
CEnumPins Class Page 3 of7

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CEnumPins: :Clone

CEnumPins Class

Makes a copy of the enumerator. This allows the calling application to retain two positions in
the list of pins.

HRESULT Clone(
IEnumPins ** ppEnum
);

Parameters

ppEnum
New enumerator that is a copy of this enumerator.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IEnumPins: :Clone method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M 11!.l:.!j Topic Contents

CEnumPins::Next

CEnumPins Class

Places pointers to IPin interfaces into the specified array.

1486

l@i§il!MM

CEnumPins Class

HRESULT Next(
ULONG cPins,
I Pin * * ppPins,
ULONG * pcFetched
);

Parameters

cPins
Number of pins to place.

ppPins
Array in which to place the interface pointers.

pcFetched
Actual number of pins placed in the array.

Return Values

Returns an HRESULT value.

Remarks

Page 4 of7

This member function implements the IEnumPins:: Next method. The derived class is
responsible for implementing CBaseFilter: :GetPin, which this member function calls to retrieve
the next pin.

Because this member function returns one or more interfaces that have had their reference
counts incremented, the caller of this member function must be sure to release the interfaces
by calling !Unknown: :Release on the interfaces when done with them.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@i§il!MM

MQi§i[.jjj,M 1 !1·Hj Topic Contents l@IJll!MM

CEnumPins: :Querylnterface

CEnumPins Class

Retrieves a pointer to a specified interface on a component to which a client currently holds an
interface pointer. This method must call !Unknown: :AddRef on the pointer it returns.

HRESULT Queryinterface(
REFIID iid,
void * * ppvObject
);

1487

CEnumPins Class

Parameters

iid
Specifies the IID of the interface being requested.

ppvObject

Page 5 of7

Receives a pointer to an interface pointer to the object on return. If the interface
specified in iid is not supported by the object, ppvObject is set to NULL.

Return Values

Returns S_OK if the interface is supported, S_FALSE if not.

Remarks

This member function implements the IUnknown: :Queryinterface method and passes out
references to the IEnumPins interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lll¥M

CEnumPins::Release

CEnumPins Class

Decrements the reference count for the calling interface on an object. If the reference count on
the object falls to zero, the object is freed from memory.

ULONG Release(void);

Return Values

Returns the resulting value of the reference count, which is used for diagnostic/testing
purposes only. If you need to know that resources have been freed, use an interface with
higher-level semantics.

Remarks

This member function implements the IUnknown:: Release method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]+• 1 11·1::'¥ Topic Contents lfflj[§ill¥M

1488

CEnumPins Class Page 6 of7

CEnumPins::Reset

CEnumPins Class

Resets the enumerator to the beginning so that the next call to the IEnumPins: :Next method
will return, at a minimum, the first pin of the filter.

HRESULT Reset(void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IEnumPins:: Reset method.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

CEnumPins::Skip

CEnumPins Class

Skips the next specified number of pins.

HRESULT Skip(
ULONG cPins
);

Parameters

cPins
Number of pins to skip.

Return Values

Returns an HRESULT value.

Remarks

•;<MM+' •11·!:.!¥ Topic Contents lmli§lllMM

This member function implements the IEnumPins:: Skip method. This member function affects
the next call to the IEnumPins:: Next method.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

1489

CEnumPins Class Page 7 of7

1490

CFactoryTemplate Class Page I of3

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CFactoryTemplate Class

(CFactoryTemplate)

This class provides a template used by the default class factory code.

Create one <::FactoryTemplate object in an array for every object class so that the default
class factory code can create new instances.

This class holds the name of the object, the object's class identifier (CLSID), and a pointer to
the creation function for the corresponding object. Initialize one of these in an array called
g Templates for each CLSID the application's dynamic-link library (DLL) supports. The creation
function should take an LPUNKNOWN parameter and an HRESULT pointer and return an object
derived from the CBaseObject class. Set the HRESULT to a failed value if there is any error in
construction. An example declaration (from the Gargle sample filter) follows:

fl list of class ids and creator functions for class factory

CFact.oryTerrplat.e g_ Terrplat.es [2] = { { L"Gargle fi lt.er" II CFact.oryTerrplat.e,rr
II CFact.oryTerrplat.e,rr
II CFact.oryTerrplat.e,rr

};

}

&CLSID Gargle
03argle::Create!nstance

NULL
&sudGargle

{ L"Gargle fi lt.er propert.y page"
&CLSID GargProp
03argleProperties::Createinstance

i

int. g_cTerrplat.es = sizeof{g_Terrplat.es) I sizeof{g_Terrplat.es[O]J;

Note that the name of the object is strictly necessary only if you are using the
DURegisterServer setup routine to implement self-registering of your filter. If you are not using
this feature, you can set the first element of the gTemplates instance (m Name) to NULL or
L

Protecte<I Data Members
Name Description
m_ClsID Pointer to the CLSID of the object class.
m_lpfnNew
m_lpfnlnlt

Pointer to a function that creates an instance of the object class.
Pointer to a function that initializes a new instance of the object
class.

m_Name Name of the filter; required when using filter self-registration
serviees.

m_pAMovleSetup_Fllter Pointer to an AMOVIESETIJP FI! TER structure; required when
using filter self-registration services.

1491

CFactoryTemplate Class

Member Functions
Name Description
Createlnstance Calls the object-creation function for the class.
IsClassID Determines whether a CLSID matches this class template.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents

+Qij[.jlj,M 111.1 1119 Topic Contents

CFactoryTemplate: :Createlnsta nee

CFactoryTemplate Class

Calls the object-creation function for the class.

CUnknown *Createlnstance(
LPUNKNOWN pUnk,
HRESULT *phr
);

Parameters

pUnk
Pointer to the IUnknown interface.

phr
Pointer to the HRESULT value into which to place resulting information.

Return Values

Returns an instance of the class object.

Remarks

Page 2 of3

lfflj(§l 1!1¥1M

l@i§lllMM

The implementer of the class code registered using this factory template class is responsible
for providing the code that creates an instance of the class object and assigning it to the
m lpfnNew data member. This member function simply calls that function and returns a new
object of that type.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q<@[.jlj,M 111.1 1119 Topic Contents l@i§lllMM

1492

CFactoryTemplate Class Page 3of3

CFactoryTemplate: :lsClasslD

CFactoryTemplate Class

Determines if the class identifier (CLSID) passed matches the CLSID assigned to this class
template.

BOOL lsClasslD(
REFCLSID rclsid
);

Parameters

rclsid
CLSID being tested.

Return Values

Returns TRUE if the CLSIDs are the same; otherwise, returns FALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1493

CGenericList Class Page 1 of 10

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CGenericList Class

CBaseObject

CGenericlist

CGenerlcllst is a template class that allows for a type-specific implementation of a list. It is
derived from caase! ist and uses that class's typeless implementation. The constructor creates
a CBaseUst object, and au CGenericUst member functions ca!! CBasellst member functions
but provide type-checking dependent on the template.

Member Functions
Name Description
Add After Inserts a node or list of nodes after the specified node.
Add Before Inserts a node or list of nodes before the specified node.
Add Head Inserts a node or list of nodes at the front of the list.
AddTai! Appends a node or list of nodes to the end of the list.
CGenericUst Constructs a CGenerlcllst object.
f.iD.!J. Returns the first position that contains the specified object.
~ Returns the object at the specified position.
GetCount Returns the number of objects (object count) in the list.
GetHead Returns the object at the head of the list.
GetHeadPosition Returns a cursor identifying the first element of the liSt.
Get Next Returns the specified object and update position.
GetTai!Position Returns a cursor identifying the last element of the list.
Remove Removes the specified node from the list.
RemoveHead Removes the first node in the liSt.
RemoveTai! Removes the last node in the list.

+;•; 11.111,+ 111.1111s T op1c Contents l@i§Mlt§M

Topic Contents '@'!'''""

CGenericList: :AddAfter

1494

CGenericList Class

CGenericlist Class

Inserts a node or list of nodes after the specified node.

POSITION AddAfter(
POSITION p,
OBJECT * pObj
);

BOOL AddAfter(
POSITION pos,
CGenericlist<OBJECT> *pList
);

Parameters

pos
Position after which to add the node or list of nodes.

pObj
Pointer to the object to add.

pList
Pointer to the list of objects to add.

Return Values

Page 2of10

Returns the position of the inserted object in the case of single-object insertion. For list
insertion, returns TRUE if successful; otherwise, returns FALSE.

Remarks

This member function calls the CBaselist: :AddAfter member function when passed a list of
nodes. CGenericlist::AddAfter calls the CBaselist: :AddAfterI member function when passed
a single node.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

MQ<§i[.jlj,M lh.l:.!j

CGenericlist: :Add Before

CGenericlist Class

Inserts a node or list of nodes before the specified node.

POSITION AddBefore(
POSITION p,
OBJECT * pObj

1495

Topic Contents l@i§il!MM

Topic Contents i@faii!MM

CGenericList Class

);
BOOL AddBefore(

POSITION pos,
CGenericlist<OBJECT> *pList
);

Parameters

pos
Position before which to add the node or list of nodes.

pObj
Pointer to the object to add.

pList
Pointer to the list of objects to add.

Return Values

Page 3of10

Returns the position of the inserted object in the case of single-object insertion. For list
insertion, returns TRUE if successful; otherwise, returns FALSE.

Remarks

This member function calls the CBaseList: :AddBefore member function when passed a list of
nodes. CGenericlist::AddBefore calls the CBaseList: :AddBeforeI member function when
passed a single node.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9

8 4'41M+• 111.q9

CGenericlist: :Add Head

CGenericList Class

Inserts a node or list of nodes at the front of the list.

POSITION AddHead(
OBJECT * pObj
);

BOOL Add Head (
CGenericlist<OBJECT> *pList
);

Parameters

pObj

1496

Topic Contents lmli§lllMM

Topic Contents 1@!§111$8

CGenericList Class Page 4of10

Pointer to the object to add.
pList

Pointer to the list of objects to add.

Return Values

Returns the new head position, or NULL if unsuccessful in the case of single-node additions.
For list insertions, returns TRUE if successful; otherwise, returns FALSE.

Remarks

This member function calls the CBaseList: :AddHead member function when passed a list of
nodes. CGenericlist::AddHead calls the CBaseList: :AddHeadI member function when passed
a single node.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM

CGenericlist: :AddTail

CGenericList Class

Appends a node or list of nodes to the end of the list.

POSITION AddTail (
OBJECT * pObj
);

BOOL AddTail(
CGenericlist<OBJECT> *pList
);

Parameters

pObj
Pointer to the object to add.

pList
Pointer to the list of objects to add.

Return Values

Topic Contents ifflj[§ii!¥M

Returns the new tail position, or NULL if unsuccessful in the case of single-node insertions. For
list insertions, returns TRUE if successful; otherwise, returns FALSE.

Remarks

This member function calls the CBaseList: :AddTail member function when passed a list of
nodes. CGenericlist::AddTail calls the CBaseList: :AddTailI member function when passed a

1497

CGenericList Class

single node.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQl§1[.jjj,M Ill.HS

CGenericlist: :CGenericlist

CGenericList Class

Constructs a CGenericList object.

CGenericlist(
TCHAR *pName,
INT iitems,
BOOL block,
BOOL bA/ert
);

CGenericlist(
TCHAR *pName
);

Parameters

pName
Name of the list.

iitems
Number of items in the list.

block

Page 5of10

Topic Contents lmll§lllMM

TRUE if the list is locked and FALSE otherwise. This parameter defaults to TRUE.
bAlert

Not used.

Return Values

No return value.

Remarks

This constructor calls the CBaseList constructor.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQ1§1[.jjj,M '!!·HM Topic Contents l@i§i MUMM

•;<@[.]jj,i 1!1.l:.1¥ Topic Contents l@i§lllMM

1498

CGenericList Class

CGenericlist:: Find

CGenericList Class

Retrieves the first position that contains the specified object.

POSITION Find(
OBJECT * pObj
);

Parameters

pObj
Pointer to the object to find.

Return Values

Returns a position cursor.

Remarks

This member function calls the CBaseList:: FindI member function.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

CGenericlist: :Get

CGenericList Class

Retrieves the object at the specified position.

OBJECT *Get(
POSITION pos
);

Parameters

pos
Position in the list from which to retrieve the object.

Return Values

1499

Topic Contents

Page 6of10

i@faiilMM

CGenericList Class

Returns a pointer to an object.

Remarks

This member function calls the CBaselist: :Getl member function.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w QIM [.] 11,1 Ill.HM

CGenericlist: :GetCou nt

CGenericlist Class

Retrieves the number of objects (object count) in the list.

int GetCount();

Return Values

Returns the value of m Count.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CGenericlist: :GetHead

CGenericlist Class

Retrieves the object at the head of the list.

OBJECT Get Head() ;

Return Values

MQij[.jlj,M 111.1 1119

Topic Contents

Topic Contents

Returns the head of the list by calling CGenericlist: :GetHeadPosition.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use .

• QIM [.] +• I !!·HM Topic Contents

1500

Page 7of10

l@fa* 1gnw

l@fail!MM

l@fail!MM

CGenericList Class

CGenericlist: :GetHead Position

CGenericList Class

Retrieves a cursor identifying the first element of the list.

POSITION GetHeadPosition();

Return Values

Returns the position cursor held by m pFirst.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij

CGenericlist: :GetNext

CGenericList Class

Retrieves the specified object and update position.

OBJECT *GetNext(
POSITION& rp
);

Parameters

rp
Returned pointer to the next object.

Return Values

Returns a pointer to an object at the next position.

Remarks

Topic Contents

This member function calls the CBaseList: :GetNextI member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents

1501

Page 8of10

l@i§il!MM

l@i§il!MM

CGenericList Class

CGenericlist: :GetTa i I Position

CGenericList Class

Retrieves a cursor identifying the last element of the list.

POSITION GetTailPosition();

Return Values

Returns the position cursor held by m plast.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CGenericlist:: Remove

CGenericList Class

Removes the specified node from the list.

OBJECT *Remove(
POSITION pos
);

Parameters

pos
Position in the list of nodes to remove.

Return Values

MQij[.jlj,M l!i.! 11ij

Returns the pointer to the object that was removed.

Remarks

Topic Contents

This member function calls the CBaseList:: RemoveI member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents

1502

Page 9of10

l@i§il!MM

l@i§il!MM

CGenericList Class

CGenericlist:: RemoveHead

CGenericList Class

Removes the first node in the list.

OBJECT *RemoveHead();

Return Values

Returns the pointer to the object that was removed.

Remarks

This member function calls the CBaseList:: RemoveHeadI member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9

CGenericlist:: Remove Tai I

CGenericList Class

Removes the last node in the list.

OBJECT *RemoveTail();

Return Values

Returns the pointer to the object that was removed.

Remarks

Topic Contents

This member function calls the CBaseList:: RemoveTailI member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1503

Page 10of10

l@!§il!MM

CGuidNameList Class Page 1 of2

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CGuidNameList Class

(CGuidNamelist)

This class implements an array of globally unique identifier (m) names base<J on the
predefined names of GUIDs that come with Microsoft® DirectShow"'. (This might or might not
inclu<Je user-defined GUIDs.) To get the name used for a GUID, look it up in the GuidNames
array:

int MyFunc {AM MEDIA TYPE mt)
{ - -

DbgLog{{I..CG TRACE, 2, TEXT{"MyFunc: Type :\"s, Subtype :\"s"),
GuidNames[mt,majortypeJ,
GuidNames [mt, subtype]
JJ;

Operators
Name Description
operatorr J Allows access to the m name for a given GUID.

Global Data
Name Description
GuldNaniesArray of CGuidNameList objects describing the predefined names of~ that

come with DirectShow. (This might or might not include user-defined GUIDs.)

+;14 "·II' a e11.1::•S

CGuidNameList::operator[]

CG11idName! ist C!as.s

Allows access to them name for a given GUID.

TCHAR •operator(j(
Const GUID& gui<f
);

1504

Topic Contents i@i§i+t§M

CGuidNameList Class

Parameters

guid
Globally unique identifier.

Return Values

Returns the GUID name for the given entry in a GUID name list.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1505

Page 2 of2

CimageAllocator Class Page 1 of9

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CimageAllocator Class

CBaseObject

CCritSec

CBaseAllocator

ClmageAllocator

The (;ImageAllo<:atot class is inherited from the CBaseAllocator class, which allocates sample
buffers in shared memory. The number, size, and alignment of blocks are determined when the
connected output pin calls ClmageAllocator::SetProperties (which implements
lMemAllocator: :SetProperties}. The shared memory blocks are used in subsequent calls to the
Microsoft® Win32® CreateDIBSectjon function. The output pin can then fill these buffers with
data, and the buffers wm be handed to GDI using BitBlt.

Protected Data Members
Name Description
m_pFiltet Owning filter of this object.
m_pMediaType Current media type format.

Membet Functions
Name Description
~ Allocates the samples through CreateDIBSection.
CheckSi:zes Checks the allocator requirements.
ClmageAllocator Constructs a ClmageAllocator object.
CreateDIB Creates a device-independent bitmap (DIB).
~ Releases and deletes the resources for any samples allocated.
NotifVMediaTupe Notifies the allocator of the agreed media type.

Ovettidable Member Functions
Name Desctiption
CreatelmageSample Creates a sample.

Implemented INonDelegatingUnknown Methods

1506

CimageAllocator Class

Name Description
NonDelegatingAddRef Increments the reference count for an interface.
NonDelegatingRelease Decrements the reference count for an interface.

Implemented IMemAllocator Methods
Name Description
SetProoerties Specifies the buffering requirements for the allocator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i 111.],.[9 Topic Contents

MQl@[.jjj,M 111.l:.!9 Topic Contents

CimageAllocator: :Alloc

ClmageAllocator Class

Creates image samples based around CreateDIBSection.

HRESULT Alloc();

Return Values

Returns an HRESULT value.

