

Microsoft Video for Windows
Development Kit

For the Microsoft Windows Operating System

Programmer’s Guide

Microsoft Corporation

1 SAMSUNG 1007

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

©1992, 1993 Microsoft Corporation. All rights reserved.

Microsoft, MS, and MS-DOS are registered trademarks, Windows and Visual Basic are trademarks

of Microsoft Corporation in the USA and other countries.

U.S. Patent No. 4955066

IBM is a registered trademark of International Business Machines Corporation.
Intel is a registered trademark of Intel Corporation.
ToolBook is a registered trademark of Asymetrix Corp.

Printed in the United States of America.

2

Contents

Chapter 1 Introduction and Installation . 1 - 1
Installing the Software . 1 - 2
Documentation Overview . 1 - 2

Chapter 2 Using the Installable Compression Manager 2 - 1
Video Compression and Decompression Header Files . 2 - 1
ICM Architecture . 2 - 1
Using ICM Services . 2 - 2

Error Returned from the ICM Functions . 2 - 2
Locating and Opening Compressors and Decompressors 2 - 2
Installing and Removing Compressors and Decompressors 2 - 5
Configuring Compressors and Decompressors . 2 - 7
Getting Information about Compressors and Decompressors. 2 - 8
Compressing Image Data . 2 - 11

Specifying the Input Format and Determining
 the Compression Format . 2 - 11
Initialization for the Compression Sequence . 2 - 13
Compressing the Video . 2 - 13

Decompressing Image Data . 2 - 15
Specifying the Input Format and Determining
 the Decompression Format . 2 - 16
Initialization for the Decompression Sequence 2 - 17
Decompressing the Video . 2 - 18

Using Hardware Drawing Capabilities . 2 - 19
Specifying the Input Format . 2 - 20
Preparing to Decompress Video . 2 - 20
Decompressing the Video . 2 - 21
Controlling Drawing Parameters . 2 - 23

Video Compression and Decompression Function Reference 2 - 23
Video Compression and Decompression Functions 2 - 26

Video Compressor and Decompressor Data Structure Reference 2 - 45

3

ii Video for Windows Programmer's Guide

02/10/93

Chapter 3 Using the DrawDib Functions . 3 - 1
Drawing With the DrawDib Functions . 3 - 1

Supporting Palettes for the DrawDib Functions . 3 - 3
Manipulating Palettes . 3 - 3

Optimizing DrawDibDraw . 3 - 4
Profiling the Display Characteristics . 3 - 5
DrawDib Application Reference . 3 - 5

DrawDib Function Reference . 3 - 5

Chapter 4 AVI Files . 4 - 1
AVI RIFF Form . 4 - 1

Data Structures for AVI Files . 4 - 3
The Main AVI Header LIST . 4 - 3
The Stream Header (“strl”) Chunks . 4 - 5
The LIST “movi” Chunk . 4 - 7
The “idx1” Chunk . 4 - 8
Other Data Chunks . 4 - 9
Special Information for Interleaved Files . 4 - 9

Using VidEdit With AVI Files . 4 - 10
Example Code for Writing AVI Files . 4 - 10
An Outline for Writing AVI Files . 4 - 10

Creating the File and “AVI ” Chunk . 4 - 11
Creating the LIST “hdrl ” and “avih” Chunks . 4 - 11
Creating the “strl”, “strh”, “strf”, and “strd” Chunks 4 - 12
Creating the LIST “movi” and “rec ” Chunks . 4 - 12
Creating the “idx1” Chunk and Ascending From the “AVI ” Chunk 4 - 13

AVI RIFF File Reference . 4 - 14

Chapter 5 DIB Format Extensions for Microsoft Windows 5 - 1
Windows Compression Formats . 5 - 1

Existing Formats . 5 - 2
Extensions to the BI_RGB Format . 5 - 2
Formats Using BI_BITFIELDS and Color Masks . 5 - 3
Custom Formats . 5 - 4

Determining Display Driver Capabilities . 5 - 5
Inverted DIBs . 5 - 6
Definition of the Flags and Escape . 5 - 6

Chapter 6 Playing AVI Files With MCI . 6 - 1
MCI Overview . 6 - 1
Using the MCI Command Interface . 6 - 2
Using the MCI String Interface . 6 - 3

Choosing the mciSendCommand or mciSendString Interface 6 - 5

4

 Contents iii

02/10/93

Handling MCI Notification . 6 - 6
Playing AVI files with MCI . 6 - 7

Opening an AVI File . 6 - 7
Setting up the Playback Window . 6 - 8
Playing the AVI Sequence . 6 - 10
Changing the Playback State . 6 - 10
Obtaining Playback Information . 6 - 12
Closing the AVI File . 6 - 12

Chapter 7 MCI Command Strings for MCIAVI 7 - 1
About the MCIAVI.DRV Driver . 7 - 1
Custom Commands and Flags for MCIAVI.DRV . 7 - 1
MCI Command Strings . 7 - 2

Chapter 8 MCI Command Messages for MCIAVI 8 - 1
MCI Command Messages . 8 - 1

Chapter 9 Video Capture Application Reference 9 - 1
Video Capture Function Reference . 9 - 1

Video Capture Function Summary . 9 - 1
Video Capture Function Alphabetic Reference . 9 - 3

Video Capture Data Structure Reference . 9 - 16
Video Capture Data Structure Alphabetic Reference 9 - 16

Chapter 10 Video Compression and Decompression Drivers . 1 0 - 1
Architecture of a Video Compression and Decompression Driver 1 0 - 1
The ICSAMPLE Example Driver . 1 0 - 3
The Structure of a Video Compression and Decompression Driver 1 0 - 3

Video Compression and Decompression Header Files 1 0 - 3
Naming Video Compression and Decompression Drivers 1 0 - 3
SYSTEM.INI Entries for Video Compression and
 Decompression Drivers . 1 0 - 4
The Module-Definition File . 1 0 - 5

The Module Name Line . 1 0 - 5
The Installable Driver Interface . 1 0 - 6

An Example DriverProc Entry-Point Function . 1 0 - 6
Handling the DRV_OPEN and DRV_CLOSE Messages 1 0 - 8
Compressor Configuration . 1 0 - 9

Configuration Messages Sent by the System . 1 0 - 9
Messages for Configuring the Driver State . 1 0 - 10
Messages Used to Interrogate the Driver . 1 0 - 11

Configuration Messages for Compression Quality 1 0 - 12
Configuration Messages for Key Frame Rate and Buffer Queue 1 0 - 13

5

iv Video for Windows Programmer's Guide

02/10/93

Video Compression and Decompression Messages 1 0 - 14
About the AVI File Format . 1 0 - 14
Identifying Compression Formats . 1 0 - 16
Decompressing Video Data . 1 0 - 17

Setting the Driver State . 1 0 - 18
Specifying the Input Format and Determining
 the Decompression Format . 1 0 - 18
Preparing to Decompress Video . 1 0 - 19
Decompressing the Video . 1 0 - 19
Ending Decompression . 1 0 - 20
Other Messages Received During Decompression 1 0 - 20

Compressing Video Data . 1 0 - 20
Obtaining the Driver State . 1 0 - 21
Specifying the Input Format and Determining
 the Compression Format . 1 0 - 21
Initialization for the Compression Sequence 1 0 - 23
Compressing the Video . 1 0 - 23
Ending Compression . 1 0 - 24

Decompressing Directly to Video Hardware . 1 0 - 25
Setting the Driver State . 1 0 - 25
Specifying the Input Format . 1 0 - 25
Preparing to Decompress Video . 1 0 - 26
Decompressing the Video . 1 0 - 27
Ending Decompression . 1 0 - 28
Rendering the Data . 1 0 - 28

Using Installable Compressors for Non-video Data 1 0 - 29
Testing Video Compression and Decompression Drivers 1 0 - 30
Video Compression and Decompression Driver Reference 1 0 - 30

Video Compression and Decompression Driver Message Reference . . 1 0 - 30
Video Compression and Decompression Driver Messages 1 0 - 33

Chapter 11 Video Capture Device Drivers 1 1 - 1
Architecture of a Video Capture Driver . 1 1 - 1

Video Capture Device Driver Channels . 1 1 - 2
The Video Capture Application . 1 1 - 3
Sample Device Drivers . 1 1 - 3

The Structure of a Video Capture Device Driver . 1 1 - 3
Combining Video Capture and Video
 Compression/Decompression Drivers . 1 1 - 4
Video Capture Header Files . 1 1 - 4
Naming Video Capture Device Drivers . 1 1 - 4
SYSTEM.INI Entries for Video Capture Device Drivers 1 1 - 4

6

 Contents v

02/10/93

The Module-Definition File . 1 1 - 6
The Module Name Line . 1 1 - 6
The Module Description Line . 1 1 - 6

Considerations for Interrupt-Driven Drivers . 1 1 - 7
Fixing Code and Data Segments . 1 1 - 7
Allocating and Using Memory . 1 1 - 7
Calling Windows Functions at Interrupt Time 1 1 - 8

The Installable Driver Interface . 1 1 - 8
An Example DriverProc Entry-Point Function . 1 1 - 8
Handling the DRV_OPEN and DRV_CLOSE Messages 1 1 - 10
Handling the DRV_ENABLE and DRV_DISABLE Messages 1 1 - 14
Driver Configuration . 1 1 - 15

Video Capture Driver Messages . 1 1 - 15
Configuring the Channels of a Video Capture Driver 1 1 - 15
Setting and Obtaining Video Capture Format . 1 1 - 17
Setting and Obtaining the Video Source and Destination Rectangles . . 1 1 - 19
Determining Channel Capabilities . 1 1 - 21
Setting and Obtaining a Video Capture Palette . 1 1 - 22
Obtaining the Device Driver Version . 1 1 - 25
Transferring Data From the Frame Buffer . 1 1 - 25
Streaming Video Capture . 1 1 - 26
The Data Transfer Model For Streaming Video Input 1 1 - 26

Initializing the Data Stream . 1 1 - 28
Preparing Data Buffers . 1 1 - 28
Starting and Stopping Streaming . 1 1 - 29
Ending Capture . 1 1 - 29
Additional Stream Messages . 1 1 - 30

Video Capture Device Driver Reference . 1 1 - 31
Video Capture Device Driver Message Reference 1 1 - 31

Message Summary . 1 1 - 32
Video Capture Device Driver Messages . 1 1 - 33
Video Capture Device Driver Data Structure Reference 1 1 - 47

7

C H A P T E R 1

The Microsoft® Video for WindowsDevelopment Kit provides the resources you need
to write applications that use the following services:

 Video Capture—These functions give your application easy access to video capture
drivers. Your application can use these functions to obtain video sequences that you
can use in AVI movies and in other applications using Video for Windows.

 Video Compression and Decompression—These functions give your application the
ability to access video compressors and decompressors that use industry standard
compression formats.

 AVI Playback with MCI—The MCI commands let your application use the AVI MCI
driver to play AVI movies and manage the playback window.

 Extended Display Services—These services augment the standard video services to
provide access to video decompressors, provide improved dithering of true-color
images to 256 colors, and dither 8-bit images to 16-color VGA displays.

 Read and Write AVI Files—The AVI file examples and information let you develop
routines to read and write AVI files.

This development kit also provides the resources needed by people developing video
capture device drivers, and video compression and decompression drivers.

The software support supplied in this development kit includes:

 A collection of sample applications and drivers that use and provide Video for
Windows services

 Header files defining the messages, data structures, and functions

 Documentation describing the features of the components of the development kit

Introduction and Installation

8

Error! Main Document Only.-2 Video for Windows Programmer's Guide

02/10/93

Installing the Software
The distribution disks included with the development kit use a batch file to install the
software. The following procedure describes the installation process.

Û To install the Video for Windows Development Software:

 1. From the MS-DOS command prompt, change to the floppy drive you are installing
from and run the INSTALL batch file. The INSTALL batch file has the following
syntax:

INSTALL C:\VFWDK

Replace C:\VFWDK with disk and path for the destination of the files.

 2. When installation is complete, change your INCLUDE and LIB environment variables
to include the INC and LIB directories in your destination path. For example, if you
used C:\VFWDK as the path during installation, you could use the following:

SET INCLUDE=[previous include line];C:\VFWDK\INC

SET LIB=[previous lib line];C:\VFWDK\LIB

For these examples, replace [previous include line] and [previous lib line] with any
existing paths for these statements.

 3. You might also want to add the BIN directory to your PATH variable. The following
example shows the template for modifying your PATH statement to include the Video
for Windows BIN directory:

SET PATH=[previous path line];C:\VFWDK\BIN

As in the previous examples, replace [previous path line] with any existing path
statements.

Documentation Overview
The chapters included in this guide describe the development of applications accessing
Video for Windows services and development of drivers providing video capture, and
video compression and decompression services. This guide contains the following
chapters:

 Chapter 1, “Introduction and Installation,” provides background information about the
contents of this guide.

 Chapter 2, “Using the Installable Compression Manager,” describes how applications
use the Installable Compression Manager (ICM) functions for compressing or
decompressing video image data. The chapter also contains a reference to the ICM
functions.

 Chapter 3, “Using the DrawDib Functions,” describes how applications can use the
DrawDib functions to access ICM services, and obtain improved support of low-end
VGA display adapters. These functions significantly improve the speed and quality of
displaying such images on display adapters with limited capabilities.

9

 Introduction and Installation Error! Main Document Only.-3

02/10/93

 Chapter 4, “AVI Files,” describes the AVI RIFF file format. The information in this
chapter applies to applications and drivers that use this file format.

 Chapter 5, “DIB Format Extensions for Microsoft Windows,” describes the DIB
format extensions for Microsoft Windows that add new compression formats, custom
compression formats, and inverted DIBs. Information in this chapter applies to both
applications and video drivers.

 Chapter 6, “Playing AVI Files With MCI,” describes how to play AVI files using the
MCI interface for Video for Windows.

 Chapter 7, “MCI Command Strings for MCIAVI,” describes the MCI command strings
for the Microsoft MCI video driver (MCIAVI.DRV) that you can use with applications
that support the MCI command-string interface.

 Chapter 8, “MCI Command Messages for MCIAVI,” describes the MCI command
messages for the Microsoft MCI video driver (MCIAVI.DRV) that you can use with
applications that support the MCI command-message interface.

 Chapter 9, “Video Capture Application Reference,” describes functions available for
video capture.

 Chapter 10, “Video Compression and Decompression Drivers,” describes the
installable driver interface used by video compressors and decompressors. This
information applies to developers creating these types of drivers. This chapter also
contains an alphabetical reference to the messages and data structures used to write
video compression and decompression drivers.

 Chapter 11, “Video Capture Drivers,” describes the installable driver interface used by
video capture drivers. This information applies to developers creating these types of
drivers. This chapter also contains an alphabetical reference to the messages and data
structures used to write video capture drivers.

10

C H A P T E R 2

The Installable Compression Manager (ICM) provides services for applications that want
to compress or decompress video image data stored in AVI files. This chapter explains the
programming techniques used to access these services. It covers the following topics:

 General information about the ICM and the Video for Windows architecture

 Information on how to compress and decompress video image data from your
application

 An alphabetic reference to the ICM functions and data structures

Before reading this chapter, you should be familiar with the video services available with
Windows. For information about these Windows topics, see the Microsoft Windows
Programmer’s Reference.

Video Compression and Decompression Header
Files

The function prototypes, constants, flags, and data structures applications use to access
the ICM services are defined in COMPMAN.H and COMPDDK.H.

ICM Architecture
The ICM is used by the Video for Windows editing tool (VidEdit) and the playback
engine (MCIAVI) to handle compression and decompression of image data. ICM is the
intermediary between the application and the actual video compression and
decompression drivers. It is the video compression/decompression drivers that do the real
work of compressing and decompressing individual frames of data.

This chapter covers the ICM and the functions a video editing or playback application
uses to communicate with it. For information on the video compression and
decompression drivers, see Chapter 10, Video Compression and Decompression Drivers.

As the application makes calls to the ICM to compress or decompress data, the ICM
translates this to a message to be sent to the appropriate compressor or decompressor
which does the work of compressing or decompressing the data. The ICM gets the return
from the driver and then returns back to the application.

Using the Installable
Compression Manager

11

Error! Main Document Only.-2 Video for Windows Programmer's Guide

02/10/93

The ICMAPP sample application illustrates routines that compress data, decompress data,
and display a dialog box. You might find the helper functions defined in ICM.C useful in
developing your application.

Using ICM Services
In general, an application performs the following tasks to use ICM services:

 Locate, open, or install the appropriate compressor or decompressor

 Configures or obtains configuration information about the compressor or
decompressor

 Uses a series of functions to compress, decompress, and (for decompressors with
drawing capabilities) draw the data

These tasks are covered in the following sections. The sample application, ICMApp,
shows how to use the ICM services to do all of the above functions to compress and
decompress images.

Error Returned from the ICM Functions
For most ICM functions, return values of less than zero indicate an error. Your application
should check these return values to see if the ICM function encounters an error. To keep
the example fragments in this chapter simple, many of them do not check for errors. For
more complete examples, see the ICMAPP and ICM examples included with the
development kit.

Locating and Opening Compressors and Decompressors
To use ICM, an application must open a compressor or decompressor. If your application
does not know about the compressors or decompressors installed on a system, it must find
a suitable compressor to open. Once your application finishes with a compressor or
decompressor, it closes it to free any resources used for compression or decompression.
Your application can use the following functions for finding compressors and
decompressors, and opening and closing them:

ICInfo
This function obtains information about compressor or decompressor.

ICOpen
This function opens a compressor or decompressor.

ICClose
This function closes a compressor or decompressor.

ICLocate
This function locates a specific type of compressor or decompressor.

If your application knows the compressor or decompressor it needs, it can open the
compressor with the ICOpen function. Your application uses the handle returned by this
function to identify the opened compressor or decompressor when it uses other ICM
functions. The ICOpen function has the following syntax:

12

 Using the Installable Compression Manager Error! Main Document Only.-3

02/10/93

BOOL ICOpen(fccType, fccHandler, wMode)

The fccType and fccHandler parameters are four character codes used to describe the type
and handler type for the compressor. Compressor and decompressors are identified by two
four-character codes. Applications open a specific compressor or decompressor by using
the four-character codes for the type and handler. The first four-character code describes
the type of the compressor or decompressor. For video compressors and decompressors,
this is always 'vidc'. The second four-character code identifies the specific compression
handler type. For example, this value is 'msvc' for the Video 1 compressor. Your
application can use NULL if it does not know this four-character code.

In an AVI file, the stream header contains information about the stream type and
the specific handler for that stream. For video streams, the stream type is 'vidc' and the
handler type is the appropriate handler four-character code. As in the previous example,
Video 1 compressed streams use 'msvc'.

The wMode parameter specifies flags passed to the compressor or decompressor. For
ICOpen, these flags let the compressor or decompressor know why it is opened and they
can prepare for subsequent operation. The following flags are defined:

ICMODE_COMPRESS
Advises a compressor it is opened for compression.

ICMODE_DECOMPRESS
Advises a decompressor it is opened for decompression.

ICMODE_DRAW
Advises a decompressor it is opened to decompress an image and draw it directly to
hardware.

ICMODE_QUERY
Advises a compressor or decompressor it is opened to obtain information.

If your application does not know which compressors and deompressors are installed on a
system, it can use ICInfo to enumerate them. This function has the following syntax:

BOOL ICInfo(fccType, fccHandler, lpicinfo)

The fccType parameter specifies a four-character code indicating the type of compressor
or decompressor. To enumerate the compressors or decompressors, your application
specifies an integer for fccHandler. Your application receives return information for
integers between 0 and the number of installed compressors or decompressors of the type
specified for fccType. The compressor or decompressor returns information about itself in
a ICINFO data structure pointed to by lpicinfo. The ICInfo function returns TRUE if it
can locate the specified compressor or decompressor.

The following example enumerates the compressors or decompressors in the system to
find one that can handle the format of its images. (The example uses ICCompressQuery
and ICDecompressQuery to determine if a compressor or decompressor supports the
image format. The use of these functions is described in “Compressing Image Data” and
“Decompressing Image Data.”)

Note:

13

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

for (i=0; ICInfo(p->fccType, i, &p->icinfo); i++)
{
 hic = ICOpen(p->icinfo.fccType, p->icinfo.fccHandler, ICMODE_QUERY);

 if (hic)
 {
 // skip this compressor if it can't handle the specifed format
 if (p->fccType == ICTYPE_VIDEO &&
 p->pvIn != NULL &&
 ICCompressQuery(hic, p->pvIn, NULL) != ICERR_OK &&
 ICDecompressQuery(hic, p->pvIn, NULL) != ICERR_OK)
 {
 ICClose(hic);
 continue;
 }

 // find out the compressor name.
 ICGetInfo(hic, &p->icinfo, sizeof(p->icinfo));

 // stuff it into the combo box
 n = ComboBox_AddString(hwndC,p->icinfo.szDescription);
 ComboBox_SetItemData(hwndC, n, hic);
 }
}

Applications can use ICLocate to find a compressor or decompressor of a specific type,
and to obtain a handle to it for use in other ICM functions. The ICLocate function has the
following syntax:

HIC ICLocate (fccType, fccHandler, lpbiIn, lpbiOut, wFlags)

The fccType and fccHandler parameters are four-character codes used to describe the type
and handler type for the compressor. Your application can specify NULL for fccHandler
if it does not know the handler type or if it can use any handler type.

The lpbiIn parameter contains a pointer to a BITMAPINFOHEADER structure describing
the input format the compressor or decompressor will handle. The lpbiOut parameter
contains a pointer to a BITMAPINFOHEADER structure describing the output format
desired by the application. If your application does not care what output format is returned
by a compressor or decompressor, you can set lpbiOut to NULL. The wFlags parameter
indicates the type of operation you want the driver to do: compress, decompress or
directly decompress and draw.

For example, the following fragment tries to find a compressor that can compress an 8-bit
per pixel bitmap:

14

 Using the Installable Compression Manager Error! Main Document Only.-5

02/10/93

BITMAPINFOHEADER bih;
HIC hIC

// inialize the Bitmap structure
bih.biSize = sizeof(BITMAPINFOHEADER);
bih.biWidth = bih.biHeight = 0;
bih.biPlanes = 1;
bih.biCompression = BI_RGB; // standard RGB bitmap
bih.biBitcount = 8; // 8bpp format
bih.biSizeImage = 0;
bih.biXPelsPerMeter = bih.biYPelsPerMeter = 0;
bih.biClrUsed = bih.biClrImportant = 256;

hIC = ICLocate (ICTYPE_VIDEO, 0L,
 (LPBITMAPINFOHEADER)&bih, NULL, ICMODE_COMPRESS);

The following fragment tries to locate a specific compressor to compress the 8-bit RGB
format to an 8-bit RLE format:

BITMAPINFOHEADER bihIn, bihOut;
HIC hIC

// initialize the Bitmap structure
bihIn.biSize = bihOut.biSize = sizeof(BITMAPINFOHEADER);
bihIn.biWidth = bihIn.biHeight = bihOut.biWidth = bihOut.biHeight = 0;
bihIn.biPlanes = bihOut.biPlanes= 1;
bihIn.biCompression = BI_RGB; //standard RGB bitmap for input
bihOut.biCompression = BI_RLE8; // 8-bit RLE for output format
bihIn.biBitcount = bihOut.biBitCount = 8; // 8bpp format
bihIn.biSizeImage = bihOut.biSizeImage = 0;
bihIn.biXPelsPerMeter = bih.biYPelsPerMeter =
 bihOut.biXPelsPerMeter = bihOut.biYPelsPerMeter = 0;
bihIn.biClrUsed = bih.biClrImportant =
 bihOut.biClrUsed = bihOut.biClrImportant = 256;

hIC = ICLocate (ICTYPE_VIDEO, 0L,
 (LPBITMAPINFOHEADER)&bihIn,
 (LPBITMAPINFOHEADER)&bihOut, ICMODE_COMPRESS);

Installing and Removing Compressors and
Decompressors

There are three methods of installing compressors and decompressors. They might be
installed during the set-up of Video for Windows or other software relating to Video for
Windows. Users can also install compressors and decompressors with the Drivers option
of the Control Panel. Applications can also install custom compressors and decompressors
functions required for their operation. Most applications will not need to install or
remove compressors or decompressors. Your application can use the following functions
for installing and removing compressors and decompressors:

15

Error! Main Document Only.-6 Video for Windows Programmer's Guide

02/10/93

ICInstall
This function installs compressor or decompressor.

ICRemove
This function removes an installed compressor or decompressor.

Compressors and decompressor are usually installed by a setup program or by the user
with the Drivers option of the Control Panel. An application might, however, install a
compressor directly or install a function as a compressor. In these cases, the application
uses ICInstall and ICRemove.

The ICInstall function creates a new entry in the SYSTEM.INI for a compressor or
decompressor. After installation, the compressor or decompressor must still be opened.
The ICInstall function has the following syntax:

BOOL ICInstall (fccType, fccHandler, lParam, szDesc, wFlags)

The fccType and fccHandler parameters specify four-character codes describing the
compressor type and handler type. Flags set in wFlags specify the meaning of lParam.
The following flags are defined:

ICINSTALL_DRIVER
Indicates lParam points a null-terminated string containing the name of a compressor
or decompressor.

ICINSTALL_FUNCTION
Indicates lParam points to a compressor function.

If you are installing a driver, lParam specifies the name of the driver. If you are installing
a function as a compressor or decompressor, use lParam to specify a far pointer to your
function. This function should be structured like the DriverProc entry point function used
by installable drivers. For more information on the DriverProc entry point function, see
Chapter 10, “Video Compression and Decompression Drivers.”

Use the szDesc parameter for a descriptive name for the compressor or decompressor.
This information is not used and your application does not have to supply a name.

For example, the following fragment installs the ICSample driver:

result = ICInstall (ICTYPE_VIDEO, mmioFOURCC('s','a','m','p'),
 (LPARAM)(LPSTR)"icsample.drv", "Sample Codec Driver", ICINSTALL_DRIVER)

The following fragment shows how an application would install a function as a
compressor or decompressor.

16

 Using the Installable Compression Manager Error! Main Document Only.-7

02/10/93

// This function looks like a DriverProc entry point
LRESULT MyCodecFunction(DWORD dwID, HDRVR hDriver, UINT uiMessage,
 LPARAM lParam1, LPARAM lParam2);

// This function installs the MyCodecFunction as a compressor
result = ICInstall (ICTYPE_VIDEO, mmioFOURCC('s','a','m','p'),
 (LPARAM)(FARPROC)&MyCodecFunction, NULL, ICINSTALL_FUNCTION);

Usually the Drivers option of the Control Panel is used to remove a compressor or
decompressor. Applications installing a function as a compressor or decompressor must
remove the function before the application terminates so other applications do not try to
use the function. Applications can use ICRemove to remove the function installed. The
ICRemove function has the following syntax:

BOOL ICRemove (fccType, fccHandler, wFlags)

The fccType and fccHandler parameters specify four-character codes describing the
compressor type and handler type. The wFlags parameter is not used.

Configuring Compressors and Decompressors
Applications can configure the compressor or have the compressor display a dialog box to
let the user to do the configuration. The following functions are available for these
operations:

ICQueryConfigure
Determines if the compressor or decompressor supports a configuration dialog box.

ICConfigure
Displays the configuration dialog box of the compressor or decompressor.

ICGetStateSize
Determines the size of the state data for the compressor or decompressor.

ICGetState
Obtains the state data from the compressor or decompressor.

ICSetState
Sends the state data to the compressor or decompressor.

If practical, your application should let the user configure the compressor with the
compressor’s configuration dialog box. Typically, this makes your application
independent of the compressor and you do not need to consider all the options available to
a compressor.

Your application uses ICQueryConfigure to determine if a compressor can display a
configuration dialog box. If the compressor can display a configuration dialog box, your
application uses ICConfigure to display it. Both of these functions use the handle your
application obtained when it located the compressor. The ICConfigure function also
requires a handle to the parent window. Your application can use the following fragment
to test for support of the configuration dialog box and display it:

17

Error! Main Document Only.-8 Video for Windows Programmer's Guide

02/10/93

 if (ICQueryConfigure(hIC)){

 // If compressor handles a configuration dialog box, display it
 // using our app window as the parent window.
 ICConfigure(hIC, hwndApp);

}

Your application might also directly get and set the state information for a compressor. If
your application creates or modifies the state data, it must know the actual layout of the
compressor data before restoring a compressor state. Alternatively, if your application
obtains state data from a compressor and uses it to restore the state in a subsequent
session, it must make sure that it only restores state information obtained from the
compressor it is currently using. The following fragments show how to obtain the state
data:

if (size > 0) {

 dwStateSize = ICGetStateSize(hIC); // get size of buffer required
 h = GlobalAlloc(GHND, dwStateSize); // allocate data buffer
 lpData = GlobalLock(h); // lock data buffer
 ICGetState(hIC, (LPVOID)lpData, dwStateSize); // get the state data

 // Store the state data as required
}

The following fragments show how to restore state data:

ICSetState(hIC, (LPVOID)lpData, dwStateSize); // set the new state data
GlobalUnlock(h);

Getting Information about Compressors and
Decompressors

The following functions can be used to get information about a compressor or
decompressor:

ICGetInfo
Obtains general information about the compressor or decompressor.

ICGetDefaultKeyFrameRate
Determines the default key frame rate of a compressor or decompressor.

ICGetDisplayFormat
Determines the 'best' format a compressor or decompressor has for displaying on the
screen.

ICGetDefaultQuality
Determines the default quality value of a compressor or decompressor.

To obtain information about a compressor or decompressor, your application can use
ICGetInfo. This function fills an ICINFO structure with information about the
compressor or decompressor. Your application must allocate the memory for the ICINFO

18

 Using the Installable Compression Manager Error! Main Document Only.-9

02/10/93

structure and pass a pointer to it in ICGetInfo. The ICINFO structure has the following
definition:

typedef struct {
 DWORD dwSize;
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwVersionICM;
 char szName[16];
 char szDescription[128];
 char szDriver[128];
} ICINFO;

The dwSize field contains the size of the ICINFO structure.

The fccType field contains the four-character code 'vidc' for image compression.

The fccHandler field identifies the compressor or decompressor with its four-character
code.

The dwVersion field contains the version number of the compression driver.

The dwVersionICM field will contain the ICM version number supported by the
compressor or decompressor. This is 1.0 (0x00010000) if the compressor or decompressor
is written for Video for Windows 1.0.

The szName field contains the short name of the compressor or decompressor. The name
is used in list-boxes for choosing compression methods.

The szDescription field contains the long description for the compressor or
decompressor.

The szDriver field contains the actual module name that contains the compressor or
decompressor.

The dwFlags field contains flags indicating capabilities of the compressor or
decompressor. The following flags are defined:

VIDCF_QUALITY
Indicates the compressor or decompressor supports quality levels.

VIDCF_CRUNCH
Indicates a compressor supports compressing to an arbitrary frame size.

VIDCF_TEMPORAL
Indicates the compressor or decompressor supports inter-frame compression.

VIDCF_DRAW
Indicates decompressor can draw to hardware. (These decompressors support the
ICDraw functions.)

19

Error! Main Document Only.-10 Video for Windows Programmer's Guide

02/10/93

VIDCF_FASTTEMPORAL
Indicates a compressor can do temporal compression but it doesn't need previous
frame.

Unless your application is looking for a particular compressor or decompressor, the flags
give your application the most useful information. Your application can check the flags to
determine the capabilities of the compressor or decompressor. For example, if quality is
supported, your application might enable a quality selection control in a compression
dialog box.

The following fragment shows how to obtain the ICINFO information from a compressor
or decompressor:

ICINFO ICInfo;

ICGetInfo(hIC, &ICInfo, sizeof(ICInfo));

The ICGetDefaultKeyFrameRate and ICGetDefaultQuality functions let your
application determine the default key frame rate and default quality value. Both of these
functions require only the handle to the compressor or decompressor. The following
fragment uses both functions to obtain the default values:

DWORD dwKeyFrameRate, dwQuality;

dwKeyFrameRate = ICGetDefaultKeyFrameRate(hIC);
dwQuality = ICGetDefaultQuality(hIC);

Your application can use the following functions to display the about dialog box of a
compressor or decompressor:

ICQueryAbout
Determines if a compressor or decompressor supports an about dialog box.

ICAbout
Displays the about dialog box of a compressor or decompressor.

The ICQueryAbout function lets your application determine if a compressor or
decompressor can display the about dialog box. The ICAbout function actually displays
the dialog box. The following examples uses these two functions:

if (ICQueryAbout(hIC)){

 // If the compressor has an about dialog box, show it
 ICAbout(hIC, hwndApp);
}

20

 Using the Installable Compression Manager Error! Main Document Only.-11

02/10/93

Compressing Image Data
Your application uses a series of functions to coordinate compressing video data. The
coordination involves the following activities:

 Specifying the input format and determining the compression format

 Preparing the compressor for compression

 Compressing the video

 Ending compression

Your application uses the following functions for these activities:

ICCompress
Compress data.

ICCompressBegin
Prepare compressor driver for compressing data.

ICCompressEnd
Tell the compressor driver to end compression.

ICCompressGetFormat
Determine the output format of a compressor.

ICCompressGetFormatSize
Get the size of the output format data.

ICCompressGetSize
Get the size of the compressed data.

ICCompressQuery
Deterimine if a compressor can compress a specific format.

Specifying the Input Format and Determining the
Compression Format
When your application wants to compress data and the output format is not important, it
must first locate a compressor that can handle the input format. When the output format is
not important to your application, it can use ICCompressGetFormat to have the
compressor suggest a format. If the compressor can produce multiple formats, it returns
the format that preserves the greatest amount of information rather than one that
compresses to the most compact size. This will preserve image quality if the video data is
later edited and recompressed. The ICCompressGetFormat function has the following
syntax:

LRESULT ICCompressGetFormat(hic, lpbiInput, lpbiOutput)

The hic parameter specifies the compressor handle. The lpbiInput parameter specifies a
far pointer to a BITMAPINFO structure indicating the format of the input data. The
lpbiOutput parameter specifies a far pointer to a buffer used to return the output format
suggested by the compressor. Your application can determine the size of the buffer
needed for the buffer with ICCompressGetFormatSize.

21

Error! Main Document Only.-12 Video for Windows Programmer's Guide

02/10/93

Your application can use the output format data as the 'strf' chunk in the AVI RIFF file.
This data starts out like a BITMAPINFOHEADER data structure. The compressor can
include any additional information required to decompress the file after this information.
A color table (if used) follows this information. If the compressor has format data
following the BITMAPINFOHEADER structure, it updates the biSize field to specify the
number of bytes used by the structure and additional data.

The following example fragment shows how an application can determine the output
format that a compressor wants to use.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// *lpbiIn must be initialized to the input format

dwFormatSize = ICCompressGetFormatSize(hIC, lpbiIn); // get output buffer size
h = GlobalAlloc(GHND, dwFormatSize); // allocate format buffer
lpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h); // lock format buffer
ICCompressGetFormat(hIC, lpbiIn, lpbiOut); // fill the format information

If your application requires a specific output format, it should use ICCompressQuery to
interrogate a compressor to determine if it supports the output format your application
suggests. This function has the following syntax:

LRESULT ICCompressQuery(hic, lpbiInput, lpbiOutput)

The hic parameter specifies the compressor handle. Your application typically obtains this
with ICLocate or ICOpen. The lpbiInput and lpbiOutput parameters specify far pointers
to the data structures defining the input and output formats your application prefers. If the
compressor can handle both formats it returns ICERR_OK. If it cannot handle the
formats, it returns ICERR_BADFORMAT. If the compressor returns
ICERR_BADFORMAT and the output format is critical to your application, your
application will have to find an alternate compressor. If an alternate output format is
satisfactory, your application might choose to use ICCompressQuery with the alternate
formats to determine if the compressor can handle them. Or your application can use
ICCompressGetFormat to have the compressor suggest the output format.

If your application specifies NULL for the lpbiOutput parameter of ICCompressQuery,
the compressor will select the output format. Typically, your application specifies NULL
when it only wants to know if the compressor can handle the input format. The output
format information is not returned to your application.

The following fragment uses ICCompressQuery to determine if a compressor can handle
both the input and output format:

22

 Using the Installable Compression Manager Error! Main Document Only.-13

02/10/93

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// Both *lpbiIn & *lpbiOut must be initialized to the respective formats
if (ICCompressQuery(hIC, lpbiIn, lpbiOut) == ICERR_OK){

 // format is supported - use the compressor

}

Your application will also need the size of the data returned from the compressor after
compression is complete. Use ICCompressGetSize to obtain the worst case (largest)
buffer required by the compressor. The number of bytes returned should be used to
allocate a buffer used for subsequent compression of images. The following example
determines the buffer size and allocates a buffer of that size:

 // find the worst-case buffer size
 dwCompressBufferSize = ICCompressGetSize(hIC, lpbiIn, lpbiOut);

 // allocate a buffer and get lpOutput to point to it
 h = GlobalAlloc(GHND, dwCompressBufferSize);
 lpOutput = (LPVOID)GlobalLock(h);

Initialization for the Compression Sequence
Once your application selects a compressor that handles the input and output formats it
needs, it can prepare the compressor to start compressing data. The ICCompressBegin
function initializes the compressor. This function requires the compressor handle and the
input and output format. It returns ICERR_OK if it initializes properly for the specified
formats. If the compressor cannot handle the formats, or if they are incorrect, it returns the
error ICERR_BADFORMAT.

Compressing the Video
The ICCompress function does the actual compression. Your application must use this
function repeatedly until all the frames are compressed. This function has the following
syntax:

LRESULT ICCompress(hic, dwFlags, lpbiOutput, lpData, lpbiInput, lpBits,
 lpckid, lpdwFlags, lFrameNum, dwFrameSize,
 dwQuality, lpbiPrev, lpPrev)

The hic parameter specifies the handle to the compressor.

The dwFlags parameter specifies any applicable flags for the compression. Your
application can use ICM_COMPRESS_KEYFRAME to have the compressor make the
frame a key frame. (A key frame is one that does not require data from a previous frame
for decompression.) When this flag is set, compressors use this image as the initial one in
a sequence.

The lpbiInput and lpBits parameters specify far pointers to the data structure defining the
input format and the location of the input buffer. Similarly, the lpbiOutput and lpData
parameters specify far pointers to the data structure defining the output format and the
location of the buffer for the output data. Your application must allocate the memory for

23

Error! Main Document Only.-14 Video for Windows Programmer's Guide

02/10/93

these buffers. When control returns to your application, it typically stores the compressed
data in lpbiOutput and lpData in a subsequent operation. If your application needs to
move the compressed data, it can find the size used for the data in the biSizeImage field
in the BITMAPINFO structure specified for lpbiOutput.

The lpckid and lpdwFlags are used for AVI file data returned by the compressor. The
lpckid specifies a far pointer to a DWORD used to hold a chunk ID for data in the AVI
file. The lpdwFlags specifies a far pointer to a DWORD holding the return flags used in
the AVI index. The compressor will set this flag to AVIIF_KEYFRAME to correspond to
the ICM_COMPRESS_KEYFRAME flag. The AVIIF_KEYFRAME flag marks the key-
frames in the AVI file. If your application creates AVI files, it should save the information
returned for these parameters in the file.

The lFrameNum parameter specifies the frame number. Your application provides and, if
necessary, increments this information. Compressors use this value to check if frames are
being sent out of order when they are doing fast temporal compression. If your application
has a frame recompressed, it should use the same frame number used when the frame was
first compressed. If your application compresses a still frame image, it can specify zero
for lFrameNum.

The dwFrameSize parameter specifies the requested frame size in bytes. If set to zero, the
compressor chooses the frame size. If set to a non-zero value, the compressor tries to
compress the frame to within the specified size. To obtain the size goal, the compressor
might have sacrificed image quality (or made some other trade-off). Compressors
recognize the frame size value only if they return the VIDCF_CRUNCH flag for
ICGetInfo.

The dwQuality parameter specifies the requested quality value for the frame. Compressors
support this only if they set the VIDCF_QUALITY flag for ICGetInfo.

The lpbiPrev and lpPrev parameters specify far pointers to the data structure defining the
format and the location of the previous uncompressed image. Compressors use this data if
they perform temporal compression (that is, they need the previous frame to compress the
current frame). Compressors need this information only if they return the
VIDCF_TEMPORAL flag. Compressors returning the VIDCF_FASTTEMPORAL flag
can perform temporal compression without the previous frame.

The ICCompress function returns ICERR_OK if successful. Otherwise, it returns an error
code.

After your application has compressed its data, it uses ICCompressEnd to notify the
compressor that it has finished. To restart compression after using this function, your
application must re-initialize the compressor with ICCompressBegin.

The following fragment compresses image data for use in an AVI file. It assumes the
compressor does not support VIDCF_CRUNCH or VIDCF_TEMPORAL flags but it does
support VIDCF_QUALITY.

24

 Using the Installable Compression Manager Error! Main Document Only.-15

02/10/93

DWORD dwCkID;
DWORD dwCompFlags;
DWORD dwQuality;
LONG lNumFrames, lFrameNum;

// assume dwNumFrames is initialized to the total number of frames
// assume dwQuality holds the proper quality value (0-10000)
// assume lpbiOut, lpOut, lpbiIn and lpIn are all initialized properly.

if (ICCompressBegin(hIC, lpbiIn, lpbiOut) == ICERR_OK){

 // If o.k. to start, compress each frame
 for (lFrameNum = 0; lFrameNum < lNumFrames; lFrameNum++){

 if (ICCompress(hIC, 0, lpbiOut, lpOut, lpbiIn, lpIn,
 &dwCkID, &dwCompFlags, lFrameNum,
 0, dwQuality, NULL, NULL) == ICERR_OK){

 // Write compressed data the AVI file.
 .
 .
 .
 // set lpIn to be the next frame in the sequence

 } else {

 // handle compressor error

 }

 }

 ICCompressEnd(hIC); // terminate compression

} else {

 // handle error

}

Decompressing Image Data
Similar to compressing data, your application uses a series of functions to control the
decompressor used to decompress the video data. Decompressing data involves the
following activities:

 Specifying the input format and determining the decompression format

 Preparing to decompress video

 Decompressing the video

 Ending decompression

25

Error! Main Document Only.-16 Video for Windows Programmer's Guide

02/10/93

Your application uses the following functions for these activities:

ICDecompress
Decompress data.

ICDecompressBegin
Prepare decompressor for decompressing data.

ICDecompressEnd
Tell decompressor to end decompression.

ICDecompressGetFormat
Determine the output format of a decompressor.

ICDecompressGetFormatSize
Get the size of the output data format.

ICDecompressGetPalette
Get the palette for the output format of a decompressor.

ICDecompressQuery
Determine if a decompressor can decompress a specific format.

Decompression is handled very much like compression except that the input format is a
compressed format and the output is a displayable format. The input format for
decompression is usually obtained from the video stream header in the AVI file. After
determining the input format, your application can use ICLocate or ICOpen to find a
decompressor that can handle it.

Specifying the Input Format and Determining the
Decompression Format
Because your application allocates the memory required for decompression, it needs to
determine the maximum memory the decompressor can require for the output format. The
ICDecompressGetFormatSize function obtains the number of bytes the decompressor
uses. This function has the following syntax:

DWORD ICDecompressGetFormatSize(hic, lpbi)

The hic parameter specifies a handle to a decompressor. The lpbi specifies a far pointer to
a BITMAPINFO structure indicating the format of the input data.

If your application wants the decompressor to suggest a format, it can use
ICDecompressGetFormat to obtain the format. This function has the following syntax:

DWORD ICDecompressGetFormat(hic, lpbiInput, lpbiOutput)

Like ICDecompressGetFormatSize, the hic and lpbiInput parameters specify a handle to
the decompressor and a far pointer to the structure indicating the format of the input data.
The decompressor returns its suggested format in the BITMAPINFO structure pointed to
by lpbiInput. Your application should check that the decompressor returns ICERR_OK
for the return value before accessing the lpbiOutput information. If the decompressor
cannot handle the input format, it returns ICERR_BADFORMAT. The following
fragment shows how an application can use ICDecompressGetFormat:

26

 Using the Installable Compression Manager Error! Main Document Only.-17

02/10/93

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// assume *lpbiIn points to the input (compressed) format

dwFormatSize = ICDecompressGetFormatSize(hIC, lpbiIn); // get output
 // buffer size
h = GlobalAlloc(GHND, dwFormatSize); // allocate format buffer
lpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h); // lock format buffer
ICDecompressGetFormat(hIC, lpbiIn, lpbiOut); // fill the format information

If your application needs a specific output format, in can use ICDecompressQuery to
determine if the decompressor can handle both the input and output format. This function
uses the same parameters as ICDecompressGetFormat except that your application sets
lpbiOutput to point at the structure defining the desired output format. If your application
is just determining if the decompressor can handle the input format, it can specify NULL
for lpbiOutput. The following fragment shows how an application can use this function:

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// assume both *lpbiIn & *lpbiOut are initialized to the respective formats
if (ICDecompressQuery(hIC, lpbiIn, lpbiOut) == ICERR_OK){

 // format is supported - use the decompressor

}

If your application creates its own format, it must also obtain a palette for the bitmap.
(Most applications use standard formats and do not need to obtain a palette.) Your
application can obtain the palette with ICDecompressGetPalette. This function has the
following syntax:

DWORD ICDecompressGetPalette(hic, lpbiInput, lpbiOutput)

Like the other functions, hic and lpbiInput specify a handle to a decompressor and point
to a BITMAPINFO structure indicating the format of the input data. The lpbiOutput
parameter points to a BITMAPINFO structure used to return the color table. The space
reserved for the color table must have an entire 256 color palette table reserved at the end
of the structure. The following fragment shows how to get the palette information:

ICDecompressGetPalette(hIC, lpbiIn, lpbiOut);

// move up to the palette
lpPalette = (LPBYTE)lpbiOut + lpbi->biSize;

Initialization for the Decompression Sequence
Once your application selects a decompressor that handles the input and output formats it
needs, it can prepare the decompressor to start decompressing data. The
ICDecompressBegin function initializes the compressor. This function requires the
compressor handle and the input and output format. It returns ICERR_OK if it initializes
properly for the specified formats. If the compressor cannot handle the formats, or if they
are incorrect, it returns the error ICERR_BADFORMAT.

27

Error! Main Document Only.-18 Video for Windows Programmer's Guide

02/10/93

Decompressing the Video
The ICDecompress function does the actual decompression. Your application must use
this function repeatedly until all the frames are decompressed. This function has the
following syntax:

DWORD ICDecompress(hic, dwFlags, lpbiFormat, lpData, lpbi, lpBits)

The hic parameter specifies the handle to the decompressor.

