

Remarks

This member function overrides the CBaseinputPin: :GetAllocator member function and
implements the IMeminputPin: :GetAllocator method. If an allocator has already been agreed
upon, this member function supplies that allocator. Otherwise, if the downstream input pin can
supply an allocator, it does so. If no allocator is available, this member function returns
VFW E NO_ALLOCATOR.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] "'' I![.],.[. Topic Contents •@M* 1gnw

CTranslnPlacelnputPin::GetAllocatorRequiremen·

CTransinPlaceinputPin Class

1811

CTranslnPlacelnputPin Class

Passes requests for allocator requirements downstream.

HRESULT GetAllocatorRequirements(
ALLOCATOR_PROPERTIES * pProps
);

Parameters

pProps

Page 6of8

ALLOCATOR PROPERTIES structure containing the required size, count, and alignment of
the allocator.

Return Values

Returns E_NOTIMPL if the filter's output pin is not connected. Otherwise, returns an HRESULT
that indicates whether the allocator properties were successfully received. HRESULT can be
one of the following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

This member function overrides the CBaseinputPin: :GetAllocatorRequirements member
function and implements the IMeminputPin: :GetAllocatorRequirements method. If the
downstream input pin can supply allocator requirements, it does so.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

MQ<§i[.jlj,M 111.l:.!j Topic Contents i@faii!MM

CTra nsln Placeln putPi n:: Notify Al locator

CTransinPlaceinoutPin Class

Receives notification of which allocator will be used by the connected output pin.

HRESULT NotifyAllocator(
IMemAllocator * pAllocator,
BOOL bReadOnly

1812

CTranslnPlacelnputPin Class Page 7of8

);

Parameters

pAl/ocator
Pointer to the IMemAllocator object to use. This might or might not be the same
CTransinPlaceinputPin object that the input pin provided in the
CTransinPlaceinputPin: :GetAllocator member function (the output pin could provide its
own allocator).

bReadOnly
Flag to indicate if the samples from this allocator are read-only.

Return Values

Returns NOERROR if successful. Returns E_POINTER if the pointer is invalid. Otherwise, returns
an error due to calling CTransinPlaceOutoutPin:: ReceiveAllocator.

Remarks

This member function overrides the CBaseinputPin: :NotifyAllocator member function and
implements the IMeminputPin:: NotifyAllocator method. This member function remembers the
allocator and passes it to the output pin because they both must share the same allocator.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

CTranslnPlacelnputPin::PeekAllocator

CTransinPlaceinputPin Class

Returns a pointer to the default allocator.

IMemAllocator * PeekAllocator()

Return Values

Returns the m pAllocator data member inherited from CBaseinputPin.

Remarks

This method does not increment the reference count.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41M+• 111.q9 Topic Contents i@faii!MM

1813

CTranslnPlacelnputPin Class

CTranslnPlacelnputPin::ReadOnly

CTransinPlaceinputPin Class

Returns m bReadOnly to indicate whether or not a stream is read-only.

const BOOL ReadOnly()

Return Values

Returns TRUE if the stream is read-only. Returns FALSE otherwise.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

1814

Page 8of8

CTransinPlaceOutputPin Class Page 1 of6

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CTra nsin PlaceOutputPi n Class

(CBaseObject),

I INonDelegatingUnknown I
Ll.(CUnknown)i

I IQualityControl I

I !Pin R

~~1 -1, CBasePin)1

~ CBaseOutputPin)i

l.(CTransformOutputPin),

~ CTranslnPlaceOutputPin "\

The CTranslnPlaceOutputPln class implements the output pin of a simple transform-inplace
filter (CTransinPlacefilter).

Protected Data Members
Name Description
m_pTIPFllter Pointer to the CTransinP!acefi!ter object that owns thiS pin.

Member Functions
Name Description
Con nectedIMemin potpjn Returns a pointer to the input pin to which this output pin iS

connected.
CTransinPlaceOutoutPin Construct a CTransinPlaceOutoutPin object.
PeekAllocator Returns a pointer to the default allocator.
ReceiveAllocator Receives notification of which allocator will be used.

Overrlclable Member Functions
Name Description
CheckMediaTupe Determines if the media type is acceptable.
DecideA!!ocator Negotiates the allocator to use (uses the allocator from the upstream output

pin).

Implemented IPln Methods
Name Description
EnomMediaTypes Provides a media type enumerator from the upstream filter.

1815

CTranslnPlaceOutputPin Class Page 2of6

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11¥8

MQl§i[.jjj,M 111.],.[M Topic Contents lfflj(§i MUMM

CTra nsln PlaceOutputPi n: :CheckMed iaType

CTra nsI n PlaceOutputPin Class

Determines if the media type is acceptable.

HRESULT CheckMediaType(
const CMediaType* pmt
);

Parameters

pmt
Pointer to a media type object containing the proposed media type.

Return Values

Returns S_OK if the pin is not connected. Otherwise, returns S_ TRUE if the media type is
accepted or S_FALSE if it is not.

Remarks

This member function overrides the CTransformOutoutPin: :CheckMediaType member function.
It calls the pure virtual CTransformFilter: :CheckinputType member function to verify the
media type (which you must implement in your derived class) because it does not change the
media type from input to output. If it is not connected, it returns S_OK, which agrees to any
media type; otherwise, it calls QueryAccept on the output pin of the upstream filter and
returns the result.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM Topic Contents lfflj(§ill¥M

CTranslnPlaceOutputPin::ConnectedlMemlnputPi

CTra nsI n PlaceOutputPin Class

1816

CTranslnPlaceOutputPin Class Page 3of6

Returns a pointer to the input pin to which this output pin is connected.

IMeminputPin * ConnectedIMeminputPin()

Return Values

Returns the m pinoutPin data member inherited from CBaseOutputPin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents l@!§il!MM

CTranslnPlaceOutputPin::CTranslnPlaceOutputPi

CTra nsI n PlaceOutputPin Class

Constructs a CTransinPlaceOutputPin object.

CTransin PlaceOutputPin (
TCHAR *pObjectName,
CTransin Placefilter *pFilter,
HRESULT * phr,
LPCWSTR pName
);

Parameters

pObjectName
Name of the CTransinPlaceOutputPin object.

pFilter
Pointer to the owning CTransinPlaceFilter filter.

phr
Pointer to an HRESULT value in which to return resulting information.

pName
Name of the pin.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 111.!:.!9 Topic Contents

+Q'41!.l+1 ill.HM Topic Contents

1817

l@!§il!MM

l@!§il!MM

CTranslnPlaceOutputPin Class

CTra nsln PlaceOutputPi n:: DecideAI locator

CTra nsI n PlaceOutoutPin Class

Negotiates the allocator to use (uses the allocator from the upstream output pin).

HRESULT DecideAllocator(
IMeminputPin * pPin,
IM em Allocator * * ppAl/oc
);

Parameters

pPin
Pointer to the IMeminputPin interface of the downstream input pin.

ppAl/oc
Returned allocator pointer.

Return Values

Page 4of6

Returns NOERROR if successful. Otherwise, returns VFW_E_NO_ALLOCATOR if there is no
allocator, or an error from calling GetAllocator, InitAllocator, GetAllocatorRequirements,
DecideBufferSize, or NotifyAllocator.

Remarks

This member function overrides the CBaseOutputPin:: DecideAllocator member function. This
implementation uses the allocator that is negotiated by its input pin because a transform
inplace filter does not supply its own allocator. It then calls IMeminputPin: :NotifyAllocator on
the downstream input pin with that allocator.

If you want to use your own allocator, it is better to derive from CTransformFilter than from
CTransinPlaceFilter, because the purpose of a transform-inplace filter is to use an existing
allocator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§i +g¥+

CTranslnPlaceOutputPin::EnumMediaTypes

CTra nsI n PlaceOutputPin Class

1818

CTranslnPlaceOutputPin Class

Provides a media type enumerator from the upstream filter.

HRESULT EnumMediaTypes(
I En um MediaTypes **ppEnum
);

Parameters

ppEnum
Pointer to an enumerator for the media types.

Return Values

Page 5of6

Returns NOERROR if successful, VFW_E_ NOT _CONNECTED if there is no connection, or an
HRESULT that indicates an error with the enumerator, such as E_POINTER or
E_OUTOFMEMORY.

Remarks

This member function overrides the CBasePin:: EnumMediaTypes member function and
implements the I Pin:: EnumMediaTypes method. Transform-in place filters use the media type
enumerator from adjacent filters because they do not change the media type. This member
function calls IPin::EnumMediaTypes on the output pin connected to the filter's input pin. If
an application receives an enumerator, the application must release it when finished.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CTransinPlaceOutputPin::PeekAllocator

CTransinPlaceOutputPin Class

Returns a pointer to the default allocator.

IMemAllocator * PeekAllocator()

Return Values

Returns the m pAllocator data member inherited from CBaseOutputPin.

Remarks

This member function does not increment the reference count.

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use.

1819

CTranslnPlaceOutputPin Class Page 6of6

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CTranslnPlaceOutputPin::ReceiveAllocator

CTra nsI n PlaceOutputPin Class

Receives notification of which allocator will be used.

HRESULT ReceiveAllocator(
IMemAllocator * pAl/ocator,
BOOL bReadOnly
);

Parameters

pAllocator
Pointer to the IMemAllocator object to use.

bReadOnly
Flag to indicate if the samples from this allocator are read-only.

Return Values

Returns NOERROR if the allocator has the correct properties and is not read-only. Returns
S_OK if successful if the allocator has the correct properties but is read-only; otherwise,
returns VFW_E_BADALIGN, VFW_E_ALREADY_COMMITTED, VFW_E_BUFFERS_OUTSTANDING,
or E_FAIL if the allocator's properties don't match what is needed.

Remarks

This member function is called by the CTransinPlaceinoutPin: :NotifyAllocator member function
to indicate to the output pin which allocator will be used. It is only called if the output pin is
connected. The choice is propagated to input pins downstream if the allocator is not read-only.
For read-only allocators, only the properties are passed downstream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1820

CUnknown Class Page 1 of6

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CUnknown Class

CBaseObject

INonDelegatingUnknown

CUnknown

AU Microsoft® DirectShow'" Component Object Model (COM) objects derive from the
<:Unknown abstract base class. This class facilitates the creation of simple COM objects that
you can combine with other COM objects to support multiple interfaces. To use this class,
derive your object from <:Unknown and call the DECLARE !UNKNOWN macro in the public
section of your object class definition; thiS implements the !Unknown interface for your object.
Note that if derive from an object that has already done this, such as CBasefilter, you do not
need to do it yourself.

The (;Unknown class supports only one interface, !Unknown. To support: interfaces in addition
to those provided by the base class, override the NonDe!egatingQoeryinterface method. In the
overriding function, call the Getinterface function to retrieve the interface pointer for any
interfaces your object supports. If the derived class does not implement the specified interface,
you must query the base class to retrieve the interface.

For example, CBaseFHter supports the following interfaces directly.

• IBasefi!ter
• !Persist
• IAMovieSetuo

CBasefi!ter also supports I!lnknown by passing queries for this interface to (;Unknown. The
following code sample demonstrates this process.

/* override this to say what interfaces are supported and where*/

STDMETHODIMP CBaseFi lter: :NonDelegatingQuerylnterface {REFIID ri id, void **ppvl
{

CheckPointer{ppv,E POINTER);
ValidateReadHritePtr{ppv,sizeof{PVOIDll;

/* Do we have this interface */

if {ri id == IID !Fi lterl {
return Getinterface{{IBaseFilter •J this, ppvl;

else if {riid == IID IMediaFilterJ {
return Getlnterface{{IMediaFilter *l this, ppvl;

else if {ri id == IID !Persist) {
return Getlnterface{{IPersist •J this, ppvl;

else if {riid == IID IAMovieSetupJ {
return Getlnterface{{IAMovieSetup •J this, ppvl;

1821

CUnknown Class Page 2 of6

else {
return CUnknown: :NonDelegatingQueryinterface(riid, ppv);

To build composite objects, the CUnknown constructor has an LPUNKNOWN parameter that is
a pointer to the top-level !Unknown interface for the entire composite object (the object that
includes all objects based on a class derived from CUnknown). If this value is non-NULL,
CUnknown stores a pointer to the topmost object; if it is null, the topmost object is
CUnknown itself. This way, the topmost object's !Unknown has the same implementation as
the !NonDelegatingUnknown interface.

A derived class will typically override the NonDelegatingOuerylnterface method to return
interfaces that it supports; however, it must delegate support for !Unknown to the CUnknown
class implementation. Usually NonDelegatingAddRef and NonDelegatingRelease do not need to
be overridden because the reference count for the whole object is managed inside the top-level
object. However, NonDelegatingRelease might need to be overridden sometimes because its
default action when the reference count goes to zero is to delete the object from inside itself.

