
CAMThread Class Page 8 of8

CAMThread::ThreadProc

CAMThread Class

Overridden member function in which to implement a thread.

virtual DWORD ThreadProc();

Return Values

The meaning of this return value is not defined by the CAMThread class.

Remarks

The thread calls this member function upon startup. Derived classes must override this
member function. When this member function returns, the thread terminates. This member
function is protected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1096

CAutoLock Class Page 1 of2

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CAutoLock Class

(CAutolock

The CAutol.o<:k class holds a critical section for the scope of a block or function. The
constructor locks the critical section and the destructor unlocks it. The object passed to the
CA1.1tolock constructor must be derived from the CCritSec class. Thus, by declaring a
CA1.1tolock object as a local variable in a fUnction, a critical section can be locked without the
danger of forgetting to unlock it in some of the code paths: the destructor ensures that upon
exit from the function (or the scope of the declaration), the critical section wm be unlocked.
Member functions in this class are not designed for overriding.

/* Typical usage ensuring object is always unlocked correctly*/

HRESULT MyFunc{IMediaSarrple *pSarrple)
{

CAutoLock cObjectLock{m_pMyLockl;

/* Ignore sarrples passed when inactive */

if { Jm bActive) {
return NOERROR;

/*Add the sarrple to the pending queue */

HRESULT hr= m PendingList,AddTail{pSarrple);
if {FAILED{hr)J {

pSarrple->Release(J;
ret.uD1 hr;

}
return NOERROR;

Protected Data Members
Name Des<:nptlon
m_pl.o<:k Critical section for thiS lock.

Member F1.1nctlons
Name Des<:rlptlon
CAutoLock Takes a pointer to a critical section object and locks it.

+414 "·II' a 1:1.1 .. 19 Topic Contents

1097

l@i§MMt§M

CAutoLock Class

CAutolock: :CAutolock

CAutoLock Class

Takes a pointer to a critical section object and locks it.

CAutolock(
CCritSec * plock
);

Parameters

plock
Pointer to a critical section object.

Return Values

No return value.

Remarks

The critical section is unlocked when the CAutoLock object is destroyed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1098

Page 2 of2

CBaseAllocator CI ass Page 1of11

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseAllocator Class

(CBaseObject),

I INonDelegatingUnknown I
L.l(CUnknown

(CCritSec).

I !MemAllocator I
I r CBaseAllocator)i

CBaseAllo<:ator is an abstract base class that implements the basic mechanisms for an
allocator with a fixed number of fixed-size bUffers. The number of buffers and their si:ze can be
changed using the CBaseA!!ocator::SetProperties member function when an input pin and an
output pin negotiate the allocator between them.

The class provides the basic functionality for a memory allocator by implementing the
IMemA!!ocator interface. It provides support for managing a list of CMediaSamp!e objects (or
objects derived from thiS class), including support for the lMemA!!ocator: :Commit and
lMemA!!ocator:: Decommit methods, and blocking the lMemA!!ocator: :Get Buffer method.

Any class derived from this class (such as CMemA!!ocator) must create CMediaSamp!e objects,
which this base class does not.

A signaling mechanism employing a semaphore is used so that if there are no samples, a
thread can wait until there are samples or until the allocator is decommitted. The m !Free and
m hSem member variables are used to implement this simple signaling mechanism as follows.

When a thread calls CBaseA!!ocator: :GetBufl'er and there are no samples available, m rNaiting
is incremented and the thread calls the Microsoft® Win32® WaitforSing!eObject function on
the semaphore indicated by m hSem.

When a sample is freed (by the !Unknown: :Release method returning the reference count to
:zero) or CBaseA!!ocator: :Decommit is called and m !Waiting is nonzero, the Win32
Re!easeSemaphore function is called on m hSem with a release count of m_IWaltlng, and
m_IWaltlng is reset to :zero.

Al! member functions in this class that return HRESULT and accept a pointer as a parameter
return E POIITTER when passed a nu!! pointer.

Protected Data Members

1099

CBaseAllocator Class

Name
m_bChanged
m_bCommitted

Description
TRUE if the buffers have changed; otherwise, FALSE.
If TRUE, the allocator is in a state in which all
!MemAllocator: :GetBuffer methods fail. The

Page 2of11

!MemAllocator: :SetProoerties method is the only member
function permitted to operate in this state.

m_bDecommitinProgress If TRUE, the decommit process completes upon the return of all
media samples. Until the decommit process has completed, any
calls to !MemAllocator: :GetBuffer return E_OUTOFMEMORY.

m_hSem
m_IAlignment
m_IAllocated
m_ICount
m_IFree
m_IPrefix

m_ISize
m_IWaiting

Member Functions
Name Description

Semaphore for signaling.
Agreed alignment of the buffer.
Number of buffers actually allocated.
Established number of buffers to provide.
List of CMediaSamole objects that are currently free (free list).
Agreed prefix of the buffer (precedes value returned by
!MediaSamole: :GetPointer).
Size of each buffer.
Count of threads waiting for samples.

CBaseAllocator Constructs a CBaseAllocator object.
NotifySamole Notifies a waiting thread that a sample is available on the free list.
SetWaiting Increments the m !Waiting data member to indicate that a thread is waiting

for a sample.

Overridable Member Functions
Name Description
AUQi; Allocates memory, instantiates CMediaSamole objects, and adds them to the

m !Allocated and m IFree data members.
~ Decommits memory when the last buffer is freed.

Implemented IMemAllocator Methods
Name
Commit

Decommit

GetBuffer

Description
Allocates memory by calling the CBaseAllocator: :Alloc member function, which
you must override.
Releases any resources and enters the inactive state. Any blocking calls to
!MemAllocator: :GetBuffer should return with an error value, and all further calls
to GetBuffer fail when in the inactive state.
Retrieves a container for a sample.

GetProoerties Determines the size, number, and alignment of blocks.
ReleaseBuffer Releases the CMediaSamole object.
SetProoerties Specifies a desired number of blocks, size of the blocks, and block alignment

figure. This method returns the actual values for the same.

Implemented INonDelegatingUnknown Methods

1100

CBaseAllocator Class Page 3of11

Name Description
NonDelegatingQueryinterface Passes out pointers to any interfaces added to the derived filter

class.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

MQi§i!!.ljj,i 111.J,,[9 Topic Contents 1@1§111$8

CBaseAllocator: :Alloc

CBaseAllocator Class

Allocates a media sample object.

HRESULT Alloc(void);

Return Values

Returns an HRESULT value.

Remarks

Override this member function to allocate memory, instantiate CMediaSample objects, and add
them to the free list represented by the m IFree data member. The CMemAllocator: :Alloc
member function is an example of an override of this member function. It calls this member
function first to ensure that allocator properties have been set.

This member function is called from the CBaseAllocator: :Commit member function when
entering the active state. The default implementation returns an error value if the
IMemAllocator: :SetProperties method has not been called yet, and checks that there are no
outstanding buffers.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M ill.HS Topic Contents •@!§* 1gnw

CBaseAllocator: :CBaseAllocator

CBaseAllocator Class

1101

CBaseAllocator Class

Constructs a CBaseAllocator object.

CBaseAllocator(
TCHAR * pName,
LPUNKNOWN lpUnk,
HRESULT * phr,
BOOL bListSemaphore = TRUE
);

Parameters

pName
Name of the allocator object.

lpUnk
Pointer to LPUNKNOWN.

phr

Page 4of11

Pointer to an HRESULT for return values. This is not modified unless this member
function fails.

bListSemaphore
If TRUE, the free list in the allocator has a semaphore associated with it. If FALSE, no
semaphore is created for the list. Setting this to FALSE can be useful for subclassing
CBaseAllocator when the semaphore is not required for blocking. The semaphore is used
for the waiting and signaling mechanism.

Return Values

No return value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§lllMM

MQl§i[.jjj,M '!!·HM Topic Contents i@i§ill@iM

CBaseAllocator: :Commit

CBaseAllocator Class

Commits the memory for the specified buffers.

HRESULT Commit(void);

Return Values

Returns an HRESULT value.

Remarks

1102

CBaseAllocator Class Page 5of11

This member function implements the IMemAllocator: :Commit method. The
IMemAllocator: :SetProoerties method must be called before calling this member function. This
member function sets m bCommitted to TRUE and overrides any pending decommit operation.
It then calls the CBaseAllocator: :Alloc member function to allocate memory (which should be
overridden in the derived class to call the base class member function and then allocate the
memory). The IMemAllocator: :GetBuffer method fails if it is called before calling this member
function.

Call CBaseAllocator:: Decommit to release memory when done with the buffers.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 111.l:.!j Topic Contents l@i§i llfttiM

CBaseAllocator::Decommit

CBaseAllocator Class

Releases the memory for the specified buffers.

HRESULT Decommit(void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMemAllocator:: Decommit method. Any threads waiting
in the IMemAllocator: :GetBuffer method return with an error after this method is called. The
IMemAllocator::GetBuffer method fails if it is called before the IMemAllocator: :Commit
method or after this method.

See Also

CBaseAllocator: :Commit

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 111j Topic Contents l@i§lllMM

CBaseAllocator:: Free

1103

CBaseAllocator Class Page 6of11

CBaseAllocator Class

Called to decommit the memory when the last buffer is freed.

virtual void Free(void) PURE;

Return Values

No return value.

Remarks

This member function must be implemented in the derived class. It is called from
CBaseAllocator:: ReleaseBuffer when a decommit is pending and the allocator has put its last
buffer on the free list. It is also called from CBaseAllocator:: Decommit.

The CMemAllocator:: Free member function is an example of how this can be implemented in
the derived class. In this case, it simply returns, because the CMemAllocator class releases
memory from its destructor.

This member function is protected.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

CBaseAllocator: :GetBuffer

CBaseAllocator Class

Retrieves a container for a sample.

HRESULT GetBuffer(
IMediaSample ** ppBuffer,
REFERENCE_ TIME * pStartTime,
REFERENCE_ TIME* pEndTime,
DWORD dwF/ags
);

Parameters

ppBuffer
Pointer to a retrieved media sample buffer.

pStartTime

Topic Contents

Either NULL or set to the beginning time of the sample to retrieve.
pEndTime

1104

i@faii!MM

CBaseAllocator Class Page 7of11

Either NULL or set to the ending time of the sample to retrieve.
dwF/ags

The following flags are supported.
Value Meaning
AM_GBF _PREVFRAMESKIPPED The buffer returned will not be filled with data contiguous

to any previous data sent.
AM GBF _NOTASYNCPOINT Dynamic format changes are not allowed on this buffer

because it is not a key frame.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMemAllocator: :GetBuffer method.

This is a blocking, synchronous call to access the next free buffer (as represented by an
IMediaSample interface). Upon return, properties (such as the time and so on) are invalid, but
the buffer pointer and size are correct.

If no buffers are available, CBaseAllocator::GetBuffer calls CBaseAllocator: :SetWaiting and
then calls the Microsoft® Win32® WaitForSingleObject function to wait for the list to signal
that a sample is available. The list signals by calling CBaseAllocator:: ReleaseBuffer, which in
turn calls CBaseAllocator:: NotifySample, which sets m !Waiting to zero and calls the Win32
ReleaseSemaphore function.

This member function also takes two time parameters. These parameters are used in certain
advanced buffering scenarios, when it is necessary to have an idea of the amount of time a
buffer is required. The only place this is currently used is in the video renderer, when the time
stamps are used as a guide to when the primary surfaces of Display Control Interface (DCI)
and Microsoft® DirectDraw® should be returned (this is because filling a primary surface
buffer corresponds directly to the actual rendering of the data). In all other cases, these
parameters can be safely set to NULL. If one is non-NULL, both should be non-NULL; these
times will not be set on the sample when it is subsequently returned.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]I!:+ +!!.HM Topic Contents i@l§ii!MM

MQi@[.jlj,M M!i.1 1119 Topic Contents i@l§i 11111+

CBaseAllocator::GetProperties

CBaseAllocator Class

Retrieves the size, number, and alignment of blocks.

1105

CBaseAllocator Class

HRESULT GetProperties(
ALLOCATOR_PROPERTIES * pProps
);

Parameters

pProps
Structure to be filled in with allocator properties.

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.

Remarks

Page 8of11

This member function implements the IMemAllocator: :GetProoerties method. The default
implementation fills the ALLOCATOR PROPERTIES structure passed in with the values of
m ISize, m ICount, m !Alignment, and m !Prefix.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

CBaseAllocator::NonDelegatingQuerylnterface

CBaseAllocator Class

Retrieves an interface and increments the reference count.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void** ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

1106

CBaseAllocator Class Page 9of11

This member function implements the INonDeleqatinqUnknown: :NonDeleqatinqQuerylnterface
method and passes out references to the IMemAllocator and !Unknown interfaces. Override
this member function to return other interfaces on the object in the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

CBaseAllocator::NotifySample

CBaseAllocator Class

Notifies a waiting thread that a sample is available on the free list.

void NotifySample(void);

Return Values

No return value.

Remarks

If m !Waiting has been incremented (is not zero), this indicates a thread is waiting. This
member function checks for this condition and calls the Microsoft Win32 ReleaseSemaphore
function with the semaphore value m hSem to activate any waiting thread. It also sets
m_IWaiting back to zero.

This member function is called from CBaseAllocator:: ReleaseBuffer when putting a sample
back on the free list and from CBaseAllocator: :Decommit when decommitting the allocator (so
that waiting threads can be denied).

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+Qi§i[.jjj,M 111.],.[9 Topic Contents l@i§il!MM

CBaseAllocator:: Release Buffer

CBaseAllocator Class

Releases the object back to the list of free objects.

HRESULT ReleaseBuffer(

1107

CBaseAllocator Class

IMediaSample * pSample
);

Parameters

pSample
Pointer to the IMediaSample interface of the media sample object.

Return Values

No return value.

Remarks

Page 10of11

This member function implements the IMemAllocator:: ReleaseBuffer method. It adds the
sample to the free list (represented by m IFree) and calls CBaseAllocator: :NotifySample to
notify any blocked thread waiting for a free sample. If there is a pending
CBaseAllocator:: Decommit call (indicated by m bDecommitinProgress), the pure virtual
CBaseAllocator:: Free member function is called to decommit memory when the last buffer is
placed on the free list.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

CBaseAllocator::SetProperties

CBaseAllocator Class

Determines the size, number, and alignment of blocks.

HRESULT SetProperties(
ALLOCATOR_PROPERTIES * pRequest,
ALLOCATOR_PROPERTIES * pActual
);

Parameters

pRequest
Allocator properties requested to be set.

pActual
Allocator properties actually set.

Return Values

Returns an HRESULT value.

Remarks

1108

Topic Contents lmli§lllMM

CBaseAllocator Class Page 11of11

The pRequest parameter is filled in by the caller with the requested values for the count,
number, and alignment as specified by the ALLOCATOR PROPERTIES structure. The pActual
parameter is filled in by the allocator with the closest values that it can provide for the
request. This method cannot be called unless the allocator has been decommitted using the
IMemAllocator:: Decommit method.

The values of data members m ISize, m ICount, m !Alignment, and m !Prefix are set to the
corresponding members of the pActual parameter's ALLOCATOR PROPERTIES structure.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@IJll!MM

CBaseAllocator: :SetWaiting

CBaseAllocator Class

Increments the m !Waiting data member to indicate that a thread is waiting for a sample.

void SetWaiting();

Return Values

No return value.

Remarks

This member function is called from CBaseAllocator: :GetBuffer if no samples are available on
the free list. After calling this, CBaseAllocator::GetBuffer calls the Microsoft® Win32®
WaitForSingleObject function to wait for the list to signal that a sample is available. The list
signals by calling CBaseAllocator:: ReleaseBuffer, which in turn calls
CBaseAllocator:: NotifySample, which sets m !Waiting to zero and calls the Win32
ReleaseSemaphore function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

1109

CBaseB asic Video Class Page 1 of6

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseBasicVideo Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CB aseBasicVideo

The CBaseSaslcVlcleo class handles the lDisoatch component of the lBasicVideo interface and
!eaves the properties and methods pure virtual.

The lDisoatch: :GetlDsQfNames. lDisoatch: :GetTuoelnfo, lDisoatch: :GetTuoelnfoCount, and
lDisoatch: :Invoke methods are standard imp!ementatiOns of the !Dispatch interface using the
CBaseDispatch class (and a type library) to parse the commands and pass them to the pure
virtual methods of the IBasicVideo interface.

