
CPersistStream Class Page 1 of8

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CPersistStream Class

CPersistStream

CPersistStream is the base class for persistent properties of filters (that is, filter properties in
saved graphs).

The simplest way to use CPersistStream iS to:

1. Arrange for your filter to inherit this class.
2. Implement WriteToStream and ReadfromStream in your class. These wm override the

functions here, which do nothing but act as placeholders.
3. Change your NonDelegatingQ1.1eryinterface to handle IPersistStream.
4. Implement Si:zeMax to return an upper bound on the number of bytes of data you save.

If you save Unicode data, rememberthat a WCHAR is 2 bytes.

S. When your data changes, call SetDirty.

Version N1.1mbers

At some point you might decide to alter or extend the format of your data. You will then wish
you had a version number in all the old saved streams so you can tell, when you read them,
whether they represent the old or new form. To assist you, this class writes and reads a
version number. When it writes, it calls GetSoft:wareVersion to inquire as to the version of the
software being used at the moment. (ln effect, this is a version number of the data layout in
the file.) It writes this as the first thing in the data. If you want to change the version,
implement (override) GetSoftwareVersion. It reads the version number from the file into
mPS dwfi!eVersion before calling ReadfromStream, so in ReadFl'QmStream you can check
mPS_dWFileVersion to see if you are reading an old version file. Usually you should accept
files whose version is no newer than the software version that is reading them.

Protected Data Members
Name Description
mPS_dWFileVersion Version number of the file.
mPS_fDirty Data for this stream must be saved.

Member F1.1nctions
Name Description
CPersistStream Constructs a CPersistStream object.
SetDirty Indicates that the object must be saved to the stream.

1636

CPersistStream Class

Overridable Member Functions
Name
GetClassID

Description
Returns the class identifier of this stream.

GetSoftwareVersion Returns the version number for this file format.
ReadFromStream Reads the filter's data from the stream.

Page 2of8

SizeMax Returns the number of bytes needed for data (not including version
number).

WriteToStream Writes the filter's data to the stream.

CPersistStream implements IPersistStream. For more implementation information, see the
COM Reference in the Microsoft Platform SDK.

Implemented IPersistStream Methods
Name Description
GetSizeMax Returns the number of bytes needed for data (including version number).
IsDirty

Load
Save

Checks if the object must be saved.
Loads the data from the stream into memory.
Saves the data from memory to the stream.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

CPersistStrea m: :CPersistStrea m

CPersistStream Class

Constructs a CPersistStream object.

CPersistStream (
!Unknown *pUnk,
HRESULT *phr
);

Parameters

pUnk
IUnknown interface of the delegating object.

phr

Topic Contents i@fa111¥M

Topic Contents i@fai11¥M

Pointer to the general COM return value. Note that this value is changed only if this
function fails.

1637

CPersistStream Class

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

CPersistStrea m: :GetClassI D

CPersistStream Class

Retrieves the class identifier for this filter.

HRESULT GetClassID(
CLSID *pC/sID
);

Parameters

pC/sID
Pointer to a CLSID structure. Copy your class ID to here.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jlj,M 111.],.(j

CPersistStrea m: :GetSizeMax

CPersistStream Class

Page 3of8

Topic Contents lml!Jl l!lltiM

Topic Contents l!ftl!JlllMM

Returns the maximum byte size needed for the current stream, including the version number.

HRESULT GetSizeMax(
ULARGE_INTEGER * pcbSize
);

Parameters

1638

CPersistStream Class Page 4of8

pcbSize
Size in bytes needed to save this stream, including the version number.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IPersistStream: :GetSizeMax method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

CPersistStrea m: :GetSoftwa reversion

CPersistStream Class

Returns the software version for this stream.

virtual DWORD GetSoftwareVersion(void);

Return Values

Returns a DWORD containing the version number. Each time the format of the stream is
changed, this function should be altered to return a larger number than before.

Remarks

See Version Numbers for an explanation as to why file format version numbers are useful.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQl§i[.jjj,M 111.Hj Topic Contents •@!§' 1gnw

CPersistStream::lsDirty

CPersistStream Class

Indicates whether the object has changed since it was last saved to its current stream.

1639

CPersistStream Class Page 5of8

HRESULT IsDirty();

Return Values

Returns S_OK if the filter needs saving and S_FALSE if it does not need saving.

Remarks

This member function implements the IPersistStream: :IsDirty method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CPersistStream::Load

CPersistStream Class

Loads the filter's data from a given stream.

HRESULT Load(
LPSTREAM pStm
);

Parameters

pStm

MQl@[.jlj,M 111.l:.!j

Pointer to the stream from which to be loaded.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents

This member function implements the IPersistStream: :Load method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents

CPersistStrea m:: ReadFromStrea m

1640

l@i§i llfttiM

l@i§lllMM

CPersistStream Class

CPersistStream Class

Reads the filter's data from the given stream.

virtual HRESULT ReadFromStream(
IStream *pStream
);

Parameters

pStream
Pointer to an !Stream interface from which data is to be read.

Return Values

Page 6of8

Returns NOERROR by default; the overriding member function should return a valid HRESULT
value.

Remarks

The default version reads nothing; it can be overridden to read data specific to your class.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

CPersistStream::Save

CPersistStream Class

Saves the filter's data to the given stream.

HRESULT Save(
LPSTREAM pStm,
BOOL fC/earDirty
);

Parameters

pStm

MQ<§i[.jjj,M MB.HS

Pointer to the stream to which data is to be saved.
fC/earDirty

Topic Contents i@faii!MM

Flag that indicates whether to reset the current stream's dirty flag. When called as part
of Save, the flag is normally reset; when called as part of Save As, the flag is normally
not reset.

1641

CPersistStream Class Page 7of8

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IPersistStream: :Save method. It calls Writelnt with the
software version, calls CPersistStream: :WriteToStream with the stream in pStm, and resets
mPS fDirty.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM

CPersistStream::SetDirty

CPersistStream Class

Changes the dirty flag for the current stream.

HRESULT SetDirty(
BOOL fDirty
);

Parameters

fDirty

Topic Contents ifflj[§ii!¥M

New dirty flag for this stream. TRUE means that the data has not been saved.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 1119 Topic Contents i@i§iil¥M

CPersistStrea m: :Size Max

CPersistStream Class

Retrieves the maximum byte size needed for the current stream, not including the version

1642

CPersistStream Class Page 8of8

number.

virtual int SizeMax();

Return Values

Returns the number of bytes needed for data, not including the version number.

Remarks

The default version returns zero; it should be overridden to provide some other appropriate
value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11

CPersistStrea m: :WriteToStrea m

CPersistStream Class

Writes the filter's data to the given stream.

virtual HRESULT WriteToStream(
!Stream *pStream
);

Parameters

pStream

Topic Contents l@i§i 11111+

Pointer to an !Stream interface that specifies the filter data's destination stream.

Return Values

Returns NOERROR by default; the overriding member function should return a valid HRESULT
value.

Remarks

The default version writes nothing; it can be overridden to write data specific to your class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1643

CPosPas sThru CI ass Page 1of26

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CPosPassThru Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CM ediaPosition

CPosPassThru

The CPosPassThru class is a utility class that handles the IMediaPosition and IMediaSeeking
interfaces for single-input pin renderers and transform filters.

IMediaPosition is the interface originally used for seeking in time-based media streams.
IMediaSeeking is an interface intended to replace IMediaPositlon in filter graphs that require
seeking to units other than time, such as samples or fields, or that require more precise time­
based seeking.

Renderers wm use this class to implement IMediaPosition and IMediaSeeking from the filter;
transform filters will use it to implement these two interfaces from the output pin. In both
cases, the methods will be implemented by calls to the IMediaPosltlon or IMedlaSeeklng
interface provided by the output pin of the connected upstream filter, effectively passing the
position information through to the next filter.

Create a class derived from CPosPassThru, giving it the lei.a. pointer to your input pin, and
delegate all IMediaPosition and IMediaSeeking methods to it. The class wm find the output pin
connected to the input pin, query thiS output pin for the IMedlaPosltlon or IMediaSeeklng
interface, and respond appropriately.

Protected Data Members
Name Deso-lptlon
m_Pin Pointer to the input pin of the filter.

Member Functions
Name Description
CPosPas.sThri r Constructs a CPos?assTu n r object.
FooceRetresh Releases any cached interfaces held on the upstream pin.

1644

CPosPassThru Class Page 2 of26

Overridable Member Functions
Name Description
GetMediaTime Retrieves the starting and ending media times.

Implemented IMediaPosition Methods
Name
Ca nSeekBackwa rd

CanSeekForward

Description
Determines if the current position can be moved backward in the media
stream.
Determines if the current position can be moved forward in the media
stream.

get CurrentPosition Retrieves the current position in terms of the total length of the media
stream.

get Duration
get PrerollTime

get Rate

Retrieves the total duration of the media stream.
Retrieves the time before the start position that the filter graph will start
any nonrandom access device rolling.
Retrieves the playback rate, relative to normal playback of the media.

get StooTime Retrieves the position within the media at which playback should stop.
out CurrentPosition Sets the position within the media at which playback should start.
out PrerollTime

out Rate
out StooTime

Sets the time before the start position that the filter graph will start any
nonrandom access device rolling.
Sets the playback rate, relative to normal playback of the media.
Sets the position within the media at which playback should stop.

Implemented IMediaSeeking Methods
Name
CheckCaoabilities

ConvertTimeFormat
GetAvailable
GetCaoabilities
GetCurrentPosition
GetDuration
Get Positions
GetPreroll
GetRate
GetStooPosition
GetTimeFormat
IsFormatSuooorted

Description
Determines which capabilities exist on a media stream by applying
seeking capability flags and checking the returned value.
Converts a time from one time format to another.
Returns the range of times in which seeking is efficient.
Retrieves the seeking capabilities of the media stream.
Retrieves the current position within the media stream.
Retrieves the length of time that the media stream will play.
Retrieves the current start and stop position settings.
Retrieves the preroll settings.
Retrieves the current rate.
Retrieves the position at which the media stream stops.
Retrieves the current media time format.
Determines if a specified time format is supported.

IsUsingTimeFormat Determines if the time format being used in the call is the same as the
one the interface currently uses.

OueryPreferredFormat Retrieves the preferred time format the interface will use.
SetPositions
SetRate
SetTimeFormat

Sets current and stop positions and applies flags to both.
Sets a new playback rate.
Sets the time format, which determines the format of units used during
seeking.

1645

CPosPassThru Class Page 3of26

Implemented INonDelegatingUnknown Methods
Name Description
NonDeleqatinqQueryinterface Returns a specified reference-counted interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]I!:+ +!!.HM Topic Contents ifflj[§ii!¥M

+Qi@[.]I!:+ 111.1 1119 Topic Contents 1@1§11!¥+

CPosPassThru::CanSeekBackward

CPosPassThru Class

Determines if the current position can be moved backward in the media stream.

H RESULT CanSeekBackward (
LONG *pCanSeekBackward
);

Parameters

pCanSeekBackward
Set to OATRUE if able to seek backward; otherwise set to OAFALSE.

Return Values

Returns the HRESULT value returned from calling IMediaPosition: :CanSeekBackward on the
connected pin.

Remarks

This member function calls IMediaPosition: :CanSeekBackward on the connected pin and
returns the result.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.]I!:+ 111.1 1119 Topic Contents i@i§i 11111+

CPosPassTh ru: :Ca nSeekForwa rd

1646

CPosPassThru Class

CPosPassThru Class

Determines if the current position can be moved forward in the media stream.

HRESULT CanSeekForward(
LONG *pCanSeekForward
);

Parameters

pCanSeekForward
Set to OATRUE if able to seek forward; otherwise set to OAFALSE.

Return Values

Page 4of26

Returns the HRESULT value returned from calling IMediaPosition: :CanSeekForward on the
connected pin.

Remarks

This member function calls IMediaPosition: :CanSeekForward on the upstream output pin
connected to the peer input pin and returns the result.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij Topic Contents l@i§i llfttiM

CPosPassThru::CheckCapabilities

CPosPassThru Class

Determines which capabilities exist on a media stream by applying seeking capability flags and
checking the returned value.

HRESULT CheckCapabilities(
DWORD * pCapabilities
);

Parameters

pCapabilities
Pointer to an AM_SEEKING_SEEKING_CAPABILITIES enumerator containing the
seeking capabilities flags to apply. These flags can be any combination of the following:

1647

CPosPassThru Class

AM SEE KI NG_ Ca nGetCu rrentPos
AM_SEEKI NG_ Ca nGetDu ration
AM_SEEKI NG_ Ca nGetStop Pos
AM_SEEKI NG_ Ca nPlayBackwa rds

AM SEE KI NG_ Ca nSeekAbsol ute
AM SEE KI NG_ Ca nSeekBackwa rds
AM SEE KI NG_ Ca nSeekForwa rds

Return Values

Page 5of26

Returns S_OK if all capabilities in pCapabilities are present, S_FALSE if some are present, or
E_FAIL if none are present.

Remarks

This member function implements IMediaSeekinq: :CheckCaoabilities, by calling the
IMediaSeeking::CheckCapabilities method on the upstream output pin connected to the
peer input pin. The pin that performs the seek operation will return whether the flags
presented in the pCapabilities parameter are present. This returned value will then, in turn,
propagate to calls made from CPosPassThru::CheckCapabilities member functions in
intervening filters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents

+Qi@[.]+• 111.1,.19 Topic Contents

CPosPassTh ru: :ConvertTi meFormat

CPosPassThru Class

Converts a time from one format to another.

HRESULT ConvertTimeFormat(
LONGLONG * pTarget,
const GUID * pTargetFormat,
LONGLONG Source,
con st GUI D * pSourceFormat
);

Parameters

pTarget
Time in converted format.

pTargetFormat

1648

i@i§ll!¥+

i@i§i i!fttiM

CPosPassThru Class Page 6of26

GUID of the format to convert to, or the currently selected format if NULL.
Source

Time in original format.
pSourceFormat

GUID of the format to be converted from, or the currently selected format if NULL.

Return Values

Returns the HRESULT value returned from calling IMediaSeeking: :ConvertTimeFormat on the
connected pin.

Remarks

This member function implements the IMediaSeekinq: :ConvertTimeFormat method by calling
this same method on the upstream filter's output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥

+Qi@[.]+• 111.1,.19

CPosPassThru::CPosPassThru

CPosPassThru Class

Constructs a CPosPassThru object.

CPosPassThru (
const TCHAR *pName,
LPUNKNOWN pUnk,
HRESULT * phr,
IPin * pPin
);

Parameters

pName

Topic Contents i@i§ll!¥+

Topic Contents i@i§i i!fttiM

Name of the object used in the CPosPassThru constructor for debugging purposes.
pUnk

Pointer to the owner of this object.
phr

Pointer to an HRESULT value for resulting information.
pPin

Pointer to the input pin for the filter.

Return Values

1649

CPosPassThru Class Page 7of26

No return value.

Remarks

Allocate the pName parameter in static memory. This name appears on the debugging terminal
upon creation and deletion of the object.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

•;<MM+' MB.HM Topic Contents i@fa111¥M

8 4'41M+• 1!1·H¥ Topic Contents i@fai11¥M

CPosPassTh ru:: ForceRefresh

CPosPassThru Class

Releases any cached interfaces on the upstream pin.

HRESULT ForceRefresh();

Return Values

Returns S OK.

Remarks

For efficiency, the CPosPassThru class can cache the IMediaPosition interface of the connected
upstream output pin. This method releases any cached interface pointers and forces them to
be obtained again via Querylnterface if needed.

Presently, this class does not cache the upstream IMediaPosition so this member function is
not necessary. It is left in for future flexibility.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•;<MM+• MB.],.[¥ Topic Contents i@fa111¥M

CPosPassThru::GetAvailable

CPosPassThru Class

1650

CPosPassThru Class

Returns the range of times in which seeking is efficient.

HRESULT GetAvailable(
LONGLONG * pEarliest,
LONGLONG * platest
);

Parameters

pEarliest
Earliest time that can be efficiently seeked to.

platest
Latest time that can be efficiently seeked to.

Return Values

Return Values

Page 8of26

Returns the HRESULT value returned from calling IMediaSeekinq: :GetAvailable on the
connected pin.

Remarks

This member function implements the IMediaSeekinq: :GetAvailable method by calling this
same method on the upstream filter's output pin.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5

MQi§i[.]11,M 11!.HM

CPosPassThru::GetCapabilities

CPosPassThru Class

Returns the seeking capabilities of the media stream.

HRESULT GetCapabilities(
DWORD * pCapabilities
);

Parameters

pCapabilities

Topic Contents

Topic Contents

Seeking capability flags, which can be any combination of the following.

