
CBaseRenderer Class Page 20 of 41

The default implementation returns m bEOSDelivered. This is used by the base renderer class
so that only one EC COMPLETE message is sent to the filter graph manager each time it is run,
regardless of the number of times EndOfStream is called.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents l@!§il!MM

CBaseRenderer: :lsStrea ming

CBaseRenderer Class

Determines if the filter is streaming data.

BOOL lsStreaming(void);

Return Values

Returns TRUE if the renderer is rendering, or FALSE if it isn't.

Remarks

The default implementation returns m bStreaming. In the base renderer class, "streaming"
and "rendering" are used in the same context as "running".

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119 Topic Contents 1@!§111¥+

CBaseRenderer::NonDelegatingQuerylnterface

CBaseRenderer Class

Retrieves an interface and increments the reference count.

H RESULT Non Delegati ngQuerylnterface(
REFllD riid,
void** ppv
);

Parameters

1351

CBaseRenderer Class Page 21of41

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E~POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E~NOINTERFACE if it is not.

Remarks

This member function overrides CBaseFilter:: NonDelegatingQueryinterface. It exposes the
IMediaPosition and IMediaSeeking interfaces and then calls
CBaseFilter::NonDelegatingQuerylnterface for interfaces implemented in the base classes.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j Topic Contents l@i§il!MM

CBaseRenderer:: NotReady

CBaseRenderer Class

Forces the m evComolete event into a nonsignaled state.

void NotReady(void);

Return Values

No return value.

Remarks

This member function calls the CAM Event:: Reset member function of the m evComplete event
object.

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.l:.!j Topic Contents i@faii!MM

CBaseRenderer:: NotifyEndOfStrea m

1352

CBaseRenderer Class

CBaseRenderer Class

Sends an EC COMPLETE event to the filter graph manager.

void NotifyEndOfStream(void);

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents

C BaseRenderer:: 0 n Receive Fi rstSa m pie

CBaseRenderer Class

Provides derived classes with an opportunity to render static data.

virtual void OnReceiveFirstSample(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

No return value.

Remarks

Page 22 of 41

l@i§lllMM

This member function is unimplemented. It is primarily used by video renderers. When they
receive their first sample while paused, they typically draw the frame as a poster image. This
virtual method is called by the base classes when the first sample arrives.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.!j Topic Contents l@i§lllMM

1353

CBaseRenderer Class

CBaseRenderer: :OnRenderEnd

CBaseRenderer Class

Notifies the derived class that rendering has finished.

virtual void OnRenderEnd(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

No return value.

Remarks

Page 23 of 41

This member function is available for quality management and performance measuring. It is
called immediately after the sample is rendered.

Quality management implementations typically need to know how long it takes the renderer to
render the data.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

CBaseRenderer: :On RenderSta rt

CBaseRenderer Class

Notifies the derived class that rendering is about to start.

virtual void OnRenderStart(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

1354

Topic Contents i@faiilMM

CBaseRenderer Class Page 24 of 41

Return Values

No return value.

Remarks

This member function is available for quality management and performance measuring. It is
called immediately before the sample is rendered.

Quality management implementations typically need to know how long it takes the renderer to
render the data.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CBaseRenderer: :On Sta rtStrea ming

CBaseRenderer Class

Notifies the derived class that streaming has started.

virtual HRESULT OnStartStreaming(void);

Return Values

Returns NOERROR in the default implementation.

Remarks

This member function is called from CBaseRenderer: :StartStreaming. Override this in your
derived class to provide special handling when streaming starts.

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use.

MQ<§i[.jlj,M lh.l:.!j Topic Contents i@faii!MM

CBaseRenderer: :OnStopStrea ming

CBaseRenderer Class

Notifies the derived class that streaming has stopped.

1355

CBaseRenderer Class Page 25 of 41

virtual HRESULT OnStopStreaming(void);

Return Values

Returns NOERROR in the default implementation.

Remarks

This member function is called from CBaseRenderer: :StopStreaming. Override this in your
derived class to provide special handling when streaming stops.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

CBaseRenderer: :OnWaitEnd

CBaseRenderer Class

Notifies the derived class that a wait for a rendering time has just ended.

virtual void OnWaitEnd(void);

Return Values

No return value.

Remarks

This member function is available for quality control and is called from
CBaseRenderer: :WaitForRenderTime just after waiting for the presentation time for a sample.
Override this member function to obtain performance measurements in a derived class.

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use.

MQl§i[.jjj,M MB.HJ Topic Contents i@faii!MM

CBaseRenderer: :OnWaitStart

CBaseRenderer Class

Notifies the derived class that a wait for a rendering time is about to start.

1356

CBaseRenderer Class Page 26 of 41

virtual void OnWaitStart(void);

Return Values

No return value.

Remarks

This member function is available for quality control and is called from
CBaseRenderer: :WaitForRenderTime just before waiting for the presentation time for a sample.
Override this member function to obtain performance measurements in a derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CBaseRenderer:: Pa use

CBaseRenderer Class

Changes the renderer to State_Paused if it isn't already.

HRESULT Pause(void);

Return Values

Returns an HRESULT value.

Remarks

The following steps comprise a pause operation.

1. Commit the allocator used for the connection.
2. Allow the thread for the upstream filter to wait in Receive.
3. Cancel any outstanding clock advise links.
4. Check to see if the renderer is connected and allow a state change.
5. If a sample is available, complete the state change to State_Paused.

If the member function succeeds, DirectShow sets the filter's m State member variable to
State_Paused. If the renderer is in the State_Stopped state, DirectShow calls the
CBasePin: :Active member function for each of the renderer's connected pins.

This member function overrides CBaseFilter: :Pause.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

1357

CBaseRenderer Class

+Qi§1[.]++ 1 !!·HM

CBaseRenderer:: Pre pa re Receive

CBaseRenderer Class

Ensures that a sample can be rendered.

virtual HRESULT PrepareReceive(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

Page 27 of 41

Topic Contents i@l§ii!MM

Returns NOERROR if successful, VFW_E_SAMPLE_REJECTED if the delivered sample is later
than the sample's timestamp, or E_UNEXPECTED if a renderable sample is already available.

Remarks

This member function is called when the upstream filter delivers a sample. If the upstream
filter is running (streaming), the sample is scheduled with the reference clock. If the upstream
filter is not streaming, a sample in paused mode has been received, so any state transition can
be completed. On leaving this function, everything will be unlocked so an application thread
can get in and change the state to stopped. In this case, it will also signal the thread event so
that the wait call is stopped.

This function is typically called from the IMeminputPin: :Receive method on the renderer's
input pin. Although PrepareReceive returns VFW_E_SAMPLE_REJECTED if the sample was
delivered too late to be useful, the IMeminputPin::Receive method should not pass the
VFW_E_SAMPLE_REJECTED error on to the upstream filter in this case. Instead,
IMeminputPin::Receive should return NOERROR, because no error occurred.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 11!.l:.!9 Topic Contents i@l§ii!MM

CBaseRenderer:: Pre pa reRender

1358

CBaseRenderer Class Page 28 of 41

CBaseRenderer Class

Provides an opportunity for the derived class to prepare itself for rendering a sample.

virtual void PrepareRender(void);

Return Values

No return value.

Remarks

This member function is called from CBaseRenderer:: Receive before rendering each frame. A
derived class can take this opportunity to prepare itself for rendering. For example, a video
renderer might realize its palette. This is not implemented in the base class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBaseRenderer:: Ready

CBaseRenderer Class

Puts the m evComplete event into a signaled state.

void Ready(void);

Return Values

No return value.

Remarks

This member function calls the m evComplete CAM Event object's Set member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M M!i.1 1119 Topic Contents i@l§lllMM

CBaseRenderer:: Receive

1359

CBaseRenderer Class

CBaseRenderer Class

Called by the upstream filter when a sample is available to render.

virtual HRESULT Receive(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

Returns an HRESULT value.

Remarks

Page 29 of 41

This member function sets an advise link with the clock, waits for the time to arrive, and then
renders the data by calling the pure virtual DoRenderSample member function that the derived
class will have overridden. After rendering the sample, the end of stream can also be signaled
if it was the last one sent before EndOfStream was called.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥

CBaseRenderer:: Render

CBaseRenderer Class

Asks the derived class to render the sample.

virtual HRESULT Render(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

Returns an HRESULT value.

1360

Topic Contents lmli§lllMM

CBaseRenderer Class Page 30 of 41

Remarks

This member function is called when the derived class should render the sample. The action
taken is dependent on the nature of the renderer; a video renderer will typically draw the
image in a window. This class calls the pure virtual DoRenderSample to be implemented by the
derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents l@l§lllMM

CBaseRenderer:: ResetEndOfStrea m

CBaseRenderer Class

Resets the end-of-stream flag.

virtual HRESULT ResetEndOfStream(void);

Return Values

Returns an HRESULT value.

Remarks

This member function is typically called when changing to stopped states. A renderer must
keep track of when it gets told that no more data is going to arrive (this is done when the
sourcing filter calls I Pin:: EndOfStream). At this point the renderer finishes rendering any data
it has and then sends an EC_COMPLETE event to the filter graph manager.

However, when the filter is stopped, the whole state is cleared. When the filter is subsequently
run, the source filter will signal the end of stream again if it has no data to send. In this case,
the renderer should signal another EC_COMPLETE event to the filter graph manager. This
member function resets the state so that when next requested it will send an EC_COMPLETE
event.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQi§1!.l+• 1 11·1::'1 Topic Contents l@l§il!MM

CBaseRenderer:: ResetEndOfStrea mTi mer

CBaseRenderer Class

1361

CBaseRenderer Class Page 31of41

If the end-of-stream timer is nonzero, this function sets it to zero.

void ResetEndOfStreamTimer(void);

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9 Topic Contents l@!§il!MM

CBaseRenderer:: Run

CBaseRenderer Class

Transitions the renderer to State_Running if it is not in this state already.

HRESULT Run(void);

Return Values

Returns an HRESULT value.

Remarks

If the renderer is in the State_Stopped state, the CBaseRenderer:: Pause member function is
called first to transition the renderer to the State_Paused state, which has the effect of
activating any of the filter's connected pins. If this member function succeeds, the renderer's
m State member variable is set to State_Running.

This member function overrides CBaseFilter:: Run.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

+;<§1[.]lj,M Mil.HM Topic Contents l@!§il!MM

CBaseRenderer: :Schedule Sam pie

CBaseRenderer Class

Schedules the sample for rendering.

1362

CBaseRenderer Class

virtual BOOL ScheduleSample(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

No return value.

Remarks

Page 32 of 41

One of the main purposes of the renderer base class is to manage the timing and
synchronization of the samples it is sent; that is, the timely presentation of data. It also must
look after quality management, which might involve dropping samples or rendering them
earlier than indicated in the time stamps on the sample. This method and its overrides in
derived classes manage the setting up of advise links with the clock, so that the samples can
be rendered at the appropriate time.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

CBaseRenderer: :Send EndOfStrea m

CBaseRenderer Class

Signals an EC_COMPLETE event to the filter graph manager.

virtual HRESULT SendEndOfStream(void);

Return Values

Returns an HRESULT value.

Remarks

When the renderer receives an end-of-stream notification, it will finish rendering any data it
currently has and then send an EC_COMPLETE event to the filter graph manager.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q<@[.]jj,+ 111.1 1119 Topic Contents 1@1§11!¥+

1363

CBaseRenderer Class

CBaseRenderer: :Send NotifyWi ndow

CBaseRenderer Class

Passes the notification window handle to the upstream filter.

void SendNotifyWindow(
IPin *pPin,
HWND hwnd
);

Parameters

pPin
IPin interface of the upstream pin.

hwnd
Handle of the notification window.

Return Values

No return value.

Remarks

Page 33 of 41

If the output pin of the upstream filter supports the IMediaEventSink interface, this member
function sends it the EC_NOTIFY _WINDOW event code with the window handle in hwnd.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faiilMM

CBaseRenderer: :SendRepaint

CBaseRenderer Class

Signals an EC REPAINT message to the filter graph.

void SendRepaint(void);

Return Values

No return value.

1364

CBaseRenderer Class Page 34 of 41

Remarks

This should be used with some care. EC REPAINT events are processed by the filter graph
manager by setting the current position to the same position that the graph is currently in.
This has the effect of sending the same data through the graph again, which is an expensive
operation. Video renderers are the main users of this event, because they sometimes need the
same image sent again to refresh the display.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j

CBaseRenderer: :SetAbortSig na I

CBaseRenderer Class

Sets the m bAbort abort signal flag.

void SetAbortSignal(
BOOL bAbort
);

Parameters

bAbort
Abort value to be set.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(j

CBaseRenderer: :SetMediaType

CBaseRenderer Class

Informs the derived class of the selected media type.

virtual HRESULT SetMediaType(

1365

Topic Contents l@i§il!MM

Topic Contents l@bll!MM

CBaseRenderer Class

const CMediaType *pmt
);

Parameters

pmt
Media type to be set.

Return Values

Page 35 of 41

Returns NOERROR by default; the overriding member function should return a valid HRESULT
value.

Remarks

This member function is called by the CRendererinputPin: :SetMediaType member function and
has no implementation in this class. Derived classes can optionally override to add
functionality.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

CBaseRenderer: :SetRepa i ntStatus

CBaseRenderer Class

Resets the m bRepaintStatus flag when EC REPAINT has been signaled to the filter graph.

void SetRepaintStatus(
BOOL bRepaint
);

Parameters

bRepaint
Boolean value assigned to the m bRepaintStatus flag.

Return Values

No return value.

Remarks

The m bRepaintStatus flag ensures that the filter graph is not flooded with redundant calls.
Once one EC REPAINT message has been sent, no more will be sent until the renderer
receives some data.

1366

CBaseRenderer Class Page 36 of 41

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

CBaseRenderer: :Shau Id DrawSa mpleNow

CBaseRenderer Class

Determines if the sample should be drawn between the start and stop times given.

virtual HRESULT ShouldDrawSampleNow(
IMediaSample *pMediaSample,
REFERENCE_TIME *pStartTime,
REFERENCE_ TIME *pEndTime
);

Parameters

pMediaSample
Media sample.

pStartTime
Start time in question.

pEndTime
End time in question.

Return Values

Returns S_FALSE by default. The overriding member function can return S_OK to indicate that
the sample should be drawn immediately instead of waiting for its scheduled time.

Remarks

This member function is used by the derived video renderer class for quality management.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

MQl§i[.jjj,M '!!·HM Topic Contents l@i§i MUMM

CBaseRenderer: :Signa ITi merFi red

1367

CBaseRenderer Class

CBaseRenderer Class

Resets the current advise time to zero after a timer fires.

virtual void SignalTimerFired(void);

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

CBaseRenderer: :Sou rceTh read Ca nWa it

CBaseRenderer Class

Sets or resets the thread event.

virtual HRESULT SourceThreadCanWait(
BOOL bCanWait
);

Parameters

bCanWait
TRUE or FALSE, depending on intent.

Return Values

Returns an HRESULT value.

Remarks

Page 37 of 41

i@l§ii!MM

In some states, such as paused or running, it is expected that the upstream filter's thread will
be blocked in the call to the renderer's input pin Receive method. In other cases, such as when
the renderer is stopped, the upstream filter should not be required to wait. This member
function represents a manual reset event that sets this TRUE to wait, or FALSE to keep the
thread from waiting.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

1368

CBaseRenderer Class Page 38 of 41

CBaseRenderer: :Sta rtStrea ming

CBaseRenderer Class

Called to schedule any pending sample with the clock, and to display timing information.

virtual HRESULT StartStreaming(void);

Return Values

Returns an HRESULT value.

Remarks

If no sample is available but an end-of-stream flag is queued, this member function sends an
EC_COMPLETE message to the filter graph manager. If a sample is available, the
EC_COMPLETE message will not be sent until it has been rendered.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

CBaseRenderer: :Stop

CBaseRenderer Class

Transitions the renderer to State_Stopped if it is not in this state already.

HRESULT Stop(void);

Return Values

Returns an HRESULT value.

Remarks

If the renderer is not in the State_Stopped state, the CRendererinoutPin: :Inactive member
function is called for each of the renderer's connected pins. If this member function succeeds,
the filter's m State member variable is set to State_Stopped.

This member function overrides CBaseFilter: :Stop.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M 1!1.11119 Topic Contents i@faii!MM

1369

CBaseRenderer Class Page 39 of 41

CBaseRenderer: :StopStrea ming

CBaseRenderer Class

Sets the internal flag to indicate not to schedule arrival of any more samples.

virtual HRESULT StopStreaming(void);

Return Values

Returns an HRESULT value.

