
CBaseinputPin Class Page 5of14

here as well.

This function member should be called from any override of the CBaseinoutPin:: Receive or
CBasePin: :EndOfStream member function (or they should do some equivalent check).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents 1@1§111¥+

CBaselnputPin::Disconnect

CBaseinputPin Class

Releases the stored allocator.

HRESULT Disconnect();

Return Values

Returns an HRESULT value.

Remarks

This member function overrides the CBasePin:: Disconnect member function. It calls
CBasePin::Disconnect first, and then releases the allocator held by m pAllocator.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+ QIM [.] 11,1 Mii.HM Topic Contents •@!§' 1gn+

CBaselnputPin::EndFlush

CBaseinputPin Class

Informs the pin to end a flush operation and notifies the pin that it can start accepting data
again.

HRESULT EndFlush(void);

Return Values

1221

CBaseinputPin Class Page 6of14

Returns an HRESULT value.

Remarks

This member function implements the I Pin:: End Flush method. When this method is called, the
pin is beginning to end a flush operation. Your derived class must override this member
function, but should call this member function at the end of your implementation to clear
m bf lushing so that IMemlnputPin:: Receive calls will succeed.

Before calling this base class implementation, your overriding member function should perform
the following steps.

1. Ensure that your filter will not push any additional data. (To do this, synchronize with a
thread, stop it pushing, and discard any queued data.)

2. Pass the Endflush method downstream by calling the method on the downstream filter's
input pin.

I Pin:: End Flush is not logically part of the media stream. It can be optimized in the sense that if
a pin has passed no data downstream before this method is called, there is no need to pass
this notification on.

An example of an overriding implementation of this member function can be found in the
CTransformlnputPin: :Endflush member function, which uses the
CBaseOutputPin:: DeliverEndFlush member function to perform the last step.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,+ '!!·HM Topic Contents i@l§ii!MM

CBaselnputPin::GetAllocator

CBaselnputPin Class

Retrieves the allocator interface that this input pin identifies as the interface for the output pin
to use.

HRESULT GetAllocator(
IM em Allocator * * ppAl/ocator
);

Parameters

ppA//ocator
Pointer to an obtained IMemAllocator object.

Return Values

1222

CBaseinputPin Class Page 7of14

Default implementation returns either E_OUTOFMEMORY, if an allocator cannot be created, or
NOERROR upon success.

Remarks

This member function implements the IMemlnputPin: :GetAllocator method, which is called by
the connected output pin to retrieve an allocator to use for transporting media samples. By
default, this member function creates a CMemAllocator object and obtains the IMemAllocator
interface, to which it adds a reference count for the pin when assigning it to the m pAllocator
data member, and adds another reference count before passing it back to the output pin.

Override this member function if your filter has another allocator, such as one from a
downstream pin, or a specialized allocator to offer the connected output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

CBaselnputPin::GetAllocatorRequirements

CBaselnputPin Class

Optional member function to use if the filter has specific alignment or prefix requirements but
could use an upstream allocator.

HRESULT GetAllocatorRequirements(
ALLOCATOR_PROPERTIES * pProps
);

Parameters

pProps
ALLOCATOR PROPERTIES structure containing the required size, count, and alignment of
the allocator.

Return Values

Returns an HRESULT value. Returns E_NOTIMPL by default.

Remarks

Override this member function if you have specific alignment or prefix requirements but could
use an upstream allocator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

1223

CBaseinputPin Class Page 8of14

CBaselnputPin::lnactive

CBaseinoutPin Class

Releases the allocator's memory.

HRESULT Inactive(void);

Return Values

Returns an HRESULT value.

Remarks

This member function is called through IMediaFilter, which is responsible for locking the object
first.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

CBaselnputPin::lsFlushing

CBaseinputPin Class

Checks the m bFlushing data member and returns its value.

BOOL Isflushing(void);

Return Values

Returns TRUE if the input pin is flushing data; otherwise, returns FALSE.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

H Qi§1 [.] jj,M I !l.H9 Topic Contents Mttfjl§ii!MM

CBaselnputPin::lsReadOnly

1224

CBaseinputPin Class Page 9of14

CBaseinoutPin Class

Checks the m bReadOnly data member and returns its value.

BOOL IsReadOnly(void);

Return Values

Returns TRUE if the allocator has read-only samples; otherwise, returns FALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

CBaselnputPin::NonDelegatingQuerylnterface

CBaseinputPin Class

Retrieves an interface and increments the reference count.

H RESULT Non Delegati ngQuerylnterface(
REFllD riid,
void** ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_ POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

This member function implements the INonDeleqatinqUnknown: :NonDeleqatinqOueryinterface
method and passes out references to the IMeminputPin and IUnknown interfaces. Override this
class to return other interfaces on the object in the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.ij Topic Contents l@i§lllMM

1225

CBaseinputPin Class

CBaselnputPin::Notify

CBaseinoutPin Class

Notifies the recipient that a quality change is requested.

HRESULT Notify(
IBaseFilter * pSelf,
Quality q
);

Parameters

pSelf
Pointer to the filter that is sending the quality notification.

q
Quality notification structure.

Return Values

Returns NOERROR by default.

Remarks

Page 10of14

The IQualityControl: :Notify method is usually implemented on the output pin, because quality
control messages are passed upstream, and not on the input pin.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

CBasel n putPi n:: Notify Al locator

CBaseinoutPin Class

Notifies the input pin as to which allocator the output pin is actually going to use.

HRESULT NotifyAllocator(
IMemAllocator * pAl/ocator,
BOOL bReadOnly
);

Parameters

1226

CBaseinputPin Class Page 11of14

pAl/ocator
Pointer to the IMemAllocator object to use. This might or might not be the same
IMemAllocator object that the input pin provided in the IMeminputPin: :GetAllocator
method (the output pin could provide its own allocator).

bReadOnly
Flag to indicate if the samples from this allocator are read-only.

Return Values

Default implementation returns NOERROR.

Remarks

This member function implements the IMeminputPin:: NotifyAllocator method, which is called
by the connected output pin to inform the input pin of the chosen allocator for the memory
transport. Override this member function if your filter cares about this information. By default,
this sets the m pAllocator data member to the allocator interface passed in after adding a
reference count to that interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij

CBaselnputPin::PassNotify

CBaseinputPin Class

Passes a quality-control notification to the appropriate sink.

HRESULT PassNotify(
Quality q
);

Parameters

q
Quality-control notification object.

Return Values

Topic Contents l@i§lllMM

Returns VFW_E_NOT _FOUND if no quality sink is set and the upstream filter does not support
the IQualityControl interface. Otherwise, returns the HRESULT value resulting from notifying
the sink or the upstream filter.

Remarks

Output pins receive quality-control notifications and, if possible, filters act on them to degrade

1227

CBaseinputPin Class Page 12of14

appropriately. Often, filters cannot respond to the notifications; in this case the notification
should be passed to the quality-control sink or, by default, upstream to the next filter. The
PassNotify member function is called from the CTransformOutputPin: :Notify member function
when a notification requires passing. The Quality structure passed is the one that the output
pin received.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9

CBaselnputPin::Receive

CBaseinputPin Class

Retrieves the next block of data from the stream.

HRESULT Receive(
IMediaSample * pSample
);

Parameters

pSample
Pointer to a media sample.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents lmll§lllMM

This member function implements the IMeminputPin:: Receive method. It first checks that it
can process the sample by calling CBaseinputPin: :CheckStreaming; if that member function
does not return S_OK, Receive returns immediately with the value returned by
CBaseinputPin: :CheckStreaming.

This base class member function checks to see if the format has changed with this media
sample; if so, it checks that the filter will accept it, generating a run-time error if not. If a run
time error is raised, the m bRunTimeError data member is set so that no more samples will be
accepted.

The overriding member function does something with the passed-in sample, such as calling a
member function to transform it or pass it downstream.

This is a blocking synchronous call. Typically no blocking occurs, but if a filter cannot process
the sample immediately, it can use the calling application's thread to wait until it can.

Call the IUnknown: :AddRef method if you must hold the returned data block beyond the

1228

CBaseinputPin Class Page 13of14

completion of the IMeminputPin:: Receive method. If you call Add Ref, be sure to call
!Unknown:: Release when done with it.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w QiM [.] +• 811.HM Topic Contents 8ml!§M 8gnw

CBaselnputPin::ReceiveCanBlock

CBaseinputPin Class

Determines if the implementation of the IMeminputPin:: Receive method might block on the
connected output pin.

HRESULT ReceiveCanBlock(void);

Return Values

Returns an HRESULT value, which can include one of the following values.
Value Meaning
S_FALSE Input pin will not block on a Receive method.
S_OK Input pin might block on a Receive method.

Remarks

This member function implements the IMeminputPin:: ReceiveCanBlock method. The base class
implementation calls the IMemlnputPin::ReceiveCanBlock method on the input pin
connected to each of the filter's output pins.

This member function is useful because an output pin from a filter might require notification if
its thread might be blocked when it calls the Receive method on the connected input pin. For
example, a source filter might prefer to keep reading and buffering data rather than be
blocked, and might choose to start another thread to wait on the blocking Receive method.
See the COutputQueue base class for queuing samples to input pins that potentially block.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 8!1.l:.15 Topic Contents 8@1§181MM

CBasel n putPi n:: ReceiveM u lti pie

CBaseinputPin Class

1229

CBaselnputPin Class Page 14of14

Retrieves the next block of data from the stream. This method behaves much like the
IMeminputPin:: Receive method, but it works with multiple samples. Override this function if
you can usefully process samples in batches.

HRESULT ReceiveMultiple(
IMediaSample ** pSamples,
long nSamples,
long * nSamplesProcessed
);

Parameters

pSamples
Pointer to an array of samples.

nSamples
Number of samples to process.

nSamplesProcessed
Number of samples processed.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMeminputPin:: ReceiveMultiple method. It is
implemented to call the CBaseinputPin:: Receive member function in a loop for nSamples
number of iterations.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@i§il!MM

1230

CBaseList Class Page I of 17

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseList Class

CBaseObject

CBaselist

The (;Ba$d.ist class represents a liSt of pointers to objects. No storage management or
copying is done on the objects that are pointed to.

The implementation allows for objects to be on multiple lists simultaneously and does not
require support in the objects themselves; therefore, it iS particularly useful for holding
variable-length lists of interface pointers.

The implementation is not multithread safe. External locks are required to maintain the
integrity of the list when it is accessed from more than one thread simultaneously.

The POSITION structure represents a position in a linked list that is actually a void pointer. A
position represents a cursor on the liSt that can be set to identify any element. NULL is a valid
value, and several operations regard NULL as the position that is "one step off the end of the
list." (In an n element liSt there are n+ 1 places to insert, and NULL iS that n+ 1 value.) The
position of an element in the list is only invalidated if that element is deleted. Move operations
might indicate that what was a valid position in one list is now a valid position in a different
list.

Some operations, which at first sight seem illegal, are allowed as harmless null operations (no
ops). For example, the CBase! ist· ·RemoYf'Headl member function is legal on an empty list,
and it returns NULL. This allows an atomic way to test if there is an element there and, if so, to
retrieve it.

Single-element operations return positions, where a non-NULL value indicates that it worked.
Entire list operations return a Boolean value, where TRUE indicates success.

Pratected Data Members
Name Descnptian
m_C<lunt Number of nodes in the list.
m_pFirst Pointer to the first node in the list.
m_plast Pointer to the last node in the list.

Member Functians

1231

CBaseList Class

Name
AddAfter
AddAfterl
Add Before
AddBeforel
AddHead
Add Head I
AddTail
AddTaill
CBaselist
Find I
GetCountl

Description
Inserts a list of nodes after the specified node.
Inserts a node after the specified node.
Inserts a list of nodes before the specified node.
Inserts a node before the specified node.
Inserts a list of nodes at the front of the list.
Inserts a node at the front of the list.
Appends a list of nodes to the end of the list.
Appends a node to the end of the list.
Constructs a CBaselist object.
Returns the first position that holds the specified object.
Returns the number of objects in the list.

GetHeadPositionl Returns a cursor identifying the first element of the list.
Getl Returns the object at the specified position.
GetNextl Returns the specified object and updates the position.
GetTailPositionl Returns a cursor identifying the last element of the list.
Move To Head
MoveToTail
Next
Prev
RemoveAll
RemoveHeadl
Remove I
Remove Ta ill
Reverse

Moves the node or list of nodes to the beginning of a second list.
Moves the node or list of nodes to the end of a second list.
Returns the next position in the list.
Returns the previous position in the list.
Removes all nodes from the list.
Removes the first node in the list.
Removes the specified node from the list.
Removes the last node in the list.
Reverses the order of the pointers to the objects in the list.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

Page 2of17

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥

CBaselist: :AddAfter

CBaseList Class

Inserts a list of nodes after the specified node.

BOOL AddAfter(
POSITION pos,
CBaselist *pList
);

1232

Topic Contents i@fai11¥M

CBaseList Class Page 3of17

Parameters

pos
Position after which to add the list of nodes.

pList
Pointer to the list of objects to add.

Return Values

Returns TRUE if successful; otherwise, returns FALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

CBaselist: :AddAfterl

CBaseList Class

Inserts a node after the specified node.

POSITION AddAfterI(
POSITION pos,
void* pObj
);

Parameters

pos
Position after which to add the node.

pObj
Pointer to the object to add.

Return Values

Returns the position of the inserted object.

Remarks

The following member function adds x to the start, which is equivalent to calling the
CBaseList: :AddHeadI member function:

AddAfterI (NULL,x)

If the list insertion fails, some of the elements might have been added. Existing positions in
the list, including the position specified in the pos parameter, remain valid. The following two
member functions are equivalent even in cases where pos is NULL or the Next(p) parameter is

1233

CBaseList Class

NULL. (This is similar for the mirror case.)

AddAfterI (p,x)
AddBeforeI(Next(p) ,x)

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] +• 111.HM

MQi§i[.]11,M 11!.HM

CBaselist: :Add Before

CBaseList Class

Inserts a list of nodes before the specified node.

BOOL AddBefore(
POSITION pos,
CBaselist *pList
);

Parameters

pos
Position before which to add the list of nodes.

pList
Pointer to the list of objects to add.

Return Values

Returns TRUE if successful; otherwise, returns FALSE.

Remarks

Page 4of17

Topic Contents •=@• 1gnw

Topic Contents l@l§il!MM

If the list insertion fails, some of the elements might have been added. Existing positions in
the list, including the position specified in the pos parameter, remain valid.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

M Q i§i [.] jj,M I !!·HM Topic Contents l@l§il!MM

CBaselist: :AddBeforel

1234

CBaseList Class

CBaseList Class

Inserts a node before the specified node.

POSITION AddBeforeI(
POSITION pos,
void* pObj
);

Parameters

pos
Position before which to add the node or list of nodes.

pObj
Pointer to the object to add.

Return Values

Returns the position of the inserted object.

Remarks

Page 5of17

The following member function adds the value specified in the x parameter to the end, which is
equivalent to calling the CBaseList::AddTailI member function:

AddBeforeI(NULL,x)

The following two member functions are equivalent even in cases where pos is NULL or the
Next(p) parameter is NULL. (This is similar for the mirror case.)

AddAfterI(p,x)
AddBeforeI(Next(p) ,x)

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

CBaselist: :Add Head

CBaseList Class

Inserts a list of nodes at the front of the list.

BOOL Add Head (

1235

Topic Contents i@fa111¥M

Topic Contents i@fa111¥M

CBaseList Class

CBaselist *pList
);

Parameters

pList
Pointer to the list of objects to add.

Return Values

No return value.

Remarks

Page 6of17

If you are adding Component Object Model (COM) objects, you might want to add references to
them (using the I Unknown: :AddRef method) first. Other existing positions in the list remain
valid.

This member function duplicates all the nodes in the pList parameter (that is, duplicates all its
pointers to objects). It does not duplicate the objects.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CBaselist: :AddHeadl

CBaseList Class

Inserts a node at the front of the list.

POSITION AddHeadI(
void* pObj
);

Parameters

pObj
Pointer to the object to add.

Return Values

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

Returns the new head position, or NULL if it fails. For list insertions, returns TRUE if successful;
otherwise, returns FALSE.

Remarks

If you are adding Component Object Model (COM) objects, you might want to add references to

1236

CBaseList Class Page 7of17

them (using the IUnknown: :AddRef method) first. Other existing positions in the list remain
valid.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] +• 111.H5

CBaselist: :AddTai I

CBaseList Class

Appends a list of nodes to the end of the list.

BOOL AddTail(
CBaselist *pList
);

Parameters

pList
Pointer to the list of objects to add.

Return Values

No return value.

Remarks

Topic Contents •=@• 1gnw

This member function duplicates all the nodes in pList (that is, duplicates all its pointers to
objects). It does not duplicate the objects. Existing positions in the list remain valid.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

CBaselist: :AddTai II

CBaseList Class

Appends a single node to the end of the list.

POSITION AddTailI(
void* pObj

• A Mi[.]"'' I !!·HM

1237

Topic Contents lml!§lllMM

CBaseList Class

);

Parameters

pObj
Pointer to the object to add.