CUnknown provides the CUnknown: :GetOwner member function. GetOwner simply returns an
LPUNKNOWN pointer to the controlling unknown. This is used in the DECLARE !UNKNOWN
macro when calling Ouerylnterface. It can also be used when creating a composite object to
pass an LPUNKNOWN pointer to a component interface as an (equivalent) alternative to
passing the LPUNKNOWN pointer that was passed to the composite object constructor.

When Ouerylnterface is called on an interface owned by a component interface, it is
immediately passed to the NonDelegatingOuerylnterface method of the top-level object's
!NonDelegatingUnknown: :NonDelegatingOuerylnterface method, which either returns an
interface it implements itself or passes the call to the correct member or base class's
INonDelegatingUnknown::NonDelegatingQueryinterface method. This then repeats the
process until a component is found that implements the interface or calls
CUnknown:: NonDelegatingOuerylnterface, which fails the call.

Note that the top-level object's CUnknown:: NonDelegatingOuerylnterface member function (as
distinct from its own implementation) must be called to support !Unknown.

This design makes support for COM aggregation straightforward. The derived object's
Createinstance member function, which is called from the class factory (by
CClassFactory::Createinstance) passes the outer unknown (the pUnkOuter parameter from
CoCreatelnstance) on to CUnknown by calling the class constructor. So the object behaves as
if it were part of a larger object by delegating its Ouerylnterface calls to the outer unknown.

Protected Data Members
Name Description
m_cRef Number of reference counts (so the !NonDelegatingUnknown:: NonDelegatingRelease

method can be overridden).

Member Functions
Name Description
CUnknown Constructs a CUnknown object.
GetOwner Returns an LPUNKNOWN pointer to the controlling unknown.

Implemented INonDelegatingUnknown Methods

1822

CUnknown Class Page 3of6

Name Description
NonDelegatingAddRef Increments the reference count for an interface.
NonDelegatingQueryinterface Returns an interface and increments the reference count.
NonDelegatingRelease Decrements the reference count for an interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

CUnknown: :CUnknown

CUnknown Class

Constructs a CUnknown object.

CUnknown(
const TCHAR *pName,
LPUNKNOWN pUnk
);

Parameters

pName

w Q<M [.] 11,1 Mii.HM

• ; i§i [.] "'' I !!·HM

Topic Contents •@M* 1gnw

Topic Contents i@faii!MM

Name of the object used in the CBaseObject constructor for debugging purposes.
pUnk

Pointer to the owner of this object. If non-NULL, IUnknown calls are delegated to this
object.

Return Values

No return value.

Remarks

The object is initialized with a reference count of zero. This reference count can be
incremented when the object is queried for its first interface, depending on whether the object
is currently being aggregated.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

M Q i§i [.] jj,M I !1.],,[9 Topic Contents i@faii!MM

1823

CUnknown Class Page 4of6

CUnknown: :GetOwner

CUnknown Class

Retrieves this object's Component Object Model (COM) class owner.

LPUNKNOWN GetOwner(void);

Return Values

Returns an LPUNKNOWN pointer to the controlling !Unknown interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents l@!§il!MM

CUn known:: Non Delegati ngAdd Ref

CUnknown Class

Increments the reference count for an interface.

ULONG NonDelegatingAddRef();

Return Values

Returns the reference count of the object.

Remarks

This member function provides a base class implementation of the
INonDelegatingUnknown: :NonDelegatingAddRef method. When the object derived from
CUnknown is part of an aggregated object, this reference count modification is private to the
embedded object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,M 111.1 1119 Topic Contents 1@!§111¥+

CUn known:: Non Delegati ngQueryinterface

1824

CUnknown Class

CUnknown Class

Returns an interface and increments the reference count.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void** ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_ POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

This member function provides a base class implementation of the

Page 5of6

INonDelegatinqUnknown: :NonDelegatinqOueryinterface method. Override this class to return
interfaces on the object in the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.!j Topic Contents l@i§lllMM

CUn known:: Non Delegating Release

CUnknown Class

Decrements the reference count for an interface.

ULONG NonDelegatingRelease();

Return Values

Returns the reference count.

Remarks

This member function provides a base class implementation of the
INonDelegatinqUnknown: :NonDelegatinqRelease method. When the object derived from
CUnknown is part of an aggregated object, this reference count modification is private to the

1825

CUnknown Class Page 6 of6

embedded object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1826

CVideoTransformFilter Class Page 1 of7

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CVideoTransformFilter Class

(CBaseObject),

I INonDelegatingUnknown I
Ll.(CUnknown)i

I IAMovieSetup I
I IMediaFilter I
I IBaseFilter I

...__..__.I-{~ CBasefilter

~ CTransformfilter

~ CY ideoTransformfilter)1

The CVldeoTransformFilter class is designed primarily as a base class for AVI decompressor
filters. It is based on a "copying" transform class and assumes that the output buffer will likely
be a video buffer or Microsoft® DirectDraw® butter, although this could be used as a base
class for other types of transform filters. The main feature of this class is that it enables
quality-control management in a transform filter. This means that it decides to drop frames
based on receiving a quality notification from the renderer, and taking into account other
factors about the media stream it is processing and the filter's own behavior.

Every time the CVideo Transformfi!ter:: Receive member function is called, it calls
CVideoTransformfi!ter: :ShouldSkipframe to determine whether to start, continue, or stop
skipping frames. This member function starts skipping samples only if au the following
conditions are true.

• The average time to decode is more than one fourth of the frame time.
• The filter is running at least one frame late.
• The next antieipated key frame is estimated to be no more than one frame early.
• The occurrence of key frames is sufficiently frequent.

Once the class starts to skip frames, it will skip au frames until a key frame appears, at which
time it resets them bSkipping flag and processes the sample.

Key frames are defined as AVI key frames or MPEG I frames. These require no history to
<Jecode an<J, if they are skipped, no other frames can be decode<J until the next key frame.
Non-key frames inclu<Je AVI non-key frames, MPEG P frames, and MPEG B frames. MPEG B
frames are treated the same as other non-key frames by this class. (MPEG B frames can be
dropped without the need to skip further frames; however, because this class is aimed
primarily at AVI decompressors, it <Joes not allow for this. Once any frame is skipped, au
frames are skipped up to the next key frame.)

1827

CVideoTransformFilter Class

Protected Data Members
Name
m_bNoSkip

m_bQualityChanged

m_bSkipping
m_idFrameType

m_idlate

m_idSkip

m_idTimeTill Key

m_itrAvgDecode

m_itrlate

Page 2 of7

Description
Set to TRUE to prevent skipping to the next key frame (for
debugging the filter).
Status flag that indicates if the stream has degraded. This is set
to TRUE in CVideoTransformFilter: :Receive if the call to the
derived class Transform member function fails. (Receive returns
NOERROR in this case because returning S_FALSE indicates
that end-of-stream has arrived.)
Set to TRUE if the filter is skipping to the next key frame.
Performance-measuring frame type identifier (available if PERF
is defined). Logs 1 for key frames; logs 2 for nonkey frames.
Performance identifier for measuring lateness (available if PERF
is defined).
Performance identifier for measuring frame skipping (available
if PERF is defined).
Performance identifier that represents an estimate of the time
in milliseconds until the next key frame arrives (available if
PERF is defined).
Average time required to decode (transform) the sample. If this
is less than one-fourth of the frame time, it is assumed the
quality problems are not being generated by this filter and no
frames are dropped.
Amount of time that the current frame is late. This is originally
set to the value of the Quality structure's Late member passed
in the quality control message from the renderer filter. It is
decremented by the frame time of each frame that is skipped.

m_nFramesSinceKeyFrame Used to count frames since the last key frame.
m_nKeyFramePeriod
m_nWaitForKey

The largest observed interval between key frames.
Used to ensure output after a format change before getting the
first key frame. When nonzero, frames are not passed to the
renderer. Set to 30 when format is changed and decremented
on each non-key frame.

m_tDecodeStart

Member Functions
Name
AlterOuality

Time since the start of the decoding.

Description
Receives a quality-control notification from the output pin and provides
an opportunity to alter the quality of the media stream.

CVideoTransformFilter Constructs a CVideoTransformFilter object.
ShouldSkioFrame Determines if the filter should start, continue, or stop skipping frames.

Overridable Member Functions

1828

CVideoTransformFilter Class Page 3 of7

Description Name
End Flush
Receive

Receives notification of leaving the flushing state and passes it downstream.
Receives the media sample and either skips the sample or transforms and
delivers the media sample.

RegisterPerfld Registers a performance measurement identifier.

StartStreaming Overrides CTransformFilter: :StartStreaming to reset the quality control
information when streaming starts or flushing starts.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents l@!§lllMM

CVideoTra n sform Filter: :AlterQ ua I ity

CVideoTra nsform Filter Class

Receives a quality-control notification and provides an opportunity to alter the quality of the
media stream.

virtual HRESULT AlterQuality(
Quality q
);

Parameters

q
Quality-control notification message.

Return Values

This member function returns E_FAIL by default.

Remarks

This member function overrides the CTransformFilter: :AlterOuality member function. It is
called by the CTransformOutoutPin:: Notify member function before calling the
CBaselnoutPin:: PassNotify member function to pass the quality control message upstream.
This function sets the CVideoTransformFilter:: m itrlate data member to the value Quality
structure's Late member so that the filter can determine whether to skip frames. It returns
E_FAIL so that the renderer downstream will continue to handle quality control.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41M+• 1 1!·],,[¥ Topic Contents l@!§i MUMM

1829

CVideoTransformFilter Class Page 4 of7

CVideoTra n sform Filter:: CVideoTra n sform Filter

CVideoTra nsform Filter Class

Constructs a CVideoTransformFilter object.

CVideoTransformFilter(
TCHAR *pName,
LPUNKNOWN pUnk,
REFCLSID clsid
);

Parameters

pName
Name given to the CVideoTransformFilter object.

pUnk
Pointer to LPUNKNOWN.

els id
Class identifier of the CVideoTransformFilter class.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

CVideoTra nsformFi lter:: End Flush

CVideoTra nsform Filter Class

Topic Contents i@i§ii!MM

Receives notification that the filter is leaving the flushing state and passes it downstream.

HRESULT Endflush();

Return Values

Returns VFW E NOT CONNECTED if the filter finds no input pin; otherwise, returns the value
that the I Pin:: End Flush method returns.

Remarks

1830

CVideoTransformFilter Class Page 5 of7

This member function overrides the CTransformFilter: :EndFlush member function to reset
quality management information.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§l l!l¥1M

CVideoTra nsformf i lter:: Receive

CVideoTra nsform Filter Class

Receives the media sample and either skips the sample or transforms and delivers the media
sample.

HRESULT Receive(
IMediaSample *pSample
);

Parameters

pSample
Sample to deliver.

Return Values

Returns an HRESULT value.

Remarks

This member function overrides the CTransformFilter: :Receive member function. Override only
if you need more control of the process.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H+• 1 11·1::'¥ Topic Contents lfflj(§il!¥M

CVideoTra nsformf i lter:: Reg isterPerfld

CVideoTra nsform Filter Class

Registers performance measurement identifiers.

1831

CVideoTransformFilter Class

virtual void RegisterPerfid();

Return Values

No return value.

Remarks

By default, this member function registers the following performance identifiers.
Performance identifier Registered string
m idSkip Video transform skip frame
m idFrameType Video transform frame type
m idLate Video transform lateness
m idTimeTillKey Video transform estd. time to next key

Page 6 of7

This member function also calls CTransformFilter:: RegisterPerfid for its performance identifier.

Override this member function if you want to register performance measurement identifiers in
the derived class. If you do this, be sure to register these as well. This member function is
enabled only when PERF is defined.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§i +g!ti+

+Qij[.jlj,M 111.l:.!9 Topic Contents l@i§lllMM

CVideoTra n sform Filter:: Shou I dS ki pf ra me

CVideoTra nsform Filter Class

Determines if the filter should start, continue, or stop skipping frames.

BOOL ShouldSkipFrame(
IMediaSample * pln
);

Parameters

pln
Received sample to be transformed or skipped.

Return Values

Returns TRUE if the filter should skip this sample; otherwise, returns FALSE.

1832

CVideoTransformFilter Class Page 7 of7

Remarks

This member function sets the m bSkipping member variable to FALSE if the sample is a key
frame (sync point) and returns FALSE. This stops any skipping that has started. This member
function starts skipping samples (sets m_bSkipping to TRUE and returns TRUE) only if all of
the following conditions are true.

• The average time to decode is more than one-fourth of the frame time.
• The filter is running at least one frame late.
• The next anticipated key frame is estimated to be no more than one frame early.
• The occurrence of key frames is sufficiently frequent.

This member function sends an EC QUALITY CHANGE notification when sample skipping
starts. Once skipping starts, all samples are skipped until the next key frame arrives.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§l l!l¥1M

+Qij[.jlj,M 111.l:.!9 Topic Contents l@i§lllMM

CVideoTra n sform Filter:: Sta rtStrea ming

CVideoTra nsform Filter Class

Overrides CTransformFilter:: StartStreaminq to reset the quality control information when
streaming starts or flushing starts.

virtual HRESULT StartStreaming();

Return Values

Returns NOERROR.

