CBaselnputPin Class Page 5 of 14

here as well.

This function member should be called from any override of the CBaselnputPin::Receive or
CBasePin::EndOfStream member function (or they should do some equivalent check).

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home] topie Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

CBaselnputPin::Disconnect

CBaselnputPin Class

Releases the stored allocator.
HRESULT Disconnect{);
Return Values

Returns an HRESULT value.
Remarks

This member function overrides the CBasePin::Disconnect member function. It calls
CBasePin::Disconnect first, and then releases the allocator held by m_pAllocator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | tome | Topie Contents | miex | ext

CBaselInputPin::EndFlush

CBaselnputPin Class

Informs the pin to end a flush gperation and notifies the pin that it can start accepting data
again.

HRESULT EndFlush(void);

Return Values

1221

CBaselnputPin Class Page 6 of 14

Returns an HRESULT value.
Remarks

This member function implements the IPin::EndFlush method. When this method is called, the
pin is beginning to end a flush operation. Your derived class must override this member
function, but should call this member function at the end of your implementation to clear
m_bFlushing so that IMemInputPin::Receive calls will succeed.

Before calling this base class implementation, your overriding member function should perform
the following steps.

1. Ensure that your filter will not push any additional data. (To do this, synchronize with a
thread, stop it pushing, and discard any queued data.)

2. Pass the EndFlush method downstream by calling the method on the downstream filter's
input pin.

IPin::EndFlush is not logically part of the media stream. It can be optimized in the sense that if
a pin has passed no data downstream before this method is called, there is no need to pass
this notification on.

An example of an overriding implementation of this member function can be found in the
CTransformInputPin: :EndFlush member function, which uses the
CRaseQutputPin: :DeliverEndFlush member function to perform the last step.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome | Topio Contents | imiex § ext

CBaselnputPin::GetAllocator

B In Pin Cl

Retrieves the allocator interface that this input pin identifies as the interface for the output pin
to use.

HRESULT GetAllocator(
IMemAllocator ** ppAllocator

);

Parameters

ppAllocator
Pointer to an obtained IMemAllocator object.

Return Values

1222

CBaselnputPin Class Page 7 of 14

Default implementation returns either E. OUTOFMEMORY, if an allocator cannot be created, or
NOERROR upon success.

Remarks

This member function implements the IMemlInputPin: :GetAllocator method, which is called by
the connected output pin to retrieve an allocator to use for transporting media samples. By
default, this member function creates a CMemAllocator object and obtains the IMemAllocator
interface, to which it adds a reference count for the pin when assigning it to the m_pAllocator
data member, and adds another reference count before passing it back to the output pin.

Override this member function if your filter has another allocator, such as one from a
downstream pin, or a specialized allocator to offer the connected output pin.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

" previous | Home | opio Contents | ndex | Hext |

CBaselnputPin::GetAllocatorRequirements

B In Pin Cl

Optional member function to use if the filter has specific alignment or prefix requirements but
could use an upstream allocator.

HRESULT GetAllocatorRequirements(
ALLOCATOR_PROPERTIES * pProps

);
Parameters
pProps

ALLOCATOR PROPERTIES structure containing the required size, count, and alignment of
the allocator.

Return Values
Returns an HRESULT value. Returns E_NOTIMPL by default.
Remarks

Override this member function if you have specific alignment or prefix requirements but could
use an upstream allocator.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex | ext

1223

CBaselnputPin Class Page 8 of 14

CBaselnputPin::Inactive

CBaselnputPin Class

Releases the allocator's memory.
HRESULT Inactive{void);
Return Values

Returns an HRESULT value.
Remarks

This member function is called through IMediaFilter, which is responsible for locking the object
first.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome | Topio Contents | imiex § ext

CBaselnputPin::IsFlushing

BaseInputPin Cl
Checks the m_bFlushing data member and returns its value.
BOOL IsFlushing{void);
Return Values
Returns TRUE if the input pin is flushing data; otherwise, returns FALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext

CBaselnputPin::IsReadOnly

1224

CBaselnputPin Class Page 9 of 14

CBaselnputPin Class

Checks the m_bReadOnly data member and returns its value.
BOOL IsReadOnly({void);
Return Values

Returns TRUE if the allocator has read-only samples; otherwise, returns FALSE.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | Home | fopic Contents | insex | Hext

CBaselnputPin::NonDelegatingQueryInterface

CBaselnputPin Class

Retrieves an interface and increments the reference count.

HRESULT NonDelegatingQueryInterface(
REFIID riid,
vold ** ppy

);
Parameters

riid
Reference identifier.
ppv

Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E NOINTERFACE if it is not.

Remarks
This member function implements the INonDelegatingUnknown: :NonDelegatingQuerylnterface

method and passes out references to the IMemlInputPin and IUnknown interfaces. Override this
class to return other interfaces on the object in the derived class.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home | topie Contenta | niex | Wext |

1225

CBaselnputPin Class Page 10 of 14

CBaselnputPin::Notify

CBaselnputPin Class

Notifies the recipient that a quality change is requested.
HRESULT Notify(

IBasefFilter * pSelf,

Quality g

);

Parameters

poeit Pointer to the filter that is sending the quality notification.
K Quality notification structure.

Return Values

Returns NOERROR by default.

Remarks

The IQualityControl: : Notify method is usually implemented on the output pin, because quality-
control messages are passed upstream, and not on the input pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | ome | Topie Contents | miex | ext _

CBaselnputPin::NotifyAllocator

CBaselnputPin Class

Notifies the input pin as to which allocator the output pin is actually going to use.
HRESULT NotifyAllocator(

IMemAllocator * pAllocator,

BOOL bReadOnly

);

Parameters

1226

CBaselnputPin Class Page 11 of 14

pAllocator
Pointer to the IMemAllocator object to use. This might or might not be the same
IMemAllocator object that the input pin provided in the IMemlInputPin: :GetAllocator
method (the output pin could provide its own allocator).

bReadOnly
Flag to indicate if the samples from this allocator are read-only.

Return Values
Default implementation returns NOERROR.
Remarks

This member function implements the IMemInputPin: :NotifyAllocator method, which is called
by the connected output pin to inform the input pin of the chosen allocator for the memory
transport. Override this member function if your filter cares about this information. By default,
this sets the m_pAllocator data member to the allocator interface passed in after adding a
reference count to that interface.

& 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | ome | topie Contente | niex | wext |

CBaselnputPin::PassNotify

CBaselnputPin Class

Passes a quality-control notification to the appropriate sink.
HRESULT PassNotify(

Quality g

);

Parameters

q
Quality-control notification object.

Return Values

Returns VFW_E NOT FOUND if no quality sink is set and the upstream filter does not support
the IQualityControl interface. Otherwise, returns the HRESULT value resulting from notifying
the sink or the upstream filter.

Remarks

Output pins receive quality-control notifications and, if possible, filters act on them to degrade

1227

CBaselnputPin Class Page 12 of 14

appropriately. Often, filters cannot respond to the notifications; in this case the notification
should be passed to the quality-control sink or, by default, upstream to the next filter. The
PassNotify member function is called from the CTransformOutputPin::Notify member function
when a notification requires passing. The Quality structure passed is the one that the output
pin received.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[prerious | Home | Topic Contents] index | Hext

CBaselnputPin::Receive

CBaselnputPin Class

Retrieves the next block of data from the stream.
HRESULT Receive(

IMediaSample * pSample

);

Parameters

pSample
Pointer to a media sample.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMemInputPin::Receive method. It first checks that it
can process the sample by calling CBaselnputPin::CheckStreaming; if that member function

does not return S _OK, Receive returns immediately with the value returned by
CBaselInputPin::CheckStreaming.

This base class member function checks to see if the format has changed with this media
sample; if so, it checks that the filter will accept it, generating a run-time error if not. If a run-
time error is raised, the m bRunTimeError data member is set so that no more samples will be
accepted.

The overriding member function does something with the passed-in sample, such as calling a
member function to transform it or pass it downstream.

This is a blocking synchronous call. Typically no blocking occurs, but if a filter cannot process
the sample immediately, it can use the calling application's thread to wait until it can.

Call the IUnknown::AddRef method if you must hold the returned data block beyond the

1228

CBaselnputPin Class Page 13 of 14

completion of the IMemInputPin::Receive method. If you call AddRef, be sure to call
IUnknown::Release when done with it.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext

CBaselnputPin::ReceiveCanBlock

CBaselnputPin Class

Determines if the implementation of the IMemInputPin::Receive method might block on the
connected output pin.

HRESULT ReceiveCanBlock{void);
Return Values

Returns an HRESULT value, which can include one of the following values.
Value Meaning

S FALSE Input pin will not block on a Receive method.

S OK Input pin might block on a Receive method.

Remarks

This member function implements the IMemInputPin::ReceiveCanBlock method. The base class
implementation calls the IMemInputPin::ReceiveCanBlock method on the input pin
connected to each of the filter's output pins.

This member function is useful because an output pin from a filter might require notification if
its thread might be blocked when it calls the Receive method on the connected input pin. For
example, a source filter might prefer to keep reading and buffering data rather than be
blocked, and might choose to start another thread to wait on the blocking Receive method.
See the COutputQueue base class for queuing samples to input pins that potentially block.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contenta | niex | Wext |

CBaselnputPin::ReceiveMultiple

CBaselnputPin Class

1229

CBaselnputPin Class Page 14 of 14

Retrieves the next block of data from the stream. This method behaves much like the
IMemlInputPin: :Receive method, but it works with multiple samples. Override this function if
you can usefully process samples in batches.

HRESULT ReceiveMultiple(
IMediaSample ** pSamples,
long nSamples,
long * nSamplesProcessed

);
Parameters

pSamples

Pointer to an array of samples.
nSamples

Number of samples to process.
nSamplesProcessed

Number of samples processed.

Return Values
Returns an HRESULT value.
Remarks

This member function implements the IMemInputPin::ReceiveMultiple method. It is
implemented to call the CBaselnputPin::Receive member function in a loop for nSamples

number of iterations.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[previous | Home | topie Contenta | niex | Wext |

1230

CBaseList Class Page 1 of 17

[Previous | tiome | opio Contents | index | Hext |

CBaselist Class

CEBaseDhject ::)

L(CBaselList ::)

The {Bagalist ciass represents g it of ppinters to objects, Mo storage managamarnt or
choying is done on the objects that are pointad 10,

Tha imgiarmentation aiiows Qe bjecks B0 ba o mgitinie Hghs cimgitanadushy and doas not
eafurin Senngel in the Objects thamsabvag: tharefpea, & & oarbicgiaehy goafl for hoigding
yariabio<langth Bgte oF intartace nontag,

The implamantation 5 nob myitithragd safe, Dxtamat loks are raquirad Lo mantain the
intagrity OF thae Hgt whan & 5 aocessed feom mire than one theead simuitanaiushy,

The POSITION shrudiuee rapresents 3 ooskion in a dnked kst that is actuaily 3 void pointar, &
posiinn represants & CUEsor On Bhe st that can be set fo identify any element, NULL 5 3 vaiid
vatge, and several gperations regard NULL a5 the position that is "one stap off the and of the
g™ {In an o etement gt there are na L places B0 insert, and NULL 5 that e 1 vakle) The
oG OF an atomant in the HeE g only invatidated F that slament i deietad, Move goerationg
emighl ingicate that what was & vaiid posiEion in gne gt is now 2 valld position in g fifferant
Bk,

Some gparationg, wihich gt first sight seom dleqal, are aiigwed a5 harmiess nuii operations (no-
ons;. For examede, the Ofaselist Removetead] member function 5 iegat on an empty sk,
angd & retiteng NULL This aBOws an atomic way 1o test iF theee i5 an element thare and, F 50, &0
eatrioye i,

Singie-eiament oparations retirn posions, where 3 non-NULL valge indicates that & worked.
Entira Hgt oporationg retitim 3 Bootean vaile, whare TRUE indicatas SUO0ess,

Protected Data Mambars

Marme Dagor picn

i Count Namber of ngdes in the st
m:__pFirgt Pointer B0 the Firgt node in the kgt
m_plagt Pointer £ the iast node in tha kgt

Marbar Functiong

1231

CBaseList Class

Name
AddAfter
AddAfterl
AddBefore
AddBeforel
AddHead
AddHeadl
AddTail
AddTaill
CBaselist
Findl
GetCountl

Page 2 of 17

Description

Inserts a list of nodes after the specified node.
Inserts a node after the specified node.

Inserts a list of nodes before the specified node.
Inserts a node before the specified node.
Inserts a list of nodes at the front of the list.
Inserts a node at the front of the list.

Appends a list of nodes to the end of the list.
Appends a node to the end of the list.
Constructs a CBaselist object.

Returns the first position that holds the specified object.
Returns the number of objects in the list.

GetHeadPositionI Returns a cursor identifying the first element of the list.

Getl
GetNextl

GetTailPositionl

MoveTgHead
MoveToTail
Next

Prev
RemoveAll

RemoveHead]l

Removel
RemoveTaill
Reverse

Returns the object at the specified position.

Returns the specified object and updates the position.
Returns a cursor identifying the last element of the list.
Moves the node or list of nodes to the beginning of a second list.
Moves the node or list of nodes to the end of a second list.
Returns the next position in the list.

Returns the previous position in the list.

Removes all nodes from the list.

Removes the first node in the list.

Removes the specified node from the list.

Removes the last node in the list.

Reverses the order of the pointers to the objects in the list.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | Topio Contents | index | ext |
" previous | Home | opio Contents | ndex | Hext |

CBaselist::AddAfter

Basell l

Inserts a list of nodes after the specified node.

BOOL AddAfter(
POSITION pos,

CBaselist *plist

);

1232

CBasceList Class Page 3 of 17

Parameters
pos
Position after which to add the list of nodes.
plist
Pointer to the list of objects to add.
Return Values

Returns TRUE if successful; otherwise, returns FALSE.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

previous | ome | opio Contents | index | Hext

CBaselist::AddAfterl

B Li [
Inserts a node after the specified node.
POSITION AddAfterI{
POSITION pos,
void * pObj
)
Parameters
pos
Position after which to add the node.
pObj
Pointer to the object to add.
Return Values
Returns the position of the inserted object.

Remarks

The following member function adds x to the start, which is equivalent to calling the
CBaselist::AddHeadl member function:

AddAfterI (NULL, x)

If the list insertion fails, some of the elements might have been added. Existing positions in
the list, including the position specified in the pos parameter, remain valid. The following two
member functions are equivalent even in cases where pos is NULL or the Next(p) parameter is

1233

CBasceList Class Page 4 of 17

NULL. (This is similar for the mirror case.)

2ddafterI (p,x)
AddBeforel (Next (p) , X}

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[prerious | Home | Topic Contents] index | Hext
Previons | Home | Topic Content] index | Hext

CBaselist::AddBefore

Baseli l
Inserts a list of nodes before the specified node.
BOOL AddBefore(
POSITION pos,
CBaselist *plist
)
Parameters
Jalel
Position before which to add the list of nodes.
plList
Pointer to the list of objects to add.
Return Values
Returns TRUE if successful; otherwise, returns FALSE.

Remarks

If the list insertion fails, some of the elements might have been added. Existing positions in
the list, including the position specified in the pos parameter, remain valid.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex | ext

CBaselist::AddBeforel

1234

CBasceList Class Page 5 of 17

CBaselist Class

Inserts a node before the specified node.

POSITION AddBeforel{
POSITION pos,
void * pObj
);

Parameters

pos
Position before which to add the node or list of nodes.
pObj
Pointer to the object to add.
Return Values
Returns the position of the inserted object.

Remarks

The following member function adds the value specified in the x parameter to the end, which is
equivalent to calling the CBaselist::AddTaill member function:

Addeeforel (NULL,X)

The following two member functions are equivalent even in cases where pos is NULL or the
Next(p) parameter is NULL. (This is similar for the mirror case.)

AddafterI (p,x)
AddBeforel (Next (p) ,x)

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | ome | Topie Contents | miex | ext _
[Previous | ome | Topio Contents | miex § ext

CBaselist::AddHead

B Li [
Inserts a list of nodes at the front of the list.

BOOL AddHead({

1235

CBasceList Class Page 6 of 17

CBaselist *plist
);

Parameters

pList
Pointer to the list of objects to add.

Return Values

No return value.

Remarks

If you are adding Component Object Model (COM) objects, you might want to add references to

them (using the IUnknown::AddRef method) first. Other existing positions in the list remain
valid.

This member function duplicates all the nodes in the plist parameter (that is, duplicates all its
pointers to objects). It does not duplicate the objects.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | miex | ext

CBaselist::AddHeadI

B Li |
Inserts a node at the front of the list.
POSITION AddHeadI(

void * pObj

);

Parameters

pObj
Pointer to the object to add.

Return Values

Returns the new head position, or NULL if it fails. For list insertions, returns TRUE if successful;
otherwise, returns FALSE.

Remarks

If you are adding Component Object Model (COM) objects, you might want to add references to

1236

CBasceList Class Page 7 of 17

them (using the IUnknown::AddRef method) first. Other existing positions in the list remain
valid.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext

CBaselist::AddTail

CRaselist Class
Appends a list of nodes to the end of the list.
BOOL AddTail(

CBaselist *plList

);

Parameters

plist
Pointer to the list of objects to add.