1651

•=@• 1gnw

l@l§il!MM

CPosPassThru Class

AM SEE KI NG_ Ca nGetCu rrentPos
AM_SEEKI NG_ Ca nGetDu ration
AM_SEEKI NG_ Ca nGetStop Pos
AM_SEEKI NG_ Ca nPlayBackwa rds

AM SEE KI NG_ Ca nSeekAbsol ute
AM SEE KI NG_ Ca nSeekBackwa rds
AM SEE KI NG_ Ca nSeekForwa rds

Return Values

Return Values

Page 9of26

Returns the HRESULT value returned from calling IMediaSeeking: :GetCapabilities on the
connected pin.

Remarks

This member function implements IMediaSeeking: :GetCapabilities by calling the
IMediaSeeking::GetCapabilities method on the upstream output pin connected to the peer
input pin. The pin that performs the seek operation will return the capabilities present in the
pCapabilities parameter. These returned capabilities will then, in turn, propagate to calls made
from CPosPassThru::GetCapabilities member functions in intervening filters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents

MQ<§i[.]jj,+ 111.Hj Topic Contents

CPosPassThru::GetCurrentPosition

CPosPassThru Class

Retrieves the current position in terms of the media stream's total length.

HRESULT GetCurrentPosition(
LONGLONG* pCurrent
);

Parameters

pCurrent
Current position in current time format units.

Return Values

1652

l@i§i 11111+

l@i§lllMM

CPosPassThru Class Page 10of26

Returns NOERROR if successful. Otherwise, returns the HRESULT value returned from calling
IMediaSeekinq: :GetCurrentPosition on the connected pin.

Remarks

This member function implements the IMediaSeekinq: :GetCurrentPosition interface. It calls the
CPosPassThru: :GetMediaTime virtual member function, which you should override and
implement in your derived class to return the current position. If this fails (which it does by
default), the IMediaSeeking::GetCurrentPosition on the upstream filter's output pin is
called.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

CPosPassTh ru: :get_ Cu rrentPosition

CPosPassThru Class

Retrieves the current position in terms of the total length of the media stream.

HRESULT get_CurrentPosition(
REFTIME* pl/Time
);

Parameters

pl/Time
Returned start time as a double value in seconds.

Return Values

Return Values

i@faii!MM

Returns the HRESULT value returned from calling IMediaPosition: :get CurrentPosition on the
connected pin.

Remarks

The start position is applied before the rate and therefore is the position at typical playback
speed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i!!.llj,i Mh.J,,[5 Topic Contents i@faii!MM

1653

CPosPassThru Class

CPosPassThru::GetDuration

CPosPassThru Class

Retrieves the length of time that the media stream will play.

HRESULT GetDuration(
LONGLONG* pDuration
);

Parameters

pDuration
Returned length of the media stream.

Return Values

Return Values

Page 11of26

Returns the HRESULT value returned from calling IMediaSeeking: :GetDuration on the
connected pin.

Remarks

This member function implements the IMediaSeeking: :GetDuration method by calling this
same method on the upstream filter's output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij

CPosPassThru::get_Duration

CPosPassThru Class

Retrieves the total duration of the media stream.

HRESULT get_Duration(
REFTIME * plength
);

Parameters

plength
Returned length of the media stream.

1654

Topic Contents l@i§i 11111+

CPosPassThru Class Page 12of26

Return Values

Return Values

Returns the HRESULT value returned from calling IMediaPosition: :get Duration on the
connected pin.

Remarks

The duration assumes normal playback speed, and it is therefore unaffected by the rate.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij

CPosPassTh ru: :GetMediaTi me

CPosPassThru Class

Retrieves the starting and ending media times.

virtual HRESULT GetMediaTime(
LONGLONG* pStartTime,
LONGLONG* pEndTime
);

Parameters

pStartTime
Returned starting media time.

pEndTime
Returned ending media time.

Return Values

Returns an HRESULT value (E_FAIL by default).

Remarks

Topic Contents l@i§lllMM

Override this virtual member function to return the current samples' media time. This
represents the current position in terms of media time (for example, frame 20 of a total 130
frames).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij Topic Contents l@i§il!MM

1655

CPosPassThru Class

CPosPassTh ru: :GetPositions

CPosPassThru Class

Returns the current and stop position settings.

HRESULT GetPositions(
LONGLONG * pCurrent,
LONGLONG * pStop
);

Parameters

pCurrent
Start time in the current time format.

pStop
Stop time in the current time format.

Return Values

Return Values

Page 13of26

Returns the HRESULT value returned from calling IMediaSeeking: :GetPositions on the
connected pin.

Remarks

This member function implements the IMediaSeekinq: :GetPositions method by calling this
same method on the upstream filter's output pin. It allows the retrieval of several values with
only one call.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

+Qi@[.]+• 111.1,.19 Topic Contents i@i§i i!fttiM

CPosPassTh ru: :GetPrerol I

CPosPassThru Class

Retrieves the preroll settings.

1656

CPosPassThru Class

HRESULT GetPreroll(
LONGLONG * pl/Preroll
);

Parameters

pl/Preroll
Returned preroll time.

Return Values

Return Values

Page 14 of 26

Returns the HRESULT value returned from calling IMediaSeeking: :GetPreroll on the connected
pin.

Remarks

This member function implements the IMediaSeeking: :GetPreroll method by calling this same
method on the upstream filter's output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents

CPosPassThru::get_PrerollTime

CPosPassThru Class

Retrieves the time prior to the start position that devices should start rolling.

HRESULT get_PrerollTime(
REFTIME* pl/Time
);

Parameters

pl/Time
Returned preroll time as a double value in seconds.

Return Values

Return Values

l@IJll!MM

Returns the HRESULT value returned from calling IMediaPosition: :get PrerollTime on the
connected pin.

1657

CPosPassThru Class Page 15of26

Remarks

Preroll time is the time prior to the start position at which nonrandom access devices, such as
tape players, should start rolling.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M lll.! 11ij

CPosPassThru::GetRate

CPosPassThru Class

Retrieves the current rate.

HRESULT GetRate(
double * pdRate
);

Parameters

pdRate
Current rate, where 1 is the normal rate.

Return Values

Return Values

Topic Contents l@IJll!MM

Returns the HRESULT value returned from calling IMediaSeekinq: :GetRate on the connected
pin.

Remarks

This member function implements the IMediaSeekinq: :GetRate method by calling this same
method on the upstream filter's output pin.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+ Q<M [.] ij,+ 111.Hj Topic Contents •@!§' 1gn+

CPosPassThru::get_Rate

1658

CPosPassThru Class

CPosPassThru Class

Retrieves the rate of playback relative to normal playback speed.

HRESULT get_Rate(
double * pdRate
);

Parameters

pdRate
Returned rate.

Return Values

Return Values

Page 16of26

Returns the HRESULT value returned from calling IMediaPosition: :get Rate on the connected
pin.

Remarks

A rate of 1.0 indicates normal playback speed. A rate of 0.5 indicates half speed. A rate of -1.0
indicates normal speed in reverse.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

CPosPassTh ru: :GetStopPosition

CPosPassThru Class

Retrieves the position at which the media stream stops.

HRESULT GetStopPosition(
LONGLONG* pStop
);

Parameters

pStop
Returned stop time.

Return Values

Return Values

1659

Topic Contents lmli§lllMM

CPosPassThru Class Page 17of26

Returns the HRESULT value returned from calling IMediaSeekinq: :GetStopPosition on the
connected pin.

Remarks

This member function implements the IMediaSeekinq: :GetStopPosition method by calling this
same method on the upstream filter's output pin. The stop position is a time between zero and
the duration of the media at which playback should stop.

The stop position is applied before the rate and therefore is the position at typical playback
speed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

CPosPassTh ru: :get_StopTi me

CPosPassThru Class

Retrieves the time at which the media stream stops.

HRESULT get_StopTime(
REFTIME* pl/Time
);

Parameters

pl/Time
Returned stop time as a double value in seconds.

Return Values

Return Values

Topic Contents 1@1§111¥+

Returns the HRESULT value returned from calling IMediaPosition: :get StopTime on the
connected pin.

Remarks

The stop time is a position between zero and the duration of the media at which playback
should stop.

The stop position is applied before the rate and therefore is the position at typical playback
speed.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

1660

CPosPassThru Class Page 18of26

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CPosPassTh ru: :GetTi meFormat

CPosPassThru Class

Retrieves the current time format, which determines the format of units used during seeking.

HRESULT GetTimeFormat(
const GUID * pFormat
);

Parameters

pFormat
Media time format currently supported by this interface.

Return Values

Return Values

Returns the HRESULT value returned from calling IMediaSeeking: :GetTimeFormat on the
connected pin.

Remarks

This member function implements the IMediaSeeking: :GetTimeFormat method by calling this
same method on the upstream filter's output pin.

See the IMediaSeeking: :IsFormatSupported method for a list of time formats.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+ Q i§i [.] jj,+ +!!·HM Topic Contents Mttfjl§ii!MM

CPosPassTh ru: :lsFormatSu pported

CPosPassThru Class

Determines if a specified time format is supported.

HRESULT IsFormatSupported(

1661

CPosPassThru Class

const GUID * pFormat
);

Parameters

pFormat
Time format to compare.

Return Values

Return Values

Page 19of26

Returns the HRESULT value returned from calling IMediaSeeking: :IsFormatSupported on the
connected pin.

Remarks

This member function implements the IMediaSeekinq: :IsFormatSupoorted method. See that
method for a list of valid time formats.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

CPosPassTh ru: :lsUsi ngTi mef ormat

CPosPassThru Class

Determines if the time format being used in the call is the same as the one currently in use by
the interface.

HRESULT IsUsingTimeFormat(
const GUID * pFormat
);

Parameters

pFormat
Time format to check.

Return Values

Returns S_OK if pFormat is the current time format; otherwise returns S_FALSE.

Remarks

This member function implements the IMediaSeekinq:: IsUsinqTimeFormat method by calling
this same method on the upstream filter's output pin. This can be used in place of

1662

CPosPassThru Class Page 20of26

IMediaSeeking: :GetTimeFormat to save copying the GUID.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§lll¥M

CPosPassThru::NonDelegatingQuerylnterface

CPosPassThru Class

Returns a specified reference-counted interface.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void **ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

Returns pointers to the IMediaPosition, IMediaSeeking, and IUnknown interfaces by default.
Override this method to publish any additional interfaces implemented by the derived class.

This member function implements the INonDelegatingUnknown: :NonDelegatingOueryinterface
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41M+• 1 !1·HM Topic Contents lfflj[§ill¥M

CPosPassTh ru:: put_ Cu rrentPosition

CPosPassThru Class

1663

CPosPassThru Class

Sets the time that the media stream begins.

HRESULT put_CurrentPosition(
REFTIME I/Time
);

Parameters

I/Time
Start time expressed as a double value in seconds.

Return Values

Page 21of26

Returns the HRESULT value returned from calling IMediaPosition:: put CurrentPosition on the
connected pin.

Remarks

The start time is a position between zero and the duration of the media at which playback
should begin when the next run command is issued. Do not call this method when the filter
graph is running, only when it is paused or stopped.

Setting the start position when paused causes playback to resume from the new start position
when the run command is issued.

The start position is applied before the rate and therefore is the position at typical playback
speed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents

CPosPassTh ru:: put_Prerol ITi me

CPosPassThru Class

Sets the time prior to the start position that devices should start rolling.

HRESULT put_PrerollTime(
REFTIME I/Time
);

Parameters

I/Time
Preroll time to be set.

1664

1@1§111¥+

CPosPassThru Class Page 22of26

Return Values

Returns the HRESULT value returned from calling IMediaPosition:: put PrerollTime.

Remarks

Preroll time is the time prior to the start position at which nonrandom access devices, such as
tape players, should start rolling.

Note that while this member function passes the call upstream, the
IMediaPosition:: put PrerollTime method is not implemented on any Microsoft source filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11

CPosPassThru::put_Rate

CPosPassThru Class

Sets the rate of playback relative to normal speed.

HRESULT put_Rate(
double dRate
);

Parameters

dRate
Rate to set.

Return Values

Topic Contents l@i§i 11111+

Returns E_INVALIDARG if dRate is zero. Otherwise, returns the HRESULT value returned from
calling IMediaPosition:: put Rate on the connected pin.

Remarks

This property allows an application to speed up or slow down playback relative to the normal
default playback speed. A rate of 1.0 indicates normal playback speed. Specifying 2.0 causes
playback at twice the normal rate: a video created for 10 frames per second (fps) will be
played back at 20 fps, if resources permit. Audio streams played back at above-normal speed
increase the pitch rather than drop frames.

Negative rates indicate reverse play. Not all media will support reverse play.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

1665

CPosPassThru Class

+Qi§1[.]++ 1 !!·HM

CPosPassThru::put_StopTime

CPosPassThru Class

Sets the time at which the media stream will stop.

HRESULT put_StopTime(
REFTIME I/Time
);

Parameters

I/Time
Stop time as a double value in seconds.

Return Values

Page 23of26

Topic Contents i@l§ii!MM

Returns the HRESULT value returned from calling IMediaPosition:: put StopTime on the
connected pin.

Remarks

The stop time is a position between zero and the duration of the media at which playback
should stop.

The stop position is applied before the rate and therefore is the position at typical playback
speed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 1119 Topic Contents

CPosPassTh ru: :QueryPreferred Format

CPosPassThru Class

Retrieves the preferred time format to be used by the interface.

HRESULT QueryPreferredFormat(
GUID *pFormat

1666

i@l§lllMM

CPosPassThru Class Page 24of26

);

Parameters

pFormat
Time format preferred by the interface.

Return Values

Returns the HRESULT value returned from calling IMediaSeekinq: :QueryPreferredFormat on
the connected pin.

Remarks

This member function implements the IMediaSeekinq: :QueryPreferredFormat method by
calling this same method on the upstream filter's output pin.

See the description for IMediaSeekinq: :IsFormatSuoported for a list of available time formats.
If the time format returned is not satisfactory, use the IMediaSeeking::IsFormatSupported
method to query for supported time formats that you can use.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

CPosPassTh ru: :SetPositions

CPosPassThru Class

Sets current and stop positions and applies flags to both.

HRESULT SetPositions(
LONGLONG * pCurrent,
DWORD dwCurrentFlags,
LONGLONG * pStop,
DWORD dwStopF/ags
);

Parameters

pCurrent

Topic Contents

Start position if stopped, or position to continue from if paused.
dwCurrentFlags

1@1§111¥+

When seeking, one of these flags must be set to indicate the type of seek. See the
IMediaSeekinq:: SetPositions method for a description of these flags.

pStop
Position in the stream at which to quit.

dwStopF/ags

1667

CPosPassThru Class Page 25of26

Stop position seeking options to be applied. These are the same as listed for
dwCurrentFlags.

Return Values

Returns the HRESULT value returned from calling IMediaSeeking: :SetPositions on the
connected pin.

Remarks

This member function implements the IMediaSeekinq: :SetPositions method by calling this
same method on the upstream filter's output pin. It allows the retrieval of several values with
only one call.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,+ '!!·HM

MQijl.111,h 111.1 1119

CPosPassThru::SetRate

CPosPassThru Class

Sets a new playback rate.

HRESULT SetRate(
double dRate
);

Parameters

dRate

Topic Contents

Topic Contents

New rate, where 1 is the normal rate, 2 is twice as fast, and so on.

Return Values

i@l§ii!MM

i@l§i 11111+

Returns E_INVALIDARG if dRate is zero. Otherwise, returns the HRESULT value returned from
calling IMediaSeekinq: :SetRate on the connected pin.

Remarks

This member function implements the IMediaSeeking: :SetRate method by calling this same
method on the upstream filter's output pin. It is an error to set the rate to 0.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1668

CPosPassThru Class Page 26of26

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CPosPassTh ru: :SetTi meformat

CPosPassThru Class

Sets the time format, which determines the format of units used during seeking.

HRESULT SetTimeFormat(
const GUID * pFormat
);

Parameters

pFormat
Time format to be supported by this interface.

Return Values

Returns the HRESULT value returned from calling IMediaSeeking: :SetTimeFormat on the
connected pin.

Remarks

This member function implements the IMediaSeekinq: :SetTimeFormat method by calling this
same method on the upstream filter's output pin. See the IMediaSeekinq: :IsFormatSupported
method for a list of time formats.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1669

CPullPin Cl ass Page 1 of 10

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CPullPin Class

CThread

CPullPin

The (;Pull Pin class is provided to allow a filter downstream from the source to create a thread
and pull a media stream from an asynchronous source filter that supports the IAsyncReader
interface. Typically this class iS implemented on the input pin of a parser filter, since the
Microsoft® DirectShow"' asynchronous reader filter just reads a media stream from a file and
provides no parsing.

Protected Data Members
Name Description
m_pAlloc Pointer to the IMemAUocator interface used by the connection.