Remarks

Call this member function when streaming stops. The state change methods in the filter
implementation take care of canceling any clock advise link that has been set up and clearing
any pending sample.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

CBaseRenderer: :Ti merCa 11 back

CBaseRenderer Class

Checks if it is time to signal the end of the current data stream.

void TimerCallback(void);

Return Values

No return value.

Remarks

If the m EndOfStreamTimer data member is nonzero, this function sets it to zero and calls
CBaseRenderer: :SendEndOfStream to signal the end of the current data stream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

1370

CBaseRenderer Class Page 40 of 41

C BaseRenderer:: Wa itForReceiveToCom plete

CBaseRenderer Class

Waits for the CBaseRenderer:: Receive method to complete.

void WaitForReceiveToComplete();

Return Values

No return value.

Remarks

Use this method when you wish to avoid deadlock which occurs when CBaseRenderer: :Stop is
called and the CBaseRenderer:: Receive hasn't completed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBaseRenderer: :Wa itForRenderTi me

CBaseRenderer Class

Waits for either the due time for the current sample to arrive or for rendering to be stopped.

virtual HRESULT WaitForRenderTime(void);

Return Values

Returns an HRESULT value.

Remarks

The member function is virtual because derived classes might have more events that they also
want to wait on, which might interrupt the waiting process. The base class has two events:
m RenderEvent and m ThreadSignal. The former is signaled by the clock when the sample is
due for rendering. The latter is signaled by the filter when it should give up waiting and abort
(making the assumption that the filter was stopped).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1371

CBaseRenderer Class Page 41of41

1372

CBaseStreamControl Class Page I of9

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CBaseStreamControl Class

IAMStreamControl

CBaseStreamControl

The CBaseStreamControl class implements the IAMStreamControl interface on input and
output pins in a filter graph. This class provides control of the starting and stopping of various
components of the stream. Various streams can be turned on or off without affecting the rest
of the graph. For example, an audio stream can be turned off while a video stream continues,
for muting. Or perhaps a capture stream can be turned off while preview continues to flow.
This could be used to assist in frame accuracy when exact capture start or stop times are
important.

CBaseStreamControl enables you to specify start and stop times in the StartAt and StooAt
member functions and provides stream information in the t'..etinfo member function.
CBaseStreamControl uses the StreamControlState enumerated data type to describe the
various states a stream is in. If a stream is flowing it iS indicated by the STREAMFLOWING
setting, otherNise it is in a discarding state indicated by the STREAM DISCARDING setting.

Filters that need to implement the interface on their own should typically inherit from
CBaseStreamControl to obtain an implementation of the StartAt, Stopft,t. and Getinfo
methods. The CBaseStreamControl class also maintains state information and decides what
to do with the sample. To implement your own filter with pins that support
CBaseStreamControl you must:

• Inform the filter object of all state changes through the NC!tifVFilterState member
function.

• Inform the filter object of all SetSyncSource calls to the filter.
• Inform the filter object when in a flushing state. and when flushing has completed, in the

CBaseStreamControl:: Flushing member function.
• Use the CheckStreamState function to make decisions about discarding or passing along

samples.
• Make sure output pins set discontinuity flags on the first sample flowed after samples

have been discarded.
• Tell your pin what the sink is when your filter joins a filter graph, as shown in the

following example.

STDMETHODIMP CMyFilter::JoinFilte:rGraph{IFilte:rGraph * p3raph, LPCWSTR pName)
{

HRESULT hr= CBaseFilter::JoinFilte:rGraph{p3raph, pNameJ;
if {hr == 5 OK)

m_pMyPin~>SetFilte:rGraph{m_pSinkl;
return hr;

If you are implementing the IAMStreamContro! interface without using CBaseStreamControl,

1373

CBaseStreamControl Class

the last two preceding points do not apply.

For sample code see the video capture sample at DXmedia\Samples\DS\vidcap.

Member Functions
Name Description
CBaseStreamControl Constructs a CBaseStreamControl object.
CheckStreamState Retrieves a stream's current state.
Flushing Notifies the pin when the filter is flushing.

Retrieves information about the current streaming settings.
Notifies the pin of what state your filter is in.

Page 2 of9

Getinfo
NotifyFilterState
SetFilterGraph
SetSy ncSo u rce

StartAt

Sets the event sink notification that your filter graph is using.
Identifies the reference clock being used by the graph your filter is in.
Informs the pin when to start sending streaming data.

StopAt Informs the pin when to stop processing data and discard any new
samples.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.l:.!j Topic Contents l@i§lllMM

+QiM!.l+' •11·!:.!i Topic Contents l@i§lllMM

C BaseStrea mControl:: C BaseStrea mControl

CBaseStreamControl Class

Constructs a CBaseStrea mControl object.

CBaseStreamControl();

Return Values

No return value.

Remarks

This method initializes start time and stop time to MAX_TIME, which implies that times are
unspecified.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+Q'41!.l++ +11.q; Topic Contents l@i§lllMM

1374

CBaseStreamControl Class Page 3 of9

CBaseStrea mControl: :CheckStrea mState

CBaseStreamControl Class

Retrieves a stream's current state.

enum streamcontrolstate Checkstreamstate(IMediasample * psample) ;

Values

pSample
Pointer to an IMediaSamole interface.

Return Values

Returns a StreamControlState enumeration type.

Remarks

Your filter calls this member function when your pin receives a sample that it is about to
forward. The first sample you forward after throwing one or more away should be marked as a
discontinuity.

If your filter implements the IAMDroppedFrames interface and is counting how many frames
are dropped, it should not count a frame that is discarded as dropped.

The following example shows what you should include if your filter inherits from
CBaseStrea mControl.

//Pin has been given a sample to pass on, psample
//m_fLastSampleDiscarded is initialized to TRUE when streaming starts

int iStreamstate = Checkstreamstate(psample);
if (iStreamState == STREAM_FLOWING) {

if (m_fLastsampleDiscarded)
psample->SetDiscontinuity(TRUE);

m fLastSampleDiscarded = FALSE;
//now deliver it or put it o a queue to be delivered, or whatever.

else {
m fLastSampleDiscarded =TRUE; //next one is discontinuity
//do NOT deliver this sample. Just throw it away

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M Ill.HS Topic Contents •@M* 1gnw

CBaseStreamControl::Flushing

1375

CBaseStreamControl Class Page 4 of9

CBaseStreamControl Class

Notifies the pin that the filter is flushing.

void Flushing(
BOOL binProgress);

Parameters

blnProgress
TRUE indicates flushing in progress; FALSE indicates not flushing.

Return Values

No return value.

Remarks

If you are implementing your own filter, your pin must call this member function on BeginFlush
and EndFlush (DeliverBeginFlush and DeliverEndFlush for output pins) to say when it is
flushing, as shown in the following example.

HRESULT CMyPin: :BeginFlush ()
{

Flushing (TRUE) ;
//or CBaseinputPin for input pins
return CBaseoutputPin::BeginFlush();

HRESULT CMyPin: :EndFlush()
{

Flushing (FALSE) ;
//or CBaseinputPin for input pins
return CBaseOutputPin::EndFlush () ;

Note that capture filters that do not support seeking do not call this method.

© 1997 Microsoft Corporation. All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents

CBaseStrea mControl: :Getlnfo

CBaseStreamControl Class

Retrieves information about the current streaming settings.

1376

•@M* 1gnw

CBaseStreamControl Class

HRESULT Getlnfo(
AM_STREAM_INFO *plnfo
);

Parameters

pinfo
Pointer to an AM STREAM INFO structure.

Return Values

Returns S_OK.

Remarks

Page 5 of9

This member function implements the IAMStreamControl interface and is called by the user to
find out if a pin is streaming and to obtain the stream's attributes.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

CBaseStreamControl::NotifyFilterState

CBaseStreamControl Class

Notifies the pin of your filter's state.

void NotifyFilterState(
FILTER_STATE new_state,
REFERENCE_ TIME tStart = 0);

Parameters

new_state
Filter's new state.

tStart

ifflj[§ii!¥M

Time at which streaming starts (only valid when new_state is in State_Running).

Return Values

No return value.

Remarks

This member function notifies the pin of a filter's new state by setting a FILTER STATE
enumeration type variable.

1377

CBaseStreamControl Class Page 6 of9

If you are implementing your own filter, inform your pin's
CBaseStreamControl::NotifyFilterState member function what state your filter is in every
time your filter changes state, as shown in the following example.

STDMETHODIMP CMyFilter: :Run(REFERENCE TIME tstart)
{ -

//once error check is successful
m_pMyPin->NotifyFilterstate (State_Running, tstart);

//now continue with whatever should occur next, for example ...
return CBaseFilter::Run(tstart) ;

STDMETHODIMP CMyFilter: :Pause()
{

//once error check is successful
m_pMyPin->NotifyFilterstate (State_Paused, O) ;

//now continue with whatever should occur next, for example ...
return CBaseFilter::Pause();

STDMETHODIMP CMyFilter: :Stop()
{

//once error check is successful
m_pMyPin->NotifyFilterstate (State_stopped, O);

//now continue with whatever should occur next, for example ...
return CBaseFilter::Stop(tstart) ;

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

MQij[.jjj,M M!i.1 1119 Topic Contents

CBaseStrea mControl: :Set Fi lterG ra ph

CBaseStreamControl Class

Sets the event sink notification your filter graph is using.

void SetFilterGraph(
IMediaEventSink *pSink)

Parameters

pSink
Pointer to an IMediaEventSink interface.

1378

i@i§ii!MM

i@i§ii!MM

CBaseStreamControl Class Page 7 of9

Return Values

No return value.

Remarks

A filter calls this member function in its JoinFilterGraph member function after it creates the
IMediaEventSink.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

CBaseStrea mControl: :SetSyncSou rce

CBaseStreamControl Class

Identifies the reference clock being used by the graph your filter is in.

void SetSyncSource(
IReferenceClock * pRefC/ock);

Parameters

pRefC/ock
Pointer to the IReferenceClock interface.

Return Values

No return value.

Remarks

i@l§ii!MM

Filters with pins that use this class should ensure that they pass sync source information to
this member function, as shown in the following example.

STDMETHODIMP CMyFilter: :Setsyncsource(IReferenceclock *pClock)
{

m_pMyPin->Setsyncsource(pClock);
return CBaseFilter::Setsyncsource(pClock);

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§i +g¥+

1379

CBaseStreamControl Class

CBaseStrea mControl: :Sta rtAt

CBaseStreamControl Class

Tells the pin when to start sending streaming data.

HRESULT StartAt(
const REFERENCE_ TIME* ptStart = NULL,
DWORD dwCookie = 0);

Parameters

ptStart
REFERENCE TIME at which to start streaming. If NULL, start immediately (no
notification). If MAX_ TIME, start canceled or will have no effect.

dwCookie

Page 8 of9

Specifies a particular value, other than 0, to be sent with the notification when the start
occurs. (Only used if ptStart is non-NULL or MAX_ TIME).

Return Values

Returns NOERROR.

Remarks

Streams are enabled by default, so this member function will have no effect unless you have
previously called StopAt.

After the stream is in a STREAM_FLOWING state, the filter will send an
EC STREAM CONTROL STARTED event notification to the filter graph manager.

Note If start and stop are scheduled for a single point in time, the effect is as if the start
occurred an infinitesimal time before the stop. You can use this effect to capture a single
frame.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I llMM

• QIM [.] +• I!!·!:.!¥ Topic Contents l@i§i MUMM

CBaseStrea mControl: :StopAt

CBaseStreamControl Class

1380

CBaseStreamControl Class

Informs the pin when to stop processing data and to discard any new samples.

HRESULT StopAt(
const REFERENCE_ TIME* ptStop = NULL,
BOOL bSendExtra = FALSE,
DWORD dwCookie = 0);

Parameters

ptStop
REFERENCE TIME at which to stop streaming. If NULL, stop immediately (no
notification). If MAX_TIME, cancels stop.

bSendExtra
Indicates whether to send an extra sample after scheduled ptStop time.

dwCookie

Page 9 of9

Specifies a particular value to be sent with the notification when the stop occurs. (Only
used if ptStart if not NULL or MAX_ TIME).

Return Values

Returns NOERROR.

Remarks

This member function implements the IAMStreamControl: :StopAt method and is used by pins
and filters that must support the stopping of streams. It sets the StreamControlState
enumeration type to STREAM_DISCARDING.

In a video capture scenario, specify StopAt on both the output pin of a capture filter and an
input pin of a multiplexer and have the multiplexer send notification of completion. This
ensures that the capture filter doesn't needlessly capture extra frames, while also
guaranteeing that the multiplexer has written the last frame to disk.

In addition, the capture output pin should specify TRUE for the bSendExtra variable while all
other pins specify FALSE. If an extra frame is not sent the multiplexer will end up waiting for
the stop time indefinitely and not realize it already has received all the capture information.

If you are using ICaptureGraphBuilder, the ICaptureGraphBuilder: :ControlStream method will
accomplish all this for you automatically.

Note If a stop time is given in the middle of a packet, the filter will deliver the whole packet
before going into a discarding state. Also, if start and stop are scheduled for a single point in
time, the effect is as if the start occurred an infinitesimal time before the stop. You can use
this effect to capture a single frame.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§lllMM

1381

CBaseVideoRenderer Class Page 1of20

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CBaseVideoRenderer Class

(CBaseObject), -
I INonDelegatingUnknown I

LL(CUnknown).

I IAMovieSetup I
IMediaFilter

IBaseFilter

I '- CBasefilter),

~ CBaseRenderer),

I IQualProp I
I IQualityControl I

1 ~ CBaseVideoRenderer).

This base class is used for building video renderer filters.

Protected Data Members
Name Description
m_bDrawLateFrames Flag to signal that no frames are to be dropped. Debug only.

ThiS destroys synchronization.
m_bSupplierHandlingQuality TRUE indicates quality control messages are being handled.

ThiS lets the renderer know to wait until as late as possible to
drop frames itself, and to display the next frame very early
aft:erthe supplier has dropped a frame.

m_cFramesDrawn Total number of frames that have been drawn since streaming
started.

m_ cFramesDrapped

m_idDecision
m_idDuration
m_idFrameAccuracy

m_idFrameAvg

m_idQualityRate
m_idQualityTime

CumulatiVe frames that have been dropped in the renderer
since streaming started. Frames can also be dropped
upstream without the renderer recognizing them.
MSRJd for the deciSion code of Sho11ldDrawSampleNow.
MSR id for the duration of a frame.
Performance log identifier fort he time in m i!!iseconds that the
frame was late.
Performance log identifier for the average frame time that is
used for synchronization and quality control.
MSR.id for the quality rate requested.
MSRid for the quality time requested.

1382

CBase Video Renderer Class

m_idRenderAvg

m_idSchlateTime
m_idSendQual ity
m_idTimeStamp
m_idWait

m_idWaitReal
m_iSum FrameTime
m_iSumSqAcc

m_iSumSqFrameTime

m_iTotAcc

m_nNormal

m_trDuration

m_trEarliness

m_trframe

m_trFrameAvg
m_trlastDraw
m_trlate

m_trRenderAvg
m_trRenderlast
m_trRenderStart

m_trThrottle

m_trWaitAvg
m_tStreamingStart

Member Functions
Name
CBaseVideoRenderer
GetStdDev

Page 2 of20

Performance log identifier for the average renderer time
recorded.
MSR_id for how late the frame was when scheduled.
MSR_id for timing the notifications (unused).
MSR_id for a frame time stamp.
Performance log identifier for the recorded wait time
(unused).
Performance log identifier for the true wait time.
Sum of the interframe times; needed for the property page.
Sum of the squares of the accuracies (in milliseconds) needed
for the property page.
Sum of the squares of interframe times; needed for the
property page.
Sum of the accuracies (in milliseconds) needed for the
property page.
Number of consecutive frames drawn at their scheduled time.
A negative number indicates that a frame has just been
dropped by the renderer.
Duration of the last frame (difference between the start and
end times).
How early a frame is allowed to be played when a frame has
just been dropped.
Most recently recorded time between frames. Used in
statistical measurements.
Average interframe time in reference time units.
Time of previous frame. Used for interframe time references.
Amount of time that the current frame was late. Used in
statistical measurements.
Time that frames are taking to perform the bit-block transfer.
Time for the last frame bit-block transfer.
Time the bit-block transfer started. Used to get
m trRenderlast.
Period to insert after rendering each frame, typically used
when audio quality has been increased and video performance
must be decreased to allow this.
Average wait time in reference time units.
Used for property page statistics. Represents the start time of
the current streaming process or the previous streaming
process if not currently streaming.

Description
Constructs a CBaseVideoRenderer object.
Estimates the standard deviation in milliseconds between when each
frame is due and when it is actually rendered, for per-frame
statistics.

