
DirectShow COM Interfaces

HRESULT get_FramesDrawn(
int *pcFramesDrawn
);

Parameters

pcFramesDrawn
Number of frames drawn since streaming started.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M l!i.! 111j

Page 575 of 658

Topic Contents l@IJll!MM

IQ ua I Prop:: get_Fra mesDroppedI n Renderer

IQualProp Interface

Retrieves the number of frames dropped by the renderer.

HRESULT get_FramesDroppedinRenderer(
int *pcFrames
);

Parameters

pcFrames
Number of frames dropped by the renderer.

Return Values

Returns an HRESULT value.

Remarks

The property page uses this method to retrieve data from the renderer.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.!j Topic Contents

966

l@i§il!MM

DirectShow COM Interfaces Page 576 of 658

IQualProp: :get_litter

IQualProp Interface

Expresses the average time between successive frames delivered to the video renderer.

HRESULT get_litter(
int *piJitter
);

Parameters

piJitter
Standard deviation, in milliseconds, of the interframe time.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

IQueueCommand Interface

i@faii!MM

The IQueueCommand interface provides a way to defer commands and property changes.
The deferred command mechanism allows filters themselves to handle deferred commands.
When they do not, the filter graph manager queues the command until the requested time and
then calls the method on the filter (this would result in coarse rather than accurate
synchronization). Note that a filter that does handle deferred commands must make them
apply to data appearing at that time. Thus, a contrast filter asked to change the contrast at
time x must ensure that it applies the change when processing data time-stamped to be
rendered at time x; these samples will be processed by the filter somewhat before time x.

The IQueueCommand interface provides two methods, InvokeAtStreamTime, which queues
commands at stream time, and InvokeAtPresentationTime, which queues commands at
presentation time. Both return an IDeferredCommand interface to the queued command, by
which the application can cancel the command, set a new presentation time for it, or get back
an estimate of the likelihood of the filter graph manager being able to run the command on
time.

Both presentation time and stream time commands will run once, and then be removed from
the queue. Both the queue and the application will hold a reference count on the object
(represented to the application by the IDeferredCommand interface), and the object will not be
destroyed until both are released. Similarly, calling IUnknown:: Release on the
IDeferredCommand interface is not sufficient to cancel the command, because the queue
also holds a reference count.

967

DirectShow COM Interfaces Page 577 of 658

Rather than add optional stream time and presentation time constraints to every method and
property on every control interface, the application uses !Dispatch to provide a single interface
where these time parameters can be specified. IQueueCommand provides
InvokeAtStreamTime and InvokeAtPresentationTime methods that are similar in style to the
!Dispatch:: Invoke method.

Filters can implement IQueueCommand themselves. In this case, they parse the command
and queue it for action when the relevant samples arrive or when the reference clock reaches
the correct point, as appropriate. For filters that do not support this, the filter graph manager
will run the command when the reference clock reaches the specified time, regardless of the
samples being processed at the filter.

When to Implement

This method is implemented by the filter graph manager to allow queuing of deferred
commands.

When to Use

Applications can use this interface, along with the IDeferredCommand interface, to queue
commands for deferred processing.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IQueueCommand Description
methods
InvokeAtStreamTime Queues a method or property change for execution at a specified

stream time (that is, presentation time relative to the current
stream time offset).

InvokeAtPresentationTime Queues a method or property change for execution at a specified
presentation time.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+

+Qi@[.]+• 111.1,.19 Topic Contents i@i§i i!fttiM

IQueueCommand::InvokeAtPresentationTime

IQueueCommand Interface

968

DirectShow COM Interfaces Page 578 of 658

Queues a method or property change for execution at a specified presentation time.

HRESULT InvokeAtPresentationTime(
IDeferredCommand * pCmd,
REFTIME time,
GUID* iid,
long dispidMember,
short wF/ags,
long cArgs,
VARIANT *pDispParams,
VARIANT *pvarResult,
short *puArgErr
);

Parameters

pCmd
[out] Pointer to the place to return an interface on the deferred command if it is
successfully created.

time
[in] Time at which to invoke the command.

iid
[in] Interface to be called.

dispidMember
[in] Method or property to call on the interface.

wF/ags
[in] Method or property flag.

cArgs
[in] Number of arguments on pDispParams.

pDispParams
[in] Parameters to this method.

pvarResult
[in,out] Return value.

puArgErr
[out] Index to the arguments in error.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

MQl§i[.jjj,M 111.],.[5

Topic Contents

Topic Contents

IQueueCom ma nd: :I nvokeAtStrea mTi me

969

lmli§I 11$8

'ffl!'+* •um•

DirectShow COM Interfaces Page 579 of 658

IQueueCommand Interface

Queues a method or property change for execution at a specified stream time (that is,
presentation time relative to the current stream time offset).

HRESULT InvokeAtStreamTime(
IDeferredCommand * * pCmd,
REFTIME time,
GUID *iid,
long dispidMember,
short wFlags,
long cArgs,
VARIANT *pDispParams,
VARIANT *pvarResult,
short *puArgErr
);

Parameters

pCmd
[out] Pointer to the place to return an interface on the deferred command if it is
successfully created.

time
[in] Time at which to invoke the command.

iid
[in] Interface to be called.

dispidMember
[in] Method or property to call on the interface.

wF/ags
[in] Method or property flag.

cArgs
[in] Number of arguments in pDispParams.

pDispParams
[in] Para meters to th is method.

pvarResult
[in, out] Return value of the called method.

puArgErr
[out] Index to the arguments in error.

Return Values

Returns an HRESULT value.

Remarks

Run this command to affect the presentation that occurs after the specified stream time. The
interface IID is an interface that can be obtained by calling IUnknown: :Queryinterface on this
same IQueueCommand interface.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.ji!:M l!i.! 11ij Topic Contents l@i§i 11111+

970

DirectShow COM Interfaces Page 580 of 658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

IReferenceClock Interface

The IReferenceClock interface represents a system reference clock to be implemented by a
filter in the filter graph and used by other filters.

When to Implement

Implement this interface if you are writing a filter that generates a system reference clock.
Typically, this applies to audio renderer filters because audio sound boards usually contain a
reference clock. Use the CBaseReferenceClock class to implement this interface.

When to Use

Use this interface on any filter to obtain reference clock notifications for a duration of elapsed
time (both singular and repetitive), or to retrieve the current time.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release

IReferenceClock
methods

Decrements the reference count.

Description

Gets the current time. GetTime
AdviseTime

AdvisePeriod ic
Requests an asynchronous notification that a duration has elapsed.
Requests an asynchronous, periodic notification that a duration
has elapsed.

Unadvise Cancels a request for notification.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

+ Q i§i [.] jj,+ +!!·HM Topic Contents Mttfjl§ii!MM

HQ i§i [.] jj,M I 11.],.[M Topic Contents i@l§ii/¥+

IReferenceClock: :Advise Periodic

IReferenceClock Interface

971

DirectShow COM Interfaces

Requests an asynchronous, periodic notification that a duration has elapsed.

HRESULT AdvisePeriodic(
REFERENCE_ TIME rtStartTime,
REFERENCE_ TIME rtPeriodTime,
HSEMAPHORE hSemaphore,
DWORD * pdwAdviseCookie
);

Parameters

rtStartTime
[in] Time the notification should begin.

rtPeriodTime
[in] Duration between notifications.

hSemaphore
[in] Handle of a semaphore through which to advise.

pdwAdviseCookie

Page 581 of 658

[out] Used to identify this call to AdvisePeriodic in the future; for example, to cancel it.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_ FAIL Failure.
E POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

When the time indicated by rtStartTime is reached, the semaphore whose handle is set as
hSemaphore will be released. Thereafter, the semaphore will be released repetitively with a
period of rtPeriodTime.

See Also

I ReferenceC lock: : U nadvise, CBaseReferenceClock: : AdvisePeriod ic

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i 111.],.[9 Topic Contents lttfjl§M IU@+

MQl@[.jlj,M 111.l:.19 Topic Contents l@i§lllMM

972

DirectShow COM Interfaces

IReferenceClock: :AdviseTi me

IReferenceClock Interface

Requests an asynchronous notification that a duration has elapsed.

HRESULT AdviseTime(
REFERENCE_ TIME rtBaseTime,
REFERENCE_ TIME rtStreamTime,
HEVENT hEvent,
DWORD * pdwAdviseCookie
);

Parameters

rtBaseTime
[in] Base reference time.

rtStreamTime
[in] Stream offset time.

hEvent
[in] Handle of an event through which to advise.

pdwAdviseCookie
[out] Destination of the token.

Return Values

Page 582 of 658

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_ FAIL Failure.
E POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

When the time rtBaseTime+rtStreamTime is reached, the event whose handle is hEvent will be
set. If the time has already passed, the event will be set immediately.

See Also

IReferenceClock:: Unadvise

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents i@l§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

973

DirectShow COM Interfaces Page 583 of 658

IReferenceClock: :GetTime

IReferenceClock Interface

Retrieves the current time. REFERENCE_TIME is a LONGLONG type and loosely represents
the number of 100-nanosecond units that have elapsed since some fixed start time. See
Characteristics of a Reference Clock for other requirements on the reference clock.

HRESULT GetTime(
REFERENCE_ TIME* pTime
);

Parameters

pTime
[out] Current time.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]ij,+ 111.1 1119 Topic Contents 1@1§11!¥+

IReferenceClock:: U nadvise

IReferenceClock Interface

Cancels a request for notification.

HRESULT Unadvise(

974

DirectShow COM Interfaces

DWORD dwAdviseCookie
);

Parameters

dwAdviseCookie
[in] Request to cancel.

Return Values

Page 584 of 658

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

See Also

IReferenceClock: :AdviseTime, IReferenceClock: :AdvisePeriodic

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.]11,M '!!·HM Topic Contents lml!§lll¥M

• QIM [.] +• I !!·HM Topic Contents l@i§il/¥8

IRegFilterlnfo Interface

The IRegFilterinfo interface provides access to filters in the registry and allows a registered
filter to be added to the filter graph.

When to Implement

IRegFilterinfo is implemented by the filter graph manager for use by Automation client
applications, such as Microsoft® Visual Basic®.

When to Use

Use this interface when it is exposed by an Automation client to query the names of filters in a
collection of registry filters, and to add specific filters to the filter graph. A collection of
IRegFilterlnfo interfaces is returned by the IMediaControl: :get RegFilterCollection method.

Methods in Vtable Order

975

DirectShow COM Interfaces Page 585 of 658

!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

I Dispatch Description
methods
GetTypeinfoCount Determines whether there is type information available for this

dis pi nterface.

GetTypeinfo Retrieves the type information for this dispinterface if GetTypeinfoCount
returned successfully.

GetIDsOfNames Converts text names of properties and methods (including arguments) to
their corresponding DISPIDs.

Invoke Calls a method or accesses a property in this dispinterface if given a
DISPID and any other necessary parameters.

IRegFilterinfo methods Description
Retrieves the name of the filter. get Name

Filter Creates an instance of this filter and adds it to the filter graph.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

IRegFilterlnfo:: Filter

IRegFilterinfo Interface

Creates an instance of this filter and adds it to the filter graph.

HRESULT Filter(
!Dispatch **ppUnk
);

Parameters

ppUnk
[out] IFilterinfo interface for the added filter.

Return Values

Returns an HRESULT value.

Remarks

976

Topic Contents i@fa111¥M

Topic Contents i@fai11¥M

DirectShow COM Interfaces Page 586 of 658

Use the IReqFilterinfo: :get Name method (Name property in Visual Basic) to find the filter by
comparing names in a collection of IReqFilterinfo interfaces.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥

IRegFilterlnfo: :get_Name

IRegFilterinfo Interface

Retrieves the name of the filter.

HRESULT get_Name(
BSTR * strName
);

Parameters

strName
[out, retval] Name of the filter.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents 'ffl!'+* •um•

Typically, a Visual Basic application will use the For Each ... Next syntax on a collection of
IReqFilterinfo interfaces and check the name of each filter in the registry until it finds the one
it wants to add. It can then add the filter to the filter graph by using the IReqFilterinfo:: Filter
method.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

+;<§1[.]jj,M +II.HM Topic Contents Mttfjl§lllMM

IResourceConsumer Interface

The IResourceConsumer interface implements a resource consumer that requests resources
from a resource manager that supports the IResourceManager interface.

When to Implement

977

DirectShow COM Interfaces Page 587 of 658

Implement this interface on any object that requests resources from a resource manager. (The
filter graph manager acts as a resource manager for Microsoft® DirectShow™ .) After
implementing this interface, the object can register resources that it wants to use. It passes a
pointer to this interface when it does this so that the resource manager can use methods on
this interface to inform the object that a resource is available, or to release a resource that it is
using.

When to Use

A resource manager that implements the IResourceManager interface calls methods on this
interface.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IResourceManager Description
methods
AcquireResource Notifies the resource consumer that a resource might be

acquired.
ReleaseResource Requests the resource consumer to release the specified

resource.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+QH"·h' 111.q9 Topic Contents

+Qij[.jlj,M 111.1 1119 Topic Contents

IResourceConsumer::AcquireResource

IResourceConsumer Interface

Notifies the resource consumer that a resource might be acquired.

HRESULT AcquireResource(
LONG idResource
);

Parameters

idResource
[in] Resource identifier of the resource to be acquired.

978

1@1§111¥+

1@1§111¥+

DirectShow COM Interfaces Page 588 of 658

Return Values

Returns one of the following values.
Value Meaning
S_OK Consumer has successfully acquired the resource.
S FALSE Consumer has not acquired the resource but will use

IResourceManager:: NotifyAcguire when it does.
VFW S RESOURCE NOT NEEDED Consumer no longer needs the resource.
Error Value Consumer tried to acquire the resource but failed.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

•;1;1.111,; 11!.i::ii Topic Contents

MQ<§i[.jjj,M 111.Hj Topic Contents

IResou rceConsu mer:: ReleaseResou rce

IResourceConsumer Interface

Requests the resource consumer to release the specified resource.

HRESULT ReleaseResource(
LONG idResource
);

Parameters

idResource
[in] Resource identifier to be released.

Return Values

l@i§I 11111+

1@1§111¥+

Returns S_OK if the consumer has released it and requires it again when it becomes available,
or S_FALSE if the consumer has not released it but will use IResourceManaqer:: NotifyRelease
when it does.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ<§i[.jjj,M 11!.Hj Topic Contents 1@1§111¥+

IResourceManager Interface

979

DirectShow COM Interfaces Page 589 of 658

The IResourceManager interface implements a resource manager to resolve contentions for
named resources.

When to Implement

Implement this interface on any object that performs the services of a resource manager. The
filter graph manager acts as a resource manager for Microsoft® DirectShow™ and delegates to
any existing system-wide resource manager. The filter graph manager implements the
methods on this interface.

When to Use

Use this interface if your object requires resources that other objects are likely to use. The
wave renderer uses this interface to resolve contentions for the wave-output device to enable
sound to follow focus.

An object can use the resource manager supporting this interface to resolve possible
contention between existing resources. This is carried out by registering the resource with the
interface and then requesting it from this interface whenever needed.

Use this interface if your object detects user focus changes that might affect resource usage.
Notifying the resource manager of a change of focus will cause the resource manager to switch
contended resources to the objects that have the focus of the user.

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef
Release

IResourceManager
methods
Register
RegisterGroup
Reg uest Resource
NotifyAcg u ire

Notify Release

Cancel Request

SetFocus

ReleaseFocus

Returns pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

Registers a single named resource with the resource manager.
Registers a named resource group with the resource manager.
Requests the use of a given registered resource.
Notifies the resource manager that an attempt to acquire a resource
has completed.
Notifies the resource manager that a resource consumer has
released a resource.
Cancels the request for a resource.
Notifies the resource manager that a specified object has been
given the focus of the user.
Sets the focus object to NULL in the resource manager if the object
of the current focus object is the one specified in this method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M M!i.! 111j Topic Contents l@i§il!MM

980

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM Topic Contents

IResou rceMa nager: :Ca nee I Request

IResourceManager Interface

Cancels the request for a resource.

HRESULT CancelRequest(
LONG idResource,
IResourceConsumer* pConsumer
);

Parameters

idResource
[in] Resource identifier of a pending request.

pConsumer
[in] IResourceConsumer interface that made the request.

Return Values

Page 590 of 658

i@l§ii!MM

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

This method should be called when the IResourceConsumer object that requested the resource
has not received it and no longer requires it. If it has already received the resource, it should
use the IResourceManaqer:: NotifyRelease method.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use .

• ; H11·h' I !1.],,[9 Topic Contents i@l§ii!MM

+Qij[.jjj,+ 111.1 1119 Topic Contents i@l§lllMM

981

DirectShow COM Interfaces Page 591 of 658

IResourceManager::NotifyAcquire

IResourceManager Interface

Notifies the resource manager that an attempt to acquire a resource has completed.

HRESULT NotifyAcquire(
LONG idResource,
IResourceConsumer* pConsumer,
HRESULT hr
);

Parameters

idResource
[in] Token for the registered resource.

pConsumer
[in] IResourceConsumer interface of the object requesting the resource.

hr
[in] Success of the acquisition; S_OK if the resource was acquired, or an error value if
not.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

Use this method after an IResourceConsumer: :AcquireResource method returns an S FALSE
value, indicating that the acquisition will be asynchronous (that is, handled by a callback
mechanism). If the hr parameter is S_OK, the resource manager will assume that the resource
is now held by the caller. If the hr parameter is anything other than S_OK, the resource
manager will assume that the attempt to acquire the resource failed and will reassign the
resource elsewhere.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§1[.]I!:+ 1 !!·HM Topic Contents i@l§ii!MM

MQi@[.jlj,M M!i.1 1119 Topic Contents i@l§i 11111+

982

DirectShow COM Interfaces Page 592 of 658

IResou rceMa nager:: NotifyRelease

IResourceManaqer Interface

Notifies the resource manager that IResourceConsumer has released a resource.

HRESULT NotifyRelease LONG idResource,

IResourceConsumer* pConsumer,
BOOL bStil/Want
);

Parameters

idResource
[in] Resource token.

pConsumer
[in] Object releasing the resource.

bStil/Want
[in] Flag specifying whether the resource is still required or not.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

Use this method in response to an IResourceConsumer:: ReleaseResource method, or when you
have finished using the resource. The bStil/Want parameter should be set TRUE if you still
want the resource when it is next available, or FALSE if you no longer want the resource.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lmli§I 11$8

MQl§i[.jjj,M 111.],.[5 Topic Contents 'ffl!'+* •um•

983

DirectShow COM Interfaces

IResourceManager::Register

IResourceManager Interface

Registers a single named resource with the resource manager.

HRESULT Register(
LPCWSTR pName,
LONG cResource,
LONG* p/Token
);

Parameters

pName
[in] Named resource.

cResource
[in] Number of resources.

p/Token

Page 593 of 658

[out] Returned token identifying the resource to be used in additional calls.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

Remarks

This method registers a named resource, which can contain a number of resources, and
returns a token to be used when requesting this resource. It is not an error if the resource is
already registered; if the number in the cResource parameter is less than what is already
registered, resources will be deallocated to the new count. To unregister the resource, pass a
count of zero in cResource.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i 111.],.[9 Topic Contents lttfjl§M IU@+

MQl@[.jjj,M 111.l:.19 Topic Contents l@i§lllMM

984

DirectShow COM Interfaces

IResourceManager::RegisterGroup

IResourceManager Interface

Registers a named resource group with the resource manager.

HRESULT RegisterGroup(
LPCWSTR pName,
LONG cResource,
LONG* pa/Tokens,
LONG* p/Token
);

Parameters

pName
[in] Named resource group.

cResource
[in] Number of resources in the group.

pa/Tokens
[in, size_is(cResource)] Array of resources in the group.

p/Token
[out] Returned group resource identifier.

Return Values

Page 594 of 658

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.
S_OK or NOERROR Success.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.ij Topic Contents l@i§lllMM

+Qi§i[.jjj,+ 111.],.[j Topic Contents l@i§lllMM

IResou rceMa nager:: Releasef ocus

IResourceManaqer Interface

985

DirectShow COM Interfaces Page 595 of 658

Sets the focus object to NULL in the resource manager if the current focus object is the one
specified in this method.