Return Values

Returns the new tail position, if successful; otherwise, returns NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CBaselist: :CBaselist

CBaseList Class

Constructs a CBaseList object.

CBaselist(
TCHAR *pName,
INT iltems
);

CBaselist(
TCHAR *pName
);

Parameters

pName
Name of the list.

iltems
Number of items in the list.

Return Values

No return value.

+Q'41[.]i!,+ 1 !1·HM

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+;<§1[.]i!,+ +II.HM

1238

Topic Contents

Topic Contents

Page 8of17

ifflj[§ii!¥M

+@!§' +gn+

CBaseList Class

CBaselist: :FindI

CBaselist Class

Retrieves the first position that holds the specified object.

POSITION FindI(
void* pObj
);

Parameters

pObj
Pointer to the object to find.

Return Values

Returns a position cursor.

Remarks

Page 9of17

A position cursor identifies an element on the list. Use the CBaselist: :GetI member function to
return the object at this position.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.li!:M l!i.! 11ij Topic Contents l@l§i 11111+

CBaselist: :GetCountI

CBaselist Class

Retrieves the number of objects (object count) in the list.

int GetCountI() ;

Return Values

Returns the number of objects in the list.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQl§1[.jjj,M 11!.Hj Topic Contents 1@1§11!¥+

1239

CBaseList Class Page 10of17

CBaselist: :GetHead Position!

CBaseList Class

Retrieves a cursor identifying the first element of the list.

POSITION GetHeadPositionI() ;

Return Values

Returns a position cursor.

Remarks

A position cursor represents an element on the list. It is defined as a pointer to a void.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

CBaselist: :Getl

CBaseList Class

Retrieves the object at the specified position.

void *GetI(
POSITION pos
);

Parameters

pos
Position in the list from which to retrieve the object.

Return Values

Returns a pointer to the object as position pos.

Remarks

Topic Contents l@IJll!MM

Use the CBaseList:: Next, CBaseList:: Prev, or CBaseList:: FindI member function to obtain the
position. Asking for the object at a NULL position returns NULL without generating an error.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1240

CBaseList Class

+Qi§1[.]++ 1 !!·HM

CBaselist: :GetNextI

CBaseList Class

Retrieves the specified object and updates the position.

void *GetNextI(
POSITION& rp
);

Parameters

rp
Returned pointer to the next object.

Return Values

Returns a pointer to an object at the next position.

Remarks

Page 11of17

Topic Contents i@l§ii!MM

This member function updates the rp parameter to the next node in the list, but makes it NULL
if it was at the end of the list.

This member function is retained only for backward compatibility. (GetPrev is not
implemented.)

Use the CBaseList:: Next and CBaseList:: Prev member functions to access the next or previous
object in the list.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119 Topic Contents i@l§ii!MM

CBaselist: :GetTa i I Position I

CBaseList Class

Retrieves a cursor identifying the last element of the list.

1241

CBaseList Class Page 12of17

POSITION GetTailPositionI();

Return Values

Returns a position cursor.

Remarks

A position cursor represents an element on the list. A position is defined as a pointer to a void.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.!j

CBaselist:: MoveToHead

CBaselist Class

Moves the node or list of nodes to the beginning of a second list.

BOOL MoveToHead(
POSITION pos,
CBaselist *pList
);

Parameters

pos
Position that marks the split in the list.

pList

Topic Contents l@i§i llfttiM

List in which to add the section of the list preceding the position passed in the pos
parameter.

Return Values

Returns TRUE if successful; otherwise, returns FALSE.

Remarks

This member function splits the current list after the position specified in the pos parameter in
the list and retains the head portion of the original list. It then adds the tail portion to the head
of the second list, identified by the pList parameter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@i§il!MM

1242

CBaseList Class

CBaselist: :MoveToTail

CBaseList Class

Moves the node or list of nodes to the end of a second list.

BOOL MoveToTail(
POSITION pos,
CBaselist *pList
);

Parameters

pos
Position that marks the split in the list.

pList
List in which to add the section of the list specified in the pos parameter.

Return Values

Returns TRUE if successful; otherwise, returns FALSE.

Remarks

Page 13of17

This member function splits the current list after the position specified in the pos parameter in
the list and retains the tail portion of the original list. It then adds the head portion to the tail
end of the second list, using the pList parameter.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

CBaselist::Next

CBaseList Class

Retrieves the next position in the list.

POSITION Next(
POSITION pos
);

Parameters

MQi§i[.jjj,M 11!.HS

1243

Topic Contents lmll§I 11$8

CBaseList Class Page 14of17

pos
Current position in the list.

Return Values

Returns a position cursor.

Remarks

This member function returns NULL when going past the beginning of the list. Calling the
CBaselist::Next member function with a null value is similar to calling the
CBaseList: :GetHeadPositionl member function.

Use the CBaseList: :Getl member function to return the object at the returned position.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

CBaselist:: Prev

CBaseList Class

Retrieves the previous position in the list.

POSITION Prev(
POSITION pos
);

Parameters

pos
Current position in the list.

Return Values

Returns a position cursor.

Remarks

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

This member function returns NULL when going past the end of the list. Calling the
CBaselist::Prev member function with a null value is similar to calling the
CBaseList: :GetTailPositionl member function.

Use the CBaseList: :Getl member function to return the object at the returned position.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1244

CBaseList Class Page 15of17

+Qi§1[.]I!:+ 1 !!·HM Topic Contents i@l§ii!MM

CBaselist: :RemoveAll

CBaseList Class

Removes all nodes from the list.

void RemoveAll();

Return Values

No return value.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

H Qi§1[.]11:+ I !l.H9 Topic Contents Mttfjl§ii!MM

CBaselist:: RemoveHeadI

CBaseList Class

Removes the first node in the list.

void *RemoveHeadI();

Return Values

Returns the pointer to the object that was removed.

Remarks

This member function deletes the pointer to its object from the list, but does not free the
object itself.

If the list was already empty, this member function harmlessly returns NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.]l!:i M!l.1 1119 Topic Contents i@l§i 11111+

1245

CBaseList Class

CBaselist:: Remove!

CBaseList Class

Removes the specified node from the list.

void * RemoveI(
POSITION pos
);

Parameters

pos
Position in the list of the node to remove.

Return Values

Returns the pointer to the object that was removed.

Remarks

Page 16of17

This member function deletes the pointer to its object from the list, but does not free the
object itself.

If the list was already empty, this member function harmlessly returns NULL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

CBaselist::RemoveTaill

CBaseList Class

Removes the last node in the list.

void *RemoveTailI();

Return Values

Returns the pointer to the object that was removed.

1246

CBaseList Class Page 17of17

Remarks

This member function deletes the pointer to its object from the list, but does not free the
object.

If the list was already empty, this member function harmlessly returns NULL.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

CBaselist::Reverse

CBaselist Class

Reverses the order of the pointers to the objects in the list.

void Reverse();

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1247

CBaseMediaFil ter Cl ass Page 1 of9

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseMediaFilter Class

CBaseObject

CUnknown

CBaseMediafilter

This iS an abstract base class that provides support for the IMediafilter interface. The
CBaseMediaFiltet class handles State Stopped, State Paused, and State Running state
transitions. Typically, this class is used for plug-in distributors rather than filters with pins.
Derive your filter classes from the CBasefilter class (or base classes derived from this) instead
of from this class.

AU member functions in this class that return HRESULT and accept a pointer as a parameter
return E POINTER when passed a null pointer.

Protecte<I Data Members
Name Description
m_clsid Class identifier (CLSID) used for serialization using IPersist.
m_pClock Pointer to a reference clock used for synchronization. The reference count of the

clock object must be incremented using AddRef. Pass NULL if no reference clock is
available.

m_State Current state of the filter, which can be State Stopped, State Paused, or
State Running.

m_tStart Offset from the stream time to the reference time.

Member Functions
Name Description
CBaseMedjafi!terConstructs a CBaseMediafi!ter object.
IsActjve Determines if the filter is currently active (running or paused) or stopped.

Overridable Member Functions
Name Description
StreamTime Returns the current stream time.

Implemente<I !Persist Methods
Name Description
\..etC!assID Returns the class identifier of this filter.

1248

CBaseMediaFilter Class

Implemented IMediaFilter Methods
Name
GetState

Description
Retrieves the current state of the filter.

GetSyncSource Retrieves the current reference clock in use by this filter.
Pause Instructs the filter to transition to the new (paused) state.
Run Instructs the filter to transition to the new (running) state.

Page 2 of9

SetSyncSource Informs the filter of the reference clock with which it should synchronize
activity.

Stop Instructs the filter to transition to the new (stopped) state.

Implemented INonDelegatingUnknown Methods
Name Description
NonDelegatingQueryinterface Passes out references to interfaces supported by CBaseFilter.

Override this to pass out pointers to interfaces supported in a
derived filter class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents

•;<¥[.]++ iu.H; Topic Contents

CBaseMedia Filter: :CBaseMedia Filter

CBaseMediaFilter Class

Constructs a CBaseMediaFilter object.

CBaseMedia Filter(
TCHAR *pName,
LPUNKNOWN pUnk,
CCritSec *pLock,
REFCLSID clsid
);

Parameters

pName
Name of the CBaseMediaFilter class.

pUnk
IUnknown interface of the delegating object.

pLock
Pointer to the object that maintains the lock.

els id
Class identifier used to serialize this filter.

1249

l@i§i 11111+

l@i§lllMM

CBaseMediaFilter Class

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents

MQ<§i[.jlj,M 111.Hj Topic Contents

CBaseMedia Filter: :GetClassID

CBaseMediaFilter Class

Fills the pC/sID parameter with the class identifier of this filter (from m clsid).

HRESULT GetClassID(
CLSID *pC/sID
);

Parameters

pC/sID
Pointer to the class identifier to be filled out.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQi§i!!.llj,i 111.J,,[j

CBaseMediaFilter: :GetState

CBaseMediaFilter Class

Retrieves the current state of the filter.

HRESULT GetState(
DWORD dwMilliSecsTimeout,
FILTER_STATE *State

1250

Topic Contents

Page 3 of9

l!ftl!Ji l!lltiM

l@fail!MM

l@fail!MM

CBaseMediaFilter Class Page 4 of9

);

Parameters

dwMilliSecsTimeout
Duration of the time-out, in milliseconds.

State
Returned state of the filter.

Return Values

Returns S_OK.

Remarks

This member function implements the IMediaFilter: :GetState method. It returns the value of
the m State data member.

Filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so filters will
not likely use this member function. Use CBaseFilter: :GetState instead.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents

CBaseMedia Filter: :GetSyncSou rce

CBaseMediaFilter Class

Retrieves the current reference clock in use by this filter.

HRESULT GetSyncSource(
IReferenceClock * * pC/ock
);

Parameters

pClock
Pointer to a reference clock; will be set to the IReferenceClock interface.

Return Values

Returns an HRESULT value

Remarks

1@1§111¥+

This member function implements the !Media Filter: :GetSyncSource method. It returns the
value of m oClock after adding a reference to it. Be sure to release the interface by calling the

1251

CBaseMediaFilter Class Page 5of9

I Unknown:: Release method when finished with the pointer.

Filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so filters will
not likely use this member function. Use CBaseFilter: :GetSyncSource instead.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§11!¥+

CBaseMediaFilter: :IsActive

CBaseMediaFilter Class

Determines if the filter is currently active (running or paused) or stopped.

BOOL lsActive(void);

Return Values

Returns TRUE if the filter is paused or running, or FALSE if it is stopped.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§i[.jjj,M ill.HM Topic Contents +@1§• +gn+

C BaseM ed i a Filter:: Non De legati ngQu eryl nterf ace

CBaseMediaFilter Class

Retrieves an interface and increments the reference count.

H RESULT Non Delegati ngQuerylnterface(
REFllD riid,
void** ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

1252

CBaseMediaFilter Class Page 6 of9

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

This member function implements the INonDeleqatinqUnknown: :NonDeleqatinqOueryinterface
method and passes out references to the IMediaFilter, IPersist, and IUnknown interfaces.
Override this class to return other interfaces on the object in the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

CBaseMediaFilter: :Pause

CBaseMediaFilter Class

Transitions the filter to State_ Paused state if it is not in this state already.

HRESULT Pause (void);

Return Values

Returns an HRESULT return value (S_OK by default).

Remarks

This member function implements the IMediaFilter:: Pause method. It sets the value of
m State to State_Pa used.

Note that filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so
this member function will not likely be used by filters. Use CBaseFilter: :Pause instead.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

+;<§1[.]jj,i 111.],.[9 Topic Contents +@!§*+gm+

CBaseMediaFilter: :Run

CBaseMediaFilter Class

1253

CBaseMediaFilter Class

Transitions the filter to State_Running state if it is not in this state already.

HRESULT Run (
REFERENCE_TIME tStart
);

Parameters

tStart
Reference time value corresponding to stream time 0.

Return Values

Returns an HRESULT value.

Remarks

Page 7 of9

If the filter is in State_Stopped state, the CBaseMediaFilter:: Pause member function is called
first to transition the filter to State_Paused state, which has the effect of activating any of the
filter's connected pins. If any pin returns a failure return code from its CBasePin: :Active
member function, the function fails and the state is not changed. If this member function
succeeds, the filter's m State member variable is set to State_Running. This member function
holds the filter's lock.

Filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so filters will
not likely use this member function. Use CBaseFilter:: Run instead.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

CBaseMedia Filter: :SetSyncSou rce

CBaseMediaFilter Class

Identifies the reference clock to which the filter should synchronize activity.

HRESULT SetSyncSource(
IReferenceClock * pC/ock
);

Parameters

pC/ock
Pointer to the IReferenceClock interface.

Return Values

1254

i@faii!MM

CBaseMediaFilter Class Page 8 of9

Returns an HRESULT value.

Remarks

This member function implements the IMediaFilter: :SetSyncSource method. It sets the
m pClock data member to the pC/ock parameter and increments the reference count on the
IReferenceClock interface passed in.

This member function is most important to rendering filters and might not apply to other
filters.

Filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so filters will
not likely use this member function. Use CBaseFilter:: SetSyncSource instead.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 111.l:.!j Topic Contents l@i§i llfttiM

CBaseMediaFilter: :Stop

CBaseMediaFilter Class

Transitions the filter to State_Stopped state if it is not in this state already.

HRESULT Stop(void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMediaFilter: :Stop method. It sets the m State member
variable to State_Stopped.

Note that filters should derive their filters from CBaseFilter and not from CBaseMediaFilter, so
this member function will not likely be used by filters. Use CBaseFilter: :Stop instead.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+Qi§ill·h' 111.J,,[j Topic Contents 1@1§111¥+

CBaseMedia Filter: :Strea mTi me

1255

CBaseMediaFilter Class

CBaseMediaFilter Class

Retrieves the current stream time.

virtual HRESULT StreamTime(
CRefTime& rtStream
);

Parameters

rtStream
Current stream time.

Return Values

Returns an HRESULT value, which can include the following values.
Value Meaning
E_FAIL Unable to get time from clock.
S_OK Stream time returned in the rtStream parameter.
VFW E NO CLOCK No reference clock is available.

Remarks

Page 9 of9

Current stream time is the reference clock time minus the stream time offset. All samples with
time stamps less than or equal to this time should have been presented.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lllMM

1256

CBaseObj ect Class Page 1 of3

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseObject Class

(CBaseObject

The CBa$eObject class is an abstract base class that is the basis for au component objects. It
maintains a process-wide count of active objects that can be queried from the
DUCanUnloadNow entry point.

AU Component Object Model (COM) objects are derived from the CUnknown class, which is
derived from the CBaseObject class. Other objects can be derived from CBaseObject to
assist in the detection of memory leaks, because CBaseObject maintains the count of created
objects.

The constructor requires a character-string name that describes the object being created. This
string can be displayed on the debugging screen to trace the creation of objects; the string wm
also be displayed upon deletion of the object. The string should be created in static storage
rather than in local-function storage. The string can be enclosed by the NAME macro, which
compiles to NULL in retail builds so that the static strings are optimized out during compilation.

/* Typical object creation method*/
HRESULT CSomeClass::CreateMyObject{voidJ
{

HRESULT hr = NOERROR;

Q•!yObj ect *FObj ect = new Q•!yObj ect {NAME {"My filter obj ect"l ,NULL, &hr);
if {FAILED {hr)) {

return hr;

if {FObject == NULL) {
return E _ OUTOFMEMORY;

}
m_FObject = FObject;
return NOERROR;

/* Incorrect object creation method*/

HRESULT CSomeClass::ThisMayAccessViolate{voidJ
{

HRESULT hr = NOERROR;

TCHAR MyObj ectName [] = TEXT {"My GP faulting obj ect"l;
CMyObject *FObject =new CMyObject{MyObjectName,NULL,&hr);

Membe.- Functions

1257

CBaseObject Class

Name Description
CBaseObject Constructs a CBaseObject object.
ObjectsActive Retrieves the count of active objects.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9

CBaseObject: :CBaseObject

CBaseObject Class

Constructs a CBaseObject object.

CBaseObject(
const TCHAR *pName
);

Parameters

pName
Name assigned to the object for debugging purposes.