Member Functions
Name Description
Active Instructs the pin to start pulling data from the asynchronous reader.
A!ignDoym Aligns a ! ONG! ONG value down to the next .l..O!:IG. boundary.
AlignUp Aligns a LONGLONG value up to the next .l.QlliZ boundary.
Connect Initiates a connection from this pin to the asynchronous reader.
CPu!!Pin Constructs a CPu!!Pin object.
Disconnect Breaks a connection to the asynchronous reader.
Doratjon Retrieves the total duration of the media stream.
\..etReader Retrieves the asynchronous reader interface.
Inactive Instructs the pin to stop pulling data from the asynchronous reader.
~ Sets the start: and stop times of the media stream.

Overrldable Member Functions
Name Description
Beginflush Flushes this pin and au downstream pins.
l')ecideA!!orator Proposes an allocator for use by the asynchronous reader.
End flush Signals end of flushing operation.
EndOfStream Sends end-of-stream notification downstream.
On Error
Receive

Hand !es run-time errors that caused pulling to stop.
Handles the arriVal of data from the asynchronous reader.

w;•; "·II' a 111.11119 Topic Contents

1670

l@i§Mit§M

CPullPin Class Page 2of10

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

C Pu 11 Pin:: Active

CPullPin Class

Instructs the pin to start pulling data from the asynchronous reader.

HRESULT Active(void);

Return Values

Returns an HRESULT value.

Remarks

The reader interface must be retrieved and the allocator decided before calling this member
function. This is handled by the CPullPin: :Connect member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQijl.111,h 111.1 1119

CPullPin::AlignDown

CPullPin Class

Aligns a LONGLONG value down to the next LONG boundary.

LONGLONG AlignDown(
LONGLONG II,
LONG /Align
);

Parameters

II
Element to be aligned.

/Align
Alignment boundary.

Return Values

1671

Topic Contents i@l§i 11111+

CPullPin Class

Returns the II value aligned to /Align.

Remarks

Aligning downward is a truncation operation.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5

CPullPin::AlignUp

CPullPin Class

Aligns a LONGLONG value up to the next .LQN.G. boundary.

LONGLONG AlignUp(
LONGLONG II,
LONG /Align
);

Parameters

II
Element to be aligned.

/Align
Alignment boundary.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

M Q '41 [.] jj,M I !!·HM

CPullPin::BeginFlush

CPullPin Class

Override to flush this pin and all downstream pins.

1672

Page 3of10

Topic Contents •=@• 1gnw

Topic Contents lfflj[§il!¥M

CPullPin Class Page 4of10

virtual HRESULT Beginflush(void);

Return Values

Returns an HRESULT value.

Remarks

This member function is called by the CPullPin: :Seek member function before pausing the
thread prior to a seeking operation. You must implement this member function to call the
I Pin:: BeginFlush method on the connected downstream pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.jjj,M l!i.! 11ij

CPullPin::Connect

CPullPin Class

Initiates a connection from this pin to the asynchronous reader.

HRESULT Connect(
!Unknown* pUnk,
IMemAllocator* pAl/oc,
BOOL bSync
);

Parameters

pUnk

Topic Contents

Object to query for existence of asynchronous reader (IAsyncReader).
pAl/oc

Optional allocator to propose as preferred allocator if necessary.
bSync

l@l§i 11111+

Set TRUE if the reader uses synchronous rather than asynchronous reads.

Return Values

Returns S_OK if successfully connected to the IAsyncReader interface from the object specified
by pUnk.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,+ '!!·Hi Topic Contents l@l§lllMM

1673

CPullPin Class

CPullPin: :CPullPin

CPullPin Class

Constructs a CPullPin object.

CPullPin(void);

Return Values

No return value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9

CPullPin::DecideAllocator

CPullPin Class

Negotiates an allocator to use with the asynchronous reader.

virtual HRESULT DecideAllocator(
IMemAllocator* pA//oc,
ALLOCATOR_PROPERTIES * pProps
);

Parameters

pA//oc

Page 5of10

Topic Contents lmli§lllMM

Allocator to propose as the preferred allocator (optional). Pass NULL if you aren't
proposing an allocator.

pProps
Size, count, and alignment of the allocator (optional). Pass 0 if not requesting the
a I locator properties.

Return Values

Returns S_OK if successful, VFW_E_BADALIGN if eProps contains an invalid alignment
property, E_OUTOFMEMORY if there is not enough memory available to create an allocator, and
E_NOINTERFACE if the created IMemAllocator interface is invalid.

Remarks

This member function calls the IAsyncReader:: RequestAllocator method to negotiate an

1674

CPullPin Class Page 6of10

allocator.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§lllMM

CPullPin:: Disconnect

CPullPin Class

Breaks a connection to the asynchronous reader.

HRESULT Disconnect(void);

Return Values

Returns NOERROR if there is no connection.

Remarks

This member function disconnects any connection to an asynchronous file reader made in the
CPullPin: :Connect method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i!!.llj,i 111.J,,[9

CPullPin::Duration

CPullPin Class

Retrieves the total duration of the media stream.

HRESULT Duration(
REFERENCE_ TIME* ptDuration
);

Parameters

ptouration

Topic Contents

Duration measured in bytes multiplied by UNIT (10,000,000).

Return Values

1675

1@1§111$8

CPullPin Class Page 7of10

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!MM

CPullPin::EndFlush

CPullPin Class

Override to signal the end of a flushing operation.

virtual HRESULT Endflush(void) PURE;

Return Values

Returns an HRESULT value.

Remarks

This member function is called by the CPullPin: :Seek member function after pausing the thread
prior to a seeking operation. You must implement this member function to call the
I Pin:: End Flush method on the connected downstream pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.]++ 111.1,.19 Topic Contents i@i§lllMM

CPullPin::EndOfStream

CPullPin Class

Override to send an end-of-stream notification downstream.

virtual HRESULT EndOfStream(void) PURE;

Return Values

Returns an HRESULT value.

Remarks

1676

CPullPin Class Page 8of10

This member function is called during processing of received samples when the end of the
stream is reached. You must implement this member function to call the IPin: :EndOfStream
method on the connected downstream pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§11!¥+

CPullPin::GetReader

CPullPin Class

Returns the asynchronous reader.

IAsyncReader* GetReader(void);

Return Values

Returns a reference-counted IAsyncReader interface.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Qi§i[.jjj,M ill.HM Topic Contents +@1§• +gn+

C Pu 11 Pin:: In a ct ive

CPullPin Class

Instructs the pin to stop pulling data from the asynchronous reader.

HRESULT Inactive(void);

Return Values

Returns an HRESULT value.

Remarks

This member function calls the IAsyncReader:: BeqinFlush method, ends the thread, calls the
IAsyncReader:: End Flush method and then decommits the allocator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1677

CPullPin Class

+Qi§1[.]++ 1 !!·HM

CPullPin::OnError

CPullPin Class

Override to handle run-time errors that caused pulling to stop.

virtual void OnError(
HRESULT hr
) PURE;

Parameters

hr
HRESULT value of the trapped error.

Return Values

No return value.

Remarks

Page 9of10

Topic Contents i@l§ii!MM

These errors are returned from the upstream filter (the asynchronous reader), which will have
already reported errors to the filter graph manager. This member function must be
implemented since it is called by several CPullPin member functions when trapping errors.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use .

• ; H11·h' I !1.],,[9 Topic Contents i@l§ii!MM

CPullPin::Receive

CPullPin Class

Override this member function to handle the arrival of data from the asynchronous reader.

virtual HRESULT Receive(
IMediaSample * pSample
) PURE;

Parameters

1678

CPullPin Class Page 10of10

pSample
[in] Pointer to a media sample.

Return Values

Returns an HRESULT value. Returning a value other than S_OK will stop the data.

Remarks

You must implement this member function in your derived class. This member function is
called whenever a new sample arrives while processing the sample stream. It should be written
in the same manner as the IMeminputPin:: Receive method on an input pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

CPullPin::Seek

CPullPin Class

Sets the start and stop times of the media stream.

H RESULT Seek(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop
);

Parameters

tStart
Start time (defaults to zero).

tStop
Stop time (defaults to the value of CPullPin:: Duration).

Return Values

Returns an HRESULT value.

Remarks

Topic Contents l@IJll!MM

If the filter graph is running (active), the media rendering will start immediately at the new
position defined by tStart.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1679

CQueue Cl ass Page 1 of3

8 41411•11' 9 ill.i::ifi Topic Contents i@IQI lt§jM

CQueue Class

(CQueue

This class implements a simple Queue Abstract Data Type (ADT). The queue contains a finite
number of objects, and a semaphore controls access to these objects. The semaphore is
created with an initial count (N). Each time an object iS added, a call to the Microsoft®
Win32® WaitforSing!eObject function is made on the handle of the semaphore. When this
function returns, it reserves a slot in the queue for the new object. If no slots are available, the
member function blocks until it becomes available. Each time an object is removed from the
queue, the Win32 ReleaseSemaphore function is called on the handle of the semaphore, thus
freeing a slot in the queue. If no objects are present in the queue, the function blocks until an
object has been added.

Membet Functions
Name Description
COueue Constructs a CQueue object.
GetQoeoeObject Retrieves an object from the queue.
pi rtQoeoeObject Puts an object into the queue.

CQueue: :CQueue

COueue Class

Constructs a COueue object.

CQueue(
lntn
);

CQueue();

Patameters

n
Size of the queue to create.

8 41411·!11* 1 11·'"'*

1680

T op1c Contents l@i§ilt§M

CQueue Class Page 2of3

Return Values

No return value.

Remarks

If constructed with no parameters, the size of the queue is set to DEFAULT _QUEUESIZE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

CQueue: :GetQueueObject

CQueue Class

Retrieves an object from the queue.

T GetQueueObject() ;

Return Values

Returns an object of type T (template).

Remarks

This member function blocks until an object is available on the queue. It uses a CCritSec object
for security.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119

CQueue:: PutQueueObject

CQueue Class

Puts an object into the queue.

void PutQueueObject(
T object
);

1681

Topic Contents 1@1§111¥+

CQueue Class Page 3 of3

Parameters

object
Template object to be inserted into the queue.

Return Values

No return value.

Remarks

This member function blocks if there is no open slot into which to put the object. It releases
any blocking COueue: :GetOueueObject member function that is waiting for an object to
retrieve.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1682

CReITime Class Page 1 of5

8 41411•11' 9 ill.i::ifi Topic Contents i@IQI lt§jM

CRefTime Class

(CRefTime

This class is used to manage reference times. It shares the same data layout as the
REFERENCE TIME data type, but adds some (nonvirtual) fUnctions that provide simple
comparison, conversion, and arithmetic capabilities.

A reference time is a unit of time represented in 100-nanosecond units. This time unit is the
same time unit used by the Microsoft® Win32® FILETIME structure, although the two types
cannot be interchanged. Note that the time a REFERENCE TIME represents is not the time
elapsed since 1/1/1601. It is either stream time or reference time, depending on the context.

Data Members
Name Description
m_tlme REFERENCE TIME value of this object.

Member Functions
Name Description
CReffime Constructs a CRefTime object.
GetUnits Returns the reference time in units of 100 nanoseconds.
Millisecs Returns the reference time in mmiSeconds.

Operators
Name
operator
<REFERENCE TIME)
operator;
operator+;

operator ;

Description
Casts the CRefTime object to a REFERENCE TIME data type. The
result is them time value.
Implements the copy constructor for the CReffime class.
Adds two CRefTime objects and makes this object equal to the
result.
Subtracts one CRefTime object from another CRefTlme object and
makes this object equal to the result.

MQI§ ii.iii A Mi!.!::18 Topic Contents 1#14i*t§*

+Q1§111·!119 1 11.1::1¥ T op1c Contents

1683

CReff ime Class

CRefTime::CRefTime

CRefrime Class

Constructs a CRefrime object.

CRefTime() ;
CRefTime(

LONG msecs
);

CRefTime(
REFERENCE_ TIME rt
);

Parameters

msecs
CRefrime value in milliseconds.

rt
CRefrime object to copy.

Return Values

No return value.

Remarks

Page 2 of 5

When constructed without parameters, the reference time value defaults to zero.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@IJll!MM

CRefTime::GetUnits

CRefrime Class

Returns the reference time in 100-nanosecond units.

LONGLONG GetUnits(void);

Return Values

Returns the reference time value.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

1684

CReff ime Class Page 3 of 5

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CRefTime::Millisecs

CRefTime Class

Returns the reference time in milliseconds.

LONG Millisecs(void);

Return Values

Returns the reference time value.

© 1997 Microsoft Corooration. All rights reserved. Terms of Use.

H Qi41 [.] jj,M I !l.H9 Topic Contents Mttfjl§ii!MM

CRefTime::operator (REFERENCE_TIME)

CRefTime Class

Cast operator that allows a CRefTime object to be used in place of a REFERENCE_ TIME object.

operator REFERENCE_TIME () const;

Return Values

Returns the value of m time.

Remarks

The following examples show how this cast operator can be used.

CRefTime cRT(lOOO) ;
REFERENCE TIME rt= (REFERENCE_TIME)cRT;

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

H Qi41 [.] jj,M I !l.H9 Topic Contents i@l§ii!MM

1685

CReff ime Class

CRefTime::operator =

CRefTime Class

Assigns a new value to the object from an existing value.

CRefTime& operator= (
const CRefTime& rt
);

CRefTime& operator= (
const LONGLONG II
);

Parameters

rt
Object to copy during the assignment operation.

II
LONGLONG reference time value.

Return Values

Returns a reference to this object after the operation.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

CRefTime::operator +=

CRefTime Class

Topic Contents

Adds the value of another CRefTime object to this CRefTime object.

CRefTime& operator+=(
const CRefTime& rt
);

Parameters

rt
CRefTime object to be added.

1686

Page 4of5

1@1§111¥+

CReff ime Class

Return Values

Returns a reference to this object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j

CRefTi me: :operator ---
CRefrime Class

Subtracts another CRefrime object from this CRefTime object.

CRefTime& operator-= (
const CRefTime& rt
);

Parameters

rt
CRefrime object to be subtracted.

Return Values

Returns the result.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

1687

Page 5 of 5

Topic Contents l!ftl!Ji l!lltiM

CRenderedinputPin Class Page 1 of5

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CRenderedinputPin Class

CBaseObject

INonDelegatingUnknown

CUnknown

CBasePin

CBaselnputPin

CRenderedlnputPin

This input pin class iS provided for renderer filters that render the stream delivered from an
input pin (that iS, that do not have an output pin to pass the data on). It overrides
CBaseinputPin to handle the end-of-stream notification and is implemented specifically so that
more than one stream can be handled using this renderer (since each pin must handle the
end-of-stream independently). For an example of a filter that uses this class, see Dump
Sample <Dump Filter).

Protected Data Members
Name Description
m_bAtEndOf'Stream Set to TRUE when the end-of-stream notification has been received.
m_bCompleteNotlfled Set to TRUE when the EC COMP! ErE notification has been sent to the

filter graph manager.

Member Functions
Name Description
CRenderedinputPin Constructs a CRenderedinputPin object.

Overrldable Membei- Functions
Name Description
Active Notifies the pin that the filter has changed state from stopped to paused.
EndFlush Informs the pin to end a flush operatiOn.
EndOfStream Informs the pin that no additional data is expected until a new run command iS

issued .
.&l.l.a. Notifies the pin that the filter has changed state from paused to running.

1688

CRenderedinputPin Class Page 2 of 5

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M M!i.1 1119 Topic Contents i@l§i 11111+

CRenderedinputPin: :Active

CRenderedlnputPin Class

Notifies the pin that the filter has changed state from stopped to paused or running.

HRESULT Active();

Return Values

Returns an HRESULT value.

Remarks

This member function overrides CBasePin: :Active. It sets both m bAtEndOfStream and
m bCompleteNotified to FALSE before calling the base class implementation.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

H Qi§1 [.] jj,M I !l.H9 Topic Contents Mttfjl§ii!MM

CRenderedln putPi n: :CRenderedln putPi n

CRenderedlnputPin Class

Constructs a CRenderedlnputPin object.

CRenderedinputPin(
TCHAR *pObjectName,
CBaseFilter *pFilter,
CCritSec *pLock,
HRESULT *phr,
LPCWSTR pName
);

Parameters

pObjectName

1689

CRenderedinputPin Class

Name of the object for debugging purposes.
pFilter

Pointer to the pin's owning filter.
pLock

Critical section for the pin.
phr

Pointer to an HRESULT value.
pName

Pin name.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M lll.! 11ij

+Qi§i[.]11,+ '!!·Hi

CRenderedln putPi n:: End Flush

CRenderedlnputPin Class

Informs the pin to end a flush operation.

HRESULT EndFlush(void);

Return Values

Returns an HRESULT value.