HRESULT Releasefocus(
!Unknown* pFocusObject
);

Parameters

pFocusObject
[in] Focus object.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E_ FAIL Failure.
E POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method isn't supported.

S_OK or NOERROR Success.

Remarks

Use this method when the object of focus is about to be destroyed to ensure that the focus is
not still being referenced.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.ij Topic Contents

+Qi§i[.jjj,+ 111.],.[j Topic Contents

IResourceManager::RequestResource

IResourceManaqer Interface

Requests the use of a given registered resource.

HRESULT RequestResource(
LONG idResource,
!Unknown* pFocusObject,
IResourceConsumer* pConsumer
);

986

l@i§lllMM

l@bll!MM

DirectShow COM Interfaces

Parameters

idResource
[in] Resource token retrieved when the resource was registered.

pFocusObject

Page 596 of 658

[in] IUnknown interface of a focus object associated with a request (normally the filter's
!Unknown interface).

pConsumer
[in] IResourceConsumer interface on the object requesting the resource.

Return Values

Returns an HRESULT value. Returns S_OK if the requested resource is returned, or S_FALSE if
the resource is not available, in which case the resource manager will call the requesting object
back when the resource becomes available. Any other return is an error.

Remarks

When there is more than one request for the resource, the resource manager will decide the
priority by using the object of focus passed with each request and comparing it to the object of
focus passed in the most recent IResourceManager: :SetFocus method.

Requests will be filled in the following order of priority.

1. Requests made with exactly the same object of focus as the last SetFocus method.
2. Requests whose object of focus shares a common source filter.
3. Requests whose object of focus shares a common filter graph.
4. Requests in the same process as the focus.

While checking this priority, the resource manager will use Queryinterface on the focus object
for IID_IFilter. If found, the resource manager will use IBaseFilter methods to check the filter
graph and look for common source filters with the current focus object.

A filter should pass the IUnknown interface of the filter in the pFocusObject parameter. The
filter graph manager matches filters to the filter graph and will attempt to trace filters to
common source filters when checking objects of focus.

The focus object must be valid for the entire lifetime of the request - until either the
IResourceManager: :CancelReguest method is called, or the IResourceManager:: NotifyRelease
method is called with the bStil/Want parameter set to FALSE.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j Topic Contents l@IJll!MM

+Qi§i!.ll!,1 1 1!·!:.!j Topic Contents l@i§il!MM

IResou rceMa nager: :Setf ocus

987

DirectShow COM Interfaces Page 597 of 658

!ResourceManager Interface

Notifies the resource manager that a specified object has been given the focus of the user.

HRESULT Setfocus(
!Unknown* pFocusObject
);

Parameters

pFocusObject
[in] Object that has been given the focus of the user.

Return Values

Returns an HRESULT value that depends on the implementation. HRESULT can be one of the
following standard constants, or other values not listed:
Value Meaning
E FAIL Failure.
E POINTER
E INVALIDARG
E NOTIMPL

Null pointer argument.
Invalid argument.
Method isn't supported.

S OK or NOERROR Success.

Remarks

In DirectShow, the object given the user's focus is typically a video renderer whose window
has received the focus. The resource manager gives priority to requests for resources in the
following order.

1. Requests made with the focus object specified in the pFocusObject parameter.
2. Requests whose focus object shares a common source filter.
3. Requests whose focus object shares a common filter graph.
4. Requests in the same process as the focus.

Once a focus has been set, the resource manager must maintain a focus object until
ReleaseFocus is called. That is, after calling this method, you must use Releasefocus before
the !Unknown interface of the focus object becomes invalid, unless you can guarantee that
Setfocus is called by a different object in the meantime. No reference count is held on the
focus object.

The resource manager will hold this pointer until replaced or canceled, and will use it to resolve
resource contention. It will use Ouerylnterface for the !BaseFilter interface at least and, if
found, will use methods on that interface. It calls methods on IBaseFilter to decide which
audio renderer to use if there are two (it will choose the one with a source filter common to the
focus object), and also to determine if the two objects are within the same filter graph.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

988

DirectShow COM Interfaces Page 598 of 658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M M!i.! 111M Topic Contents i@l§i 11110+

ISeekingPassThru Interface

The ISeekingPassThru interface is exposed on video renderer filters. It has only one method,
Init, which you use to instantiate and initialize a CRendererPosPassThru object. Use this object
to keep track of reference times and stream times. The IMediaSeeking and IMediaPosition
interfaces can use these times to seek to various places in multimedia files.

When to Implement

Implement this interface when you write a video renderer filter that needs to keep track of
reference time and stream time.

When to Use

Use this interface in your application when you want to create a CRendererPosPassThru class
object.

Methods in Vtable Order
!Unknown methods Description
Queryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

ISeekingPassThru methods Description
Initializes a CRendererPosPassThru renderer-seeking object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

• ; i§i [.] "'' I !!·HM Topic Contents i@l§ii/¥+

+Qij[.jjj,M 11!.l:.IM Topic Contents i@l§i i!fttiM

ISeekingPassThru::Init

ISeekingPassThru Interface

Initializes a CRendererPosPassThru renderer-seeking object.

989

DirectShow COM Interfaces

HRESULT Init(
BOOL bSupportRendering,
IPin *pPin
);

Parameters

bSupportRendering

Page 599 of 658

[in] TRUE indicates the pin specified in pPin is a renderer pin; FALSE indicates not a
renderer pin.

pPin
[in] Pointer to the filter's input pin.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. Current
DirectShow implementation return values include:
Value Meaning
E_FAIL Failed to create and initialize a CRendererPosPassThru object.
E_OUTOFMEMORY Not enough memory to create the object.
NOERROR Successfully created and initialized a CRendererPosPassThru object.

Remarks

This method instantiates and initializes a CRendererPosPassThru object.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§illlj4M

IStandardCutlist Interface

The IStandardCutlist interface provides a simple way for an application to feed a cutlist into
a cutlist provider (filter).

The IStandardCutlist: :Add Element method provides the primary functionality of this interface,
by taking a pointer to a cutlist element and adding it to the list. The first clip added to a cutlist
determines the media type. All other clips must be of the same media type. Removing clips
from the cutlist is not supported.

The filter graph must be stopped when you call many of the methods on this interface.

See About Cutlists and Using Cutlists for more information.

990

DirectShow COM Interfaces Page 600 of 658

When to Implement

Do not implement this interface. DirectShow implements it for you.

When to Use

Use this interface in your application when you need to create a whole cutlist out of individual
cuts (elements).

When compiling a cutlist application you must explicitly include the cutlist header file as
follows:

#include <Cutlist.h>

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef
Release

IStandardCutlist
methods

Retrieves pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

Description

Add Element Accepts a cutlist element from the application and adds it to the
cut list.

RemoveElement
Get Fi rstElement
GetLastElement
GetNextElement
GetPreviousElement
GetMediaType
SetMediaType

Removes an element from a cutlist. (Not currently implemented.)
Retrieves the first element you added to cutlist.
Retrieves the last element you added to cutlist.
Retrieves the next element in the cutlist.
Retrieves the previous element in the cutlist.
Retrieves the clip's media type structure.
Sets the media type for all clips in the cutlist.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.ij Topic Contents l@i§lllMM

+Qi§i[.jjj,+ 111.],.[j Topic Contents l@bll!MM

I Sta nda rdCutlist: :Add Element

I Sta nda rdC utList Interface

Accepts a cutlist element from the application and adds it to the cutlist.

HRESULT AddElement(

991

DirectShow COM Interfaces

IAMCutlistElement *pE/ement,
REFERENCE_ TIME mtStart,
REFERENCE_ TIME mtDuration
);

Parameters

pE/ement
[in] Pointer to the cutlist element to be added to the cutlist.

mtStart

Page 601 of 658

[in] Relative position of the cut in the cutlist. Must be CL_DEFAULT_TIME (indicating that
the relative position is the end of the current cutlist).

mtDuration
[in] Length of the cut. Must be CL_DEFAULT _TIME (indicating the duration is defined by
the element).

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_OUTOFMEMORY Could not allocate the element descriptor.
S_OK Success.

Remarks

This method adds a clip to the end of the clip list. The cutlist will play in the order you add the
clips.

You can't call AddElement on this cutlist after you have given the cutlist to the graph builder
by calling ICutListGraphBuilder: :AddCutList. The AddElement call will be ignored. Make sure
you have called AddElement as many times as you need to before calling
ICutlistGraphBuilder::AddCutlist.

Removing clips from the cutlist is not supported.

The first clip added to a cutlist determines the media type. All other clips must be of the same
media type.

See Also

IAMC utListElement

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11!j Topic Contents l@i§ill@M

w QIM !.l ++ Mii.HJ Topic Contents i@faiillj4M

992

DirectShow COM Interfaces

I Sta nda rdC utlist:: Get Fi rstE lement

I Sta nda rdC utList Interface

Retrieves the first element you added to the cutlist.

HRESULT GetFirstElement(
IAMCutlistElement **ppElement
);

Parameters

ppE/ement
[out] Address of a pointer to the first element in the cutlist.

Return Values

Page 602 of 658

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_OUTOFMEMORY Could not allocate required memory.
S_OK Success.

Remarks

You can only call this method when the graph is stopped. If you call this method while the
graph is playing or paused, unpredictable behavior will result, including corrupting the cutlist
that is playing.

This method increments the reference count on the cutlist element object. Be sure to
decrement the cutlist element's reference count by calling its Release method as follows.

*ppElement->Release();

See Also

GetLastElement, IAMC utListElement

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] 11,1 Mii.HM Topic Contents •=@• 1gnw

993

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM Topic Contents

I Sta nda rdCutlist: :GetlastElement

IStandardCutList Interface

Retrieves the last element you added to the cutlist.

HRESULT GetlastElement(
IAMCutlistElement **ppE/ement
);

Parameters

ppElement
[out] Address of a pointer to the last element you added to the cutlist.

Return Values

Page 603 of 658

i@l§ii!MM

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_OUTOFMEMORY Could not allocate required memory.
S_OK Success.

Remarks

You can only call this method when the graph is stopped. If you call this method while the
graph is playing or paused, unpredictable behavior will result, including corrupting the cutlist
that is playing.

This method increments the reference count on the cutlist element object. Be sure to
decrement the cutlist element's reference count by calling its Release method as follows.

*ppElement->Release();

See Also

Get Fi rstElement, IAMC utListElement

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

994

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM

MQij[.jjj,M M!i.1 1119

I Sta nda rdCutlist: :GetMed iaType

I Sta nda rdC utlist Interface

Retrieves the clip's media type structure.

HRESULT GetMediaType(
AM_M ED IA_ TYPE *pmt
);

Parameters

pmt

Topic Contents

Topic Contents

[in] Pointer to the AM MEDIA TYPE structure describing the clip.

Return Values

Page 604 of 658

i@l§ii!MM

i@l§i 11111+

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E FAIL Failure.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.

E_OUTOFMEMORY Could not allocate required memory.
S_OK Success.

Remarks

This method retrieves the media type of all clips in the cutlist.

The first clip added to a cutlist determines the media type. All other clips must be of the same
media type.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

H Qi§1 [.] jj,M I !1.],.[9 Topic Contents i@l§ii!MM

• ; H11·h' I!!.],,[. Topic Contents i@l§ii!MM

995

DirectShow COM Interfaces

I Sta nda rdCutlist: :GetNextElement

IStandardCutList Interface

Retrieves the next element in the cutlist.

HRESULT GetNextElement(
IAMCutlistElement **ppE/ement
);

Parameters

ppE/ement
[out] Address of a pointer to the next cutlist element.

Return Values

Page 605 of 658

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure. You must call GetFirstElement or GetLastElement.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_OUTOFMEMORY Could not allocate required memory.
S_FALSE There is no next element.
S_OK Success.

Remarks

You can only call this method when the graph is stopped. If you call this method while the
graph is playing or paused, unpredictable behavior will result, including corrupting the cutlist
that is playing.

You must call GetFirstElement or GetLastElement before this method will succeed.

This method increments the reference count on the cutlist element object. Be sure to
decrement the cutlist element's reference count by calling its Release method as follows.

*ppElement->Release();

See Also

GetPreviousElement, IAMCutListElement

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.ij Topic Contents l@i§lllMM

996

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM Topic Contents

I Sta nda rdC utlist:: GetPreviousE I eme nt

IStandardCutList Interface

Retrieves the previous element in the cutlist.

HRESULT GetPreviousElement(
IAMCutlistElement **ppE/ement
);

Parameters

ppElement
[out] Address of a pointer to the previous cutlist element.

Return Values

Page 606 of 658

i@l§ii!MM

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure. You must call GetFirstElement or GetLastElement.
E_INVALIDARG Argument is invalid.
E_NOTIMPL Method is not supported.
E_OUTOFMEMORY Could not allocate required memory.
S_FALSE There is no previous element.
S_OK Success.

Remarks

You can only call this method when the graph is stopped. If you call this method while the
graph is playing or paused, unpredictable behavior will result, including corrupting the cutlist
that is playing.

You must call GetFirstElement or GetLastElement before this method will succeed.

This method increments the reference count on the cutlist element object. Be sure to
decrement the cutlist element's reference count by calling its Release method as follows.

*ppElement->Release();

See Also

GetNextElement, IAMCutListElement

997

DirectShow COM Interfaces

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

MQl§i[.jjj,M '!!·HM Topic Contents

I Sta nda rdCutlist:: RemoveElement

IStandardCutList Interface

Removes an element from a cutlist. (Not currently implemented.)

HRESULT RemoveElement(
IAMCutlistElement *pE/ement
);

Parameters

pE/ement
[in] Pointer to the element to be removed.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

I Sta nda rdCutlist: :SetMediaType

IStandardCutList Interface

Sets the media type for all clips in the cutlist.

HRESULT SetMediaType(
AM_M ED IA_ TYPE *pmt
);

Parameters

pmt

Topic Contents

[in] Pointer to the AM MEDIA TYPE structure describing the clip.

Return Values

998

Page 607 of 658

lml!§I 11$8

'ffl!'+* •um•

l@l§lllMM

DirectShow COM Interfaces Page 608 of 658

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Argument is invalid.
E_UNEXPECTED Too late to set the media type.
S_OK Success.

Remarks

This method tells a cutlist what media type all of the elements in the cutlist must have. If you
do not call this method, the first non-NULL element given to the cutlist through
IStandardCutList: :Add Element will determine the media type of the cutlist. All subsequent calls
to Add Element must be of the same media type.

If you call this method, you must do so before ever calling AddElement. This method limits the
elements that can be added to elements of the specified media type.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41!.l+' 111.q9 Topic Contents 1@1§111¥+

+Qij[.jlj,M 111.1 1119 Topic Contents l@i§illlj4M

!Unknown Interface

The !Unknown interface lets clients get pointers to other interfaces on a given object through
the IUnknown: :Queryinterface method, and manage the existence of the object through the
IUnknown: :AddRef and IUnknown:: Release methods. All other Component Object Model (COM)
interfaces are inherited, directly or indirectly, from !Unknown. Therefore, the three methods
in !Unknown are the first entries in the vtable for every interface.

Note that this interface and its methods are fully described in the COM documentation and are
only partially documented here for quick reference.

When to Implement

You must implement IUnknown as part of every interface. If you are using C++ multiple
inheritance to implement multiple interfaces, the various interfaces can share one
implementation of !Unknown. If you are using nested classes to implement multiple
interfaces, you must implement !Unknown once for each interface you implement.

Note that the IUnknown interface is implemented by the CUnknown base class in the
DirectShow™ class library and so is inherited by most other classes.

When to Use

999

DirectShow COM Interfaces Page 609 of 658

Use IUnknown methods to switch between interfaces on an object, add references, and release
objects.

Methods in Vtable Order
!Unknown methods Description
Querylnterface
AddRef
Release

Returns pointers to supported interfaces.
Increments the reference count.
Decrements the reference count.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij

IUnknown::AddRef

!Unknown Interface

Topic Contents l@i§lllMM

Increments the reference count for the calling interface on an object. It should be called for
every new copy of a pointer to an interface on a given object.

ULONG AddRef(void);

Return Values

Returns an integer from 1 ton, the value of the new reference count. This information is
meant to be used for diagnostic/testing purposes only, because, in certain situations, the value
might be unstable.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQi§i!!.Ji!,i 111.J,,[j Topic Contents l@i§il!MM

IU n known: :Querylnterface

IUnknown Interface

Returns a pointer to a specified interface on a component to which a client currently holds an
interface pointer. This method must use IUnknown: :AddRef on the pointer it returns.

HRESULT Querylnterface(
REFIID iid,
void * * ppvObject

1000

DirectShow COM Interfaces

);

Parameters

iid
[in] Specifies the IID of the interface being requested.

ppvObject

Page 610of658

[out] Receives a pointer to an interface pointer to the object on return. If the interface
specified in iid is not supported by the object, ppvObject is set to NULL.

Return Values

Returns S_OK if the interface is supported, S_FALSE if not.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

IUnknown::Release

IUnknown Interface

Decrements the reference count for the calling interface on an object. If the reference count on
the object falls to zero, the object is freed from memory.

ULONG Release(void);

Return Values

Returns the resulting value of the reference count, which is used for diagnostic/testing
purposes only. If you need to know that resources have been freed, use an interface with
higher-level semantics.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

+ ;<§1 [.] jj,+ +II.HM Topic Contents Mttfjl§i +gn+

IVideoWindow Interface

The IVideoWindow interface supports the video window properties of a video renderer. It is a
dual interface (accessible through Microsoft® Visual Basic® and Visual C++®) that controls a
generic video window. Generally, this is a video renderer that draws video into a window on
the display. The IVideoWindow interface supports both properties and methods. Properties
are more easily accessible from many Automation controllers (such as Microsoft Visual Basic).

1001

DirectShow COM Interfaces Page 611 of658

However, some operations require several properties to be changed simultaneously; for this
reason, methods are provided that allow a number of related properties to be changed
simultaneously. For example, setting the window's position and size can be done by four
individual put_[property name] calls or by the single method SetWindowPosition.

The methods require only that the video renderer be connected. If it is not connected, all the
interface functions return VFW E NOT CONNECTED. Properties set on a video renderer persist
between successive connections and disconnections. All applications should ensure that they
reset the renderer properties before starting a presentation.

Because this interface is Automation-compatible, there are two important aspects to remember
about parameters accepted by these methods. First, all Boolean returns are OAFALSE (0) or
OATRUE (-1), which is different from the C or C++ definition. Second, all strings are defined
as being of type BSTR. All strings sent to the interface should be allocated through the
Automation SysAllocString function, and similarly all strings returned from the interface should
be freed by using the Automation SysFreeString function.

When to Implement

The video renderer filter supplied with Microsoft DirectShow™ implements this interface. It is
also implemented by the filter graph manager (via a plug-in distributor) to pass method calls
from the application to the video renderer filter's implementation of the interface.

Implement this interface if you are writing a replacement video renderer filter. You can use the
CBaseVideoWindow class, which handles the !Disoatch implementation for Automation, to help
implement this interface.

When to Use

This interface is used by applications or other filters that must control the video window's
properties.

Methods in Vtable Order
!Unknown methods Description
Oueryinterface Returns pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

I Dispatch Description
methods
GetTyoeinfoCount Determines whether there is type information available for this

dispinterface.
GetTyoeinfo Retrieves the type information for this dispinterface if GetTyoeinfoCount

returned successfully.
Get!DsOfNames Converts text names of properties and methods (including arguments) to

their corresponding DISP!Ds.
Invoke Calls a method or accesses a property in this dispinterface if given a

DISPID and any other necessary parameters.

1002

DirectShow COM Interfaces

!Video Window
methods
out Caotion
get Caotion
out WindowStyle
get WindowStyle
out WindowStyleEx
get WindowStyleEx
out AutoShow

get AutoShow

out WindowState
get WindowState
out BackgroundPalette
get BackgroundPalette

out Visible
get Visible
out Left
get Left
out Width
get Width
out Too
get Too
out Height
get Height
out Owner
get Owner
out MessageDrain
get MessageDrain

get BorderColor
out BorderColor
get FullScreenMode

out FullScreenMode

SetWindowForeground
NotifyOwnerMessage

SetWindowPosition
GetWindowPosition
GetMinldea llmageSize

GetMaxldea llmageSize

Description

Sets the text caption on the playback window.
Retrieves the text caption on the playback window.
Sets the playback window style.
Retrieves the playback window style.
Sets the style of the control window.
Retrieves the playback window's extended style bits.