Return Values
No return value.
Remarks

This member function duplicates all the nodes in plList (that is, duplicates all its pointers to
objects). It does not duplicate the objects. Existing positions in the list remain valid.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | tome | Topie Contents | miex | ext _

CBaselist::AddTaill

CBaselist Class
Appends a single node to the end of the list.
POSITION AddTailI(

void * pObj

1237

CBasceList Class Page 8 of 17

);
Parameters

pObj
Pointer to the object to add.

Return Values

Returns the new tail position, if successful; otherwise, returns NULL.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex | ext

CBaselist::CBasel.ist

Baseli I
Constructs a CBaselist object.

CBaselist(
TCHAR *pName,
INT iltems
);

CBaselList(
TCHAR *pName
);
Parameters
pName
Name of the list.
iltems
Number of items in the list.
Return Values

No return value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] ndex | Hext

1238

CBasceList Class Page 9 of 17

CBaselist::Findl

CBaselist Class

Retrieves the first position that holds the specified object.
POSITION FindI(

void * pObj

);

Parameters

pObj
Pointer to the object to find.

Return Values
Returns a position cursor.
Remarks

A position cursor identifies an element on the list. Use the CBaselist: :Getl member function to
return the object at this position.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

Previous | Home | topie Contente | niex | Wext |

CBaselist::GetCountl

CBaselist Class

Retrieves the number of objects {object count) in the list.
int GetCountI();
Return Values

Returns the number of objects in the list.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex | ext

1239

CBasceList Class Page 10 of 17

CBasel.ist::GetHeadPositionl

BaseLi I
Retrieves a cursor identifying the first element of the list.
POSITION GetHeadPositionI();
Return Values
Returns a position cursor.
Remarks

A position cursor represents an element on the list. It is defined as a pointer to a void.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext

CBaselist::Getl

CBaselist Class

Retrieves the object at the specified position.
void *GetI(

POSITION pos

);

Parameters

pos
Position in the list from which to retrieve the object.

Return Values
Returns a pointer to the object as position pos.
Remarks

Use the CBaselist::Next, CBRaselist: :Prev, or CBaselist::Findl member function to obtain the
position. Asking for the object at a NULL position returns NULL without generating an error.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1240

CBasceList Class Page 11 of 17

" previous | Home | Topio Contents | index | Hext |

CBaselist::GetNextl

B Li [
Retrieves the specified object and updates the position.
void *GetNextI(

POSITIONS& rp

);

Parameters

w
Returned pointer to the next object.

Return Values
Returns a pointer to an object at the next position.
Remarks

This member function updates the rp parameter to the next node in the list, but makes it NULL
if it was at the end of the list.

This member function is retained only for backward compatibility. {Getprev is not
implemented.)

Use the CBaselist::Next and CBaselist::Prev member functions to access the next or previous
object in the list.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | topie Contenta | niex | wext |

CBaselist::GetTailPositionl

CBaselist Class

Retrieves a cursor identifying the last element of the list.

1241

CBasceList Class Page 12 of 17

POSITION GetTailPositionI{);
Return Values

Returns a position cursor.
Remarks

A position cursor represents an element on the list. A position is defined as a pointer to a void.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home | topie Contenta | niex | Wext |

CBaselist::MoveToHead

CBaselist Class

Moves the node or list of nodes to the beginning of a second list.

BOOL MoveToHead(
POSITION pos,
CBaselist *plist
);

Parameters

Dos
Position that marks the split in the list.

plList
List in which to add the section of the list preceding the position passed in the pos
parameter.

Return Values

Returns TRUE if successful; otherwise, returns FALSE.

Remarks

This member function splits the current list after the position specified in the pos parameter in

the list and retains the head portion of the original list. It then adds the tail portion to the head
of the second list, identified by the pList parameter.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contenta | niex | Wext |

1242

CBasceList Class Page 13 of 17

CBaselist::MoveToTail

CBaselist Class
Moves the node or list of nodes to the end of a second list.

BOOL MoveToTail(
POSITION pos,
CBaselist *plList
);

Parameters

pos
Position that marks the split in the list.

plList
List in which to add the section of the list specified in the pos parameter.

Return Values
Returns TRUE if successful; otherwise, returns FALSE.
Remarks

This member function splits the current list after the position specified in the pos parameter in
the list and retains the tail portion of the original list. It then adds the head portion to the tail
end of the second list, using the plist parameter.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | tome | Topie Contents | miex | ext _

CBaselist::Next

CBaselist Class
Retrieves the next position in the list.
POSITION Next(

POSITION pos

)

Parameters

1243

CBasceList Class Page 14 of 17

pos
Current position in the list.

Return Values
Returns a position cursor.
Remarks

This member function returns NULL when going past the beginning of the list. Calling the
CBaselist::Next member function with a null value is similar to calling the
CBRaselist::GetHeadPositionI member function.

Use the CBaselist::Getl member function to return the object at the returned position.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | ome | Topie Contents | miex | ext _

CBaselist::Prev

CBaselist Class
Retrieves the previous position in the list.
POSITION Prev(

POSITION pos

);

Parameters

pos
Current position in the list.

Return Values
Returns a position cursor.
Remarks

This member function returns NULL when going past the end of the list. Calling the
CBaselist::Prev member function with a null value is similar to calling the
CBaselist::GetTailPosition] member function.

Use the CBaselist::Getl member function to return the object at the returned position.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

1244

CBasceList Class Page 15 of 17

" previous | Home | Topio Contents | index | Hext |

CBaselist::RemoveAll

Baseli [
Removes all nodes from the list.
void RemoveAll{);
Return Values

No return value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Prerious | Home | Topic Contents] index | Next

CBaselist::RemoveHeadl

CBaselist Class

Removes the first node in the list.

void *RemoveHeadI();

Return Values

Returns the pointer to the object that was removed.
Remarks

This member function deletes the pointer to its object from the list, but does not free the
object itself.

If the list was already empty, this member function harmlessly returns NULL.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contente | niex | Wext |

1245

CBasceList Class Page 16 of 17

CBaselist::Removel

CBaselist Class
Removes the specified node from the list.

void *Removel(
POSITION pos
)

Parameters

pos
Position in the list of the node to remove.

Return Values
Returns the pointer to the object that was removed.
Remarks

This member function deletes the pointer to its object from the list, but does not free the
object itself.

If the list was already empty, this member function harmlessly returns NULL.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

previous | Home | Topic Contents | tndex | Hext

CBaselist::RemoveTaill

Baseli [
Removes the last node in the list.
vold *RemoveTailI();
Return Values

Returns the pointer to the object that was removed.

1246

CBasceList Class Page 17 of 17

Remarks

This member function deletes the pointer to its object from the list, but does not free the
object.

If the list was already empty, this member function harmlessly returns NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext

CBasel.ist::Reverse

CBaselist Class

Reverses the order of the pointers to the objects in the list.
void Reverse();
Return Values

No return value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1247

CBaselediaFilter Class Page 10t 9

[Previous | tiome | opio Contents | index | Hext |

CBaseMediaFilter Class

(EBaseDhject ::)

| IMonDelegatingUnknown |

J—(lZfUnlt:m:nll.l.lln)

| IMediaFilter |

J—(CBaseMediaFilter)

ThiS &5 an abstradct base Class that provides sunnoet for the IMedipriter intarface, The
{BagadtadiaFilter ciass handies State Soooed, State Paused, and State Runrning state
trangikions, Typicaity, this Ciass is used for pilg-in distributors rather than Fitars with pins,
Darpva your fiter classes from the Claseritor Class [OF base Casses derived from thig) ingstead
OF feum Bhis Class,

Al mamber functiong in Bhig Ciass that eatuen HRESULT angd accent 3 pointar 35 & narameter
eatiten £ POINTER when passed 3 nui ofintar,

Protectad Data Mambary
Marme Dagoripticn
m_clgid Ciass identifies (CLSID ased for seeiglivation using IPargict

my_plack Poirker 10 3 reference ClOCK used For synchronization. The reference count of the
CHOCR objact myst be incramented using AddRef Pass NiLL F np referante CIOCK 65
avatiahia,

s State Ogevent gtate of the fiter, wiuch can be State Stoooed, State Paused, or
state Running,

re tStart Offset fegen the stragm time (0 the reference time,

Marnbuar Furcticns

Mame Dagcription
LoaseMedinfitter Congtructs @ CRaseMedipriter Objact,
IsALtive Datermines F the filtee ig cureantly active [mnning or paused ; or stonned,

Ovarridalkle Mambar Functions
MNarme Dagor i
StregemTime Ratgens tha oueeent stragm fime,

Implemeanted IPargist Mathods

Mame Dagoripticn
SetlianniD Ratyrns the ciass identifiar oF this fitar,

1248

CBaseMediakilter Class Page 2 of 9

Implemented IMediaFilter Methods

Name Description

GetState Retrieves the current state of the filter.

GetSyncSource Retrieves the current reference clock in use by this filter.

Pause Instructs the filter to transition to the new (paused) state.

Run Instructs the filter to transition to the new (running) state.

SetSyncSource Informs the filter of the reference clock with which it should synchronize
activity.

Stop Instructs the filter to transition to the new (stopped) state.

Implemented INonDelegatingUnknown Methods
Name Description

NonDelegatingQueryInterface Passes out references to interfaces supported by CBaseFilter.
Override this to pass out pointers to interfaces supported in a

derived filter class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext
[Previoss | Home | Topic Contents | intex | Hext _

CBaseMediaFilter::CBaseMediaFilter

CBaseMediaFilter Class

Constructs a CBaseMediaFilter object.

CBaseMediaFilter(
TCHAR *pName,
LPUNKNOWN pUnk,
CCritSec *plLock,
REFCLSID cisid

);
Parameters
piName
Name of the CBaseMediaFilter class.
plnk

IUnknown interface of the delegating object.
plock

Pointer to the object that maintains the lock.
clsid

Class identifier used to serialize this filter.

1249

CBaseMediakilter Class Page 3 of 9

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | imiex | Next _
[Previoss | Home | Topic Contents | intex | Hext _

CBaseMediaFilter::GetClassID

CBaseMediaFilter Class

Fills the pCisID parameter with the class identifier of this filter (from m_clsid).
HRESULT GetClassID(

CLSID *p(CisID

)

Parameters

pCIsID
Pointer to the class identifier to be filled out.

Return Values
Returns an HRESULT value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | opio Contents | ndex | Hext |

CBaseMediaFilter::GetState

BaseMediaFilter Cl

Retrieves the current state of the filter.
HRESULT GetState(

DWORD dwMilliSecsTimeout,
FILTER_STATE * State

1230

CBaseMediakilter Class Page 4 of 9

);
Parameters
dwMilliSecsTimeout
Duration of the time-out, in milliseconds.
State
Returned state of the filter.
Return Values
Returns S OK.

Remarks

This member function implements the IMediaFilter: :GetState method. It returns the value of
the m_State data member.

Filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so filters will
not likely use this member function. Use CBaseFilter: :GetState instead.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | miex | ext

CBaseMediaFilter::GetSyncSource

B MediaFilter Cl
Retrieves the current reference clock in use by this filter.
HRESULT GetSyncSource(

IReferenceClock ** pClock

)

Parameters

pClock
Pointer to a reference clock; will be set to the IReferenceClock interface.

Return Values
Returns an HRESULT value
Remarks

This member function implements the IMediaFilter::GetSyncSource method. It returns the
value of m pClock after adding a reference to it. Be sure to release the interface by calling the

1251

CBaseMediakilter Class Page 50f 9

IUnknown::Release method when finished with the pointer.

Filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so filters will
not likely use this member function. Use CBaseFilter: :GetSyncSource instead.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home] Topic Contento | imiex | Wext |

CBaseMediaFilter::IsActive

BaseMediaFilter CI
Determines if the filter is currently active (running or paused) or stopped.
BOOL IsActive{void);
Return Values

Returns TRUE if the filter is paused or running, or FALSE if it is stopped.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[prerious | Home | Topic Contents] index | Hext

CBaseMediaFilter::NonDelegatingQuerylInterface

CBaseMediaFilter Class

Retrieves an interface and increments the reference count.

HRESULT NonDelegatingQueryInterface(
REFIID riid,
void ** ppv

);
Parameters
riid
Reference identifier.
bpv

Pointer to the interface.

1232

CBaseMediakilter Class Page 6 of 9

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E NOINTERFACE if it is not.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryInterface
method and passes out references to the IMediaFilter, IPersist, and IUnknown interfaces.
Override this class to return other interfaces on the object in the derived class.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

previous | ome | opio Contents | index | Hext

CBaseMediaFilter::Pause

BaseMediaFilter Cl
Transitions the filter to State_Paused state if it is not in this state already.
HRESULT Pause (void);
Return Values
Returns an HRESULT return value (S_OK by default).
Remarks

This member function implements the IMediaFilter::Pause method. It sets the value of
m_State to State_Paused.

Note that filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so
this member function will not likely be used by filters. Use CBaseFilter: :Pause instead.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] index | Hext

CBaseMediaFilter::Run

CBaseMediaFilter Class

1233

CBaseMediakilter Class Page 7 of 9

Transitions the filter to State Running state if it is not in this state already.

HRESULT Run {
REFERENCE_TIME tStart

);
Parameters

tstart
Reference time value corresponding to stream time 0.

Return Values
Returns an HRESULT wvalue.
Remarks

If the filter is in State_Stopped state, the CBaseMediaFilter::Pause member function is called
first to transition the filter to State Paused state, which has the effect of activating any of the
filter's connected pins. If any pin returns a failure return code from its CBasePin::Active
member function, the function fails and the state is not changed. If this member function
succeeds, the filter's m_State member variable is set to State Running. This member function
holds the filter's lock.

Filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so filters will
not likely use this member function. Use CBaseFilter: :Run instead.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] index | Hext

CBaseMediaFilter::SetSyncSource

CBaseMediaFilter Class

Identifies the reference clock to which the filter should synchronize activity.
HRESULT SetSyncSource(

IReferencellock * pClock

)

Parameters

pClock
Pointer to the IReferenceClock interface,

Return Values

1254

CBaseMediakilter Class Page 8 of 9

Returns an HRESULT value.
Remarks

This member function implements the IMediaFilter::SetSyncSource method. It sets the
m_pClock data member to the pClock parameter and increments the reference count on the
IReferenceClock interface passed in.

This member function is most important to rendering filters and might not apply to other
filters.

Filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so filters will
not likely use this member function. Use CBaseFilter: :SetSyncSource instead.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext

CBaseMediaFilter::Stop

CBaseMediaFilter Class

Transitions the filter to State Stopped state if it is not in this state already.
HRESULT Stop(void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMediaFilter: :Stop method. It sets the m_State member
variable to State Stopped.

Note that filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so
this member function will not likely be used by filters. Use CBaseFilter: :Stop instead.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | miex | ext

CBaseMediaFilter::StreamTime

1235

CBaseMediakilter Class Page 9 of 9

CBaseMediaFilter Class

Retrieves the current stream time.
virtual HRESULT StreamTime(
CRefTime& rtStream
);

Parameters

rtStream
Current stream time.

Return Values

Returns an HRESULT value, which can include the following values.

Value Meaning
E FAIL Unable to get time from clock.
S OK Stream time returned in the rtStream parameter.

VFW E NO CLOCK No reference clock is available.

Remarks

Current stream time is the reference clock time minus the stream time offset. All samples with
time stamps less than or equal to this time should have been presented.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[prerious | Home | Topic Contents] index | Hext

1256

CBaseObyect Class Page 1ot 3

[Previous | tiome | opio Contents | index | Hext |

CBaseObject Class

CEBaseDhject ::)

The {Bagelbiact ciass is an abstract base class that is the basis for gl componeant objects, I
M@NERNG 3 pEOCRSS-Wide ok of aitive Objects that can be gueried from the
DitCaniinipadiow antey point,

At Componant Object Modet (CGM) objects are dervad from the Clnknown ciass, which i
derived from the CBasallbbact ciass. Ofher objects can be derived frgm CBasaliliact to
as5sist in the detection of memoey feaks, bacayse CBagelbdact mantaing the count of created
oirjects,

The consteuckor raguires 3 character-giring name that desoribes the objedt baing created, Thig
steing can be dispiayed on the debugqing sceeen B0 trace the creation oF objects: the stong wil
#is0 be disniaved dnon deietion oFf the object, The string shodid be cregted in static storage
eather than in iocai-funciion stoeage. The steing can be ancigsed by the NAME maoed, which
cOmpiias £0 NULL n ratall boiids 50 that the static strings ave ootimized Qut daeing cormoiation,

F* Tvpleal ckject creation metheod */
HRESULT CScomeClass: : CreateMyChject (vold)

HEESULT hr = NOERROR;

CMyiDkject *plhject = new CMyChkiject (MAME ("My filter ckbject!) MNULL, &hrd;
1f (FAILED(hr}) |
return hr:

}

if (pobject == NWULL) |
return E OUTOFMEMORY ;

m plkbject = pOkbject;
return NMOERBOR

}

F* Incocrrect ckbject creatien method *+f
HEEEULT CEcmeClass: : ThisMayhccessViclate (wold)
d

HREESULT hr = NOERROE;

TCHAR MyChkjectMame[] = TEHET("My GP faulting <kject!);
CHyObject *plbject = new CMyChject (MyChjectName NULL, &hrd ;

Mambar Functionsg

1267

CBaseObject Class Page 2 of 3

Name Description
CBaseObject Constructs a CBaseObject object.
ObjectsActive Retrieves the count of active objects.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Prerious | Home | Topic Contents] index | Hext

CBaseObject::CBaseObject

CBaseObject Class

Constructs a CBaseObject object.
CBaseObject(

const TCHAR *pName

);

Parameters

pName
Name assigned to the object for debugging purposes.