The dwFlags parameter specifies any applicable flags for decompression. If your video
presentation is starting to lag other components (such as audio), your application can use
ICM_DECOMPRESS_HURRYUP to have the decompressor decompress at a faster rate.
To speed up decompression, a decompressor might extract only the information it needs
to decompress the next frame and not fully decompress the current frame. Thus, when
your application uses this flag, it should not try to draw the decompressed data.

The lpbiFormat and lpData parameters specify far pointers to the data structure defining
the input format and the location of the input buffer. Similarly, the lpbi and lpBits
parameters specify far pointers to the data structure defining the output format and the
location of the buffer for the output data. Your application must allocate the memory for
these buffers. When control returns to your application, it will use the information in lpbi
and lpBits for subsequent processing of the decompressed data.

The ICDecompress function returns ICERR_OK if successful. Otherwise, it returns an
error code.

After your application has decompressed its data, it uses ICDecompressEnd to notify the
decompressor that it has finished. To restart decompression after using this function, your
application must re-initialize the decompressor with ICDecompressBegin. The following
fragment shows how an application can initialize a decompressor, decompress a frame
sequence, and terminate decompression:

LPBITMAPINFOHEADER lbpiIn, lpbiOut;
LPVOID lpIn, lpOut;
LONG lNumFrames, lFrameNum;

// assume lpbiIn and lpbiOut are initialized to the input and output format
// and lpIn and lpOut are pointing to the data buffers.

if (ICDecompressBegin(hIC, lpbiIn, lpbiOut) == ICERR_OK){

 for (lFrameNum = 0; lFrameNum < lNumFrames, lFrameNum++){

 if (ICDecompress(hIC, 0, lpbiIn, lpIn, lpbiOut, lpOut) == ICERR_OK){

 // frame decompressed OK so we can process it as required

28

 Using the Installable Compression Manager Error! Main Document Only.-19

02/10/93

 } else {

 // handle decompression error

 }
 }

 ICDecompressEnd(hIC);

} else {

 // handle error for decompression initialization

}

Using Hardware Drawing Capabilities
Some decompressors have the ability to draw directly to video hardware as they
decompress video frames. These decompressors return the VIDCF_DRAW flag in
response to ICGetInfo. When using this type of decompressor, your application does not
have to handle the decompressed data. It lets the decompressor retain the decompressed
data for drawing. The following functions are used to for decompressing and drawing
with decompressors that have drawing capabilities:

ICDrawBegin
This function prepares a decompressor for drawing.

ICDrawEnd
This function stops a decompressor’s drawing operations.

ICDrawFlush
This function flushes the buffers in the decompressor.

ICDrawQuery
This function determines if the decompressor can render data in a specific format.

ICDrawStart
This function starts the internal clock a decompressor uses for drawing.

ICDrawStop
This function stops the internal clock a decompressor uses for drawing.

ICGetBuffersWanted
This function determines the pre-buffering requirements of a compressor.

If your application uses a decompressor with drawing capabilities, it must handle the
following activities:

 find a decompressor that can decompress and draw a bitmap with the input format
specified

 prepare for decompression

 decompress data

 terminate the decompression process

29

Error! Main Document Only.-20 Video for Windows Programmer's Guide

02/10/93

Specifying the Input Format
Since your application no longer needs to draw the final data, it does not need to be
concerned with the output format. However, it must make sure the decompressor can draw
the input format. Your application can use ICDrawQuery to determine if a decompressor
can handle the input format. While this function can determine if a deompressor can
handle the format, it does not determine if the a decompressor has all the capablities
needed to draw a bitmap. If your application is uncertain if the decompressor can render
the bitmap as required, use this function with ICDrawBegin The following section
describes ICDrawBegin. The following fragment shows how to check the input format
with ICDrawQuery:

// lpbiIn points to BITMAPINFOHEADER structure indicating the input format

if (ICDrawQuery(hIC, lpbiIn) == ICERR_OK){

 // decompressor recognizes the input format

} else {

 // we need a different decompressor

}

Preparing to Decompress Video
The ICDrawBegin function initializes a decompressor and it informs the decompressor
about the destination of drawing. The ICDrawBegin function has the following syntax:

DWORD ICDrawBegin(hIC, dwFlags, hPal, hwnd, hdc, xDst, yDst, dxDst, dyDst,
 lpbi, xSrc, yScr, dxSrc, dySrc, dwRate, dwScale)

The hIC parameter contains the handle to the decompressor. The dwFlags parameter
specifies any applicable flags. The following flags are defined for this function:

ICDRAW_QUERY
Use to determine if the decompressor can handle the decompression. The
decompressor does not draw when this flag is used.

ICDRAW_FULLSCREEN
Indicates that the decompressor will draw to the full screen rather than to a window.

ICDRAW_HDC
Indicates that the decompressor will use a window and display context for drawing.

The hPal parameter specifies a handle to the palette used for drawing. Decompressor
ignore this information and your application can set it to null.

The hwnd and hdc parameters define the window and display context used for drawing.
Your application must set these values if it uses the ICDRAW_HDC flag.

The xDst, yDst, dxDst and dyDst parameters define the destination rectangle used for
drawing. Specify the destination rectangle values relative to the current window or display
context. Your application should set these parameters to the desired destination rectangle

30

 Using the Installable Compression Manager Error! Main Document Only.-21

02/10/93

if it uses ICDRAW_HDC. It can set them to zero if it uses the ICDRAW_FULLSCREEN
flag.

The xSrc, ySrc, dxSrc, and dySrc parameters specify the source rectangle used for clipping
the frames of the image. The decompressor will stretch the rectangle specified as the
source into the rectangle specified by the destination when drawing.

The lpbi parameter should contain a pointer to the BITMAPINFO structure for the input
format. Your application uses the dwRate and dwScale parameters to specify the
decompression rate. The integer value specified for dwRate divided by the integer value
specified for dwScale defines the play rate in frames per second. This is used by the
decompressor when it is responsible for timing of frames on playback.

The following fragment shows the initialization sequence to have the decompressor draw
full screen:

// assume lpbiIn has the input format, dwRate has the data rate
if (ICDrawBegin(hIC, ICDRAW_QUERY|ICDRAW_FULLSCREEN, NULL, NULL,
 NULL, 0, 0, 0, 0, lpbiIn, 0, 0, 0, 0, dwRate, dwScale) == ICERR_OK){

 // decompressor supports this drawing so set up to draw.
 ICDrawBegin(hIC, ICDRAW_FULLSCREEN, hPal, NULL, NULL, 0, 0, 0, 0, lpbiIn,
 0, 0, lbpi->biWidth, lpbi->biHeight, dwRate, dwScale);

 // we're ready to start decompressing and drawing frames now

 // drawing done so terminate
 ICDrawEnd(hIC);
} else {

 // do drawing myself

}

Some decompressors buffer the compressed data for more efficient operation. Your
application can use ICGetBuffersWanted to determine how many data frames it should
send to the decompressor before it has the decompressor draw them.

Decompressing the Video
The ICDraw function has the decompressor do the actual decompression. This function
has the following syntax:

LRESULT ICDraw(hIC, dwFlags, lpFormat, lpData, cbData, lTime)

The hIC is the handle to the decompressor. The dwFlags are flags set by the application
and used by the decompressor. These flags can be:

ICDRAW_HURRYUP
Tell the decompressor to decompress at a faster rate.

31

Error! Main Document Only.-22 Video for Windows Programmer's Guide

02/10/93

ICDRAW_UPDATE
Tell the decompressor to update the screen based on the last data received. In this case
the lpData parameter should be NULL.

The lpFormat parameter specifies a pointer to the format of the input data. The lpData
parameter contains the actual data to be decompressed and later drawn.

The cbData parameter specifies the number of bytes in lpData.

The lTime parameter specifies the time to draw this frame. The decompressor divides this
integer by the time scale specified with ICDrawBegin obtain the actual time. Time for the
ICDraw functions is relative to ICDrawStart. (That is, ICDrawStart sets the clock to
zero.) For example, if your applications specifies 1000 for the time scale and 75 for lTime,
the decompressor draws the frame 75 milliseconds into the sequence.

The decompressor starts decompressing data in response to ICDraw, however, it does not
start drawing data until your application calls ICDrawStart. (Your application should not
use ICDrawStart until it has sent the number of frames the decompressor returned for
ICGetBuffersWanted.) When your application uses ICDrawStart, the decompressor
begins to draw the frames at the rate specified by dwRate specified with the
ICDrawBegin. Drawing continues until your application stops the decompressor drawing
clock with ICDrawStop. The following fragment uses the ICDraw functions:

DWORD dwNumBuffers;

// find out how many buffers need filling before drawing starts
ICGetBuffersWanted(hIC, &dwNumBuffers);

for (dw = 0; dw < dwNumBuffers; dw++){

 ICDraw(hIC, 0, lpFormat, lpData, cbData, dw); // fill the pipeline

 // Point lpFormat and lpData to next format and data buffer

}

ICDrawStart(hIC); // start the clock

while (fPlaying){

 ICDraw(hIC, 0, lpFormat, lpData, chData, dw); // fill more buffers

 // Point lpFormat and lpData to next format and data buffer, update dw

}

ICDrawStop(hIC); // when done stop drawing and decompressing
ICDrawFlush(hIC); // flush any existing buffers
ICDrawEnd(hIC); // end decompression

32

 Video Compression and Decompression Application Reference Error! Main Document Only.-23

02/10/93

Controlling Drawing Parameters
The following functions provide more control over decompressors that can draw the
decompressed data:

ICDrawGetTime
This function obtains the current time from the decompressor.

ICDrawRealize
This function has the decompressor realize the palette used for drawing.

ICDrawSetTime
This function sets the value of the internal clock for the decompressor.

ICDrawWindow
This function has the decompressor redraw the window.

If your application wants to monitor or change the clock of the decompressor, it can use
ICDrawGetTime and ICDrawSetTime. If your application wants to change the playback
position while the decompressor is drawing, it can use ICDrawWindow for repositioning
the decompressor. If the playback window gets a palette realize message, your application
must call ICDrawRealize to have the decompressor realize the palette again for playback.

Video Compression and
Decompression Application
Reference
This section is an alphabetic reference to the functions and data structures provided by
ICM for applications using video compression and decompression services. There are
separate sections for functions and data structures. The COMPMAN.H and COMPDDK.H
files define the functions and data structures.

Video Compression and Decompression Function
Reference

Applications use the following functions for compressing video data:

ICCompress
This function compresses a single video image.

ICCompressBegin
This functions prepares a compressor for compressing data.

ICCompressEnd
This function tells a compressor to end compression.

ICCompressGetFormat
This function determines the output format of a compressor.

ICCompressGetFormatSize
This function obtains the size of the output format data.

33

Error! Main Document Only.-24 Video for Windows Programmer's Guide

02/10/93

ICCompressGetSize
This function obtains the size of the compressed data.

ICCompressQuery
This function determines if a compressor can compress a specific format.

Applications use the following functions for decompressing video data:

ICDecompress
The function decompresses a single video frame.

ICDecompressBegin
This functions prepares a decompressor for decompressing data.

ICDecompressEnd
This function tells a decompressor to end decompression.

ICDecompressGetFormat
This function determines the output format of a decompressor.

ICDecompressGetFormatSize
This function obtains the size (in bytes) of the output format data.

ICDecompressGetPalette
This function obtains the palette for the output format of a decompression.

ICDecompressQuery
This function determines if a decompressor can decompress data with a specific
format.

ICDecompressQuery
This function determines if a decompressor can render a specific format.

Applications use the following functions to control video decompressors that draw
directly to the display:

ICDraw
This function decompresses an image for drawing.

ICDrawBegin
This function is used to start decompressing data directly to the screen.

ICDrawEnd
This function tells a decompressor to end drawing.

ICDrawFlush
This function flushes the image buffers used for drawing.

ICDrawGetTime
This function obtains the current value of the internal clock if the decompressor is
handling the timing of drawing frames.

ICDrawRealize
This function tells decompressor to realize its palette used while drawing.

34

 Video Compression and Decompression Application Reference Error! Main Document Only.-25

02/10/93

ICDrawSetTime
This function sets the value of the internal clock if the decompressor is handling the
timing of drawing frames.

ICDrawStart
This function tells a decompressor to start its internal clock for the timing of drawing
frames.

ICDrawStop
This function tells a decompressor to stop its internal clock used for the timing of
drawing frames.

ICDrawWindow
This function tells a decompressor to redraw the window when it has moved.

ICGetBuffersWanted
This function obtains information about the pre-buffering needed by a compressor.

Applications use the following functions to obtain information about a compressor or
decompressor and display its dialog boxes:

ICQueryAbout
This function determines if a compressor supports an about dialog box.

ICAbout
This function instructs a compressor to display its about dialog box.

ICQueryConfigure
This functions determines if a compressor supports a configuration dialog box.

ICConfigure
This function displays the configuration dialog box of the specified compressor.

ICGetInfo
This function asks a compressor for information about itself.

ICInfo
This function returns information about specific installed compressors, or it
enumerates the compressors installed.

ICGetDefaultKeyFrameRate
This function obtains the default key frame rate value.

ICGetDisplayFormat
Given an input format and optionally an open compressor handle, finds the "best"
format it can for displaying on the screen.

Applications use the following functions to set and retrieve the state information of a
compressor or decompressor:

ICGetState
This function gets the state of a compressor.

ICGetStateSize
This function gets the size of the state data used by a compressor.

35

Error! Main Document Only.-26 Video for Windows Programmer's Guide

02/10/93

ICSetState
This function sets the state of a compressor.

Applications use the following functions to locate, open, and close a compressor or
decompressor:

ICOpen
This function opens a compressor or decompressor.

ICClose
This function closes a compressor or decompressor.

ICLocate
This function finds a compressor with specific attributes.

Applications use the following functions to install and remove a compressor or
decompressor and send messages directly to it:

ICInstall
This function installs a new compressor.

ICRemove
This function removes a compressor function installed ICInstalled.

ICSendMessage

This function sends a message to a compressor.

Video Compression and Decompression
Functions

This section contains an alphabetical list of the functions applications can use for
compressing and decompressing video data. The functions are identified with the prefix
IC.

ICAbout
LRESULT ICAbout(hic, hwnd)

This function instructs a compressor or decompressor to display its about dialog box.

HIC hic
Specifies the handle to the installable compressor.

HWND hwnd
Specifies a handle to the parent window.

Returns ICERR_OK after the compressor or decompressor displays the about dialog box.
It returns ICERR_UNSUPPORTED if it does not support an about dialog box.

Syntax

Parameters

Return Value

36

 Video Compression and Decompression Application Reference Error! Main Document Only.-27

02/10/93

ICQueryAbout See Also

37

Error! Main Document Only.-28 Video for Windows Programmer's Guide

02/10/93

ICClose
LRESULT ICClose(hic)

This function closes a compressor or decompressor.

HIC hic
Specifies a handle to a compressor or decompressor.

Returns ICERR_OK if successful, otherwise it returns an error number.

ICLocate ICOpen

ICCompress
LRESULT ICCompress(hic, dwFlags, lpbiOutput, lpData, lpbiInput, lpBits, lpckid,
lpdwFlags, lFrameNum, dwFrameSize, dwQuality, lpbiPrev, lpPrev)

This function compresses a single video image.

HIC hic
Specifies the handle of the compressor to use.

DWORD dwFlags
Specifies applicable flags for the compression. The following flag is defined:

ICM_COMPRESS_KEYFRAME
Indicates that the compressor should make this frame a key frame.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure holding the output format.

LPVOID lpData
Specifies a far pointer to output data buffer.

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure containing the input format.

LPVOID lpBits
Specifies a far pointer to the input data buffer.

LPDWORD lpckid
Specifies a far pointer to a DWORD used to hold a chunk ID for data in the AVI file.

LPDWORD lpdwFlags
Specifies a far pointer to a DWORD holding the return flags used in the AVI index.
The following flag is defined:

AVIIF_KEYFRAME
Indicates this frame is a key-frame.

LONG lFrameNum
Specifies the frame number.

DWORD dwFrameSize
Specifies the requested frame size in bytes. If set to zero, the compressor chooses the
frame size.

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

38

 Video Compression and Decompression Application Reference Error! Main Document Only.-29

02/10/93

DWORD dwQuality
Specifies the requested quality value for the frame.

LPBITMAPINFOHEADER lpbiPrev
Specifies a far pointer to a BITMAPINFO structure holding the previous frame's
format.

LPVOID lpPrev
Specifies a far pointer to the previous frame's data buffer.

This function returns ICERR_OK if successful. Otherwise, it returns an error code.

The lpData buffer should be large enough to hold a compressed frame. You can obtain the
size of this buffer by calling ICCompressGetSize.

Set the dwFrameSize parameter to a requested frame size only if the compressor returns
the VIDCF_CRUNCH flag in response to ICGetInfo. Without this flag, set this
parameter to zero.

Set the dwQuality parameter to a quality value only if the compressor returns the
VIDCF_QUALITY flag in response to ICGetInfo. Without this flag, set this parameter to
zero.

ICCompressBegin, ICCompressEnd, ICCompressGetSize, ICGetInfo

ICCompressBegin
LRESULT ICCompressBegin(hic, lpbiInput, lpbiOutput)

This function prepares a compressor for compressing data.

HIC hic
Specifies a handle to a compressor.

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure holding the input format.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure holding the output format.

Returns ICERR_OK if the specified compression is supported, otherwise it returns
ICERR_BADFORMAT if either the input or output format is not supported.

ICCompress, ICCompressEnd, ICDecompressBegin, ICDrawBegin

ICCompressEnd
LRESULT ICCompressEnd(hic)

This function ends compression by a compressor.

HIC hic
Specifies a handle to the compressor.

Returns ICERR_OK if successful, otherwise it returns an error number.

Return Value

Comments

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

39

Error! Main Document Only.-30 Video for Windows Programmer's Guide

02/10/93

ICCompressBegin, ICCompress, ICDecompressEnd, ICDrawEnd

ICCompressGetFormat
LRESULT ICCompressGetFormat(hic, lpbiInput, lpbiOutput)

This function determines the output format of a compressor.

HIC hic
The compressor handle.

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure used to return the output format.

Returns the size of the output format.

ICCompressGetFormatSize

ICCompressGetFormatSize
LRESULT ICCompressGetFormatSize(hic, lpbi)

This function obtains the size of the output format data.

HIC hic
Specifies a handle to a compressor.

LPBITMAPINFOHEADER lpbi
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

Returns the size of the output data format structure.

Use this function to determine the size of the output format buffer you need to allocate
when using ICCompressGetFormat.

ICCompressGetFormat

ICCompressGetSize
LRESULT ICCompressGetSize(hic, lpbiInput, lpbiOutput)

This function obtains the size of the compressed data.

HIC hic
Specifies a handle to a compressor.

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

40

 Video Compression and Decompression Application Reference Error! Main Document Only.-31

02/10/93

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the
output format.

Returns the maximum number of bytes a single compressed frame can occupy.

ICCompressQuery, ICCompressGetFormat

ICCompressQuery
LRESULT ICCompressQuery(hic, lpbiInput, lpbiOutput)

This function determines if a compressor can compress a specific format.

HIC hic
Specifies the compressor handle.

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure indicating the input data.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the data
output. If NULL, then any output format is acceptable.

Returns ICERR_OK if the compression is supported, otherwise it returns
ICERR_BADFORMAT.

ICCompressGetFormat

ICConfigure
LRESULT ICConfigure(hic, hwnd)

This function displays the configuration dialog box of a compressor.

HIC hic
Specifies a handle to the compressor.

HWND hwnd
Specifies a handle to the parent window.

Returns ICERR_OK after the configuration dialog box is displayed. It returns
ICERR_UNSUPPORTED if the compressor does not support a a configuration dialog
box.

ICQueryConfigure

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

41

Error! Main Document Only.-32 Video for Windows Programmer's Guide

02/10/93

ICDecompress
LRESULT ICDecompress(hic, dwFlags, lpbiFormat, lpData, lpbi, lpBits)

The function decompresses a single video frame.

HIC hic
Specifies a handle to the decompressor to use.

DWORD dwFlags
Specifies any applicable flags for decompression. The following flag is defined:

ICDECOMPRESS_HURRYUP
Indicates the decompressor should try to decompress at a faster rate. When an
application uses this flag, it should not draw the decompressed data.

LPBITMAPINFOHEADER lpbiFormat
Specifies a far pointer to a BITMAPINFO structure containing the format of the
compressed data.

LPVOID lpData
Specifies a far pointer to the input data.

LPBITMAPINFOHEADER lpbi
Specifies a far pointer to a BITMAPINFO structure containing the output format.

LPVOID lpBits
Specifies a far pointer to a data buffer for the decompressed data.

Returns ICERR_OK on success, otherwise it returns an error code.

The lpBits parameter should point to a buffer large enough to hold the decompressed data.
Applications can obtain the size of this buffer with ICDecompressGetSize.

ICDecompressBegin, ICDecompressEnd, ICDecompressGetSize

ICDecompressBegin
LRESULT ICDecompressBegin(hic, lpbiInput, lpbiOutput)

This function prepares a decompressor for decompressing data.

HIC hic
Specifies a handle to a decompressor.

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the
output data.

Returns ICERR_OK if the specified decompression is supported, otherwise it returns
ICERR_BADFORMAT if either the input or output format is not supported.

ICDecompress, ICDecompressEnd, ICCompressBegin, ICDrawBegin

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

Return Value

See Also

42

 Video Compression and Decompression Application Reference Error! Main Document Only.-33

02/10/93

ICDecompressEnd
LRESULT ICDecompressEnd(hic)

This function tells a decompressor to end decompression.

HIC hic
Specifies a handle to a decompressor.

Returns ICERR_OK if successful, otherwise it returns an error number.

ICDecompressBegin, ICDecompress, ICCompressEnd, ICDrawEnd

ICDecompressGetFormat
LRESULT ICDecompressGetFormat(hic, lpbiInput, lpbiOutput)

This function determines the output format of a decompressor.

HIC hic
Specifies a handle to a decompressor.

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure used to return the format of the
output data.

Returns the size (in bytes) of the output format.

ICDecompressGetFormatSize

ICDecompressGetFormatSize
LRESULT ICDecompressGetFormatSize(hic, lpbi)

This function obtains the size (in bytes) of the output format data.

HIC hic
Specifies a handle to a decompressor.

LPBITMAPINFOHEADER lpbi
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

Returns the size of the output data format structure.

Use this function before ICDecompressGetFormat to find the size needed to allocate the
output format buffer.

ICDecompressGetFormat

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

43

Error! Main Document Only.-34 Video for Windows Programmer's Guide

02/10/93

ICDecompressGetPalette
LRESULT ICDecompressGetPalette(hic, lpbiInput, lpbiOutput)

This function obtains the palette for the output format of a decompression.

HIC hic
Specifies a handle to a decompressor.

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure used to return the color table. The
space reserved for the color table must be at least 256 bytes.

Returns the size of the output format or an error code.

ICDecompressGetFormat

ICDecompressQuery
LRESULT ICDecompressQuery(hic, lpbiInput, lpbiOutput)

This function determines if a decompressor can decompress data with a specific format.

HIC hic
Specifies a handle to to a decompressor.

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

LPBITMAPINFOHEADER lpbiOutput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the
output data. If NULL, any output format is acceptable.

Returns ICERR_OK if the decompression is supported, otherwise it returns
ICERR_BADFORMAT.

ICDecompressGetFormat

ICDecompressQuery
LRESULT ICDecompressQuery(hic, lpbiInput)

This function determines if a decompressor can render a specific format.

HIC hic
Specifies a handle to a decompressor.

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

44

 Video Compression and Decompression Application Reference Error! Main Document Only.-35

02/10/93

LPBITMAPINFOHEADER lpbiInput
Specifies a far pointer to a BITMAPINFO structure indicating the format of the input
data.

Returns ICERR_OK if the decompression is supported, otherwise it returns
ICERR_BADFORMAT.

ICDecompressQuery

ICDraw
LRESULT ICDraw(hic, dwFlags, lpFormat, lpData, cbData, lTime)

This function decompress an image for drawing.

HIC hic
Specifies a handle to a decompressor.

DWORD dwFlags
Specifies any flags for the decompression. The following flags are defined:

ICDRAW_HURRYUP
Indicates the decompressor should try to increase its decompression rate.

ICDRAW_UPDATE
Tells the decompressor to update the screen based on data previously received. Set
lpData to NULL when this flag is used.

LPVOID lpFormat
Specifies a far pointer to a BITMAPINFOHEADER structure containing the input
format of the data.

LPVOID lpData
Specifies a far pointer to the actual input data.

DWORD cbData
Specifies the size of the input data (in bytes).

LONG lTime
Specifies the time to draw this frame based on the time scale sent with ICDrawBegin.

Returns ICERR_OK on success, otherwise an appropriate error number.

This function is used to decompress the image data for drawing by the decompressor.
Actual drawing of frames does not occur until ICDrawStart is called. The application
should be sure to pre-buffer the required number of frames before drawing is started (you
can obtain this value with ICGetBuffersRequired).

ICDrawBegin, ICDrawEnd, ICDrawStart, ICDrawStop, ICGetBuffersRequired

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

45

Error! Main Document Only.-36 Video for Windows Programmer's Guide

02/10/93

ICDrawBegin
LRESULT ICDrawBegin(hic, dwFlags, hpal, hwnd, hdc,
xDst, yDst, dxDst, dyDst, lpbi, xSrc, ySrc, dxSrc, dySrc,
dwRate, dwScale)

This function starts decompressing data directly to the screen.

HIC hic
Specifies a handle to the decompressor to use.

DWORD dwFlags
Specifies flags for the decompression. The following flags are defined:

ICDRAW_QUERY
Determines if the decompressor can handle the decompression. The decompressor
does not actually decompress the data.

ICDRAW_FULLSCREEN
Tells the decompressor to draw the decompressed data on the full screen.

ICDRAW_HDC
Indicates the decompressor should use the window handle specified by hwnd and
the display context handle specified by hdc for drawing the decompressed data.

HPALETTE hpal
Specifies a handle to the palette used for drawing.

HWND hwnd
Specifies a handle for the window used for drawing.

HDC hdc
Specifies the display context used for drawing.

int xDst
Specifies the x-position of the upper-right corner of the destination rectangle.

int yDst
Specifies the y-position of the upper-right corner of the destination rectangle.

int dxDst
Specifies the width of the destination rectangle.

int dyDst
Specifies the height of the destination rectangle.

LPBITMAPINFOHEADER lpbi
Specifies a far pointer to a BITMAPINFO structure containing the format of the input
data to be decompressed.

int xSrc
Specifies the x-position of the upper-right corner of the source rectangle.

int ySrc
Specifies the y-position of the upper-right corner of the source rectangle.

int dxSrc
Specifies the width of the source rectangle.

Syntax

Parameters

46

 Video Compression and Decompression Application Reference Error! Main Document Only.-37

02/10/93

int dySrc
Specifies the height of the source rectangle.

DWORD dwRate
Specifies the data rate. The data rate in frames per second equals dwRate divided by
dwScale.

DWORD dwScale
Specifies the data rate.

Returns ICERR_OK if it can handle the decompression, otherwise it returns
ICERR_UNSUPPORTED.

Decompressors use the hwnd and hdc parameters only if an application sets
ICDRAW_HDC flag in dwFlags. It will ignore these parameters if an application sets the
ICDRAW_FULLSCREEN flag. When an application uses the ICDRAW_FULLSCREEN
flag, it should set hwnd and hdc to NULL.

The destination rectangle is specified only if ICDRAW_HDC is used. If an application
sets the ICDRAW_FULLSCREEN flag, the destination rectangle is ignored and its
parameters can be set to zero.

The source rectangle is relative to the full video frame. The portion of the video frame
specified by the source rectangle will be stretched to fit in the destination rectangle.

ICDraw, ICDrawEnd

ICDrawEnd
LRESULT ICDrawEnd(hic)

This function tells a decompressor to end drawing.

HIC hic
Specifies a handle to a compressor.

Returns ICERR_OK if successful, otherwise it returns an error number.

ICDrawBegin, ICDraw, ICCompressEnd, ICDecompressEnd

ICDrawFlush
LRESULT ICDrawFlush(hic)

Flush the image buffers used for drawing.

HIC hic
The compressor handle.

Returns ICERR_OK on success.

ICDraw, ICDrawBegin, ICDrawEnd, ICDrawStart, ICDrawStop

Return Value

Comments

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

47

Error! Main Document Only.-38 Video for Windows Programmer's Guide

02/10/93

ICDrawGetTime
LRESULT ICDrawGetTime(hic, lplTime)

This function obtains the current value of the internal clock if the decompressor is
handling the timing of drawing frames.

HIC hic
Specifies a handle to a decompressor.

LPLONG lplTime
Specifies a far pointer to a LONG buffer used to return the current time value. The
value will be in samples (frames for video).

Returns ICERR_OK if successful.

ICDrawStart, ICDrawStop, ICDrawSetTime

ICDrawRealize
LRESULT ICDrawRealize(hic, hdc, fBackground)

This function tells a decompressor to realize its palette used while drawing.

HIC hic
Specifies a handle to a decompressor.

HDC hdc
Specifies the display context used to realize the palette.

BOOL fBackground
Specifies TRUE if the palette is to be realized in the background. It specifies FALSE if
it is to be realized in in the foreground.

Returns ICERR_OK if palette is realized. The compressor returns
ICERR_UNSUPPORTED if it doesn't support this function.

ICDrawBegin

ICDrawSetTime
LRESULT ICDrawSetTime(hic, lpTime)

This function sets the value of the internal clock if the installable decompressor is
handling the timing of drawing frames.

HIC hic
Specifies a handle to a decompressor.

LPLONG lpTime
Specifies the current time that the compressor should be rendering. This value should
be in samples. For video, this corresponds to frames.

Returns ICERR_OK if successful.

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

48

 Video Compression and Decompression Application Reference Error! Main Document Only.-39

02/10/93

ICDrawStart, ICDrawStop, ICDrawGetTime

ICDrawStart
void ICDrawStart(hic)

This function tells a decompressor to start its internal clock for the timing of drawing
frames.

HIC hic
Specifies a handle to a compressor.

This function should only be used with hardware decompressors that do their own
asynchronous decompression, timing and drawing.

ICDraw, ICDrawStop, ICDrawBegin, ICDrawEnd

ICDrawStop
void ICDrawStop(hic)

This function tells a decompressor to stop its internal clock used for the timing of drawing
frames.

HIC hic
Specifies a handle to a decompressor.

This function should only be used with hardware decompressors that do their own
asynchronous decompression, timing and drawing.

ICDraw, ICDrawStart, ICDrawBegin, ICDrawEnd

ICDrawWindow
LRESULT ICDrawWindow(hic, prc)

This function has a decompressor redraw the window when is has moved.

HIC hic
Specifies a handle to a decompressor.

LPRECT prc
Specifies a pointer to the destination rectangle. The destination rectangle is specified
in screen coordinates.

Returns ICERR_OK if successful.

This function is only supported by hardware which does its own asynchronous
decompression, timing and drawing. The rectangle is set to empty if the window is totally
hidden by other windows.

See Also

Syntax

Parameters

Comments

See Also

Syntax

Parameters

Comments

See Also

Syntax

Parameters

Return Value

Comments

49

Error! Main Document Only.-40 Video for Windows Programmer's Guide

02/10/93

ICGetBuffersWanted
LRESULT ICGetBuffersWanted(hic, lpdwBuffers)

This function obtains information about the pre-buffering needed by a decompressor.

HIC hic
Specifies a handle to a decompressor.

LPDWORD lpdwBuffers
Specifies a far pointer to a DWORD used to return the number of samples the
decompressor needs to get in advance of when they will be rendered.

Returns ICERR_OK if successful, otherwise it returns ICERR_UNSUPPORTED.

This function is used only with a decompressor that uses hardware to render data and
wants to ensure that hardware pipelines remain full.

ICGetDefaultKeyFrameRate
LRESULT ICGetDefaultKeyFrameRate(hic)

This function obtains the default key frame rate value.

HIC hic
Specifies a handle to a compressor.

Returns the default key frame rate.

ICGetDisplayFormat
HIC ICGetDisplayFormat(hic, lpbiIn, lpbiOut, BitDepth, dx, dy)

This function returns the "best" format available for display a compressed image. The
function will also open a compressor if a handle to an open compressor is not specified.

HIC hic
Specifies the decompressor that should be used. If this is NULL, an appropriate
compressor will be opened and returned.

LPBITMAPINFOHEADER lpbiIn
Specifies a pointer to BITMAPINFOHEADER structure containing the compressed
format.

LPBITMAPINFOHEADER lpbiOut
Specifies a pointer to a buffer used to return the decompressed format. The buffer
should be large enough for a BITMAPINFOHEADER and 256 color entries.

int BitDepth
If non-zero, specifies the preferred bit depth.

int dx
If non-zero, specifies the width to which the image is to be stretched.

Syntax

Parameters

Return Value

Comments

Syntax

Parameters

Return Value

Syntax

Parameters

50

 Video Compression and Decompression Application Reference Error! Main Document Only.-41

02/10/93

int dy
If non-zero, specifies the height to which the image is to be stretched.

Returns a handle to a decompressor if successful, otherwise, it returns zero.

ICGetInfo
LRESULT ICGetInfo(hic, lpicinfo, cb)

This function obtains information about a compressor or decompressor.

HIC hic
Specifies a handle to a compressor or decompressor.

ICINFO FAR * lpicinfo
Specifies a far pointer to ICINFO structure used to return information about the
compressor or decompressor.

DWORD cb
Specifies the size of the structure pointed to by lpicinfo.

Returns zero if successful.

ICGetState
void ICGetState(hic, pv, cb)

This function gets the state of a compressor or decompressor.

HIC hic
Specifies a handle to the compressor or decompressor.

LPVOID pv
Specifies a pointer to a buffer used to return the state data.

DWORD cb
Specifies the byte count for state buffer.

Use ICGetStateSize before calling ICGetState to determine the size of buffer to allocate
for the call.

ICGetStateSize, ICSetState

ICGetStateSize
LRESULT ICGetStateSize(hic)

This function gets the size of the state data used by a compressor or decompressor.

HIC hic
Specifies a handle to the compressor or decompressor.

Returns the number of byte used by the state data.

Return Value

Syntax

Parameters

Return Value

Syntax

Parameters

Comments

See Also

Syntax

Parameters

Return Value

51

Error! Main Document Only.-42 Video for Windows Programmer's Guide

02/10/93

Use this function to get the size of the state data for the ICGetState and ICSetState
buffers.

ICGetState, ICSetState

ICInfo
BOOL ICInfo(fccType, fccHandler, lpicinfo)

This function returns information about specific installed compressors and decompressors,
or it enumerates the compressors installed.

DWORD fccType
Specifies a four-character code indicating the type of compressor or decompressor.

DWORD fccHandler
Specifies a four-character code identifying a specific compressor or decompressor, or a
number between 0 and the number of installed compressors of the type specified by
fccType.

ICINFO FAR * lpicinfo
Specifies a far pointer to a ICINFO structure used to return information about the
compressor.

Returns a compressor or decompressor handle if successful, otherwise, it returns zero.

ICInstall
BOOL ICInstall(fccType, fccHandler, lParam, szDesc, wFlags)

This function installs a new compressor.

DWORD fccType
Specifies a four-character code indicating the type of data used by the compressor. Use
'vidc' for video compressors.

DWORD fccHandler
Specifies a four-character code identifying a specific compressor.

LPARAM lParam
Identifies what to install. The meaning of this parameter is defined by the flags set for
wFlags.

LPSTR szDesc
Specifies a pointer to a null-terminated string describing the installed compressor.

UINT wFlags
Specifies flags defining the contents of lParam. The following flags are defined:

ICINSTALL_DRIVER
Indicates lParam is a pointer to a null-terminated string containing the name of the
compressor to install.

Comments

See Also

Syntax

Parameters

Return Value

Syntax

Parameters

52

 Video Compression and Decompression Application Reference Error! Main Document Only.-43

02/10/93

ICINSTALL_FUNCTION
Indicates lParam is a far pointer to an installable compressor function. This
function should be structured like the DriverProc entry point function used by
compressors and decompressors.

Returns a handle to a compressor or decompressor.

ICRemove

ICLocate
HIC ICLocate(fccType, fccHandler, lpbiIn, lpbiOut, wFlags)

This function finds a compressor or decompressor that can handle images with the formats
specified, or it finds a decompressor that can decompress an image with a specified format
directly to hardware.

DWORD fccType
Specifies the type of compressor or decompressor the application wants to open. For
video, this is ICTYPE_VIDEO.

DWORD fccHandler
Specifies a single preferred handler of the given type that should be tried first.
Typically, this comes from the stream header in an AVI file.

LPBITMAPINFOHEADER lpbiIn
Specifies a pointer to BITMAPINFOHEADER structure defining the input format. A
compressor handle will not be returned unless it can handle this format.

LPBITMAPINFOHEADER lpbiOut
Specifies zero or a pointer to BITMAPINFOHEADER structure defining an optional
decompressed format. If lpbiOut is nonzero, a compressor handle will not be returned
unless it can create this output format.

WORD wFlags
Specifies any flags defining the use of the compressor or decompressor. This
parameter must contain one of the following values:

ICMODE_COMPRESS
Indicates the compressor should be able to compress an image with a format
defined by lpbiIn to the format defined by lpbiOut.

ICMODE_DECOMPRESS
Indicates the decompressor should be able to decompress an image with a format
defined by lpbiIn to the format defined by lpbiOut.

ICMODE_DRAW
Indicates the decompressor should be able to decompress an image with a format
defined by lpbiIn and draw it directly to hardware.

Returns a handle to a compressor or decompressor if successful, otherwise it returns zero.

Return Value

See Also

Syntax

Parameters

Return Value

53

Error! Main Document Only.-44 Video for Windows Programmer's Guide

02/10/93

ICOpen
HIC ICOpen(fccType, fccHandler, wMode)

This function opens a compressor or decompressor.

DWORD fccType
Specifies the type of compressor or decompressor the application wants to open. For
video, this is ICTYPE_VIDEO.

DWORD fccHandler
Specifies a single preferred handler of the given type that should be tried first.
Typically, this comes from the stream header in an AVI file.

UINT wMode
Specifies any flags defining the use of the compressor or decompressor. This
parameter can contain the following values:

ICMODE_COMPRESS
Advises a compressor it is opened for compression.

ICMODE_DECOMPRESS
Advises a decompressor it is opened for decompression.

ICMODE_DRAW
Advises a decompressor it is opened to decompress an image and draw it directly to
hardware.

ICMODE_QUERY
Advises a compressor or decompressor it is opened to obtain information.

Returns a handle to a compressor or decompressor if successful, otherwise it returns zero.

ICClose ICLocate

ICQueryAbout
BOOL ICQueryAbout(hic)

This function determines if a compressor or decompressor supports an about dialog box.

HIC hic
Specifies the handle to the installable compressor.

Returns TRUE if the installable compressor supports an about dialog box, otherwise it
returns FALSE.

ICAbout

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

54

 Video Compression and Decompression Application Reference Error! Main Document Only.-45

02/10/93

ICQueryConfigure
BOOL ICQueryConfigure(hic)

This function determines if a compressor or decompressor supports a configuration dialog
box.

HIC hic
Specifies a handle to the compressor or decompressor.

Returns TRUE if compressor supports a configuration dialog box, otherwise it returns
FALSE.

ICConfigure

ICRemove
BOOL ICRemove(fccType, fccHandler, wFlags)

This function removes a compressor function installed with ICInstall.

DWORD fccType
Specifies a four-character code indicating the type of data used by the compressor. Use
'vidc' for video compressors.

DWORD fccHandler
Specifies a four-character code identifying a specific compressor.

UINT wFlags
Not used.

Returns TRUE if successful.

ICInstall

ICSendMessage
LRESULT ICSendMessage(hic, wMsg, dw1, dw2)

This function sends a message to a compressor or decompressor.

HIC hic
Specifies the handle of the compressor or decompressor to receive the message.

UINT wMsg
Specifies the message to send.

DWORD dw1
Specifies additional message-specific information.

DWORD dw2
Specifies additional message-specific information.

Returns a message-specific result.

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

55

Error! Main Document Only.-46 Video for Windows Programmer's Guide

02/10/93

ICSetState
void ICSetState(hic, pv, cb)

This function sets the state of a compressor or decompressor.

HIC hic
Specifies a handle to the compressor or decompressor.

LPVOID pv
Specifies a pointer to the state data to set.

DWORD cb
Specifies the size (in bytes) of the buffer containing the state data.

ICGetState, ICGetStateSize

Video Compressor and Decompressor Data
Structure Reference

This section lists data structures used by video compressors and decompressors. The data
structures are presented in alphabetical order. The structure definition is given, followed
by a description of each field.

ICINFO
The ICINFO structure is filled by a video compressor when it receives the
ICM_GETINFO message.

typedef struct {
 DWORD dwSize;
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwVersionICM;
 char szName[16];
 char szDescription[128];
 char szDriver[128];
} ICINFO;

The ICINFO structure has the following fields:

dwSize
Should be set to the size of an ICINFO structure.

fccType
Specifies a four-character code representing the type of stream being compressed or
decompressed. Set this to 'vidc' for video streams.

fccHandler
Specifies a four-character code identifying a specific compressor.

Syntax

Parameters

See Also

Fields

56

 Video Compression and Decompression Application Reference Error! Main Document Only.-47

02/10/93

dwFlags
Specifies any flags. The following flags are defined for video compressors
(ICINFO.fccHandler == 'vidc'):

VIDCF_QUALITY
The compressor supports quality.

VIDCF_CRUNCH
The compressor supports crunching to a frame size.

VIDCF_TEMPORAL
The compressor supports inter-frame compression.

VIDCF_DRAW
The compressor supports drawing.

VIDCF_FASTTEMPORAL
The compressor can do temporal compression and doesn’t need the previous frame.

dwVersion
Specifies the version number of the compressor.

dwVersionICM
Specifies the version of the ICM supported by this compressor; it should be set to 1.0
(0x00010000)

szName[16]
Specifies the short name for the compressor. The null-terminated name should be
suitable for use in list boxes.

szDescription[128]
Specifies a null-terminated string containing the long name for the compressor.

szDriver[128]
Specifies a null-terminated string for the module that contains the compressor.

57

C H A P T E R 3

The DrawDib functions provide much of the functionality of StretchDIBits and adds
ICM support, improved stretching capabilities, and improved support of low-end display
adapters. If a display driver cannot stretch an image, the DrawDib functions can stretch it
more efficiently then StretchDIBits. The DrawDib functions also efficiently dither true-
color images to 256 colors, and dither 8-bit images on 16-color VGA displays. These
functions significantly improve the speed and quality of displaying such images on
display adapters with limited capabilities.

This chapter discusses the following topics:

 Drawing with the DrawDib functions

 Optimizing DrawDibDraw

 Profiling the display characteristics

The DrawDib functions and constants are defined in DRAWDIB.H. The ICMAPP sample
application shows how your application can use these functions.

Drawing With the DrawDib Functions
Your application uses the following functions with 8, 16, and 24 bit images to access the
basic DrawDib services:

DrawDibOpen
This function opens a DrawDib context for drawing.

DrawDibClose
This function closes a DrawDib context and cleans up.

DrawDibDraw
This function draws a device independent bitmap to the screen.

While your application can use DrawDibDraw as an almost one-to-one replacement for
StretchDIBits, it has the following limitations:

 the DIB must have the DIB_RGB_COLORS format

 your application must use the simplest transfer mode, SRC_COPY

Using the DrawDib Functions

58

Error! Main Document Only.-2 Video for Windows Programmer's Guide

7/7/2016

That is, your application cannot use DrawDibDraw to, say, XOR a picture with the
screen.

Prior to using DrawDibDraw, your application must initialize the DrawDib library and
let it allocate the memory it needs by calling DrawDibOpen. This function returns a
DrawDib context handle your application uses for other DrawDib functions. If Windows
cannot create a DrawDib context, DrawDibOpen returns NULL.

Your application can use DrawDibOpen to create multiple DrawDib contexts. This lets
your application work with several DrawDib contexts that have different characteristics.

The DrawDibDraw function draws a device independent bitmap to the screen. This
function replaces StretchDIBits and it provides transparent support of installable
compressors for decompressing the bitmaps. This function has the following syntax:

BOOL DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst,
 lpbi, lpBits, xSrc, ySrc, dxSrc, dySrc, wFlags)

The hdd parameter specifies a handle to a DrawDib context. The hdc parameter specifies a
handle to the display context.

Your application uses the lpbi and lpBits parameters to specify information about the
bitmap drawn. The lpbi parameter points to the BITMAPINFOHEADER structure for
the bitmap and the lpBits parameter points to the buffer containing the bitmap.

Your application specifies the source rectangle and destination rectangle with two sets of
parameters. The xDst, yDst, dxDst, and dyDst parameters specify the X and Y coordinates
of the origin of the destination rectangle, and its width and height. The xSrc, ySrc, dxSrc,
and dySrc parameters specify the X and Y coordinates of the origin of the source
rectangle, and its width and height.

The wFlags parameter specifies any applicable flags for drawing. The following flags are
defined:

DDF_UPDATE
Indicates the last bitmap is to be redrawn. Your application can specify NULL for
lpBits when it uses this flag.

DDF_SAME_HDC
Uses the handle to the display context specified previously. When used, DrawDib
skips preparing the display context and assumes the correct palette has already been
realized (possibly by DrawDibRealize). Your application should not use this flag until
it uses a DrawDib function that specifies the display context. Your application must
still specify a handle for hdc when it uses this flag.

DDF_SAME_DRAW
Uses the drawing parameters previously specified for this function. Use this flag only
if lpbi, dxDst, dyDst, dxSrc, and dySrc have not changed since last using
DrawDibDraw.

DDF_DONTDRAW
Indicates the frame is only to be decompressed and not drawn. Your application can
use the DDF_UPDATE flag to draw the image later with DrawDibDraw.

59

 Using the DrawDib Functions Error! Main Document Only.-3

7/7/2016

DDF_ANIMATE
Allows palette animation. If this flag is present, the palette DrawDib creates will have
the PC_RESERVED flag set for as many entries as possible, and your application can
subsequently animate the palette with DrawDibChangePalette. The DrawDibDraw
function passes this flag to DrawDibBegin implicitly.

When your application has finished using the DrawDib context it uses DrawDibClose to
close the context and clean up. This function uses the handle to the DrawDib context as its
only argument. It returns TRUE if the context closed successfully, otherwise it returns
FALSE.