Page 612 of658

Specifies if the window will be automatically shown on the first state
change.
Returns if the window will be automatically shown on the first state
change.
Sets the current window state (such as visible or minimized).
Retrieves the current window state (such as visible or minimized).
Informs the renderer to realize its palette in the background.
Returns whenever the renderer realizes its palette in the
background.
Sets the visibility of the window.
Retrieves the visibility of the window.
Sets the x-axis coordinate for the video window.
Retrieves the x-axis coordinate for the video window.
Sets the width of the video window.
Retrieves the width of the video window.
Sets the y-axis coordinates for the video window.
Retrieves the y-axis coordinates for the video window.
Sets the height of the video window.
Retrieves the height of the video window.
Sets the owning parent window for the video playback window.
Retrieves the owning parent window for the video playback window.
Specifies a window to which the video window will post messages.
Retrieves the window set to receive messages from the video
window.
Retrieves the border color for the video window.
Sets the border color for the video window.
Returns the full-screen rendering mode of the video renderer filter
supporting this interface.
Sets the full-screen mode for the video renderer filter supporting
this interface.
Tells the renderer filter to become the foreground window.
Forwards messages that have been received by a parent window to
a child window owned by a filter.
Sets the video window position on the display.
Retrieves the video window position.
Retrieves the ideal minimum image size for the video image
playback (client) area.
Retrieves the ideal maximum image size for the video image
playback (client) area.

1003

DirectShow COM Interfaces Page 613 of 65 8

GetRestorePosition Returns the normal restored window dimensions.
HideCursor Hides the cursor.
IsCursorHidden Determines if the cursor is hidden or showing.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 111.l:.!j Topic Contents

+;<§1[.]jj,+ 111.],.[j Topic Contents

IVideoWindow: :get_AutoShow

IVideoWindow Interface

Retrieves information about whether the window will be automatically shown.

HRESULT get_AutoShow(
long *AutoShow
);

Parameters

Auto Show

l@i§i llfttiM

1@1§111¥+

[out] OATRUE indicates that the window will be made visible when the state is changed
to the pa used or running state.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

+;<MM++ 1 11·!:.!i Topic Contents l@i§il/¥+

IVideoWi ndow: :get_Backg rou ndPa lette

IVideoWindow Interface

Retrieves information about whether any palette required will be realized in the background.

HRESULT get_BackgroundPalette(
long *pBackgroundPalette

1004

DirectShow COM Interfaces Page 614of658

);

Parameters

pBackgroundPalette
[out] OATRUE indicates that the palette will be realized in the background.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

IVideoWindow::get_BorderColor

IVideoWindow Interface

Retrieves the border color for the video window.

HRESULT get_BorderColor(
long *pColor
);

Parameters

pColor
[out] Retrieved border color as a COLORREF value.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qij[.jlj,M M!i.1 1119

IVideoWindow: :get_ Caption

IVideoWindow Interface

Retrieves the textual title string for the video window.

1005

Topic Contents ifflj[§ii!¥M

Topic Contents i@i§iil¥M

DirectShow COM Interfaces

HRESULT get_Caption(
BSTR *strCaption
);

Parameters

strCaption
[out] Retrieved window title caption.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M lll.! 11ij Topic Contents

IVideoWi ndow: :get_Fu I I Screen Mode

IVideoWindow Interface

Page 615of658

l@IJll!MM

Returns the full-screen rendering capabilities of the renderer filter supporting this interface.

HRESULT get_FullScreenMode(
long *Ful/ScreenMode
);

Parameters

Ful/ScreenMode
[out] OATRUE if supporting full-screen video, or OAFALSE if not.

Return Values

Returns an HRESULT value.

Remarks

This method is called by the filter graph manager when asked to render the video to full-screen
size. If the renderer does not have inherent support for full-screen playback, it should return
E_NOTIMPL. Otherwise, it should return NOERROR. If the renderer does support full-screen
playback, this method determines if it is currently switched on or off.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M lll.! 11ij Topic Contents l@IJll!MM

1006

DirectShow COM Interfaces

IVideoWindow: :get_Height

IVideoWindow Interface

Sets the height of the video window.

HRESULT get_Height(
long *pHeight
);

Parameters

pHeight
[out] Retrieved vertical dimension of the video window.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]jj,i '!!·!:.!¥

IVideoWindow: :get_Left

IVideoWindow Interface

Retrieves the x-axis coordinate for the video window.

HRESULT get_Left(
long *pLeft
);

Parameters

pLeft
[out] The x-axis coordinate to be retrieved.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1007

Page 616of658

Topic Contents i@i§ll!¥+

DirectShow COM Interfaces Page 617of658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

!Video Window:: GetM axldea 11 mageSize

IVideoWindow Interface

Retrieves the ideal maximum image size for the video image playback (client) area.

HRESULT GetMaxidealimageSize(
long *pWidth,
long *pHeight
);

Parameters

pWidth
[out] Image width.

pHeight
[out] Image height.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119 Topic Contents

IVideoWi ndow: :get_MessageDra in

IVideoWindow Interface

Retrieves the window set to receive messages from the video window.

HRESULT get_MessageDrain(
OAHWN D *Drain
);

Parameters

Drain

i@l§ii!MM

[in] Window currently assigned to receive messages from the video window.

1008

DirectShow COM Interfaces Page 618of658

Return Values

Returns an HRESULT value.

Remarks

The IVideoWindow:: out MessaqeDrain description contains a list of the Microsoft Win32®
messages passed to the window that is specified as a message drain.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents i@l§ii!MM

IVideoWi ndow: :GetM i nldea llmageSize

IVideoWindow Interface

Retrieves the ideal minimum image size for the video image playback (client) area.

HRESULT GetMinidealimageSize(
long *pWidth,
long *pHeight
);

Parameters

pWidth
[out] Image width.

pHeight
[out] Image height.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi@[.jjj,+ 111.1 1119

IVideoWindow: :get_ Owner

IVideoWindow Interface

1009

Topic Contents i@l§ii!MM

DirectShow COM Interfaces

Retrieves the owning parent for the video window.

HRESULT get_Owner(
OAHWN D * pOwner
);

Parameters

pOwner
[out] Retrieved window handle.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

!Video Window:: GetRestore Position

IVideoWindow Interface

Returns the normal restored window dimensions.

HRESULT GetRestorePosition(
long *pLeft,
long *pTop,
long *pWidth,
long *pHeight
);

Parameters

pLeft
[out] Left x-axis coordinate of the window.

pTop
[out] Top y-axis coordinate of the window.

pWidth
[out] Width of the window in pixels.

pHeight
[out] Height of the window in pixels.

Return Values

Returns an HRESULT value.

1010

Page 619of658

i@faii!MM

DirectShow COM Interfaces Page 620 of 658

Remarks

When the window is maximized or minimized, the window position methods return the actual
window size. This method returns the dimensions that the window would be when restored. It
is useful for applications that want to save a window state while the window is maximized or
minimized.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij

MQl§1[.jlj,M 111.l:.!j

IVideoWindow: :get_ Top

IVideoWindow Interface

Retrieves the y-axis coordinate of the video window.

HRESULT get_ Top(
long *pTop
);

Parameters

pTop
[out] The y-axis origin to be retrieved.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ1§1[.jij,+ '!!·!:.Ii

IVideoWindow: :get_ Visible

IVideoWindow Interface

Retrieves the visibility of the video window.

1011

Topic Contents l@i§ill¥M

Topic Contents •@!§' 1gnw

Topic Contents l@i§il/¥M

DirectShow COM Interfaces

HRESULT get_ Visible(
long *pVisible
);

Parameters

pVisible
[out] OATRUE if the window is shown; otherwise, the window is hidden.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jjj,M lll.! 11ij

IVideoWindow: :get_ Width

IVideoWindow Interface

Retrieves the width of the video window.

HRESULT get_Width(
long *p Width
);

Parameters

pWidth
[out] Width to be retrieved.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] jj,M 111.Hj

Topic Contents

Topic Contents

IVideo Window:: GetWi ndowPosition

1012

Page 621of658

l@IJll!MM

•@!§' 1gnw

DirectShow COM Interfaces Page 622 of 658

IVideoWindow Interface

Retrieves the current window rectangle (not the client rectangle) in device coordinates.

HRESULT GetWindowPosition(
long *pLeft,
long *pTop,
long *pWidth,
long *pHeight
);

Parameters

pLeft
[out] The x-axis origin of the window.

pTop
[out] The y-axis origin of the window.

pWidth
[out] Width of the window in pixels.

pHeight
[out] Height of the window in pixels.

Return Values

Returns an HRESULT value.

Remarks

This method has the same effect as individually calling the IVideoWindow: :get Left,
IVideoWindow: :get Top, IVideoWindow: :get Width, and IVideoWindow: :get Height methods.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M 11!.l:.ij Topic Contents

MQl§i[.jjj,M 111.],.(j Topic Contents

IVideoWi ndow: :get_ Wi ndowState

IVideoWindow Interface

Returns the state of the video window.

H RESULT get_ Wi ndowState(
long *WindowState
);

Parameters

1013

l@i§lllMM

l@bll!MM

DirectShow COM Interfaces Page 623 of 658

WindowState
[out] Flags indicating the state of the video window.

Return Values

Returns an HRESULT value.

Remarks

This method retrieves a subset of the properties of the window state, specifically
SW_MINIMIZE, SW_MAXIMIZE, SW_SHOW, or SW_HIDE. These have the same definitions as
the Microsoft Win32 ShowWindow function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M lll.! 11ij Topic Contents

IVideoWindow: :get_ WindowStyle

IVideoWindow Interface

Changes the style parameters for the video window.

HRESULT get_WindowStyle(
long *pWindowStyle
);

Parameters

pWindowStyle

l@IJll!MM

[out] Set of flags that matches a subset of the flags that can be set by the GWL_STYLE
value of the Microsoft Win32 GetWindowlonq function.

Return Values

Returns an HRESULT value.

Remarks

For a complete list of window styles, see the CreateWindow function in the Microsoft Win32
Software Development Kit (SDK).

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M lll.! 11ij Topic Contents l@i§i l!lltiM

1014

DirectShow COM Interfaces

IVideoWi ndow: :get_ Wi ndowStyleEx

IVideoWindow Interface

Changes the style parameters for the video window.

HRESULT get_WindowStyleEx(
long * pWindowStyleEx
);

Parameters

p WindowStyleEx

Page 624 of 658

[out] Set of flags that matches a subset of the flags that can be set by the GWL_STYLE
value of the Microsoft Win32 GetWindowLong function.

Return Values

Returns an HRESULT value.

Remarks

This function uses extended window styles. For a complete list of window styles, see the
CreateWindow function in the Microsoft Win32 Software Development Kit (SDK).

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9

IVideoWindow::HideCursor

IVideoWindow Interface

Hides the cursor.

HRESULT HideCursor(
long HideCursor
);

Parameters

Hide Cursor

Topic Contents lmli§lllMM

[in] If OATRUE, do not display the cursor; if OAFALSE, display the cursor.

1015

DirectShow COM Interfaces Page 625 of 658

Return Values

Returns an HRESULT value.

Remarks

This method is typically used when the video renderer is in full-screen mode, where cursor
display might be unwanted.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM

IVideoWi ndow: :lsCu rsorH id den

IVideoWindow Interface

Determines if the cursor is hidden or showing.

HRESULT IsCursorHidden(
long * CursorHidden
);

Parameters

CursorHidden

Topic Contents

[out] If OATRUE, cursor is hidden; if OAFALSE, cursor is displayed.

Return Values

Returns an HRESULT value.

Remarks

i@l§ii!MM

This method is typically used when the video renderer is in full-screen mode, where cursor
display might be unwanted.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

HQ i§i [.] jj,M I !1.],.19 Topic Contents 'ffl!'*' •um•

IVideoWi ndow:: NotifyOwnerMessage

1016

DirectShow COM Interfaces Page 626 of 658

IVideoWindow Interface

Forwards messages that have been received by a parent window to a child window owned by a
filter.

HRESULT NotifyOwnerMessage(
long hwnd,
long uMsg,
long wParam,
long /Param
);

Parameters

hwnd
[in] Window handle.

uMsg
[in] Message being sent.

wParam
[in] Message's wParam passed in.

I Pa ram
[in] Message's /Param passed in.

Return Values

Returns an HRESULT value.

Remarks

This method should be used by windows that make a renderer window a child window. It
forwards significant messages to the child window that the child window would not otherwise
receive. This includes the following messages.
WM_ACTIVATEAPP
WM DEVMODECHANGE
WM DISPLAYCHANGE
WM PALETTECHANGED
WM PALETTEISCHANGING
WM_ QU ERYN EWPALETTE
WM SYSCOLORCHANGE

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

1017

Topic Contents i@fa111¥M

Topic Contents i@fa111¥M

DirectShow COM Interfaces

IVideoWi ndow:: put_AutoShow

IVideoWindow Interface

Determines whether or not the window will be automatically shown.

HRESULT put_AutoShow(
long AutoShow
);

Parameters

Auto Show

Page 627 of 658

[in] OATRUE (-1) means the window will be visible when the state changes; OAFALSE
(0) means the window remains hidden until explicitly shown.

Return Values

Returns an HRESULT value.

Remarks

Many simple applications require a displayed window when a filter graph is set to the running
state. AutoShow defaults to OATRUE so that when the graph changes state to paused or
running, the window is visible (it also is set as the foreground window). It will remain visible on
all subsequent state changes to paused or running. If you close the window while the stream is
running, the window will not automatically reappear. If you stop and restart the stream,
however, the window will automatically reappear.

See Also

IVideoWindow:: out Visible

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Qi§i[.]ii,+ '!!·HM Topic Contents

IVideoWi ndow:: put_Backg rou ndPa lette

IVideoWindow Interface

Determines whether any palette required will be realized in the background.

HRESULT put_BackgroundPalette(
long BackgroundPalette
);

1018

i@l§ii!MM

DirectShow COM Interfaces Page 628 of 658

Parameters

BackgroundPalette
[in] OATRUE to realize the palette in the background; otherwise, OAFALSE.

Return Values

Returns an HRESULT value.

Remarks

If this is OATRUE (-1), any palette required by the video is realized by the renderer in the
background. This means that any colors the palette uses will change to their closest match in
the display palette prior to drawing. This ensures that an application will not have its palette
disturbed when playing a video. It does, however, impose severe performance penalties on the
video and should not be used unless absolutely necessary. The default value for this property
is OAFALSE.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

w Q<M [.] +• 111.H5

IVideoWi ndow:: put_BorderColor

IVideoWindow Interface

Sets the border color for the video window.

HRESULT put_BorderColor(
long Color
);

Parameters

Color
[in] New border color as a COLORREF type.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents •=@• 1gnw

When a destination rectangle that is set differs from the visible client area of the window, a
border is exposed around the edge. This method allows an application to change the border
color. It is set to black by default. Any nonsystem color passed in is converted to its closest
match according to the current palette before being used (this is not an issue on true color

1019

DirectShow COM Interfaces Page 629 of 658

devices). Setting this causes the window border to be repainted in the new color automatically.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M Ill.HS

IVideoWi ndow:: put_ Ca pt ion

IVideoWindow Interface

Sets the textual title string for the video window.

HRESULT put_Caption(
BSTR strCaption
);

Parameters

strCaption
[in] Window title caption.

Return Values

Returns an HRESULT value.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

8 4'41M+• 1 !1·HM

Topic Contents

Topic Contents

IVideoWi ndow:: put_Fu I I Screen Mode

IVideoWindow Interface

lmll§lll¥M

lfflj[§ill¥M

Sets the full-screen mode for the video renderer filter supporting this interface.

HRESULT put_FullScreenMode(
long Ful/ScreenMode
);

Parameters

Ful/ScreenMode
[in] OATRUE if supporting full-screen video, or OAFALSE if not.

1020

DirectShow COM Interfaces Page 630 of 658

Return Values

Returns E_NOTIMPL if the video renderer doesn't support full-screen mode or NOERROR if it
does.

Remarks

This method allows an application to switch a full-screen renderer into and out of full-screen
mode. The renderer's behavior when switched out of full-screen mode is implementation
dependent. The Microsoft full-screen renderer, for example, switches back to a window.

The IVideoWindow plug-in distributor in the filter graph manager implements full-screen
renderer switching. It looks to see if any renderer in the graph supports a full-screen mode
and, if not, will temporarily replace the renderer with the default DirectShow full-screen
renderer. It calls IVideoWindow: :GetMaxidealimageSize to determine if a window can be made
a topmost window and resized to the entire display. This is preferred to swapping renderers,
because the filter graph might be using DirectDraw® overlays or a hardware decoder filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij

IVideoWi ndow:: put_Heig ht

IVideoWindow Interface

Sets the height of the video window.

HRESULT put_Height(
long Height
);

Parameters

Height
[in] New vertical dimension of the video window.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents

Calling this method does not affect the y-axis coordinate of the video window.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1021

l@i§i llfttiM

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM

IVideoWi ndow:: put_Left

IVideoWindow Interface

Sets the x-axis coordinate for the video window.

HRESULT put_Left(
long Left
);

Parameters

Left
[in] The x-axis coordinate to be set.

Return Values

Returns an HRESULT value.

Remarks

Calling this method does not affect the video window's width.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+ Q i§i [.] jj,+ +!!·HM

Topic Contents

Topic Contents

IVideoWi ndow:: put_MessageDra in

IVideoWindow Interface

Specifies a window to which the video window will post messages.

HRESULT put_MessageDrain(
OAHWN D Drain
);

Parameters

Drain

1022

Page 631of658

i@l§ii!MM

i@l§ii!MM

DirectShow COM Interfaces Page 632 of 658

[in] Window to which messages will be posted.

Return Values

Returns an HRESULT value.

Remarks

The video renderer passes messages to the specified message drain by calling the Microsoft
Win32 PostMessaqe function. These messages allow you to write applications that include user
interaction, such as applications that require mouse clicks on specific areas of the video
display. An application can have a close relationship with the video window and know at certain
time points to look for user interaction. When the renderer passes a message to the drain, it
sends the parameters, such as the client-area coordinates, exactly as generated.

DirectShow passes the following messages to the window specified by the Drain parameter, if
and when the application generates them.
WM_KEYDOWN

WM_KEYUP

WM_LB UTTON DBLCLK

WM_LB UTTON DOWN

WM_LBUTTONUP

WM_M BUTTON DBLCLK

WM_MBUTTONDOWN

WM_MBUTTONUP

WM_MOUSEACTIVATE

WM_MOUSEMOVE

WM_NCLB UTTON DBLCLK

WM_NCLB UTTON DOWN

WM_NCLB UTTON UP

WM_NCM BUTTON DBLCLK

WM_NCM BUTTON DOWN

WM_NCMBUTTONUP

WM_NCMOU SE MOVE

WM_NCRB UTTON DBLCLK

WM_NCRB UTTON DOWN

WM_NCRB UTTON UP

WM_RB UTTON DBLCLK

WM_RB UTTON DOWN

WM_RBUTTONUP

Because this member function does not make the message drain window a child window,
applications with full-screen capabilities can use it.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use.

MQ<§i[.jjj,M l!l.!:.19 Topic Contents lmll§lllMM

1023

DirectShow COM Interfaces

+Qi§1[.]++ 1 !!·HM

IVideoWi ndow:: put_ Owner

IVideoWindow Interface

Sets an owning parent for the video window.

HRESULT put_Owner(
OAHWN D Owner
);

Parameters

Owner
[in] Handle of new owner window.

Return Values

Returns an HRESULT value.

Remarks

Page 633 of 658

Topic Contents i@l§ii!MM

This method offers a way for applications to set the owner of the video window. This is often
used when playing videos in compound documents. This method changes the parent of the
renderer window and sets the WS_CHILD style for the video window.

To forward video window messages to the parent window, use the
IVideoWindow:: put MessageDrain method, supplying the window handle of the parent window.
This method does not post messages automatically.