Return Values
No return value.
Remarks

The pName parameter should be allocated in static memory. This name appears on the
debugging screen when the object is created and deleted.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Pretious | Home | Topic Contents] index | Hext

CBaseObject::ObjectsActive

CBaseObject Class
Retrieves the count of active objects.

static LONG ObjectsActive();

1238

CBaseObject Class Page 3 of 3

Return Values

Returns the current number of active objects.

© 1997 Microsoft Corporation. All rights reserved. Terms of Usse.

1239

CBaseCOutputPin Class Page 1 of 14

[Previous | tiome | opio Contents | index | Hext |

CBaseOuiputPin Class

CEBaseDhject :‘l

| IMonDelegatingUnknown |

J—(CUnknown ::I

| ITwality Control |

| IFin |

| {:EBasePin :j

|—< CBaseDutputPin :ﬁ

{BageQutputPin is an abstract base class derdved from the CBasePin Class that provides
sueniet For the commaon memory transoort, BagsaelutputPin connedts oniy £0 an input oin
that sunobes an IMeamInouiPin intedface (SUch 35 3 pin Ciass derved from the CBaseinngtPin
ciass, and provides methods for the Fifer 1o access that interface, Derive your Quknut ning
Fepm Lhis Class For the agsiast impiamaentation,

An Qo nin mgst peovide gne O mdee madip tyees when connected B0 an inoyt nin, IF the
media tyoa that relitms an index ke, For exampie, is not cuemently avaiighie, the uinut nin
shfitig rakilen 5 FALSE in the CBasePin: (CatMadiaTyoe membar Rinckion, and the base oiass
Wit GRio i,

Youe outodt pin ciass methods {reprasented here with the Clags name £YouPing shouid Cak
{BageCiutputPin. For exameis, YodePin: Active shouid catl CBaseluteatPin: Active Firgt, 10
sae iF i shouid procead, OYourPie Inactive should call CEaselutnutPing Inactive Tirgt, 10
daecnrmm i the sampia aicator and avoid deadiock probiamsg with

LCRacelutoutPin: GetDaibvary Byffar,

Al member Fundtions in Bhis class that refiten HRESHILT and accant a nointar 35 3 narametar
rabilen £ POINTER when passed a nuit pointer,

Ai HouattyControl method impiementations are inharted from the CBasePin Ciass and are not
gwvariiddan by this class,

Protactad Data Mambers

Mame Deagcription

s prAllgcator Pointer 1) the IMamaiiocator interface For thisg nin,

s pInputPin Pointer £ the inouf pin b which £his pin is connected.

Marnbar Functicns

1260

CBaseOutputPin Class Page 2 of 14

Name Description
CBaseOutputPin Constructs a CBaseOutputPin object.

Overridable Member Functions

Name Description

Active Switches the pin to the active (running) mode.

BreakConnect Releases the allocator and the IMemlInputPin interface.

CheckConnect Calls Querylnterface to retrieve an IMemInputPin interface.

CompleteConnect Completes the connection.

DecideAllocator Negotiates the allocator.

DecideBufferSize Retrieves the number and size of buffers required for the transfer.

Deliver Delivers an [MediaSample buffer to the connecting pin.

DeliverBeginFlush Calls the IPin::BeginFlush method on the connected pin.

DeliverEndFlush Calls IPin: :EndFlush on the connected input pin to pass an end-flushing
notification.

DeliverEndOfStream Calls IPin: :EndOfStream on the connected input pin to pass an end-of-
stream notification.

DeliverNewSegment Calls IPin::NewSegment on the connected input pin to pass a segment.
GetDeliveryBuffer Returns an IMediaSample buffer suitable for passing across the

connection.
Inactive Switches the pin to the inactive (stopped) mode.
InitAllocator Creates a default memory allocator. Override this to provide your own

allocator or to provide no allocator.

Implemented IPin Methods
Name Description

BeginFlush Informs the pin to begin a flush operation. Implemented to return
E UNEXPECTED because it is an error to call this on an output pin.

EndFlush Informs the pin to end a flush operation. Implemented to return E_UNEXPECTED
because it is an error to call this on an output pin.

EndOfStream Informs the pin that no additional data is expected until a new run command is
issued. Implemented to return E_UNEXPECTED because it is an error to call this
on an output pin.

& 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topio Contents | imiex | ext _
Previous | Home | Topic Contents | intex | Hext

CBaseOutputPin::Active

CBaseOutputPin Class

1261

CBaseOutputPin Class Page 3 of 14

Called by the CBaseFilter implementation when the state changes from stopped to either
paused or running.

HRESULT Active({void);
Return Values

Returns VFW E NO ALLOCATOR if there is no allocator.

Remarks

This member function calls CMemAllocator::Commit to commit memory required before
becoming active.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext

CBaseOutputPin::BeginFlush

CBaseOutputPin Class

Informs the pin to begin a flush operation.
HRESULT BeginFlush{void);

Return Values

Returns E_UNEXPECTED.

Remarks

This member function implements the IPin::BeginFlush method. It returns E_ UNEXPECTED
because this should be called only on input pins.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome | Topio Contents | miex § ext

CBaseOutputPin::BreakConnect

B Pin CI

1262

CBaseOutputPin Class Page 4 of 14

Releases IMemAllocator and IMemlInputPin objects acquired by the pin.

HRESULT BreakConnect{void);

Return Values

Returns NOERROR by the default base class implementation.
Remarks

This member function releases the IMemAllocator and IPin interfaces used during the
connection.

If you override this method, always call the base class BreakConnect or unexpected behavior
will result, including reference count leaks.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | opio Contents | ndex | Hext |

CBaseOutputPin::CBaseOutputPin

B Pin CI

Constructs a CBaseQutputPin object.

CBaseQutputPin(
TCHAR *pObjectName,
CBaseFilter *pFilter,
CCritSec *plLock,
HRESULT * phr,
LPCWSTR pName
);

Parameters

pObjectName

Name of the object used in the CBaseQOutputPin constructor for debugging purposes.
DFilter

Filter to which the pin will be attached.
plLock

Pointer to a CBaseOQutputPin object for locking.

phr

Pointer to the general COM return value. This value is changed only if this function fails.
pName

Pin name.

1263

CBaseOutputPin Class Page 5 of 14

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | imiex | Next _
[Previoss | Home | Topic Contents | intex | Hext _

CBaseOutputPin::CheckConnect

CBaseQutputPin Class

Calls QuerylInterface on the connected pin to retrieve an IMemlInputPin interface.
HRESULT CheckConnect(

IPIin *pPin

)

Parameters

pPin
Pointer to the IPin interface on the connecting pin.

Return Values
Returns NOERROR if successful; otherwise, returns an HRESULT error value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | opio Contents | ndex | Hext |

CBaseOutputPin::CompleteConnect

B Pin CI
Completes a connection to another filter.
virtual HRESULT CompleteConnect(
IPin *pReceivePin

);

1264

CBaseOutputPin Class Page 6 of 14

Parameters

pReceiveFin
Pointer to the connected (receiving) pin.

Return Values
Returns an HRESULT value. The default implementation returns NOERROR.
Remarks

This member function overrides the CBasePin::CompleteConnect member function and calls
the CBaseQutputPin: :DecideAllocator member function to finish completing the connection.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext

CBaseOutputPin::DecideAllocator

CBaseOutputPin Class

Negotiates the allocator to use.

virtual HRESULT DecideAllocator(
IMemInputPin * pPin,
IMemAllocator ** pAlloc

);
Parameters
pPin
Pointer to the IPin interface of the connecting pin.
pAlloc
Pointer to the negotiated IMemAllocator interface.
Return Values
Returns NOERROR if successful; otherwise, returns an HRESULT value.
Remarks
This member function calls the CBaseOutputPin::DecideBufferSize member function, which is

not implemented by this base class. Override DecideBufferSize to call
IMemAllocator: :SetProperties.

If the connected input pin fails a call to IMemInputPin::GetAllocator, this member function

1265

CBaseOutputPin Class Page 7 of 14

constructs a CMemAllocator object and calls CBaseQutputPin: :DecideBufferSize on that object.
If the call to DecideBufferSize is successful, this member function notifies the input pin of the
selected allocator. This function is called by the base class implementation of the IPin::Connect
method, which is responsible for locking the object's critical section.

Qverride this member function if you want to use your own allocater. The input pin gets the
first choice for the allocator, and the output pin agrees or forces it to use another allocator.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previoss | ome | Topie Contents | miex | ext

CBaseOutputPin::DecideBufferSize

B Pin Ci
Retrieves the number and size of buffers required for the transfer.

virtual HRESULT DecideBufferSize(
IMemAllocator * pAlioc,
ALLOCATOR_PROPERTIES * ppropInputRequest
) PURE;

Parameters

pAlloc
Allocator assigned to the transfer.

ppropInputRequest
Requested allocator properties for count, size, and alignment, as specified by the
ALLOCATOR PROPERTIES structure.

Return Values
Returns an HRESULT value.
Remarks

The CBaseDutputPin: .DecideAllocator member function calls this member function. You must
override this member function in your derived class and call IMemAllocator: :SetProperties.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | ome | Topio Contents | miex § Hext _

CBaseOutputPin::Deliver

1266

CBaseOutputPin Class Page 8 of 14

CBaseQutputPin Class

Delivers the IMediaSample buffer to the connected pin.
virtual HRESULT Deliver(

IMediaSample *pSample

);

Parameters

pSample
Buffer to deliver.

Return Values

Returns VFW E NOT CONNECTED if no input pin is found; otherwise, returns an HRESULT
value.

Remarks

This member function delivers this buffer to the connected input pin by calling its
IMemInputPin: :Receive method.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] index | Hext

CBaseOutputPin::DeliverBeginFlush

CBaseQutputPin Class

Calls the IPin: :BeginFlush method on the connected input pin.
virtual HRESULT DeliverBeginFlush{void);
Return Values

Returns VFW_E NOT CONNECTED if no input pin is found; otherwise, returns the value that is
returned by the IPin::BeginFlush method.

Remarks

This member function delivers the BeginFlush notification downstream.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

1267

CBaseOutputPin Class Page 9 of 14

" previous | Home | Topio Contents | index | Hext |

CBaseOutputPin::DeliverEndFlush

B Pin CI

Calls the IPin::EndFlush method on the connected input pin.

virtual HRESULT DeliverEndFlush{void);
Return Values

Returns YFW_E NOT CONNECTED if no input pin is found,; otherwise, returns the value that is
returned by IPin::EndFlush.

Remarks

This member function delivers the EndFlush notification downstream.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

Previous | Home | topie Contente | niex | Wext |

CBaseOutputPin::DeliverEndOfStream

CBaseOutputPin Class

Calls the IPin: :EndOfStream method on the connected input pin.

virtual HRESULT DeliverEndQfStream{void);
Return Values

Returns VFW E NOT CONNECTED if no input pin is found, otherwise, returns the value
returned by the IPin::EndOfStream call to the connected pin.

Remarks

This member function delivers the end-of-stream notification downstream by calling the
IPin: :EndOfStream method on the connected pin.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

1268

CBaseOutputPin Class Page 10 of 14

" previous | Home | Topio Contents | index | Hext |

CBaseOutputPin::DeliverNewSegment

B Pin CI

Calls the IPin::NewSegment method on the connected input pin.

virtual HRESLULT DeliverNewSegment{
REFERENCE_TIME (Start,
REFERENCE_TIME tStop,
double dRate

);

Parameters
tStart

Start time of the segment.
tStop

Stop time of the segment.
dRate

Rate of the segment.
Return Values
Returns an HRESULT value.

Remarks

You will need to override this member function in your derived output pin class if your filter
queues any data in the output pin.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | Home] topic Contents | imiex | Wext |
[previous | ome] topic Gonients | imiex | Wext |

CBaseOutputPin::EndFlush

IPin Interface

1269

CBaseOutputPin Class Page 11 of 14

Informs the pin to end a flush operation.
HRESULT EndFlush(void);

Return Values

Returns E_UNEXPECTED.

Remarks

This member function implements the IPin::EndFlush method. It returns E UNEXPECTED
because this should be called only on input pins.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | miex | ext _

CBaseOutputPin::EndOfStream

IPin Interface

Informs the input pin that no additional data is expected until a new run command is issued.
HRESULT EndOfStream{void);

Return Values

Returns E_UNEXPECTED.

Remarks

This member function implements the IPin::EndOfStream method but isn't expected to be
called on an output pin.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topio Contents | miex | ext

CBaseOutputPin::GetDeliveryBuffer

B Pin CI

1270

CBaseOutputPin Class Page 12 of 14

Retrieves an IMediaSample buffer suitable for passing across the connection.

virtual HRESULT GetDeliveryBuffer{
IMediaSample ** ppSample,
REFERENCE_TIME * pStartTime,
REFERENCE_TIME * pEndTime,
DWORD dwFlags

);
Parameters

ppSample
IMediaSample buffer to be provided.
pStartTime
Start time of the media sample {optional and can be NULL).
pEndTime
Stop time of the media sample (optional and can be NULL).
dwFlags
The following flags are supported.
AM GBF NOTASYNCPOINT Dynamic format changes are not allowed on this buffer
because it is not a key frame.

AM GBF PREVFRAMESKIPPED Buffer returned will not be filled with data contiguous
with any previous data sent.

Return Values

Returns E_ NOINTERFACE if an allocator is not found; otherwise, returns the value returned
from calling the IMemAllocator: :GetBuffer method.

Remarks

The pin object must lock itself before calling this member function; otherwise, the filter graph
could disconnect this pin from the input pin midway through the process. If the filter has no
worker threads, the lock is best applied on the IMemInputPin: :Receive call; otherwise, it
should be done when the worker thread is ready to deliver the sample.

This call can block; therefore, to aveoid deadlocking with an IMediaFilter: :Stop command, a
two-tier locking scheme (such as that implemented in CTransformFilter) is required. Only the
second-level lock is acquired here. The IBaseFilter base class implementation of
IMediaFilter::Stop first gets the first-level lock and then calls IMemAllocator::Decommit on
the allocator. This has the effect of making GetDeliveryBuffer return with a failure code. The
Stop member function then gets the second-level lock and completes the command by calling
Inactive for this pin.

No lock is needed when calling CBaseOutputPin::GetDeliveryBuffer when passing on
samples using a worker thread. In this case, the CBaseFilter::Stop base class implementation
acquires its filter-level lock and just calls IMemAllocator: :Decommit on the allocator, at which
point the worker thread is freed up to listen for a command to stop.

You must release the sample yourself after this function. If the connected input pin needs to
hold on to the sample beyond the function, it will add the reference for the sample itself
through IUnknown:: AddRef. You must release this one and call

1271

CBaseOutputPin Class Page 13 of 14

CBaseQutputPin::GetDeliveryBuffer for the next. (You cannot reuse it directly.)

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | miex | ext _
[Previoss | Home | Topio Contents | miex | ext

CBaseOutputPin::Inactive

B Pin CI

Called by the CBaseFilter implementation when the state changes from either paused or
running to stopped.

HRESULT Inactive({void);
Return Values

Returns VFW_E_NO_ALLOCATOR if there is no allocator; otherwise, returns the value from
calling the IMemAllocator: :Decommit method.

Remarks
This member function calls IMemAllocator: :Decommit to decommit memory before becoming
inactive.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents | iniex | Hext

CBaseOutputPin::InitAllocator

CBaseQOutputPin Class

Creates a default memory allocator. Override this to provide your own allocator or to provide
no allocator.

virtual HRESULT InitAllocator(
IMemAllocator **ppAlloc
);

Parameters

1272

CBaseOutputPin Class Page 14 of 14

ppAlloc
Returned memory allocator.