Remarks

This member function sets several quality control member variables to 0, including m itrLate,
m nKeyFramePeriod, m nFramesSinceKeyFrame, m bSkippinq, and m tDecodeStart. It sets
m itrAvqDecode to 3000, and sets m bQualityChanqed and m bSampleSkipped to FALSE.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

1833

FOURCC11ap Class Page I of3

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

FOURCCMap Class

GUID data type

FOURCCMap

This class provides conversion between m media subtypes and old-style FOURCC 32-bit
media tags. In the original Microsoft® Windows® multimedia APis, media types were tagged
with 32-bit values created from four 8-bit characters and were known as FOURCCs. Microsoft
DirectShow"' media types have GUIDs for the subtype, partly because these are simpler to
create (creation of a new FOURCC requires its registration with Microsoft). Because FOURCCs
are unique, a one-to-one mapping has been made possible by allocating a range of 4,000
million GUIDs representing FOURCCs. This range is au GU IDs of the form:

XXXXXXXX-0000-0010-8000-00AA00389B71

This class simplifies conversion bet•Neen .l:2l.!1Q.s and FOURCCs. This is for compatibility only. It
is recommended that au new media subtypes be represented by GUIDs created by
Guidgen.exe or a similar tool, and not by mapping FOURCCs.

The object is derived from a ~ with no extra data members, and can be cast to a GUID.
The object can be passed a fO!JRCC at construction time. The default constructor wm initialize
the FOURCC to :zero.

The GetFOURCC and SetFOURCC methods do not check that the fixed portions of the m
correspond to the FOURCC range. Thus, if you cast a pointer to a GUID into a pointer to a
FOURCC and then set or get the FOURCC field, you also need to check separately that the
GUID is Within the FOURCC range.

Member Functions
Name Des<:ription
EO!JRCCMapConstructs a EO!JRCCMap object.
GetEO!JRCC Returns the fO!JRCC from a fO!JRCCMap object.
SetfOURCC Sets the FOURCC portion of the FOURCCMap object.

Topic Contents

FOURCCMap: :FOURCCMap

1834

'@'!'''""

FOURCCMap Class Page 2 of3

FOURCCMao Class

Constructs a FOURCCMap object. Provides a mapping between old-style multimedia format
DWORD types and new-style .G..lli.Q. types.

FOURCCMap();
FOURCCMap(

DWORD Fourcc
);

FOURCCMap(
const GUID * pguid
);

Parameters

Fourcc
DWORD media tag formerly used for Microsoft multimedia types.

pguid
Globally unique identifier (.G..lli.Q.).

Return Values

No return value.

Remarks

If this object is constructed with the FOURCC code, a GUID is created to match it. If this object
is created with an existing GUID, the FOURCC value of the object is set to zero. Thereafter,
the FOURCC value can be set or retrieved using the SetFOURCC and GetFOURCC member
functions, respectively.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

FOURCCMap: :GetFOURCC

FOURCCMao Class

Retrieves the FOURCC DWORD from the FOURCCMap object.

DWORD GetFOURCC(void);

Return Values

Returns the FOURCC DWORD value. Note that if you construct a FOURCCMap object from a

1835

FOURCCMap Class Page 3of3

GUID that was not originally derived from FOURCC, the return value will be essentially
random.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• A Mi[.]"'' I![.],.[.

FOURCCMap: :SetFOURCC

FOURCCMao Class

Sets the FOURCC portion of the FOURCCMap object.

void SetFOURCC(
const GUID * pguid
);

Parameters

pguid

Topic Contents •@M* 1gnw

Pointer to the returned globally unique identifier (G..Ul.Q) part of the FOURCCMap object.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1836

Utility Functions Page 1of55

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

Utility Functions

This section contains reference entries for the DirectShow utility functions and macros.
DirectShow provides utilities for conversion, setup, timers, retrieving interfaces and declaring
IUnknown, helper functions for math operations, property pages, BSTR functions, and strings,
and stream integer functions. Most utilities are contained in Wxutil.h, but others are contained
in Combase.h, Errors.h, Pstream.h, Refclock.h, Renbase.h, Videoctl.h, and Wtype.h.

• BSTR Functions

· Bitmap Functions. Macros. and Data

· CBaseRenderer Callback Function

· CCritSec Debug Functions

· Conversion Functions

· CPosPassThru Helper Function

• DLL and Setup Functions

· Error Message Function

· IUnknown Macro

· INonDelegatingUnknown Interface

· Math Helper Functions

· Media Type Functions

· Object and Pin Functions

· Performance Macros

· Property Page Helper Functions

· Reference Time Function

· Stream Integer Functions

· String Functions

· Message Function

1837

Utility Functions Page 2 of 55

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

MQl§i[.jjj,M 111.J,,[5 Topic Contents lfflj(§i MUMM

BSTR Functions

The Wxutil.h header file in the Microsoft® DirectShow™ base classes provides helper functions
for allocating and freeing task-allocated BSTR strings.
Function Description
FreeBSTR Frees the task-allocated BSTR string.
WriteBSTR Creates a task-allocated BSTR string by allocating task-allocated memory and

copying a wide string to it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQIM!.l+• 111.J,,[5

FreeBSTR

BSTR Functions

Frees a task-allocated BSTR string from memory.

STDAPI FreeBSTR(
BSTR* pstr
);

Parameters

pstr
Address of the BSTR to free.

Return Values

Returns S_OK if successful, or S_FALSE if pstr is null.

Remarks

Topic Contents l@!§lllMM

Memory is allocated for passing between objects across interfaces by calling CoTaskMemAlloc.
It is freed by calling CoTaskMemFree. You can allocate, pass, and free memory safely between

1838

Utility Functions Page 3 of 55

objects created in different programming languages by using a central memory allocator.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

8 4'MM+1 111·!:.!¥

WriteBSTR

BSTR Functions

Allocates and fills a task-allocated BSTR string.

STDAPI WriteBSTR(
BSTR* pstrDest,
LPCWSTR szSrc
);

Parameters

pstrDest

Topic Contents

Pointer to where the address of the allocated BSTR will be stored.
szSrc

lmll§lllMM

Wide (Unicode) string that will be copied to the newly allocated BSTR string.

Return Values

Returns an HRESULT value.

Remarks

Memory is allocated for passing between objects across interfaces by calling CoTaskMemAlloc.
It is freed by calling CoTaskMemFree. By using a central memory allocator, memory can be
allocated, passed, and freed safely between objects created in different programming
languages.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M l!!.!:.19 Topic Contents lmll§lllMM

Bitmap Functions, Macros, and Data

The Wxutil.h header file in the DirectShow base classes provides functions and macros to help
convert between VIDEOINFOHEADER and BITMAPINFO structures.

1839

Utility Functions

Function
BIT MASKS MATCH
BITMASKS

COLORS

ContainsPalette
DIBSIZE
GetBitCount
GetBitmaoFormatSize

GetBitmaoPalette
GetBitmaoSize
GetBitmaoSubtyoe
GetSubtyoeName
GetTrueColorTyoe
HEADER

Page 4 of 55

Description
Compares the masks of two video images.
Retrieves a pointer to the array of bitmasks for the specified
VIDEOINFOHEADER structure.
Retrieves a pointer to an array of RGBOUAD structures that
describes the color palette for the specified VIDEOINFOHEADER
structure.
Checks if the video image contains a color palette.
Calculates the byte size of the specified bitmap
Finds the number of bits per pixel.
Finds the size (in bytes) needed to build a VIDEOINFOHEADER
structure and related data.
Finds the first palette entry in a VIDEOINFOHEADER structure.
Finds the size (in bytes) needed to hold an image.
Finds the GUID subtype for a given bitmap info header structure.
Finds the (debug) name for a given GUID subtype.
Finds the GUID subtype for a given bitmap header.
Retrieves a pointer to the image data from the specified video
image.

MPEGl SEQUENCE INFO Retrieves the sequence header for the specified MPEG-1 video

PALETTISED
PALETTE ENTRIES
RESET MASKS
RESET HEADER
RESET PALETTE
SIZE EGA PALETTE
SIZE MASKS

image.
Checks if the video image's color palette is 8-bit or less.
Returns the number of colors in the video image's palette.
Clears the specified video image's bitmasks.
Clears the specified video image.
Clears the specified video image's color palette.
Calculates the size of the EGA (4-bit) color palette.
Calculates the size of the mask's color palette.

SIZE MPEGl VIDEOINFO Calculates the size of the specified MPEG-1 video image.
SIZE PALETTE Calculates the size of the 8-bit color palette.
SIZE PREHEADER
SIZE VIDEOHEADER
TRUECOLORINFO

Calculates the byte offset for the video image's bitmap information.
Calculates the size of the video image.
Retrieves a pointer to an array of TRUECOLORINFO structures that
describes the bitmasks and color palette for the specified
VIDEOINFOHEADER structure.

These functions are made available to help manage VIDEOINFOHEADER structures, which are
used throughout DirectShow™ to describe video data streams. Although similar to the
BITMAPINFO structure used in Microsoft® Win32® and existing multimedia,
VIDEOINFOHEADER also adds some new video-specific fields.
Global Data Description
bitsSSS Array of color bitmasks for an RGB 555 bitmap.
bits565
bits888

Array of color bitmasks for an RGB 565 bitmap.
Array of color bitmasks for an RGB 24-bit bitmap.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1840

Utility Functions

+Qi§1[.]++ 1 !!·HM

MQij[.jjj,M M!i.! 111M

BIT _MASKS_MATCH

Bitmap Functions, Macros, and Data

Retrieves the bitmasks for the specified video image.

BIT_MASKS_MATCH(
pbmi1,
pbmi2
)

Parameters

pbmi1

Page 5 of 55

Topic Contents i@l§ii!MM

Topic Contents i@l§ii!MM

Pointer to a Win32 VIDEOINFOHEADER structure that contains the first video image.
pbmi2

Pointer to a Win32 VIDEOINFOHEADER structure that contains the second video image.

Return Values

Returns nonzero if the bitmasks for both video images are identical or zero otherwise.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Qi§i[.]ii,+ 1 !1·HM

BITMASKS

Bitmap Functions, Macros, and Data

Retrieves the bitmasks for the specified video image.

BITMASKS(
pbmi
)

Parameters

1841

Topic Contents Mttfjl§ii!MM

Utility Functions Page 6 of 55

pbmi
Pointer to a Win32 VIDEOINFOHEADER structure that contains the video image.

Return Values

Returns a pointer to the array of bitmasks for the specified VIDEOINFOHEADER structure.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

COLORS

Bitmap Functions, Macros, and Data

Retrieves the color palette for the specified video image.

COLORS(
pbmi
)

Parameters

pbmi

Topic Contents i@faii!MM

Pointer to a Win32 VIDEOINFOHEADER structure that contains the video image.

Return Values

Returns a pointer to an array of RGBOUAD structures that describes the color palette for the
specified VI D EOI N FOH EADER structure.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]+• 1 !!·H¥ Topic Contents l@i§il!MM

ContainsPalette

Bitmap Functions. Macros, and Data

Checks if the specified video image contains a color palette.

BOOL ContainsPalette(

1842

Utility Functions

const VIDEOINFOHEADER *pVideoinfo
);

Parameters

pVideoinfo
Pointer to a VIDEOINFOHEADER structure.

Return Values

Page 7 of 55

Returns TRUE if the VIDEOINFOHEADER structure contains a color palette or FALSE otherwise.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9

DIBSIZE

Bitmap Functions, Macros, and Data

Calculates the byte size of the specified bitmap.

DIBSIZE(
bi
)

Parameters

bi

Topic Contents

A Win32 BITMAPINFOHEADER structure that specifies the source bitmap.

Return Values

Returns the byte size of the bi parameter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119 Topic Contents

GetBitCount

Bitmap Functions, Macros, and Data

1843

lfflj(§l 1!1¥1M

l@i§il!MM

Utility Functions

Finds the number of bits per pixel.

WORD GetBitCount(
const GUID *pSubtype
);

Parameters

pSubtype
Pointer to a GUID for a given video subtype.

Return Values

Page 8 of 55

Returns the number of bits per pixel for this subtype, or USHRT _MAX if an error occurred.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa11!¥M

GetBitmapFormatSize

Bitmap Functions, Macros, and Data

Finds the size (in bytes) needed to build a VIDEOINFOHEADER structure and related data.

LONG GetBitmapFormatSize(
const BITMAPINFOHEADER *pHeader
);

Parameters

pHeader
Pointer to a Win32 BITMAPINFOHEADER structure.

