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A systematic study was performed in which the effects of aberrations and apodization on the performance of a 
coherent optical system were investigated. The system performance was characterized by the modulus and the 
phase of the amplitude impulse response. The aberrations considered were defocus, spherical aberration, coma, 
and astigmatism. The apodizer was Gaussian in amplitude transmittance. The results of the study indicate that, 
within certain limits, the apodizer was effective in removing the sidelobes from the aberrated amplitude impulse 
response. This has significant implications for the performance of coherent imaging and beam-propagation 
systems. 

INTRODUCTION 

The importance of coherent optical systems has grown dra- 
matically since the inception of the laser. At present a great 
variety of coherent optical systems exist in research, indus- 
trial, government, and business applications. For the pur- 
pose of this paper, these coherent systems can be divided 
into two broad categories: (1) image-forming systems and 
(2) beam-propagation and -focusing systems. Examples of 
image-forming systems include optical data storage and re- 
trieval, optical image processing, and some microscopy. La- 
ser welding, eye surgery, and high-power lasers for fusion 
research are examples of beam-focusing systems. 

A common feature of all these systems is the presence of 
optical aberrations. Even in the most highly corrected sys- 
tems, such as those used in photomicrolithography, there are 
some residual aberrations; and most systems are not so well 
corrected. Those systems that were relatively well correct- 
ed in the design phase can have additional aberrations intro- 
duced by the manufacturing process and environmental 
stresses. Aberrations result in phase errors in the imaging 
(or beam-propagation) wave front as it traverses the optical 
system. These errors have weU-known effects on the perfor- 
mance of these systems.TM The usual response from an 
optical designer when an aberration has resulted in an unac- 
ceptable degradation of performance is to alter the surface 
contours of the optical elements in the optical system to 
decrease the overall amount of aberrations. It will be shown 
that the use of apodization is also useful in controlling the 
effects of aberrations in coherent systems. 

Apodization is the deliberate modification of the trans- 
mittance of the optical system. This modification results in 

a significantly altered system impulse response, which in 
turn affects the imaging or beam-propagation characteris- 
tics of the optical system. For aberrated incoherent optical 
systems, the use of apodization has theoretically been shown 
to moderate the deleterious effects of the aberrations on 
system performance.2-n However, the use ofapodization to 
improve the performance of aberrated coherent optical sys- 
tems has apparently not been studied. 
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The work reported here seeks to fill that void. A system- 
~÷~r ~t,,,t,, wa~ n~f, rm~ investigating the effects of aberra- 

tions and apodization (separately and in combination) on 
selected aspects of the performance of coherent optical sys- 
tems. The present paper reports the results of the portion 
of the study related to the amplitude impulse response, 
which is the fundamental function of importance in coherent 
and partially coherent systems. (For incoherent systems it 
is the irradiance impulse response that is the fundamental 
function; the irradiance impulse response is the product of 
the amplitude impulse response with its complex conjugate.) 
Future papers will address the analogous aspects of coherent 
imaging systems and coherent beam-propagation systems. 

THEORY 

The amplitude impulse response is defined as the complex 
optical field amplitude in the image plane of an optical 
system when the object is a point source of unit amplitude 
and zero phase. In the presence of aberrations other than 
defocus, the image plane is the one in which the best Strehl 
ratio is obtained. In the case of defocus, the image plane is 
the one determined by geometrical optics. 

Theoretical Development 
The effects of aberrations and apodization were investigated 
theoretically by considering the idealized optical system 
shown in Fig. 1. In the object plane, an on-axis point source 
radiates a diverging spherical wave. The lens L1, a distance 
from the object plane equal to its focal length fi, collimates 
the diverging spherical wave. The lens L1 is assumed to 
produce a perfectly collimated wave front. This assumption 

is the usual one in which al! the diffraction effects are associ- 
ated with the limiting aperture of the system. The (xl, Y0 
plane is a distance fl + f2 away from lens L1 and a distance f2 
away from image plane, where f2 is the focal length of lens 
L2. The apodizer, the lens L2, and the limiting aperture 
were all assumed to be coincident with the (xl, yz) plane, 
which is also the exit pupil of the system. The transmit- 
tance of the exit pupil can then be described by 
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The geometry of the analyzed coherent optical system. 
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X exp[~2 @(xz, yl)]B(xl, yl), 
(1) 

where A(xi, Yl) is the amplitude transmittance of the apo- 
dizer, f2 is the focal length of lens L2, and ;k is the illumina- 
tion wavelength. The first exponential term accounts for 
the modification of the wave front by a perfect thin lens, the 
second exponential term accounts for the aberration intro- 
duced by a real lens, and B(xl, yl) represents the finite 
extent of the limiting aperture. 