Remarks

Page 3 of 5

Topic Contents l@IJll!MM

Topic Contents l@i§il!MM

This member function overrides CBaselnputPin:: End Flush. It sets both m bAtEndOfStream and
m bCompleteNotified to FALSE before calling the base class implementation.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQl§i[.jlj,M 111.],.[j Topic Contents l@i§l l!l@M

CRenderedln putPi n:: EndOfStrea m

1690

CRenderedinputPin Class Page 4of5

CRenderedlnputPin Class

Informs the pin that no additional data is expected until a new run command is issued.

HRESULT EndOfStream(void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the I Pin:: EndOfStream method. It calls CheckStreaming to
see that the filter is in a streaming state, sets m bAtEndOfStream to TRUE, and then sends
the EC_COMPLETE notification to the filter graph manager.

The EC_COMPLETE filter graph notification should be issued only after all the data delivered to
the pin prior to calling this member function has been processed. If the filter performs
processing asynchronously, override CRenderedinputPin::EndOfStream to postpone
sending the EC_COMPLETE notification until processing of all input data has completed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents

CRenderedlnputPin: :Run

CRenderedlnputPin Class

Notifies the pin that the filter has changed state from stopped to paused.

HRESULT Run(
REFERENCE_TIME tStart
);

Parameters

tStart

1@1§111¥+

Start time. Unreferenced by this class; for possible use by the derived class.

Return Values

Returns an HRESULT value (S_OK by default).

Remarks

This member function overrides the CBasePin:: Run member function. It sends the
EC_COMPLETE notification to the filter graph manager if m bAtEndOfStream is TRUE.

1691

CRenderedlnputPin Class Page 5 of 5

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1692

CRendererinputPin Class Page 1 of9

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CRendererinputPin Class

CBaseObject

INonDelegatingUnknown

CUnknown

CBasePin

CBaselnputPin

CRendererlnputPin

This input pin class channels calls to the rendering filter.

Protected Data Members
Name Description
m_pRenderer Pointer to the CBaseRenderer object.

Member Functions
Name Description
Allocator Retrieves a pointer to the default memory allocator.
CRendereriopotpjn Constructs a CRendererinpotPin object.

Overridable Member Functions
Name Description
Active Switches the pin to the active (paused or running) mode.
Beginflush Informs the pin to begin a flush operation.
BreakConnect Adds customized code upon breaking a connection.
CheckMediaTupe ~termines if the pin can support a specific media type.
CompieteConnect Completes the connection.
Endflush Informs the pin to end a flush operation.
EndOfStream Informs the pin that no additional data is expected until a new run

command is issued.
Inactive Switches the pin to an inactive state and releases the memory of the

allocator.
Receive Returns the next block of data from the stream.

1693

CRendererlnputPin Class

SetMediaType Sets the media type of the pin.

Implemented IPin Methods
Name Description

Queryid Retrieves an identifier for the pin.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.]I!:' 111.H5

MQi§i[.]l!:I 11!.1::'5

CRendererlnputPin::Active

CRendererinputPin Class

Switches the pin to the active (paused or running) mode.

HRESULT Active();

Return Values

Returns an HRESULT value.

Remarks

Topic Contents

Topic Contents

This member function overrides CBasePin: :Active and calls the renderer filter's
CBaseRenderer: :Active member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.]l!:I 8!1.11115 Topic Contents

CRendererln putPi n: :Al locator

CRendererinputPin Class

Page 2 of9

•=@• 1gnw

l@l§il!MM

l@l§i l!lltiM

Retrieves a pointer to the default memory allocator inherited from CBaseinputPin.

IMemAllocator* Allocator() const;

Return Values

1694

CRendererlnputPin Class Page 3 of9

Returns a pointer to an IMemAllocator interface.

Remarks

The returned pointer is CBaselnputPin:: m pAllocator.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •=@• 1gnw

CRendererlnputPin::BeginFlush

CRendererlnputPin Class

Informs the pin to begin a flush operation.

HRESULT BeginFlush();

Return Values

Returns an HRESULT value.

Remarks

This member function implements the I Pin:: BeqinFlush method. It overrides
CBaselnputPin:: BeqinFlush and calls the renderer filter's BeqinFlush member function before
calling the base class implementation.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

M Q '41 [.] lj,M I !!·HM Topic Contents lfflj[§il!¥M

CRendererln putPi n:: Brea kCon nect

CRendererlnputPin Class

Override this member function to add customized code upon breaking a connection.

HRESULT BreakConnect();

Return Values

1695

CRendererlnputPin Class Page 4 of9

Returns an HRESULT value.

Remarks

This member function overrides CBasePin:: BreakConnect and calls the renderer filter's
BreakConnect member function before calling the base class implementation.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

CRendererin putPi n: :CheckMed iaType

CRendererinoutPin Class

Override this member function to determine if the pin can support this specific media type.

HRESULT CheckMediaType(
const CMediaType *pmt
);

Parameters

pmt
Pointer to a media type object that contains the proposed media type.

Return Values

Returns an HRESULT value.

Remarks

This member function is typically called before calling the CRendererinputPin: :SetMediaType
member function.

This member function overrides CBasePin: :CheckMediaType and calls the pure virtual
CBaseRenderer: :CheckMediaType member function, which must be overridden.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i!!.llj,i Mh.J,,[5 Topic Contents i@faii!MM

CRendererin putPi n: :Com pleteCon nect

1696

CRendererlnputPin Class Page 5of9

CRendererinoutPin Class

Override this member function to inform the derived class when the connection process has
completed.

HRESULT CompleteConnect(
IPin *pReceivePin
);

Parameters

pReceivePin
Pointer to the connected (receiving) pin.

Return Values

Returns an HRESULT value.

Remarks

This member function overrides CBasePin: :CompleteConnect and calls the renderer filter's
CompleteConnect member function before calling the base class implementation.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

CRendererln putPi n: :CRendererln putPi n

CRendererinputPin Class

Constructs a CRendererinputPin object.

CRendererinputPin (
CBaseRenderer *pRenderer,
HRESULT *phr,
LPCWSTR Name
);

Parameters

pRenderer
Pointer to the rendering filter in the base class.

phr
Pointer to an HRESULT value.

Name

1697

lmli§lllMM

CRendererlnputPin Class Page 6 of9

Pin name.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@IJll!MM

CRendererinputPin::EndFlush

CRendererinputPin Class

Informs the pin to end a flush operation.

HRESULT Endflush(void);

Return Values

Returns an HRESULT value.

Remarks

This member function overrides CBaseinputPin:: End Flush and calls the renderer filter's
EndFlush member function before calling the base class implementation.

Note that because this is a renderer, it does not pass the flush on downstream.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+;<§1[.]ij,+ 11!.Hj Topic Contents l@IJll!MM

CRendererin putPi n:: EndOfStrea m

CRendererinputPin Class

Informs the pin that no additional data is expected until a new run command is issued.

HRESULT EndOfStream(void);

Return Values

1698

CRendererlnputPin Class Page 7 of9

Returns an HRESULT value.

Remarks

This member function implements the I Pin:: EndOfStream method. It calls CheckStreaming to
see that the filter is in a streaming state and then calls the CBaseRenderer: :EndOfStream
member function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§lllMM

CRendererlnputPin::lnactive

CRendererlnoutPin Class

Informs the pin that it is going into the inactive state.

HRESULT Inactive(void);

Return Values

Returns an HRESULT value.

Remarks

This member function overrides CBaselnputPin: :Inactive. It calls the renderer filter's
CBaseRenderer: :Inactive member function, which returns NOERROR by default.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM

CRendererlnputPin::Queryld

CRendererlnputPin Class

Retrieves an identifier for the pin.

HRESULT Queryid(
LPWSTR *Id
);

1699

Topic Contents i@i§ill@iM

CRendererlnputPin Class Page 8 of9

Parameters

Id
Pin identifier.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the I Pin: :Queryld method. It overrides the
CBasePin: :Queryld member function and assigns the string "In" to Id. Note that it uses the
Microsoft® Win32® CoTaskMemAlloc function to initialize Id, so the user is responsible for
freeing the format block by using CoTaskMemFree.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

CRendererlnputPin::Receive

CRendererlnoutPin Class

Returns the next block of data from the stream.

HRESULT Receive(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents lmli§lllMM

This member function implements the IMemlnputPin: :Receive method, and it overrides the
CBaselnputPin:: Receive member function, which it calls to verify formats.

This is a blocking synchronous member function. It blocks and waits until it is time for the
sample to be rendered. (It calls CBaseRenderer:: Receive, which actually does the blocking.)
Because only one sample is ever outstanding, this member function checks the media type and

1700

CRendererlnputPin Class Page 9 of9

calls CRendererinputPin: :SetMediaType to change the pin's media type if the sample's type has
changed.

Call the IUnknown: :AddRef method if you must hold the returned data block beyond the
completion of the CRendererinputPin::Receive member function. If you call AddRef, be sure
to call the IUnknown:: Release method upon completion of AddRef.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

CRendererln putPi n: :Set Med iaType

CRendererinputPin Class

Override this member function to set the media type of the pin.

HRESULT SetMediaType(
const CMediaType *pmt
);

Parameters

pmt
Pointer to a media type object that was previously agreed upon.

Return Values

Returns an HRESULT value.

Remarks

ifflj[§ii!¥M

This member function overrides CBasePin:: SetMediaType and calls the renderer filter's
SetMediaType member function, which returns NOERROR by default, after calling the base
class implementation.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1701

CRendererPosPassThru Class Page 1of4

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CRendererPosPassThru Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CMediaPosition

CPosPassThru

CRendererPosPassThru

The !Media Seeking interface is used to seek to a specifie sample, frame, or indexed field.
These values are indicated by a whole number, such as frame 20 of a sequence of 530.
However, when asked for a reference start or end time (in seconds), the sample must have
this information previOusly set. The CRendererPosPassThru class, implemented on the video
renderer, performs this service because the renderer is responsible for keeping track of
reference time and stream time.

Member Functions
Name Des<:rl ptio n
CRendererPosPassTu ri r Constructs a CRendererPosPassThri r object.
GetMediaTime Returns the media start and end times registered in the object.
RegisterMediaTime Registers the media start and end times with the object.
ResetMediaTime Resets the object's media start and end times.

+;•; 11.111,+ 111.1111s T op1c Contents l@i§Mlt§M

CRendererPosPassThru:: CRendererPosPassThru

CRendererPosPa$$Th ri r Class

1702

CRendererPosPassThru Class

Constructs a CRendererPosPassThru object.

CRendererPosPassThru(
const TCHAR *pName,
LPUNKNOWN pUnk,
HRESULT * phr,
IPin * pPin
);

Parameters

pName

Page 2 of 4

Name of the object used in the CRendererPosPassThru constructor for debugging
purposes.

pUnk
Pointer to the owner of this object.

phr
Pointer to an HRESULT value for resulting information.

pPin
Pointer to the input pin for the filter.

Return Values

No return value.

Remarks

Allocate the pName parameter in static memory. This name appears on the debugging terminal
upon creation and deletion of the object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.!j Topic Contents

MQl§i[.jlj,M 111.],.(j Topic Contents

CRendererPosPassTh ru: :GetMediaTi me

CRendererPosPassTh ru Class

Retrieves the current media start and end times registered in the object.

HRESULT GetMediaTime(
LONGLONG* pStartTime,
LONGLONG* pEndTime
);

1703

l@i§lllMM

l@i§lllMM

CRendererPosPassThru Class

Parameters

pStartTime
Returned starting media time.

pEndTime
Returned ending media time.

Return Values

Page 3 of 4

Returns an HRESULT value from the call to CPosPassThru: :ConvertTimeFormat for the start
and end times.

Remarks

This member function returns the media times set by the
CRendererPosPassThru:: RegisterMediaTime member function. The starting media time is
always returned. Set pEndTime to a nonzero value to retrieve the ending media time.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

CRendererPosPassThru::RegisterMediaTime

CRendererPosPassTh ru Class

Registers the media start and end times with the object.

HRESULT RegisterMediaTime(
IMediaSample *pMediaSample
),

HRESULT RegisterMediaTime(
LONGLONG pStartTime,
LONGLONG pEndTime
);

Parameters

pMediaSample
IMediaSample object containing the media times.

pStartTime
Returned starting media time.

pEndTime
Returned ending media time.

Return Values

1704

CRendererPosPassThru Class Page 4 of 4

Returns VFW E MEDIA TIME NOT SET if the sample does not have its media times set.
Otherwise, returns and HRESULT from the call to IMediaSamole: :GetTime.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§M MUMM

CRendererPosPassTh ru:: ResetMediaTi me

CRendererPosPassTh ru Class

Resets the object's media start and end times.

HRESULT ResetMediaTime(void);

Return Values

Returns NOERROR.

Remarks

Sets the start and stop times to zero.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1705

CSource Cl ass Page 1 of6

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CSource Class

(CBaseObject),

I INonDelegatingUnknown I
Ll(CUnknown

I IAMovieSetup

I IMediaFilter

I IBaseFilter

...__..__.I-{~ CBasefilter

~ CSource

I

I

)1

This class and its corresponding class, CSourceStream, simplify the construction of source
filters that produce continuous streams of data comparable to the way the Ciransformfi!ter
class assists in the creation of transform filters.

The CSource class provides a wrapper for the CBasefi!ter class that performs the pin
management and works with the CSo11reeStream class to provide the pins.

To use the CSource class to bui!d a filter:

• Derive your filter-level class from the <;Source class. Provide a Createinstance
member function in it to create a new object of the class.

• Provide a means of adding objects that are derived from the CSourceStream class to
support the output pins during construction of the class. You can either create them
yourself during construction or provide the developer with a means of creating them
later.

For an example of using the CSource class, see the Ba!! sample in the \Samples\DS\Ba!!
directory of the Mierosoft® DirectShow"' SDK Software Development Kit (SDK).

This class does not help bui!d an asynchronous file reader source filter, which requires support
of an lAsyncReader interface and a downstream parser filter that supports the CPu!!Pin class.

Protected Data Members
Name Description
m_cStatelock Locks this data member to serialize access to the filter state.
m_IPlns Number of pins on this filter; updated by the CSource: :AddPin and

CSource: :RemovePin member functions.
m_paStreams Array of streams associated with this filter.

1706

CSource Class

Member Functions
Name
Add Pin
CSource

Description
Adds a pin to the source filter.
Constructs a CSource object.

FindPinNumber Retrieves the number of the pin through the !Pin parameter.
GetPin Returns a pointer to a specified pin.
GetPinCount Gets the number of pins contained by the filter.
oStateLock
RemovePin

Returns a pointer to the filter-critical section.
Removes a pin from the source filter.

Implemented IBaseFilter Methods
Name Description
FindPin Retrieves a pointer to the pin with the specified identifier.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CSource::AddPin

CSource Class

Adds a pin to the source filter.

HRESULT AddPin(
CSourceStream * pStream
);

Parameters

pStream

MQl@[.jlj,M 11!.l:.!j

•;<MM+' •11·!:.!i

Topic Contents

Topic Contents

Pointer to the CSourceStream object associated with the pin.

Return Values

Returns S_OK if successful, or E_OUTOFMEMORY if no memory is available.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQi§1!.l+• 1 11·!:.!i Topic Contents

1707

Page 2of6

l@l§lllMM

l@i§lllMM

l@l§lllMM

CSource Class

CSource: :CSource

CSource Class

Initializes the CSource object.

CSource(
TCHAR *pName,
LPUNKNOWN /punk,
CLSID clsid
);

Parameters

pName
Debugging name of this object.

/punk

Page 3of6

Controlling IUnknown passed to the derived class's Createinstance function.
els id

Class identifier of the filters.

Return Values

No return value.

Remarks

The derived class could create the pins here, unless it provides a means for the developer to do
this.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents

+Qij[.jlj,M 111.l:.!9 Topic Contents

CSource::FindPinNumber

CSource Class

Retrieves the number of the pin supporting a given IPin interface.

int FindPinNumber(
IPin *iPin

1708

i@i§il!MM

l@i§il!MM

CSource Class

);

Parameters

iPin
IPin interface of the pin to retrieve.

Return Values

Returns the pin number or -1 if no matching pin number is found.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CSource: :GetPin

CSource Class

Returns a pointer to the specified pin.

CBasePin *GetPin(
int n
);

Parameters

n
Pin number of the requested pin.

Return Values

+Qi§1H++ 1 !!·HM Topic Contents

Returns the pointer to the pin or NULL if the index is out of range.

Remarks

Page 4of6

ifflj[§ii!¥M

This member function is specified in CBaseFilter and is implemented here. Note that this pin
interface will not have been reference counted when obtained.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 111.J,,[9 Topic Contents i@!§ii!¥M

CSource::GetPinCount

1709

CSource Class Page 5of6

CSource Class

Retrieves the number of pins contained by the filter.

int GetPinCount(void);

Return Values

Returns the pin count.

Remarks

This member function is specified in CBaseFilter and is implemented here.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§M MUMM

CSource::pStatelock

CSource Class

Retrieves a pointer to the filter-critical section.