Return Values

No return value.

Remarks

Page 2 of3

Topic Contents lmll§lllMM

The pName parameter should be allocated in static memory. This name appears on the
debugging screen when the object is created and deleted.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M ill.HS Topic Contents i@faii!MM

CBaseObject: :ObjectsActive

CBaseObject Class

Retrieves the count of active objects.

static LONG ObjectsActive();

1258

CBaseObject Class Page 3 of3

Return Values

Returns the current number of active objects.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1259

CBaseOutputPin Class Page 1 of 14

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseOutputPin Class

(CBaseObject ~

I INonDelegatingUnknown I
Ll.(CUnknown),

I IQualityControl I
I I~n I

~~1-<, CBasePin).

~ CBaseOutputPin),

C:BaseOutputPin is lln llbstroct bllse clllss derived from the CBasePin clllss thllt provides
support for the common memory trllnsport. (:BaseOutputPin connects only to lln input pin
thllt supplies lln IMeminputPin interfllce (such lls ll pin cl<lss derived from the CBaseinputPin
clllss), llnd provides methods for the filter to llccess thllt interface. Derive your output pins
from this clllss for the ellsiest implementlltion.

An output pin must provide one or more med ill types when connected to lln input pin. If the
medill type thllt returns lln index size, for eXllmple, is not currently llVllilllble, the output pin
should return SFALSE in the CBasePin: :GetMediaTupe member function, llnd the bllse clllss
wm skip it.

Your output pin clllss methods (represented Mre with the clllss nllme CYourPin) should Cllll
C:BaseOutputPin. For eXllmple, CYourPin::Active should Cllll CBaseOutputPin::Active first, to
see if it should proceed. CYourPin::Inllctive should Cllll CBaseOutputPin::Inactive first, to
deco mm it the slim pie llllOClltor llnd llVOid delld lock problems with
CBaseOutputPin: :GetDeliveryBuffer.

AU member functions in this clllSS thllt return HRESULT llnd llccept ll pointer lls ll pllrometer
return E POIITTER when PllSSed ll null pointer.

AU IOualityControl method implementlltions lire inherited from the CBasePin clllss llnd lire not
overridden by this clllss.

Protecte<I Data Members
Name Des.;:ription
m_pAllocator Pointer to the IMemA!!orator interfllce for this pin.
m_pinputPin Pointer to the input pin to which this pin is connected.

Member Functions

1260

CBaseOutputPin Class

Name Description
CBaseOutputPin Constructs a CBaseOutputPin object.

Overridable Member Functions
Name
Active
BreakConnect
CheckConnect
CompleteConnect
DecideAI locator

Description
Switches the pin to the active (running) mode.
Releases the allocator and the IMeminputPin interface.
Calls Oueryinterface to retrieve an IMeminputPin interface.
Completes the connection.
Negotiates the allocator.

Page 2of14

DecideB ufferS ize
Deliver
DeliverBeqinFlush
Del iverEnd Flush

Retrieves the number and size of buffers required for the transfer.
Delivers an IMediaSample buffer to the connecting pin.
Calls the IPin: :BeqinFlush method on the connected pin.
Calls IPin: :EndFlush on the connected input pin to pass an end-flushing
notification.

DeliverEndOfStream Calls IPin: :EndOfStream on the connected input pin to pass an end-of
strea m notification.

DeliverNewSeqment Calls IPin: :NewSeqment on the connected input pin to pass a segment.
Get Del iveryBuffer Returns an IMediaSample buffer suitable for passing across the

connection.
Inactive Switches the pin to the inactive (stopped) mode.
In itAI locator Creates a default memory allocator. Override this to provide your own

allocator or to provide no allocator.

Implemented IPin Methods
Name Description
BeginFlush Informs the pin to begin a flush operation. Implemented to return

E_UNEXPECTED because it is an error to call this on an output pin.
EndFlush Informs the pin to end a flush operation. Implemented to return E_UNEXPECTED

because it is an error to call this on an output pin.
EndOfStream Informs the pin that no additional data is expected until a new run command is

issued. Implemented to return E_UNEXPECTED because it is an error to call this
on an output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11!j Topic Contents l@i§lllMM

w QiM [.] ij,+ 111.Hj Topic Contents •@!§' 1gnw

CBaseOutputPi n: :Active

CBaseOutputPin Class

1261

CBaseOutputPin Class Page 3of14

Called by the CBaseFilter implementation when the state changes from stopped to either
paused or running.

HRESULT Active(void);

Return Values

Returns VFW E NO ALLOCATOR if there is no allocator.

Remarks

This member function calls CMemAllocator: :Commit to commit memory required before
becoming active.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •=@• 1gnw

CBaseOutputPin::BeginFlush

CBaseOutoutPin Class

Informs the pin to begin a flush operation.

HRESULT BeginFlush(void);

Return Values

Returns E_UNEXPECTED.

Remarks

This member function implements the I Pin:: BeqinFlush method. It returns E_UNEXPECTED
because this should be called only on input pins.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]1!,i 1 !!·H¥ Topic Contents l@l§il!MM

CBaseOutputPin::BreakConnect

CBaseOutputPin Class

1262

CBaseOutputPin Class

Releases IMemAllocator and IMemlnputPin objects acquired by the pin.

HRESULT BreakConnect(void);

Return Values

Returns NOERROR by the default base class implementation.

Remarks

This member function releases the IMemAllocator and IPin interfaces used during the
connection.

Page 4of14

If you override this method, always call the base class BreakConnect or unexpected behavior
will result, including reference count leaks.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents

CBaseOutputPi n: :CBaseOutputPi n

CBaseOutputPin Class

Constructs a CBaseOutputPin object.

CBaseOutputPin(
TCHAR *pObjectName,
CBaseFilter *pFilter,
CCritSec *plock,
HRESULT * phr,
LPCWSTR pName
);

Parameters

pObjectName

1@1§111¥+

Name of the object used in the CBaseOutputPin constructor for debugging purposes.
pFilter

Filter to which the pin will be attached.
pLock

Pointer to a CBaseOutputPin object for locking.
phr

Pointer to the general COM return value. This value is changed only if this function fails.
pName

Pin name.

1263

CBaseOutputPin Class Page 5of14

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents l!ftl!Ji l!lltiM

MQ<§i[.jlj,M 111.Hj Topic Contents l@fail!MM

CBaseOutputPi n: :CheckCon nect

CBaseOutoutPin Class

Calls Querylnterface on the connected pin to retrieve an IMeminputPin interface.

HRESULT CheckConnect(
IPin *pPin
);

Parameters

pPin
Pointer to the IPin interface on the connecting pin.

Return Values

Returns NOERROR if successful; otherwise, returns an HRESULT error value.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQi§i!!.llj,i 111.J,,[j Topic Contents

CBaseOutputPi n: :Com pleteCon nect

CBaseOutputPin Class

Completes a connection to another filter.

virtual HRESULT CompleteConnect(
IPin *pReceivePin
);

1264

l@fail!MM

CBaseOutputPin Class Page 6of14

Parameters

pReceivePin
Pointer to the connected (receiving) pin.

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.

Remarks

This member function overrides the CBasePin: :CompleteConnect member function and calls
the CBaseOutputPin: :DecideAllocator member function to finish completing the connection.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents

CBaseOutputPi n:: DecideAI locator

CBaseOutputPin Class

Negotiates the allocator to use.

virtual HRESULT DecideAllocator(
IMeminputPin * pPin,
IM em Allocator * * pAlloc
);

Parameters

pPin
Pointer to the IPin interface of the connecting pin.

pAl/oc
Pointer to the negotiated IMemAllocator interface.

Return Values

Returns NOERROR if successful; otherwise, returns an HRESULT value.

Remarks

•=@• 1gnw

This member function calls the CBaseOutputPin: :DecideBufferSize member function, which is
not implemented by this base class. Override DecideBufferSize to call
I MemAI locator: : SetProperties.

If the connected input pin fails a call to IMeminputPin: :GetAllocator, this member function

1265

CBaseOutputPin Class Page 7of14

constructs a C MemAI locator object and ca I ls C BaseOutp utPi n: : DecideBufferSize on that object.
If the call to DecideBufferSize is successful, this member function notifies the input pin of the
selected allocator. This function is called by the base class implementation of the IPin: :Connect
method, which is responsible for locking the object's critical section.

Override this member function if you want to use your own allocator. The input pin gets the
first choice for the allocator, and the output pin agrees or forces it to use another allocator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§1[.jli,M +!!·!:.!¥ Topic Contents

CBaseOutputPi n:: DecideBufferSize

CBaseOutputPin Class

Retrieves the number and size of buffers required for the transfer.

virtual HRESULT DecideBufferSize(
IMemAllocator * pAl/oc,
ALLOCATOR_PROPE RTIES * ppropinputRequest
) PURE;

Parameters

pAlloc
Allocator assigned to the transfer.

ppropinputRequest

i@i§ll!¥+

Requested allocator properties for count, size, and alignment, as specified by the
ALLOCATOR PROPERTIES structure.

Return Values

Returns an HRESULT value.

Remarks

The CBaseOutputPin: :DecideAllocator member function calls this member function. You must
override this member function in your derived class and call IMemAllocator: :SetProperties.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]+• '!!·!:.!¥ Topic Contents i@i§i M!fttiM

CBaseOutputPin::Deliver

1266

CBaseOutputPin Class

CBaseOutoutPin Class

Delivers the IMediaSample buffer to the connected pin.

virtual HRESULT Deliver(
IMediaSample *pSample
);

Parameters

pSample
Buffer to deliver.

Return Values

Page 8of14

Returns VFW E NOT CONNECTED if no input pin is found; otherwise, returns an HRESULT
value.

Remarks

This member function delivers this buffer to the connected input pin by calling its
IMeminputPin:: Receive method.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lllMM

CBaseOutputPi n:: Del iverBegi n Flush

CBaseOutputPin Class

Calls the IPin: :BeginFlush method on the connected input pin.

virtual HRESULT DeliverBeginFlush(void);

Return Values

Returns VFW E NOT CONNECTED if no input pin is found; otherwise, returns the value that is
returned by the I Pin:: BeginFlush method.

Remarks

This member function delivers the BeginFlush notification downstream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1267

CBaseOutputPin Class Page 9of14

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBaseOutputPi n:: Del iverEndFI ush

CBaseOutputPin Class

Calls the IPin: :EndFlush method on the connected input pin.

virtual HRESULT DeliverEndFlush(void);

Return Values

Returns VFW E NOT CONNECTED if no input pin is found; otherwise, returns the value that is
returned by I Pin:: End Flush.

Remarks

This member function delivers the EndFlush notification downstream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQijl.111,h 111.1 1119 Topic Contents i@l§i 11111+

CBaseOutputPi n:: Del iverEndOfStrea m

CBaseOutputPin Class

Calls the IPin: :EndOfStream method on the connected input pin.

virtual HRESULT DeliverEndOfStream(void);

Return Values

Returns VFW E NOT CONNECTED if no input pin is found; otherwise, returns the value
returned by the I Pin:: EndOfStream call to the connected pin.

Remarks

This member function delivers the end-of-stream notification downstream by calling the
I Pin:: EndOfStream method on the connected pin.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

1268

CBaseOutputPin Class

+Qi§1[.]I!:+ 1 !!·HM Topic Contents

CBaseOutputPi n:: Del iverNewSegment

CBaseOutputPin Class

Calls the IPin: :NewSegment method on the connected input pin.

virtual HRESULT DeliverNewSegment(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop,
double dRate
);

Parameters

tStart
Start time of the segment.

tStop
Stop time of the segment.

dRate
Rate of the segment.

Return Values

Returns an HRESULT value.

Remarks

Page 10of14

i@l§ii!MM

You will need to override this member function in your derived output pin class if your filter
queues any data in the output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]I!:+ 1 !!·HM Topic Contents i@l§ii!MM

MQi@[.]l!:i M!i.! 111M Topic Contents i@l§i 11111+

CBaseOutputPin::EndFlush

IPin Interface

1269

CBaseOutputPin Class Page 11of14

Informs the pin to end a flush operation.

HRESULT Endflush(void);

Return Values

Returns E_UNEXPECTED.

Remarks

This member function implements the I Pin:: End Flush method. It returns E_UNEXPECTED
because this should be called only on input pins.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

CBaseOutputPi n:: EndOfStrea m

IPin Interface

Informs the input pin that no additional data is expected until a new run command is issued.

HRESULT EndOfStream(void);

Return Values

Returns E_UNEXPECTED.

Remarks

This member function implements the I Pin:: EndOfStream method but isn't expected to be
called on an output pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8

CBaseOutputPi n: :GetDel iveryBuffer

CBaseOutputPin Class

1270

CBaseOutputPin Class

Retrieves an IMediaSamPle buffer suitable for passing across the connection.

virtual HRESULT GetDeliveryBuffer(
IMediaSample ** ppSample,
REFERENCE_ TIME* pStartTime,
REFERENCE_ TIME* pEndTime,
DWORD dwF/ags
);

Parameters

ppSample
IMediaSamPle buffer to be provided.

pStartTime
Start time of the media sample (optional and can be NULL).

pEndTime
Stop time of the media sample (optional and can be NULL).

dwF/ags
The following flags are supported.

Page 12of14

AM_GBF _NOTASYNCPOINT Dynamic format changes are not allowed on this buffer
because it is not a key frame.

AM_GBF _PREVFRAMESKIPPED Buffer returned will not be filled with data contiguous
with any previous data sent.

Return Values

Returns E_NOINTERFACE if an allocator is not found; otherwise, returns the value returned
from calling the IMemAllocator: :GetBuffer method.

Remarks

The pin object must lock itself before calling this member function; otherwise, the filter graph
could disconnect this pin from the input pin midway through the process. If the filter has no
worker threads, the lock is best applied on the IMeminPutPin: :Receive call; otherwise, it
should be done when the worker thread is ready to deliver the sample.

This call can block; therefore, to avoid deadlocking with an IMediaFilter: :Stop command, a
two-tier locking scheme (such as that implemented in CTransformFilter) is required. Only the
second-level lock is acquired here. The IBaseFilter base class implementation of
IMediaFilter::Stop first gets the first-level lock and then calls IMemAllocator:: Decommit on
the allocator. This has the effect of making GetDeliveryBuffer return with a failure code. The
Stop member function then gets the second-level lock and completes the command by calling
Inactive for this pin.

No lock is needed when calling CBaseOutputPin::GetDeliveryBuffer when passing on
samples using a worker thread. In this case, the CBaseFilter: :Stop base class implementation
acquires its filter-level lock and just calls IMemAllocator: :Decommit on the allocator, at which
point the worker thread is freed up to listen for a command to stop.

You must release the sample yourself after this function. If the connected input pin needs to
hold on to the sample beyond the function, it will add the reference for the sample itself
through !Unknown: :AddRef. You must release this one and call

1271

CBaseOutputPin Class Page 13of14

CBaseOutputPin::GetDeliveryBuffer for the next. (You cannot reuse it directly.)

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§lllMM

MQi§i!!.llj,i 111.J,,[9 Topic Contents 1@1§111$8

CBaseOutputPi n: :Inactive

CBaseOutputPin Class

Called by the CBaseFilter implementation when the state changes from either paused or
running to stopped.

HRESULT Inactive(void);

Return Values

Returns VFW E NO ALLOCATOR if there is no allocator; otherwise, returns the value from
calling the IMemAllocator:: Decommit method.

Remarks

This member function calls IMemAllocator:: Decommit to decommit memory before becoming
inactive.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M 111.11119 Topic Contents l@i§lllMM

CBaseOutputPi n: :In itAI locator

CBaseOutputPin Class

Creates a default memory allocator. Override this to provide your own allocator or to provide
no a !locator.

virtual HRESULT InitAllocator(
IMemAllocator **ppAl/oc
);

Parameters

1272

CBaseOutputPin Class

ppAlloc
Returned memory allocator.

Return Values

Returns an HRESULT value.

Remarks

The allocator should be released after use. This is typically handled in the
CBaseOutoutPin:: BreakConnect member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1273

Page 14of14

CBasePin Cl ass Page 1 of 31

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBasePin Class

(CBaseObject),

I INonDelegatingUnknown I
_l(CUnknown),

I IQualityControl I
I !Pin I

1 ~ CBasePin),

CBasePln iS an abstract base class from which all pins are derived. CBasePln supports the
..lPin. interface. You can derive from thiS if your pin does not supply or use the IMeminpHtPin
interface; otherwise, derive from the CBaseinoutPin class or the CBaseOutputPin class.

The connection process is crucial to the success of creating filter graphs. The filter graph finds
two filters (and subsequently two pins) to connect. It calls the !Pin: :Connect method on the
output pin (it can also call Connect on the input pin at the same time). The output pin then
calls the virtual pin member function CBasePin: :Check.Connect. Derived classes should override
this member function to use Queryinterface to return any interfaces required. The base class
implementation of Chec!<Connect queries the IMeminpHtPin interface to establish the default
transport protocol.