Remarks

A filter defines the size and number of buffers required through the

Page 2 of9

lfflj(§l l!l¥1M

l@i§lllMM

ClmageAllocator: :SetProperties member function. The base allocator class that this allocator
derives from calls this internal virtual member function when it wants the memory actually
committed. For each sample it wants to create, this allocator will create a DIBSECTION object
for it (through the Microsoft Win32 CreateDIBSection function). With the information it gets
from that call, it will call the virtual CreatelmageSample member function, passing in the
buffer pointer and length. After successfully creating an image sample, it will then initialize it
with the DIBSECTION structure, among other information.

This is a protected member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H+1 1 11·1::'¥ Topic Contents l@i§lllMM

1507

CimageAllocator Class

CimageAllocator: :CheckSizes

ClmageAllocator Class

Internal member function that checks the required buffering properties.

HRESULT CheckSizes(
ALLOCATOR_PROPE RTIES *pRequest
);

Parameters

pRequest
Requested a I locator properties.

Return Values

Returns an HRESULT value.

Remarks

Page 3 of9

The image allocator uses the Microsoft Win32 CreateDIBSection function to allocate its
samples. That function accepts as input a pointer to a BITMAPINFO structure that describes the
bitmap required. Because the size of the bitmap is therefore fixed according to the
BITMAPINFO structure for the video, requests to the allocator for a buffer larger than that
will not be granted. This member function, therefore, adjusts the requested size so that it is no
larger than the size of the bitmap. If the requested size is smaller than the bitmap size, it
returns E_INVALIDARG.

This is a protected member function.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

CimageAI locator: :CimageAI locator

CimageAllocator Class

Constructs a CimageAllocator object.

CimageAllocator(
CBaseFilter *pFilter,
TCHAR *pName,
HRESULT *phr
);

1508

i@faiilMM

CimageAllocator Class

Parameters

pFilter
Owning filter object.

pName
Debug-only string description.

phr
COM return code.

Return Values

No return value.

Remarks

Page 4 of9

The ClmageAllocator, CimageSample, and CDrawimage classes are all tightly associated. The
buffers that the image allocator creates are made using the Microsoft Win32 CreateDIBSection
function. The allocator then creates its own samples (based on the CimageSample class). The
image samples are initialized with the buffer pointer and its length. The sample is also passed
in a structure (a DIBDATA structure) that holds a number of pieces of information obtained
from the CreateDIBSection call.

These samples can then be passed to the draw object. The draw object knows the private
format of the samples and how to get back the DIBDATA structure from them. Once it has
obtained that information, it can pass a bitmap handle that is stored in the DIBDATA
structure down into GDI when it draws the image that the sample contains. By using the
bitmap handle from the sample in the drawing, rather than just the buffer pointer (which is the
alternative if the sample is not a CimageSample), it gets a modest performance improvement.

This is a protected member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

M QiM [.] ij,+ I !I.HJ Topic Contents '®'*' 1gnw

ClmageAllocator: :CreateDIB

CimageAllocator Class

Calls the Win32 CreateDIBSection function to create a device-independent bitmap (DIB).

HRESULT CreateDIB(
LONG InSize,
DIBDATA &DibData
);

1509

CimageAllocator Class

Parameters

In Size
Size of the bitmap required.

DibData
Structure to fill out with details.

Return Values

Returns an HRESULT value.

Remarks

This is a protected member function.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

ClmageAllocator: :CreatelmageSa m pie

ClmaqeAllocator Class

Creates a ClmaqeSample object.

virtual CimageSample *CreateimageSample(
LPBYTE pData,
LONG Length
);

Parameters

pData
Pointer to the data buffer the sample looks after.

Length
Associated length of the buffer.

Return Values

Returns a new ClmaqeSamole sample object.

Remarks

Page 5of9

i@faiilMM

This virtual member function creates the actual sample for the allocator. It is passed the data
buffer and its length to store. When the sample is subsequently asked for the buffer (through
IMediaSample: :GetPointer), this is the pointer it will return. The primary reason for having this
split out into a separate virtual member function is so that derived classes from

1510

CimageAllocator Class Page 6 of9

ClmageAllocator can also derive classes from ClmageSample and have a place to create them.

This is a protected member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§l l!l¥1M

ClmageAllocator::Free

ClmageAllocator Class

Deletes the samples and frees their resources.

void Free();

Return Values

No return value.

Remarks

The base allocator calls this internal virtual member function when it wants to decommit the
allocator.

This is a protected member function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Qi§i!.l+1 1 !1·HM Topic Contents l@i§lllMM

ClmageAllocator::NonDelegatingAddRef

ClmageAllocator Class

Increments the reference count for the owning filter.

HRESULT NonDelegatingAddRef();

Return Values

Returns an HRESULT value.

1511

CimageAllocator Class Page 7 of9

Remarks

An allocator is conceptually a separate object from the filter that creates it. However, the
image allocator is dependent on the filter that created it to supply it with additional information
(such as the media type that it connected with). Therefore, although the allocator looks after
its own NonDelegatingQueryinterface function, it delegates all reference counting to the
owning filter. So, when the allocator is subject to its NonDelegatingAddRef function, for
example, it is the filter that owns the allocator that will actually be reference counted.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@i§il!MM

ClmageAllocator::NonDelegatingRelease

ClmageAllocator Class

Decrements the reference count for the owning filter.

HRESULT NonDelegatingRelease();

Return Values

Returns an HRESULT value.

Remarks

An allocator is conceptually a separate object from the filter that creates it. However, the
image allocator is dependent on the filter that created it to supply it with additional information
(such as the media type that it connected with). Therefore, although the allocator looks after
its own NonDelegatingQueryinterface function, it delegates all reference counting to the
owning filter. So when the allocator is released, for example, it is the filter that owns the
allocator that will actually be released by the NonDelegatingRelease function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jlj,M 1 !1·Hj Topic Contents •@m•11mw

ClmageAllocator:: NotifyMediaType

ClmageAllocator Class

Passes the media type from a filter to the allocator.

1512

CimageAllocator Class

void NotifyMediaType(
CMediaType *pMediaType
);

Parameters

pMediaType
Media type the filter established.

Return Values

No return value.

Remarks

Page 8 of9

The buffers that the image allocator creates are based around CreateDIBSection, which must
be told what sort of bitmap the filter requires it to create. The filter does this by calling this
member function on the allocator. A filter will usually call this member function after agreeing
on a media type during a pin connection. The media type passed to this member function is a
pointer; the allocator stores this pointer (not a copy) of the media type it points to (for
performance reasons, copying media types is relatively slow). Therefore, the filter that calls
this member function should ensure that the media type is always valid until the media type is
next set on the allocator (or is called with a NULL type).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9

ClmageAllocator: :SetProperties

ClmageAllocator Class

Determines the size, number, and alignment of blocks.

HRESULT SetProperties(
ALLOCATOR_PROPERTIES * pRequest,
ALLOCATOR_PROPERTIES * pActual
);

Parameters

pRequest
Requested a I locator properties.

pActual
Allocator properties actually set.

Return Values

1513

Topic Contents l@!§il!MM

CimageAllocator Class Page 9 of9

Returns an HRESULT value.

Remarks

The pRequest parameter is filled in by the caller with the requested values for the count,
number, and alignment as specified by the ALLOCATOR PROPERTIES structure. The pActual
parameter is filled in by the allocator with the closest values that it can provide for the
request. This member function cannot be called unless the allocator has been decommitted by
using the !MemAllocator:: Decommit method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1514

CimageDisplay Class Page 1of11

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CimageDisplay Class

CCritSec

ClmageDisplay

This class initializes itself with a display format so that other objects can query or reset the
display type. It also provides member functions to check display formats and accept only those
video formats that can be efficiently rendered by using GDI calls.

Protected Data Members
Name Des<:riptlon
m_DisplayVIDEOINFOHEADER structure corresponding to the current device display type.

Member Functions
Name Des<:riptlon
CheckBitfields Checks that the bit fields on a VIDEOINFOHEADER structure are correct.
CheckHeaderValidity Determines if a BITMAPINFOH EADER structure is valid.
CheckMediaTupe Determines if the filter can support the media type proposed by the

output pin.
Checi.:pa!etteHeader Determines if the palette on a VIDEOINEOHEADER structure is correct.
CheckVideoTyoo Compares a video type to determine if it is compatible with the current

display mode.
CimageDisplay Constructs a CimageDisplay object.
Co1 mt Prefix Bits
Co! mt Set Bits
GetBitMasks

GetColourMask
Get Display Depth
Get Display format

IsPa!ettized
RefreshDisplayTupe
UOOateformat

Counts the number of prefix bits.
Counts the total number of bits set in a field.
Retrieves a set of color element bitmasks for the supplied
VIDEOINFOHEADER structure.
Retrieves a set of individual color element masks.
Retrieves the bit depth of the current display mode.
Retrieves a VIDEOINFOHEADER structure representing the current
display mode.
Determines if the display uses a palette.
Updates the CimageDisplay object with the current display type.
Updates the VIDEOINFOHEADER structure to remove implicit
assumptions.

MAI§ "·ii'·' +:1.1 .. 19 T op1c Contents i@i§Mit§M

1515

CimageDisplay Class

+Qi§1[.]++ 1 !!·HM Topic Contents

ClmageDisplay: :CheckBitFields

ClmageDisplay Class

Checks that the bit fields in the VIDEOINFOHEADER structure are correct.

BOOL CheckBitFields(
const VIDEOINFO *p!nput
);

Parameters

p!nput
VIDEOINFOHEADER structure to check.

Return Values

Returns one of the following values.
Value Meaning
TRUE Bit fields a re correct.
FALSE Bit fields contain an error.

Remarks

Page 2of11

i@l§ii!MM

The assumption throughout the object is that any bitmasks are allowed no more than 8 bits to
store a color component. This member function checks that the bit count assumption is
enforced, and also ensures that all the bits set are contiguous.

This is a protected member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.! 111M Topic Contents i@l§lllMM

+Qi§i[.]ii,+ +Ii.HM Topic Contents Mttfjl§i +gn+

ClmageDisplay: :CheckHeaderVa I id ity

ClmaqeDisplay Class

1516

CimageDisplay Class

Determines if a BITMAPINFOHEADER structure is valid.

BOOL CheckHeaderValidity(
const VIDEOINFO *p!nput
);

Parameters

p!nput
VIDEOINFOHEADER structure that contains the bitmap details.

Return Values

Returns one of the following values.
Value Meaning
TRUE Format is valid.
FALSE Format contains an error.

Remarks

Page 3of11

The BITMAPINFOHEADER structure might be rejected for a number of reasons. These might
include a number-of-planes entry greater or less than one, the size of the structure not being
equal to the size of BITMAPINFOHEADER, or, perhaps, being asked to validate a YUV format
(this member function only validates RGB formats; it will always return FALSE for YUV types).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

M QiM [.] ij,+ I !I.HJ Topic Contents '®'*' 1gnw

ClmageDisplay: :CheckMed iaType

CimaqeDisplay Class

Determines if the filter can support the media type proposed by the output pin.

HRESULT CheckMediaType(
const CMediaType *pmt!n
);

Parameters

pmt!n
Media type to check.

1517

CimageDisplay Class Page 4of11

Return Values

Returns an HRESULT value.

Remarks

This helper member function can be used to validate a video media type. It examines the
major and minor type GUIDs and verifies that the format GUID defines a VIDEOINFOHEADER
structure.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

ClmageDisplay: :CheckPa letteHeader

ClmageDisplay Class

Determines if the palette on a VIDEOINFOHEADER structure is correct.

BOOL CheckPaletteHeader(
const VIDEOINFO *p!nput
);

Parameters

p!nput
VIDEOINFOHEADER structure to validate.

Return Values

Returns one of the following values.
Value Meaning
TRUE Palette is correct.
FALSE No valid palette.

Remarks

ifflj[§ii!¥M

This member function returns FALSE if the format specifies that no palette is available (it
might be a true-color format). It also returns FALSE if the number of palette colors used (or
those that are important) exceeds the number specified for the video format.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents i@l§ii!¥M

1518

CimageDisplay Class Page 5of11

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

ClmageDisplay: :CheckVideoType

ClmageDisplay Class

Compares a video type to determine if it is compatible with the current display mode.

HRESULT CheckVideoType(
const VIDEOINFO *p!nput
);

Parameters

p!nput
VIDEOINFOHEADER structure to validate.

Return Values

Returns NOERROR if successful or E INVALIDARG if unsuccessful.

Remarks

Many video rendering filters want a function to determine if proposed formats are okay. This
member function checks the VIDEOINFOHEADER structure passed as a media type and returns
NOERROR if the media type is valid; otherwise, it returns E_INVALIDARG434. Note, however,
that only formats that can be easily displayed on the current display device are accepted; so,
for example, a 16-bit device will not accept 24-bit images. Because most displays draw 8-bit
palettized images efficiently, this format is always accepted unless the display is 16-color VGA.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 111.],.[9 Topic Contents i@l§i +g¥+

ClmageDisplay: :ClmageDisplay

ClmageDisplay Class

Constructs a CimageDisplay object.

CimageDisplay();

1519

CimageDisplay Class Page 6of11

Return Values

No return value.

Remarks

The CimaqeDisplay class helps renderers that want to determine the format of the current
display mode. This member function retrieves the display mode and creates a
VIDEOINFOHEADER structure that represents its format. The class supplies that format for
clients through member functions such as IsPalettized and GetDisplayFormat. If a client
detects the display format has changed (perhaps it receives a WM_DISPLAYCHANGED
message), it should call RefreshDisplayType.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

ClmageDisplay: :Cou ntPrefixBits

CimageDisplay Class

Helper member function to count the number of prefix bits.

DWORD CountPrefixBits(
const DWORD Field
);

Parameters

Field
Input bitmask field.

Return Values

No return value.

Remarks

Topic Contents i@l§ii!MM

Given a bitmask, this member function counts the number of zero bits up to the least
significant set bit. So, for a binary number 00000100, the member function returns 2
(decimal). The member function does, however, work on DWORD values, so it counts from the
least significant bit up through the DWORD to the last bit (Ox80000000). If no bits are found,
this will return the (impossible) value 32 (decimal).

This is a protected member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1520

CimageDisplay Class

+Qi§1[.]++ 1 !!·HM

ClmageDisplay: :Cou ntSetBits

ClmageDisplay Class

Counts the number of bit sets in the Field parameter.

DWORD CountSetBits(
const DWORD Field
);

Parameters

Field
Field in which to count bit sets.

Return Values

Returns the number of bit sets.

Remarks

This is a protected member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

ClmageDisplay: :GetBitMasks

ClmageDisplay Class

Page 7of11

Topic Contents i@l§ii!MM

Topic Contents i@l§ii!MM

Retrieves a set of color element bitmasks for the supplied VIDEOINFOHEADER structure.

const DWORD *GetBitMasks(
const VIDEOINFO *pVideo!nfo
);

Parameters

pVideoinfo

1521

CimageDisplay Class Page 8of11

Input VIDEOINFOHEADER structure format.

Return Values

No return value.

Remarks

This member function should be called only with RGB formats. If the RGB format has a bit
depth of 16/32 bits per pixel, it will return the bitmasks for the individual red, green, and blue
color elements (for example, RGB565 is OxF800, Ox07EO, and Ox001F). For RGB24, this will
return OxFFOOOO, OxFFOO, and OxFF. For palettized formats, this will return all zeros.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9

ClmageDisplay: :GetColou rMask

CimageDisplay Class

Retrieves a set of individual color element masks.

BOOL GetColourMask(
DWORD *pMaskRed,
DWORD *pMaskGreen,
DWORD *pMaskB/ue
);

Parameters

pMaskRed
Holds red mask.

pMaskGreen
Holds green mask.

pMaskBlue
Holds blue mask.

Return Values

Returns one of the following values.
Value Meaning
TRUE Masks were filled out correctly.
FALSE No masks were available for the display.

Remarks

1522

Topic Contents l@!§il!MM

CimageDisplay Class Page 9of11

Given a video format described by a VIDEOINFOHEADER structure, this member function
returns the mask that is used to obtain the range of acceptable colors for this type (for
example, the mask for a 24-bit true color format is OxFF in all cases). A 16-bit 5:6:5 display
format uses OxF8, OxFC, and OxF8. Therefore, given any RGB triplets, this member function
can find one that is compatible with the display format by using a bitwise-AND operation.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents 1@1§11!¥+

+Q<@[.]jj,+ 111.1 1119 Topic Contents 1@1§111¥+

ClmageDisplay: :GetDisplayDepth

ClmageDisplay Class

Retrieves the bit depth of the current display mode.

WORD GetDisplayDepth();

Return Values

Returns the number of bits per pixel used on the display.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 111.],.[9 Topic Contents 1@1§111¥+

Cl ma ge Display:: GetD isplayFormat

ClmageDisplay Class

Retrieves a VIDEOINFOHEADER structure representing the current display mode.

const VIDEOINFO *GetDisplayFormat();

Return Values

Returns a VIDEOINFOHEADER structure representing the display format.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

1523

CimageDisplay Class

+Qi§1[.]++ 1 !!·HM Topic Contents

ClmageDisplay: :lsPa lettized

ClmageDisplay Class

Determines if the display uses a palette.

BOOL IsPalettized();

Return Values

Returns TRUE if the display uses a palette; otherwise, returns FALSE.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

+;<§1[.]jj,+ +II.HM Topic Contents

ClmageDisplay::RefreshDisplayType

ClmageDisplay Class

Updates the ClmageDisplay object with the current display type.

HRESULT RefreshDisplayType(
LPSTR szDeviceName
);

Parameters

szDeviceName

Page 10of11

i@l§ii!MM

Mttfjl§ii!MM

LPSTR value that contains the name of the device to update. If omitted, this parameter
defaults to the main device.

Return Values

Returns NOERROR if successful; E_FAIL if unsuccessful.