Supporting Palettes for the DrawDib Functions
If your application uses DrawDib, it should be palette-aware. That is, it must respond to
WM_QUERYNEWPALETTE and WM_PALETTECHANGED messages. If your
application does not already use palettes, it will need two short message handlers for these
messages. In response to WM_PALETTECHANGED, your application should invalidate
the destination window to let DrawDib redraw. In response to
WM_QUERYNEWPALETTE, your application uses the following function to respond to
this message:

DrawDibRealize
This function realizes palette for drawing.

This function has the following syntax:

UINT DrawDibRealize(hdd, hdc, fBackground)

The hdd parameter specifies a handle to a DrawDib context and the hdc parameter
specifies a handle to the display context. The fBackground parameter specifies whether
the logical palette is always to be the background palette. If this parameter is nonzero, the
selected palette is always a background palette. If this parameter is zero and the device
context is attached to a window, the logical palette is a foreground palette when the
window has the input focus. It returns number of entries in the logical palette that were
mapped to different values in the system palette.

Manipulating Palettes
Applications use the following functions for handling palettes associated with a DrawDib
context:

DrawDibSetPalette
This function sets the palette used for drawing device independent bitmaps.

DrawDibChangePalette
This function sets the palette entries used for drawing device independent bitmaps.

DrawDibGetPalette
This function obtains the palette used by a DrawDib context.

60

Error! Main Document Only.-4 Video for Windows Programmer's Guide

7/7/2016

If your application is already palette-aware, it might already have realized a palette and it
needs to prevent DrawDib from realizing its own palette. Your application can use
DrawDibSetPalette to notify DrawDib of the palette it would like to use. If your
substitute palette does not contain the colors required by images displayed other
applications, color shifts will appear in those images. This function has the following
syntax:

BOOL DrawDibSetPalette(hdd, hpal)

The hdd parameter specifies a handle to a DrawDib context. The hpal parameter specifies
a handle to the palette your application wants to use.

If your application wants to modify the colors in the DrawDib palette, it can use
DrawDibChangePalette. This function has the following syntax:

BOOL DrawDibChangePalette(hdd, iStart, iLen, lppe)

The hdd parameter specifies a handle to a DrawDib context.

The iStart parameter specifies the starting palette entry number and the iLen specifies the
number of palette entries to change. The lppe parameter specifies a pointer to an array of
palette entries.

If the DDF_ANIMATE flag was not set in the previous call to DrawDibBegin, this
function will not animate the palette. In this case, use DrawDibRealize to realize the
updated palette.

If your application needs the current palette, it can use DrawDibGetPalette to obtain a
handle to the palette. If you want to realize the correct palette in response to a window
message, just use DrawDibRealize instead of using this function to obtain the pallette and
resending it. If your application uses this function, it should remember that it does not
have exclusive use of the handle. Thus, your application should not free the palette when
it is done and it should anticipate that some other application can invalidate the handle.
Your application should rarely need to use DrawDibGetPalette.

Optimizing DrawDibDraw
If your application uses DrawDibDraw to display a series of bitmaps with the same
dimensions and formats, it can use the following function to improve the efficiency of
DrawDibDraw.

DrawDibBegin
This function prepares DrawDibDraw for drawing.

If your application does not use DrawDibBegin, DrawDibDraw implicitly executes it
prior to drawing. When your application uses DrawDibBegin prior to DrawDibDraw,
DrawDibDraw does not have to take the time to process the function and wait for it to
complete. The DrawDibBegin function has the following syntax:

BOOL DrawDibBegin(hdd, hdc, dxDest, dyDest, lpbi, dxSrc, dySrc, wFlags)

61

 Using the DrawDib Functions Error! Main Document Only.-5

7/7/2016

The hdd parameter specifies a handle to a DrawDib context and the hdc parameter
specifies a handle for the display context. Your application should use the values
specified for these parameters in DrawDibDraw. When your application subsequently
uses DrawDibDraw, it should set the DDF_SAME_HDC flag to indicate the handle to
the display context has not changed.

The dxDest, dyDest, dxSrc, and dySrc parameters specify the width and height of the
destination rectangle. The lpbi parameter points to the BITMAPINFOHEADER structure
indicating the format of the image. Your application needs to use this same information
when it specifies the parameters for DrawDibDraw. If your application changes these
values, DrawDibDraw will sense the changes and implicitly use DrawDibBegin again.
While your application must specify the width and height of the source and destination
rectangles, it does not need to specify the origins. Thus, your application can redefine the
origins in DrawDibDraw to use different portions of the image or update different
portions of the display.

The wFlags parameter specifies applicable flags for the operation. Your application can
use the DDF_ANIMATE if it will animate the palette.

Profiling the Display Characteristics
The very first time an application uses DrawDib capabilities, Windows displays a clock
face and executes a series of tests to determine the display characteristics. Once the
DrawDib libraries characterize the display, they will not run the tests again unless the
information is removed (for example, by reinstalling Windows) or the user changes the
display driver.

DrawDib Application Reference
This section is an alphabetic reference to the functions provided by Windows for
applications using the DrawDib functions. The DRAWDIB.H file defines the functions,
constants, and flags used by the DrawDib functions.

DrawDib Function Reference
Applications use the following functions for basic DrawDib operation:

DrawDibOpen
This function opens a DrawDib context for drawing.

DrawDibDraw
This function draws a device independent bitmap to the screen.

DrawDibClose
This function closes a DrawDib context and cleans up.

62

Error! Main Document Only.-6 Video for Windows Programmer's Guide

7/7/2016

Applications use the following functions to improve the efficiency of DrawDibDraw
when they draw a series of images:

DrawDibBegin
This function prepares DrawDibDraw for drawing.

DrawDibEnd
This function frees the resources allocated by DrawDibBegin.

Applications use the following functions for handling palettes associated with a DrawDib
context:

DrawDibChangePalette
This function sets the palette entries used for drawing device independent bitmaps.

DrawDibGetPalette
This function obtains the palette used by a DrawDib context.

DrawDibRealize
This function realizes palette for drawing.

DrawDibSetPalette
This function sets the palette used for drawing device independent bitmaps.

DrawDib Functions
This section contains an alphabetical list of the functions applications can use for
accessing the DrawDib services. The functions are identified with the prefix DrawDib.

DrawDibBegin
BOOL DrawDibBegin(hdd, hdc, dxDest, dyDest, lpbi, dxSrc, dySrc, wFlags)

This function prepares DrawDibDraw for drawing.

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

HDC hdc
Specifies a handle for the display context.

int dxDest
Specifies the width of the destination rectangle.

int dyDest
Specifies the height of the destination rectangle.

LPBITMAPINFOHEADER lpbi
Specifies a pointer to a BITMAPINFOHEADER structure containing the format of
the data to be drawn.

int dxSrc
Specifies the width of the source rectangle.

Syntax

Parameters

63

 Using the DrawDib Functions Error! Main Document Only.-7

7/7/2016

int dySrc
Specifies the height of the source rectangle.

UNIT wFlags
Specifies applicable flags for the operation. The following flags are defined:

DDF_ANIMATE
Allows palette animation.

Returns a handle to a DrawDib context if successful, otherwise it returns NULL.

This function prepares to draw a bitmap specified by lpbi to the display context hdc with
stretching to the size dxDest and dyDest. If dxDest or dyDest is set to -1, the bitmap is
drawn to a 1:1 scale with no stretching.

If dxSrc or dySrc is set to -1, DrawDibDraw uses the whole width or height of the source
bitmap.

Use this function only if you want to prepare for drawing an image before you actually
have data to draw. If you do not use this function, DrawDibDraw implicitly uses it when
it draws the image.

DrawDibEnd, DrawDibDraw

DrawDibChangePalette
BOOL DrawDibChangePalette(hdd, iStart, iLen, lppe)

This function sets the palette entries used for drawing device independent bitmaps.

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

int iStart
Specifies the starting palette entry number.

int iLen
Specifies the number of palette entries to change.

LPPALETTEENTRY lppe
Specifies a pointer to an array of palette entries.

Returns TRUE if successful, otherwise it returns FALSE.

If the DDF_ANIMATE flag was not set in the previous call to DrawDibBegin or
DrawDibDraw, this function will not animate the palette. In this case, use
DrawDibRealize to realize the updated palette.

DrawDibSetPalette, DrawDibGetPalette

DrawDibClose
BOOL DrawDibClose(hdd)

This function closes a DrawDib context and cleans up.

Return Value

Comments

See Also

Syntax

Parameters

Return Value

Comments

See Also

Syntax

64

Error! Main Document Only.-8 Video for Windows Programmer's Guide

7/7/2016

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

Returns TRUE if the context closed successfully, otherwise it returns FALSE.

Use this function to free the HDRAWDIB handle and clean up after you have finished
drawing.

DrawDibOpen

DrawDibDraw
BOOL DrawDibDraw(hdd, hdc, xDst, yDst, dxDst, dyDst, lpbi, lpBits, xSrc, ySrc,
dxSrc, dySrc, wFlags)

This function draws a device independent bitmap to the screen.

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

HDC hdc
Specifies a handle to the display context.

int xDst
Specifies the x-coordinate of the origin of the destination rectangle.

int yDst
Specifies the y-coordinate of the origin of the destination rectangle.

int dxDst
Specifies the width of the destination rectangle.

int dyDst
Specifies the height of the destination rectangle.

LPBITMAPINFOHEADER lpbi
Specifies a pointer to the BITMAPINFOHEADER structure for the bitmap.

LPVOID lpBits
Specifies a pointer to the buffer containing the bitmap bits. A null value indicates a
packed-DIB. The data bits for a packed-DIB follow the color table in the
BITMAPINFOHEADER structure pointed to by lpbi.

int xSrc
Specifies the x-coordinate of the source rectangle.

int ySrc
Specifies the y-coordinate of the source rectangle.

int dxSrc
Specifies the width of the source rectangle.

int dySrc
Specifies the height of the source rectangle.

UINT wFlags
Specifies any applicable flags for drawing. The following flags are defined:

Parameters

Return Value

Comments

See Also

Syntax

Parameters

65

 Using the DrawDib Functions Error! Main Document Only.-9

7/7/2016

DDF_UPDATE
Indicates the last bitmap is to be redrawn. If this flag is used, lpBits can be NULL.

DDF_SAME_HDC
Uses the handle to the display context specified previously. When used, DrawDib
skips preparing the display context and assumes the correct palette has already been
realized (possibly by DrawDibRealize). Your application should not use this flag
until it uses a DrawDib function that specifies the display context. Your application
must still specify a handle for hdc when it uses this flag.

DDF_SAME_DRAW
Uses the drawing parameters previously specified for this function. Use this flag
only if the data specified for the lpbi structure, and the dxDst, dyDst, dxSrc, and
dySrc parameters has not changed since last using DrawDibDraw.

DDF_DONTDRAW
Indicates the frame is only to be decompressed and not drawn. The DDF_UPDATE
flag can be used later to actually draw the image.

DDF_ANIMATE
Allows palette animation. If this flag is present, the palette DrawDib creates will
have the PC_RESERVED flag set for as many entries as possible, and the palette
can be animated by with DrawDibChangePalette. The DrawDibDraw function
passes this flag to DrawDibBegin implicitly.

Returns TRUE if successful, FALSE otherwise.

This function replaces StretchDIBits and allows decompression of bitmaps by installable
compressors. The function will dither true color bitmaps properly on 8-bit display devices.

DrawDibEnd
BOOL DrawDibEnd(hdd)

This function frees the resources allocated by DrawDibBegin.

HDRAWDIB hdd
Specifies the handle to the DrawDib context to free.

Returns TRUE if successful, otherwise it returns FALSE.

Applications do not need to use this function.

DrawDibGetPalette
HPALETTE DrawDibGetPalette(hdd)

This function obtains the palette used by a DrawDib context.

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

Returns a handle for the palette if successful, otherwise it returns NULL.

Return Value

Comments

Syntax

Parameters

Return Value

Comments

Syntax

Parameters

Return Value

66

Error! Main Document Only.-10 Video for Windows Programmer's Guide

7/7/2016

If you want to realize the correct palette in response to a window message, use
DrawDibRealize instead of this function. You should rarely need to call this function.

DrawDibSetPalette, DrawDibRealize

DrawDibOpen
HDRAWDIB DrawDibOpen()

This function opens a DrawDib context for drawing.

Returns a handle to a DrawDib context if successful, otherwise it returns NULL.

Call this function to obtain a handle to a DrawDib context before drawing DIBs.

DrawDibClose

DrawDibRealize
UINT DrawDibRealize(hdd, hdc, fBackground)

This function realizes the palette of hdc into the DrawDib context specfied by hdd.

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

HDC hdc
Specifies a handle to the display context.

BOOL fBackground
Specifies whether the logical palette is always to be the background palette. If this
parameter is nonzero, the selected palette is always a background palette. If this
parameter is zero and the device context is attached to a window, the logical palette is
a foreground palette when the window has the input focus.

Returns number of entries in the logical palette that were mapped to different values in the
system palette. If an error occurs, it returns 0.

DrawDibSetPalette
BOOL DrawDibSetPalette(hdd, hpal)

This function sets the palette used for drawing device independent bitmaps.

HDRAWDIB hdd
Specifies a handle to a DrawDib context.

HPALETTE hpal
Specifies a handle to the palette.

Comments

See Also

Syntax

Return Value

Comments

See Also

Syntax

Parameters

Return Value

Syntax

Parameters

67

 Using the DrawDib Functions Error! Main Document Only.-11

7/7/2016

Returns TRUE if successful, otherwise it returns FALSE.

Use this function when the application needs to realize an alternate palette. The function
forces the DrawDib context to use the specified palette, possibly at the expense of image
quality.

DrawDibGetPalette

Return Value

Comments

See Also

68

C H A P T E R 4

The Microsoft Audio/Video Interleaved (AVI) file format is a RIFF file specification used
with applications that capture, edit, and playback audio/video sequences. In general, AVI
files contain multiple streams of different types of data. Most AVI sequences will use both
audio and video streams. A simple variation for an AVI sequence uses video data and
does not require an audio stream. Specialized AVI sequences might include a control
track or MIDI track as an additional data stream. The control track could control external
devices such as an MCI videodisc player. The MIDI track could play background music
for the sequence. While a specialized sequence requires a specialized control program to
take advantage of all its capabilities, applications that can read and play AVI sequences
can still read and play an AVI sequence in a specialized file. (These applications ignore
the non-AVI data in the specialized file.) This chapter primarily describes AVI files
containing only audio and video data.

This chapter covers the following topics:

 The required chunks of an AVI file

 The optional chunks of an AVI file

 Developing routines to write AVI files

For additional information about RIFF files, see the Microsoft Windows Multimedia
Programmer’s Guide and Microsoft Windows Multimedia Programmer’s Reference.

For additional information about installable compressors and decompressors, see chapter
10, “Video Compression and Decompression Drivers.”

AVI RIFF Form
AVI files use the AVI RIFF form. The AVI RIFF form is identified by the four-character
code “AVI ”. All AVI files include two mandatory LIST chunks. These chunks define the
format of the streams and stream data. AVI files might also include an index chunk. This

AVI Files

69

Error! Main Document Only.-2 Video for Windows Programmer's Guide

02/10/93

optional chunk specifies the location of data chunks within the file. An AVI file with
these components has the following form:

RIFF ('AVI '
 LIST ('hdrl'
 .
 .
 .
)
 LIST ('movi'
 .
 .
 .
)
 ['idx1'<AVI Index>]
)

The LIST chunks and the index chunk are subchunks of the RIFF “AVI ” chunk. The
“AVI ” chunk identifies the file as an AVI RIFF file. The LIST “hdrl” chunk defines the
format of the data and is the first required list chunk. The LIST “movi” chunk contains the
data for the AVI sequence and is the second required list chunk. The “idx1” chunk is the
optional index chunk. AVI files must keep these three components in the proper sequence.

The LIST “hdrl” and LIST “movi” chunks use subchunks for their data. The following
example shows the AVI RIFF form expanded with the chunks needed to complete the
LIST “hdrl” and LIST “movi” chunks:

RIFF ('AVI '
 LIST ('hdrl'
 'avih'(<Main AVI Header>)
 LIST ('strl'
 'strh'(<Stream header>)
 'strf'(<Stream format>)
 'strd'(additional header data)
 .
 .
 .
)

 .
 .
 .
)

LIST ('movi'
 {SubChunk | LIST('rec '
 SubChunk1
 SubChunk2
 .
 .
 .
)

70

 AVI Files Error! Main Document Only.-3

02/10/93

 .
 .
 .
 }

 .
 .
 .
)

 ['idx1'<AVIIndex>]
)

The following sections describe the chunks contained in the LIST “hdrl” and LIST
“movi” chunks as well as the “idx1” chunk.

Data Structures for AVI Files
Data structures used in the RIFF chunks are defined in the AVIFMT.H header file. The
reference section at the end of this chapter describes the data structures that can be used
for the main AVI header, stream header, AVIIndex, and palette change chunks.

The Main AVI Header LIST
The file begins with the main header. In the AVI file, this header is identified with “avih”
four-character code. The header contains general information about the file, such as the
number of streams within the file and the width and height of the AVI sequence. The main
header has the following data structure defined for it:

typedef struct {
 DWORD dwMicroSecPerFrame;
 DWORD dwMaxBytesPerSec;
 DWORD dwReserved1;
 DWORD dwFlags;
 DWORD dwTotalFrames;
 DWORD dwInitialFrames;
 DWORD dwStreams;
 DWORD dwSuggestedBufferSize;
 DWORD dwWidth;
 DWORD dwHeight;
 DWORD dwScale;
 DWORD dwRate;
 DWORD dwStart;
 DWORD dwLength;
} MainAVIHeader;

The dwMicroSecPerFrame field specifies the period between video frames. This value
indicates the overall timing for the file.

The dwMaxBytesPerSec field specifies the approximate maximum data rate of the file.
This value indicates the number of bytes per second the system must handle to present an

71

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

AVI sequence as specified by the other parameters contained in the main header and
stream header chunks.

The dwFlags field contains any flags for the file. The following flags are defined:

AVIF_HASINDEX

Indicates the AVI file has an “idx1” chunk.

AVIF_MUSTUSEINDEX

Indicates the index should be used to determine the order of presentation of the data.

AVIF_ISINTERLEAVED

Indicates the AVI file is interleaved.

AVIF_WASCAPTUREFILE

Indicates the AVI file is a specially allocated file used for capturing real-time video.

AVIF_COPYRIGHTED

Indicates the AVI file contains copyrighted data.

The AVIF_HASINDEX and AVIF_MUSTUSEINDEX flags applies to files with an index
chunk. The AVI_HASINDEX flag indicates an index is present. The
AVIF_MUSTUSEINDEX flag indicates the index should be used to determine the order
of the presentation of the data. When this flag is set, it implies the physical ordering of the
chunks in the file does not correspond to the presentation order.

The AVIF_ISINTERLEAVED flag indicates the AVI file has been interleaved. The
system can stream interleaved data from a CD-ROM more efficiently than non-interleaved
data. For more information on interleaved files, see “Special Information for Interleaved
Files.”

The AVIF_WASCAPTUREFILE flag indicates the AVI file is a specially allocated file
used for capturing real-time video. Typically, capture files have been defragmented by
user so video capture data can be efficiently streamed into the file. If this flag is set, an
application should warn the user before writing over the file with this flag.

The AVIF_COPYRIGHTED flag indicates the AVI file contains copyrighted data. When
this flag is set, applications should not let users duplicate the file or the data in the file.

The dwTotalFrames field of the main header specifies the total number of frames of data
in file.

The dwInitialFrames is used for interleaved files. If you are creating interleaved files,
specify the number of frames in the file prior to the initial frame of the AVI sequence in
this field.

The dwStreams field specifies the number of streams in the file. For example, a file with
audio and video has 2 streams.

The dwSuggestedBufferSize field specifies the suggested buffer size for reading the file.
Generally, this size should be large enough to contain the largest chunk in the file. If set to

72

 AVI Files Error! Main Document Only.-5

02/10/93

zero, or if it is too small, the playback software will have to reallocate memory during
playback which will reduce performance. For an interleaved file, the buffer size should be
large enough to read an entire record and not just a chunk.

The dwWidth and dwHeight fields specify the width and height of the AVI file in pixels.

The dwScale and dwRate fields are used to specify the general time scale that the file
will use. In addition to this time scale, each stream can have its own time scale. The time
scale in samples per second is determined by dividing dwRate by dwScale.

The dwStart and dwLength fields specify the starting time of the AVI file and the length
of the file. The units are defined by dwRate and dwScale. The dwStart field is usually
set to zero.

The Stream Header (“strl”) Chunks
The main header is followed by one or more “strl” chunks. (A “strl” chunk is required for
each data stream.) These chunks contain information about the streams in the file. Each
“strl” chunk must contain a stream header and stream format chunk. Stream header
chunks are identified by the four-character code “strh” and stream format chunks are
identified with the four-character code “strf”. In addition to the stream header and stream
format chunks, the “strl” chunk might also contain a stream data chunk. Stream data
chunks are identified with the four-character code “strd”.

73

Error! Main Document Only.-6 Video for Windows Programmer's Guide

02/10/93

The stream header has the following data structure defined for it:

typedef struct {
 FOURCC fccType;
 FOURCC fccHandler;
 DWORD dwFlags;
 DWORD dwReserved1;
 DWORD dwInitialFrames;
 DWORD dwScale;
 DWORD dwRate;
 DWORD dwStart;
 DWORD dwLength;
 DWORD dwSuggestedBufferSize;
 DWORD dwQuality;
 DWORD dwSampleSize;
} AVIStreamHeader;

The stream header specifies the type of data the stream contains, such as audio or video,
by means of a four-character code. The fccType field is set to “vids” if the stream it
specifies contains video data. It is set to “auds” if it contains audio data.

The fccHandler field contains a four-character code describing the installable compressor
or decompressor used with the data.

The dwFlags field contains any flags for the data stream. The AVISF_DISABLED flag
indicates that the stream data should be rendered only when explicitly enabled by the user.
The AVISF_VIDEO_PALCHANGES flag indicates palette changes are embedded in the
file.

The dwInitialFrames is used for interleaved files. If you are creating interleaved files,
specify the number of frames in the file prior to the initial frame of the AVI sequence in
this field.

The remaining fields describe the playback characteristics of the stream. These factors
include the playback rate (dwScale and dwRate), the starting time of the sequence
(dwStart), the length of the sequence (dwLength), the size of the playback buffer
(dwSuggestedBuffer), an indicator of the data quality (dwQuality), and sample size
(dwSampleSize). See the reference section for more information on these fields.

Some of the fields in the stream header structure are also present in the main header
structure. The data in the main header structure applies to the whole file while the data in
the stream header structure applies only to a stream.

A stream format (“strf”) chunk must follow a stream header (“strh”) chunk. The stream
format chunk describes the format of the data in the stream. For video streams, the
information in this chunk is a BITMAPINFO structure (including palette information if
appropriate). For audio streams, the information in this chunk is a WAVEFORMATEX or
PCMWAVEFORMAT structure. (The WAVEFORMATEX structure is an extended
version of the WAVEFORMAT structure.) For more information on this structure, see the
New Multimedia Data Types and Data Techniques Standards Update.

The “strl” chunk might also contain a stream data (“strd”) chunk. If used, this chunk
follows the stream format chunk. The format and content of this chunk is defined by
installable compression or decompression drivers. Typically, drivers use this information

74

 AVI Files Error! Main Document Only.-7

02/10/93

for configuration. Applications that read and write RIFF files do not need to decode this
information. They transfer this data to and from a driver as a memory block.

An AVI player associates the stream headers in the LIST “hdrl” chunk with the stream
data in the LIST “movi” chunk by using the order of the “strl” chunks. The first “strl”
chunk applies to stream 0, the second applies to stream 1, and so forth. For example, if the
first “strl” chunk describes the wave audio data, the wave audio data is contained in
stream 0. Similarly, if the second “strl” chunk describes video data, then the video data is
contained in stream 1.

The LIST “movi” Chunk
Following the header information is a LIST “movi” chunk that contains chunks of the
actual data in the streams; that is, the pictures and sounds themselves. The data chunks
can reside directly in the LIST “movi” chunk or they might be grouped into “rec ” chunks.
The “rec ” grouping implies that the grouped chunks should be read from disk all at once.
This is used only for files specifically interleaved to play from CD-ROM.

Like any RIFF chunk, the data chunks contain a four-character code to identify the chunk
type. The four-character code that identifies each chunk consists of the stream number and
a two-character code that defines the type of information encapsulated in the chunk. For
example, a waveform chunk is identified by a two-character code of “wb”. If a waveform
chunk corresponded to the second LIST “hdrl” stream description, it would have a four-
character code of “01wb”.

Since all the format information is in the header, the audio data contained in these data
chunks does not contain any information about its format. An audio data chunk has the
following format (the ## in the format represents the stream identifier):

WAVE Bytes '##wb'
 BYTE abBytes[];

Video data can be compressed or uncompressed DIBs. An uncompressed DIB has
BI_RGB specified for the biCompression field in its associated BITMAPINFO structure.
A compressed DIB has a value other than BI_RGB specified in the biCompression field.
For more information about compression formats, see the description of the
BITMAPINFOHEADER data structure in the Microsoft Windows Programmers
Reference and Chapter 5, “DIB Format Extensions for Microsoft Windows.”

A data chunk for an uncompressed DIB contains RGB video data. These chunks are
identified with a two-character code of “db” (db is an abbreviation for DIB bits). Data
chunks for a compressed DIB are identified with a two-character code of “dc” (dc is an
abbreviation for DIB compressed). Neither data chunk will contain any header
information about the DIBs. The data chunk for an uncompressed DIB has the following
form:

DIB Bits '##db'
 BYTE abBits[];

75

Error! Main Document Only.-8 Video for Windows Programmer's Guide

02/10/93

The data chunk for a compressed DIB has the following form:

Compressed DIB '##dc'
 BYTE abBits[];

Video data chunks can also define new palette entries used to update the palette during an
AVI sequence. These chunks are identified with a two-character code of “pc” (pc is an
abbreviation for palette change). The following data structure is defined palette
information:

typedef struct {
 BYTE bFirstEntry;
 BYTE bNumEntries;
 WORD wFlags;
 PALETTEENTRY peNew;
} AVIPALCHANGE;

The bFirstEntry field defines the first entry to change and the bNumEntries field
specifies the number of entries to change. The peNew field contains the new color entries.

If you include palette changes in a video stream, set the AVITF_VIDEO_PALCHANGES
flag in the dwFlags field of the stream header. This flag indicates that this video stream
contains palette changes and warns the playback software that it will need to animate the
palette.

The “idx1” Chunk
AVI files can have an index chunk after the LIST “movi” chunk. The index chunk
essentially contains a list of the data chunks and their location in the file. This provides
efficient random access to the data within the file, because an application can locate a
particular sound sequence or video image in a large AVI file without having to scan it.

Index chunks use the four-character code “idx1”. The following data structure is defined
for index entries:

typedef struct {
 DWORD ckid;
 DWORD dwFlags;
 DWORD dwChunkOffset;
 DWORD dwChunkLength;
} AVIINDEXENTRY;

The ckid, dwFlags, dwChunkOffset, and dwChunkLength entries are repeated in the
AVI file for each data chunk indexed. If the file is interleaved, the index will also have
these entries for each “rec” chunk. The “rec” entries should have the AVIIF_LIST flag set
and the list type in the ckid field.

The ckid field identifies the data chunk. This field uses four-character codes for
identifying the chunk.

The dwFlags field specifies any flags for the data. The AVIIF_KEYFRAME flag
indicates key frames in the video sequence. Key frames do not need previous video
information to be decompressed. The AVIIF_NOTIME flag indicates a chunk does not

76

 AVI Files Error! Main Document Only.-9

02/10/93

affect the timing of a video stream. For example, changing palette entries indicated by a
palette chunk should occur between displaying video frames. Thus, if an application
needs to determine the length of a video sequence, it should not use chunks with the
AVIIF_NOTIME flag. In this case, it would ignore a palette chunk. The AVIIF_LIST flag
indicates the current chunk is a LIST chunk. Use the ckid field to identify the type of
LIST chunk.

The dwChunkOffset and dwChunkLength fields specify the position of the chunk and
the length of the chunk. The dwChunkOffset field specifies the position of the chunk in
the file relative to the 'movi' list. The dwChunkLength field specifies the length of the
chunk excluding the eight bytes for the RIFF header.

If you include an index in the RIFF file, set the AVIF_HASINDEX in the dwFlags field
of the AVI header. (This header is identified by “avih” chunk ID.) This flag indicates that
the file has an index.

Other Data Chunks
If you need to align data in your AVI file you can add a “JUNK” chunk. (This chunk is a
standard RIFF type.) Applications reading these chunks ignore their contents. Files played
from CD-ROM use these chunks to align data so they can be read more efficiently. You
might want to use this chunk to align your data for the 2 kilobyte CD-ROM boundaries.
The “JUNK” chunk has the following form:

AVI Padding 'JUNK'
 Byte data[]

As with any other RIFF files, all applications that read AVI files should ignore the non-
AVI chunks that it does not recognize. Applications that read and write AVI files should
preserve the non-AVI chunks when they save files they have loaded.

Special Information for Interleaved Files
Files that are interleaved for playback from CD-ROM require some special handling.
While they can be read similarly to any other AVI files, they require special care when
produced.

The audio has to be separated into single-frame pieces, and audio and video for each
frame needs to be grouped together into “rec ” chunks. The record chunks should be
padded so that their size is a multiple of 2 kilobytes and so that the beginning of the actual
data in the LIST chunk lies on a 2 kilobyte boundary in the file. (This implies that the
LIST chunk itself begins 12 bytes before a 2 kilobyte boundary.)

To give the audio driver enough audio to work with, the audio data has to be skewed from
the video data. Typically, the audio data should be moved forward enough frames to allow
approximately 0.75 seconds of audio data to be preloaded. The dwInitialRecords field of
the main header and the dwInitialFrames field of the audio stream header should be set
to the number of frames the audio is skewed.

Additionally, you must ensure that CD-ROM drive is capable of reading the data fast
enough to support your AVI sequence. Non-MPC CD-ROM drives can have a data rate of
less than 150 kilobytes per second.

77

Error! Main Document Only.-10 Video for Windows Programmer's Guide

02/10/93

Using VidEdit With AVI Files
VidEdit lets you create and edit audio-visual sequences consisting of a series of frames
that contain digital audio and video data. You can use VidEdit to create and edit AVI files
that contain one audio and one video stream. Each stream in the file must start at the
beginning of the file (that is, the dwStart field in each stream header must be zero).

Example Code for Writing AVI Files
The WRITEAVI.C and AVIEASY.C files contain example code for writing AVI files.
For simplicity, the examples assume that all video frames are uncompressed DIBs of the
same size. While the DIBS can have any bit depth; 8, 16, and 24 bits are preferred.

These examples also assume all wave data is in memory. A more generalized procedure
should work with wave data that is in memory as well as in a disk file. These examples do
not restrict wave data to PCM. It should work with any format.

An Outline for Writing AVI Files
Like other RIFF files, AVI files are created with the mmioOpen, mmioCreateChunk,
mmioWrite, mmioAscend, and mmioClose functions. These functions have the
following definitions:

mmioOpen

Opens a file for reading or writing, and returns a handle to the open file.

mmioCreateChunk

Creates a new chunk in a RIFF file.

mmioWrite

Writes a specified number of bytes to an open file.

mmioAscend

Ascends out of a RIFF file chunk to the next chunk in the file.

mmioClose

Closes an open file.

In addition to these functions, you can use mmioFOURCC to convert four individual
characters into a four-character code. For more information on these functions and
macros, see the Microsoft Windows Multimedia Programmer’s Guide and Microsoft
Windows Multimedia Programmer’s Reference.

78

 AVI Files Error! Main Document Only.-11

02/10/93

Note:

The AVIFMT.H file contains macro definitions for creating the two- and four-character
codes described in this chapter. It also defines the aviTWOCC and
TWOCCFromFOURCC macros. These macros create two-character codes from
individual characters or from four-character codes.

Unlike many other RIFF files, AVI files use many nested chunks and subchunks. This
makes them more complicated than most RIFF files. Use the following tables as a
checklist to help you decide when to create a chunk, when to write data to a chunk, and
when to ascend from a chunk. The tables do not include information about writing non-
AVI data chunks to the file. The information in the chunk column of the table mirrors the
example in the “AVI RIFF Form” section presented previously.

Creating the File and “AVI ” Chunk
The “AVI ” chunk is the first chunk in the file. You will not ascend from this chunk until
all other chunks have been created.

Chunk How to Handle

RIFF ('AVI ' Use mmioOpen to open the file. Seek to the
beginning of the file with mmioSeek. Create the
AVI chunk with mmioCreateChunk. (Use the
“AVI ” four-character code and the
MMIO_CREATERIFF flag.) Do not ascend from
this chunk in preparation for writing the remaining
chunks.

Creating the LIST “hdrl ” and “avih” Chunks
The LIST “hdrl ” chunk contains the stream format header chunks. Because it contains
other chunks, you will not ascend from it until the other header chunks are created.

The “avih” chunk contains the main header list. This is written as a complete chunk.

Chunk How to Handle

LIST ('hdrl' Create the LIST “hdrl” chunk with
mmioCreateChunk. (Use the “hdrl” four-
character code and the MMIO_CREATELIST
flag.)

'avih'(<Main AVI Header>) Create the Main AVI Header chunk with
mmioCreateChunk. (Use the “avih” four-
character code.) Write the header information with
mmioWrite. Ascend from the “avih” chunk with
mmioAscend. Do not ascend from the LIST
“hdrl” chunk.

79

Error! Main Document Only.-12 Video for Windows Programmer's Guide

02/10/93

Creating the “strl”, “strh”, “strf”, and “strd” Chunks
The “strl”, “strh”, “strf”, and “strd” chunks are written as complete chunks. You write a
set of the “strh”, “strf”, and “strd” chunks for each stream in the file. After all the stream
descriptions are written, you ascend from LIST “hdrl” chunk.

Chunk How to Handle

LIST ('strl' Create the LIST “strl” chunk with
mmioCreateChunk. (Use the “strl” four-character
code and the MMIO_CREATELIST flag.)

'strh'(<Stream header>) Create the stream header chunk with
mmioCreateChunk. (Use the “strh” four-character
code.) Write the stream header information with
mmioWrite. Ascend from the “strh” chunk with
mmioAscend.

'strf'(<Stream format>) Create the stream format chunk with
mmioCreateChunk. (Use the “strf” four-character
code.) Write the stream format information with
mmioWrite. Ascend from the “strf” chunk with
mmioAscend.

'strd'(additional header data) If needed, create chunks for any additional header
data with mmioCreateChunk. (Use the “strd”
four-character code.) Write the additional header
data with mmioWrite. Ascend from the “strd”
chunk.

 .
 .
 .

If needed, add stream header, stream format, and
additional header data chunks for other streams in
the file.

) Ascend from the LIST “strl” chunk with
mmioAscend.

 .
 .
 .
)

Ascend from the LIST “hdrl” chunk with
mmioAscend. If needed, create and write padding
chunks or other data chunks.

Creating the LIST “movi” and “rec ” Chunks
The LIST “movi” chunk contains other chunks. After you create this chunk, you will not
ascend from it until the other chunks are written.

80

 AVI Files Error! Main Document Only.-13

02/10/93

You can write the data as an individual chunk or as part of a “rec ” chunk. Like the LIST
“movi” chunk, you will not ascend from a “rec ” chunk until you write all of its
subchunks.

Chunk How to Handle

LIST ('movi' Create the LIST “movi” chunk with
mmioCreateChunk. (Use the LIST “movi” four-
character code and the MMIO_CREATELIST
flag.)

{ SubChunk |
 LIST('rec '
 SubChunk1
 SubChunk2
 .
 .
 .
)
 .
 .
 .
 }
 .
 .
 .

You can add your movie data directly at this point
in a subchunk or include it in a “rec ” chunk. The
following steps summarize creating these chunks:
Create a data chunk with mmioCreateChunk.
(Use the four-character code appropriate for the
data chunk and stream.) If you are adding an index
chunk to the end of the file, save the location of the
subchunks for it.

) Ascend from the LIST “movi ” chunk.

Creating the “idx1” Chunk and Ascending From the “AVI ”
Chunk

The optional index chunk is written as a complete chunk. After you have completed this
chunk, you can ascend from the “AVI ” chunk and close the file.

Chunk How to Handle

['idx1'<AVIIndex>] If used, create the AVI index chunk with
mmioCreateChunk. (Use the “idx1” four-
character code.) Write the index information with
mmioWrite. Ascend from the “idx1” chunk with
mmioAscend. Although the “idx1” is the last
chunk used in an AVI sequence, you can add non-
AVI chunks after it. These subchunks will still be
part of the “AVI ” chunk.

) Ascend from the “AVI ” chunk with mmioAscend.
Close the file with mmioClose.

81

Error! Main Document Only.-14 Video for Windows Programmer's Guide

02/10/93

AVI RIFF File Reference
This section lists data structures used to support AVI RIFF files. (These structures are
defined in AVIFMT.H.) The data structures are presented in alphabetical order. The
structure definition is given, followed by a description of each field.

AVIINDEXENTRY
The AVI file index consists of an array of AVIINDEXENTRY structures contained
within an 'idx1' chunk at the end of an AVI file. This chunk follows the main LIST 'movi'
chunk which contains the actual data.

typedef struct {
 DWORD ckid;
 DWORD dwFlags;
 DWORD dwChunkOffset;
 DWORD dwChunkLength;
} AVIINDEXENTRY;

Fields
The AVIINDEXENTRY structure has the following fields:

ckid
Specifies a four-character code corresponding to the chunk ID of a data chunk in the
file.

dwFlags
Specifies any applicable flags. The flags in the low-order word are reserved for AVI,
while those in the high-order word can be used for stream- and
compressor/decompressor-specific information.

The following values are currently defined:

AVIIF_LIST
Indicates the specified chunk is a 'LIST' chunk, and the ckid field contains the list
type of the chunk.

AVIIF_KEYFRAME
Indicates this chunk is a key frame. Key frames do not require additional preceding
chunks to be properly decoded.

82

 AVI Files Error! Main Document Only.-15

02/10/93

AVIIF_FIRSTPART
Indicates this chunk needs the frames following it to be used; it cannot stand alone.

AVIIF_LASTPART
Indicates this chunk needs the frames preceding it to be used; it cannot stand alone.

AVIIF_NOTIME
Indicates this chunk should have no effect on timing or calculating time values
based on the number of chunks. For example, palette change chunks in a video
stream should have this flag set, so that they are not counted as taking up a frame’s
worth of time.

dwChunkOffset
Specifies the position in the file of the specified chunk. The position value includes the
eight byte RIFF header.

dwChunkLength
Specifies the length of the specified chunk. The length value does not include the eight
byte RIFF header.

AVIPALCHANGE
The AVIPALCHANGE structure is used in video streams containing palettized data to
indicate the palette should change for subsequent video data.

typedef struct {
 BYTE bFirstEntry;
 BYTE bNumEntries;
 WORD wFlags;
 PALETTEENTRY peNew;
} AVIPALCHANGE;

Fields
The AVIPALCHANGE structure has the following fields:

bFirstEntry
Specifies the first palette entry to change.

bNumEntries
Specifies the number of entries to change.

wFlags
Reserved. (This should be set to 0.)

peNew
Specifies an array of new palette entries.

83

Error! Main Document Only.-16 Video for Windows Programmer's Guide

02/10/93

AVIStreamHeader
The AVIStreamHeader structure contains header information for a single stream of an
file. It is contained within an 'strh' chunk within a LIST 'strl' chunk that is itself contained
within the LIST 'hdrl' chunk at the beginning of an AVI RIFF file.

typedef struct {
 FOURCC fccType;
 FOURCC fccHandler;
 DWORD dwFlags;
 DWORD dwReserved1;
 DWORD dwInitialFrames;
 DWORD dwScale;
 DWORD dwRate;
 DWORD dwStart;
 DWORD dwLength;
 DWORD dwSuggestedBufferSize;
 DWORD dwQuality;
 DWORD dwSampleSize;
} AVIStreamHeader;

Fields
The AVIStreamHeader structure has the following fields:

fccType
Contains a four-character code which specifies the type of data contained in the
stream. The following values are currently defined for AVI data:

'vids'
Indicates the stream contains video data. The stream format chunk contains a
BITMAPINFO structure which can include palette information.

'auds'
Indicates the stream contains video data. The stream format chunk contains a
WAVEFORMAT or PCMWAVEFORMAT structure.

Other four-character codes can identify non-AVI data.

fccHandler
Optionally, contains a four-character code that identifies a specific data handler. The
data handler is the preferred handler for the stream.

dwFlags
Specifies any applicable flags. The bits in the high-order word of these flags are
specific to the type of data contained in the stream. The following flags are currently
defined:

AVISF_DISABLED
Indicates this stream should not be enabled by default.

AVISF_VIDEO_PALCHANGES
Indicates this video stream contains palette changes. This flag warns the playback
software that it will need to animate the palette.

dwReserved1
Reserved. (Should be set to 0.)

84

 AVI Files Error! Main Document Only.-17

02/10/93

dwInitialFrames
Specifies how far audio data is skewed ahead of the video frames in interleaved files.
Typically, this is about 0.75 seconds.

dwScale
This field is used together with dwRate to specify the time scale that this stream will
use.

Dividing dwRate by dwScale gives the number of samples per second.

For video streams, this rate should be the frame rate.

For audio streams, this rate should correspond to the time needed for nBlockAlign
bytes of audio, which for PCM audio simply reduces to the sample rate.

dwRate
See dwScale.

dwStart
Specifies the starting time of the AVI file. The units are defined by the dwRate and
dwScale fields in the main file header. Normally, this is zero, but it can specify a delay
time for a stream which does not start concurrently with the file.

Note: The 1.0 release of the AVI tools does not support a non-zero starting time.

dwLength
Specifies the length of this stream. The units are defined by the dwRate and dwScale
fields of the stream’s header.

dwSuggestedBufferSize
Suggests how large a buffer should be used to read this stream. Typically, this contains
a value corresponding to the largest chunk present in the stream. Using the correct
buffer size makes playback more efficient. Use zero if you do not know the correct
buffer size.

dwQuality
Specifies an indicator of the quality of the data in the stream. Quality is represented as
a number between 0 and 10000. For compressed data, this typically represent the value
of the quality parameter passed to the compression software. If set to -1, drivers use
the default quality value.

dwSampleSize
Specifies the size of a single sample of data. This is set to zero if the samples can vary
in size. If this number is non-zero, then multiple samples of data can be grouped into a
single chunk within the file. If it is zero, each sample of data (such as a video frame)
must be in a separate chunk.

For video streams, this number is typically zero, although it can be non-zero if all
video frames are the same size.

For audio streams, this number should be the same as the nBlockAlign field of the
WAVEFORMAT structure describing the audio.

85

Error! Main Document Only.-18 Video for Windows Programmer's Guide

02/10/93

MainAVIHeader
The MainAVIHeader structure contains global information for the entire AVI file. It is
contained within an 'avih' chunk within the LIST 'hdrl' chunk at the beginning of an AVI
RIFF file.

typedef struct {
 DWORD dwMicroSecPerFrame;
 DWORD dwMaxBytesPerSec;
 DWORD dwReserved1;
 DWORD dwFlags;
 DWORD dwTotalFrames;
 DWORD dwInitialFrames;
 DWORD dwStreams;
 DWORD dwSuggestedBufferSize;
 DWORD dwWidth;
 DWORD dwHeight;
 DWORD dwScale;
 DWORD dwRate;
 DWORD dwStart;
 DWORD dwLength;
} MainAVIHeader;

Fields
The MainAVIHeader structure has the following fields:

dwMicroSecPerFrame
Specifies the number of microseconds between frames.

dwMaxBytesPerSec
Specifies the approximate maximum data rate of file.

dwReserved1
Reserved. (This field should be set to 0.)

dwFlags
Specifies any applicable flags. The following flags are defined:

AVIF_HASINDEX
Indicates the AVI file has an 'idx1' chunk containing an index at the end of the file.
For good performance, all AVI files should contain an index.

AVIF_MUSTUSEINDEX
Indicates that the index, rather than the physical ordering of the chunks in the file,
should be used to determine the order of presentation of the data. For example, this
could be used for creating a list frames for editing.

AVIF_ISINTERLEAVED
Indicates the AVI file is interleaved.

AVIF_WASCAPTUREFILE
Indicates the AVI file is a specially allocated file used for capturing real-time
video. Applications should warn the user before writing over a file with this flag set
because the user probably defragmented this file.

86

 AVI Files Error! Main Document Only.-19

02/10/93

AVIF_COPYRIGHTED
Indicates the AVI file contains copyrighted data and software. When this flag is
used, software should not permit the data to be duplicated.

dwTotalFrames
Specifies the number of frames of data in file.

dwInitialFrames
Specifies the initial frame for interleaved files. Non-interleaved files should specify
zero.

dwStreams
Specifies the number of streams in the file. For example, a file with audio and video
has 2 streams.

dwSuggestedBufferSize
Specifies the suggested buffer size for reading the file. Generally, this size should be
large enough to contain the largest chunk in the file. If set to zero, or if it is too small,
the playback software will have to reallocate memory during playback which will
reduce performance.

For an interleaved file, this buffer size should be large enough to read an entire record
and not just a chunk.

dwWidth
Specifies the width of the AVI file in pixels.

dwHeight
Specifies the height of the AVI file in pixels.

dwScale
This field is used with dwRate to specify the time scale that the file as a whole will
use. In addition, each stream can have its own time scale.

Dividing dwRate by dwScale gives the number of samples per second.

dwRate
See dwScale.

dwStart
Specifies the starting time of the AVI file. The units are defined by dwRate and
dwScale. This field is usually set to zero.

dwLength
Specifies the length of the AVI file. The units are defined by dwRate and dwScale.
This length is returned by MCIAVI when using the frames time format.