Return Values

Returns the number of bytes for the VIDEOINFOHEADER structure described by this
BITMAPINFOHEADER, including prefix information, the BITMAPINFOHEADER field, and any
other color information on the end.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]+• 1 11·1::'¥ Topic Contents i@fa11!¥M

1844

Utility Functions

GetBitmapPalette

Bitmap Functions, Macros, and Data

Finds the first palette for a VIDEOINFOHEADER structure.

const RGBQUAD * GetBitmapPalette(
const VIDEOINFOHEADER *pVideoinfo
);

Parameters

pVideoinfo
Pointer to a VIDEOINFOHEADER structure.

Return Values

Returns a pointer to the first entry in a palette.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

GetBitmapSize

Bitmap Functions, Macros, and Data

Finds the number of bytes needed to hold an image.

DWORD GetBitmapSize(
const BITMAPINFOHEADER *pHeader
);

Parameters

pHeader
Pointer to a Win32 BITMAPINFOHEADER structure.

Return Values

Returns the number of bytes needed to hold an image.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41[.]+• MB.],,[¥

1845

Page 9 of 55

Topic Contents i@faii!MM

Topic Contents i@faii!MM

Utility Functions

GetBitmapSubtype

Bitmap Functions, Macros, and Data

Finds the subtype for the specified bitmap.

const GUID GetBitmapSubtype(
const BITMAPINFOHEADER *pHeader
);

Parameters

pHeader
Pointer to a Win32 BITMAPINFOHEADER structure.

Return Values

Page 10 of 55

Returns the video subtype GUID of the bitmap specified by pHeader, or GUID_NULL if pHeader
is NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9

GetSubtypeName

Bitmap Functions, Macros, and Data

Retrieves the name for a given GUID subtype.

TCHAR * GetSubtypeName(
const GUID *pSubtype
);

Parameters

pSubtype
Pointer to a GUID for a given video subtype.

Return Values

Topic Contents

Returns the debug name of this .G..lli.Q., or UNKNOWN if the name is not known.

1846

l@!§il!MM

Utility Functions Page 11of55

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11¥8

GetTrueColorType

Bitmap Functions, Macros, and Data

Finds the subtype for the specified 16-bit color bitmap.

const GUID GetTrueColorType(
const BITMAPINFOHEADER *pHeader
);

Parameters

pHeader
Pointer to a Win32 BITMAPINFOHEADER structure.

Return Values

Returns the video subtype GUID of the 16-bit color bitmap specified by pHeader, or
GUID_NULL if pHeader is NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM Topic Contents

HEADER

Bitmap Functions, Macros, and Data

Retrieves a pointer to the image data from the specified video image.

HEADER(
pVideo!nfo
)

Parameters

pVideoinfo

lfflj[§ill¥M

Pointer to the VIDEOINFOHEADER structure that specifies the video image.

1847

Utility Functions Page 12 of 55

Return Values

Returns a pointer to the Win32 BITMAPINFOHEADER structure contained in the
VIDEOINFOHEADER structure's bmiHeader data member.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j Topic Contents

MPEG1_SEQUENCE_INFO

Bitmap Functions, Macros, and Data

Retrieves the sequence header for the specified MPEG-1 video image.

MPEGl_SEQUENCE_INFO(
pv
)

Parameters

pv
Pointer to an MPEG1 VIDEOINFO structure.

Return Values

l@IJll!MM

Returns the bSeguenceHeader data member of the specified MPEG1VIDEOINFO structure.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I!!.],.[.

PALETTISED

Bitmap Functions, Macros, and Data

Checks if the video image's color palette is 8-bit or less.

PALETTISED(
pbmi
)

1848

Topic Contents •@!§' 1gnw

Utility Functions Page 13 of 55

Parameters

pbmi
Pointer to the Win32 BITMAPINFOHEADER structure that specifies the video image.

Return Values

Returns nonzero if the video image's palette contains 256 or fewer colors, or zero otherwise.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

PALETTE_ENTRIES

Bitmap Functions. Macros, and Data

Retrieves the number of colors in the video image's palette.

PALETTE_ENTRI ES(
pbmi
)

Parameters

pbmi

Topic Contents i@l§ii!MM

Pointer to the Win32 BITMAPINFOHEADER structure that specifies the video image.

Return Values

Returns the number of colors in the video image's palette.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

RESET _MASKS

Clears the specified video image's bitmasks.

RESET _MASKS(
pbmi

+Qij[.jlj,M 11!.l:.!9

1849

Topic Contents i@l§ii!MM

Utility Functions Page 14 of 55

)

Parameters

pbmi
Pointer to the Win32 BITMAPINFOHEADER structure that specifies the video image.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

RESET_HEADER

Bitmap Functions, Macros, and Data

Clears the specified video image.

RESET_HEADER(
pbmi
)

Parameters

pbmi

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

Pointer to the Win32 BITMAPINFOHEADER structure that specifies the video image.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M M!i.1 1119 Topic Contents i@i§iil¥M

RESET_PALETTE

Bitmap Functions, Macros, and Data

Clears the specified video image's color palette.

1850

Utility Functions

RESET_PALETTE(
pbmi
)

Parameters

pbmi

Page 15 of 55

Pointer to the Win32 BITMAPINFOHEADER structure that specifies the video image.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

SIZE_EGA_PALETTE

Bitmap Functions, Macros, and Data

Calculates the size of a 4-bit color palette.

SIZE_EGA_PALETTE

Return Values

Returns the size of a 16-color palette, in bytes.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[j Topic Contents l@i§il!MM

SIZE_MASKS

Bitmap Functions, Macros, and Data

Calculates the size of a bitmask's color palette.

SIZE_MASKS

Return Values

1851

Utility Functions Page 16 of 55

Returns the size, in bytes, of a bitmap mask's color palette, which has three colors.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM

SIZE_MPEGlVIDEOINFO

Bitmap Functions, Macros, and Data

Calculates the size of the specified MPEG-1 video image.

SIZE_MPEG1VIDEOINFO(
pv
)

Parameters

pv

Topic Contents ifflj[§ii!MM

Pointer to the MPEG1VIDEOINFO structure that specifies the video image.

Return Values

Returns the byte size of the specified MPEG1 VIDEOINFO structure.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M M!i.1 1119 Topic Contents i@i§lllMM

SIZE_PALETTE

Bitmap Functions, Macros, and Data

Calculates the size of the 8-bit color palette.

SIZE_PALETTE

Return Values

Returns the size of the 256-color palette.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1852

Utility Functions

+Qi§1[.]++ 1 !!·HM Topic Contents

SIZE_PREHEADER

Bitmap Functions. Macros, and Data

Calculates the byte offset for the video image's bitmap information.

SIZE_PREHEADER

Return Values

Page 17 of 55

i@l§ii!MM

Returns the byte offset of the VIDEOINFOHEADER structure's bmiHeader data member.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

SIZE_VIDEOHEADER

Bitmap Functions, Macros, and Data

Calculates the size of the video image.

SIZE_ VIDEOHEADER

Return Values

+;<§1[.]jj,+ +II.HM Topic Contents Mttfjl§ii!MM

Returns the combined size of all of the VIDEOINFOHEADER structure's data members.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!l.1 1119 Topic Contents i@l§ii!MM

TRUECOLORINFO

Bitmap Functions, Macros, and Data

1853

Utility Functions

Retrieves the color palette and bitmasks for the specified video image.

TRU ECO LORIN FO(
pbmi
)

Parameters

pbmi

Page 18 of 55

Pointer to a Win32 VIDEOINFOHEADER structure that contains the video image.

Return Values

Returns a pointer to an array of TRUECOLORINFO structures that describes the bitmasks and
color palette for the specified VIDEOINFOHEADER structure.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

CBaseRenderer Callback Function

The Renbase.h header file in the DirectShow base classes provides a function to signal the end
of a stream in CBaseRenderer or its derived classes.
Name Description
EndOfStreamTimer Signals the end of the specified class's data stream.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

M Qi§i [.] jj,M I ![.H5

EndOfStreamTimer

CBaseRenderer Callback Function

Signals the end of the specified class's data stream.

void CALLBACK EndOfStreamTimer(
UINT uID,
UINT uMsg,
DWORD dwUser,
DWORD dw1,
DWORD dw2

1854

Topic Contents i@faii!MM

Utility Functions

);

Parameters

uID

uMsg

Integer value that specifies the timer value when the application called
EndOfStreamTimer.

Not used.
dwUser

Page 19 of 55

DWORD value that contains the address of a class instance derived from CBaseRenderer.
dw1

Reserved.
dw2

Reserved.

Return Values

No return value.

Remarks

EndOfStreamTimer checks the m EndOfStreamTimer data member of the class specified by
dwUser. If m_EndOfStreamTimer is nonzero, EndOfStreamTimer sets it to zero and calls
the class's Send EndOfStrea m method.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmli§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

CCritSec Debug Functions

The Wxutil.h header file in the DirectShow base classes provides functions to make deadlocks
easier to track. It is useful to insert an assertion in the code that says whether a critical
section is owned or not. The routines that do the checking are global functions to avoid having
different numbers of member functions in the debug and retail class implementations of
CCritSec. In addition, Wxutil.h provides a routine that enables you to trace usage of specific
critical sections. Because of the large number of critical sections, this assertion defaults to off.
Name
CritCheckln

Description
Checks that the current thread is the owner of the given critical section.

CritCheckOut Checks that the current thread is not the owner of the given critical section.
DbqLockTrace Enables or disables debug logging of a given critical section.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1855

Utility Functions

+Qi§1[.]++ 1 !!·HM

CritCheckln

CCritSec Debug Functions

Checks that the owner of pcCrit is the current thread.

BOOL WINAPI CritCheckin(
CCritSec * pcCrit
);

Parameters

pcCrit
Pointer to a CCritSec critical section.

Return Values

Page 20 of 55

Topic Contents i@l§ii!MM

Returns TRUE if the current thread is the owner of this critical section, or FALSE otherwise.

Remarks

If you call this function when DEBUG is not defined and you've included the DirectShow
headers, it will always return TRUE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 111.],.[9

CritCheckOut

CCritSec Debug Functions

Checks that the owner of pcCrit is not the current thread.

BOOL WI NAPI CritCheckOut(
CCritSec * pcCrit
);

Parameters

1856

Topic Contents i@l§ii!MM

Utility Functions Page 21of55

pcCrit
Pointer to a CCritSec critical section.

Return Values

Returns TRUE if the current thread is not the owner of this critical section, or FALSE otherwise.

Remarks

If you call this function when DEBUG is not defined and you've included the DirectShow
headers, it will always return TRUE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij

DbglockTrace

CCritSec Debug Functions

Enables or disables debug logging of a given critical section.

void WINAPI DbglockTrace(
CCritSec * pcCrit,
BOOL fTrace
);

Parameters

pcCrit
Pointer to a CCritSec critical section.

fTrace
Set to TRUE to enable logging or FALSE to disable it.

Return Values

No return value.

Remarks

Topic Contents l@i§il!MM

This function does nothing unless DEBUG is defined when the DirectShow headers are
included.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents l@i§il!MM

1857

Utility Functions Page 22 of 55

Conversion Functions

The Wxutil.h header file in the DirectShow base classes provides functions for converting
between integers and wide strings.
Function Description
atoi Converts a string to an integer.
IntToWstr Converts an integer to a wide string.
WstrToint Converts a wide string to an integer.

© 1997 Microsoft Corooratjon. All rights reserved. Terms of Use.

atoi

Conversion Functions

Converts a given string to an integer.

int WINAPI atoi(
const TCHAR *sz
);

Parameters

sz
Source character string.

Return Values

Returns the string's integer value.

Remarks

MQ<§i[.jjj,M lh.l:.!5 Topic Contents i@faii!MM

This version of atoi supports only decimal digits, and does not allow leading white space or
signs. It supports both Unicode and ANSI strings. Other versions can vary.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M lh.l:.!5 Topic Contents i@faii!MM

1858

Utility Functions

lntToWstr

Conversion Functions

Converts a given integer value to a wide string representation.

void IntToWstr(
inti,
LPWSTR wstrDest
);

Parameters

Integer value to be converted.
wstrDest

LPWSTR that will contain the resulting wide string.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j

WstrTolnt

Conversion Functions

Converts a given wide string value to an integer.

int WstrToint(
LPCWSTR wstrSrc
);

Parameters

wstrSrc
Source wide-character string.

Return Values

Returns the string's integer value.

1859

Page 23 of 55

Topic Contents l@i§lllMM

Utility Functions Page 24 of 55

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

CPosPassThru Helper Function

The CPosPassThru helper function creates a plug-in distributor (a CPosPassThru COM object)
that supports IMediaSeeking and IMediaPosition.
Function Description
CreatePosPassThru Creates a CPosPassThru COM object.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

•Q<M!.l+' MB.HM Topic Contents i@faii!MM

CreatePosPassThru

CPosPassThru Helper Function

Creates a COM object that supports IMediaSeeking and IMediaPosition for single-input pin
renderers and transform filters.