After calling Check.Connect. the output pin calls CBasePin: :AgreeMediaTupe; this iS a worker
member function not intended for overriding in derived classes. This gets the input pin's
enumerator and calls CBasePin: :TryMediaTupes with it. TryMediaTyoes is another base pin
worker member function that is not intended for derivation. It cycles through each media type
provided by an enumerator to determine if a connection can be made with that type.

If that process fails, NJreeMediaType retrieves the output pin's media type enumerator and
calls CBasePin::GetMediaTupe, which cycles through the media types to agree on a connection
type. If there is agreement, a media type with the input and output pins becomes the type
used in the connection.

If no media type can be agreed on, the connection between the pins cannot be made. The base
pin calls CBasePin: :SetMediaType to broadcast the format. The m mt base pin variable iS set
during this process.

The ..!Pin. interface provides a method called QneryAccept. This method allows a connected filter
to query whether the pin wm accept a specifie(J media type. The method is asynchronous so
that a filter can call it at any time······even when another filter is calling it. For this reason, its
implementation in any override of the base class should not lock the filter. The base class
implementation of !Pin: :QueryAccept calls the overridden CBasePin:: Check.Media Type member
function on the derived pin class.

1274

CBasePin Class Page2of31

All member functions in this class that return HRESULT and accept a pointer as a parameter
return E_POINTER when passed a null pointer.

Protected Data Members
Name Description
m_bRunTimeError Run-time error generated.
m_Connected Pin to which this pin is connected.
m_dir
m_dRate
m_mt

m_pFilter
m_plock
m_pQSink
m_pName
m_tStart
m_tStop
m_ TypeVersion

Member Functions
Name
Attem otCon nection

CBasePin
CurrentRate

CurrentStartTime

CurrentStooTime

DisolayPinlnfo
DisolayTyoelnfo
GetConnected

Direction of this pin.
Rate from the CBasePin: :NewSegment call.
Media type that this pin is using. This is established during the
connection process.
Filter that created the pin.
Object used for locking.
Target for quality messages.
Name of the pin.
Start time from the CBasePin: :NewSegment call.
Stop time from the CBasePin: :NewSegment call.
Current media type version (see CBasePin: :GetMediaTyoeVersion).

Description
Attempts to make a connection to another pin using a specified media
type.
Constructs a CBasePin object.
Returns the segment rate set by the CBasePin:: NewSegment member
function.
Returns the segment start time set by the CBasePin:: NewSegment
member function.
Returns the segment stop time set by the CBasePin:: NewSegment
member function.
Displays pin information on the debugging monitor.
Displays media type information on the debugging monitor.
Returns the pin that is connected to this pin.

IncrementTyoeVersion Adds 1 to the current media type version.
IsCon nected
IsStoooed

Determines whether the pin is connected.
Determines whether the filter owning this pin is in the State_Stopped
state.
Returns the m oName name of the pin.

Overridable Member Functions

1275

CBasePin Class

Name
Active
AgreeMediaTyoe
BreakConnect

CheckConnect

CheckMediaTyoe
ComoleteConnect
GetMediaTyoe

Description
Switches the pin to the active (running) mode.
Agrees on the media type to be used by the pin.

Page3of31

Adds custom code when the connection quits. This is also called when a
stage in the connection process fails, so this member function should
also clean up partial connection states.
Adds custom code when the connection is being made. This is called at
the start of the connection process.
Checks if the pin can support a specific media type.
Completes the connection.
Returns the media type used by the pin.

GetMediaTyoeVersion Returns the version of the pins that were created dynamically.
Inactive Switches the pin to the inactive (stopped) mode.
SetMediaTyoe Sets the m mt data member to the established media type.
TryMediaTyoes Tries to find an acceptable media type for a connection from the list

returned by a media type enumerator.

Implemented IPin Methods
Name
Connect
ConnectedTo
ConnectionMediaTyoe
Disconnect
EndOfStream

EnumMediaTyoes
NewSegment

OueryAcceot

Description
Initiates a connection to another pin.
Returns a pointer to the connecting pin.
Returns the media type of this pin's connection.
Breaks a connection.
Informs the input pin that no additional data is expected until a
new run command is issued. (returns S_FALSE by default).
Returns an enumerator for this pin's preferred media types.
Specifies that samples following this call are grouped as a segment
with a given start time, stop time, and rate.
Determines whether this pin accepts the media type.

OueryDirection Retrieves the pin direction of the pin.
Oueryld Retrieves an identifier for the pin.
OuerylnternalConnections Returns an array of the pins to which this pin connects internally.
OueryPinlnfo

ReceiveConnection

Retrieves information about the pin itself (the name, owning filter,
or direction).
Called by a connecting pin to make a connection to this pin. Usually
this does not need to be overridden, because the default
implementation calls CBasePin: :CheckConnect,
CBasePin: :CheckMediaTyoe, and CBasePin:: BreakConnect.
Notifies the pin that the filter has changed state from paused to
running.

Implemented IQualityControl Methods
Name Description
.NQtifv. Notifies the recipient that a quality change is requested.
SetSink Sets the !OualityControl object that will receive quality messages.

Implemented INonDelegatingUnknown Methods

1276

CBasePin Class Page 4 of 31

Name Description
NonDelegatingAddRef Increments the owning filter's reference count.

NonDelegatingQueryinterface Retrieves CBasePin interfaces. Override this member function to
pass out pointers to any interfaces added by the derived pin
class.

NonDelegatingRelease Decrements the owning filter's reference count.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§lll¥M

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

CBasePi n: :Active

CBasePin Class

Called by the CBaseFilter implementation when the state changes from stopped to either
paused or running.

virtual HRESULT Active(void);

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.

Remarks

Any class that requires notification of a change of state should override this member function.
This is called when the filter owning the pin exits the State_Stopped state.

Note that the filter graph manager's internal state variable is not updated until after this
member function returns, so testing the filter graph manager's state (directly or indirectly)
from within this member function should be avoided.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQIM!.l+' lh.HM Topic Contents 'ffl!'+* •an•

CBasePi n: :Ag reeMed iaType

CBasePin Class

1277

CBasePin Class

Searches for a media type for the pin connection.

virtual HRESULT AgreeMediaType(
IPin *pReceivePin,
const CMediaType *pmt
);

Parameters

pReceivePin
Pointer to the receiving pin.

pmt
Pointer to a media type object to be returned.

Return Values

Returns an HRESULT value, which can include one of the following values.
Value Meaning
NOERROR A media type was found.
VFW E NO ACCEPTABLE TYPES No agreement on a media type was reached.

Remarks

This member function is called during the connection process. It calls

Page 5 of 31

CBasePin: :TryMediaTypes on both the owning pin and the pin connected to the owning pin; it
enumerates the preferred data types on the pin. If one is found, TryMediaTypes tries the media
type with the pin in a call to the CBasePin:: ReceiveConnection member function. If this pin
proposes a media type, its support is still verified by calling CBasePin: :CheckMediaType. The
enumerator can list all the media types, even if some of them are not currently available.

This member function is protected.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents

MQi§i[.]11,M 11!.HM Topic Contents

CBasePi n: :Attem ptCon nection

CBasePin Class

Attempts to make a connection to another pin using a specified media type.

virtual HRESULT AttemptConnection(
IPin * pReceivePin,

1278

•=@• 1gnw

l@l§il!MM

CBasePin Class

const CMediaType *pmt
);

Parameters

pReceivePin
Pointer to the receiving pin.

pmt

Page 6 of 31

Pointer to a media type object containing the preferred media type for the connection.

Return Values

Returns an HRESULT value.

Remarks

This member function is used to attempt to connect with a given media type. Its main purpose
is to call the I Pin:: ReceiveConnection method of the pin passed in the pReceivePin parameter.
This member function is protected.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

CBasePin::BreakConnect

CBasePin Class

Called when a connection is broken to allow for customization (intended for overriding).

virtual HRESULT BreakConnect();

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.

Remarks

This member function is called when a connection to the pin cannot be made or when
CBasePin: :Disconnect is called. In this case, it is necessary to undo anything performed during
the connection process. You can override this member function to release any references to
interfaces that were made during the connection.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41[.]+• MB.],,[¥ Topic Contents i@faii!MM

1279

CBasePin Class

CBasePin: :CBasePin

CBasePin Class

Constructs a CBasePin object.

CBasePin(
TCHAR *pObjectName,
CBaseFilter *pFilter,
CCritSec *pLock,
HRESULT *phr,
LPCWSTR pName,
PIN_DIRECTION dir
);

Parameters

pObjectName
Description of the object.

pFilter
Owning filter that knows about pins.

pLock
Object that implements the lock.

phr

Page 7 of 31

Pointer to a general COM return value. This value is changed only if this function fails.
pName

Pin name.
dir

Either PINDIR_INPUT or PINDIR_OUTPUT.

Return Values

No return value.

Remarks

This is a standard class constructor.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§i +g¥+

+Qij[.jlj,M 11!.l:.!9 Topic Contents i@i§lllMM

CBasePi n: :CheckCon nect

1280

CBasePin Class Page 8 of 31

CBasePin Class

Allows for customization when the connection is first made (intended for overriding, if
required).

virtual HRESULT CheckConnect(
IPin * pPin
);

Parameters

pPin
Pointer to the connecting pin.

Return Values

Returns one of the following arguments by default; if overridden, should return standard
HRESULT values, including the following values.
Value Meaning
E_INVALIDARG Pin directions do not match between pins.
NOERROR Connection verified successfully.

Remarks

This member function is called during a call to the IPin: :Connect method to provide a virtual
method that can do any specific check required for a connection, such as calling
CBasePin: :NonDelegatingQueryinterface. This base class method determines if the pin
directions match.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM

• QIM [.] +• I !1.],.15

CBasePi n: :CheckMediaType

CBasePin Class

Determines if the pin can support a specific media type.

virtual HRESULT CheckMediaType(
const CMediaType * pmt
)

PURE;

1281

Topic Contents lmll§I 11$8

Topic Contents i@i§lllMM

CBasePin Class Page 9 of 31

Parameters

pmt
Pointer to a media type object containing the proposed media type.

Return Values

The overriding member function should return S_OK if the proposed media type is accepted;
otherwise, it should return an HRESULT failure value, such as S_FALSE.

Remarks

This member function is typically called before calling the CBasePin: :SetMediaType member
function. It is also called from several other member functions, including
CBasePin: :ReceiveConnection and CBasePin: :QueryAccept.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents

CBasePi n: :Com pleteCon nect

CBasePin Class

Completes a connection to another filter (intended for overriding).

virtual HRESULT CompleteConnect(
IPin *pReceivePin
);

Parameters

pReceivePin
Pointer to the connected (receiving) pin.

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.

Remarks

lmll§I 11$8

Override this member function to check for required connection interfaces on the pReceivePin
parameter or its filter. Failing this member function fails the connection and disconnects the
other pin. The CBaseOutputPin class overrides this member function to establish a local
memory transport.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

1282

CBasePin Class

+Qi§1[.]++ 1 !!·HM

CBasePin: :Connect

CBasePin Class

Initiates a connection from this pin to the other pin.

HRESULT Connect(
IPin * pReceivePin,
const AM_MEDIA_ TYPE *pmt
);

Parameters

pReceivePin
Input pin to connect to.

pmt
Optional media type parameter.

Return Values

Page 10 of 31

Topic Contents i@l§ii!MM

Returns one of the following arguments by default; if overridden, should return standard
HRESULT values.
Value Meaning
VFW E ALREADY CONNECTED This output pin is already connected to another pin.
VFW E NOT STOPPED The filter graph is not in a stopped state and connection can't

be performed.
Other error value

Remarks

Returned from CBasePin: :AgreeMediaType or
CBasePin: :CheckConnect or overridden versions of these
member functions.

This member function implements the I Pin: :Connect method. IPin::Connect is implemented
on the output pin and calls the IPin: :ReceiveConnection method for the connected input pin
(implemented in the base classes as CBasePin: :ReceiveConnection). This member function
calls the virtual CBasePin: :CheckConnect member function, which can be overridden to verify
that the connection is possible. CBasePin::CheckConnect then calls
CBasePin: :AqreeMediaTyoe to negotiate a common media type with the connected pin.

CBasePin: :AgreeMediaType calls CBasePin: :TryMediaTypes twice; once for this pin's media
type enumerator and once for the receiving pin's media type enumerator. For each media type
found, CBasePin: :AttemptConnection is called, which in turn calls the receiving pin's
I Pin:: ReceiveConnection method, and finally CBasePin: :CompleteConnect if successful.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1283

CBasePin Class

+Qi§1[.]++ 1 !!·HM

MQij[.jjj,M 111.1 1119

CBasePi n: :Con nectedTo

CBasePin Class

Retrieves a pointer to the connected pin, if there is one.

HRESULT ConnectedTo(
I Pin * * ppPin
);

Parameters

ppPin

Topic Contents

Topic Contents

IPin interface of the other pin (if any) to which this pin is connected.

Return Values

Page 11of31

i@l§ii!MM

i@l§ii!MM

The base class returns S_OK if connected; otherwise, returns VFW E NOT CONNECTED.

Remarks

This member function implements the I Pin: :ConnectedTo method. It adds a reference to the
connected I Pin interface by calling the !Unknown: :AddRef method, because each copy of an
interface pointer has its reference incremented. The calling application is responsible for calling
!Unknown:: Release on this interface when done with it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M 111.1 1119 Topic Contents

CBasePi n: :Connection MediaType

CBasePin Class

Retrieves the media type associated with the current connection of the pin.

HRESULT ConnectionMediaType(
AM_M ED IA_ TYPE *pmt

1284

i@l§ii!MM

CBasePin Class Page 12of31

);

Parameters

pmt
Pointer to an AM MEDIA TYPE structure. If the pin isn't connected, this structure is
initialized to zero. Otherwise, the media type is returned in this parameter.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the I Pin: :ConnectionMediaType method. It returns a copy of
the AM MEDIA TYPE structure that was negotiated for the pin connection when the pin was
connected.

This method fails if the pin is unconnected. The task allocator allocates the media type's format
block. Use the task allocator to free the format block, for example by calling the Microsoft
Win32 CoTaskMemFree function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBasePi n: :Cu rrentRate

CBasePin Class

Retrieves the segment rate set by the CBasePin:: NewSegment member function.

double CurrentRate();

Return Values

Returns the value of m dRate.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

+;<§1[.]lj,+ +II.HM Topic Contents Mttfjl§ii!MM

CBasePin::CurrentStartTime

1285

CBasePin Class Page 13of31

CBasePin Class

Retrieves the segment start time set by the CBasePin::NewSegment member function.

REFERENCE_ TIME CurrentStartTime();

Return Values

Returns the value of m tStart.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.!111j Topic Contents l@i§lllMM

CBasePin::CurrentStopTime

CBasePin Class

Retrieves the segment stop time set by the CBasePin::NewSeqment member function.

REFERENCE_ TIME CurrentStopTime();

Return Values

Returns the value of m tStoo.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

CBasePi n:: Disconnect

CBasePin Class

Breaks a connection.

HRESULT Disconnect(void);

Return Values

Returns NOERROR if there is no connection.

MQi§1[.]1!,i 1 !!·Hi

1286

Topic Contents l@i§il!MM

CBasePin Class Page 14of31

Remarks

This member function implements the I Pin:: Disconnect method. It calls the
CBasePin: :BreakConnect member function and releases the IPin interface of the connected pin
(held by m Connected). There are no parameters because there is only one possible
connection on this pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 111j

CBasePi n:: DisplayPi nlnfo

CBasePin Class

Displays pin information during debugging.

void DisplayPininfo(
IPin *pReceivePin
);

Parameters

pReceivePin
Pointer to the receiving pin.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.Hj

CBasePin::DisplayTypelnfo

CBasePin Class

Displays media type information during debugging.

void DisplayTypeinfo(
IPin *pPin,

1287

Topic Contents l@i§lllMM

Topic Contents l@i§lllMM

CBasePin Class

const CMediaType *pmt
);

Parameters

pPin
Pointer to the pin's IPin interface.

pmt
Pointer to the media type object.

Return Values

No return value.

Remarks

Page 15 of31

This member function displays the major and minor media types of the specified media type
object.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

CBasePin: :EndOfStream

IPin Interface

Informs the input pin that no additional data is expected until a new run command is issued.

HRESULT EndOfStream(void);

Return Values

Returns S FALSE.

Remarks

This member function implements the I Pin:: EndOfStream method. This is intended for input
pins only.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]1!,i 1 !!·HM Topic Contents l@i§il!MM

1288

CBasePin Class

CBasePin::EnumMediaTypes

CBasePin Class

Provides an enumerator for this pin's preferred media types.

HRESULT EnumMediaTypes(
I En um MediaTypes * * ppEnum
);

Parameters

ppEnum
Pointer to an enumerator for the media types.

Return Values

Returns an HRESULT value.

Remarks

Page 16 of31

This member function implements the I Pin:: EnumMediaTypes method. It returns an
enumerator object implemented by the CEnumMediaTypes class and obtains the
IEnumMediaTypes interface, which adds a reference count to this enumerator. If an application
receives an enumerator, the application must release this when done with it by calling
!Unknown:: Release on the enumerator.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

CBasePi n: :GetCon nected

CBasePin Class

Retrieves the pin that is connected to this pin.