Remarks

This member function should be called when a WM_DISPLAYCHANGED message is received.

1524

CimageDisplay Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents

ClmageDisplay:: U pdateFormat

ClmaqeDisplay Class

Updates the VIDEOINFOHEADER structure to remove implicit assumptions.

HRESULT UpdateFormat(
VIDEOINFO *pVideoinfo
);

Parameters

pVideoinfo
VIDEOINFOHEADER structure to update.

Return Values

Returns an HRESULT value. Current implementation returns NOERROR.

Remarks

Page 11of11

lmll§I 11$8

This member function is probably suitable only for specific filters to use. The BITMAPINFO
structure has certain fields that are not well specified. In particular, the number of colors
specified for a palette can be zero, in which case it is defined to be the maximum for that
format type. This member function updates these fields so that their contents are explicit.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

1525

CimagePalette Class Page 1 of7

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CimagePalette Class

(ClmagePalette)

The CimagePalette class is a specialize<J class for image ren<Jerers that must create an<J
manage palettes. It can be used to create palette han<Jles from a media format containing a
VIDEOINFO structure in the format block. To maximize performance, the class attempts to
create a palette that is an identity palette (that iS, one that exactly matches the current
system palette), and compares palettes before updating to ensure that palettes are changed
only when actually required.

Protected Data Members
Name Description
m_hPalette Palette handle owned by this object.
m_pBaseWindow Window in which to realize the palette.
m_pDrawlmage Object that wm perform the drawing.
m_pMediaFilter Media filter to send events to.

Member F1.1nctions
Name Description
CimagePalette Constructs a CimagePalette object.
CopyPa!ette Copies the palette out of any YUV or true-color VIDEOINEOHEADER

structure into a palettized VIDEOINFOHEADER structure.
MakeidentityPalette Ensures the palette entries will become an identity palette.
MakePalette Retrieves the color palette from the specified video image.
PreoarePalette Specifies an entry point for updating and creating palettes.
RemovePalette Releases any palette resources allocated.
Shou!d!lpdate Specifies an internal helper member function for updating palettes

dynamically.

+;•;"·II'* e11.1,,19 Topic Contents

+;•; "·!!''' 111.1::1¥ T op1c Contents

CimagePalette: :CimagePalette

1526

CimagePalette Class

CimagePalette Class

Constructs a CimagePalette object.

CimagePalette(
CBaseFilter *pBaseFilter,
CBaseWindow *pBaseWindow,
CDrawimage *pDrawimage
);

Parameters

pBaseFilter
Filter that this class is owned by.

pBaseWindow
Window to realize palette in.

pDrawimage
Object that draws using this palette.

Return Values

No return value.

Remarks

Page 2 of7

This class looks after the creation, management, and deletion of a window palette. It is passed
in a number of other objects that might be interested in palettes. The class is optimized so that
requested palette changes will be acted on only if the new set of colors differs from the current
set. This is a performance optimization, because changing palettes is an expensive process.

This constructor is passed in the owning filter (pBaseFilter), which must be a valid pointer.
When the class actually creates a palette, it tells the owning filter to send an
EC_PALETTE_CHANGED message to the filter graph manager. The constructor might also be
passed two further object pointers. If pBaseWindow is not null, when the renderer creates a
new palette the class automatically installs it in this window. When told to remove a palette,
the class also removes the palette from the base window and installs a standard VGA palette
instead.

The constructor can also be passed a drawing object derived from the CDrawimage class. If
this is non-NULL, when creating a new palette the class will inform the drawing object that the
palette has changed (this is usually used in conjunction with a window object). This ensures
that the drawing object is notified when the palette changes so that it can update any samples
it has that were created using CreateDIBSection (because they might need their internal color
tables updated).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.!+• 111.q9 Topic Contents l@!§il!MM

+Qij[.jjj,M 111.1 1119 Topic Contents 1@!§111¥+

1527

CimagePalette Class Page 3 of7

ClmagePalette: :CopyPalette

ClmagePalette Class

Copies the palette out of any YUV or true-color VIDEOINFOHEADER structure into a palettized
VID EOIN FOH EADER structure.

HRESULT CopyPalette(
const CMediaType *pSrc,
const CMediaType *pDest
);

Parameters

pSrc
Source media type.

pDest
Destination media type.

Return Values

Returns NOERROR if successful or S_ FALSE if no palette is available.

Remarks

This member function is used when changing palettes on DirectDraw® samples. A filter acting
as a source to the renderer can attach a palette to any buffer and pass it to the renderer as a
new VIDEOINFOHEADER format. The renderer can then call CopyPalette to make a new
palette from that format, and copy the palette colors into the new connection type.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents

ClmagePalette::MakeldentityPalette

ClmagePalette Class

Modifies the PALETTEENTRY structure to create an identity palette.

HRESULT MakeldentityPalette(
PALETTEENTRY *pEntry,
INT iColours,
LPSTR szDevice
);

1528

i@i§il!MM

CimagePalette Class

Parameters

pEntry
Array of prospective palette colors.

iColours
Number of colors in the array.

szDevice

Page 4 of7

LPSTR value that contains the name of the destination device. If omitted, this parameter
defaults to the main device.

Return Values

Returns NOERROR if successful or S_FALSE if unsuccessful.

Remarks

When a palette is installed in a window, GDI does a fair job of compressing the requested
colors where possible. So, for example, if the array contains five entries of black, they will be
compressed into one palette entry. This is useful for most applications; however, when drawing
video it will force GDI to map the pixels in the supplied image to the compressed palette
(which results in serious performance penalties).

Therefore, the PALETTEENTRY fields supplied must be adjusted so that they will never have
colors compressed. This means that when the window displaying the image has the foreground
focus, the palette created by this object will map directly to the palette selected in the display
device: a so-called identity palette.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9

+Qij[.jlj,M 111.l:.!9

CimagePalette::MakePalette

CimagePalette Class

Retrieves the color palette from the specified video image.

HPALETTE MakePalette(
const VIDEOINFOHEADER *pVideoinfo,
LPSTR szDevice
);

Parameters

pVideoinfo

1529

Topic Contents lfflj(§i +g!ti+

Topic Contents l@i§lllMM

CimagePalette Class

Container for the palette colors required.
szDevice

Page 5 of7

LPSTR value that contains the name of the destination device. If omitted, this parameter
defaults to the main device.

Return Values

Returns a handle to the new palette (NULL if it fails).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

CimagePalette::PreparePalette

CimagePalette Class

Specifies an entry point for creating and installing palettes.

HRESULT PreparePalette(
const CMediaType *pmtNew,
const CMediaType *pmtOld,
LPSTR szDevice
);

Parameters

pmtNew
Media type holding new palette information.

pmtOld
Media type holding old palette information.

szDevice

Topic Contents l@i§il!MM

LPSTR value that contains the name of the destination device. If omitted, this parameter
defaults to the main device.

Return Values

Returns an HRESULT value.

Remarks

This is the main entry point for creating new palettes. It tries to detect situations where the
palette colors requested have not changed (in which case it does not need to create a new
palette). It uses the old media type to determine if the colors have changed. It also handles
optionally installing the palette in a window (if supplied) and notifying the filter graph manager
of a change in palettes (it uses the filter passed in to the constructor for this). Finally, it
handles notifying the draw object of palette changes (also optional, depending on whether a
draw object was passed in to the constructor).

1530

CimagePalette Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents

MQl§i[.jjj,M 111.],.[5 Topic Contents

ClmagePalette::RemovePalette

ClmagePalette Class

Removes and deletes any palette previously created.

HRESULT RemovePalette();

Return Values

Returns an HRESULT value. Current implementation returns NOERROR.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQIM!.l+' 111.],.[5

ClmagePa lette: :Shau Id Update

ClmagePalette Class

..ti.eJ..Q. member function that checks if two sets of colors match.

BOOL ShouldUpdate(
const VIDEOINFOHEADER *pNewinfo,
const VIDEOINFOHEADER *pO/dinfo
);

Parameters

pNewinfo

Topic Contents

VIDEOINFOHEADER structure containing the new set of colors.
pO/dlnfo

VIDEOINFOHEADER structure containing the old set of colors.

Return Values

1531

Page 6 of7

lmll§I 11$8

lfflj(§i MUMM

l@i§lllMM

CimagePalette Class

Returns one of the following values.
Value Meaning
TRUE A new palette is required.
FALSE The existing palette suffices.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥

1532

Page 7 of7

Topic Contents i@i§ll!¥+

CimageSam pie Class Page I of3

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CimageSample Class

CMediaSample

ClmageSample

This c!ilss inherits from CMediaSample and overrides the constructor to initialize itself with the
DIBDATA structure. When the renderer is using its own allocator, it wrn use thiS class for its
samples. It can therefore obtain the DIBSECTION structure information it requires to obtain
the HBITMAP data it renders.

Protected Data Members
Name Description
m_binlt Flag to determine if the DISSECTION structure information is initialized.
m_DlbData Information about the sample's DIBSECTION structure.

Member Functions
Name Description
CimageSample Constructs a CimageSample object.
GetDIBData Retrieves the DIBSECTION structure information stored for the sample.
SetDISData Sets the DISSECTION information stored for the sample.

MAI§ 11.jjl a 111.11119

MAI§ 11.l!f,M +:1.1 .. 19

CimageSample: :CimageSample

CimageSample Class

Constructs a CimageSample object.

CimageSample{
CBaseAllocator '"pAllocaror,
TCHAR '*'pft/<lme,

1533

Topic Contents

T op1c Contents

l@i§M Mt$M

i@i§MMt§M

CimageSample Class

HRESULT *phr,
LPBYTE pBuffer,
LONG length
);

Parameters

pAl/ocator
Base allocator to which the sample belongs.

pName
Debug-only string description.

phr
COM return code.

pBuffer
Pointer to the image buffer.

length
Length of the image buffer.

Return Values

No return value.

Remarks

Page 2 of3

The ClmageAllocator, CimageSample, and CDrawimage classes are all tightly associated. The
buffers that the image allocator creates are made by using the Microsoft® Win32®
CreateDIBSection function. The allocator then creates its own samples (based on the
CimageSample class). The image samples are initialized with the buffer pointer and its
length. The sample is also passed in a structure (a DIBDATA structure) that holds a number of
pieces of information obtained from the CreateDIBSection call.

These samples can then be passed to the draw object. The draw object knows the private
format of the samples and how to get back the DIBDATA structure from them. Once it has
obtained that information, it can pass a bitmap handle, which is stored in the DIBDATA
structure, down into GDI when it draws the image that the sample contains. By using the
bitmap handle from the sample in the drawing, rather than just the buffer pointer (which is the
alternative if the sample is not a CimageSample), it achieves a modest performance
improvement.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 11·1::'¥ Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

ClmageSample: :GetDIBData

ClmageSample Class

1534

CimageSample Class

Retrieves the DIBDATA structure held by the sample.

DIBDATA *GetDIBData();

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j

CimageSample: :SetDIBData

ClmageSample Class

Sets the DIBDATA structure that the sample should hold.

void SetDIBData(
DIBDATA *pDibData
);

Parameters

pDibData
New DIBDATA structure.

Return Values

No return value.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

1535

Page 3of3

Topic Contents l@i§il!MM

CLoadDirectDraw Class Page I of 4

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CLoadDirectDraw Class

(CLoadDirectDraw)

DirectShow"' must work on multiple platforms; in partieular, it also runs on Mierosoft:®
Windows NT® 3.51, which does not have DirectDraw® capabilities. The filters therefore cannot
link statically to the DirectDraw library. To make the platform dependencies easier to handle,
this class manages loading and unloading the library and creating the initial IDirectDraw
interface.

Member Functions
Name Description
CLoadDirectDraw Constructs a CLoadDirectDraw object.
GetDirectDraw Retrieves a pointer to the IDirectDraw interface.
IsDirectDrawLoaded Verifies that DirectDraw iS loaded.
IsDirectDrawVersion l Checks the version of Direct Draw installed on the current system.
! oad Direct Draw Loads and initializes the DirectDraw library.
ReleaseDirectDraw Releases the IDirectDraw interface.

Topic Contents '@'!'''""

CLoadDirectDraw: :CLoadDi rectDraw

CLoadDirectDraw Class

Constructs a C! oad Directoraw object.

CLoadDlrectDraw(vold);

Return Values

No return value.

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

1536

CLoadDirectDraw Class Page 2 of 4

CLoadDi rectDraw: :GetDi rectDraw

CLoadDirectDraw Class

Retrieves the DirectDraw interface.

LPDIRECTDRAW GetDirectDraw(void);

Return Values

Returns a pointer to the IDirectDraw interface.

Remarks

Call CLoadDirectDraw:: LoadDirectDraw before calling this member function and call the
CLoadDirectDraw:: ReleaseDirectDraw member function to release the interface when you are
done.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

C Load Di rectDraw:: Is Di rectDrawloa ded

CLoadDirectDraw Class

Verifies that this object loaded DirectDraw.

HRESULT IsDirectDrawloaded(void);

Return Values

Returns S_OK if loaded; otherwise, returns S_ FALSE.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Qi§1!.l+1 1 !1·HM Topic Contents i@i§ii!¥M

CLoadDi rectDraw: :Is Di rectDrawVersion 1

1537

CLoadDirectDraw Class Page 3 of 4

CLoadDirectDraw Class

Checks the version of DirectDraw installed on the current system.

BOOL IsDirectDrawVersion1(void);

Return Values

Returns TRUE if the installed version of DirectDraw doesn't support the IDirectDraw2 interface,
or FALSE if the m pDirectDraw data member is NULL or the installed version of DirectDraw
supports IDirectDraw2.

Remarks

The video renderer must know what the installed version of DirectDraw is to perform certain
tasks, such as full-screen playback, which the IDirectDraw2 interface supports.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

CLoadDi rectDraw:: Load Di rectDraw

CLoadDirectDraw Class

Loads and initializes the DirectDraw library in the specified area.

HRESULT LoadDirectDraw(
LPSTR szDevice
);

Parameters

szDevice

ifflj[§ii!¥M

This parameter is optional; if omitted, this method loads DirectDraw to the base drawing
area.

Return Values

Returns S_OK if DirectDraw loaded correctly or E_NOINTERFACE otherwise.

Remarks

DirectDraw is not always available, so applications can't statically link to the library. Therefore,
this member function loads the library, gets the function entry point addresses, and calls them
to create the driver objects. Call this member function before calling

1538

CLoadDirectDraw Class Page 4 of 4

CLoadDirectDraw: :GetDirectDraw to retrieve the IDirectDraw interface.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

8 4'MM+1 111·!:.!¥ Topic Contents lmll§lllMM

CLoadDi rectDraw:: ReleaseDi rectDraw

CLoadDirectDraw Class

Releases the IDirectDraw interface.

void ReleaseDirectDraw(void);

Return Values

No return value.

Remarks

This member function is called to release any IDirectDraw interface previously loaded. Call this
only when all reference counts have been released.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1539

CMediaControl Class Page I of7

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CMediaControl Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CM ediaControl

The CMedlaControl class provides base class handling of the IDisoatch methods of the dua!
intemice IMediaCootro!. It !eaves as pure virtual the properties and methods of the
IMedlaControl interface.

Typically, the filter graph manager iS the only object that implements the IMediaContro!
interface. (Filters implement the IMediafi!ter interface, inherited by IBasefi!ter. to receive
control commands from the filter graph manager.} Therefore, thiS class library is of limited use
to filter developers.

The CMed @Control: :GetIDsOfNames. CMediaContro!: :GetTypeinfo.
CMediaCootro!"GetTypeinfoCooot, and CMediaCootro!• ·Invoke member functions are standard
implementations of the IDisoatch methods using the CBaseDisoatch class (and a type library}
to parse the commands and pass them to the pure virtual methods of the IMediaContro!
intemice.

The IMediaCootro! methods, defined in contro!.od!, are left as pure virtual.

Member Functions
Name Description
CMediaContro! Constructs a CMediaContro! object.

Implemented INonDelegatlngUnknown Methods
Name Description
NonoeiegatjngQ1 reryinterface Returns a specified reference-counted interface.

Implemented !Dispatch Methods

1540

CMediaControl Class Page 2of7

Name Description
GetI DsOfNa mes Maps a single member and an optional set of parameters to a

corresponding set of integer dispatch identifiers (DISPIDs), which can be
used during subsequent calls to the CMediaControl: :Invoke method.

GetTypeinfo Retrieves a type-information object, which can retrieve the type
information for an interface.

GetTypeinfoCount Retrieves the number of type-information interfaces provided by an object.
Invoke Provides access to properties and methods exposed by an object.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 Mii.HM

• ; i§i [.] +• I !!·HM

CMediaControl: :CMediaControl

CMediaControl Class

Constructs a CMed iaControl object.

CMediaControl(
const TCHAR *pName,
LPUNKNOWN pUnk
);

Parameters

pName
Name of the object for debugging purposes.

pUnk
Pointer to the owner of this object.

Return Values

No return value.

Remarks

Topic Contents •@M* 1gnw

Topic Contents i@faii!MM

Allocate the pName parameter in static memory. This name appears on the debugging terminal
upon creation and deletion of the object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

• ; i§i [.] +• I !!·HM Topic Contents i@faii!MM

1541

CMediaControl Class Page 3of7

CMediaControl: :GetlDsOfNames

CMediaControl Class

Maps a single member function and an optional set of parameters to a corresponding set of
integer dispatch identifiers (DISPIDs), which can be used upon subsequent calls to the
CMediaControl: :Invoke member function.

HRESULT GetIDsOfNames(
REFIID riid,
OLECHAR * * rgszNames,
UINT cNames,
LCID lcid,
DISPID * rgdispid
);

Parameters

riid
Reference identifier. Reserved for future use. Must be NULL.

rgszNames
Passed-in array of names to be mapped.

cNames
Count of the names to be mapped.

lcid
Locale context in which to interpret the names.

rgdispid
Caller-allocated array, each element of which contains an ID corresponding to one of the
names passed in the rgszNames array. The first element represents the member name;
the subsequent elements represent each of the member's parameters.