The apodization used in this study had an amplitude 
transmittance that was Gaussian in form: 

A(Xl, Yl) = exp[-3(xl2 + Yz2)] = exp(-3r2),    (2) 

where the constant in the exponent was chosen so that the 
value of A(xl, Yz) at the edge of the limiting aperture was 
equal to 0.050. This function is displayed in Fig. 2 as a solid 
curve. The dashed curve in this figure represents the ampli- 
tude transmittance of the unapodized limiting aperture. 

The reason for selecting a Gaussian apodization was that 
it was desirable to have an apodizer that produced a real and 
positive amplitude impulse response.12 Many of the delete- 
rious effects seen in coherent imaging (edge ringing, for 
example) occur because the amplitude impulse response has 
negative regions. By contrast, an incoherent system has an 
impulse response that is always real and positive. This 
observation led to the conclusion that it would be appropri- 
ate to make the amplitude impulse response for the coherent 
case real and positive as well. The amplitude impulse re- 
sponse of an optical system is proportional to the Fourier 
transform of the optical field in the exit pupil of the system. 
So, if the transmittance of the apodizer has the functional 

form of a Gaussian truncated far from its center, then the 
amplitude impulse response will be nearly real and positive. 

The aberrations considered were those described by the 
Siedel wave front representationla 

@(r, 0) = a20r2 + a40r4 + a31r3 cos e + a22r2 cos2 e, (3) 

where a2o, a40, a3z, and a22 are the amounts of defocus, spher- 
ical aberration, coma, and astigmatism, respectively. The 
quantities r and ~ are defined by 

r2 = xl2 + yl2, 0 ---- tan-l(yl/Xl). 

The image-plane optical field arising from the point 

source is proportional to the two-dimensional Fourier trans- 
form of the exit pupil field distribution14 

= I--L-II:. T(xpyl) 
K(x2, Y2) 

X2f22 

_r-i2~xf2 
yly~)]dx,dy,. (4) 

x e=pI (X!X2 + ....... 

K(x2, Y2) then is the expression for the amplitude impulse 
response of the idealized optical system of Fig. 1. 
There are several assumptions implicit in Eq. (4). It was 

assumed that a scalar diffraction treatment of this problem 
was sufficient. Also, the usual paraxial assumptions were 
made, namely, the diameter of the exit pupil was much 
greater than the wavelength of illumination and the maxi- 
mum linear distance in the region of interest in the image 
plane was much less than the distance from the exit pupil to 
the image plane. 
Noting that these assumptions are valid in most optical 

systems, Eq. (4) was used to calculate the amplitude impulse 
response for the system in the presence of various amounts 
of defocus and the third-order aberrations, both with and 
without the Gaussian apodization. 

Theoretical Data 
Equation (4) was computed on a VAX 11/750 computer 
using a fast-Fourier-transform subroutine from the IMSL14 
package. 

The quantity K(x2, Y.2) in Eq. (4) is, in general, complex. 
Consequently, the output of the program is in terms of real 
and imaginary coefficients, i.e., 

K(x2, Y2) ffi a(x2, Y2) + ib(x2, Y2) 

= re(x2, y2)exp[ip(x2, Y2)], (5) 

where a(x2, Y2) and b(x2, Y2) are the coefficients and re(x2, y2) 
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Fig. 2. The amplitude transmittance T(r) of the Gaussian filter 
used in this study (solid curve) shown relative to the unapodized 
amplitude transmittance of the exit pupil (dashed curve). 
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Fig. 3. The impulse response of an unaberrated, unapodised, cir- 
cularly symmetric optical system in terms of (a) modulus, (b) phase, 
and (e) irradiance. The u and v axes are in terms of canonical 
distance coordinates. All plots have the same distance scales. 

and p(x2, Y2) are the modulus and the phase, respectively, of 
the amplitude impulse response. 

Coherently illuminated systems are linear in complex am- 
plitude. However, if measurements are to be made in an 
experiment, it is the irradiance 1(x2, y2) that is usually mea- 
sured. The irradiance of the amplitude impulse response is 
related to its complex amplitude by 

I(Xs, Y2) ffi K(xs, Ys)K*(xs, Ys) = IK(x2, Ys)I 2, (6) 

where the asterisk denotes the complex conjugate. 
A typical output of this program is displayed in Fig. 3. 

The system in this case was unaberrated and unapodized, 
and the pupil function was a circular aperture. The dis- 
tance coordinates used in Fig. 3, as well as in many other 
figures in this paper, are the canonical distance coordinates 
u and v, defined by 

2~a 2~a 
U = d--T xi, v = --di y,,. (7) 

where a is the radius of the exit pupil, di is the distance from 
the exit pupil to the image plane, and xi and Yl are the spatial 
coordinates in the image plane. 

