UNITED STATES PATENT AND TRADEMARK OFFICE
BEFORE THE PATENT TRIAL AND APPEAL BOARD
MYLAN PHARMACEUTICALS INC.,
Petitioner
v.
BOEHRINGER INGELHEIM INTERNATIONAL GMBH,
Patent Owner
IPR2016-01564
U.S. Patent No. 8,846,695

PATENT OWNER'S PRELIMINARY RESPONSE UNDER 37 C.F.R. § 42.107

TABLE OF CONTENTS

I.	INT	RODUCTION	1
II.	TEC	CHNICAL OVERVIEW OF THE INVENTION	3
III.	EST	OUND 2: MYLAN FALLS FAR SHORT OF CABLISHING THAT THE JANUMET LABEL IS A NTED PUBLICATION	9
	A.	A Reference Must Have Been "Publicly Accessible" To be A Printed Publication	10
	В.	The Janumet Label (Exhibit 1007) Is Not A Section 102(b) Printed Publication Because There Is No Evidence That It Was Publicly Accessible	11
IV.	REA REA	OUNDS 1 & 2: MYLAN FAILS TO ESTABLISH A ASON TO COMBINE THE TEACHING OF PRIOR ART FERENCES OR REASONABLE EXPECTATION OF CCESS	13
	A.	A Person of Skill in the Art Would Have Had No Reason To Select Linagliptin Of All Available DPP-IV Inhibitors	14
	В.	A Person of Skill in the Art Would Have Had No Reason To Select Metformin as a Combination Partner for Linagliptin In Patients With Inadequate Glycemic Control Despite Therapy With Metformin	16
	C.	A Person of Skill In The Art Would Have Had No Reason To Modify the Teachings of the Cited Art to Arrive at the Claimed Linagliptin Dosages In Combination Therapy	22
V	COI	NCI LISION	27

TABLE OF AUTHORITIES

Page(s) Cases Amneal Pharm., LLC, Petitioner, Apple Inc. v. DSS Tech. Mgmt., Inc., Coal. for Affordable Drugs IV LLC v. Pharmacyclics, Inc., In re Cyclobenzaprine Hydrochloride Extended-Release Capsule Patent Litig., Frontier Therapeutics, LLC v. Medac Gesellschaft Fur Klinische Spezialpraparate MBH. Janssen Pharma., Inc. v. Watson Labs., Inc., Case No. 08-5103, 2012 WL 3990221 (D.N.J. 2012)......23 Northern Telecom, Inc. v. Datapoint Corp., 908 F.2d 931 (Fed. Cir. 1990)10 SRI Int'l, Inc. v. Internet Sec. Sys., Inc., **Statutes**

INDEX OF EXHIBITS

Exhibit No.	Description
2001	A Snapshot: Diabetes in the United States, Centers for Disease Control and Prevention (2014)
2002	Nathan, D.M., et al., Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy, A Consensus Statement From the American Diabetes Association and the European Association for the Study of Diabetes, Diabetes Care, 29(8): 1963-1972, (2006)
2003	Screening for Type 2 Diabetes – Report of a World Health Organization and International Diabetes Federation Meeting, World Health Organization, Geneva, Switzerland (2003)
2004	Szablewski, L., <i>Glucose Homeostasis – Mechanism and Defects</i> , Diabetes - Damages and Treatments, Prof. Everlon Rigobelo (Ed.), ISBN: 978-953-307-652-2, In Tech, 227-256 (2011). Available at: http://www.intechopen.com/books/diabetes-damages-and-treatments/glucose-homeostasis-mechanism-and-defects
2005	Boron, W.E. and Boulpaep, E.L., <i>Medical Physiology – A Cellular and Molecular Approach</i> , Elsevier Science: Pennsylvania, 1066-1085 (2003)
2006	Aronoff, S.L., et al., Glucose Metabolism and Regulation: Beyond Insulin and Glucagon, Diabetes Spectrum, 17(3):183-190 (2004)
2007	Green, B.D., et al., <i>Inhibition of Dipeptidyl Peptidase IV Activity as a Therapy of Type 2 Diabetes</i> , Expert Opin. Emerging Drugs, 11(3):525-539 (2006)
2008	Nathan, D.M., et al., Medical Management of Hyperglycemia in Type 2 Diabetes: A Consensus Algorithm for the Initiation and Adjustment of Therapy, A Consensus Statement From the American Diabetes Association and the European Association for the Study of Diabetes, Diabetes Care, 32(1):193-203 (2009)

Exhibit No.	Description
2009	Kuhn, B., et al., <i>Molecular Recognition of Ligands in Dipeptidyl</i> Peptidase IV, Current Topics in Medicinal Chemistry, 7:609-619 (2007)
2010	Feng, J., et al., <i>Discovery of Alogliptin: A Potent, Selective, Bioavailable, and Efficacious Inhibitor of Dipeptidyl Peptidase IV</i> , J. Med. Chem., 50:2297-2300 (2007)
2011	Szczepankiewicz, B.G., and Kurukulasuriya, R., <i>Aromatic Heterocycle-Based DPP-IV Inhibitors: Xanthines and Related Structural Types</i> , Current Topics in Medicinal Chemistry, 7:569-578 (2007)
2012	Weber, A.E., and Thornberry, N., <i>Case History: Januvia</i> TM (<i>Sitagliptin</i>), a Selective Dipeptidyl Peptidase IV Inhibitor for the Treatment of Type 2 Diabetes, Annual Reports in Medicinal Chemistry, 42:95-109 (2007)
2013	U.S. Patent No. 7,317,109, Issued to Campbell et al.
2014	Januvia TM (sitagliptin phosphate) Tablets Prescribing Information
2015	Ortiz de Montellano, P., et al., Self-Catalyzed Inactivation of Hepatic Cytochrome P-450 by Ethynyl Substrates, The Journal of Biological Chemistry 255(12):5578–5585 (1980)
2016	Kunze, K., et al., <i>The Cytochrome P-450 Active Site</i> , The Journal of Biological Chemistry 258(7):4202–4207 (1983)
2017	Ortiz de Montellano, P., et al., <i>Branchpoint for Heme Alkylation and Metabolite Formation in the Oxidation of Arylacetylenes by Cytochrome P-450</i> , The Journal of Biological Chemistry 260(6):3330–3386 (1985)
2018	Brunton, L.L., et al., <i>Goodman & Gilman's The Pharmacological Basis of Therapeutics</i> , 12th Ed., 72-87 (2011)

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