Return Values

Returns one of the following values.
Value Meaning
DISP _E_UNKNOWN_CLSID The CLSID was not recognized.
DISP E UNKNOWN NAME One or more of the names were not known. The returned DISPIDs

contain DISPID_UNKNOWN for each entry that corresponds to an
unknown name.

E_OUTOFMEMORY
S_OK

Out of memory.
Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9

1542

Topic Contents l@!§il!MM

CMediaControl Class Page 4of7

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CMediaControl: :GetTypelnfo

CMediaControl Class

Retrieves a type-information object, which can retrieve the type information for an interface.

HRESULT GetTypeinfo(
UINT itinfo,
LCID lcid,
ITypeinfo * * pptinfo
);

Parameters

itinfo
Type information to return. Pass zero to retrieve type information for the IDispatch
implementation.

lcid
Locale ID for the type information. An object might be able to return different type
information for different languages. This is important for classes that support localized
member names. For classes that do not support localized member names, this parameter
can be ignored.

pptinfo
Pointer to the type-information object requested.

Return Values

Returns an E_ POINTER if pptinfo is invalid. Returns TYPE_ E_ELEMENTNOTFOUND if itinfo is not
zero. Returns S_OK if is successful. Otherwise, returns an HRESULT from one of the calls to
retrieve the type. The HRESULT indicates the error and can be one of the following standard
constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 11!.l:.!9 Topic Contents i@l§ii!MM

+Qi§i[.]ii,+ +II.HM Topic Contents Mttfjl§ii!MM

1543

CMediaControl Class

CMediaControl: :GetTypelnfoCount

CMediaControl Class

Retrieves the number of type-information interfaces provided by an object.

HRESULT GetTypeinfoCount(
UINT * pctinfo
);

Parameters

pctinfo

Page 5of7

Pointer to the location that receives the number of type-information interfaces that the
object provides. If the object provides type information, this number is 1; otherwise, the
number is 0.

Return Values

Returns E_POINTER if pctinfo is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

CMediaControl: :Invoke

CMediaControl Class

Provides access to properties and methods exposed by an object.

HRESULT Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
DISPPARAMS * pdispparams,
VARIANT * pvarResult,
EXCEPINFO * pexcepinfo,
UI NT * puArgErr
);

Parameters

1544

i@i§ii!MM

CMediaControl Class Page 6of7

dispidMember
Identifier of the member. Use CMed iaControl: : GetlDsOfNa mes or the object's
documentation to obtain the dispatch identifier.

riid
Reserved for future use. Must be IID NULL.

lcid
Locale context in which to interpret arguments.

wF/ags
Flags describing the context of the CMediaControl::Invoke call.

pdispparams
Pointer to a structure containing an array of arguments, an array of argument dispatch
IDs for named arguments, and counts for number of elements in the arrays.

pvarResult
Pointer to where the result is to be stored, or NULL if the caller expects no result.

pexcepinfo
Pointer to a structure containing exception information.

puArgErr
Index of the first argument, within the rgvarg array, that has an error.

Return Values

Returns DISP _E_UNKNOWNINTERFACE if riid is not IID_ NULL. Returns one of the error codes
from CMediaControl: :GetTypeinfo if the call fails. Otherwise, returns the HRESULT from the
call to !Dispatch: :Invoke.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmli§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

CMed iaControl:: Non Delegati ngQuerylnterface

CMediaControl Class

Returns a specified reference-counted interface.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void **ppv
);

Parameters

riid
Reference identifier.

ppv

1545

CMediaControl Class

Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E NOINTERFACE if it is not.

Remarks

Page 7 of7

Returns pointers to the !MediaControl and !Unknown interfaces by default. Override this
member function to publish any additional interfaces implemented by the derived class.

This member function implements the !NonDelegatingUnknown: :NonDelegatingOuerylnterface
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1546

CMediaEvent Class Page 1 of7

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CMediaEvent Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

IMediaEvent

CM ediaEvent

The CMedlaEvent class provides base class implementatiOn of the IDisoatch methods of the
dual-interface IMediaEvent. It !eaves as pure virtual the properties and methods of the
IMecllaEvent interface.

The CMecllaEvent class also provides base class implementation of the IMediaEventEx
interface which derives from I Med iaEvent.

The CMed @Event: :GetIDsOfNames, CMediaEvent: :GetTupeinfo,
CMediaEvent: :GetTypeinfoCount. and CMediaEvent: :Invoke member functions are standard
implementations of the IDisoatch interface using the CBaseDisoatch class (and a type library)
to parse the commands and pass them to the pure virtual methods of the IMediaEvent
interface.

Membe .. Functions
Name Description
CMediaEvent Constructs a CMediaEvent object.

Implemented INonOelegatl ngUnknown Methods
Name Description
NonDe!egatingOueryinterface Returns a specified reference-counted interface.

Implemented !Dispatch Methods
Name Description
GetIDsQfNames Maps a single member and an optional set of parameters to a

corresponding set of integer dispatch identifiers, whieh can be used during
subsequent calls to the IDisoatch::Invoke method.

GetTupeinfo Retrieves a type-information object, whieh retrieves the type information
for an interface.

GetTupeinfoCount Retrieves the number of type-information interfaces provided by an object.

1547

CMediaEvent Class Page 2 of 7

Invoke Provides access to properties and methods exposed by an object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j

MQ<§i[.jjj,M lh.l:.!j

CMediaEvent: :CMediaEvent

CMediaEvent Class

Constructs a CMediaEvent object.

CMediaEvent(
const TCHAR * pName,
LPUNKNOWN pUnk
);

Parameters

pName
Name of the object for debugging purposes.

pUnk
Pointer to the owner of this object.

Return Values

No return value.

Remarks

Topic Contents l@i§il!MM

Topic Contents i@faii!MM

Allocate the pName parameter in static memory. This name appears on the debugging terminal
upon creation and deletion of the object.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,+ '!!·Hi Topic Contents i@faii!MM

CMed ia Event: :GetlDsOfNa mes

CMediaEvent Class

1548

CMediaEvent Class Page 3 of7

Maps a single member function and an optional set of parameters to a corresponding set of
integer dispatch identifiers, which can be used upon subsequent calls to the
CMediaEvent:: Invoke member function.

HRESULT GetIDsOfNames(
REFIID riid,
OLECHAR * * rgszNames,
UINT cNames,
LCID lcid,
DISPID * rgdispid
);

Parameters

riid
Reference identifier. Reserved for future use. Must be NULL.

rgszNames
Passed-in array of names to be mapped.

cNames
Count of the names to be mapped.

lcid
Locale context in which to interpret the names.

rgdispid
Caller-allocated array, each element of which contains an ID corresponding to one of the
names passed in the rgszNames array. The first element represents the member name;
the subsequent elements represent each of the member's parameters.

Return Values

Returns one of the following values.
Value Meaning
DISP _E_UNKNOWN_CLSID The CLSID was not recognized.
DISP _E_UNKNOWNNAME One or more of the names were not known. The returned DISPIDs

contain DISPID_ UNKNOWN for each entry that corresponds to an
unknown name.

E_OUTOFMEMORY
S_OK

Out of memory.

Success.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM

• QIM [.] +• I !!·HM

CMediaEvent: :GetTypelnfo

1549

Topic Contents lmll§I llMM

Topic Contents l@i§i MUMM

CMediaEvent Class Page 4 of7

CMediaEvent Class

Retrieves a type-information object, which can retrieve the type information for an interface.

HRESULT GetTypeinfo(
UINT itinfo,
LCID lcid,
ITypeinfo * * pptinfo
);

Parameters

itinfo
Type information to return. Pass zero to retrieve type information for the IDisoatch
implementation.

lcid
Locale ID for the type information. An object might be able to return different type
information for different languages. This is important for classes that support localized
member names. For classes that do not support localized member names, this parameter
can be ignored.

pptinfo
Pointer to the type-information object requested.

Return Values

Returns an E_ POINTER if pptinfo is invalid. Returns TYPE_ E_ELEMENTNOTFOUND if itinfo is not
zero. Returns S_OK if is successful. Otherwise, returns an HRESULT from one of the calls to
retrieve the type. The HRESULT indicates the error and can be one of the following standard
constants, or other values not listed:
Value Meaning
E_ FAIL Failure.
E POINTER Null pointer argument.
E_INVALIDARG Invalid argument.

S_OK or NOERROR Success.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmll§I 11¥8

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

CMed ia Event: :GetTypelnfoCou nt

CMediaEvent Class

Retrieves the number of type-information interfaces provided by an object.

1550

CMediaEvent Class

HRESULT GetTypeinfoCount(
UI NT * pctinfo
);

Parameters

pctinfo

Page 5 of7

Pointer to the location that receives the number of type-information interfaces that the
object provides. If the object provides type information, this number is 1; otherwise, the
number is 0.

Return Values

Returns E_POINTER if pctinfo is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents

CMediaEvent: :Invoke

CMediaEvent Class

Provides access to properties and methods exposed by an object.

HRESULT Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wF/ags,
DISPPARAMS * pdispparams,
VARIANT* pvarResult,
EXCEPINFO * pexcepinfo,
UI NT * puArgErr
);

Parameters

dispidMember

l@i§lllMM

Identifier of the member. Use CMediaEvent: :GetIDsOfNames or the object's
documentation to obtain the dispatch identifier.

riid
Reserved for future use. Must be IID NULL.

lcid
Locale context in which to interpret arguments.

wF/ags
Flags describing the context of the CMediaEvent::Invoke call.

pdispparams

1551

CMediaEvent Class Page 6 of7

Pointer to a structure containing an array of arguments, an array of argument dispatch
IDs for named arguments, and counts for the number of elements in the arrays.

pvarResult
Pointer to where the result is to be stored, or NULL if the caller expects no result.

pexcepinfo
Pointer to a structure containing exception information.

puArgErr
Index of the first argument, within the rgvarg array, that has an error.

Return Values

Returns DISP _E_UNKNOWNINTERFACE if riid is not IID_NULL. Returns one of the error codes
from CMediaEvent: :GetTypeinfo if the call fails. Otherwise, returns the HRESULT from the call
to !Dispatch:: Invoke.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij Topic Contents l@i§i llfttiM

MQl§i[.jjj,M 111.],.(j Topic Contents •@m••1m+

C Media Event:: Non Delegati ngQ ueryl nte rf ace

CMediaEvent Class

Returns a specified reference-counted interface.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void **ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

Returns a pointer to the IMediaEvent and IUnknown interfaces by default. Override this
member function to publish any additional interfaces added by the derived class.

1552

CMediaEvent Class Page 7 of7

This member function implements the !NonDeleqatinqUnknown:: NonDeleqatinqOuerylnterface
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1553

CMediaPositi on Class Page 1 of6

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CMediaPosition Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CM ediaPosition

The C:MediaPositlon class is a base class that handles the IDisoatch methods of the dual·
interface IMediaPosition. It leaves the properties and methods as pure virtual.

The CMed @Position: :GetIDsOfNames, CMediaPosition: :GetTupeinfo,
CMed iaPosition:: GetTuoeinfoCount, and CMed @Position:: Invoke methods are standard
implementations of the !Dispatch interface using the CBaseDisoatch class (and a type library)
to parse the commands and pass them to the pure virtual IMediaPosition methods.

Membe .. Functions
Name Des<: .. lptlon
CMed @Position Constructs a CMed iaPosition object.

Implemented INonDelegatlngUnknown Methods
Name Des<: .. lption
NonoeiegatingQ1 reryintertace Returns a specified reference-counted interface.

Implemented !Dispatch Methods
Name Des<:ription
GetIDsQfNames Maps a single member and an optional set of parameters to a

corresponding set of integer dispatch identifiers, whieh can be used during
subsequent calls to the CMediaPosition: :Invoke member function.

GetTupeinfo Retrieves a type-information object, whieh can retrieve the type
information for an interface.

GetTupeinfoCount Retrieves the number of type-information interfaces provided by an object.
Invoke Provides access to properties and methods exposed by an object.

w;•; "·II' a 111.11119 Topic Contents l@i§Mit§M

1554

CMediaPosition Class

+Qi§1[.]++ 1 !!·HM

CMed ia Position: :CMedia Position

CMediaPosition Class

Constructs a CMediaPosition object.

CMediaPosition (
const TCHAR *pName,
LPUNKNOWN pUnk
);

Parameters

pName

Page 2of6

Topic Contents i@l§ii!MM

Name of the object used in the CMediaPosition constructor for debugging purposes.
pUnk

Pointer to the owner of this object.

Return Values

No return value.

Remarks

Allocate the pName parameter in static memory. This name appears on the debug terminal
upon creation and deletion of the object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+ Q i§i [.] jj,+ +!!·HM Topic Contents i@l§ii!MM

CMed ia Position: :GetIDsOfNa mes

CMediaPosition Class

Maps a single member function and an optional set of parameters to a corresponding set of
integer dispatch identifiers, which can be used upon subsequent calls to the
CMediaPosition: :Invoke member function.

HRESULT GetIDsOfNames(

1555

CMediaPosition Class

REFIID riid,
OLECHAR * * rgszNames,
UINT cNames,
LCID lcid,
DISPID * rgdispid
);

Parameters

riid
Reference identifier. Reserved for future use. Must be NULL.

rgszNames
Passed-in array of names to be mapped.

cNames
Count of the names to be mapped.

lcid
Locale context in which to interpret the names.

rgdispid

Page 3of6

Caller-allocated array, each element of which contains an ID corresponding to one of the
names passed in the rgszNames array. The first element represents the member name;
the subsequent elements represent each of the member's parameters.

Return Values

Returns one of the following values.
Value Meaning
DISP _E_UNKNOWN_CLSID The CLSID was not recognized.
DISP E UNKNOWNNAME One or more of the names were not known. The returned DISPIDs

contain DISPID_UNKNOWN for each entry that corresponds to an
unknown name.

E_OUTOFMEMORY
S_OK

Out of memory.
Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

+Q<@[.]ij,+ 111.1 1119

CMed ia Position: :GetTypeinfo

CMediaPosition Class

Topic Contents ifflj[§ii!¥M

Topic Contents 1@1§11!¥+

Retrieves a type-information object, which can retrieve the type information for an interface.

HRESULT GetTypeinfo(
UINT itinfo,

1556

CMediaPosition Class

LCID lcid,
ITypeinfo * * pptinfo
);

Parameters

itinfo

Page 4of6

Type information to return. Pass zero to retrieve type information for the IDispatch
implementation.

lcid
Locale ID for the type information. An object might be able to return different type
information for different languages. This is important for classes that support localized
member names. For classes that do not support localized member names, this parameter
can be ignored.

pptinfo
Pointer to the type-information object requested.

Return Values

Returns an E_POINTER if pptinfo is invalid. Returns TYPE_E_ELEMENTNOTFOUND if itinfo is not
zero. Returns S_OK if is successful. Otherwise, returns an HRESULT from one of the calls to
retrieve the type. The HRESULT indicates the error and can be one of the following standard
constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents

+Q<@[.]ij,+ 111.1 1119 Topic Contents

CMed ia Position: :GetTypeinfoCou nt

CMediaPosition Class

Retrieves the number of type-information interfaces provided by an object.

HRESULT GetTypeinfoCount(
UI NT * pctinfo
);

Parameters

1557

ifflj[§ii!¥M

1@1§11!¥+

CMediaPosition Class Page 5of6

pctinfo
Pointer to the location that receives the number of type-information interfaces that the
object provides. If the object provides type information, this number is 1; otherwise, the
number is 0.

Return Values

Returns E_POINTER if pctinfo is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents

CMed ia Position: :Invoke

CMediaPosition Class

Provides access to properties and methods exposed by an object.

HRESULT Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wF/ags,
DISPPARAMS * pdispparams,
VARIANT* pvarResult,
EXCEPINFO * pexcepinfo,
UI NT * puArgErr
);

Parameters

dispidMember

lmll§lllMM

Identifier of the member. Use CMediaPosition: :GetIDsOfNames or the object's
documentation to obtain the dispatch identifier.

riid
Reserved for future use. Must be IID NULL.

lcid
Locale context in which to interpret arguments.

wF/ags
Flags describing the context of the CMediaPosition::Invoke call.

pdispparams
Pointer to a structure containing an array of arguments, an array of argument dispatch
IDs for named arguments, and counts for the number of elements in the arrays.

pvarResult
Pointer to where the result is to be stored, or NULL if the caller expects no result.

pexcepinfo
Pointer to a structure containing exception information.

1558

CMediaPosition Class Page 6of6

puArgErr
Index of the first argument, within the rgvarg array, that has an error.

Return Values

Returns DISP _E_UNKNOWNINTERFACE if riid is not IID_NULL. Returns one of the error codes
from CMediaPosition: :GetTypeinfo if the call fails. Otherwise, returns the HRESULT from the
call to !Dispatch: :Invoke.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents l!ftli§i 11111+

MQ<§i[.jjj,M 111.Hj Topic Contents i@faii!MM

CMediaPosition::NonDelegatingQuerylnterface

CMediaPosition Class

Returns a specified reference-counted interface.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void **ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

Returns a pointer to IMediaPosition and !Unknown interfaces by default. Override this member
function to publish any additional interfaces implemented by the derived class.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

1559

CMedi aSampl e Class Page I of 17

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CMediaSample Class

CMediaSample

This class represents a buffer object that supports the IMediaSample interface. It represents a
buffer in memory, together with some associated properties stored as protected data
members.

The constructor is passed as a pointer to the buffer with its length in bytes; other properties
are normally set and accessed through implemented IMediaSamp!e interface methods. These
properties describe various attributes of the media sample, such as the sample's media type,
start and end time, and options. The options can include whether the media sample is a sync
point, a prero!! sample, or discontinuous with other samples.