A coherent optical system is linear in field amplitude, 
which is a complex quantity. So, unlike in an incoherent 
system, the phase in the optical field is critically important 
in determining the f’mal image irradiance distribution. For 
this reason, the phase was calculated for the unaberrated 
case and is displayed in Fig. 3(b). The phase was also calcu- 
lated for many of the aberrated cases considered later. 

The phase distribution in the amplitude impulse response 
of an unaberrated system [see Fig. 3(b)] is uniform every- 
where except along concentric circles, where the phase 
jumps discontinuously by an amount equal to v rad. These 
jumps occur at the same spatial locations as do the zero 
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values in the modulus distribution of Fig. 3(a). This implies 
that in every other ring the amplitude impulse response is 
composed of negative values. It is these negative regions 
that cause the ringing phenomenon seen in the image of an 
edge. 

The irradiance distribution of this impulse response is 
shown in Fig. 3(c). It is obtained by squaring the modulus 
distribution. Since the optical system in this case is unaber- 
rated and has a circular exit pupil, it is expected that the 
irradiance distribution would approximate an Airy15 pat- 
tern. A careful comparison of Fig. 3(c) with a theoretical 
Airy distribution reveals the error between the two patterns 
to be less than 1% at any point. This error arises mainly 
from the problem of adequately representing a circular aper- 
ture with a rectangular array of samples. 

Defocus 
The aberration of defocus has the functional form ~(r, 0) ffi 
a2or2, where the coefficient a20 is the amount of aberration. 
Defocus is the simplest type of aberration in that the real 
wave front differs from the spherical reference wave front 
only in its radius of curvature. A calculation of the ampli- 
tude impulse response, for the case when a20 = 0.5 wave, 
:,~elded the results shown L-~ Fig. 4. in this figure the top two 
plots show the modulus (on the left) and the phase of the 
amplitude impulse response when the exit pupil of the opti- 
cal system has a uniform transmittance, i.e., when there is no 
apodization. For ready comparison, the amplitude impulse 
response (modulus and phase) for the same system with a 
Gaussian apodizer is shown in the bottom two plots of the 
same figure. 

The modulus and the phase of the unapodized amplitude 
impulse response (top two plots) should be compared with 
the analogous plots of Fig. 3 where there are no aberrations 
in the system. The peak value of the modulus in the aber- 
rated case decreased relative to the unaberrated case. The 
zero values in the modulus pattern for the unaberrated ease 

Fig. 4. The amplitude impulse response (modulus and phase) in 
the presence of 0.5-wave defocus and for the ease Of an unapodized 
and a Gaussian apodized aperture. The top two plots are for the 
unapodized case, and the bottom two are for the case of a Gaussian 
apodizer. The vertical scales for the modulus plots (left-hand col- 
umn), and the phase plots (right-hand column) are indicated by the 
top two plots. The same scaling is used in Figs. 7, 10, and 13. 
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AMPLITUDE IMPULSE 
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Fig. 5. The amplitude impulse response (modulus and phase) with 
varying amounts of defocus for the case of an unapodized and a 
Gaussian apodized exit pupil. The amount of aberration for each 
column is indicated at the bottom of that column. 
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Fig. 6. Central slices through the plots of modulus and phase in the 
presence of varying amounts of defocus and for the unapodized 
(left-hand column) as well as the Gaussian apodized case: 
0.1 wave; -- -- --, 0.5 wave; ..... ,1.0 wave. 
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the modulus is greater than 10% of its peak value. So this 
amplitude impulse response does not change sign until the 
absolute value of the amplitude is quite small. Thus the 
impulse response is almost real and positive. 
This has important implications for the imaging perfor- 

mance of optical systems. For instance, the ringing in the 
coherent image of an edge is caused by the negative regions 
of the impulse response. In this case the apodizer has 
smoothed the amplitude impulse response such that it has 
very little amplitude in the regions where there are negative 
values of amplitude. It can be expected, then, that the 
image of an edge through this system would be free from 
ringing. 

The amplitude impulse response, both unapodized and 
apodized, for other values of defocus is shown in Fig. 5. 
Here the amount of aberration is different for each column 
of plots, varying from 0.1 wave on the left to 1.0 wave on the 
right. From these plots the evolution of the modulus and 
the phase can be seen as more defocus is added to the system. 

The modulus and the phase along slices through the cen- 
ter of some of these impulse responses are shown in Fig. 6. 
The relationship of phase to modulus is clearly seen in this 
figure. 