After using this method to set the owner of a video window, you must reset the owner to NULL
(by calling put_Owner(NULL)) before releasing the filter graph. Otherwise, messages will
continue to be sent to this window and errors will likely occur when the application is
terminated.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

H Qi§1 [.] jj,M I !1.],.[9 Topic Contents i@l§ii!MM

IVideoWi ndow:: put_ Top

1024

DirectShow COM Interfaces

IVideoWindow Interface

Sets the y-axis coordinate of the video window.

HRESULT put_ Top(
long Top
);

Parameters

Top
[in] The y-axis origin of the video window.

Return Values

Returns an HRESULT value.

Remarks

Calling this method does not affect the height of the video window.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQiji.li!:M l!i.! 11ij

IVideoWindow: :put_ Visible

IVideoWindow Interface

Changes the visibility of the video window.

HRESULT put_ Visible(
long Visible
);

Parameters

Visible
[in] Boolean flag that is compatible with Automation.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents

Page 634 of 658

l@i§i 11111+

If the Visible para meter is set to OATRU E (-1), the window is shown. If it is set to OAFALS E
(0), the window is hidden.

1025

DirectShow COM Interfaces

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS

IVideoWi ndow:: put_ Width

IVideoWindow Interface

Sets the video window's width.

HRESULT put_Width(
long Width
);

Parameters

Width
[in] Width to be set.

Return Values

Returns an HRESULT value.

Remarks

Topic Contents

Calling this method does not affect the video window's x-axis coordinate.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

•Q<M!.l+' 111.],.[5 Topic Contents

IVideoWindow::put_WindowState

IVideoWindow Interface

Sets the video window's state.

HRESULT put_WindowState(
long WindowState
);

Parameters

1026

Page 635 of 658

lml!§I 11$8

lml!§I 11$8

DirectShow COM Interfaces Page 636 of 658

WindowState
[in] Describes the video window's state.

Return Values

Returns NOERROR.

Remarks

This method is a wrapper for the Microsoft Win32 ShowWindow function.
IVideoWindow::put_WindowState passes the WindowState parameter on to
CBaseWindow: :DoShowWindow, which in turn passes it on to ShowWindow. Hence,
WindowState can be any value that is valid for ShowWindow.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij Topic Contents

IVideoWi ndow:: put_ Wi ndowStyle

IVideoWindow Interface

Changes the style parameters for the video window.

HRESULT put_WindowStyle(
long WindowStyle
);

Parameters

WindowStyle

l@i§i llfttiM

[in] Set of flags that matches a subset of the flags that can be set by the GWL_STYLE
value of the Microsoft Win32 GetWindowLonq function.

Return Values

Returns an HRESULT value.

Remarks

Use this property to change the overall style of the video window; for example, to remove the
border and caption areas of the video window. It is a fairly thin wrapper on top of setting the
GWL_STYLE value of the Microsoft Win32 GetWindowLong function and therefore must be
treated with care. In particular, ensure that the current styles are first retrieved, and then the
necessary bit fields are added or removed. With some exceptions (noted here), the acceptable
flags are the same as those allowed by the Win32 CreateWindow function.

1027

DirectShow COM Interfaces Page 637 of 658

Do not use this method to affect the window size. For example, if the window is minimized, do
not set the WS_MAXIMIZE style; doing so causes unpredictable results. Instead, use the
IVideoWindow:: out WindowState method for maximizing or minimizing the window.

Any of the following styles return E_INVALIDARG.
WS DISABLED
WS_HSCROLL
WS ICONIC
WS MAXIMIZE
WS MINIMIZE
WS_VSCROLL

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.l:.ij

+Qi§i[.jjj,+ 111.],.[j

Topic Contents

Topic Contents

IVideoWi ndow:: put_ Wi ndowStyleEx

IVideoWindow Interface

Sets the style of the control window.

HRESULT put_WindowStyleEx(
long pWindowStyleEx
);

Parameters

p WindowStyleEx
[in] Value that specifies the style of the control window.

Return Values

Returns NOERROR.

Remarks

l@i§i llfttiM

•@m••1m+

This method uses EX window styles. For a complete list of extended window styles, see the
CreateWindowEx function in the Microsoft Win32 Software Development Kit (SDK).

Use this property to change the overall style of the video window; for example, to remove the
border and caption areas of the video window. It is a fairly thin wrapper on top of setting the
GWL_STYLE value of the Microsoft Win32 GetWindowLonq function and therefore must be

1028

DirectShow COM Interfaces Page 638 of 658

treated with care. In particular, ensure that the current styles are first retrieved, and then the
necessary bit fields are added or removed.

Note: Do not use the following window styles as they are not validated.
WS DISABLED
WS_HSCROLL
WS ICONIC
WS MAXIMIZE
WS MINIMIZE
WS_VSCROLL

With some exceptions (noted here), the acceptable flags are the same as those allowed by the
Win32 CreateWindow function.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents

MQl§i[.jlj,M 111.l:.!j Topic Contents

!Video Window:: SetWi ndowf oreg round

IVideoWindow Interface

Moves the video window to the foreground and optionally gives it focus.

HRESULT SetWindowForeground(
long Focus
);

Parameters

Focus

l@i§lllMM

•@m• •gnw

..Lo.ng value that specifies whether the video window will get focus. A value of -1 gives
the window focus and 0 does not.

Return Values

Returns one of the following values.
Value Meaning
NO ERROR The method succeeded.
E_INVALIDARG Focus doesn't equal -1 or 0.
VFW E NOT CONNECTED The current filter isn't connected to a complete filter graph.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

1029

DirectShow COM Interfaces Page 639 of 658

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM

MQij[.jjj,M M!i.1 1119 Topic Contents i@l§i 11111+

IVideo Window:: SetWi ndowPosition

IVideoWindow Interface

Sets the position of the video window (not the client rectangle position) in device coordinates.

HRESULT SetWindowPosition(
long Left,
long Top,
long Width,
long Height
);

Parameters

Left
[in] The x-axis origin of the window.

Top
[in] The y-axis origin of the window.

Width
[in] Width of the window.

Height
[in] Height of the window.

Return Values

Returns an HRESULT value.

Remarks

This method has the same effect as individually calling the IVideoWindow:: put Left,
IVideoWindow:: put Top, IVideoWindow:: put Width, and IVideoWindow:: put Height methods.

Specify, in window coordinates, where the video should appear. For example, setting a
destination of (100,50,200,400) positions the video playback at an origin of 100 pixels from
the left of the client area and 50 pixels from the top, with an overall size of 200 x 400 pixels. If
the video is smaller than this (or a source rectangle has been specified that is smaller than the
video), it will be stretched appropriately. Similarly, if the video is larger than the destination
rectangle, the video is compressed into the visible rectangle. There are fairly severe
performance penalties if an application does not keep the source and destination rectangles the
same size.

Under typical circumstances, when no destination rectangle has been set, the video fills the

1030

DirectShow COM Interfaces Page 640 of 658

entire visible client window area (regardless of how much the user has stretched the window).
Also, the destination rectangle properties correctly return the size of the video window client
area.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@fa111¥M

8 4'41[.]1!,M 1!1·H¥ Topic Contents i@fai11¥M

IVPBaseConfig Interface

IVPBaseConfig enables a video port (VP) or overlay mixer filter to communicate with a VP
driver (decoder), to set and retrieve configuration information. This interface assumes that the
mixer filter creates the video port. The IVPConfiq interface derives from this interface. See also
IVPBaseNotify and IVPNotify.

When to Implement

The Windows Driver Model (WDM) Ksproxy filter implements this interface so you won't need
to implement it in most cases. Implement this interface when you need this functionality on a
platform that does not support WDM, or when you need to alter the default behavior.

When to Use

The Overlay Mixer filter uses this interface so you won't need to use it in most cases. Use this
interface when you implement your own overlay mixer filter.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IVPBaseConfig methods Description
GetConnectinfo
SetConnectinfo
GetVPDatainfo
GetMaxPixel Rate

I nformVPI n putFormats

GetVideoFormats
SetvideoFormat
SetinvertPola rity

GetOverlaySurface

Retrieves connection information structures.
Sets the index for the current video port connection information.
Retrieves the current video port data information.
Retrieves the maximum pixels per second rate for a given width
and height.

Informs the device what video formats the video port supports.
Retrieves the video formats the decoder supports.
Sets the format that the video will use.
Reverses the current polarity the decoder uses.
Determines whether the overlay mixer should use the driver's
overlay surface and if so retrieves a pointer to the surface.

1031

DirectShow COM Interfaces Page 641 of 658

SetDirectDrawKernelHandle Sets the DirectDraw® kernel handle for the decoder's minidriver
to use.

SetVideoPortID Sets the port ID that the video will use.
SetDDSurfaceKernelHandle Sets the kernel handle that the DirectDraw surface will use.
SetSu rfacePa ra meters Tells the capture driver about the surface created on its behalf by

the Overlay Mixer or VBI surface filter.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQi@[.jlj,M l!i.! 111j

MQi§i[.]11,+ 11!.Hj

IVPBaseConfig: :GetCon nectlnfo

IVPBaseConfiq Interface

Retrieves connection information structures.

HRESULT GetConnectinfo(
LPDWORD pdwNumConnectinfo,
LPD DVI DEOPORTCON N ECT pddVPConnectinfo
);

Parameters

pdwNumConnectlnfo

Topic Contents l@IJll!MM

Topic Contents l@IJll!MM

[in/out] Points to a buffer that contains the number of DDVIDEOPORTCONNECT
structures provided by the pddVPConnectlnfo parameter. Contains the actual number of
structures returned on output. If pddVPConnectlnfo is NULL, this method updates this
parameter with the number of structures supported by the driver.

pddVPConnectlnfo
[in/out] Points to an array of DDVIDEOPORTCONNECT structures that the driver fills in.
Specify NULL to retrieve the total number of formats supported.

Return Values

Returns NOERROR if the count or structures were retrieved, or a driver error.

Remarks

This method retrieves the various connection information structures such as GUID and port
width structures, in an array of structures specified by pddVPConnectinfo. The callee must
allocate the correct amount of space for the number of structures requested.

Set the index for connection information by using the IVPBaseConfiq: :SetConnectlnfo method.

1032

DirectShow COM Interfaces

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

IVPBaseConfig: :GetMaxPixel Rate

IVPBaseConfiq Interface

Retrieves the maximum pixels per second rate for a given width and height.

HRESULT GetMaxPixelRate(
LPAMVPSIZE pamvpSize,
LPDWORD pdwMaxPixelsPerSecond
);

Parameters

pamvpSize

Page 642 of 658

lml!§I 11¥8

[in/out] Pointer to an AMVPSIZE structure containing the desired width and height. The
structure receives the final dimensions upon return.

pdwMaxPixelsPerSecond
[out] Pointer to the retrieved maximum pixels per second rate.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_POINTER NULL pointer argument.
E_INVALIDARG Invalid argument.
NOERROR The maximum pixel rate was retrieved.

Remarks

This method retrieves the maximum pixels per second rate expected for a given format and a
given scaling factor. If the decoder does not support those scaling factors, then it returns the
rate and the nearest scaling factors it supports.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

•Q<M!.l+' 1u.H5 Topic Contents i@fa111¥M

MQ<§i[.jjj,M 11!.HS Topic Contents i@fa111¥M

1033

DirectShow COM Interfaces Page 643 of 658

IVPBaseConfig: :GetOverlaySu rface

IVPBaseConfiq Interface

Determines whether the overlay mixer should use the driver's overlay surface and if so
retrieves a pointer to the surface.

HRESULT GetOverlaySurface(
LPDIRECTDRAWSURFACE *ppddOverlaySurface
);

Parameters

ppddOverlaySurface
[out] Address of a pointer to the retrieved DirectDraw® overlay surface object.

Return Values

Returns NOERROR if the overlay surface object was returned. (Default implementation sets the
surface to NULL and returns NOERROR.)

Remarks

The Overlay Mixer uses this function to determine if the driver requires the Overlay Mixer to
use its overlay surface and if so to get a pointer to it. If this function returns NULL, then the
Overlay Mixer allocates its own surface.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

IVPBaseConfig: :GetVideoFormats

IVPBaseConfiq Interface

Retrieves the video formats the decoder supports.

HRESULT GetVideoFormats(
LPDWORD pdwNumFormats,
LPD DPIXE LFORMAT pddPixe/Formats
);

Parameters

1034

i@faii!MM

DirectShow COM Interfaces Page 644 of 658

pdwNumFormats
[in/out] Pointer to the number of DDPIXELFORMAT structures provided by the
pddPixe/Formats parameter. When called, this method updates this parameter with the
actual number of structures retrieved. If pddPixe/Formats is NULL, this method updates
this parameter with the total number of formats the driver supports.

pddPixe/Formats
[in/out] Pointer to an array of DDPIXELFORMAT structures that the driver fills. Specify
NULL to retrieve only the count of supported formats in pdwNumFormats.

Return Values

Returns NOERROR if the count or structures were returned, or a driver error otherwise.

Remarks

This method queries for either the number of DDPIXELFORMAT structures supported by the
driver, or retrieves as many structures as can fit into the provided buffer space.

The callee must allocate the correct amount of space for the number of structures requested.

Set the video format by using IVPBaseConfiq: :SetVideoFormat.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

IVPBaseConfig: :GetVPDatalnfo

IVPBaseConfig Interface

Retrieves the current video port data information.

HRESULT GetVPDatainfo(
LPAMVPDATAINFO pamvpDatalnfo
);

Parameters

pamvpDatainfo

Topic Contents

[in/out] Pointer to the AMVPDATAINFO data information structure.

Return Values

ifflj[§ii!¥M

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

1035

DirectShow COM Interfaces

Value
E FAIL

Meaning
Failure.

E_ POINTER NULL pointer argument.
E_INVALIDARG Invalid argument.

NOERROR The video port data information was retrieved.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

8 4'41[.]1!,M 1!1·H¥

Topic Contents

Topic Contents

IVPBa seConfig:: Inform VPI n put Formats

IVPBaseConfig Interface

Informs the device what video formats the video port supports.

HRESULT InformVPinputFormats(
DWORD dwNumFormats,
LPD DPIXE LFORMAT pDDPixe/Formats
);

Parameters

dwNumFormats

Page 645 of 658

i@fa111¥M

i@fai11¥M

[in] Number of video formats contained in the pDDPixe/Formats parameter.
pDDPixe/Formats

[in] Array of pixel format structures (DDPIXELFORMAT) to send to the device.

Return Values

Returns S_FALSE if failure, or NOERROR otherwise.

Remarks

The supplied array of supported video port formats might determine what formats the device,
in turn, proposes.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQ'41[.]1!,M Mh.],.[5 Topic Contents '''*'•um•

1036

DirectShow COM Interfaces

IVPBaseConfig: :SetCon nectlnfo

IVPBaseConfig Interface

Sets the index for the current video port connection information.

HRESULT SetConnectinfo(
DWORD dwChosenEntry
);

Parameters

dwChosenEntry

Page 646 of 658

[in] Index of new video port connect information (zero-based) to pass to the driver.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E FAIL Failure.
E_INVALIDARG Invalid argument.

NOERROR The video port connect information was set.

Remarks

Retrieve connection information by using IVPBaseConfig: :GetConnectinfo.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.ij Topic Contents l@i§lllMM

+Qi§i[.jjj,+ 111.],.[j Topic Contents l@bll!MM

IVPBa seConfig:: Seto DSu rf ace Kern el Hand le

IVPBaseConfig Interface

Sets the kernel handle to be used by the DirectDraw surface.

HRESULT SetDDSurfaceKernelHandle(
DWORD dwDDKerne/Handle
);

Parameters

1037

DirectShow COM Interfaces Page 647 of 658

dwDDKerne/Handle
[in] DirectDraw surface handle for kernel mode, passed as a DWORD value.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E FAIL Failure.
E_INVALIDARG Invalid argument.

NOERROR The specified handle is set successfully.

Remarks

This method sets the DirectDraw handle on the mini driver to enable it to communicate with
the video port directly.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM

w QIM !.l ++ Mii.HJ Topic Contents •@!§* 1gnw

IVPBaseConfig: :SetDi rectDrawKernel Handle

IVPBaseConfiq Interface

Sets the DirectDraw® kernel handle for the decoder's minidriver to use.

HRESULT SetDirectDrawKernel Handle(
DWORD dwDDKerne/Handle
);

Parameters

dwDDKerne/Handle
[in] DirectDraw kernel level handle passed as a DWORD value.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.

1038

DirectShow COM Interfaces Page 648 of 658

Value Meaning
E FAIL Failure.
E_INVALIDARG Invalid argument.

NOERROR The specified handle was set successfully.

Remarks

Sets the DirectDraw kernel level handle on the minidriver to enable it to communicate with
DirectDraw directly.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M l!i.! 11ij Topic Contents l@i§ill¥M

w QIM !.l ++ Mii.HJ Topic Contents •@!§' 1gnw

IVPBaseConfig: :Seti nvertPola rity

IVPBaseConfiq Interface

Reverses the current polarity the decoder uses.

HRESULT SetinvertPolarity(void);

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
NO ERROR The polarity was reversed.

Remarks

Reversing polarity means asking the decoder to treat even fields like odd fields and vice versa.

© 1997 Microsoft Comoration. All rights reserved. Terms of Use.

MQ'41[.]i!,M 11!.HJ Topic Contents l@i§il!¥M

IVPBa seConfig:: Sets u rf ace Para meters

1039

DirectShow COM Interfaces Page 649 of 658

IVPBaseConfiq Interface

Tells the capture driver about the surface created on its behalf by the Overlay Mixer or VBI
surface filter.

HRESULT SetSurfaceParameters(
DWORD dwPitch,
DWORD dwXOrigin,
DWORD dwYOrigin) PURE;

Parameters

dwPitch
[in] Pitch of the surface. Distance (or pitch) in pixels between the start pixels of two
consecutive lines of the surface.

dwXOrigin
[in] X-value of the pixel at which valid data starts.

dwYOrigin
[in] Y-value of the pixel at which valid data starts.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. The current
default implementation returns NOERROR if the call completed successfully, or E_NOTIMPL if
the method is not implemented.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+;<§1[.]lj,i '!!·!:.!¥

IVPBaseConfig: :SetVideoFormat

IVPBaseConfiq Interface

Sets the format to be used by the video.

HRESULT SetVideoFormat(
DWORD dwChosenEntry
);

Parameters

dwChosenEntry

Topic Contents

[in] Specifies the index (zero-based) of the video pixel format to use.

Return Values

1040

i@i§ll!¥+

DirectShow COM Interfaces Page 650 of 658

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Invalid argument.
NOERROR The new video format was set.

Remarks

Retrieve the video formats by using IVPBaseConfig: :GetVideoFormats.

© 1997 Microsoft Corporation . All rights reserved . Terms of Use .

MQ<§i[.jjj,M 111.],.(9

MQi§i!!.ljj,i 111.J,,[9

IVPBaseConfig: :SetVideoPortlD

IVPBaseConfig Interface

Sets the port ID which the video will use.

HRESULT SetVideoPortID (
DWORD dwVideoPortID
);

Parameters

dwVideoPortID
[in] DirectDraw video port ID.

Return Values

Topic Contents

Topic Contents

lmll§lllMM

1@1§111$8

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_INVALIDARG Invalid argument.
NOERROR The specified port ID is set successfully.

Remarks

This method sets the DirectDraw video port ID on the mini driver to enable it to communicate
with the video port directly.

1041

DirectShow COM Interfaces Page 651of658

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents lml!§I 11¥8

MQl§i[.jjj,M '!!·HM Topic Contents 'ffl!'+* •um•

IVPBaseNotify Interface

IVPBaseNotify enables you to control the properties of a filter that uses a video port. The
IVPNotify interface derives from this interface. See also IVPBaseConfiq and IVPConfiq.

When to Implement

The Overlay Mixer filter implements this interface so you won't need to implement it in most
cases. Implement this interface when you need to alter the default behavior.

When to Use

Use this interface in your application when you need to access video port properties.

Methods in Vtable Order
!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IVPBaseNotify methods Description
ReneqotiateVPParameters Initializes the connection to the decoder.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQIM!.l+' lh.HM Topic Contents

MQl§i[.jjj,M 11!.HS Topic Contents

l@l§ill¥M

l@i§ill¥M

IVPBaseNotify:: RenegotiateVPPa ra meters

IVPBaseNotify Interface

Initializes the connection to the decoder.