IPin * GetConnected();

Return Values

Returns a pointer to an IPin interface.

Remarks

The caller should call the CBasePin: :IsConnected member function before calling

1289

CBasePin Class

CBasePin::GetConnected.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

8 4'MM+1 111·!:.!¥ Topic Contents

CBasePi n: :GetMed iaType

CBasePin Class

Retrieves the current type version, which is used by enumerators.

virtual HRESULT GetMediaType(
int iPosition,
const CMediaType *pMediaType
);

Parameters

iPosition
Position in the media type list.

pMediaType
Returned pointer to the media type at this position.

Return Values

Page 17of31

lmll§lllMM

Returns E_UNEXPECTED by default implementation; the overriding member function should
return one of the following values, or an HRESULT error value if the value could not be set.
Value Meaning
S_FALSE Media type exists but is not currently usable.
S_OK Media type was set.
VFW S NO MORE ITEMS End of the list of media types has been reached.

Remarks

This is a virtual member function that returns a media type corresponding to the position in
the list specified by the iPosition parameter. This base class simply returns an error because no
media types are supported by default. Derived classes should override this member function.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQi§i[.]jj,M ill.HS Topic Contents •@M* 1gnw

8 4'MM+1 1 !!·HM Topic Contents 1@1§111$8

1290

CBasePin Class Page 18 of31

CBasePi n: :GetMed iaTypeVersion

CBasePin Class

Retrieves the current type version, which is used by enumerators.

virtual LONG GetMediaTypeVersion();

Return Values

Returns the value of m TypeVersion by default. To return new media types, override this
member function.

Remarks

This is a virtual member function that returns the current media type version. The base class
initializes the media type enumerators to 1. A derived class can change the list of available
media types. Each time it does, it should increment the version in the overriding member
function. The media type enumerators call this member function when they are called to
determine if they are out of date.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 11!.l:.!j Topic Contents l@i§lllMM

CBasePin: :Inactive

CBasePin Class

Switches the pin to an inactive state.

virtual HRESULT Inactive(void);

Return Values

Returns NOERROR for a base class implementation. The overriding member function returns a
standard HRESULT value and should not fail if the pin is already set as inactive.

Remarks

This member function is called by the IMediaFilter implementation when the state changes to
inactive. This member function should be overridden to decommit allocators and free any
hardware resources that were obtained in the CBasePin: :Active call. The default
implementation of the base class member function does nothing.

1291

CBasePin Class Page 19of31

Note that the filter graph manager's internal state variable is not updated until after this
member function returns, so testing the filter graph manager's state (directly or indirectly)
from within this member function should be avoided.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents l@!§il!MM

CBasePi n: :I ncrementTypeVersion

CBasePin Class

Adds 1 to the current media type version.

void IncrementTypeVersion(void);

Return Values

No return value.

Remarks

The media type version is used to ensure that the filter has not changed the media type. If it
changes the media type, the filter should call this member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 111.1 1119 Topic Contents 1@!§111¥+

CBasePi n: :IsCon nected

CBasePin Class

Determines if the pin is connected to another pin.

BOOL IsConnected(void);

Return Values

Returns TRUE if the pin is connected; otherwise, returns FALSE.

Remarks

1292

CBasePin Class Page 20 of 31

This member function checks the value of the m Connected protected data member.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!MM

CBasePi n: :lsStopped

CBasePin Class

Determines if the filter is stopped.

BOOL IsStopped();

Return Values

Returns TRUE if the filter is stopped; otherwise, returns FALSE.

Remarks

Note that this member function must not be used in the constructor of the pin, because the
filter that is passed is often not initialized properly at that time (due to the convention of using
a this pointer during the construction of data members).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 11!.l:.!9 Topic Contents i@i§ii!MM

CBasePin::Name

CBasePin Class

Retrieves the name of the pin.

LPWSTR Name();

Return Values

Returns the value of the m oName data member.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1293

CBasePin Class Page 21 of31

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBasePin::NewSegment

CBasePin Class

Specifies that samples following this call are grouped as a segment with a given start time,
stop time, and rate.

HRESULT NewSegment(
REFERENCE_TIME tStart,
REFERENCE_TIME tStop,
double dRate
);

Parameters

tStart
Start time of the segment.

tStop
Stop time of the segment.

dRate
Rate of the segment.

Return Values

Returns an HRESULT value (S_OK by default).

Remarks

This member function implements the I Pin:: NewSeqment method. The default implementation
sets the m tStart, m tStoo, and m dRate data members to the values passed in as
parameters. Overriding member functions should pass this notification downstream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§i +g¥+

+Qij[.jjj,M 11!.l:.!M Topic Contents i@l§ii!MM

CBasePin::NonDelegatingAddRef

1294

CBasePin Class Page 22 of 31

CBasePin Class

Increments the reference count for an interface.

ULONG NonDelegatingAddRef();

Return Values

Returns the reference count of the object.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingAddRef
method. It increments the reference count of the owning filter.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] "'' I![.],.[. Topic Contents •@M* 1gnw

CBasePin::NonDelegatingQuerylnterface

CBasePin Class

Retrieves an interface and increments the reference count.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void** ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryinterface
method and passes out references to the IPin, IQualityControl, and IUnknown interfaces.
Override this class to return other interfaces on the object in the derived class.

1295

CBasePin Class Page 23 of 31

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

CBasePi n:: Non Delegating Release

CBasePin Class

Decrements the reference count for an interface.

ULONG NonDelegatingRelease();

Return Values

Returns the reference count.

Remarks

This member function implements the INonDeleqatinqUnknown: :NonDeleqatinqRelease
method. It releases a reference to the owning filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 111.],.[5

CBasePin::Notify

CBasePin Class

Notifies the recipient that a quality change is requested.

HRESULT Notify(
IBaseFilter * pSelf,
Quality q
);

Parameters

pSelf
Pointer to the filter that is sending the quality notification.

q
Quality notification structure.

1296

Topic Contents lfflj(§i MUMM

CBasePin Class Page 24 of 31

Return Values

The default base class implementation returns E_FAIL.

Remarks

This member function must be overridden to accept notifications. It is typically overridden to
implement this method on the output pin because quality-control messages are passed
upstream. The CTra nsformOutputPi n: : Notify member function is one example of how th is
member function is overridden to pass quality-control messages to the next filter upstream.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9

CBasePi n: :Query Accept

CBasePin Class

Determines whether the pin accepts the format type.

HRESULT QueryAccept(
const AM_MEDIA_ TYPE* pmt
);

Parameters

pmt
Pointer to a proposed media type.

Return Values

Topic Contents

Returns S_TRUE if the format is accepted; otherwise, returns S_FALSE.

Remarks

lfflj(§M MUMM

This member function implements the IPin: :OueryAccept method. It simply calls the pure
virtual CBasePin: :CheckMediaType member function, which the derived class must implement,
and maps any returned codes from CheckMediaType other than S_OK to S_FALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H+• 1 11·1::'¥ Topic Contents lfflj(§il!¥M

1297

CBasePin Class

CBasePi n: :QueryDi rection

CBasePin Class

Retrieves the direction of the pin.

HRESULT QueryDirection(
PIN_DIRECTION* pPinDir
);

Parameters

pPinDir
Pointer to a PIN DIRECTION structure to be filled in with the direction.

Return Values

Returns an HRESULT value.

Remarks

Page 25of31

This member function implements the IPin: :QueryDirection method. pPinDir will contain
PINDIR_INPUT or PINDIR_OUTPUT. The same information is available through the
CBasePin: :QueryPininfo member function, but this member function is more efficient.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

CBasePin: :Queryld

CBasePin Class

Retrieves an identifier for the pin.

HRESULT Queryld(
LPWSTR *Id
);

Parameters

Id
Pin identifier.

Return Values

MQi@[.jlj,M l!i.! 111j

1298

Topic Contents l@i§il!MM

CBasePin Class Page 26 of 31

Returns an HRESULT value.

Remarks

This member function implements the I Pin: :Queryld method. By default, this member function
uses the pin name in the CBasePin: :m pName data member, so implementing this member
function in your derived filter class is not normally required.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

CBasePi n: :Querylnterna I Connections

CBasePin Class

Provides an array of pointers to IPin objects. These are the pins to which this pin internally
connects.

HRESULT QuerylnternalConnections(
I Pin * * apPin,
ULONG * nPin
);

Parameters

apPin
Array of IPin pointers.

nPin
Upon input, indicates the number of channels; upon output, indicates the number of
pins.

Return Values

Returns one of the following HRESULT values.
Value Meaning
E_FAIL Undetermined failure.
E_NOTIMPL The filter graph manager interprets E_NOTIMPL as meaning all input pins connect

to all output pins.
S FALSE Insufficient number of channels; returns no pins in apPin.

Remarks

This member function implements the IPin: :QuerylnternalConnections method but only to
return E_NOTIMPL. Override this if you want to provide mapping between specific input and
output pins.

1299

CBasePin Class Page 27 of 31

The default implementation to return E_NOTIMPL implies that the caller can assume that all
input pins feed all output pins. Overriding this member function allows a filter to specify when
it is a renderer for some of its input pins and not for others.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9

+Qij[.jlj,M 111.1 1119

CBasePi n: :QueryPi nlnfo

CBasePin Class

Retrieves information about the pin.

HRESULT QueryPinlnfo(
PIN_INFO * plnfo
);

Parameters

plnfo
Pointer to a PIN INFO structure.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents l@!§il!MM

Topic Contents 1@!§111¥+

This member function implements the I Pin: :QueryPininfo method. By default, the member
function fills in the PIN INFO structure with the IBaseFilter interface of its owning filter, the
pin name from m pName, and the pin direction from .IILd.ir.

The IBaseFilter interface passed out by this member function is reference counted, and so
must be released when the caller has finished with it.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+Qi§1[.jjj,M ill.HM Topic Contents l@!§il!MM

CBasePi n:: ReceiveCon nection

1300

CBasePin Class

CBasePin Class

Makes a connection to the calling output pin.

HRESULT ReceiveConnection(
IPin * pConnector,
AM_M ED IA_ TYPE *pmt
);

Parameters

pConnector
Connecting pin.

pmt
Media type of the samples to be streamed.

Return Values

Returns an HRESULT value.

Remarks

Page 28 of 31

This member function implements the I Pin:: ReceiveConnection method. It calls CheckConnect
and, if successful, then calls CheckMediaType to verify if the media type is acceptable. If either
of these calls fails, it calls BreakConnect and exits. To finish the connection process, it calls
CompleteConnect, which is implemented in CBasePin to return NOERROR, but can be
overridden in the derived class.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents

CBasePin::Run

CBasePin Class

Notifies the pin that the filter has changed state from paused to running.

HRESULT Run(
REFERENCE_TIME tStart
);

Parameters

tStart
Start time as passed to the filter's Run method.

1301

lmli§lllMM

CBasePin Class Page 29 of 31

Return Values

Returns an HRESULT value (NOERROR_OK by default).

Remarks

This member function can be overridden in the derived class to perform activities such as
committing memory or obtaining resources. For an overriding implementation of this member
function, see the CRenderedinoutPin:: Run member function.

Note that the filter graph manager's internal state variable is not updated until after this
member function returns, so testing the filter graph manager's state (directly or indirectly)
from within this member function should be avoided.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.!j

CBasePi n: :Set Med iaType

CBasePin Class

Sets the m mt data member to the established media type.

virtual HRESULT SetMediaType(
const CMediaType * pmt
);

Parameters

pmt

Topic Contents

Pointer to a media type object that was previously agreed on.

Return Values

l@i§lllMM

Returns NOERROR by default implementation. The overriding member functions return an
HRESULT value.

Remarks

This member function is called to establish the format for a pin connection. The
CBasePin: :CheckMediaType member function will have been called to check the connection
format and, if it did not return an error value, this virtual member function will be called. The
default implementation sets the m mt protected data member to the value passed to this
member function. Override to inform the derived class when the media type is set.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1302

CBasePin Class Page 30 of 31

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBasePin::SetSink

CBasePin Class

Sets the object containing the IQualityControl interface that will receive quality-control
messages.

HRESULT SetSink(
IQualityControl *piqc
);

Parameters

piqc
Pointer to the IQualityControl interface to which the notifications should be sent.

Return Values

Base class returns NOERROR by default. The overriding member function should return an
HRESULT value.

Remarks

This member function implements the IQualityControl: :SetSink method. The default
implementation sets the m oQSink data member to the piqc parameter passed in.

The I Qua I ityControl: : SetSi n k method tel Is a filter where to send qua I ity-control messages it
receives. When no sink has been explicitly set or if the last call to CBasePin::SetSink set the
sink to NULL, the message should go upstream. The derived output pin class typically overrides
CBasePin: :Notify to enable this.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 11!.l:.!9 Topic Contents i@l§ii!MM

CBasePin::TryMediaTypes

CBasePin Class

Determines a media type for a pin connection.

1303

CBasePin Class

virtual HRESULT TryMediaTypes(
IPin *pReceivePin,
const CMediaType *pmt,
I En um MediaTypes *pEnum
);

Parameters

pReceivePin
Pointer to the IPin interface of the receiving pin.

pmt
Pointer to a returned media type.

pEnum
Pointer to an IEnumMediaTypes enumerator interface.

Return Values

Returns an HRESULT value, which can include the following.
Value Meaning
FAILED Resetting of the enumerator failed.
NOERROR Media type found.
VFW E NO ACCEPTABLE TYPES No acceptable media types were found.

Remarks

Page 31of31

Given an enumerator, this member function cycles through all the media types proposed by
the enumerator. Each type is suggested to the derived pin class and, if acceptable, is tried with
the connected pin in a call to the I Pin:: ReceiveConnection method. This means that if the
owning pin proposes a media type, it is still checked to determine whether it is supported. This
is deliberate so that, in simple cases, the enumerator can hold all the media types, even if
some of them are not currently available.

This member function is protected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@i·ii!:+ l!i.! 11ij Topic Contents l@i§i •11»•

1304

CBasePropertyPage Class Page 1 of 18

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CBasePropertyPage Class

CBaseObject

CBasePropertyPage

Property pages can be implemented on filters to provide access to custom properties on the
filter. This can be useful for developing and debugging the filter, because the Filter Graph
Editor <.lisplays these property pages. Also, the Microsoft® ActiveMovie Control queries filters in
its underlying filter graph for the property pages they support and exposes them to the user. A
good example is the video renderer, which exposes quality management information (such as
frame rate) through a property page.

This class provides the framework for a property page associated with a filter and implements
the IPropertyPage interface. A property page is a Component Object Model (COM) object, which
should be created with a resource ID for a dialog box that wm be loaded when required. It
should also be given a resource ID for a title string when created.

In addition to implementing the IPropertyPage interface methods, this class provides several
virtual member functions that can be overridden and specialized by the derived class (they
return NOERROR by default). These virtual member functions are called at specific events,
such as when the property page iS activated or deactivated, connected or disconnected, when
the changes to properties are to be applied, or when messages to the dialog box are received.

A filter exposing custom property pages should also expose the same functionality to an
application through a custom interface. Otherwise, an application has no way to control the
filter without displaying the property page. For example, the video renderer supports the
IQ!ra!prop interface to access the same quality management information. In fact, the renderer
property page uses that interface to get the information for its property page. To make it
easier for applications to access their custom interfaces, filters should also implement their
custom interfaces in a plug-in distributor (PID), which iS an object that is aggregated with the
filter graph manager. Typically, the PID implements its associated filter's interface by simply
passing calls through from the application to the filter interface.

Protected Data Members

1305

CBasePropertyPage Class

Name
m_bDirty

Description
Flag to determine whether anything has changed.

m_Dialogid Resource identifier for the dialog box.
m_Dlg Dialog box window handle for the property page.
m_hwnd Window handle for the property page.

Page 2of18

m_pPageSite IProoertyPage interface pointer used to access the filter's property information.
m_ Titleid Resource identifier for the property page title.

Member Functions
Name Description
CBaseProoertyPage Constructs a CBaseProoertyPage object.

Overridable Member Functions
Name Description
OnActivate Called when the property page is activated.
OnAoolyChanges Called when the user applies changes to the property page.
OnConnect Called when the property page is connected to the filter.
OnDeactivate Called when the property page is dismissed.
OnDisconnect Called when the property page is disconnected from the owning filter.
OnReceiveMessage Called when a message is sent to the property page dialog box window.

Implemented INonDelegatingUnknown Methods
Name
NonDelegatingAddRef

Description
Default implementation increments the owning filter's reference
count.

NonDelegatingOueryinterface Called to retrieve CBaseProoertyPage interfaces. Override this
member function to pass out pointers to any interfaces added
by the derived class.

NonDelegatingRelease Default implementation decrements the owning filter's reference
count.

Implemented IPropertyPage Methods
Name
Activate
AQQly

Deactivate
GetPageinfo
Helo
IsPageDirty

Move
SetObjects

SetPageSite

Description
Creates a dialog box window for the property page.
Applies current property page values to the underlying object.
Destroys the window created with CBaseProoertyPage: :Activate.
Returns information about the property page.
Invokes Help in response to user request.
Indicates whether the property page has changed since activated or since
the most recent call to CBaseProoertyPage: :Aooly.
Positions and resizes the property page dialog box within the frame.
Provides the property page with an array of !Unknown pointers for
objects associated with this property page.
Initializes a property page and provides the page with a pointer to the
IProoertyPageSite interface through which the property page
communicates with the property frame.
Makes the property page dialog box visible or invisible.