Apou,za~lou, in each case of ,L^ last *~’- ~ r .... 

smoothes both the modulus and the phase. In each case, the 
amplitude impulse response becomes almost real and posi- 
tive when the apodizer is applied. There are, however, lim- 
its to this process. As the amount of aberration increases, 
the apodizer becomes less effective in making the amplitude 
impulse response almost real and positive. For the case of 
one wave of defocus, it appears that the phase has changed 
by more than ~r/2 rad over the region where the modulus is 
still relatively large. 

Spherical Aberration 
Spherical aberration has the functional form ~(r, 0) = a4or4. 
Spherical aberration, like defocus, is a radially symmetric 
aberration. Owing to its fourth-power dependence on the 
radial distance parameter r, spherical aberration describes a 

� 

)mae 

t~ 

evolved to relative minimums that do not go to zero. The 
phase of the aberrated amplitude impulse response (upper- 
right-hand plot of Fig. 4) no longer has the discontinuities 
evident in the unaberrated case. 

When the apodizer described by Eq. (2) and plotted in Fig. 
2 is applied to this aberrated system, the modulus of the 
amplitude impulse response (lower-left-hand plot of Fig. 4) 
is considerably smoothed, as is the phase. The phase varies 
by less than 7r rad over the region of the modulus plot where 

Fig. 7. The amplitude impulse response (modulus and phase) in 
the presence of 0.5-wave spherical aberration and for the case of an 
unapodized and a Gaussian apodized aperture. The top two plots 
are for the unapodized case, and the bottom two are for the case of a 
Gaussian apodizer. See Fig. 4 for the scaling. 
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AMPLITUDE IMPULSE 

RESPONSE 

Fig. 8. The amplitude impulse response (modulus and phase) with 
varying amounts of spherical aberration for the case of an unapo- 
dized and a Gaussian apodized exit pupil. The amount of aberra- 
tion for each column is indicated at the bottom of that column. 
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Fig. 9. Central slices through the plots of modulus and phase in the 
presence of varying amounts of spherical aberration and for the 
unapodized (left-hand column) as well as the Ganssian apodized 
case:     ,0.1 wave; .... ,0.5 wave; ..... ,1.0 wave. 
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particularly the first sidelobe. The position of the ring of 
minimum values between the central lobe and the first side- 
lobe changes little for this value of aberration. 

The impulse response when the apodizer is employed is 
shown in the bottom two plots of Fig. 7. As in the case of 
defocus, the use of the apodizer has resulted in a much 
smoother impulse response. An examination of the phase 
distribution shows that the phase is nearly uniform over the 
region of the impulse response having significant amounts of 
energy. This impulse response can also be described as 
being almost real and positive. 

The evolution of the unapodized and apodized amplitude 
impulse responses as more spherical aberration is added to 
the system is shown in Fig. 8. Central slices through some of 
these plots are shown in Fig. 9. The same general phenome- 
na seen in the case of defocus are seen here as well. The use 
of the apodizer results in an impulse response that is free 
from sidelobes in the modulus pattern and that has a rela- 
tively fiat phase over the region where there is a Significant 
amount of energy. 

Again there are limits to this process. When the amount 
of spherical aberration is about one wave, the impulse re- 
sponse has significant amounts of energy in regions where 
the phase has changed by about 4/2o So the apo~zer 1~ nnt 
totally effective, although the apodized impulse response is 
still much smoother than the unapodized one. 

Coma 

The aberration of coma can be described by ¢(r, 0) = aslr~ 

cos 0. Coma is the first aberration considered for which the 
wave front in the exit pupil depends on the polar angle as 
well as on the radial distance r. This aberration therefore 
produces the unsymmetrical amplitude impulse response 
seen in Fig. 10 for the case a31 = -0.5 wave. The use of the 
apodizer in this case appears to be less effective than in the 
previous cases, because the first sidelobe is still evident in 
the modulus of the apodized impulse response (lower-left- 

wave front having the largest deviation from the spherical 
reference wave front of any of the aberrations considered. A 
calculation of the impulse response (modulus and phase) 
when a4o = 0.5 wave is shown in Fig. 7. The top two plots 
(the unapodized case) should be compared with the unaber- 
rated impulse response of Fig. 3. The presence of spherical 
aberration causes a decrease in the value of the central peak 
(Strehl ratio) and an increase in the energy in the sidelobes, 

Fig. 10. The amplitude impulse response (modulus and phase) in 
the presence of -0.5-wave coma and for the case of an unapodized 
and a Gaussian apodized aperture. The top two plots are for the 
unapodized case, and the bottom two are for the case of a Gaussian 
apodizer. See Fig. 4 for scaling. 
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