PreoarePerformanceData Sets the m trlate and m trFrame values of the current frame.
ThrottleWait Inserts a wait period after each frame.

1383

CBase Video Renderer Class Page 3 of20

Overridable Member Functions
Name
JoinFilterGraoh

OnDirectRender

OnRenderEnd
OnRenderStart
OnStartStreaming
OnStooStreaming

OnWaitEnd
OnWaitStart

RecordFramelateness

ResetStreamingTimes
ScheduleSamole
SendOuality

Description
Sends EC WINDOW DESTROYED event notification when filter is
removed from the filter graph.
Collects timing information that controls synchronization and quality
control.
Records information for quality control and synchronization.
Records information for quality control and synchronization.
Resets all times that control streaming.
Called at the end of streaming to fix times for the property page
report.
Called when a wait time ends. Performance logging only.
Updates times spent waiting and not waiting. Performance logging
only.
Records how timely the rendering occurred and gathers statistics for
the property page.
Resets all times that control the streaming.
Sets up an advise link with the clock.
Sends a quality message to indicate what the supplier should do
about quality.

ShouldDrawSamoleNow Determines if the video should be drawn when it is due, without
setting a timer advise link with the clock.

Implemented IQualProp Methods
Name
get AvgFrameRate

get AvgSyncOffset

get DevSyncOffset

get FramesDrawn

Description
Retrieves the average frame rate since streaming started in
frames per 100 seconds.
Retrieves the average of the time in milliseconds between
when each frame was due and when it was actually rendered.
This applies to all frames since streaming started.
Retrieves the standard deviation of the time in milliseconds
between when each frame was due and when it was actually
rendered for all frames since streaming started.
Retrieves the number of frames drawn since streaming
started.

get FramesDroooedlnRenderer Retrieves the number of frames dropped by the renderer.

get Jitter
Frames can also be dropped upstream.
Retrieves the standard deviation of the time in milliseconds
between each frame and the next. This applies to all frames
since streaming started.

Implemented INonDelegatingUnknown Methods
Name Description
NonDelegatingOuerylnterface Provides access to other interfaces, particularly the property

page.

Implemented IQualityControl Methods

1384

CBase Video Renderer Class Page 4of20

Name Description
Notify Notifies the recipient that a quality change is requested.
SetSink Sets the IQualityControl object that will receive quality messages.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

CBaseVideoRenderer: :CBaseVideoRenderer

CBaseVideoRenderer Class

Constructs a CBaseVideoRenderer object.

CBaseVideoRenderer(
REFCLSID RenderC/ass,
TCHAR *pName,
LPUNKNOWN pUnk,
HRESULT *phr
);

Parameters

RenderClass
Class identifier for this renderer.

pName
Description used for debugging purposes.

pUnk
Pointer to the aggregated owner object.

phr
Pointer to an HRESULT value.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•Q<@M+• 111.l:.!¥

8 4'MM+1 111·!:.!¥

1385

Topic Contents l@!§lllMM

Topic Contents 1@!§111$8

CBase Video Renderer Class

C Base Vi deoRendere r:: get_Avg Fra meRate

CBaseVideoRenderer Class

Calculates and retrieves the average frame rate achieved.

HRESULT get_AvgFrameRate(
int *piAvgFrameRate
);

Parameters

piAvgFrameRate
Number of frames per second since streaming began.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IQualProp: :get AvgFrameRate method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

Page 5of20

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

C Base Vi deoRendere r:: get_AvgSyn cOffset

CBaseVideoRenderer Class

Retrieves the average of the time in milliseconds between when each frame was due and when
it was actually rendered for all frames since streaming started.

HRESULT get_AvgSyncOffset(
int *piAvg
);

Parameters

piAvg
Pointer to the average of the time as previously described.

Return Values

Returns an HRESULT value.

1386

CBase Video Renderer Class Page 6of20

Remarks

This member function implements the IQualProp: :get AvgSyncOffset method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CBaseVideoRenderer: :get_DevSyncOffset

CBaseVideoRenderer Class

Retrieves the standard deviation of the time in milliseconds between when each frame was due
and when it was actually rendered, for all frames since streaming started.

HRESULT get_DevSyncOffset(
int *piDev
);

Parameters

pi Dev
Pointer to the standard deviation of the time as previously described.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IQualProp: :get DevSyncOffset method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M 11!.l:.!j Topic Contents l@i§il!MM

C Base Vi deoRendere r:: get_Fra mesD rawn

CBaseVideoRenderer Class

Retrieves the m cFramesDrawn member variable, giving the number of frames drawn since
streaming started.

1387

CBase Video Renderer Class

HRESULT get_FramesDrawn(
int *pcFramesDrawn
);

Parameters

pcFramesDrawn
Number of frames drawn.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IOualProp: :get FramesDrawn method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

Page 7of20

i@l§ii!MM

CBaseVideoRenderer: :get_Fra mesDroppedln Ren c

CBaseVideoRenderer Class

Retrieves the number of frames dropped by the renderer.

HRESULT get_FramesDroppedinRenderer(
int *pcFramesDropped
);

Parameters

pcFramesDropped
Number of frames dropped.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IOualProp: :get FramesDroooedlnRenderer method. This
is how the property page retrieves the data from the scheduler. Note that frames can also be
dropped upstream without the renderer even seeing them.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1388

CBase Video Renderer Class Page 8of20

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBaseVideoRenderer: :get_l itter

CBaseVideoRenderer Class

Retrieves the standard deviation of time in milliseconds between each frame and the next for
all frames since streaming started.

HRESULT get_litter(
int *piJitter
);

Parameters

piJitter
Standard deviation of the interframe time in milliseconds.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IOualProp: :get Jitter method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 111.],.[9 Topic Contents

CBaseVideoRenderer: :GetStd Dev

CBaseVideoRenderer Class

i@l§ii!MM

Estimates the standard deviation in milliseconds between when each frame is due and when it
is actually rendered, for per-frame statistics.

HRESULT GetStdDev(
int nSamples,
int *piResult,
LONGLONG l/SumSq,
LONGLONG iTot

1389

CBase Video Renderer Class Page 9of20

);

Parameters

nSamples
Integer value that contains the number of video samples received by the video renderer.

piResult
Pointer to an integer value that will contain the standard deviation.

l/SumSq
Value that represents the standard deviation, in milliseconds, of all rendered video
samples. The lower the value, the more consistent the rendering.

iTot
Value that represents the mean value, in milliseconds, between the stamped time and
rendered time for all rendered video samples.

Return Values

Returns NOERROR.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

CBaseVideoRenderer: :Join Fi lterG ra ph

CBaseVideoRenderer Class

Sends EC WINDOW DESTROYED event notification when a filter is removed from the filter
graph.

HRESULT JoinFilterGraph(
IBaseFilterGraph * pGraph,
LPCWSTR pName
);

Parameters

pGraph
Pointer to the filter graph to join.

pName
[in, string] Name of the filter being added.

Return Values

No return value.

1390

CBase Video Renderer Class Page 10of20

Remarks

This member function overrides the CBaseFilter: :JoinFilterGraph member function. If this
function determines that the filter is being notified that it is leaving the filter graph (pGraph is
null, but m pGraph is not), it sends an EC WINDOW DESTROYED event notification so that
the resource manager does not hold on to the renderer as a focus object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

CBaseVideoRenderer::NonDelegatingQuerylnterf;

CBaseVideoRenderer Class

Returns an interface and increments the reference count.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
VOID **ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_ POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

Override this member function to publish the interface.

This member function implements the INonDelegatingUnknown:: NonDelegatingQueryinterface
method. It exposes the IQualProp interface and then calls
CBaseRenderer:: NonDelegatingQueryinterface to expose interfaces implemented in the base
classes.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQIM!.l+' Mii.HJ Topic Contents l@i§lllMM

1391

CBase Video Renderer Class

CBaseVideoRenderer:: Notify

CBaseVideoRenderer Class

Receives a notification that a quality change is requested.

HRESULT Notify(
IBaseFilter * pSelf,
Quality q
);

Parameters

pSelf
[in] Pointer to the filter that is sending the quality notification.

q
[in] Quality notification structure.

Return Values

Returns an HRESULT value.

Remarks

Page 11of20

This member function implements the IQualityControl:: Notify method on the video renderer.
This is called, typically by the filter graph manager, when the quality must be cut back. This
might occur when the quality of audio playback has been increased to the point that the video
playback quality must be decreased.

Notify sets the m trThrottle data member to a delay value to be inserted between frames by
ThrottleWait.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9 Topic Contents l@!§il!MM

CBaseVideoRenderer: :On Di rectRender

CBaseVideoRenderer Class

Collects timing information that controls synchronization and quality control.

virtual void OnDirectRender(

1392

CBase Video Renderer Class

IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

Returns an HRESULT value.

Remarks

Page 12of20

Call this member function instead of OnRenderStart and OnRenderEnd. This is used by the
Microsoft® DirectDraw® video renderer.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I 11$8

C Base Vi deoRendere r:: 0 n Ren de rE nd

CBaseVideoRenderer Class

Performs smoothing for cases where the rendering time varies due to interruptions.

void OnRenderEnd(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

No return value.

Remarks

This member function should be called just after drawing an image.

This member function overrides CBaseRenderer: :OnRenderEnd.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1393

CBase Video Renderer Class

+Qi§1[.]++ 1 !!·HM Topic Contents

C Base Vi deoRendere r:: 0 n Ren de rSta rt

CBaseVideoRenderer Class

Sets information for rendering.

void OnRenderStart(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

No return value.

Remarks

Page 13 of 20

i@l§ii!MM

This member function retrieves the current clock time from the system and stores it in a
member variable to be used when the drawing is complete. The function also performs
performance logging. This member function should be called just before drawing starts.

This member function overrides CBaseRenderer: :OnRenderStart.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 11!.l:.!9 Topic Contents i@l§ii!MM

C Base Vi deoRendere r:: 0 nSta rtStrea ming

CBaseVideoRenderer Class

Resets all times that control streaming.

HRESULT OnStartStreaming(void);

Return Values

1394

CBase Video Renderer Class Page 14 of 20

Returns an HRESULT value.

Remarks

This member function overrides CBaseRenderer: :OnStartStreaming.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w QIM [.] 11,1 Ill.HM Topic Contents l@fa* 1gnw

C Base Vi deoRendere r:: 0 nStopStrea ming

CBaseVideoRenderer Class

Called at the end of streaming to fix times for the property page report.

HRESULT OnStopStreaming(void);

Return Values

Returns an HRESULT value.

Remarks

This member function is called twice, once when pausing and again when the stream is
actually stopped.

This member function overrides CBaseRenderer: :OnStopStreaming.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!l.! 1119 Topic Contents l@fail!MM

CBaseVideoRenderer: :OnWa it End

CBaseVideoRenderer Class

Called when a wait time ends.

void OnWaitEnd(void);

Return Values

1395

CBase Video Renderer Class Page 15 of 20

No return value.

Remarks

This member function does only performance logging. It is called when the thread is awoken
from waiting in the window, or when the next sample is due to be rendered. It could eventually
be used to gather information that controls synchronization.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

CBaseVideoRenderer: :OnWa itSta rt

CBaseVideoRenderer Class

Updates times spent waiting and not waiting.

void OnWaitStart(void);

Return Values

No return value.

Remarks

This member function is called when starting to wait for a rendering event. It is used only for
performance measurements.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 111.],.[5 Topic Contents i@i§lllMM

C Base Vi deoRendere r:: Pre pa rePerforma n ceData

CBaseVideoRenderer Class

Sets the m trlate and m trFrame values of the current frame.

void PreparePerformanceData(
int trLate,
int trFrame

1396

CBase Video Renderer Class

);

Parameters

trLate
How late the sample was beyond its due time, in reference time units.

trFrame
lnterframe time, in reference time units.

Return Values

No return value.

Remarks

Page 16 of 20

This member function sets m trlate to the value of trLate and m trFrame to the value of
trFrame.

When the CBaseVideoRenderer:: RecordFrameLateness member function is called from either
CBaseVideoRenderer: :OnRenderStart or CBaseVideoRenderer: :OnDirectRender, it passes the
values of m trlate and m trFrame for it to update the statistics. PreparePerformanceData
is called from CBaseVideoRenderer: :OnWaitEnd to set these data member values.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

C Base Vi deoRendere r:: Record Fra melaten ess

CBaseVideoRenderer Class

Records how timely the rendering occurred and gathers statistics for the property page.

virtual void Recordframelateness(
int trLate,
int trFrame
);

Parameters

trLate
How late the sample was beyond its due time, in reference time units.

trFrame
Interframe time, in reference time units.

Return Values

No return value.

1397

CBase Video Renderer Class Page 17of20

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

CBaseVideoRenderer::ResetStreamingTimes

CBaseVideoRenderer Class

Resets all times that control the streaming.

virtual HRESULT ResetStreamingTimes(void);

Return Values

Returns an HRESULT value.

Remarks

The times are set so that frames will not be initially dropped and so that the first frame will be
drawn.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 111.],.[5 Topic Contents lfflj(§i MUMM

C Base Vi deoRendere r:: Schedule Sam pie

CBaseVideoRenderer Class

Overrides the base class that does the main work to keep a count of samples drawn and
dropped (which are used by the IQualProp implementation).

BOOL ScheduleSample(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Media sample.

Return Values

1398

CBase Video Renderer Class

Returns TRUE if the sample is scheduled; otherwise, returns FALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

CBaseVideoRenderer: :SendQua I ity

CBaseVideoRenderer Class

Sends a quality message to indicate what the supplier should do about quality.

virtual HRESULT SendQuality(
REFERENCE_TIME trLate,
REFERENCE_TIME trRea/Stream
);

Parameters

trLate
Amount of time by which the frame is late.

trRealStream
Current stream time.

Return Values

Returns an HRESULT value.

Remarks

Page 18 of 20

ifflj[§ii!MM

This member function sends a quality control message upstream to control quality
management. The nature of the quality message (that is, whether to reduce or increase the
number of samples) is determined in the quality management implementation in this derived
class (see CBaseVideoRenderer: :ShouldDrawSampleNow).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H+1 1 !!·HM Topic Contents i@i§ii!MM

CBaseVideoRenderer: :SetSi n k

CBaseVideoRenderer Class

1399

CBase Video Renderer Class

Sets the IOualityControl object that will receive quality messages.

HRESULT SetSink(
IQualityControl *piqc
);

Parameters

piqc

Page 19of20

Pointer to the IOualityControl object to which the notifications should be sent.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IQualityControl: :SetSink method on the video renderer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

C Base Vi deoRendere r:: Sh ou Id Draws am pie Now

CBaseVideoRenderer Class

Determines if the video should be drawn without setting a timer advise link with the clock.

virtual HRESULT ShouldDrawSampleNow(
IMediaSample *pMediaSample,
REFERENCE_TIME *ptrStart,
REFERENCE_TIME *ptrEnd
);

Parameters

pMediaSample
IMediaSamole interface for the sample.

ptrStart
Time to begin rendering.

ptrEnd
Time to stop rendering.

Return Values

Returns an HRESULT value. Returns S_OK to mean draw at once without waiting, S_FALSE to

1400

CBase Video Renderer Class Page 20of20

mean draw at time ptrStart, or error to mean do not draw the sample; that is, skip it to save
time.

Remarks

This member function overrides CBaseRenderer:: ShouldDrawSampleNow.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

•;<MM+' 111.],.[J Topic Contents l@i§lllMM

C Base Vi deoRendere r: :Th rattle Wait

CBaseVideoRenderer Class

Inserts a wait period after each frame.

void ThrottleWait(void);

Return Values

No return value.

Remarks

This member function waits for a time period obtained from them trThrottle data member.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

1401

CBaseVideo Window Class Page 1 of6

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CBaseVideoWindow Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CB aseVideoWindow

The CBaseVideoWindow class handles the IDisoatch component of the IVideoWindow
interf<lce and leaves the IVideoWindow properties and methods pure virtual.

Membe .. Fun<:tlons
Name 0esc .. 1ption
CBaseVideoWindow Constructs a CBaseVideoWindow object.

Implemented INonDelegatlngUnknown Methods
Name Desc .. iption
NonoeiegatjngQueryintertace Returns a specified reference-counted interface.

Implemented !Dispatch Methods
Name Description
GetIDsOfNames Maps a single member and an optional set of parameters to a

corresponding set of integer dispatch identifiers, whieh can be used during
subsequent calls to the IDispatch"Ioyo1<e method.

GetTupeinfo Retrieves a type-information object, whieh can retrieve the type
information for an interface.

GetTupeinfoCount Retrieves the number of type-information interfaces provided by an object.
Invoke Provides access to properties and methods exposed by an object.