STDAPI CreatePosPassThru(
LPUNKNOWN pAgg,
BOOL bRenderer,
IPin *pPin,
!Unknown **ppPassThru
);

Parameters

pAgg
NULL if the object is not being created as part of an aggregate; otherwise, a pointer to
the aggregate object's IUnknown interface (the controlling !Unknown).

bRenderer
TRUE if the filter supports rendering; otherwise, FALSE.

pPin
Pointer to the filter's input pin.

ppPassThru
ISeekingPassThru interface.

Return Values

1860

Utility Functions Page 25 of 55

Returns S_OK if successful; otherwise, returns an HRESULT indicating the error.

Remarks

You can use this function to create a CPosPassThru object in Quartz.di! rather than from your
own .dll file. The CLSID of the object is CLSID_SeekingPassThru.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa11!¥M

MQi§1[.]+• 1 !!·H¥ Topic Contents i@fai1!¥M

DLL and Setup Functions

The Combase.h header file provides the following function for creating a run-time dynamic link
with a specific dynamic-link library (DLL). For more information, read the Run-Time Dynamic
Linking section in the Platform SDK.
Function Description
LoadOLEAut32 Loads the Automation DLL (OleAut32.dll).

The Dllsetup.h header file provides the following functions for registering and unregistering
DirectShow filters. You'll typically call AMovieDllRegisterServer2 to register your filter. The
other functions are either helper functions or provide backwards compatibility.
Function Description
AMovieDllRegisterServer Registers filters. ActiveMovie 1.0 only.
AMovieDllRegisterServer2 Registers and unregisters filters.
AMovieDllUnregisterServer Unregisters filters. ActiveMovie 1.0 only.
AMovieSetupRegisterFilter Registers a filter's merit, pins, and media types in the registry

using the filter mapper. ActiveMovie 1.0 only.
AMovieSetupRegisterFilter2 Registers a filter's merit, pins, and media types in the registry

using IFilterMapper2.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M lh.11115 Topic Contents i@fa11!¥M

LoadOLEAut32

DLL and Setup Functions

1861

Utility Functions Page 26 of 55

Loads the Automation dynamic-link library (OleAut32.dll).

HINSTANCE LoadOLEAut32();

Return Values

Returns a handle to an Automation DLL instance.

Remarks

When the CBaseObject destructor destroys the object that loaded OleAut32.dll, it will unload
the library if it is still loaded.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lll¥M

AMovieDllRegisterServer

DLL and Setup Functions

Registers filters. ActiveMovie 1.0 only.

HRESULT AMovieDllRegisterServer(void);

Return Values

Returns an HRESULT value.

Remarks

Use AMovieDllReqisterServer2 rather than this function to set up (register) your filters unless
you need compatibility with ActiveMovie 1.0 filters. See Register DirectShow Objects and the
sample filters included with the DirectShow SDK for more information about
AMovieDll RegisterServer2.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]+• 1 11·1::'¥ Topic Contents lfflj[§ill¥M

AMovieDllRegisterServer2

1862

Utility Functions

DLL and Setuo Functions

Registers and unregisters filters.

HRESULT AMovieDllRegisterServer2(
BOOL bRegister
);

Parameters

bRegister
TRUE indicates register the filter, FALSE indicates unregister it.

Return Values

Returns an HRESULT value.

Remarks

Page 27 of 55

Use this function to set up your filters. See Register DirectShow Objects and the sample filters
included with the DirectShow SDK for more information.

Note: The filter registration process is changing to allow filters to register by category. For
example, capture filters and compression filters are enumerated together in their respective
categories. The following functions demonstrate how filter registration and unregistration by
category might work. The AMCao sample demonstrates this procedure. The following function
uses the !FilterMaooer2 interface.

II Register Sample Compressor Filter
STDAPI
DllRegisterServer(void)
{
HRESULT hr= AMovieD11RegisterServer2(TRUE);
if(FAILED(hr))

return hr;

const WCHAR *wszUniq L"Sample Compressor Filter"

IFilterMapper2 *pFm2 O;

hr= CoCreateinstance(CLSID F1lterMapper2
NULL
CLSCTX INPROC SERVER
IID_IFilterMapper2
(void * *) &pFm2) ;

if (FAILED (hr))
return hr;

hr= pFm2->RegisterFilter(
CLSID_SampleCompressorFilter,
wszUniq,
0,
&CLSID_Videocompressorcategory,
wszUniq,
MERIT_DO_NOT_USE,
NULL,

1863

Utility Functions

0) ;

pFm2->Release();

return hr;
}

II unregister sample compressor Filter
STDAPI
DllUnregisterServer(void)
{

HRESULT hr= AMovieD11RegisterServer2(FALSE);
if(FAILED(hr))

return hr;

const WCHAR *wszuniq L"Sample compressor Filter"

IFilterMapper2 *pFm2 O;

hr= cocreateinstance(CLSID_FilterMapper2
NULL
CLSCTX INPROC SERVER

, IID_IFilterMapper2
(void **)&pFm2) ;

if (FAILED (hr))
return hr;

hr pFm2->UnregisterFilter(
&CLSID_VideoCompressorCategory,
wszuniq,
CLSID_SamplecompressorFilter);

pFm2->Release();

return hr;
}

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j

MQ<§i[.jjj,M 111.l:.!j

AMovieDllUnregisterServer

DLL and Setup Functions

Unregisters filters. ActiveMovie 1.0 only.

HRESULT AMovieDllUnregisterServer(void);

Return Values

1864

Page 28 of 55

Topic Contents l@i§il!MM

Topic Contents i@faii!MM

Utility Functions Page 29 of 55

Returns an HRESULT value.

Remarks

Use AMovieDllRegisterServer2 rather than this function to uninstall (unregister) your filters
unless you need compatibility with ActiveMovie 1.0 filters. See Register DirectShow Objects
and the sample filters included with the DirectShow SDK for more information about
AMovieDll RegisterServer2.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmll§lllMM

AMovieSetupRegisterFilter

DLL and Setup Functions

Registers a filter's merit, pins, and media types in the registry using the filter mapper.
ActiveMovie 1.0 only.

HRESULT AMovieSetupRegisterFilter(
const AMOVIESETUP _FILTER *const psetupdata,
IFilterMapper *pIFM,
BOOL bRegister
);

Parameters

psetupdata
Pointer to the AMOVIESETUP FILTER data.

pIFM
Pointer to IFilterMapper interface.

bRegister
TRUE indicates register the filter, FALSE indicates unregister it.

Return Values

Returns an HRESULT value.

Remarks

The CBaseFilter base class uses this helper function to register a filter if the 1.0 ActiveMovie
runtime is installed. It is provided for compatibility with ActiveMovie version 1.0 only.

Typically a filter will use AMovieDllRegisterServer and will not call this function directly.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1865

Utility Functions Page 30 of 55

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M M!i.! 111M Topic Contents i@l§ii!MM

AMovieSetupRegisterFilter2

DLL and Setup Functions

Registers a filter's merit, pins, and media types in the registry using IFilterMapper2.

HRESULT AMovieSetupRegisterFilter2(
const AMOVIESETUP _FILTER *const psetupdata,
IFilterMapper2 *p!FM2,
BOOL bRegister
);

Parameters

psetupdata
Pointer to the AMOVIESETUP FILTER data.

p!FM
Pointer to IFilterMapper2 interface.

bRegister
TRUE indicates register the filter, FALSE indicates unregister it.

Return Values

Returns an HRESULT value.

Remarks

AMovieDllRegisterServer2 uses this helper function to register a filter after the COM server has
been registered.

Typically a filter will use AMovieDllRegisterServer2 and will not call this function directly.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§i[.]jj,+ +II.HM Topic Contents Mttfjl§i +gn+

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

Error Message Function

1866

Utility Functions Page 31of55

The Errors.h header file provides a function for getting an error message for a given message
identifier in the current language. The same header also provides the MAX_ERROR_TEXT_LEN
equate, which indicates the maximum number of characters allowed in a message.
Function Description
AMGetErrorText Gets the error message text for a given message ID.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

AMGetErrorText

Error Message Function

Retrieves the error message text for a given message identifier in the appropriate language.

DWORD AMGetErrorText(
HRESULT hr,
TCHAR *pBuffer,
DWORD Maxlen
);

Parameters

hr
Message identifier for the message text to be returned.

pBuffer
Area into which the message text will be stored.

MaxLen
Number of characters that pBuffer points to.

Return Values

Returns the number of characters stored in the buffer, or zero if an error occurred.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M M!i.1 1119 Topic Contents i@l§ii!MM

!Unknown Macro

To simplify the creation of new interfaces, the Combase.h header file includes a macro that

1867

Utility Functions Page 32 of 55

declares the three methods of the IUnknown interface.
Function Description
DECLARE IUNKNOWN Declares the three methods of the base interface for a new interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmll§lllMM

DECLARE_IUNKNOWN

IUnknown Macro

Declares the three methods of the base interface for a new interface.

#define DECLARE_IUNKNOWN

Remarks

When you create a new interface, it must derive from IUnknown, which has three methods:
Querylnterface, AddRef, and Release. This macro simplifies the declaration process by
declaring each of these methods for the new interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@Mjj,M 111.1 1119 Topic Contents l@i§il!MM

INonDelegatingUnknown Interface

To enable a class to support both nondelegating and delegating IUnknown interfaces in the
same COM object, the Combase.h header file declares the INonDelegatingUnknown interface.
This interface is a version of !Unknown and has three methods:
INonDelegatingUnknown::NonDelegatingQueryinterface
I Non DelegatingUnknown:: Non Delegati ngAddRef
I Non DelegatingUnknown:: Non Delegati ngRelease

For sample implementations of these methods, see CUnknown:: NonDelegatingQuerylnterface,
CUnknown:: NonDelegatingAddRef, and CUnknown:: NonDelegatingRelease.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

8 4'MM+1 111·!:.!¥ Topic Contents l@IJlllMM

1868

Utility Functions Page 33 of 55

INonDelegatingUnknown

INonDeleqatinqUnknown Interface

A version of IUnknown renamed to enable a class to support both nondelegating and
delegating !Unknown interfaces in the same COM object. The interface supports the following
three methods, in vtable order:

H RESULT Non Delegati ngQuerylnterface(
REFllD iid,
void** ppvObject);

ULONG NonDelegatingAddRef(void);

ULONG NonDelegatingRelease(void);

Remarks

To use INonDelegatingUnknown for multiple inheritance, perform the following steps:

1. Derive your class from an interface, for example, IMyinterface.
2. Include DECLARE IUNKNOWN in your class definition to declare implementations of

Querylnterface, AddRef, and Release that call the outer unknown.
3. Override NonDelegatingQuerylnterface to expose IMyinterface with code such as the

following:

if (riid == IID_IMyinterface) {
return Getinterface ((IMy interface *) this, ppv);

else {
return cunknown: :NonDelegatingQueryinterface (riid, ppv) ;

4. Declare and implement the member functions of IMyinterface.

To use INonDelegatingUnknown for nested interfaces, perform the following steps:

1. Declare a class derived from CUnknown.
2. Include DECLARE IUNKNOWN in your class definition.
3. Override NonDelegatingQuerylnterface to expose IMylnterface with the code such as

the following:

if (riid == IID_IMyinterface) {
return Getinterface ((IMyinterfac e *) this, ppv) ;

else {
return cunknown: :NonDelegatingQuery interfac e (riid, ppv) ;

1869

Utility Functions Page 34 of 55

4. Implement the member functions of IMyinterface. Use CUnknown: :GetOwner to access
the COM object class.

5. In your COM object class, make the nested class a friend of the COM object class, and
declare an instance of the nested class as a member of the COM object class.

Because you must always pass the outer unknown and an HRESULT to the CUnknown
constructor, you can't use a default constructor. You have to make the member variable
a pointer to the class and make a new call in your constructor to actually create it.

6. Override the NonDelegatingQueryinterface with code such as the following:

if (riid == IID_IMyinterface) {
return m_pimplFilter->

NonDelegatingQueryinterface(IID IMyinterface, ppv);
else { -

return cunknown: :NonDelegatingQueryinterface(riid, ppv);

You can have mixed classes that support some interfaces through multiple inheritance and
some interfaces through nested classes.

See Also

GetI nterface, CU n known, IU n known Macro

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HM Topic Contents i@fa11!¥M

MQi§1[.]+• 1 !!·HM Topic Contents i@fa11!¥M

Math Helper Functions

The Wxutil.h header file in the DirectShow base classes provides some mathematical helper
functions. These are intended to help with time format conversions.
Function
llMulDiv

Description
Implements ((a*b)+rnd)/c for 32-bit values of a.

Int64x32Div32 Implements ((a*b)+rnd)/c for 64-bit values of a.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]+• 1 !!·HM Topic Contents

1870

i@fa11!¥M

Utility Functions

llMulDiv

Math Helper Functions

Multiplies a by b, adds rnd to the 128-bit result, then divides by c.