Membe .. Functions
Name Des<: .. lptlon
CBaseBasicVideo Constructs a CBaseBasicVideo object.

Implemented INonDelegatlngUnknown Methods
Name Des<: .. lption
NonoeiegatjogQ1 reryintertace Returns a specified reference-counted interface.

Implemented !Dispatch Methods
Name Des<:ription
GetlDsQfNames Maps a single member and an optional set of parameters to a

corresponding set of integer dispatch identifiers, whieh can be used during
subsequent ca us to the !Dispatch:: Invoke method.

GetTupelnfo Retrieves a type-information object, whieh can retrieve the type
information for an interface.

GetTupelnfoCount Retrieves the number of type-information interfaces provided by an object.
Ioyo!<e Provides access to properties and methods exposed by an object.

w;•; "·II' a 111.11119 Topic Contents l@i§Mit§M

1110

CBaseBasicVideo Class

+Qi§1[.]++ 1 !!·HM Topic Contents

CBaseBasicVideo: :CBaseBasicVideo

CBaseBasicVideo Class

Constructs a CBaseBasicVideo object.

CBaseBasicVideo (
const TCHAR * pName,
LPUNKNOWN pUnk
);

Parameters

pName
Name of the object for debugging purposes.

pUnk
Pointer to the owner of this object.

Return Values

No return value.

Remarks

Page 2of6

i@l§ii!MM

Allocate the pName parameter in static memory. This name appears on the debugging terminal
upon creation and deletion of the object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+ Q i§i [.] jj,+ +!!·HM Topic Contents i@l§ii!MM

CBaseBasicVideo: :GetlDsOfNa mes

CBaseBasicVideo Class

Maps a single member function and an optional set of parameters to a corresponding set of
integer dispatch identifiers, which can be used upon subsequent calls to the
CBaseBasicVideo:: Invoke member function.

HRESULT GetIDsOfNames(

1111

CBaseBasicVideo Class

REFIID riid,
OLECHAR * * rgszNames,
UINT cNames,
LCID lcid,
DISPID * rgdispid
);

Parameters

riid
Reference identifier. Reserved for future use. Must be NULL.

rgszNames
Passed-in array of names to be mapped.

cNames
Count of the names to be mapped.

lcid
Locale context in which to interpret the names.

rgdispid

Page 3of6

Caller-allocated array, each element of which contains an ID corresponding to one of the
names passed in the rgszNames array. The first element represents the member name;
the subsequent elements represent each of the member's parameters.

Return Values

Returns one of the following values.
Value Meaning
S_OK Success.
E_OUTOFMEMORY Out of memory.
DISP E UNKNOWN NAME One or more of the names were not known. The returned DISPIDs

contain DISPID_UNKNOWN for each entry that corresponds to an
unknown name.

DISP _E_UNKNOWN_CLSID The CLSID was not recognized.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

CBaseBasicVideo: :GetTypeinfo

CBaseBasicVideo Class

Retrieves a type-information object, which can retrieve the type information for an interface.

HRESULT GetTypeinfo(
UINT itinfo,

1112

CBaseBasicVideo Class

LCID lcid,
ITypeinfo * * pptinfo
);

Parameters

itinfo

Page 4of6

Type information to return. Pass zero to retrieve type information for the IDispatch
implementation.

lcid
Locale ID for the type information. An object might be able to return different type
information for different languages. This is important for classes that support localized
member names. For classes that do not support localized member names, this parameter
can be ignored.

pptinfo
Pointer to the type-information object requested.

Return Values

Returns an E_POINTER if pptinfo is invalid. Returns TYPE_E_ELEMENTNOTFOUND if itinfo is not
zero. Returns S_OK if is successful. Otherwise, returns an HRESULT from one of the calls to
retrieve the type. The HRESULT indicates the error and can be one of the following standard
constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]I!:+ +!!.HM Topic Contents

MQi@[.jlj,M M!i.1 1119 Topic Contents

CBaseBasicVideo: :GetTypeinfoCou nt

CBaseBasicVideo Class

Retrieves the number of type-information interfaces provided by an object.

HRESULT GetTypeinfoCount(
UI NT * pctinfo
);

Parameters

pctinfo

1113

i@l§ii!MM

i@l§i 11111+

CBaseBasicVideo Class Page 5of6

Pointer to the location that receives the number of type-information interfaces that the
object provides. If the object provides type information, this number is 1; otherwise, the
number is 0.

Return Values

Returns E_POINTER if pctinfo is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents

CBaseBasicVideo: :Invoke

CBaseBasicVideo Class

Provides access to properties and methods exposed by an object.

HRESULT Invoke(
DISPID dispidMember,
REFIID riid,
LCID lcid,
WORD wF/ags,
DISPPARAMS * pdispparams,
VARIANT* pvarResult,
EXCEPINFO * pexcepinfo,
UI NT * puArgErr
);

Parameters

dispidMember

l@i§lllMM

Identifier of the member. Use CBaseBasicVideo: :GetIDsOfNames or the object's
documentation to obtain the dispatch identifier.

riid
Reserved for future use. Must be IID NULL.

lcid
Locale context in which to interpret arguments.

wF/ags
Flags describing the context of the CBaseBasicVideo::Invoke call.

pdispparams
Pointer to a structure containing an array of arguments, an array of argument dispatch
IDs for named arguments, and counts for number of elements in the arrays.

pvarResult
Pointer to where the result is to be stored, or NULL if the caller expects no result.

pexcepinfo
Pointer to a structure containing exception information.

puArgErr
Index of the first argument, within the rgvarg array, that has an error.

1114

CBaseBasicVideo Class Page 6of6

Return Values

Returns DISP _E_UNKNOWNINTERFACE if riid is not IID_NULL. Returns one of the error codes
from CBaseBasicVideo: :GetTypelnfo if the call fails. Otherwise, returns the HRESULT from the
call to !Dispatch: :Invoke.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 111.l:.!j Topic Contents l@i§i llfttiM

MQl§i[.jjj,M 111.],.(j Topic Contents l@i§lllMM

CBaseBasicVideo::NonDelegatingQuerylnterface

CBaseBasicVideo Class

Returns a specified reference-counted interface.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void **ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

Returns pointers to the IBasicVideo and !Unknown interfaces by default. Override this method
to publish any additional interfaces implemented by the derived class.

© 1997 Microsoft Cornoration . All rights reserved. Terms of Use.

1115

CBaseContro!Video Class Page 1of41

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseControlVideo Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CBaseBasicVideo

CBaseControlVideo

The CBaseControlVldeo class implements the IBasicVideo dual interface and controls the
video properties of a generic video window. Generally, a CBaseControlVideo object is a video
renderer that draws video into a window on the display.

The CBaseControlVldeo class supports both properties and methods. Properties are more
easily accessible from many Automation controllers (such as the Microsoft:® Visual Basic®
programming system). However, some operations require applications to be able to change
several properties simultaneously; for this reason, methods are provided that enable a number
of related properties to be changed.

Many CBaseControlVldeo member functions require only that the video renderer be
connected to a filter graph. If it is not connected, member functions wm return
VFW E NOT CONNECTED. Properties set on a video renderer persist between successive
connections and disconnections. AU applications should ensure that they reset the renderer
properties before starting a presentation.

When working with video, the application can select a portion of the video to use. This portion
is the source rectangle that the CBaseControlVldeo object controls. CBaseControlVldeo
enables your application to set and retrieve the source rectangle. AU the rectangles that
CBaseControlVloeo uses employ top, left, width, and height rather than top, left, right, and
bottom, which is favored in Microsoft: Win32® programming. When no source rectangle has
been set, the properties of the source rectangle return the full, native video size.

Protected Data Members
Name Description
m_pfllter Pointer to an owning media filter.
m_plnterfaceLock Externally defined critieal section.
m_pPln Control of the media types for connection.

Member Functions

1116

CBaseContro!Video Class

Name Description
CBaseControlVideo Constructs a CBaseControlVideo object.
Cooylmage Creates a memory copy of a video image.
GetlmageSize Retrieves video image size information.
SetControlVideoPin Sets the pin with which this object should synchronize.

Overridable Member Functions
Description
Determines if a source rectangle is valid.
Determines if a target rectangle is valid.
Retrieves the current source video rectangle (pure virtual).
Returns the current image in a memory buffer (pure virtual).
Retrieves the current target video rectangle (pure virtual).

Page 2 of 41

Name
CheckSourceRect
CheckTa rgetRect
GetSourceRect
GetStaticlmage
GetTa rgetRect
GetVideoFormat Retrieves the VIDEOINFOHEADER structure containing the video format.
IsDefaultSourceRect Determines if the renderer is using the default source rectangle (pure

virtual).
IsDefaultTargetRect Determines if the renderer is using the default target rectangle (pure

virtual).
OnUodateRectangles Called when the source or target rectangle changes.
OnVideoSizeChange Passes EC_VIDEO_SIZE_CHANGED to the application.
SetDefaultSourceRect Sets the default source video rectangle (pure virtual).
SetDefaultTargetRect Sets the default target video rectangle (pure virtual).
SetSourceRect
SetTa rgetRect

Sets the current source video rectangle (pure virtual).
Sets the current target rectangle (pure virtual).

Implemented IBasicVideo Methods
Name
get AvgTimePerFrame
get BitErrorRate
get BitRate
GetCurrentlmage
get DestinationHeight
get Destinationleft

GetDestinationPosition
get DestinationToo
get DestinationWidth
get SourceHeight
get Sourceleft

GetSourcePosition
get SourceToo
get SourceWidth
get VideoHeight

GetVideoPa letteEntries
GetVideoSize
get VideoWidth

Description
Returns an approximate average time per frame.
Returns an approximate bit error rate.
Returns an approximate bit rate for the video.
Returns a memory rendering of the current image.
Retrieves the current destination rectangle's height.
Retrieves the current destination rectangle's left coordinate.
Retrieves the current destination position.
Retrieves the current destination rectangle's top coordinate.
Retrieves the current destination rectangle's width.
Retrieves the current source rectangle's height.
Retrieves the current source rectangle's left coordinate.
Retrieves the current source position.
Retrieves the current source rectangle's top coordinate.
Retrieves the current source rectangle's width.
Retrieves the native video height.
Retrieves a range of palette entries for the video.
Retrieves the width and height of the native video.
Retrieves the native video width.

1117

CBaseControlVideo Class Page 3 of 41

IsUsinqDefaultDestination Determines if the renderer is using the default destination
window.

IsUsingDefa ultSource
put DestinationHeight

Determines if the renderer is using the default source window.
Sets the destination rectangle's height.

D!.!t DestinatiQnLeft

D!.!t DestinatiQnTQD

D!.!t DestinatiQnWidth

D!.!t SQurceHeight

D!.!t SQurceLeft

D!.!t SQurceTQD

D!.!t SQurceWidth

Sets the destination rectangle's left coordinate.
Sets the destination rectangle's top coordinate.
Sets the destination rectangle's width.
Sets the source rectangle's height.
Sets the source rectangle's left coordinate.
Sets the source rectangle's top coordinate.
Sets the source rectangle's width.

SetDefaultDestinationPosition Sets the default destination position again.
SetDefaultSourcePosition Sets the default source position again.

SetDestinatiQnPQsitiQn
SetSQ u rcePQsit iQn

Sets the destination rectangle position.
Sets the source rectangle position.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij Topic Contents

MQl§i[.jjj,M 111.],.(j Topic Contents

C BaseControlVideo:: C Ba seControlVideo

CBaseControlVideo Class

Constructs a CBaseCQntmlVideQ object.

CBaseControlVideo (
CBaseFilter *pFilter,
CCritSec *pinterfaceLock,
TCHAR *pName,
LPUNKNOWN pUnk,
HRESULT *phr
);

Parameters

pFilter
Owning media filter object.

pinterfaceLock
Critical section to use for locking.

pName
Object description.

pUnk
Typical COM ownership.

1118

l@i§i llfttiM

•@m••1m+

CBaseControlVideo Class Page 4 of 41

phr
COM return value.

Return Values

No return value.

Remarks

The object implements the IBasicVideo control interface.

All the interface methods from IBasicVideo that this class implements require that the filter be
connected correctly. For this reason, the class is passed a pin with which it should synchronize
with. Whenever an interface method is called, the object determines that the pin is still
connected.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents

MQl§i[.jjj,M 111.l:.!j Topic Contents

C BaseControlVideo:: C heckSou rceRect

CBaseControlVideo Class

Determines if a source rectangle is valid.

virtual HRESULT CheckSourceRect(
RECT *pSourceRect
);

Parameters

pSourceRect
Source rectangle to check.

Return Values

Returns E_INVALIDARG if not valid; otherwise, returns NOERROR (S_OK).

Remarks

l@i§lllMM

•@m• •gnw

This member function checks that the source rectangle requested does not exceed the
available source video. The left and top coordinates cannot be negative, and the width and
height cannot exceed the right and bottom of the video.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

1119

CBaseControlVideo Class

+Qi§1[.]++ 1 !!·HM Topic Contents

C BaseControlVideo:: C heckTa rgetRect

CBaseControlVideo Class

Determines if a target rectangle is valid.

virtual HRESULT CheckTargetRect(
RECT *p TargetRect
);

Parameters

pTargetRect
Target rectangle to check.

Return Values

Returns E_INVALIDARG if not valid; otherwise, returns NOERROR (S_OK).

Remarks

Page 5 of 41

i@l§ii!MM

This member function determines if the target rectangle requested is valid. Because the
destination rectangle specifies a position in the logical client of the window, the coordinates
can be negative, although the overall width and height cannot be zero or a negative value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use .

• ; H11·h' I !1.],,[9

CBaseControlVideo: :Copylmage

CBaseControlVideo Class

Creates a memory copy of an image.

HRESULT Copylmage(
IMediaSample *pMediaSample,
VID EOIN FOH EADER *pVideo!nfo,
LONG *pBufferSize,
BYTE *p Video!mage,

1120

Topic Contents i@l§ii!MM

CBaseControlVideo Class

RECT *pSourceRect
);

Parameters

pMediaSample
Sample containing the video image.

pVideo!nfo
Format representing the video image.

pBufferSize
Size of the output buffer.

pVideo!mage
Pointer to the output buffer.

pSourceRect
Source video rectangle.

Return Values

Page 6 of 41

If the pVideo!mage parameter is NULL, the pBufferSize parameter is filled in with the number
of bytes the output buffer requires to store the image. If the buffer passed in is too small or
the member function fails to allocate sufficient memory, the member function returns
E_OUTOFMEMORY.

Remarks

The member function retrieves the image from the sample and copies it into the output buffer.
The section of video copied into the output buffer reflects the source rectangle that is set
through the IBasicVideo interface (although it does not reflect the destination rectangle).

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§lllMM

MQl§i[.jjj,M '!!·HM Topic Contents i@i§ill@iM

C BaseControlVideo:: get_AvgTi mePerFra me

CBaseControlVideo Class

Retrieves the average time per frame.

HRESULT get_AvgTimePerFrame(
REFTIME *pAvgTimePerFrame
);

Parameters

pAvgTimePerFrame

1121

CBaseControlVideo Class Page 7 of 41

Average time per frame.

Return Values

Returns NOERROR if successful or E_OUTOFMEMORY if there is not enough memory available.

Remarks

This member function implements the IBasicVideo: :get AvgTimePerFrame method. It calls the
pure virtual CBaseControlVideo: :GetVideoFormat member function to retrieve the
VIDEOINFOHEADER structure from the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents

C BaseControlVideo:: get_B itE rrorRate

CBaseControlVideo Class

Returns an approximate bit error rate for the video.

HRESULT get_BitErrorRate(
long *pBitErrorRate
);

Parameters

pBitErrorRate
Bit error rate (one error for approximately this many bits).

Return Values

i@i§ll!¥+

Returns NOERROR if successful or E_OUTOFMEMORY if there is not enough memory available.

Remarks

This member function implements the IBasicVideo: :get BitErrorRate method. It calls the pure
virtual CBaseControlVideo: :GetVideoFormat to retrieve the VIDEOINFOHEADER structure from
the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,M 1 !1·HM Topic Contents 'ffl!'+* •um•

1122

CBaseControlVideo Class

CBaseControlVideo: :get_BitRate

CBaseControlVideo Class

Returns an approximate bit rate for the video.

HRESULT get_BitRate(
long *pBitRate
);

Parameters

pBitRate
Bit rate in bits per second.

Return Values

Page 8 of 41

Returns NOERROR if successful or E_OUTOFMEMORY not enough memory is available.