1042

DirectShow COM Interfaces Page 652 of 658

HRESULT RenegotiateVPParameters(void) PURE;

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_ FAIL Failure.
E_POINTER NULL pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method is not supported.
NOERROR No error.

Remarks

The Overlay Mixer filter negotiates various parameters (by using the IVPBaseConfig interface)
with the decoder or driver. Call this function if any of those parameters (such as the video
format or size) change. Currently, the Overlay Mixer repeats the whole connection process. You
can call this method even while the graph is playing.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

MQl@[.jjj,M 11!.l:.ij Topic Contents l@i§i llfttiM

MQl§i[.jjj,M 111.],.(j Topic Contents •@m••1m+

IVPConfig Interface

IVPConfig enables a video port (VP) or overlay mixer filter to communicate with a VP driver
(decoder), to set and retrieve configuration information. This interface assumes that the mixer
filter creates the video port. This interface derives from IVPBaseConfig. See also IVPBaseNotify
and IVPNotify.

When to Implement

The Windows Driver Model (WDM) Ksproxy filter implements this interface so you won't need
to implement it in most cases. Implement this interface when you need this functionality on a
platform that does not support WDM, or when you need to alter the default behavior.

When to Use

The Overlay Mixer filter uses this interface so you won't need to use it in most cases. Use this
interface when you implement your own overlay mixer filter.

Methods in Vtable Order

1043

DirectShow COM Interfaces Page 653 of 658

!Unknown methods Description
Queryinterface Retrieves pointers to supported interfaces.
AddRef Increments the reference count.
Release Decrements the reference count.

IVPBaseConfig methods Description
GetConnectinfo Retrieves connection information structures.
SetConnectinfo
GetVPDatainfo

Sets the index for the current video port connection information.
Retrieves the current video port data information.

GetMaxPixel Rate

I nformVPI n putFormats
GetVideoFormats
SetvideoFormat
SetlnvertPola rity
GetOverlaySurface

Retrieves the maximum pixels per second rate for a given width
and height.
Informs the device what video formats the video port supports.
Retrieves the video formats the decoder supports.
Sets the format that the video will use.
Reverses the current polarity the decoder uses.
Determines whether the overlay mixer should use the driver's
overlay surface and if so retrieves a pointer to the surface.

SetDirectDrawKernelHandle Sets the DirectDraw® kernel handle for the decoder's minidriver
to use.

SetvideoPortID Sets the port ID that the video will use.
SetDDSurfaceKernelHandle Sets the kernel handle that the DirectDraw surface will use.
SetSu rfacePa ra meters Tells the capture driver about the surface created on its behalf by

the Overlay Mixer or VBI surface filter.

IVPConfig methods Description
IsVPDecimationAllowed Given the context, retrieves whether scaling at the video port is

possible.
SetScalingFactors Sets the factors by which the decoder should scale the video stream.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

MQi§i[.jjj,M 11!.HS Topic Contents

MQl§i[.jjj,M '!!·HM Topic Contents

IVPConfig: :lsVPDeci mationAI lowed

IVPConfig Interface

Given the context, retrieves whether scaling at the video port is possible.

HRESULT IsVPDecimationAllowed(
AMVP _CONTEXT amvpContext,
LPBOOL pbisDecimationAl/owed
);

1044

lml!§lllMM

i@i§ill@iM

DirectShow COM Interfaces Page 654 of 658

Parameters

amvpContext
[in] Context (video or VBI) in which to query the VP decimation capability.

pbisDecimationAl/owed
[out] Pointer to the retrieved value indicating whether decimation is allowed.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_POINTER NULL pointer argument.
E_INVALIDARG Invalid argument.
E_NOTIMPL Method is not supported.
NO ERROR No error.

Remarks

The Overlay Mixer filter uses this function to determine whether the driver needs the mixer to
decimate video data at its own discretion. This function can be especially useful in a capture
with preview situation in which you would not want the VP mixer filter to perform any scaling
at the video port.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents

8 4'41[.]1!,M 1!1·H¥ Topic Contents

IVPConfig::SetScalingFactors

IVPConfig Interface

Sets the factors by which the decoder should scale the video stream.

HRESULT SetScalingFactors(
LPAMVPSIZE pamvpSize
);

Parameters

pamvpSize

i@fa111¥M

i@fai11¥M

[in] Pointer to the new scaling size structure (AMVPSIZE) to use to specify the width and

1045

DirectShow COM Interfaces Page 655 of 658

height.

Return Values

Returns an HRESULT value that depends on the implementation of the interface. HRESULT
can include one of the following standard constants, or other values not listed.
Value Meaning
E_FAIL Failure.
E_POINTER Null pointer argument.
E_INVALIDARG Invalid argument.
NOERROR The new scaling factors were set.

Remarks

If the decoder does not support the specified scaling factors, then it sets the values to the
nearest factors it can support.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

+Q'41[.]i!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M

+Q<@[.]jj,+ 111.1 1119 Topic Contents 1@1§11!¥+

IVPNotify Interface

IVPNotify enables you to control the properties of a filter that uses a video port. This interface
derives from the IVPBaseNotify interface. See also IVPBaseConfig and IVPConfig.

When to Implement

The Overlay Mixer filter implements this interface so you won't need to implement it in most
cases. Implement this interface when you need to alter the default behavior.

When to Use

Use this interface in your application when you need to access video port properties.

Methods in Vtable Order
!Unknown methods Description
Oueryinterface
AddRef

Retrieves pointers to supported interfaces.
Increments the reference count.

Release Decrements the reference count.

IVPBaseNotify methods Description
ReneqotiateVPParameters Initializes the connection to the decoder.

1046

DirectShow COM Interfaces

IVPNotify
methods

Description

Page 656 of 658

SetDeinterlaceMode Sets the deinterlacing mode (such as bob or weave).
GetDeinterlaceMode Retrieves the deinterlacing mode (such as bob or weave).
SetColorControls Sets the color control settings associated with the specified overlay or

primary surface.

GetColorControls Retrieves the current color control settings associated with the specified
overlay or primary surface.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

w Q<M [.] +• 111.HM Topic Contents •=@• 1gnw

MQi§i[.]11,M 11!.HM Topic Contents l@l§il!MM

IVPNotify: :GetColorControls

IVPNotify Interface

Retrieves the current color control settings associated with the specified overlay or primary
surface.

HRESULT GetColorControls(
LPD DCOLORCONTROL *ppColorControl
) PURE;

Parameters

ppColorControl
[out] Address of the DDCOLORCONTROL structure that will receive the current control
settings of the specified surface. The dwFlags member of the DDCOLORCONTROL
structure indicates which of the color control options are supported.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

In the current DirectShow implementation, this method returns NOERROR if successful, or
E_INVALIDARG or E_FAIL upon failure.

© 1997 Microsoft Corporation . All rights reserved. Terms of Use.

M Q i§i [.] 11,1 I !!·HM Topic Contents l@l§il!MM

1047

DirectShow COM Interfaces

IVPNotify: :GetDei nterlaceMode

IVPNotify Interface

Retrieves the mode (such as bob or weave).

HRESULT GetDeinterlaceMode(
AMVP _MODE *pmode
) PURE;

Parameters

pmode

Page 657 of 658

[out] Pointer to the retrieved mode. This value is a member of the AMVP MODE
enumerated data type.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

The current DirectShow implementation returns NOERROR for success or E_INVALIDARG if the
argument is not valid.

Remarks

This method is not currently implemented and returns E_NOTIMPL.

© 1997 Microsoft Corooration . All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM

IVPNotify: :SetColorControls

IVPNotify Interface

Sets the color control settings associated with the specified overlay or primary surface.

HRESULT SetColorControls(
LPD DCOLORCONTROL pColorControl
) PURE;

Parameters

pColorControl
[in] Address of the DDCOLORCONTROL structure containing the new values to be applied
to the specified surface.

1048

DirectShow COM Interfaces Page 658 of 658

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

In the current DirectShow implementation, this method returns NOERROR if successful, or
E_INVALIDARG or E_FAIL upon failure.

© 1997 Microsoft Corooration. All rights reserved. Terms of Use.

MQ<§i[.jjj,M MB.HS

IVPNotify: :SetDei nterlaceMode

IVPNotify Interface

Sets the mode (such as bob or weave).

HRESULT SetDeinterlaceMode(
AMVP _MODE mode
) PURE;

Parameters

mode

Topic Contents i@faii!MM

[in] Specified mode. This value is a member of the AMVP MODE enumerated data type.

Return Values

Returns an HRESULT value that depends on the implementation of the interface.

The current DirectShow™ implementation returns NOERROR for success or E_INVALIDARG if
mode is not a member of the AMVP MODE enumerated data type.

Remarks

This method is not currently implemented and returns E_NOTIMPL.

© 1997 Microsoft Corporation. All rights reserved. Terms of Use.

1049

DirectShow C++ Class Library Page 1of4

MQi@[.jjj,M l!i.! 111j Topic Contents l@IJll!MM

DirectShow C++ Class Library

This section contains reference entries for all the DirectShow C++ classes, their data
members, and their methods.

· I ntrod uction to the DirectShow C+ + Class Li brary

·CAqqDirectDraw Class

·CAqgDrawSurface Class

·CAMEvent Class

·CAMMsqEvent Class

·CAMSchedu le Class

·CAMThread Class

·CAutoLock Class

·CBaseAllocator Class

·CBaseBasicVideo Class

·CBaseCont rolVideo Class

·CBaseControlWindow Class

·CBaseDispatch Class

·CBaseFilter Class

·CBaseinputPin Class

·CBaselist Class

·CBaseMed iaFilter Class

·CBaseObject Class

·CBaseOutputPin Class

· CBasePin Class

1050

DirectShow C++ Class Library

· CBaseProoertyPaqe Class

• C BaseReferenceClock Class

· CBaseRenderer Class

· CBaseStreamControl Class

· CBaseVideoRenderer Class

· CBaseVideoWindow Class

· CBaseWindow Class

· CBasicAudio Class

· CCmdQueue Class

· CCritSec Class

· CDeferredCommand Class

· CDisp Class

· CDispBasic

· CDispParams Class

· CDrawimage Class

· CEnumMediaTypes Class

· CEnumPins Class

· CFactoryTemplate Class

· CGenericList Class

· CGuidNameList Class

· CimageAllocator Class

· CimaqeDisplay Class

· CimaqePa lette Class

· CimaqeSample Class

· CLoadDirectDraw Class

Page 2 of 4

1051

DirectShow C++ Class Library

·CMediaControl Class

·CMedia Event Class

·CMediaPosition Class

·CMediaSamole Class

·CMediaType Class

·CMemAllocator Class

· CMsq Class

· CMsqThread Class

·COAReffime Class

·COutputOueue Class

·CPersistStream Class

·CPosPassThru Class

·CPullPin Class

·CQueue Class

·CReffime Class

·CRenderedinputPin Class

·CRendererinputPin Class

·CRendererPosPassThru Class

·CSource Class

·CSourcePosition Class

·CSourceSeekinq Class

·CSourceStream Class

·CSystemClock Class

• CTra nsformfi lter Class

·CTransforminputPin Class

Page 3 of 4

1052

DirectShow C++ Class Library

· CTransformOutoutPin Class

· CTransinPlaceFilter Class

· CTransinPlaceinputPin Class

· CTransinPlaceOutputPin Class

· CUnknown Class

· CVideoTransformFilter Class

• FOURCCMap Class

© 1997 Microsoft Corporation . All r ights reserved. Terms of Use.

+Q'41[.]1!,+ 1 !1·HM

1053

Page 4 of 4

Topic Contents ifflj[§ii!¥M

Introduction to the DirectShow C++ Class Library Page 1of15

MQi@[.jjj,M l!i.! 111j Topic Contents l@IJll!MM

Introduction to the DirectShow C++ Class
Library

This article provides a general description of the Microsoft® DirectShow™ class library, the
relationship of the base classes to the DirectShow Component Object Model (COM) interfaces
that they implement, and describes the utility classes that are not directly associated with
interfaces. This article does not provide low-level descriptions of each class, nor does it provide
specific instructions on how to use them to build a filter or run the filter graph manager.

The DirectShow C++ class library can help you implement the required interfaces on filters
that you write. Most base classes correspond directly to interfaces, while other utility classes
allow integration of Microsoft Win32® functionality, such as critical sections and thread
management.

Contents of this article:

• Base Classes
o CBaseObject and CUnknown Classes
o Base Classes that Implement Interfaces

• Filter Base Classes
• Pin Base Classes
• Enumerator Base Classes
• Transport Base Classes
• Media Control and Positioning Classes
• Clock Base Classes

• Utility Classes
o Win32 Classes
o List and Queue Classes
o Multimedia Data Type Classes
o COM Classes
o Debugging Classes

Base Classes

Most of the base classes in the DirectShow class library implement DirectShow COM interfaces.
These classes produce C++ objects that provide an IUnknown interface so external
components can access the interfaces the objects support.

CBaseObject and CUnknown Classes

The CBaseObject class is the root of all base classes. It exists primarily to provide debugging
assistance by keeping a count of all DirectShow objects that are active. All derived base class
constructors provide a debugging object name as the first parameter and call the
CBaseObject constructor. You can view the debugging object name sent to this base class on

1054

Introduction to the DirectShow C++ Class Library Page 2of15

a debugging monitor.

CBaseObject

INonDelegatingUnknown

CUnknown

A!! DirectShow classes that implement interfaces derive from a base class called CUnknown.
which is derived from caaseObject. CUnkn<1wn implements the INooDelegatjog!lnkoowo
interface which, like the !Unknown interface, provides methods to request an interface, and to
add or release references to that interface.

Why are there two interfaces that implement the serviees of I!lnkoown' Because of
il'J(]regation. Aggregation is the COM term for the combining of more than one object into a
single larger object. Although filter graph objects, such as filters and pins, are rarely
aggregated, the design is available for future extensibility and also for implementing plug-in
distributors (PID), which are objects that are aggregated with the filter graph manager. In an
aggregated object, the outer olife<;t (the one containing the other objects) uses the IUnkn<1wn
interface to communicate outside the object. The IUnkoown interface on the outer object
passes out references to the IUnkoown interfaces of its internal objects. That is, when an
application calls the IUnkn<1wn interface on the outer object and asks for the interface
belonging to one of its internal objects, the outer object calls the IUnkoown interface of the
internal object to retrieve the requested interface.

Because the internal objects must delegate !Unknown interfaces to the IUnkn<1wn of the
outer object, the IUnkn<1wn interface of the internal object should not be accessed privately
(that is, without going through the outer object's IUnkoown interface). The internal object's
IUnkoown is reserved exclusively for communicating through the outer object. However, it is
possible that objects wm want to connect to other objects privately, without knowledge of the
outer object. For example, pins on filters are likely to need to query interfaces on pins of other
objects privately.

The INonDeleqatinq Unknown interface provides direct, private access to interfaces, regardless
of whether or not the object is aggregated. Direct access is important in most of the
communication between the DirectShow objects such as pins, allocators, and filters, and is the
default method of communication. In fact, the base classes implement the !Unknown interface
on nonaggregated objects (whieh includes almost every object in the filter graph) to ca!! the
nondelegating interface directly.

Base Classes that Implement Interfaces

The majority of classes in the DirectShow class library implement COM interfaces and can be
categorized as follows:

• Filter base classes implement the IaaseFilter interface, and include CaaseFilter and
classes derived from it.

• Pin classes implement the !Pin interface, and include CaasePin and derived classes.
• Enumerator classes include CEnumPins and CEnumMediaI'ypes.
• Memory classes include CMediaSample, CaaseA!!ocator, CMemA!!ocator, and their derived

classes.
• Control and position classes include CaaseFilter. CMediaPosition, CMediaControl,

caaseMediaFilter. CSourceSeekinq. and CaaseStreamContro!.

1055

Introduction to the DirectShow C++ Class Library Page 3of15

Filter Base Classes

The DirectShow stream architecture is based on filters and pins. Filters communicate with the
filter graph manager and with the pins on the filter. Pins connect filters and handle
transporting the data down the stream.

(CBaseObject 1

I INonDelegatingUnknown I
Ll(CUnknown),

I IAMovieSetup I
I IMediaFilter I
I IBaseFilter I

I
CBasefilter \ \.

K CSource),

K CTransformfilter lo

K CTranslnPlacefilter lo

L(CVideoTransformfilter)

L(CBaseRenderer).

I IQualProp R

I IQualityControl I
I CBaseVideoRenderer \ '

CBaseFilter is the base class for au filter classes. It implements the IBasefilter interface, which
specifies methods that allow the filter graph manager to create and enumerate pins, retrieve
filter information, and notify the filter that it has been added to a filter graph. csaseFllter also
implements the IMediafilter interface (from which IBaseFilter derives) to allow the filter to
receive run, pause, and stop commands from the filter graph manager. This base class adds
member functions to retrieve the pin count, retrieve pointers to individual pins, and retrieve
the pin version.

The CBaseMediafilter class also implements the IMediafilter interface. However, because
IMediaFllter is also implemented by CBaseFi!ter. this class is seldom used except to write a
plug-in distributor (PID).

Severa! classes are derived directly from CBasefilter. Each of these classes provides a base
class for implementing a specific type of filter. These include:

• CSource, a base class for source filters.
• CTransformFilter. a base class for transform filters.
• CBaseRenderer, a base class for renderer filters.

1056

Introduction to the DirectShow C++ Class Library Page 4of15

The CSource filter class works in conj unction with the CSourceStream pin class to help create a
source filter. Most of the work is done in the pin class, and CSour<:e <1dds pin creiition iind
deletion member functions. The CSourcePosition class implements ii source filter.

The CTranstorroFi!ter class implements a transform filter. Derive your transform class from
CTransformFllter if you want to make a copy of the diita. The CTranslnPlacefilter class,
derived from CTransfotmFllter, iiuows in-plllce transforms that do not copy the diitii. These
triinsform filter cliisses V'.t0rk in conjunction with similiiny named pin clllsses (for example,
CTransformOutputPin iind CTransforminputPin}. Most member functions in the pin clllsses are
implemented to ciill member functions in the transform filter class, so typiciilly you need only
to derive your filter from the filter class and override ii few member fUnctions to implement ii
transform filter.

CTransformfilter iidds several member functions to those inherited from CBasefilter. Some of
these are pure virtuiil member functions thilt the derived class must override. One example is
the CTranstorrofi!ter· ·Transform member fUnction, which is ciilled when the input pin receives
a sample. ThiS member function provides the core ofthe transform fUnctionality. Other
member functions to be overridden also involve implementations that are specific to the
derived class, such iis verifying media types on pins iind iiuociiting the correct iimount of
memory. Additioniilly, several CTransformfllter member functions iire ciilled at viirious points
in the connection or streiiming process; the derived clllss ciin override these to hiindle
requirements such as adding or releasing references to interfiices.

The CVideoTransformfilter class derives from the CTransformfilter class iind is used iis ii oose
class for filters that C11n iiffect the quality of ii rendered video by dropping friimes when the
video renderer sends quality-control messages. This class is primarily used by video
decompressors in the DirectShow run time.

The CBaseRenderer cliiss and its derived clllss, CBaseVideoRenderer, are the oose filter clllsses
that implement ii video renderer filter. The video renderer filter used in DirectShow iS derived
from CBaseVideoRencle~r. There are other renderer classes thilt work in conjunction with
these classes but are not derived from CBasefilter. These classes are:

• CRendererlnputPin
• CBaseControlVideo iind its oose cliiss CBaseBasicVideo
• CBaseControrNindow, and its oose classes CBaseVideoWindow iind CBaseWindow
• CAggDirectDraw
• CAggDrawSucrace

The following illustriition shows au the clllsses thilt support renderers that iire not derived from
either CBasefi!ter or CBasePin.

CBaseObject

CUnknown

CBaseBasicVideo

CBaseControlYideo

CAggOirectOraw

I IDirectDrawSurface
CJ

1057

I

Introduction to the DirectShow C++ Class Library Page 5of15

Li-(CAggDrawSurface

CB aseVideoWindow

CBaseControlW indow

CBasicAudio

Pin Base Classes

Pins have a greater share of the work than filters. A pin must expose methods so that the filter
graph manager can connect it with a pin on another filter. Pins also expose methods so that
connected pins can negotiate what med!a type they will pass between them, and which pin wm
provide the shared memory allocator fortransporting the media sample. Additionally, the
output pin is responsible for passing each media sample to its connected input pin; the input
pin iS responsible for receiving it. Finally, pins must support interfaces so that quality-control
messages and position information can be passed through the stream from pin to pin.