LONGLONG WINAPI llMulDiv(
LONGLONG a,
LONGLONG b,
LONGLONG c,
LONGLONG rnd
);

Return Values

Returns either the (a * b + rnd)/c calculation or one of the following values.
Value Condition

Page 35 of 55

Ox7FFFFFFFFFFFFFFF Overflow occurred because the result is too large (positive).
Ox8000000000000000 Overflow occurred because the result is too large (negative).

Remarks

Rounding on the division is toward zero. Division by zero is counted as an overflow condition.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents

lnt64x32Div32

Math Helper Functions

Multiplies a by b, adds rnd to the 96-bit result, then divides by c.

LONGLONG WINAPI Int64x32Div32(
LONGLONG a,
LONG b,
LONG c,
LONG rnd
);

Return Values

Returns either the (a * b + rnd)/c calculation or one of the following values.

1871

•@M* 1gnw

Utility Functions Page 36 of 55

Value Condition
Ox7FFFFFFFFFFFFFFF Overflow occurred because the result is too large (positive).

Ox8000000000000000 Overflow occurred because the result is too large (negative).

Remarks

Rounding on the division is toward zero. Division by zero is counted as an overflow condition.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@i§il!MM

Media Type Functions

The Mtype.h header file in the DirectShow base classes provides helper functions for handling
media types. These general-purpose functions create, copy and delete a task-allocated
AM MEDIA TYPE structure. This is useful when using the IEnumMediaTypes interface, because
the implementation allocates the structures that must be deleted later.

The functions are paired as follows:

• CreateMediaType is the opposite of DeleteMediaType.
• FreeMediaType is the opposite of CopyMediaType.

Function Description
AreEgua IVideoTypes
CopyMediaType

Compares the format, height, and width of two video sources.
Copies a task-allocated AM MEDIA TYPE structure.

CreateAudioMediaType Initializes a media type structure given a wave format structure.
CreateMediaType Allocates and initializes an AM MEDIA TYPE structure.
DeleteMediaType Deletes a task-allocated AM MEDIA TYPE structure.
FreeMed iaType Frees a task-allocated AM MEDIA TYPE structure from memory.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@i§il!MM

MQi§i[.jjj,M 1 !1·Hj Topic Contents •@m•11mw

AreEqualVideoTypes

Media Type Functions

1872

Utility Functions

Determines if two media types have the same video format, width, and height.

BOOL WINAPI AreEqualVideoTypes (
CMediaType *pmt1,
CMediaType *pmt2
);

Parameters

pmt1
First media type to compare.

pmt2
Second media type to compare.

Return Values

Page 37 of 55

Returns TRUE if pmt1 and pmt2 have the same video format, width, and height or FALSE
otherwise.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

CopyMediaType

Media Type Functions

Copies a task-allocated AM MEDIA TYPE structure.

void WINAPI CopyMediaType(
AM_M ED IA_ TYPE *pmtTarget,
const AM_MEDIA_ TYPE *pmtSource
);

Parameters

pmtTarget

Topic Contents i@faiilMM

Pointer to an area of memory in which to place the new copy of the structure.
pmtSource

Pointer to a source structure to copy.

Return Values

No return value.

Remarks

1873

Utility Functions Page 38 of 55

Free the resources in the pmtTarget structure by calling FreeMediaType when your code is
done with the structure.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9

CreateAudioMediaType

Media Type Functions

Initializes a media type structure given a wave format structure.

STDAPI CreateAudioMediaType(
const WAVEFORMATEX *pwfx,
AM_M ED IA_ TYPE *pmt,
BOOL bSetFormat
);

Parameters

pwfx
Pointer to the supplied WAVEFORMATEX structure.

pmt
Pointer to the AM MEDIA TYPE structure to initialize.

bSetFormat

Topic Contents lfflj(§l 1!1¥1M

Flag indicating whether to initialize the format section of the AM MEDIA TYPE structure,
specifically the cbFormat and pbFormat members. Specify TRUE to initialize the format
section, FALSE otherwise.

Return Values

Returns E_OUTOFMEMORY if memory could not be allocated for the format data; S_OK
otherwise.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jlj,M 111.1 1119 Topic Contents l@i§il!MM

CreateMediaType

Media Type Functions

1874

Utility Functions

Creates a task-allocated AM MEDIA TYPE structure.

AM_MEDIA_TYPE * WINAPI CreateMediaType(
AM_M ED IA_ TYPE const *pSrc
);

Parameters

pSrc
Pointer to an AM MEDIA TYPE source structure.

Return Values

Returns a new AM MEDIA TYPE structure, or NULL if there is an error.

Remarks

Page 39 of 55

Free the structure and resources allocated by this routine by calling DeleteMediaType when
your code is done with the structure.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

DeleteMediaType

Media Type Functions

Deletes a task-allocated AM MEDIA TYPE structure.

void WINAPI DeleteMediaType(
AM_M ED IA_ TYPE *pmt
);

Parameters

pmt
Pointer to an AM MEDIA TYPE structure.

Return Values

No return value.

Remarks

Topic Contents

The structure should have been created by a call to CreateMediaType.

1875

l@i§il!MM

Utility Functions

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM

FreeMediaType

Media Type Functions

Frees a task-allocated AM MEDIA TYPE structure from memory.

void WINAPI FreeMediaType(
AM_M ED IA_ TYPE& mt
);

Parameters

mt
Address of the structure.

Return Values

No return value.

Remarks

Topic Contents

The structure should have been initialized by a call to CopyMediaType.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•Q<M!.l+' •11·!:.!¥ Topic Contents

Object and Pin Functions

Page 40 of 55

lmll§I 11$8

lmll§I 11$8

The Wxutil.h and Combase.h header files in the DirectShow base classes provides helper
functions for comparing objects and pins and retrieving interfaces to objects.
Function
EqualPins

Description
Checks if two pins are on the same object.

Getinterface Returns an interface pointer to the requested client.
IsEqualObject Checks if two interfaces are on the same object.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

1876

Utility Functions

Equal Pins

Object and Pin Functions

Checks if two pins are on the same object.

BOOL EqualPins(
!Unknown * pPin1,
!Unknown * pPin2
);

Parameters

pPin1
Address of one pin.

pPin2
Address of the other pin.

Return Values

+Qi§1[.]++ 1 !!·HM Topic Contents

Returns TRUE if the pins are both on the same object, or FALSE otherwise.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

Getlnterface

Object and Pin Functions

Retrieves an interface pointer.

HRESULT Getlnterface(
LPUNKNOWN pUnk,
void **ppv
);

Parameters

pUnk

+Qi@[.jjj,+ 111.1 1119

1877

Topic Contents

Page 41of55

i@l§ii!MM

i@l§ii!MM

Utility Functions Page 42 of 55

Pointer to the IUnknown interface.
ppv

Retrieved interface.

Return Values

Returns an HRESULT value.

Remarks

This member function performs a thread-safe increment of the reference count. To retrieve the
interface and add a reference, call this function from your overriding implementation of the
I Non Delegating Unknown: : Non Deleqati nqQueryI nterface method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

lsEqualObject

Object and Pin Functions

Checks if two interfaces are on the same object.

BOOL WINAPI IsEqualObject(
!Unknown * pFirst,
!Unknown * pSecond
);

Parameters

pFirst
Address of one interface.

pSecond
Address of the other interface.

Return Values

Topic Contents i@l§ii!MM

Returns TRUE if the interfaces are both on the same object, or FALSE otherwise.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119 Topic Contents i@l§ii!MM

Performance Macros

1878

Utility Functions Page 43 of 55

The Measure.h header file in the DirectShow base classes provides macros that help record
performance data by maintaining a circular log of the start and stop times of certain events.
Macro Description
MSR START Records the start time of the event.
MSR STOP Records the stop time of the event.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

MSR_START

Performa nee Macros

Topic Contents i@l§ii!MM

Records the start time of the event with the given registered ID by adding the start time to the
circular log and recording the time in StatBuffer.

#define MSR_START(
int Id
)

Parameters

Id
Registered ID of the event whose start is to be recorded.

Remarks

This macro does not update the statistical information. That happens when MSR STOP is
called.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M M!i.1 1119 Topic Contents i@l§ii!MM

MSR_STOP

Performa nee Macros

Records the stop time of the event with the given registered ID by adding the stop time to the
circular log, and adding a StopTime-StartTime entry to the statistical record StatBuffer.

1879

Utility Functions

#define MSR_STOP(
int Id
)

Parameters

Id
Registered ID of the event whose stop is to be recorded.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•;<MM+' 111.],.[9

Property Page Helper Functions

Page 44 of 55

Topic Contents lmll§lllMM

The Videoctl.h header file in the DirectShow base classes provides functions to help with
property page implementations.

Description Function
GetDialogSize
StringFromResource

Retrieves the size of a resource dialog box in screen pixels.
Loads a string from a resource file with the given resource identifier.

WideStringFromResource Loads a Unicode string from a resource file with the given resource
identifier.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

GetDialogSize

Property Page Helper Functions

Retrieves the size of a resource dialog box.

BOOL WINAPI GetDialogSize(
int iResourceID,
DLGPROC pD/gProc,
LPARAM /Param,
SIZE *pResult
);

Parameters

8 4'MM+1 111·HM

1880

Topic Contents l@fail!MM

Utility Functions

iResourceID
Dialog box resource identifier.

pD/gProc
Pointer to the dialog box procedure.

/Pa ram
Any user data wanted in pD/gProc.

pResult
Size of the dialog box, in screen pixels.

Return Values

Returns TRUE if the dialog box resource was found, or FALSE otherwise.

Remarks

Page 45 of 55

Property pages can use this function to return the actual display size they require. Most
property pages are dialog boxes and, as such, have dialog box templates stored in resource
files. Templates use dialog box units that do not map directly onto screen pixels. When a
property page has its GetPaqeinfo function called, it must return the actual display size in
pixels. This method is passed the resource ID for the dialog box and will return its size in
pixels.

To make the calculation, the function creates an instance of the dialog box. To avoid the dialog
box appearing on the screen temporarily, the dialog box's template in the resource file should
not have a WS_VISIBLE property.

© 1997 Microsoft Corporation. All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents

MQi§1[.]1!,i 1 !!·HM Topic Contents

StringFromResource

Property Page Helper Functions

Loads a string from a resource file with the given resource identifier.

TCHAR * WINAPI StringFromResource(
TCHAR *pBuffer,
int iResourceID
);

Parameters

pBuffer
String corresponding to iResourceID.

1881

•@M* 1gnw

i@faii!MM

Utility Functions Page 46 of 55

iResourceID
Resource identifier of the string to retrieve.

Return Values

Returns the same string as pBuffer. If the function is not successful, returns a null string.

Remarks

The pBuffer buffer must be at least STR_MAX_LENGTH bytes.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

WideStringFromResource

Property Page Helper Functions

Loads a Unicode string from a resource file with the given resource identifier.

WCHAR * WINAPI WideStringFromResource(
WCHAR *pBuffer,
int iResourceID
);

Parameters

pBuffer
String corresponding to iResourceID.

iResourceID
Resource identifier of the string to retrieve.

Return Values

ifflj[§ii!¥M

Returns the same string as pBuffer. If the function is not successful, returns a null string.

Remarks

Property pages are typically called through their COM interfaces, which use Unicode strings
regardless of how the binary is built. This function allows you to convert a resource string to a
Unicode string. The function converts the resource to a Unicode string (if it is not already one)
after loading it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H+1 1 !!·HM Topic Contents i@i§ii!¥M

1882

Utility Functions Page 47 of 55

Reference Time Function

The Refclock.h header file in the DirectShow base classes provides a reference time conversion
function.
Function Description
ConvertToMilliseconds Converts the reference time to milliseconds.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥

ConvertToMilliseconds

Reference Time Function

Converts the reference time to milliseconds.

LONGLONG WINAPI ConvertToMilliseconds(
const REFERENCE_ TIME& RT
);

Parameters

RT
Reference time, in 100-nanosecond units.

Return Values

Returns the reference time converted to milliseconds.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]+• 1 11·1::'¥

Stream Integer Functions

Topic Contents

Topic Contents

lmll§lll¥M

lfflj[§ill¥M

The Pstream.h header file in the DirectShow base classes contains a set of stream integer
functions. These functions encode an integer in a stream object as 11 Unicode characters
followed by one Unicode space. The interface to these functions might truncate to 32 bits.

1883

Utility Functions Page 48 of 55

Values such as (unsigned) Ox80000000 would be written as -2147483648, but would still load
as Ox80000000 again through Readint.
Member Function Description
Writeint Writes an integer to a stream encoded as a Unicode string.
Readint Reads a Unicode string-encoded integer from a stream.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M lh.l:.!5 Topic Contents i@faiilMM

Writelnt

Stream Integer Functions

Writes an integer to an IStream, encoded as described in Stream Integer Functions.

STDAPI Writelnt(
!Stream *pIStream,
int n
);

Parameters

pIStream
Pointer to an IStream to which the encoded integer is to be written.

n
Integer value to be written.

Return Values

Returns an HRESULT value.