Remarks

This member function implements the IBasicVideo: :get BitRate method. It calls the pure
virtual CBaseControlVideo: :GetVideoFormat to retrieve the VIDEOINFOHEADER structure from
the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents

C BaseControlVideo:: GetC u rre ntI ma ge

CBaseControlVideo Class

Returns a copy of the current image at the renderer.

HRESULT GetCurrentimage(
long *pBufferSize,
long *pVideo!mage
);

Parameters

pBufferSize
Size of the output buffer.

pVideo!mage
Pointer to the output buffer for the image.

1123

l@IJll!MM

CBaseControlVideo Class Page 9 of 41

Return Values

Returns an HRESULT value.

Remarks

This member function retrieves the image from the sample and copies it into the output buffer.
The section of video copied into the output buffer reflects the source rectangle set through the
IBasicVideo interface. It does not reflect the destination rectangle.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

C BaseControlVideo:: get_Desti nation Height

CBaseControlVideo Class

Retrieves the current destination rectangle height.

HRESULT get_DestinationHeight(
long *pDestinationHeight
);

Parameters

pDestinationHeight
Holds the destination height.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IBasicVideo: :get DestinationHeiqht method.

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where it will be played. The destination
rectangle is relative to the client area of the window that it is playing in. The upper-left corner
of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q<@[.]jj,+ 111.1 1119 Topic Contents 1@1§11!¥+

1124

CBaseControlVideo Class

C BaseControlVideo:: get_Desti nation Left

CBaseControlVideo Class

Retrieves the left coordinate of the current destination rectangle.

HRESULT get_Destinationleft(
long *pDestinationLeft
);

Parameters

pDestinationLeft
Contains the left coordinate of the destination rectangle.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IBasicVideo: :get DestinationLeft method.

Page 10 of 41

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

C BaseControlVideo:: GetDesti nation Position

CBaseControlVideo Class

Retrieves the destination rectangle.

HRESULT GetDestinationPosition(
long *pLeft,
long *pTop,
long *pWidth,

1125

CBaseControlVideo Class

long *pHeight
);

Parameters

pLeft
Contains the left coordinate.

pTop
Contains the top coordinate.

pWidth
Contains the width.

pHeight
Contains the height.

Return Values

Returns an HRESULT value.

Remarks

This member function can be used in place of separate calls to the

Page 11of41

CBaseControlVideo: :get Destination Left, CBaseControlVideo: :get DestinationTop,
CBaseControlVideo: :get DestinationWidth, and CBaseControlVideo: :get DestinationHeight
member functions. An application can change the source and destination rectangles for the
video through the IBasicVideo interface. The source rectangle affects which section of the
native video source will appear on the display; the destination rectangle affects where the
video will appear when played. The destination rectangle is relative to the client area of the
window in which it is playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

MQl§i[.jjj,M '!!·HM Topic Contents

C BaseControlVideo:: get_Desti nationTop

CBaseControlVideo Class

Retrieves the top coordinate of the current destination rectangle.

HRESULT get_DestinationTop(
long *pDestinationTop
);

Parameters

pDestinationTop

1126

lml!§lllMM

i@i§ill@iM

CBaseControlVideo Class Page 12 of 41

Contains the top coordinate of the destination rectangle.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IBasicVideo: :get DestinationTop method.

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

C BaseControlVideo:: get_Desti nation Width

CBaseControlVideo Class

Retrieves the width of the current destination rectangle.

HRESULT get_DestinationWidth(
long *pDestinationWidth
);

Parameters

pDestinationWidth
Contains the destination width.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IBasicVideo: :get DestinationWidth method.

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

1127

CBaseControlVideo Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

C BaseControlVideo:: Get I mageSi ze

CBaseControlVideo Class

Retrieves video image size information.

HRESULT GetimageSize(
VID EOIN FOH EADER *pVideoinfo,
long *pBufferSize,
RECT *pSourceRect
);

Parameters

pVideoinfo
Contains a pointer to a VIDEOINFOHEADER structure to be filled in.

pBufferSize
Size of the video buffer.

pSourceRect
Rectangle dimensions of the source video.

Return Values

Returns an HRESULT value.

Remarks

Page 13 of 41

lml!§I 11¥8

This member function is a helper function used for creating memory image renderings of DIB
images. It is called from the base class implementation of
CBaseControlVideo: :GetCurrentimage when a null pVideoimage parameter is passed to that
member function. As a result, this member function constructs and returns a
VIDEOINFOHEADER structure, using the information in pBufferSize and pSourceRect.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

•Q<M!.l+' 1u.H5 Topic Contents i@fa111¥M

MQ<§i[.jjj,M 11!.HS Topic Contents i@fa111¥M

1128

CBaseControlVideo Class

C BaseControlVideo:: get_Sou rceH eight

CBaseControlVideo Class

Retrieves the height of the current source rectangle.

HRESULT get_SourceHeight(
long *pSourceHeight
);

Parameters

pSourceHeight
Contains the height of the source rectangle.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IBasicVideo: :get SourceHeight method.

Page 14 of 41

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents

C BaseControlVideo:: get_Sou rceleft

CBaseControlVideo Class

Retrieves the left coordinate of the current source rectangle.

HRESULT get_Sourceleft(
long *pSourceLeft
);

Parameters

pSourceLeft

1129

lmli§lllMM

CBaseControlVideo Class Page 15 of 41

Holds the left coordinate of the current source rectangle.

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents

CBaseControlVideo: :GetSou rcePosition

CBaseControlVideo Class

Retrieves the source rectangle in one atomic operation.

H RESULT GetSourcePosition (
long *pLeft,
long *pTop,
long *pWidth,
long *pHeight
);

Parameters

pLeft
Contains the left coordinate.

pTop
Contains the top coordinate.

pWidth
Contains the width.

pHeight
Contains the height.

Return Values

Returns an HRESULT value.

Remarks

1130

i@l§ii!MM

CBaseControlVideo Class Page 16 of 41

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents

+Q<@[.]ij,+ 111.1 1119 Topic Contents

CBaseControlVideo: :GetSou rceRect

CBaseControlVideo Class

Returns the source rectangle. This is an internal method.

virtual HRESULT GetSourceRect(
RECT *pSourceRect
) PURE;

Parameters

pSourceRect
Contains the retrieved source rectangle.

Return Values

Returns an HRESULT value.

Remarks

ifflj[§ii!¥M

1@1§11!¥+

This member function must be overridden in the derived class to return the source rectangle
held by the video renderer. It is called from the following CBaseControlVideo member
functions.

• CBaseControlVideo: :GetSourcePosition
• CBaseControlVideo:: put Sourceleft
• CBaseControlVideo: :get Sourceleft
• CBaseControlVideo:: put SourceWidth
• CBaseControlVideo: :get SourceWidth
• CBaseControlVideo:: put SourceTop
• CBaseControlVideo: :get SourceTop
• CBaseControlVideo:: put SourceHeight
• CBaseControlVideo: :get SourceHeight

1131

CBaseControlVideo Class Page 17 of 41

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this function in a derived class.

II Return the current s o urce rectangle

HRESULT CVideoText::GetsourceRect(RECT *pSourceRect)
{

ASSERT (pSourceRect) i

m_pRenderer->m_Drawimage.GetsourceRect(psourceRect) ;
return NOERROR;

In this example, CVideoText is a class derived from CBaseControlVideo, m_pRenderer holds an
object of a class derived from CBaseVideoRenderer, and the m_Drawimage data member,
defined in the derived class, holds a CDrawimage object.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

MQl§i[.jjj,M '!!·HM Topic Contents

CBaseControlVideo: :get_Sou rceTop

CBaseControlVideo Class

Retrieves the top coordinate of the current source rectangle.

HRESULT get_SourceTop(
long *pSourceTop
);

Parameters

pSourceTop
Contains the top coordinate of the source rectangle.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IBasicVideo: :get SourceToo method.

lmli§lll¥M

l@i§il/¥8

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will

1132

CBaseControlVideo Class Page 18 of 41

appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

CBaseControlVideo: :get_Sou rceWidth

CBaseControlVideo Class

Retrieves the width of the current source rectangle.

HRESULT get_SourceWidth(
long *pSourceWidth
);

Parameters

pSourceWidth
Contains the width of the current source rectangle.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IBasicVideo: :get SourceWidth method.

i@fa111¥M

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41[.]i!,+ 1!1·H¥ Topic Contents i@fa111¥M

C BaseControlVideo:: GetStaticl mage

CBaseControlVideo Class

1133

CBaseContro!Video Class

Pure virtual method that derived classes override.

virtual HRESULT GetStaticimage(
long *pBufferSize,
long *pDIBimage
) PURE;

Parameters

pBufferSize
Size of the output buffer.

pDIBimage
Pointer to output buffer.

Return Values

Returns an HRESULT value.

Remarks

Page 19 of 41

Through the !BasicVideo interface, an application can request that it be given a copy of the
current image in a memory buffer (some renderers can return E_NOTIMPL to this if they do not
support it). The derived class determines how to retrieve the image. When the application calls
CBaseControlVideo::GetStaticimage, it calls this pure virtual method that the derived class
should override to implement it. This is also called by the
CBaseControlVideo: :GetCurrentlmage member function.

The class provides a helper member function, CBaseControlVideo: :Cooylmage, that can be
given a sample that contains an image, and the member function will copy the relevant section
of it (based on the current source rectangle) into the output buffer supplied by the application.

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this member function in a derived class. In this example, m_pRenderer
holds an object of a class derived from CBaseVideoRenderer.

//Return a copy of the current image in the video renderer

HRESULT CVideoText,,Getstaticimage(long *pBufferSize,long *pDIBimage)
{

II Get any sample the renderer may be holding

IMediaSample *pMediaSample = m_pRenderer->Getcurrentsample();
if (pMediaSample == NULL) {

return E_UNEXPECTED;

II Call the base class helper method to do the work

HRESULT hr= Copyimage(pMediaSample,
&m_pRenderer->m_mtin,
pBufferSize,
(BYTE*) pDIBimage);

pMediaSample->Release();
return hr;

1134

II Buffer containing image
II Type representin

II Size
II Data buffer for

CBaseControlVideo Class

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' i11.q9 Topic Contents

+Qij[.jjj,M 111.1 1119 Topic Contents

CBaseControlVideo: :GetTa rgetRect

CBaseControlVideo Class

Returns the destination rectangle. This is an internal helper member function.

virtual HRESULT GetTargetRect(
RECT *p TargetRect
) PURE;

Parameters

pTargetRect
Contains the destination rectangle.

Return Values

Returns an HRESULT value.

Remarks

Page 20 of 41

1@1§111¥+

1@1§111¥+

This member function must be overridden in the derived class to return the target rectangle
held by the video renderer. It is called from the following CBaseControlVideo member
functions.

• CBaseControlVideo: :GetDestinationPosition
• CBaseControlVideo:: put Destination Left
• CBaseControlVideo: :get Destinationleft
• CBaseControlVideo:: put DestinationWidth
• CBaseControlVideo: :get DestinationWidth
• CBaseControlVideo:: put DestinationTop
• CBaseControlVideo: :get DestinationTop
• CBaseControlVideo:: put Destination Height
• CBaseControlVideo: :get DestinationHeight

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this function in a derived class.

1135

CBaseControlVideo Class

II Return the current destination rectangle

HRESULT CVideoText::GetTargetRect(RECT *pTargetRect)
{

ASSERT (pTargetRect) i

m_pRenderer->m_Drawimage.GetTargetRect(pTargetRect) ;
return NOERROR;

Page 21of41

In this example, CVideoText is a class derived from CBaseControlVideo, m_pRenderer holds an
object of a class derived from CBaseVideoRenderer, and the m_Drawimage data member,
defined in the derived class, holds a CDrawimage object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents 1@1§111¥+

C BaseControlVideo:: GetVideoFormat

CBaseControlVideo Class

Retrieves a video sample that represents the current video format.

virtual VIDEOINFOHEADER * GetVideoFormat() PURE;

Return Values

Returns a pointer to a VIDEOINFOHEADER structure that contains the current video format.

Remarks

To return and check certain information through IBasicVideo, the object must know the current
video format. It gets this information by calling this pure virtual method that derived classes
must override. This member function is called by the following CBaseControlVideo member
functions.

• CBaseControlVideo: : OnVideoSizeCha nge
• CBaseControlVideo: :get AvgTimePerFrame
• CBaseControlVideo: :get BitRate
• CBaseControlVideo: :get BitErrorRate
• CBaseControlVideo: : get VideoWidth
• CBaseControlVideo: : get VideoHeig ht
• CBaseControlVideo: : GetVideoPa letteEntries
• CBaseControlVideo: : GetVideoSize

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1136

CBaseControlVideo Class

+Qi§1[.]++ 1 !!·HM Topic Contents

MQij[.jjj,M 111.1 1119 Topic Contents

CBaseControlVideo: :get_ VideoHeight

CBaseControlVideo Class

Retrieves the height of the native video.

HRESULT get_ VideoHeight(
long *pVideoHeight
);

Parameters

pVideoHeight
Contains the height of the native video, in pixels.

Return Values

Page 22 of 41

i@l§ii!MM

i@l§i 11111+

Returns NOERROR if successful or E_OUTOFMEMORY if there is not enough memory available.

Remarks

This member function implements the IBasicVideo: :get VideoHeight method. It calls the pure
virtual CBaseControlVideo: :GetVideoFormat to retrieve the VIDEOINFOHEADER structure from
the derived class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jjj,M 111.1 1119 Topic Contents i@l§lllMM

CBaseControlVideo: :GetVideoPaletteEntries

CBaseControlVideo Class

Retrieves a range of palette entries for the video.

HRESULT GetVideoPaletteEntries(
long Startlndex,
long Entries,

1137

CBaseControlVideo Class

long *pRetrieved,
long *pPalette
);

Parameters

Startlndex
Zero-based start palette entry.

Entries
Number of entries required.

pRetrieved
Number of colors obtained.

pPalette
Pointer to output buffer for colors.

Return Values

Page 23 of 41

Returns NOERROR if successful, VFW_E_NO_PALETTE_AVAILABLE if the video samples has no
color palette, E_OUTOFMEMORY if there is not enough memory available, E_INVALIDARG if
Startlndex is invalid, or S_FALSE if there are no colors in the palette.

Remarks

This member function returns the current palette of the video as an array allocated by the
user. To remain consistent, use the members in the Win32 PALETTEENTRY structure to return
the colors, rather than the members in the RGBQUAD structure (although the parameter is a
LONG). The memory is allocated by the caller, so simply copy each in turn. Determine that the
number of entries requested and the start position offset are both valid. If the number of
entries evaluates to zero, return an S_FALSE code.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents

MQi§i!!.llj,i 111.J,,[9 Topic Contents

C BaseControlVideo:: GetVideoSi ze

CBaseControlVideo Class

Retrieves the native video's width and height.

HRESULT GetVideoSize(
long *pWidth,
long *pHeight
);

Parameters

1138

lmli§lllMM

1@1§111$8

CBaseControlVideo Class

pWidth
Contains the video width.

pHeight
Contains the video height.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents

CBaseControlVideo: :get_ Video Width

CBaseControlVideo Class

Retrieves the width of the native video.

HRESULT get_VideoWidth(
long *pVideoWidth
);

Parameters

pVideoWidth
Contains the width of the native video, in pixels.

Return Values

Page 24 of 41

lmll§lllMM

Returns NOERROR if successful or E_OUTOFMEMORY if there is not enough memory available.

Remarks

This member function implements the IBasicVideo: :get VideoWidth method. It calls the pure
virtual CBaseControlVideo: :GetVideoFormat to retrieve the VIDEOINFOHEADER structure from
the derived class.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmll§lllMM

C BaseControlVideo:: Is Def au ltSou rceRect

1139

CBaseControlVideo Class

CBaseControlVideo Class

Determines if the renderer is using the default source rectangle (pure virtual).

virtual HRESULT IsDefaultSourceRect(void) PURE;

Return Values

Returns an HRESULT value.

Remarks

This member function must be implemented in the derived class. It is called by the
CBaseControlVideo: :IsUsinqDefaultSource member function.

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this function in a derived class.