87

CHAPTER 5

DIB Format Extensions for
Microsoft Windows

The DIB fon11at extensions for Microsoft Windows add the capabilities to handle new
compression formats, custom compression fon11ats, and inve11ed D!Bs. The extensions
also include an escape message to let applications interrogate display drivers to detennine
their capabilities. This chapter includes the following topics related to these extensions:

• 16 and 32 bit extensions to the Bl_RGB compression format

• 16 and 32 bit BI_BITFIELDS compression format extensions

• Extensions for custom compression fon11ats

• Determining display driver capabilities

• Inverted D!Bs

Windows Compression Formats
Compression flags for a b itmap are specified in the BITMAPlNFOHEADER data
structure defined by Windows. This structure has the following fields:

typedef struct t agBITMAPINFOHEADER
DWORD biSize;

LONG biWidth;

LONG biHeight;
WORD biPlanes ;

WORD biBitCount ;

DWORD biCompression;
DWORD biSizelrnage ;

LONG biXPelsPerMeter ;

LONG biYPelsPerMeter;
DWORD b iClrUsed;

DWORD b i Clr i mportant ;

BI TMAPINFOHEADER;

Information about the compression format is specified in the biCompression and
biBitCount fields. The biCompression field specifies the type of compression used or
requested. Both existing and new compression formats use this field .

The biBitCount field specifies the number of bits per pixel. Some compression formals
need this information to properly decode the colors in the pixel.

88

Error! Main Document Only.-2 Video for Windows Programmer's Guide

When the value in the biBitCount field is set to less than or equal to eight, video drivers
can assume the bitmap uses a palette or color table defined in the BITMAPTNFO data
structure. This data structure has the following fields :

typedef s truct tagBITMAPIN FO {

BITMAPINFOHEADER bmi He ader ;

RGBQUAD bmiColo rs [l]

BITMAPINFO;

When the value in the biBitCount field is set to greater than eight, video drivers can
assume bitmaps are true color and they do not use a color table. For more information on
these data structures, see the Microsoft Windows Programmer's Reference.

Existing Formats
Windows defines the following compression fonnats:

BI RGB
Specifies the bitmap is not compressed. (Valid for biBitCount set to 1, 4, 8, 16, 24, or
32.)

BI RLE8
Specifies a run-length encoded format for bitmaps with 8 bits per pixel. (Valid for
biBitCount set to 8.)

BI RLE4
Specifies a run-length encoded format for bitmaps with 4 bits per pixel. (Valid for
biBitCount set to 4.)

For more infonnation on these formats, see the Microsoft Windows Programmer's
Reference.

Extensions to the Bl RGB Format

Q}/ l 0/93

Extensions to the BI_RGB fomiat include 16 and 32 bits per pixel bitmap fonnats. These
formats do not use a color table. They embed the colors in the WORD or DWORD
representing each pixel.

The 16 bit Bl_RGB format is identified by setting biCompression to BI_RGB and
biBitCount to 16. For this format, each pixel in the bitmap is represented by a 16 bit RG B
color value. The high-bit of this value is zero. The remaining bits are divided into three
groups of 5-bits to represent the red, green, and blue color values. The group containing
the five most significant bits represents red. The group containing the five least significant
bits represents blue. (This fomiat is also referred to as the RGB555 fo1111at.

89

DIB Format Extensions for Microsoft Windows Error! Main Document Only.-3

This fonnat supports 32K colors.) The following illustration shows the bit organization of
the RGB555 format:

t •IR I RI Rll RI RIG I G II GIG I GI g II g I g I g I g I
r.i "fi •
fi'M l..M

16 bit BI_RGB format.

The 32 bit BI_RGB format is identified by setting biCompression to BI_RGB and
biBitCount to 32. For this fonnat, each pixel is represented by a 32 bit (4 byte) RGB
color value. The first byte is zero. The second byte represents red, the third byte represents
green, and the last byte represents blue. The fo llowing illustration shows the bit
organization of this format:

32 bit BI RGB format.

Display drivers must support the BI_RGB format for 1, 4, 8, and 24 bits per pixel bitmaps.
If practical, they should also support this fonnat for 16 and 32 bits per pixel bitmaps.

Formats Using Bl_BITFIELDS and Color Masks
[n addition to the 16 and 32 bits per pixel BI_RGB fo1111at, the BI_BITFIELDS flag has
been defined for 16 and 32 bit bitmaps. This flag is recognized only by enhanced display
drivers and does not need to be supported by most display drivers. The BI_BITFIELDS
flag has the following definition:

BI BITFIELDS
Specifies the bitmap is not compressed and a color mask is defined in the bmiColors
field of the BITMAPINFO data structure. (Valid for biBitCount set to 16 or 32.)

Setting the biCompression field to BI_BTTFTELDS indicates the bmiColors field
contains three DWORDS used to mask each pixel in the bitmap. The masks are used to
obtain the RG B color values of the pixel. The first DWORD contains the red mask, the
second DWORD contains the green mask, and the third DWORD contains the blue mask.
The image bits follow the three DWORDs. The color masks have the following
characteristics:

• The bits in a mask must not overlap any bits in another mask.

• The set of bits defined for each mask must be contiguous.

02110/93

90

Error! Main Document Only.-4 Video for Windows Programmer's Guide

These characteristics do not restrict any one mask to a particular location in a DWORD.
For example, the red mask can occupy the least significant, most significant, or central
position of the ORed combination of all three masks. The position of each mask
coJTesponds to the color position defined for the appropriate RGB component of each
pixel. This implies for a 16 bit image, the color masks will reside in the low-ordered word
of the DWORD. (For 16 bit images, set the biBitCount field of the
BITMAPINFOHEADER data structure to 16; for 32 bit images set it to 32.)

Additionally, you need to set the bits in a mask only for the bit positions in a pixel that
represent color. Because unused bits in a pixel wi ll always be masked, you can set the
unused bits in a pixel to either zero or one.

For example, color masks can be used to decode the colors of a 16 bit pixel divided into
tlu·ee unequal groups of bits to represent the red, green, and blue color values. The group
containing the five most significant bits represents red. The group containing the five least
significant bits represents blue. The group containing the middle six bits represents green.
(This fonnat is also referred to as the RGB565 format.) The following illustration shows
the definitions of the color masks and the bit organization of a pixel with the RGB565
format:

Rff1 Pbk 11 11 11 11 11 1 I • I • I • 11 • I • I • I • 11 • I • I • I • I

Blue Pbk I • I • I • I • 11 • I • I • I • 11 • I • I • I 1 111 I 1 I 1 I 1 I

R;H6 Pixel I R I R I R I R 11 R I G I G I G 11 G I G I 6 I "' 11 "' I "' I "' I "' I
llft 1fi •
r.u ~

RGB565 format using BI_BITFIELDS.

Drivers obtain the RGB values for a pixel by masking the pixel with the DWORD
corresponding to each color mask and then they map the colors to the appropriate registers
for display. (If an application needs to retrieve the individual color values for a pixel, it
can use the color masks to separate the color components and then right shift each color
component by the number ofleast significant zeros in the mask.)

Custom Formats

02/ 10/93

Your driver can define custom compression and bitmap fonnats by assigning a four
character code to the biCompression field in place of the standard constants. When you
define a custom format, you must specify the number of bytes in the image in the
biSizel mage field.

91

DIB Format Extensions for Microsoft Windows Error! Main Document Only.-5

The compression type four-character code must be unique. If you want to create a new
four-character code for a compression type, register it with Microsoft to set up a standard
definition of it and avoid any conflicts with other compression codes that mjght be
defined. To register a code for a compression type, request a Multimedia Developer
Registration Kit from the following group:

Microsoft Corporation
Multimedia Systems Group
Product Marketing
One Microsoft Way
Redmond, WA 98052-6399

The following is a list of the cun-ently reserved compression types:

Four-character biBitCount Compression Method Registered by
Code

CRAM Cram 8, 16 Video compression Microsoft

JPEG 24 JPEG format for images Microsoft

YUV9 24, 16 411 YUV format for images Microsoft

TYUV 8, 16 YUV Microsoft

RYUV 8 Delta YUV Microsoft

For more information on four character codes, see the Microsoft Windows Multimedia
Programmer's Guide, Microsoft Windows Multimedia Programmer's Reference, and
Chapter 10, "Video Compression and Decompression Drivers.".

Determining Display Driver Capabilities
You can determine ifa display driver can handle a DIB with the QUERY DIBSUPPORT
escape. The following syntax statement illustrates the use of this escape:

short Escape(hdc, QUERYDIBSUPPORT, nSize, lpbi, lpFlags)

The following parameter descriptions apply to the QUERYDIBSUPPORT escape:

Parameter Data Type Description

hdc HDC Identifies the device context.

nSi=e int Specifies the size of the BITMAPINFO data
structure passed.

lpbi LPBlTMAPfNFO Points to a BITMAP INFO data structure containing
the characteristics of the bitmap.

02/ 10/93

92

Error! Main Document Only.-6 Video for Windows Programmer's Guide

(Continued)

Parameter Data Type

lpFlags LP INT

Description

Points to an integer containing the return flags.
Drivers set these flags to indicate which
capabilities they suppoti. The following flags are
defined:

Flag

QDI_SETDIBITS

QDI_ GETDIBITS

QDJ_ DIBTOSCREEN

QDI_STRETCHDIB

Description

Device can convert DIB
to bitmap

Device can convert
bitmap to DIB

Device can draw DIB

Device can stretch DIB

When a display driver gets this escape it should examine the BITMAPINFO structure
indicated by !phi and determine if it supports the DIB. The driver checks biBitCount for
the proper bit depth, biCompression for the proper compression type, and biHeight for a
positive or negative value (negative values indicate an inverted DIB). IfbiCompression is
set to BI_BITF!ELDS, the driver also checks the bit masks in the color table.

A display driver will set flags for lpFlags if it provides either partial or complete
functionality corresponding to the flag. For example, a driver sets the
QDI_STRETCHDIB flag if can stretch a DIB by integer amounts (partial fw1ctionality) or
if it can stretch a DIB by both integer and non-integer values (complete functionality).

Inverted DIBs
Video drivers incorporating the DIB fom1at extensions will let you specify negative values
for biHeight. lfbiHeight is negative then the origin of the bitmap is the upper-left comer
and the height is the abso 1 ute value of biHeigh t.

Applications determine if a driver supports inverted DIBs by sending the
QUERYDIBSUPPORT flag with biHeight set to a negative value. Drivers return the
QDI_DIBTOSCREEN flag in response to this if they support inverted DIBs.

Definition of the Flags and Escape

02110193

The flags, constants, and escape values described in this chapter are defined in
MMREG.H. Use this header file until these flags, escapes, and constants are added to the
header files distributed with Microsoft Windows.

93

C H A P T E R 6

This chapter describes how to play Video for Windows AVI files using the MCI interface.
It contains the following topics:

 MCI Overview

 Using the MCI Command Interface

 Using the MCI String Interface

 Handling MCI notification

 Playing AVI files using MCI

Sample code for AVI playback is in the MOVPLAY1.C and MOVPLAY2.C files.
MOVPLAY1.C uses the MCI command interface while MOVPLAY2.C uses the string
interface. Both applications look the same to the end user, they just illustrate the different
methods of using MCI to send commands.

MCI Overview
MCI provides a high-level interface to control various media devices through generalized
commands such as play, pause and stop as well as through specific command sets defined
for different device types. MCI uses the MCIAVI.DRV driver to handle AVI playback.

Your application uses MCI commands from the Digital Video Command Set to control
MCIAVI.DRV. Since most of the work is done by the commands and not by MCI
directly, the interface to MCI itself is very simple and just passes commands down to
MCIAVI. In fact, MCI only has five functions that applications use for MCI operation. Of
these five functions, the following two functions are commonly used for sending
commands:

mciSendCommand
Sends a command message to MCI.

mciSendString
Sends a string command to MCI.

Your application must link with MMSYSTEM.LIB to use MCI. It must also include the
MMSYSTEM.H and DIGITALV.H files. The MMSYSTEM.H file included with the
SDK for Microsoft Windows defines the prototypes for these functions and defines the
messages, flags, constants, and data structures needed for their use. The DIGITALV.H file

Playing AVI Files With MCI

94

Error! Main Document Only.-2 Video for Windows Programmer's Guide

02/10/93

defines the digital video command set specifically used to control MCIAVI. For a
summary of the command messages and command strings used with MCIAVI, see
Chapter 7, “MCI Command Strings for MCIAVI” and Chapter 8, “MCI Command
Messages for MCIAVI.”

For full information on the MCI commands see the Microsoft Multimedia Programmer's
Reference and the Microsoft Multimedia Programmer's Guide of the Windows 3.1
Software Development Kit. For full information on the MCI Digital Video Command Set
see the Digital Video Command Set for the Media Control Interface standards update.

Using the MCI Command Interface
One method of sending MCI commands to MCIAVI uses mciSendCommand to send a
command message. Command messages include a message corresponding to the
command, a set of flags, and a data structure defining the parameters for that command.
This function has the following syntax:

DWORD mciSendCommand(wDeviceID, wMessage, dwParam1, dwParam2)

The wDeviceID parameter defines the device ID of the MCI device that will receive the
command. (This parameter is returned for the open command, which does not require the
device ID.) The wMessage parameter specifies the message your application wants to
send. The dwParam1 parameter defines the flags for the command, and dwParam2 points
to a data structure for the command. This function returns 0 on success or an MCI error
code on failure.

The programming example for sending a command message has MCIAVI.DRV play an
AVI file. The command message for playing an AVI file is MCI_PLAY. For this
command, MCIAVI.DRV accepts the following flags in dwParam1:

MCI_FROM
Indicates the dwFrom field of the structure identified by dwParam2 specifies a
starting position for the file.

MCI_TO
Indicates the dwTo field of the structure identified by dwParam2 specifies an ending
position for the file.

MCI_DGV_PLAY_WINDOW
Indicates playing should occur in the window associated with a device instance (the
default).

MCI_MCIAVI_PLAY_FULLSCREEN
Indicates playing should use a full-screen display, typically with a 320x200 resolution.

95

 Playing AVI Files With MCI Error! Main Document Only.-3

02/10/93

The MCI_PLAY command uses the following data structure to pass information
(dwParam2 points to this structure):

typedef struct {
 DWORD dwCallback;
 DWORD dwFrom;
 DWORD dwTo;
} MCI_DGV_PLAY_PARMS;

Prior to using mciSendCommand to send the MCI_PLAY message, your application
allocates the memory for the data structure, initializes the fields it wants to use, and sets
the flags corresponding to the fields used in the data structure. (If your application does
not set a flag for a data structure field, MCI drivers ignore the data structure field.) For
example, the following function plays a movie from the starting position specified by
dwFrom to the an ending position specified by dwTo (if either position is 0 then it is
considered not used):

DWORD PlayMovie(WORD wDevID, DWORD dwFrom, DWORD dwTo)
{
 MCI_DGV_PLAY_PARMS mciPlay; // play params
 DWORD dwFlags = 0;

 // check dwFrom, if it is != 0 then set parameters and flags
 if (dwFrom){
 mciPlay.dwFrom = dwFrom; // set parameter
 dwFlags |= MCI_FROM; // set corresponding flag to validate field
 }

 // check dwTo, if it is != 0 then set parameters and flags
 if (dwTo){
 mciPlay.dwTo = dwTo; // set parameter
 dwFlags |= MCI_TO; // set corresponding flag to validate field
 }

 // send the PLAY command and return the result
 return mciSendCommand(wDevID, MCI_PLAY, dwFlags,
 (DWORD)(LPVOID)&mciPlay);
}

Using the MCI String Interface
Another method of sending MCI commands to MCIAVI uses mciSendString to send a
command string. This function uses text strings to represent the command. It has the
following syntax:

DWORD mciSendString(lpstrCommand, lpstrReturnString, wReturnLength,
 hCallback)

The lpstrCommand parameter specifies a far pointer to the actual command string. Each
command string includes a command, a device identifier, and command arguments.
Arguments are optional on some commands and required on other commands. A
command string has the following form:

command device_id arguments

96

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

The command parameter represents the command name (for example, open, close, or
play). The device_id parameter identifies the MCI driver or a file. The arguments
parameter indicates any flags and values associated with the command.

When your application opens MCIAVI, it uses a device name, a keyword from the [MCI]
section of the SYSTEM.INI file, or filename as the device_id used to identify the MCI
device. Your application can avoid using the formal device_id argument in subsequent
commands by specifying the alias flag when it opens MCIAVI. (The alias your
application wants to use in subsequent commands is specified after the alias flag.) Most
string examples in this section use an alias.

The lpstrReturnString parameter of mciSendString specifies a far pointer to a buffer for
return information. (Your application can set it NULL if a command does not return
information.) The wReturnLength parameter specifies the size of the return buffer, or 0 if
no buffer is specified. The hCallback parameter specifies a window handle if your
applications wants to receive MCI notify messages.

For example, the string play command used with MCIAVI.DRV has the following
definition and arguments:

play items Starts playing the video sequence. The following optional items
 modify the command:

 from position Specifies a starting position for the play.

 to position Specifies an ending position for the play.

 fullscreen Specifies playing should use a full-screen display.

 window Specifies playback should be in the window
 associated with the device instance (the default).

The following example uses the string interface to send the play command with the from
and to flags:

DWORD PlayMovie(LPSTR lpstrAlias, DWORD dwFrom, DWORD dwTo)
{
 char achCmndBuff[128];

 wsprintf(achCmndBuff, "play %s from %u to %u", lpstrAlias, dwFrom, dwTo);

 return mciSendString(achCommandBuff, NULL, 0, NULL);
}

When using the string interface, all values passed with the command and all return values
are text strings so your application needs conversion routines to translate from variables to
strings or back again. For example, the following fragment gets the size of an AVI
sequence and uses the size to allocate memory for a RECT structure:

97

 Playing AVI Files With MCI Error! Main Document Only.-5

02/10/93

void GetSourceRect(LPSTR lpstrAlias, LPRECT lpRect)
{
 char achRetBuff[128];
 char achCommandBuff[128];

 // build the command string "where name source"
 sprintf(achCommandBuff, "where %s source", lpstrAlias);

 SetRectEmpty(lpRect); // clear the RECT

 // send the command
 if (mciSendString(achCommandBuff, achRetBuff,
 sizeof(achRetBuff), NULL)== 0){

 // The rectangle is returned in our buffer as "x y dx dy" and we
 // know that x and y are both 0 since this is the source rectangle.
 // The following lines translate the string into the RECT structure.
 char *p;
 p = achRetBuff; // point to the return string
 while (*p != ' ') p++; // go past the x (0)
 while (*p == ' ') p++; // go past spaces
 while (*p != ' ') p++; // go past the y (0)
 while (*p == ' ') p++; // go past spaces

 // now get the width
 for (; *p != ' '; p++)
 lpRect->right = (10 * lpRect->right) +
 (*p - '0');

 while (*p == ' ') p++; // go past spaces

 // now get the height
 for (; *p != ' '; p++)
 lpRect->bottom = (10 * lpRect->bottom) +
 (*p - '0');

 }

}

Choosing the mciSendCommand or mciSendString
Interface

Since there are two interfaces to send commands to MCIAVI, you must select the most
appropriate one for your application’s needs. With the command interface, your
application must fill a data structure and make sure that the flags it sets match the data
structure fields it uses. With the string interface, however, your application must handle
the conversion of string data for anything that might be variable within the application.
Your application might choose to mix the two methods for the most efficient operation.

98

Error! Main Document Only.-6 Video for Windows Programmer's Guide

02/10/93

For straightforward commands your application might use the string interface, and for
commands that return information or commands your application passes information
(such as window or palette handles), it might use the command interface.

You will probably find the string interface the easiest command set to understand and
read. While the structure of the string commands is simple, it still retains the capabilities
of the message commands to control MCI devices. This makes the command set
extremely useful in planning your application and discussing the MCI capabilities of your
application.

The examples in the rest of this chapter use a combination of the string and command
interfaces. You can find other examples of using MCI with the digital video command set
in the MOVPLAY1.C and MOVPLAY2.C files. For examples using command messages,
see MOVPLAY1.C. For examples using command strings, see MOVPLAY2.C.

Handling MCI Notification
Whichever interface your application uses, it can have MCI send notification messages
when an action completes. With the string interface, your application requests notification
by adding the notify flag to the string command it sends. It prepares to receive the
notification messages by setting the hCallback parameter to its window handle. With the
command interface, your application requests notification by adding MCI_NOTIFY to
the flags sent in dwParam1. It prepares to receive the notification messages by setting the
dwCallback field associated with dwParam2 to the callback window handle. In both
cases the callback window procedure must be able to handle the MM_MCINOTIFY
message.

An MCI notification message indicates one of the following results:

 The command completed successfully—MCI_NOTIFY_SUCCESSFUL

 The command was superseded—MCI_NOTIFY_SUPERCEDED

 The command was aborted—MCI_NOTIFY_ABORTED

 The command fails—MCI_NOTIFY_FAILURE

The MOVPLAY sample applications uses notification on the play command to determine
when playing stops at the end of the sequence. Once started this way, the sequence plays
independently of MOVPLAY and MCI notifies MOVPLAY when the sequence
completes. MOVPLAY uses the notification message to rewind the sequence. The main
window procedure of MOVPLAY includes the following fragment to handle the
notification:

99

 Playing AVI Files With MCI Error! Main Document Only.-7

02/10/93

case MM_MCINOTIFY:
 // Check the status of an AVI movie that might have been playing.
 // By using MCI_NOTIFY, we will get the MCI_NOTIFY_SUCCESSFUL flag
 // if the play completes on it's own.
 switch(wParam){
 case MCI_NOTIFY_SUCCESSFUL:
 // Playing finished, let's rewind and clear our flag
 fPlaying = FALSE;
 mciSendCommand(wMCIDeviceID, MCI_SEEK,
 MCI_SEEK_TO_START, (DWORD)(LPVOID)NULL);
 return 0;
 }

The following fragment shows how the notify flag is used with the play command. To use
the previous fragment to process the notification message, the handle to the window
procedure containing it is specified in hwnd.

MCI_DGV_PLAY_PARMS mciPlay;
DWORD dwFlags;

mciPlay.dwCallback = MAKELONG(hwnd, 0);
dwFlags = MCI_NOTIFY;

mciSendCommand(wMCIDeviceID, MCI_PLAY, dwFlags, (DWORD)(LPSTR)&mciPlay);

For the string interface, the following line uses mciSendString to send the play command
and request notification. The hwnd parameter in it would also specify the handle to the
window procedure containing the handler for notification.

mciSendString("play movie notify", NULL, 0, hwnd);

 Playing AVI files with MCI
To play an AVI file, your application will perform the following actions:

1. Open the AVI file

2. Set up the playback window

3. Play the AVI sequence

4. Optionally change the playback state

5. Optionally get playback information

6. Close the AVI file

Opening an AVI File
To open an AVI file, your application sends the open command to MCIAVI. This
command lets your application specify the file. If desired, your application can also
specify information about the window used for playback.

100

Error! Main Document Only.-8 Video for Windows Programmer's Guide

02/10/93

If your application plans on opening multiple AVI files, it might open the MCIAVI driver
initially by specifying the driver identifier and then open each file separately. This saves
time because MCI will not load the MCIAVI driver for each file open command.

If your application will open multiple files, it should include routines like initAVI and
termAVI found in MOVPLAY2.C. The application would use initAVI during its
initialization and termAVI during its termination.

// Initialize the MCIAVI driver. This returns TRUE if OK, FALSE on error.
BOOL initAVI(void)
{
 return mciSendString("open avivideo", NULL, 0, NULL) == 0;
}

// Close the MCIAVI driver
void termAVI(void)
{
 mciSendString("close avivideo", NULL, 0, NULL);
}

When your application uses a filename to open a device, MCI uses the file extension to
locate the driver. For example, the following fragment opens MCIAVI using the file
"YOSEMITE.AVI" and the alias movie. Subsequent commands for this file can use the
alias movie to reference it.

if (mciSendString("open yosemite.avi alias movie", NULL, 0, NULL) == 0){

 // open is OK

} else {

 // handle the error

}

The open command has options to set some playback window characteristics. These
options are covered in the next section. For a full example of using the open command,
see the fileOpenMovie function in MOVPLAY1.C and MOVPLAY2.C.

Setting up the Playback Window
Your application can specify several options to define the playback window for playing
the AVI sequence. The following options are available to your application:

 Use the default pop-up window of MCIAVI for playing

 Specify a parent window and window style that MCIAVI can use create the playback
window

 Specify a playback window for MCIAVI to use for playback

 Play the AVI sequence on a full screen display

101

 Playing AVI Files With MCI Error! Main Document Only.-9

02/10/93

If your application does not specify any window options, MCIAVI creates a default
window for playing the sequence. MCIAVI creates this playback window for the open
command but it does not display the window until your application either sends a
command to display the window or sends a command to play the file. This default
playback window is a sizable pop-up window with a caption, a thick frame, a system
menu, and a minimize box.

The application can also specify a parent window handle and a window style when it
opens MCIAVI. When opened this way, MCIAVI creates a window based on these
specifications instead of the default pop-up window. Your application can specify any
window style available for the CreateWindow function. Those styles that require a parent
window, like WS_CHILD, should include a parent window handle. The following
fragment shows how to use the open command to set a parent window and create a child
of that window:

MCI_DGV_OPEN_PARMS mciOpen;

mciOpen.lpstrElementName = lpstrFile; // set the file name
mciOpen.dwStyle = WS_CHILD; // set the style
mciOpen.hWndParent = hWnd; // give a window handle

if (mciSendCommand(0, MCI_OPEN,
 (DWORD)(MCI_OPEN_ELEMENT|MCI_DGV_OPEN_PARENT|MCI_DGV_OPEN),
 (DWORD)(LPSTR)&mciOpen) == 0){

 // open is OK, continue operation

}

Your application can also create its own window and supply the handle to MCIAVI with
the window command. MCIAVI uses this window instead of the one it might have
created for playback. The following fragment finds the dimensions needed to play an AVI
file, creates a window corresponding to that size, and has MCIAVI to play the file in the
window:

HWND hwnd;
MCI_DGV_RECT_PARMS mciRect;

// Get the movie dimensions with MCI_WHERE
mciSendCommand(wDeviceID, MCI_WHERE, MCI_DGV_WHERE_SOURCE,
 (DWORD)(LPSTR)&mciRect);

// Create the playback window. Make it bigger for the border.
hwndMovie = CreateWindow("mywindow", "Playback",
 WS_CHILD|WS_BORDER, 0,0,
 mciRect.rc.right+(2*GetSystemMetric(SM_CXBORDER)),
 mciRect.rc.bottom+(2*GetSystemMetric(SM_CYBORDER)),
 hwndParent, hInstApp, NULL);

102

Error! Main Document Only.-10 Video for Windows Programmer's Guide

02/10/93

if (hwndMovie){
 // Window created OK, make it the playback window.

 MCI_DGV_WINDOW_PARMS mciWindow;

 mciWindow.hWnd = hwndMovie;
 mciSendCommand(wDeviceID, MCI_WINDOW, MCI_DGV_WINDOW_HWND,
 (DWORD)(LPSTR)&mciWindow);

}

When MCIAVI creates the playback window or obtains window handle from your
application, it does not display the window until your application either plays the
sequence or sends a command to display the window. Your application can use the
window command to display the window without playing the sequence. The "window
movie state show" command displays the window using the command string interface.
The following fragment shows how to display the window using the command message
interface:

MCI_DGV_WINDOW_PARMS mciWindow;

mciWindow.nCmdShow = SW_SHOW; // set command - see ShowWindow()
mciSendCommand(wDeviceID, MCI_WINDOW, MCI_DGV_WINDOW_STATE,
 (DWORD)(LPSTR)&mciWindow;

Your application can also play an AVI sequence full screen instead of in a window. To
play full screen, modify the play command with the fullscreen flag. (Use the
MCI_MCIAVI_PLAY_FULLSCREEN flag for the message interface.) When your
application uses this flag, MCIAVI uses a 320x240 full screen format for playing the
sequence. For example, "play movie fullscreen" plays a movie full screen.

With the fullscreen flag, movies with 160x120 dimensions play back centered in the
320x240 screen. If your application wants to play these moves in a full 320x240 screen, it
can use "play movie fullscreen by 2" command to stretch the 160x120 movie to full
screen.

Playing the AVI Sequence
Playing an AVI sequence is straightforward using the MCI play command. This
command can play the entire sequence or portions of it. The previous examples show how
use the play command with mciSendString and mciSendCommand.

Changing the Playback State
Your application can control many of the play back capabilities of MCIAVI. The pause,
resume, stop, and seek commands let your application control the video sequence. Using
these, the application can pause a play in progress, seek to a location within the video
sequence, and resume play from that point. The following string command examples show
how to use these commands:

103

 Playing AVI Files With MCI Error! Main Document Only.-11

02/10/93

// assume the file was opened with the alias 'movie'

// pause playing
mciSendString("pause movie", NULL, 0, NULL);

// resume play
mciSendString("resume movie", NULL, 0, NULL);

// stop play
mciSendString("stop movie", NULL, 0, NULL);

// seek to the beginning
mciSendString("seek movie to start", NULL, 0, NULL);

Your application can use the seek command to move the play position to the beginning,
the end, or an arbitrary position in the AVI file. There are two seek modes for the
MCIAVI driver—exact or non-exact—which affect the seek position. When seek exactly
is enabled (seek exactly on), MCIAVI seeks exactly to the frame your application
specifies. This might cause a delay if the file is temporally encoded and your application
does not specify a key frame. With seek exactly disabled (seek exactly off), MCIAVI
seeks to the nearest key frame in a temporally encoded file. Your application can change
the seek mode with the set command. The following example shows how to use the string
interface to change the seek mode:

// Set seek mode with the string interface
// assume the file was opened with the alias 'movie'
void SetSeekMode(BOOL fExact)
{
 if (fExact)

 mciSendString("set movie seek exactly on", NULL, 0, NULL);

 else

 mciSendString("set movie seek exactly off", NULL, 0,
 NULL);
}

Other MCI commands let your application alter the play other than altering the control
flow of the play. For example, an AVI sequence by default plays at its normal rate of
speed. Your application can change the play rate to speed up or slow down the playback.
The speed flag for the set command lets your application control the play rate. For AVI
sequences, a speed value of 1000 is considered normal. Thus, to play a movie at half-
speed, your application can use the command string "set movie speed 500." Alternatively,
it can use "set movie speed 2000" to play the sequence at twice the normal rate.

The setaudio command lets your application control the audio portion of an AVI
sequence. You application can mute audio during playback, or in the case of multiple
audio stream files, select the audio stream played. For example, the "setaudio movie off"
command string turns audio off during playback. The "setaudio movie stream to n"
command string specifies the audio stream number (specified by n) played for the
sequence.

104

Error! Main Document Only.-12 Video for Windows Programmer's Guide

02/10/93

MCIAVI has a dialog box to control some of its playback options. Some of the important
option available to the user include selection of windowed or full screen playback,
selection of the seek mode, and zooming the image. Your application can have MCIAVI
display this dialog box with the configure command. For more information on this dialog
box, see “MCI String Messages for MCIAVI.”

Obtaining Playback Information

Your application can get the status on the playback of an AVI sequence with the status
command. This command obtains information on the state of the audio, state of the video,
mode of the play, position of the play, seek mode, as well as other parameters. Your
application might monitor playback so that it can update the state and position of the play
in a routine that gets called through a timer call-back. The information returned by the
status command can depend on the time format used. The device can specify the return
values for position, length, and start in milliseconds or frames. Your application can use
the set command to set alternate time formats and modes. The following fragment shows
an example of such a function:

MCI_DGV_SET_PARMS mciSet;
MCI_DGV_STATUS_PARMS mciStatus;

// put in frame mode
mciSet.dwTimeFormat=MCI_FORMAT_FRAMES;
mciSendCommand(wDeviceID, MCI_SET,
 MCI_SET_TIME_FORMAT,
 (DWORD)(LPSTR)&mciSet);

mciStatus.dwItem = MCI_STATUS_MODE;
mciSendCommand(wDeviceID, MCI_STATUS,
 MCI_STATUS_ITEM,
 (DWORD)(LPSTR)&mciStatus);

// Update mode based on mciStatus.dwReturn

// If it is playing then get the position
if (mciStatus.dwReturn == MCI_MODE_PLAY){
 mciStatus.dwItem = MCI_STATUS_POSITION;
 mciSendCommand(wDeviceID, MCI_STATUS, MCI_STATUS_ITEM,
 (DWORD)(LPSTR)&mciStatus);

 // update the position from mciStatus.dwReturn
}

Closing the AVI File

When finished with a file, your application closes it with the close command. With the
string interface a "close movie" command is sent, with the command interface a
MCI_CLOSE command is used and all parameters may be NULL.

105

C H A P T E R 7

Applications such as Visual Basic and Asymetrix ToolBook use MCI command
strings to provide control for MCI devices. This chapter describes the MCI command
strings for the Microsoft MCI video driver (MCIAVI.DRV) that you can use with
applications that support the MCI command-string interface. (Applications with this
interface send the command strings to MCI with the mciSendString function.) For
more information on using command strings and the command-string interface, see
the Multimedia Programmer's Guide and Multimedia Programmer's Reference in the
Microsoft Windows Software Development Kit. The same information is also available in
the Multimedia Programmer's Workbook and Multimedia Programmer's Reference in
the Microsoft Windows Multimedia Development Kit.

The following list summarizes the MCI command strings supported by MCIAVI. This
command set is taken from the digital-video command set for MCI. Any device-
specific behavior affecting the MCI commands is also noted in this chapter.

About the MCIAVI.DRV Driver
The MCIAVI.DRV driver plays video sequences under the control of MCI
commands. These video sequences can contain images, audio, and palettes. The image
data is implemented either with color palettes or true-color information.

MCIAVI.DRV supports 11, 22, or 44 kHz audio in an 8- or 16-bit format. Audio is
synchronized with the video within 1/30 of a second. However, if audio hardware is
not available, the driver will silently play the video sequence. MCIAVI.DRV can drop
video frames, if necessary, to play a sequence without audio interruption.

Custom Commands and Flags for MCIAVI.DRV
MCIAVI.DRV uses a subset of the digital-video command set except for the
configure command and two custom flags used by the play command. The configure

MCI Command Strings for
MCIAVI

106

Error! Main Document Only.-2 Video for Windows Programmer's Guide

02/10/93

command displays a dialog box for setting the operating options of the MCIAVI. This
dialog box contains the following selections:

Option Description

Window Displays the video in a window.

Full Screen Displays the video using the full screen
with 320-by-240 resolution. This allows a
256-color display on 16-color devices.

Zoom By 2 Stretches the video to twice its normal
size.

Skip Video Frames If Behind Specifies to drop frames if the video falls
behind. If this isn't selected, all the video
frames will be shown and the audio will
break up as necessary.

Seek To Nearest Full Frame Specifies to go to the nearest frame on a
seek. If this isn't selected, seek will go to
the closest key frame prior to the specified
frame.

Play Only If Audio Device Available Returns an error if an audio device is not
available to play wave data. If this isn't
selected and there isn't a wave-audio
device available, audio data is ignored and
the video is played.

Don't Buffer Offscreen Specifies that a copy of the display
window should not be maintained.

The custom flags used by the play command are fullscreen and window. These flags
specify the display mode used for playing a video sequence. These flags are described
with the play command.

MCI Command Strings
In general, a command string has another field following the command verb not
explicitly indicated in the descriptions below. For most commands, this field contains
a device name or alias as specified by a prior open command. The device name is used
by MCI to route the command to the appropriate device driver and device-driver instance.

All commands accept the optional items wait and notify, although they are not
explicitly listed in the command-string table. All commands, except open and close,
also accept the optional item test.

The MCIAVI driver uses the AVIVideo keyword to identify the driver type.

107

 MCI Command Strings for MCIAVI Error! Main Document Only.-3

02/10/93

The MCIAVI driver supports the following command set:

Command Description

capability item Fills an application-supplied buffer with a string containing
additional information about the capabilities of MCIAVI. The
following optional items modify capability:

 can eject Returns false.

 can freeze Returns false.

 can lock Returns false.

 can play Returns true.

 can record Returns false.

 can reverse Returns false.

 can save Returns false.

 can stretch Returns true.

 can stretch
input

Returns false.

 can test Returns true.

 compound
device

Returns true.

 device type Returns digitalvideo.

 has audio Returns true.

 has still Returns false.

 has video Returns true.

 uses files Returns true.

 uses palettes Returns true.

close Closes this instance of the MCIAVI and releases all resources
associated with it.

configure Displays a dialog box used to configure MCIAVI.

cue items Prepares MCIAVI for playback and leaves it in a paused state. This
command is modified by the following optional items:

 output Prepares MCIAVI for playing.

 to position Positions the workspace to the specified
position.

108

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

Command Description

info items Fills a user-supplied buffer with a string containing information
about MCIAVI. The following optional items modify info:

 file Returns the name of the file currently loaded.

 product Returns Video for Windows.

 version Returns the release level of MCIAVI.

 window text Returns the text string in the title bar of the
window associated with MCIAVI.

open items Initializes MCIAVI. The following items modify open:

 alias alias Specifies an alias used to reference this
instance of MCIAVI.

 elementname Specifies the name of the device element (file)
loaded when MCIAVI opens.

 parent hwnd Specifies the parent of the default window.

 style stylevalue Specifies the style used for the default
window. The following constants are defined
for stylevalue: overlapped, popup, and child.

 type AVIVideo Specifies the device type of the device
element.

pause Pauses the playing of motion video or audio.

play items Starts playing the video sequence. The following optional items
modify play:

 from position Specifies the position to seek to before
beginning the play.

 to position Specifies the position at which to stop playing.

 fullscreen Specifies playing should use a full-screen
display.

 window Specifies that playing should use the window
associated with a device instance (the default).

109

 MCI Command Strings for MCIAVI Error! Main Document Only.-5

02/10/93

Command Description

put items Specifies a rectangular region that describes a cropping or scaling
option. One of the following items must be present to indicate the
specific type of rectangle:

 destination Specifies that the full client window
associated with this instance of MCIAVI is
used to show the image or video.

 destination at
rectangle

Specifies which portion of the client window
associated with this instance of MCIAVI is
used to show the image or video.

 source Specifies that the full frame buffer is scaled to
fit in the destination rectangle.

 source at
rectangle

Specifies which portion of the frame buffer, in
frame-buffer coordinates, is scaled to fit in the
destination rectangle.

realize items Tells MCIAVI to select and realize its palette into a display context
of the displayed window. One of the following items modifies
realize:

 background Realizes the palette as a background palette.

 normal Realizes the palette normally used for a top
level window (the default).

 window at
rectangle

Changes the size and location of the display
window. The rectangle specified with the at
flag is relative to the parent window of the
display window (usually the desktop).

resume Specifies that operation should continue from where it was
interrupted by a pause command.

seek items Positions and cues the workspace to the specified position showing
the specified frame. One of the following items modifies seek:

 to position Specifies the desired new position, measured
in units of the current time format.

 to end Moves the position after the last frame of the
workspace.

 to start Moves the position to the first frame of the
workspace.

110

Error! Main Document Only.-6 Video for Windows Programmer's Guide

02/10/93

Command Description

set items Sets the state of various control items. One of the following items
must be included:

 seek exactly on
seek exactly off

Selects one of two seek modes. With seek
exactly on, seek will always move to the
frame specified. With seek exactly off, seek
will move to the closest key frame prior to
frame specified.

 speed factor Sets the relative speed of video and audio
playback from the workspace. Factor is the
ratio between the nominal frame rate and the
desired frame rate where the nominal frame
rate is designated as 1000.

 time format
format

Sets the time format to format. The default
time format is frames. Milliseconds can be
abbreviated as ms. MCIAVI supports frames
and milliseconds.

 audio off Disables audio.

 audio on Enables audio.

 video off Disables video.

 video on Enables video.

setaudio items Sets various values associated with audio playback and capture.
Only one of the following items can be present in a single
command, unless otherwise noted:

 off Disables audio.

 on Enables audio.

 volume to factor Sets the average audio volume for both audio
channels.

setvideo items Sets various values associated with playback. The following items
modify setvideo:

 off Disables video display in the window.

 on Enables video display in the window.

 palette handle
to handle

Specifies the handle to a palette.

111

 MCI Command Strings for MCIAVI Error! Main Document Only.-7

02/10/93

Command Description

signal items Marks a specified position in the workspace. MCIAVI supports
only one active signal at a time. The following items modify
signal:

 at position Specifies the first frame to be marked.

 cancel An optional parameter which indicates that the
signal indicated by the uservalue should be
removed from the workspace.

 every interval Specifies the period in the current time format
after which the succeeding marks should be
placed.

 return position An optional parameter which indicates that the
MCIAVI should send the position value
instead of the uservalue value in the Window
message.

 uservalue id Specifies a value associated with this signal
request that is reported back with the
Windows message.

status item Returns status information about this instance MCIAVI. One of the
following items modifies status:

 audio Returns on if either or both speakers are
enabled, and off otherwise.

 forward Returns true.

 length Returns the length of the loaded video
sequence in the current time format.

 media present Returns true.

 mode Returns one of the following: not ready,
paused, playing, recording, or stopped.

 monitor Returns file.

 nominal frame
rate

Returns the nominal frame rate associated
with the file in units of frames per second
times1000.

 number of
tracks

Returns the number of tracks in a video
sequence (normally 1).

 palette handle Returns the palette handle.

 position Returns the current position in the workspace
in the current time format.

 ready Returns true if this instance of MCIAVI is
ready accept another command.

 reference frame Returns the nearest key-frame number that
precedes frame.

112

Error! Main Document Only.-8 Video for Windows Programmer's Guide

02/10/93

Command Description

 seek exactly Returns on or off indicating whether or not
seek exactly is set.

 speed Returns the current playback speed.

 start position Returns the start of the media.

 time format Returns the current time format (frames or
milliseconds).

 unsaved Returns false.

 video Returns on or off depending on the most
recent setvideo.

 window handle Returns the ASCII decimal value for the
window handle associated with this instance
of MCIAVI.

 window visible Returns true if the window is not hidden.

 window
minimized

Returns true if the window is minimized.

 window
maximized

Return true if the window is maximized.

step items Advances the sequence to the specified image. This command is
modified by the following options:

 by frames Specifies the number of frames to advance
before showing another image. You can
specify negative values for frames.

 reverse Requests that the step be taken in the reverse
direction.

stop item Stops playing.

update items Repaints the current frame into the specified display context. The
following items modify update:

 at rect Specifies the clipping rectangle relative to the
client rectangle.

 hdc hdc Specifies the handle of the display context to
paint.

 paint An application uses the paint flag with update
when it receives a WM_PAINT message
intended for a display DC.

113

 MCI Command Strings for MCIAVI Error! Main Document Only.-9

02/10/93

Command Description

where items Returns the rectangular region that has been previously specified,
or defaulted, using the put command. The following items modify
where:

 destination Returns a description of the rectangular region
used to display video and images in the client
area of the current window.

 destination max Returns the current size of the client rectangle.

 source Returns a description of the rectangular region
cropped from the frame buffer which is
stretched to fit the destination rectangle on
the display.

 source max Returns the maximum size of the frame buffer.

 window Returns the current size and position of the
display-window frame.

 window max Returns the size of the entire display.

window items Provides an instance of MCIAVI with a window handle to the
window that will be used to display images or motion video. The
following items modify window:

 handle hwnd Specifies a window to be used with this
instance.

 handle default Specifies that the window associated with this
instance should be the default window created
during the open.

 state showvalue This command issues a ShowWindow call for
the current window. The following constants
are defined for showvalue:
 hide
 minimize
 restore
 show
 show maximized
 show minimized
 show min noactive
 show na
 show noactivate
 show normal.

 text caption Specifies the text placed in the title bar of the
window.

114

C H A P T E R 8

This chapter describes the MCI command messages for the Microsoft MCI video
device driver (MCIAVI.DRV) that you can use with the mciSendCommand function
that supports the MCI command-message interface. For more information on using
command messages, see the Microsoft Multimedia Programmer's Guide and the
Microsoft Multimedia Programmer's Reference in the Microsoft Windows Software
Development Kit. The same information is also available in the Multimedia
Programmer's Workbook and Multimedia Programmer's Reference in the Microsoft
Windows Multimedia Development Kit.

The following list summarizes the MCI command messages supported by MCIAVI.
This command set is taken from the digital-video command set for MCI. Any device-
specific behavior affecting the MCI commands is also noted in this appendix.

MCI Command Messages
All commands accept the optional flags MCI_NOTIFY, MCI_WAIT, and MCI_TEST
flags as described in the digital-video command set.

MCIAVI.DRV uses the AVIVideo keyword to identify the driver type.

MCI_CLOSE
This message releases access to a device or device element.

DWORD lParam1
Specifies the MCI_NOTIFY or MCI_WAIT flag.

LPMCI_GENERIC_PARMS lParam2
Specifies a far pointer to the MCI_GENERIC_PARMS data structure.

MCI Command Messages for
MCIAVI

Parameters

115

Error! Main Document Only.-2 Video for Windows Programmer's Guide

02/10/93

MCI_CONFIGURE
This message displays a dialog box for setting the operating options.

DWORD lParam1
Specifies the MCI_NOTIFY, MCI_WAIT, and MCI_TEST flags.

LPMCI_GENERIC_PARMS lParam2
Specifies a far pointer to the MCI_GENERIC_PARMS data structure.

MCI_CUE
This message prepares a device instance so that it can begin playback with minimum
delay.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_DGV_CUE_OUTPUT
Specifies an instance should be cued for playing.

MCI_TO
Specifies that a workspace position is included in the dwTo field of the data structure
identified by lParam2.

LPMCI_DGV_CUE_PARMS lParam2
Specifies a far pointer to the MCI_DGV_CUE_PARMS data structure.

MCI_GETDEVCAPS
This message obtains static information about a device.

DWORD lParam1
The following flags apply to the MCIAVI:

MCI_GETDEVCAPS_ITEM
Specifies that the dwItem field of the data structure identified by lParam2
contains a constant indicating which device capability to obtain. The following
constants are recognized by MCIAVI.DRV:

MCI_GETDEVCAPS_CAN_EJECT

MCIAVI.DRV sets the dwReturn field to FALSE.

MCI_GETDEVCAPS_CAN_PLAY

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_GETDEVCAPS_CAN_RECORD

MCIAVI.DRV sets the dwReturn field to FALSE.

MCI_GETDEVCAPS_CAN_SAVE

MCIAVI.DRV sets the dwReturn field to FALSE.

MCI_GETDEVCAPS_COMPOUND_DEVICE

Parameters

Parameters

Parameters

116

 MCI Command Messages for MCIAVI Error! Main Document Only.-3

02/10/93

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_GETDEVCAPS_DEVICE_TYPE

MCIAVI.DRV sets the dwReturn field to
MCI_DEVTYPE_DIGITAL_VIDEO.