CCritSec* pStatelock(void);

Return Values

Returns the critical section.

Remarks

Locking consists of holding the filter-critical section by calling the pStatelock member
function and using the returned object to serialize access to functions. Typically, this lock can
be held by a function when the worker thread might want to hold it. Therefore, to access a
shared state from the worker thread, add another critical-section object. The exception occurs
during the processing loop of the thread when it is safe to retrieve the filter-critical section
from within CSourceStream:: Fill Buffer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.l:.!9 Topic Contents l@i§lllMM

1710

CSource Class

CSource::RemovePin

CSource Class

Removes a pin from the source filter.

HRESULT RemovePin(
CSourceStream * pStream
);

Parameters

pStream
CSourceStream object associated with the pin.

Return Values

Returns S OK if successful or S FALSE if unsuccessful.

Remarks

Page 6 of6

The pStream parameter is not deleted. This member function adjusts pin locations in the
m oaStreams array.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1711

CSourcePosition Class Page 1of11

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CSourcePosition Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CMediaPosition

CSourcePosition

CSourcePosition iS an abstract class that assists source filters with the implementation of
IMediaPosition methods.

Derive from this class and set the duration and default stop positions. This class supports
IMediaPosition, and calls the pure virtual member !'unctions CSourcePosition: :ChangeStart.
CSourcePosition: :ChangeStop, and CSourcePosition: :ChangeRate when
CS01 rreePosjtjon ··pi rt Ci rrrentPosjtjon. CSo1 rrcePositjon ··pi rt StopTime. or
CSourcePosition: :put Rate is called, to allow a source filter to handle these commands and
start sending new data.

Override the CSourcePosition "Chao9eStart, CSourcePosition "Chan9eStop, and
CSourcePosition: :ChangeRate member functions to do something when the properties change.

Protected Data Members
Name Description
m_Duration Duration of the stream.
m_pLock Pointer to a CCritSec object for locking.
m_Rate Sample rate.
m_Start Start time.
m_Stop Stop time.

Member Functions
Name Description
CSourcePosition Constructs a CSouocePosition object.

Overridable Member Functions

1712

CSourcePosition Class Page 2of11

Name Description
ChangeRate Override this pure virtual to handle notification that the rate property has

changed.

ChangeStart Override this pure virtual to handle notification that the start position property
has changed.

ChangeStop Override this pure virtual to handle notification that the stop position property
has changed.

Implemented IMediaPosition Methods
Name Description
get CurrentPosition Not currently implemented.

Retrieves the total duration of the media.
Not currently implemented.

get Duration
get PrerollTime
get Rate
get StopTime

Retrieves the playback rate, relative to normal playback of the media.
Retrieves the position within the media at which playback should stop.

put CurrentPosition Sets the position within the media at which playback should start.
Not currently implemented. put PrerollTime

put Rate
put StopTime

Sets the playback rate, relative to normal playback of the media.
Sets the position within the media at which playback should stop.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i 111.],.[9 Topic Contents lfflj(§i +g!ti+

MQl@[.jjj,M 111.l:.!9 Topic Contents l@i§lllMM

CSourcePosition::ChangeRate

CSourcePosition Class

Override this member function to handle notification of a change of sample rate.

virtual HRESULT ChangeRate() PURE;

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

1713

CSourcePosition Class Page 3of11

Remarks

This member function is called when a change to the rate has been made by a call to
IMediaPosition:: put Rate. Override this and change the rate of data sent; typically, this will be
by a call to CBaseinputPin:: BeginFlush and CBaseinputPin:: End Flush, and then sending
samples marked with new time stamps.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

•;<MM+• Iii.HJ Topic Contents '®'*' 1gnw

CSourcePosition::ChangeStart

CSourcePosition Class

Override this member function to handle notification of a change of start time.

virtual HRESULT ChangeStart() PURE;

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

This member function is called when a new start position has been requested by a call to
IMediaPosition:: put CurrentPosition. Override this and change the data sent; typically, this will
be by a call to CBaseinputPin:: BeqinFlush and CBaseinputPin:: End Flush, and then sending
samples marked with new time stamps.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

•QB1!.l++ 111.q; Topic Contents l@i§il!MM

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

1714

CSourcePosition Class Page 4of11

CSourcePosition::ChangeStop

CSourcePosition Class

Override this member function to handle notification of a change in stop time.

virtual HRESULT ChangeStop() PURE;

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

This member function is called when a change to the stop position has been made by a call to
IMediaPosition:: put StopTime. Override this and ensure that the correct stop time is being
observed; typically, this will be a call to CBaselnputPin:: BeqinFlush and
CBaselnputPin:: End Flush, and then resending data.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents

+Qij[.jlj,M 111.1 1119 Topic Contents

CSou rcePosition: :CSou rcePosition

CSourcePosition Class

Constructs a CSourcePosition object.

CSourcePosition (
const TCHAR * pName,
LPUNKNOWN pUnk,

1715

l@!§il!MM

1@!§111¥+

CSourcePosition Class

HRESULT * phr,
CCritSec * pLock
);

Parameters

pName

Page 5of11

Name of the object used in the CSourcePosition constructor for debugging purposes.
pUnk

Pointer to the owner of this object.
phr

Pointer to an HRESULT value for resulting information.
pLock

Pointer to a CCritSec object used for locking.

Return Values

No return value.

Remarks

Allocate the pName parameter in static memory. This name appears on the debugging terminal
upon creation and deletion of the object.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

MQi§1[.]+• 1 !!·H¥ Topic Contents

CSou rcePosition: :get_ Cu rrentPosition

CSourcePosition Class

Currently not implemented.

HRESULT get_CurrentPosition(
REFTIME* pl/Time
);

Parameters

pl/Time
Returned start time as a double value in seconds.

Return Values

Returns E_NOTIMPL.

1716

i@fa11!¥M

i@fa11!¥M

CSourcePosition Class Page 6of11

Remarks

Override this method if you can return the data you are actually working on. The start position
is applied before the rate and therefore is the position at typical playback speed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j

CSou rcePosition: :get_Du ration

CSourcePosition Class

Retrieves the total duration of the media stream.

HRESULT get_Duration(
REFTIME* plength
);

Parameters

plength
Returned length of the media stream.

Return Values

Topic Contents

Returns E_ POINTER if pLength is invalid. Otherwise, returns S_OK.

Remarks

l@IJll!MM

The duration assumes normal playback speed; it is therefore unaffected by the rate.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.!j Topic Contents l@IJll!MM

CSou rcePosition: :get_Prerol ITi me

CSourcePosition Class

Validates the pointer, but the preroll retrieval is not currently implemented.

1717

CSourcePosition Class

HRESULT get_PrerollTime(
REFTIME* pl/Time
);

Parameters

pl/Time
Returned preroll time as a double value in seconds.

Return Values

Returns E_POINTER if pl/Time is invalid. Otherwise, returns E_NOTIMPL.

Remarks

Page 7of11

Preroll time is the time prior to the start position at which nonrandom access devices, such as
tape players, should start rolling.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

CSou rcePosition: :get_Rate

CSourcePosition Class

Retrieves the rate of playback relative to normal playback speed.

HRESULT get_Rate(
double * pdRate
);

Parameters

pdRate
Returned rate.

Return Values

Returns E_POINTER if pdRate is invalid. Otherwise, returns S_OK.

Remarks

ifflj[§ii!¥M

A rate of 1.0 indicates normal playback speed. A rate of 0.5 indicates half speed. A rate of -1.0
indicates normal speed in reverse.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1718

CSourcePosition Class

+Qi§1[.]++ 1 !!·HM

CSou rcePosition: :get_StopTi me

CSourcePosition Class

Retrieves the time at which the media stream stops.

HRESULT get_StopTime(
REFTIME* pl/Time
);

Parameters

pl/Time
Returned stop time as a double value in seconds.

Return Values

Topic Contents

Returns E_POINTER if pl/Time is invalid. Otherwise, returns S_OK.

Remarks

Page 8of11

i@l§ii!MM

The stop time is a position between zero and the duration of the media at which playback
should stop.

The stop position is applied before the rate and therefore is the position at typical playback
speed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 11!.l:.!9 Topic Contents

CSou rcePosition:: put_ Cu rrentPosition

CSourcePosition Class

Sets the time within the media stream that playback should begin.

HRESULT put_CurrentPosition(
REFTIME I/Time
);

1719

i@l§ii!MM

CSourcePosition Class Page 9of11

Parameters

I/Time
Start time expressed as a double value in seconds.

Return Values

Returns an HRESULT value from the call to CSourcePosition: :ChanqeStart.

Remarks

The start time is a position between zero and the duration of the media at which playback
should begin when the next run command is issued.

Setting the start position when paused causes playback to resume from the new start position
when the run command is issued.

The start position is applied before the rate and therefore is the position at typical playback
speed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j Topic Contents

CSou rcePosition:: put_Prerol ITi me

CSourcePosition Class

Not currently implemented.

HRESULT put_PrerollTime(
REFTIME I/Time
);

Parameters

I/Time
Preroll time to be set.

Return Values

Returns E~NOTIMPL.

Remarks

l@i§il!MM

Preroll time is the time prior to the start position at which nonrandom access devices, such as
tape players, should start rolling.

1720

CSourcePosition Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM

CSou rcePosition:: put_Rate

CSourcePosition Class

Sets the rate of playback relative to normal speed.

HRESULT put_Rate(
double dRate
);

Parameters

dRate
Rate to set.

Return Values

Topic Contents

Returns an HRESULT value from the call to CSourcePosition: :ChanqeRate.

Remarks

Page 10of11

lmll§I 11$8

This property allows an application to speed up or slow down playback relative to the normal
default playback speed. A rate of 1.0 indicates normal playback speed. Specifying 2.0 causes
playback at twice the normal rate: a video created for 10 frames per second (fps) will be
played back at 20 fps, if resources permit. Audio streams played back at above-normal speed
increase the pitch rather than drop frames.

Negative rates indicate reverse play. Not all media will support reverse play.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM Topic Contents l@i§i MUMM

CSourcePosition::put_StopTime

CSourcePosition Class

Sets the time at which the media stream will stop.

1721

CSourcePosition Class

HRESULT put_StopTime(
REFTIME I/Time
);

Parameters

I/Time
Stop time as a double value in seconds.

Return Values

Returns an HRESULT value from the call to CSourcePosition: :ChangeStoo.

Remarks

Page 11of11

The stop time is a position between zero and the duration of the media at which playback
should stop.

The stop position is applied before the rate and therefore is the position at typical playback
speed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1722

CSourceSeeking Class Page I of 18

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CSourceSeeking Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CSourceSeeking

CSourc~king is an abstract class that assists source filters with the implementation of
IMediaSeeking interface methods. This class enables a source filter to handle calls that change
the start and stop positions in the media stream and the playback rate.

Derive from this class and set the positions. This class supports IMediaSeeking. and calls the
pure virtual member functions CSourceSeeking • ·ChaogeStart, CSourceSeeking· ·ChaogeStop,
and CSourceSeeking: :ChangeRate when CSourceSeeking:: SetPositions or
CSourceSeeking::SetRate is called, to enable a source filter to handle these commands and
start sending new data.

Override the CSourceSeeking: :ChangeStart, CSourceSeeking: :ChangeStop, and
CSourceSeeking: :ChangeRate member functions to do something when the properties change.

Protected Data Members
Name Description
m_dRateSeeking Playback rate. Set to 1 by default.
m_dwSeekingCaps Seeking capabilities returned in the Getcapabilities function. Can be one

or more of the following values: AM SEEKING CanSeekForwarGls,

m_pl.(lck
m_rtDuration
m_rtStart
m_rtStop

Member Functions

AM SEEKING CanSeekBackwardS, AM SEEKING canSeekAbsolute,
AM SEEKING CanGetStopPos, AM SEEKING CanGetDuration. Set to all
of these by default.
Pointer to a CCritSec object for locking.
Duration of the stream. Set to m rtStop by default.
Start time. Set to :zero by default.
Stop time. Set to the largest positive 64-bit integer possible
(9.2.2337.2036554775507) by default.

Name Description
CSourceSeeking Constructs a CSourceSeeking object.

1723

CSourceSeeking Class Page 2of18

Overridable Member Functions
Name Description
ChanqeRate Override this pure virtual to handle notification of a change of sample rate.
ChanqeStart Override this pure virtual to handle notification of a change of start time.
ChanqeStop Override this pure virtual to handle notification of a change in stop time.

Implemented IMediaSeeking Methods
Name
CheckCapabilities

ConvertTi me Format

GetAvailable

GetCapabilities

GetCurrentPosition
GetDuration
Get Positions
GetPreroll
GetRate

Description
Checks that all requested capabilities are in m dwSeekingCaps.
Checks that the time format is TIME FORMAT_MEDIA_TIME. This is the
only format currently available.
Retrieves the range of seeking times. Earliest is zero and latest is the
media stream's duration.
Retrieves the current seeking capabilities in m dwSeekingCaps.
Not currently implemented.
Retrieves the length of time the media stream will play.
Retrieves the current start and stop position settings.
Sets the preroll time to zero.
Retrieves the current playback rate.

GetStopPosition Retrieves the position within the media stream at which playback
should stop.

GetTimeFormat Sets the time format to TIME_FORMAT_MEDIA_TIME. This is the only
format currently supported.

IsFormatSupported Determines if the requested format is TIME_FORMAT _MEDIA_TIME.
This is the only format currently supported.

IsUsingTimeFormat Determines if the requested format is TIME_FORMAT _MEDIA_TIME.
This is the only format currently supported.

QueryPreferredFormat Sets the preferred time format to TIME_FORMAT_MEDIA_TIME. This is
the only format currently supported.

SetPositions

SetRate
SetTi meFormat

Sets current and stop positions, first checking that the seeking options
are valid.
Sets the playback rate.
Checks that the time format is TIME FORMAT_MEDIA_TIME. This is the
only format currently supported.

Implemented INonDelegatingUnknown Methods
Name Description
NonDelegatinqQueryinterface Retrieves an interface and increments the reference count on

the interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• A Mi[.]+• I![.],.[. Topic Contents •@M* 1gnw

• QIM [.] +• I !!·HM Topic Contents l@l§il!MM

1724

CSourceSeeking Class Page 3of18

CSourceSeeking::ChangeRate

CSourceSeeking Class

Override this member function to handle notification of a change of sample rate.

virtual HRESULT ChangeRate() PURE;

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

This member function is called when a change to the rate has been made by a call to the
CSourceSeeking: :SetRate function. Override this and change the rate of data sent. Typically,
you do this by calling CBaselnputPin:: BeginFlush and CBaseinputPin:: End Flush, and then send
samples marked with new time stamps, for example, with an implementation NewSegment
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.!j Topic Contents l@i§lllMM

MQl§i[.jlj,M 111.],.(j Topic Contents l@i§lllMM

CSourceSeeking::ChangeStart

CSourceSeekinq Class

Override this member function to handle notification of a change of start time.

virtual HRESULT ChangeStart() PURE;

Return Values

1725

CSourceSeeking Class Page 4of18

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

This member function is called when a new start position has been requested by a call to
CSourceSeeking: :SetPositions. Override this and change the data sent. Typically, you do this
by calling CBaseinputPin:: BeginFlush and CBaseinputPin:: End Flush, and then send samples
marked with new start time, for example, with an implementation NewSegment method.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

MQi§1[.]1!,i 1 !!·HM Topic Contents i@faii!MM

CSourceSeeking::ChangeStop

CSourceSeeking Class

Override this member function to handle notification of a change in stop time.

virtual HRESULT ChangeStop() PURE;

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E FAIL Failure.
E_ POINTER Null pointer argument.
E INVALIDARG Invalid argument.
E_ NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

This member function is called when a change to the stop position has been made by a call to

1726

CSourceSeeking Class Page 5of18

CSourceSeeking: :SetPositions. Override this and ensure that the correct stop time is being
observed. Typically, you do this by calling CBaseinputPin:: BeginFlush and
CBaseI n p utPi n: : End Flush, and then send samples marked with new stop ti me, for example,
with an implementation NewSegment method.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

MQl§i[.jjj,M 111.],.[M Topic Contents lfflj(§i MUMM

CSou rceSeeki ng: :CheckCa pa bi I ities

CSourceSeeking Class

Checks that all the requested capabilities are among the flags in m dwSeekingCaps.