II Return S_OK if using the default source otherwise s FALSE

HRESULT CVideoText::IsDefaultSourceRect ()
{

RECT sourceRect;

VIDEOINFO *pVideoinfo = (VIDEOINFO *) m_pRenderer->m_mtin.Format() ;
BITMAPINFOHEADER *pHeader = HEADER (pVideoinfo) i

m_pRenderer->m_Drawimage.GetSourceRect(&SourceRect) ;

I I Check the coordinates that match the video dimensions

if (sourceRect .1 eft ! = o I I sourceRect. top ! = o I I
sourceRect.right != pHeader->biWidth I I

SourceRect.bottom != pHeader->biHeight)
return S_FALSE;

return S OK;

Page 25 of 41

In this example, CVideoText is a class derived from CBaseControlVideo, m_pRenderer holds an
object of a class derived from CBaseVideoRenderer, and the m_Drawimage data member,
defined in the derived class, holds a CDrawimaqe object. The m_mtln data member, also
defined in the derived class, holds a CMediaType object with the media type of the input pin.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

C BaseControlVideo:: Is Def au ltTa rgetRect

1140

CBaseControlVideo Class

CBaseControlVideo Class

Determines if the renderer is using the default target rectangle (pure virtual).

virtual HRESULT IsDefaultTargetRect(void) PURE;

Return Values

Returns an HRESULT value.

Remarks

This member function must be implemented in the derived class. It is called by the
CBaseControlVideo: : IsUsi nqDefa u ltDestination member function.

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this function in a derived class.

II Return S_OK if using the default target; otherwise s FALSE

HRESULT CVideoText::IsDefaultTargetRect ()
{

RECT TargetRect;

VIDEOINFO *pVideoinfo = (VIDEOINFO *) m_pRenderer->m_mtin.Format() ;
BITMAPINFOHEADER *pHeader = HEADER (pVideoinfo) i

m_pRenderer->m_Drawimage.GetTargetRect(&TargetRect) ;

I I Check the destination that matches the initial client area

if (TargetRect.left != o I I TargetRect.top != o I I
TargetRect.right != m_Size.cx I I

TargetRect.bottom != m_Size.cy)
return S_FALSE;

return S_OK;

Page 26 of 41

In this example, CVideoText is a class derived from CBaseControlVideo, m_pRenderer holds an
object of a class derived from CBaseVideoRenderer, and the m_Drawlmage data member,
defined in the derived class, holds a CDrawimaqe object. The m_mtln data member, also
defined in the derived class, holds a CMediaTyoe object with media type of the input pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBaseControlVideo: :IsUsi ngDefa u ltSou rce

1141

CBaseControlVideo Class Page 27 of 41

CBaseControlVideo Class

Determines if the renderer is using the default source window.

virtual HRESULT IsUsingDefaultSource(void);

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents l@l§lllMM

C BaseControlVideo:: IsUsi n g Def au ltDesti nation

CBaseControlVideo Class

Determines if the renderer is using the default destination window.

virtual HRESULT IsUsingDefaultDestination(void);

Return Values

Returns an HRESULT value. Returns S_OK if using the default destination; otherwise, returns
S FALSE.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ'41[.]i!,M 11!.HJ Topic Contents l@l§il!MM

C BaseControlVideo:: On U pdateRecta ng les

CBaseControlVideo Class

Called when either the source or destination rectangle changes.

virtual HRESULT OnUpdateRectangles();

Return Values

1142

CBaseControlVideo Class Page 28 of 41

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!MM

CBaseControlVideo: :OnVideoSizeCha nge

CBaseControlVideo Class

Passes an EC_ VIDEO_SIZE_CHANGED message to the filter graph manager.

virtual HRESULT OnVideoSizeChange();

Return Values

Returns an HRESULT value.

Remarks

A video renderer should call this member function each time the video size is changed; this will
typically be called once after initial connection. If the renderer can support dynamic format
changes (from 320x240 to 160x120), it should also call it after each change.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.]++ 111.1,.19 Topic Contents i@i§lllMM

CBaseControlVideo::put_DestinationHeight

CBaseControlVideo Class

Sets the destination rectangle height.

HRESULT put_DestinationHeight(
long DestinationHeight
);

Parameters

DestinationHeight
New destination height.

1143

CBaseControlVideo Class Page 29 of 41

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§11!¥+

CBaseControlVideo::put_Destinationleft

CBaseControlVideo Class

Sets the left coordinate of the destination rectangle.

HRESULT put_Destinationleft(
long Destinationleft
);

Parameters

DestinationLeft
New left coordinate of destination rectangle.

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,M +!!.HM Topic Contents l@i§il!MM

1144

CBaseControlVideo Class

C BaseControlVideo:: put_Desti nationTop

CBaseControlVideo Class

Sets the top coordinate of the destination rectangle.

HRESULT put_DestinationTop(
long DestinationTop
);

Parameters

Destination Top
New top coordinate of the destination rectangle.

Return Values

Returns an HRESULT value.

Remarks

Page 30 of 41

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

C BaseControlVideo:: put_Desti nation Width

CBaseControlVideo Class

Sets the width of the destination rectangle.

HRESULT put_DestinationWidth(
long DestinationWidth
);

Parameters

1145

CBaseControlVideo Class Page 31of41

Destination Width
New destination width.

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents

CBaseControlVideo:: put_Sou rceHeig ht

CBaseControlVideo Class

Sets the source rectangle height.

HRESULT put_SourceHeight(
long SourceHeight
);

Parameters

SourceHeight
Contains the source height.

Return Values

Returns an HRESULT value.

Remarks

l@i§lllMM

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1146

CBaseControlVideo Class

+Qi§1[.]++ 1 !!·HM Topic Contents

CBaseControlVideo:: put_Sou rceleft

CBaseControlVideo Class

Sets the source rectangle left coordinate.

HRESULT put_Sourceleft(
long SourceLeft
);

Parameters

SourceLeft
New left coordinate of the source rectangle.

Return Values

Returns an HRESULT value.

Remarks

Page 32 of 41

i@l§ii!MM

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+ Q i§i [.] jj,+ +!!·HM Topic Contents

CBaseControlVideo:: put_Sou rceTop

CBaseControlVideo Class

Sets the top coordinate of the source rectangle.

HRESULT put_SourceTop(
long SourceTop
);

1147

i@l§ii!MM

CBaseControlVideo Class Page 33 of 41

Parameters

Source Top
New top coordinate of the source rectangle.

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents

CBaseControlVideo:: put_Sou rceWidth

CBaseControlVideo Class

Sets the width of the source rectangle.

HRESULT put_SourceWidth(
long Source Width
);

Parameters

Source Width
New width of the source rectangle.

Return Values

Returns an HRESULT value.

Remarks

lmli§lllMM

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

1148

CBaseControlVideo Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

C BaseControlVideo:: SetControlVideoPi n

CBaseControlVideo Class

Sets the pin used by the filter.

void SetControlVideoPin(
CBasePin *pPin
);

Parameters

pPin
Pin with which the interface is synchronized.

Return Values

No return value.

Remarks

Page 34 of 41

lml!§I 11$8

The interface can be called only when the filter has been connected successfully. The object is
passed through this method to the pin with which it is synchronized; in most cases it will
determine if the pin is connected when it has an interface method called and will return
VFW_E_NOT_CONNECTED if it fails.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

C BaseControlVideo:: Set Def au ltDesti nation Positio

CBaseControlVideo Class

Sets the renderer back to using the default destination position (typically the entire window
client area).

HRESULT SetDefaultDestinationPosition();

1149

CBaseControlVideo Class Page 35 of 41

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

CBaseControlVideo: :SetDefaultSourcePosition

CBaseControlVideo Class

Sets the renderer back to using the default source position (typically all the native video).

HRESULT SetDefaultSourcePosition();

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 111.l:.i# Topic Contents 1@1§111¥+

C BaseControlVideo:: Set Def au ltSou rceRect

1150

CBaseControlVideo Class Page 36 of 41

CBaseControlVideo Class

Sets the default source video rectangle (pure virtual). This in an internal member function that
gets called when the source rectangle is reset.

virtual HRESULT SetDefaultSourceRect() PURE;

Return Values

Returns an HRESULT value.

Remarks

Derived classes should override this to reset the source rectangle. It is called from
CBaseControlVideo: : SetDefa u ltSourcePosition.

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this function in a derived class.

II This is called when we reset the default source rectangle

HRESULT CVideoText::SetDefaultsourceRect()
{

VIDEOINFO *pVideoinfo = (VIDEOINFO *) m_pRenderer->m_mtin.Format();
BITMAPINFOHEADER *pHeader = HEADER(pVideoinfo) i

RECT SourceRect = {o,O,pHeader->biWidth,pHeader->biHeight};
m_pRenderer->m_Drawimage.setsourceRect(&SourceRect) ;
return NOERROR;

In this example, CVideoText is a class derived from CBaseControlVideo, m_pRenderer holds an
object of a class derived from CBaseVideoRenderer, and the m_Drawimage data member,
defined in the derived class, holds a CDrawimage object. The m_mtln data member, also
defined in the derived class, holds a CMediaType object with media type of the input pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.]l!:I l!i.! 11ij Topic Contents l@i§i 11111+

C BaseControlVideo:: Set Def au ltTa rgetRect

CBaseControlVideo Class

Sets the default target video rectangle (pure virtual). This is an internal member function that
gets called when the source rectangle is reset.

virtual HRESULT SetDefaultTargetRect() PURE;

Return Values

1151

CBaseControlVideo Class Page 37 of 41

Returns an HRESULT value.

Remarks

Derived classes should override this to reset the destination video rectangle. It is called from
the CBaseControlVideo: :SetDefaultDestinationPosition member function.

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this function in a derived class.

II This is called when we reset the default target rectangle

HRESULT CVideoText::SetDefaultTargetRect()
{

VIDEOINFO *pVideoinfo = (VIDEOINFO *) m_pRenderer->m_mtin.Format();
BITMAPINFOHEADER *pHeader = HEADER(pVideoinfo) i

RECT TargetRect = {o,o,m_Size.cx,m_Size.cy};
m_pRenderer->m_Drawimage.setTargetRect(&TargetRect) ;
return NOERROR;

In this example, CVideoText is a class derived from CBaseControlVideo, m_pRenderer holds an
object of a class derived from CBaseVideoRenderer, and the m_Drawimage data member,
defined in the derived class, holds a CDrawimage object. The m_mtln data member, also
defined in the derived class, holds a CMediaType object with the media type of the input pin.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents l@i§i 11111+

C BaseControlVideo:: SetDesti nation Position

CBaseControlVideo Class

Sets the destination rectangle for the video.

HRESULT SetDestinationPosition(
long Left,
long Top,
long Width,
long Height
);

Parameters

Left
New left coordinate.

Top

1152

CBaseControlVideo Class Page 38 of 41

New top coordinate.
Width

New width.
Height

New height.

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents

MQi@i·li!:+ M!i.1 1119 Topic Contents

C BaseControlVideo:: SetSou rcePosition

CBaseControlVideo Class

Sets a new source position for the video.

HRESULT SetSourcePosition(
long Left,
long Top,
long Width,
long Height
);

Parameters

Left
New left coordinate.

Top
New top coordinate.

Width
New width.

Height
New height.

1153

i@l§ii!MM

i@l§i 11111+

CBaseControlVideo Class Page 39 of 41

Return Values

Returns an HRESULT value.

Remarks

An application can change the source and destination rectangles for the video through the
IBasicVideo interface. The source rectangle affects which section of the native video source will
appear on the display; the destination rectangle affects where the video will appear when
played. The destination rectangle is relative to the client area of the window in which it is
playing. The upper-left corner of the window is coordinate (0,0).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jjj,M 111.1 1119 Topic Contents 1@1§111¥+

CBaseControlVideo: :SetSou rceRect

CBaseControlVideo Class

Sets the current source video rectangle (pure virtual). This is an internal member function that
gets called when the source rectangle changes.

virtual HRESULT SetSourceRect(
RECT *pSourceRect
) PURE;

Parameters

pSourceRect
Contains the source rectangle.

Return Values

Returns an HRESULT value.

Remarks

Derived classes should override this member function to know when the source rectangle
changes. It is called from the following member functions.

• CBaseControlVideo: : SetSou rcePosition
• CBaseControlVideo:: put SourceLeft
• CBaseControlVideo:: put SourceWidth

1154

CBaseControlVideo Class Page 40 of 41

• CBaseControlVideo:: put SourceTop
• CBaseControlVideo:: put SourceHeiqht

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this function in a derived class.

HRESULT CVideoText::SetSourceRect (RECT *pSourceRect)
{

m_pRenderer->m_Drawimage.SetsourceRect(psourceRect) ;
return NOERROR;

In this example, CVideoText is a class derived from CBaseControlVideo, m_pRenderer holds an
object of a class derived from CBaseVideoRenderer, and the m_Drawimage data member,
defined in the derived class, holds a CDrawimaqe object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

CBaseControlVideo: :SetTa rgetRect

CBaseControlVideo Class

Sets the current target rectangle (pure virtual). This is an internal member function that gets
called when the destination rectangle changes.

virtual HRESULT SetTargetRect(
RECT *p TargetRect
) PURE;

Parameters

pTargetRect
Contains the destination rectangle.

Return Values

Returns an HRESULT value.

Remarks

Derived classes should override this to know when the destination rectangle changes. It is
called from the following member functions.

1155

CBaseControlVideo Class

• CBaseControlVideo:: SetDestinationPosition
• CBaseControlVideo:: put DestinationLeft
• CBaseControlVideo:: put DestinationWidth
• CBaseControlVideo:: put DestinationTop
• CBaseControlVideo:: put Destination Height

The following example from the video renderer sample, SampVid, demonstrates an
implementation of this function in a derived class.

HRESULT CVideoText::SetTargetRect (RECT *pTargetRect)
{

m_pRenderer->m_Drawimage.SetTargetRect (pTargetRect) ;
return NOERROR;

Page 41of41

In this example, CVideoText is a class derived from CBaseControlVideo, m_pRenderer holds an
object of a class derived from CBaseVideoRenderer, and the m_Drawlmage data member,
defined in the derived class, holds a CDrawimaqe object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

1156

CBaseContro!Window Class Page 1of37

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseControlWindow Class

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CBaseVideoWindow

CBaseWindow

CBaseControlWindow

The CBaseControlWlndow class implements the IVideoWindow interface and controls
external access to its associated filter. You must synchronize the CBaseControlWindow
object with the filter by passing it a pointer to a critical section synchronization object. For
more information about critical section synchronization objects, see the Platform SDK. The
CBa$e(;(lntrolWlndow class provi<Jes a number of metho<Js that return property settings
without dealing with this critical section. For example, calling
CBaseControrNindow: :get AutoShow to retrieve the value of the m bAutoShow <Jata member
locks the critical section. The filter might alrea<Jy have a locke<J internal critical section,
how<!ver, which coul<J violate the filter's lock hi<!rarchy. Instea<J, calling the
CBaseControrNindow::IsAutoShowEnabled member function returns the require<J valu<! without
affecting the critical section.

AU CBaseControlWlndow implemente<J IVideoWindow metho<Js require that the filter be
connecte<J correctly with its upstream filter. For this reason, class objects require a
synchronization pin, which you set by calling the CBaseControlWindow: :SetControlWindowPin
metho<J. Whenever you call an IVi<leoWlndow metho<J, the (;Ba$e(;(lntro1Wlndow object
checks that the pin is stm connecte<J.

Protected Data Members
Name Description
m_bAutoShow Result when the state changes.
m_bCursorHldden Determination of whetherthe cursor is <Jisplaye<J or hid<Jen.
m_BorderColour Color of the current win<Jow bor<Jer.
m_hwndDraln Win<Jow han<Jle to which messages receive<J are poste<J.
m_hwndOwner Owning win<Jow.
m_pfilter Pointer to the owning me<Jia filter.
m_pinterfaceLock Externally <Jefine<J critieal section.
m_pPln Control of the me<Jia types for connection.

1157

CBaseContro!Window Class

Member Functions
Name Description
CBaseControlWindow Constructs a CBaseControlWindow object.
DoGetWindowStyle Retrieves either the typical or extended window styles.

Sets the typical or extended window styles.

Page 2 of37

DoSetWindowStyle
GetBorderColour
GetOwnerWindow
IsAutoShowEna bled

Retrieves the current border color. This is a helper member function.
Retrieves the owning window. This is a helper member function.
Retrieves information about whether the video window automatically
appears when the rendering filter pauses or runs.

IsCursorHidden Retrieves the current state of the m bCursorHidden data member
without locking the critical section. This is a helper member function.

PossiblyEatMessage Distributes messages to the parent window.
SetControlWindowPin Notifies the object of the pin to which it applies.