The following illustration shows the pin classes. AU pin classes are derived from CBasePin, a
base class derived from CUnknown.

CBaseDbject

CUnknown

IQualityControl

CBasePin

CBaseDutputPin

CTransformOutputPin

CTranslnPlaceOutputPin

CSourceStream

CBaselnputPin

CTransformlnputPin

CTranslnPlacelnputPin

CRendererlnputPin

1058

Introduction to the DirectShow C++ Class Library Page 6of15

CBasePin implements the !Pin interface. The IPin interface specifies methods for connecting to
other pins, negotiating the media type to be used with the connected pin, querying internal
connections on the pin, and informing the pin of stream activity.

Besides implementing the !Pin methods, CBasePin also implements IOualityContro! methods so
that quality-control messages can be passed through the filter graph from one pin to the next.
Quality-control messages allow a filter, such as a renderer, to request another filter to adjust
its sample rate. Typically, quality-control messages travel upstream from renderer to source
filter. However, in cases such as a video capture filter, the source filter (for example, a VCR
reader) can send quality-control messages downstream to the render<!r filter to adjust its rate.

The CBasePin class provides several virtual member functions that can be overridden to
provide handling of the connection, media type negotiation, and disconnection processes. Two
base classes derive from CBasePin to provide default handling for many of these tasks:

• CBaseOutputPin implements an output pin.
• CBaseinputPin implements an input pin.

CBaseOutputPin is the base class for the CTransformOutputPin and CSourceStream classes.
Likewise, CBaseinputPin is the base class for the CTransforminputPin class. Before looking at
these derived base pin classes, it is helpful to understand the basic mode! the
CBaseOutputPin and CBaseinputPin classes use.

In the connection and transport mode! used by two pins, the input pin supports the
IMeminpirtpjo interface so that it can receive a media sample. The CBaseinp11tpjo class
implements the IMeminputPin interface. Also, one of the two pins must supply a shared
memory allocator object, which is an object that contains the IMemAHocator interface that
generates media sample objects passed between pins. An IMeminputPin method,
implemented by the CBaseinputPin class, supplies this allocator object, implemented by the
CMemAHocator class. The connected output pin also has the option of supplying its own
allocator; if this is the case, it notifies the input pin (through another IMeminputPin method)
of the final decision of which allocator is used.

The CBaseOutputPin class provides extra member fUnctions to set the size and count of
samples in the allocator, f<!trieve a media sample from the allocator, deliver that media sample
to the connected input pin, and deliver end·of·stf<!am and end-flush messages downstf<!am. It
also implements many of the !Pin methods.

CPuHPin is a class that is used on the input pin of a parser filter. It is derived from the
CAMThread class as shown in the following mustration.

CThread

CPullPin

A par$er filter pulls information from the disk, using the asynchronous file reader filter, or from
the Internet, using the URL moniker filter. CPuHPin works with the IAsyncReader interface,
which is implemented on the source reader filter upstream. CPullPin starts the thread, pulls
data from the upstream filter, and then pushes the data downstf<!am. That is, it can simply caH
its own IMeminputPin:: Receive method after pulling the sample from the source (or perform
the equivalent routines elsewhere).

1059

Introduction to the DirectShow C++ Class Library Page 7of15

Enume-ato.- Base Classes

An en1,1meraror is an interface that provides methods for traversing a liSt of elements.
Enumerators are used in COM programming, and the DirectShow model follows the COM model
in enumerating objects. Two enumerator classes are provided in the class library: CEoomPins.
which implements the IEnumPins interfaces, and CEnumMediaTypes. which implements the
IEnumMediaTypes interface. Two other DirectShow enumerator interfaces, IEnumFi!ters and
IEnHmRegFi!ters, are not represented by base classes because they are implemented only by
the filter graph manager.

CEnumPins

CEnumMediaTypes

The CEnHmPins class creates an enumerator when the IBasefi!ter"EnHmPins method is called.
The enumerator returned by this method is a pointer to the IEnumPins interface, whieh is
implemented by the CEnumPlns class. The CEnumPlns member functions can then be called
to retrieve pointers to each of the pins on the filter, which this enumerator accomplishes by
calling the CBaseFi!ter: :GetPin member function on the filter. The filter must override the base
class CBaseFilte.-::GetPln member function to supply the enumerator with the next pin in the
list each time it iS called.

The CEnumMediaTypes class creates an enumerator when the !Pio> ·EnHmMediaTypes method
is called. Pins store a list of the media types that they support. During negotiation of the media
type, one pin typically calls the EnumMediaTypes method on its connected pin, retrieves the
enumerator, and uses it to select a media type. Both of these enumerator classes support: the
Next, Skip, Reset, and Clone methods familiar to COM programmers. The media type
enumerators call the CBasePin: :GetMediaType member function, which must be overridden by
the derived pin class, to return the next media type in a liSt of media types accepted by the
pin.

Enumerators operate as threads, and must have synchronized access to the pin media type
list. For this reason, the classes that implement enumerators inherit (through multiple
inheritance} from the CCritSec class, which provides critical section management. For more
information about the CC.-ltSec class, see Win32 Clas.ses.

Transport classes share memory between pins and pass media samples using that memory.
DirectShow provides four classes to help implement shared memory transports:

• CBaseAllocator
• CMemAllocator
• CMediaSample
• CimageSample

CBaseAllocator iS a class that provides member functions to implement the IMemAl!ocator
interface, as shown in the following mustration.

1060

Introduction to the DirectShow C++ Class Library Page 8of15

(CBaseObject),

I INonDelegatingUnknown I
LL(CUnknown)

(CCritSec)>

I !MemAllocator I
~~1 C CBaseAllocator)J

--{ CMemAllocator)

--{ ClmageAllocator)>

The IMemAllocator interface on the input pin specifies methods to set the number and size of
the buffers to allocate, allocates that memory, frees that memory, and returns a single buffer
that contains an IMediaSample interface. The output pin connected to the input pin calls the
IMemAllocator methods. CBaseAllocator provides the member fUnctions ~and ~that
are called from the Commit and Decomm!t methods. O<irived classes override the Allo<:: and
Free member functions to provide their own routines to allocate and free memory.

Because CBaseAllocator performs very little implementation by itself, most pins use the
CMemAllocator class, whieh is derived from CBaseAllo<::ator. CMemAllo<::ator overrides the
CBaseA!!orator· ·Free member function to provide allocation of media samples based on system
memory. It provides its own member function, called Reallyfree. to be called when the
allocator is finally released.

CMediaSample is a class that contains the media sample data and also provides member
functiOns to access properties on the media sample, such as data type or beginning and ending
time stamps. ThiS class implements the IMediaSample interface, which provides the method
specification. CimageSamo!e derives from CMedlaSample and is used by the video renderer
when the renderer's allocator is being used. It uses all the CMedlaSample interface methods
and adds two methods to set and retrieve the DIBSECTION information. This makes it easy for
the renderer to cast the CMedlaSample pointer it receives from an upstream filter to a
CimageSample pointer, and obtain a handle to the bitmap of the video frame.

Media Control and Positioning Classes

Media control interfaces pass commands such as Run, Stop, or Pause from an application
through the filter graph manager to the individual filters. From the filter's perspective, the only
control interface necessary is IMediafi!ter. whieh exposes methods to accept and implement
these commands. The CBasefi!ter class implements this interface. All other interfaces that
expose media control methods are handled by the filter graph manager and are therefore
already implemented. Although a CMediaContro! class exists and implements the IMediaContro!
interface, it is not often used because the filter graph manager is responsible for this
functiOnality. The following mustration shows the relationship betv'4len these classes and
interfaces.

1061

Introduction to the DirectShow C++ Class Library Page 9of15

CBaseObject

INonDelegatingUnknown

CUnknown

!Dispatch

CMediaControl

IMediaEvent

CMediaEvent

CMediaPosition

CPosPasslhru

CRendererPosPassThru

CSourcePosition

CSourceSeeking

Mlldia positioning intllrfaclls start: thll mlldia strllam at a SPllCifilld position, play thll st!"llam for
a Spl)Cifilld {>llriod of timll, or changll thll ratll of thll mlldia strllam. Thll IMediaPosition intllrfacll
is thll primary intllrfacll support:ing thiS functionality. Thll CMediaPosition class implllmllnts this
intllrfaCll and SllrYllS as a basil class for two othllr classlls: CPosPassThru and CSourcePosition.

Typiea!!y, thll filtllr graph manager calls thll IMediaPosition intllrfacll on thll rllndllrllr filters
whlln it wants to position thll mlldia strllam. Thll !"llnderllr acknowllldglls thll samplll timlls that
it wm bll llXPllCted to display and thlln passes thll mlldia positioning data upst!"llam, destinlld
for a Sllllkablll fi!tllr, such as a sourcll file filtllr, that can providll thll pro{>llrly positioned sourcll
strllam. To pass that information upstream, output pins must be ablll to rllClliVll thll positioning
information.

Thll CPosPassThru class implllments the IMediaPosition intllrfacll and thll IMediaSeeking
intllrfaCll on thll output pins of fi!tllrs and, for thll most part, dolls nothing but cau thll
corrllsponding intllrfacll on thll output pin of thll nllxt upst!"llam fi!tllr, thll!"llbY passing through
thll positioning data. IMediaSeeking is diffllrllnt than IMediaPosition in that it allows thll
mlldia st!"llam to bll Sllllklld to units othllr than timll, such as framlls, samplllS, or indllXlld filllds
in an MPEG format. Thll CRenderer?osPassThrn class, imp!llmllntll(I on a vidllo rllnQe!"llr, Silts
thll start an(I llnd rllfllrence timlls on individual sampllls, so that samplllS can be qullrillQ at any
timll for thiS information. This iS hlllpful Whlln Qlla!ing with Sllllking using IMediaSeeking,
whieh Sllllks to me<Jia time, and dolls not kllllP track of thll samplll'S rllfll!"llncll timll.

1062

Introduction to the DirectShow C++ Class Library Page 10of15

The reason for serially informing every filter in the graph of the new position is to allow filters
that might be concerned with media positioning to be prepared for the new position. Certain
stream splitters, for example, might be splitting off streams with media positions relative to
the main media stream. This is why the filter graph manager does not simply call the source
filter's IMediaPosition or I Med @Seeking interface directly.

CSourcePosition iS the class that helps the source filter implement its IMediaPosition interface.

The CSourreSeekinQ class helps the source filter implement its IMediaSee!<inQ interface. This
class enables a source filter to handle calls that change the start and stop positions in the
media stream, and the playback rate.

The CBaseStreamControl class helps the source filter implement its IAMStreamControl
interface. This class is used primarily by capture filters. The following illustration shows the
relationship between CBaseStreamControl and the interfaces from which it inherits.

!Unknown

IAMStreamControl

CBasestreamControl

Clock Base Classes

DirectShow provides two classes, CBaseReferenceClock and CSystemC!ock to help implement
clocks in the filter graph. The following illustration shows the relationship between these
classes and the interfaces they implement.

(CBaseObject),

I INonDelegatingUnknown I
LL(CUnknown }

(CCritSec 1

I IReferenceClock I
~~1--<C CBaseReferenceClock);

I !Persist I
Li.(CSystemClock ~

CBaseReferenceClock implements IReferenceClock, and so provides the ability to return the
correct reference time when requested, and to advise registered objects of specific times or
time intervals through event notification and semaphores.

1063

Introduction to the DirectShow C++ Class Library Page 11of15

CSvstemC!ock implements a system clock that provides time information and timing signals to
an application. It uses the caaseReferenceC!oc!< base class to provide most of that
functionality, overriding the actual time calls.

Utility Classes

The DirectShow SDK includes several utility classes that provide C+ + class encapsulation of
many of the required Win32 functions, multimedia data structures, and object list and queue
manipulation. These classes are briefly described in this section.

Wln32 Classes

DirectShow implements several classes to handle Win32 threads, events, and critical sections.
These include the following classes.
CAM Event
CCritSec
CAutoLock
CAM Thread
CMsgThread
.cMsg,

The following diagram illustrates these classes.

CAM Event

CAMMsgEvent

(CAutolock)

(~c-M_s_g~~~~~~)

(CMsgThread

CCritSec

COutputQueue

CAMEvent handles a Win32 event as a C+ + object. The methods in this class allow events to
be put into the signaled state or reset to a nonsignaled state, and also allow a caller to block
until an event is signaled. Events can also be cast to handles and passed to the Win32
WaitforMultioleObjects function.

CCritSec handles a Win32 critical section as a C+ + object to provide intraprocess
synchronization. Methods of this class allow you to create, lock, and unlock a critical section.

CAutoLock holds a critical section (a CCritSec object) for the scope of a block or function. The
critical section is locked in the constructor and unlocked in the destructor.

CAMThread provides an abstract worker thread class enabling creation, synchronization, and
communication with a worker thread.