MAI§ 11.l!f,M +:1.1 .. 19 T op1c Contents +w•;++:mw

841§ ii.iii A Mi!.!::18 Topic Contents 1 #1411t¥*

1402

CBaseVideoWindow Class Page 2of6

CBaseVideoWi ndow: :CBaseVideoWi ndow

CBaseVideoWindow Class

Constructs a CBaseVideoWindow object.

CBaseVideoWindow(
const TCHAR *pName,
LPUNKNOWN pUnk
);

Parameters

pName
Name of the object used in the CBaseVideoWindow constructor for debugging purposes.

pUnk
Pointer to the owner of this object.

Return Values

No return value.

Remarks

Allocate the pName parameter in static memory. This name appears on the debugging terminal
upon creation and deletion of an object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

CBaseVideoWi ndow: :GetIDsOfNa mes

CBaseVideoWindow Class

Maps a single member function and an optional set of parameters to a corresponding set of
integer dispatch identifiers, which can be used upon subsequent calls to the
CBaseVideoWindow: :Invoke member function.

HRESULT GetIDsOfNames(
REFIID riid,
OLECHAR * * rgszNames,
UINT cNames,
LCID lcid,
DISPID * rgdispid
);

1403

CBaseVideoWindow Class

Parameters

riid
Reference identifier. Reserved for future use. Must be NULL.

rgszNames
Passed-in array of names to be mapped.

cNames
Count of the names to be mapped.

lcid
Locale context in which to interpret the names.

rgdispid

Page 3of6

Caller-allocated array, each element of which contains an ID corresponding to one of the
names passed in the rgszNames array. The first element represents the member name;
the subsequent elements represent each of the member's parameters.

Return Values

Returns one of the following values.
Value Meaning
DISP _E_UNKNOWN_CLSID The CLSID was not recognized.
DISP E UNKNOWN NAME One or more of the names were not known. The returned DISPIDs

contain DISPID_UNKNOWN for each entry that corresponds to an
unknown name.

E_OUTOFMEMORY
S_OK

Out of memory.
Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9

+Qij[.jlj,M 111.1 1119

Topic Contents

Topic Contents

CBaseVideoWi ndow: :GetTypelnfo

CBaseVideoWindow Class

l@!§il!MM

1@!§111¥+

Retrieves a type-information object, which can retrieve the type information for an interface.

HRESULT GetTypeinfo(
UINT itinfo,
LCID lcid,
ITypeinfo * * pptinfo
);

Parameters

1404

CBaseVideoWindow Class Page 4of6

itinfo
Type information to return. Pass zero to retrieve type information for the IDisoatch
implementation.

lcid
Locale ID for the type information. An object might be able to return different type
information for different languages. This is important for classes that support localized
member names. For classes that do not support localized member names, this parameter
can be ignored.

pptinfo
Pointer to the type-information object requested.

Return Values

Returns an E_POINTER if pptinfo is invalid. Returns TYPE_E_ELEMENTNOTFOUND if itinfo is not
zero. Returns S_OK if is successful. Otherwise, returns an HRESULT from one of the calls to
retrieve the type. The HRESULT indicates the error and can be one of the following standard
constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_ POINTER Null pointer argument.
E_INVALIDARG Invalid argument.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents

• QIM [.] +• I !1.],.15 Topic Contents

C Base Video Window:: GetTypel nfoCou nt

CBaseVideoWindow Class

Retrieves the number of type-information interfaces provided by an object.

HRESULT GetTypeinfoCount(
UI NT * pctinfo
);

Parameters

pctinfo

lmll§I 11$8

lfflj(§i MUMM

Pointer to the location that receives the number of type-information interfaces that the
object provides. If the object provides type information, this number is 1; otherwise, the
number is 0.

Return Values

1405

CBaseVideoWindow Class

Returns E_POINTER if pctinfo is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

CBaseVideoWindow: :Invoke

CBaseVideoWindow Class

Provides access to properties and methods exposed by an object.

HRESULT Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wF/ags,
DISPPARAMS * pdispparams,
VARIANT * pvarResult,
EXCEPINFO * pexcepinfo,
UI NT * puArgErr
);

Parameters

dispidMember

Page 5of6

ifflj[§ii!MM

Identifier of the member. Use CBaseVideoWindow: :GetIDsOfNames or the object's
documentation to obtain the dispatch identifier.

riid
Reserved for future use. Must be IID NULL.

lcid
Locale context in which to interpret arguments.

wF/ags
Flags describing the context of the CBaseVideoWindow::Invoke call.

pdispparams
Pointer to a structure containing an array of arguments, an array of argument dispatch
IDs for named arguments, and counts for number of elements in the arrays.

pvarResult
Pointer to where the result is to be stored, or NULL if the caller expects no result.

pexcepinfo
Pointer to a structure containing exception information.

puArgErr
Index of the first argument, within the rgvarg array, that has an error.

Return Values

Returns DISP _E_UNKNOWNINTERFACE if riid is not IID_NULL. Returns one of the error codes
from CBaseVideoWindow: :GetTypelnfo if the call fails. Otherwise, returns the HRESULT from

1406

CBaseVideoWindow Class Page 6of6

the call to !Dispatch: :Invoke.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

8 4'MM+1 111·!:.!¥ Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

CBaseVideoWi ndow:: Non Delegati ngQuerylnterfa 1

CBaseVideoWindow Class

Returns a specified reference-counted interface.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void **ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_ NOINTERFACE if it is not.

Remarks

Returns pointers to the IVideoWindow and IUnknown interfaces by default. Override this
method to publish any additional interfaces implemented by the derived class.

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryinterface
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1407

CBaseWindow Class Page 1 of 18

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CBaseWindow Class

(CBaseWindow)

The CBaseWlndow class creates a window and a v.-orker thread. The worker thread pulls
messages from the window's input queue and dispatches them as appropriate. The window and
its thread are created by the CBaseWindow: :PrepareWindow member function and destroyed
by the CBaseWindow:: Done With Window member function. The window should also be
initialized by the caaseWindow"Iojtja!iseWindow member fUnction and uninitialized by the
CBaseWindow::UninitialiseWindow member function. After preparing and initializing a window,
size it by using the CBaseWindow: :ActivateWindow member function; hide the window using
the CBaseW jodow • • InactjyateWindow member function.

Pratecte<I Data Members
Name Description
m_bActlvate<I flag to indicate window activation status.
m_bBackgra1.1nd flag to indicate if palettes are to be realized in the background.
m_bDaGetDC flag to indicate if the window should get a DC.
m_ClassStyles Class styles for the window.
m_hck: Device context (DC) for the window.
m_Helght Client window height.
m_hinstance Global module instance handle.
m_hPalette Handle to a palette belonging to this object.
m_hThread Worker thread for the window.
m_hwnd Handle for this object's window.
m_MemaryDC Memory DC used for fast bit-block transfer operations.
m_p(;lassName Static string holding the class name.
m_ReallzePalette Message sent to indicate the window palette has changed.
m_ShawStageMessage Message sent by IVideoWindow: :SetWindowforeground that moves

m_ShawStageTap
m_SyncWarker

the current window to the foreground and optionally gives it focus.
Message sent to set the window to ws EXTOPMOST style.
CAMEvent data member used to provide interthread
synchronization.

m_SyncWarkerCreate CAMMsaEvent data member used to signal the constructor for the
window class when to create the window.

m_ ThreadSlgnal
m_Wldth
m_WlndowLack
m_WlndawStyles
m_WlndawStylesEx

Data member used by the thread to signal errors.
Client window width.
Data member used to serialize window object access.
Data member used to serialize the initial window styles.
Data member used to serialize the initial extended window styles.

1408

CBase Window Class

Member Functions
Name
CBaseWindow

Page 2of18

Description
Constructs a CBaseWindow object.

DoSetWindowForeqround Brings the window to the foreground.
DoShowWindow Sets the show state of the specified window.
GetMemoryH DC
GetWindowHDC
GetWi ndowHeiq ht
GetWi ndowHWN D

Retrieves the default offscreen memory device context (DC).
Retrieves the default main window DC.
Retrieves the current window height.
Retrieves the window handle for the window.

GetWindowWidth Retrieves the current window width.
PerformanceAliqnWindow Aligns the window to a DWORD boundary for maximum

performa nee.
PaintWindow Invalidates the window client area.

Overridable Member Functions
Name
ActivateWi ndow
DoneWithWindow
DoRealisePalette

PossiblyEatMessage

Description
Sizes the window according to the requirements of the derived class.
Closes, deletes, and frees the window resources.
Maps palette entries from this window's palette to the system palette.
The window's palette is set with CBaseWindow: :SetPalette.
Forwards keyboard and mouse messages to a specified window.

GetClassWindowStyles Returns class and window information.
GetDefaultRect Returns the default size for the window.
I nactivateWi ndow
InitialiseWindow
On Close
OnPaletteChange

On Size
On ReceiveMessage
Pre pa reWi ndow

SetPalette
Uni n itia I iseWi ndow

Hides the window.
Creates the default device contexts.
Handles the WM_CLOSE message for the base class.
Handles WM PALETTEISCHANGING and WM PALETTECHANGED
messages.
Handles WM_SIZE messages for the base class.
Indicates a base class implementation of a window procedure.
Initializes the window along with a worker thread.
Changes the palette that the window should realize.
Destroys the device contexts created for the window.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.!j Topic Contents l@i§lllMM

MQl§i[.jjj,M 111.],.(j Topic Contents l@i§lllMM

CBaseWi ndow: :ActivateWi ndow

1409

CBase Window Class Page 3of18

CBaseWindow Class

Sizes the window according to the requirements of the derived class.

virtual HRESULT ActivateWindow();

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_NOTIMPL Method is not supported.
NOERROR No error.

Remarks

This member function calls CBaseWindow: :GetDefaultRect, which a derived class should
override to return the size of the images that will be displayed. ActivateWindow then sizes
the window so that the client area matches this size.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[.

CBaseWi ndow: :CBaseWi ndow

CBaseWindow Class

Constructs a CBaseWindow object.

CBaseWindow(
BOOL bDoGetDC =TRUE
);

Parameters

bDoGetDC
Specifies if the window should get a device context.

Return Values

No return value.

Remarks

Topic Contents •@M* 1gnw

The window and its worker thread are created by CBaseWindow:: PrepareWindow and

1410

CBase Window Class Page 4of18

destroyed by CBaseWindow:: DoneWithWindow.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

8 4'MM+1 111·!:.!¥ Topic Contents lmll§lll¥M

CBaseWi ndow:: DoneWith Window

CBaseWindow Class

Destroys the window and its worker thread.

virtual HRESULT DoneWithWindow();

Return Values

Returns an HRESULT value. Current implementation returns NOERROR.

Remarks

The base window class creates a window and a worker thread. The worker thread is responsible
for pulling messages from the window's input queue and dispatching them as appropriate. The
window and its thread are created by CBaseWindow:: PrepareWindow and destroyed by
CBaseWindow::DoneWithWindow. The window should also be initialized using
CBaseWindow: :InitialiseWindow and uninitialized using CBaseWindow:: UninitialiseWindow.
Having prepared a window and initialized it, the window can be sized using
CBaseWindow: :ActivateWindow and subsequently hidden using
CBaseWi ndow: : I nactivateWi ndow.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]++ 1 !!·HM Topic Contents lfflj[§ill¥M

CBaseWindow::DoRealisePalette

CBaseWindow Class

Maps palette entries from this window's palette to the system palette. The window's palette is
set with CBaseWindow: :SetPalette.

virtual HRESULT DoRealisePalette(
BOOL bForceBackground
);

1411

CBase Window Class Page 5of18

Parameters

bForceBackground
Value that specifies whether the palette is forced to the background.

Return Values

Returns S_OK if successful or S_FALSE if the GdiFlush function could not flush the calling
thread's current batch.

Remarks

The window class is given a palette handle to use with the CBaseWindow: :SetPalette member
function. After a palette has been installed, it can be realized by calling this member function.
The class will also call this member function when it gets WM_QUERYNEWPALETTE and
WM_PALETTECHANGED messages from the Microsoft® Windows® operating system.

Call this function with TRUE in response to WM_SETPALETTE and FALSE in response to
WM_QU ERYN EWPALETTE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9 Topic Contents l@!§il!MM

CBaseWi ndow:: DoSetWi ndowForeg round

CBaseWindow Class

Sets the video window to the foreground and optionally gives it focus.

void DoSetWindowForeground(
BOOL bFocus
);

Parameters

bFocus
Value that specifies whether the video window will have focus. A value of TRUE gives it
focus and FALSE does not.

Return Values

No return value.

Remarks

DirectShow provides this method to make it easy for applications to move video windows to

1412

CBase Window Class Page 6of18

the foreground; usually, it is programatically complex for a thread associated with one window
to affect a window associated with a different thread. This method passes the
WM_SHOWWINDOW message to the video window's renderer, so the application's window
procedure must handle this message and bring the appropriate window to the foreground and
give it focus, if specified.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥

CBaseWi ndow:: DoShowWi ndow

CBaseWindow Class

Sets the show state of the specified window.

HRESULT DoShowWindow(
LONG ShowCmd
);

Parameters

ShowCmd
Specifies how the window is to be shown.

Return Values

Topic Contents

Returns an HRESULT value. Current implementation returns NOERROR.

Remarks

lmll§lllMM

This member function simply calls the Microsoft Win32® ShowWindow function.

© 1997 Microsoft Corporation. All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

CBaseWi ndow: :GetClassWi ndowStyles

CBaseWindow Class

Returns class and window information.

1413

CBase Window Class

virtual LPTSTR GetClassWindowStyles(
DWORD *pC/assStyles,
DWORD *pWindowStyles,
DWORD *pWindowStylesEx
) PURE;

Parameters

pClassStyles
Class styles.

p Window Styles
Window styles.

p WindowStylesEx
Extended window styles.

Return Values

Returns a class name that is a static text string.

Remarks

Page 7of18

A derived class must override this pure virtual member function to provide the default class
and window styles for the window. The information the derived class returns is used in
CBaseWindow: :PreoareWindow when the window is first created. The class and window styles
take the same parameters as their counterparts in the Microsoft Win32 CreateWindowEx
function. The string that is returned should be allocated as a static string and should still be
valid after the member function returns.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents l@!§il!MM

+Qij[.jlj,M 111.1 1119 Topic Contents 1@!§111¥+

CBaseWi ndow: :GetDefa u ltRect

CBaseWindow Class

Retrieves the default size for the window client area.

virtual RECT GetDefaultRect() ;

Return Values

Returns the default rectangle.

Remarks

1414

CBase Window Class Page 8of18

When the window is activated, it calls this member function to determine how large it should
make the window's client area. A video renderer will typically return the size of the native
video image.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents l@!§il!MM

CBaseWi ndow: :GetMemoryH DC

CBaseWindow Class

Retrieves the default memory device context (DC).

virtual HOC GetMemoryHOC();

Return Values

Returns the default memory DC.

Remarks

The base window class creates a window with a worker thread when it is prepared (in
CBaseWindow:: PrepareWindow). It also creates two DCs that can be used for drawing. The first
is a normal window handle to a device context (HDC); the second is an offscreen HDC that can
be used as a source HDC in bit-block transfer functions.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jlj,M 111.1 1119 Topic Contents 1@!§111¥+

CBaseWindow::GetWindowHDC

CBaseWindow Class

Retrieves the default window device context (DC).

HOC GetWindowHOC();

Return Values

Returns the default window DC.

1415

CBase Window Class Page 9of18

Remarks

The base window class creates a window with a worker thread when it is prepared (in
CBaseWindow:: PrepareWindow). It also creates two DCs that can be used for drawing. The first
is a normal window handle to a device context (HDC); the second is an offscreen HDC that can
be used as a source HDC in bit-block transfer functions.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

CBaseWi ndow: :GetWi ndowHeig ht

CBaseWindow Class

Retrieves the current window height.

LONG GetWindowHeight();

Return Values

Returns the window height in pixels.

Remarks

This member function is updated when the base class receives WM_SIZE messages.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQl§i[.jjj,M 111.],.(j Topic Contents l@bll!MM

CBaseWindow::GetWindowHWND

CBaseWindow Class

Retrieves the window handle associated with this object.

HWND GetWindowHWND();

Return Values

Returns a window handle.

1416

CBase Window Class Page 10of18

Remarks

If called before issuing a CBaseWindow:: PrepareWindow call, this member function returns
NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j Topic Contents l@IJll!MM

CBaseWi ndow: :GetWi ndowWidth

CBaseWindow Class

Retrieves the current window width.

LONG GetWindowWidth();

Return Values

Returns the window width in pixels.

Remarks

This member function is updated when the base class receives WM_SIZE messages.