Return Values
Returns an HRESULT value.
Remarks

The allocator should be released after use. This is typically handled in the

CBaseQutputPin::BreakConnect member function.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1273

CBasePin Class Page 1 of 21

[Previous | tiome | opio Contents | index | Hext |

CBasePin Class

ﬁ:: CBaseDbject :)

| INonDelegatingUnknown |

J—(CUnknown :):

| IZualityContral |

| 1Fin |

| {:EBasePin :)

{BagePin 5 an abstract base class From which i ping are devved . CBagePin: supports the
IPin inberfaoe, YOI Can desive Teoem TR B Your nin doas nok Sanoby or Lse the IMemingsdgtPin
interface; gtharwise, derive from the CBaselnegtPin ciass or the (BaseOutogtPin £iass,

The connection srocess is oruliat 1o the suocess oF oreating Fitar graohs, The Fitar geanh Bangds
by Filters fand subsequenthy two ping) B0 connect, I caiis the IPin:Connedt method on the
QREBUE pin [can aiso cali Donnect on the inogt oin af the same time;, The guinul nin then
Catig tha wirkial nin mamber fuanction CBagePing CheckConnect, Derivad Ciasses shouid override
thig mamber function £ gse Quenyintorface 1o retiem any interfaces required. The base Ciass
impiementation oF CheckConnect gueries the IMaminngtPin inferface 1o egtabligh the defagit
transoort srotocol

After catting CheckConnect, the outogt oin calis CBagePin: AqresMediaTyne: Thig & 3 worker
mambear fiunction not intended for overviging in derived Classes. This gets the inogt pin's
aencmerator and calis CBasePin: [TryMediaTynes with it TryMediaTyoes is another base pin
whrkar membar Frackion that is not intended for dervation, I oycies thequgh aach madia tyoe
peovidad by an anmarator B0 detarming iF 3 connection can be made with that fyne,

IF that oeocess fais, AqresMedizTyne refriaves the Duinut sin's madia tyne engmaerator and
catis CBasePin:GetMediaTyne, which cyoies through the madia types £ agees on a connaction
tyne, IF thers is ageeement, 3 madia tyos with the inndt and QUEnUE ning balhmas the tyne
tnad in the connaction,

If ng media tyoe can be agraed on, the connaction batwaan the ping canngt be made, The base
pin Cals {BasePling: SetMediaTyne to broadoast the format, The mmi base pin variahie 5 sat
deurring RS process,

The [Pin intarface peogviges @ method cafted QueeyAocent, This method atiows connactey Fitar
1o quary whethar the oin witi aCeat & spectiad media type, The method 5 agynchegnous 50
that @ Fittoe can ol & 3 any Lime--avan when agndther fiter s oaliing B, For this raason, #3
enptamentation in any gverrigde f the base class shouid not ook the Fiter, The base Ciass
imptementation oF PinHuervAccant fals the gverridden (BasaPin: fhackMediaTyne mamber
runction on the derivad pin Class,

1274

CBasePin Class Page 2 of 31

All member functions in this class that return HRESULT and accept a pointer as a parameter
return E_POINTER when passed a null pointer.

Protected Data Members

Name Description

m_bRunTimeError Run-time error generated.

m_Connected Pin to which this pin is connected.

m_dir Direction of this pin.

m_cdRate Rate from the CBasePin: :NewSegment call.

m_mt Media type that this pin is using. This is established during the
connection process.

m_pFilter Filter that created the pin.

m_pLock Object used for locking.

m_pQSink Target for quality messages.

m_pName Name of the pin.

m_tStart Start time from the CBasePin: :NewSegment call.

m_tStop Stop time from the CBasePin: :NewSegment call.

m_TypeVersion Current media type version (see CBasePin::GetMediaTypeVersion).

Member Functions

Name Description

AttemptConnection Attempts to make a connection to another pin using a specified media
type.

CBasePin Constructs a CBasePin object.

CurrentRate Returns the segment rate set by the CBasePin::NewSegment member
function.

CurrentStartTime Returns the segment start time set by the CBasePin::NewSegment
member function.

CurrentStopTime Returns the segment stop time set by the CBasePin::NewSegment
member function.

DisplayPinInfo Displays pin information on the debugging monitor.

DisplayTypelnfo Displays media type information on the debugging monitor.

GetConnected Returns the pin that is connected to this pin.

IncrementTypeVersion Adds 1 to the current media type version.

IsConnected Determines whether the pin is connected.

IsStopped Determines whether the filter owning this pin is in the State Stopped
state.

Name Returns the m_pName name of the pin.

Overridable Member Functions

1275

CBasePin Class Page 3 of 31

Name Description

Active Switches the pin to the active {running) mode.

AgreeMediaType Agrees on the media type to be used by the pin.

BreakConnect Adds custom code when the connection quits. This is also called when a

stage in the connection process fails, so this member function should
also clean up partial connection states.

CheckConnect Adds custom code when the connection is being made. This is called at
the start of the connection process.

CheckMediaType Checks if the pin can support a specific media type.

CompleteConnect Completes the connection.

GetMediaType Returns the media type used by the pin.

GetMediaTypeVersion Returns the version of the pins that were created dynamically.

Inactive Switches the pin to the inactive (stopped) mode.

SetMediaType Sets the m_mt data member to the established media type.

TryMediaTypes Tries to find an acceptable media type for a connection from the list

returned by a media type enumerator.

Implemented IPin Methods

Name Description

Connect Initiates a connection to another pin.

ConnectedTo Returns a pointer to the connecting pin.

ConnectionMediaType Returns the media type of this pin's connection.

Disconnect Breaks a connection.

EndOfStream Informs the input pin that no additional data is expected until a
new run command is issued. (returns S FALSE by default).

EnumMediaTypes Returns an enumerator for this pin's preferred media types.

NewSegment Specifies that samples following this call are grouped as a segment
with a given start time, stop time, and rate.

QueryAccept Determines whether this pin accepts the media type.

QueryDirection Retrieves the pin direction of the pin.

Queryld Retrieves an identifier for the pin.

QueryInternalConnections Returns an array of the pins to which this pin connects internally.

QueryPinInfo Retrieves information about the pin itself (the name, owning filter,
or direction).

ReceiveConnection Called by a connecting pin to make a connection to this pin. Usually

this does not need to be overridden, because the default
implementation calls CBasePin::CheckConnect,
CBasePin: :CheckMediaType, and CBasePin: :BreakConnect.

Run Notifies the pin that the filter has changed state from paused to
running.

Implemented IQualityControl Methods

Name Description

Notify Notifies the recipient that a quality change is requested.

SetSink Sets the IQualityControl object that will receive quality messages.

Implemented INonDelegatingUnknown Methods

1276

CBasePin Class Page 4 of 31

Name Description
NonDelegatingAddRef Increments the owning filter's reference count.

NonDelegatingQueryInterface Retrieves CBasePin interfaces. Override this member function to
pass out pointers to any interfaces added by the derived pin
class.

NonDelegatingRelease Decrements the owning filter's reference count.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] ndex | Hext
Previous | Home | Topic Contente] ndex | Hext

CBasePin::Active

BasePin CI

Called by the CBaseFilter implementation when the state changes from stopped to either
paused or running.

virtual HRESULT Active{void);

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.
Remarks

Any class that requires notification of a change of state should override this member function.
This is called when the filter owning the pin exits the State Stopped state.

Note that the filter graph manager's internal state variable is not updated until after this
member function returns, so testing the filter graph manager's state (directly or indirectly)
from within this member function should be avoided.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext

CBasePin::AgreeMediaType

CBRasePin Class

1277

CBasePin Class Page 5 of 31

Searches for a media type for the pin connection.

virtual HRESULT AgreeMediaType(
IPin *pReceivePin,
const CMediaType *omt
);

Parameters

pReceivePin
Pointer to the receiving pin.
pmt
Pointer to a media type object to be returned.

Return Values

Returns an HRESULT value, which can include one of the following values.
Value Meaning

NOERROR A media type was found.

VFW_E NO ACCEPTABLE TYPES No agreement on a media type was reached.

Remarks

This member function is called during the connection process. It calls

CBasePin: :TryMediaTypes on both the owning pin and the pin connected to the owning pin; it
enumerates the preferred data types on the pin. If one is found, TryMediaTypes tries the media
type with the pin in a call to the CBasePin::ReceiveConnection member function. If this pin
proposes a media type, its support is still verified by calling CBasePin::CheckMediaType. The
enumerator can list all the media types, even if some of them are not currently available.

This member function is protected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topio Contents | index | ext |
previous | Home | Topio Contente | index | Hext |

CBasePin::AttemptConnection

B Pin CI
Attempts to make a connection to another pin using a specified media type.

virtual HRESULT AttemptConnection{
IPin * pReceivePin,

1278

CBasePin Class Page 6 of 31

const CMediaType *omt
);

Parameters
pReceivePin
Pointer to the receiving pin.
pmt
Pointer to a media type object containing the preferred media type for the connection.
Return Values
Returns an HRESULT value.
Remarks
This member function is used to attempt to connect with a given media type. Its main purpose

is to call the IPin::ReceiveConnection method of the pin passed in the pReceivePin parameter.
This member function is protected.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Prerious | Home | Topic Contents] index | Next

CBasePin::BreakConnect

CBasePin Class

Called when a connection is broken to allow for customization (intended for overriding).
virtual HRESULT BreakConnect(});

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.

Remarks

This member function is called when a connection to the pin cannot be made or when
CBasePin: :Disconnect is called. In this case, it is necessary to undo anything performed during
the connection process. You can override this member function to release any references to
interfaces that were made during the connection.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previons | Home | Topio Contents | miex | ext

1279

CBasePin Class Page 7 of 31

CBasePin::CBasePin

BasePin Cl
Constructs a CBasePin object.

CBasePin(
TCHAR *pObjectName,
CBaseFilter *pFiilter,
CCritSec *plock,
HRESULT *phr,
LPCWSTR pName,
PIN_DIRECTION dir
)

Parameters

pObjectName

Description of the object.
pFilter

Owning filter that knows about pins.
plock

Object that implements the lock.
phr

Pointer to a general COM return value. This value is changed only if this function fails.
pName

Pin name.
dir

Either PINDIR _INPUT or PINDIR_OUTPUT.

Return Values
No return value.
Remarks

This is a standard class constructor.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[previous | Home] topie Contents | iniex | Wext |
[Previous | ome] topic Gonients § imiex | Wext |

CBasePin::CheckConnect

1280

CBasePin Class Page 8 of 31

CBasePin Class

Allows for customization when the connection is first made {intended for overriding, if
required).

virtual HRESULT CheckConnect(
IPIn * pPin
);

Parameters

pPin
Pointer to the connecting pin.

Return Values

Returns one of the following arguments by default; if overridden, should return standard
HRESULT values, including the following values.

Value Meaning

E INVALIDARG Pin directions do not match between pins.
NOERROR Connection verified successfully.
Remarks

This member function is called during a call to the IPin::Connect method to provide a virtual
method that can do any specific check required for a connection, such as calling

CBasePin: :NonDelegatingQueryInterface. This base class method determines if the pin
directions match.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previons | Home | Topic Contente] index | Next
[prerious | Home | Topic Contents] ndex | Hext

CBasePin::CheckMediaType

B Pin CI
Determines if the pin can support a specific media type.
virtual HRESULT CheckMediaType(

const CMediaType * pmt

)
PURE;

1281

CBasePin Class Page 9 of 31

Parameters

pmt
Pointer to a media type object containing the proposed media type.

Return Values

The overriding member function should return S_OK if the proposed media type is accepted;
otherwise, it should return an HRESULT failure value, such as S FALSE.

Remarks

This member function is typically called before calling the CBasePin::SetMediaType member
function. It is also called from several other member functions, including
CRasePin: :ReceiveConnection and CBasePin::QueryAccept.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBasePin::CompleteConnect

CBRasePin Class

Completes a connection to another filter (intended for overriding).
virtual HRESULT CompleteConnect(

IPin *pReceivePin

)i

Parameters

pReceivePin
Pointer to the connected (receiving) pin.

Return Values
Returns an HRESULT value. The default implementation returns NOERROR.
Remarks

Override this member function to check for required connection interfaces on the pReceivePin
parameter or its filter. Failing this member function fails the connection and disconnects the
other pin. The CBaseQutputPin class overrides this member function to establish a local
memory transport.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

1282

CBasePin Class Page 10 of 31

" previous | Home | Topio Contents | index | Hext |

CBasePin::Connect

BasePin CI
Initiates a connection from this pin to the other pin.

HRESULT Connect(
IPin * pReceivePin,
const AM_MEDIA_TYPE *omt
)

Parameters

pReceivePin
Input pin to connect to.
pmt
Optional media type parameter.

Return Values

Returns one of the following arguments by default; if overridden, should return standard

HRESULT values.

Value Meaning

VFW_E ALREADY CONNECTED This output pin is already connected to ancther pin.

VEW_E NOT STOPPED The filter graph is not in a stopped state and connection can't
be performed.

Other error value Returned from CBasePin::AgreeMediaType or
CBasePin: :CheckConnect or overridden versions of these
member functions.

Remarks

This member function implements the IPin::Connect method. IPin::Connect is implemented
on the output pin and calls the [Pin::ReceiveConnection method for the connected input pin
{implemented in the base classes as CBasePin: :ReceiveConnection). This member function
calls the virtual CBasePin::CheckConnect member function, which can be overridden to verify
that the connection is possible. CBasePin::CheckConnect then calls

CBasePin: :AgreeMediaType to negotiate a common media type with the connected pin.

CRasePin: :AgreeMediaType calls CBasePin:: TryMediaTypes twice; once for this pin's media

type enumerator and once for the receiving pin's media type enumerator. For each media type

found, CBasePin: :AttemptConnection is called, which in turn calls the receiving pin's
IPin::ReceiveConnection method, and finally CBasePin::Compl nn if successful.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

1283

CBasePin Class Page 11 of 31

" prerious | ome | Topic Contents] index | Hext
" Prerious | Home | Topic Contents] index | Hext

CBasePin::ConnectedTo

CBasePin Class

Retrieves a pointer to the connected pin, if there is one.
HRESULT ConnectedTo{

IPin ** ppPin

);

Parameters

PpPIin
IPin interface of the other pin (if any) to which this pin is connected.

Return Values

The base class returns S OK if connected; otherwise, returns VFW_E NOT CONNECTED.

Remarks

This member function implements the IPin::ConnectedTo method. It adds a reference to the
connected IPin interface by calling the IUnknown::AddRef method, because each copy of an
interface pointer has its reference incremented. The calling application is responsible for calling
IUnknown::Release on this interface when done with it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | ome | topie Contente | niex | wext |

CBasePin::ConnectionMediaType

CBasePin Class

Retrieves the media type associated with the current connection of the pin.

HRESULT ConnectionMediaTypel(
AM_MEDIA_TYPE *pmt

1284

CBasePin Class Page 12 of 31

);
Parameters
pmt

Pointer to an AM_MEDIA_TYPE structure. If the pin isn't connected, this structure is
initialized to zero. Otherwise, the media type is returned in this parameter.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IPin::ConnectionMediaType method. It returns a copy of

the AM_MEDIA TYPE structure that was negotiated for the pin connection when the pin was
connected.

This method fails if the pin is unconnected. The task allocator allocates the media type's format
block. Use the task allocator to free the format block, for example by calling the Microsoft
Win32 CoTaskMemFree function.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome | Topio Contents | imiex | ext

CBasePin::CurrentRate

BasePin CI

Retrieves the segment rate set by the CBasePin::NewSegment member function.

double CurrentRate();
Return Values

Returns the value of m_dRate.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] ndex | Hext

CBasePin::CurrentStartTime

1285

CBasePin Class Page 13 of 31

CBasePin Class

Retrieves the segment start time set by the CBasePin::NewSegment member function.
REFERENCE_TIME CurrentStartTime();
Return Values

Returns the value of m_tStart.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previoss | Home | Topic Contents | insex | Hext

CBasePin::CurrentStopTime

CBasePin Class

Retrieves the segment stop time set by the CBasePin::NewSegment member function.

REFERENCE_TIME CurrentStopTime();
Return Values

Returns the value of m tStop.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] index | Hext

CBasePin::Disconnect

BasePin Cl
Breaks a connection.
HRESULT Disconnect{void);
Return Values

Returns NOERROR if there is no connection.

1286

CBasePin Class Page 14 of 31

Remarks

This member function implements the IPin::Disconnect method. It calls the

CBasePin: :BreakConnect member function and releases the IPin interface of the connected pin
(held by m_Connected). There are no parameters because there is only one possible
connection on this pin.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contenta | niex | Wext |

CBasePin::DisplayPinInfo

CBasePin Class

Displays pin information during debugging.
vold DisplayPinInfo(

IPin *pReceivePin

);

Parameters

pReceivePin
Pointer to the receiving pin.

Return Values

Returns an HRESULT value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBasePin::DisplayTypelnfo

CBRasePin Class

Displays media type information during debugging.

void DisplayTypelnfo{
IPin *pPin,

1287

CBasePin Class Page 15 of 31

const CMediaType *omt
);

Parameters
pPin

Pointer to the pin's IPin interface.
pmt

Pointer to the media type object.
Return Values
No return value.

Remarks

This member function displays the major and minor media types of the specified media type
object.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBasePin::EndOfStream

IPin Interface

Informs the input pin that no additional data is expected until a new run command is issued.
HRESULT EndOfStream{void);

Return Values

Returns S_FALSE.

Remarks

This member function implements the IPin::EndOfStream method. This is intended for input
pins only.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | imiex | ext

1288

CBasePin Class Page 16 of 31

CBasePin::EnumMediaTypes

CBasePin Class

Provides an enumerator for this pin's preferred media types.
HRESULT EnumMediaTypes(

IEnumMediaTypes ** ppEnum

);

Parameters

PpEnum
Pointer to an enumerator for the media types.