1306

CBasePropertyPage Class Page 3of18

TranslateAccelerator Provides a pointer to an MSG. structure that specifies a keystroke to
process.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 11!i

MQi§i[.jlj,M 1 !1·Hi

CBasePropertyPage: :Activate

CBaseProoertyPaqe Class

Creates the property page dialog box.

HRESULT Activate(
HWND hwndParent,
LPCRECT prect,
BOOL fModal
);

Parameters

hwndParent
Handle to the parent window of the dialog box.

pre ct

Topic Contents l@IJll!MM

Topic Contents l@IJll!MM

Pointer to the RECT structure that contains the dialog box's screen position.
fModal

Value that specifies a modal dialog box if TRUE, or a modeless dialog box if FALSE.

Return Values

Returns E_OUTOFMEMORY if the dialog box creation fails, or E_UNEXPECTED if a property page
already exists.

Remarks

This member function implements the COM IPropertyPaqe: :Active method, which creates a
dialog box for the property page (without a frame, caption, system menu, or controls) using
hwndParent as the parent window and prect as the positioning rectangle.

The property page maintains the window handle created in this process, which it uses to
destroy the dialog box within CBasePropertyPaqe:: Deactivate.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+Qi§i[.]ij,+ 1 !!·Hi Topic Contents l@i§il!MM

1307

CBasePropertyPage Class Page 4of18

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBasePropertyPage: :Apply

CBasePropertyPage Class

Applies current property page values to the underlying object.

HRESULT Apply(void);

Return Values

Returns E~UNEXPECTED if CBasePropertyPage: :SetObjects has not been called or if the
m pPageSite data member has not been initialized with a pointer to the filter's property page.

Remarks

This member function implements the COM IPropertyPage: :Apply method. The object to be
changed is provided through a previous call to CBasePropertyPage: :SetObjects. This should be
the filter's IUnknown interface. Therefore, this member function should not fail because of
nonexistent interfaces.

This member function sets the m bDirty data member to FALSE and calls the virtual
CBasePropertyPage: :OnApplyChanges member function, which should be overridden in the
derived class to apply the changes to the properties.

© 1997 Microsoft Corooratjon . All rights reserved. Terms of Use.

+;<§1[.]jj,+ +II.HM Topic Contents Mttfjl§ii!MM

C BasePropertyPage:: C Ba sePropertyPage

CBasePropertyPage Class

Constructs a CBasePropertyPage object.

CBasePropertyPage(
TCHAR *pName,
LPUNKNOWN pUnk,
int Dialogid,
int Titleld
);

1308

CBasePropertyPage Class

Parameters

pName
Name of the property page object for debugging purposes.

pUnk
Pointer to the COM delegating object.

Dialog Id
Resource ID for the dialog box.

Titleld
Resource ID for the dialog box title.

Remarks

This constructor sets the CBasePropertyPaqe data members as follows:

• m Dialogid is set to Dialogid.
• m Titleid is set to Titleid.
• m hwnd is set to NULL.
• m Dig is set to NULL.
• m pPageSite is set to NULL.
• m bDirty is set to FALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M 11!.l:.!j Topic Contents

+QiM!.l+' +11.],.[J Topic Contents

CBasePropertyPage:: Deactivate

CBasePropertyPaqe Class

Destroys the window created with CBasePropertyPage: :Activate.

HRESULT Deactivate(void);

Return Values

Page 5of18

l@i§lllMM

l@i§lllMM

Returns E_UNEXPECTED if the data member m hwnd does not contain a Window handle for
the property page.

Remarks

This member function implements the COM IPropertyPaqe: :Deactivate method. It calls the
virtual CBasePropertyPaqe: :OnDeactivate member function and then destroys the property
page dialog box.

1309

CBasePropertyPage Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents

CBasePropertyPage: :GetPagelnfo

CBaseProoertyPaqe Class

Returns information about the property page.

HRESULT GetPageinfo(
LPPROPPAGEINFO pPageinfo
);

Parameters

pPagelnfo

Page 6of18

lmll§I 11$8

Pointer to the caller-allocated PROPPAGEINFO structure in which the property page stores
its page information. All allocations stored in this structure become the caller's
responsibility.

Return Values

Returns E_OUTOFMEMORY if the function cannot allocate memory for the property page title.

Remarks

This member function implements the COM IPropertyPaqe: :GetPaqeinfo method. It calls the
GetDialoqSize function to obtain the dialog box size and sets it to a default value in case this
call fails.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•Q<M!.l+' •11·!:.!¥ Topic Contents lmll§I 11$8

CBasePropertyPage:: Help

CBasePropertyPaqe Class

Invokes Help in response to user request.

HRESULT Help(

1310

CBasePropertyPage Class

LPCWSTR lpszHelpDir
);

Parameters

lpszHelpDir

Page 7of18

Pointer to the string under the HelpDir key in the property page's CLSID information in
the registry. If HelpDir does not exist, this will be the path found in the InProcServer32
entry minus the server file name.

Return Values

Returns E_NOTIMPL by default.

Remarks

This member function implements the COM IPropertyPage: :Help method, but only as a
placeholder. The function does nothing but return E_NOTIMPL.

Calls to this member function must occur between calls to CBasePropertyPage: :Activate and
CBasePropertyPage: : Deactivate.

If the page fails this member function (such as E_NOTIMPL), the frame will attempt to use the
pszHelpFile and dwHelpContext fields of the PROPPAGEINFO structure obtained through
CBasePropertyPage: :GetPageinfo. Therefore, the derived class should either implement
CBasePropertyPage::Help or return Help information through
CBasePropertyPage: :GetPagelnfo.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

CBasePropertyPage: :IsPageDi rty

CBasePropertyPage Class

Indicates whether the property page has changed since activated or since the most recent call
to CBasePropertyPage: :Apply.

HRESULT lsPageDirty(void);

Return Values

Returns S_OK if the value state of the property page is dirty, that is, it has changed and is
different from the state of the objects. Returns S_FALSE if the value state of the page has not
changed and is current with that of the objects.

Remarks

1311

CBasePropertyPage Class Page 8of18

This member function implements the COM IPropertyPaqe: :IsPaqeDirty method. It returns the
value of the m bDirty data member.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.J,,[9 Topic Contents

CBasePropertyPage:: Move

CBasePropertyPaqe Class

Positions and resizes the property page dialog box within the frame.

HRESULT Move(
LPCRECT prect
);

Parameters

pre ct

lfflj(§l l!lflM

Pointer to the RECT structure containing the positioning information for the property
page dialog box.

Return Values

Returns E_UNEXPECTED if the m hwnd data member does not contain a Window handle for
the property page.

Remarks

This member function implements the COM IPropertyPaqe: :Move method by calling the
Microsoft® Win32® MoveWindow function. This member function is called from the
CBasePropertyPaqe: :Activate member function to position the property page dialog box.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41H+• 111.J,,[9 Topic Contents l@!§il!MM

CBasePropertyPage:: Non Delegati ngAdd Ref

CBasePropertyPage Class

1312

CBasePropertyPage Class Page 9of18

Increments the reference count for an interface.

ULONG NonDelegatingAddRef();

Return Values

Returns the object's reference count.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingAddRef
method. It increments the owning filter's reference count.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' •11·!:.!¥ Topic Contents lmli§lllMM

CBasePropertyPage:: Non Delegati ngQuerylnterfa 1

CBaseProoertyPage Class

Returns an interface and increments the reference count.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void** ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryinterface
method and passes out references to the IPropertyPage interface. It then calls the
CUnknown:: NonDelegatingQueryinterface base class member function. Override this class to
return other interfaces on the object in the derived class.

1313

CBasePropertyPage Class Page 10of18

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

C BasePropertyPage:: Non Delegating Rel ease

CBaseProoertyPaqe Class

Decrements the reference count for an interface.

ULONG NonDelegatingRelease();

Return Values

Returns the reference count.

Remarks

This member function implements the INonDeleqatinqUnknown: :NonDeleqatinqRelease
method. It releases a reference count to the owning filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§i[.jjj,M 111.],.[5 Topic Contents lfflj(§i MUMM

CBasePropertyPage::OnActivate

CBasePropertyPage Class

Called when the property page is activated.

virtual HRESULT OnActivate(void);

Return Values

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

Remarks

This member function is called from the CBasePropertyPage: :Activate member function to
notify the derived class when the property page is displayed. Override this member function to

1314

CBasePropertyPage Class Page 11of18

initialize values in the dialog box. This can be done by calling the Win32 SetDlgltemText
function with data member values previously initialized when the property page was connected
(in the overridden CBasePropertyPage: :OnConnect member function).

For example, the Vidprop.cpp file in the sample video renderer, SampVid, does this as follows:

II Set the text fields in the pro perty page

HRESULT CQualityProperties: :OnActivate()
{

setEditFieldData() ;
return NOERROR;

II Initialize the pro perty page fields

v o id CQualityProperties: :SetEditFieldData ()
{

ASSERT (m_pQualProp) i

TCHAR buffer[50) i

wsprintf (buffer, 11 %d 11
, m_iDropped);

SendDlgitemMessage(m_Dlg, IDD_QDROPPED, WM_SETTEXT, 0, (DWORD) (LPSTR) buffer);
wsprintf (buffer, 11 %d 11

, m_iDrawn) ;
SendDlgitemMessage (m Dlg, !DD QDRAWN, WM SETTEXT, 0, (DWORD) (LPSTR) buffer) i

wsprintf (buffer, 11 %d.%02d 11
, m_iFrameRatel ioo, m_iFrameRate%100) ;

SendDlgitemMessage (m_Dlg, IDD_QAVGFRM, WM_SETTEXT, 0, (DWORD) (LPSTR) buffer);
wsprintf (buffer, 11 %d 11

, m_iFrameJitter) ;
SendDlgitemMessage(m_Dlg, IDD_QJITTER, WM_SETTEXT, 0, (DWORD) (LPSTR) buffer) i

wsprintf (buffer, 11 %d 11
, m_iSyncAvg) ;

SendDlgitemMessage (m_Dlg, IDD_QSYNCAVG, WM_SETTEXT, 0, (DWORD) (LPSTR) buffer) ;
wsprintf (buffer, 11 %d 11 , m_isyncDev);
SendDlgitemMessage (m_Dlg, IDD_QSYNCDEV, WM_SETTEXT, 0, (DWORD) (LPSTR) buffer) ;

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.!j Topic Contents l@i§lllMM

C BasePropertyPage:: OnApplyC ha n ges

CBasePropertyPage Class

Called when the user applies changes to the property page.

virtual HRESULT OnApplyChanges(void);

Return Values

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

1315

CBasePropertyPage Class Page 12of18

Remarks

Override this member function if your property page allows users to set property values. When
this member function is called, process the changed properties. For example, set appropriate
data members in the derived class to the new values, or call methods in the filter to set the
properties. The overriding member function is responsible for calling
CBasePropertyPage: :IsPageDirty to set the m bDirty data member to TRUE if the properties in
the object do not reflect those in the property page when this member function exits.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M M!i.! 111j

CBasePropertyPage: :OnCon nect

CBasePropertyPage Class

Called when the property page is connected to the filter.

virtual HRESULT OnConnect(
!Unknown *pUnknown
);

Parameters

pUnknown

Topic Contents

IUnknown interface of the filter associated with the property page.

Return Values

l@i§il!MM

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

Remarks

This member function is called from the CBasePropertyPage: :SetObjects member function with
the ppUnk parameter of that member function, which should be the filter's IUnknown interface.
Override this member function to acquire property values to be sent to the property page
dialog box later (in CBasePropertyPage: :OnActivate).

The following excerpt from the sample video renderer (SampVid) Vidprop.cpp file illustrates the
use of this member function.

II Give us the filter to communicate with

HRESULT CQualityProperties: :OnConnect(IUnknown *pUnknown)
{

1316

CBasePropertyPage Class Page 13of18

ASSERT(m_pQualProp ==NULL);

II Ask the renderer for its IQualProp interface

HRESULT hr= pUnknown->Queryinterface(IID IQualProp, (void **)&m_pQualProp);
if (FAILED(hr)) { -

return E_NOINTERFACE;

ASSERT(m_pQualProp);

II Get quality data for the page

m_pQualProp->get_FramesDroppedinRenderer(&m_iDropped);
m_pQualProp->get_FramesDrawn(&m_iDrawn);
m_pQualProp->get_AvgFrameRate(&m_iFrameRate) ;
m_pQualProp->get_Jitter(&m_iFrameJitter);
m pQualProp->get Avgsyncoffset(&m iSyncAvg);
m=pQualProp->get=DevSyncOffset(&m=iSyncDev) ;
return NOERROR;

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents

CBasePropertyPage: :On Deactivate

CBaseProoertyPaqe Class

Called when the property page is dismissed.

virtual HRESULT OnDeactivate(void);

Return Values

lmll§I 11$8

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

Remarks

This member function is called from the CBaseProoertyPaqe:: Deactivate member function
when the user closes the property page. Override this member function to handle any special
requirements at that time.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

• QIM [.] +• I !!·HM Topic Contents l@i§lllMM

1317

CBasePropertyPage Class Page 14of18

CBasePropertyPage: :On Disconnect

CBasePropertyPage Class

Called when the property page is disconnected from the owning filter.

virtual HRESULT OnDisconnect(void);

Return Values

Returns NOERROR by default. The overriding member function should return a valid HRESULT
value.

Remarks

This member function is called from the CBasePropertyPage: :SetObjects member function
when the property page is disconnected from the filter. Override this member function to
handle any special requirements at that time, such as releasing reference counts on underlying
property interfaces.

The following example, from the Vidprop.cpp file in the sample video renderer, SampVid,
demonstrates an implementation of this member function in a derived class.

II Release any IQualProp interface we have

HRESULT CQualityProperties: :OnDisconnect()
{

II Release the interface

if (m_pQualProp == NULL)
return E_UNEXPECTED;

m_pQualProp->Release () ;
m_pQualProp = NULL;
return NOERROR;

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents lmll§I llMM

C BasePropertyPage:: On Receive Message

CBasePropertyPage Class

Called when a message is sent to the property page dialog box.

1318

CBasePropertyPage Class

virtual BOOL OnReceiveMessage(
HWND hwnd,
UINT uMsg,
WPARAM wParam,
LPARAM /Param
);

Parameters

hwnd
Window procedure that received the message.

uMsg
Message.

wParam

Page 15of18

Additional message information. This parameter's content depends on the value of the
uMsg parameter.

I Pa ram
Additional message information. This parameter's content depends on the value of the
uMsg parameter.

Return Values

By default, returns the value returned by the Win32 DefWindowProc function.

Remarks

The default implementation of this member function calls DefWindowProc with the supplied
parameters. Override this member function for special handling of messages.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@i§ii!MM

MQij[.jlj,M M!i.1 1119 Topic Contents i@i§ii!MM

CBasePropertyPage::SetObjects

CBasePropertyPage Class

Provides the property page with an !Unknown pointer for objects associated with this property
page.

HRESULT SetObjects(
ULONG cObjects,
LPUNKNOWN *ppUnk
);

1319

CBasePropertyPage Class Page 16of18

Parameters

cObjects
Number of IUnknown pointers in the array pointed to by ppUnk. This number should be 1
or 0. If it is 0, the property page must release any pointers previously passed to this
method.

ppUnk
Pointer to a single IUnknown interface pointer identifying a unique object affected by the
property sheet in which this (and possibly other) property page is displayed. The
property page must cache this pointer by calling IUnknown: :Add Ref.

Return Values

Returns E_POINTER if ppUnk is null, E_UNEXPECTED if cObjects is greater than 1, and
otherwise returns the value returned by the CBasePropertyPaqe: :OnConnect or
CBasePropertyPaqe: :OnDisconnect member function that it calls.

Remarks

This member function implements the COM IPropertyPage: :SetObjects method. This member
function calls the virtual CBasePropertyPage: :OnConnect member function when the cObjects
value is 1, or the virtual CBasePropertyPage: :OnDisconnect member function when the
cObjects value is 0. Override these virtual member functions to acquire (by calling
I Unknown: :AddRef) or release (by calling IUnknown:: Release) interfaces to which the property
page applies.

Note that the caller must provide the property page with this object before calling
CBasePropertyPaqe: :Activate, and should call CBasePropertyPage::SetObjects with 0-v as
the parameter when deactivating the page or when releasing the object entirely.

This member function allows only one object to be associated with the property page.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CBasePropertyPage: :SetPageSite

CBasePropertyPage Class

Initializes a property page and provides the page with a pointer to the IPropertyPaqeSite
interface through which the property page communicates with the property frame.

HRESULT SetPageSite(
LPPROPERTYPAGESITE pPageSite
);

1320

CBasePropertyPage Class Page 17of18

Parameters

pPageSite
Pointer to the IPropertyPageSite interface of the page site that manages and provides
services to this property page within the entire property sheet.