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M Mh.l:.!j Topic Contents i@faii!MM

CBaseWi ndow: :I nactivateWi ndow

CBaseWindow Class

Effectively hides the window (if it was visible).

virtual HRESULT InactivateWindow();

Return Values

Returns NOERROR if successful; S_FALSE if the window is not currently active.

Remarks

1417

CBase Window Class Page 11of18

The base window class creates a window and a worker thread. The worker thread is responsible
for pulling messages from the window's input queue and dispatching them as appropriate. The
window and its thread are created by CBaseWindow:: PrepareWindow and destroyed in
CBaseWindow: :DoneWithWindow. The window should be initialized through
CBaseWindow: :InitialiseWindow and uninitialized through CBaseWindow:: UninitialiseWindow.
Having prepared a window and initialized it, the window can be sized using
CBaseWindow: :ActivateWindow and subsequently hidden using
CBaseWindow::InactivateWindow.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

CBaseWi ndow: :In itia I iseWi ndow

CBaseWindow Class

Creates default device contexts for the window.

virtual InitialiseWindow(
HWND hwnd
);

Parameters

hwnd
Window handle.

Return Values

Topic Contents

Returns an HRESULT value. Current implementation returns NOERROR.

Remarks

i@l§ii!MM

The base window class creates a window and a worker thread. The worker thread is responsible
for pulling messages from the window's input queue and dispatching them as appropriate. The
window and its thread are created by CBaseWindow:: PrepareWindow and destroyed in
CBaseWindow: :DoneWithWindow. The window should be initialized through
CBaseWindow::InitialiseWindow and uninitialized through
CBaseWindow:: UninitialiseWindow. Having prepared a window and initialized it, the window
can be sized using CBaseWindow: :ActivateWindow and subsequently hidden using
CBaseWi ndow: : I nactivateWi ndow.

The base class creates two device contexts that can be used for drawing. The first is a standard
handle to a device context (HDC) for the window; the second is an offscreen HDC. The
offscreen HDC often is useful for selecting bitmaps before calling the Microsoft Win32 BitBlt or
StretchBlt function to copy the bitmap to the main window. This member function also sets the
default stretch mode to be COLORONCOLOR. The member function is virtual so that derived

1418

CBase Window Class Page 12of18

classes can change this default if desired.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

8 4'MM+1 111·!:.!¥ Topic Contents lmll§lllMM

CBaseWindow: :OnClose

CBaseWindow Class

Handles the WM_CLOSE message.

virtual BOOL OnClose();

Return Values

No return value.

Remarks

The default behavior for this member function is to simply hide the window. A derived class
should not destroy the window when it receives a WM_CLOSE message but should send an
EC USERABORT notification to the filter graph manager. This will have the playback stopped,
and in some cases will also have the filters disconnected and released. It is only when the filter
that owns the window is finally released (that is, destroyed) that the derived class should
actually destroy the window (using CBaseWindow:: DoneWithWindow).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41M+• 111.q9 Topic Contents

CBaseWi ndow: :On Pa letteCha nge

CBaseWindow Class

Handles WM_ PALETTEISCHANGING and WM_PALETTECHANGED messages.

virtual LRESULT OnPaletteChange(
HWND hwnd,
UI NT Message
);

Parameters

1419

1@!§111$8

CBase Window Class

hwnd
Handle of the window causing the message.

Message
Message details passed on from the window procedure.

Return Values

Returns one of the following values.
Value Meaning

0 Message was not handled.
1 Message was processed.

Remarks

Page 13of18

When the base class receives a WM_PALETTEISCHANGING message, it realizes its palette
again. It must also do this when told, through WM_PALETTECHANGED, that the system palette
has changed. In the latter case, however, the base class must be careful not to realize its
palette if it was the window that caused the WM_PALETTECHANGED message (which is why
the window that caused the message to be sent is passed into the member function).

This is a protected member function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents

• QIM [.] +• I !1.],.15 Topic Contents

CBaseWi ndow: :On ReceiveMessage

CBaseWindow Class

Indicates a base class implementation of a window procedure.

virtual LRESULT OnReceiveMessage(
HWND hwnd,
INT uMsg,
WPARAM wParam,
LPARAM /Param
);

Parameters

hwnd
Handle to the window.

uMsg

1420

lmll§I 11$8

lfflj(§i MUMM

CBase Window Class

Message identifier.
wParam

Message's wParam parameter.
/Pa ram

Message's /Param parameter.

Return Values

Page 14of18

Returns an LRESULT value, based on the uMsg parameter. If uMsg is not one of the specified
values, OnReceiveMessage passes the message to the Win32 DefWindowProc function and
forwards the resulting return value to the caller.
Message Action
m RealizePalette Returns O

m ShowStageMessage Returns 1
m ShowStageTop Returns 1
WM_CLOSE Returns 0
WM PALETTECHANGED Returns 0
WM_QUERYNEWPALETTE Returns result of CBaseWindow: :OnPaletteChange
WM SIZE Returns 0
WM SYSCOLORCHANGE Returns 1

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CBaseWindow: :OnSize

CBaseWindow Class

Handles the WM_SIZE message.

virtual BOOL OnSize(
LONG Width,
LONG Height
);

Parameters

Width
Window width.

Height
Window height.

Return Values

+Qij[.jlj,M 11!.l:.!j

+QiM!.l+' •11·!:.!i

1421

Topic Contents

Topic Contents

l@i§lllMM

l@i§lllMM

CBase Window Class Page 15of18

No return value.

Remarks

This member function stores the window width and height so that they can be returned from
the CBaseWindow: :GetWindowHeight and CBaseWindow: :GetWindowWidth member functions.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

CBaseWi ndow:: Pai ntWi ndow

CBaseWindow Class

Invalidates the window client area.

void PaintWindow(
BOOL bErase
);

Parameters

bErase
Determines if the background should be erased.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41[.]+• MB.],,[¥

Topic Contents i@faii!MM

Topic Contents i@faii!MM

CBaseWi ndow:: Performa nceAI ig nWi ndow

CBaseWindow Class

Aligns the window to a DWORD boundary for maximum performance.

HRESULT PerformanceAlignWindow();

1422

CBase Window Class Page 16of18

Return Values

Returns an HRESULT value.

Remarks

This member function can be called, if the video is not owned by another window, to align the
left edge and the top of the window for best display performance.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents

CBaseWi ndow:: Passi blyEatMessage

CBaseWindow Class

Forwards keyboard and mouse messages to a specified window.

virtual BOOL PossiblyEatMessage(
UINT uMsg,
WPARAM wParam,
LPARAM /Param
);

Parameters

uMsg
Message that was forwarded.

wParam
First message parameter.

I Pa ram
Second message parameter.

Return Values

Returns FALSE.

See Also

CBaseControlWi ndow: : PossiblyEatMessaqe

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 111.J,,[9

1423

Topic Contents

i@l§ii!MM

i@l§ii!MM

CBase Window Class Page 17of18

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBaseWindow::PrepareWindow

CBaseWindow Class

Creates a window and a worker thread.

virtual HRESULT PrepareWindow();

Return Values

Returns NOERROR if successful; E_FAIL if unsuccessful.

Remarks

The base window class creates a window and a worker thread. The worker thread is responsible
for pulling messages from the window's input queue and dispatching them as appropriate. The
window and its thread are created by CBaseWindow::PrepareWindow and destroyed in
CBaseWindow: :DoneWithWindow. The window should also be initialized and uninitialized
through CBaseWindow: :InitialiseWindow and CBaseWindow: :UninitialiseWindow, respectively.
Having prepared a window and initialized it, the window can be sized using
CBaseWindow: :ActivateWindow and subsequently hidden using
CBaseWi ndow: : I nactivateWi ndow.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 11!.l:.!9

CBaseWindow: :SetPalette

CBaseWindow Class

Sets a palette for the window to use.

virtual HRESULT SetPalette(
HPALETTE hPalette
);

Parameters

hPalette

1424

Topic Contents i@l§ii!MM

CBase Window Class Page 18of18

Hand le to the new palette.

Return Values

Returns an HRESULT value.

Remarks

This member function allows a filter to install a palette in the window object. The palette
handle passed in should be non-NULL. The palette is realized when it is installed. The window
object does not delete any previous palette that it was using; the client using the window
object should ensure it deletes the palette it creates at the appropriate time.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9 Topic Contents l@!§il!MM

CBaseWi ndow:: Uni n itia I iseWi ndow

CBaseWindow Class

Flushes GDI and deletes the default device contexts.

virtual UninitialiseWindow();

Return Values

Returns an HRESULT value. Current implementation returns NOERROR.

Remarks

The base window class creates a window and a worker thread. The worker thread is responsible
for pulling messages from the window's input queue and dispatching them as appropriate. The
window and its thread are created by CBaseWindow:: PrepareWindow and destroyed in
CBaseWindow: :DoneWithWindow. The window should also be initialized and uninitialized
through CBaseWindow: :InitialiseWindow and CBaseWindow::UninitialiseWindow,
respectively. Having prepared a window and initialized it, the window can be sized using
CBaseWindow: :ActivateWindow and subsequently hidden using
CBaseWi ndow: : I nactivateWi ndow.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1425

CBasicAudi o Class Page 1 of7

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CBasicAudio Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CBasicAudio

The CBaslcAl.ldlo class handles the IDisoatch interface component of the IBasicAudio interface
and leaves the properties and methods of IBaslcAl.ldlo pure virtual to be implemented by a
derived filter class.

The CBasicAudio: :GetIDsOfNames, CBasicAudio: :GetTypeinfo,
CBasicAudio: :GetTupeinfoCount, and CBasicAudio:: Invoke member functions are standard
implementations of the !Dis.patch interface using the CBas.eDis.patch class (and a type library)
to parse the commands and pass them to the pure virtual IBasicAudio methods.

Microsoft® DirectShow"' uses units of 100th of a decibel for the volume scale. A value of o
indicates maximum volume supported by the device. A value of 10,000 iS the minimum
volume (normally silence). Balance is expressed in the range 10,000 to 10,000, with O being
neutral. A negative balance value means that the right channel is attenuated by thiS dB value
(that is, it is quieter). Similarly, a positive balance value means that the right channel is louder
than the left; that iS, the left channel is attenuated by the corresponding negative decibel
value.

Membe .. Functions
Name 0esc .. 1ptlon
CBas.icA1 rd io Constructs a CBas.icA1 rdio object.

Implemented INQnDelegatlngUnknown Methods
Name 0esc .. 1ptlon
NonDe!egatingOueryinterface Returns a specified reference-counted interface.

Implemented !Dispatch Methods

1426

CBasicAudio Class Page 2 of7

Name Description
GetI DsOfNa mes Maps a single member and an optional set of parameters to a

corresponding set of integer dispatch identifiers, which can be used during
subsequent calls to the CBasicAudio: :Invoke member function.

GetTypeinfo Retrieves a type-information object, which can retrieve the type
information for an interface.

GetTypeinfoCount Retrieves the number of type-information interfaces provided by an object.
Invoke Provides access to properties and methods exposed by an object.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 Mii.HM

• ; i§i [.] +• I !!·HM

CBasicAudio: :CBasicAudio

CBasicAudio Class

Constructs a CBasicAudio object.

CBasicAudio(
const TCHAR *pName,
LPUNKNOWN pUnk
);

Parameters

pName

Topic Contents •@M* 1gnw

Topic Contents i@faii!MM

Name of the object used in the CBasicAudio constructor for debugging purposes.
pUnk

Pointer to the owner of this object.

Return Values

No return value.

Remarks

Allocate the pName parameter in static memory. This name appears on the debugging terminal
when the object is created and deleted.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

• ; i§i [.] +• I !!·HM Topic Contents i@faii!MM

1427

CBasicAudio Class Page 3 of7

CBasicAudio: :GetlDsOfNames

CBasicAudio Class

Maps a single member function and an optional set of parameters to a corresponding set of
integer dispatch identifiers, which can be used upon subsequent calls to the
CBasicAudio:: Invoke member function.

HRESULT GetIDsOfNames(
REFIID riid,
OLECHAR * * rgszNames,
UINT cNames,
LCID lcid,
DISPID * rgdispid
);

Parameters

riid
Reference identifier. Reserved for future use. Must be NULL.

rgszNames
Passed-in array of names to be mapped.

cNames
Count of the names to be mapped.

lcid
Locale context in which to interpret the names.

rgdispid
Caller-allocated array, each element of which contains an ID corresponding to one of the
names passed in the rgszNames array. The first element represents the member name;
the subsequent elements represent each of the member's parameters.

Return Values

Returns one of the following values.
Value Meaning
DISP _E_UNKNOWN_CLSID The CLSID was not recognized.
DISP E UNKNOWN NAME One or more of the names were not known. The returned DISPIDs

contain DISPID_UNKNOWN for each entry that corresponds to an
unknown name.

E_OUTOFMEMORY
S_OK

Out of memory.
Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9

1428

Topic Contents l@!§il!MM

CBasicAudio Class Page 4 of7

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBasicAudio: :GetTypelnfo

CBasicAudio Class

Retrieves a type-information object, which can retrieve the type information for an interface.

HRESULT GetTypeinfo(
UINT itinfo,
LCID lcid,
ITypeinfo * * pptinfo
);

Parameters

itinfo
Type information to return. Pass zero to retrieve type information for the IDispatch
implementation.

lcid
Locale ID for the type information. An object might be able to return different type
information for different languages. This is important for classes that support localized
member names. For classes that do not support localized member names, this parameter
can be ignored.

pptinfo
Pointer to the type-information object requested.

Return Values

Returns an E_ POINTER if pptinfo is invalid. Returns TYPE_E_ELEMENTNOTFOUND if itinfo is not
zero. Returns S_OK if is successful. Otherwise, returns an HRESULT from one of the calls to
retrieve the type. The HRESULT indicates the error and can be one of the following standard
constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ +!i.! 111M Topic Contents i@l§ii!MM

+Qi§i[.]ii,+ 1 !1·HM Topic Contents Mttfjl§ii!MM

1429

CBasicAudio Class

CBasicAud io: :GetTypelnfoCou nt

CBasicAudio Class

Retrieves the number of type-information interfaces provided by an object.

HRESULT GetTypeinfoCount(
UI NT * pctinfo
);

Parameters

pctinfo

Page 5 of7

Pointer to the location that receives the number of type-information interfaces that the
object provides. If the object provides type information, this number is 1; otherwise, the
number is 0.

Return Values

Returns E_POINTER if pctinfo is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 11!.l:.!j Topic Contents

CBasicAudio: :Invoke

CBasicAudio Class

Provides access to properties and methods exposed by an object.

HRESULT Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wFlags,
DISPPARAMS * pdispparams,
VARIANT * pvarResult,
EXCEPINFO * pexcepinfo,
UI NT * puArgErr
);

Parameters

dispidMember

1430

l@i§lllMM

CBasicAudio Class

riid

lcid

Identifier of the member. Use CBasicAudio: :GetIDsOfNames or the object's
documentation to obtain the dispatch identifier.

Reserved for future use. Must be IID NULL.

Locale context in which to interpret arguments.
wF/ags

Flags describing the context of the CBasicAudio::Invoke call.
pdispparams

Page 6 of7

Pointer to a structure containing an array of arguments, an array of argument dispatch
IDs for named arguments, and counts for number of elements in the arrays.

pvarResult
Pointer to where the result is to be stored, or NULL if the caller expects no result.

pexcepinfo
Pointer to a structure containing exception information.

puArgErr
Index of the first argument, within the rgvarg array, that has an error.

Return Values

Returns DISP _E_UNKNOWNINTERFACE if riid is not IID_ NULL. Returns one of the error codes
from CBasicAudio: :GetTypeinfo if the call fails. Otherwise, returns the HRESULT from the call
to !Dispatch:: Invoke.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

M QiM [.] ij,M I !I.HJ Topic Contents •@m• •gnw

CBasicAudio::NonDelegatingQuerylnterface

CBasicAudio Class

Returns a specified reference-counted interface.

H RESULT Non Delegati ngQuerylnterface(
REFllD riid,
void **ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

1431

CBasicAudio Class

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E NOINTERFACE if it is not.

Remarks

Page 7 of7

Returns pointers to the !BasicAudio and !Unknown interfaces by default. Override this member
function to publish any additional interfaces implemented by the derived class.

This member function implements the !NonDelegatingUnknown:: NonDelegatingOuerylnterface
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1432

CCmdQueue Class Page 1of10

MQi@[.jjj,M M!i.! 111j Topic Contents l@i§il!MM

CCmdQueue Class

The CCmdQueue class is a base class that provides a queue of CDeferredCommand objects
and member functions to add, remove, check status, and invoke the queued commands. A
CCmdQueue object is a part of an object that implements IQueueCommand methods. The
filter graph manager implements IQueueCommand methods so that applications can queue
commands to the filter graph. Filters that implement the IQueueCommand interface directly
use this class. If you want to use CDeferredCommand objects, your queue must be derived
from this class.