A!! member functions in this class that return HRESULT and accept a pointer as a parameter
return E POIITTER when passed a nu!! pointer.

Pratected Data Members
Name Des<:rlptlan
m_cbBut't'er Size of the buffer.
m_cfWFlags Sample property flags as follows:

Sample Discontinuity: Set if start of a new segment.
Sample Media Time Valid: Set if the media time is valid.
Sample Prero!!: Set if sample iS a prero!! sample.
Sample StopVali<J: Set if the stop time is valid.
Sample SyncPoint: Set if sample is a synchronization point.
Sample TimeValid: Set if the time is valid.
Sample TypeChanged: Set if the type has changed.

m_End Sample end time.
m_IActual Actual length of data in this sample.
m_MedlaEnd Media end (offset from m MediaStart}.
m_MedlaStart Media start position.
m_pAllacatar Pointer to the IMemA!!ocator object associated with this object.
m_pBut't'er Pointer to the complete buffer.
m_pMedlaType Pointer to a structure containing the media type of the sample.
m_pNext Pointer to the next CMediaSample object in the free list.
m_Start Sample start time.

Member Functlans

1560

CMediaSample Class

Name Description
CMediaSample Constructs a CMediaSample object.
SetPointer Sets the buffer pointer and length.

Implemented !Unknown Methods
Name Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

Implemented IMediaSample Methods
Name Description
GetActualDataLength Retrieves the data length of the sample.
GetMediaTime
GetMediaType

GetPointer
GetSize
GetTime

Retrieves the media time extents of the sample.
Retrieves the media type of the CMediaSample object.
Retrieves a read/write pointer to the memory of this buffer.
Returns the size, in bytes, of the buffer data area.
Sets the media time extents for this sample.
Determines if there is discontinuity in the data stream.

Page 2of17

IsDiscontinuity

IsPreroll Indicates a preroll property. If TRUE, this sample is for preroll only and
should not be displayed.

IsSyncPoint Determines if the beginning of a sample is a synchronization point.
SetActualDataLength Sets the data length of the sample.

Sets the discontinuity property.
Sets the media time of the CMediaSample object.
Sets the media type of the CMediaSample object.

SetDiscontinuity

SetMediaTime
SetMediaType

SetPreroll Sets preroll property. If TRUE, this sample is for preroll only and should
not be displayed.
Sets sync-point property. SetSyncPoint

SetTime Sets the stream time at which this sample should start and finish.

Implemented INonDelegatingUnknown Methods
Name Description
NonDelegatingQueryinterface Passes out pointers to any interfaces added to the derived filter

class.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fa111¥M

CMediaSample: :Add Ref

1561

CMediaSample Class Page 3of17

CMediaSamole Class

Increments the reference count for the calling interface on an object.

ULONG AddRef(void);

Return Values

Returns an integer from 1 ton, the value of the new reference count.

Remarks

This member function implements the IUnknown: :AddRef method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

CMediaSample: :CMediaSample

CMediaSample Class

Constructs a CMediaSample object.

CMediaSample(
TCHAR *pName,
CBaseAllocator *pAl/ocator,
HRESULT *phr,
LPBYTE pBuffer = NULL,
LONG length = 0
);

Parameters

pName
Name of the media sample.

pAl/ocator
Pointer to the CBaseAllocator object used for memory allocation.

phr
Pointer to the general COM return value. Note that this value is changed only if this
function fails.

pBuffer
Pointer to a memory buffer (to be allocated by the pAl/ocator parameter).

length
Length of the allocated memory buffer.

1562

CMediaSample Class Page 4of17

Return Values

No return value.

Remarks

The constructor creates an object with the buffer and buffer length set to that of the
CBaseAllocator object to which it points.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

MQijl.111,h M!i.1 111M Topic Contents i@l§i 11111+

CMed iaSa mple: :GetActua I Data Length

CMediaSample Class

Retrieves the data length of the sample.

HRESULT GetActualDatalength(void);

Return Values

Returns the value of m !Actual by default.

Remarks

This member function implements the IMediaSample: :GetActualDataLength method.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+ ;<§1 [.] ij,+ +II.HM Topic Contents Mttfjl§i +gn+

CMed iaSa mple: :GetMed iaTi me

CMediaSample Class

Retrieves the starting and ending media time.

1563

CMediaSample Class

HRESULT GetMediaTime(
LONGLONG * pStart,
LONGLONG * pEnd
);

Parameters

pStart
Retrieved beginning media time.

pEnd
Retrieved ending media ti me.

Return Values

Returns an HRESULT value.

Remarks

Page 5of17

This member function implements the IMediaSamole: :GetMediaTime method. It sets pStart to
the current value of m MediaStart and pEnd to the sum of m_MediaStart and m MediaEnd. If
the sample has not been set, this member function returns VFW E MEDIA TIME NOT SET.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM

CMediaSample: :GetMediaType

CMediaSample Class

Retrieves the media type of the CMediaSample object.

HRESULT GetMediaType(
AM_MEDIA_TYPE ** ppMediaType
);

Parameters

ppMediaType
Pointer to a pointer to the retrieved media type.

Return Values

Topic Contents ifflj[§ii!¥M

Returns an HRESULT value. When a sample is received and there is no format change, this
method returns S FALSE.

Remarks

1564

CMediaSample Class Page 6of17

This member function implements the IMediaSamole: :GetMediaTyoe method. The member
function makes a copy of the AM MEDIA TYPE structure and creates a task memory block to
maintain the reference. When you are done with the media type, free the memory block with
the FreeMediaType utility function, and then free the entire media type with the Microsoft®
Win32® CoTaskMemFree function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

CMed iaSa mple: :GetPoi nter

CMediaSample Class

Retrieves a read/write pointer to the buffer's memory.

HRESULT GetPointer(
BYTE * * ppBuffer
);

Parameters

ppBuffer
Retrieved pointer to the buffer.

Return Values

Topic Contents ifflj[§ii!¥M

Returns VFW E BUFFER NOTS ET if CMediaSample:: SetPointer was not called before calling
this function, or NOERROR otherwise.

Remarks

This member function implements the IMediaSample: :GetPointer method. GetPointer returns
the value of m pBuffer, set using CMediaSample: :SetPointer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41H+1 1 !!·HM Topic Contents i@l§ii!¥M

CMediaSample: :GetSize

CMediaSample Class

1565

CMediaSample Class

Retrieves the size, in bytes, of the buffer data area.

HRESULT GetSize(void);

Return Values

Returns the value of m cbBuffer by default.

Remarks

This member function implements the IMediaSample: :GetSize method.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

CMediaSample: :GetTime

CMediaSample Class

Retrieves the stream time at which this sample should begin and finish.

HRESULT GetTime(
REFERENCE_ TIME * pTimeStart,
REFERENCE_ TIME* pTimeEnd
);

Parameters

pTimeStart
Retrieved beginning stream time.

pTimeEnd
Retrieved ending stream time.

Return Values

Page 7of17

lmli§lllMM

Returns VFW E SAMPLE TIME NOT SET if this sample doesn't have valid timestamps, or
NOERROR otherwise.

Remarks

This member function implements the IMediaSample: :GetTime method. It sets pTimeStart to
the current value of m Start and pTimeEnd to the current value of m End.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

1566

CMediaSample Class Page 8of17

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CMed iaSa mple: :lsDisconti nu ity

CMediaSample Class

Determines if there is discontinuity in the data stream.

HRESULT IsDiscontinuity(void);

Return Values

Returns S_OK if the sample is a discontinuous sample and S_ FALSE if not; otherwise, returns
an HRESULT error value.

Remarks

This member function implements the IMediaSample: :IsDiscontinuity method. It returns the
value of the m dwFlags Sample_Discontinuity property flag. Discontinuity occurs when a
source filter seeks to a different place in the stream or when a filter drops samples for quality
control.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 1119 Topic Contents i@l§lllMM

CMediaSample: :IsPreroll

CMediaSample Class

Preroll property. If TRUE, this sample is for preroll only and should not be displayed.

HRESULT IsPreroll(void);

Return Values

Returns S_OK if the sample is a preroll sample and S_FALSE if not; otherwise, returns an
HRESULT error value.

Remarks

This member function implements the IMediaSample: :IsPreroll method. It returns the value of

1567

CMediaSample Class Page 9of17

the m dwFlags Sample_Preroll property flag. Preroll samples are not meant to be rendered.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQl§1[.jjj,M Ill.HS Topic Contents lmll§lllMM

CMediaSample: :lsSyncPoint

CMediaSamole Class

Determines if the beginning of a sample is a synchronization point.

HRESULT IsSyncPoint(void);

Return Values

Returns S_OK if the sample is a synchronization point and S_FALSE if not; otherwise, returns
an HRESULT error value.

Remarks

This member function implements the IMediaSamole: :IsSyncPoint method. It returns the value
of the m dwFlags Sample_SyncPoint property flag. If the bTemooralCompression member of
the AM MEDIA TYPE structure is FALSE, all samples are synchronization points. A filter can
begin a stream at any synchronization point.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQ1§1[.jjj,M '!!·HM Topic Contents i@i§ill@iM

CMediaSample::NonDelegatingQuerylnterface

CMediaSample Class

Retrieves an interface and increments the reference count.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void** ppv
);

Parameters

1568

CMediaSample Class

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_ NOINTERFACE if it is not.

Remarks

Page 10of17

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryinterface
method and passes out references to the IMediaSample and IUnknown interfaces. Override this
class to return other interfaces on the object in the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.li!:M l!i.! 11ij Topic Contents l@i§i 11111+

CMed iaSa mple: :Querylnterface

CMediaSample Class

Retrieves a pointer to a specified interface on a component to which a client currently holds an
interface pointer. This method must call IUnknown: :AddRef on the pointer it returns.

HRESULT Querylnterface(
REFIID iid,
void * * ppvObject
);

Parameters

iid
Specifies the IID of the interface being requested.

ppvObject
Receives a pointer to an interface pointer to the object on return. If the interface
specified in iid is not supported by the object, ppvObject is set to NULL.

Return Values

Returns S_OK if the interface is supported, S_ FALSE if not.

Remarks

This member function implements the IUnknown: :Oueryinterface method.

1569

CMediaSample Class Page 11of17

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

CMed iaSa mple:: Release

CMediaSamole Class

Decrements the reference count for the calling interface on an object. If the reference count on
the object falls to zero, the object is freed from memory.

ULONG Release(void);

Return Values

Returns the resulting value of the reference count, which is used for diagnostic/testing
purposes only. If you need to know that resources have been freed, use an interface with
higher-level semantics.

Remarks

This member function implements the IUnknown:: Release method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 11!.HS Topic Contents

CMed iaSa mple: :SetActua I Data Length

CMediaSample Class

Sets the data length of the sample.

HRESULT SetActualDatalength(
long /Len
);

Parameters

/Len
Length of the data in the media sample, in bytes.

1570

l@l§lllMM

CMediaSample Class Page 12of17

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMediaSamole: :SetActualDataLenqth method. It sets the
value of m !Actual to the value of /Len.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM

CMed iaSa mple: :SetDisconti nu ity

CMediaSample Class

Sets the discontinuity property.

HRESULT SetDiscontinuity(
BOOL bDiscont
);

Parameters

bDiscont

Topic Contents i@l§ii!MM

Set to TRUE to specify the media sample as discontinuous with the previous sample.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMediaSamole: :SetDiscontinuity method. It sets the
value of the m dwFlaqs Sample_Discontinuity flag to the value of bDiscont. Discontinuous
samples occur when a source filter seeks to a different place in the media stream or when a
filter drops samples for quality control.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

1571

CMediaSample Class

CMediaSample: :SetMediaTime

CMediaSample Class

Sets the starting and ending media times.

HRESULT SetMediaTime(
LONGLONG * pStart,
LONGLONG * pEnd
);

Parameters

pStart
Beginning media time.

pEnd
Ending media time.

Return Values

Returns an HRESULT value.

Remarks

Page 13of17

This member function implements the IMediaSample: :SetMediaTime method. It sets the
m MediaStart data member to the value of pStart and the m MediaEnd data member to the
value of pEnd minus pStart.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij

CMediaSample: :SetMediaType

CMediaSample Class

Sets the media type for the CMediaSample object.

HRESULT SetMediaType(
AM_M ED IA_ TYPE * pMediaType
);

Parameters

pMediaType
Pointer to a pointer to a media type structure to be set.

1572

Topic Contents l@i§i 11111+

CMediaSample Class Page 14of17

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMediaSamole: :SetMediaType method. It deletes the
previous media type if one exists, makes a copy of the media type passed in, sets
m pMediaType to the copy of the media type, and sets the value of the m dwFlaqs
Sample_ TypeCha nged flag to TRUE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥

CMediaSample: :SetPointer

CMediaSample Class

Sets the buffer pointer and length.

Set Pointer(
BYTE* ptr,
LONG cBytes
);

Parameters

ptr
Pointer to a buffer.

cBytes
Length of the buffer, in bytes.

Return Values

No return value.

Remarks

Topic Contents i@i§ll!¥+

Allocators that require variable-sized pointers or pointers into data that has already been read
use this member function. This is available only through a CMediaSample class, not an
IMediaSample interface, so only the filter that owns the allocator knows how to access this
member function (not any filter or pin that is passed the object's IMediaSample interface
pointer).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1573

CMediaSample Class Page 15of17

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CMed iaSa mple: :SetPrerol I

CMediaSample Class

Sets the preroll property. If TRUE, this sample is for preroll only and should not be displayed.

HRESULT SetPreroll(
BOOL bisPreroll
);

Parameters

bisPreroll
Set to TRUE to specify the media sample as a preroll sample, or FALSE otherwise.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMediaSamole: :SetPreroll method. It sets the value of
the m dwFlaqs Sample_Preroll flag to the value of bisPreroll. Preroll samples are samples that
are processed but not displayed, and are located in the media stream before the displayable
samples.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM

CMed iaSa mple: :SetSyncPoi nt

CMediaSample Class

Property of a synchronization point.

HRESULT SetSyncPoint(
BOOL bisSyncPoint
);

1574

Topic Contents i@l§ii!MM

CMediaSample Class Page 16of17

Parameters

b!sSyncPoint
Value specifying whether the synchronization point was set.

Return Values

Returns S_OK.

Remarks

This member function implements the IMediaSample: :SetSyncPoint method. It sets the value
of them dwFlags Sample_SyncPoint flag to the value of bisSyncPoint. A filter can begin a
stream at any synchronization point.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

CMed iaSa mple: :SetTi me

CMediaSample Class

Sets the media time extents for this sample.

HRESULT SetTime(
REFERENCE_ TIME * pTimeStart,
REFERENCE_ TIME* pTimeEnd
);

Parameters

pTimeStart
Stream time at which the sample begins.

pTimeEnd
Stream time at which the sample ends.

Return Values

Returns NOERROR or an HRESULT value.

Remarks

Topic Contents i@faii!MM

This member function implements the IMediaSample: :SetTime method. It sets them Start
data member to the value of pTimeStart and the m End data member to the value of
pTimeEnd.

1575

CMediaSample Class Page 17of17

If pTimeStart and pTimeEnd are null, DirectShow turns off the m dwFlaqs data member's
Sample_TimeValid and Sample_StopValid bits.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1576

CMediaType Class Page 1 of 18

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CMediaType Class

AM_MEDIA_ TYPE structure

CMediaType

When filters are connected, they typical~/ negotiate a type between them. This type describes
the format of the data to be exchanged; if the filters do not agree on a media type, they
cannot connect. Microsoft® DirectShow'" describes types through the media type structure,
which contains two conceptual parts. The first iS a list of members that describes generic
attributes of a data stream. An example of this iS a member that declares whether the data will
be passed in fixed-size buffers. The second part of the structure is a variable-length block of
data. How large the block of data should be and what it will contain depend on the type of data
stream. For example, if the data stream is digital video, the format block iS a
VIDEOINFOHEADER structure. If, on the other hand, it is digital audio, the format block is a
Microsoft Win32® WAVEFORMATEX structure.

A data stream type (for example, digital video) is set with a combination of two globally unique
identifiers (G.U.I.Qs), called a major type and a subtype. The major type describes the overall
class of data, examples of which might be digital video, digital audio, MIDI, or text captions.
The $1Jbtype should supply a more specific description of the data type. In the case of digital
video, for example, the subtype could be RGB5, RGB16, or RGB32 (among others). By having
these two types in a generic structure (AM MEDIA TYPE), a component, such as a filter graph,
can connect filters without any knowledge that is type specific.

The distinction between what goes in the major type and the subtype iS somewhat arbitrary.
However, as a general rule, transformations between major types (for example, video to audio
or video to MIDI) should be relatively rare. Such a rare exception might be a transformation
between audio and MIDI. As forthe subtype, the more information promoted from the type
specific format block into the subtype, the better the design.

As an example of promoting type-specific information to the subtype, video in DirectShow uses
a VIDEOINFOHEADER structure for the type-specific format block. This contains a Win32
B!IllAPINEOHEADER structure that defines the video stream. BlTMAPlNFOHEADER contains
the bit depth of the video, such as 5-bit, 16-bit, or 24-bit. This information is duplicated in the
subtype field, because a subtype of RGB5 directly infers a bit count of 5.

DirectShow defines a number of major types. The most important of these are a video type
that uses VIDEOINFOHEADER for the variable-length format block, and an audio that uses
WAVEFORMATEX. However, it is insufficient to have a major type (such as digital video)
inferring the contents of the format block (in this case, VIDEOINFOHEADER). The principal
reason for thiS is extensibility: the format block type must be able to be updated without
changing the less-specific major type. Therefore, what the format block actually contains iS
inferred by another~ called the fcrmat type. If the format block contains
VlDEOlNFOHEADER, the format type GUID will be FORMAT ... Videoinfo.

1577

CMediaType Class Page 2of18

The principal use of the CMediaType class is to manage a media type structure in a simple
way. At the same time, the class provides some extra helper functions (such as format-block
copying and allocation). The class can be cast to an AM MEDIA TYPE structure when an
interface method requires one to be passed to it.