Remarks

The Readint function can be used to read the value written by Writelnt.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M lh.l:.!5 Topic Contents

Rea dint

Stream Integer Functions

1884

i@faiilMM

Utility Functions

Reads an integer from an IStream.

STDAPI_(
int
)Read Int(
!Stream *p!Stream,
HRESULT &hr
);

Parameters

p!Stream
Pointer to an IStream from which the encoded integer is to be read.

hr
Reference to an HRESULT value (output).

Return Values

Returns the integer value (truncated to 32 bits), or zero if an error occurred.

Remarks

Page 49 of 55

This function is a stripped-down subset of what sscanf can do (without dragging in the C run
time).

The Readint function can be used to read the value written by Writeint.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M Ill.HM Topic Contents l@fail!MM

String Functions

The Wxutil.h header file in the DirectShow base classes provides wide string functions, if they
are not already provided by the Microsoft® Win32® environment.
Function Description
AMGetWideString Allocates and creates a wide string version of an existing nonwide string.
lstrcmpiW Compares two wide strings, ignoring case.
lstrcmpW Compares two wide strings.
lstrcpynW
lstrcpyW
lstrlenW

Copies one wide string to another, with a maximum length.

Copies one wide string to another.
Gets the length of a wide string in wide characters.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M Ill.HM Topic Contents

1885

l@fail!MM

Utility Functions

AMGetWideString

String Functions

Allocates and creates a Unicode version of an existing non-Unicode string.

STDAPI AMGetWideString(
LPCWSTR pszString,
LPWSTR *ppszReturn
);

Parameters

pszString
Non-Unicode source string.

ppszReturn
Address of a Unicode string that will contain pszString.

Return Values

Page 50 of 55

Returns S_OK if successful, E_POINTER if ppszReturn is NULL, or E_OUTOFMEMORY if not
enough memory is available.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents

lstrcmpiW

String Functions

Compares two wide-character strings. The comparison is not case sensitive.

int lstrcmpiW(
LPCWSTR lpszString1,
LPCWSTR lpszString2
);

Parameters

lpszString1
Pointer to the first null-terminated wide string to be compared.

lpszString2

1886

lfflj(§l l!l¥1M

Utility Functions Page 51of55

Pointer to the second null-terminated wide string to be compared.

Return Values

Returns a negative value if the function succeeds and the string that lpszString1 points to is
less than the string that lpszString2 points to. Returns a positive value if the string that
lpszString1 points to is greater than the string that lpszString2 points to. Returns zero if the
strings are equal.

Remarks

The lstrcmpiW function compares two wide strings by checking the first characters against
each other, the second characters against each other, and so on until it finds an inequality or
reaches the ends of the strings.

The function returns the difference of the values of the first unequal characters it encounters.
For instance, lstrcmpiW determines that L"abcz" is greater than L"abcdefg" and returns the
difference of L'z' and L'd'.

The language (locale) is treated as always being English.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents

lstrcmpW

String Functions

Compares two wide-character strings. The comparison is case sensitive.

int lstrcmpW(
LPCWSTR lpszString1,
LPCWSTR lpszString2
);

Parameters

lpszString1
Pointer to the first null-terminated wide string to be compared.

lpszString2
Pointer to the second null-terminated wide string to be compared.

Return Values

lmll§I 11$8

Returns a negative value if the function succeeds and the string that lpszString1 points to is
less than the string that lpszString2 points to. Returns a positive value if the string that
lpszString1 points to is greater than the string that lpszString2 points to. Returns zero if the

1887

Utility Functions Page 52 of 55

strings are equal.

Remarks

The lstrcmpW function compares two wide strings by checking the first characters against
each other, the second characters against each other, and so on until it finds an inequality or
reaches the ends of the strings.

The function returns the difference of the values of the first unequal characters it encounters.
For instance, lstrcmpW determines that L"abcz" is greater than L"abcdefg" and returns the
difference of L'z' and L'd'.

The language (locale) is treated as always being English.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

lstrcpyW

String Functions

Copies a wide string to a buffer.

LPWSTR lstrcpyW(
LPWSTR lpszString1,
LPCWSTR lpszString2
);

Parameters

lpszString1

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

Pointer to a buffer to receive the contents of the string pointed to by the lpszString2
parameter. The buffer must be large enough to contain the string, including the
terminating wide null character.

lpszString2
Pointer to the null-terminated wide string to be copied.

Return Values

Returns a pointer to the buffer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M M!i.1 1119 Topic Contents i@l§lllMM

1888

Utility Functions

lstrcpynW

String Functions

Copies a wide string to a buffer, up to a specified number of wide characters.

LPWSTR lstrcpynW(
LPWSTR lpszString1,
LPCWSTR lpszString2,
int iMaxLength
);

Parameters

lpszString1

Page 53 of 55

Pointer to a buffer to receive the contents of the string that the lpszString2 parameter
points to. The buffer must be large enough to contain the string, including the
terminating wide null character.

lpszString2
Pointer to the null-terminated wide string to be copied.

iMaxLength
Maximum number of wide characters to copy, including a terminating null character.

Return Values

Returns a pointer to the buffer.

Remarks

If iMaxLength is nonzero, lstrcpynW always inserts a terminating null wide character in the
destination string, which could result in the source string being truncated.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@i§ii!MM

MQij[.jlj,M M!i.1 1119 Topic Contents i@i§ii!MM

lstrlenW

String Functions

Retrieves the length of the specified wide string.

1889

Utility Functions

int lstrlenW(
LPCWSTR lpszString
);

Parameters

lpszString
Pointer to a null-terminated wide string.

Return Values

Page 54 of 55

If the function succeeds, the return value specifies the length of the string, in wide characters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@i§il!MM

Message Function

The Wxutil.h header file in the DirectShow base classes provides a helper function for
processing messages.
Function Description
WaitDispatchingMessages Waits for a for the HANDLE hObject before dispatching messages.

While waiting, messages sent to windows on the thread by
SendMessage will be processed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.!j Topic Contents l@i§il!MM

WaitDispatchingMessages

Message Function

Waits for a for the HANDLE hObject before dispatching messages. While waiting, messages
sent to windows on the thread by SendMessage will be processed.

DWORD WINAPI WaitDispatchingMessages(
HANDLE hObject,
DWORD dwWait,
HWND hwnd =NULL,
UINT uMsg = 0
);

1890

Utility Functions

Parameters

hObJect
Handle of object to wait for.

dwWait
Time-out interval in milliseconds.

hwnd
Handle to a window.

uMsg
Win32 message.

Return Values

Page 55 of 55

If the function succeeds, the return value indicates the event that caused the function to
return. If the function fails, the return value is WAIT _FAILED.

The return value on success is one of the following values:
Value Meaning
WAIT_ABANDONED The specified object is a mutex (mutual exclusion) object that was not

released by the thread that owned the mutex object before the owning
thread terminated. Ownership of the mutex object is granted to the calling
thread, and the mutex is set to nonsignaled.

WAIT_OBJECT_O The state of the specified object is signaled.
WAIT_ TIMEOUT The time-out interval elapsed, and the object's state is nonsignaled.

Remarks

This function enables sent messages to be processed while waiting for a handle to a window.
Use this function to wait for an object to be processed and to perform mutually exclusive
operations, consequently avoiding possible deadlocks in objects with windows.

This helper function is similar to the Win32 WaitForSinqleObject function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

1891

Debugging Page 1of31

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

Debugging

This section describes how to debug DirectShow in C and C++. It also contains reference
entries for the macros and functions that DirectShow supplies to assist debugging.

· Debugging with DirectShow

· Assert Macros and Functions

· Breakpoint Macros and Function

· Debug Output

· Debug NOTE (Message) Macros

· Pointer Va I idation Macros

• M iscel la neous Macros

· Debug Logging by Module Level

· Object Register Debugging

· Wait Debugging

· Debug Output Location

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QIM!.l+1 1 11·!:.!i Topic Contents l@IJll!MM

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

Debugging with DirectShow

This article discusses debugging practices in Microsoft® DirectShow™ for the C and C++
languages. Many of these practices apply both to writing filters and to writing applications that
use the DirectShow run time. The article provides some tips on writing code that can be easily
debugged and some general debugging topics. This article also provides some hints about
detecting memory leaks.

1892

Debugging Page2of31

Contents of this article:

• Writing Code You Can Test and Debug
• Using Different Kinds of Builds
• Debugging New Filters
• Detecting Lea ks

Writing Code You Can Test and Debug

Debugging code in the DirectShow environment can be easier if it's written to be easily tested
and debugged in the first place. Some techniques that DirectShow supports include the
following, which are discussed in this section.

• Assertion Checking
• Pass Debugging Names
• Debug Logging
• IOStream Sample Code
• Critica I Section Usage
• Pointer Validation
• DLL Base Address Conflicts

Assertion Checking

Use assertion checking liberally. If you're not familiar with asserts, they're a popular way to
isolate potential programming errors. DirectShow provides a number of assertion macros and
functions, including ASSERT. The Microsoft® Foundation Classes (MFC) have an equivalent
ASSERT macro. For example the following displays a message box if the value of First does
not equal NULL:

ASSERT(First != NULL) ;

For more information about assertion, see Assert Macros and Functions.

Pass Debugging Names

Pass the debugging name to the constructors that support it. Tracking object creation and
destruction is provided in debugging builds for the CBaseObject class and classes derived from
it. The object register is the list of objects that have been created but not yet destroyed in
those classes. The debugging name that is passed to the constructors of those classes is stored
in the object register. For more information about debugging object registers and the
DbgDumpObjectRegister function, see Object Register Debugging.

Debug Logging

Use the DirectShow DbgLog function to display debugging messages on a debugger as your
program executes. Here's an example from the bouncing ball source filter:

DbgLog ((LOG_TRACE, 1, TEXT ("New time: %d, Proportion: %d 11
) f

m_iRepeatTime, q.Proportion));

1893

Debugging Page3of31

See the Debug Logging by Module Level for more information on the following topics:

• The macros and functions you can call to do debugging logging from code you write.
• How to enable and disable debugging logging by module level at run time.
• How to indicate the destination of the output of the debugging log.

IOStream Sample Code

The C and C++ helpers provided in the IOStream helper library, SampIOS.lib, provide text
output of the IBaseFilter interface and other DirectShow objects. The output from these
helpers might be useful during debugging, to help understand the details of a given pin or
filter. You can use these helpers in your DirectShow filters and applications. For more
information about this library, see SamoIOS Sa mole (]0Stream Heloer Library).

Critical Section Usage

To make deadlocks easier to track, insert assertions in the code that determine whether a
critical section is owned by the calling code. The CritCheckin and CritCheckOut functions
indicate whether the calling thread owns the given critical sections, and are generally called in
ASSERT macros. For more information about these functions, see CCritSec Debug Functions.

For debug logging of each lock and unlock of a given critical section, you might want to use the
DirectShow DbgLockTrace function.

Note Logging can affect performance.

Pointer Validation

Consider using the pointer validation macros. For example, you can call ValidateReadPtr to
ensure that the given pointer actually points to readable memory. Note the performance cost
of each of these calls. Currently, the DirectShow pointer validation macros are built on top of
the Win32 pointer validation functions such as IsBadReadPtr. On some systems, the Win32
pointer validation functions swap in every page in the range specified. For more information
about validation macros, see Pointer Validation Macros.

DLL Base Address Conflicts

If you copy any sample makefile to create any new DLL, including filters and plug-in
distributors (P!Ds), ensure you change the base address to avoid collisions with other DLLs. A
collision of DLL load address results in one of the DLLs having to be relocated during the time
of loading. This increases the load time for that DLL.

In the sample makefiles, the DLL base address is set in DLL_BASE, which is used in
ActiveX.mak. Do not let ActiveX.mak use the default value for DLL_BASE, because this will
cause collisions.

Using Different Kinds of Builds

DirectShow can be built for three kinds of builds: retail, debug, and performance. See
Reserved Identifiers for information on the kinds of builds. Debugging has varying degrees of
difficulty for the three kinds of builds, depending on the situation. For instance, the debug
build can provide much more information, but it can run so slowly as to make real-time

1894

Debugging Page4of31

debugging impossible.

The binaries you create must match the kind of build you're using. The makefiles provided for
each sample use ActiveX.mak, which comes with the DirectShow SDK. Comments at the head
of ActiveX.mak explain the various nmake command-line parameters to use to obtain binaries
compatible with the different DirectShow builds. Some of these parameters define identifiers
like DEBUG and PERF when compiling the C or C++ code.

If you must have build-dependent code, you can conditionally compile with the same identifiers
that the DirectShow headers use for that purpose. See Reserved Identifiers for a list of the
identifiers reserved for that purpose.