HRESULT CheckCapabilities(
DWORD * pCapabilities
);

Parameters

pCapabilities
Pointer to an AM_SEEKING_CAPABILITIES enumerator containing the desired seeking
capabilities flags in m dwSeekingCaps. This value can be any combination of the
following flags:
AM SEEKING CanGetCurrentPos
AM_SEEKI NG_ Ca nGetDu ration
AM_SEEKI NG_ Ca nGetStop Pos
AM_SEEKI NG_ Ca nPlayBackwa rds

AM SEEKING CanSeekAbsolute
AM SEE KI NG_ Ca nSeekBackwa rds
AM SEE KI NG_ Ca nSeekForwa rds

Return Values

Returns E_POINTER if pCapabilities is not a valid pointer, S_OK if all the requested capabilities
in pCapabilities are supported, or S_FALSE if they are not.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!l.! 111M Topic Contents l@i§lllMM

MQIM!.l+' Ill.HM Topic Contents l@i§lllMM

1727

CSourceSeeking Class Page 6of18

CSou rceSeeki ng: :ConvertTi meFormat

CSourceSeekinq Class

Checks that the time format is TIME_FORMAT_MEDIA_TIME. This is the only format currently
available.

HRESULT ConvertTimeFormat(
LONGLONG * pTarget,
const GUID * pTargetFormat,
LONGLONG Source,
const GUID * pSourceFormat
);

Parameters

pTarget
Time set to Source time if the format is TIME FORMAT_MEDIA_TIME or NULL.

pTargetFormat
GUID of the TIME_FORMAT _MEDIA_ TIME format, or NULL.

Source
Time in original format.

pSourceFormat
.G..U.lQ of the TIME_FORMAT _MEDIA_ TIME format, or NULL.

Return Values

Returns E_POINTER if pTarget is not a valid pointer, or E_INVALIDARG if pTargetFormat and
pSourceFormat are not equal to TIME_FORMAT_MEDIA_TIME or NULL; otherwise, returns
S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents ittfjl§M MUMM

+Qij[.jlj,M 111.l:.!9 Topic Contents l@i§lllMM

CSourceSeeking::CSourceSeeking

CSourceSeekinq Class

Constructs a CSourceSeekinq object.

1728

CSourceSeeking Class

CSourceSeeking(
const TCHAR * pName,
LPUNKNOWN pUnk,
HRESULT * phr,
CCritSec * plock
);

Parameters

pName

Page 7of18

Name of the object used in the CSourceSeeking constructor for debugging purposes.
pUnk

Pointer to the owner of this object.
phr

Pointer to an HRESULT value for information about the results of creating this object.
pLock

Pointer to a CCritSec object used for synchronization within a process.

Return Values

No return value.

Remarks

Allocate the pName parameter in static memory. This name appears on the debugging terminal
upon creation and deletion of the object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9

+Qij[.jlj,M 111.l:.!9

CSou rceSeeki ng: :GetAva i la ble

CSourceSeeking Class

Returns the range of seeking times.

HRESULT GetAvailable(
LONGLONG * pEarliest,
LONGLONG * platest
);

Parameters

pEarliest

1729

Topic Contents lfflj(§l l!l¥1M

Topic Contents l@i§lllMM

CSourceSeeking Class

Earliest time that can be seeked to. Set to zero.
pLatest

Latest time that can be seeked to. Set to m rtDuration.

Return Values

Returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j

CSou rceSeeki ng: :GetCa pa bi I ities

CSourceSeeking Class

Retrieves the seeking capabilities of the media stream.

HRESULT GetCapabilities(
DWORD * pCapabilities
);

Parameters

pCapabilities

Page 8of18

Topic Contents l@i§lllMM

Set to the seeking capability flags in m dwSeekingCaos, which can be any combination
of the following:
AM SEEKING_CanGetCurrentPos
AM_SEEKI NG_Ca nGetDu ration
AM_SEEKI NG_Ca nGetStop Pos
AM_SEEKI NG_Ca nPlayBackwa rds
AM SEEKING_CanSeekAbsolute
AM SEEKING_CanSeekBackwards
AM SEEKING_CanSeekForwards

Return Values

Returns E_ POINTER if pCapabilities is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQi§i[.jlj,M 111.Hj Topic Contents

MQl§i[.]lj,+ '!!·Hi Topic Contents

1730

'®'*' 1gnw

l@i§il!MM

CSourceSeeking Class

CSou rceSeeki n g:: GetC u rrentPosition

CSourceSeeking Class

Not currently implemented.

HRESULT GetCurrentPosition(
LONGLONG* pCurrent
);

Parameters

pCurrent
Current position in current time format units.

Return Values

Returns E_NOTIMPL.

Remarks

This function is typically supported only in renderers and not in source filters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9

CSou rceSeeki ng: :GetDu ration

CSourceSeeking Class

Retrieves the length of time that the media stream will play.

HRESULT GetDuration(
LONGLONG* pDuration
);

Parameters

pDuration

Topic Contents

Duration of the media stream set to the value in m rtDuration.

Return Values

1731

Page 9of18

l@!§il!MM

CSourceSeeking Class Page 10of18

Returns E_POINTER if pDuration is invalid; otherwise, returns S_OK.

Remarks

The duration in m rtDuration is set to the stop time in m rtStop. Set the stop time with the
CSourceSeeking: :SetPositions function.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M lh.l:.!5

CSou rceSeeki ng: :GetPositions

CSourceSeeking Class

Retrieves the current and stop position settings.

HRESULT GetPositions(
LONGLONG * pCurrent,
LONGLONG * pStop
);

Parameters

pCurrent
Current start time set to the value in m rtStart.

pStop
Current stop time set to the value in m rtStop.

Return Values

Returns S_OK.

Remarks

Topic Contents

The start and stop times are set in the CSourceSeeking:: SetPositions function.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M lh.l:.!5 Topic Contents

CSourceSeeking: :GetPreroll

1732

i@faiilMM

i@faiilMM

CSourceSeeking Class

CSourceSeekinq Class

Sets the preroll time to zero.

HRESULT GetPreroll(
LONGLONG * pPreroll
);

Parameters

pPreroll
Returned preroll time of zero.

Return Values

Returns E_POINTER if pPreroll is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM

CSourceSeeking: :GetRate

CSourceSeekinq Class

Retrieves the current playback rate.

HRESULT GetRate(
double * pdRate
);

Parameters

pdRate

Topic Contents

Page 11 ofl8

ifflj[§ii!¥M

Returned playback rate set to the value in m dRateSeekinq, where 1 is the normal rate.

Return Values

Returns E_POINTER if pdRate is invalid; otherwise, returns S_OK.

Remarks

Set the rate in the CSourceSeekinq: :SetRate function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1733

CSourceSeeking Class

+Qi§1[.]++ 1 !!·HM Topic Contents

CSou rceSeeki ng: :GetStopPosition

CSourceSeeking Class

Retrieves the position within the media stream at which playback should stop.

HRESULT GetStopPosition(
LONGLONG* pStop
);

Parameters

pStop
Returned stop time set to the value in m rtStop.

Return Values

Returns E_POINTER if pStop is invalid; otherwise, returns S_OK.

Remarks

Set the stop time in the CSourceSeeking:: SetPositions function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

CSou rceSeeki ng: :GetTi me Format

CSourceSeeking Class

Page 12ofl8

i@l§ii!MM

i@l§ii!MM

Sets the time format to TIME_ FORMAT_MEDIA_TIME, which determines the format of units
used during seeking.

HRESULT GetTimeFormat(
const GUID * pFormat
);

Parameters

1734

CSourceSeeking Class

pFormat
Media time format set to TIME_FORMAT_MEDIA_TIME.

Return Values

Returns E_ POINTER if pFormat is invalid; otherwise, returns S_OK.

Remarks

TIME_FORMAT _MEDIA_ TIME is the only time format currently supported.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents

CSourceSeeking::IsFormatSupported

CSourceSeeking Class

Determines if the requested format is TIME_FORMAT_MEDIA_TIME.

HRESULT IsFormatSupported(
const GUID * pFormat
);

Parameters

pFormat
Time format to compare to TIME_FORMAT _MEDIA_TIME.

Return Values

Returns E_POINTER if pFormat is invalid, S_OK if the format in pFormat is
TIME_ FORMAT _ MEDIA_ TIME, or S_FALSE if the format in pFormat is not
TIME_ FORMAT _ MEDIA_ TIME.

Remarks

Page 13of18

l@i§lllMM

TIME_FORMAT _MEDIA_ TIME is the only time format currently supported. As implemented, this
function is the same as CSourceSeeking: :IsUsingTimeFormat.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

1735

CSourceSeeking Class

CSou rceSeeki ng: :lsUsi ngTi me Format

CSourceSeeking Class

Determines if the requested format is TIME_FORMAT_MEDIA_TIME.

HRESULT IsUsingTimeFormat(
const GUID * pFormat
);

Parameters

pFormat
Time format to compare to TIME_ FORMAT _ MEDIA_TIME.

Return Values

Returns E_POINTER if pFormat is invalid, S_OK if the format in pFormat is
TIME_FORMAT _MEDIA_ TIME, or S_FALSE if the format in pFormat is not
TIME_FORMAT _MEDIA_ TIME.

Remarks

Page 14ofl8

TIME_FORMAT _MEDIA_ TIME is the only time format currently supported. As implemented, this
method is the same as CSourceSeeking:: IsFormatSupoorted.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents ifflj(§il!MM

CSourceSeeking::NonDelegatingQuerylnterface

CSourceSeeking Class

Retrieves an interface and increments the reference count on the interface.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void **ppv
);

Parameters

riid
Reference identifier.

1736

CSourceSeeking Class

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

Page 15of18

Returns pointers to the IMediaSeekinq and IUnknown interfaces by default. Override this
method to publish any additional interfaces implemented by the derived class.

This member function implements the INonDelegatinqUnknown: :NonDelegatinqQueryinterface
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

CSou rceSeeki n g:: Q ueryPreferred Format

CSourceSeekinq Class

Sets the preferred time format to TIME_FORMAT_MEDIA_TIME.

HRESULT QueryPreferredFormat(
GUID *pFormat
);

Parameters

pFormat
Time format set to TIME_FORMAT_MEDIA_TIME.

Return Values

Returns E_POINTER if pFormat is invalid; otherwise, returns S_OK.

Remarks

TIME_FORMAT _MEDIA_ TIME is the only time format currently supported.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 11ij Topic Contents

1737

l@i§lllMM

CSourceSeeking Class Page 16of18

CSou rceSeeki ng: :SetPositions

CSourceSeekinq Class

Sets current and stop positions, first checking that the seeking options are valid.

HRESULT SetPositions(
LONGLONG * pCurrent,
DWORD CurrentFlags,
LONGLONG * pStop,
DWORD StopF/ags
);

Parameters

pCurrent
Start position if stopped, or position to continue from if paused.

CurrentFlags
Flags that indicate the type of seek. Valid values are AM_SEEKING_AbsolutePositioning
and AM_SEEKING_RelativePositioning. See the IMediaSeekinq: :SetPositions method for a
description of these flags.

pStop
Position in the stream at which to quit playback.

StopFlags
Flags that indicate stop position seeking options. Valid values are
AM_SEEKING_AbsolutePositioning, AM_SEEKING_RelativePositioning, and
AM_SEEKING_IncrementalPositioning. See the IMediaSeeking: :SetPositions method for a
description of these flags.

Return Values

Returns E_INVALIDARG if CurrentFlags and StopF/ags are not one of the values listed, or
E_POINTER if pCurrent or pStop is invalid; otherwise, returns the HRESULT returned by calls to
the CSourceSeekinq: :ChanqeStart and CSourceSeekinq: :ChanqeStop functions.

Remarks

You must implement ChanqeStart and ChanqeStop to use this method.

See Also

CSourceSeeki ng: : GetPositions, CSou rceSeeking: : GetStopPosition,
CSourceSeeking: :GetDuration

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents

1738

l@i§il!MM

CSourceSeeking Class

+Qi§1[.]++ 1 !!·HM

CSourceSeeking: :SetRate

CSourceSeeking Class

Sets a new playback rate.

HRESULT SetRate(
double dRate
);

Parameters

dRate

Page 17of18

Topic Contents i@l§ii!MM

New rate, where 1.0 is the normal normal playback speed. Specifying 2.0 causes
playback at twice the normal rate: a video created for 10 frames per second (fps) will be
played back at 20 fps, if resources permit. Audio streams played back at above-normal
speed increase the pitch rather than drop samples. A rate of 0.5 specifies half speed.

Return Values

Returns the HRESULT value returned by the call to the CSourceSeeking: :ChangeRate function.

Remarks

You must implement ChanqeRate to use this method. The m dRateSeekinq data member is set
to the new rate. Setting the rate to zero causes an error.

See Also

CSourceSeekinq: :GetRate

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§i[.]jj,+ +II.HM Topic Contents Mttfjl§i +gn+

CSourceSeeking::SetTimeFormat

CSourceSeekinq Class

Checks that the requested format is TIME_FORMAT_MEDIA_TIME.

1739

CSourceSeeking Class

HRESULT SetTimeFormat(
const GUID * pFormat
);

Parameters

pFormat
Time format to compare to TIME_FORMAT_MEDIA_TIME.

Return Values

Returns E_POINTER if pFormat is invalid, S_OK if the format in pFormat is
TIME_FORMAT _MEDIA_ TIME, or E_INVALIDARG if the format in pFormat is not
TIME FORMAT _MEDIA_ TIME.

Remarks

TIME_FORMAT _MEDIA_ TIME is the only time format currently supported.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1740

Page 18 ofl8

CSourceStream Cl ass Page 1 of 12

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CSourceStream Class

(CBaseObject),

I INonDelegatingUnknown I
Ll.(CUnknown)i

I I~n I
I IQualityControl R

~~1-<, CBasePin)1

~ CBaseOutputPin)i

(CAMThread),

~ CSourceStream):

04lrive from this class to provide a class that creates the data stream from one of the output
pins. It should be used with an object that is derived from the csoorce class derived object to
provide the filter-level object.

The CSourceStream class creates a worker thread to push data downstream when the filter
enters a paused or running state. The thread first calls the CSourceStream: :OnThreadCreate
member function. If this succeeds, it will loop, calling the CSourceStream· •fi!!B1rffer member
function until the CSourceStream:: Inactive member function stops it. As the thread quits, it
calls the CSourceStream: :OnThreadDestroy member function. If OnThreadCreate fails,
OnThreadDestroy is called, and the active member fUnction will fail.

To use the CSourceStream class, supporting a single media type, carry out the following
steps.

1. Override the CSourceStream:: GetMediaTupe member fUnction to report: the supported
output format.

2. Override the CSourceStream:: FillBuffer member function with a means of filling out each
IMediaSample object with data.

To use the CSourceStream class, supporting multiple media types, carry out the following.

1. Override the CSourceStream:: CheckMediaTupe and CSourceStream: :GetMedia Type
member functions to report the supported media types (for more information, see the
CBaseMediafilter class).

2. Override the CSoorceStream" Fi!!Boffer member function with a means of filling out each
IMediaSample object with data.

See SAMPLES\DS\BALL in the Microsoft® DirectShow"' SDK Software 04lvelopment Kit (SDK)

1741

CSourceStream Class Page 2of12

for an example of a pin supporting multiple types.

If you want more complex management of your worker thread, you can override most of the
associated member functions. See Samples\DS\Vidcap in the Microsoft DirectX Media Software
Development Kit (SDK) for an example.

Member Functions
Name Description
Active Called by the CBaseMediaFilter class to start the worker thread.
CheckReguest Determines if a command is waiting for the thread.
CSourceStream Constructs a CSourceStream object.
Exit Called by the CSourceStream: :Inactive member function to exit the worker

thread.
Get Request

Inactive
Retrieves the next command for the thread.
Called by the CBaseMediaFilter member function to shut down the worker
thread.
Called by the CSourceStream: :Active member function to initialize the worker
thread.
Pauses the stream of the worker thread. This will acquire all necessary
resources.
Starts the worker thread generation of a media sample stream.
Stops the stream.

Overridable Member Functions
Name
CheckMed iaType

Description
Determines if a specific media type is supported. Override this
member function if you use multiple types.

DoBufferProcessingLoop Loops, collecting a buffer and calling the CSourceStream: :FillBuffer

Fill Buffer

GetMediaType

OnThreadCreate

0 n Th read Destroy

OnThreadStartPlay

ThreadProc

processing function.
Override this member function to fill the stream buffer during the
creation of a media sample.
Retrieves the media type or types that this pin supports; override the
appropriate version of this member function to support one or
multiple media types.

Called as the worker thread is created; override this member function
for special processing.

Called during the destruction of a worker thread; override this
member function for special processing.

Called at the start of processing Pause or Run command; override this
member function for special processing.

Override this member function to create a custom thread procedure.

Implemented IPin Methods
Name Description
Queryid Retrieves an identifier for the pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<MM++ 1 11·1::'¥ Topic Contents i@i§ll!¥+

1742

CSourceStream Class

+Qi§1[.]++ 1 !!·HM

CSourceStream::Active

CSourceStream Class

Starts the worker thread.

HRESULT Active(void);

Return Values

Returns an HRESULT, which can be one of the following:
Value Meaning
E_ FAIL Thread could not start.
S_FALSE Pin is already active.