There are two modes of synchronization: coarse and accurate. In coarse mode, the application
waits until a specified time arrives and then executes the command. In accurate mode, the
application waits until processing begins on the sample that appears at the time, and then
executes the command. The filter determines which one it will implement. The filter graph
manager always implements coarse mode for commands that are queued at the filter graph
manager.

If you want coarse synchronization, you probably want to wait until there is a command due,
and then execute it. You can do this by calling CCmdQueue: :GetDueCommand. If you have
several things to wait for, get the event handle from CCmdQueue: :GetDueHandle and then call
CCmdQueue::GetDueCommand when this is signaled. Stream time will advance only
between calls to the CCmdQueue:: Run and CCmdQueue:: End Run member functions. There is
no guarantee that if the handle is set, there will be a command ready. Each time the event is
signaled, call the CCmdQueue::GetDueCommand member function (probably with a time­
out of zero); this may return E_ABORT.

If you want accurate synchronization, call the CCmdQueue: :GetCommandDueFor member
function and pass the samples you are about to process as a parameter. This returns the
following:

• A stream-time command due at or before that stream time.
• A presentation-time command due at or before the presentation of the stream time. Do

this only between the CCmdQueue:: Run and CCmdQueue:: End Run member functions,
because outside of this, the mapping from stream time to presentation time is not
known.

• Any presentation-time command due now.

If you want accurate synchronization for samples that might be processed during paused
mode, you must use stream-time commands.

In all cases, commands remain queued until called or canceled. The setting and resetting of
the event handle is managed entirely by this queue object.

Protected Data Members

1433

CCmdQueue Class Page 2of10

Description
Flag for running state; set TRUE when running.

Name
m_bRunning
m_dwAdvise Advise identifier from the reference clock (zero if no outstanding

advise).
m_evDue
m_listPresentation
m_listStream
m_Lock
m_pClock

Sets the time when any commands are due.
Stores commands queued in presentation time.
Stores commands queued in stream time.
Protects access to lists.
Current reference clock.

m_StreamTimeOffset Contains the stream time offset when m bRunning is true.
m_tCurrentAdvise Advise time is for this presentation time.

Member Functions
Name
CCmdQueue

Description
Constructs a CCmdQueue object.

CheckTime Determines if a given time is due.
GetDueHandle Returns the event handle that will be signaled.

Overridable Member Functions
Name
End Run

Description
Switches to stopped or paused mode.

GetCommandDueFor Returns a pointer to a command that will be due for a given time.
GetDueComma nd
Insert

Returns a pointer to the next command that is due.
Adds the CDeferredComma nd object to the queue.

New Initializes a command to be run and returns a new CDeferredCommand
object.

Remove
Run
SetSy ncSo u rce

SetTimeAdvise

Removes the CDeferredCommand object from the queue.
Switches to running mode.
Sets the clock used for timing.
Creates an advise for the earliest time required.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j Topic Contents

MQ<§i[.jjj,M lh.l:.!j Topic Contents

CCmdQueue: :CCmdQueue

CCmdQueue Class

Constructs a CCmdQueue object.

1434

l@i§il!MM

i@faii!MM

CCmdQueue Class

CCmdQueue();

Return Values

No return value.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w QIM [.] 11,1 Mii.HM

CCmdQueue: :CheckTime

CCmdQueue Class

Determines if a specified time is due.

BOOL CheckTime(
CRefTime time,
BOOL bStream
);

Parameters

time
Time to check.

bStream

Page 3of10

Topic Contents •@M* 1gnw

TRUE if the time parameter is a stream-time value; FALSE if time is a presentation-time
value.

Return Values

Returns TRUE if the specified time has not yet passed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

• QIM [.] +• I!!·!:.!¥ Topic Contents •@M* 1gnw

CCmdQueue::EndRun

CCmdQueue Class

Switches to the stopped or pa used mode.

1435

CCmdQueue Class Page 4of10

virtual HRESULT EndRun();

Return Values

Returns an HRESULT value that depends on the implementation. The HRESULT indicates the
error and can be one of the following standard constants, or other values not listed:
Value Meaning
E_ FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.

S_OK or NOERROR Success.

Remarks

Time mapping between stream time and presentation time is not known after this member
function has been called. Call the CCmdQueue:: Run member function to carry out this
mapping.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j Topic Contents

MQ<§i[.jjj,M 111.l:.!j Topic Contents

CCmdQueue: :GetCom ma nd DueFor

CCmdQueue Class

Returns a deferred command that is scheduled at a specified time.

virtual HRESULT GetCommandDueFor(
REFERENCE_TIME tStream,
CDeferredCommand **ppCmd
);

Parameters

tStream
Time for which the command is scheduled.

ppCmd

l@i§il!MM

i@faii!MM

Deferred command to be carried out at the time specified in the tStream parameter.

Return Values

Returns VFW E NOT FOUND if no commands are due; otherwise, returns S_OK.

1436

CCmdQueue Class Page 5of10

Remarks

This member function takes a stream time and returns the deferred command scheduled at
that time. The actual stream-time offset is calculated when the command queue is run.
Commands remain queued until run or canceled. This member function will not block.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M M!i.! 11!j

CCmdQueue: :GetDueCommand

CCmdQueue Class

Returns a pointer to the next command that is due.

virtual HRESULT GetDueCommand(
CDeferredCommand * * ppCmd,
long msTimeout
);

Parameters

ppCmd
Pointer to the deferred command.

ms Timeout
Amount of time to wait before carrying out the time-out.

Return Values

Topic Contents l@i§lllMM

Returns E_ABORT if a time-out occurs. Returns S_OK if successful; otherwise, returns an error.
Returns an object that has been incremented using IUnknown: :AddRef.

Remarks

This member function blocks until a pending command is due. The member function blocks for
the amount of time, in milliseconds, specified in the msTimeout parameter. Stream-time
commands become due only between the CCmdQueue:: Run and CCmdQueue:: EndRun
member functions. The command remains queued until run or canceled.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.!j Topic Contents l@i§lllMM

1437

CCmdQueue Class Page 6of10

CCmdQueue: :GetDueHandle

CCmdQueue Class

Returns the event handle to be signaled.

HANDLE GetDueHandle();

Return Values

Returns the event handle.

Remarks

Return the event handle whenever there are deferred commands that are due for execution
(when CCmdQueue: :GetDueCommand will not block).

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lll¥M

CCmdQueue: :Insert

CCmdQueue Class

The CDeferredCommand object calls this member function to add itself to the queue.

virtual HRESULT Insert(
CDeferredCommand* pCmd
);

Parameters

pCmd
Pointer to the CDeferredCommand object to add to the queue.

Return Values

Returns S_OK in the default implementation.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]+• 1 11·!:.!¥ Topic Contents

1438

l@l§ill¥M

CCmdQueue Class

CCmdQueue::New

CCmdQueue Class

Initializes a command to be run and returns a new CDeferredCommand object.

virtual HRESULT New(
CDeferredCommand **ppCmd,
LPUNKNOWN pUnk,
REFTIME time,
GUID* iid,
long dispidMethod,
short wF/ags,
long cArgs,
VARIANT* pDispParams,
VARIANT* pvarResult,
short* puArgErr,
BOOL bStream
);

Parameters

ppCmd

Page 7of10

CDeferredCommand object by which an application can cancel the command, set a new
presentation time for it, or retrieve estimate information.

pUnk
Pointer to the object that will run the command.

time
Time at which to run the queued command or commands.

iid
Globally unique identifier (GUID) of the interface to call.

dispidMethod
Method on the interface to be called.

wF/ags
Flags describing the context of the call. This parameter supports the same flags as the
OLE ID ispatch: : Invoke method.

cArgs
Number of arguments passed.

pDispParams
Pointer to the list of variant types associated with the dispatch parameters.

pvarResult
Pointer to the list where results, if any, are to be returned.

puArgErr
Index within the pDispParams parameter list where the last error occurred.

bStream
TRUE if the time parameter is a stream-time value; FALSE if time is a presentation-time
value.

Return Values

Returns S_OK if successful. Returns E_OUTOFMEMORY if ppCmd returns from creating the new

1439

CCmdQueue Class Page 8of10

CDeferredCommand object with a value of NULL. Otherwise, returns an HRESULT that indicates
an error from attempting to create a new CDeferredCommand object. If there is an error, no
object has been queued.

Remarks

The new CDeferredCommand object will be initialized with the parameters and will be added to
the queue during construction. This method is similar to the OLE IDispatch: :Invoke method.

Values for the wF/ags parameter include the following:
Value Description
DISPATCH METHOD The member is being run as a method. If a property has the

same name, both this and the DISPATCH_PROPERTYGET flag
may be set.

DISPATCH PROPERTYGET The member is being retrieved as a property or data member.
DISPATCH PROPERTYPUT The member is being changed as a property or data member.
DISPATCH_PROPERTYPUTREF The member is being changed via a reference assignment,

rather than a value assignment. This value is valid only when
the property accepts a reference to an object.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmli§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

CCmdQueue::Remove

CCmdQueue Class

The CDeferredCommand object calls this member function to remove itself from the queue.

virtual HRESULT Remove(
CDeferredCommand* pCmd
);

Parameters

pCmd
Pointer to the CDeferredCommand object to remove from the queue.

Return Values

Returns VFW_E_NOT _FOUND if the object is not found in the queue. Otherwise, returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1440

CCmdQueue Class Page 9of10

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CCmdQueue::Run

CCmdQueue Class

Switches to running mode so that commands that are deferred by the stream time can be run.

virtual HRESULT Run(
REFERENCE_ TIME tStreamTimeOffset
);

Parameters

tStreamTimeOffset
Offset time.

Return Values

Returns S_OK in the default implementation.

Remarks

During running mode, stream-time-to-presentation-time mapping is known.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

CCmdQueue: :SetSyncSource

CCmdQueue Class

Sets the clock used for timing.

virtual HRESULT SetSyncSource(
IReferenceClock* plrc
);

Parameters

plrc

1441

Topic Contents i@l§ii!MM

CCmdQueue Class Page 10of10

Pointer to the IReferenceClock interface.

Return Values

Returns S_OK in the default implementation.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@IJll!MM

CCmdQueue: :SetTimeAdvise

CCmdQueue Class

Sets up a timer event with the reference clock.

void SetTimeAdvise(void);

Return Values

No return value.

Remarks

This member function calls the IReferenceClock: :AdviseTime method to set up a notification
for the earliest time required in the queue. Presentation-time commands that are deferred are
always checked. If the filter graph is in running mode, deferred commands using stream time
are also checked.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

1442

CCri tSec Cl ass Page 1 of3

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CCritSec Class

(CCritSec

The critical section object provides intraprocess synchronization. The current implementation
uses the Mierosoft® Win32® application programming interfaces (APis) that use the
CRITICAL SECTION type.

The safest way to use CCritSec objects is to lock them with a CAutoLock object that
guarantees to unlock the object when it goes out of scope and compiles to efficient inline code.

Member Functions
Name Description
CCritSec Constructs a CCritSec object.
~ Locks the critical section object.
Unlock Unlocks the critical section object.

CCritSec: :CCritSec

CCritSec Class

Constructs a CCritSec object.

CCritSec() ;

Return Values

No return value.

Remarks

+;•;"·II'* e11.1,,19 Topic Contents

caus the Microsoft® Win32® Initiali:zeCriticalSection function to set the private critical section
member variable. The destructor calls the Win32 DeleteCriticalSection function.

1443

CCritSec Class Page 2 of3

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CCritSec:: Lock

CCritSec Class

Locks the critica I section object.

void Lock();

Return Values

No return value.

Remarks

This member function locks the critical section object. You can make multiple lock calls on the
same thread, but the CCritSec:: Unlock member function must be called a corresponding
number of times before the object is unlocked. If the object is locked by another thread, the
CCritSec::Lock member function blocks until either the object is released or a "possible
deadlock" exception occurs.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M M!i.1 1119 Topic Contents i@l§lllMM

CCritSec:: Un lock

CCritSec Class

Releases the lock on the object acquired by calling the CCritSec:: Lock member function.

void Unlock();

Return Values

No return value.

Remarks

You must call the CCritSec::Unlock member function once for each call to Lock.

1444

CCritSec Class Page 3 of3

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1445

CDeferredCommand Class Page 1 of 10

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CDeferredCommand Class

CBaseObject

INonDelegatingUnknown

CUnknown

CDeferredCommand

Deferred commands are queued by calls to methods on the IOueueCommand interface and are
exposed by the filter graph manager and by some filters. A successful call to one of these
methods returns an IDeferredCommand interface representing the queued command.

A CDeferredCommand object represents a single deferred command and exposes the
IDeferredCommand interface as well as other methods that permit time checks and actual
execution. A CDeferredCommand object contains a reference to the CCmdOueue object on
which it is queued.

Reference counts control the lifetime of the COeferredCommand class. When calling the
CDeterredCommand .. Invoke member function, the calling application gets an interface pointer
that is reference-counted, and the CCmdOueue object also holds a reference count on the
deferred command. Calling the IDeferredCommand: :Cancel member function takes the
deferred command off the command queue and thus reduces the reference count by one. Once
taken off the queue, the command cannot be put back on the queue.

Protected Data Members
Name Description
m_bStrean1 Flag for stream time or presentation time. to be passed to the invoked

method.
m_Dlspatch Accesses the ID'peinfo interface.
m_dlspldMethod Method on the interface to run.
m_DlspParams CDispParams object containing the DISPPARAMS parameter list
m_hrResvlt Stores the returned HRESULT value.
m_lld Globally unique identifier (.Gl.!10.) of the interface.
m_pQveve Pointer to the CCmdOueue object that exposes the IOueueCommand

interface.
m_pUnk
m_pvarRes1,1lt
m_tlme
m_wFlags

!Unknown pointer to the interface on whieh the command will be run.
Resulting information, if any, from the invoked method.
Time at which the command wm be run.
Flags specifying the context of the invocation.

1446

CDeferredCommand Class Page 2of10

Member Functions
Name Description
CDeferredComma nd Constructs a CDeferredComma nd object.
GetFlaqs Returns the context flags associated with the deferred command.
GetIID Returns the interface identifier (IID) of the interface on which the method

will be run.
Returns the dispatch identifier of the method to be run.
Returns the DISPPARAMS argument list to the method.
Returns the resulting argument list, if one exists.
Returns the time when the method will be run.

Get Method
GetParams
Get Result
GetTime
Invoke
IsStreamTime

Provides access to methods and properties exposed by an object.
Specifies whether the command is to be run at stream time or
presentation time.

Implemented IDeferredCommand Methods
Name Description
Cancel Cancels a previously queued CDeferredCommand: :Invoke request.
Confidence Not currently implemented.
Postpone Specifies a new presentation time for a previously queued command.
GetHResult Returns the HRESULT value of the invoked method.

Implemented INonDelegatingUnknown Methods
Name Description
NonDelegatinqQueryinterface Returns a specified reference-counted interface.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa11!¥M

MQi§1[.]+• 1 !!·H¥ Topic Contents i@fa11!¥M

CDeferredComma nd: :Ca nee I

CDeferredCommand Class

Cancels a previously queued CDeferredCommand:: Invoke request.

HRESULT Cancel();

Return Values

Returns VFW_E_ALREADY_CANCELLED if m pQueue is NULL. Returns an HRESULT from
CCmdQueue:: Remove if the call generates an error. Returns S_OK if successful.

1447

CDeferredCommand Class Page 3of10

Remarks

This member function implements the IDeferredCommand: :Cancel method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CDeferredComma nd: :CDeferredCom ma nd

CDeferredCommand Class

Constructs a CDeferredCommand object.

CDeferredCommand(
CCmdQueue * pQ,
LPUNKNOWN pUnk,
HRESULT * phr,
LPUNKNOWN pUnkExecutor,
REFTIME time,
GUID* iid,
long dispidMethod,
short wF/ags,
long cArgs,
VARIANT* pDispParams,
VARIANT* pvarResult,
short* puArgErr,
BOOL bStream
);

Parameters

pQ
Object that exposes the IOueueCommand interface.

pUnk
Outer !Unknown interface for aggregation.

phr
Returning HRESULT value.

pUnkExecutor
Object that will carry out this command.

time
Time at which the command will be run.

iid
Globally unique identifier (GUID) of the interface that contains the method.

dispidMethod
Method on the interface to call.

wF/ags
Context of the invocation.