Return Values
Returns an HRESULT value.
Remarks

This member function implements the IPin::EnumMediaTypes method. It returns an
enumerator object implemented by the CEnumMediaTypes class and obtains the

IEnumMediaT interface, which adds a reference count to this enumerator. If an application
receives an enumerator, the application must release this when done with it by calling
IUnknown::Release on the enumerator.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contenta | niex | Wext |

CBasePin::GetConnected

CBasePin Class

Retrieves the pin that is connected to this pin.
IPin * GetConnected();

Return Values

Returns a pointer to an IPin interface.
Remarks

The caller should call the CBasePin::IsConnected member function before calling

1289

CBasePin Class Page 17 of 31

CBasePin::GetConnected.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | miex | ext _

CBasePin::GetMediaType

CBRasePin Class

Retrieves the current type version, which is used by enumerators.

virtual HRESULT GetMediaType(
int iPosition,
const CMediaType *pMediaType
);

Parameters

iPosition
Position in the media type list.
pMediaType
Returned pointer to the media type at this position.

Return Values

Returns E_UNEXPECTED by default implementation; the overriding member function should
return one of the following values, or an HRESULT error value if the value could not be set.

Value Meaning

S FALSE Media type exists but is not currently usable.

S OK Media type was set.

VFW S NO MORE ITEMS End of the list of media types has been reached.

Remarks

This is a virtual member function that returns a media type corresponding to the position in
the list specified by the iPosition parameter. This base class simply returns an error because no
media types are supported by default. Derived classes should override this member function.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Content] index | Hext

1290

CBasePin Class Page 18 of 31

CBasePin::GetMediaTypeVersion

BasePin CI
Retrieves the current type version, which is used by enumerators.
virtual LONG GetMediaTypeVersion();
Return Values

Returns the value of m_TypeVersion by default. To return new media types, override this
member function.

Remarks

This is a virtual member function that returns the current media type version. The base class
initializes the media type enumerators to 1. A derived class can change the list of available
media types. Each time it does, it should increment the version in the overriding member
function. The media type enumerators call this member function when they are called to
determine if they are out of date.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contents | niex | Wext |

CBasePin::Inactive

CBasePin Class

Switches the pin to an inactive state.
virtual HRESULT Inactive{void);
Return Values

Returns NOERROR for a base class implementation. The overriding member function returns a
standard HRESULT value and should not fail if the pin is already set as inactive.

Remarks

This member function is called by the IMediaFilter implementation when the state changes to
inactive. This member function should be overridden to decommit allocators and free any
hardware resources that were obtained in the CBasePin: :Active call. The default
implementation of the base class member function does nothing.

1291

CBasePin Class Page 19 of 31

Note that the filter graph manager's internal state variable is not updated until after this
member function returns, so testing the filter graph manager's state (directly or indirectly)
from within this member function should be avoided.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previons | ome | Topio Contents | miex | ext

CBasePin::IncrementTypeVersion

BasePin Ci
Adds 1 to the current media type version.
void IncrementTypeVersion{void);
Return Values
No return value.
Remarks

The media type version is used to ensure that the filter has not changed the media type. If it
changes the media type, the filter should call this member function.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contents | niex | Wext |

CBasePin::IsConnected

CBasePin Class

Determines if the pin is connected to another pin.

BOOL IsConnected{void);

Return Values

Returns TRUE if the pin is connected; otherwise, returns FALSE.

Remarks

1292

CBasePin Class Page 20 of 31

This member function checks the value of the m Connected protected data member.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[previous | Home] Topie Contents | imiex | Wext |

CBasePin::IsStopped

BasePin CI
Determines if the filter is stopped.
BOOL IsStopped();
Return Values
Returns TRUE if the filter is stopped; otherwise, returns FALSE.
Remarks

Note that this member function must not be used in the constructor of the pin, because the
filter that is passed is often not initialized properly at that time (due to the convention of using
a this pointer during the construction of data members).

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topic Contenta | niex | Wext |

CBasePin::Name

CBasePin Class

Retrieves the name of the pin.
LPWSTR Name();
Return Values

Returns the value of the m pName data member.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1293

CBasePin Class Page 21 of 31

" previous | Home | Topio Contents | index | Hext |

CBasePin::NewSegment

BasePin CI

Specifies that samples following this call are grouped as a segment with a given start time,
stop time, and rate.

HRESULT NewSegment(
REFERENCE_TIME (Start,
REFERENCE_TIME (Stop,
double dRate

);
Parameters

tStart

Start time of the segment.
tStop

Stop time of the segment.
dRate

Rate of the segment.

Return Values
Returns an HRESULT value (S OK by default).
Remarks

This member function implements the IPin::NewSegment method. The default implementation
sets the m tStart, m tStop, and m dRate data members to the values passed in as
parameters. Overriding member functions should pass this notification downstream.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[previous | Home] topie Contents | iniex | Wext |
[Previous | ome] topic Gonients § imiex | Wext |

CBasePin::NonDelegatingAddRef

1294

CBasePin Class Page 22 of 31

CBasePin Class

Increments the reference count for an interface.
ULONG NonDelegatingAddRef();

Return Values

Returns the reference count of the object.
Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingAddRef
method. It increments the reference count of the owning filter.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext

CBasePin::NonDelegatingQuerylInterface

CRasePin Class

Retrieves an interface and increments the reference count.

HRESULT NonDelegatingQueryInterface(
REFIID riid,
void ** ppv

)
Parameters
riid
Reference identifier.
ppv

Pointer to the interface.
Return Values

Returns E POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E NOINTERFACE if it is not.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingQuerylInterface
method and passes out references to the IPin, IQualityControl, and IUnknown interfaces.
Override this class to return other interfaces on the object in the derived class.

1295

CBasePin Class Page 23 of 31

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | imiex § ext _

CBasePin::NonDelegatingRelease

CBRasePin Class

Decrements the reference count for an interface.
ULONG NonDelegatingRelease();

Return Values

Returns the reference count.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingRelease
method. It releases a reference to the owning filter.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | imiex | ext

CBasePin::Notify

BasePin ClI
Notifies the recipient that a quality change is requested.

HRESULT Notify(
IBaseFilter * pSelf,
Quality g
);

Parameters
pSelf

Pointer to the filter that is sending the quality notification.

g
Quality notification structure.

1296

CBasePin Class Page 24 of 31

Return Values
The default base class implementation returns E_FAIL.
Remarks

This member function must be overridden to accept notifications. It is typically overridden to
implement this method on the output pin because quality-control messages are passed
upstream. The CTransformOutputPin: : Notify member function is one example of how this
member function is overridden to pass quality-control messages to the next filter upstream.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | ome | opio Contents | index | Hext

CBasePin::QueryAccept

B Pin CI
Determines whether the pin accepts the format type.
HRESULT QueryAccept(

const AM_MEDIA_TYPE* pmt

);

Parameters

pmt
Pointer to a proposed media type.

Return Values
Returns S TRUE if the format is accepted; otherwise, returns S FALSE.
Remarks

This member function implements the IPin::QueryAccept method. It simply calls the pure
virtual CBasePin::CheckMediaType member function, which the derived class must implement,
and maps any returned codes from CheckMediaType other than S OK to S FALSE.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex § ext

1297

CBasePin Class Page 25 of 31

CBasePin::QueryDirection

CBasePin Class

Retrieves the direction of the pin.
HRESULT QueryDirection(
PIN_DIRECTION* pPinDir
)i

Parameters

pPinDir
Pointer to a PIN DIRECTION structure to be filled in with the direction.

Return Values
Returns an HRESULT value.
Remarks

This member function implements the IPin::QueryBirection method. pPinDir will contain
PINDIR INPUT or PINDIR _OUTPUT. The same information is available through the
CBasePin: :QueryPinInfo member function, but this member function is more efficient.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home | topie Contenta | niex | Wext |

CBasePin::Queryld

CBasePin Class

Retrieves an identifier for the pin.
HRESULT QueryId(

LPWSTR * Id

);

Parameters

Id
Pin identifier.

Return Values

1298

CBasePin Class Page 26 of 31

Returns an HRESULT value.
Remarks
This member function implements the IPin::Queryld method. By default, this member function

uses the pin name in the CBasePin:.:m_pName data member, so implementing this member
function in your derived filter class is not normally required.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Prerious | Home | topic Contents] ndex | Hext

CBasePin::QueryInternalConnections

CBasePin Class

Provides an array of pointers to IPin objects. These are the pins to which this pin internally
connects.

HRESULT QueryInternalConnections(
IPin ** apPin,
ULONG * nPin

);
Parameters
apPin
Array of IPin pointers.
nPin
Upon input, indicates the number of channels; upon output, indicates the number of
pins.

Return Values

Returns one of the following HRESULT values.
Value Meaning
E FAIL Undetermined failure.

E NOTIMPL The filter graph manager interprets E NOTIMPL as meaning all input pins connect
to all output pins.

S FALSE Insufficient number of channels; returns no pins in apPin.

Remarks

This member function implements the IPin::QueryInternalConnections method but only to
return E_ NOTIMPL. Override this if you want to provide mapping between specific input and
output pins.

1299

CBasePin Class Page 27 of 31

The default implementation to return E_ NOTIMPL implies that the caller can assume that all
input pins feed all output pins. Overriding this member function allows a filter to specify when
it is a renderer for some of its input pins and not for others.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[previous | Home] topic Contents | imiex | Wext |
[Previous | ome] topic Gonients | imiex | Wext |

CBasePin::QueryPinInfo

CBasePin Class

Retrieves information about the pin.

HRESULT QueryPinInfo(
PIN_INFO * pinfo
)i

Parameters

plInfo
Pointer to a PIN INFO structure.

Return Values
Returns an HRESULT wvalue.
Remarks

This member function implements the IPin::QueryPinInfo method. By default, the member
function fills in the PIN_INFO structure with the IBaseFilter interface of its owning filter, the
pin name from m_pName, and the pin direction from m_dir.

The IBaseFilter interface passed out by this member function is reference counted, and so
must be released when the caller has finished with it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Pretious | Home | Topic Contents] index | Hext

CBasePin::ReceiveConnection

1300

CBasePin Class Page 28 of 31

CBasePin Class

Makes a connection to the calling output pin.

HRESULT ReceiveConnection(
IPin * pConnector,
AM_MEDIA_TYPE *omt
);

Parameters

pConnector
Connecting pin.
pmt
Media type of the samples to be streamed.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IPin::ReceiveConnection method. It calls CheckConnect
and, if successful, then calls CheckMediaType to verify if the media type is acceptable. If either
of these calls fails, it calls BreakConnect and exits. To finish the connection process, it calls

CompleteConnect, which is implemented in CBasePin to return NOERROR, but can be
overridden in the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[pretious | Home | Topic Contents] index | Hext

CBasePin::Run

CBRasePin Class

Notifies the pin that the filter has changed state from paused to running.
HRESULT Run(

REFERENCE_TIME (Start

)

Parameters

tStart
Start time as passed to the filter's Run method.

1301

CBasePin Class Page 29 of 31

Return Values

Returns an HRESULT value (NOERROR_OK by default).

Remarks

This member function can be overridden in the derived class to perform activities such as

committing memory or obtaining resources. For an overriding implementation of this member
function, see the CRenderedInputPin::Run member function.

Note that the filter graph manager's internal state variable is not updated until after this
member function returns, so testing the filter graph manager's state (directly or indirectly)
from within this member function should be avoided.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext

CBasePin::SetMediaType

CBasePin Class

Sets the m mt data member to the established media type.

virtual HRESULT SetMediaType(
const CMediaType * pmt
);

Parameters

pmt
Pointer to a media type object that was previously agreed on.

Return Values

Returns NOERROR by default implementation. The overriding member functions return an
HRESULT value.

Remarks

This member function is called to establish the format for a pin connection. The

CRasePin: :CheckMediaType member function will have been called to check the connection
format and, if it did not return an error value, this virtual member function will be called. The
default implementation sets the m_mt protected data member to the value passed to this
member function. Override to inform the derived class when the media type is set.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1302

CBasePin Class Page 30 of 31

" previous | Home | Topio Contents | index | Hext |

CBasePin::SetSink

BasePin CI

Sets the object containing the IQualityControl interface that will receive quality-control
messages.

HRESULT SetSink(
IQualityControl *pigc
);

Parameters

pigc
Pointer to the IQualityControl interface to which the notifications should be sent.

Return Values

Base class returns NOERROR by default. The overriding member function should return an
HRESULT value.

Remarks

This member function implements the IQualityControl::SetSink method. The default
implementation sets the m pQSink data member to the piqc parameter passed in.

The 1 li ntrol: . ink method tells a filter where to send quality-control messages it
receives. When no sink has been explicitly set or if the last call to CBasePin::SetSink set the
sink to NULL, the message should go upstream. The derived output pin class typically overrides

CBasePin: :Notify to enable this.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Ussa.

previous | Home | topie Contenta | niex | Wext |

CBasePin::TryMediaTypes

CBasePin Class

Determines a media type for a pin connection.

1303

CBasePin Class Page 31 of 31

virtual HRESULT TryMediaTypes(
IPin *pReceivePin,
const CMediaType *omt,
IEnumMediaTypes *pEnum

);
Parameters

pReceiveFin
Pointer to the IPin interface of the receiving pin.
pmt
Pointer to a returned media type.
pEnum
Pointer to an IEnumMediaTypes enumerator interface.

Return Values

Returns an HRESULT value, which can include the following.

Value Meaning
FAILED Resetting of the enumerator failed.
NOERROR Media type found.

VFW E NO ACCEPTABLE TYPES No acceptable media types were found.

Remarks

Given an enumerator, this member function cycles through all the media types proposed by
the enumerator. Each type is suggested to the derived pin class and, if acceptable, is tried with
the connected pin in a call to the IPin::ReceiveConnection method. This means that if the
owning pin proposes a media type, it is still checked to determine whether it is supported. This
is deliberate so that, in simple cases, the enumerator can hold all the media types, even if
some of them are not currently available.

This member function is protected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

Previous | Home | Topic Contents | iniex | Hext

1304

CBasePropertyPage Class Page 1 of 18

[Previous | Viome | opio Contents | index | Hext |

CBasePropertyPage Class

(CBaseDbject ::)

| INonDelegatingUnknown |

J—(lZfUnlccm:nll.l.lln :)

| IPropertyPage |

J—(CBasePropertyPage)

Propearty pages can be implementad gn Bikers 10 peovide access 10 custom proparties on the
Fiter, This can be useful for deveigping and debugqing the fiter, because the Fiter Graph
Editor dispiays thase property nages. Aiso, the Microsoft® ActhveMovie Dontrgl quasies Fitars in
s ungerying Fitaer geanh e the orgparty oages they sunoort and expgses tham 1o the gser, &
qood exampie s the vide) renderar, wiich exposes quatty managemernt nformation (Such as
frarme rate} through a property page,

Thig Cigss orovidaes the Framew ekl Tor & pronecty oage associated with 3 Ritar aod implamants
the IPrgneryPade interface. & propemy nage is 3 Component Object Model (COM] object, which
shouig be cregted with g resource 1D For g digiog bow that will be naded whan regiired . T
shouiy 2ich ba givan g racduees 10D e 3 Like sheing whan creatad,

in gddition Lo implamenting the IPrgeertyPage interface methds, this class provides severat
wietetat mambar functions that tan be ovarvildan and speciatizad by the dervay class (Khay
eatiten NOERROR by defagit), These wirkuat member functions are catied 3t specific avents,
such as when the peonarty page g activated or deactivated, connectad o disconnectad, whan
the changes to oropertias are 10 be aoniiad, 08 whan messaqes i the dizgiog box are seoeived,

& Fiitar ownsing custom property nages shodld aikd expdse the same functionaiity to an
apnication thegun b @ custom intarface, Otherwise, an anplication Ras no way o contrgi thae
Fiitar without disniaying the oroparty 0ane, For sxampis, the vide) renderer sinngits the
IGuaiPron ntefacs 10 300855 the Same Quakity management information, In fact, tha rengerar
pEQnErty Bage Jses that inteface 1o get the infoemation Foe 5 neonerty bage, To make i
easiar For aonlications B0 200855 theie custom nterfacas Riters choid ais impiamant thaie
custorm interfaces in g pigg-in distrbgtor (PID}, which i an objedt that is aggregated with the
Fiker grah manager, Tynicalty, the PID implements 55 associated filter's interface by simply
eansing Cais thepugh fepem the gonbication 10 the Riter interface,

Protected Data Members

1305

CBasePropertyPage Class Page 2 of 18

Name Description

m_bDirty Flag to determine whether anything has changed.

m_DialogId Resource identifier for the dialog box.

m_Dlg Dialog box window handle for the property page.

m_hwnd Window handle for the property page.

m_pPageSite IPropertyPage interface pointer used to access the filter's property information.
m_Titleld Resource identifier for the property page title.

Member Functions
Name Description
CBasePropertyPage Constructs a CBasePropertyPage object.