Implemented IVideoWindow Methods
Name Description
get AutoShow Retrieves the current AutoShow flag setting.
get Background Palette Retrieves the realized palette in the background flag.
get BorderColor
get Caotion
get FullScreenMode

Retrieves the current border color.
Retrieves the current window caption.
Retrieves the current full-screen mode.

get Height Retrieves the current window height.
get Left Retrieves the current left window coordinate.
GetMaxldeallmageSize Retrieves the maximum size of the ideal image.
get MessageDrain Returns the current message drain.
GetMinldeallmageSize Retrieves the minimum size of the ideal image.
get Owner Retrieves the Microsoft® Win32® parent window handle.
GetRestorePosition

get Too
get Visible
get Width

GetWindowPosition
get WindowState
get WindowStyle
get WindowStyleEx

HideCursor
IsCursorHidden
NotifyOwnerMessage

out AutoShow

Retrieves the position to which the window will be restored when
maximized or minimized.
Retrieves they-coordinate for the top of the window.
Retrieves the current visibility setting of the window.
Retrieves the width of the window.
Retrieves the current window coordinates.
Retrieves the current state of the window.
Retrieves the standard window styles.
Retrieves the extended window styles.
Hides or displays the cursor.
Retrieves the current state of the m bCursorHidden data member.
Passes on messages that are sent to owning windows.
Sets the AutoShow property.

out BackgroundPalette Sets a flag to realize the palette in the background.
out BorderColor Sets the current border color.
out Caotion Sets the current window caption.
out FullScreenMode Sets the full-screen mode.
out Height Sets the current window height.

1158

CBaseControlWindow Class

put Left

put MessageDrain
put Owner
put Top
put Visible
put Width
put WindowState
put WindowStyle
put WindowStyleEx

Sets the left coordinate for the window.
Sets the message drain window.
Sets the Microsoft Win32 parent window handle.
Sets the position for the top of the window.
Hides or shows the window.
Sets the width of the window.
Sets the state of the window.
Sets the standard window styles.
Sets the extended window styles.

SetWindowForeground Sets the window in the foreground.
SetWindowPosition Sets the window position.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij Topic Contents

MQl§i[.jjj,M 111.],.(j Topic Contents

Page 3of37

l@i§i llfttiM

•@m••1m+

CBaseControlWindow::CBaseControlWindow

CBaseControlWindow Class

Constructs a CBaseControlWindow object.

CBaseControlWindow(
CBaseMedia Filter *pFilter,
CCritSec *pinterfaceLock,
TCHAR *pName,
LPUNKNOWN pUnk,
HRESULT *phr
);

Parameters

pFilter
Owning media filter object.

pinterfaceLock
Critical section to use for locking.

pName
Object description.

pUnk
Typical Component Object Model (COM) ownership.

phr
COM return value.

Return Values

1159

CBaseControlWindow Class Page 4of37

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!MM

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

CBaseControlWi ndow:: DoGetWi ndowStyle

CBaseControlWindow Class

Retrieves the current normal or extended window styles.

HRESULT DoGetWindowStyle(
long *pStyle,
long Windowlong
);

Parameters

pStyle
Contains the appropriate styles.

Windowlong
Either GWL_STYLE or GWL_EXSTYLE.

Return Values

Returns an HRESULT value.

Remarks

This member function calls the Win32 GetWindowLong function to retrieve the window style. It
is called by the CBaseControlWindow: :get WindowStyle and
CBaseControlWindow: :get WindowStyleEx member functions.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.]ij,+ 111.1 1119 Topic Contents i@i§lllMM

CBaseControlWi ndow:: DoSetWi ndowStyle

1160

CBaseControlWindow Class

CBaseControlWindow Class

Changes the typical or extended window styles.

HRESULT DoSetWindowStyle(
long Style,
long Windowlong
);

Parameters

Style
Contains the appropriate window styles.

Windowlong
Either GWL_STYLE or GWL_EXSTYLE.

Return Values

Returns an HRESULT value.

Remarks

Page 5of37

This member function calls the Win32 SetWindowLong function to set the window style, and
then redisplays the window in the current position. This member function is called by the
CBaseControlWindow: :put WindowStyle and CBaseControlWindow: :put WindowStyleEx
member functions.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jli,M l!i.l:.ij Topic Contents

CBaseControlWi ndow: :get_AutoShow

CBaseControlWindow Class

Retrieves the current AutoShow state flag.

HRESULT get_AutoShow(
long *AutoShow
);

Parameters

Auto Show
Automation Boolean flag (0 is off, -1 is on).

Return Values

1161

l@i§lllMM

CBaseControlWindow Class Page 6of37

Returns an HRESULT value.

Remarks

This member function implements the IVideoWindow: :get AutoShow method. This property
simplifies window display access for applications. If this is set to -1 (on), the window, which is
typically hidden after connection of the filter, will be displayed automatically when the filter
pauses or runs. The window should not be hidden when the filter stops, however. If this
parameter is set to 0 (off), the window is made visible only when the application calls
CBaseControlWindow:: put Visible or CBaseControlWindow:: put WindowState with the
appropriate para meters.

This member function is meant to be called by external objects through the IVideoWindow
interface, and therefore locks the critical section to synchronize with the associated filter. Call
the CBaseControlWindow: :IsAutoShowEnabled member function to retrieve this property if you
are not calling from an external object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]1!,+ '!!·HM Topic Contents i@l§ii!MM

CBaseControlWindow::get_BackgroundPalette

CBaseControlWindow Class

Retrieves the realized palette in the background flag.

HRESULT get_BackgroundPalette(
long *pBackgroundPalette
);

Parameters

pBackgroundPalette
Automation Boolean flag (0 is off, -1 is on).

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IVideoWindow: :get Background Palette method. If a
video will be played within another application or document, the application might want to use
its own palette. It can ask that the video use the current foreground palette rather than its
own by setting this flag to -1. If this is set to 0, the window will install and realize its own
preferred palette. Note that asking the window to use a different palette will cause severe

1162

CBaseControlWindow Class

performance penalties.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQl§1[.jjj,M Ill.HS Topic Contents

C BaseControlWi ndow:: get_BorderColor

CBaseControlWindow Class

Retrieves the current border color.

HRESULT get_BorderColor(
long *Color
);

Parameters

Color
Current border color.

Return Values

Returns an HRESULT value.

Remarks

Page 7of37

lmll§lllMM

An application can set a destination rectangle in which the video should be displayed. This
rectangle is relative to the client area for the window. If this is done (the default is to always
paint the entire window), there is a border surrounding the video. This property affects the
color used by the border. Although the parameter is specified as a LONG type, it is actually a
COLORREF value.

This member function is meant to be called by external objects through the IVideoWindow
interface, and therefore locks the critical section to synchronize with the associated filter. Call
the CBaseControlWindow: :GetBorderColour member function to retrieve this property if not
calling from an external object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§1[.jjj,M 111.],.[9 Topic Contents 'ffl!'+* •um•

CBaseControlWi ndow: :GetBorderColou r

1163

CBaseControlWindow Class Page 8of37

CBaseControlWindow Class

Returns the current window border color, m BorderColour.

COLORREF GetBorderColour();

Return Values

Returns the color of the border.

Remarks

An application can set a destination rectangle to display the video. This rectangle should be
relative to the client area for the window. If this is done (the default is to always paint the
entire window), there is an area that surrounds the video; that is, the border. The border color
can be set through the CBaseControlWindow:: put BorderColor member function. This property
affects the color of the border. Use this member function instead of
CBaseControlWindow: :get BorderColor, unless you are calling this externally through the
IVideoWindow: :get BorderColor method.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

CBaseControlWi ndow: :get_ Ca pt ion

CBaseControlWindow Class

Retrieves the current window caption.

HRESULT get_Caption(
BSTR *pstrCaption
);

Parameters

pstrCaption
Current window caption.

Return Values

Returns an HRESULT value.

Remarks

i@faii!MM

Most top-level windows on a Windows-based desktop have a title (caption) associated with
them. This property can be queried and set through the IVideoWindow interface. Any caption
set will be visible only if the window has the WS_CAPTION style applied. If it does not, the

1164

CBaseControlWindow Class Page 9of37

caption can still be set (and retrieved), although it will not be visible to the user.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M Ill.HS Topic Contents lmll§lllMM

CBaseControlWindow::get_FullScreenMode

CBaseControlWindow Class

Retrieves the current full-screen mode.

HRESULT get_FullScreenMode(
long *Fu//ScreenMode
);

Parameters

Fu//ScreenMode
Current full-screen mode.

Return Values

Returns an HRESULT value.

Remarks

This member function returns E~NOTIMPL by default. This informs the IVideoWindow plug-in
distributor that this renderer does not implement a full-screen renderer.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M Ill.HS Topic Contents

CBaseControlWi ndow: :get_Heig ht

CBaseControlWindow Class

Retrieves the current window height.

HRESULT get_Height(
long *pHeight
);

1165

l@fail!MM

CBaseControlWindow Class Page 10of37

Parameters

pHeight
Current window height, in pixels.

Return Values

Returns an HRESULT value.

Remarks

The window has a position on the desktop. This is expressed in pixels by four coordinates (left,
top, right, and bottom). Interfaces that are automated by OLE typically express this position
through left, top, width, and height; this is the convention used in DirectShow™. All
coordinates are expressed in pixels, and changing any coordinate will update the window
immediately.

Setting the left or top coordinates moves the window left or up, respectively; these coordinates
have no effect on the width and height of the window. Likewise, setting the width and height
does not affect the left and top coordinates.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM

CBaseControlWi ndow: :get_Left

CBaseControlWindow Class

Retrieves the current left window coordinate.

HRESULT get_Left(
long *pLeft
);

Parameters

pLeft
Contains the left coordinate, in pixels.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents i@l§ii!MM

The window has a position on the desktop. This position is expressed in pixels by four

1166

CBaseControlWindow Class Page 11of37

coordinates (left, top, right, and bottom). Interfaces that are automated by OLE typically
express this position through left, top, width, and height; this is the convention used in
DirectShow. All coordinates are expressed in pixels, and changing any coordinate will update
the window immediately.

Setting the left or top coordinates moves the window left and up, respectively; these
coordinates have no effect on the width and height of the window. Likewise, setting the width
and height have no effect on the left and top coordinates.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

C BaseControlWi ndow:: GetMaxldea 11 ma geS ize

CBaseControlWindow Class

Retrieves the maximum ideal image size.

HRESULT GetMaxidealimageSize(
long *pWidth,
long *pHeight
);

Parameters

pWidth
Maximum ideal width, in pixels.

pHeight
Maximum ideal height, in pixels.

Return Values

Returns an HRESULT value.

Remarks

Various renderers have performance restrictions on the size of images they can display.
Although they should still function properly when requested to display images larger than the
specified maximum, renderers can nominate the minimum and maximum ideal sizes through
the IVideoWindow interface. This interface can be called only when the filter graph is paused or
running, because it is not until then that resources are allocated and the renderer can
recognize its restrictions. If no restrictions exist, the renderer fills in the pWidth and pHeight
parameters with the native video dimensions and returns S_FALSE. If restrictions do exist, the
restricted width and height are entered, and the member function returns S_OK.

The dimensions apply to the size of the destination video and not to the overall window size.
So, when calculating the size of the window to set, account for the current window styles (for
example, WS_CAPTION and WS_BORDER).

1167

CBaseControlWindow Class Page 12of37

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11$8

CBaseControlWindow::get_MessageDrain

CBaseControlWindow Class

Returns the current message drain.

HRESULT get_MessageDrain(
OAHWN D *Drain
);

Parameters

Drain
Current window receiving window messages.

Return Values

Returns an HRESULT value.

Remarks

Messages sent to the video renderer filter can be posted to another window. The window
registered to receive these messages (using the CBaseControlWindow::get_MessageDrain
member function) is the current message drain.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

•Q<M!.l+' 1u.H5 Topic Contents i@faii!MM

CBaseControlWindow::GetMinldeallmageSize

CBaseControlWindow Class

Retrieves the minimum ideal image size.

HRESULT GetMinidealimageSize(
long *pWidth,
long *pHeight

1168

CBaseControlWindow Class

);

Parameters

pWidth
Minimum ideal width, in pixels.

pHeight
Minimum ideal height, in pixels.

Return Values

Returns an HRESULT value.

Remarks

Page 13of37

Various renderers have performance restrictions on the size of images they can display.
Although they should still function properly when requested to display images larger than the
specified maximum, renderers can nominate the minimum and maximum ideal sizes through
the IVideoWindow interface. This interface can be called only when the filter graph is paused or
running, because it is not until then that resources are allocated and the renderer can
recognize its restrictions. If no restrictions exist, the renderer fills in the pWidth and pHeight
parameters with the native video dimensions and returns S_FALSE. If restrictions do exist, the
restricted width and height are entered, and the member function returns S_OK.

The dimensions apply to the size of the destination video and not to the overall window size.
So, when calculating the size of the window to set, account for the current window styles (for
example, WS_CAPTION and WS_BORDER).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents

CBaseControlWi ndow: :get_ Owner

CBaseControlWindow Class

Retrieves the current window owner.

HRESULT get_Owner(
OAHWN D *Owner
);

Parameters

Owner
Contains the window owner.

Return Values

1169

i@i§ll!¥+

CBaseControlWindow Class Page 14of37

Returns an HRESULT value.

Remarks

The video window can play back within a document environment. To do this, the window must
be made a child of another window (so that it is clipped and moved appropriately). This
property allows the owner of the window to be set and retrieved. When the window is owned
by another window, it simply calls the Microsoft Win32 SetParent function. An application
calling this function will change the window styles to set the WS_CHILD bit on.

When the window is owned by another window, it will automatically forward certain sets of
messages (in particular, mouse and keyboard messages). This allows an application to do
simple hot-spot editing and other interactions.

This member function is meant to be called by external objects through the IVideoWindow
interface, and therefore locks the critical section to synchronize with the associated filter. Call
the CBaseControlWindow: :GetOwnerWindow member function to retrieve this property if not
calling from an external object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

CBaseControlWi ndow: :GetOwnerWi ndow

CBaseControlWindow Class

Returns the owning window handle, m hwndOwner.

HWND GetOwnerWindow();

Return Values

Returns an internal method to return the owner window.

Remarks

Retrieves the owning window without calling the interface method. Use this member function
instead of CBaseControlWindow: :get Owner, unless you are calling this externally through the
IVideoWindow: :get Owner method.

© 1997 Microsoft Cornoration . All rights reserved. Terms of Use.

MQl§i[.jjj,M 111.Hj Topic Contents i@faii!MM

1170

CBaseControlWindow Class Page 15of37

C BaseControlWi ndow:: GetRestorePosition

CBaseControlWindow Class

Retrieves the position to which the window will be restored when it is not maximized or
minimized.

HRESULT GetRestorePosition(
long *pLeft,
long *pTop,
long *pWidth,
long *pHeight
);

Parameters

pLeft
Value for leftmost coordinate.

pTop
Value for top of the window.

pWidth
Value for width of the window.

pHeight
Value for height of window.

Return Values

Returns an HRESULT value.

Remarks

This is the same as the values returned by the CBaseControlWindow: :GetWindowPosition
function when the window is neither maximized nor minimized.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

MQl@[.jlj,M M!i.l:.19 Topic Contents i@i§i i!fttiM

CBaseControlWi ndow: :get_ Top

CBaseControlWindow Class

Retrieves the top window coordinate.

1171

CBaseControlWindow Class

HRESULT get_ Top(
long *pTop
);

Parameters

pTop
Contains the top coordinate, in pixels.

Return Values

Returns an HRESULT value.

Remarks

Page 16of37

The window has a position on the desktop. This is expressed in pixels by four coordinates (left,
top, right, and bottom). Interfaces that are automated by OLE typically express this position
through left, top, width, and height; this is the convention used in DirectShow. All coordinates
are expressed in pixels, and changing any coordinate will update the window immediately.

Setting the left or top coordinates moves the window left or up, respectively; these coordinates
have no effect on the width and height of the window. Likewise, setting the width and height
does not affect the left and top coordinates.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents

CBaseControlWi ndow: :get_ Visible

CBaseControlWindow Class

Retrieves the current window visibility.

HRESULT get_ Visible(
long *pVisible
);

Parameters

pVisible
Automation Boolean flag (0 is off, -1 is on).

Return Values

Returns an HRESULT value.

1172

l@i§i 11111+

CBaseControlWindow Class Page 17of37

Remarks

This member function returns -1 if the window has the WS_ VISIBLE style; 0 otherwise.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents

CBaseControlWi ndow: :get_ Width

CBaseControlWindow Class

Retrieves the current window width.