The CMediaType class contains a pointer to a block of memory. When copying a CMediaType
object, it is insufficient to simply copy the pointer. In C++, a data copy is required, which
actually allocates a new block of memory and copies the data into it. This is the purpose of the
copy operator.

Similarly, when comparing two CMediaType objects, you must compare the blocks of variable
length data (actually using memcmo) when producing the final result. To make this possible,
CMediaType overrides the equivalence operator.

Member Functions
Name
AllocFormatBuffer
CMediaTyoe
Format
Format Length
FormatTyoe
GetSa moleSize
InitMediaTyoe
IsFixedSize
Is Pa rtia I lyS oecified
IsTemooralComoressed
IsValid
MatchesPartial

ReallocFormatBuffer

ResetFormatBuffer
SetFormat
SetFormatTyoe
SetSamoleSize
SetSubtyoe

Description
Allocates an uninitialized format block in the object.
Constructs a CMediaType object.
Returns the format block for this media type.
Returns the length of the format block of this object.
Returns a pointer to the format type.
Returns the size of the samples.
Initializes the media type.
Queries whether the samples are fixed in length.
Checks if the media type is not completely specified.
Queries whether the data stream is compressed temporally.
Queries whether the media type is currently valid.
Checks whether this media type matches another media type that is
only partially specified.
Reallocates the format block, maintaining its current content where
possible.
Deletes any format block that is currently present.
Sets the format block.
Sets the type of the format block in the object.
Sets the size of the samples.
Sets the subtype.

SetTemooralComoression Marks the media type to indicate that samples will be temporally
compressed.

SetTyoe Sets the major type.
SetVa ria bleSize
Subtyoe

~

Operators

Marks the media type to indicate that samples will vary in length.
Returns a pointer to the subtype.
Returns a pointer to the major type.

1578

CMediaType Class

Name Description
operator = Performs a copy operation.
operator== Tests for equality between CMediaType objects.
operator ! = Tests for i neq ua I ity between CMediaType objects.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5

MQi§i[.]11,M 11!.HM

CMed iaType: :Al locFormatBuffer

CMediaType Class

Allocates a block of memory for the format block.

BYTE* AllocFormatBuffer(
ULONG length
);

Parameters

length
Size required for the format block.

Return Values

Topic Contents

Topic Contents

Returns a pointer to the new block if successful; otherwise, returns NULL.

Remarks

Page 3of18

•=@• 1gnw

l@l§il!MM

Any previous format block is deleted and a new block is allocated and installed. The size
required must be nonzero.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

M Q i§i [.] 11,1 I !1.],.15 Topic Contents 'ffl!'*' •um•

CMediaType: :CMediaType

CMediaType Class

1579

CMediaType Class

Constructs a CMed iaTyoe object.

CMediaType();
CMediaType(

const GUID * majortype
);

CMediaType(
const AM_MEDIA_ TYPE& mtype
);

CMediaType(
const CMediaType& cmtype
);

Parameters

majortype
Major type GUID.

mtype
AM MEDIA TYPE structure.

cm type
CMediaTyoe object from which this object is constructed.

Return Values

No return value.

Remarks

Page 4of18

A CMediaType object can be constructed in a number of different ways. The class provides a
default constructor that takes no parameters. It can also be constructed based on an
AM MEDIA TYPE structure or another CMediaType object. In both cases, it takes a data copy
of the format block before returning.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@IJll!MM

MQi§i[.]jj,+ '!!·Hj Topic Contents l@IJll!MM

CMediaType: :Format

CMediaType Class

Returns a pointer to the variable-length format block of the object.

BYTE* Format() const;

1580

CMediaType Class

Return Values

Returns the format block of the object whose content is type-specific.

Remarks

If no format block has been allocated, it might return NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents

CMed iaType:: Formatlength

CMediaType Class

Returns the size, in bytes, of the format block that the object contains.

ULONG Formatlength() const;

Return Values

Returns the length of the format block, or NULL if no format block is present.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§i[.ji!,M ill.HM

CMed iaType:: FormatType

CMediaType Class

Retrieves the format type.

const GUID *FormatType() const;

Return Values

Returns a pointer to the format type.

Remarks

1581

Topic Contents

Page 5of18

1@1§11!¥+

+@1§• +gn+

CMediaType Class Page 6of18

The format GUID describes the content of the variable-length format block. Examples of format
types are FORMAT_Videolnfo and FORMAT_WaveFormatEx.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents 'ffl!'+* •um•

CMediaType: :GetSampleSize

CMediaType Class

Returns the maximum sample size for the data stream.

ULONG GetSampleSize() const;

Return Values

Returns the maximum size of any sample to be sent, or zero to indicate that the sample size is
variable.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+;<§1[.]jj,i 1!1.1::'9 Topic Contents Mttfjl§lllMM

CMediaType: :lnitMediaType

CMediaType Class

Initializes the sample.

void InitMediaType();

Return Values

No return value.

Remarks

This member function clears memory, sets the fixed sample size property, and sets the sample
size to 1.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1582

CMediaType Class

+Qi§1[.]++ 1 !!·HM Topic Contents

CMediaType: :lsFixedSize

CMediaType Class

Determines if the samples for the stream will be fixed or variable size.

BOOL IsFixedSize() const;

Return Values

Returns one of the following values.
Value Meaning
TRUE Samples will be fixed size.
FALSE Samples will be variable length.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+ Q i§i [.] jj,+ +!!·HM

CMed iaType: :lsPa rtia I lySpecified

CMediaType Class

Topic Contents

Page 7of18

i@l§ii!MM

Mttfjl§ii!MM

Determines if the media type is only partially defined. This is the case if the major type or
format type is GUID_NULL.

BOOL IsPartiallySpecified() const;

Return Values

Returns one of the following values.
Value Meaning
TRUE Media type is partially specified.
FALSE Media type is completely specified.

Remarks

This function does not check the sub type.

1583

CMediaType Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

CMed iaType: :lsTem para I Com pressed

CMediaType Class

Asks if the stream will be compressed temporally.

BOOL IsTemporalCompressed() const;

Return Values

Returns one of the following values.
Value Meaning
TRUE Stream will have temporal compression.
FALSE Stream will have no temporal compression.

Remarks

Page 8of18

lml!§I 11$8

Some data streams, such as compressed video, have temporal dependencies between
successive samples. Other data streams do not have temporal dependencies between their
samples; that is, each sample can be treated as an independent unit; for example, MIDI.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 11!.HS Topic Contents l@l§lllMM

CMediaType: :IsValid

CMediaType Class

Queries whether the object has a valid major type.

BOOL lsValid() const;

Return Values

Returns one of the following values.

1584

CMediaType Class Page 9of18

Value Meaning
TRUE CMediaType object has a valid major type.
FALSE CMediaType object does not have a valid major type.

Remarks

When CMediaType objects are constructed, their GUIDs are initialized with GUID_NULL (unless
they are constructed based on another AM MEDIA TYPE structure or CMediaType object).
This member function is useful for discovering if the object has been correctly initialized.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM

CMed iaType:: MatchesPa rtia I

CMediaType Class

Determines if this media type matches the media type pointed to by the ppartial parameter.

BOOL MatchesPartial(
const CMediaType *ppartial
) const;

Parameters

ppartial
Pointer to the media type to match.

Return Values

Returns one of the following values.
Value Meaning
TRUE Media types match for the parts that are defined.
FALSE Media types do not match.

Remarks

The matching applies only for the parts of ppartial that are defined. That is, this only matches
the major type, subtype, or format type of the media type if these are not defined as
GUID NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM

1585

CMediaType Class

+Qi§1[.]++ 1 !!·HM Topic Contents

CMed iaType:: Rea I locFormatBuffer

CMediaType Class

Reallocates the format block to a new size.

BYTE* ReallocFormatBuffer(
ULONG length
);

Parameters

length
New size required for the format block.

Return Values

Returns a pointer to the new block if successful; otherwise, returns NULL.

Remarks

Page 10of18

i@l§ii!MM

Any current format block will be copied into the newly allocated block up to its maximum size.
Any excess will be lost when the new block is smaller than the old one. When the new block is
larger, the excess is not filled with zeros.

The size required must be nonzero.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M M!i.l:.19 Topic Contents i@l§lllMM

CMed iaType:: ResetFormatBuffer

CMediaType Class

Deletes any format block currently held, sets it to NULL, and sets the size of the format block
to zero.

void ResetFormatBuffer();

1586

CMediaType Class

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij

CMediaType: :Setformat

CMediaType Class

Sets the variable-length format block.

BOOL Setformat(
BYTE *pFormat,
ULONG length
);

Parameters

pFormat
Block of memory containing type-specific information.

length
Overa II length of the format block.

Return Values

Returns one of the following values.
Value Meaning
TRUE Format block was set.

Topic Contents

FALSE An error occurred; most likely there was no memory available.

Remarks

The function takes a copy of the format block and stores that internally.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents

MQi§i[.]11,+ 11!.Hj Topic Contents

1587

Page 11of18

l!ftl!Ji l!lltiM

l@IJll!MM

l@i§lllMM

CMediaType Class

CMediaType: :SetFormatType

CMediaType Class

Sets the GUID that describes the content of the format block.

void SetFormatType(
const GUID * pformattype
);

Parameters

pformattype
GUID describing the format type.

Return Values

No return value.

Remarks

Page 12of18

The format .G.ill.Q. describes what can be expected to be found in the variable-length format
block. For example, if the format type is FORMAT_Videolnfo, the format block should contain a
VIDEOINFOHEADER structure. The creator of this object is responsible for making them
consistent.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.ij

CMediaType: :SetSampleSize

CMediaType Class

Sets the maximum sample size for the data stream.

void SetSampleSize(
ULONG sz
);

Parameters

sz
Size of the sample.

Return Values

1588

Topic Contents l@i§lllMM

CMediaType Class Page 13of18

No return value.

Remarks

If the sample size passed is zero, the object is set so that the data stream will send variable
length samples (the CMediaType: :GetSampleSize member function will return zero).
Otherwise, it will set the maximum size of the sample to the size specified in the sz parameter.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

CMediaType: :SetSubtype

CMediaType Class

Sets the subtype for the object.

void SetSubtype(
const GUID * psubtype
);

Parameters

psubtype
.G..U.lQ defining the subtype for the object.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 11!.HS

Topic Contents

Topic Contents

CMed iaType: :SetTempora ICompression

CMediaType Class

lml!§lllMM

l@l§lllMM

Marks the media type so that the data stream it describes might or might not contain temporal
compression (according to the input Boolean flag).

1589

CMediaType Class

void SetTemporalCompression(
BOOL bCompressed
);

Parameters

bCompressed

Page 14of18

TRUE to indicate that the stream will contain temporal compression; otherwise, FALSE.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CMediaType: :SetType

CMediaType Class

Sets the major type for the object.

void SetType(
con st GUI D * ptype
);

Parameters

ptype

MQi@[.jlj,M lll.! 11ij

GUID defining the major type for the object.

Return Values

No return value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] ij,+ 111.Hj

CMed iaType: :SetVa ria bleSize

1590

Topic Contents l@IJll!MM

Topic Contents •@!§' 1gnw

CMediaType Class Page 15of18

CMediaType Class

Sets the media type to indicate that the data stream will send variable-length samples.

void SetVariableSize() ;

Return Values

No return value.

Remarks

Subsequent calls to CMediaType: :GetSampleSize will return zero.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

CMediaType: :Subtype

CMediaType Class

Retrieves the subtype.

const GUID *Type() const;

Return Values

Returns a pointer to the subtype.

Remarks

The subtype GUID gives finer detail within the major type of data represented by this media
type.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8

CMediaType: :Type

CMediaType Class

1591

CMediaType Class Page 16of18

Retrieves the major type.

const GUID *Type() const;

Return Values

Returns a pointer to the major type.

Remarks

The major type GUID describes the class of data represented by this media type.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lllMM

CMediaType::operator =

CMediaType Class

The CMediaType variation of this operator is the copy constructor for a CMediaType object.

The AM MEDIA TYPE variation of this operator is the copy constructor for an
AM_M ED IA_ TYPE object.

CMediaType& operator= (
const CMediaType& rt
);

CMediaType& operator= (
const AM MEDIA_ TYPE& mrt
);

Parameters

rt
Object to copy during the assignment operation.

mrt
Object to copy during the assignment operation.

Return Values

Returns a reference to this object after the operation.

Remarks

Because the CMediaType class inherits publicly from AM MEDIA TYPE, the compiler could
generate the copy constructor for the AM_MEDIA_ TYPE object itself. However, this could

1592

CMediaType Class Page 17of18

introduce some memory conflicts and leaks in the process because the structure contains a
dynamically allocated block (which the AM_MEDIA_ TYPE pbformat member points to), which
the compiler's copy constructor will not copy correctly.

© 1997 Microsoft Corooration. All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

CMediaType: :operator ----
CMediaType Class

Tests for equality between CMediaType objects.

inline BOOL operator==(const CMediaType& rt) const;

Parameters

rt
CMediaType object corresponding to the right side of the operator.

Return Values

Returns TRUE if the CMediaType object tested is equal to this object; otherwise, returns FALSE.

Remarks

This object is on the left side of the operator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i[.]11,M 11!.HM

CMediaType::operator !=

CMediaType Class

Tests for inequality between CMediaType objects.

BOOL operator!=(
const CMediaType& rt
) const;

1593

Topic Contents i@faii!MM

CMediaType Class Page 18 of 18

Parameters

rt
CMediaTyoe object corresponding to the right side of the operator.

Return Values

Returns TRUE if the CMediaTyoe object tested is not equal to this object; otherwise, returns
FALSE.

Remarks

This object is on the left side of the operator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1594

CMemAllocator Class Page I of5

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CMemAllocator Class

CBaseObject

INonDelegatingUnknown

CUnknown

CCritSec

IMemAllocator

CBaseAllocator

CM em Allocator

This class provides support: for IMemA!!ocator by using the new operator to allocate memory.
Derived from caaseA!!ocator. it overrides the CBaseA!!ocator· • A!!oc member function to
allocate a sing le block of memory large enough to hold a!! the requested data areas, and then
allocates (using the new operator) a CMediaSample object for each requested buffer pointing
into the data area.

The caaseinp11tPin and CBase011tp1rtPin classes instantiate CMemAllocatot objects as the
default allocator if no other suitable allocator iS provided.

A!! member functions in this class that return HRESULT and accept a pointer as a parameter
return E POIITTER when passed a nu!! pointer.

Membet Functions
Name Des<:riptlon
~ Allocates memory for a media sample (overrides CaaseA!!ocator: :Alloc).
CMemA!!ocator Constructs a CMemA!!ocator object.
Rea!!yfree Frees memory when called from the destructor (or from~ when

reallocating for new size or count).

Ovettldable Member Functions
Name Des<:tlptlon
~ Indicates an overridden CBaseA!!ocator::Free member function, called when a

decommit operation iS complete to free memory.

Implemented IMemAllocatot Methods
Name Des<:tlptlon
Createinstance Creates new instances of CMemA!!ocator in the factory template.
SetProperties Sets the number of media samples and the size of each.

1595

CMemAllocator Class Page 2 of 5

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

MQl§i[.jjj,M '!!·HM Topic Contents 'ffl!'+* •um•

CMemAI locator: :Al loc

CMemAllocator Class

Allocates a media sample object.

HRESULT Alloc(void);

Return Values

Returns an HRESULT value.

Remarks

This member function instantiates CMediaSample objects, adds them to the m IFree data
members, and updates the m !Allocated count. This member function is called from
IMemAllocator: :Commit when becoming active.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.11115

CMemAI locator: :CMemAI locator

CMemAllocator Class

Constructs a CMemAllocator object.

CMemAllocator(
TCHAR * pName,
LPUNKNOWN lpUnk,
HRESULT * phr
);

Parameters

1596

Topic Contents l@i§lllMM

CMemAllocator Class

pName
Name of the allocator object.

lpUnk
Pointer to LPUNKNOWN.

phr

Page 3 of 5

Pointer to the general COM return value. Note that this value is changed only if this
function fails.

Return Values

No return value.

Remarks

This constructor is passed to CBaseAllocator: :CBaseAllocator, which initializes the data
members.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

+Qi§i[.]11,M '!!·Hi

CMemAllocator::Createlnstance

CMemAllocator Class

Creates new instances of CMemAllocator in the factory template.

static CUnknown *Createlnstance(
LPUNKNOWN pUnk,
HRESULT *phr
);

Parameters

pUnk
Pointer to the IUnknown interface.

phr

Topic Contents

Topic Contents

Pointer to the HRESULT value into which to place resulting information.

Return Values

Returns the pUnkRet parameter, which is a CUnknown class object.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

1597

l@IJll!MM

l@i§il!MM

CMemAllocator Class Page 4of5

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CMemAI locator:: Free

CMemAllocator Class

Frees memory for a media sample object.

HRESULT Free(void);

Return Values

No return value.

Remarks

This member function overrides the pure virtual CBaseAllocator:: Free member function called
when a decommit operation has completed. Memory is actually freed in ReallyFree, which is
called from the destructor, so this function is not used in this class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119 Topic Contents i@l§ii!MM

CMemAllocator::ReallyFree

CMemAllocator Class

Releases all media samples in the free list.

void Reallyfree (void);

Return Values

No return value.

Remarks

The CMemAllocator class holds memory until the object is actually deleted. This member
function can be overridden to handle freeing media samples when a decommit occurs.

This member function is protected.

1598

CMemAllocator Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

CMemAI locator: :SetProperties

CMemAllocator Class

Determines the size, number, and alignment of blocks.

HRESULT SetProperties(
ALLOCATOR_PROPERTIES * pRequest,
ALLOCATOR_PROPERTIES * pActual
);

Parameters

pRequest
Requested a I locator properties.

pActual
Allocator properties actually set.