Overridable Member Functions
Name Description

OnActivate Called when the property page is activated.
nApplyChan Called when the user applies changes to the property page.

nConn Called when the property page is connected to the filter.

nD iv Called when the property page is dismissed.
nbDisconn Called when the property page is disconnected from the owning filter.
OnReceiveMessage Called when a message is sent to the property page dialog box window.

Implemented INonDelegatingUnknown Methods
Name Description

NonDelegatingAddRef Default implementation increments the owning filter's reference
count.

NonDelegatingQuerylInterface Called to retrieve CBasePropertyPage interfaces. Override this

member function to pass out pointers to any interfaces added

by the derived class.

Default implementation decrements the owning filter's reference

count.

NonDelegatingRelease

Implemented IPropertyPage Methods

Name Description

Activate Creates a dialog box window for the property page.

Apply Applies current property page values to the underlying object.

Deactivate Destroys the window created with CBasePropertyPage: : Activate.

GetPagelnfo Returns information about the property page.

Help Invokes Help in response to user request.

IsPageDirty Indicates whether the property page has changed since activated or since
the most recent call to CBasePropertyPage:: Apply.

Move Positions and resizes the property page dialog box within the frame.

SetObjects

SetPageSite

Show

Provides the property page with an array of IUnknown pointers for
objects associated with this property page.

Initializes a property page and provides the page with a pointer to the
IPropertyPageSite interface through which the property page

communicates with the property frame.
Makes the property page dialog box visible or invisible.

1306

CBasePropertyPage Class Page 3 of 18

TranslateAccelerator Provides a pointer to an MSG structure that specifies a keystroke to
process.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topie Contents | iniex | Next _
[Previous | Home | Topic Contents | insex | Hext _

CBasePropertyPage::Activate

CBasePropertyPage Class

Creates the property page dialog box.

HRESULT Activate(
HWND hwndParent,
LPCRECT prect,
BOOL Modal

);
Parameters

hwndParent

Handle to the parent window of the dialog box.
prect

Pointer to the RECT structure that contains the dialog box's screen position.
fModal

Value that specifies a modal dialog box if TRUE, or a modeless dialog box if FALSE.

Return Values

Returns E_OUTOFMEMORY if the dialog box creation fails, or E_ UNEXPECTED if a property page
already exists.

Remarks
This member function implements the COM IPropertyPage: :Active method, which creates a

dialog box for the property page (without a frame, caption, system menu, or controls) using
hwndParent as the parent window and prect as the positioning rectangle.

The property page maintains the window handle created in this process, which it uses to
destroy the dialog box within CBasePropertyPage::Deactivate.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | imiex § ext

1307

CBasePropertyPage Class Page 4 of 18

" previous | Home | Topio Contents | index | Hext |

CBasePropertyPage::Apply

BasePropertyP [
Applies current property page values to the underlying object.
HRESULT Apply(void);
Return Values

Returns E_UNEXPECTED if CBasePropertyPage::SetObjects has not been called or if the
m_pPageSite data member has not been initialized with a pointer to the filter's property page.

Remarks

This member function implements the COM IPropertyPage::Apply method. The object to be
changed is provided through a previous call to CBasePropertyPage: :SetObjects. This should be
the filter's IUnknown interface. Therefore, this member function should not fail because of
nonexistent interfaces.

This member function sets the m_bDirty data member to FALSE and calls the virtual
CBasePropertyPage: :OnApplyChanges member function, which should be overridden in the
derived class to apply the changes to the properties.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | tome | Topie Contents | miex | ext _

CBasePropertyPage::CBasePropertyPage

CRasePropertyPage Class

Constructs a CBasePropertyPage object.

CBasePropertyPage(
TCHAR *pName,
LPUNKNOWN pUnk,
int Dialogld,
int Titleld
);

1308

CBasePropertyPage Class Page 5 of 18

Parameters

pName
Name of the property page object for debugging purposes.
pUnk
Pointer to the COM delegating object.
DialogId
Resource ID for the dialog box.
TitleId
Resource ID for the dialog box title.

Remarks
This constructor sets the CBasePropertyPage data members as follows:

m_Dialogld is set to Dialogld.
m_Titleld is set to Titleld.
m_hwnd is set to NULL.
m_Dlg is set to NULL.
m_pPageSite is set to NULL.
m_bDirty is set to FALSE.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topio Contents | miex | ext _
[Previous | Home | fopic Contents | intex | Hext

CBasePropertyPage::Deactivate

CBasePropertyPage Class

Destroys the window created with CBasePropertyPage: :Activate.
HRESULT Deactivate{void);

Return Values

Returns E_ UNEXPECTED if the data member m_hwnd does not contain a Window handle for
the property page.

Remarks

This member function implements the COM IPropertyPage::Deactivate method. It calls the
virtual CBasePropertyPage::OnDeactivate member function and then destroys the property
page dialog box.

1309

CBasePropertyPage Class Page 6 of 18

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | imiex § ext _

CBasePropertyPage::GetPagelnfo

CRasePropertyPage Class
Returns information about the property page.
HRESULT GetPagelInfo(
LPPROPPAGEINFO pPagelnfo
);

Parameters

pPagelnfo
Pointer to the caller-allocated PROPPAGEINFO structure in which the property page stores
its page information. All allocations stored in this structure become the caller's
responsibility.

Return Values
Returns E_ OUTOFMEMORY if the function cannot allocate memory for the property page title.
Remarks

This member function implements the COM IPropertyPage: :GetPagelnfo method. It calls the
GetDialogSize function to obtain the dialog box size and sets it to a default value in case this
call fails.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contente] index | Hext

CBasePropertyPage::Help

CRasePropertyPage Class
Invokes Help in response to user request.

HRESULT Help(

1310

CBasePropertyPage Class Page 7 of 18

LPCWSTR IpszHelpDir
)i

Parameters

IpszHelpDir
Pointer to the string under the HelpDir key in the property page's CLSID information in
the registry. If HelpDir does not exist, this will be the path found in the InProcServer32
entry minus the server file name.

Return Values

Returns E_NOTIMPL by default.

Remarks

This member function implements the COM IPropertyPage. Help method, but only as a
placeholder. The function does nothing but return E_ NOTIMPL.

Calls to this member function must occur between calls to CBasePropertyPage: :Activate and
CBasePropertyPage: :Deactivate.

If the page fails this member function (such as E_ NOTIMPL), the frame will attempt to use the
pszHelpFile and dwHelpContext fields of the PROPPAGEINFO structure obtained through

CBasePropertyPage: :GetPagelnfo. Therefore, the derived class should either implement
CBasePropertyPage::Help or return Help information through
CBasePropertyPage::GetPagelnfo.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contenta | niex | Wext |

CBasePropertyPage::IsPageDirty

CBasePropertyPage Class

Indicates whether the property page has changed since activated or since the most recent call
to CBasePropertyPage: :Apply.

HRESULT IsPageDirty(void);
Return Values

Returns S_OK if the value state of the property page is dirty, that is, it has changed and is
different from the state of the objects. Returns S_FALSE if the value state of the page has not
changed and is current with that of the objects.

Remarks

1311

CBasePropertyPage Class Page 8 of 18

This member function implements the COM IPropertyPage::IsPageDirty method. It returns the
value of the m bDirty data member.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | ome | Topie Contents | miex | ext

CBasePropertyPage::Move

BasePr rtyP |
Positions and resizes the property page dialog box within the frame.
HRESULT Move(
LPCRECT prect
);
Parameters
prect

Pointer to the RECT structure containing the positioning information for the property
page dialog box.

Return Values

Returns E UNEXPECTED if the m_hwnd data member does not contain a Window handle for
the property page.

Remarks
This member function implements the COM IPropertyPage::Move method by calling the

Microsoft® Win32® MoveWindow function. This member function is called from the
CBasePropertyPage: :Activate member function to position the property page dialog box.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | Home | Topio Contents | miex | ext

CBasePropertyPage::NonDelegatingAddRef

BasePropertyPage Cl

1312

CBasePropertyPage Class Page 9 of 18

Increments the reference count for an interface.
ULONG NonDelegatingAddRef();

Return Values

Returns the object's reference count.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingAddRef
method. It increments the owning filter's reference count.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | miex | ext _

CBasePropertyPage::NonDelegatingQuerylInterfa

CRasePropertyPage Class
Returns an interface and increments the reference count.
HRESULT NonDelegatingQueryInterface(

REFIID riid,
void ** ppv

);
Parameters
riid
Reference identifier.
ppv

Pointer to the interface.
Return Values

Returns E POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E NOINTERFACE if it is not.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingQuerylInterface
method and passes out references to the IPropertyPage interface. It then calls the
CUnknown::NonDelegatingQuerylInterface base class member function. Override this class to
return other interfaces on the object in the derived class.

1313

CBasePropertyPage Class Page 10 of 18

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | imiex § ext _

CBasePropertyPage::NonDelegatingRelease

CBasePropertyPage Class

Decrements the reference count for an interface.
ULONG NonDelegatingRelease();

Return Values

Returns the reference count.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingRelease
method. It releases a reference count to the owning filter.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | imiex | ext

CBasePropertyPage::OnActivate

BasePropertyP [
Called when the property page is activated.
virtual HRESULT OnActivate(void);
Return Values

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

Remarks

This member function is called from the CBasePropertyPage:: Activate member function to
notify the derived class when the property page is displayed. Override this member function to

1314

CBasePropertyPage Class Page 11 of 18

initialize values in the dialog box. This can be done by calling the Win32 SetDlgltemText
function with data member values previously initialized when the property page was connected
{in the overridden CBasePropertyPage: :OnConnect member function).

For example, the Vidprop.cpp file in the sample video renderer, SampVid, does this as follows:

// Set the text fields in the property page

HRESULT CQualityProperties: :OnActivate ()

SetEditFieldDbata () ;
return NOERROR;

// Initialize the property page fields

vold CQualityProperties: :SetEditFieldData()

}

ASSERT (m_pQualProp) ;
TCHAR buffer[50];

wsprintf (buffer, "$d", m_iDropped) ;

SendDlgIltemMessage (m_Dlg, IDD_QDROPPED, WM_SETTEXT, 0, (DWORD) (LPSTR) buffer);
wsprintf (buffer,"%d", m_iDrawn) ;

SendDlgItemMessage (m Dlg, IDD QDRAWN, WM _SETTEXT, O, (DWCRD) (LPSTR) buffer);
woprintf (buffer, "$d.%02d", m_iFrameRate/100, m iFrameRate%100} ;
SendDlgIltemMessage (m_Dlg, IDD_QAVGFRM, WM_SETTEXT, ©0, (DWORD)} (LPSTR} buffer);
wsprintf (buffer, "%d", m_iFrameJitter) ;

SendDlgItemMessage(m Dlg, IDD QJITTER, WM_SETTEXT, 0, (DWCORD) (LPSTR)} buffer);
wsprintf (buffer, "$d", m_iSyncavqg) ;

SendDlgItemMessage(m Dlg, IDD QSYNCAVG, WM _SETTEXT, 0, (DWORD} (LPSTR) buffer);
wsprintf (buffer, "$d", m_iSyncDev);

SendDlgItemMessage (m_Dlg, IDD_QSYNCDEV, WM _SETTEXT, 0, (DWORD) (LPSTR) buffer);

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | Home | fopic Contents | insex | ext

CBasePropertyPage::OnApplyChanges

CBasePropertyPage Class

Called when the user applies changes to the property page.

virtual HRESULT OnApplyChanges(void);

Return Values

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

1315

CBasePropertyPage Class Page 12 of 18

Remarks

Override this member function if your property page allows users to set property values. When
this member function is called, process the changed properties. For example, set appropriate
data members in the derived class to the new values, or call methods in the filter to set the
properties. The overriding member function is responsible for calling

CBasePropertyPage: :IsPageDirty to set the m_bDirty data member to TRUE if the properties in

the object do not reflect those in the property page when this member function exits.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contenta | niex | Wext |

CBasePropertyPage::OnConnect

CBasePropertyPage Class

Called when the property page is connected to the filter.

virtual HRESULT OnConnect(
IUnknown *pUnknown

);

Parameters

pUnknown
IUnknown interface of the filter associated with the property page.

Return Values

Returns NOERROR by default. The ogverriding member function should return a valid HRESULT
value.

Remarks

This member function is called from the CBasePropertyPage::SetObjects member function with
the pplnk parameter of that member function, which should be the filter's IUnknown interface.
Override this member function to acquire property values to be sent to the property page

dialog box later (in CBasePropertyPage: :OnActivate).

The following excerpt from the sample video renderer (SampVid) Vidprop.cpp file illustrates the
use of this member function.

// Give us the filter to communicate with

HRESULT CQualityProperties: :OnConnect (IUnknown *pUnknown)

{

1316

CBasePropertyPage Class Page 13 of 18

ASSERT (m_pQualProp == NULL) ;
// RAsk the renderer for its IQualProp interface

HRESULT hr = pUnknown->QueryInterface(IID IQualProp, (void **)&m pQualProp) ;
if (FATILED(hr)) {
return E NOINTERFACE;

ASSERT (m_pQualProp) ;
// Get gquality data for the page

m_pQualProp->get FramesDroppedInRenderer (&m_iDropped) ;
m_pQualProp->get FramesDrawn (&m_iDrawn) ;
m_pQualProp->get AvgFrameRate (&m_iFrameRate) ;
m_pQualProp->get Jitter (&m iFrameJitter) ;
m_pQualProp->get AvgSyncOffset (&m_iSyncavyg) ;
m_pQualProp->get DevSyncOffset (&m_iSyncDev) ;

return NOERROR;

}

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBasePropertyPage::OnDeactivate

CBasePropertyPage Class

Called when the property page is dismissed.
virtual HRESULT OnDeactivate{void);
Return Values

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

Remarks
This member function is called from the CBasePropertyPage::Deactivate member function

when the user closes the property page. Override this member function to handle any special
requirements at that time.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | imiex | ext

1317

CBasePropertyPage Class Page 14 of 18

CBasePropertyPage::OnDisconnect

CBasePropertyPage Class

Called when the property page is disconnected from the owning filter.
virtual HRESULT OnDisconnect{void);
Return Values

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

Remarks

This member function is called from the CBasePropertyPage::SetObjects member function
when the property page is disconnected from the filter. Override this member function to
handle any special requirements at that time, such as releasing reference counts on underlying
property interfaces.

The following example, from the Vidprop.cpp file in the sample video renderer, SampVid,
demonstrates an implementation of this member function in a derived class.

// Release any IQualProp interface we have
HRESULT CQualityProperties: :OnDisconnect ()}
// Release the interface
if (m pQualProp == NULL) {

return E _UNEXPECTED;

m_pQualProp->Release () ;
m_pQualProp = NULL;
return NOERRCR;

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Prerious | Home | topic Contents] index | Hext

CBasePropertyPage::OnReceiveMessage

CRasePropertyPage Class

Called when a message is sent to the property page dialog box.

1318

CBasePropertyPage Class Page 15 of 18

virtual BOOL OnReceiveMessage(
HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM /Param

);
Parameters

hwnd
Window procedure that received the message.

uMsg
Message.

wParam
Additional message information. This parameter's content depends on the value of the
uMsg parameter.

{Param
Additional message information. This parameter's content depends on the value of the
uMsg parameter.

Return Values

By default, returns the value returned by the Win32 DefWindowProc function.

Remarks

The default implementation of this member function calls DefWindowProc with the supplied
parameters. Override this member function for special handling of messages.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | insex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

CBasePropertyPage::SetObjects

CBasePropertyPage Class

Provides the property page with an IUnknown pointer for objects associated with this property
page.

HRESULT SetObjects(
ULONG cObjects,
LPUNKNOWN *popUnk

);

1319

CBasePropertyPage Class Page 16 of 18

Parameters

cObjects
Number of IUnknown pointers in the array pointed to by ppUnk. This number should be 1
or 0. If it is 0, the property page must release any pointers previously passed to this
method.

ppUnk
Pointer to a single IUnknown interface pointer identifying a unique object affected by the
property sheet in which this {and possibly other) property page is displayed. The
property page must cache this pointer by calling IUnknown: :AddRef.

Return Values
Returns E POINTER if ppUnk is null, E UNEXPECTED if cObjects is greater than 1, and

otherwise returns the value returned by the CBasePropertyPage: :OnConnect or
CBasePropertyPage: :OnDisconnect member function that it calls.

Remarks

This member function implements the COM IPropertyPage: :SetObjects method. This member
function calls the virtual CBasePropertyPage: :0OnConnect member function when the cObjects
value is 1, or the virtual CBasePropertyPage: :OnDisconnect member function when the
cObjects value is 0. Override these virtual member functions to acquire (by calling
IUnknown::AddRef) or release (by calling IUnknown: :Release) interfaces to which the property
page applies.

Note that the caller must provide the property page with this object before calling
CBasePropertyPage: :Activate, and should call CBasePropertyPage::SetObjects with O-v as
the parameter when deactivating the page or when releasing the object entirely.

This member function allows only one object to be associated with the property page.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents | iniex | Hext _

CBasePropertyPage::SetPageSite

CBasePropertyPage Class

Initializes a property page and provides the page with a pointer to the IPropertyPageSite
interface through which the property page communicates with the property frame.