HRESULT get_Width(
long *p Width
);

Parameters

pWidth
Contains the window width, in pixels.

Return Values

Returns an HRESULT value.

Remarks

lml!Jl l!lltiM

The window has a position on the desktop. This is expressed in pixels by four coordinates (left,
top, right, and bottom). Interfaces that are automated by OLE typically express this position
through left, top, width, and height; this is the convention used in DirectShow. All coordinates
are expressed in pixels, and changing any coordinate will update the window immediately.

Setting the left or top coordinates moves the window left or up, respectively; these coordinates
have no effect on the width and height of the window. Likewise, setting the width and height
does not affect the left and top coordinates.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,+ 11!.Hj Topic Contents lmli§l llMM

C BaseControlWi ndow:: GetWi ndowPosition

1173

CBaseControlWindow Class

CBaseControlWindow Class

Retrieves the current coordinates for the window.

HRESULT GetWindowPosition(
long *pLeft,
long *pTop,
long *pWidth,
long *pHeight
);

Parameters

pLeft
Contains the left coordinate, in screen coordinates.

pTop
Contains the top coordinate, in screen coordinates.

pWidth
Contains the window width, in screen coordinates.

pHeight
Contains the window height, in screen coordinates.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥

+Qi@[.]+• 111.1,.19

Page 18of37

Topic Contents i@i§ll!¥+

Topic Contents i@i§i i!fttiM

CBaseControlWindow::get_WindowState

CBaseControlWindow Class

Retrieves the current window state.

HRESULT get_WindowState(
long *pWindowState
);

Parameters

pWindowState
Contains the window state.

1174

CBaseControlWindow Class Page 19of37

Return Values

Returns an HRESULT value.

Remarks

This member function returns a subset of the parameters of the Microsoft Win32 ShowWindow
function. In particular, it returns SW_SHOW and SW_HIDE, depending on the current visibility
of the window. It also returns SW_MINIMIZE and SW_MAXIMIZE, depending on whether the
window is an icon or is expanded.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

CBaseControlWi ndow: :get_ Wi ndowStyle

CBaseControlWindow Class

Retrieves the standard window styles.

HRESULT get_WindowStyle(
long *pWindowStyle
);

Parameters

pWindowStyle
Contains the window styles.

Return Values

Returns an HRESULT value.

Remarks

This member function returns the standard window styles, such as WS_CHILD and
WS_VISIBLE. It calls the CBaseControlWindow: :DoGetWindowStyle member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]+• '!!·!:.!¥ Topic Contents i@i§i M!fttiM

1175

CBaseControlWindow Class Page 20of37

CBaseControlWindow::get_WindowStyleEx

CBaseControlWindow Class

Retrieves the extended window styles.

HRESULT get_WindowStyleEx(
long *pWindowStyleEx
);

Parameters

p WindowStyleEx
Contains the extended window styles.

Return Values

Returns an HRESULT value.

Remarks

This member function retrieves the extended window styles. It calls the
CBaseControlWindow: :DoGetWindowStyle member function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 111.1::11 Topic Contents

CBaseControlWi ndow:: H ideCu rsor

CBaseControlWindow Class

Hides or displays the cursor.

HRESULT HideCursor(
long HideCursor
);

Parameters

Hide Cursor
Set to OATRUE to hide the cursor, or OAFALSE to display the cursor.

Return Values

Returns an HRESULT value.

1176

l@i§i 11111+

CBaseControlWindow Class

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]l!:I 11!.HS Topic Contents

CBaseControlWi ndow: :lsCu rsorH id den

CBaseControlWindow Class

Retrieves the current state of the m bCursorHidden data member.

HRESULT IsCursorHidden(
long *CursorHidden
);

BOOL IsCursorHidden();

Parameters

CursorHidden
Value of m bCursorHidden.

Return Values

Page 21of37

lml!§I 11$8

When called without a parameter, returns OATRUE if the cursor is hidden, or OAFALSE if the
cursor is visible.

When called with a parameter, returns an HRESULT value.

Remarks

Internal objects should call this member function without the CursorHidden parameter to avoid
locking the critical section. External objects access this member function with the
CursorHidden parameter through the IVideoWindow:: IsCursorHidden method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.]l!:I 111.1 1115 Topic Contents l@i§i 111118

C BaseControlWi ndow:: IsAutoShowE na bled

CBaseControlWindow Class

1177

CBaseControlWindow Class Page 22of37

Retrieves information about whether the video window automatically appears when the
rendering filter pauses or runs.

BOOL IsAutoShowEnabled();

Return Values

Returns TRUE if the m bAutoShow member is set to -1 or FALSE if it is set to 0.

Remarks

If the m bAutoShow member is set to -1 on a video window that is hidden, the window
becomes visible when the filter pauses or runs. If this member is set to 0, the window will
appear only if you use the CBaseControlWindow:: put Visible or
CBaseControlWindow:: put WindowState member function with the appropriate parameters.

This member function retrieves the m bAutoShow member setting and has the same result as
using the IVideoWindow: :get AutoShow method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

CBaseControlWi ndow:: NotifyOwnerMessage

CBaseControlWindow Class

Passes along specific messages to the video window.

HRESULT NotifyOwnerMessage(
long hwnd,
long uMsg,
long wParam,
long /Param
);

Parameters

hwnd
Handle to the video window.

uMsg
Message details.

wParam
Standard WPARAM parameter.

I Pa ram
Standard LPARAM parameter.

1178

CBaseControlWindow Class Page 23of37

Return Values

Returns NO_ERROR.

Remarks

When the video window is a child of another window, it does not receive certain top-level
window messages. These messages can be valuable to a renderer, because they could affect its
behavior. NotifyOwnerMessage passes any of the following messages to the video window.
WM_ACTIVATEAPP

WM DEVMODECHANGE
WM DISPLAYCHANGE
WM PALETTECHANGED
WM PALETTEISCHANGING
WM_QU ERYN EWPALETTE
WM SYSCOLORCHANGE

You can request that the IVideoWindow plug-in distributor (PID) make a window become a
child of another window. When this occurs, the PID will look for certain messages that might
be sent to the owning window. The PID will then forward those messages to the owned
window. The default processing for the messages is to send them to the owned window
procedure synchronously by calling the Win32 SendMessage function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j Topic Contents l@IJll!MM

MQi§i[.]jj,+ '!!·Hj Topic Contents l@i§il!MM

CBaseControlWi ndow:: Passi blyEatMessage

CBaseControlWindow Class

Forwards keyboard and mouse messages to a specified window.

BOOL WINAPI PossiblyEatMessage(
HWND hwndDrain,
UINT uMsg,
WPARAM wParam,
LPARAM /Param
)

Parameters

hwndDrain

1179

CBaseControlWindow Class

Handle of the window to which messages will be forwarded.
uMsg

Message that was forwarded.
wParam

First message parameter.
I Pa ram

Second message parameter.

Return Values

Returns TRUE if the message was posted or FALSE if it wasn't.

Remarks

Page 24of37

When the window is owned, it will pass certain classes of messages to the owning window
(such as keyboard and mouse events). In this case, the Win32 PostMessaqe function is used to
post messages to any window specified by hwndDrain which is set in
CBaseControlWindow: :out MessaqeDrain. If a certain message cannot be posted, this message
will return FALSE.

The following is a list of messages that will get passed on untranslated and return TRUE.
WM_ CHAR WM_DEADCHAR

WM_KEYDOWN WM_KEYUP

WM_LB UTTON DBLCLK WM_LB UTTON DOWN

WM_LB UTTON UP WM_M BUTTON DBLCLK

WM_MBUTTONDOWN WM_MBUTTONUP

WM_MOU SEACTIVATE WM_MOU SE MOVE

WM_NCHITTEST WM_NCLB UTTON DBLCLK

WM_NCLB UTTON DOWN WM_NCLB UTTON UP

WM_NCM BUTTON DBLCLK WM_NCM BUTTON DOWN

WM_NCMBUTTONUP WM_NCMOU SE MOVE

WM_NCRB UTTON DBLCLK WM_NCRB UTTON DOWN

WM_NCRB UTTON UP

WM_RB UTTON DOWN

WM_SYSCHAR

WM_SYSKEYDOWN

WM_RB UTTON DBLCLK

WM_RBUTTONUP

WM_SYSDEADCHAR

WM_SYSKEYUP

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 111.l:.ij

MQl§i[.jjj,M 111.],.(j

Topic Contents

Topic Contents

CBaseControlWi ndow:: put_AutoShow

1180

l@i§lllMM

l@i§lllMM

CBaseControlWindow Class

CBaseControlWindow Class

Sets the AutoShow state flag.

HRESULT put_AutoShow(
long AutoShow
);

Parameters

Auto Show
Automation Boolean flag (0 is off, -1 is on).

Return Values

Returns an HRESULT value.

Remarks

Page 25of37

This property simplifies window display access for applications. If this is set to -1 (on), the
window, which is typically hidden after the filter is connected, will be displayed automatically
when the filter pauses or runs. The window should not be hidden when the filter stops,
however. If this is set to 0 (off), the window is made visible only when the application calls
CBaseControlWindow:: put Visible or CBaseControlWindow:: put WindowState with the
appropriate para meters.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jli,M l!i.! 111j Topic Contents l@IJll!MM

CBaseControlWi ndow:: put_Backg rou ndPa lette

CBaseControlWindow Class

Sets a flag to realize the palette in the background.

HRESULT put_BackgroundPalette(
long BackgroundPalette
);

Parameters

BackgroundPalette
Automation Boolean flag (0 is off, -1 is on).

Return Values

Returns an HRESULT value.

1181

CBaseControlWindow Class Page 26of37

Remarks

To play a video within another application or document, the application might want to use its
own palette. It can ask that the video use the current foreground palette rather than its own as
the background palette by setting this flag to -1. If this is set to 0, the window will install and
realize its own preferred palette. Asking the window to use a different palette will cause severe
performance penalties.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.jjj,M l!i.! 11ij Topic Contents

CBaseControlWi ndow:: put_BorderColor

CBaseControlWindow Class

Changes the border color.

HRESULT put_BorderColor(
long Color
);

Parameters

Color
Contains the new border color.

Return Values

Returns an HRESULT value.

Remarks

l!ftli§i 11111+

An application can establish a destination rectangle in which the video should be displayed.
This rectangle is relative to the client area for the window. If this is done (the default is to
always paint the entire window), there is a border surrounding the video. This property affects
the color used by the border. Although the parameter is specified as a .LQN.G. type, it is actually
a COLORREF value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.jjj,M l!i.! 11ij Topic Contents l@IJll!MM

CBaseControlWi ndow:: put_ Ca pt ion

1182

CBaseControlWindow Class

CBaseControlWindow Class

Sets the window title or caption.

HRESULT put_Caption(
BSTR strCaption
);

Parameters

strCaption
Contains the new window caption.

Return Values

Returns an HRESULT value.

Remarks

Page 27of37

Most top-level windows on a Windows-based desktop have a title (caption) associated with
them. This property can be queried and set through the IVideoWindow interface. Any caption
set will be visible only if the window has the WS_CAPTION style applied. If it does not, the
caption can still be set (and retrieved), although it will not be visible to the user.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

CBaseControlWi ndow:: put_Fu I I Screen Mode

CBaseControlWindow Class

Sets the full-screen mode of the renderer.

HRESULT put_FullScreenMode(
long Fu//ScreenMode
);

Parameters

Fu//ScreenMode
Full-screen mode to apply.

Return Values

Returns an HRESULT value.

1183

CBaseControlWindow Class Page 28of37

Remarks

The current implementation returns E_NOTIMPL. A video renderer that implements a full
screen mode should override this member function and implement whatever modes it
supports.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.!j Topic Contents

CBaseControlWi ndow:: put_Heig ht

CBaseControlWindow Class

Sets the window height.

HRESULT put_Height(
long Height
);

Parameters

Height
New window height, in pixels.

Return Values

Returns an HRESULT value.

Remarks

l@i§i llfttiM

The window has a position on the desktop. This is expressed in pixels by four coordinates (left,
top, right, and bottom). Interfaces that are automated by OLE typically express this position
through left, top, width, and height; this is the convention used in DirectShow. All coordinates
are expressed in pixels, and changing any coordinate will update the window immediately.

Setting the left or top coordinates moves the window left or up, respectively; these coordinates
have no effect on the width and height of the window. Likewise, setting the width and height
does not affect the left and top coordinates.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQl§i[.ji!,M 111.l:.!j Topic Contents '®'*''Ir"•

1184

CBaseControlWindow Class

CBaseControlWi ndow:: put_Left

CBaseControlWindow Class

Sets the left coordinate for the window.

HRESULT put_Left(
long Left
);

Parameters

Left
New left coordinate, in pixels.

Return Values

Returns an HRESULT value.

Remarks

Page 29of37

The window has a position on the desktop. This is expressed in pixels by four coordinates (left,
top, right, and bottom). Interfaces that are automated by OLE typically express this position
through left, top, width, and height; this is the convention used in DirectShow. All coordinates
are expressed in pixels, and changing any coordinate will update the window immediately.

Setting the left or top coordinates moves the window left or up, respectively; these coordinates
have no effect on the width and height of the window. Likewise, setting the width and height
does not affect the left and top coordinates.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •=@• 1gnw

CBaseControlWi ndow:: put_MessageDra in

CBaseControlWindow Class

Sets the window to receive window messages sent to the video renderer.

HRESULT put_MessageDrain(
OAHWND Drain
);

Parameters

1185

CBaseControlWindow Class Page 30of37

Drain
Window to post messages to.

Return Values

Returns an HRESULT value.

Remarks

Messages sent to the video renderer filter can be posted to another window. This member
function registers the window to receive these messages. Unlike the
CBaseControlWindow:: put Owner member function, this member function does not make the
video window a child of another window. It is particularly useful for full-screen video renderers,
which cannot be child windows.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§lllMM

CBaseControlWi ndow:: put_ Owner

CBaseControlWindow Class

Sets the video window's parent window; the parent window then forwards certain messages to
the video window.

HRESULT put_Owner(
OAHWN D Owner
);

Parameters

Owner
Handle to the parent window.

Return Values

Returns NOERROR.

Remarks

Internally, this method calls the Microsoft Win32 SetParent function to set the new owner and
sets the parent window's style to WS_CHILD. The parent window will then forward certain sets
of messages (in particular, mouse and keyboard messages) to the video window.

After you set the video window's owner, you must set the owner to NULL and the owner's
window style to WS_OVERLAPPED and WS_CLIPCHILDREN before releasing the filter graph.

1186

CBaseControlWindow Class Page 31of37

When you set the owner to NULL, this method turns off the parent window's WS_CHILD bit. If
you don't set the owner to NULL, the parent window will continue to pass messages to the
video window and errors will likely occur when the application closes.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQl§1[.jjj,M MB.HS

CBaseControlWi ndow:: put_ Top

CBaseControlWindow Class

Sets the top window coordinate.

HRESULT put_ Top(
long Top
);

Parameters

Top
New top coordinate, in pixels.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents i@faii!MM

The window has a position on the desktop. This is expressed in pixels by four coordinates (left,
top, right, and bottom). Interfaces that are automated by OLE typically express this position
through left, top, width, and height; this is the convention used in DirectShow. All coordinates
are expressed in pixels, and changing any coordinate will update the window immediately.

Setting the left or top coordinates moves the window left or up, respectively; these coordinates
have no effect on the width and height of the window. Likewise, setting the width and height
does not affect the left and top coordinates.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl§1[.jjj,M Mh.],.15 Topic Contents '''*'•um•

CBaseControlWi ndow:: put_ Visi hie

1187

CBaseControlWindow Class

CBaseControlWindow Class

Makes the window either visible or hidden.

HRESULT put_ Visible(
long Visible
);

Parameters

Visible

Page 32of37

Automation Boolean flag (0 means window is hidden, -1 means window is shown).

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

CBaseControlWi ndow:: put_ Width

CBaseControlWindow Class

Sets the window width.

HRESULT put_Width(
long Width
);

Parameters

Width
New window width, in pixels.

Return Values

Returns an HRESULT value.

Remarks

lmli§lllMM

The window has a position on the desktop. This is expressed in pixels by four coordinates (left,
top, right, and bottom). Interfaces that are automated by OLE typically express this position
through left, top, width, and height; this is the convention used in DirectShow. All coordinates
are expressed in pixels and changing any coordinate will update the window immediately.