S OK Thread was started successfully.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§1[.]++ 111.],.[9

Topic Contents

Topic Contents

CSourceStream::CheckMediaType

CSourceStream Class

Determines if this pin supports the supplied media type.

virtual HRESULT CheckMediaType(
CMediaType *pMediaType
);

Parameters

pMediaType
Media type to check.

Return Values

Page 3of12

i@l§ii!MM

Mttfjl§ii!MM

Returns S_OK if the media type is supported, S_FALSE if it isn't, or E_INVALIDARG if
pMediaType is invalid.

1743

CSourceStream Class Page 4of12

Remarks

Override this member function if you support multiple media types. Test explicitly for S_OK to
determine if this function succeeded; do not use the SUCCEEDED macro.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j

CSourceStream::CheckRequest

CSourceStream Class

Determines if a command is waiting for the thread.

BOOL CheckRequest(
Command *pCom
);

Parameters

pCom

Topic Contents

Pointer to the location to which to return a command, if any.

Return Values

l@IJll!MM

Returns TRUE if the pCom parameter contains a command; otherwise, returns FALSE.

Remarks

This member function does not block. This is a type safe override of the method in the
CAMThread class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 111j Topic Contents l@IJll!MM

CSourceStream::CSourceStream

CSourceStream Class

Creates a CSourceStream object.

1744

CSourceStream Class

CSourceStream (
TCHAR *pObjectName,
HRESULT *phr,
CSource *pms,
LPCWSTR pName
);

Parameters

pObjectName
Name of the object.

phr
Resulting value for this constructor.

pms
Pointer for the CSource object.

pName
Name of the pin.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 11!.l:.!j

+QiM!.l+' •11·!:.!i

Page 5of12

Topic Contents l@i§lllMM

Topic Contents l@i§lllMM

CSourceStream::DoBufferProcessingloop

CSourceStream Class

Loops, collecting a buffer and calling the CSourceStream:: Fill Buffer processing function.

virtual HRESULT DoBufferProcessingLoop(void);

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M M!i.! 111j Topic Contents l@i§lllMM

1745

CSourceStream Class Page 6of12

CSourceStream::Exit

CSourceStream Class

Causes the thread to exit.

HRESULT Exit(void);

Return Values

Returns NOERROR if the member function was received.

Remarks

If the thread returns an error, it sets the return value of the CSourceStream: :ThreadProc
member function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lllMM

CSourceStream::FillBuffer

CSourceStream Class

Fills the stream buffer during the creation of a media sample that the current pin provides.

virtual HRESULT FillBuffer(
IMediaSample *pSample
) PURE;

Parameters

pSample
IMediaSample buffer to contain the data.

Return Values

Returns an HRESULT value.

Remarks

The CSourceStream: :ThreadProc member function calls the CSourceStream::FillBuffer
member function. The derived class must supply an implementation of this member function.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

1746

CSourceStream Class

+Qi§1[.]++ 1 !!·HM Topic Contents

CSourceStream::GetMediaType

CSourceStream Class

Fills out the fields of the CMediaType object to the supported media type.

virtual HRESULT GetMediaType(
int iPosition,
CMediaType *pMediaType
);

virtual HRESULT GetMediaType(
CMediaType *pMediaType
);

Parameters

iPosition

Page 7of12

i@l§ii!MM

Position of the media type within a list of multiple media types. Range is zero through n.
pMediaType

Pointer to a CMediaType object to be set to the requested format.

Return Values

Returns one of the following HRESULT values.
Value Meaning
Error Code Media type could not be set.
S_FALSE Media type exists but is not currently usable.
S_OK Media type was set.
VFW_S_NO_MORE_ITEMS End of the list of media types has been reached.

Remarks

This member function sets the requested media type. If only a single media type is supported,
override this member function with the single-parameter definition. Only the default
implementations of the CSourceStream: :CheckMediaType and
CSourceStream::GetMediaType member functions call the single media type member
function.

Override the single-version GetMediaType or the two-parameter version, CheckMediaType.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§i[.]ii,+ +II.HM Topic Contents Mttfjl§i +gn+

1747

CSourceStream Class Page 8of12

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CSourceStream::GetRequest

CSourceStream Class

Retrieves the next command for the thread.

Command GetRequest(void);

Return Values

Returns the next command.

Remarks

This member function blocks until a command is available. It is a type safe override of the
member function in the CAMThread class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M M!i.! 111M Topic Contents i@l§ii!MM

CSou rceStrea m: :Inactive

CSourceStream Class

Identifies a pin as inactive and shuts down the worker thread.

HRESULT Inactive(void);

Return Values

Returns an HRESULT value, including the following values.
Value Meaning
S_OK Thread exited successfully.
S_FALSE Pin is already inactive.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§i +g¥+

1748

CSourceStream Class

CSourceStream::lnit

CSourceStream Class

Initializes the worker thread.

HRESULT Init(void);

Return Values

Returns an HRESULT value, including the following values.
Value Meaning
S_OK Thread was initialized successfully.
S_FALSE Thread was already initialized.

Remarks

The CSourceStream: :Active member function calls this member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

CSourceStream::OnThreadCreate

CSourceStream Class

Starts or stops a process upon the creation of a thread.

virtual HRESULT OnThreadCreate(void);

Return Values

Returns an HRESULT value, including the following values.
Value Meaning
NOERROR No error occurred.

Error code Thread should exit.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Qi§i[.]ii,+ 1 !1·HM

1749

Topic Contents

Page 9of12

i@l§ii!MM

Mttfjl§ii!MM

CSourceStream Class

CSourceStream::OnThreadDestroy

CSourceStream Class

Starts or stops a process upon the destruction of a thread.

virtual HRESULT OnThreadDestroy(void);

Return Values

Page 10of12

Returns either NOERROR or an HRESULT value (greater than zero) that indicates an error.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j Topic Contents

CSourceStream::OnThreadStartPlay

CSourceStream Class

Starts a process upon the beginning of the playing of the thread.

virtual HRESULT OnThreadStartPlay(void);

Return Values

Default implementation returns NOERROR.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ1§1[.]jj,+ '!!·Hi

CSourceStream::Pause

CSourceStream Class

Pauses a media sample stream.

1750

Topic Contents

l@l§il!MM

l@l§il!MM

CSourceStream Class

HRESULT Pause(void);

Return Values

Returns an HRESULT value, including the following value.
Value Meaning
S_OK Thread paused successfully.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 Ill.HM

CSourceStream::Run

CSourceStream Class

Starts a media sample stream.

HRESULT Run(void);

Return Values

Topic Contents

Returns S_OK if successful; otherwise, returns an HRESULT error value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M 111.1 1119 Topic Contents

CSourceStream::Stop

CSourceStream Class

Stops a media sample stream.

HRESULT Stop(void);

Return Values

Returns S_OK if successful; otherwise, returns an HRESULT error value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1751

Page 11of12

l@fa* 1gnw

l@fail!MM

CSourceStream Class Page 12of12

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CSourceStream::ThreadProc

CSourceStream Class

Implements the thread procedure.

virtual DWORD ThreadProc(void);

Return Values

Returns 0 if the thread completed successfully and 1 otherwise. If 1, the thread's resources
might still be allocated.

Remarks

When this member function returns, the thread exits. Override this member function if the
provided version is not sophisticated enough.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1752