1448

CDeferredCommand Class

cArgs
Number of arguments passed.

pDispParams
List of argument variant types.

pvarResult
Returned variant type list, if any.

puArgErr
Last argument in the pDispParams parameter list with an error.

bStream

Page 4of10

TRUE if the deferred command time is in stream time; FALSE if in presentation time.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.!j

•;<MM+' •11·!:.!i

CDeferredComma nd: :Confidence

CDeferredCommand Class

This method is not currently implemented.

HRESULT Confidence(
LONG *pConfidence
);

Parameters

pConfidence
Confidence level.

Return Values

Returns E_NOTIMPL.

Remarks

Topic Contents l@i§lllMM

Topic Contents l@i§lllMM

See IDeferredCommand: :Confidence for information about implementing this method.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQi§i[.jii,M 11!.l:.!j Topic Contents •@!§' 1gn+

1449

CDeferredCommand Class Page 5of10

CDeferredComma nd: :GetFlags

CDeferredCommand Class

Returns the context flags associated with the deferred command.

short GetFlags();

Return Values

The value retrieved will be one of the following.
Value Description
DISPATCH_METHOD Run the member as a method. If a property has the same

name, both this and the DISPATCH_PROPERTYGET flag may be
set.

DISPATCH_PROPERTYGET The member is being retrieved as a property or data member.
DISPATCH_PROPERTYPUT The member is being changed as a property or data member.
DISPATCH_PROPERTYPUTREF The member is being changed via a reference assignment,

rather than a value assignment. This flag is valid only when the
property accepts a reference to an object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j

CDeferredCommand::GetHResult

CDeferredCommand Class

Returns the HRESULT value from the invoked command.

HRESULT GetHResult(
HRESULT* phrResult
);

Parameters

phrResult
HRESULT value.

Return Values

1450

Topic Contents l@i§lllMM

CDeferredCommand Class

Returns E_ABORT if m oOueue is NULL. Otherwise, returns S_OK.

Remarks

Page 6of10

This member function implements the IDeferredCommand: :GetHResult method.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 Mii.HM Topic Contents •@M* 1gnw

CDeferredComma nd: :Getll D

CDeferredCommand Class

Retrieves the interface identifier (IID) of the interface on which the method will be run.

REFIID GetIID();

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M 11!.HM

CDeferredComma nd: :GetMethod

CDeferredCommand Class

Retrieves the dispatch identifier of the method to be run.

long GetMethod();

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

• Q<M [.] +• I![.],.[.

CDeferredCommand::GetParams

CDeferredCommand Class

1451

Topic Contents i@faii!MM

Topic Contents •@M* 1gnw

CDeferredCommand Class

Retrieves the DISPPARAMS argument list to the method.

DISPPARAMS* GetParams();

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij

CDeferredComma nd: :GetResu It

CDeferredCommand Class

Retrieves the resulting argument list, if one exists.

VARIANT* GetResult();

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M 111.l:.!j

CDeferredComma nd: :GetTi me

CDeferredCommand Class

Returns the time at which the method will be run.

CRefTime GetTime();

Return Values

Returns a CRefTime object containing a reference time.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQl§1[.jlj,M 111.J,,[j

CDeferredComma nd: :Invoke

1452

Page 7of10

Topic Contents l@!§il!MM

Topic Contents l@!§il!MM

Topic Contents l@!§il!MM

CDeferredCommand Class Page 8of10

CDeferredCommand Class

Provides access to methods and properties exposed by an object.

HRESULT Invoke();

Return Values

Returns VFW_E_ALREADY_CANCELLED if m pQueue is NULL. Otherwise, returns the HRESULT
resulting from a call to IDispatch: :GetTypelnfo or !Unknown: :Querylnterface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@l§il!MM

CDeferredComma nd: :IsStrea mTi me

CDeferredCommand Class

Specifies whether the command is to be run at stream time or presentation time.

BOOL IsStreamTime() ;

Return Values

Returns TRUE if set to stream time; otherwise, returns FALSE.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ1§1[.]ij,+ '!!·Hi Topic Contents l@l§il!MM

CDeferredCommand::NonDelegatingQueryinterfa

CDeferredCommand Class

Returns a specified reference-counted interface.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void **ppv
);

1453

CDeferredCommand Class

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

Page 9of10

Returns pointers to the IDeferredCommand and IUnknown interfaces by default. Override this
method to publish any additional interfaces implemented by the derived class.

This member function implements the INonDeleqatinqUnknown: :NonDeleqatinqOueryinterface
method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' +11.q9 Topic Contents

CDeferredCommand::Postpone

CDeferredCommand Class

Specifies a new presentation time for a previously queued command.

HRESULT Postpone(
REFTIME newtime
);

Parameters

newtime
New presentation time.

Return Values

l@!§il!MM

Returns VFW_E_TIME_ALREADY_PASSED if newtime is already passed. Otherwise, returns an
HRESULT resulting from a call to CCmdQueue:: Remove (when extracting from the list) or
CCmdQueue: :Insert (when reinserting with the changed time).

Remarks

1454

CDeferredCommand Class Page 10of10

This member function implements the !DeferredCommand: :Postoone method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1455

CDisp Class Page 1 of3

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CDisp Class

CDispBasic

CDisp

The CDlsp class provides methods for displaying a number of data types for debugging. It
provides a constructor for each type, aM can be cast to the ! ecrsm type for use as a string
in a debug statement.

For example, the following code fragment:

int MyFunc{REFERENCE TIME rt, !Pin *pPin)
{ -

DbgLog {{I.CG TRACE, 2, TEXT {"MyFunc {'l's, 'l's)") ,
{LPCTSTR) CDisp{CRefTime{rt)J,
{LPCTSTR) CDisp{pPin)));

could output the following reference time and pin informatiOn onto the debug log:

Quartz, d 11 {ti d d7J : My Fune { L 003 sec,
CLSID_AudioRender{Audio Input pin {rendered)))

Member Functions
Name Description
~ Constructs a~ object.

Operators
Name Description
Lf'CTSIB Casts to an Lf'CTSIB type for use in a debug string.

+;•;"·II'* e11.1,,19

CDisp: :CDisp

1456

Topic Contents

CDisp Class

CDisp Class

Constructs a CDisp object.

CDisp(
LONGLONG II,
int Format= CDISP _HEX
);

CDisp(
REFCLSID clsid
);

CDisp(
doubled
);

CDisp(
CRefTime t
);

CDisp(
IPin *pPin
);

Parameters

II
LONGLONG value for display.

Format

els id

d

t

Whether the value should be displayed in decimal (CDISP _DEC) or (by default)
hexadecimal (CDISP _HEX).

Class identifier to display.

The double value to display.

Page 2 of3

Reference time to display. Note that passing a value of type REFERENCE_ TIME will use
the LONGLONG constructor.

pPin
IPin interface to display a pin as "CLSID of the filter(Pin name)"; for example,
CLSID_AudioRenderer(Audio Input Pin).

Return Values

No return value.

Remarks

Various constructors are provided, which allows information to be displayed in the most
suitable way.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

MQi§i[.jlj,M 111.l:.!j Topic Contents '®'*' 1gnw

1457

CDisp Class Page 3of3

CDisp::LPCTSTR

CDisp Class

Casts the .c..D..isQ object to an LPCTSTR value for use in a debug string.

operator LPCTSTR ();

Return Values

Returns the string representation of the variable used in the constructor.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

1458

CDispBasic Page 1of1

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CDispBasic

(CDispBasic

An internal class use<J to implement the~ class.

Member Functions
CDispBasic Constructor for the CDispBasie class.

Protected Data Members
m_PStrlng Points to the string to be <Jisplaye<J. Initially, this points tom String. but larger

strings may cause this to be up<Jate<J to point to <Jynamically-allocate<J storage
instead.

m_Strlng The initial buffer area for this object.
[SOJ

MAI§ 11.l!f,M +:1.1 .. 19 T op1c Contents +w•;++:mw

CDispBasic:: CDispBasic

CDisp6asic

Instantiates an object of this class.

CDlspBaslc{);

1459

CDispParams Class Page 1 of2

w4140.111,e 1:1.11119 T op1c Contents i@IQilt@M

CDispParams Class

DISPPARAMS structure

CDispParams

The CDlspPa .. ams class implements the DISPPARAMS structure used in Automation as a C++
base class. The IDispatch"InyoKe method uses the OLE DISPPARAMSstructure to contain
the arguments passed to any method or property.

The DISPPARAMS structure is defined as follows:

typedef struct FARSTRUCT tagDISPPARAMS{
VARIANTARG FAR* rgvarg; //Array of arguments

DISPID FAR* rgdispidNamedArgs; //Dispatch IDs of named arguments
unsigned int cArgs; //Number of arguments
unsigned int cNamedArgs; //Number of named arguments

DISPPARAMS;

Membe .. Fun<:tlons
Name Des<: .. lptlon
CDispParams Constructs a CDispParams object.

+;•; "·!!''' 111.1::1¥

CDispParams: :CDispParams

CDispearams Class

Constructs a CDispParams object.

CDlspPa .. ams(
UINT nArg$,
VARIANT* pArg$
);

Pa .. ameters

1460

T op1c Contents

CDispParams Class

nArgs
Number of arguments passed to the method or property.

pArgs

Page 2 of2

Pointer to the list of arguments. In the list, each argument is stored with its variant type.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1461

CDrawimage Class Page 1 of 15

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CDrawimage Class

(CDrawlmage)

This class is a worker class for the owning CBaseWindow object. It handles the actual drawing
operation from that class. To use this class, be sure to call CDrawimagw • NotifyA!!orator when
the allocator has been agreed upon, and call CDrawimage: :NotifVMediaTyoe with a pointer to a
CMediaTupe object (which must not be stack-based, because a pointer is maintained by this
class rather than making a copy) when that iS agreed.

When the palette changes, call CDrawimage: :IncrementPaletteVersion. and before rendering
call CDraw Image:: SetDrawContext so that the class can obtain the handle to a device context
(HDC) handles from the owning CBaseWindow object.

Protected Data Members
Name Des<:ription
m_bStretch Flag to stretch the images.
m_bUsingimageAllocator Flag to determine if samples share DISSECTION structures.
m_EndSample End time for the current sample.
m_hclc Main window device context (DC).
m_MemoryD(: Offscreen draw DC.
m_psaseWindow Owning video window object.
m_PaletteVersion Current palette version token.
m_perfidRenderNow Moment when returned from draw (for performance logging).
m_perfidRenderTime Time taken to render an image (for performance logging).
m_pMediaType Pointer to the current media type format.
m_SourceRect Source image rectangle.
m_StartSample Start time for the current sample.
m_TargetRect Destination rectangle.

Member Functions
Name
CDrawimage
Display Sam pie Times

Des<:ri ption
Constructs a CDrawimage object.
DiSplays a time stamp of a sample on top of its image.

Drawimage Looks alter drawing an image to a window.
FastRender Draws an image using BitBlt and StretchBlt.
GetPaletteVersion Retrieves the currently installed palette version.
GetSourceRect Retrieves the current source rectangle.
GetTargetRect Retrieves the current target rectangle.
IncrementPaletteVersion Increments the current palette version.
NotifyA!!orator Notifies the draw object which allocator is being used.

1462

CDrawlmage Class

Indicates the conclusion of image rendering.
Passes the media type established during connection.
Indicates the beginning of image rendering.
Resets the current palette version.

Page 2of15

Notify End Draw
Notify Med iaType
NotifySta rt Draw

ResetPa letteVersion
ScaleSourceRect
SetDrawContext
SetSourceRect
SetSt retch Mode
SetTa rgetRect

SlowRender

Returns a scaled version of a provided source rectangle.
Sets the window and offscreen device contexts to draw with.
Sets the source rectangle for the video.
Determines whether it is necessary to stretch.
Sets the target rectangle for the window.
Uses the Microsoft® Win32® SetDIBitsToDevice and StretchDIBits
functions to draw an image.

UpdateColourTable
Using I mageAI locator

Updates the palette held in a DIBSECTION structure.
Retrieves the type of samples to be drawn.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

MQ<§i[.jlj,M 111.l:.!j

CDrawlmage: :CDrawlmage

CDrawimaqe Class

Constructs a CDrawimage object.

CDrawlmage(
CBaseWindow *pBaseWindow
);

Parameters

pBaseWindow
Window where drawing will occur.

Return Values

No return value.

Remarks

Topic Contents

Topic Contents

l@i§il!MM

i@faii!MM

This class handles drawing of images through GDI. It works closely in conjunction with the
CimaqeAllocator and CBaseWindow classes. It must know about the CimageAllocator class,
because the draw code provides a faster drawing implementation if the buffers it is handed are
created through the Microsoft® Win32® CreateDIBSection function. The image allocator

1463

CDrawlmage Class Page 3of15

creates this type of sample. It is told whether the buffers are allocated by a CimageAllocator
object (or derived class) via the CDrawimage:: NotifyAllocator member function.

If the buffers used to draw are not allocated by a compatible allocator, it will draw using the
Win32 SetDIBitsToDevice family of APis. The CBaseWindow class retrieves the window handle
where the images are to be drawn. The device contexts that the drawing code should use are
passed in through the CDrawimage: :SetDrawContext member function.

The ClmageAllocator, CimageSample, and CDrawlmage classes are all tightly associated. The
buffers that the image allocator creates are made using the Win32 CreateDIBSection function.
The allocator then creates its own samples (based on the ClmageSample class). The image
samples are initialized with the buffer pointer and its length. The sample is also passed in a
structure (a DIBDATA structure) that holds a number of pieces of information obtained from
the CreateDIBSection function.

These samples can then be passed to the draw object. The draw object knows the private
format of the samples, and how to get the DIBDATA structure back from them. Once the draw
object has obtained that information, it can pass a bitmap handle, stored in the DIBDATA
structure, down into GDI when it draws the image that the sample contains. By using the
bitmap handle from the sample in the drawing, rather than just the buffer pointer (which is the
alternative if the sample is not a CimageSample), it gets a modest performance improvement.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents

CDrawlmage::DisplaySampleTimes

CDrawimage Class

Displays time stamp of a sample on top of the image.

void DisplaySampleTimes(
IMediaSample *pSample
);

Parameters

pSample
Sample containing time stamps.

Return Values

No return value.

Remarks

lmli§lllMM

In debugging builds, it is often instructive to see the time stamps for images that the object is

1464

CDrawlmage Class Page 4of15

drawing. This member function gets the data pointer for the image the sample holds, along
with its time stamps; then, using an offscreen device context, it draws the times
approximately 80 percent of the way down the image (and centered horizontally).

This is a protected member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

CDrawl mage:: Drawlmage

CDrawimage Class

Entry point for drawing an image.

BOOL Drawlmage(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Sample to draw.

Return Values

No return value.

Remarks

Topic Contents i@l§ii!MM

If the samples have been allocated by a CimaqeAllocator object (or a derived class), the
images that the samples contain will be drawn using the Microsoft Win32 BitBlt or StretchBlt
function. If not, they will be drawn using SetDIBitsToDevice or StretchDIBits. The client must
call CDrawimaqe:: NotifyAllocator prior to calling this member function to inform the
CDrawimaqe object how the image buffers have been allocated. The object is informed each
time the source or destination changes (through its CDrawimaqe: :SetSourceRect and
CDrawimaqe:: SetTarqetRect member functions). It uses this information to determine if it
needs to stretch the image during the draw.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CDrawl mage:: FastRender

1465

CDrawlmage Class Page 5of15

CDrawimaqe Class

Draws the sample image using the Microsoft Win32 ..6.it.filt and StretchBlt functions.

void FastRender(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Sample to draw.

Return Values

No return value.

Remarks

This protected member function is called by CDrawimage with a sample that contains an image
buffer. The image buffer must have been allocated through the Win32 CreateDIBSection
function and by a CimaqeAllocator object (or derived class). There are some performance
benefits from drawing images created through this mechanism.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lllMM

CDrawl mage: :GetPa letteVersion

CDrawimaqe Class

Retrieves the current palette version.

LONG GetPaletteVersion();

Return Values

Returns the palette version.

Remarks

This member function is applicable only when using samples allocated through a
CimaqeAllocator (or derived class) object. For more information about working with palettes,
see the CDrawimaqe:: UodateColourTable member function.

1466

CDrawlmage Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM

CDrawlmage: :GetSourceRect

CDrawimaqe Class

Retrieves the current source rectangle the draw object is using.

void GetSourceRect(
RECT *pSourceRect
);

Parameters

pSourceRect
Holds the source rectangle.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M '!!·HM

CDrawl mage: :GetTa rgetRect

CDrawimage Class

Topic Contents

Topic Contents

Retrieves the current destination rectangle the draw object is using.

void GetTargetRect(
RECT *p TargetRect
);

Parameters

pTargetRect
Holds the target rectangle.