For instance, in C or C++, you can conditionally compile code like this:

/* normal processing */
#ifdef DEBUG

/* debug only code */
#endif

/* resume normal processing */

Debugging New Filters

This section discusses the following points of which you should be aware when debugging new
filters:

• Avoid GUID Conflicts
• Test With the Filter Graph Editor and Other Sample Filters
• Add the Filter as an Additional DLL in Developer Studio

Avoid GUID Conflicts

DirectShow uses globally unique identifiers (GU!Ds) to find each filter, pin, and property page.
Avoid reusing any of the same GUIDs when copying from the DirectShow sample code. The
Guidgen.exe and Uuidgen.exe utilities generate unique GUIDs.

Test With the Filter Graph Editor and Other Sample Filters

Register your new filter. See Register DirectShow Objects and AMovieDllRegisterServer2 for
information about registering a filter.

After you have registered your filter, you can use a tool called the Filter Graph Editor (also
called GraphEdit, or Graphedt.exe) to insert your filter into a filter graph and connect it to
other filters. You can access GraphEdit from the DXMedia SDK program group. Run GraphEdit
and choose Insert Filters from the Graph menu to insert your filter.

If you are debugging an audio filter, there are two sample filters you might consider
connecting to your filter to make sure it behaves as expected. You can also look at the source
code for those samples to see how they implement methods and member functions. For
overviews of those code samples, see Synth Sample (Audio Synthesizer Filter) and Scope
Sample (Oscilloscope Filter).

After you have the Filter Graph Editor successfully loading your new filter, you can use the File
Dump Filter (Dump.ax) as a useful debugging tool. For instance, it can be used to verify, bit by

1895

Debugging Page 5 of 31

bit, the results of a transform filter. Build a graph manually using the Filter Graph Editor and
hook the File Dump Filter onto the output of a transform or any other pin. You can also hook
up the Inftee Sample (Infinite-Pin Tee Filter) (InfTee.ax), and put the File Dump Filter on one
leg of the tee and the "normal" output on another to monitor what happens in the real-time
case. For more information, see Dump Sample (Dump Filter).

Add the Filter as an Additional DLL in Developer Studio

If you're going to debug your filter with Microsoft Developer Studio version 5.0, you must tell
the debugger about your filter. Here are the steps you should follow in Developer Studio to
identify your filter as being a debuggable DLL:

1. From the Project menu, choose Settings
2. Select the Debug tab.
3. Choose "Additional DLLs" from the Category drop-down list.
4. Add "myfilter.ax" to the list, where "myfilter" is the name of your filter.

Detecting Leaks

Detecting and fixing memory leaks is another important debugging topic.

Visual C++ has an optional debug heap, which can be useful in tracking down memory leaks.
(See the "Using the Debug Heap" section of the Visual C++ documentation for more
information.) For example, the Visual C++ CrtSetDbgFlag function enables you to turn on the
memory-leak-checking flag bit.

Other providers of memory leak tools can be found in the Microsoft Enterprise Development
Partners directory.

Another kind of leak is of COM object references. You can track down object reference leaks by
performing the following steps.

1. Put a break point on the NonDelegatingAddRef and NonDelegatingRelease methods of
that object.

2. Use Developer Studio (or another debugger) and step through every reference count
change, trying to pair them up.

3. Look at the call stack for each change.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

Assert Macros and Functions

The Microsoft® DirectShow™ SDK has three assertion macros: ASSERT, EXECUTE ASSERT,
and KASSERT. The most commonly used assertion macro is ASSERT. If ASSERT fails,

1896

Debugging Page 6 of 31

DirectShow displays a message box that lists the file and line number of the macro call. The
EXECUTE_ASSERT macro is similar to ASSERT except that the condition will still be
evaluated in a build of any kind. The third assertion macro is KASSERT, which is more suitable
for pure filters, such as those in the kernel, where the condition is printed onto the debugger
rather than to a message box.

There are also two assertion functions: DbqAssert and DbqKernelAssert. You should call the
assertion functions from assertion macros, rather than from normal code.
Name Description
ASSERT Checks an assertion in a debug build.
DbqAssert Handles an assertion failure in a debug build.
DbqKernelAssert Handles a kernel assertion failure in a debug build.
EXECUTE ASSERT Always evaluates a condition; if it is not TRUE in a debug build, treat this

as an assertion failure.
KASSERT Checks a kernel assertion in a debug build.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

ASSERT

Assert Macros and Functions

Evaluates the given condition in a debug build. If the resulting evaluation is false, then
ASSERT calls DbgAssert to handle the assertion failure. DbgAssert can return to its caller
later, if the user so desires.

ASSERT(
cond
);

Parameters

cond
Boolean expression that defines the condition to evaluate.

Remarks

If you use the ASSERT macro, DbgAssert might display a message box. If this is not acceptable
in your environment, you can use KASSERT (kernel assert) instead.

Here are two examples of ASSERT calls:

ASSERT(First !=NULL);
ASSERT(StartTime <= EndTime);

1897

Debugging Page 7 of 31

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

DbgAssert

Assert Macros and Functions

Handles an assertion failure in a debug build. DbgAssert will display a message box that
includes the condition text, source file name, and source line number. The user will be given
the choice to ignore the assertion failure, debug the assertion, or force the application to exit.
Thus DbgAssert might return to the caller, depending on the user's actions.

void WINAPI DbgAssert(
const TCHAR *pCondition,
const TCHAR *pFileName,
INT iLine
);

Parameters

pCondition
Pointer to a string version of a Boolean expression.

pFileName
Pointer to a source file name.

iLine
Line number within the source file.

Remarks

This function is available only in a debug build. Usually, DbgAssert will be called by macros
such as ASSERT, not directly from other code.

If you use the ASSERT macro, DbgAssert might display a message box. If this is not
acceptable in your environment, you can use DbgKernelAssert instead.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M iii.HM Topic Contents l@i§lllMM

DbgKernelAssert

Assert Macros and Functions

1898

Debugging Page 8 of 31

Called in a debug build to print the condition onto the kernel debugger, including the condition
text, source file name, and source line number.

void WINAPI DbgKernelAssert(
const TCHAR *pCondition,
const TCHAR *pFileName,
INT iline
);

Parameters

pCondition
Pointer to a string version of a Boolean expression.

pFileName
Pointer to a source file name.

iline
Line number within the source file.

Remarks

This function is available only in a debug build. Usually, DbgKernelAssert is called by macros
such as KASSERT, not directly from other code.

Unlike DbqAssert, when macros call DbgKernelAssert in a debug build, no message box
appears.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

EXECUTE_ASSERT

Assert Macros and Functions

Evaluates the condition. In a debug build, if the resulting value is not TRUE, then the
EXECUTE_ASSERT macro will invoke DbgAssert to handle the assertion failure. DbgAssert
might return to the caller, depending on the user's actions.

EXECUTE_ASSERT(
cond
);

Parameters

cond
Condition (a Boolean expression), which is always evaluated. This contrasts with ASSERT
and many other traditional assertion macros, which do not evaluate the condition in

1899

Debugging Page 9 of 31

nondebug builds.

Remarks

If you use the EXECUTE_ASSERT macro in a debug build, DbgAssert might display a message
box. If this is not acceptable in your environment, you can use KASSERT (kernel assert)
instead.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

KASSERT

Assert Macros and Functions

In a debug build, if the condition evaluates to FALSE, the KASSERT macro prints the condition
on the kernel debugger, including the file name and line number.

KASSERT(
cond
);

Parameters

cond
Condition (a Boolean expression).

Remarks

This macro is ignored unless DEBUG is defined when the Microsoft DirectShow headers are
included.

Unlike ASSERT and EXECUTE ASSERT, if you use this macro in a debug build no message box
will appear.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQi§1[.]1!,i 1 !!·Hi Topic Contents l@i§il!MM

Breakpoint Macros and Function

You can use the breakpoint macros and function to break into the debugger (either the regular
debugger or the kernel debugger). For example, DbqBreak causes a regular debugger

1900

Debugging Page 10 of 31

breakpoint, whereas KDbgBreak causes a kernel debugger breakpoint.
Name Description
DbgBreak Breakpoint with message box.
DbgBreakPoint Breakpoint with message box.
KDbgBreak Breakpoint with message on kernel debugger.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQl§1[.jjj,M MB.HS Topic Contents M@faiMIMM

DbgBreak

Breakpoint Macros and Function

Generates a message box in a debug build with the indicated string literal, the source file
name, and the source line number. Buttons in the message box enable you to break into the
debugger, kill the application, or ignore the message box.

DbgBreak(
strLiteral
);

Parameters

strLiteral
Text string, which must be in quotation marks.

Remarks

This macro is ignored unless DEBUG is defined when the Microsoft® DirectShow™ headers are
included.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§1[.jjj,M Mh.],.!5 Topic Contents M@fai MUMM

DbgBreakPoint

Breakpoint Macros and Function

Generates a message box in a debug build with the indicated string literal, the source file
name, and the source line number. Buttons in the message box enable you to break into the
debugger, kill the application, or ignore the message box.

1901

Debugging

void WINAPI DbgBreakPoint(
const TCHAR *pCondition,
const TCHAR *pFileName,
INT iline
);

Parameters

pCondition
Pointer to a string indicating what happened.

pFileName
Pointer to a source file name.

iline
Line number within the source file.

Remarks

This function is available only in a debug build.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j

KDbgBreak

Breakpoint Macros and Function

Page 11of31

Topic Contents l@i§lllMM

Generates a kernel debugger message in a debug build with the indicated string literal, the
source file name, and the source line number.

KDbgBreak(
strliteral
);

Parameters

strliteral
Text string, which must be in quotation marks.

Remarks

This macro is ignored unless DEBUG is defined when the Microsoft DirectShow headers are
included.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQi§i[.jlj,M 111.l:.!j Topic Contents '®'*' 1gnw

1902

Debugging Page 12of31

Debug Output

The debug output facility is just one of several facilities of debug logging available with
Microsoft® DirectShow™. This facility is monolithic (that is, it is either on or off). For
information about the facility with the most precise control enabling and disabling logging, see
Debug Logging by Module Level. For information about the simplest facility, see Debug NOTE
(Message) Macros.

For more information about how DbgOutString chooses the debug output location, see Debug
Output Location. Dbglnitialise opens the debug output location and DbgTerminate closes it.
Name Description
DbgOutString Sends a debug string to the debug output location.
DumpGraph Sends debugging information from the filter graph to the debug output location.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9

DbgOutString

Debug Output

Outputs the given string to the debug output location.

void WINAPI DbgOutString(
LPCTSTRpsz
);

Parameters

psz
Pointer to a string to be output.

Remarks

Topic Contents l@!§il!MM

DbgOutString is ignored unless DEBUG is defined when the Microsoft DirectShow headers are
included. That is, it is a function in a debug build, and a macro that does nothing in other
builds.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119 Topic Contents 1@!§111¥+

1903

Debugging Page 13of31

DumpGraph

Debug Outout

Sends debugging information from the filter graph to the debug output location.

void WINAPI (
IFilterGraph *pGraph,
DWORD dwLevel
)

Parameters

pGraph
Pointer to the filter graph to get debugging information about.

dwLevel
Logging level for this message, where zero means always log.

Remarks

Call this helper function to send potential error messages after you instantiate a filter graph.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

Debug NOTE (Message) Macros

The NOTE macros provide debug message abilities in the Microsoft® Foundation Class Library
(MFC) style. For more information about how the NOTE macros are implemented, see Debug
Logging by Module Level. The NOTE macros work like a call to DbgLog, with a message type of
LOG TRACE, and a logging level of 5. For more information about how NOTE macros choose
the debug output location, see Debug Output Location.
Macro Description
NOTE Logs a debug message with zero additional parameters.
NOTE! Logs a debug message with one additional parameter.
NOTE2 Logs a debug message with two additional parameters.
NOTE3 Logs a debug message with three additional parameters.
NOTE4 Logs a debug message with four additional parameters.
NOTES Logs a debug message with five additional parameters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1904

Debugging

+Qi§1[.]++ 1 !!·HM

NOTE through NOTES Macros

Will format and print their parameters on the debugger.

NOTE(
pFormat
);

NOTEx(
pFormat,
[a-e]
);

Parameters

pFormat

Topic Contents

A printf-style format string, which must be in quotation marks.
a through e

Page 14of31

i@l§ii!MM

Optional parameters, each of which must have a respective format string portion (such
as"%d").

Remarks

These macros are ignored unless DEBUG is defined when the Microsoft DirectShow™ headers
are included. The following example shows the syntax for the NOTE1 through NOTES macros.

NOTEl (pFormat, a) ;
NOTE2(pFo rmat, a, b) ;
NOTE3(pFormat, a, b, c);
NOTE4 (pFormat, a, b, c, d) ;
NOTES(pFo rmat, a, b, c , d, e) ;

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

Pointer Validation Macros

Topic Contents i@l§ii!MM

Microsoft® DirectShow™ provides some macros to make pointer usage more robust. These
include a simple CheckPointer macro (which tests if a given pointer is NULL). These also
include a number of ValidateXxxPtr macros, which ensure a given pointer actually refers to

1905

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