CSystem CI ock Class Page I of 4

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CSystemClock Class

(CBaseObject),

I INonDelegatingUnknown I
Ll.(CUnknown)i

(CCritSec 1

I IReferenceClock R

~~~1 -<C CBaseReferenceClock } 

I !Persist I 
Li( CSystemClock )1 

The CSystemClock class implements a system clock that provides time information and timing 
signals to an application. It uses the caaseReterenceC!oc!< base class to provide most of that 
functiOna!ity, adding persistence. 

CSystemClock implements the !Persist interface. For more implementation information, see 
"OLE Programmers Reference (Vol. 1 ): Structured Storage Overview." 

Member Functions 
Name Description 
Createinstance Creates an instance of a system clock. 
CSystemClock Constructs a CSystemClock object. 

Implemented !Persist Methods 
Name Description 
GetC!assID Returns the class identifier for this clock (CLSID SystemClock}. 

Implemented INonDelegatlngUnknown Methods 
Name Description 
NonDe!egatingOueryinterface Passes out pointers to IID )Persist, and calls the base clock for 

other interface queries. 

HQ!§ 11.i!l,9 Mii.11119 T op1c Contents 

+;•;"·II'* e11.1,,19 Topic Contents '@'4M't§+ 

1753 



CSystemClock Class 

CSystemClock: :Createlnsta nee 

CSystemClock Class 

Creates a new instance when placed in the factory template table. 

static CUnknown * WINAPI Createinstance( 
LPUNKNOWN pUnk, 
HRESULT *phr 
); 

Parameters 

pUnk 
Pointer to LPUNKNOWN. 

phr 
Pointer to an HRESULT value in which to return resulting information. 

Return Values 

Returns a pointer to a new Component Object Model (COM) object. 

Remarks 

Page 2 of 4 

This member function is required to create objects using the class factory. It calls the class 
constructor. 

The phr parameter will be modified only if a failure occurs. If it is a failure code on input, 
construction can be terminated, but in any case the destructor will be called by the creator 
when the HRESULT error is detected. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+;<§1[.]lj,i 111.],.[9 

CSystemClock: :CSystemClock 

CSystemClock Class 

Constructs a CSystemClock object. 

CSystemClock( 
TCHAR *pName, 

1754 

Topic Contents ittfjl§M MUMM 



CSystemClock Class 

LPUNKNOWN pUnk, 
HRESULT *phr 
); 

Parameters 

pName 
Name of this object (used for debugging only). 

pUnk 
Pointer to the controlling IUnknown interface. 

phr 
Pointer to the HRESULT value that will be set if an error occurs. 

Return Values 

No return value. 

Remarks 

Page 3 of 4 

If phr points to something other than S_OK upon entry, the object will not be constructed. If 
an error occurs during construction, this variable will be set; otherwise, its contents will not be 
altered. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

• Q<M [.] +• I![.],.[. 

MQi§1[.]1!,i 1 !!·HM 

CSystemClock: :GetClasslD 

CSystemClock Class 

Retrieves the class identifier for this clock. 

HRESULT GetClassID( 
CLSID *pC/sID 
); 

Parameters 

pC/sID 

Topic Contents 

Topic Contents 

Pointer to a CLSID structure which is filled with CLSID_SystemClock. 

Return Values 

Returns an HRESULT value. 

1755 

•@M* 1gnw 

i@faii!MM 



CSystemClock Class Page 4 of 4 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8 

CSyste me lock:: Non Delegati ngQ ueryl nte rf ace 

CSystemClock Class 

Returns an interface and increments the reference count. 

H RESULT Non Delegati ngQueryinterface( 
REFIID riid, 
void** ppv 
); 

Parameters 

riid 
Reference identifier. 

ppv 
Pointer to the interface. 

Return Values 

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or 
E_NOINTERFACE if it is not. 

Remarks 

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryinterface 
method and passes out references to the IReferenceClock, IPersist, and IUnknown interfaces. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

1756 



CTransformFilter Class Page 1 of 18 

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM 

CTransformFilter Class 

( CBaseObject ), 

I INonDelegatingUnknown I 
Ll( CUnknown 

I IAMovieSetup I 
I IMediaFilter I 
I IBaseFilter 

...__..__.I-{~ CBasefilter 

~ CTransformfilter )1 

CTransformFilter is an abstract base class that support:s a simple transform filter with a 
single input and a single output. It is derived from the C!lnknown class, and it supports the 
IBaseFi!ter interface. Each pin, declared as Friends in this class, supports the !Pin interface and 
uses the shared memory transport based on the IMeminoutPin interface. The filter uses 
classes derived from the CBaseFi!ter class to support IBaseFllter; the CTransforminputpjn 
input pin class is derived from the CBaseinputPin class, and the CTransformOutputPin output 
pin class is derived from the CBaseOutputPin class. 

Note that, while most member fUnctions in this class are designed to be overridden, the 
following pure virtual member functions must be overridden. 

• CheckinputTuoe 
• CheckTransform 
• DecideBufferSi:ze 
• GetMediaTyoe 
• Transform 

For more information about using this class to create a transform filter, see Creating a 
Transform Filter. 

Protected Data Members 
Name Description 
m_bEOSDellvered End-of-stream delivery status flag. 
m_bQ1.1alltyChanged Status flag that indicates if the stream has degraded. This is set to 

TRUE in CTransformFilter: :Receive if the call to the derived class's 
Transform member function fails (CTransformFilter: :Receive 
returns NQERROR in this case because returning S ... .FALSE indicates 
that the end-of-stream has arrived). 

m_bSampleSklpped Status flag that indicates if a frame was skipped. 

1757 



CTransformFilter Class Page 2 of 18 

m_csFilter Critical section that protects the filter state. This critical section is held 
whenever the state is currently changing or might change. It is passed 
to the CBaseMediaFilter constructor so that the base class uses it too. 

m_csReceive Critical section that is held when processing events that occur on the 
receiving thread (CTransformlnoutPin:: Receive and 
CTransformlnoutPin:: EndOfStream). 

m_idTransform Identifier used for performance measurement. Available only when 
PERF is defined. 

m_pinput Pointer to the input pin class object. 
m_pOutput Pointer to the output pin class object. 

Member Functions 
Name Description 
CTransformFilter Constructs a CTransformFilter object. 

Overridable Member Functions 
Name 
AlterOuality 

BeginFlush 

BreakConnect 
CheckConnect 
ChecklnoutTyoe 

Description 
Receives a quality-control notification from the output pin and provides an 
opportunity to alter the media stream's quality. 
Receives notification of entering the flushing state and passes it 
downstream. 
Informs the derived class when the connection is broken. 
Informs the derived class when the connection process is starting. 
Verifies that the input pin supports the media type and proposes the media 
type of the output pin (pure virtual). 

CheckTransform Verifies that the input and output pins support the media type (pure 
virtual). 

ComoleteConnect Informs the derived class when the connection process has completed. 
DecideBufferSize Sets the number and size of buffers required for the transfer (pure virtual). 
EndFlush Receives notification of leaving the flushing state and passes it downstream. 
EndOfStream 
GetMediaTyoe 
Get Pin 
GetPinCount 
NewSegment 

Receive 

RegisterPerfld 
SetMediaTyoe 

StartStreaming 
StooStreaming 
Transform 

Receives an end-of-stream notification and passes it downstream. 
Returns one of the media types that the output pin supports (pure virtual). 
Returns the pin for the index specified. 
Returns the number of pins on the filter. 
Informs the derived class that a new segment has started and delivers it 
downstream. 
Receives the media sample, calls the CTransformFilter: :Transform member 
function, and then delivers the media sample. 
Registers a performance measurement identifier. 
Informs the derived class when the media type is established for the 
connection. 
Informs the derived class that streaming is starting. 
Informs the derived class that streaming is ending. 
Performs transform operations, reading from the input !MediaSamole 
interface and writing the data to the output IMediaSample interface (pure 
virtual). 

Implemented IBaseFilter Methods 

1758 



CTransformFilter Class Page 3of18 

Name Description 
FindPin Retrieves the pin with the specified identifier. 

Pause Transitions the filter to State Paused state if it is not in this state already, and informs 
the derived class. 

Stop Transitions the filter to State Stopped state if it is not in this state already, and 
informs the derived class. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8 

MQl§i[.jjj,M 111.J,,[5 Topic Contents lfflj(§i MUMM 

CTra nsformFi lter: :AlterQua I ity 

CTransformFilter Class 

Receives a quality-control notification and provides an opportunity to alter the media stream's 
quality. 

virtual HRESULT AlterQuality( 
Quality q 
); 

Parameters 

q 
Quality-control notification message. 

Return Values 

Returns an HRESULT value. S_FALSE means to pass the message to the upstream filter 
(whether or not any action has been taken). An overriding member function can return 
NOERROR to indicate that the message has been handled completely (or as completely as 
possible) and no further action should be taken. 

Remarks 

This member function returns S_FALSE by default. It is called by the 
CTransformOutputPin:: Notify member function before calling the CBaseinputPin:: Pass Notify 
member function to pass the quality control message upstream. If the filter is responsible for 
affecting the quality of the media stream, override this member function and respond to the 
qua I ity-notification message. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQIM!.l+• 111.J,,[5 Topic Contents l@!§lllMM 

1759 



CTransformFilter Class Page 4of18 

CTransformFilter::BeginFlush 

CTransformFilter Class 

Receives notification of entering the flushing state and passes it downstream. 

virtual HRESULT BeginFlush( ); 

Return Values 

Returns an HRESULT value. 

Remarks 

By default, this member function calls the CBaseOutputPin:: DeliverEndFlush member function 
on the output pin to send the BeginFlush notification to the next filter. Override this member 
function if you are using queued data or a worker thread. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1H++ 1 !!·HM 

CTra nsformFi lter:: Brea kCon nect 

CTransformFilter Class 

Informs the derived class when the connection is broken. 

virtual HRESULT BreakConnect( 
PIN_DIRECTION dir 
); 

Parameters 

dir 
Direction of the pin. 

Return Values 

Topic Contents ifflj[§ii!¥M 

Returns NOERROR by default. The overriding member function returns an HRESULT value. 

Remarks 

1760 



CTransformFilter Class Page 5of18 

This member function is called by both CTransformlnputPin: :BreakConnect and 
CTransformOutputPin:: BreakConnect. It returns NOERROR by default. Override this member 
function to handle special cases in both input and output pin connections. Special cases might 
typically be releasing interfaces obtained in the CTransformFilter: :CheckConnect member 
function. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1H++ 1 !!·HM Topic Contents 

CTra nsformFi lter: :CheckCon nect 

CTransformFilter Class 

Informs the derived class when the connection process is starting. 

virtual HRESULT CheckConnect( 
PIN_DIRECTION dir, 
IPin *pPin 
); 

Parameters 

dir 
Direction of the pin. 

pPin 
Pointer to the pin making the connection. 

Return Values 

ifflj[§ii!¥M 

Returns NOERROR by default. The overriding member function returns an HRESULT value. 

Remarks 

This member function is called by both CTransformlnputPin: :CheckConnect and 
CTransformOutputPin: :CheckConnect. Override this member function to handle special cases in 
both input and output pin connections. Special cases might include querying (obtaining) other 
interfaces. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1H+1 1 !!·HM Topic Contents i@i§ii!¥M 

CTra nsformFi lter: :Checkln putType 

1761 



CTransformFilter Class Page 6of18 

CTransformFilter Class 

Verifies that the input pin supports the media type, and proposes the output pin's media type. 

virtual HRESULT CheckinputType( 
const CMediaType* mtln 
) 

PURE; 

Parameters 

mtln 
Pointer to an input media type object. 

Return Values 

The overriding member function returns an HRESULT value. 

Remarks 

You must override this member function to verify the media type. This member function must 
return an error if it cannot support the media type as an input. If it can, the overriding 
member function should propose the output media type supplied by the output pin. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

•;<MM+' •11·!:.!¥ Topic Contents 

CTra nsformFi lter: :CheckTra nsform 

CTransformFilter Class 

Verifies that the input and output pins support the media type. 

virtual HRESULT CheckTransform( 
const CMediaType* mtln, 
const CMediaType* mtOut 
) PURE; 

Parameters 

mtln 
Pointer to the input media type object. 

mtOut 
Pointer to the output media type object. 

1762 

lmli§lllMM 



CTransformFilter Class Page 7of18 

Return Values 

The overriding member function returns an HRESULT value. 

Remarks 

The derived class must implement this member function by overriding it. It should return an 
error if the filter cannot accept these types as its input and output types. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]++ 1 !!·HM Topic Contents 

CTra n sform Filter:: Com pleteCon nect 

CTransformFilter Class 

Informs the derived class when the connection process has completed. 

virtual HRESULT CompleteConnect( 
PIN_DIRECTION direction, 
IPin *pReceivePin 
); 

Parameters 

direction 
Pin direction. 

pReceivePin 
Pointer to the output pin that is being connected to. 

Return Values 

Returns an HRESULT value. 

Remarks 

i@l§ii!MM 

This member function is called by both CTransformlnputPin: :CompleteConnect and 
CTransformOutputPin: :CompleteConnect. It returns NOERROR by default. Override this 
member function to handle special cases in both input and output pin connections. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§i +g¥+ 

1763 



CTransformFilter Class 

CTra nsformFi lter: :CTra nsformFi lter 

CTransformFilter Class 

Constructs a CTransformFilter object. 

CTransformFilter( 
TCHAR * pObjectName, 
LPUNKNOWN lpUnk, 
CLSID clsid 
); 

Parameters 

pObjectName 
Name given to the CTransformFilter object. 

lpUnk 
Pointer to LPUNKNOWN. 

els id 
Class identifier of the CTransformFilter class. 

Return Values 

No return value. 

Remarks 

Page 8of18 

The constructor of the derived class calls this member function. The pin objects are not created 
at this time; they are created when calling the CTransformFilter: :GetPin member function. 
Thus the pins (m olnput and m pOutput) cannot be referred to in the constructor unless 
GetPin is first called. (An external object can find pins only by enumerating them or by calling 
IBaseFilter: :FindPin. These each call GetPin, so the pins are, in fact, created as soon as they 
are needed.) 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+;<§1[.]lj,i 111.],.[9 Topic Contents ittfjl§M MUMM 

+Qij[.jlj,M 111.l:.!9 Topic Contents l@i§lllMM 

CTra nsformFi lter:: DecideBufferSize 

CTransformFilter Class 

Sets the number and size of buffers required for the transfer. 

1764 



CTransformFilter Class 

virtual HRESULT DecideBufferSize( 
IMemAllocator * pAl/oc, 
ALLOCATOR_PROPE RTIES * ppropinputRequest 
) PURE; 

Parameters 

pAlloc 
Allocator assigned to the transfer. 

ppropinputRequest 

Page 9of18 

Requested allocator properties for count, size, and alignment, as specified by the 
ALLOCATOR PROPERTIES structure. 

Return Values 

Returns an HRESULT value. 

Remarks 

This member function is called by the CTransformOutputPin: :DecideBufferSize member 
function. Override and implement this member function to call the 
CMemAllocator: :SetProperties member function with appropriate values for the output stream. 
This call might fail if the allocator cannot satisfy the request. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Q'41!.l+' +11.q9 Topic Contents l@!§il!MM 

CTransformFilter::EndFlush 

CTransformFilter Class 

Receives notification of leaving the flushing state and passes it downstream. 

virtual HRESULT Endflush( ); 

Return Values 

Returns an HRESULT value. 

Remarks 

This member function is called by the CTransforminputPin:: EndFlush member function. 
Override this member function if you are using queued data or a worker thread. It calls 
CBaseOutputPin:: DeliverEndFlush to deliver the notification downstream. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

1765 



CTransformFilter Class Page 10of18 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

CTra nsformFi lter:: EndOfStrea m 

CTransformFilter Class 

Receives an end-of-stream notification and passes it downstream. 

virtual HRESULT EndOfStream( ); 

Return Values 

Returns an HRESULT value. 

Remarks 

By default, this member function calls the CBaseOutputPin:: DeliverEndOfStream member 
function on the output pin to send the end-of-stream notification to the next filter. Override 
this member function if you are using queued data or a worker thread. If you overrode 
CTransformFilter:: Receive and have queued data, you must handle this condition and deliver 
EOS after all queued data is sent. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qij[.jjj,M M!i.1 1119 

CTransformFilter::FindPin 

CTransformFilter Class 

Retrieves the pin with the specified identifier. 

HRESULT FindPin( 
LPCWSTR Id, 
IPin **ppPin 
); 

Parameters 

Id 
Identifier of the pin. 

ppPin 

1766 

Topic Contents i@l§lllMM 



CTransformFilter Class Page 11of18 

Pointer to the IPin interface for this pin after the filter has been restored. 

Return Values 

Returns NOERROR if the pin name was found; otherwise, returns VFW E NOT FOUND. 

Remarks 

This member function overrides the CBaseFilter:: Find Pin member function. If the Id parameter 
is "In", it retrieves the input pin's IPin pointer; if the Id parameter is "Out", it retrieves the 
output pin's IPin pointer. 

The ppPin parameter is set to NULL if the identifier cannot be matched. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M M!i.! 111j Topic Contents 

CTra nsformFi lter: :GetMediaType 

CTransformFilter Class 

Returns one of the media types that the output pin supports (pure virtual). 

virtual HRESULT GetMediaType( 
int iPosition, 
CMediaType *pMediaType 
) PURE; 

Parameters 

iPosition 
Position of the media type in the media type list. 

pMediaType 
Returned media type object. 

Return Values 

Returns an HRESULT value by the overriding member function. It returns 

l@i§il!MM 

VFW S NO MORE ITEMS when asked for a media type beyond the position list. It might 
return S_FALSE to indicate that the media type exists but is not currently usable. In this case, 
the IEnumMediaTypes:: Next method skips this media type. 

Remarks 

The derived class is responsible for implementing this member function and maintaining the 
list of media types that it supports. 

1767 



CTransformFilter Class Page 12of18 

The base transform class assumes that only the output pin proposes media types, because the 
output pin depends on the type of connection of the input pin. For this reason, it is only the 
CTransformOutputPin: :GetMediaType member function of the output pin that is routed to this 
function. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]++ 1 !!·HM 

CTransformFilter: :GetPin 

CTransformFilter Class 

Returns a pin for a specified index. 

virtual CBasePin * GetPin( 
int n 
); 

Parameters 

n 
Index of the pin to return. 

Return Values 

Returns a pointer to a CBasePin object. 

Remarks 

Topic Contents i@l§ii!MM 

This member function overrides the CBaseFilter: :GetPin member function and need not be 
overridden unless one or more of the transform pin classes (CTransformlnputPin or 
CTransformOutputPin) are overridden. Upon successful return, both pins are valid. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi§1[.]++ 111.J,,[9 Topic Contents i@l§ii!MM 

CTra nsformFi lter: :GetPi nCou nt 

CTransformFilter Class 

1768 



CTransformFilter Class Page 13of18 

Returns the number of pins on the filter. 

virtual int GetPinCount( ); 

Return Values 

Returns 2. If you override this class to support more pins, this member function returns the 
total number of pins on the filter. 

Remarks 

This member function overrides the CBaseFilter: :GetPinCount member function. The 
CTransformFilter class supports only one input pin and one output pin. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use. 

• Q<M [.] "'' I![.],.[. Topic Contents •@M* 1gnw 

CTra nsformFi lter:: NewSegment 

CTransformFilter Class 

Informs the derived class that a new segment has started and delivers it downstream. 

virtual HRESULT NewSegment( 
REFERENCE_TIME tStart, 
REFERENCE_TIME tStop, 
double dRate 
); 

Parameters 

tStart 
Start time of the segment. 

tStop 
Stop time of the segment. 

dRate 
Rate of the segment. 

Return Values 

Returns an HRESULT value. 

Remarks 

This member function is called by the CTransforminputPin:: NewSegment member function and 
calls the CBaseOutputPin: :DeliverNewSegment member function. 

1769 



CTransformFilter Class Page 14of18 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8 

MQl§i[.jjj,M 111.],.[5 Topic Contents lfflj(§i MUMM 

CTransformFilter::Pause 

CTransformFilter Class 

Transitions the filter to State Paused state if it is not in this state already, and informs the 
derived class. 

HRESULT Pause (void); 

Return Values 

Returns an HRESULT value. 

Remarks 

This member function overrides the CBaseFilter:: Pause member function and implements the 
IMediaFilter:: Pause method. It checks the input and output pin connections, calls 
CTransformFilter:: StartStreaming, and finally calls the base class implementation 
(CBaseFilter::Pause). 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jjj,M 111.1 1115 Topic Contents 1@1§111$8 

CTra nsformFi lter:: Receive 

CTransformFilter Class 

Receives the media sample, calls the CTransformFilter: :Transform member function, and then 
delivers the media sample. 

HRESULT Receive( 
IMediaSample *pSample 
); 

Parameters 

1770 



CTransformFilter Class Page 15of18 

pSample 
Media sample to receive. 

Return Values 

Returns an HRESULT value. 

Remarks 

This member function is called by the CTransforminputPin:: Receive member function, which 
implements the IMeminputPin:: Receive method. If you override this member function, you 
might must also override CTransformFilter:: EndOfStream, CTransformFilter:: BeginFlush, and 
CTransformFilter:: End Flush. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jjj,M 11!.l:.!j Topic Contents l@i§lllMM 

CTra nsformFi lter:: Reg isterPerfid 

CTransformFilter Class 

Registers a performance measurement identifier. 

virtual void RegisterPerfid( ); 

Return Values 

No return value. 

Remarks 

By default, this member function registers the performance identifier (m idTransform) with the 
string "Transform". Override this member function to register a performance measurement 
with a less generic string. This should be done to avoid confusion with other filters. This 
member function is enabled only when PERF is defined. 

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use. 

MQl§i[.jjj,M 111.l:.!j Topic Contents l@i§lllMM 

CTra nsformFi lter: :Set Med iaType 

1771 



CTransformFilter Class Page 16of18 

CTransformFilter Class 

Informs the derived class when the media type is established for the connection. 

virtual HRESULT SetMediaType( 
PIN_DIRECTION direction, 
const CMediaType *pmt 
) PURE; 

Parameters 

direction 
Pin direction. 

pmt 
Pointer to the media type object. 

Return Values 

Returns NOERROR by default. The overriding member function returns an HRESULT value. 

Remarks 

Override this member function to detect when the media type is set. The implementations of 
CTransforminputPin: :SetMediaType and CTransformOutputPin: :SetMediaType call this member 
function. 

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS Topic Contents i@faiilMM 

CTra nsformFi lter: :Sta rtStrea ming 

CTransformFilter Class 

Informs the derived class that streaming is starting. 

virtual HRESULT StartStreaming( ); 

Return Values 

Returns NOERROR by default. The overriding member function returns an HRESULT value. 

Remarks 

The filter is in the process of switching to active mode (paused or running). Alternatively, you 
can override this member function to allocate any necessary resources. 

1772 



CTransformFilter Class Page 17of18 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11¥8 

CTransformFilter: :Stop 

CTransformFilter Class 

Transitions the filter to State Stopped state if it is not in this state already, and informs the 
derived class. 

HRESULT Stop(void); 

Return Values 

Returns an HRESULT value. 

Remarks 

This member function overrides the CBaseFilter: :Stop member function and implements the 
IMediaFilter:: Stop method. It first decommits on the input and output pins by calling 
CBaseinputPin: :Inactive and CBaseOutputPin: :Inactive, and then calls 
CTransformFilter: :StopStreaminq to inform the derived class. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl§i[.jjj,M '!!·HM Topic Contents lfflj[§ill¥M 

CTra nsformFi lter: :StopStrea ming 

CTransformFilter Class 

Informs the derived class that streaming is ending. 

virtual HRESULT StopStreaming( ); 

Return Values 

Returns NOERROR by default. The overriding member function returns an HRESULT value. 

Remarks 

1773 



CTransformFilter Class Page 18of18 

The filter is in the process of leaving active mode and entering stopped mode. Override this 
member function to free any resources allocated in StartStreaminq. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+;<§1[.]lj,i 111.],.[9 

CTra nsformFi lter: :Transform 

CTransformFilter Class 

Performs transform operations of the filter. 

virtual HRESULT Transform( 
IMediaSample * pln, 
IMediaSample *pOut 
) PURE; 

Parameters 

pin 
Pointer to the input IMediaSample interface. 

pOut 
Pointer to the output IMediaSample interface. 

Return Values 

Topic Contents lfflj(§l l!l¥1M 

The overriding member function returns an HRESULT value. If it returns S_FALSE, the default 
implementation of the sample will not be delivered by the default implementation of the 
CTransformFilter:: Receive member function. 

Remarks 

The CTransformFilter:: Receive member function calls this member function, which must be 
overridden with a member function that implements the transform intended for the filter. 

Perform your transform operation in the implementation of this member function, reading the 
data from the input IMediaSample interface and writing the data to the output IMediaSample 
interface. The member function returns when the transform is complete, without releasing or 
delivering either of the samples. Change properties on the output sample if they are not the 
same as the input sample. For example, change the start and stop time 
IMediaSample: :SetTime), sample status flags (IMediaSample:: IsSyncPoint), and so on. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

1774 



CT ran sf orminputPin Class Page 1of11 

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM 

CTransforminputPin Class 

CBaseObject 

INonDelegatingUnknown 

CUnknown 

CBasePin 

CBaselnputPin 

CTransformlnputPin 

The CTransfo.-minputPln class implements the input pin of a simple transform filter. It is the 
class assigned to the m pinp1 rt data member of the CTransformfj!ter class. Typically, you can 
create objects derived from CTransfo.-mFllte.- without modifying the CT.-ansfo.-minputPln 
class. That is, you can usually override the member functions in CT.-ansfom1Fllte.- that are 
called by member functiOns of thiS class. This means that you need not derive your own 
classes for either of the pin classes. 

However, if you want to override this class and have your filter class derived from 
CTransformfilter. you must override the CTransformfi!ter"GetPin member fUnction to create 
pins of your derived class. 

P.-otecte<I Data Members 
Name Des<:riptlon 
m_pT.-ansfo.-mFllte.- Pointer to the owning CTransformfilter object. 

Membe.- Functions 
Name Des<:.-lptlon 
CTransforminputPin Constructs a CTransforminputPin object. 
CurrentMediaTuoe Retrieves the media type currently assigned to the filter. 

Ove.-.-ldable Membe.- Functions 

1775 


	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40