CMsoThread orovides suooort for a worker thread to which reouest<; can be oosted

1064

Introduction to the DirectShow C++ Class Library Page 12of15

~~~~~t"· .......... _ -'""t"t-'"'• .. ....................................................... _ .. _ ....... -· t" ... - .... ... 

asynchronously instead of being sent directly. Messages, in the form of a~ object, can be 
posted to a CMsgThread object. 

~creates an object containing a message to be passed to a CMsgTuread object. 

List and Q1,1e1,1e Classes 

DirectShow implements the CBaseList. CGenericList , and COutputOueue classes for handling 
lists and queues as must rated in the following diagram. 

CBaseObject 

CBaselist 

CGenericlist 

CCritSec 

COutputQueue 

( CQueue ) 

CBaseList represents a linked list data structure of typeless pointers to objects derived from 
CBaseObject. 

CGenericList implements a template class derived from CBaseList that calls CBaseLlst member 
functions and adds type checking fort he type specified in the template. 

COutputOueue supports the queuing of media samples from the output pin of a filter. The 
output pin calls member functions of this class instead of calling methods on the connected 
input pin to receive the media sample. The output pin is then free to continue without 
blocking, while the COl.ltp~veve class handles the passing of the media samples 
downstream. 

M1,1ltlmedia Data Type Classes 

DirectShow implements the CMediaType. CRefDme. and EO!lRCCMap multimedia data type 
classes as shown in the following illustration. 

AM_MEDIA_ TYPE structure 

CMediaType 

CRefTime 

COARefTime 

GUID data type 

FOURCCMap 

CMediaType provides a C+ + class object containing the media type data structure and 
methods that orovide acces.<; to each of the members of the structure. 

1065 



Introduction to the DirectShow C++ Class Library Page 13of15 

CReffime provides a C++ class object containing the methods used to access the reference 
time, and operators used to perform Boolean tests or arithmetical operations on tvJO CRefrime 
objects. 

FOURCCMao provides conversion between the older-style FOURCC media tags used to identify 
and register media types and the J;2l.!,ID. media subtypes used by DirectShow. 

COM Classes 

COM interface classes in DirectShow fall into two groups: object creation and interface 
implementation. Class factory classes are provided for object creation, and other classes are 
provided to implement exiSting COM interfaces. 

The COM utility classes include the following. 
CClassfactory 
CFactorvTemplate 
CPersistStream 
CBasePropertypage 

The following illustration shows the relationship between the COM classes and the interfaces 
they implement. 

IClassFactory I 
Le cclassFactory ) 

e CFactoryTemplate ) 

< DISPPARAMS structure '} 

le CBaseParams ) 

!Unknown 

I Persist 

IPersistStream 

CPersistStream 

CBaseDbject 

CUnknown 

I IPropertyPage 

I 
I 

CBasePropertyPage 
"-===;.....;.....;;.=="""' CC!assfactory and CfactoryTemp!ate are implemented 

by the base classes to hand le automatic instantiation of filters, pins, and other DirectShow 
COM objects. These classes provide a scaffolding for object construction which wraps the actual 
COM elements required to construct an object. CPersistStream and CBasePropertypage help 
".;"£.. ;_ ... 1 .. - ...... "; .... ~- '"'"'·- ..... _;_" ... -" -" ... ,._ ~· ... - ... .J .... ,. ........ ...<-. .... _ ~· ... ; .... " .. ~- ...... -

1066 



Introduction to the DirectShow C++ Class Library Page 14of15 

CC!as.sfactor:y. located in dllentry.cpp, inherits from CBaseOQ;ject and implements the COM 
IClassfactory interface. This interface is used by CoCreateinstance. which instantiates a COM 
object by calling IC!assfactory: :Createinstance, which, in turn, calls the static 
Createlnstance member function in your derived class. 

The base classes use CFactoryTemplate to provide CClassFactory with a template containing 
the CLSID of your object and a pointer to the static Createlnstance function for your object 
class. 

CPersistStream implements COM IPersistStream for the storage and retrieval of filter 
properties in a saved filter graph. This enables a stored filter groph to have filters set to 
predefined property values. This class also provides a special member function to handle 
versioning of data in a stream. 

CBasePropertyPage implements the COM IPropertyPage interface, whieh provides a fromework 
for a property page associated with a filter. 

Debugging Classes 

DirectShow provides many debugging functions and macros as described in the Dehogging 
reference section. It also includes three classes that aid in debugging filter development: 
CDispBasic 

~ 
CGuidNameLlst 

The following diagram illustrates these classes. 

( CGuidNamelist ) 

CDispBasic 

CDisp 

CDispBasic converts the m PString data member to the proper string size. 

~provides a constructor that sets the CDispBasic class's m PString data member to a 
string describing some relevant debugging information about the object used as a parameter to 
the constructor. For example, when constructed with an !Pin pointer, m_PStrlng returns the 
name of the pin; when constructed with a CLSID, m_PStrlng returns a string representation 
of it, and so on. The class also provides an ! ecrsm cast operator that returns the value of 
m_PStrlng, so the class can simply be cast as an !..PCTSIB value to return the string when 
constructed. 

CGuidNameLlst implements an array of globally unique identifier (filllil) names in the Uuids.h 
include file. This enables you to retrieve the GUID name for a media type, for example. 

w;•; "·II' a 111.11119 Topic Contents 1 @14* 1 t'!18 

1067 



Introduction to the DirectShow C++ Class Library Page 15of15 

1068 



CAggDirectDraw Class Page 1of4 

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8 

CAggDirectDraw Class 

CBaseObject 

CUnknown 

CAggOirectOraw 

This class aggregates an IDiroctDraw interface. Although Direct Draw® interfaces 
(IDlrectDraw and IDirectDrawSurface) potentially have the ability to be aggregated, this 
feature is not yet implemented. Vanous parts of Microsoft® DirectShow"' requir<i aggregation 
of the Dir<ictDraw interfaces. In particular, the video renderer passes out media samples that 
expose IDlrectDraw and IDlrectDrawSurface. This class and the Cft.9gDrawSurtace class 
republish the methods of the DirectDraw class so that they can be aggregated. 

Each member function in this class, with the exception of the constructor, SetDiroctDraw. and 
NonDelegatingOueryinterface, simply calls the corresponding method on the IDirectDraw 
interface with the parameters passed to it. 

Pratected Data Members 
Name Descrlptlan 
m_pDlrectDraw DirectDraw object. 

Member F1.1nctl<1ns 
Name Descrlptlan 
CAagDirectDraw Constructs a CAggDirectDraw object. 
SetDiroctDraw Sets the Dir<ictDraw object to be agg r<igated by this class. 

Overrldable Member F1.1nctl<1ns 
Name Descrlptian 
NonDe!egatingOueryintertace Returns an interface and increments the r<iference count. 

Implemented IDlrectDraw Meth<lcls 
Name Description 
Compact Moves all the pieces of surface memory on the video card to a 

CreateC!ipper 
Create Palette 
Create Si rrface 
DuplicateSurface 

contiguous block to make the largest chunk of free memory available. 
Creates a Dir<ictDrawClipper object. 
Creates a Dir<ictDrawPalette object for this Direct Draw object. 
Creates a Dir<ictDrawSurface object for thiS DirectDraw object. 
Duplicates a Dir<ictDrawSurface object. 

1069 



CAggDirectDraw Class Page 2 of 4 

EnumDisplayModes Enumerates all the display modes the hardware exposes through the 
DirectDraw object that are compatible with a provided surface 
description. 

EnumSurfaces Enumerates all the existing or possible surfaces that meet the search 
criterion specified. 

FlipToGDISurface Makes the surface that GDI writes to the primary surface. 
GetCaps Fills in the raw (not remaining) capabilities of the device driver (the 

hardware) and/or the Hardware Emulation Layer (HEL). 
GetDisplayMode Returns the current display mode. 
GetFourCCCodes Gets the FOURCC codes supported by the DirectDraw object. 
GetGDISurface Returns the DirectDrawSurface object that currently represents the 

surface memory that GDI treats as the primary surface. 
GetMonitorFreguency Points to a DirectDrawSurface pointer that will be made to point to the 

DirectDrawSurface object currently controlling GDI's primary surface 
memory. 

GetScanLine Returns the scan line that the monitor is currently updating to the 
display. 

GetVerticalBlankStatus Returns the status of the vertical blank. 
Initialize 
RestoreDisplayMode 

SetCooperativeLevel 
SetDisplayMode 

WaitForVerticalBlank 

Initializes the DirectDraw object. 
Resets the mode of the display device hardware for the primary 
surface to what it was before the CAggDirectDraw: :SetDisplayMode 
member function was called. 
Determines the top-level behavior of the application. 
Sets the mode of the display device hardware. 
Helps the caller synchronize itself with the vertical blank interval. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M l!i.! 11ij Topic Contents 

MQ<§i[.]l!:M 111.Hj Topic Contents 

CAggDi rectDraw: :CAgg Di rectDraw 

CAqqDirectDraw Class 

Constructs a CAggDirectDraw object. 

CAggDirectDraw( 
TCHAR *pName, 
LPUNKNOWN pUnk 
); 

Parameters 

1070 

l@i§i 11111+ 

l@i§lllMM 



CAggDirectDraw Class 

pName 
Name of the object; used for debugging purposes. 

pUnk 

Page 3 of 4 

Pointer to the owner of this object. If non-NULL, !Unknown calls are delegated to this 
object. 

Return Values 

No return value. 

Remarks 

This member function calls the CUnknown: :CUnknown base class constructor and sets the 
m pDirectDraw member variable to NULL. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jlj,M l!i.! 11ij Topic Contents l@i§lllMM 

CAggDirectDraw::NonDelegatingQueryinterface 

CAggDirectDraw Class 

Returns an interface and increments the reference count. 

H RESULT Non Delegati ngQueryinterface( 
REFIID riid, 
void** ppv 
); 

Parameters 

riid 
Reference identifier. 

ppv 
Pointer to the interface. 

Return Values 

Returns E_ POINTER if ppv is invalid. Returns NOERROR if the query is successful or 
E_NOINTERFACE if it is not. 

Remarks 

This member function provides an implementation of the 
INonDelegatingUnknown: :NonDelegatingOuerylnterface method. By default it passes out 
references to IDirectDraw and then calls the CUnknown:: NonDelegatingQuerylnterface 

1071 



CAggDirectDraw Class Page 4 of 4 

member function for base class interface references. Override this class to return interfaces 
added in the derived class. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

w Q<M [.] +• 111.H5 

CAggDi rectDraw: :SetDi rectDraw 

CAqqDirectDraw Class 

Sets the DirectDraw object to be aggregated by this class. 

void SetDirectDraw( 
LPDIRECTDRAW pDirectDraw 
); 

Parameters 

pDirectDraw 
IDirectDraw object to be aggregated. 

Return Values 

No return value. 

Remarks 

Topic Contents •=@• 1gnw 

This member function sets the m pDirectDraw data member to the pDirectDraw parameter. 

© 1997 Microsoft Corooration . All rights reserved. Terms of Use. 

1072 



CAggDrawSurface Class Page 1 of5 

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8 

CAggDrawSurface Class 

CBaseObject 

CUnknown 

CAggOrawSurface 

This class aggregates an IDiroctDrawSurface interface. Although DirectDraw® interfaces 
(IDirectoraw and IDlrectDrawSurface) potentially have the ability to be aggregated, this 
feature is not yet implemented. Vanous parts of Microsoft® DirectShow"' requir<i aggregation 
of the Dir<ictDraw interfaces. In particular, the video renderer passes out media samples that 
expose IDlrectDraw and IDlrectDrawSurface. This class and the Cft.9gDirectoraw class 
republish the methods of the DirectDraw class so that they can be aggregated. 

Each member function in this class, with the exception of the constructor, 
SetDirectDrawSucrace. and NonDe!egatingOueryinterface. simply calls the corresponding 
method on the IDirectDrawSurface interface with the parameters passed to it. 

Pratected Data Members 
Name Descrlptlan 
m_pDlrectDrawSurface DirectDraw surface. 

Member Functlans 
Name Description 
CAagDrawSurtace Constructs a CAggDrawSurface object. 
SetDiroctDrawSurface Sets the Dir<ictDraw object to be aggr<igated by this class. ThiS must be 

called before any of the IDirectDrawSurface interface methods can be 
called. 

Overrldable Member Functions 
Name Descrlptlan 
NonDe!egatingQueryintertace Returns an interface and increments the r<iference count. 

Implemented IDlrectDrawSurface Methods 

1073 



CAggDrawSurface Class 

Name 
AddAttachedSurface 

Page 2 of 5 

Description 
Attaches a surface to another surface. Examples of possible 
attachments include z-buffers, alpha channels, and back buffers. 

AddOverlayDirtyRect Builds up the list of the rectangles that must be updated the next time 
the UodateOverlayDisolay member function is called. 

Bit Performs a bit-block transfer. 
BltBatch Performs a sequence of CAggDrawSurface:: Bit operations from several 

sources to a single destination. 
BltFast Performs a source copy bit-block transfer or transparent bit-block 

transfer using a source or destination color key. 
DeleteAttachedSurface Detaches two attached surfaces. 
EnumAttachedSurfaces Enumerates all the surfaces attached to a given surface. 
EnumOverlayZOrders 

GetAttachedSurface 
GetBltStatus 
GetCaos 
GetCliooer 
GetColorKey 
Get DC 
GetFlioStatus 

GetOverlayPosition 

GetPalette 
GetPixelFormat 
GetSurfaceDesc 

Initialize 
Is Lost 

Lock 
ReleaseDC 

Restore 

SetCliooer 
SetColorKey 

SetOverlayPosition 
SetPalette 

Unlock 

Enumerates the overlays on the specified destination. The overlays 
can be enumerated in front-to-back or back-to-front order. 
Makes the surface memory associated with the 
DDSCAPS_BACKBUFFER surface become associated with the 
FRONTBUFFER surface. 
Finds the attached surface that has the specified capabilities. 
Returns the status of a bit block transfer. 
Returns the capabilities of the surface. 
Returns the DirectDrawClipper object associated with this surface. 
Returns the color key value for the DirectDrawSurface object. 
Creates a GDI-compatible hDC for the surface. 
Returns OK if the surface that it is called on has finished its flipping 
process; otherwise, returns DDERR_WASSTILLDRAWING. 
Returns the display coordinates of the surface, given a visible, active 
overlay surface (DDSCAPS_OVERLAY set). 
Returns the DirectDrawPalette structure associated with this surface. 
Returns the color and pixel format of the surface. 
Returns a DDSURFACEDESC structure describing the surface in its 
current condition. 
Initializes a DirectDrawSurface object. 
Determines if the surface memory associated with a 
DirectDrawSurface object has been freed. 
Obtains a valid pointer to the surface memory. 
Releases a GDI-compatible hDC previously obtained through 
CAggDrawSurface: :GetDC. 
Restores a surface that has been "lost." The surface memory 
associated with the DirectDrawSurface object has been freed. 
Attaches a DirectDrawClipper object to a DirectDrawSurface object. 
Sets the color key value for the DirectDrawSurface object if the 
hardware supports color keys on a per-surface basis. 
Changes the display coordinates of an overlay surface. 
Attaches the DirectDrawPalette object specified to a 
DirectDrawSurface. 
Notifies DirectDraw that the direct surface manipulations are 
complete. 

1074 



CAggDrawSurface Class Page 3 of 5 

UpdateOverlay Repositions and/or modifies the visual attributes of an overlay surface. 
These surfaces must have the DDSCAPS_OVERLAY bit set. 

UpdateOverlayDisplay Repaints the rectangles in the dirty rectangle lists of all active 
overlays. 

UpdateOverlayZOrder Sets an overlay's z-order. The z-order determines which overlay 
should be occluded when multiple overlays are displayed 
simultaneously. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl@[.jjj,M 111.l:.!j Topic Contents 

+Qi§i[.jjj,+ 111.],.[j Topic Contents 

CAggDrawSurface::CAggDrawSurface 

CAqqDrawSurface Class 

Creates a CAggDrawSurface object. 

CAggDrawSurface( 
TCHAR *pName, 
LPUNKNOWN pUnk 
); 

Parameters 

pName 
Name of the object; used for debugging purposes. 

pUnk 

l@i§i llfttiM 

l@i§lllMM 

Pointer to the owner of this object. If non-NULL, IUnknown interface calls are delegated 
to this object. 

Return Values 

No return value. 

Remarks 

This member function calls the CUnknown: :CUnknown base class constructor and sets the 
m pDirectDrawSurface member variable to NULL. 

© 1997 Microsoft Cornoration. All rights reserved. Terms of Use. 

MQl§i[.jjj,M 111.Hj Topic Contents l@i§lllMM 

1075 



CAggDrawSurface Class Page 4of5 

CAggDrawSurface::NonDelegatingQuerylnterface 

CAggDrawSurface Class 

Returns an interface and increments the reference count. 

H RESULT Non Delegati ngQueryinterface( 
REFIID riid, 
void** ppv 
); 

Parameters 

riid 
Reference identifier. 

ppv 
Pointer to the interface. 

Return Values 

Returns E_POINTER if ppv is invalid. Returns NOERROR if the query is successful or 
E_NOINTERFACE if it is not. 

Remarks 

This member function provides an implementation of the 
INonDelegatinqUnknown: :NonDeleqatinqOueryinterface method. By default it passes out 
references to IDirectDrawSurface and then calls the CUnknown:: NonDeleqatinqOueryinterface 
member function for base class interface references. Override this class to return interfaces 
added in the derived class. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+QH"·h' 111.q9 Topic Contents 1@1§111¥+ 

CAggDrawSu rface: :SetDi rectDrawSu rface 

CAggDrawSurface Class 

Called by the owner of this aggregation object to set the actual DirectDraw surface it is 
aggregating upon. 

void SetDirectDrawSurface( 
LPDIRECTDRAWSURFACE pDirectDrawSurface 
); 

1076 



CAggDrawSurface Class 

Parameters 

pDirectDrawSurface 
DirectDrawSurface to be set. 

Return Values 

No return value. 

Remarks 

Page 5 of 5 

This member function must be called before any of the !DirectDrawSurface interface methods 
can be called. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

1077 



CAll!Event Class Page 1of4 

8 41411•11' 9 ill.i::ifi Topic Contents i@IQI lt§jM 

CAMEvent Class 

( CAMEvent 

The CAMEvent class is an event object that can be set and waited on to provide interthread 
synchronization. This is currently implemented by using the Microsoft® Win32® Event 
application programming interfaces (APis). 

Events can be created as manual-reset or automatic-reset, and wm always be created as not 
set ( nonsig naled state). They can also be cast to handles so as to be passed to the w in3.2 
WaitforMultipleObjects function. 

Protected Data Members 
Name Description 
m_hEvent Microsoft Win3.2 event handle. 

Member Functions 
Name Des<:nptlon 
CAM Event Constructs a CAMEvent object. 
Check Returns TRUE if the event is currently set, but does not block. 
~ Forces the event into a nonsignaled state. 
~ Puts the event into a signaled state. 
Wait Blocks until the event is signaled, or until an optiOnal time-out occurs. 
operator HANOI E Gets the HANOI F Object. 

Topic Contents 

8 41411·!11* 1 11·'"'* T op1c Contents l@i§ilt§M 

CAM Event: :CAM Event 

CAMEvent Class 

Constructs a CAM Event object. 

CAM Event{ 

1078 



CAMEvent Class 

BOOL fManua/Reset = FALSE 
); 

Parameters 

fManua/Reset 

Page 2 of 4 

If this value is FALSE, the event is reset when the CAM Event: :Wait member function 
completes. If this parameter is TRUE, you can set the event by calling the 
CAMEvent: :Set member function and then reset it by calling the CAMEvent: :Reset 
member function. 

Return Values 

No return value. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Q'41[.]1!,+ 1 !1·HM Topic Contents ifflj[§ii!¥M 

CAM Event: :Check 

CAMEvent Class 

Returns TRUE if the event is currently set, but does not block. 

BOOL Check(void); 

Remarks 

For events that are not manual-reset events, this member function causes the event to enter a 
nonsig na led state. 

© 1997 Microsoft Corporation . All rights reserved . Terms of Use . 

+;<§1[.]ij,+ 111.],.[9 Topic Contents i@i§ii!¥M 

CAMEvent::Reset 

CAMEvent Class 

Forces the event into a nonsignaled state. 

void Reset(void); 

1079 



CAMEvent Class Page 3 of 4 

Return Values 

No return value. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQij[.jlj,M l!i.! 111j Topic Contents l!ftl!Ji l!lltiM 

CAM Event: :Set 

CAMEvent Class 

Puts the event into a signaled state. 

void Set(void); 

Return Values 

No return value. 

Remarks 

If the event is not a manual-reset event and there is at least one thread blocked on this event, 
the thread is released and the event remains in a nonsignaled state. If the event is not a 
manual-reset event and no threads are blocked on the event, it is set to a signaled state. 

If the event is not a manual-reset event, it is set to a signaled state and all the threads 
blocked on this event are released. 

© 1997 Microsoft Comoration. All rights reserved. Terms of Use. 

MQ1§1[.]ij,+ '!!·!:.Ii Topic Contents 

CAM Event: :Wait 

CAMEvent Class 

Blocks until the event is signaled, or until the indicated time-out occurs. 

BOOL Wait( 
DWORD dwTimeout 
); 

1080 

l@i§ill@i+ 



CAMEvent Class Page 4 of 4 

Parameters 

dwTimeout 
Optional time-out value, represented in milliseconds. The default is INFINITE. 

Return Values 

Returns TRUE if the event becomes signaled; otherwise, returns FALSE. 

Remarks 

For events that are not manual-reset events, the action completing the CAMEvent::Wait 
member function causes the event to enter a nonsignaled state until the CAM Event:: Set 
member function is called. 

© 1997 Microsoft Corooration. All rights reserved. Terms of Use. 

MQ<§i[.jjj,M MB.HS Topic Contents i@faii!MM 

CAMEvent::operator HANDLE 

CAMEvent Class 

Gets the HANDLE object associated with this CAMEvent object. 

operator HANDLE () c o nst; 

Return Values 

Returns the Microsoft Win32 event HANDLE. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

1081 



C.AJ)..1J)..1sgEvent CI ass Page 1 of2 

8 41411•11' 9 ill.i::ifi Topic Contents i@IQI lt§jM 

CAMMsgEvent Class 

CAM Event 

CAMMsgEvent 

The CAMMsgEvent class is a wrapper for event objects that do message processing. This class 
adds one method to the CAMEWlnt object to allow sent messages to be processed while 
waiting. 

Member Functions 
Name Description 
WaitMsg Allows sent messages to be processed while waiting for an event to be signaled or for 

the indicated time-out to occur. 

+414 "·II' a 1:1.1 .. 19 Topic Contents i@i§MMt§M 

CAMMsgEvent::WaitMsg 

CAMMsaEvent Class 