Return Values

Returns E_UNEXPECTED if if the m oPaqeSite data member has not been initialized with a
pointer to the filter's property page.

Remarks

This member function implements the COM IPropertyPaqe: :SetPaqeSite method. When passed
an IPropertyPaqeSite interface, it reference counts the interface and assigns it tom pPaqeSite.
When passed a null value, it releases the reference count on the IPropertyPageSite
interface.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[.

CBasePropertyPage: :Show

CBasePropertyPaqe Class

Makes the property page dialog box visible or invisible.

HRESULT Show(
UINT nCmdShow
);

Parameters

nCmdShow

Topic Contents •@M* 1gnw

Command describing whether to become visible. Only SW_SHOWNORMAL, SW_SHOW,
and SW_HIDE are accepted.

Return Values

Returns E_UNEXPECTED if the data member m hwnd does not contain a Window handle for
the property page. Returns E_INVALIDARG if the nCmdShow parameter is not equal to
SW_SHOW or SW_SHOWNORMAL (show) or SW_HIDE (hide).

Remarks

If the page is made visible, the page should set the focus to itself, specifically to the first

1321

CBasePropertyPage Class Page 18of18

property on the page. This member function implements the COM IPropertyPage: :Show
method. This is called just before exiting the CBasePropertyPage: :Activate member function
with the nCmdShow SHOW NORMAL value.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faiilMM

C BasePropertyPage: :Tran slateAcce lerator

CBasePropertyPage Class

Provides a pointer to an MSG. structure that specifies a keystroke to process.

HRESULT TranslateAccelerator(
LPMSG lpMsg
);

Parameters

lpMsg
Pointer to the MSG. structure describing the keystroke to process.

Return Values

Returns E_NOTIMPL by default.

Remarks

This member function implements the COM IPropertyPage: :TranslateAccelerator method. Calls
to this member function must occur after a call to CBasePropertyPage: :Activate and before the
corresponding call to CBasePropertyPage:: Deactivate. Override this member function to
implement keyboard accelerators for the property page.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

1322

CBaseReferenceClock Class Page 1 of9

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CBaseReferenceClock Class

(CBaseObject),

I INonDelegatingUnknown I
L.l(CUnknown

(CCritSec

I IReferenceClock I
1

(CBaseReferenceClock)1

This base class implements the IReferenceClock interface.

The CBaseReferen<:eClock class provides a full implementation of IReferenceClock. It uses
CCritSec locking support and CAMSchedule scheduler support.

Each a<iVi$e call defines a point in time when the caller wants to be notified. A periodic a<iVi$e
is a regular series of such events. A list of these advise requests is maintained by the
reference clock. The clock calculates the delay until the first requested advise, and signals an
event at the due time.

Clients are not advised through callbacks. One-shot clients have an event set, while periodic
clients have a semaphore released for each event notification. A semaphore allows a client to
know exactly how many events were actually triggered, because multiple time periods might
elapse before the client code executes.

During class construction, a worker thread is created. This thread executes a series of
Microsoft® Win32® WajtforSingleOoject calls, waking up when a command is given to the
thread orthe next wake-up point is reached. The wake-up points are determined by clients
making advise calls.

Protected Data Members
m_pSchedule Pointer to the CAMSched111e object associated with this caaseRererenrec1ocK

object.

Member Functions
Name Des<:rlptlon
CBaseRefernnceClock Constructs a CBaseRefernnceClock object.
GetSched111e Returns the CAMSched111e pointer stored in the

CBaseRefernnceClock::m pSchedule data member.
SetTimeDelta Adjusts the values returned from CBaseRefernnceClock: :GetPrivate Time

by the amount specified in this member function.

1323

CBaseReferenceClock Class Page 2 of9

TriqqerTh read Triggers the advise thread's event. If you override
CBaseReferenceClock: :GetPrivateTime, you should either reuse or
abandon this method.

Implemented IReferenceClock Methods
Name Description
AdvisePeriodic Requests an asynchronous periodic notification that a time has elapsed.
AdviseTime

GetTime
Unadvise

Requests an asynchronous notification that a time has elapsed.
Returns a reference time.
Removes a previously established advise link.

Overridable Member Functions
Name Description
GetPrivateTime Gets the current time from the real clock. Override this member function to

implement your own clock.

Implemented INonDelegatingUnknown Methods
Name Description
NonDelegatingQueryinterface Returns a pointer to interfaces supported, that is,

IReferenceClock.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents

MQi§i[.jlj,M 1 !1·Hj Topic Contents

C BaseReferenceC lock: :Ad vi sePeri od i c

CBaseReferenceClock Class

Sets up a recurring advise with the reference clock.

HRESULT AdvisePeriodic(
REFERENCE_ TIME StartTime,
REFERENCE_ TIME PeriodTime,
HSEMAPHORE hSemaphore,
DWORD *pdwAdviseToken
);

Parameters

StartTime
Start at this time.

PeriodTime
Time between notifications.

1324

l@i§il!MM

•@m•11mw

CBaseReferenceClock Class

hSemaphore
Advise through a semaphore.

pdwAdvise Token
Advise token that identifies the link with the clock.

Return Values

Returns one of the following HRESULT values:
Value Meaning
E_OUTOFMEMORY Failure.
E_INVALIDARG Invalid argument.
NO ERROR No error.

Remarks

Page 3 of9

This member function implements the IReferenceClock: :AdvisePeriodic method. A semaphore
is used, rather than an event, to ensure that multiple notifications can be seen by the user.
Each time an amount of time specified in the PeriodTime parameter elapses, the semaphore
will be released.

When no further notifications are required, call CBaseReferenceClock: :Unadvise and pass the
pdwAdviseToken value returned from this call.

For example, the following code extract sets up an advise link that fires its first advise five
seconds from now and then signals every second until Unadvise is called. By using a
semaphore with a count of 10, the clock is effectively able to cache 10 events.

HANDLE hsemaphore = createsemaphore (NULL, o, 10, NULL) ;
II assume pRefClock is an IReferenceclock* variable

REFERENCE TIME rtPeriodTime = 1000 * (UNITS I MILLISECONDS) i

II a one-second interval
REFERENCE TIME rtNow;
DWORD dwAdviseToken;
pRefClo ck->GetTime (&rtNow) ;

pRefClock->AdvisePeriodic (rtNow+ (S*rtPeriodTime) ,
PeriodTime, hsemaphore, &dwAdviseToken) ;

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(9

8 4'41M+• 111.q9

Topic Contents

Topic Contents

CBaseReferenceClock: :Advise Ti me

CBaseReferenceClock Class

1325

lmli§lllMM

1@!§111$8

CBaseReferenceClock Class

Sets up a one-shot notification with the clock.

HRESULT AdviseTime(
REFERENCE_ TIME baseTime,
REFERENCE_ TIME stream Time,
HEVENT hEvent,
DWORD *pdwAdviseToken
);

Parameters

base Time
Base reference time.

stream Time
Stream offset time.

hEvent
Advise through this event.

pdwAdvise Token
Where the advise token goes.

Return Values

Returns one of the following HRESULT values:
Value Meaning
E_OUTOFMEMORY Failure.
E_INVALIDARG Invalid argument.
NOERROR No error.

Remarks

Page 4 of9

This member function implements the IReferenceClock: :AdviseTime method. At the time
specified in the baseTime plus the streamTime parameters, the event specified in hEvent will
be set. It is correct to call CBaseReferenceClock:: Unadvise to remove the link after the event
has occurred, but it is not necessary. One-shot notifications are automatically cleared by the
clock once they have signaled.

To cancel a one-shot notification before the time is reached, call Unadvise and pass the
pdwAdviseToken value returned from this call.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

C BaseReferenceC lock: :C Ba seReferenceC lock

1326

CBaseReferenceClock Class

CBaseReferenceClock Class

Constructs a CBaseReferenceClock object.

CBaseReferenceClock(
TCHAR *pName,
LPUNKNOWN pUnk,
HRESULT *phr,
CAMSchedule * pSched
);

Parameters

pName
Name of the CBaseReferenceClock object.

pUnk
IUnknown interface of the delegating object.

phr
Address of an HRESULT value.

pSched

Page 5of9

Address of a CAMSchedule object that will be associated with this CBaseReferenceClock
object. If pSched is NULL, the constructor creates a new CAMSchedule object and
associates it with this CBaseReferenceClock object.

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@i§ii!MM

MQij[.jlj,M M!i.1 1119 Topic Contents i@i§ii!MM

CBaseReferenceClock: :GetPrivateTime

CBaseReferenceClock Class

Retrieves the current reference time.

virtual REFERENCE_ TIME GetPrivateTime();

Return Values

Returns the current reference time, in 100-nanosecond units.

1327

CBaseReferenceClock Class Page 6 of9

Remarks

GetPrivateTime represents the actual clock. GetTime is the externally used member function.
Derived classes will probably override this method, but not GetTime itself. The important point
about GetPrivateTime is that it is allowed to go backward. This class's GetTime member
function will keep returning the last time returned by GetTime until GetPrivateTime catches
up.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.!11ij Topic Contents l@i§il!MM

C BaseReferenceC lock: :GetSch ed u le

CBaseReferenceClock Class

Retrieves the CAMSchedule pointer stored in the CBaseReferenceClock:: m oSchedule data
member.

CAMSchedule * GetSchedule();

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.!11ij

CBaseReferenceClock: :GetTi me

CBaseReferenceClock Class

Retrieves the current reference time, in 100-nanosecond units.

HRESULT GetTime(
REFERENCE_TIME *pTime
);

Parameters

pTime
Where the current time is returned.

Return Values

1328

Topic Contents l@i§il!MM

CBaseReferenceClock Class Page 7 of9

Returns one of the following HRESULT values:
Value Meaning
E_POINTER NULL pointer argument.
S_FALSE Failure.
S_OK Success.

Remarks

This member function implements the IReferenceClock: :GetTime method. It reads the time
from the implemented clock and returns the current time.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9 Topic Contents lmll§lllMM

8 4'41M+• 111.q9 Topic Contents 1@!§111$8

CBaseReferenceClock::NonDelegatingQuerylnter1

CBaseReferenceClock Class

Accesses supported interfaces.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void** ppv
);

Parameters

riid
IID of the interface being requested. Only IID_IReferenceClock is supported by the clock
interface.

ppv
Where the IReferenceClock pointer is returned.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

This member function implements the INonDeleqatinqUnknown: :NonDeleqatinqOueryinterface
method.

1329

CBaseReferenceClock Class Page 8 of9

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

C BaseReferenceC lock: :SetTi me Delta

CBaseReferenceClock Class

Sets a delta on the time that CBaseReferenceClock: :GetPrivateTime will return.

HRESULT SetTimeDelta(
con st REFERENCE_ TIME& TimeDelta
);

Parameters

TimeDelta
REFERENCE_ TIME delta to be added.

Return Values

Returns NOERROR.

Remarks

Note that CBaseReferenceClock: :GetTime will never return a time earlier than a previously
returned time. Thus, if you set the clock to a time in the past, successive calls to
CBaseReferenceClock::GetTime will return the current value until this new time is reached,
and the clock will start to increment again.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

C BaseReferenceC lock: :Trigge rTh read

CBaseReferenceClock Class

Triggers the advise thread's event.

void TriggerThread();

1330

CBaseReferenceClock Class Page 9 of9

Return Values

No return value.

Remarks

The clock uses a worker thread that should wake up and call CAMSchedule: :Advise at the
appropriate time. If the clock adds an event that should be fired earlier than any currently
outstanding event, the worker thread needs to be awoken in order to reevaluate its wait time.
The TriggerThread member function will wake up the worker thread so this can take place. If
a derived clock causes time to jump forward for some reason, TriggerThread should be called
so that the wait time can be reevaluated; otherwise, the events will fire late.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM

CBaseReferenceClock:: U nadvise

CBaseReferenceClock Class

Removes a previously established advise link.

HRESULT Unadvise(
DWORD dwAdviseToken
);

Parameters

dwAdviseToken

Topic Contents i@l§ii!MM

Identifier (token) of the link that is being reset. This is the same value that was returned
on CBaseReferenceClock: :AdviseTime or CBaseReferenceClock: :AdvisePeriodic.

Return Values

Returns S_OK if the successful, S_FALSE if not.

Remarks

This member function implements the IReferenceClock:: Unadvise method. Call Unadvise to
remove the previously established clock advise links. It is mandatory to call Unadvise on
periodic advises in order to stop further calls. It is recommended to call Unadvise for single
shot advise links.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1331

CBaseRenderer Class Page 1of41

e4140.111,e 1:1.11119 T op1c Contents i@IQilt§jM

CBaseRenderer Class

(CBaseObject),

I INonDelegatingUnknown I
Ll(CUnknown

I IAMovieSetup I
I IMediaFilter I
I IBaseFilter

...__..__.I-{~ CBasefilter

~ CBaseRenderer)1

CBaseRenderer is the base renderer class for writing renderers. This class handles a single
input pin, au state changes, and synchronization.

Protected Data Members
Name Description
m_bAbort Stop rendering data.
m_bEOS Indicator for whether there are more samples in the stream.
m_bEOSDellvered Indicator for whether an EC COMPLETE event has been delivered.
m_bRepalntStatus Flag to determine if an EC REPAINT message can be signaled.
m_bStreamlng Indicator for whether the filter graph is currently streaming.
m_cfWAdvlse Timer advise token returned by the clock.
m_EndOfStreamTimer Time that specifies the end of the stream.
m_evComplete Event signaled when the pause state is complete.
m_Interfacelock Critical section for interfaces.
m_pinputPln Renderer input pin object.
m_pMedlaSample Current media sample about to be, or being rendered.
m_pPosltlon CRendererPosPassThru object for passing positioning data upstream.
m_pQSlnk Quality control sink.
m_Rendererlock Controller for access to current media sample.
m_RenderEvent
m_SlgnalTlme

m_ ThreadSlgnal

Member Functions

Used to signal timer events.
Amount of time that must elapse before CBaseRenderer returns
EC COMPLETE.
Event signaled to release the source filter thread.

1332

CBaseRenderer Class

Name
Active

CBaseRenderer
CheckReady
DisolayRendererState

GetRealState
GetRenderEvent
IsEndOfStrea m

Page 2 of 41

Description
Called when the state is switched to paused or running. Override to
add functionality.
Constructs a CBaseRenderer object.
Determines if the event is set.
Displays the status of the video renderer. This function is available
only in debug mode.
Retrieves the actual state of the renderer.
Retrieves the event to render.
Determines if the end of the stream has been reached.

IsEndOfStreamDelivered Determines if the end of the stream has been delivered to the filter
graph manager.

IsStreaming
NotifyEndOfStream
NotReady
Ready

Determines if the filter is currently rendering data.
Sends an EC_COMPLETE event to the filter graph manager.
Forces the m evComolete event into a nonsignaled state.
Puts the m evComolete event into a signaled state.

ResetEndOfStreamTimer Sets the end of stream timer to zero.
ScheduleSamole Sets up an advise link with the clock.
SendNotifyWindow
SendReoaint
SetAbortSig na I
SetReoaintStatus
Sig na ITi merFi red
TimerCallback

Passes the notification window handle to the upstream filter.
Conditionally signals an EC_REPAINT message to the filter graph.
Sets the abort signal flag.
Resets the repaint status flag.
Resets the current advise time to zero after a timer fires.
Checks if it is time to signal the end of the current data stream.

Overridable Member Functions
Name
BeginFlush
BreakConnect

Ca ncelNotification
CheckMediaTyoe
ClearPendingSamole
ComoleteConnect

ComoleteStateChange
DoRenderSa mole
GetCurrentSamole
Get Pin
GetPinCount
End Flush
EndOfStream

GetMed ia Position! nterface

GetSamoleTimes

Description
Signals the start of flushing on the input pin.
Breaks the input pin connection and resets the end-of-stream
flags.
Cancels any currently scheduled notification with the clock.
Determines if the renderer will accept a given media type.
Called to release the pending sample after it has been rendered.
Called as part of the connection protocol. Override to add
functionality.
Ensures that a sample is waiting before allowing a pause.
Called when a sample is ready to render.
Retrieves the current sample waiting at the video renderer.
Returns a CBasePin object to the renderer.
Returns the number of input pins supported.
Called when the input pin receives an end-flush notification.
Called when the input pin receives an end-of-stream
notification.
Retrieves !Media Position and !MediaSeeking interfaces for the
video renderer.
Retrieves sample time information for this sample.

1333

CBaseRenderer Class

HaveCurrentSamole
Inactive

Page 3 of 41

Determines if a sample is waiting at the renderer.
Called when going into a stopped state. Override to add
functionality.