HRESULT SetPageSite(

LPPROPERTYPAGESITE pPageSite
);

1320

CBasePropertyPage Class Page 17 of 18

Parameters
pPageSite
Pointer to the IPropertyPageSite interface of the page site that manages and provides

services to this property page within the entire property sheet.
Return Values

Returns E UNEXPECTED if if the m pPageSite data member has not been initialized with a
pointer to the filter's property page.

Remarks

This member function implements the COM IPropertyPage: :SetPageSite method. When passed
an IPropertyPageSite interface, it reference counts the interface and assigns it to m_pPageSite.
When passed a null value, it releases the reference count on the IPropertyPageSite
interface.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBasePropertyPage::Show

CRasePropertyPage Class
Makes the property page dialog box visible or invisible.
HRESULT Show(
UINT nCmdShow
)i
Parameters
nCmdShow
Command describing whether to become visible. Only SW_SHOWNORMAL, SW_SHOW,
and SW_HIDE are accepted.
Return Values
Returns E_ UNEXPECTED if the data member m_hwnd does not contain a Window handle for
the property page. Returns E_INVALIDARG if the nCmdShow parameter is not equal to
SW_SHOW or SW_ SHOWNORMAL (show) or SW HIDE (hide).

Remarks

If the page is made visible, the page should set the focus to itself, specifically to the first

1321

CBasePropertyPage Class Page 18 of 18

property on the page. This member function implements the COM IPropertyPage::Show
method. This is called just before exiting the CBasePropertyPage::Activate member function
with the nCmdShow SHOW NORMAL value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Prerious | Home | Topic Contents] index | Hext

CBasePropertyPage::TranslateAccelerator

CBasePropertyPage Class

Provides a pointer to an MSG structure that specifies a keystroke to process.
HRESULT TranslateAccelerator(

LPMSG /pMsg

);

Parameters

ipMsg
Pointer to the MSG structure describing the keystroke to process.

Return Values

Returns E NOTIMPL by default.

Remarks

This member function implements the COM IPropertyPage: :TranslateAccelerator method. Calls
to this member function must occur after a call to CBasePropertyPage::Activate and before the

corresponding call to CBasePropertyPage::Deactivate. Override this member function to
implement keyboard accelerators for the property page.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1322

CBaseEeferenceClock Class Page 10t 9

[Previous | Viome | opio Contents | index | Hext |

CBaseReferencellock Class

CEBaseDhject :::l

| IMonDelegatingUnknown |

J—(CUnknown :j
(_ CCritSec =

| IReferenceClock |

| g
REBaseReferenceEluck :)

This base class impiamarnts the IReforanceliock intarfacs,

The {BagaRefarancaellock ciass provides g Rl mplemantation of IReferanceCiook. It yses
Lo Sec iocking sunport and CAMScheduie schaeduiar Sunport,

Each advise Call dafines g point in time whan the caiier wants to be notifiad, A Seriedic advise
£ @ regiiae ceres OF sgch avants, & Bt OF these advice raguests s maintainad by tha
cefaranie CHOCK, The CIO0R Caiciiates the daeiay gnbil the Fiegt raguasted advise, and signals an
event af the dys time,

Chants are not advised theough calibacks, One-shot cllents have an event set, whie periglic
chiants have 3 semanhora retaased e aach evant, nobification. & samaphire giiows a cliant to
Rrgw exackly how many events were aoiuaily trggerad, baecause miiticta Time perQds might
aiange before the cient cogde execytes,

Direing CIass construction, a worker thread is created, This thread axecutes 3 series of
Microsoft® Wind2®& WadForfingteObiedt calls, waking up when a commang is given to the
theead oF the next wake-un noing is reached. The wake-un ooints are detevminged by clients
making aovise Catis,

Frotacted Data Mambars

m__pSchedule Pointer to the CaMScheddie object associated with this {2aseRefarenceliock
objedt,

Marbar Functiong

Mame Dagcription
LBaseRaforancaliook Constructs 2 CBaseRoferancallionk ohject,
Letoohediio Retirng the CAMSchediie pointer stored in the
LBaseReforenceliook im pScheduis data mamber,
TimaDat Afjusts the wvalges retgened from LBaseReferenceliook: (GatPrivataTimne

By the @mgunt specified in this mamber Rnction,

1323

CBasceReferenceClock Class Page 2 of 9

TriggerThread Triggers the advise thread's event. If you override

CBaseReferenceClock: :GetPrivateTime, you should either reuse or
abandon this method.

Implemented IReferenceClock Methods

Name Description

AdvisePeriodic Requests an asynchronous periodic notification that a time has elapsed.
AdviseTime Requests an asynchronous notification that a time has elapsed.
GetTime Returns a reference time.

Unadvise Removes a previously established advise link.

Overridable Member Functions
Name Description

GetPrivateTime Gets the current time from the real clock. Override this member function to
implement your own clock.

Implemented INonDelegatingUnknown Methods

Name Description
NonDelegatingQueryvInterface Returns a pointer to interfaces supported, that is,
IReferen lock.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | ome | Topio Contents | miex | hext _
[Previoss | Home | Topic Contents | intex | Hext _

CBaseReferenceClock::AdvisePeriodic

CBaseReferenceClock Class

Sets up a recurring advise with the reference clock.

HRESULT AdvisePeriodic(
REFERENCE_TIME StartTime,
REFERENCE_TIME PeriodTime,
HSEMAPHORE hSemaphore,
DWORD *pdwAdviseToken

)
Parameters

StartTime

Start at this time.
PeriodTime

Time between notifications.

1324

CBasceReferenceClock Class Page 3 of 9

hSemaphore
Advise through a semaphore.
pdwAdviseToken
Advise token that identifies the link with the clock.

Return Values

Returns one of the following HRESULT values:
Value Meaning

E OUTOFMEMORY Failure.

E INVALIDARG Inwvalid argument.
NOERROR No error.

Remarks

This member function implements the IReferenceClock::AdvisePeriodic method. A semaphore
is used, rather than an event, to ensure that multiple notifications can be seen by the user.
Each time an amount of time specified in the PeriodTime parameter elapses, the semaphore
will be released.

When no further notifications are required, call CBaseReferenceClock: :Unadvise and pass the
pdwAdviseToken value returned from this call.

For example, the following code extract sets up an advise link that fires its first advise five
seconds from now and then signals every second until Unadvise is called. By using a
semaphore with a count of 10, the clock is effectively able to cache 10 events.

HANDLE hSemaphore = CreateSemaphore (NULL, 0, 10, NULL) ;
// assume pRefClock is an IReferenceClock* variable

REFERENCE TIME rtPeriocdTime = 1000 * (UNITS / MILLISECONDS) ;
// a one-second interval

REFERENCE_TIME rtNow;

DWORD dwAdviseToken;

pRefClock->GetTime (&rtNow) ;

pRefClock->AdvisePeriodic (rtNow+ (5*rtPeriodTime) ,
PeriodTime, hSemaphore, &dwAdviseToken) ;

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Prerious | Home | Topic Contents] index | Hext
[Previons | Home | Topic Content] index | Hext

CBaseReferenceClock::AdviseTime

B Referen lock Ci

1325

CBasceReferenceClock Class Page 4 of 9

Sets up a one-shot notification with the clock.

HRESULT AdviseTime(
REFERENCE_TIME baseTime,
REFERENCE_TIME streamTime,
HEVENT hEvent,

DWORD *pdwAdviseToken
);

Parameters

baseTime

Base reference time.
streamTime

Stream offset time.
hEvent

Advise through this event.
pawAdviseToken

Where the advise token goes.

Return Values

Returns one of the following HRESULT values:
Value Meaning
E_OUTOFMEMORY Failure.

E INVALIDARG Invalid argument.
NOERROR No error.

Remarks

This member function implements the IReferenceClock::AdviseTime method. At the time
specified in the baseTime plus the streamTime parameters, the event specified in hEvent will
be set. It is correct to call CBaseReferenceClock: :Unadvise to remove the link after the event
has occurred, but it is not necessary. One-shot notifications are automatically cleared by the
clock once they have signaled.

To cancel a one-shot notification before the time is reached, call Unadvise and pass the
pdwAdviseToken value returned from this call.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[pretious | Home | Topic Contents] index | Hext
[Previons | Home | Topic Content] index | Hext

CBaseReferenceClock::CBaseReferenceClock

1326

CBasceReferenceClock Class Page 5 0f 9

CBaseReferenceClock Class

Constructs a CBaseReferenceClock object.

CBaseReferenceClock({
TCHAR *pName,
LPUNKNOWN plink,
HRESULT *phr,
CAMSchedule * pSched
);

Parameters
pName

Name of the CBaseReferenceClock object.
pUnk

IUnknown interface of the delegating object.
phr

Address of an HRESULT value.
pSched

Address of a CAMSchedule object that will be associated with this CBaseReferenceClock
object. If pSched is NULL, the constructor creates a new CAMSchedule object and
associates it with this CBaseReferenceClock object.

Return Values

No return value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | insex | Hext
[Previous | Home | Topic Contents | iniex | Hext _

CBaseReferenceClock::GetPrivateTime

CBaseReferenceClock Class

Retrieves the current reference time.
virtual REFERENCE_TIME GetPrivateTime();
Return Values

Returns the current reference time, in 100-nanosecond units.

1327

CBasceReferenceClock Class Page 6 of 9

Remarks

GetPrivateTime represents the actual clock. GetTime is the externally used member function.
Derived classes will probably override this method, but not GetTime itself. The important point
about GetPrivateTime is that it is allowed to go backward. This class's GetTime member
function will keep returning the last time returned by GetTime until GetPrivateTime catches
up.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contente | niex | Wext |

CBaseReferenceClock::GetSchedule

CBaseReferenceClock Class

Retrieves the CAMSchedule pointer stored in the CBaseReferenceClock::m pSchedule data
member.

CAMSchedule * GetSchedule();

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contenta | niex | Wext |

CBaseReferenceClock::GetTime

CBaseReferenceClock Class

Retrieves the current reference time, in 100-nanosecond units.
HRESULT GetTime(

REFERENCE_TIME *pTime

)i

Parameters

pTime
Where the current time is returned.

Return Values

1328

CBasceReferenceClock Class Page 7 of 9

Returns one of the following HRESULT values:
Value Meaning

E POINTER NULL pointer argument.

S_FALSE Failure.

S OK Success.

Remarks

This member function implements the IReferenceClock::GetTime method. It reads the time
from the implemented clock and returns the current time.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,
[iome | [ndex | next |

" previous | Home | opio Contents | ndex | Hext |

CBaseReferenceClock::NonDelegatingQueryInteri

BaseReferen lock Cl
Accesses supported interfaces.

HRESULT NonDelegatingQueryInterface(
REFIID riid,
vold ** ppy

);
Parameters

riid
IID of the interface being requested. Only IID IReferenceClock is supported by the clock
interface.

ppv
Where the IReferenceClock pointer is returned.

Return Values

Returns E POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E NOINTERFACE if it is not.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryInterface
method.

1329

CBasceReferenceClock Class Page 8 of 9

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | imiex § ext _

CBaseReferenceClock::SetTimeDelta

CBaseReferenceClock Class

Sets a delta on the time that CBaseReferenceClock: :GetPrivateTime will return.
HRESULT SetTimeDelta(

const REFERENCE_TIME®& TimeDelta

);

Parameters

TimeDelta
REFERENCE TIME delta to be added.

Return Values
Returns NOERROR.
Remarks

Note that CBaseReferenceClock: :GetTime will never return a time earlier than a previously
returned time. Thus, if you set the clock to a time in the past, successive calls to
CBaseReferenceClock::GetTime will return the current value until this new time is reached,
and the clock will start to increment again.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBaseReferenceClock::TriggerThread

CBaseReferenceClock Class

Triggers the advise thread's event.

void TriggerThread();

1330

CBasceReferenceClock Class Page 9 of 9

Return Values
No return value.
Remarks

The clock uses a worker thread that should wake up and call CAMSchedule::Advise at the
appropriate time. If the clock adds an event that should be fired earlier than any currently
outstanding event, the worker thread needs to be awoken in order to reevaluate its wait time.
The TriggerThread member function will wake up the worker thread so this can take place. If
a derived clock causes time to jump forward for some reason, TriggerThread should be called
so that the wait time can be reevaluated; otherwise, the events will fire late.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | opio Contents | index | Hext |

CBaseReferenceClock::Unadvise

BaseReferen lock ClI
Removes a previously established advise link.

HRESULT Unadvise(
DWORD dwAdviseToken

);
Parameters
dwAdviseToken

Identifier (token) of the link that is being reset. This is the same value that was returned
on CBaseReferenceClock: : AdviseTime or CBaseReferenceClock: :AdvisePeriodic.

Return Values

Returns S_OK if the successful, S FALSE if not.

Remarks

This member function implements the IReferenceClock::Unadvise method. Call Unadvise to
remove the previously established clock advise links. It is mandatory to call Unadvise on

periodic advises in order to stop further calls. It is recommended to call Unadvise for single-
shot advise links.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

1331

CBaseEenderer Class Page 1 of 41

[Previous | Viome | opio Contents | index | Hext |

CBaseRenderer Class

(EBaseDhject ::)

| IMonDelegatingUnknown |

J—(CUnknown :j

| IAMovieSetup |

| IMediaFilter |
| IIE..EuseFiH:er' |

| { CBaseFilter :)

I—C CBaseRenderer :)

{CBasaeReardarar is the base renderer Ciass For weiking renderers, THIS class handies g single
enitt pin, i state changes, and synchegnizgtion.

Protected Data Members

Mame Dagoription
e lrAksert Ston rendering data,
me BEGS ingdicator For whether thers are more sampies in the stragm,

i BEQSDaliverad Ingicator for whether an £0 COMPLETE event has bean deiiversd,
r:__bRepaintStatus Fiaq to determing if an B0 REPAINT message Can be signaied.

ry_ bStraarming ingdicgtor For whaether the Riter graoh 5 cureentiy streaming.,

m_dwadvige Timaer advise tokan ratipnad by the Ciook,

r:_EndOfStraamTimer Time that specifies the end of the stream.

rrs_enrCornplate Svent signaied when the nause siate i compiata,

r:_Irterfacelock Criticat sackion for intedaces,

m:_pInputPin Renderar inpgt nin object,

r:__pdtediaSample Currant media sampie about o be, g being rendered,

e [Position CRengerarPosPassThey OBject For passing positigning data unsiream,

s aSink Crratity contegi sink,

m:_Rendaerariock Controiiar For 300855 1o cirrant madia sampio,

m_ RearsderEvarst tised 0 signat Eimer evants,

s SigralTime Armgunt oF time that must slasse before (RaseRenderar retirnsg
B, COMPLETE,

rs ThreadSignal Evant signated B release the squrce fitar thraad,

Marnbar Functicns

13352

CBaseRenderer Class

Name
Active

CBaseRenderer

CheckReady
DisplayRendererState

GetRealState
GetRenderEvent
IsEndOfStream

Page 2 of 41

Description

Called when the state is switched to paused or running. Override to
add functionality.

Constructs a CBaseRenderer object.
Determines if the event is set.

Displays the status of the video renderer. This function is available
only in debug mode.

Retrieves the actual state of the renderer.
Retrieves the event to render.
Determines if the end of the stream has been reached.

IsEndOfStreambDelivered Determines if the end of the stream has been deliverad to the filter

IsStreaming
NotifyEndOfStream
NotReady

Ready

graph manager.

Determines if the filter is currently rendering data.

Sends an EC_COMPLETE event to the filter graph manager.
Forces the m_evComplete event into a nonsignaled state.
Puts the m evComplete event into a signaled state.

ResetEndOfStreamTimer Sets the end of stream timer to zero.

ScheduleSample
SendNotifyWindow
SendRepaint
SetAbortSignal
SetRepaintStatus
SignalTimerFired
TimerCallback

Sets up an advise link with the clock.

Passes the notification window handle to the upstream filter.
Conditionally signals an EC_REPAINT message to the filter graph.
Sets the abort signal flag.

Resets the repaint status flag.

Resets the current advise time to zero after a timer fires.

Checks if it is time to signal the end of the current data stream.

Overridable Member Functions

Name

BeginFlush
BreakConnect

CancelNotification
CheckMediaType
ClearPendingSample
CompleteConnect

CompleteStateChange

DoRenderSample
GetCurrentSample
GetPin
GetPinCount
EndFlush
EndOfStream

Description
Signals the start of flushing on the input pin.

Breaks the input pin connection and resets the end-of-stream
flags.

Cancels any currently scheduled notification with the clock.
Determines if the renderer will accept a given media type.
Called to release the pending sample after it has been rendered.

Called as part of the connection protocol. Override to add
functicnality.

Ensures that a sample is waiting before allowing a pause.
Called when a sample is ready to render.

Retrieves the current sample waiting at the video renderer.
Returns a CBasePin object to the renderer.

Returns the number of input pins supported.

Called when the input pin receives an end-flush notification.

Called when the input pin receives an end-of-stream
notification.

GetMediaPositionInterface Retrieves IMediaPosition and IMediaSeeking interfaces for the

GetSampleTimes

video renderer.
Retrieves sample time information for this sample.