Allows sent messages to be processed while waiting for an event to be signaled or for the 
indicated time-out to occur. 

BOOL WaltMsg( 
DWORD (lwTimeOCJt 
); 

Parameters 

(lwTimeOCJt 
Optional time-out value, represented in milliseconds. The default is INFINITE. 

Return Values 

Returns TRUE if the event is signaled, or FALSE if the time-out occurred. 

Remarks 

1082 



CAMMsgEvent Class Page 2 of2 

Call CAMMsgEvent::WaitMsg rather than CAM Event: :Wait if you want to block on a time-out 
or a signaled event and continue to process sent messages. If you do not process messages 
and another thread sends you a message, deadlock could occur. For example, if you create a 
thread by way of the Win32 CreateThread function and then block until the thread can 
initialize, deadlock will occur if the thread sends a message to your window using the Win32 
SendMessage function. This is because SendMessage does not return until the message has 
been processed. CAMMsgEvent::WaitMsg allows SendMessage to return to the caller by 
using a Win32 PeekMessage loop to do message processing. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

1083 



CAMSchedul e Class Page I of5 

8 41411•11' 9 ill.i::ifi Topic Contents i@IQI lt§jM 

CAMSchedule Class 

( CAMSchedule 

The CAMSche<lule class ~lieves clocks from the burden of managing the advise ~quests. A 
clock can delegate such management to this class, provided that it calls this class's Advise 
method when the earliest event should be fi~d. The application can fetch the time of the 
earliest event by calling GetNextAdviseTime. or the application can track events by a 
combination of the times returned by Advise and the event times that the clock adds. 

Membe .. Functions 
Name Des<: .. lptlon 
AddAdvisePacket Creates a new pending notification. 
Advise Requests the scheduler to dispatch all events up to and including the time 

specified. 
CAMSchedule Constructs a CAMSchedule object. 
GetAdviseCount Returns the number of outstanding events. 
GetEvent Returns the event handle to send if the advise time requires reevaluation. 
GetNextA<JviseTime Returns the reference time at which the next advise should be set, or 

MAX .... TIME if no events are scheduled. 
!loadvise Removes a previously establiShed adviSe link. 

8 41411·!11* 1 11·'"'* T op1c Contents 

Topic Contents 

CAMSchedule: :AddAdvisePacket 

CAMSchedu!e Class 

Creates a new pending notification and adds it to the advise notification list. 

DWORD AddAcfvisePacket( 
const REFERENCE_ TIME&. time1, 
const REFERENCE_ TIME&. time2, 
HANDLE hNotify, 
BOOL t;Periodk; 

1084 

l@i§ilt§M 



CAMSchedule Class 

); 

Parameters 

time1 
Time that the advise should take place. 

time2 
Period between notifications. (Ignored if bPeriodic is FALSE.) 

hNotify 

Page 2 of 5 

Notification mechanism. Either a semaphore handle (if bPeriodic is TRUE) or an event 
handle. 

bPeriodic 
Flag that specifies whether the notification is sent repeatedly, or whether the notification 
is sent once. This can be one of the following values: 
Value Meaning 
TRUE This is a periodic timer that will fire every time2 units until canceled. 
FALSE This is a one-shot timer. 

Return Values 

Returns the advise token if successful, or zero if an error occurred. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+;<§1[.]jj,i '!!·!:.!¥ Topic Contents i@i§ll!¥+ 

+Qi@[.]+• 111.1,.19 Topic Contents i@i§i i!fttiM 

CAMSchedule: :Advise 

CAMSchedule Class 

Requests the scheduler to dispatch all events up to and including the time specified. This 
method is expected to be called by a controlling clock specifying the current time, just in time 
to dispatch the next advise request. 

REFERENCE_ TIME Advise( 
const REFERENCE_ TIME & rtTime 
); 

Parameters 

rt Time 
Current reference time. 

Return Values 

1085 



CAMSchedule Class Page 3 of 5 

Returns the reference time at which the next advise will expire, or MAX_ TIME if there are no 
outstanding events. 

Remarks 

Clocks can call this method to advise the scheduler of the time. The scheduler will then signal 
all the events that have expired, and reschedule the periodic ones. 

It is not intended that clocks should call this method all the time, rather that clocks will call 
Advise just one time. The time returned will be invalidated if you start adding extra advises. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQl§1[.]l!:I +!!·!:.!¥ 

CAMSchedule: :CAMSchedule 

CAMSchedule Class 

Constructs a CAMSchedule object. 

CAMSchedule( 
HANDLE hEvent 
); 

Parameters 

hEvent 

Topic Contents i@i§ll!¥+ 

Event that CAMSchedule should fire if the advise time needs reevaluating. 

Return Values 

No return value. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+Qi@[.]i!:M 111.1 1119 Topic Contents i@i§i i!fttiM 

CAMSched u le: :GetAdviseCou nt 

CAMSchedule Class 

1086 



CAMSchedule Class Page 4of5 

Returns the number of outstanding events. 

DWORD GetAdviseCount( ); 

Return Values 

Returns the number of outstanding events. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+QH"·h' 111.q9 Topic Contents 1@1§111¥+ 

CAMSchedule: :GetEvent 

CAMSchedule Class 

Retrieves the event handle to set if the advise time requires reevaluation. 

HANDLE GetEvent( ); 

Return Values 

Returns a HANDLE to the event to set when this object's advise time requires reevaluation. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

+ Q<M [.] 11,1 Mil.HM Topic Contents •@!§' 1gn+ 

CAMSched u le: :GetNextAdviseTi me 

CAMSchedule Class 

Checks the time of the next advise. 

REFERENCE_ TIME GetNextAdviseTime( ); 

Return Values 

Returns the reference time at which the next advise should be set, or MAX_ TIME if there are 
no events scheduled. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

1087 



CAMSchedule Class Page 5 of 5 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

CAMSchedule::Unadvise 

CAMSchedule Class 

Removes a previously established advise link. 

HRESULT Unadvise( 
DWORD dwAdviseCookie 
); 

Parameters 

dwAdviseToken 
Identifier (cookie) of the link that is being reset. This is the value returned by 
CAMSchedule: :AddAdvisePacket. 

Return Values 

Returns S_OK if successful; otherwise, returns S_FALSE. 

Remarks 

This member function is modeled after the IReferenceClock:: Unadvise method. Call Unadvise 
to remove the previously established clock advise links. 

Unadvise should be called for unexpired single-shot advise requests. Calling Unadvise with 
the token of an already expired event causes no problems, so applications can choose to 
always call Unadvise on their single-shot events without fear of problems. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

1088 



CAMThread Class Page 1 of8 

w41411.111e 1:1.11119 Topic Contents 1 @1#1 1 ttti8 

CAMThread Class 

( CAMThread 

CAMThr~d iS an abstract class, a worker thread class that provides creation, synchronization, 
and communication with a worker thread. The worker thread can be accessed from several 
client threads. The class provides member functions to create the thread, pass commands to it, 
and wait for it to exit. 

Use a CCritSec object to ensure that only one thread can make a request at a time. Use two 
CAMEvent objects: one to signal to the worker that a request is outstanding, and the other to 
signal to the client thread that the request has been completed. A nonblocking 
CAMThread: :CheckReguest member function allows the worker thread to check for new 
requests while working asynchronously. 

Derive from this class to provide your own thread member function. You might also want to 
provide type-safe signaling member functions that package parameters and return values 
using the CAMTh read "Ca!!Worl<er member function. 

Thread creation is independent of object creation. Create a member variable derived from 
CAMThread, and then use the member functions to start and stop the thread when needed. 

Data ~mbers 
Name Description 
m_Accesslock Critical section object that locks access by client threads. 
m_Workerlock Critical section object that locks access to shared objects. 

M<iimber Functions 
Name Description 
cauworker Makes a request to the worker thread. 
CAMThread Constructs a CAMThread object. 
Chec!<ReQ! rest 

~ 
Create 
GetReguest 

Determines if there is an outstanding request. This is a nonblocking 
member function. 
Blocks until the thread has exited and released its resources. 
Starts the thread running. 
Blocks until the next request is made and then returns a DWORD value. 

GetReQuestHand!e Returns an event handle. 
\-.etReQuestParam Returns the latest request. 
Initia!ThreadProc Retrieves a this pointer. Carry out this member function before calling the 

CAMThread:: ThreadProc member function. 
~ Returns a DWORD value to the requesting thread and releases it, signaling 

completion of the request. 
ThreadExists Determines whether a thread exists or has exited. 

1089 



CAMThread Class Page 2of8 

ThreadProc Indicates a pure virtual member function that is called on the worker 
thread. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M l!i.! 111j 

+Qi§i[.]11,+ 1 1!·!:.!j 

CAMThread::CallWorker 

CAMThread Class 

Makes a request to the worker thread and blocks for a response. 

DWORD CallWorker( 
DWORD dw 
); 

Parameters 

dw 
Derived class defines the meaning of the parameter. 

Return Values 

Returns a value that is defined by the derived class. 

Remarks 

Topic Contents l@IJll!MM 

Topic Contents l@IJll!MM 

This member function uses a CCritSec object to ensure that only one request is made at a 
time. It is therefore not valid to call the CAMThread::CallWorker member function from the 
thread itself or from any member function that is executing in the context of the thread. 

© 1997 Microsoft Cornoration . All rights reserved. Terms of Use. 

MQ<§i[.jlj,M lh.Hj Topic Contents l@IJll!MM 

CAMThread::CAMThread 

CAMThread Class 

Constructs a CAMThread object. 

1090 



CAMThread Class 

CAMThread( ); 

Return Values 

No return value. 

Remarks 

Creates a CAMThread object but does not create an actual thread. You call the 
CAMThread: :Create member function to create a thread. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQij[.jlj,M l!i.! 11ij Topic Contents 

CAMTh read: :CheckRequest 

CAMThread Class 

Page 3of8 

l@i§lllMM 

Determines if there is an outstanding request. This is a nonblocking member function. 

BOOL CheckRequest( 
DWORD *pParam 
); 

Parameters 

pParam 
Parameter that assumes the value passed by the last call to the CAMThread: :CallWorker 
member function. 

Return Values 

Returns TRUE if an outstanding request is still active, or FALSE is no request is active. 

Remarks 

If there is an outstanding request, the requesting thread will block until the 
CAMThread: :GetReguest member function is called. The request remains outstanding (that is, 
this member function continues to return TRUE) until either the CAMThread: :Reply or 
CAMThread::GetRequest member function is called. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jlj,M l!i.! 11ij Topic Contents l@i§i l!lltiM 

1091 



CAMThread Class Page 4of8 

CAMTh read: :Close 

CAMThread Class 

Blocks until the thread has exited and released its resources. 

void Close(void); 

Return Values 

No return value. 

Remarks 

You must instruct the thread to exit by some other means; for example, call the 
CAMThread: :CallWorker member function with a request that is interpreted by the derived 
class to mean complete and exit. 

If the thread is still running when the CAMThread object is destroyed, the CAMThread::Close 
member function is called internally. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQi@[.jjj,M l!i.! 111j Topic Contents l@IJll!MM 

CAMThread::Create 

CAMThread Class 

Starts the thread running. 

BOOL Create(void); 

Return Values 

Returns TRUE if the thread started successfully, or FALSE if the thread is already running. 

Remarks 

This member function creates the thread and calls the CAMThread: :ThreadProc member 
function from the derived class. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

1092 



CAMThread Class Page 5of8 

+Qi§1[.]++ 1 !!·HM Topic Contents i@l§ii!MM 

CAMTh read: :GetReq uest 

CAMThread Class 

Blocks until the next request is made. 

DWORD GetRequest( ); 

Return Values 

Returns a value that is defined by the derived class. 

Remarks 

This member function blocks the requesting thread until the CAMThread: :Reply function is 
called. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

MQijl.111,h 111.1 1119 Topic Contents i@l§i 11111+ 

CAMTh read: :GetReq uestHa nd le 

CAMThread Class 

Returns an event handle for performance improvements. 

HANDLE GetRequestHandle( ) const; 

Return Values 

Returns an event handle. 

Remarks 

To use the Microsoft Win32 WaitForMultipleObjects function, you will need this handle in the 
thread's wait list or the thread will not be responsive. 

© 1997 Microsoft Cornoration. All rights reserved. Terms of Use. 

1093 



CAMThread Class 

+Qi§1[.]++ 1 !!·HM Topic Contents 

CAMThread::GetRequestParam 

CAMThread Class 

Returns the most recent request. 

DWORD GetRequestParam( ) const; 

Return Values 

Returns a DWORD value that indicates the request made previously by the 
CAMThread: :GetRequest member function. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

+ Q i§i [.] jj,+ +!!·HM Topic Contents 

CAMThread::InitialThreadProc 

CAMThread Class 

Page 6of8 

i@l§ii!MM 

Mttfjl§ii!MM 

Receives a this pointer and calls the CAMThread: :ThreadProc member function. 

DWORD InitialThreadProc( 
LPVOID pv 
); 

Parameters 

pv 
The this pointer. 

Return Values 

Returns the DWORD returned by CAMThread: :Thread Proc. This DWORD is not defined by this 
class. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+ Q i§i [.] jj,+ +!!·HM Topic Contents i@l§ii!MM 

1094 



CAMThread Class Page 7of8 

CAMThread::Reply 

CAMThread Class 

Returns a DWORD value to the requesting thread and releases it, signaling completion of the 
request. 

void Reply( 
DWORD dw 
); 

Parameters 

dw 
Value returned by the CAMThread: :CallWorker member function on the client side. 

Return Values 

No return value. 

© 1997 Microsoft Corporation. All rights reserved. Terms of Use. 

+QH"·h' 111.q9 Topic Contents 1@1§111¥+ 

CAMThread::ThreadExists 

CAMThread Class 

Determines whether the thread has been created and has not yet exited. 

BOOL ThreadExists( ); 

Return Values 

Returns TRUE if the thread exists and hasn't exited, or FALSE if the thread doesn't exist. 

© 1997 Microsoft Corporation . All rights reserved. Terms of Use. 

+ Q<M [.] 11,1 Mil.HM Topic Contents •@!§' 1gn+ 

1095 


	1-100_Page_001
	1-100_Page_002
	1-100_Page_003
	1-100_Page_004
	1-100_Page_005
	1-100_Page_006
	1-100_Page_007
	1-100_Page_008
	1-100_Page_009
	1-100_Page_010
	1-100_Page_011
	1-100_Page_012
	1-100_Page_013
	1-100_Page_014
	1-100_Page_015
	1-100_Page_016
	1-100_Page_017
	1-100_Page_018
	1-100_Page_019
	1-100_Page_020
	1-100_Page_021
	1-100_Page_022
	1-100_Page_023
	1-100_Page_024
	1-100_Page_025
	1-100_Page_026
	1-100_Page_027
	1-100_Page_028
	1-100_Page_029
	1-100_Page_030
	1-100_Page_031
	1-100_Page_032
	1-100_Page_033
	1-100_Page_034
	1-100_Page_035
	1-100_Page_036
	1-100_Page_037
	1-100_Page_038
	1-100_Page_039
	1-100_Page_040
	1-100_Page_041
	1-100_Page_042
	1-100_Page_043
	1-100_Page_044
	1-100_Page_045
	1-100_Page_046
	1-100_Page_047
	1-100_Page_048
	1-100_Page_049
	1-100_Page_050
	1-100_Page_051
	1-100_Page_052
	1-100_Page_053
	1-100_Page_054
	1-100_Page_055
	1-100_Page_056
	1-100_Page_057
	1-100_Page_058
	1-100_Page_059
	1-100_Page_060
	1-100_Page_061
	1-100_Page_062
	1-100_Page_063
	1-100_Page_064
	1-100_Page_065
	1-100_Page_066
	1-100_Page_067
	1-100_Page_068
	1-100_Page_069
	1-100_Page_070
	1-100_Page_071
	1-100_Page_072
	1-100_Page_073
	1-100_Page_074
	1-100_Page_075
	1-100_Page_076
	1-100_Page_077
	1-100_Page_078
	1-100_Page_079
	1-100_Page_080
	1-100_Page_081
	1-100_Page_082
	1-100_Page_083
	1-100_Page_084
	1-100_Page_085
	1-100_Page_086
	1-100_Page_087
	1-100_Page_088
	1-100_Page_089
	1-100_Page_090
	1-100_Page_091
	1-100_Page_092
	1-100_Page_093
	1-100_Page_094
	1-100_Page_095
	1-100_Page_096
	1-100_Page_097
	1-100_Page_098
	1-100_Page_099
	1-100_Page_100
	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178
	Screenshots_Page_179
	Screenshots_Page_180
	Screenshots_Page_181
	Screenshots_Page_182
	Screenshots_Page_183
	Screenshots_Page_184
	Screenshots_Page_185
	Screenshots_Page_186
	Screenshots_Page_187
	Screenshots_Page_188
	Screenshots_Page_189
	Screenshots_Page_190
	Screenshots_Page_191
	Screenshots_Page_192
	Screenshots_Page_193
	Screenshots_Page_194
	Screenshots_Page_195
	Screenshots_Page_196
	Screenshots_Page_197
	Screenshots_Page_198
	Screenshots_Page_199
	Screenshots_Page_200

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151
	Screenshots_Page_152
	Screenshots_Page_153
	Screenshots_Page_154
	Screenshots_Page_155
	Screenshots_Page_156
	Screenshots_Page_157
	Screenshots_Page_158
	Screenshots_Page_159
	Screenshots_Page_160
	Screenshots_Page_161
	Screenshots_Page_162
	Screenshots_Page_163
	Screenshots_Page_164
	Screenshots_Page_165
	Screenshots_Page_166
	Screenshots_Page_167
	Screenshots_Page_168
	Screenshots_Page_169
	Screenshots_Page_170
	Screenshots_Page_171
	Screenshots_Page_172
	Screenshots_Page_173
	Screenshots_Page_174
	Screenshots_Page_175
	Screenshots_Page_176
	Screenshots_Page_177
	Screenshots_Page_178

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150
	Screenshots_Page_151

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_001
	Screenshots_Page_002
	Screenshots_Page_003
	Screenshots_Page_004
	Screenshots_Page_005
	Screenshots_Page_006
	Screenshots_Page_007
	Screenshots_Page_008
	Screenshots_Page_009
	Screenshots_Page_010
	Screenshots_Page_011
	Screenshots_Page_012
	Screenshots_Page_013
	Screenshots_Page_014
	Screenshots_Page_015
	Screenshots_Page_016
	Screenshots_Page_017
	Screenshots_Page_018
	Screenshots_Page_019
	Screenshots_Page_020
	Screenshots_Page_021
	Screenshots_Page_022
	Screenshots_Page_023
	Screenshots_Page_024
	Screenshots_Page_025
	Screenshots_Page_026
	Screenshots_Page_027
	Screenshots_Page_028
	Screenshots_Page_029
	Screenshots_Page_030
	Screenshots_Page_031
	Screenshots_Page_032
	Screenshots_Page_033
	Screenshots_Page_034
	Screenshots_Page_035
	Screenshots_Page_036
	Screenshots_Page_037
	Screenshots_Page_038
	Screenshots_Page_039
	Screenshots_Page_040
	Screenshots_Page_041
	Screenshots_Page_042
	Screenshots_Page_043
	Screenshots_Page_044
	Screenshots_Page_045
	Screenshots_Page_046
	Screenshots_Page_047
	Screenshots_Page_048
	Screenshots_Page_049
	Screenshots_Page_050
	Screenshots_Page_051
	Screenshots_Page_052
	Screenshots_Page_053
	Screenshots_Page_054
	Screenshots_Page_055
	Screenshots_Page_056
	Screenshots_Page_057
	Screenshots_Page_058
	Screenshots_Page_059
	Screenshots_Page_060
	Screenshots_Page_061
	Screenshots_Page_062
	Screenshots_Page_063
	Screenshots_Page_064
	Screenshots_Page_065
	Screenshots_Page_066
	Screenshots_Page_067
	Screenshots_Page_068
	Screenshots_Page_069
	Screenshots_Page_070
	Screenshots_Page_071
	Screenshots_Page_072
	Screenshots_Page_073
	Screenshots_Page_074
	Screenshots_Page_075
	Screenshots_Page_076
	Screenshots_Page_077
	Screenshots_Page_078
	Screenshots_Page_079
	Screenshots_Page_080
	Screenshots_Page_081
	Screenshots_Page_082
	Screenshots_Page_083
	Screenshots_Page_084
	Screenshots_Page_085
	Screenshots_Page_086
	Screenshots_Page_087
	Screenshots_Page_088
	Screenshots_Page_089
	Screenshots_Page_090
	Screenshots_Page_091
	Screenshots_Page_092
	Screenshots_Page_093
	Screenshots_Page_094
	Screenshots_Page_095
	Screenshots_Page_096
	Screenshots_Page_097
	Screenshots_Page_098
	Screenshots_Page_099
	Screenshots_Page_100
	Screenshots_Page_101
	Screenshots_Page_102
	Screenshots_Page_103
	Screenshots_Page_104
	Screenshots_Page_105
	Screenshots_Page_106
	Screenshots_Page_107
	Screenshots_Page_108
	Screenshots_Page_109
	Screenshots_Page_110
	Screenshots_Page_111
	Screenshots_Page_112
	Screenshots_Page_113
	Screenshots_Page_114
	Screenshots_Page_115
	Screenshots_Page_116
	Screenshots_Page_117
	Screenshots_Page_118
	Screenshots_Page_119
	Screenshots_Page_120
	Screenshots_Page_121
	Screenshots_Page_122
	Screenshots_Page_123
	Screenshots_Page_124
	Screenshots_Page_125
	Screenshots_Page_126
	Screenshots_Page_127
	Screenshots_Page_128
	Screenshots_Page_129
	Screenshots_Page_130
	Screenshots_Page_131
	Screenshots_Page_132
	Screenshots_Page_133
	Screenshots_Page_134
	Screenshots_Page_135
	Screenshots_Page_136
	Screenshots_Page_137
	Screenshots_Page_138
	Screenshots_Page_139
	Screenshots_Page_140
	Screenshots_Page_141
	Screenshots_Page_142
	Screenshots_Page_143
	Screenshots_Page_144
	Screenshots_Page_145
	Screenshots_Page_146
	Screenshots_Page_147
	Screenshots_Page_148
	Screenshots_Page_149
	Screenshots_Page_150

	2.pdf
	Screenshots_Page_01
	Screenshots_Page_02
	Screenshots_Page_03
	Screenshots_Page_04
	Screenshots_Page_05
	Screenshots_Page_06
	Screenshots_Page_07
	Screenshots_Page_08
	Screenshots_Page_09
	Screenshots_Page_10
	Screenshots_Page_11
	Screenshots_Page_12
	Screenshots_Page_13
	Screenshots_Page_14
	Screenshots_Page_15
	Screenshots_Page_16
	Screenshots_Page_17
	Screenshots_Page_18
	Screenshots_Page_19
	Screenshots_Page_20
	Screenshots_Page_21
	Screenshots_Page_22
	Screenshots_Page_23
	Screenshots_Page_24
	Screenshots_Page_25
	Screenshots_Page_26
	Screenshots_Page_27
	Screenshots_Page_28
	Screenshots_Page_29
	Screenshots_Page_30
	Screenshots_Page_31
	Screenshots_Page_32
	Screenshots_Page_33
	Screenshots_Page_34
	Screenshots_Page_35
	Screenshots_Page_36
	Screenshots_Page_37
	Screenshots_Page_38
	Screenshots_Page_39
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	2.pdf
	Screenshots_Page_40
	Screenshots_Page_41
	Screenshots_Page_42
	Screenshots_Page_43
	Screenshots_Page_44
	Screenshots_Page_45
	Screenshots_Page_46
	Screenshots_Page_47
	Screenshots_Page_48
	Screenshots_Page_49
	Screenshots_Page_50
	Screenshots_Page_51
	Screenshots_Page_52
	Screenshots_Page_53
	Screenshots_Page_54
	Screenshots_Page_55
	Screenshots_Page_56
	Screenshots_Page_57
	Screenshots_Page_58
	Screenshots_Page_59
	Screenshots_Page_60
	Screenshots_Page_61
	Screenshots_Page_62
	Screenshots_Page_63
	Screenshots_Page_64
	Screenshots_Page_65
	Screenshots_Page_66
	Screenshots_Page_67
	Screenshots_Page_68
	Screenshots_Page_69
	Screenshots_Page_70
	Screenshots_Page_71
	Screenshots_Page_72
	Screenshots_Page_73
	Screenshots_Page_74
	Screenshots_Page_75
	Screenshots_Page_76
	Screenshots_Page_77
	Screenshots_Page_78
	Screenshots_Page_79

	SE1004-0 Platform SDK - Broadcast Architecture.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	1.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40

	44.pdf
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40