Return Values

Returns an HRESULT value.

Remarks

Page 5 of 5

Topic Contents lml!§I 11$8

The pRequest parameter is filled in by the caller with the requested values for the count,
number, and alignment as specified by the ALLOCATOR PROPERTIES structure. The pActual
parameter is filled in by the allocator with the closest values it can provide for the request.
This member function cannot be called unless the allocator has been decommitted using the
IMemAllocator:: Decommit method.

This member function replaces SetCountAndSize in previous releases.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1599

CMsg Class Page 1 of2

8 41411•11' 9 ill.i::ifi Topic Contents i@IQI lt§jM

CMsg Class

(CMsg

The CMsaThread class provides support: for a worker thread to whieh requests can be posted
asynchronously instead of sent directly. The CAMThread class provides a worker thread to
which single requests can be sent. Only one client can make a request at a time, and the client
blocks until the worker thread has completed the request. By contrast, the CMsgThread class
provides a worker thread to which any number of requests can be posted. The requests (in the
form of a CMsg object) are queued and executed in order, asynchronously. No reply or return
value is received.

Data Members
Name Des<:rlptlon
cfWFlags Flag parameter to the request code.
lpParam Data required by the worker thread as parameter or return values. This data should

not be stack-based, as it wrn be referenced some time after completing the queuing
operation.

pEvent Event object that a worker thread can signal to indicate the completion of the
operation.

1.1Msg Request code that is defined by the client of the thread class and understood by the
overridden worker thread function.

Member Functions
Name Des<:rlptlon
~ Constructs a ~ object.

CMsg::CMsg

CMsa Class

Constructs a .cMS!J. object.

MQl§ii.!ii A 11!.l::ifi Topic Contents

+Q1§111·!119 1 11.1::1¥ T op1c Contents

1600

CMsg Class

CMsg(
UINT u,
DWORD dw,
LPVOID Ip,
CAM Event *pEvent
);

Parameters

u

Page 2 of2

Request code, defined by the client of the thread class and understood by the overridden
worker thread function.

dw
Flag para meter to the request code.

Ip
Data required by the worker thread as parameter or return values. This data should not
be stack-based, as it will be referenced some time after completing the queuing
operation.

pEvent
Event object that a worker thread can signal to indicate the completion of the operation.

Return Values

No return value.

Remarks

This member function contains a request for a CMsqThread worker thread to act on. All the
parameters are passed to the worker thread function as parameters when this message gets
processed. The meanings of the parameters are defined by the client function that calls the
worker thread and the derived class that supplies the worker thread's execution function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

1601

CMsgThread Class Page 1 of 10

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CMsgThread Class

(CMsgThread

This class is a worker thread class that queues requests to the queuing thread for completion
asynchronously. To use this class, derive your class from it and override the
CMsaThread: :ThreadMesµgeProc member function. The ThreadMesµgeProc member function
carries out each request. Your client functions and the ThreadMessageProc member function
must share a common definition of the parameters in the .cMs!J. object.

A negotiated mechanism tells the worker thread to exit. Typically, this wm be one value of the
~class's~ message code.

It is a goo<J idea to sen<J this message from the destructor of your <Jerived class, and cal! the
CMsgTh read·· WajtforTh read Exit member function before completing the <Jestruction of the
derived class.

Protected Data Members
Name Description
m_hSem Indicates a handle used for signaling.
m_Lo<:k Protects access to lists.
m_IWaltlng Indicates waiting for a free thread.
m_ ThreadQ1.1eue Overri<Jes the CMsgThread: :GetThreadMsg member function and blocks on

things other than this queue.

Member Functions
Name Description
CMsgTuread Constructs a CMsgTuread object.
Create Thread Creates a thread.
GetThreadHandle Returns the thread handle.
GetThreadID Returns the identifier of the thread.
GetThreadPriority Retrieves the current thread priority.
pi rtTu readMsg Queues a request for execution by the worker thread.
ResumeTuread Continues the operation of the worker thread.
Set Thread Priority Sets the priority of the thread to a new value.
SusoondThread Suspends the operation of a running thread.
WaitforThreadExit Blocks until the thread has exited after a cal! to the

CMsaThread: :SusoondThread member function.

Overrlclable Member Functions

1602

CMsgTbread Class

Name
GetThreadMsg

Description

Retrieves a queued CMsg object containing a request.
OnThreadinit Provides initialization on a thread.

Page 2of10

ThreadMessageProc Processes requests. This is a pure virtual member function.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.]I!:' 111.H5 Topic Contents •=@• 1gnw

MQi§i[.]l!:I 11!.1::'5 Topic Contents l@l§il!MM

CMsgThread::CMsgThread

CMsgThread Class

Constructs a CMsgThread object.

CMsgThread();

Return Values

No return value.

Remarks

Constructing a message thread object does not automatically create the thread. You must call
the CMsgTh read: : CreateTh read member function to create the th read.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.]l!:I 8!1.11115 Topic Contents l@l§i l!lltiM

CMsgThread::CreateThread

CMsgThread Class

Creates a thread.

BOOL CreateThread();

Return Values

1603

CMsgTbread Class

Returns one of the following values.
Value Meaning
TRUE Thread was successfully created.
FALSE Thread was not successfully created.

Remarks

The thread will loop, blocking until a request is queued (through the
CMsgThread:: PutThreadMsg member function) and then calling the
CMsgThread: :ThreadMessageProc member function with each message.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents

CMsgThread::GetThreadHandle

CMsgThread Class

Retrieves the handle to the thread in the CMsgThread object.

HANDLE GetThreadHandle();

Return Values

Returns the thread handle.

Remarks

Page 3of10

lmli§lllMM

The thread handle can be passed to Microsoft® Win32® application programming interface
(API) functions, such as WaitForMultioleObjects. The thread handle is signaled when the thread
has exited.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]1!,i 1 !!·HM Topic Contents l@l§lllMM

CMsgTh read: :GetTh read ID

CMsgThread Class

Retrieves the thread's identifier.

1604

CMsgTbread Class Page 4of10

DWORD GetThreadID();

Return Values

Returns the m_Threadld private data member.

Remarks

This function returns the Microsoft Win32 identifier for the worker thread. You can call this
member function on either the worker thread or a client thread.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij

CMsgTh read: :GetTh read Msg

CMsgThread Class

Retrieves a queued CMsg object containing a request.

void virtual GetThreadMsg(
CMsg *msg
);

Parameters

msg
Pointer to an allocated CMsg object.

Remarks

Topic Contents l@i§lllMM

This member function is called from the worker thread's private ThreadProc function to retrieve
the next member function. The msg parameter should point to an allocated CMsg object that
will be filled with the parameters to the next request in the queue. If there are no queued
requests, this member function blocks until the next request is queued (by a call to the
CMsgThread:: PutThreadMsg member function).

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.Hj Topic Contents l@i§lllMM

CMsgTh read: :GetTh read Priority

1605

CMsgTbread Class Page 5of10

CMsqThread Class

Uses the Microsoft Win32 GetThreadPriority function to retrieve the priority of the current
worker thread.

int GetThreadPriority();

Return Values

Returns the thread priority as an integer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents l@i§i 11111+

CMsgThread::OnThreadinit

CMsqThread Class

Provides initialization on a thread.

virtual void OnThreadinit() ;

Return Values

No return value.

Remarks

Override this function if you want to do your own specific initialization on thread startup.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 111.Hj Topic Contents •@!§' 1gn+

CMsgThread::PutThreadMsg

CMsqThread Class

Queues a request for execution by the worker thread.

1606

CMsgTbread Class

void PutThreadMsg(
UINT uMsg,
DWORD dwMsgFlags,
LPVOID lpMsgParam,
CAMEvent *pEvent = NULL
);

Parameters

uMsg
Request code.

dwMsgF/ags
Optional flags parameter.

lpMsgParam

Page 6of10

Optional pointer to a data block containing additional parameters or return values. Must
be statically or heap-allocated and not automatic.

pEvent
Optional pointer to an event object to be signaled upon completion.

Return Values

No return value.

Remarks

This member function queues a request for execution by the worker thread. The parameters of
this member function will be queued (in a CMsq object) and passed to the
CMsqThread: :ThreadMessaqeProc member function of the worker thread. This member
function returns immediately after queuing the request and does not wait for the thread to
fulfill the request. The CMsgThread::ThreadMessageProc member function of the derived
class defines the four parameters.

This member function uses a multithread safe list, so multiple calls to this member function
from different threads can be made safely.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jij,M l!i.! 11!j Topic Contents l@i§lllMM

w QiM [.] ij,+ 111.Hj Topic Contents •@!§' 1gnw

CMsgThread::ResumeThread

CMsqThread Class

Uses the Microsoft Win32 ResumeThread function to continue the operation of the worker
thread after a previous call to the CMsgThread: :SuspendThread member function.

1607

CMsgTbread Class Page 7of10

DWORD ResumeThread() ;

Return Values

If the member function succeeds, the return value is the previous suspend count of the thread.
If the member function fails, the return value is OxFFFFFFFF. To obtain extended error
information, call the Microsoft Win32 GetLastError function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§lll¥M

CMsgTh read: :SetTh read Priority

CMsqThread Class

Uses the Microsoft Win32 SetThreadPriority function to set the priority of the thread to a new
value.

BOOL SetThreadPriority(
int nPriority
);

Parameters

nPriority
Priority of the thread.

Return Values

Returns one of the following values.
Value Meaning
TRUE Priority was successfully set.
FALSE Priority was not set.

Remarks

The client and the worker thread can call this member function.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

•Q<M!.l+' 1u.H5

MQ<§i[.jjj,M 11!.HS

1608

Topic Contents i@fa111¥M

Topic Contents i@fa111¥M

CMsgTbread Class Page 8of10

CMsgTh read: :SuspendTh read

CMsqThread Class

Uses the Microsoft Win32 SuspendThread function to suspend the operation of a running
thread.

DWORD SuspendThread();

Return Values

If the member function succeeds, the return value is the previous suspend count of the thread.
If the member function fails, the return value is OxFFFFFFFF. To obtain extended error
information, call the Microsoft Win32 GetLastError function.

Remarks

The client thread calls this member function to suspend the operation of the worker thread.
The worker thread remains suspended and will not execute until an additional call to the
CMsqThread:: ResumeThread member function is made.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents

CMsgThread::ThreadMessageProc

CMsgThread Class

Processes requests. This is a pure virtual member function.

virtual LRESULT ThreadMessageProc(
UINT uMsg,
DWORD dwF/ags,
LPVOID lpParam,
CAM Event *pEvent
);

Parameters

uMsg
Request code.

dwF/ags

1609

i@l§ii!MM

CMsgTbread Class

Optional flag parameter to request.
lpParam

Optional pointer to extra data or a return data block.
pEvent

Optional pointer to an event object.

Return Values

Page 9of10

Any nonzero return causes the thread to exit. Returns zero unless an exit request has been
processed recently.

Remarks

This pure virtual function must be overridden in your derived class. It will be called once for
each request queued by a call to the CMsqThread: :PutThreadMsq member function.

The member function defines the four parameters. Typically, use the uMsg parameter to
indicate the request, and the other three parameters will be optional additional parameters.
The calling application can supply a pointer to a CAMEvent object in the pEvent parameter if
your application requires it. You must set this event after processing the event by using an
expression such as:

pEvent->SetEvent

One request code must be set aside to tell the worker thread to exit. Upon receiving this
request, return 1 from this member function. Return 0 if you do not want the worker thread to
exit.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.ij

+Qi§i[.jjj,+ 111.],.[j

CMsgTh read: :Wa itForTh read Exit

CMsqThread Class

Blocks until the thread exits.

BOOL WaitForThreadExit(
LPDWORD lpdwExitCode
);

Parameters

lpdwExitCode
Exit code returned by the thread.

1610

Topic Contents l@i§lllMM

Topic Contents l@bll!MM

CMsgTbread Class Page 10of10

Return Values

Returns either TRUE or FALSE, the meaning of which is determined by the class supplying the
overridden CMsgThread: :ThreadMessageProc member function and the calling member
function.

Remarks

Ensure that the worker thread has exited completely before completing the destruction of your
derived class; otherwise, the thread might still execute after your dynamic-link library (DLL)
has been unloaded from the address space of the process. Even if the only instruction left to
exit is a single-return instruction, this would cause an exception. The only reliable way to
ensure that the thread has exited is to signal the thread to exit (using a privately negotiated
CMsg object sent to the CMsgThread:: PutThreadMsg member function) and then call this
member function. You should do this in the destructor for your derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1611

COAReITime Class

w41411.111e 1:1.11119 Topic Contents

COARefTime Class

CRefTime

COARefTime

This class converts between the Automation-compatible REFTIME type an<J the
REFERENCE TIME type used within and between filters.

Page 1 of 10

1 @1#1 1 ttti8

Time parameters within the control interfaces are represented as double values, containing a
fractional number of seconds. Interfaces supported between and within filters use a 64-bit
LONGLONG type containing the time in 100-nanosecond units. Filters use this class to convert
between the two formats. It is derived from CRefTime and thus is a LONGLONG, but it can be
constructed from and assigned double values.

Member Functions
Name Description
COARemme Constructs a COAReITime object.

Description
Operators
Name
double
Operator;
Operator

Returns the reference time as a double value.
Copy constructor for the COARefTime class.
Tests for equality between COAReffime objects.

Operator!; Tests for inequality between COARefTime objects.
Operator < Tests if one COARefTime object is less than another COARefTlme object.
Operator> Tests if one COARefTime object is greater than another COARefTlme object.
Operator Tests if one COARefTime object is less than or equal to another COARefTime
<; object.
Operator Tests if one COARefTime object is greater than or equal to another COARefTlme
>; object.
Operator+ Adds two COAReffime objects.
Operator··· Subtracts one COARefTime object from another COARefTlme object.
Operator Adds two COARernme objects and makes this object equal to the result.
·l·;

Operator··· Subtracts one CQARefTime object from another COARefTlme object and makes
; this object equal to the result.
Operator"' Multiplies two COAReITime objects.
Operator t Divides one COARefTime object by another COARefTlme object.

1612

COAReffime Class

+Qi§1[.]++ 1 !!·HM

MQij[.jjj,M M!i.1 1119

COARefTi me: :COARefTi me

COARefTime Class

Constructs a COARefTime object.

COARefTime(
CRefTime t
);

COARefTime(
REFERENCE_TIME t
);

COARefTime(
doubled
);

Parameters

t

Page 2of10

Topic Contents i@l§ii!MM

Topic Contents i@l§i 11111+

CRefTime value or REFERENCE_ TIME value passed through to the class. Units are 100
nanoseconds.

d
A double value that constructs the COARefTime class. Units in this case are (fractional)
seconds.

Return Values

No return value.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

H Qi§1 [.] jj,M I !l.H9 Topic Contents Mttfjl§ii!MM

COARefTime: :double

COARefTime Class

Retrieves the reference time as a double value, converted from 100-nanosecond units to

1613

COAReffime Class

seconds.

operator double();

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.!j

COARefTi me: :Operator

COAReffime Class

Copy constructor for a COAReffime object.

COARefTime& operator= (
const double& rd
);

Parameters

rd
A double value that constructs a COAReffime object.

Return Values

No return value.

© 1997 Microsoft Cornoration . All rights reserved. Terms of Use.

+Qi§i[.jjj,+ l![.1::'j

COARefTi me: :Operator ----
COAReffime Class

Tests for equality between COAReffime objects.

BOOL operator== (
const COARefTime& rt
);

Parameters

1614

Page 3of10

Topic Contents l@i§i llfttiM

Topic Contents i@faii!MM

COAReffime Class Page 4of10

rt
COARefTime object corresponding to the right side of the operator.

Return Values

Returns TRUE if the COARefTime object tested is equal to this object and FALSE otherwise.

Remarks

This object is on the left side of the operator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij

COARefTime::Operator !=

COARefTime Class

Tests for inequality between COARefTime objects.

BOOL operator!= (
const COARefTime& rt
);

Parameters

rt

Topic Contents

COARefTime object corresponding to the right side of the operator.

Return Values

l@i§lllMM

Returns TRUE if the COARefTime object tested is not equal to this object; otherwise, returns
FALSE.

Remarks

This object is on the left side of the operator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij Topic Contents l@i§il!MM

1615

COAReffime Class

COARefTime::Operator <

COAReffime Class

Tests if one COAReffime object is less than another COARefTime object.

BOOL operator < (
const COARefTime& rt
);

Parameters

rt
COAReffime object corresponding to the right side of the operator.

Return Values

Page 5of10

Returns TRUE if the COAReffime object tested is less than this object; otherwise, returns
FALSE.

Remarks

This object is on the left side of the operator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.li!:M l!i.! 11ij Topic Contents

COARefTime::Operator >

COAReffime Class

Tests if one COAReffime object is greater than another COARefTime object.

BOOL operator > (
const COARefTime& rt
);

Parameters

rt
COAReffime object corresponding to the right side of the operator.

Return Values

l@i§i 11111+

Returns TRUE if the COAReffime object tested is greater than this object; otherwise, returns

1616

COAReffime Class Page 6of10

FALSE.

Remarks

This object is on the left side of the operator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M lll.! 11ij Topic Contents l@IJll!MM

COARefTime::Operator >=

COAReffime Class

Tests if one COAReffime object is greater than or equal to another COARefTime object.

BOOL operator >= (
const COARefTime& rt
);

Parameters

rt
COAReffime object corresponding to the right side of the operator.

Return Values

Returns TRUE if the COAReffime object tested is greater than or equal to this object;
otherwise, returns FALSE.

Remarks

This object is on the left side of the operator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M lll.! 11ij Topic Contents l@i§lllMM

COARefTime::Operator <=

COAReffime Class

Tests if one COAReffime object is less than or equal to another COARefTime object.

1617

COAReffime Class

BOOL operator < = (
const COARefTime& rt
);

Parameters

rt
COAReffime object corresponding to the right side of the operator.