MCI_GETDEVCAPS_HAS_AUDIO

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_GETDEVCAPS_HAS_VIDEO

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_GETDEVCAPS_USES_FILES

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_DGV_GETDEVCAPS_CAN_FREEZE

MCIAVI.DRV sets the dwReturn field to FALSE.

MCI_DGV_GETDEVCAPS_CAN_LOCK

MCIAVI.DRV sets the dwReturn field to FALSE.

MCI_DGV_GETDEVCAPS_CAN_REVERSE

MCIAVI.DRV sets the dwReturn field to FALSE.

MCI_DGV_GETDEVCAPS_CAN_STRETCH

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_DGV_GETDEVCAPS_CAN_STR_IN

MCIAVI.DRV sets the dwReturn field to FALSE.

MCI_DGV_GETDEVCAPS_CAN_TEST

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_DGV_GETDEVCAPS_HAS_STILL

MCIAVI.DRV sets the dwReturn field to FALSE.

MCI_DGV_GETDEVCAPS_PALETTES

MCIAVI.DRV sets the dwReturn field to TRUE.

LPMCI_GETDEVCAPS_PARMS lParam2
Specifies a far pointer to the MCI_GETDEVCAPS_PARMS data structure.

MCI_INFO
This message obtains string information from a device.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_INFO_PRODUCT
MCIAVI.DRV returns Video for Windows.

MCI_DGV_INFO_TEXT
Returns the text string in the title bar of the window associated with the device
instance.

Parameters

117

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

MCI_INFO_FILE
Obtains the path and filename of the last file specified with the MCI_OPEN
command.

MCI_INFO_VERSION
Returns the release level of the device driver and hardware.

LPMCI_DGV_INFO_PARMS lParam2
Specifies a far pointer to the MCI_DGV_INFO_PARMS data structure.

MCI_OPEN
This message initializes an instance of the device or device element.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_OPEN_ALIAS
Specifies that an alias is referenced in the lpstrAlias field of the data structure
identified by lParam2.

MCI_OPEN_TYPE
Specifies that a device-type constant or a pointer to a device-type name is included
in the lpstrDeviceType field of the data structure identified by lParam2.

MCI_OPEN_TYPE_ID
Specifies that the lpstrDeviceType field of the data structure identified by lParam2
contains a standard MCI device-type ID and the optional ordinal index for the
device.

MCI_OPEN_ELEMENT
Specifies that an element name is included in the lpstrElementName field of the
data structure identified by lParam2.

MCI_OPEN_ELEMENT_ID
Specifies that the lpstrElementName field of the data structure identified by
lParam2 has meaning defined by the device.

MCI_DGV_OPEN_PARENT
Indicates the parent window handle is specified in the hWndParent field of the
data structure identified by lParam2.

MCI_DGV_OPEN_WS
Indicates a window style is specified in the dwStyle field of the data structure
identified by lParam2.

LPMCI_DGV_OPEN_PARMS lParam2
Specifies a far pointer to the MCI_DGV_OPEN_PARMS data structure.

Parameters

118

 MCI Command Messages for MCIAVI Error! Main Document Only.-5

02/10/93

MCI_PAUSE
This message pauses the current action.

DWORD lParam1
Specifies the MCI_NOTIFY, MCI_TEST, and MCI_WAIT flags.

LPMCI_DGV_PAUSE_PARMS lParam2
Specifies a far pointer to the MCI_DGV_PAUSE_PARMS data structure.

MCI_PLAY
This message begin play of the audio and video.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_FROM
Specifies that a starting position is included in the dwFrom field of the data
structure identified by lParam2.

MCI_TO
Specifies that an ending position is included in the dwTo field of the data structure
identified by lParam2. MCIAVI.DRV returns an error if the “to” position is less
than the “from” position.

MCI_DGV_PLAY_WINDOW
Specifies that playing should occur in the window associated with a device instance
(the default). (This flag is specific to the MCIAVI.DRV.)

MCI_MCIAVI_PLAY_FULLSCREEN
Specifies that playing should use a full-screen display, typically, with a 320-by-200
resolution. The full-screen display takes over the entire desktop. (This flag is
specific to MCIAVI.DRV.)

LPMCI_DGV_PLAY_PARMS lParam2
Specifies a far pointer to an MCI_DGV_PLAY_PARMS data structure.

MCI_PUT
This message specifies a rectangular region that describes a cropping or scaling option.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_DGV_RECT
Specifies that the rc field of the data structure identified by lParam2 contains a
valid rectangle.

MCI_DGV_PUT_DESTINATION
Indicates the rectangle defined for MCI_DGV_RECT specifies a destination
rectangle. The destination rectangle specifies the portion of the client window
associated with this device driver instance that shows the image or video.

Parameters

Parameters

Parameters

119

Error! Main Document Only.-6 Video for Windows Programmer's Guide

02/10/93

MCI_DGV_PUT_SOURCE
Indicates the rectangle defined for MCI_DGV_RECT specifies a source rectangle.
The source rectange specifies which portion of the frame buffer is to be scaled to fit
into the destination rectangle.

MCI_DGV_PUT_WINDOW
Indicates that the rectangle defined for MCI_DGV_RECT applies to the display
window. This rectangle is relative to the parent window of the display window
(usually the desktop). If the window is not specified, it defaults to the initial
window size and position.

LPMCI_DGV_PUT_PARMS lParam2
Specifies a far pointer to a MCI_DGV_PUT_PARMS data structure.

MCI_REALIZE
This message tells MCIAVI to select and realize its palette into a display context of the
displayed window. You should use this message when your application receives the
WM_QUERYNEWPALETTE message from Windows.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_DGV_REALIZE_BKGD
Realizes the palette as a background palette.

MCI_DGV_REALIZE_NORM
Realizes the palette normally (the default).

LPMCI_GENERIC_PARMS lParam2
Specifies a far pointer to a MCI_GENERIC_PARMS data structure.

MCI_RESUME
This message resumes MCIAVI operation when it is paused .

DWORD lParam1
Specifies the MCI_NOTIFY, MCI_WAIT, and MCI_TEST flags.

LPMCI_GENERIC_PARMS lParam2
Specifies a far pointer to the MCI_GENERIC_PARMS data structure.

MCI_SEEK
This message positions and cues the workspace to the specified position showing the
specified frame.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_SEEK_TO_END
Specifies the seek should move to the end of the workspace.

Parameters

Parameters

Parameters

120

 MCI Command Messages for MCIAVI Error! Main Document Only.-7

02/10/93

MCI_SEEK_TO_START
Specifies the seek should move to the beginning of the workspace.

MCI_TO
Specifies a position is included in the dwTo field of the MCI_SEEK_PARMS
data structure.

LPMCI_SEEK_PARMS lParam2
Specifies a far pointer to the MCI_SEEK_PARMS data structure.

MCI_SET
This message sets device information.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_SET_AUDIO
Specifies an audio-channel number is included in the dwAudio field of the data
structure identified by lParam2. This flag must be used with MCI_SET_ON or
MCI_SET_OFF. Specify the constant MCI_SET_AUDIO_ALL for the channel
number.

MCI_SET_TIME_FORMAT
Specifies a time-format parameter is included in the dwTimeFormat field of the
data structure identified by lParam2. Constants defined for time formats include:

MCI_FORMAT_FRAMES

Specifies frames.

MCI_FORMAT_MILLISECONDS

Specifies milliseconds.

MCI_SET_VIDEO
Sets the video signal on or off. This flag must be used with either MCI_SET_ON or
MCI_SET_OFF.

MCI_SET_ON
Enables the video or audio channel, or enables the seek-exactly mode.

MCI_SET_OFF
Disables the video or audio channel, or disables the seek-exactly mode.

MCI_DGV_SET_SEEK_EXACTLY
Sets the format used for positioning. This flag must be used with MCI_SET_ON or
MCI_SET_OFF.

MCI_DGV_SET_SPEED
Specifies that a speed parameter is included in the dwSpeed field of the data
structure identified by lParam2.

LPMCI_DGV_SET_PARMS lParam2
Specifies a far pointer to the MCI_DGV_SET_PARMS data structure.

Parameters

121

Error! Main Document Only.-8 Video for Windows Programmer's Guide

02/10/93

MCI_SETAUDIO
This messageets various values associated with audio playback and capture.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_DGV_SETAUDIO_ITEM
Indicates an audio constant is specified in the dwAdustParm field of the data
structure identified by lParam2. The following constant is supported by
MCIAVI.DRV:

MCI_DGV_SETAUDIO_VOLUME

Indicates that the audio level is specified as a factor in the dwValue field of the
data structure identified by lParam2. The volume level ranges between 0 and
1000.

MCI_DGV_SETAUDIO_VALUE

Indicates that an audio value is specified in the dwValue field of the data
structure identified by lParam2.

MCI_SET_ON
Enables the audio channel.

MCI_SET_OFF
Disables the audio channel.

LPMCI_DGV_SETAUDIO_PARMS lParam2
Specifies a far pointer to the MCI_DGV_SETAUDIO_PARMS data structure.

MCI_SETVIDEO
This message sets various values associated with video playback.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_DGV_SETVIDEO_ITEM
Indicates a video constant is specified in the dwAdustParm field of the data
structure identified by lParam2. MCIAVI.DRV supports the following constant:

MCI_DGV_SETVIDEO_PALHANDLE

Indicates that a palette-handle value is specified in the dwValue field of the
data structure identified by lParam2.

MCI_DGV_SETVIDEO_SRC_VALUE
Specifies a value is included in the dwValue field of the data structure identified by
lParam2.

MCI_SET_ON
Enables video output.

MCI_SET_OFF
Disables video output.

Parameters

Parameters

122

 MCI Command Messages for MCIAVI Error! Main Document Only.-9

02/10/93

LPMCI_DGV_SETVIDEO_PARMS lParam2
Specifies a far pointer to the MCI_DGV_SETVIDEO_PARMS data structure.

MCI_SIGNAL
This message sets a specified position in the workspace. MCIAVI.DRV supports only one
active signal at a time.

DWORD lParam1
The following flags apply to all devices supporting MCI_SIGNAL :

MCI_DGV_SIGNAL_AT
Specifies a signal position is included in the dwPosition field of the data structure
identified by lParam2.

MCI_DGV_SIGNAL_EVERY
Specifies a signal-period value is included in the dwEvery field of the data
structure identified by lParam2.

MCI_DGV_SIGNAL_USERVAL
Specifies a data value is included in the dwUserParm field of the data structure
identified by lParam2. The data value associated with this request is reported back
with the Windows message.

MCI_DGV_SIGNAL_CANCEL
Removes the signal position specified by the value associated with the
MCI_DGV_SIGNAL_USERVAL flag.

MCI_DGV_SIGNAL_POSITION
Specifies that the device should send the position value with the Windows message
instead of the user-specified value.

LPMCI_DGV_SIGNAL_PARMS lParam2
Specifies a far pointer to the MCI_DGV_SIGNAL_PARMS structure.

MCI_STATUS
This message obtains information about an instance of an MCI device.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_STATUS_ITEM
Specifies that the dwItem field of the data structure identified by lParam2 contains
a constant specifying which status item to obtain. MCIAVI.DRV supports the
following constants:

MCI_STATUS_LENGTH

MCIAVI.DRV sets the dwReturn field to the media length. (It returns an error
for any track but 1.)

MCI_STATUS_MODE

MCIAVI.DRV sets the dwReturn field to the current mode of the device.

Parameters

Parameters

123

Error! Main Document Only.-10 Video for Windows Programmer's Guide

02/10/93

MCI_STATUS_NUMBER_OF_TRACKS

MCIAVI.DRV sets the dwReturn field to 1.

MCI_STATUS_POSITION

MCIAVI.DRV sets the dwReturn field to the position of the track.
(It returns an error for any track but 1.)

MCI_STATUS_READY

MCIAVI.DRV sets the dwReturn field to TRUE if the device is ready to accept
another command.

MCI_STATUS_TIME_FORMAT

MCIAVI.DRV sets the dwReturn to the current time format.

MCI_DGV_STATUS_AUDIO

MCIAVI.DRV sets the dwReturn field to MCI_ON or MCI_OFF, depending
on the most recent MCI_SET_AUDIO option for the MCI_SET command.

MCI_DGV_STATUS_FILEFORMAT

MCIAVI.DRV returns the constant for AVI RIFF in the dwReturn field.

MCI_DGV_STATUS_FORWARD

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_DGV_STATUS_MEDIA_PRESENT

MCIAVI.DRV sets the dwReturn field to TRUE.

MCI_DGV_STATUS_MONITOR

MCIAVI.DRV sets the dwReturn field to MCI_DGV_MONITOR_FILE.

MCI_DGV_STATUS_HPAL

MCIAVI.DRV sets the dwReturn field to the current palette handle.

MCI_DGV_STATUS_HWND

MCIAVI.DRV sets the dwReturn field to the window handle.

MCI_DGV_STATUS_NOMINAL_RATE

MCIAVI.DRV sets the dwReturn field to the nominal frame rate associated
with the file.

MCI_DGV_STATUS_SIZE

MCIAVI.DRV sets the dwReturn field to zero.

MCI_DGV_STATUS_SEEK_EXACTLY

MCIAVI.DRV sets the dwReturn field to TRUE or FALSE indicating whether
or not seek exactly is set.

MCI_DGV_STATUS_SPEED

MCIAVI.DRV sets the dwReturn field to the current playback speed.

MCI_DGV_STATUS_UNSAVED

MCIAVI.DRV sets the dwReturn field to FALSE.

124

 MCI Command Messages for MCIAVI Error! Main Document Only.-11

02/10/93

MCI_DGV_STATUS_VIDEO

MCIAVI.DRV indicates whether the video is enabled or disabled in the
dwReturn field.

MCI_DGV_STATUS_WINDOW_VISIBLE

MCIAVI.DRV sets the dwReturn field to TRUE if the window is not hidden.

MCI_DGV_STATUS_WINDOW_MINIMIZED

MCIAVI.DRV sets the dwReturn field to TRUE if the window is minimized.

MCI_DGV_STATUS_WINDOW_MAXIMIZED

MCIAVI.DRV sets the dwReturn field to TRUE if the window is maximized.

MCI_STATUS_START
Obtains the starting position of the media. To get the starting position, combine this
flag with MCI_STATUS_ITEM and set the dwItem field of the data structure,
identified by lParam2, to MCI_STATUS_POSITION.

MCI_DGV_STATUS_REFERENCE
The dwReference field returns the nearest previous keyframe.

LPMCI_DGV_STATUS_PARMS lParam2
Specifies a far pointer to the MCI_DGV_STATUS_PARMS data structure.

MCI_STEP
This message steps the player one or more frames.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_DGV_STEP_FRAMES
Indicates that the dwFrames field of the data structure identified by lParam2
specifies the number of frames to advance before displaying another image.

MCI_DGV_STEP_REVERSE
Steps in reverse.

LPMCI_DGV_STEP_PARMS lParam2
Specifies a far pointer to the MCI_DGV_STEP_PARMS data structure.

MCI_STOP
This message stops all play sequences and ceases display of video images.

DWORD lParam1
Specifies the MCI_NOTIFY, MCI_WAIT, and MCI_TEST flags.

LPMCI_DGV_STOP_PARMS lParam2
Specifies a far pointer to the MCI_DGV_STOP_PARMS data structure.

Parameters

Parameters

125

Error! Main Document Only.-12 Video for Windows Programmer's Guide

02/10/93

MCI_UPDATE
This message repaints the current frame into the specified display context.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_UPDATE_HDC
Specifies that the hDC field of the data structure identified by lParam2 contains a
valid window of the display context to paint.

MCI_DGV_UPDATE_PAINT
An application uses this flag when it receives a WM_PAINT message that is
intended for a display DC. A frame-buffer device will usually paint the key color.
If the display device does not have a frame buffer, it might ignore the
MCI_UPDATE message when the MCI_DGV_UPDATE_PAINT flag is used,
because the display will be repainted during the playback operation.

LPMCI_DGV_UPDATE_PARMS lParam2
Specifies a far pointer to a MCI_DGV_UPDATE_PARMS data structure.

MCI_WHERE
This message returns the rectangular region that has been specified with the MCI_PUT
command.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_DGV_WHERE_DESTINATION
Obtains a description of the rectangular region used to display video and images in
the client area of the current window.

MCI_DGV_WHERE_SOURCE
Obtains a description of the rectangular region (cropped from the frame buffer) that
is stretched to fit the destination rectangle on the display.

MCI_DGV_WHERE_MAX
When used with MCI_DGV_WHERE_DESTINATION or
MCI_DGV_WHERE_SOURCE, the rectangle returned indicates the maximum
width and height of the specified region.

MCI_DGV_WHERE_WINDOW
Obtains a description of the display window frame.

LPMCI_DGV_RECT_PARMS lParam2
Specifies a far pointer to a MCI_DGV_RECT_PARMS data structure.

Parameters

Parameters

126

 MCI Command Messages for MCIAVI Error! Main Document Only.-13

02/10/93

MCI_WINDOW
This message specifies the window and the window characteristics for graphic devices.

DWORD lParam1
The following flags apply to MCIAVI.DRV:

MCI_DGV_WINDOW_HWND
Indicates that the handle of the window needed for use as the destination is
included in the hWnd field of the data structure identified by lParam2.

MCI_DGV_WINDOW_STATE
Indicates the nCmdShow field of the MCI_DGV_WINDOW_PARMS data
structure contains parameters for setting the window state.

MCI_DGV_WINDOW_TEXT
Indicates the lpstrText field of the MCI_DGV_WINDOW_PARMS data
structure contains a pointer to a buffer containing the caption used in the window
title bar.

LPMCI_DGV_WINDOW_PARMS lParam2
Specifies a far pointer to a MCI_DGV_WINDOW_PARMS data structure.

MM_MCISIGNAL
This messag is sent to a window to notify an application that an MCI device has reached a
position defined in a previous MCI_SIGNAL to the device.

WORD wParam
Contains the ID of the device initiating the signal message.

LONG lParam
Normally this contains the value passed in dwUserParm when the MCI_SIGNAL
message has defined this callback. Alternatively, it might contain the position value.

Parameters

Parameters

127

Error! Main Document Only.-14 Video for Windows Programmer's Guide

02/10/93

Data Structures for MCI Command Messages
The following data structures are used by the MCI command messages for
MCIAVI.DRV.

MCI_DGV_CUE_PARMS
The MCI_DGV_CUE_PARMS structure contains parameters used by the MCI_CUE
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwTo;
} MCI_DGV_CUE_PARMS;

The MCI_DGV_CUE_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTo
Specifies the cue position.

MCI_DGV_INFO_PARMS
The MCI_DGV_INFO_PARMS structure contains parameters used by the MCI_INFO
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 LPSTR lpstrReturn;
 DWORD dwRetSize;
} MCI_DGV_INFO_PARMS;

The MCI_DGV_INFO_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

lpstrReturn
Specifies a long pointer to a user-supplied buffer for the return string.

dwRetSize
Specifies the size in bytes of the buffer for the return string.

Fields

Fields

128

 MCI Command Messages for MCIAVI Error! Main Document Only.-15

02/10/93

MCI_DGV_OPEN_PARMS
The MCI_DGV_OPEN_PARMS structure contains information used by MCI_OPEN
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 WORD wDeviceID;
 WORD wReserved0;
 LPSTR lpstrDeviceType;
 LPSTR lpstrElementName;
 LPSTR lpstrAlias;
 DWORD dwStyle;
 WORD hWndParent;
 WORD wReserved1;
} MCI_DGV_OPEN_PARMS;

The MCI_DGV_OPEN_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

wDeviceID
Contains the device ID returned to user.

wReserved0
Reserved.

lpstrDeviceType
Specifies the name or constant ID of the device type.

lpstrElementName
Specifies the device-element name (usually a path).

lpstrAlias
Specifies an optional device alias.

dwStyle
Specifies the window style.

hWndParent
Specifies the handle to use as the window parent.

wReserved1
Reserved.

MCI_DGV_PAUSE_PARMS
The MCI_DGV_PAUSE_PARMS structure contains information used by the
MCI_PAUSE command. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

Fields

129

Error! Main Document Only.-16 Video for Windows Programmer's Guide

02/10/93

typedef struct {
 DWORD dwCallback;
} MCI_DGV_PAUSE_PARMS;

The MCI_DGV_PAUSE_PARMS structure has the following field:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

MCI_DGV_PLAY_PARMS
The MCI_DGV_PLAY_PARMS structure contains parameters use by the MCI_PLAY
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwFrom;
 DWORD dwTo;
} MCI_DGV_PLAY_PARMS;

The MCI_DGV_PLAY_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrom
Specifies the position to play from.

dwTo
Specifies the position to play to.

MCI_DGV_PUT_PARMS
The MCI_DGV_PUT_PARMS structure contains parameters used by the MCI_PUT
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 RECT rc;
} MCI_DGV_PUT_PARMS;

The MCI_DGV_PUT_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Specifies a rectangle.

Fields

Fields

Fields

130

 MCI Command Messages for MCIAVI Error! Main Document Only.-17

02/10/93

MCI_DGV_SIGNAL_PARMS
The MCI_DGV_SIGNAL_PARMS structure contains parameters for the
MCI_SIGNAL message used by digital video devices. When assigning data to the fields
in this data structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field.

typedef struct {
 DWORD dwCallback;
 DWORD dwPosition;
 DWORD dwPeriod;
 DWORD dwUserParm;
} MCI_DGV_SIGNAL_PARMS;

The MCI_DGV_SIGNAL_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwPosition
Specifies the position to be marked.

dwPeriod
Specifies the interval of the position marks.

dwUserParm
Specifies a value associated with the signals being set.

MCI_DGV_RECT_PARMS
The MCI_DGV_RECT_PARMS structure contains parameters used by the
MCI_FREEZE, MCI_PUT, MCI_UNFREEZE, and MCI_WHERE messages for
digital video devices. When assigning data to the fields in the following data structure, set
the corresponding MCI flags in the lParam1 parameter of mciSendCommand to validate
each field:

typedef struct {
 DWORD dwCallback;
 RECT rc;
} MCI_DGV_RECT_PARMS;

The MCI_DGV_RECT_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Specifies a rectangle.

Fields

Fields

131

Error! Main Document Only.-18 Video for Windows Programmer's Guide

02/10/93

MCI_DGV_SET_PARMS
The MCI_DGV_SET_PARMS structure contains parameters used by the MCI_SET
message for digital video devices. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwTimeFormat;
 DWORD dwAudio;
 DWORD dwFileFormat;
 DWORD dwSpeed;
} MCI_DGV_SET_PARMS;

The MCI_DGV_SET_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTimeFormat
Specifies the time format used by the device.

dwAudio
Specifies the channel used for audio output.

dwFileFormat
Specifies the file format.

dwSpeed
Specifies the playback speed.

MCI_DGV_SETAUDIO_PARMS
The MCI_DGV_SETAUDIO_PARMS structure contains parameters used by the
MCI_SETAUDIO message for digital video devices. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwItem;
 DWORD dwValue;
 DWORD dwOver;
 LPSTR lpstrAlgorithm;
 LPSTR lpstrQuality;
} MCI_DGV_SETAUDIO_PARMS;

The MCI_DGV_SETAUDIO_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

Fields

Fields

132

 MCI Command Messages for MCIAVI Error! Main Document Only.-19

02/10/93

dwItem
Specifies the constant indicating the target adjustment.

dwValue
Specifies the adjustment level.

dwOver
Specifies the transition-length parameter.

lpstrAlgorithm
Specifies a long pointer to a null-terminated string containing the name of the audio-
compression algorithm.

lpstrQuality
Specifies a long pointer to a null-terminated string containing a descriptor of the
audio-compression algorithm.

MCI_DGV_SETVIDEO_PARMS
The MCI_DGV_SETVIDEO_PARMS structure contains parameters used by the
MCI_SETVIDEO message for digital video devices. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwItem;
 DWORD dwValue;
 DWORD dwOver;
 LPSTR lpstrQuality;
 LPSTR lpstrAlgorithm;
 DWORD dwSourceNumber;
} MCI_DGV_SETVIDEO_PARMS;

The MCI_DGV_SETVIDEO_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwItem
Specifies the constant indicating the target adjustment.

dwValue
Specifies the adjustment level.

dwOver
Specifies the transition-length parameter.

lpstrQuality
Specifies a long pointer to a null-terminated string containing a descriptor of the
video-compression algorithm.

lpstrAlgorithm
Specifies a long pointer to a null-terminated string containing the name of the video-
compression algorithm.

Fields

133

Error! Main Document Only.-20 Video for Windows Programmer's Guide

02/10/93

dwSourceNumber
Specifies the index of input source.

MCI_DGV_STATUS_PARMS
The MCI_DGV_STATUS_PARMS structure contains parameters used by the
MCI_STATUS message for digital video devices. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwReturn;
 DWORD dwItem;
 DWORD dwTrack;
 LPSTR lpstrDrive;
 DWORD dwReference;
} MCI_DGV_STATUS_PARMS;

The MCI_DGV_STATUS_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn
Contains the return information on exit.

dwItem
Identifies the capability being queried.

dwTrack
Specifies the length or number of tracks.

lpstrDrive
Specifies the approximate amount of disk space that can be obtained by a
MCI_RESERVE command.

dwReference
Specifies the approximate location of nearest, previous intraframe-encoded image.

MCI_DGV_STEP_PARMS
The MCI_DGV_STEP_PARMS structure contains parameters used by the MCI_STEP
message for digital video devices. When assigning data the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwFrames;
} MCI_DGV_STEP_PARMS;

Fields

134

 MCI Command Messages for MCIAVI Error! Main Document Only.-21

02/10/93

The MCI_DGV_STEP_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwFrames
Specifies the number of frames to step.

MCI_DGV_STOP_PARMS
The MCI_DGV_STOP_PARMS structure contains the information used by
MCI_STOP command message for digital video devices. When assigning data to the
fields in the following data structure, set the corresponding MCI flags in the lParam1
parameter of mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
} MCI_DGV_STOP_PARMS;

The MCI_DGV_STOP_PARMS structure has the following field:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

MCI_DGV_UPDATE_PARMS
The MCI_DGV_UPDATE_PARMS structure contains parameters used by the
MCI_UPDATE message. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 RECT rc;
 HDC hDC;
 WORD wReserved0;
} MCI_DGV_UPDATE_PARMS;

The MCI_DGV_UPDATE_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

rc
Specifies a rectangle.

hDC
Specifies a handle to a display context.

wReserved0
Reserved.

Fields

Fields

Fields

135

Error! Main Document Only.-22 Video for Windows Programmer's Guide

02/10/93

MCI_DGV_WINDOW_PARMS
The MCI_DGV_WINDOW_PARMS structure contains parameters used by the
MCI_WINDOW message for digital video devices. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 WORD hWnd;
 WORD wReserved1;
 WORD nCmdShow;
 WORD wReserved2;
 LPSTR lpstrText;
} MCI_DGV_WINDOW_PARMS;

The MCI_DGV_WINDOW_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

hWnd
Specifies a handle to the display window.

wReserved1
Reserved.

nCmdShow
Specifies how the window is displayed.

wReserved2
Reserved.

lpstrText
Specifies a long pointer to a null-terminated string containing the window caption.

MCI_GENERIC_PARMS
The MCI_GENERIC_PARMS structure contains the information used by MCI
command messages that have empty parameter lists. When assigning data to the fields in
the following data structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
} MCI_GENERIC_PARMS;

The MCI_GENERIC_PARMS structure has the following field:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

Fields

Fields

136

 MCI Command Messages for MCIAVI Error! Main Document Only.-23

02/10/93

MCI_GETDEVCAPS_PARMS
The MCI_GETDEVCAPS_PARMS structure contains parameters for the
MCI_GETDEVCAPS message. When assigning data to the fields in the following data
structure, set the corresponding MCI flags in the lParam1 parameter of
mciSendCommand to validate each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwReturn;
 DWORD dwItem;
} MCI_GETDEVCAPS_PARMS;

The MCI_GETDEVCAPS_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwReturn
Contains the return information on exit.

dwItem
Identifies the capability being queried.

MCI_SEEK_PARMS
The MCI_SEEK_PARMS structure contains parameters used by the MCI_SEEK
message. When assigning data to the fields in the following data structure, set the
corresponding MCI flags in the lParam1 parameter of mciSendCommand to validate
each field:

typedef struct {
 DWORD dwCallback;
 DWORD dwTo;
} MCI_SEEK_PARMS;

The MCI_SEEK_PARMS structure has the following fields:

dwCallback
The low-order word specifies a window handle used for the MCI_NOTIFY flag.

dwTo
Specifies the seek position.

Fields

Fields

137

C H A P T E R 9

This section is an alphabetic reference to the functions and data structures provided by
Video for Windows for use by video capture applications. There are separate sections for
functions, messages, and data structures. The messages and data structures are defined in
MSVIDEO.H.

Extensions are being added to the video capture functions to make it easier for
applications to access video capture drivers. If your application needs video capture
services, it should use the extensions rather than these functions. If you are developing
video capture device drivers, you might use these functions for testing your drivers.

If you need information on the video capture extensions to develop your application, you
can request the latest information from the following group:

 Microsoft Corporation
 Multimedia Systems Group
 Product Marketing
 One Microsoft Way
 Redmond, WA 98052-6399

 FAX: (206) 93MSFAX

Video Capture Function Reference
This section contains a listing of the functions used by video capture applications. The
function definition is given, followed by a description of each parameter.

Video Capture Function Summary
The following function operates on a single frame:

videoFrame
This function transfers a single frame from or to a video device channel.

Video Capture Application
Reference

138

Error! Main Document Only.-2 Video for Windows Programmer's Guide

02/10/93

The following functions are used to open, close, and communicate with a video capture
device:

videoClose
This function closes the specified video device channel.

videoGetErrorText
This function retrieves a description of the error identified by the error number.

videoMessage
This function sends messages to a video device channel.

videoOpen
This function opens a channel on the specified video device.

The following functions control the configuration of a video capture device:

videoConfigure
This function sets or retrieves a configurable driver option.

videoConfigureStorage
This function saves or loads all configurable options for a channel.

videoDialog
This function displays a channel specific dialog box used to set configuration
parameters.

videoGetChannelCaps
This function retrieves a description of the capabilities of a channel.

videoGetNumDevs
This function returns the number of MSVIDEO devices installed.

videoUpdate
This function directs a channel to repaint the display.

The following functions control video capture streaming:

videoStreamAddBuffer
This function sends a buffer to a video device channel.

videoStreamFini
This function terminates streaming from the specified device channel.

videoStreamGetError
This function returns the most recent error encountered.

videoStreamGetPosition
This function retrieves the current position of the specified video device channel.

videoStreamInit
This function initializes a video device channel for streaming.

videoStreamPrepareHeader
This function prepares a buffer for video streaming.

139

 Video Capture Application Reference Error! Main Document Only.-3

02/10/93

videoStreamReset
This function stops streaming on the specified video device channel, returns all video
buffers from the driver, and resets the current position to zero.

videoStreamStart
This function starts streaming on the specified video device channel.

videoStreamStop
This function stops streaming on a video channel.

videoStreamUnprepareHeader
This function cleans up the preparation performed by videoStreamPrepareHeader.

Video Capture Function Alphabetic Reference

videoClose
DWORD videoClose(hVideo)

This function closes the specified video device channel.

HVIDEO hVideo
Specifies a handle to the video device channel. If the function is successful, the handle
will be invalid after this call.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NONSPECIFIC
The driver failed to close the channel.

If buffers have been sent with videoStreamAddBuffer and they haven’t been returned to
the application, the close operation fails. You can use videoStreamReset to mark all
pending buffers as done.

videoOpen, videoStreamInit, videoStreamFini, videoStreamReset

videoConfigure
DWORD videoConfigure(hVideo, msg, dwFlags, lpdwReturn,
 lpData1, dwSize1, lpData2,

This function sets or retrieves a configurable driver option.

HVIDEO hVideo
Specifies a handle to the video device channel.

UINT msg
Specifies the option to set or retrieve.

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

140

Error! Main Document Only.-4 Video for Windows Programmer's Guide

02/10/93

DVM_PALETTE
Indicates a palette is being sent to the driver or retrieved from the driver.

DVM_PALETTERGB555
Indicates an RGB555 palette is being sent to the driver.

DVM_FORMAT
Indicates format information is being sent to the driver or retrieved from the driver.

DWORD dwFlags
Specifies flags for configuring or interrogating the device driver. The following flags
are defined:

VIDEO_CONFIGURE_SET
Indicates values are being sent to the driver.

VIDEO_CONFIGURE_GET
Indicates values are being obtainded from the driver.

VIDEO_CONFIGURE_QUERY
This flag is used to determine if the driver supports the option specified by msg.
This flag should be combined with either the VIDEO_CONFIGURE_SET or
VIDEO_CONFIGURE_GET flag. If this flag is set, the lpData1, dwSize1, lpData2,
and dwSize2 parameters are ignored.

VIDEO_CONFIGURE_QUERYSIZE
Returns the size, in bytes, of the configuration option in lpdwReturn. This flag is
only valid if the VIDEO_CONFIGURE_GET flag is also set.

VIDEO_CONFIGURE_CURRENT
Requests the current value. This flag is only valid if the
VIDEO_CONFIGURE_GET flag is also set.

VIDEO_CONFIGURE_NOMINAL
Requests the nominal value. This flag is only valid if the
VIDEO_CONFIGURE_GET flag is also set.

VIDEO_CONFIGURE_MIN
Requests the minimum value. This flag is only valid if the
VIDEO_CONFIGURE_GET flag is also set.

VIDEO_CONFIGURE_MAX
Get the maximum value. This flag is only valid if the VIDEO_CONFIGURE_GET
flag is also set.

LPDWORD lpdwReturn
Points to a DWORD used for returning information from the driver. If the
VIDEO_CONFIGURE_QUERYSIZE flag is set, lpdwReturn is filled with the size of
the configuration option.

LPVOID lpData1
Specifies a pointer to message specific data.

DWORD dwSize1
Specifies the size of the lpData1 buffer in bytes.

LPVOID lpData2
Specifies a pointer to message specific data.

141

 Video Capture Application Reference Error! Main Document Only.-5

02/10/93

DWORD dwSize2
Size of the lpData2 buffer in bytes.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NOTSUPPORTED
Function is not supported.

videoOpen, videoMessage

videoConfigureStorage
DWORD videoConfigureStorage(hVideo, lpstrIdent, dwFlags)

This function saves or loads all configurable options for a channel. Options can be saved
and recalled for each application or each application instance.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPSTR lpstrIdent
Identifies the application or instance. Use an arbitrary string which uniquely identifies
your application or instance.

DWORD dwFlags
Specifies flags for the storage. The following flags are defined:

VIDEO_CONFIGURE_GET
Requests that the values be loaded.

VIDEO_CONFIGURE_SET
Requests that the values be saved.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NOTSUPPORTED
Function is not supported.

The method used by a driver to save configuration options is device dependent.

videoOpen

videoDialog
DWORD videoDialog(hVideo, hWndParent, dwFlags)

This function displays a channel-specific dialog box used to set configuration parameters.

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

Syntax

142

Error! Main Document Only.-6 Video for Windows Programmer's Guide

02/10/93

HVIDEO hVideo
Specifies a handle to the video device channel.

HWND hWndParent
Specifies the parent window handle.

DWORD dwFlags
Specifies flags for the dialog box. The following flag is defined:

VIDEO_DLG_QUERY
If this flag is set, the driver immediately returns zero if it supplies a dialog box for
the channel, or DV_ERR_NOTSUPPORTED if it does not.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NOTSUPPORTED
Function is not supported.

Typically, each dialog box displayed by this function lets the user select options
appropriate for the channel. For example, a VIDEO_IN channel dialog box lets the user
select the image dimensions and bit depth.

videoOpen, videoConfigureStorage

videoFrame
DWORD videoFrame(hVideo, lpVHdr)

This function transfers a single frame from or to a video device channel.

HVIDEO hVideo
Specifies a handle to the video device channel. The channel must be of type
VIDEO_IN or VIDEO_OUT.

LPVIDEOHDR lpVHdr
Specifies a far pointer to an VIDEOHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

Use this function with a VIDEO_IN channel to transfer a single image from the frame
buffer. Use this function with a VIDEO_OUT channel to transfer a single image to the
frame buffer.

To determine the size of the buffer needed for capturing data, use videoConfigure. Set
the size of the buffer in the dwBufferLength field of the VIDEOHDR structure. If the
buffer size is not large enough, the function can fail.

videoOpen

Parameters

Return Value

Comments

See Also

Syntax

Parameters

Return Value

Comments

See Also

143

 Video Capture Application Reference Error! Main Document Only.-7

02/10/93

videoGetChannelCaps
DWORD videoGetChannelCaps(hVideo, lpChannelCaps, dwSize)

This function retrieves a description of the capabilities of a channel.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPCHANNEL_CAPS lpChannelCaps
Specifies a far pointer to a CHANNEL_CAPS structure.

DWORD dwSize
Specifies the size of the CHANNEL_CAPS structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_UNSUPPORTED
Function is not supported.

The channel capabilities structure returns the capability information. For example,
capability information might include whether or not the channel can crop and scale
images.

videoGetErrorText
DWORD videoGetErrorText(hVideo, wError, lpText, wSize)

This function retrieves a description of the error identified by the error number.

HVIDEO hVideo
Specifies a handle to the video device channel. This might be NULL if the error is not
device specific.

UINT wError
Specifies the error number.

LPSTR lpText
Specifies a far pointer to a buffer which is filled with a null-terminated string
corresponding to the error number.

UINT wSize
Specifies the length of the buffer pointed to by lpText.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_BADERRNUM
Specified error number is out of range.

If the error description is longer than the buffer, the description is truncated. The returned
error string is always null-terminated. If wSize is zero, nothing is copied and the function
returns zero.

Syntax

Parameters

Return Value

Comments

Syntax

Parameters

Return Value

Comments

144

Error! Main Document Only.-8 Video for Windows Programmer's Guide

02/10/93

videoGetNumDevs
DWORD videoGetNumDevs()

This function returns the number of MSVIDEO devices installed.

None

Returns the number of MSVIDEO devices listed in the [drivers] section of the
SYSTEM.INI file.

videoOpen

videoMessage
DWORD videoMessage(hVideo, wMsg, dwP1, dwP2)

This function sends a message to a video device channel.

HVIDEO hVideo
Specifies the handle to the device.

UINT wMsg
Specifies the message to send.

DWORD dwP1
Specifies the first parameter for the message.

DWORD dwP2
Specifies the second parameter for the message.

Returns the message specific value returned from the driver.

This function is used for configuration messages such as DVM_SRC_RECT and
DVM_DST_RECT and device specific messages.

videoConfigure

videoOpen
DWORD videoOpen(lphvideo, dwDeviceID, dwFlags)

This function opens a channel on the specified video device.

LPHVIDEO lphvideo
Specifies a far pointer to a HVIDEO handle. The video capture driver uses this
location to return a handle that uniquely identifies the opened video device channel.
Use this handle to identify the device channel when calling other video functions.

DWORD dwDeviceID
Identifies the video device to open. The value of dwDeviceID varies from zero to one
less than the number of video capture devices installed in the system.

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

145

 Video Capture Application Reference Error! Main Document Only.-9

02/10/93

DWORD dwFlags
Specifies flags for opening the device. The following flags are defined:

VIDEO_EXTERNALIN
Specifies the channel is opened for external input. Typically, external input
channels capture images into a frame buffer.

VIDEO_EXTERNALOUT
Specifies the channel is opened for external output. Typically, external output
channels display images stored in a frame buffer on an auxiliary monitor or
overlay.

VIDEO_IN
Specifies the channel is opened for video input. Video input channels transfer
images from a frame buffer to system memory buffers.

VIDEO_OUT
Specifies the channel is opened for video output. Video output channels transfer
images from system memory buffers to a frame buffer.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_BADDEVICEID
Specified device ID is out of range.

DV_ERR_ALLOCATED
Specified resource is already allocated.

DV_ERR_NOMEM
Unable to allocate or lock memory.

At a minimum, all capture drivers support a VIDEO_EXTERNALIN and a VIDEO_IN
channel. Use videoGetNumDevs to determine the number of video devices present in the
system.

videoClose, videoGetNumDevs

videoStreamAddBuffer
DWORD videoStreamAddBuffer(hVideo, lpvideoHdr, dwSize)

This function sends a buffer to a video device channel. After the buffer is filled by the
device, the device sends it back to the application.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPVIDEOHDR lpvideoHdr
Specifies a far pointer to a VIDEOHDR structure that identifies the buffer.

DWORD dwSize
Specifies the size of the VIDEOHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

Return Value

Comments

See Also

Syntax

Parameters

Return Value

146

Error! Main Document Only.-10 Video for Windows Programmer's Guide

02/10/93

DV_ERR_INVALHANDLE
The device handle specified is invalid.

DV_ERR_UNPREPARED
The lpvideoHdr structure hasn’t been prepared.

The data buffer must be prepared with videoStreamPrepareHeader before it is passed to
videoStreamAddBuffer. The VIDEOHDR data structure and the data buffer pointed to
by its lpData field must be allocated with GlobalAlloc using the GMEM_MOVEABLE
and GMEM_SHARE flags, and locked with GlobalLock.

To determine the size of the buffer needed for capturing data, use videoConfigure. Set
the size of the buffer in the dwBufferLength field of the VIDEOHDR structure. If the
buffer size is not large enough, the driver might return DV_ERR_NONSPECIFIC.

videoStreamPrepareHeader

videoStreamFini
DWORD videoStreamFini(hVideo)

This function terminates streaming from the specified device channel.

HVIDEO hVideo
Specifies a handle to the video device channel.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

DV_ERR_STILLPLAYING
There are still buffers in the queue.

If there are buffers that have been sent with videoStreamAddBuffer that haven’t been
returned to the application, this operation will fail. Use videoStreamReset to mark all
pending buffers as done.

Each call to videoStreamInit must be matched with a call to videoStreamFini.

For VIDEO_EXTERNALIN channels, this function is used to halt capturing of data to
the frame buffer.

For VIDEO_EXTERNALOUT channels that support overlay, this function is used to
disable the overlay.

videoStreamInit

videoStreamGetError
DWORD videoStreamGetError(hVideo, lpdwErrorID, lpdwErrorValue)

This function returns the error most recently encountered.

Comments

See Also

Syntax

Parameters

Return Value

Comments

See Also

Syntax

147

 Video Capture Application Reference Error! Main Document Only.-11

02/10/93

HVIDEO hVideo
Specifies a handle to the video device channel.

LPDWORD lpdwErrorID
Specifies a far pointer to the DWORD to be filled with the error ID.

LPDWORD lpdwErrorValue
Specifies a far pointer to the DWORD to be filled with the number of frames skipped.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

While streaming video data, a capture driver can fill buffers faster than the client
application can save the buffers to disk. In this case, the DV_ERR_NO_BUFFERS error
is returned in lpdwErrorID and lpdwErrorValue contains a count of the number of frames
missed. After receiving this message and returning the error status, the driver should reset
its internal error flag to DV_ERR_OK and the count of missed frames to zero.

Applications should send this message frequently during capture since some drivers
which do not have access to interrupts use this message to trigger buffer processing.

videoOpen

videoStreamGetPosition
DWORD videoStreamGetPosition(hVideo, lpInfo, dwSize)

This function retrieves the current position of the specified video device channel.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPMMTIME lpInfo
Specifies a far pointer to an MMTIME structure.

DWORD dwSize
Specifies the size of the MMTIME structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

Before using videoStreamGetPosition, set the wType field of the MMTIME structure to
indicate the time format you desire. After videoStreamGetPosition returns, check the
wType field to determine if the your time format is supported. If not, wType will specify
an alternate format. Video capture drivers typically provide the milliseconds time format.

The position is set to zero when streaming is started with videoStreamStart.

Parameters

Return Value

Comments

See Also

Syntax

Parameters

Return Value

Comments

148

Error! Main Document Only.-12 Video for Windows Programmer's Guide

02/10/93

videoStreamInit
DWORD videoStreamInit(hVideo, dwMicroSecPerFrame, dwCallback,
dwCallbackInstance, dwFlags)

This function initializes a video device channel for streaming.

HVIDEO hVideo
Specifies a handle to the video device channel.

DWORD dwMicroSecPerFrame
Specifies the number of microseconds between frames.

DWORD dwCallback
Specifies the address of a callback function or a handle to a window called during
video streaming. The callback function or window processes messages related to the
progress of streaming.

DWORD dwCallbackInstance
Specifies user instance data passed to the callback function. This parameter is not used
with window callbacks.

DWORD dwFlags
Specifies flags for opening the device channel. The following flags are defined:

CALLBACK_WINDOW
If this flag is specified, dwCallback is a window handle.

CALLBACK_FUNCTION
If this flag is specified, dwCallback is a callback procedure address.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_BADDEVICEID
The device ID specified in hVideo is not valid.

DV_ERR_ALLOCATED
The resource specified is already allocated.

DV_ERR_NOMEM
Unable to allocate or lock memory.

If a window is chosen to receive callback information, the following messages are sent to
the window procedure function to indicate the progress of video input:
MM_DRVM_OPEN at the time of videoStreamInit, MM_DRVM_CLOSE at the time
of videoStreamFini, MM_DRVM_DATA when a buffer of image data is available,
MM_DRVM_ERROR when an error occurs.

If a function is chosen to receive callback information, the following messages are sent to
the function to indicate the progress of video input: MM_DRVM_OPEN,
MM_DRVM_CLOSE, MM_DRVM_DATA, MM_DRVM_ERROR. The callback
function must reside in a DLL. You do not have to use MakeProcInstance to get a
procedure-instance address for the callback function.

void CALLBACK videoFunc(hVideo, wMsg, dwInstance, dwParam1, dwParam2)

Syntax

Parameters

Return Value

Comments

Callback

149

 Video Capture Application Reference Error! Main Document Only.-13

02/10/93

videoFunc is a placeholder for the application-supplied function name. The actual name
must be exported by including it in an EXPORTS statement in the DLL’s module-
definition file.

HVIDEO hVideo
Specifies a handle to the video device channel associated with the callback.

DWORD wMsg
Specifies the MM_DRVM_ message.

DWORD dwInstance
Specifies the user instance data specified with videoOpen.

DWORD dwParam1
Specifies a parameter for the message.

DWORD dwParam2
Specifies a parameter for the message.

Because the callback is accessed at interrupt time, it must reside in a DLL and its code
segment must be specified as FIXED in the module-definition file for the DLL. Any data
that the callback accesses must be in a FIXED data segment as well. The callback may not
make any system calls except for PostMessage, timeGetSystemTime, timeGetTime,
timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

For VIDEO_EXTERNALIN channels, this function is used to initiate capturing of data
to the frame buffer.