Setting the left or top coordinates moves the window left or up respectively; these coordinates

1188

CBaseControlWindow Class Page 33of37

have no effect on the width and height of the window. Likewise, setting the width and height
does not affect the left and top coordinates.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5 Topic Contents •=@• 1gnw

CBaseControlWi ndow:: put_ Wi ndowState

CBaseControlWindow Class

Sets the window state.

HRESULT put_WindowState(
long WindowState
);

Parameters

WindowState
New window state.

Return Values

Returns an HRESULT value.

Remarks

This member function takes the same parameters as the Microsoft Win32 ShowWindow
function (for example, WS_SHOWNORMAL, WS_SHOWMINNOACTIVATE, and
WS_SHOWMAXI MIZED).

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

• Q<M [.] "'' I!!.],.[. Topic Contents lml!§lllMM

CBaseControlWi ndow:: put_ Wi ndowStyle

CBaseControlWindow Class

Sets the standard Windows-based styles.

HRESULT put_WindowStyle(

1189

CBaseControlWindow Class

long WindowStyle
);

Parameters

WindowStyle
New window styles.

Return Values

Returns an HRESULT value.

Remarks

Page 34of37

Take care when changing the window styles. In most cases, an application should retrieve the
current style and then add or remove the inappropriate bits. This procedure allows various
internal window styles used by Windows® to remain intact.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmli§lllMM

CBaseControlWi ndow:: put_ Wi ndowStyleEx

CBaseControlWindow Class

Sets the style of the control window.

HRESULT put_WindowStyleEx(
long WindowStyleEx
);

Parameters

WindowStyleEx
[in] Value that specifies the style of the control window.

Return Values

Returns NOERROR.

Remarks

This method uses EX (extended) window styles. For a complete list of extended window styles,
see the Microsoft Win32 CreateWindowEx function. To change the window style, retrieve the
current window style, and then add or remove the necessary bit fields.

Note: Do not use the following window styles because they are not validated.

1190

CBaseControlWindow Class

WS_DISABLED
WS_HSCROLL

WS ICONIC
WS_MAXIMIZE
WS_MINIMIZE
WS_VSCROLL

Page 35of37

With some exceptions (noted here), the acceptable flags are the same as those allowed by the
Win32 CreateWindow function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.19 Topic Contents i@i§ll!¥+

+Qi@[.]+• 111.1,.19 Topic Contents i@i§i i!fttiM

C BaseControlWi ndow:: SetControlWi ndowPi n

CBaseControlWindow Class

Sets the pin with which to synchronize.

void SetControlWindowPin(
CBasePin *pPin
);

Parameters

pPin
Pin with which the interface is synchronized.

Return Values

No return value.

Remarks

This member function sets the m pPin variable equal to the pPin parameter. As described in
the constructor, the interface can be called only when the filter has been connected
successfully. The object is passed in through this member function to the pin with which it
should synchronize; in most cases, it will determine if the pin is connected whenever it has an
interface method called and will return VFW E NOT CONNECTED if it fails.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M M!i.1 1119 Topic Contents i@i§i i!fttiM

1191

CBaseControlWindow Class Page 36of37

CBaseControlWi ndow: :SetWi ndowForeg round

CBaseControlWindow Class

Moves the video window to the foreground and optionally gives it focus.

HRESULT SetWindowForeground(
long Focus
);

Parameters

Focus
..Lo.ng value that specifies whether the video window will get focus. A value of -1 gives
the window focus and 0 does not.

Return Values

Returns one of the following values.
Value Meaning
NO ERROR The method succeeded.
E_INVALIDARG Focus doesn't equal -1 or 0.
VFW E NOT CONNECTED The current filter isn't connected to a complete filter graph.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

CBaseControlWi ndow: :SetWi ndowPosition

CBaseControlWindow Class

Sets the window position on the desktop.

HRESULT SetWindowPosition(
long Left,
long Top,
long Width,
long Height
);

1192

CBaseControlWindow Class Page 37of37

Parameters

Left
New left coordinate.

Top
New top coordinate.

Width
Width of the window.

Height
Height of the window.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

1193

CBaseDispatch Class Page 1of4

8 41411•11' 9 ill.i::ifi Topic Contents i@IQI lt§jM

CBaseDispatch Class

CBaseDispatch

The CBaset>lspatch class iS a base class that implements the IDisoatch interface for use in a
dual interface. A <11.1a1 interface provides Automation and custom interface access to an
interface.

CMediaControl and CMediaPosition (and other dual-interface support classes) are derived from
this class or have members that are instances of thiS class.

For more information about the IDisoatch methods, see the COM documentation included with
the Microsoft® Platform Software Development Kit (SDK).

Member Functions
Name Description
caaseDispatch Constructs a caaseotspatch object.

Implemented !Dispatch Methods
Name Description
GetIDsOfNames Maps a single member function and an optional set of parameters to a

corresponding set of integer dispatch identifiers, whieh can be used upon
subsequent calls to the IDisoatch::Invoke method.

GetTupeinfo Retrieves a type-information object, whieh can retrieve the type
information for an interface.

GetTupeinfoCount Retrieves the number of type-information interfaces provided by an object.

8 41411·!11* 1 11·'"'* T op1c Contents l@i§ilt§M

CBaseDis patch:: CBaseDi spatch

CBaseDisoatch Class

Constructs a CBaseDisoatch object.

CBaseDispatch{);

1194

CBaseDispatch Class Page 2 of 4

Return Values

No return value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 111j Topic Contents l!ftl!Ji l!lltiM

CBaseDispatch::GetIDsOfNames

CBaseDispatch Class

Maps a single member function and an optional set of parameters to a corresponding set of
integer dispatch identifiers, which can be used upon subsequent calls to the IDispatch: :Invoke
method.

HRESULT GetIDsOfNames(
REFIID riid,
OLECHAR * * rgszNames,
UINT cNames,
LCID lcid,
DISPID * rgdispid
);

Parameters

riid
Reference identifier. Reserved for future use. Must be NULL.

rgszNames
Passed-in array of names to be mapped.

cNames
Count of the names to be mapped.

lcid
Local context in which to interpret the names.

rgdispid
Caller-allocated array, each element of which contains an identifier that corresponds to
one of the names passed in the rgszNames parameter. The first element represents the
member name; the subsequent elements represent each of the member's parameters.

Return Values

Returns one of the following values.

1195

CBaseDispatch Class

Value
S_OK
E_OUTOFMEMORY

Meaning
Success.
Out of memory.

Page 3 of 4

DISP E UNKNOWN NAME One or more of the names were not known. The returned DISPIDs
contain DISPID_ UNKNOWN for each entry that corresponds to an
unknown name.

DISP _E_UNKNOWN_CLSID The class identifier was not recognized.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9 Topic Contents lmll§lllMM

MQi§i!!.ljj,i 111.J,,[9 Topic Contents 1@1§111$8

CBaseDispatch: :GetTypelnfo

CBaseDispatch Class

Retrieves a type-information object, which can retrieve the type information about an
interface.

HRESULT GetTypeinfo(
UINT itinfo,
LCID lcid,
ITypeinfo * * pptinfo
);

Parameters

itinfo
Type information to return. Pass zero to retrieve type information for the IDispatch
implementation.

lcid
Local identifier for the type information. An object can return different type information
for different languages. This capability is important for classes that support localized
member names. For classes that do not support localized member names, ignore this
parameter.

pptinfo
Pointer to the type-information object requested.

Return Values

Returns an E_ POINTER if pptinfo is invalid. Returns TYPE_ E_ELEMENTNOTFOUND if itinfo is not
zero. Returns S_OK if is successful. Otherwise, returns an HRESULT from one of the calls to
retrieve the type. The HRESULT indicates the error and can be one of the following standard
constants, or other values not listed:

1196

CBaseDispatch Class

Value
E FAIL
E_ POINTER

Meaning
Failure.
Null pointer argument.

E INVALIDARG Invalid argument.

S_OK or NOERROR Success.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

Topic Contents

Topic Contents

CBaseDispatch: :GetTypelnfoCou nt

CBaseDispatch Class

Retrieves the number of type-information interfaces provided by an object.

HRESULT GetTypeinfoCount(
UI NT * pctinfo
);

Parameters

pctinfo

Page 4 of 4

i@fa111¥M

i@fai11¥M

Pointer to the location that receives the number of type-information interfaces that the
object provides. If the object provides type information, this number is 1; otherwise, the
number is 0.

Return Values

Returns E_POINTER if pctinfo is invalid; otherwise, returns S_OK.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1197

CBaseFilter Cl ass Page 1 of 19

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseFilter Class

(CBaseObject) ,

I INonDelegatingUnknown I
L.l(CUnknown

I IAMovieSetup I
I IMediaFilter I
I IBaseFilter

...__..__.I-{~ CBasefilter

CBaseFi lte .. is an abstract base class from which all filters are derived. It supports the
Component Object Model (COM) !Basefi!ter interface and is derived from the C!lnknown class.
This class supports the enumeration of pins by calling the pure virtual member functions
CBasefilter::GetPin and GetPinCount. These member functions must be overridden by any
derived class.

The CBaseFilte .. class assumes that all the filter's pins are derived from the CBasePin class.
CBasefilter: :GetPin must !<!turn a pointer to CBasePin.

AU member functions in this class that return HRESULT and accept a pointer as a parameter
return E POIITTER when passed a null pointer.

P .. otected Data Members
Name Description
m_dsid Class identifier (CLSID) used for serialization using !Persist.
m_pCl«k filter graph's reference clock.
m_pGraph Pointer to a graph to which this filter belongs.
m_PinVersion Current version of the pins used on the filter.
m_pl.ock Pointer to the critical section used for locking.
m_pName filter name.
m_pSlnk Pointer to the lMediaEventSink interface on the filter graph manager.
m_State Current state: running or paused.
m_tSta .. t Offset from the stream time to the reference time.

Membe .. Functions

1198

CBaseFilter Class Page 2of19

Description
Constructs a CBaseFilter object.

Name
CBaseFilter
GetFilterGraoh Returns the filter graph associated with the filter. This is used in the

implementation of CEnumPins.
IncrementPinVersion Adds 1 to the pin version stored in m PinVersion.
IsActive Determines if the filter is currently active (running or paused) or

stopped.
Notify Event
ReconnectPin

Sends an event notification to the filter graph.
Requests pin for a reconnect.

Overridable Member Functions
Description Name

Get Pin Returns a pointer to the requested pin.
GetPinCount Returns the number of pins currently available on this object.
GetPinVersion Returns the current version of the base filter for comparison with the version

with which the pin was initialized. This member function can be overridden if
pins are being created dynamically.

GetSetuoData Retrieves the registration data associated with the filter.
StreamTime Returns the current stream time.

Implemented !Persist Methods
Name Description
GetClass!D Returns the class identifier of this filter.

Implemented IMediaFilter Methods
Name
GetState

Description
Retrieves the current state of the filter.

GetSyncSource Retrieves the current reference clock in use by this filter.
Instructs the filter to transition to State_Paused state.
Instructs the filter to transition to State_Running state. Passes a time value to
synchronize independent streams.

SetSyncSource Informs the filter of the reference clock with which it should synchronize
activity.
Instructs the filter to transition to the State_Stopped state.

Implemented IBaseFilter Methods
Name Description
EnumPins Provides an enumerator for this pin's preferred media types (implemented

by this class).
FindPin Retrieves the pin with the specified identifier.
JoinFilterGraoh Notifies a filter that it has joined a filter graph (implemented by this class).
OueryFilterlnfo Gets information about the specified filter (implemented by this class).
OueryVendorlnfo Retrieves optional information supplied by a vendor for the specified filter.

Implemented IAMovieSetup Methods

1199

CBaseFilter Class

Name
Register

Description
Adds the filter to the registry.

Unregister Removes the filter from the registry.

Implemented INonDelegatingUnknown Methods
Name Description

Page 3of19

NonDelegatingQueryinterface Passes out pointers to any interfaces added to the derived filter
class.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9

+Qij[.jlj,M 111.1 1119

CBaseFilter: :CBaseFilter

CBaseFilter Class

Constructs a CBaseFilter object.

CBaseFilter(
TCHAR *pName,
LPUNKNOWN pUnk,
CCritSec *plock,
REFCLSID clsid
);

Parameters

pName
Pointer to an object description.

pUnk
IUnknown interface of the delegating object.

plock
Pointer to an object that maintains the lock.

els id
Class identifier to be used to serialize this filter.

Return Values

No return value.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

+Qi§i[.jlj,M Mii.HM

1200

Topic Contents 1@1§111¥+

Topic Contents 1@1§111¥+

Topic Contents l@i§il!MM

CBaseFilter Class Page 4of19

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

CBaseFilter:: EnumPins

CBaseFilter Class

Retrieves an IEnumPins pointer that can be used to enumerate all the pins available on this
filter.

HRESULT EnumPins(
IEnumPins ** ppEnum
);

Parameters

ppEnum
Pointer to the IEnumPins interface to retrieve.

Return Values

Returns E_OUTOFMEMORY if a new enumerate could not be created or NOERROR if successful.

Remarks

This member function implements the IBaseFilter:: EnumPins method. It uses the CEnumPins
object to construct an enumerator and retrieves the IEnumPins interface from the CEnumPins
object. The implementation of CEnumPins:: Next calls the CBaseFilter: :GetPin member
function, which the derived class must provide. The IEnumPins interface is used by the filter
graph manager when adding the filter to the filter graph.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

• ; i§i [.] +• I !!·HM

CBaseFi lter:: Find Pin

CBaseFilter Class

Retrieves the pin with the specified identifier.

HRESULT FindPin(
LPCWSTR Id,

1201

Topic Contents i@l§ii/¥+

CBaseFilter Class

IPin **ppPin
);

Parameters

Id
Identifier of the pin.

ppPin
Pointer to the IPin interface for this pin after the filter has been restored.

Return Values

Page 5of19

The default implementation by this member function returns S_OK if the pin name was found
or VFW E NOT FOUND otherwise.

Remarks

This member function provides a base class definition of the IBaseFilter:: Find Pin method that,
along with the IPin: :Queryid method, is used to implement persistent filter graphs. A filter
must be able to translate the IPin interface pointers to its pins into identifiers that can be
saved along with the configuration of the filter graph. It does this by using the IPin::Queryid
method. It must then be able to convert those identifiers back into IPin interface pointers
when the filter and its connections are restored as part of a persistent filter graph. This is
accomplished using the IBaseFilter::FindPin method.

By default, the base classes use the pin name in the CBasePin: :m oName data member, so
implementing this member function in your derived filter class is not normally required.

The ppPin parameter is set to NULL if the identifier cannot be matched.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents

CBaseFilter: :GetClassID

CBaseFilter Class

Fills the pC/sID parameter with the class identifier of this filter (from m clsid).

HRESULT GetClassID(
CLSID *pC/sID
);

Parameters

pC/sID
Pointer to the class identifier to be filled out.

1202

l@IJll!MM

CBaseFilter Class

Return Values

Return NOERROR.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jjj,M l!i.! 111j

CBaseFi lter: :Get Fi lterGra ph

CBaseFilter Class

Retrieves the filter graph associated with the filter.

IFilterGraph *GetFilterGraph();

Return Values

Returns the value of m oGraoh.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

CBaseFilter: :GetPin

CBaseFilter Class

Retrieves a CBasePin object on the filter.

virtual CBasePin *GetPin(
int n
) PURE;

Parameters

n
Number of the specified pin.

Return Values

MQl§1[.jjj,M 11!.Hj

Returns a pointer to the pin specified by then parameter.

1203

Page 6of19

Topic Contents l!ftl!Ji l!lltiM

Topic Contents lfflj[§il!¥M

CBaseFilter Class Page 7of19

Remarks

Override this member function to return a pointer to the nth pin on this filter. CBaseFilter adds
a reference to it, when necessary, before passing it to any other object. This member function
is called by the base class CEnumPins:: Next member function to retrieve pins for the
IEnumPins interface, which is used by the filter graph manager.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM

CBaseFilter: :GetPinCount

CBaseFilter Class

Retrieves the number of supported pins.

virtual int GetPinCount() PURE;

Return Values

Returns the pin count.

Remarks

Override this member function to return the count of pins currently available on this object.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQl§i[.jlj,M 111.],.(j Topic Contents l@i§lllMM

CBaseFilter: :GetPinVersion

CBaseFilter Class

Retrieves the version number of the pin.

virtual long GetPinVersion();

Return Values

By default, returns the value of m PinVersion. If overridden, this member function should

1204

CBaseFilter Class Page 8of19

return the pin version number.