Return Values

Page 7of10

Returns TRUE if the COAReffime object tested is less than or equal to this object; otherwise,
returns FALSE.

Remarks

This object is on the left side of the operator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

COARefTime::Operator +

COAReffime Class

Adds two COAReffime objects.

COARefTime operator+(
const COARefTime& rt
);

Parameters

rt
COAReffime object to be added.

Return Values

Returns the result of the addition.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M M!i.1 1119

1618

Topic Contents ifflj[§ii!¥M

Topic Contents i@i§iil¥M

COAReffime Class

COARefTime::Operator -

COARefTime Class

Subtracts one COARefTime object from another COARefTime object.

COARefTime operator-(
const COARefTime& rt
);

Parameters

rt
COARefTime object to be subtracted.

Return Values

Returns the result of the subtraction.

Remarks

This object is the object subtracted from.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

COARefTime::Operator +=

COARefTime Class

Topic Contents

Adds two COARefTime objects and makes this object equal to the result.

COARefTime& operator+=(
const COARefTime& rt
);

Parameters

rt
COARefTime object to be added.

Return Values

1619

Page 8of10

1@1§111¥+

COAReffime Class Page 9of10

Returns the result.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!MM

COARefTi me: :Operator ---
COARefTime Class

Subtracts one COARefTime object from another COARefTime object and makes this object
equal to the result.

COARefTime& operator-= (
const COARefTime& rt
);

Parameters

rt
COARefTime object to be subtracted.

Return Values

Returns the result.

Remarks

This object is the object subtracted from.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§ill·h' 111.J,,[9

COARefTime::Operator *

COARefTime Class

Multiplies the COARefTime object by a value.

COARefTime operator* (
LONG I

1620

Topic Contents i@i§ii!MM

COAReffime Class

);

Parameters

Value to multiply by.

Return Values

Returns the result.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM

COARefTime::Operator /

COARefTime Class

Divides one COARefTime object by a value.

COARefTime operator/(
LONG I
);

Parameters

Value to divide by.

Return Values

Returns the result.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1621

Page 10of10

Topic Contents ifflj[§ii!¥M

COutputQueue Cl ass Page 1 of 14

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

COutputQueue Class

CCritSec

COutputQueue

Output pins use the COutputQueue to send samples to another filter by using the local
memory-based transport: (that is, to input pins that support: the IMeminp11tPin interface).
COutputQueue uses IMeminputPin: :ReceiveCanBlock to determine if the connected input pin
has a blocking implementation of IMeminputPin: :Receive. If so, au samples af<! queued in
COutputQueue and a thread iS created to pass samples from the queue to the connected
input pin. If the input pin's IMeminputPln: :Receive method does not block, samples af<!
passed dir<!ctly to IMeminputPln::Recelve. COutputQueue can also batch samples to
reduce the number of calls to the downstream pin.

COutputQueue is usefUI when the filter has other work to do while samples that it has alr<!ady
completed are being processed downstream. This occurs, for example, in a filter that can !<!ad
more data off disk while data is being processed, or when it has more than one output pin and
does not want to starve an output pin because IMeminp11tPin" Receive has no optional
batching of samples.

To use thiS class, create one COutputQueue object for every output pin for which it will be
used. ThiS can either be created when the pin is cf<!ated and deleted when the pin is
disconnected, or it can be created when the pin goes active and deleted when the pin goes
inactive.

The samples sent to this object by calling its COutputOueue: :Receive or
co11tp11tQ11e11w ·ReceiYeM11!tip!e member function should have refef<!nces added by means of
!Unknown: :AddRef (as they usually are if they we!<! obtained dir<!ctly from an allocator). This
object then calls !Unknown:: Release on au samples it receives, whether they were processed
successfully or not. Note that Release is not called for special (control) samples.

Some control information, such as end of stream, needs to be queued with the data and
processed once au the data has been delivered. This information is queued in the form of
special control packets. COutputQueue implements a sticky HRESULT so it wrn not send any
more data after it gets a return code that is not S OK from the downstf<!am ReceiYeMultiple
caH. (A sticky state setting is one that persists even after execution of operations that would
normally reset the setting.) This sticky state is reset by the Endflush and ms_ caHs. However,
if the sticky HRESULT is not S OK, EOS itself iS not sent downstream; the HRESULT is just
reset. Because of this, if this object is not deleted when the pin goes inactive, Beginflush and
EndFlush should be called at that time to free the state.

In many ways this object acts as a proxy for the connected input pin, supporting a similar set
of methods for stf<!am control.

Protected Data Members

1622

COutputQueue Class Page 2of14

Name
m_bBatchExact
m_bflushed
m_bflushing
m_bSendAnyway

Description
TRUE if commands are batched; FALSE if commands are sent singly.
Flag to signify if samples have been flushed.
Flag for flushing state.
Flag to override batch processing.

m_bTerminate Termination flag.
m_evFlushComplete Event signaling that flushing has finished.
m_hSem
m_hr

m_hThread
m_IBatchSize

m_List

m_IWaiting
m_nBatched
m_pinputPin
m_pPin
m_ppSamples

Handle used for signaling.
HRESULT structure for return values; used to implement a sticky
return value (one that persists even after operations that would
normally change the value).
Worker thread handle.
Work in batches of this batch size. Ignored if m bBatchExact is not
TRUE.
Pointer to a CSamplelist object. The class CSamplelist is a generic
list (CGenericlist) of objects of !MediaSamole type. It is defined as
follows:

typedef CGenericList<IMediaSample> csampleList;

Variable set to nonzero value when waiting for a free element.
Number of samples currently batched awaiting processing.
Pointer to the connected input pin.
Pointer to the output pin.
Pointer to an array of batched samples.

Member Functions
Name
BeginFlush
COutoutOueue
End Flush
EOS

FreeSamoles

Description
Causes all unsent samples to be discarded and sets flushing state.
Constructs a COutoutOueue object.
Finalizes flush of batched or queued samples and resets flushing state.
Queues an end-of-stream call to the connected input pin after all batched
and queued samples have been passed to the input pin.
Removes and releases batched and queued samples.

InitialThreadProc Executed by the thread on thread creation.
Isldle Determines if the output queue is idle.
IsOueued Determines if samples are being queued or being sent directly.
IsSoecialSamole Determines if the sample is a control sample.
NotifyThread Notifies the thread that there is something to do.
NewSegment Queues an !Pin: :NewSegment call to the connected input pin after all

queued samples have been passed to the input pin.
OueueSamole Queues the prepared sample.
Receive Passes in a single sample to send to the input pin.
ReceiveMultiole Passes a set of samples to send to the input pin.

SendAnyway

Resets the deferred return code m hr to allow the output queue to be ready
for more data.
Frees any batches samples to be sent to the input pin.

1623

COutputQueue Class

ThreadProc Implements the thread that sends samples downstream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents

MQ<§i[.jlj,M lh.Hj Topic Contents

COutputQueue:: Begin Flush

COutoutOueue Class

Causes all unsent samples to be discarded and sets the flushing state.

void BeginFlush();

Return Values

No return value.

Remarks

This member function calls BeginFlush on the connected input pin.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ<§i[.]lj,+ 11!.Hj

COutputQueue: :COutputQueue

COutputQueue Class

Constructs a COutputQueue object.

COutputQueue(
IPin *pinputPin,
HRESULT *phr,
BOOL bAuto =TRUE,
BOOL bQueue =TRUE,
LONG /BatchSize,
BOOL bBatchExact,
LONG /ListSize,
DWORD dwPriority

1624

Topic Contents

Page 3of14

l!ftli§i l!lltiM

i@faii!MM

i@faii!MM

COutputQueue Class Page 4of14

);

Parameters

p!nputPin
Connected pin to which to send data.

phr
HRESULT return code.

bAuto
If TRUE, the queuing mode is determined by asking the connected input pin if the pin
can block (by calling IMemlnputPin:: ReceiveCanBlock). If FALSE, queued or direct mode
is set by the bQueue parameter.

bQueue
Determines if samples are queued for delivery by a worker thread or are being sent
directly. Ignored if bAuto is TRUE.

/Batch Size
Size of the batch (1 for no batching).

bBatchExact
Batch exactly to IBatchSize (but use SendAnyway to override batching).

/ListSize
Likely number in the list.

dwPriority
Priority given to the created thread.

Return Values

No return value.

Remarks

The phr parameter should be updated only to report errors. Usually bAuto will be TRUE. In that
case, the constructor calls IMemlnputPin: :ReceiveCanBlock on the downstream pin to
determine whether to create a thread, and so to send samples asynchronously. If bAuto is
FALSE, a thread is created if, and only if, bQueue is TRUE.

If the batch size is not 1, data is not sent until /BatchSize samples have been received by the
object. The exceptions are that, if fewer than /BatchSize samples are passed to
COutputOueue:: Receive or COutputOueue:: ReceiveMultiple in this object and bBatchExact is
FALSE, the samples will be sent anyway.

If bBatchExact is TRUE, the COutputQueue: :SendAnyway member function will cause the
samples to be sent to the thread (if the thread is created).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.ij Topic Contents l@i§lllMM

+Qi§i[.jjj,+ 111.],.[j Topic Contents l@i§lllMM

1625

COutputQueue Class Page 5of14

COutputQueue::EndFlush

COutputQueue Class

Finalizes flush of batched or queued samples and resets the flushing state.

void Endflush();

Return Values

No return value.

Remarks

The downstream pin is guaranteed not to block at this stage.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lllMM

COutputQueue:: EOS

COutputQueue Class

Queues an end-of-stream call to the connected input pin after all batched and queued samples
have been passed to the input pin.

void EOS();

Return Values

No return value.

Remarks

The end-of-stream call is queued as a special control packet when in a queued mode. This
member function does not actually send an end-of-stream packet if them hr HRESULT value
is not S OK when it is time to make the call.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM Topic Contents l@l§lllMM

1626

COutputQueue Class Page 6of14

COutputQueue:: FreeSa m pies

COutputQueue Class

Removes and releases batched and queued samples.

void FreeSamples() ;

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

COutputQueue: :In itia ITh read Proc

COutputQueue Class

Implements the static member function that the thread executes on thread creation.

static DWORD WINAPI InitialThreadProc(
LPVOID pv
);

Parameters

pv
The this pointer for the COutputQueue object.

Return Values

The derived class defines the meaning of the return value.

Remarks

On thread creation, the worker thread executes this static function with a pointer to the
COutputQueue object as the parameter. This function simply calls the
COutputQueue: :ThreadProc member function of that object (that is, the function pointed to by
pv).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

1627

COutputQueue Class Page 7of14

COutputQueue: :lsldle

COutoutOueue Class

Determines if the output pin is idle.

BOOL Isldle();

Return Values

Returns TRUE if no threads are in the queue, all data has been sent, and nothing is in the
batch. Returns FALSE otherwise.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M lll.! 11ij Topic Contents

COutputQueue: :lsQueued

COutputQueue Class

Determines if the COutputQueue object is in queued or direct mode.

BOOL IsQueued();

Return Values

Returns one of the following values.
Value Meaning

l@IJll!MM

TRUE In queued mode. Samples are delivered asynchronously by a worker thread.
FALSE In direct mode. Receive calls are passed synchronously to the input pin.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+Qi§ill·h' 111.J,,[j Topic Contents l@i§il!MM

COutputQueue: :lsSpecia I Sam pie

1628

COutputQueue Class Page 8of14

COutoutOueue Class

Determines if a sample is one of the special control samples (containing no data).

BOOL IsSpecialSample(
IMediaSample *pSample
);

Parameters

pSample
Pointer to the sample to be passed to the connected input pin.

Return Values

Returns one of the following values.
Value Meaning
TRUE pSample is a special control sample.
FALSE pSample is an IMediaSample interface.

Remarks

Special control samples are queued in line with the data by methods (such as
COutputQueue:: EOS) that require processing once all queued data has been delivered. The
COutputQueue: :ThreadProc member function detects these special samples on the queue by
using IsSpecialSample and processes them appropriately.

A special sample is one of following types and contains no media data.
EOS PACKET
NEW_SEGMENT
RESET_PACKET

SEND PACKET

Special control samples are relevant only if you plan to change or extend the default base class
implementation of COutputQueue in a derived class. Normal use of the COutputQueue class
does not require the use of control samples.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.ij Topic Contents l@i§lllMM

MQl§i[.jjj,M 111.],.(j Topic Contents l@i§lllMM

COutputQueue:: NewSegment

1629

COutputQueue Class Page 9of14

COutoutOueue Class

Queues an IPin: :NewSegment call to the connected input pin after all queued samples have
been passed to the input pin.

HRESULT NewSegment(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop,
double dRate
);

Parameters

tStart
[in] Start time of the segment.

tStop
[in] Stop time of the segment.

dRate
[in] Rate of the segment.

Return Values

Returns an HRESULT value.

Remarks

This member function calls the I Pin:: NewSegment method on the output pin once all previous
data has been delivered. Like COutputQueue:: EOS, the COutputQueue::NewSegment call
and its parameters are queued as a special control sample if the COutputQueue object is in
queued mode, and the IPin::NewSegment method is called from the worker thread in
COutputQueue: :ThreadProc.

Special control samples, as implemented by this member function, are only relevant if you plan
to change or extend the default base class implementation of COutputQueue in a derived class.
Normal use of the COutputQueue class does not require the use of control samples.

This member function allows filters that process buffers containing more than one sample to
delineate the rendering of the samples between start and stop time, as indicated by the tStart
and tStop parameters.

COutputQueue::NewSegment is intended to be implemented on an input pin. A connected
output pin on the upstream filter calls this member function after completing delivery of
previous data and before calling IMeminputPin:: Receive with any new data. It indicates that all
data arriving after this call is part of a segment delineated by the parameters.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 Mii.HM Topic Contents •@M* 1gnw

MQi§1[.]1!,i 1 11·1::!¥ Topic Contents l@l§il!MM

1630

COutputQueue Class

COutputQueue:: NotifyTh read

COutoutOueue Class

Notifies the thread that there is data on the queue to process.

void NotifyThread();

Return Values

No return value.

Remarks

The critical section must be held when this is called.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

COutputQueue: :QueueSample

COutputQueue Class

Queues a sample.

void QueueSample(
IMediaSample *pSample
);

Parameters

pSample

Topic Contents

Pointer to the sample to be passed to the connected input pin.

Return Values

No return value.

Remarks

The critical section must be held when this is called.

1631

Page 10of14

1@1§111¥+

COutputQueue Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

COutputQueue:: Receive

COutoutOueue Class

Passes in a single sample to send to the input pin.

HRESULT Receive(
IMediaSample *pSample
);

Parameters

pSample

Topic Contents

Pointer to the sample to be passed to the connected input pin.

Return Values

Returns an HRESULT value, which can include the following values, or others.
Value Meaning

Page 11of14

lml!§I 11$8

S_FALSE End of stream detected before or while processing sample; any further samples will
be discarded and this value returned.

Other

S_OK

Remarks

An error occurred before or while processing sample; any further samples will be
discarded and this value returned.
Queued successfully or passed to the connected input pin if there is no queue.

If the sticky return code (m hr) is not S_OK, the sample is not sent and the sticky return code
is returned. (A sticky return code is one that persists even after operations that would normally
change its value.) The samples are all released (by means of Release) after processing,
regardless of whether the processing was successful.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

MQl§i[.jjj,M 111.],.[5 Topic Contents 'ffl!'+* •um•

1632

COutputQueue Class

COutputQueue:: ReceiveM u lti pie

COutputQueue Class

Passes a set of samples to send to the input pin.

HRESULT ReceiveMultiple (
IMediaSample **ppSamples,
long nSamples,
long *nSamplesProcessed
);

Parameters

pp Samples
Pointer to the set of samples to be passed to the connected input pin.

nSamples
Number of samples pointed to by ppSamples.

nSamplesProcessed
Updated to be the number of samples processed.

Return Values

Returns an HRESULT value, which can include the following values, or others.
Value Meaning

Page 12of14

Other An error occurred before or while processing sample; any further samples will be
discarded and this value returned.

S_FALSE End of stream detected before or while processing sample; any further samples will
be discarded and this value returned.

S_OK Queued successfully or passed to the connected input pin if there is no queue.

Remarks

If the sticky return code is not S_OK, the sample is not sent and the sticky return code is
returned. (A sticky return code is one that persists even after operations that would normally
change its value.) The samples are all released (by means of Release) after processing,
regardless of whether the processing was successful.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 11ij Topic Contents l@i§i 11111+

MQ<§i[.]I!:+ 111.Hj Topic Contents l@i§lllMM

COutputQueue:: Reset

1633

COutputQueue Class Page 13of14

COutoutOueue Class

Resets the deferred return code m hr to ready the output queue for more data.

void Reset();

Return Values

No return value.

Remarks

The sticky return code m hr is set to S_OK if data is queued; otherwise, this function queues
the sample and notifies the thread. (A sticky return code is one that persists even after
operations that would normally change its value.)

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

COutputQueue: :SendAnyway

COutputQueue Class

If bBatchExact was specified on construction, frees batched samples so they can be sent to the
input pin.

void SendAnyway();

Return Values

No return value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+ Q i§i [.] ij,+ +!!·HM Topic Contents Mttfjl§ii!MM

COutputQueue: :ThreadProc

COutoutOueue Class

1634

COutputQueue Class Page 14of14

Implements the thread that sends samples downstream.

DWORD ThreadProc();

Return Values

Returns zero when DirectShow terminates the thread.

Remarks

This is the main thread procedure for the class, which is called from
COutoutOueue: :InitialThreadProc. It sends a sample or a batch of samples to the connected
input pin (depending on the m bBatchExact, m nBatched, and m IBatchSize data members)
when conditions are met. Otherwise, it increments them !Waiting data member, while holding
the critical section and waits form hSem to be set (not holding the critical section) to
continue.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1635

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