For VIDEO_EXTERNALOUT channels which support overlay, this function is used to
enable the overlay.

videoOpen, videoStreamFini, videoClose

videoStreamPrepareHeader
DWORD videoStreamPrepareHeader(hVideo, lpvideoHdr, dwSize)

This function prepares a buffer for video streaming.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPVIDEOHDR lpvideoHdr
Specifies a pointer to a VIDEOHDR structure that identifies the buffer to be prepared.

DWORD dwSize
Specifies the size of the VIDEOHDR structure.

Callback
Parameters

Callback
Comments

See Also

Syntax

Parameters

150

Error! Main Document Only.-14 Video for Windows Programmer's Guide

02/10/93

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

DV_ERR_NOMEM
Unable to allocate or lock memory.

Use this function after videoStreamInit or after videoStreamReset to prepare the data
buffers for streaming data.

The VIDEOHDR data structure and the data block pointed to by its lpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags,
and locked with GlobalLock. Preparing a header that has already been prepared will have
no effect and the function will return zero. Typically, this function is used to insure that
the buffer will be available for use at interrupt time.

videoStreamUnprepareHeader

videoStreamReset
DWORD videoStreamReset(hVideo)

This function stops streaming on the specified video device channel and resets the current
position to zero. All pending buffers are marked as done and are returned to the
application.

HVIDEO hVideo
Specifies a handle to the video device channel.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

videoStreamReset, videoStreamStop, videoStreamAddBuffer, videoStreamClose

videoStreamStart
DWORD videoStreamStart(hVideo)

This function starts streaming on the specified video device channel.

HVIDEO hVideo
Specifies a handle to the video device channel.

Return Value

Comments

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

151

 Video Capture Application Reference Error! Main Document Only.-15

02/10/93

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

videoStreamReset, videoStreamStop, videoStreamAddBuffer, videoStreamClose

videoStreamStop
DWORD videoStreamStop(hVideo)

This function stops streaming on a video channel.

HVIDEO hVideo
Specifies a handle to the video device channel.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_INVALHANDLE
Specified device handle is invalid.

If there are any buffers in the queue, the current buffer will be marked as done (the
dwBytesRecorded field in the VIDEOHDR header will contain the actual length of
data), but any empty buffers in the queue will remain there. Calling this function when the
channel is not started has no effect, and the function returns zero.

videoStreamStart, videoStreamReset

videoStreamUnprepareHeader
DWORD videoStreamUnprepareHeader(hVideo, lpvideoHdr, dwSize)

This function cleans up the preparation performed by videoStreamPrepareHeader.

HVIDEO hVideo
Specifies a handle to the video device channel.

LPVIDEOHDR lpvideoHdr
Specifies a pointer to a VIDEOHDR structure identifying the data buffer to be
cleaned up.

DWORD dwSize
Specifies the size of the VIDEOHDR structure.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following errors are defined:

DV_ERR_INVALHANDLE
The device handle specified is invalid.

DV_ERR_STILLPLAYING
The structure identified by lpvideoHdr is still in the queue.

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

Return Value

152

Error! Main Document Only.-16 Video for Windows Programmer's Guide

02/10/93

This function is the complementary function to videoStreamPrepareHeader. You must
call this function before freeing the data buffer with GlobalFree. After passing a buffer to
the device driver with videoStreamAddBuffer, you must wait until the driver is finished
with the buffer before calling videoStreamUnprepareHeader. Unpreparing a buffer that
has not been prepared has no effect, and the function returns zero.

videoStreamPrepareHeader

videoUpdate
DWORD videoUpdate(hVideo, hWnd, hDC)

This function directs a channel to repaint the display. It applies only to
VIDEO_EXTERNALOUT channels.

HVIDEO hVideo
Specifies a handle to the video device channel.

HWND hWnd
Specifies the handle of the window to be used by the channel for image display.

HDC hDC
Specifies a handle to a device context.

Returns zero if the function was successful. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_UNSUPPORTED
Specified message is unsupported.

This message is normally sent whenever the client window receives a WM_MOVE,
WM_SIZE, or WM_PAINT message.

Video Capture Data Structure Reference
This section lists data structures used by video capture applications. The data structures
are presented in alphabetical order. The structure definition is given, followed by a
description of each field.

Video Capture Data Structure Alphabetic Reference

CHANNEL_CAPS
The CHANNEL_CAPS structure is used with videoGetChannelCaps to return the
capabilities of a channel to an application.

Comments

See Also

Syntax

Parameters

Return Value

Comments

153

 Video Capture Application Reference Error! Main Document Only.-17

02/10/93

typedef struct channel_caps_tag {
 DWORD dwFlags;
 DWORD dwSrcRectXMod;
 DWORD dwSrcRectYMod;
 DWORD dwSrcRectWidthMod;
 DWORD dwSrcRectHeightMod;
 DWORD dwDstRectXMod;
 DWORD dwDstRectYMod;
 DWORD dwDstRectWidthMod;
 DWORD dwDstRectHeightMod;
} CHANNEL_CAPS;

The CHANNEL_CAPS structure has the following fields:

dwFlags
Returns flags giving information about the channel. The following flags are defined:

VCAPS_OVERLAY
Indicates the channel is capable of overlay. This flag is used only for
VIDEO_EXTERNALOUT channels.

VCAPS_SRC_CAN_CLIP
Indicates that the source rectangle can be set smaller than the maximum
dimensions.

VCAPS_DST_CAN_CLIP
Indicates that the destination rectangle can be set smaller than the maximum
dimensions.

VCAPS_CAN_SCALE
Indicates that the source rectangle can be a different size than the destination
rectangle.

dwSrcRectXMod
Returns the granularity allowed when positioning the source rectangle in the horizontal
direction.

dwSrcRectYMod
Returns the granularity allowed when positioning the source rectangle in the vertical
direction.

dwSrcRectWidthMod
Returns the granularity allowed when setting the width of the source rectangle.

dwSrcRectHeightMod
Returns the granularity allowed when setting the height of the source rectangle.

dwDstRectXMod
Returns the granularity allowed when positioning the destination rectangle in the
horizontal direction.

dwDstRectYMod
Returns the granularity allowed when positioning the destination rectangle in the
vertical direction.

dwDstRectWidthMod
Returns the granularity allowed when setting the width of the destination rectangle.

Fields

154

Error! Main Document Only.-18 Video for Windows Programmer's Guide

02/10/93

dwDstRectHeightMod
Returns the granularity allowed when setting the height of the source rectangle.

Some channels can only use source and destination rectangles which fall on 2, 4, or 8
pixel boundaries. Similarly, some channels only accept capture rectangles widths and
heights that are multiples of a fixed value. Rectangle dimensions indicated by modulus
operators are considered advisory. When requesting a particular rectangle, the application
must always check the return value to insure the request was accepted by the driver. For
example, if dwDstRectWidthMod is set to 64, the application might try to set destination
rectangles with widths of 64, 128, 192, 256, ..., and 640 pixels. The driver might actually
support a subset of these sizes and indicates the supported sizes with the return value of
the DVM_DST_RECT message. If a channel supports arbitrarily positioned rectangles,
with arbitrary sizes, the values above should all be set to 1.

VIDEOHDR
The VIDEOHDR structure defines the header used to identify a video data buffer.

typedef struct videohdr_tag {
 LPSTR lpData;
 DWORD dwBufferLength;
 DWORD dwBytesUsed;
 DWORD dwTimeCaptured;
 DWORD dwUser;
 DWORD dwFlags;
 DWORD dwReserved[4];
} VIDEOHDR;

The VIDEOHDR structure has the following fields:

lpData
Specifies a far pointer to the video data buffer.

dwBufferLength
Specifies the length of the data buffer.

dwBytesUsed
Specifies the number of bytes used in the data buffer.

dwTimeCaptured
Specifies the time (in milliseconds) when the frame was captured relative to the first
frame in the stream.

dwUser
Specifies 32 bits of user data.

dwFlags
Specifies flags giving information about the data buffer. The following flags are
defined for this field:

VHDR_DONE
Set by the device driver to indicate it is finished with the data buffer and it is
returning the buffer to the application.

Comments

155

 Video Capture Application Reference Error! Main Document Only.-19

02/10/93

VHDR_PREPARED
Set by Windows to indicate the data buffer has been prepared with
videoStreamPrepareHeader.

VHDR_INQUEUE
Set by Windows to indicate the data buffer is queued for playback.

VHDR_KEYFRAME
Set by the device driver to indicate a key frame.

dwReserved[4]
Reserved for use by the device driver. Typically, these maintain a linked list of buffers in
the queue.

156

CHAP T ER 10

Video Compression and
Decompression Drivers

Video compression and decompression drivers provide low-level video compression and
decompression services for Microsoft Video for Windows. The compression and
decompression algorithms used can be hardware or software based. This chapter explains
the Windows interface for these drivers. It covers the following topics:

• General information about writing a video compression and decompression driver

• lnfonnation on how a video compression and decompression driver handles the system
messages for the installable driver interface

• Information on how a video compression and decompression driver handles messages
specific to compressing and decompressing video data

• An alphabetical reference to the messages and data structures used to write video
compression and decompression drivers

Before reading this chapter, you should be familiar with the video services available with
Windows. You should also be familiar with the Windows installable driver interface. For
information about these Windows topics, see the Microsoft Windows Programmer's
Reference.

Architecture of a Video Compression and
Decompression Driver

The following two block diagrams show the architecture of a video compression and
decompression driver. While the diagrams show separate compression and decompression
drivers, an actual driver usually combines both functions. The following illustration
shows the architecture of a decompression driver:

157

Error! Main Document Only.-2 Video for Windows Programmer's Guide

02/ l 0/93

II.VI Gi errt - Vidro
File ~li!3ion Ds~a,r

Ccfll~ffl
Vili;.(Jll:fa

Urufll=ed
Vi~

•
~ c:a11 p l'fS3 iifl
r.iw

Architecture for a decompression driver.

The following illustration shows a similar architecture for the compression driver:

Vidro - Gierrt - NI
Siun:e ~li!3ion File

Ururn=ffl
\fl ci?.(1

Ccrn~ffl
Vi~ll:ta

•
Ccfll~ii::in
Drhrer

Architecture for a compression driver.

The decompression driver and compression driver blocks represent your compression and
decompression driver. The client-application block represents the system and application
software that uses the services of your compression and decompression driver.
Application software will always use the system software to access compression and
decompression drivers.

The source of i.nfonnation used for decompression is represented by the A VI file block.
Other sources of images can be used in place of th is block. A VI files are RIFF files that
contain audio and video data. The client-application maintains the RIFF fo1mat when it
reads and writes the file. (Your driver will send and receive video data. The client
application will add and remove the RIFF tags.)

Compression drivers receive uncompressed data from the video source. Typically the
video source is a disk file but it could also come from other video sources such as a video
capture device. The video data can be either still bitmaps or motion video frames.

While a prev ious block diagram showed the decompression driver returning the
uncompressed video to the client-application, your driver can have the capability to write
directly to the display or display driver. These devices can replace a Windows video driver
or work in conjunction with it. The following illustrati on shows a decompression driver
with the abil ity to write to the video display:

158

Video Compression and Decompression Drivers Error! Main Document Only.-3

A.VI - Gi fflt - Vidro
Fi le. 1Jwlil3:ion Ds~a,r

C«Tl~e.d
Vi li:-.D Ma

•
~Wllp 1'12Si.(fl Vidro ll:ta
-Ds~a,r
()iVff

Architecture for a decompression-video driver.

These drivers handle a set of messages, the ICM~ DRAW messages, in addition to the
decompression messages defined for the services that return the decompressed video to
the client-application.

The ICSAMPLE Example Driver
The examples in this chapter were extracted from the ICSAMPLE example driver. This
sample illustrates the interface between Windows and video compression and
decompression drivers. The sample compresses data by extracting every tenth pixel from
the source and discarding the other nine. It decompresses by replacing the nine missing
pixels with their retained neighbor.

The Structure of a Video Compression and
Decompression Driver

Video compression and decompress ion drivers are dynamic-link libraries (DLLs) usually
written in C or assembly language, or a combination of the two languages.

As installable drivers, these drivers will provide a DriverProc entry point. For general
infon11ation about installable drivers, the DriverProc entry point, and system messages
sent to this entry point, see the Microsoft Windows Programmer's Reference. This chapter
includes supplemental information for the system messages. This info1111ation describes
specifically how compression and decompression drivers should respond to the system
messages that are critical to their proper operation.

Video compression and decompression drivers also use the DriverProc entry point to
process messages specifically for video compression and decompression. Information on
how drivers use the DriverProc entry point to process these messages is contained in this
chapter.

Video Compression and Decompression Header Files
The messages and data structures used exclusively by video compression and
decompression drivers are defin ed in COMPDDK.H.

02/ 10/93

159

Error! Main Document Only.-4 Video for Windows Programmer's Guide

Naming Video Compression and Decompression Drivers
The filenames for driver DLLs are not required to have a file extension of".DLL"-you
can name your driver using any file extension you want. It is suggested that you use the
extension " .DRY" for your drivers to follow the convention set by Windows.

SYSTEM.INI Entries for Video Compression and
Decompression Drivers

01/10/93

The SYSTEM.IN! file contains infonnation for loading and configuring drivers. Your
driver must be identified in the [Drivers] or [Installable Compressors] section. This entry
lets Windows load the driver. ff an entry for your driver is absent, it won't be recognized.
While installation applications normally add the necessary entry for completed drivers,
you might have to manually add it while you develop your driver. The final version of
your driver should use an installation application to create and delete the entries in these
two sections.

Identify your driver in the [Drivers] section if you want to use the Drivers option of the
Control Panel to install or configure it. (This is the recommended method of installation.)
The Drivers option obtains the information it needs to install the driver from an
OEMSETUP.INF file you create for your driver. This file should be i11cluded on the
distribution disk for your driver. For information about the files needed to install your
driver, see the Microsoft Windows Device Driver Adaptation Guide and Microsoft
Windows Programmer 's Reference. For information on the Drivers option, see the
Microsoft Windows Programmer's Reference.

Identify your driver in the [Installable Compressors] section if you want to use a custom
installation application. If you use a custom application, it should update the [Installable
Compressors] section when your driver is installed or removed.

Video compression and decompression drivers are identified by a key name of "VlDC."
followed by its four-character code identifier. For example, the following [Installable
Compressors] section of SYSTEM.INT identifies one video compression and
decompression driver:

[Installable Compressors]

VIDC . SAMP = ICSAMPLE . DRV

SAMP is the four-character code identifier of the compressor. This driver has a file name
of "ICSAMPLE.DRV".

The four-character code identifier must be unique. If you want to create a new four
character code identifier, register it with Microsoft to set up a standard definition and
avoid any conflicts with other codes that might be defined. To register a code for a
compression and decompression driver, request a A1ultimedia Developer Registration Kit
from the following group:

Microsoft Corporation
Multimedia Systems Group
Product Marketing

160

Video Compression and Decompression Drivers

One Microsoft Way
Redmond, WA 98052-6399

Error! Main Document Only.-5

For more information on four character codes, see the Microsoft Windows Multimedia
Programmer's Guide, Microsoft Windows Multimedia Programmer's Reference, and
Chapter 4, " A VI Files."

For more information on storing configuration information in the SYSTEM.IN! file, see
"The Installable Driver Interface," later in this chapter.

The Module-Definition File
To build a driver DLL, you must have a module-definition (.DEF) file. In this file, you
must export the DriverProc entry-point function. Functions are exported by ordinal, as
shown in the following example ICSAMPLE.DEF file:

LIBRARY I CSAMPLE

DESCRIPTION ' VIDC.SAMP:Sample Decompression Driver '

STUB

EXETYPE

' WINSTUB .EXE'

WINDOWS

CODE MOVEABLE DISCARDABLE LOADONCALL

DATA MOVEABLE SINGLE PRELOAD

SEGMENTS TEXT DISCARDABLE PRELOAD

HEAPS I ZE 128

EXPORTS
WEP
DriverProc

lfyou are using the Drivers option of the Control Panel, include the key name of VIDC, a
period(.), and the four-character code for your driver in the DESCRIPTION entry. (Use a
colon(:) to separate this entry from the text description.) The Drivers option uses this
description when it lists the driver in the [Drivers] section of the SYSTEM.INI file . For
example, the previous description for ICSAMPLE.DR V uses VIDC.SAMP: in the
DESCRIPTION line. If you are using a custom installation application, you do not need to
include this description infonnation.

For more info1111ation on the entry-point function li sted in this example, see "An Example
DriverProc Entry-Point f unction" later in this chapter.

The Module Name Line
The module name line should specify a unique module name for yom dri ver. Windows
will not load tvvo different modules with the same module name. It' s a good idea to use
the base of your driver filename since. in ceitain instances. LoadLibrary wi ll assume that
to be your module name. For example. the previous fragment used LIBRARY
ICSAMPLE.

02/I 0/93

161

Error! Main Document Only.-6 Video for Windows Programmer's Guide

The Installable Driver Interface
The entry-point function, DriverProc, processes messages sent by the system to the driver
as the result of an application call to a video compression and decompression function.
For example, when an application opens a video compression and decompression driver,
the system sends the specified driver a DRY _OPEN message. The driver's DriverProc
function receives and processes this message. Your DriverProc should return
ICERR_UNSUPPORTED for any messages that it does not handle.

Note: Your driver should respond to all system messages. If supplemental infonnation is
not provided for them in this chapter, use the definitions provided in the Microsoft
Windows Programmer 's Reference.

An Example DriverProc Entry-Point Function

02/l 0/93

A video compression and decompression driver uses the DriverProc function for its
entry-point. The following example is derived from the ICSAMPLE driver:

LRESULT CALLBACK _loadds DriverProc(DWORD dwDriverID, HDRVR hDriver,
UINT uiMessage, LPARAM lParaml , LPARAM 1Param2)

INSTINFO *pi = {INSTINFO *) {UINT)dwDriverID;

switch (uiMessage)

case DRV LOAD:
return {LRESULT) Load{);

case DRV FREE:
Free();
return (LRESULT)lL;

case ORV OPEN:
II If being opened without an open structure , return a non-zero
II value without actually opening.
if {1Param2 == OL)

return OxFFFFOOOO;

162

Video Compression and Decompression Drivers Error! Main Document Only.-7

ret urn (LRESULT) (DWORD) (WORD) Open((ICOPEN FAR*) 1Param2);

case DRV CLOSE:
if (pi)

Close(pi);

return (LRESULT)lL ;

/ *** ** ************************************ * ***************** ** *** *****

system configuration messages
**** ** * *** ****** * * ** ************ ** *********** ******************* * ****/

case DRV_QUERYCONFIGURE :
return (LRESULT)OL ;

II For confi guration with Drivers option .

case DRV CONFIGURE :
return DRV OK ;

/** ** ******** ** **************** ************ ************** *************

device speci fic messages
****************** * ** * ** **** * ******* *** ** ******* * ******************* * /

/********** ************ *** ****************** ** ********************* ** *

standard driver messages
**** *** *** **** *** ****** **** *** **** *** **** **** ** ******* ** *************/

cas e DRV DISABLE :
case DRV ENABLE :

return (LRESULT)lL ;

case DRV INSTALL :
case DRV REMOVE:

return (LRESULT)DRV_OK;

i f (uiMessage << DRV_USER)

else

return DefDriverProc(dwDriverID, hDriver ,
uiMess age,1Par am l , 1Param2) ;

retu r n I CERR_UNSUPPORTED;

02/J 0/93

163

Error! Main Document Only.-8 Video for Windows Programmer's Guide

Handling the DRV_OPEN and DRV_CLOSE Messages

02110193

Like other installable drivers, client applications must open a video compression and
decompression driver before using it, and they must close it when finished using it so the
driver will be available to other applications. When a driver receives an open request, it
returns a value that the system will use for dwDriverlD sent with subsequent messages.
When your driver receives other messages, it can use this value to identify instance data
needed for operation. Your drivers can use this data to maintain infonnation related to the
client that opened the driver.

Compression and decompression drivers should suppo1t more than one client
simultaneously. If you do this, though, remember to check the dwDriverlD parameter to
determine which client is being accessed.

If the driver is opened for configuration by the Drivers option of the Control Panel,
!Param2 contains zero. When opened this way, your driver should respond to the
ORV _CONFIGURE and DRV _QUERYCONFIGURE messages.

If opened for compression or decompression services, !Param2 contains a far pointer to an
ICOPEN data structure. The !COPEN data structure has the following fields:

typede f struct {
DWORD fccType;
DWORD fccHandler ;
DWORD dwVersion;
DWORD dwFlags;

I COPEN;

The fccType field specifies a four-character code representing the type of stream being
compressed or decompressed. For video streams, this will be 'vidc'.

Because video capture drivers cru1 rely on video compression and decompression drivers
for efficient operation, a single driver can handle both video capture, and video
compression and decompression services. Video capture drivers use the
VlDEO _ OPEN_P A RMS data structure when it is opened. This structure has the same
field definitions as the ICOPEN structure. By examining the fccType field, a combined
driver can determine whether it is being opened as a video capture driver or a video
compression and decompression driver. Video capture devices contain the four-character
code 'vcap' in this field . For more information on video capture drivers, see Chapter 11 ,
"Video Capture Device Drivers."

Other drivers that require close coordination with video compression and decompression
drivers can also be combined with video compression and decompression drivers if they
use a similar interface.

The fccHandler field specifies a four-character code identifying a specific compressor.
The client-application obtains the four-character code from the entry in the SYSTEM.INI
file used to open your driver. Your driver should not fail the open if it does not recognize
the four-character code.

The dwVersion field specities the version of the compressor interface used to open the
driver. Your driver can use this information to determine the capabilities of the system
software when future versions of it are available.

164

Video Compression and Decompression Drivers Error! Main Document Only.-9

The dwFlags field contains a constant indicating the function of the driver. The following
constants are defined:

ICMODE COMPRESS
The driver is opened to compress data.

ICMODE DECOMPRESS
The driver is opened to decompress data.

ICMODE DRAW
The device driver is opened to decompress data directly to hardware.

ICMODE_QUERY
The driver is opened for informational purposes, rather than for actual compression.

The ICMODE_COMPRESS, ICMODE_DECOMPRESS, and ICMODE_DRAW flags
indicate your driver is opened to compress or decompress data. Depending on the flag,
your driver should prepare to handle ICM_ COMPRESS, ICM_DECOMPRESS, or
ICM_ ORA W messages. Your driver should also prepare to handle all messages used to
configure and intenogate your driver.

The lCMODE_QUERY flag indicates your driver is opened to obtain information. It
should prepare to handle the ICM_ ABOUT, ICM_ GETINFO, and
ICM_GETDEFAULTQUALITY messages.

Compressor Configuration
Video compression and decompression drivers can receive a series of configuration
messages. System configuration messages are typically sent by the Drivers option of the
Control Panel to configure the hardware. Video compression and decompression specific
configuration messages are typically initiated by the client-application or from dialog
boxes displayed by your driver. Your driver should use these messages to configure the
driver.

Configuration Messages Sent by the System
The following system messages are used by video compression and decompression drivers
for hardware configuration:

DRV _QUERY CONFIGURE
This system message is sent to detennine if the driver supports configuration.

DRV CONFIGURE
This Control Panel message is sent to let the driver display a custom configuration
dialog box for hardware configuration.

02/l 0/93

165

Error! Main Document Only.-10 Video for Windows Programmer's Guide

02/ 10/93

Installable drivers can supply a configuration dialog box for users to access through the
Drivers option in the Control Panel. If your driver supports different options, it should
allow user configuration. Any hardware-related settings should be stored in a section with
the same name as the driver in the user's SYSTEM.IN ! file.

Like other installable drivers, your driver will receive ORV_ QUERYCONFIGURE and
ORV _CONFIGURE messages from the Drivers option of the Control Panel. If your driver
controls hardware that needs to be configured, it should return a non-zero value for the
DR V _ QUER YCONFIGURE system message and display a hardware configuration
dialog box for the DRY _CONFIGURE system message.

Messages for Configuring the Driver State
The video compression and decompression specific configuration messages are typically
initiated by the client-application or from dialog boxes displayed by your driver. Your
driver should use these messages to configure the driver. The following messages apply
specifically to video compression and decompression drivers:

ICM_CONFIGURE
This message displays a custom configuration dialog box for driver configuration.

ICM GETSTATE
This message obtains the current driver configuration.

ICM SETST A TE
This message sets the state of the compressor.

If your driver is configurable, it should support the ICM_CONFIGURE message for
driver configuration. In addition, it should also use this message to set parameters for
compression or decompression. Any options the user selects in the dialog box displayed
for ICM_ CONFIGURE should be saved as pait of the state information referenced by the
ICM_ GETST A TE and ICM_ SETST A TE messages.

The ICM_GETSTATE and ICM_SETSTATE messages query and set the internal state of
your compression or decompression driver. State information is device dependent and
your driver must define its own data structure for it. While the client-application reserves a
memory block for the information, it will obtain the size needed for the memory block
from your driver. If your driver receives ICM_ GETSTA TE with a NULL pointer for
dwParaml, the client-application is requesting that your driver return the size of its state
information. Conversely, if your driver receives ICM_ GETS TA TE with dwParaml
pointing to a block of memory, and dwParam2 specifying the size of the memory block,
the client-application is requesting that your driver transfer the state information to the
memory block.

When your driver receives ICM_SETSTATE with dwParaml pointing to a block of
memory, and dwParam2 specity ing the size of the memory block, the client-application is
requesting that your driver restore its configuration from the state information contai ned in
the memory block. Before setti ng the state, your driver should veri fy the state information
applies to your driver. O ne tec hnique for veri fy ing the data is to reserve the first DWORD
in the state data structure for the fo ur-character code used to identify your d river. lf you
set this DWORD for data ret urned for lCM_ GET STATE. you can use it to verify the data

166

Video Compression and Decompression Drivers Error! Main Document Only.-11

supplied with ICM_SETSTATE. If ICM_SETSTATE has a NULL pointer for dwParaml,
it indicates that your driver should return to its default state.

State infonnation should not contain any data that is absolutely required for data
decompression-any such data should be part of the format you return for the
ICM_ DECOMPRESS_ GET _FORMAT message. For infonnation on the
ICM_DECOMPRESS_GET_FORMAT message, see "Decompressing Video Data" later
in this chapter.

Messages Used to Interrogate the Driver
The client-appl ication uses the following messages to obtain or display information about
your driver:

ICM ABOUT
This message displays the about dialog box for the driver.

ICM GETINFO
This message obtains information about the driver.

The client-application sends the ICM_ABOUT message to display your driver' s about
box. If the client-application sets dwParaml to -1, it wants to know if your driver supports
display of an about box. Your driver returns ICERR _OK if it does, and it returns
ICERR_UNSUPPORTED if it does not. Your driver should only display an about box if
the client-application specifies a window handle in dwParaml. The window handle
indicates the parent of the dialog box.

The client-application uses the ICM_ GETINFO message to obtain a description of your
driver. Your driver should respond to this message by filling in the ICINFO structure it
receives with the message. The flags your driver sets in the structure tells the client
application what capabilities the driver supports. The ICINFO structure has the following
fields :

typede f s truct {
DWORD dwSiz e ;
DWORD fccType ;
DWORD fccHandler;
DWORD dw Flags ;
DWORD dwVe r sion;
DWORD dwVe rsionICM;
c har s zName [16];

char szDe scrip t ion[l28] ;
c ha r szDriver[l28] ;

IC INFO;

Set the dwSize field to the size of the IC!NFO structure.

Set the fccType fie ld to the fo ur-character code to 'vidc' for video streams.

Set fee Handler to the four-character code identif)ting your driver. Your driver should
use the four-character code used to instal l your driver and used in the descriptio11 li11e of
!he .DEF file.

02/ 10/93

167

Error! Main Document On ly.-12 Video for Windows Programmer's Guide

Specify the version number of the driver in the dwVersion field.

Set the dwVersionICM fie ld to 1.0 (OxOOOl 0000). This specifies the version of the
compression manager supported by this driver.

Use the szName[16) field to specify the shoti name of the compressor. The null
ten11inated name should be suitable for use in list boxes.

Use the szDescription[128] field to specify a null-terminated string containing a long
name for the compressor.

Your driver will not nonnally use the szDriver[128] field. This field is used to specify the
module that contains the driver.

Set the flags corresponding to the capabilities of your driver in the low-ordered word of
the dwFlags field. You can use the high-ordered word for driver-specific flags. The
following flags are defined for video compression and decompression drivers:

VIDCF _QUALITY
The driver supports quality levels.

VIDCF CRUNCH
The driver suppo1is compressing to an arbih·ary frame size.

VIDCF TEMPORAL
The driver supports inter-frame compression.

VIDCF DRAW
The driver suppotis drawing to hardware with the ICM_DRA W messages.

VIDCF FASTTEMPORAL
The driver can do temporal compression and doesn' t need the previous frame.

Configuration Messages for Compression Quality

02/10193

The client-application sends the following messages to obtain and set image quality
values:

ICM_GETDEFAULTQUALITY
This message obtains the default quality settings of the driver.

ICM_GETQUALITY
This message obtains the current driver quality settings.

ICM_ SETQUALITY
This message sets the driver quality settings.

For the video compression and decompression interface. quality is indicated by an integer
ranging from 0 to 10.000. A quality level of7.500 typically indicates an acceptable image
qua li ty. A quality level of O typically indicates a very low quality level (possibly even a
totally black image). As the quality level moves from an acceptable level to low qual ity,
the image might have a loss of color as the colors in the color table are merged, or as the
color resolution of each pixel decreases. If your driver suppo11s temporal compression (i t
needs informati on from the previous frame to decompress the current frame). low and

168

Video Compression and Decompression Drivers Error! Main Document Only.-13

high quality might imply how much this type of compression can degrade image quality.
For example, your driver might limit the compression of a high quality image to preserve
sharp detail and color fidelity. Conversely, your driver might sacrifice these qualities to
obtain very compressed output files.

If your driver suppo1ts quality values, it maps the values to its internal definitions used by
the compression algorithms. Thus, the definition of image quality wi ll vary from driver to
driver, and, quite possibly, from compression algorithm to compression algorithm. Even
though the values are not definitive, your driver should support as many individual values
as possible.

The client-application obtains the capabilities for compression quality with the
ICM_GETDEFAULTQUALITY and ICM_GETQUALITY messages. If your driver
supports quality levels, it should respond to the ICM_GETDEFAULTQUALITY message
by returning a value between 0 and 10,000 that conesponds to a good default quality level
for your compressor. Your should return the current quality level for the
ICM_ GETQUALITY message.

The client-application sends the lCM_SETQUALITY message to set the quality level of
your driver. Your driver should pass the quality value directly to the compression routine.

If your driver suppo1is quality levels, it should set the VIDCF _QUALITY flag when it
responds to the ICM_GET TNFO message.

Configuration Messages for Key Frame Rate and Buffer
Queue

The client-application sends the following messages to obtain the key frame rate and size
of the buffer queue desired by the device driver:

ICM GETDEFAULTKEYFRAMERATE
This message obtains the default key frame rate of the driver used during compression.

ICM GETBUFFERSWANTED
This message obtains the number of buffers the driver wants for pre-buffering when
drawing data.

The client-application uses ICM_GETDEFAULTKEYFRAMERATE to obtain the
drivers recommendation for the key frame spacing for compressing data. (A key frame is a
frame in a video sequence that does not require information from a previous frame for
decompression .) If the client-application does not specify another value, this value
determines how frequently the client-application sends an uncompressed image to your
driver with the lCM_COM PRESS_KEYFRAME flag set. If your driver supp01ts this
option, it should specify the key frame rate in the DWORD pointed to by dwParaml and
return ICERR_OK. lfit does not support this option. return ICERR_UNSUPPORTED.

The client-application uses !CM_GETBUFFERSWANTED to determine if your driver
wants to maintain a queue of buffers . Your driver might maintain a queue of buffers if it
renders the decompressed data and it wants to keep its hardware pipel ines full. If your
driver supports this option, it should specify the number of buffers in the DWORD

0211 0/93

169

Error! Main Document Only.-14 Video for Windows Programmer's Guide

pointed to by dwParaml and return ICERR _OK. If it does not support this option, return
ICERR UNSUPPORTED.

Video Compression and Decompression
Messages

This section discusses the driver specific messages for video compression and
decompression. The messages are covered by the three basic operations of these drivers:
video compression, video decompression using the client-application, and video
decompression directly to video hardware. Because video compression and decompression
drivers typically use A VI files and bitmaps, this section includes a brief overview of the
AVI RIFF fonnat, the BITMAPINFO data structure, and the BITMAPINFOHEADER
data structure.

About the AVI File Format

02/10/93

Many of the video compression and decompression messages rely on infonnation
embedded in the A VI RIFF file. Drivers do not typically access this information directly.
They rely on the client-application to read and write the A V I file and maintain the RIFF
file structure. While your driver should not have to manipulate an A VI file, understanding
its structure helps identify the purpose of the information your driver will supply and
receive.

A VI files have the following general structure:

RI FF (' AVI '

LI ST (' hd rl '

a v i h (<<MainAVIHea d e r >>)

LI ST (' s t r l '

strh(<<St r e am h e a d e r >>}

s t r f(<<Str eam f o r ma t >>}

s trd(<<Stre am da t a>>)

L I ST ('movi'

' 00?? ' (<<drive r Data >>)

' 0 0? ? ' (<<dri v e r Dat a >>)

' i d x l' (<<AVI I nde x>>)

170

Video Compression and Decompression Drivers Error! Main Document Only.-15

The following table summarizes the entries in the A VI RIFF file:

RIFF Chunk

RIFF 'AVI I

LIST 'hdrl'

'avih'

LIST 'strl'

'strh'

'strf

'strd'

LIST 'movi'

'00??'

'idxl'

Description

Identifies the file as A VT RIFF file.

Identifies a chunk containing subchunks that define the
format of the data.

Identifies a chunk containing general infonnation
about the file. This includes the number of streams and
the width and height of the A VT sequence.

Identifies a chunk containing subchunk:s that describe
the streams in a file. This chunk exists for each stream.

Identifies a chunk containing a stream header. This
includes the type of stream.

Identifies a chunk describing the format of the data in
the stream. For video streams, the information in this
chunk is a BITMAPINFO structure. It includes palette
information if appropriate.

Identifies a chunk containing information used by
compressor and decompressors. For v ideo compressors
and decompressors, this includes the state formation.

Identifies a chunk containing subchunks used for the
audio and video data.

Identifies a chunk containing the audio or video data.
For this example, both the zeros (00) and the question
marks(??) are used as place holders. The zeros are
replaced by stream numbers. The question marks are
replaced by codes indicating the type of data in the
chunk. For example, a stream for a compressed DIB
might use 'Olde'.

Identifies a chunk containing the file index.

For more information on the A VI file format, see Chapter 4, "A VI Fi les."

02110193

171

Error! Main Document Only.-16 Video for Windows Programmer's Guide

Identifying Compression Formats

02110193

The BlTMAPlNFO data structure defined by Windows is used with many of the
compression and decompression messages to pass infonnation about the bitmaps being
compressed and decompressed. This structure has the following fields:

typedef struct t agBITMAPINFO {

BITMAPI NFOHEADER bmiHeader ;

RGBQUAD bmiColors [];

BITMAPINFO;

The bmiColors field is used for the color table. The BlTMAPINFOHEADER data
defined for the bmiHeader field is used to pass information about the format of the
bitmaps being compressed and decompressed. This structure has the following fields:

typedef struc t tagBITMAPINFOHEADER

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD b i Planes;

WORD biBitCount;

DWORD biCompression ;

DWORD biSi ze l mage ;

LONG biXPelsPe r Me t e r ;

LONG biYPel sPerMeter;

DWORD biClrUsed;

DWORD biClrimportant ;

BITMAPINFOHEADER;

The biCompression field specifies the type of compression used or requested. Windows
defines the following compression fonnats:

BI RGB
Specifies the bitmap is not compressed.

Bl RLE8
Specifies a run-length encoded format for bitmaps with 8 bits per pixel.

BI RLE4
Specifies a run-length encoded format for bitmaps with 4 bits per pixel.

Extensions to the BT_ RG B fonnat include 16 and 32 bits per pixel bitmap formats. These
formats do not use a color table. They embed the colors in the WORD or DWORD
representing each pixel.

The 16 bit Bf_RGB format is identified by setting biCompression to Bl_RGB and sett ing
biBitCount to 16. For this format, each pixel is represented by a 16-bit RGB color value.
The high-bit of this value is zero. The remai ning bits are divided into 3 groups of5-bits to
represent the red, green, and blue color values.

The 32 bit BI_RGB format is identified by setting biCompression to Bl_ RGB and setting
biBitCount to 32. For this format. each pixel is represented by a 32 bit (4 byte) RGB
color value . One byte is used for each red . green, and blue color value. The fourth byte is
set to zero.

172

Video Compression and Decompression Drivers Error! Main Document Only.-17

Your driver should support the Bl_ RGB fomrnt for 8 bit per pixel bitmaps. Tf practical, it
should also suppo1t this format for 16, 24, and 32 bits per pixel bitmaps.

In addition to the new BI_RGB fonnats, the BI_BITFTELDS format adds new
compression capabilities. This format specifies a bitmap is not compressed and color
masks are defined in the bmiColors field of the BITMAP INFO data structure. The first
DWORD in the bmiColors field is the red mask, the second DWORD is the green mask,
and the thi rd DWORD is the blue mask.

Your driver can also extend the fonnat set by defining custom formats. Custom formats
use a four character code for the format in the biCompression field in place of the
standard constants. Your driver can use a custom format to support a unique or
nonstandard compression type. When you define a custom format, you can specify values
other than 1, 4, 8, 16, 24, or 32 for the biBitCount field .

For more infonnation about the new formats and registering custom formats, see Chapter
5, "DIB Format Extensions for Microsoft Windows." For more information about the
existing formats, see the Microsoft Windows Programmer's Reference.

Decompressing Video Data
The client-application sends a series of messages to your driver to coordinate
decompressing video data. The coordination involves the following activities:

• Setting the driver state

• Specifying the input format and determining the decompression fonnat

• Preparing to decompress video

• Decompressing the video

• Ending decompression

The following messages are used by video compression and decompression drivers for
these decompression activities:

ICM DECOMPRESS
This message tells the driver to decompress a frame of data into a buffer provided by
the client-application.

ICM DECOMPRESS BEGIN - -
This message tells the driver to prepare for decompressing data.

ICM DECOMPRESS END - -
This message tells the driver to clean up after decompressing.

ICM DECOMPRESS GET FORMAT - - -
This message asks tbe driver to suggest a good format fo r the decompressed data.

ICM_DECOMPRESS_ QUERY
This message asks the driver if it can decompress a specific input fo rmat.

ICM DECOMPRESS GET PALETTE - - -
Th is message asks the driver to return the color table of the output data structure.

02/10/93

173

Error! Main Document Only.-18 Video for Windows Programmer's Guide

02/ 10/93

The video decompressed with these messages is returned to the client-application and it
handles the display of data. If you want your driver to control the video timing or directly
update the display, use the ICM_DRA W messages explained in "Decompressing Directly
to Video Hardware." If you return the decompressed video to the client-application, your
driver can decompress data using either software or hardware with the
ICM_DECOMPRESS messages.

Setting the Driver State
The client-application restores the driver state by sending ICM_SETSTATE. The client
application recalls the state infonnation from the 'strd' data chunk of the A VI file. (The
information was originally obtained with the ICM_ GETSTATE message.) The client
application does not validate any data in the state information. It simply transfers the state
information it reads from the 'strd' data chunk to your driver.

The client-application sends the infonnation to your driver in a buffer pointed to by
dwParaml. The size of the buffer is specified in dwParam2. The organization of the data
in the buffer is driver dependent. If dwParaml is NULL, your driver should return to its
default state.

Note: All information required for decompressing the image data should be part of the
format data. Only optional compression parameters can be included with the state
information.

Specifying the Input Format and Determining the
Decompression Format
Depending on how the client-application will use the decompressed data, it will send
either ICM_ DECOMPRESS_ GET _FORMAT or ICM_ DECOMPRESS_ QUERY to
specify the input format and determine the decompression format. The client-application
sends ICM_DECOMPRESS_GET_FORMAT if it wants your driver to suggest the
decompressed fonnat. The client-application sends ICM_DECOMPRESS_QUERY to
detennine if your driver supports a fonnat it is suggesting.

Both messages send a pointer to a BITMAPINFO data structure in dwParaml. This
structure specifies the format of the incoming compressed data. The input fomrnt was
obtained by the client-application from the 'sh·f chunk in the A VI file. While the output
format is specified by dwParam2, your driver must use the message to determine how the
parameter is defined.

If your driver gets ICM_DECOMPRESS_GET_ FORMAT, both dwParaml and
dwParam2 point to BlTMAPINFO data structures. The input format data is contained in
the dwParaml structure. Your driver should fill in the dwI'aram2 BrTMAPlNFO with
information about the format it wi ll use to decompress the data. If your dr iver can handle
the format, return the number of bytes used for the dwParam2 structure as the return
value. If your driver cannot handle the input format, or the input format from the 'strt'
chunk is incorrect, your driver should return lCERR_ BA DFO RMAT to fail the message.

lf you have format information in addition to that specified in !he
8tTMAPlNFOHEA DER structure. you can add it immediately after this structure. If you
do this. update the biSize fie ld to specify the number of bytes used by the structure and

174

Video Compression and Decompression Drivers Error! Main Document Only.-19

your additional information. If a color table is part of the BITMAPINFO infonnation, it
follows immediately after your additional information. Return ICERR _OK when your
driver has finished updating the data fonnat.

ff your driver gets ICM_DECOMPRESS_QUERY, dwParaml points to a
BITMAP INFO data structure containing the input fonnat data. The dwParam2 parameter
will either be N ULL or contain a pointer to a BITMAPINFO structure describing the
decompressed format the client-application wants to use.

If dwParam2 is N ULL, your decompression driver can use any output format. In this case,
the client-application wants to know if you can decompress the input format and it doesn' t
care about the output format. If dwParam2 points to a BITMAP INFO structure, the
suggested format will be the native or best fonnat for the decompressed data. For
example, if playback is on an 8-bit device, the client-application will suggest an 8-bit DIB.

If your driver supports the specified input and output fonnat (which might also include
stretching the image), or it supports the specified input with NULL specified for
dwParam2, return ICERR_OK to indicate the driver accepts the formats.

Your driver does not have to accept the formats suggested. If you fail the message by
returning ICERR _ BADFORMA T, the client-application will suggest alternate fom1ats
until your driver accepts one. If your driver exhausts the list of formats normally used, the
client-application requests a fonnat with ICM_DECOMPRESS_GET_FORMAT.

If you are decompressing to 8-bit data, your driver will also receive the
ICM_ DECOMPRESS_ GET _PALETTE message. Your driver should add a color table to
the BlTMAPINFO data structure and specify the number of palette entries in the
biClrUsed field. The space reserved for the color table will always be 256 colors.

Preparing to Decompress Video
When the client-application is ready, it sends the ICM_DECOMPRESS_BEGIN message
to the driver. The client-application sets dwParaml and dwParam2 to the BITMAPINFO
data structures describing the input and output formats. If either of the formats is incorrect,
your driver should return ICERR _ BADFORMA T. Your driver should create any tables
and allocate any memory that it needs to decompress data efficiently. When done, return
ICERR OK.

Decompressing the Video
The client-application sends ICM_DECOMPRESS each time it has an image to
decompress . The client-application uses the flags in the fi le index to ensure the initial
frame in a decompression sequence is a key frame.

The ICDECOMPRESS data structure specified in dwParaml contains the decompression
parameters. The value specified in dw?aram2 specifies the size of the structure. The
[CDECOMPRESS data structure has the following fields:

02/l 0/93

175

Error! Main Document Only.-20 Video for Windows Programmer's Guide

typedef struct {
DWORD dwFlags;
LPBITMAPINFOHEADER lpbiinput;

LPVOID lpinput;
LPBITMAPINFOHEADER lpbiOutput;

LPVOID l pOutput;
DWORD ckid

ICDECOMPRESS;

The format of the input data is specified in a BlTMAPINFOHEADER structure pointed to
by Ipbilnput. The input data is in a buffer specified by lplnput. The lpbiOutput and
IpOutput fields contain pointers to the fonnat data and buffer used for the output data.

The client-application sets the ICDECOMPRESS_HURRYUP flag in the dwFlags field if
it wants your driver to try and decompress the data at a faster rate. The client-application
will not display any data decompressed with this flag. This might let your driver avoid
decompressing a frame or data, or let it minimally decompress when it needs information
from this frame to prepare for decompressing a following frame.

Ending Decompression
Your driver receives ICM_DECOMPRESS_END when the client-application no longer
needs data decompressed. For this message, your driver should free the resources it
allocated for the ICM_DECOMPRESS_BEGTN message.

Other Messages Received During Decompression
Decompression drivers also receive the ICM_ DRA W _START and ICM_DRA W _STOP
messages. These messages tell the driver when the client-application sta1is and stops
drawing the images. Most decompression drivers can ignore these messages.

Compressing Video Data

02/ 10/93

Similar to decompressing video data, your driver will receive a series of messages when it
is used to compress data. The client-application will send messages to your driver to
coordinate the following activities:

• Obtaining the driver state

• Specifying the input format and determining the compression format

• Preparing to compress video

• Compressing the video

• Ending compression

176

Video Compression and Decompression Drivers Error! Main Document Only.-21

The following messages are used by video compression drivers:

ICM COMPRESS
This message tells the driver to compress a frame of data into the buffer provided by
the client-application.

ICM_ COMPRESS_BEGIN
This message tells the driver to prepare for compressing data.

ICM_COMPRESS_END
This message te lls the driver to clean up after compressing.

ICM COMPRESS GET FORMAT - - -
This message asks the driver to suggest the output format of the compressed data.

ICM_COMPRESS_GET_SIZE
This message requests the maximum size of one frame of data when it is compressed in
the output format.

ICM_ COMPRESS_ QUERY
This message asks the driver if it can compress a specific input format.

The video compressed with these messages is returned to the client-application. When
compressing data, your driver can use either software or hardware to do the compression.

Note: When A VI recompresses a file, each frame is decompressed to a full frame before
it is passed to the compressor.

Obtaining the Driver State
The client-application obtains the driver state by sending ICM_ GETST A T E. The client
application dete1111ines the s ize of the buffer needed for the state infonnation by sending
this message with dwParaml set to NULL. Your driver should respond to the message by
returning the size of the buffer it needs for state information.