1333

CBaseRenderer Class Page 3 of 41

Hawv rrentSampl Determines if a sample is waiting at the renderer.
Inactiv Called when going into a stopped state. Override to add
functionality.
NonDelegatingQuerylInterface Returns an interface and increments the reference count.
nReceiveFir mpl Provides derived classes with an opportunity to render static
data.
nRenderEn Notifies the derived class that a sample has just finished
rendering.
nRenderStar Notifies the derived class that a sample is about to be rendered.
nStartStreamin Notifies the derived class that rendering has started.
n reamin Notifies the derived class that rendering has stopped.
OnWaitEnd Notifies the derived class that a wait for a rendering time has
just ended.
OnWaitStart Notifies the derived class that a wait for a rendering time is
about to start.
Pause Tells the renderer to transition to the new (paused) state.
PrepareReceiv Called to schedule a clock time when the renderer receives a
sample.
Pr reRender Allows derived classes to set themselves just before a sample is
rendered.
Receive Called by the source filter when a sample is available to render.
Render Asks the derived class to render the sample.
ResetEndOfStream Resets the end-of-stream flag.
Run Transitions the renderer to State Running if it is not already in
this state.
ndEndOfStream Sets the end-of-stream flag.
SetMediaType Informs the derived class of the selected media type.
ShouldDrawSampleNow Determines if the sample should be drawn between the start
and stop times given.
SourceThreadCanWait Sets or resets the thread event.
rtStreamin Called to schedule any pending sample with the clock, and to
display any timing information.
Stop Tells the renderer to transition to the new (stopped) state.
StopStreaming Sets an internal flag to indicate not to schedule arrival of any
more samples.
WaitForRenderTime Waits for either the time to arrive or for rendering to be
stopped.

Implemented IMediaFilter Methods
Name Description
GetState Determines the state of the renderer.

Implemented IBaseFilter Methods
Name Description

FindPin Retrieves a pointer to the pin with the specified identifier. (There is only one pin.)

Helper Function

1334

CBaseRenderer Class Page 4 of 41

Name Description
WaitForReceiveToComplete Waits for the CBaseRenderer: :Receive method to complete.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Prerious | Home | Topic Contents] ndex | Hext
Previous | Home | Topic Content] ndex | Hext

CBaseRenderer::Active

BaseRenderer Cl
Called when the state is switched to paused or running.
virtual HRESULT Active({void);
Return Values
Returns an HRESULT value. Returns NOERROR by default.
Remarks

This member function does nothing by default. Derived classes can optionally override this
member function to add functionality.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[previous | Home | Topic Contents | iniex | Hext

CBaseRenderer::BeginFlush

CBaseRenderer Class

Informs the renderer that flushing has started.
virtual HRESULT BeginFlush{void);
Return Values

Returns an HRESULT value.

1335

CBaseRenderer Class Page 5 of 41

Remarks

This member function is called by CRendererInputPin::BeginFlush when informed of a flush
from the upstream filter. It releases the source thread and signals the start of flushing on the
input pin. Any samples received by the renderer when it is in a flushing state will be rejected.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | topie Contents | niex | Wext |

CBaseRenderer::BreakConnect

CBaseRenderer Class

Called when a connection is broken.
virtual HRESULT BreakConnect{void);
Return Values

Returns an HRESULT value.

Remarks

This member function resets the end-of-stream flag and checks for a valid connection, or that
the filter is in a stopped state. Override to customize.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Previous | Home | Topie Contents | miex | ext

CBaseRenderer::CancelNotification

CBaseRenderer Class

Cancels any currently scheduled notification.
virtual HRESULT CancelNotification{void);
Return Values

Returns an HRESULT value.

1336

CBaseRenderer Class Page 6 of 41

Remarks

This member function is called when the renderer is told to stop streaming. If there is no timer
link outstanding, calling this member function does nothing; otherwise, this function stops the
advise link and resets the render event. The normal process when running is to receive a
sample, wait until it is time to render it and then render it. The clock is given an event to
signal when the desired time arrives.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contente | niex | Wext |

CBaseRenderer::CBaseRenderer

CBaseRenderer Class

Constructs a CBaseRenderer object.

CBaseRenderer(
REFCLSID RenderClass,
TCHAR *pName,
LPUNKNOWN pUnk,
HRESULT *phr

);
Parameters

RenderClass

Class identifier for this renderer.
pName

Name used for debugging purposes.
plUnk

Owner object.
phr

Pointer to the HRESULT return code.

Return Values

No return value.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Pretious | Home | Topic Contents] index | Hext
[Previous | Home | Topic Content] index | Hext

1337

CBaseRenderer Class Page 7 of 41

CBaseRenderer::CheckMediaType

BaseRenderer Cl
Determines if the renderer will accept a given media type.

virtual HRESULT CheckMediaType(
const CMediaType * pmt
) PURE;

Parameters

pmt
Pointer to a media type object that contains the proposed media type.

Return Values
Returns an HRESULT value.
Remarks

This member function must be overridden and implemented, typically to return the media type
of the display. It is called from the CRendererInputPin::CheckMediaType member function
during the connection process.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | Home | Topio Contents | miex § ext

CBaseRenderer::CheckReady

BaseRenderer Cl
Determines if the renderer is ready to process the next sample.
BOOL CheckReady({void);
Return Values

Returns TRUE if the m_evComplete event is currently set, but does not block.

Remarks

This member function calls the CAMEvent: :Check member function. This is mainly used in

1338

CBaseRenderer Class Page 8 of 41

transitioning to paused states. When a renderer is paused, it should not complete the state
change until it has received some data. So although the call to IMediaFilter::Pause completes
immediately, if the application calls IMediaFilter: :GetState it will return

VFW S STATE INTERMEDIATE. When a sample arrives at the renderer, the event that is
initially reset during the pause call will be signaled. At this point, an application calling
IMediaFilter::GetState will return NOERROR. This process allows an application to pause a
filter graph and then wait until data is actually queued and ready to be rendered.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Prerious | Home | Topic Contents] index | Hext

CBaseRenderer::ClearPendingSample

CBaseRenderer Class

Called to clear the pending sample when in a stopped or inactivated state.
virtual HRESULT ClearPendingSample{void);

Return Values

Returns an HRESULT value.

Remarks

This member function releases the IMediaSample interface. This allows the allocator to reuse it
and allocate it to the upstream filter again. If the state is being changed to inactive,
IMemAllocator: : GetBuffer will return an error. This function also resets the current media
sample to NULL to indicate that no data is now available.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

" previous | Home | opio Contents | ndex | ext |

CBaseRenderer::CompleteConnect

BaseRenderer Cl
Called as part of the connection protocol.
virtual HRESULT CompleteConnect(
IPin *pReceivePin

);

1339

CBaseRenderer Class Page 9 of 41

Parameters

pReceiveFin
Connecting pin.

Return Values
Returns an HRESULT value (NOERROR by default).
Remarks

This member function calls the SetRepaintStatus member function to set the
m_bRepaintStatus data member to TRUE so that EC_REPAINT notifications can be sent in the
future. (To prevent unnecessary EC REPAINT notifications from being sent,
m_bRepaintStatus is set to FALSE when an end-of-stream notification arrives.)

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBaseRenderer::CompleteStateChange

CBaseRenderer Class

Ensures that a sample is waiting before allowing a pause.
virtual HRESULT CompleteStateChange(
FILTER_STATE OfdState
);

Parameters

OfldState
State prior to the transition.

Return Values

Returns S_OK if the filter can be paused; otherwise, returns S_FALSE.

Remarks

This member function is called from the CBaseRenderer::Pause member function. If the filter is
being paused and there is no sample waiting, the transition is not completed and the function
returns S FALSE until the first sample arrives. However, if the m_bAbort flag has been set, all

samples are rejected so there is no point waiting for one. If a sample is available, this member
function returns NOERROR.

1340

CBaseRenderer Class Page 10 of 41

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topie Contents | imiex § ext _

CBaseRenderer::DisplayRendererState

CBaseRenderer Class

Displays the status of the video renderer. This function is available only in debug mode.
void CBaseRenderer;:DisplayRendererState();

Return Values

No return value.

Remarks

Use this function to monitor the activity of the video renderer. The following is a sample output
of this function.

Timed out in WailtForRenderTime
Signal sanity check 0
Filter state 1

Abort flag 0

Streaming flag ©

Clock advise link 0

Current media sample 0

E0S8 signalled 0

EOS delivered 0

Repaint status 1

End of stream timer 0
Deliver time 0x000000000
Flushing sanity check 0
Last run time 0x000000000
Clock time 0x22C2CD23430
Time difference 238875379ms

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previoss | ome | Topio Contents | miex | ext

CBaseRenderer::DoRenderSample

1341

CBaseRenderer Class Page 11 of 41

CBaseRenderer Class

Called when a sample is ready to render.
virtual HRESULT DoRenderSample(
IMediaSample *pMediaSample
) PURE;

Parameters

pMediaSample
Media sample.

Return Values
Returns an HRESULT value.
Remarks

This member function must be overridden in the derived class. It is called by
CBaseRenderer: :Render.

The derived class should render the object at this time. For example, the sample video
renderer (SAMPVID) calls its drawing object {(a CDrawlmage object):

// Have the drawing object render the current image

HRESULT CVidecRenderer: :DoRenderSample (IMediaSample *pMediaSample}

{
}

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topic Contents | iniex | Hext

return m_DrawImage.DrawlImage (pMediaSample) ;

CBaseRenderer::EndFlush

CBaseRenderer Class

Called when the input pin receives an end-flush notification.
virtual HRESULT EndFlush(void);
Return Values

Returns an HRESULT value.

1342

CBaseRenderer Class Page 12 of 41

Remarks

This member function is called from the CRendererInputPin::EndFlush member function. It
calls CBaseRenderer:: rceThr nWait with a TRUE value to allow the upstream filter's
thread to wait in CBaseRenderer::Receive again.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | topie Contents | niex | Wext |

CBaseRenderer::EndOfStream

CBaseRenderer Class

Called when the input pin receives an end-of-stream notification.

HRESULT EndOfStream(void);

Return Values

Returns an HRESULT value.

Remarks

If all received samples have been rendered, this member function notifies EC COMPLETE. If
samples have been received and not vet rendered, this function sets m_bEOS and checks for it

on completing samples. If the filter is waiting to be paused, this function completes the
transition to paused state by setting the state event.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBaseRenderer::FindPin

CBaseRenderer Class

Retrieves a pointer to the pin with the specified identifier.
HRESULT FindPin(

LPCWSTR Id,
IPin **ppPin

1343

CBaseRenderer Class Page 13 of 41

);
Parameters

Id
Identifier of the pin.
PpPIin

Pointer to the IPin interface for this pin after the renderer has been restored.
Return Values
Returns NOERROR if successful; otherwise, returns VFW_E NOT FOUND.
Remarks
This member function implements the IBaseFilter. :FindPin method. It assumes that the default

pin name is "In" and checks for this. If the pin is found, its reference count is incremented.
The ppPin parameter is set to NULL if the identifier cannot be matched.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext _

CBaseRenderer::GetCurrentSample

CBaseRenderer Class

Retrieves the current sample waiting at the video renderer, or NULL if there is not one.
virtual IMediaSample *GetCurrentSample{void);

Return Values

Returns a pointer to the sample.

Remarks

The reference count for the sample is incremented before returning. This is so that if the
sample comes due for rendering, it is not added back to the allocator free list until the caller of
this member function releases it.

£ 1997 Microsoft Corporation. All rights reserved. Terrms of Use.

[Previous | ome | Topio Contents | miex § ext

1344

CBaseRenderer Class Page 14 of 41

CBaseRenderer::GetMediaPositionInterface

CBaseRenderer Class

Retrieves IMediaPosition and IMediaSeeking interfaces for the video renderer.

virtual HRESULT GetMediaPositionInterface(
REFIID riid,
vold **ppv

);
Parameters
riid
Reference identifier.
ppv

Pointer to the interface.
Return Values
Returns an HRESULT value.
Remarks
rerPosPassThru helper object is created dynamically when this is called to support

passing the IMediaPgsition or IMediaSeeking interface calls from the filter graph manager to
the upstream filter.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

Previous | Home | topie Contente | niex | Wext |

CBaseRenderer::GetPin

CBaseRenderer Class

Returns a CBasePin object on the renderer.
virtual CBasePin *GetPin(
int n
);
Parameters
n

Number of the specified pin, which is always zero in the case of the renderer.

1345

CBaseRenderer Class Page 15 of 41

Return Values
Returns a pointer to the pin specified by the n parameter.
Remarks

This member function overrides CBaseFilter: :GetPin. Only one pin is supported on the
renderer; it is numbered zero. A call to this member function with n equal to zero will result in
an input pin of type CRendererInputPin being returned. It will be created if it does not yet
exist.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | ome | opio Contents | index | Hext

CBaseRenderer::GetPinCount

BaseRenderer Cl
Retrieves the number of input pins supported.
virtual int GetPinCount{void);
Return Values

The default implementation returns one, since only one pin is supported. Override to support
more than one pin. Because the base renderer class is specifically designed for single-pin
operation, considerably more of the base class functionality would have to be changed to make
a multipin renderer. Future versions of the SDK might provide this functionality.

Remarks

This member function overrides CBaseFilter: :GetPinCount.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

previous | Home | topie Contenta | niex | Wext |

CBaseRenderer::GetRealState

CBaseRenderer Class

1346

CBaseRenderer Class Page 16 of 41

Retrieves the actual state of the renderer.
FILTER_STATE GetRealState(void);

Return Values

Returns m State, the state flag for the renderer.
Remarks

This member function provides an internal way of getting the real state. Calling through the
IBasefFilter interface to get the state would require the main filter critical section to be taken;
this internal method does not do this.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | ome | Topie Contents | miex | ext

CBaseRenderer::GetRenderEvent

CBaseRenderer Class

Retrieves the event to render.
CAMEvent *GetRenderEvent{void);
Return Values

Returns the value of m_RenderEvent.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Previous | Home | Topio Contents | iniex | Hext _

CBaseRenderer::GetSampleTimes

CBaseRenderer Class

Retrieves sample time information for this sample.

virtual HRESULT GetSampleTimes(
IMediaSample *pMediaSample,

1347

CBaseRenderer Class

REFERENCE_TIME *pStartTime,
REFERENCE_TIME *pEndTime

);
Parameters

pMediaSample

Media sample.
pStartTime

Start time.
pEndTime

End time.

Return Values

Page 17 of 41

Returns S FALSE if the sample should be scheduled according to the times specified in the

sample; returns S OK to indicate that the sample should be rendered immediately.

Remarks

Note that the sample times are passed in by reference, not value.

& 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Prerious | Home | Topic Contents] index | Hext
[Previons | Home | Topic Content] index | Hext

CBaseRenderer::GetState

B Renderer Ci
Determines the state of the renderer.
HRESULT GetState(
DWORD dwMilliSecsTimeout,
FILTER_STATE * State
)i
Parameters
dwMilliSecsTimeout
Duration of the time-out, in milliseconds.

State
Returned state of the renderer.

Return Values

1348

CBaseRenderer Class Page 18 of 41

Returns an HRESULT value. Returns VFW S STATE INTERMEDIATE if paused and waiting for a
sample; otherwise, returns NOERROR.

Remarks

This member function overrides the CBaseFilter: :GetState member function. It returns the
value of m_State. Because the renderer does not complete the full transition to the paused
state until it has a sample to render, if the state is requested while it is waiting for a sample, it
will return VFW_S_STATE_INTERMEDIATE along with the state.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss,

[Pretious | Home | Topic Contents] ndex | Hext

CBaseRenderer::HaveCurrentSample

CBaseRenderer Class

Determines if a sample is waiting at the renderer.
virtual BOOL HaveCurrentSample(void);
Return Values

Returns TRUE if a sample is ready to be rendered, or FALSE if no data is available.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Use.

[Previous | Home | Topic Contents | iniex | Hext

CBaseRenderer::Inactive

CBaseRenderer Class

Called when going into a stopped state.
virtual HRESULT Inactive{void);
Return Values

Returns NOERROR by default; overriding member function should return a valid HRESULT
value.

1349

CBaseRenderer Class Page 19 of 41

Remarks

This member function is a placeholder that derived classes can optionally override to add
functionality when the filter is stopped.

£ 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

previous | Home | topie Contenta | niex | Wext |

CBaseRenderer::IsendOfStream

CBaseRenderer Class

Determines if the end of the stream has been reached.

BOOL IsEndOfStream(void);

Return Values

Returns TRUE if the stream's end has been reached, or FALSE if it hasn't.
Remarks

The default implementation returns m_bEOS.

© 1997 Microsoft Corporation. All rights reserved. Terms of Uss.

[Pretious | Home | Topic Contents] index | Hext

CBaseRenderer::I1sendOfStreamDelivered

CBaseRenderer Class

Determines if the end of the stream has been delivered to the filter graph manager.
BOOL IsEndOfStreamDelivered{void);

Return Values

Returns TRUE if the stream's end has been delivered, or FALSE if it hasn't.

Remarks

1330

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