Remarks

Returns the current version of the filter that matches the version used to initialize the pin. The
enumerator calling this member function performs the matching.

A filter provides an enumerator to gain access to the input and output pins it keeps. Each time
a pin enumerator's method is called, the pin enumerator calls the
CBaseFilter::GetPinVersion member function to ensure that the base filter's version matches
the version with which the pin enumerator was initialized.

A filter class can override CBaseFilter::GetPinVersion if there is a need to increment the
version by changing the available pins dynamically. Or, it can more easily call
I ncrementPinVersion.

GetPinVersion does not lock the filter because the enumerators are designed to be separate
objects. The derived class's GetPinVersion will likely have to do some specialized locking with
the part of the object responsible for creating and deleting pins.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM

CBaseFi lter: :GetSetu pData

CBaseFilter Class

Retrieves the registration data associated with the filter.

virtual LPAMOVIESETUP _FILTER GetSetupData();

Return Values

Returns a pointer to an AMOVIESETUP FILTER structure containing registration information for
the filter.

Remarks

You must override this member function and implement it to return an AMOVIESETUP FILTER
structure containing its associated AMOVIESETUP PIN and AMOVIESETUP MEDIATYPE
structures for pin and media type information. This member function is called from the
CBaseFilter:: Register member function.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQl§i[.jlj,M l!l.!:.!j Topic Contents l@i§lllMM

1205

CBaseFilter Class

CBaseFilter: :GetState

CBaseFilter Class

Retrieves the current state of the filter.

HRESULT GetState(
DWORD dwMilliSecsTimeout,
FILTER_STATE *State
);

Parameters

dwMilliSecsTimeout
Duration of the time-out, in milliseconds.

State
Holds the returned state of the filter.

Return Values

Returns S_OK.

Remarks

Page 9of19

This member function implements the IMediaFilter: :GetState method. It returns the value of
the m State data member. Override this member function if the state changes in your filter
are not synchronous.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

CBaseFilter: :GetSyncSource

CBaseFilter Class

Retrieves the current reference clock in use by this filter.

HRESULT GetSyncSource(
IReferenceClock * * pC/ock
);

Parameters

1206

Topic Contents lmll§I 11$8

CBaseFilter Class Page 10of19

pC/ock
Pointer to a reference clock; will be set to the IReferenceClock interface.

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMediaFilter: :GetSyncSource method. It returns the
value of m pClock after adding a reference to it. Be sure to release the interface by calling the
!Unknown:: Release method when finished with the pointer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@IJll!MM

CBaseFi lter: :IncrementPi nVersion

CBaseFilter Class

Adds 1 to the version number of the pin.

void IncrementPinVersion();

Return Values

No return value.

Remarks

By default, increments the value of m PinVersion.

© 1997 Microsoft Cornoration . All rights reserved. Terms of Use.

MQ<§i[.jlj,M lh.Hj Topic Contents i@faii!MM

CBaseFilter: :IsActive

CBaseFilter Class

Determines if the filter is currently active (running or paused) or stopped.

1207

CBaseFilter Class Page 11of19

BOOL lsActive(void);

Return Values

Returns TRUE if the filter is paused or running, or FALSE if the filter is stopped.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5

CBaseFi lter: :Join Fi lterGra ph

CBaseFilter Class

Notifies a filter that it has joined a filter graph.

HRESULT JoinFilterGraph(
IFilterGraph * pGraph,
LPCWSTR pName
);

Parameters

pGraph
Pointer to the filter graph to join.

pName
[in, string] Name of the filter being added.

Return Values

No return value.

Remarks

Topic Contents •=@• 1gnw

This member function implements the IBaseFilter: :JoinFilterGraph method. It assigns the
pGraph filter graph pointer to the m pGraph data member and obtains the IMediaEventSink
interface from the filter graph manager to allow the filter to post event notifications to the
filter graph manager.

The filter should store the IMediaEventSink interface for later use, because it might need to
notify the interface about events, but it should not increase the reference count on the filter
graph manager object. A null pointer indicates that the filter is no longer part of a graph.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi§i[.]11,M 11!.HM Topic Contents l@l§il!MM

1208

CBaseFilter Class Page 12of19

CBaseFilter::NonDelegatingQuerylnterface

CBaseFilter Class

Retrieves an interface and increments the reference count.

H RESULT Non Delegati ngQueryinterface(
REFIID riid,
void** ppv
);

Parameters

riid
Reference identifier.

ppv
Pointer to the interface.

Return Values

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or
E_NOINTERFACE if it is not.

Remarks

This member function implements the INonDelegatingUnknown: :NonDelegatingQueryinterface
method and passes out references to the IBaseFilter, IMediaFilter, IPersist, IAMovieSetup, and
IUnknown interfaces. Override this class to return other interfaces on the object in the derived
class.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5

CBaseFi lter:: NotifyEvent

CBaseFilter Class

Sends an event notification to the filter graph.

HRESULT NotifyEvent(
long EventCode,
long EventParam1,

1209

Topic Contents •=@• 1gnw

CBaseFilter Class

long EventParam2
);

Parameters

EventCode
Identifier of the event.

EventParam1
First parameter of the event.

EventParam2
Second parameter of the event.

Return Values

Page 13of19

Returns S_OK if delivered, S_FALSE if the filter graph does not sink events, or an error
otherwise.

Remarks

For a list of notification codes and event parameter values, see Event Notification Codes.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§lll¥M

MQl§i[.jjj,M '!!·HM Topic Contents l@i§il/¥8

CBaseFi lter:: Pa use

CBaseFilter Class

Transitions the filter to State_Paused state if it is not in this state already.

HRESULT Pause (void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IMediaFilter:: Pause method. If the filter is in
State_Stopped state, the CBasePin: :Active member function is called for each of the filter's
pins to which it is connected. If this member function succeeds, the filter's m State member
variable is set to State_Paused. If any pin returns a failure return value from its Active
method, the function fails and the state is not changed.

1210

CBaseFilter Class

This member function holds the filter's lock.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]I!:+ +!!.HM

CBaseFi lter: :Queryf i lterlnfo

CBaseFilter Class

Retrieves information about the filter.

HRESULT Queryfilterlnfo(
FILTER_INFO * plnfo
);

Parameters

plnfo
Pointer to a FILTER INFO structure to fill in.

Return Values

Returns an HRESULT value.

Remarks

Page 14of19

Topic Contents ifflj[§ii!MM

This member function implements the IBaseFilter: :OueryFilterinfo method. It copies the filter's
name from m oName, and copies the pointer to the filter graph interface from m pGraph into
the FILTER INFO structure before returning.

Note that the IFilterGraph interface passed out by this member function is reference counted,
and so must be released when the caller has finished with it.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.]I!:+ 111.1 1119 Topic Contents i@i§i 11111+

CBaseFi lter: :QueryVendorlnfo

CBaseFilter Class

1211

CBaseFilter Class

Retrieves a vendor information string.

HRESULT QueryVendorinfo(
LPWSTR * pVendorinfo
);

Parameters

pVendorinfo
Pointer to a string containing vendor information.

Return Values

Returns an HRESULT value (E_NOTIMPL by default).

Remarks

Page 15of19

This member function implements the IBaseFilter: :QueryVendorinfo method, but only to
return E_NOTIMPL. Filters that want to expose vendor information must override this member
function. If implemented in a derived class, callers should free memory when they are done
using it by calling the Microsoft® Win32® CoTaskMemFree function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.l:.ij

CBaseFi lter:: Recon nectPi n

CBaseFilter Class

Requests pin for a reconnect.

HRESULT ReconnectPin(
IPin *pPin,
AM_M ED IA_ TYPE const *pmt
);

Parameters

pPin
Pointer to the pin to reconnect.

pmt

Topic Contents

AM MEDIA TYPE media type to reconnect with. This can be NULL.

Return Values

Returns an HRESULT value.

1212

l@i§i llfttiM

CBaseFilter Class Page 16of19

Remarks

This function calls the IFilterGraph2:: ReconnectEx method on the filter graph.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQij[.jlj,M l!i.! 11ij Topic Contents lml!Jl l!lltiM

CBaseFi lter:: Register

CBaseFilter Class

Adds the filter to the registry.

HRESULT Register();

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IAMovieSetup: :Register method and registers the filter,
its pins, and the media type associated with the pins. It does this by first calling GetSetupData
to retrieve the setup data, and then calling the IFilterMapper:: RegisterFilter,
IFilterMapper:: RegisterPin, and IFilterMapper:: RegisterPinType methods.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jlj,M 111.],.(j Topic Contents lml!JlllMM

CBaseFilter:: Run

CBaseFilter Class

Transitions the filter from paused to running state if it is not in this state already.

HRESULT Run (
REFERENCE_TIME tStart
);

Parameters

1213

CBaseFilter Class Page 17of19

tStart
Reference time value corresponding to stream time 0.

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.

Remarks

If the filter is in State_Stopped state, the CBaseFilter:: Pause method is called first to transition
the filter to State_Paused state, which has the effect of activating any of the filter's connected
pins. If any pin returns a failure return code from its Active method, the function fails and the
state is not changed. If this member function succeeds, the filter's m State member variable is
set to State_Running.

This member function holds the filter's lock.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQ<§i[.jjj,M 111.],.(9 Topic Contents

CBaseFi lter: :SetSyncSou rce

CBaseFilter Class

Identifies the reference clock to which the filter should synchronize activity.

HRESULT SetSyncSource (
IReferenceClock * pC/ock
);

Parameters

pC/ock
Pointer to the IReferenceClock interface.

Return Values

Returns an HRESULT value. The default implementation returns NOERROR.

Remarks

lmli§lllMM

This member function implements the IMediaFilter: :SetSyncSource method. It sets the
m pClock data member to the pC/ock parameter and increments the reference count on the
IReferenceClock interface passed in.

This member function is most important to rendering filters and might not apply to other

1214

CBaseFilter Class Page 18of19

filters.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQl§i[.jjj,M Ill.HS Topic Contents lmll§lllMM

CBaseFilter: :Stop

CBaseFilter Class

Transitions the filter to State_Stopped state if it is not in this state already.

HRESULT Stop(void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the !Media Filter: :Stop method. It first calls the
CBasePin: :Inactive member function on all its pins that have a connection, and then sets the
filter's m State member variable to State_Stopped.

This member function holds the filter's lock.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!l.! 1119

CBaseFi lter: :St re a mTi me

CBaseFilter Class

Retrieves the current stream time.

virtual HRESULT StreamTime(
CRefTime& rtStream
);

Parameters

rtStream

1215

Topic Contents 1@1§111$8

CBaseFilter Class Page 19of19

Current stream time.

Return Values

Returns an HRESULT value, which can include the following values.
Value Meaning
E_FAIL Unable to get time from clock.
S_OK Stream time returned in the rtStream parameter.
VFW E NO CLOCK No reference clock is available.

Remarks

Current stream time is the reference clock time minus the stream time offset. All samples with
time stamps less than or equal to this time should have been presented.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jjj,M 111.1 1119 Topic Contents 1@1§111¥+

CBaseFi lter:: Un register

CBaseFilter Class

Removes the filter from the registry.

HRESULT Unregister();

Return Values

Returns an HRESULT value.

Remarks

This member function implements the IAMovieSetup: :Unregister method and calls the
IFilterMapper: :UnregisterFilter method to remove the filter from the registry. This effectively
removes the pins and media types as well.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

1216

CBaseinputPin Class Page 1 of 14

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8

CBaseinputPin Class

CBaseObject

INonDelegatingUnknown

CUnknown

CBasePin

CBaselnputPin

CBaseinputPln is an abstract base class derived from CBasePin that adds support for
IMeminpirtpjo in addition to the IDn interface support provided by CBasePln. Its
IMeminoutPin: :GetAl!ocator method returns a CMemA!!ocator object. Derive your input pin
from thiS class.

Al! member functions in this class that return HRES!l! I and accept a pointer as a parameter
return E POIITTER when passed a nu!! pointer.

Protected Data Members
Name Description
m_bFlushlng In the state of flushing; if TRUE, al! IMeminoutPin: :Receive methods are

returned with s ... FALSE.
m_bReadOnly If TRUE, indicates that the allocator being used contains samples that are

read-only.
m_pAllocator Pointer to the default memory allocator.

Member Functions
Name Description
CBaseinputPin Constructs a CBaseinputPin object.
IsReadOnly Checks them bReadOnly data member and returns its value.
Isflushing Checks them bflushing data member and returns its value.
PassNotifV Passes a quality-control notification to the appropriate sink.

Overrldable Member Functions
Name Description
Check$treaming Verifies conditions for continuing with a streaming operation.
Inactive Switches the pin to an inactive state.

1217

CBaseinputPin Class

Implemented IPin Methods
Name Description
BeqinFlush Informs the pin to begin a flush operation.
Disconnect Releases the stored allocator.
EndFlush Informs the pin to end a flush operation.

Implemented IMeminputPin Methods
Description

Page 2of14

Name
GetAllocator Returns the allocator interface that this input pin would like the

output pin to use.
GetAllocatorRequirements Indicates an optional method to use if the filter has specific

alignment or prefix requirements but could use an upstream
allocator.

NotifyAI locator

Receive

ReceiveCanBlock

ReceiveMultiple

Tells the input pin which allocator the output pin is actually going to
use.
Returns the next block of data from the stream. (Override this
method to process a sample being passed in.)
Determines if sending an IMeminputPin: :Receive method might
block.
Returns the next block of data from the stream. (Override this
method to process samples being passed in.)

Implemented INonDelegatingUnknown Methods
Name Description
NonDelegatinqQueryinterface Retrieves an interface from the subobject, not the aggregated

object.

Implemented IQualityControl Methods
Name Description
Notify Notifies the recipient that a quality-control change is requested. (Override on the

output pin only. This implementation returns NOERROR.)

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jij,M 111.1 1119 Topic Contents 1@1§111¥+

CBaselnputPin::BeginFlush

CBaseinputPin Class

Informs the pin to begin a flush operation.

1218

CBaseinputPin Class Page 3of14

HRESULT Beginflush(void);

Return Values

Returns an HRESULT value.

Remarks

This member function implements the I Pin:: BeginFlush method. When this method is called,
the pin is entering flush state. You must override this method in your derived class, but you
should call this base class first in your implementation, because it sets m bFlushing so that no
more IMemlnputPin: :Receive calls will succeed.

The overriding member function should then carry out the following steps.

1. Discard any queued data.
2. Free any pin blocked by the Receive method.
3. Pass the I Pin:: BeqinFlush method to any downstream pins.

I Pin:: BeginFlush is not logically part of the media stream and can be optimized in the sense
that if a pin has passed no data downstream before this method is called, there is no need to
pass this notification on.

An example of an overriding implementation of this member function can be found in the
CTransformlnputPin: :BeqinFlush member function, which uses the
CBaseOutputPin: :DeliverBeqinFlush member function to perform the last step.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

CBaselnputPin::CBaselnputPin

CBaselnputPin Class

Constructs a CBaselnputPin object.

CBaselnputPin: :CBaselnputPin (
TCHAR *pObjectName,
CBaseFilter *pFilter,
CCritSec *pLock,
HRESULT *phr,
LPCWSTR pPinName
);

Parameters

1219

Topic Contents i@faii!MM

CBaseinputPin Class

pObjectName
Name of the class object.

pFilter
Pointer to the filter that owns this pin.

pLock
Pointer to the CCritSec critical section object used to lock the pin.

phr

Page 4of14

Pointer to the general COM return value. This value is changed only if this function fails.
pPinName

Name of the pin.

Return Values

No return value.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]i!,+ 1!1·H¥ Topic Contents i@fai11¥M

CBaselnputPin::CheckStreaming

CBaseinputPin Class

Verifies conditions for continuing with a streaming operation.

virtual HRESULT CheckStreaming();

Return Values

Returns one of the following HRESULT values, depending on the state.
Value Meaning
S_FALSE Currently in flushing state.

S_OK Receive or EndOfStream operations can safely proceed.
VFW E RUNTIME ERROR Run-time error occurred while processing a previous sample.

VFW E WRONG STATE Filter is in the State_Stopped state.

Remarks

Conditions checked in this member function include whether the filter is connected, if it is in an
active state, if it is not currently flushing data, and if it has not just issued a run-time error. If
all these conditions pass, it returns S_OK.

You can override this member function to add restrictions defined by your derived class. The
overriding member function should call this base class implementation to check for conditions

1220

	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