After it determines the buffer size, the client-application resends the message with
dwParaml pointing to a block of memory it allocated. T he dwParam2 parameter specifies
the size of the memory block. Your driver should respond by filling the memory w ith its
state information. lf your driver uses state infomiation, include only optional
decompression parameters with the state information. State infonnation typically includes
the setup specified by user with the ICM_ CONFIGURE dialog box. Any infonnation
required for decompressing the image data must be included with the format data. When
done, your driver should return the size of the state infonnation.

The client-application does not validate any data in the state information. It simply stores
the state information in the 'strd' data chunk of the A VI file.

Specifying the Input Format and Determining the
Compression Format
The client-appl ication uses the ICM_ COMPRESS_ GET _FO RMAT or
ICM_ COMP RESS_ QUE RY message to specify the input fo rmat and determine the
compression (output) fo rmat. The c lient-application sends

02/ l 0/93

177

Error! Main Document Only.-22 Video for Windows Programmer's Guide

02/l 0/93

ICM_ COMPRESS_ GET _FORMAT if it wants your driver to suggest the compressed
format. The client-application sends ICM_COMPRESS_QUERY to detennine if your
driver supports a format it is suggesting.

Both messages have a pointer to a BITMAPINFO data structure in dwParaml. This
structure specifies the fonnat of the incoming uncompressed data. The contents of
dwParam2 depends on the message.

If the client-application wants your driver to suggest the format, it detennines the size of
the buffer needed for the compressed data format by sending
ICM_ COMPRESS_ GET _FORMAT. When requesting the buffer size, the client
application uses dwParaml to point to a BITMAPlNFO structw·e and sets dwParam2 to
NULL. Based on the input format, your driver should return the number of bytes needed
for the fonnat buffer. Return a buffer size at least large enough to hold a
BITMAPINFOHEADER data structure and a color table.

The client-application gets the output format by sending
ICM_ COMPRESS_ GET _FORMAT with valid pointers to BITMAPINFO structures in
both dwParaml and dwParam2. Your driver should return the output format in the buffer
pointed to by dwParam2. ff your driver can produce multiple formats, the format selected
by your driver should be the one that preserves the greatest amount of infom1ation rather
than one that compresses to the most compact size. This will preserve image quality if the
video data is later edited and recompressed.

The output format data becomes the 'strf chunk in the A VI RIFF file. The data must sta1t
out like a BITMAPINFOHEADER data structure. You can include any additional
information required to decompress the file after the BITMAPINFOHEADER data
structure. A color table (if used) follows this information.

If you have format data following the BITMAPINFOHEADER structure, update the
biSize field to specify the number of bytes used by the structure and your additional data.
If a color table is part of the BITMAPINFO infonnation, it follows immediately after your
additional information.

If your driver cannot handle the input format, it returns ICMERR_BADFORMAT to fail
the message.

If your driver gets ICM_COMPRESS_QUERY, the dwParaml parameter points to a
BITMAPINFO data structure containing the input fonnat data. The dwParam2 parameter
will either be NULL or contain a pointer to a BITMAPINFO structure describing the
compressed fonnat the client-application wants to use. If dwParam2 is NULL, your
compression driver can use any output format. (The client-application just wants to know
if your driver can handle the input.) If dwParam2 points to a BITMAPINFO structure, the
client-application is suggesting the output format.

If your driver suppo1ts the spec ified input and output fonnat, or it supports the specified
input with NULL specified for dwParam2, return !CERR_OK to indicate the driver
accepts the formats. Your driver does not have to accept the suggested format. If you fail
the message by returning ICERR_BADFORMA T, the client-application suggests alternate
formats until your driver accepts one . If your driver exhausts the list of formats normal ly
used. the client-application requests a format with !CM_COMPRESS_G CT_FORMA T.

178

Video Compression and Decompression Drivers Error! Main Document Only.-23

Initialization for the Compression Sequence
When the client-application is ready to stati compressing data, it sends the
ICM_COMPRESS_BEGIN message. The client-application uses dwParaml to point to
the fonnat of the data being compressed, and uses dwParam2 to point to the fonnat for the
compressed data. If your driver caimot handle the formats, or if they are incorrect, your
driver should return ICERR _ BADFORMA T to fail the message.

Before the client-application starts compressing data, it sends
ICM_COMPRESS_GET_SIZE. For this message the client-application uses dwParaml to
point to the input format and uses dwParam2 to point to the output fonnat. Your driver
should return the worst case size (in bytes) that it expects a compressed frame to occupy.
The client-application uses this size value when it allocates buffers for the compressed
video frame.

Compressing the Video
The client-application sends ICM_ COMPRESS for each frame it wants compressed. It
uses dwParaml to point to an ICCOMPRESS structure containing the parameters used for
compression. Your driver uses the buffers pointed to by the fields ofICCOMPRESS for
returning infonnation about the compressed data.

Your driver returns the actual size of the compressed data in the biSizelmage field in the
BITMAPfNFOHEADER data structure pointed to by the lpbiOutput field of
ICCOMPRESS. The ICCOMPRESS data structure has the following fields:

typedef struct (
DWORD dwFlags;
LPBITMAPINFOHEADER l pbi Output;
LPVOID lpOutput ;
LPBI TMAPINFOHEADER lpbiinput ;
LPVOID lpinpu t;
LPDWORD lpckid;
LPDWORD lpdwFlags;
LONG lFrameNum;
DWORD dwFrameSize;
DWORD dwQualit y ;
LPBITMAPINFOHEADER lpbiPrev;
LPVOID lpPrev;

I CCOMPRESS ;

The format of the input data is specified in a BITMAPINFOHEADER structure pointed to
by lpbilnput. The input data is in a buffer specified by lplnput. The lpbiOutput and
lpOutput fields contain pointers to the fo1111at data and buffer used for the output data.
Your driver must indicate the size of the compressed video data in the biSizeimage field
in the BITMAPINFO structure specified for lpbiOutput.

The dwFlags field specifies flags used for compression. The client-appli cation sets
ICM_COM PRESS_KEY FRAME fl ag if the input data should be treated as a key frame .
(A key frame is one that docs not require data from a previous frame fo r decompression.)
When this flag is set. your driver should treat the image as the initial image in a sequence.

02110/93

179

Error! Main Document Only.-24 Video for Windows Programmer's Guide

02/10/93

The lpckid field specifies a pointer to a buffer used to return the chunk ID for data in the
A VI file. Your driver should assign a two-character code for the chunk ID only if it uses a
custom chunk TD. For more information on chunk IDs, see Chapter 4, "A VI Files."

The JpdwFlags field specifies a pointer to a buffer used to return flags for the A VI index.
The client-application will add the returned flags to the file index for this chunk. If the
compressed frame is a key frame (a frame that does not require a previous frame for
decompression), your driver should set the A VIIF _ KEYFRAME flag in this field. Your
driver can define its own flags but they must be set in the high word only.

The IFrameNum field specifies the frame number of the frame to compress. If your driver
is performaing fast temporal compression, check this field to see if frames are being sent
out of order or ifthe client-application is having a frame recompressed.

The dwFrameSize field indicates the maximum size (in bytes) desired for the compressed
frame. If it specifies zero, your driver detennines the size of the compressed image. If it is
non-zero, your driver should try to compress the frame to within the specified size. This
might require your driver to sacrifice image quality (or make some other trade-off) to
obtain the size goal. Your driver should supp01t this if it sets the VIDCF _CRUNCH flag
when it responds to the ICM_GETINFO message.

The dwQuality field specifies the compression quality. Your driver should suppott this if
it sets the VIDCF _QUALITY flag when it responds to the ICM_ GETTNFO message.

The fonnat of the previous data is specified in a BITMAPlNFOHEADER structure
pointed to by lpbiPrev. The input data is in a buffer specified by lpPrev. Your driver will
use this infonnation if it performs temporal compression (that is, it needs the previous
frame to compress the current frame). If your driver supports temporal compression, it
should set the VIDCF _TEMPORAL flag when it responds to the ICM_G ETINFO
message. If your driver supports temporal compression and does not need the information
in the lpbiPrev and lpPrev fields, it should set the VIDCF _FASTTEMPORAL flag when
it responds to the lCM_GETINFO message. The VIDCF _FASTEMPORAL flag can
decrease the processing time because your driver does not need to access data specified in
lpbiPrev and lpPrev.

When your driver has finished decompressing the data, it returns ICERR_ OK.

Ending Compression
Your driver receives ICM_COMPRESS_END when the client-application no longer
needs data compressed, or when the client-application is changing the fo1111at or palette.
After sending ICM_COMPRESS_END, the client-application must send
ICM_COMPRESS_BEGIN to continue compressing data. Your driver should not expect
the client-application to send a !CM_ COMPRESS_ END message for each
ICM_COMPRESS_ BEGIN message. The client-application can use
fCM_COMPRESS_ BEGIN to restart compression without send ing
£CM COMPRESS END.

- -
When the driver is no longer needed. the system will close it by sending DR V _CLOSE.

180

Video Compression and Decompression Drivers E1Tor! Main Document Only.-25

Decompressing Directly to Video Hardware
Drivers that can render video directly to hardware should support the ICM_DRA W
messages in addition to the ICM_DECOI'vfPRESS messages. The ICM_DRA W messages
decompress data directly to hardware rather than into a data buffer returned to the client
application by the decompression driver.

Your driver will receive a series of messages from the client-application to coordinate the
following activities to decompress a video sequence:

• Setting the driver state

• Specifying the input format

• Preparing to decompress video

• Decompressing the video

• Ending decompression

The following ICM_ DRAW messages are used by video decompression drivers for these
decompression activities:

ICM DRAW
This message tells the driver to decompress a frame of data and draw it to the screen.

ICM DRAW BEGIN
This message tells the driver to get ready to draw data.

ICM DRAW END - -
This message tells the driver to clean up after decompressing an image to the screen.

ICM DRAW REALIZE - -
This message realizes a palette.

ICM_DRAW_QUERY
This message determines if the driver can render data in a specific format.

The video decompressed with the ICM_DRA W messages is retained by your driver and it
handles the display of data. These messages control only the decompression process. The
messages used to control the drawing are described separately. Your driver will receive
the ICM_ DRAW messages only if it sets the VIDCF _DRAW flag when it responds to the
ICM_GETTNFO message.

Setting the Driver State
The client-application restores the driver state by sending ICM_ SETST A TE. The process
for handling this message is the same as for the lCM_DECOMPRESS messages.

Specifying the Input Format
Because yo ur driver handles the drawing of video, the client-application does not need to
determine the output format. The client-application needs to know only if your driver can
handle the input format. It sends ICM_ DRA W _QUERY to determine if your driver
supports the input fo rmat. The input format is specified with a pointer to a BlTMAPlNFO
data structure in dwParaml. The d11Param2 parameter is not used.

0'.2110/93

181

Error! Main Document Only.-26 Video for Windows Programmer's Guide

02/10/93

If your driver supports the specified input format, return ICERR _OK to indicate the driver
accepts the formats. If your driver does not support the fonnat, return
ICERR BADFORMA T.

Preparing to Decompress Video
When the client-application is ready, it sends the ICM_DRA W _BEGIN message to the
driver to prepare the driver for decompressing the video stream. Your driver should create
any tables and allocate any memory that it needs to decompress data efficiently.

The client-application sets dwParaml to the I CD RA WBEGIN data structure. The size of
this structure is contained in dwParam2. The !CORA WBEGIN structure has the
following fields:

typedef struct
DWORD dwFlags;
HPALETTE hpal;
HWND hwnd;
HDC hdc;
int xDst;
int yDst;
i nt dxDst;
int dyDst;
LPBITMAPINFOHEADER lpbi;
int xSrc;
int ySrc ;
int dxSrc;
int dySrc;
DWORD dwRate;
DWORD dwScale;

I CDRAWBEGIN;

The dwFlags field can specify any of the following flags:

ICDRAW_QUERY
Set when the client-application wants to determine if the driver can handle the
decompression. The driver does not actually decompress the data.

ICDRAW FULLSCREEN
Indicates the full screen is used to draw the decompressed data.

ICDRAW HDC
Indicates a window and DC are used to draw the decompressed data.

If the ICDRA W _QUERY flag is set, the client-application is intetTogating your driver to
dete1111ine if can decompress the data with the parameters specified in the
!CORA WBEGIN data structure. Your driver should return ICM_ERR_OK if it can accept
the parameters. It should return ICM _ERR_NOTSUPPORTED if it does not accept them.

When the ICDRAW _QUERY flag is set, ICM_DRA W_BEGIN will not be paired with
ICM ORA W END. Your driver wi ll receive another ICM ORA W BEG TN without this - - -
ilag to start the actual decompression sequence.

182

Video Compression and Decomp1·ession Drivers Error! Main Document Only.-27

The ICDRA W _FULLSCREEN and ICDRAW _HDC flags are described with the data
structure fields associated with them.

Your driver can ignore the palette handle specified in the hpal field.

The hwnd and hdc field specifies the handle of the window and DC used for drawing.
These fields are valid only if the ICDRA W _HDC flag is set in the dwFlags field.

The xDst and yDst fields specify the x- and y-position of the upper-right corner of the
destination rectangle. (This is relative to the current window or display context.) The
dxDst and dyDst fields specifies the width and height of the destination rectangle. These
fields are valid only if £CORA W _HOC flag is set. The ICDRA W _FULLSCREEN flag
indicates the entire screen should be used for display and overrides any values specified
for these fields.

The xSrc, ySrc, dxSrc, and dySrc fields specify a source rectangle used to clip the frames
of the video sequence. The source rectangle is stretched to fill the destination rectangle.
The xSrc and ySrc fields specify x- and y-position of the upper-right corner of the source
rectangle. (This is relative to a full frame image of the video.) The dxSrc and dySr c fields
specify the width and height of the source rectangle.

Your driver should stretch the image from the source rectangle to fit the destination
rectangle. If the client-application changes the size of the source and destination
rectangles, it will send the ICM_DRA W _END message and specify new rectangles with a
new ICM_ ORA W _BEGIN message. For more infomrntion on handling the source and
destination rectangles, see the StretchDIBits function in the Microsop Windows
Programmer 's Reference.

The Ip b i field specifies a pointer to a BITMAPINFOHEADER data structure containing
the input fonnat.

The dwRate field specifies the decompression rate in an integer format. To obtain the rate
in frames-per-second divide this value by the value in dwScale. Your driver will use these
values when it handles the ICM_DRA W _START message.

If your driver can decompress the data with the parameters specified in the
!CORA WBEGIN data structure, your driver should return ICERR_OK and allocate any
resources it needs to efficiently decompress the data. If your driver cannot decompress the
data with the parameters specified, your driver should fail the message by returniJ1g
lCERR_NOTSUPPORTED. When this message fails, your driver will not get an
ICM_ ORA W _END message so it should not prepare its resources for other ICM_ ORA W
messages.

Decompressing the Video
The client-application sends LCM_DRA W each time it has an image to decompress. (Your
driver should use this message to decompress images. It should wait for the
!CM_DRA W _START message before it begins to render them.) Tl1e client-application
uses the fl ags in the fil e index to ensure the fi rst frame in a series of frames decompressed
starts with a key frame boundary. Your driver must all ocate the memory it needs for the
decompressed image.

02110193

183

EtTor! Main Document Only.-28 Video for Windows Programmer's Guide

02/l 0193

The ICDRA W data structure specified in dwParaml contains the decompression
parameters. The value specified in dwParam2 specifies the size of the structure. The
ICDRA W data structure has the following fields:

typedef s t ruct (
DWORD dwFl ags;

LPVOID l pFo nnat;
LPVOID lpDa ta ;

DWORD Cb Data ;

ICDRAW;

The fonnat of the input data is specified in a BITMAPTNFOHEADER structure pointed to
by lpFormat. The input data is in a buffer specified by IpData. The number of bytes in
the input buffer is specified by cbData.

The client-application sets the ICDRA W _HURRYUP flag in the dwFlags field when it
wants your driver to try to decompress data at a faster rate. For example, the client
application might use this flag when the video is starting to lag behind the audio. If your
driver cam1ot speed up its decompression and rendering performance, it might be
necessary to avoid rendering a frame of data. The client-application sets the
TCDRA W _UPDATE flag and sets Ip Data to NULL if it wants your driver to update the
screen based on data previously received.

When your driver has finished decompressing the data, it returns ICERR _OK. After the
driver returns from this message, the client-application deallocates or reuses the memory
containing the fonnat and image data. If your driver needs the format or image data for
future use, it should copy the data it needs before it returns from the message.

Ending Decompression
YoLu· driver receives ICM_DRA W _END when the client-application no longer needs data
decompressed or rendered. For this message, your driver should free the resources it
allocated for the lCM_DRA W _BEGIN message. Your driver should also leave the
display in the full screen mode.

After sending fCM_DRA W _END, the client-application must send ICM_DRA W _BEGIN
to continue decompressing data. Your driver should not expect the client-application to
send a ICM_DRA W _END message for each ICM_DRA W _BEGIN message. The client
application can use ICM_DRA W _BEGIN to restart decompression without sending
ICM DRAW END. - -

Rendering the Data
The client-application sends the following messages to control the driver's internal clock
for rendering the decompressed data:

ICM DRAW GETTIME - -
This message obtains the val ue of the driver's internal clock if it is handling the timing
of drawing frames.

ICM DRAW SETTTME - -
This message sets the driver's internal clock if it is handling the liming of drawing
frames.

184

Video Compression and Decompression Drivers Error! Main Document Only.-29

ICM DRAW START - -
This message tells the driver to start its internal clock if it is handling the timing of
drawing frames.

ICM DRAW STOP - -
This message tells the driver to stop its internal clock if it is handling the tim ing for
drawing frames.

ICM DRAW WINDOW - -
This message tells the driver that the display window has been moved, hidden, or
displayed.

ICM DRAW FLUSH - -
This message tells the driver to flush any frames that are waiting to be drawn.

The client-application sends !CM_DRA W _START to have your driver sta1t (or continue)
rendering data at the rate specified by the ICM_DRA W _BEGIN message. The
ICM_DRA W _STOP message pauses the internal clock. Neither of these messages use
dwParaml, dwParam2, or a return value.

The client-application uses ICM_DRAW _GETTlME to obtain the value of the internal
clock. Your driver returns the current time value (this is normally frame numbers for
video) in the DWORD indicated by the pointer specifi ed by dwParaml. T he current time
is relative to the start of drawing.

The client-application uses lCM_DRA W _SETTIME to set the value of the internal clock.
Typically, the client-application uses this message to synchronize the driver's clock to an
external clock. Your driver should set its clock to the value (this is nonnally frame
numbers for video) specifi ed in the DWORD pointed to by dwParaml.

The client-application sends ICM_DRA W _FLUSH to have your driver discard any frames
that have not been drawn.

Using Installable Compressors for Non-video
Data

Installable compressors are not necessarily limited to video data. By using a different
value than 'vidc' in the fccType field, you can specify that your installable driver expects
to handle a type of data that is not video. (Four-character codes for non-video data should
also be registered. See the "Architecture of a Video Compression and Decompression
Driver" section for infonnation on registering four-character codes.)

While VidEdit does not support data that is not audio or video, MCIA Vl does provide
limited support for other data types using installable renderers. If you create a stream with
a four-character code type that does not represent audio or video, its type and handler
information will be used to search for a driver capable of handling the data. The searc h
will follow the same procedure used for installable compressor drivers.

02110/93

185

Error! Main Document Only.-30 Video for Windows Programmer's Guide

Writing a driver to render non-video data is very similar to rendering video, with the
following differences:

• The fonnat used is not a BITMAPTNFO structure. The format is defined by the class of
decompressor.

• The ICM_DECOMPRESS messages are not used. All data is rendered using the
ICM_DRA W messages because there is no defi ned decompressed form for arbitrary
data.

Testing Video Compression and Decompression
Drivers

You can exerc ise both the compression and decompression capabilities of a driver with
the VidEdit editing tool. You can also exercise the decompression capabilities of a driver
with MCIA VI. (One way to test the decompression capabilities is to preview an unedited
fi le in VidEdit. For this function, VidEdit uses MCIA VI to decompress the fi le.)

Video Compression and Decompression Driver
Reference

This section is an alphabetic reference to the messages and data structures provided by
Windows for use by video compression and decompress drivers. There are separate
sections for messages and data structures. The COMPDDK.H file defines the messages
and data structures.

Video Compression and Decompression Driver Message
Reference

02110/93

Windows communicates with video compression and decompression drivers through
messages sent to the driver. The driver processes these messages with its DriverProc
entry-point function.

The following messages are used by video compression and decompression drivers for
compressing data:

ICM COMPRESS
This message tells the driver to compress a frame of data into the buffer provided by
the calling application.

ICM COMPRESS BEGIN - -
This message prepares the driver for compressing data.

ICM COMPRESS END - -
This message tel ls the driver to clean up after compressing.

ICM COMPRESS GET FORMAT - - -
This message returns the output fonnat of the compressed data.

186

Video Compression and Decompression Drivers En-or! Main Document Only.-31

ICM COMPRESS GET SIZE - - -
This message obtains the maximum size of one frame of data when it is compressed in
the output format.

ICM_ COMPRESS_ QUERY
This message asks the driver if it can compress a specific input fo1mat.

The following messages are used by video compression and decompression drivers for
decompression:

ICM DECOMPRESS
This message tells the driver to decompress a frame of data into a buffer provided by
the calling application.

ICM DECOMPRESS BEGIN - -
This message prepares the driver for decompressing data.

ICM DECOMPRESS END
This message tells the driver to clean up after decompressing.

ICM DECOMPRESS GET FORMAT - - -
This message asks the driver to suggest the format of the decompressed data.

ICM_DECOMPRESS_GET_PALETTE
This message asks the driver to return the color table of the output data structure.

ICM_DECOMPRESS_QUERY
This message asks the driver if it can decompress a specific input format.

The following messages are used by video compression and decompression drivers for
drawing with the compressed data:

ICM DRAW
This message tells the driver to decompress a frame of data and draw it to the screen.

ICM_DRAW_BEGIN
This message tells the driver to get ready to draw data.

ICM DRAW END - -
This message tells the driver to clean up after decompressing an image to the screen.

ICM_DRAW_GETTIME
This message obtains the value of the driver' s internal clock if it is handling the timing
of drawing frames.

TCM_DRAW_QUERY
This message determines if the driver can render data in a specific format.

ICM DRAW REALIZE - -
This message obtains a palette from the driver.

ICM DRAW SETTIME - -
This message informs a video compression driver of what frame it should be drawing.

ICM ORA W ST ART - -
This message tells the driver to start its internal clock if il is handling the timing of
drawing frames.

02/ 10193

187

Error! Main Document Only.-32 Video for Windows Programmer's Guide

02110/93

ICM DRAW STOP - -
This message tells the driver to stop its internal clock if it is handling the timing for
drawing frames.

ICM_DRA W _WINDOW
This message tells the driver when a window has physically moved, or has become
totally obscured.

ICM DRAW FLUSH - -
This message is sent to a video compression driver to flush any frames it has that are
waiting to be drawn.

The following messages are used to configure video compression and decompression
drivers:

ICM ABOUT
This message displays an about dialog box for a compressor driver.

ICM CONFIGURE
This message displays a configuration dialog box for a compressor driver.

ICM_ GETBUFFERSW ANTED
This message obtains information about how much pre-buffering the driver wants.

ICM GETDEFAULTKEYFRAMERATE
This message obtains the preferred key frame spacing of the driver.

ICM_GETDEFAULTQUALITY
This message obtains the default quality setting of the driver.

ICM GETINFO
This message returns infonnation about the driver.

ICM_ GETQUALITY
This message obtains the current quality setting of the driver.

ICM_GETSTATE
This message fi lls in a compressor-specific block of memory describing the
compressor's current configuration.

ICM_SETQUALITY
This message sets the quality level of the compressor.

ICM SETST ATE
This message sets the quality level for compression.

The following system message is used to open video compression and decompression
drivers:

DRV OPEN
This system message is sent to a video compression driver each time it is opened.

188

Video Compression and Decompression Drivers Error! Main Document Only.-33

Video Compression and Decompression Driver
Messages

This section contains an alphabetical list of the video compression and decompression
messages that can be received and sent by video capture drivers. Each message name
contains a prefix, identifying the type of the message.

A message consists of three parts: a message number and two DWORD parameters.
Message numbers are identified by predefined message names. The two DWORD
parameters contain message-dependent values.

ORV OPEN

Parameters

Return Value

This system message is sent to a video compression driver each time it is opened.

DWORD dwDriverldentifier
Specifies the handle returned to the application opening the driver.

HANDLE hDriver
Specifies the handle created by the system. This handle is returned to the application.
A unique handle is created each time the driver is opened.

LONG lParaml
Specifies a pointer to a NULL-terminated string. The string contains any characters
that follow the filename in the SYSTEM.INI file. If the device driver was opened by
filename, or ifthere is no additional information, a NULL string or a NULL pointer is
passed. Device drivers should verify that !Paraml is not NULL before dereferencing
it.

LONG !Param2
Specifies a far pointer to an ICOPEN structure, or zero ifthe driver is opened only for
configuration by the Drivers option of the Control Panel. If an I COPEN structure is
passed, the driver should verify that the fccType field contains 'vidc'. This indicates the
driver is opened as a video compressor.

The driver should return zero to fai l the call. A non-zero return value is passed back to the
driver in the ID field each time DriverProc is sent a message with SendDriverMessage
or CloseDriver .

ICM ABOUT

Parameters

This message is sent to a video compression driver to display its about dialog box.

DWORD dwParaml
Specifies an HWND which should be the parent of the displayed dialog box.

If dwI'araml is -L the driver should return ICERR_OK if it has an about dialog box.
however. the driver should not display it. The driver should return
fCERR_UNSUPPORTED if it does not display a dialog box.

DWORD dwI'aram2
Not Used .

02/10/93

189

Error! Main Document Only.-34 Video for Windows Programmer's Guide

Return Value

See Also

Return ICERR_OK ifthe driver supports this message. Otherwise, return
ICERR UNSUPPORTED.

ICM_ CONFIGURE, ICM_ GETINFO

ICM COMPRESS

Parameters

Return Value

See Also

This message is sent to a video compression driver to compress a frame of data into the
application-supplied buffer.

DWORD dwParaml
Specifies a far pointer to an IC COMPRESS data structure. The following fields of the
ICCOMPRESS specify the compression parameters:

The lpbilnput field ofICCOMPRESS contains the format of the uncompressed data;
the data itself is in a buffer pointed to by lplnput.

The lpbiOutput field of the ICCOMPRESS data structure contains a pointer to the
output (compressed) format, and lpOutput contains a pointer to a buffer used for the
compressed data.

The lpbiPrev field of the ICCOMPRESS data structure contains a pointer to the
fonnat of the previous frame, and lpPrev contains a pointer to a buffer used for the
previous data. These fields are used by drivers that do temporal compression.

The driver should use the biSizeimage field of the BITMAPINFOHEADER
structure associated with lpbiOutput to return the size of the compressed frame .

The lpdwFlags field points to a DWORD. The driver should fill the DWORD with the
flags that should go in the A VI index. ln particular, if the returned frame is a key
frame, your driver should set the A VIIF _KEYFRAME flag.

The dwFrameSize field contains the size the compressor should try to make the frame
fit within. This size is used for compression methods that can make tradeoffs between
compressed image size and image quality.

The dwQuality field contains the specific quality the compressor should use if it
supports it.

DWORD dwParam2
Specifies the size of the ICCOMPRESS structure.

Return ICERR_ OK if successful. Otherwise, return an error number.

ICM_COMPRESS_BEGIN, ICM_COMPRESS_END, ICM_DECOMPRESS,
ICM DRAW

ICM COMPRESS BEGIN
This message is sent to a video compression driver to prepare it for compressing data.

Parameters DWORD dwParam I
Specifies a far pointer lo a BITMA.PINFO data structure indicating the input format.

DWORD d1vPara1112
Specifies a far pointer to a BITMAPINFO data structure indicating the output format.

02110/93

190

Return Value

Comments

See Also

Video Compression and Decompression Drivers Error! Main Document Only.-35

Return ICERR_OK if the specified compression is supported. Otherwise, return
lCERR _ BADFORMA T if the input or output format is not supported.

The driver should set up any tables or memory that it needs to compress the data fonnats
efficiently when it receives the ICM_ COMPRESS messages.

ICM_COMPRESS_BEGIN and JCM_COMPRESS_END do not nest. If your driver
receives an ICM_COMPRESS_BEGIN message before compression is stopped with
ICM_COMPRESS_END, it should restart compression with new parameters.

fCM _COMPRESS, ICM_ COMPRESS_ END, ICM_ DECOMPRESS_ BEGIN,
ICM ORA W BEGIN - -

ICM COMPRESS END

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to end compression. The driver should
clean-up after compressing, and release any memory allocated during processing of an
ICM_COMPRESS_BEGIN message.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

Return ICERR _OK if successful. Otherwise, return an error number.

lCM_COMPRESS_BEGIN and ICM_COMPRESS_END do not nest. Ifyour driver
receives an lCM_COMPRESS_BEGIN message before compression is stopped with
ICM_COMPRESS_END, it should restart compression with new parameters.

ICM_COMPRESS_BEGIN, ICM_COMPRESS, TCM_DECOMPRESS_END,
ICM DRAW END - -

ICM COMPRESS GET FORMAT

Parameters

Return Value

Comments

This message is sent to a video compression driver to suggest the output forn1at of the
compressed data.

DWORD dwParaml
Specifies a far pointer to a BITMAPINFO data structure indicating the input fonnat.

DWORD dwParam2
Specifies zero or a far pointer to a BITMAPINFO data structure used by the driver to
return the output fom1at.

Return the size of the output format.

If di l'!1ara1112 is zero, the driver should simply return the size of the output fomrnt.

If dwParam2 is non-zero, the driver should fill tbe BTTMAPINFO data strncture with the
default output format corresponding to the input format specified for dwI'aram J. If the
compressor can produce several different formats, the default fo rmat should be the one
which will preserve the greatest amount of info1111arion.

02/l 0/93

191

Error! Main Document Only.-36 Video for Windows Programmer's Guide

See Also

For example, the Microsoft Video Compressor can compress 16-bit data into either an 8-
bit palettized compressed fonn or a 16-bit true-color compressed form. The 16-bit format
more accurately represents the original data, and thus is returned by this message.

JCM_COMPRESS_QUERY, ICM_DECOMPRESS_GET_FORMAT,
ICM DRAW GET FORMAT - - -

ICM COMPRESS GET SIZE

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to obtain the maximum size of one
frame of data when it is compressed in the output fonnat.

DWORD dwParaml
Specifies a far pointer to a BITMAPINFO data structure indicating the input format.

DWORD dwParam2
Specifies a far pointer to a BITMAPINFO data structure indicating the output fmmat.

Return the maximum munber of bytes a single compressed frame can occupy.

Typically, applications use this message to determine how large a buffer to allocate for the
compressed frame.

The driver should calculate the size of the largest possible frame based on the input and
target formats.

ICM_COMPRESS_QUERY, ICM_COMPRESS_GET_FORMAT

ICM_ COMPRESS_ QUERY

Parameters

Return Value

Comments

See Also

02/ 10/93

This message is sent to a video compression driver to detennine if it can compress a
specific input format, or if it can compress the input format to a specific output format.

DWORD dwParaml
Specifies a far pointer to a BITMAPINFO data structure describing the input format.

DWORD dwParam2
Specifies a far pointer to a BITMAPINFO data structure describing the output fonnat,
or zero. Zero indicates any output format is acceptable.

Return ICERR_OK if the specified compression is .suppo1ied. Otherwise, return an error.
The following errors are defrned:

JCERR OK
No error.

ICERR BADFORMA T
The input or output fomrnt is not suppo1ied.

On receiving this message, the driver should examine the BTTMAPINFO structure
associated witb d11.Para111 I to see if it can compress the input format. The driver should
return ICERR _OK only if it can compress the input format to the output format spec ified
for dwParam2. (If any output format is acceptable, dwParam2 is zero.)

ICM COMPRESS GET FOR MAT - - -

192

Video Compression and Decompression Drivers EtTor! Main Document Only.-37

ICM CONFIGURE

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to display its configuration dialog box.

DWORD dwParaml
Specifies an HWND which should be the parent of the displayed dialog.

If dwParaml is -1 , the driver should return ICERR_ OK if it has a configuration dialog
box, however, the driver should not display it. The driver should return
!CERR_ UNSUPPORTED ifit does not display a dialog box.

DWORD dwParam2
Not Used.

Return ICERR_OK if the driver supports this message. Otherwise, return
ICERR UNSUPPORTED.

This message is distinct from the DRV _CONFIGURE message which is used for
hardware configuration. This message should let the user configure the internal state
referenced by ICM_GETSTATE and ICM_SETSTATE. For example, this dialog box
can let the user change parameters affecting the quality level and other similar
compression options.

DRV_CONFIGURE, ICM_ABOUT, ICM_GETINFO

ICM DECOMPRESS

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to decompress a frame of data into an
application-supplied buffer.

DWORD dwParaml
Specifies a far pointer to an ICDECOMPRESS structure.

DWORD dwParam2
Specifies the size of the ICDECOMPRESS structure.

Return ICERR _OK if successful. Otherwise, return an error number.

lfthe driver is supposed to decompress data directly to the screen instead of a buffer, it
will receive the ICM_DRA W message rather than this one.

The driver should return an etTor if this message is received before the
ICM_DECOMPRESS_BEGIN message.

ICM_COMPRESS_BEGIN, ICM_DECOMPRESS_BEGIN,
ICM_DECOMPRESS_END, ICM_DRA W _ BEG!N

ICM DECOMPRESS BEGIN

Parameters

This message is sent to a video compression driver fo r decompressing data. When the
driver receives this message, it should allocate buffers and do any time-consuming
operations so that it can process ICM_DECOMPRESS messages efficiently.

DWORD d111Para111J
Spec ifies a far pointer to a BTTMAPJNFO data structure describing the input fo rmat.

02/10/93

193

Error! Main Document Only.-38 Video for Windows Programmer's Guide

Return Value

Comments

See Also

DWORD dwParam2
Specifies a far pointer to a BITMAPINFO data structure describing the output format.

Return ICERR_OK ifthe specified decompression is supported. Otherwise, return an
error number. The following errors are defined :

ICERR OK
No etTor.

ICERR BADFORMA T
The input or output format is not supported.

If the calling application wants the driver to decompress data directly to the screen, it
sends the ICM_DRA W _BEGIN message.

ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END do not nest. If your
driver receives an ICM_DECOMPRESS_BEGIN message before decompression is

stopped with ICM_DECOMPRESS_END, it should restart decompression with new
parameters.

TCM_COMPRESS_ BEGIN, ICM_DECOMPRESS, ICM_DECOMPRESS_END,
ICM DRAW BEGIN

- -

ICM DECOMPRESS END

Parameters

Return Value

Comments

See Also

02110/93

This message is sent to a video compression driver to have it clean-up after
decompressing.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used .

Return ICERR_ OK if successful. Otherwise, return an error number.

The driver should free any resources allocated in response to the
ICM_DECOMPRESS_BEGIN message.

ICM_DECOM PRESS_BEGIN and ICM_DECOMPRESS_END do not nest. If your
driver receives an ICM_DECOMPRESS_BEGIN message before decompression is
stopped with ICM_DECOMPRESS_END, it should restart decompression with new
parameters.

ICM_ COMPRESS_ END, ICM_ DECOMPRESS_ BEG IN, ICM_ DECOMPRESS,
ICM DRAW END - -

194

Video Compression and Decompression Drivers Error! Main Document Only.-39

ICM DECOMPRESS GET FORMAT

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to obtain the format of the
decompressed data.

DWORD dwParaml
Specifies a far pointer to a BITMAPINFO data structure describing the input format.

DWORD dwParam2
Specifies zero or a far pointer to a BITMAPINFO data structure used by the driver to
describe the output format.

Return the size of the output format.

If dwParam2 is zero, the driver should simply return the size of the output format.
Applications set dwParam2 to zero to determine the size of the buffer it needs to allocate.

If dwParam2 is non-zero, the driver should fill the BITMAPINFO data structure with the
default output format corresponding to the input fonnat specified for dwParaml. If the
compressor can produce several different formats, the default format should be the one
which will preserve the greatest amount of information.

For example, if a driver can produce either 24-bit full-color images or 8-bit gray-scale
images, the default should be 24-bit images. This ensures the highest possible image
quality if the video data must be edited and re-compressed.

ICM_ COMPRESS_ GET _FORMAT, ICM_ DECOMPRESS_ GET _PALETTE,
ICM_ DECOMPRESS_ QUERY

ICM DECOMPRESS GET PALETTE

Parameters

Return Value

Comments

This message is sent to a video compression driver to have it fill in the color table of the
output BITMAPINFOHEADER structure.

DWORD dwParaml
Specifies a far pointer to a BITMAPINFO data structure indicating the input format.

DWORD dwParam2
Specifies zero or a far pointer to a BITMAPINFO data structure used to return the
color table. The space reserved for the color table will always be at least 256 colors.

Return the size of the output format or an error code.

If dwParam2 is zero, the driver should simply return the size of the output format.
Applications set this value to zero when they want to detem1ine the size of the output
format.

If divI'aram2 is non-zero, the driver should set the biCirUsed field of the
BITMAPINFOHEADER data structure to the number of colors in the color table. The
driver fills the bmiColors fields of the BITMAPINFO data structure with the actual
colors.

02/ l 0/93

195

Error! Main Document Only.-40 Video for Windows Programmer's Guide

See Also

The driver should support this message only if it uses a palette other than the one in the
input format.

ICM DECOMPRESS GET FORMAT - -

ICM_DECOMPRESS_QUERY

Parameters

Return Value

See Also

This message is sent to a video compression driver to determine if the driver can
decompress a specific input format, or if it can decompress the input format to a specific
output format.

DWORD dwParaml
Specifies a far pointer to a BITMAPINFO data structure describing the input format.

DWORD dwParam2
Specifies zero or a far pointer to a BITMAPINFO data structure used by the driver to
describe the output format. Zero indicates that any output format is acceptable.

Return ICERR _ OK if the specified decompression is suppo1ied. O therwise, return an
eJTor number. The following errors are defined:

ICERR OK
No e1Tor.

ICERR BADFORMA T
The input or output format is not supported.

ICM_COMPRESS_QUERY

ICM DRAW

Parameters

Return Value

Comments

02/1 0193

This message is sent to a video compression driver to decompress a frame of data and
draw it to the screen.

DWORD dwParaml
Specifies a far pointer to an ICDRA W structure.

DWORD dwParam2
Specifies the size of the ICDRA W structure.

Return ICERR_OK if successful. Otherwise, return an en-or number.

lf the ICDRA W _UPDATE flag is set in dw Flags field of the I CD RAW data structure,
the area of the screen used for drawing is invalid and needs to be updated.

If the ICDRA W _HURRYUP flag is set in the dwFlags field, the calling application
wants the driver to proceed as quickly as possible, possibly not even updating the screen.

lfthe ICDRAW _PREROLL flag is set in the dwFlags field. this video frame is merely
preliminary information and should not be displayed if possible. For instance. if play is to
start from frame l 0. and frame 0 is the nearest previous keyframe, frames 0 through 9 will
have the I CD RAW_ PREROLL flag set.

lfihe dri ver is to decompress data into a buffer instead of drawing directly to the screen.
the lCM_DECOMPRESS message is sent instead.

196

See Also

Video Compression and Decompression Drivers En-or! Main Document Only.-41

ICM_DECG.rv1PRESS, ICM_DRA W _BEGIN, ICM_DRAW _END,
LCM_ DRAW_START, ICM_DRAW_STOP

ICM DRAW BEGIN

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to prepare it for drawing data.

DWORD dwParaml
Specifies a far pointer to a ICDRA WBEGIN data structure describing the input
format.

DWORD dwParam2
Specifies the size of the ICDRA WBEGIN data structure describing the output format.

Return IC ERR_ OK if the driver suppotts drawing the data to the screen in the manner and
fonnat specified. Otherwise, return an error number. The following errors are defined:

ICERR OK
No error.

ICERR BADFORMA T
The input or output fonnat is not supported.

ICERR NOTSUPPORTED
The message is not suppo1ted.

If the driver is supposed to decompress data into a buffer instead of drawing directly to the
screen, the ICM_DECOMPRESS_BEGIN message is sent rather than this one.

If the driver does not support drawing directly to the screen, return
ICERR NOTSUPPORTED.

ICM_DRA W _BEGIN and ICM_DRA W _END do not nest. If your driver receives an
ICM_DRA W _BEGIN message before decompression is stopped with
ICM_ ORA W _END, it should restait decompression with new pai·arneters.

ICM_DECOMPRESS_BEGIN, ICM_ DRAW, ICM_DRA W _END,
ICM DRAW START - -

ICM DRAW END

Parameters

Return Value

Comments

This message is sent to video compression drivers to clean-up after decompressing an
image to the screen.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

Return ICERR_ OK if successful. Otherwise. return an error number.

!CM_DRA W _BEGLN and LCM_ DRA W _END do not nest. lf your driver receives an
ICM_ DRA W _BEGIN message before decompression is stopped with
IC M_DRA W _END. it should restart decompression with new parameters.

02/l 0193

197

Error! Main Document Only.-42 Video for Windows Programmer's Guide

See Also ICM_DECOMPRESS_END, ICM_DRAW, TCM_DRAW_BEGIN, ICM_ORAW_ STOP

ICM DRAW FLUSH

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to flush any frames it has that are
waiting to be drawn.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

None.

This message is used only by hardware which does its own asynchronous decompression,
timing, and drawing.

ICM_DRAW, ICM_DRAW_END, ICM_DRAW_STOP,
ICM GETBUFFERSWANTED

ICM DRAW GETTIME

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to obtain the current value of its
internal clock if it is handling the timing of drawing frames.

DWORD dwParaml
Specifies a far pointer to a LONG to be used by the driver to return the cw-rent time.
The return value should be specified in samples. This corresponds to frames for video.

DWORD dwParam2
Not used.

Return ICERR OK if successful.

This message is generally only suppo1ted by hardware which does its own asynchronous
decompression, timing, and drawing. The message will also only be sent if the hardware is
being used as the synchronization master.

ICM_DRAW_START, ICM_DRAW_STOP, TCM_DRAW_ SETTlME

ICM_DRAW_QUERY

Parameters

Return Value

02/10/93

This message is sent to a video compression driver to determine if it can render data in a
specific format.

DWORD dwParaml
Specifies a far pointer to a BITMAP INFO data structure describing the input format.

DWORD d11'Param2
Not used.

Return ICERR_ OK if the compressor can render data in the specified format. Otherwise.
return an error number. The fo ll owi ng errors are defined :

198

Comments

See Also

Video Compression and Decompression Drivers

ICERR OK
No error.

ICERR BAOFORMA T
The format is not supported .

Error! Main Document Only.-43

This message asks if the compressor recognizes the format for draw operations. The
ICM_ ORA W _BEGIN is sent to see if the compressor can draw the data.

ICM _OECOMPRESS _QUERY

ICM DRAW REALIZE

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to realize its palette used while
drawing.

DWORD dwParaml
Specifies a handle to the display context used to realize palette.

OWORO dwParam2
Specifies TRUE if the pal ette is to be realized in the background. Specifies FALSE if
the palette is to be realized in the foreground.

Return !CERR_OK if palette realized.

Drivers need to respond to this message only if the drawing palette is different from the
decompressed palette.

If this message is not supported (returns ICERR_UNSUPPORTEO), the palette associated
with the decompressed data is realized.

ICM DRAW BEGIN

ICM DRAW RENDERBUFFER

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to tell it to draw the frames that have
been passed to it.

DWORO dwParaml
Not used.

OWORO dwParam2
Not used.

None.

This message is typically used to perform a "seek" operation when, rather than playing a
sequence of video frames, the driver must be specifically instructed to display a single
video frame passed to it.

This message is used only by hardware which docs its own asynchronous decompression.
timing. and drawing.

!CM DRAW, ICM ORA W END. ICM ORA W START - - - - ~

02/ 10/93

199

Error! Main Document Only.-44 Video for Windows Programmer's Guide

ICM DRAW SETTIME

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to inform it of what frame it should be
drawing if it is handling the timing of drawing frames.

DWORD dwParaml
Specifies a LONG containing the sample which the driver should now be rendering.
The value will be specified in samples. This corresponds to frames for video.

DWORD dwParam2
Not used.

Return ICERR OK if successful.

This message is generally only supported by hardware which does its own asynchronous
decompression, timing, and drawing. The message will only be sent ifthe hardware is not
being used as the synchronization master.

Typically, the driver will compare the specified "correct" value with its own internal
clock, and take actions to synchronize the two if the difference is great enough.

ICM_DRAW_START, ICM_DRAW_STOP, ICM_DRAW_GETTIME

ICM DRAW START

Parameters

Return Value

Comments

See Also

02/ 10/93

This message is sent to a video compression driver to start its internal clock for the timing
of drawing frames .

DWORD dwParaml
Not used.

DWORD dwParam2
Not used .

None.

This message is typically used by hardware which does its own asynchronous
decompression, timing, and drawing.

When it receives this message, the driver should start rendering data at the rate specified
in the ICM_DRA W _BEGIN message.

ICM_DRAW _START and ICM_DRA W _STOP do not nest. If your driver receives an
ICM_DRA W _START message before rendering is stopped with lCM_DRA W _STOP, it
should restart rendering with new parameters.

ICM_DRA W, ICM_DRA W _BEGIN, ICM_DRA W _END, ICM_DRA W _STOP

200

Video Compression and Decompression Drivers Error! Main Document Only.-45

ICM DRAW STOP

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to stop its internal clock for the timing
of drawing frames.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

None.

This message is typically used by hardware which does its own asynclu·onous
decompression, timing, and drawing.

ICM_DRA W, ICM_DRA W _END, ICM_DRA W _START

ICM DRAW WINDOW

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver when the window specifed in the
ICM_DRA W _BEGIN message has physically moved, or has become totally obscured.
This message is used by overlay drivers, so they can draw when the window is obscmed
or moved.

DWORD dwParaml
Points to a RECT structure containing the destination rectangle. The destination
rectangle is specified in screen coordinates. If dwParaml points to a empty rectangle
drawing should be turned off.

DWORD dwParam2
Not used.

Return ICERR OK if successful.

This message is only suppo11ed by hardware which does its own asynchronous
decompression, timing, and drawing.

The rectangle is set empty if the window is totally hidden by other windows. Drivers
should turn off overlay hardware when the rectangle is empty.