1467

Page 6of15

lmll§I 11$8

l@i§lllMM

CDrawlmage Class Page 7of15

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

C Drawl mage:: In ere me ntPa letteVersi on

CDrawimage Class

Increments the current palette version.

void IncrementPaletteVersion();

Return Values

No return value.

Remarks

This member function is applicable only when using samples allocated through a
CimageAllocator (or derived class) object. For more information about working with palettes,
see the CDrawimage:: UpdateColourTable member function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,+ '!!·Hi Topic Contents

CDrawlmage::NotifyAllocator

CDrawimage Class

Notifies the draw object which allocator the output pin is actually going to use.

void NotifyAllocator(
BOOL bUsingimageAllocator
);

Parameters

1468

l@i§il!MM

CDrawlmage Class Page 8of15

bUsinglmageAl/ocator
Flag to indicate whether to use a CimaqeAllocator object allocator or not.

Return Values

No return value.

Remarks

This member function tells the draw object whose allocator to use. This should be called with
TRUE if the filter agrees to use an allocator based around the DirectShow™ CimageAllocator
base class. These image buffers are made through CreateDIBSection. Otherwise this should be
called with FALSE, and the images will be drawn using SetDIBitsToDevice and StretchDIBits.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.!j Topic Contents l@i§lllMM

CDrawI mage:: NotifyEnd Draw

CDrawimaqe Class

Indicates the conclusion of image rendering.

void NotifyEndDraw(void);

Return Values

No return value.

Remarks

This member function is used for performance measurements and just calls the MSR STOP
macro.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQl§i[.jjj,M 111.],.(j Topic Contents l@i§lllMM

CDrawlmage::NotifyMediaType

CDrawimaqe Class

1469

CDrawlmage Class

Provides the image format for the draw object.

void NotifyMediaType(
CMediaType *pMediaType
);

Parameters

pMediaType
Media type.

Return Values

No return value.

Remarks

Page 9of15

The draw object must know the format of the images it will be drawing. For the most part, this
is so it can retrieve the palette when the images are 8-bit palettized. A filter using the draw
class will usually call this just after completing a connection.

The method does not take a copy of the media type but just stores a pointer (for performance
reasons). Therefore, the caller should ensure that the media type is not destroyed
inadvertently.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lllMM

CDrawl mage:: NotifySta rt Draw

CDrawimaqe Class

Indicates the beginning of image rendering.

void NotifyStartDraw(void);

Return Values

No return value.

Remarks

This member function is used for performance measurements and just calls the MSR START
macro.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1470

CDrawlmage Class Page 10of15

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CDrawl mage:: Reset Pa letteVersion

CDrawimage Class

Resets the current palette version.

void ResetPaletteVersion();

Return Values

No return value.

Remarks

This member function is applicable only when using samples allocated through a
CimageAllocator (or derived class) object. For more information about working with palettes,
see the CDrawimage:: UpdateColourTable member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.11119

CDrawl mage: :Sea leSou rceRect

CDrawimage Class

Returns a scaled version of a provided source rectangle.

virtual RECT ScaleSourceRect(
const RECT *pSource
);

Parameters

pSource
Unscaled source rectangle.

Return Values

Topic Contents

Returns the scaled source rectangle (returns unscaled pSource by default).

1471

i@l§ii!MM

CDrawlmage Class Page 11of15

Remarks

The base class implementation does not scale the source rectangle. Derived classes can
override this to implement scaling, if required.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@IJll!MM

CDrawlmage: :SetDrawContext

CDrawimage Class

Sets the device contexts used for drawing.

void SetDrawContext();

Return Values

No return value.

Remarks

The draw object always needs a device context for the window to draw images in. It might also
need an offscreen device context to select bitmaps into when using DISSECTION buffers (for
more details on these and CreateDIBSection, see the Microsoft Platform SDK documentation).
This member function will typically be called by a filter using this class, once it has initialized a
window.

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use.

MQ<§i[.jlj,M 111.l:.!j

CDrawI mage: :SetSou rceRect

CDrawimage Class

Sets the source rectangle for the video.

void SetSourceRect(
RECT *pSourceRect
);

1472

Topic Contents i@faii!MM

CDrawlmage Class Page 12of15

Parameters

pSourceRect
New source rectangle.

Return Values

No return value.

Remarks

The source rectangle should already have been validated before calling this member function
so that the source rectangle specified will not extend over the edges of the available video.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• QIM [.] "'' I![.],.[. Topic Contents •@M* 1gnw

CDrawlmage: :SetStretchMode

CDrawimaqe Class

Decides whether the video is to be stretched.

void SetStretchMode();

Return Values

No return value.

Remarks

When the object is asked to draw an image, the object must know whether the video is being
stretched, because it affects the function it calls (BitBlt or StretchBlt, for example). Rather
than calculate this for every frame, it works it out just once when the source or destination
rectangle is updated. This member function is called by SetSourceRect and SetTarqetRect to
manage this calculation.

This is a protected member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M ill.HS Topic Contents i@faii!MM

1473

CDrawlmage Class

CDrawlmage: :SetTargetRect

CDrawimage Class

Sets the target rectangle for the video.

void SetTargetRect(
RECT *p TargetRect
);

Parameters

pTargetRect
New target area.

Return Values

No return value.

Remarks

Page 13of15

The destination rectangle should already have been validated before calling this member
function, so that the destination specified will not define an empty playback area.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.!111j Topic Contents

CDrawlmage: :SlowRender

CDrawimage Class

Draws the sample image using SetDIBitsToDevice and StretchDIBits.

void SlowRender(
IMediaSample *pMediaSample
);

Parameters

pMediaSample
Sample to draw.

Return Values

No return value.

1474

l@i§il!MM

CDrawlmage Class Page 14of15

Remarks

The sample provided should contain the image to draw and should match the format as
specified to the draw object through NotifyMediaType.

This is a protected member function.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

CDrawl mage:: U pdateColou rTa hie

CDrawimaqe Class

Updates the palette associated with a sample.

void UpdateColourTable(
HOC hdc,
BITMAPINFOHEADER *pbmi
);

Parameters

hdc
Device context containing the sample image.

pbmi
BITMAPINFO structure containing the new palette.

Return Values

No return value.

Remarks

i@faiilMM

This member function is applicable only when using samples allocated through a
CimaqeAllocator (or derived class) object. CimageAllocator creates samples that are created
with the Microsoft Win32 CreateDIBSection function. When a palettized buffer is allocated
through CreateDIBSection, a palette is passed in that is associated with that buffer.

Should the palette be changed, the new palette must be associated with the buffer before
drawing it (this is done through the Win32 SetDIBColorTable function and internally with the
UpdateColourTable member function). The drawing code knows to update the palette
because the palette version it stores in the sample will differ from the palette version it keeps
internally.

In essence, the sample gets an initial palette version when created. When the palette is

1475

CDrawlmage Class Page 15of15

changed (probably by a filter), it tells the draw object to increment its palette version (through
the IncrementPaletteVersion member function). When the draw object next comes to draw the
sample, it will see that the sample has an old palette version and will know to call
UpdateColourTable on it.

The draw object knows the type of buffer used for samples through the NotifyAllocator member
function. If it is called with TRUE, the buffers passed to it must be allocated by a
CimaqeAllocator (or derived class) object. If it is called with FALSE, the buffers should be
allocated in standard system memory (or other memory accessible to GDI in the same
manner).

When the allocator is decommitted, it will typically delete all the samples it holds on to. When
it is subsequently committed, the samples will be created again with their initial palette
versions. At this point, the allocator should also reset the palette version in the draw object so
that they remain in sync. An allocator can do this by calling the ResetPaletteVersion member
function.

This is a protected member function.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents

CDrawl mage:: Usi nglmageAI locator

CDrawimaqe Class

Retrieves the type of samples to be drawn.

BOOL UsinglmageAllocator();

Return Values

Returns one of the following values.
Value Meaning
TRUE Allocated through CreateDIBSection.
FALSE Not allocated through CreateDIBSection.

Remarks

•@M* 1gnw

This member function is applicable only when using samples allocated through a
CimaqeAllocator (or derived class) object. For more information about working with palettes
and the image allocator, see the CDrawimaqe:: UodateColourTable member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1476

CEnumMediaTypes Class Page I of7

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CEnumMediaTypes Class

CEnumMediaTypes

This class provides the mechanism for enumerating the pin's preferred media types. Its
constructor must be passed to an object from a class derived from CBasePin. It uses the virtual
member function GetMediaType to retrieve each of the media types in turn. It also uses the
pin's CBasePin: :GetMediaTupeVersion member function to determine if the number or type of
media types has changed.

The base pin class does not support: dynamie media type changes. CBasefilter::GetPinVersion
always returns the same value, for example.

The media type enumerator must fill in a list of pointers to media type structures. The memory
for those media type structures must be released by the ca Hers when they have finished with
it. However, the memory must not be allocated from any language-specific heap; otherwise,
problems might occur between a filter written in C and another written in C+ +. For this reason,
the base classes provide generic functions (not member functions of a class) to create and
delete me<Jia types: CreateMediaTuoe and DeleteMediaTupe. These manage memory allocation
from the task allocator.

AH member functions in this class that return HRES!l! T and accept a pointer as a parameter
return E POIITTER when passed a null pointer.

Membe .. Functions
Name 0esc .. 1ptlon
CEnumMediaTypes Constructs a CEnumMediaTupes object.

Implemented !Unknown Methods
Name 0esc .. 1ptlon
Add Ref Increments the reference count.
Oueryinterface Returns pointers to supported interfaces.
Release Decrements the reference count.

Implemented IEnumMedlaTypes Methods
Name Desc .. lptlon
~ Creates a duplicate CEnumMediaTypes object with the same state.
Next Returns the next media type after the current position.
~ Sets the current position back to the beginning.
~ Skips over one or more entries in the enumerator.

1477

CEnumMediaTypes Class Page 2 of7

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M M!i.1 1119 Topic Contents i@l§ii!MM

CEnumMediaTypes: :Add Ref

CEnumMediaTypes Class

Increments the reference count for the calling interface on an object. It should be called for
every new copy of a pointer to an interface on a given object.

ULONG AddRef(void);

Return Values

Returns an integer from 1 ton, the value of the new reference count. This information is
meant to be used for diagnostic/testing purposes only, because, in certain situations, the value
might be unstable.

Remarks

This member function implements the IUnknown: :AddRef method.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+;<§1[.]jj,+ 111.],.[9 Topic Contents

CEn um Med iaTypes: :CEn um Med iaTypes

CEnumMediaTypes Class

Constructs a CEnumMediaTypes object.

CEnum Media Types(
CBasePin *pPin,
CEnum Media Types *pEnumMedia Types
);

Parameters

pPin
Pointer to the pin on which the enumeration is to be performed.

1478

Mttfjl§ii!MM

CEnumMediaTypes Class Page 3 of7

pEnumMediaTypes
Pointer to the instantiated CEnumMediaTypes object.

Return Values

No return value.

Remarks

This is a standard class constructor.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

CEnumMediaTypes: :Clone

CEnumMediaTypes Class

Retrieves another enumerator containing the same enumeration state as the current one.

HRESULT Clone(
I En um MediaTypes * * ppEnum
);

Parameters

ppEnum
New copy of the enumerator.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IEnumMediaTyoes: :Clone method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents

CEn um Med iaTypes:: Next

1479

i@i§i +g¥1+

CEnumMediaTypes Class

CEnumMediaTyoes Class

Retrieves the specified number of items in the enumeration sequence.

HRESULT Next(
ULONG cMediaTypes,
AM_MEDIA_TYPE** ppMediaTypes,
ULONG * pcFetched
);

Parameters

cMediaTypes
Number of media types to place.

ppMediaTypes
Array in which to place the next media type or types.

pcFetched
Actual count passed.

Return Values

Returns an HRESULT value.

Remarks

Page 4 of7

This member function implements the IEnumMediaTypes:: Next method. To call this method,
pass a pointer's address to a media type. The base class implementation relies on the
existence of an overridden CBasePin: :GetMediaType member function in the derived class that
will provide the next media type.

Free each media type acquired by calling DeleteMediaType, which will free the format block
and the media type itself.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

CEn um Med iaTypes: :Querylnterface

CEnumMediaTypes Class

Retrieves a pointer to a specified interface on a component to which a client currently holds an
interface pointer.

1480

CEnumMediaTypes Class

HRESULT Querylnterface(
REFllD iid,
void * * ppvObject
);

Parameters

iid
Specifies the IID of the interface being requested.

ppvObject

Page 5 of7

Receives a pointer to an interface pointer to the object on return. If the interface
specified in iid is not supported by the object, ppvObject is set to NULL.

Return Values

Returns S_OK if the interface is supported, S_ FALSE if not.

Remarks

This member function implements the IUnknown: :Oueryinterface method and passes out
references to the IEnumMediaTypes interface. Override this class to return other interfaces on
the object in the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lfflj(§i +g!ti+

CEn um Med iaTypes:: Release

CEnumMediaTypes Class

Decrements the reference count for the calling interface on an object. If the reference count on
the object falls to zero, the object is freed from memory.

ULONG Release(void);

Return Values

Returns the resulting value of the reference count, which is used for diagnostic/testing
purposes only. If you need to know that resources have been freed, use an interface with
higher-level semantics.

Remarks

This member function implements the IUnknown:: Release method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1481

CEnumMediaTypes Class Page 6 of7

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CEnumMediaTypes::Reset

CEnumMediaTypes Class

Resets the enumerator to the beginning so that the next call to the IEnumMediaTypes:: Next
method will return, at a minimum, the first media type in the enumeration.

HRESULT Reset(void);

Return Values

Returns S_OK if successful; otherwise, returns S_FALSE.

Remarks

This member function implements the IEnumMediaTypes:: Reset method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M M!i.1 1119 Topic Contents

CEnumMediaTypes: :Skip

CEnumMediaTypes Class

Skips a specified number of elements in the enumeration sequence.

HRESULT Skip(
ULONG cMediaTypes
);

Parameters

cMediaTypes
Number of media type elements to skip.

Return Values

Returns an HRESULT value.

1482

i@l§ii!MM

CEnumMediaTypes Class Page 7 of7

Remarks

This member function implements the !EnumMediaTyoes: :Skio method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1483

CEnumPins Class Page 1 of7

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CEnumPins Class

CEnumPins

This class supports the IEnumPins enumeration interface by calling CBasefilter methods. The
CBaseFllte .. class supports the IBasefilter: : EnumPins method. Each time one of thiS
interface's methods is called, the CBaseFllte .. class checks to see if the pins that it
enumerates have changed; it does this by calling CBasefilter: :GetPinVersion and matching the
version the filter is keeping with the version that it stores during construction.

If a pin enumerator becomes stale, there iS no mechanism for resynchronizing it with the filter.
The user must release the interface and retrieve another one.

Because the enumeration operation is likely to fail if the pin version changes (indicating that
the filter might have added or removed pins), all member functions in this class check the
version by calling a private member function, whieh calls the owning filter's
CBasefilter: :GetPinVersion member function. These member functions then return
VFW E EN!JM O!lT OF SYNC if the version has changed. This should always work unless the
filter has overridden CBaseFllte .. : :GetPI nVerslon to do something unexpected.

AU member functions in this class that return HRESULT and accept a pointer as a parameter
return E POIITTER when passed a null pointer.

Membe .. Functions
Name Description
CEnumPins Constructs a CEnumPins object.

Implemented !Unknown Meth<Jds
Name 0esc .. 1ptlon
Add Ref Increments the reference count.
Qoeryintertace Returns pointers to supported interfaces.
Release Decrements the reference count.

Implemented IEnumPlns Methods
Name Desc .. lptlon
~ Creates a duplicate CEnumPins object with the same initial state.
Next Returns the next pin after the current position .
.Besel:. Sets the current position back to the beginning.
~ Skips over one or more entries in the enumerator.

1484

CEnumPins Class

+Qi§1[.]++ 1 !!·HM Topic Contents

MQij[.jjj,M M!i.! 111M Topic Contents

CEnumPins: :Add Ref

CEnumPins Class

Increments the reference count for the calling interface on an object.

ULONG AddRef(void);

Return Values

Returns an integer from 1 ton, the value of the new reference count.

Remarks

This member function implements the IUnknown: :AddRef method.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§i[.]jj,+ +II.HM

CEnumPins::CEnumPins

CEnumPins Class

Constructor for the CEnumPins class.

CEnumPins(
CBaseFilter *pFilter,
CEnumPins *pEnumPins
);

Parameters

pFilter
Pointer to the filter on which to enumerate the pins.

pEnumPins
Returned pointer to an IEnumPins interface object.

1485

Topic Contents

Page 2 of7

i@l§ii!MM

i@l§ii!MM

Mttfjl§i +gn+

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