NonDelegatingOuerylnterface Returns an interface and increments the reference count.
OnReceiveFirstSamole Provides derived classes with an opportunity to render static

data.
OnRenderEnd

OnRenderStart
OnStartStreaming
OnStooStreaming

OnWaitEnd

OnWaitStart

~

Preoa re Receive

Preoa reRender

Receive
Render
ResetEndOfStrea m
Run

SendEndOfStream
SetMediaTyoe

ShouldDrawSamoleNow

SourceThreadCanWait
Sta rtStrea ming

fil®.
StooStreaming

Wa itForRenderTi me

Notifies the derived class that a sample has just finished
rendering.
Notifies the derived class that a sample is about to be rendered.
Notifies the derived class that rendering has started.
Notifies the derived class that rendering has stopped.
Notifies the derived class that a wait for a rendering time has
just ended.
Notifies the derived class that a wait for a rendering time is
about to start.
Tells the renderer to transition to the new (paused) state.
Called to schedule a clock time when the renderer receives a
sample.
Allows derived classes to set themselves just before a sample is
rendered.
Called by the source filter when a sample is available to render.
Asks the derived class to render the sample.
Resets the end-of-stream flag.
Transitions the renderer to State_Running if it is not already in
this state.
Sets the end-of-stream flag.
Informs the derived class of the selected media type.
Determines if the sample should be drawn between the start
and stop ti mes given.
Sets or resets the thread event.
Called to schedule any pending sample with the clock, and to
display any timing information.
Tells the renderer to transition to the new (stopped) state.
Sets an internal flag to indicate not to schedule arrival of any
more samples.
Waits for either the time to arrive or for rendering to be
stopped.

Implemented IMediaFilter Methods
Name Description
GetState Determines the state of the renderer.

Implemented IBaseFilter Methods
Name Description
FindPin Retrieves a pointer to the pin with the specified identifier. (There is only one pin.)

Helper Function

1334

CBaseRenderer Class Page 4 of 41

Name Description
WaitForReceiveToComplete Waits for the CBaseRenderer:: Receive method to complete.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

MQl§i[.jjj,M 111.],.[M Topic Contents lfflj(§i MUMM

CBaseRenderer: :Active

CBaseRenderer Class

Called when the state is switched to paused or running.

virtual HRESULT Active(void);

Return Values

Returns an HRESULT value. Returns NOERROR by default.

Remarks

This member function does nothing by default. Derived classes can optionally override this
member function to add functionality.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M ill.HM Topic Contents l@i§lllMM

CBaseRenderer::BeginFlush

CBaseRenderer Class

Informs the renderer that flushing has started.

virtual HRESULT Beginflush(void);

Return Values

Returns an HRESULT value.

1335

CBaseRenderer Class Page 5 of 41

Remarks

This member function is called by CRendererinputPin:: BeginFlush when informed of a flush
from the upstream filter. It releases the source thread and signals the start of flushing on the
input pin. Any samples received by the renderer when it is in a flushing state will be rejected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M M!i.! 11!j Topic Contents l@i§lllMM

CBaseRenderer::BreakConnect

CBaseRenderer Class

Called when a connection is broken.

virtual HRESULT BreakConnect(void);

Return Values

Returns an HRESULT value.

Remarks

This member function resets the end-of-stream flag and checks for a valid connection, or that
the filter is in a stopped state. Override to customize.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQl§i[.jlj,M 111.],.(j Topic Contents l@i§lllMM

C BaseRenderer:: Can eel Notification

CBaseRenderer Class

Cancels any currently scheduled notification.

virtual HRESULT CancelNotification(void);

Return Values

Returns an HRESULT value.

1336

CBaseRenderer Class Page 6 of 41

Remarks

This member function is called when the renderer is told to stop streaming. If there is no timer
link outstanding, calling this member function does nothing; otherwise, this function stops the
advise link and resets the render event. The normal process when running is to receive a
sample, wait until it is time to render it and then render it. The clock is given an event to
signal when the desired time arrives.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

CBaseRenderer: :CBaseRenderer

CBaseRenderer Class

Constructs a CBaseRenderer object.

CBaseRenderer(
REFCLSID RenderC/ass,
TCHAR *pName,
LPUNKNOWN pUnk,
HRESULT *phr
);

Parameters

RenderC/ass
Class identifier for this renderer.

pName
Name used for debugging purposes.

pUnk
Owner object.

phr
Pointer to the HRESULT return code.

Return Values

No return value.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQi§i[.jjj,M 111.Hj

MQl§i[.]jj,+ 1!!·Hi

1337

Topic Contents l@i§il!MM

Topic Contents '®'*''Ir"•
Topic Contents l@i§il!MM

CBaseRenderer Class

CBaseRenderer: :CheckMediaType

CBaseRenderer Class

Determines if the renderer will accept a given media type.

virtual HRESULT CheckMediaType(
const CMediaType * pmt
) PURE;

Parameters

pmt
Pointer to a media type object that contains the proposed media type.

Return Values

Returns an HRESULT value.

Remarks

Page 7 of 41

This member function must be overridden and implemented, typically to return the media type
of the display. It is called from the CRendererlnoutPin: :CheckMediaTyoe member function
during the connection process.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1H++ 1 !!·HM Topic Contents ifflj[§ii!¥M

CBaseRenderer: :CheckReady

CBaseRenderer Class

Determines if the renderer is ready to process the next sample.

BOOL CheckReady(void);

Return Values

Returns TRUE if the m evComplete event is currently set, but does not block.

Remarks

This member function calls the CAM Event: :Check member function. This is mainly used in

1338

CBaseRenderer Class Page 8 of 41

transitioning to paused states. When a renderer is paused, it should not complete the state
change until it has received some data. So although the call to IMediaFilter:: Pause completes
immediately, if the application calls IMediaFilter: :GetState it will return
VFW_S_STATE_INTERMEDIATE. When a sample arrives at the renderer, the event that is
initially reset during the pause call will be signaled. At this point, an application calling
IMediaFilter::GetState will return NOERROR. This process allows an application to pause a
filter graph and then wait until data is actually queued and ready to be rendered.

© 1997 Microsoft Corooratjon. All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

CBaseRenderer: :Clea rPendi ngSa mple

CBaseRenderer Class

Called to clear the pending sample when in a stopped or inactivated state.

virtual HRESULT ClearPendingSample(void);

Return Values

Returns an HRESULT value.

Remarks

This member function releases the IMediaSample interface. This allows the allocator to reuse it
and allocate it to the upstream filter again. If the state is being changed to inactive,
IMemAllocator: :GetBuffer will return an error. This function also resets the current media
sample to NULL to indicate that no data is now available.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41[.]+• MB.],,[¥ Topic Contents

CBaseRenderer: :Com pleteCon nect

CBaseRenderer Class

Called as part of the connection protocol.

virtual HRESULT CompleteConnect(
IPin *pReceivePin
);

1339

i@faii!MM

CBaseRenderer Class

Parameters

pReceivePin
Connecting pin.

Return Values

Returns an HRESULT value (NOERROR by default).

Remarks

This member function calls the SetRepaintStatus member function to set the

Page 9 of 41

m bRepaintStatus data member to TRUE so that EC_REPAINT notifications can be sent in the
future. (To prevent unnecessary EC_REPAINT notifications from being sent,
m_bRepaintStatus is set to FALSE when an end-of-stream notification arrives.)

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]jj,M '!!·HM Topic Contents

C BaseRenderer:: Com pleteStateCh a nge

CBaseRenderer Class

Ensures that a sample is waiting before allowing a pause.

virtual HRESULT CompleteStateChange(
FILTER_STATE OldState
);

Parameters

OldState
State prior to the transition.

Return Values

Returns S_OK if the filter can be paused; otherwise, returns S_FALSE.

Remarks

lmll§I 11$8

This member function is called from the CBaseRenderer:: Pause member function. If the filter is
being paused and there is no sample waiting, the transition is not completed and the function
returns S_FALSE until the first sample arrives. However, if the m bAbort flag has been set, all
samples are rejected so there is no point waiting for one. If a sample is available, this member
function returns NOERROR.

1340

CBaseRenderer Class Page 10 of 41

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lmll§I 11$8

CBaseRenderer:: DisplayRendererState

CBaseRenderer Class

Displays the status of the video renderer. This function is available only in debug mode.

void CBaseRenderer::DisplayRendererState();

Return Values

No return value.

Remarks

Use this function to monitor the activity of the video renderer. The following is a sample output
of this function.

Timed out in WaitForRenderTime
Signal sanity check o
Filter state 1
Abo rt flag O
streaming flag o
Clock advise link o
Current media sample O
EOS signalled o
EOS delivered o
Repaint status 1
End of stream timer o
Deliver time oxooooooooo
Flushing sanity check O
Last run time oxooooooooo
Clock time OX22C2CD2343 0
Time difference 238875379ms

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQIM!.l+• 111.J,,[5 Topic Contents

CBaseRenderer:: DoRenderSa m pie

1341

l@!§lllMM

CBaseRenderer Class

CBaseRenderer Class

Called when a sample is ready to render.

virtual HRESULT DoRenderSample(
IMediaSample *pMediaSample
) PURE;

Parameters

pMediaSample
Media sample.

Return Values

Returns an HRESULT value.

Remarks

This member function must be overridden in the derived class. It is called by
CBaseRenderer:: Render.

Page 11of41

The derived class should render the object at this time. For example, the sample video
renderer (SAMPVID) calls its drawing object (a CDrawlmage object):

II Have the drawing object render the current image

HRESULT CVideoRenderer: :DoRendersample(IMediasample *pMediasample)
{

return m_Drawimage.Drawimage(pMediaSample) ;

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@i§il!MM

CBaseRenderer:: End Flush

CBaseRenderer Class

Called when the input pin receives an end-flush notification.

virtual HRESULT Endflush(void);

Return Values

Returns an HRESULT value.

1342

CBaseRenderer Class Page 12 of 41

Remarks

This member function is called from the CRendererinputPin:: EndFlush member function. It
calls CBaseRenderer: :SourceThreadCanWait with a TRUE value to allow the upstream filter's
thread to wait in CBaseRenderer:: Receive again.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M M!i.! 11!j Topic Contents l@i§lllMM

CBaseRenderer:: EndOfStrea m

CBaseRenderer Class

Called when the input pin receives an end-of-stream notification.

HRESULT EndOfStream(void);

Return Values

Returns an HRESULT value.

Remarks

If all received samples have been rendered, this member function notifies EC_COMPLETE. If
samples have been received and not yet rendered, this function sets m bEOS and checks for it
on completing samples. If the filter is waiting to be paused, this function completes the
transition to paused state by setting the state event.

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use.

MQl§i[.jlj,M MB.HJ

CBaseRenderer:: Find Pin

CBaseRenderer Class

Retrieves a pointer to the pin with the specified identifier.

HRESULT FindPin(
LPCWSTR Id,
IPin **ppPin

1343

Topic Contents l@i§lllMM

CBaseRenderer Class

);

Parameters

Id
Identifier of the pin.

ppPin

Page 13 of 41

Pointer to the IPin interface for this pin after the renderer has been restored.

Return Values

Returns NOERROR if successful; otherwise, returns VFW_E_NOT _FOUND.

Remarks

This member function implements the IBaseFilter: :FindPin method. It assumes that the default
pin name is "In" and checks for this. If the pin is found, its reference count is incremented.
The ppPin parameter is set to NULL if the identifier cannot be matched.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] +• I![.],.[. Topic Contents •@M* 1gnw

CBaseRenderer: :GetCu rrentSa mple

CBaseRenderer Class

Retrieves the current sample waiting at the video renderer, or NULL if there is not one.

virtual IMediaSample *GetCurrentSample(void);

Return Values

Returns a pointer to the sample.

Remarks

The reference count for the sample is incremented before returning. This is so that if the
sample comes due for rendering, it is not added back to the allocator free list until the caller of
this member function releases it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§1[.]1!,M 1 11·1::'¥ Topic Contents i@fa11!¥M

1344

CBaseRenderer Class Page 14 of 41

C BaseRenderer:: Get Media Position! nte rf ace

CBaseRenderer Class

Retrieves IMediaPosition and IMediaSeekinq interfaces for the video renderer.

virtual HRESULT GetMediaPositioninterface(
REFIID riid,
void **ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns an HRESULT value.

Remarks

A CRendererPosPassThru helper object is created dynamically when this is called to support
passing the IMediaPosition or IMediaSeeking interface calls from the filter graph manager to
the upstream filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j

CBaseRenderer: :Get Pin

CBaseRenderer Class

Returns a CBasePin object on the renderer.

virtual CBasePin *GetPin(
int n
);

Parameters

n

Topic Contents l@i§il!MM

Number of the specified pin, which is always zero in the case of the renderer.

1345

CBaseRenderer Class Page 15 of 41

Return Values

Returns a pointer to the pin specified by then parameter.

Remarks

This member function overrides CBaseFilter: :GetPin. Only one pin is supported on the
renderer; it is numbered zero. A call to this member function with n equal to zero will result in
an input pin of type CRendererlnputPin being returned. It will be created if it does not yet
exist.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i 111.],.[9 Topic Contents lfflj(§l l!lflM

CBaseRenderer: :Get Pi nCou nt

CBaseRenderer Class

Retrieves the number of input pins supported.

virtual int GetPinCount(void);

Return Values

The default implementation returns one, since only one pin is supported. Override to support
more than one pin. Because the base renderer class is specifically designed for single-pin
operation, considerably more of the base class functionality would have to be changed to make
a multipin renderer. Future versions of the SDK might provide this functionality.

Remarks

This member function overrides CBaseFilter: :GetPinCount.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 111.1 1119 Topic Contents l@i§il!MM

CBaseRenderer: :Get Rea I State

CBaseRenderer Class

1346

CBaseRenderer Class Page 16 of 41

Retrieves the actual state of the renderer.

FILTER_STATE GetRealState(void);

Return Values

Returns m State, the state flag for the renderer.

Remarks

This member function provides an internal way of getting the real state. Calling through the
IBaseFilter interface to get the state would require the main filter critical section to be taken;
this internal method does not do this.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

• Q<M [.] "'' I![.],.[. Topic Contents

CBaseRenderer::GetRenderEvent

CBaseRenderer Class

Retrieves the event to render.

CAMEvent *GetRenderEvent(void);

Return Values

Returns the value of m RenderEvent.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M 1!1.11119 Topic Contents

CBaseRenderer: :GetSa m pleTi mes

CBaseRenderer Class

Retrieves sample time information for this sample.

virtual HRESULT GetSampleTimes(
IMediaSample *pMediaSample,

1347

•@M* 1gnw

i@faii!MM

CBaseRenderer Class

REFERENCE_TIME *pStartTime,
REFERENCE_ TIME *pEndTime
);

Parameters

pMediaSample
Media sample.

pStartTime
Start time.

pEndTime
End time.

Return Values

Page 17 of 41

Returns S_FALSE if the sample should be scheduled according to the times specified in the
sample; returns S_OK to indicate that the sample should be rendered immediately.

Remarks

Note that the sample times are passed in by reference, not value.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

•;<MM+' 111.],.[9

8 4'41M+• 111.q9

CBaseRenderer: :GetState

CBaseRenderer Class

Determines the state of the renderer.

HRESULT GetState(
DWORD dwMilliSecsTimeout,
FILTER_STATE *State
);

Parameters

dwMilliSecsTimeout
Duration of the time-out, in milliseconds.

State
Returned state of the renderer.

Return Values

1348

Topic Contents

Topic Contents

lmli§lllMM

1@!§111$8

CBaseRenderer Class Page 18 of 41

Returns an HRESULT value. Returns VFW S STATE INTERMEDIATE if paused and waiting for a
sample; otherwise, returns NOERROR.

Remarks

This member function overrides the CBaseFilter: :GetState member function. It returns the
value of m State. Because the renderer does not complete the full transition to the paused
state until it has a sample to render, if the state is requested while it is waiting for a sample, it
will return VFW s STATE INTERMEDIATE along with the state.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] 11,1 Ill.HM Topic Contents l@fa* 1gnw

CBaseRenderer:: HaveCu rrentSa m pie

CBaseRenderer Class

Determines if a sample is waiting at the renderer.

virtual BOOL HaveCurrentSample(void);

Return Values

Returns TRUE if a sample is ready to be rendered, or FALSE if no data is available.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M 111.1 1119 Topic Contents l@fail!MM

CBaseRenderer: :Inactive

CBaseRenderer Class

Called when going into a stopped state.

virtual HRESULT Inactive(void);

Return Values

Returns NOERROR by default; overriding member function should return a valid HRESULT
value.

1349

CBaseRenderer Class Page 19 of 41

Remarks

This member function is a placeholder that derived classes can optionally override to add
functionality when the filter is stopped.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@IJll!MM

CBaseRenderer: :IsEndOfStrea m

CBaseRenderer Class

Determines if the end of the stream has been reached.

BOOL lsEndOfStream(void);

Return Values

Returns TRUE if the stream's end has been reached, or FALSE if it hasn't.

Remarks

The default implementation returns m bEOS.

© 1997 Microsoft Cornoratjon . All rights reserved. Terms of Use.

MQ<§i[.jlj,M Mh.l:.!j Topic Contents i@faii!MM

C BaseRenderer:: IsE ndOfStrea m Delivered

CBaseRenderer Class

Determines if the end of the stream has been delivered to the filter graph manager.

BOOL IsEndOfStreamDelivered(void);

Return Values

Returns TRUE if the stream's end has been delivered, or FALSE if it hasn't.

Remarks

1350

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