ICM DRAW BEGIN

ICM GETBUFFERSWANTED

Parameters

This message is sent to a video compression driver to have the driver return information
about how much pre-buffering it wishes to do.

DWORD dwParaml
Specifies a far pointer to a DWORD. The driver uses the DWORD to return the
number of samples it needs to get in advance of when they wi ll be presented.

DWORD dirI'aram2
Not used.

02110193

201

Error! Main Document Only.-46 Video for Windows Programmer's Guide

Return Value

Comments

Return ICERR_OK if successful. Otherwise, return ICERR_ UNSUPPORTED.

Typically, this message is only used by a driver that uses hardware to render data and
wants to ensure hardware pipeli nes remain ful l. For example, if a driver controls a video
decompression board that can hold ten frames of video, it could return ten for this
message. This instructs applications to try and stay exactly ten frames ahead of the frame
it currently needs.

ICM GETDEFAUL TKEYFRAMERATE

Parameters

Return Value

This message is sent to a video compression driver to request that it return its default (or
preferred) key frame spacing.

DWORD dwParaml
Specifies a far pointer to a DWORD used by the driver to return its prefened key
frame spacing.

DWORD dwParam2
Not used.

Return IC ERR_ OK if the driver supports this message. Otherwise, return
ICERR UNSUPPORTED.

ICM_ GETDEFAUL TQUALITY

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to request that the driver return its
default quality setting.

DWORD dwParaml
Specifies a far pointer to a DWORD used by the driver to return its default quality.

DWORD dwParam2
Not used.

Return ICERR_OK if the driver supports this message. If not, return
ICERR UNSUPPORTED.

Quality values range between 0 and 10,000.

ICM_SETQUALITY, ICM_GETQUALITY

ICM GETINFO

Parameters

Return Value

02/ 10/93

This message is set to a video compression driver to have it return information describing
the driver.

DWORD dwParaml
Specifies a far pointer to an ICINFO data structure used by the driver to return
information.

DWORD dwParam2
Specifies the size of the IC1NFO data structure.

Return the size of the IC INFO data structure. or zern if an error occurs.

202

Comments

See Also

Video Compression and Decompression Drivers Error! Main Document Only.-47

Typically, this message is sent by applications that want to display a list of the installed
compressors.

The driver should fill in all fields of the ICINFO structure except the szDriver field .

ICM ABOUT

ICM_GETQUALITY

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to request that it return its current
quality setting.

DWORD dwParaml
Specifies a far pointer to a DWORD used by the driver to return the current quality
value.

DWORD dwParam2
Not used.

Return ICERR_OK ifthe driver suppo1is this message. lfnot, return
ICERR UNSUPPORTED.

Quality values range between 0 and 10,000.

ICM_SETQUALITY, ICM_GETDEFAUL TQUALITY

ICM GETSTATE

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to have it fill a block of memory
describing the compressor's current configuration.

DWORD dwParaml
Specifies a far pointer to a block of memory to be filled with the current state or
NULL. lfNU LL, return the amount of memory required by the state information.

DWORD dwParam2
Specifies the size of the block of memory.

Return the amount of memory required by the state information.

Client applications send this message with dwParaml set to NULL to determine the size
of the memory block required for obtaining the state information.

The data structure used to represent state inforn1ation is driver specific and is defined by
the driver.

DRV_CONFIGURE, ICM_SETSTATE

02/ l 0/93

203

Error! Main Document Only.-48 Video for Windows Programmer's Guide

ICM_SETQUALITY

Parameters

Return Value

Comments

See Also

This message is sent to a video compression driver to set the quality level for compression.

DWORD dwParaml
Specifies the new quality value.

DWORD dwParam2
Not used.

Return ICERR_OK ifthe driver supports this message. If not, return
ICERR UNSUPPORTED.

Quality values range between 0 and 10,000.

ICM_GETQUALITY, ICM_GETDEFAULTQUALITY

ICM SETSTATE

Parameters

Return Value

Comments

See Also

02110193

This message is sent to a video compression driver to set the state of the compressor.

DWORD dwParaml
Specifies a far pointer to a block of memory containing configuration data or NULL. If
NULL, the driver should return to its default state.

DWORD dwParam2
Specifies the size of the block of memory.

Return the number of bytes actually used by the compressor. A return value of zero
generally indicates an error.

Since the information used by ICM_SETSTATE is private and specific to a given
compressor, client applications should use this message only to pass infornlation
previously returned for the ICM_ GETSTATE message.

DRY_CONFIGURE, ICM_GETSTATE

204

Video Compression and Decompression Drivers EJTor! Main Document Only.-49

Video Compression and Decompression Driver Data
Structure Reference

This section lists data structures used by video compression and decompression drivers for
Windows. The data structures are presented in alphabetical order. The structure definition
is given, followed by a description of each field.

ICCOMPRESS

Fields

The ICCOMPRESS structure is used with the ICM_ COMPRESS message to specify
the parameters used for compression.

typedef s t ruct {
DWORD dwFlags;
LPBITMAPINFOHEADER lpbiOutput;
LPVOID lpOutput;
LPBITMAPINFOHEADER lpbi input;

LPVOID lpinput;
LPDWORD lpckid;
LPDWORD lpdwFlags;
LONG lFrameNum;
DWORD dwFrarneSize;
DWORD dwQuali ty;
LPBITMAPINFOHEADER lpbiPrev ;
LPVOID lpinput;

ICCOMPRESS;

The ICCOMPRESS structure has the following fields:

dwFlags
Specifies flags used for compression. The following flag is defined.

ICCOMPRESS KEYFRAME
Treat input data as a keyfrarne.

lpbiOutput
Specifies a pointer to a BITMAPINFOHEADER structure containing the output
(compressed) format. The biSizelmage field must be filled in with the size of the
compressed data.

IpOutput
Specifies a pointer to the buffer vvhere the driver should write the compressed data.

lpbilnput
Specifies a pointer to a BITMAPINFOHEADER structure containing the input
fomiat.

Iplnput
Spec ifies a pointer to the buffer containing input data.

lpckid
Spec ifies a pointer to a buffer used to return the chunk ID for data in the AV l fi le.
Device drivers can ignore !his field.

02/10/93

205

ElTor! Main Document Only.-50 Video for Windows Programmer's Guide

lpdwFlags
Specifies a pointer to a buffer used to return flags for the A VI index.

IFrameNum
Specifies the frame number of the frame to compress.

dwFrameSize
Specifies zero, or the desired maximum size (in bytes) to compress this frame to.

dwQuality
Specifies the compression quality.

lpbiPrev
Specifies a pointer to a BITMAPINFOHEADER structure containing the format of
the previous frame. Nonnally, this will be the same as the input fotmat.

lplnput
Specifies a pointer to the buffer containing the previous frame.

IC DECOMPRESS

Fields

02/10/93

The ICDECOMPRESS structure is used with the ICM_DECOMPRESS message to
specify the parameters for decompressing the data.

typedef struct {
DWORD dwFlags;

LPBITMAPINFOHEADER lpbiinput ;

LPVOI D lplnput;
LPBITMAPINFOHEADER lpbiOutput;

LPVOID lpOutput;

DWORD ckid ;
ICDECOMPRESS;

The ICDECOMPRESS structure has the following fields:

dwFlags
Specifies flags.

The following flags in dwFlags specify the operation for this data:

ICDECOMPRESS HURRYUP
Indicates the data is just buffered and not drawn to the screen. Use this flag for the
fastest decompression.

lpbilnput
Specifies a pointer to a BITMAPINFOHEADER structure containing the input
fonnat.

lplnput
Specifies a pointer to a data buffer containing the input data.

lpbiOutput
Specifies a pointer to a BITMAPINFOHEADER structure containing the output
format.

206

IC DRAW

Fields

See Also

Video Compression and Decompression Drivers Error! Main Document Only.-51

lpOutput
Specifies a pointer to a data buffer where the driver should write the decompressed
image.

ckid
Specifies the chunk ID from the A VI file.

The ICDRA W structure is used with the ICM_DRA W message to specify the parameters
for drawing video data to the screen.

typedef struct {
DWORD dwFlags ;
LPVOID lpFormat;
LPVOID lpData ;
DWORD cbData ;
LONG lTime;

I CDRAW ;

The ICDRA W structure has the following fields:

dwFlags
Specifies the flags from the A VI file index.

ICDRA W HURRYUP
Indicates the data is just buffered and not drawn to the screen. Use this flag for the
fastest decompression.

ICDRA W UPDATE
Indicates the driver should update the screen based on data previously received.

ICDRA W PREROLL
Indicates that this frame of video occurs before actual playback should start. For
instance, if playback is to begin on frame I 0, and frame 0 is the nearest previous
keyframe, frames 0 tlu·ough 9 are sent to the driver with the
ICDRA W _PREROLL flag set. The driver needs this data so that it can display
frame 10 properly, but frames 0 through 9 need not be individually displayed.

Ip Format
Specifies a pointer to a structure containing the data fonnat. For video, this will be a
BITMAPINFOHEADER structure.

Ip Data
Specifies the data to be rendered.

ch Data
Specifies the number of bytes of data to be rendered.

I Time
Specifies the time in samples that this data should be drawn. For video data this is
normally a frame number. See dwRate and dwScale of the ICDRA \V structure.

ICM DRAW BEGIN. !CORA WBEG IN

02/ 10/93

207

Error! Main Document Only.-52 Video for Windows Programmer's Guide

ICDRAWBEGIN

Fields

02/ 10/93

The ICDRA WBEGIN structure is used with the ICM_DRA W _BEGIN message to
specify the parameters used to decompress the data.

typede f struct {
DWORD dwFlags ;

HPALETTE hpal;
HWND hwnd;
HOC hdc ;

int xDst;
int yDst ;
int dxDst ;

int dyDst ;
LPBITMAPI NFOHEADER lpbi;
int xSrc ;
i nt ySrc;
int dxSrc;
int dySrc;
DWORD dwRate;
DWORD dwScale;

ICDRAWB EGIN ;

The ICDRA WBEGIN structure has the following fields:

dwFlags
Specifies any of the following flags:

ICDRAW_QUERY
Set when an application wants to detennine if the device driver can handle the
operation. The device driver does not actually perform the operation.

ICDRA W FULLSCREEN
Indicates the full screen is used to draw the decompressed data.

ICDRAW HOC
Indicates a window or DC is used to draw the decompressed data.

hpal
Specifies a handle of the palette used for drawing.

hwnd
Specifies the handle of the window used for drawing.

hdc
Specifies the handle of the display context used for drawing.

xDst
Specifies the x-position of destination rectangle.

yDst
Specifies they-position of destination rectangle.

dxDst
Spccitlcs the width of destination rectangle.

dyDst
Specifies the height of destination rectangle.

208

ICINFO

Fields

Video Compression and Decompression Drivers Error! Main Document Only.-53

Ip bi
Specifies a pointer to a BITMAPINFOHEADER data structure containing the input
fonnat.

xSrc
Specifies the x-position of source rectangle.

ySrc
Specifies the y-position of source rectangle.

dxSrc
Specifies the width of source rectangle.

dySrc
Specifies the height of source rectangle.

dwRate
Specifies the decompression rate in an integer format. To obtain the rate in frames-per
second divide this value by the value in dwScale.

dwScale
Specifies the value used to scale dwRare to frames-per-second.

The ICINFO structure is filled by a video compression driver when it receives the
ICM_GETINFO message.

typedef struct {

DWORD dwSize;

DWORD f ccType;

DWORD fccHandler;

DWORD dwFlags;

DWORD dwVersion;

DWORD dwVers i onICM;

char szName[l6];

char szDescription[l28];

char szDriver[l28];

IC INFO;

The ICINFO structure has the following fields:

dwSize
Should be set to the size of an ICINFO structure.

fee Type
Specifies a four-character code representing the type of stream being compressed or
decompressed. Set this to 'vidc' for video streams.

fccHandler
Specifies a four-character code identifying a specific compressor.

dwFlags
Specifies any flags. The following flags are defined for video compressors
(ICINFO.fccHandler == 'vidc'):

VlDCF_QUALlTY
The driver suppo1ts quality.

02/10/93

209

Error! Main Document Only.-54 Video for Windows Prog rammer's Guide

ICOPEN

Fields

0:?./ 10/93

VIDCF CRUNCH
The driver supports crunching to a frame size.

VIDCF TEMPORAL
The driver supports inter-frame compression.

VIDCF DRAW
The driver suppotts drawing.

VIDCF F ASTTEMPORAL
The driver can do temporal compression and doesn't need the previous frame.

dwVersion
Specifies the version number of the driver.

dwVersionICM
Specifies the version of the ICM supported by this driver; it should be set to 1.0
(OxOOO 10000)

szName[16]
Specifies the short name for the compressor. The null-terminated name should be
suitable for use in list boxes.

szDescr iption (128]
Specifies a null-terminated string containing the long name for the compressor.

szDriver[128]
Specifies a null-tenninated string for the module that contains the driver. Normally, a
driver will not need to fill this out.

The ICOPEN structure is sent to a video compression driver with the DRV _OPEN
message.

typedef struc t
DWORD fccType ;
DWORD fcc Handler;
DWORD dwVersion;
DWORD dwFlags ;

ICOPEN;

The ICOPEN structure has the following fields:

fee Type
Specifies a fo ur-character code representing the type of stream being compressed or
decompressed. For video streams, this should be 'vidc'.

fccHandler
Specifies a four-character code identifying a specific compressor.

dwVersion
Specifies the vers ion of the installable driver interface used to open the driver.

dl\7Flags
Contains flags indicati ng why the driver is opened. The foll owing flags are defined :

ICMODE COMPRESS
The dr iver is opened to compress dala.

210

Comments

Vid eo Compression and Decompression Drivers Error! Main Document Only.-55

ICMODE DECOMPRESS
The driver is opened to decompress data.

ICMODE_QUERY
The driver is opened for informational purposes, rather than for actual compression.

ICMODE DRAW
The device driver is opened to decompress data directly to hardware.

This structure is the same as that passed to video capture drivers when they are opened.
This lets a single installable driver to function as either an installable compressor or a
video capture device. By examining the fee Type field of the I COPEN structure, the
driver can detennine its function. For example, a fccType value of'vidc' indicates that it is
opened as an installable video compressor.

02/ 10/93

211

CHAPTER 11

Video Capture Device Drivers

Video capture device drivers provide low-level video capture services for Windows
multimedia applications. Both applications and MCI device drivers can use these services
to control video capture devices. These devices can provide services such as the
following:

• Single frame video capture

• Real-time (streaming) video capture

• Video overlay

• Produce data in a standard or proprietary compressed fonnat

Video capture devices must have a corresponding video capture device driver to be used
with Windows. This chapter explains the Windows interface for video capture device
drivers. It covers the following topics:

• The different types of video capture channels

• General information about writing a video capture device driver

• How a video capture device driver handles the system messages for the installable
driver interface

• How a video capture device driver handles device specific messages for video capture

• An alphabetical reference to the messages and data structures used to w1ite video
capture device drivers

Before reading this chapter, you should be familiar with the video services avai lable with
Windows. You should also be fam iliar with the Windows installable driver interface. For
information about the video services and the installable driver interface, see the Microsofl
WindmFs Programmer's Reference. For information on other drivers using the installable
driver interface, see the Microsoft Windows Multimedia Device Adaptation Guide.

Architecture of a Video Capture Driver
The MSV lDEO.DLL module provides the interface between client applications and video
capture device drivers~applications do not call the drivers directly. When a client
application calls a video capture function, MSVIDEO.DLL translates the call into a
message and sends the message to the device driver.

212

Error1 Main Document Only.-2 Video for Windows Programmer's Guide

Video Capture Device Driver Channels

02110193

Video capture device drivers can transfer data through four different channels. The
destination or source of each channel is the frame buffer that is part of the video capture
hardware. The four chmmels and the frame buffer are shown in the following illustration:

VCR. Bdetml Oli

lVTt.mr >----~

Data channels in the video capture driver.

The video capture channel (External In) is a source of video information placed in the
frmne buffer. The video source might be a video camera, video player, or television tuner.
The format of both the incoming signal and the data placed in the frame buffer is
controlled by the video capture hardware.

The video capture device can display the frame buffer data by using the video display
channel (External Out). In practice, this could be with a second monitor or a video overlay
device.

The device driver and application will use the video in channel (Video Tn) to transfer the
video data to appli cation supplied buffers.

The device driver and application can play captured data by using the video out channel
(Video Out) to transfer data back into the frame buffer. Playback tlu·ough this cha1mel
might be to review a sequence just captured or to play data from a file.

To supply minimum services, video capture drivers must support the External In and
Video In chaimels. These channels provide services for video capture but not for video
playback. Drivers with only External In and Video In channels rely on other system
components (such as video compression and decompression drivers) for video playback.

Note: The Video Out channel is not currently used. The interface for video compression
and decompression drivers is currently used to display 1his information .

213

Video Capture Device Drivers Error! Main Document Only.-3

The Video Capture Application
The application controlling the video capture driver is an integral part of the capture
process. The application has the responsibility of allocating the memory used for video
capture and managing the data buffers used for the transfer of data. If the user wants to
capture audio simultaneously with video, the application also controls the audio driver
used for capturing the input audio. Once the video and audio drivers capture the data, the
application has the responsibility for any post-processing of this data. For example, ifthe
application wants to save it as an A VI file, it must add the appropriate headers and create
the A VI RIFF structure saved in the disk file.

Sample Device Drivers
The examples in this chapter were extracted from a sample device driver
(BRAVADO.DRY) for the Truevis ion Bravado video capture hardware. The examples
also apply to the Creative Labs Video Blaster (VB LASTER.ORV) capture hardware. The
sample source code for this driver shares or parallels the sample source code for the
Bravado device driver. (The fil es that are unique for the two samples include the .H, .RC,
.DEF, .DLL, .LIB, and MAKEFILEs.)

Like many of the newer frame grabbers, these devices use the PCVIDEO 9001 chipset
from Chips and Teclmologies. The sample driver is designed to support any video capture
device based on the PCVIDEO chipset. You can develop a device driver for this chipset in
as little as a single day if the following assumptions are true:

• A DLL is available which is modeled after PCVIDEO.DLL from Chips and
Teclmologies. Functions expo1ted by the DLL may have different names, but they
should have similar functionali ty. For example, Truevision supplies a DLL called
VW.DLL. The sample driver, BRA VADO.DRV calls on the services of this DLL to
access most low-level hardware functions.

• Internally, images are captured to memory using YUV 4: l : l encoding.

V ideo capture devices that are not based on the PCVIDEO chipset, or that use alternate
internal fonnats, will require add itional work to develop routines to conve1t between
fonnats and control the device. Devices which capture data with the RGB form at can be
readily supported by modifications to the sample code.

The Structure of a Video Capture Device Driver
Video capture device drivers are dynamic-link libraries (DLLs) usually written in C or
assembly language, or a combination of the two languages. You should combine
operations for different video capture channels in a single DLL. For example, the Bravado
video capture driver module, BRA VADO. DRV, has operations for video capture as well
as the display of live video using key color or overlay.

As installable drivers. these drivers will provide a DriverProc entry point used to process
system messages. for general information about installable drivers. the DriverProc entry
point and system messages sent to this emry point. see the Microsoft Windmrs
Programmer's Reference. This chapter includes supplemental information for the system

02/ 10/93

214

Error! Main Document Only.-4 Video for Windows Programmer's Guide

messages. This information describes specifically how video capture drivers should
respond to the system messages that are critical to their proper operation .

Video capture drivers also use the DriverProc entry point to process messages
specifically for video capture. Tnfonnation on how drivers use the DriverProc entry point
to process these messages is contained in this chapter.

Combining Video Capture and Video
Compression/Decompression Drivers

If the same hardware is required or used for a combination of video capture and video
compression, you might combine both of these functions into a common DLL and use a
single DriverProc entry point to service them. The common entry point will simplify the
coordination of the different functions.

Note: Because video capture drivers can rely on video compression and decompression
drivers for efficient operation, a single driver can handle both video capture, and video
compression and decompression services. Video capture drivers use the
VIDEO_OPEN_PARMS data structure when they are opened. This structure has the same
field definitions as the TCOPEN structure used by video compression and decompression
drivers. By examining the fccType field, a combined driver can detennine whether it is
being opened as a video capture driver or a video compression and decompression driver.
(Video capture devices contain the four-character code 'vcap' in this field.) For more
infonnation on video compression and decompression drivers, see Chapter I 0, "Video
Compression and Decompression Drivers."

Video Capture Header Files
The messages and data structures used exclusively by video capture device drivers are
defined in MSVIDDRV.H. Functions, e1Tor returns, and constants used by both video
capture device drivers and applications are defined in MSVIDEO.H

Naming Video Capture Device Drivers
The filenames for device driver DLLs are not required to have a file extension of
".DLL"-you can name your driver using any file extension you want. It is suggested that
you use the extension ".DRY" for your device drivers to follow the convention set by
Windows.

SYSTEM.INI Entries for Video Capture Device Drivers

02/ 10/93

The SYSTEM.INI file contains info1111ation for loading and configuring device drivers.
Your device driver must be identified in the [drivers] section. Your device driver might
also have entries in the [386enh] section if it requires any VxDs for operation . Your driver
might a lso reserve a device-specific section in the SYSTEM.IN ! to store confi gtiration
information. For more information on this device-specifi c section, see 'The lnslallable
Driver Interface." later in this chapter. The [drivers] and [386enh] sections are updated by
an installation program when your device is insta lled or removed .

215

Video Capture Device Drivers Error! Main Document Only.-5

The preferred method for installing device drivers uses the Drivers option in the Control
Panel. The Drivers option uses information in the OEMSETUP.INF fi le for your driver to
add the entries in the [drivers] section as well as entries in the [386enh] section to install
any VxDs you require. The procedures for creating an OEMSETUP.INF file are described
in the Windows DOK.

The entry that identifies your driver in the [drivers] section lets Windows load the driver.
If this entry is absent, your driver won't be recognized. While installation programs
normally add the necessary entry for completed device drivers, you might have to
manually add it while you are developing your device driver. You might also have to
manually add any [386enh] entries you need. The final version of your device driver
should use an installation program to create and delete the entries in these two sections.

For video capture devices, a key name of"MSVideo" specifies the name of your driver in
the [drivers] section of SYSTEM.IN!. For example, the following extract identifies one
video capture device driver named "BRA VADO.DRV".

[drivers]

timer=timer . drv

j oys tick=ibmj oy .drv

MSVideo=bravado.drv

If there is more than one driver for a given device type, append a number from 1 to 9 after
the key name. (When you have multiple drivers, use sequential numbers to identify them.)

While you can have more than one driver of the MSVIDEO type in the [drivers] section,
the Drivers option in the Control Panel cannot install multiple drivers of this type. To
work with more than one video d1iver, you might use the Drivers option to remove the
existing driver and install an alternate, or you might manually edit SYSTEM.IN I file to
include the additional MSVIDEO entries. lfyou manually edit SYSTEM.INI, you can
select the driver used when you execute the video capture application. The following
example shows a [drivers] section with entries for five video capture drivers:

[dri vers]

msvideo=targa16.drv

msvideo l =testdrv.drv

msvideo2=bravado . drv

msvi deo3=vblaster .drv

msvideo4=MYDRVR.DRV

lf you are using the VIDCAP video capture application, you can select the video capture
driver it uses with the -d command line option. The integer specified after the -d
coJTesponds to the video capture driver entry. For example, VIDCAP -dO uses the
TARGA16.DRV d1iver associated with the msvideo entry. VIDCAP -d3 uses the
VBLASTER.DRV associated with the msvideo3 entry.

Note: Video capture device drivers are loaded only when needed by an application.

02/10/93

216

Error! Main Document Only.-6 Video for Windows Programmer's Guide

The Module-Definition File

02/ J 0/93

To build a device-driver DLL, you must have a module-definition (.DEF) file. In this file,
you must exp01t the DriverProc entry-point function. Functions are exp01ted by ordinal,
as shown in the following example BRAVADO.DEF file:

LIBRARY AVIBRAV

DESCRIPTION 'MSVIDEO:Truevision Bravado Driver '

EXETYPE WINDOWS

PROTMODE

CODE MOVEABLE DISCARDABLE LOADONCALL
DATA FIXED SINGLE PRELOAD

SEGMENTS TEXT FIXED PRE LOAD
INIT MOVEABLE DISCARDABLE PRELOAD
VCAP MOVEABLE DISCARDABLE PRELOAD

HEAPSIZE 1024

EXPORTS WEP

Dr i verProc

@l RESIDENTNAME

@2 RESIDENTNAME

The actual ordinal values you assign to each expo1ted function are not significant, though
each must be unique within the DLL.

For more information on the entry-point function listed in this example, see "Entry-Point
Function" later in this chapter.

The Module Name Line
The module name line should specify a unique module name for your device driver.
Windows will not load two different modules with the same module name. It's a good idea
to use the base of your driver filename since, in certain instances, LoadLibrary will
assume that to be your module name.

The Module Description Line
The module description line in the module-definition file should specify the type of device
the driver supports. For example, here's the module description line from the module
definition file for the Bravado video capture driver:

DESCRI PTION 'MSVIDEO : Truevision Bravado Driver '

Use MSVIDEO followed by a colon (:)to indicate the type of device your driver supports.

The Drivers option in the Control Panel uses these names to identify different types of
drivers and to create the entry in the [Drivers] section ofSYSTEM.INl when installing a
driver.

217

Video Capture Device Drivers Error! Main Document Only.-7

Considerations for Interrupt-Driven Drivers
Most video capture device drivers will be interrupt-driven. For example, a video input
device interrupts when the device receives a new video frame. Driver code accessed
during an interrupt service routine must adhere to the guidelines discussed in the
following sections.

Fixing Code and Data Segments
Any code segments or data segments a driver accesses at interrupt-time must be fixed
segments. For best overall system perfonnance, you should minimize the amount of code
and data in fixed segments. To minimize the amount of fixed code, isolate all interrupt
time code in a few source modules and put this code into a single fixed code segment.
Unless your driver has a large amount of data not accessed at interrupt time, use a single
fixed data segment.

The Bravado video capture driver is a medium-model DLL, using a single data segment
and multiple code segments. The following example fragment is from the module
definition file for the Bravado device driver:

CODE MOVEABLE DISCARDABLE LOADONCALL
DATA FIXED SINGLE PRELOAD

SEGMENT S TEXT FIXED PRELOAD
I NIT MOVEABLE DISCARDABLE PRELOAD

VCAP MOVEABLE DISCARDABLE PRELOAD

This example fixes the data segment and the code segment named _TEXT. All other code
segments are moveable.

The code segment_ TEXT is used as a safety measure. The compiler places code for
which you do not specify a segment in the_ TEXT segment. This way any code that is
missed will be placed into a fixed segment preventing possible problems at interrupt time.
However, you should check your segmentation to ensure that only code that is required to
be FIXED goes into the FIXED code segment.

Allocating and Using Memory
You can allocate either local memory or global memory for use at intenupt time.

To allocate local memory for use at interrupt time, follow these steps:

1. Use LocalAlloc with the L.MEM _FIXED flag to get a handle to the memory block.
(This assumes fixed data segments.)

2. Pass thi s handle to LocalLock to get a near pointer to the memory block.

Any global memory a driver uses at interrupt-time must be page-locked. To allocate
and page-lock global memory, follow these steps:

3. Use GlobalAlloc \Nith the GMEM_MOVEAB LE and GMEM_S HARE flags to get a
handle to the memory block.

4 . Pass this handle to Globa lLock to get a far pointer to the memory block.

5. Pass the handle to GlobalPageLock to page-lock the memory block.

02110193

218

Error! Main Document Only.-8 Video for Windows Programmer's Guide

Calling Windows Functions at Interrupt Time
The only Windows functions a driver can call at interrupt time are PostMessage,
PostAppMessage, DriverCallback, timeGetSystemTime, timeGetTime, timeSetEvent,
timeKillEvent, midiOutShortMsg, midiOutLongMsg, and OutputDebugStr.

The Installable Driver Interface
The enhy-point function, DriverProc, processes messages sent by the system to the driver
as the result of an application call to a low-level video capture function. For example,
when an application opens a video capture device, the system sends the specified video
capture device driver a DR V _OPEN message. The driver's DriverProc function receives
and processes this message.

Note: Your driver should respond to all system messages. ff supplemental inf01mation is
not provided for them in this chapter, use the defi nitions provided in the Microsoft
Windows Programmer's Reference.

An Example DriverProc Entry-Point Function

02/10/93

The video capture driver uses the DriverProc function for its entry-point. The following
example is extracted from the Bravado video capture driver.

LRESULT FAR PASCAL _ loadds DriverProc(DWORD dwDriverID, HDRVR hDriver,
UINT uiMessage, LPARAM lParaml, LPARAM 1Param2)

switch (uiMessage)

case DRV LOAD:
return (LRESULT)lL; //Device l oaded successfully

case DRV FREE:
return (LRESULT)lL; //Device freed successfully

case DRV OPEN:
II 1Param2 is NULL when the user configures
II the device driver with the Drivers Option of t he
II Control Panel . If opened without an open structure,
II return a dummy (non-zero) ID so OpenDriver will work.
if (1 Param2 == NULL)

return BOGUS DRIVER ID; - -

II Verify this ope n is fo r a v i deo capt ure driver, and
/I not f or an i nstal:!.able compressor/decompressor
if (({LPVI DC::O_OPEN_ !?ARI>'.S) 1Param2) - > fccType != OPEc~ TYP:C_VCA?)

i:e~·.i~·'.1 OL;

219

Video Capture Device Drivers Error! Main Document Only.-9

return (DWORD) (WORD)

VideoOpen ((LPVIDEO_OPEN PARMS) 1Param2);

case ORV CLOSE:

//Device opened without an open structure

if (dwDriverID BOGUS_DRIVER_ID I I dwDriverID 0)

return 11; II Devi ce closed

//Close device if t ermination routine executed successfull y

return ((VideoClose((PCHANNEL)dwDriverID)

DV_ ERR_ OK) ? 11 : 0) ;

case ORV ENABLE:

II Enable the driver: initializ e hardware, hook

II interrupts, allocate DMA buffer, etc.

return (LRESULT) lL;

case ORV DISABLE:

//Disable t he driver : free DMA buffer, u nhook

//int errupts , reset hardware, etc.

return (LRESULT)lL;

case DRV_QUERYCONFI GURE :

return (LRESULT)lL; II Driver supports configuration

case ORV CONFI GURE :

II The Drivers option of the Control Panel sen ds t his

II message to display a dialog box t hat lets the user configure

II the driver. For example, set the port base and interrupt .

return (LRESULT)Config((HWND)lParaml, ghModule) ;

case DRV INSTALL:

return (LRESULT)DRV_OK; //Driver installed OK

case ORV REMOVE :

// The d river is being removed f rom t he installed drivers list .

II The d river shoul d remove its . INI section, e t c.

ConfigRemove () ;

return (LRESULT}DRV_ OK; //Dri ve r r emoved OK

02/ 10/93

220

Error! Main Document Only.-10 Video for Windows Programmer's Guide

default:

if (dwDri verID == BOGUS_DRI VER_ID I I dwDriverI D == 0)

return De fDriverProc(dwDriverI D, hDriver, u i Messa ge,

lParaml , 1Param2};

II Process video capture driver specific messages

return VideoProcessMessage((PCHANNEL)dwDriverID,

uiMessage, l Paraml, 1Param2) ;

Handling the DRV_OPEN and DRV_CLOSE Messages

02/ l 0/93

Like other installable drivers, client applications must open a video capture device before
using it and close it when finished using it, so the device will be available to other
applications. When a driver receives an open request, it returns a value that the system will
use for dwDriverlD sent with subsequent messages. When your device driver receives
other messages, it can use this value to identify instance data needed for operation. Drivers
can use the instance data for information related to the client that opened a device.

It's up to you to decide if your device driver will support more than one client
simultaneously. If you do this, though, remember to check the dwDriverID parameter to
detennine which channel is being accessed.

For DRY _OPEN, the !Param2 parameter contains a pointer to a VIDEO_OPEN_PARMS
data structure containing information about the open. This structure has the following
fields :

typedef struct {

DWORD dwSize;

FOURCC fccType;

FOURCC f ccComp;

DWORD dwVersion;

DWORD dwFlags;

DWORD dwError;

VIDEO_OPEN_PARMS;

The fccType field of this structure will contain the four character code 'vcap'. Because of
the four video capture channels, video capture drivers must exam ine the flags set in the
dwFiags field of the YlDEO _OPEN_PARMS data structure to detennine the type of
channel being opened. Your driver should be prepared to open (and conversely, close) the
video channels in any order.

The following flags are defined for the video channels:

VIDEO EXTER!"\JALIN
An external input channel responsible for loading images into the frame buffer.

VIDEO EXTERNALOUT
An external output channel responsible for displaying images in the frame buffer to an
external or system monitor, or to an overlay device.

221

Video Capture Device Drivers Error! Main Document Only.-11

VIDEO IN
A video input channel responsible for transferring images from the frame buffer to
system memory. This might include a translation step or reformatting of the image. For
example, reformatting a 16-bit ROB image to an 8 bit palette image.

VIDEO OUT
A video output channel responsible for transferring images into the frame buffer from
the CPU. (The sample driver does not use this channel type.)

The dwVersion field specifies the version of the video capture c01mnand set used by
MSVIDEO.DLL. The version number lets your driver identify the command set to
determine its capabilities. For the initial release of the video capture command set, your
driver does not have to detect and adjust itself for multiple versions of the command set.
Future versions of your driver can use this value to enable new features that depend on
new capabilities of the video capture command set.

The dwSize field specifies the size of the VIDEO_OPEN_PARMS structure.

T he fccComp field is unused.

The dwError field specifies an error value the driver might return to the client application
if it fails the open.

The following code fragment illustrates the routines the Bravado device driver uses to
handle the ORV _OPEN and ORV _CLOSE messages. This device driver suppo1is only
one instance of each video channel.

PCHANNEL NEAR PASCAL Vi deoOpen(LPVIDEO OPEN PARMS l pOpenParms)

PCHANNEL pChannel ;

DEVICE !NIT di;

LPDWORD

DWORD

lpdwError = &lpOpenParms- >dwError;

dwFlags = lpOpenParms-> dwFlags;

*l pdwError = DV_ ERR_OK;

02/ 10/93

222

Error! Main Document Only.-12 Video for Windows Programmer's Guide

02/ 10/93

II Initialize hardwa r e on first call

if (! fDeviceinitialized) {

II Get Portl I RQIBaseletc . in INI file

GetHar dwareSe t tingsFromINI (&di) ;

II Perform hardware initia l ization

i f (! Hardwareinit (&di)) {

*lpdwError = DV_ERR_NOTDETECTED;

return NULL;

Confi gGe t Settings (); II Get global hue, sat, channel , zoom

II Deleted code i nitializes hardware & set s rema ining global values

II Get i nstance memory . On exi t this function assi gn s this value

II t o dwDeviceID. By using this value for dwDevice ID,

II the device driver can e a sily retrieve the insta n ce data

II when i t needs i t to process subsequent me ssages .

pChannel = (PCHANNEL)LocalAlloc (LPTR, s i zeof (CHANNEL));

if (pChannel == NULL)

r e turn (PCHANNEL) NULL;

II make sure t he channel is not already in use

switch dwFlags &

VIDEO EXTERNALIN VIDEO EXTERNALOUT VIDEO IN

case VIDEO EXTERNALIN:

if (gwCaptureUsage >= MAX_CAPTURE_ CHANNELS)

goto error;

gwCapt ureUsage ++;

b rea k;

case VI DEO EXTERNALOUT:

if (gwDispla yusage >= MJ>.X_ DISPLAY_CHANNELS)

goto err or ;

gwDisp layUsage++ ;

bre a!< ;

VIDEO_OUT)) (

223

Video Capture Device Drivers Error! Main Document Only.-13

case VIDEO IN:

if(gwVideoinUsage >= MAX_IN_CHANNELS)

goto error;

gwVideoinUsage++;

break;

case VI DEO OUT:

if(gwVideoOutUsage >= MAX_ OUT_CHANNELS)

goto error;

gwVideoOutusage++;

break;

default:

goto error;

II Now that t he hardware is allocated initialize instance structure

pChannel->fccType = OPEN_ TYPE_VCAP;

pChannel->dwOpenType

(dwFlags & (VIDEO_ EXTERNALIN IVIDEO_ EXTERNALOUTI VI DEO_INIVIDEO_OUT));

pChannel->dwOpenFlags

pChannel- >lpVHdr

pChannel->dwError

gwDriverUsage++;

return pChannel;

error:

if (pChannel)

dwFlags;

NULL;

OL ;

Loc alFree((HLOCAL)pChannel) ;

*lpdwError = DV_ERR_ALLOCATED;

return NULL;

The following example shows the function used to close the example video capture device
driver:

DWORD NEAR PASCAL VideoClose(PCHANNEL pChannel)

II Decremen t t he channel open counters

swi t ch (pCha:-i:1e l - > cwOp e nTyp e) {

02110193

224

Error! Main Document Only.--"14 Video for Windows Programmer's Guide

case VIDEO EXTERNALI N:

gwCaptureUsage - -;

break ;

cas e VI DEO EXTERNALOUT:

gwDisplayUsage-- ;

break;

case VIDEO IN:

II If started, o r buffers in the queue,

II return e rro r and don't c l os e

if (gfVideoinStarted I I l pVHdrFirst)

return DV_ERR_STILLPLAYING;

gwVideoinUsage- - ;

break;

case VIDEO OUT:

gwVideoOutUsage--;

break;

de fault:

break;

gwDrive rUsage--; II Overall driver useage count

if (gwDriverusage 0) {

HardwareFini () ; II Shut down the device

TransFini (); II Free the translation table

FreeFrameBufferSe l ect o r (); II Free the f r ame buffer select or

fDevi ceinitialized = FALSE ;

II Free the instance data

Loca lFree((HLOCAL) pChannel);

return DV_ ERR_ OK;

Handling the DRV_ENABLE and DRV_DISABLE Messages

02110193

The example DriverPrnc function calls the functions Enable and Disable to do the vvork
of enabling and disabling the driver. These functions are device dependent.

Generally, when a driver is enabled. you initia li ze the hardware. hook interrupts, allocate
any memory that you need, and set a flag to ind icate the driver is enabled . The exact
sequence your device driver will follow is determined by the requirements and structure of
your device drive r. For example, the Bravado device driver uses interrupts only for

225

Video Capture Device Drivers Error! Main Document Only.-15

streaming data. When enabled, it will hook its interrupts only if it was disabled while
streaming data.

lfyour driver has not been enabled by MMSYSTEM, or if it failed the enable process, the
driver should return MMSYSERR_NOTENABLED for any messages it receives from
client applications. When a driver is disabled, you free any memory that you allocated,
unhook interrupts, reset the hardware, and set a flag to indicate the driver is not enabled.

It's possible for a driver to receive a ORV _DISABLE message while it is in the process of
capturing data. For example, this can happen when the user switches to a MS-DOS
application when Windows is rmming in standard mode. Video capture device drivers
should behave as ifthe driver were stopped with a DVM_STREAM_STOP message and
then resta11ed with a DVM_STREAM_START message when it receives a
DRY _DISABLE/DRY _ENABLE message pair.

Driver Configuration
Installable drivers can supply a configuration dialog box for users to access through the
Drivers option in the Control Panel. The Drivers option sends the DR V _CONFIGURE
message to your driver to display the dialog box.

T he dialog box should display the name and version number of your device driver. Tfyour
device driver supports different interrupt-level and port assignments, it should also suppm1
user configuration through the Drivers option in the Control Panel.

Intenupt-level and port assigmnents, and any other hardware-related settings, can be
stored in a section with the same name as the driver in the user's SYSTEM.IN I file. For
example, the following SYSTEM.TNI section created by the Bravado example driver
specifies interrupt level 9 and memory base E:

[Bravado. drv]

Interrupt=9

MemoryBase=E

Alternatively, your driver might use its own INI file for this infonnation.

Video Capture Driver Messages
This section gives the device driver specific messages for video capture device drivers.
See "Video Capture Device Driver Reference," later in this chapter, for detailed
infonnation on these messages.

Configuring the Channels of a Video Capture Driver
In addition to the configuration dialog box displayed for the DRY _CONFlGURE
message, video capture drivers can display a dialog box for each channel. These dialog
boxes are the primary means of setting parameters in your device driver. The follo\ving
message requests that the device driver display a dialog box:

DVM DIALOG
Displays a dialog box which controls a video channel.

02/10/93

226

Error! Main Document Only.-16 Video for Windows Programmer's Guide

02/10/93

When your device driver first gets this message, use the handle in /Param l to determine
which channel is being configured. The Bravado example driver determines the channel
from the flags used to open it. It saves these flags as pait of its instance data created when
it was opened.

The dialog box displayed for each channel sets the characteristics for each chrumel. If a
channel does not support configuration, return DV _ERR_NOTSUPPORTED. The
following table suggests the contents of each dialog box:

Channel Dialog Box Description

VIDEO EXTERNALIN Displays a dialog box which controls how video (either
analog or d igital) is captured. The dialog box might set
attributes such as contrast and brightness.

VIDEO EXTERNALOUT Displays a dialog box which controls how video is
displayed on a second monitor or video adapter such as
a video overlay card.

VIDEO IN

VIDEO OUT

Displays a dialog box which controls how video is
tran sferred from the frame buffer.

Displays a dialog box which controls how video is
transfen-ed to the frame buffer.

When processing the DVM_DIALOG message, check 1Param2 for the
VIDEO_DLG_QUERY flag prior to displaying the dialog box. If an application uses this
flag, it is only determining if a video channel supports a dialog box. For this flag, return
DV _ERR_OK if the video channel s upports a dialog box. If not, return
DV _ERR_NOTSUPPORTED in response to the message.

The Bravado example dtiver uses the following function to handle the DYM_DIALOG
message (this function is called from the Bravado VideoProcessMessage function):

DWORD NEAR PASCAL VideoDialog (DWORD dwOpenType, HWND h WndParent , DWORD

dwFlags)

(

switch (dwOpenType) {

case VI DEO EXTERNALI N:

if (dwFlags & VI DEO_DLG_QUERY)

r eturn DV_ERR_OK; //Channel has a dialog box

DialogBox(ghModule, MAKEINTRESOURCE(DLG_ VIDEOSOORCE),

{HWND)hWndParent , Vi deoSou rceDlgProc);

break;

227

Video Capture Device Drivers Error! Main Document On ly.-17

case VIDEO_IN:

if (dwFlags & VIDEO_DLG_QUERY)

return DV_ERR_OK; // Channel has a dialog box

DialogBox(ghModule, MAKEINTRESOURCE(DLG_ VIDEOFORMAT),

(HWND)hWndParent, VideoFormatDlgProc);

break;

case VIDEO OUT:

return DV_ERR_NOTSUPPORTED; //Channel does not have a dialog box

case VIDEO_EXTERNALOUT :

if (dwFlags & VIDEO_DLG_QOERY)

return DV_ERR_OK; //Channel has a dialog box

DialogBox(ghModule, MAKEINTRESOORCE (DLG_VI DEODISPLAY),

(HWND)hWndParent, VideoMonitorDl gProc);

break;

default:

return DV_ERR_NOTSUPPORTED;

return DV_ERR_OK;

Video capture drivers might save the settings from these dialog boxes in the section
reserved for your device driver in the SYSTEM.INI file. Your driver should append this
infonnation to the entries created for the DVR _CONFIGURE messages to this section.
For example, the example Bravado driver might have this section in the SYSTEM.IN[file :

[Bravado.drv]

Interrupt=9

MemoryBase=E

Hue=lO

Saturation=6

InputChannel=2

Contrast=24

Alternatively, a device driver might implement its own method of storing configuration
information for each channel.

Setting and Obtaining Video Capture Format
The video capture format globally defines the attributes of the images transferred from the
frame buffer with the video in channe l. Attributes include image dimensions, color depth,
and the compression fonnat of images transferred. Applications use the fo llowing message
to set or retrieve the format of the digitized image:

DVM FORMAT
Assigns or obtains format infom1ation.

02/10/93

228

Error! Main Document Only.-18 Video for Windows Programmer's Guide

0'.2/ 10/93

The calling application must modify this message with flags to indicate its purpose. Your
driver must examine the flags sent with the message to determine the proper response. The
flags are specified in lParaml. The following flags help define the meaning of the
messages:

VlDEO_CONFIGURE_QUERY
Determines if the driver suppo1ts the message.

VIDEO_CONFIGURE_QUERYSIZE
Requests the size of the fonnat data structure.

VIDEO CONFfGURE SET
Indicates values are being sent to the driver.

VIDEO CONFIGURE GET - -
Indicates the application is interrogating the driver.

The VIDEO_CONFIGURE_GET or VIDEO_CONFIGURE_SET flag indicates if the
DVM -'FORMAT message is being used to obtain the format or set the format. The
DVM _FORMAT message and these flags are sent to your driver when it is opened, and
when it is configured with DVM_DIALOG.

When an application opens your driver, it retrieves the initial driver format. (Video
capture drivers initially default to a format that efficiently uses the capabilities of the video
capture hardware or, if they have been previously configured, they restore the last user
specified configuration saved in a disk file.) If this fonnat is acceptable, the application
continues its operations. If the fonnat is not acceptable, the application will either
immediately close your driver or suggest a very limited format. If the limited format is not
acceptable to your driver, the application closes it. (Typically, applications do not accept a
format because they crumot allocate enough memory to capture video. A limited format
might free enough memory for operation.)

Applications also get the fonnat when the user changes the fom1at. (Users change the
fonnat with the V!DEO_IN channel dialog box displayed with the DVM_DIALOG
message.) Jn this case, applications get and retain a copy of the current format prior to
sending the DVM_DIALOG message. After the user exits from the DVM_DTALOG
dialog box, applications get the new format from your driver. If the application accepts the
new format, it uses the VIDEO_CONFIGURE_SET flag to return the format back to your
driver. (Your driver should verify that the application has not changed the format
information.) lfthe application does not accept the new format, it restores the fonnat it
obtained prior to displaying the dialog box.

The DYM_FORMA T messages uses lParam2 to pass the format information. This
parameter contains a pointer to a V!DEOCONFIGPARMS structure. This structure has
the following fields:

229

Video Capture Device Drivers En-or! Main Document Only.-19

typedef s truct tag_vi deo_ configure_parms

LPDWORD lpdwReturn;

LPVOI D l pDatal;
DWORD dwSizel;

LPVOID lpData2;

DWORD dwSize2;
VIDEOCONFIGPARMS ;

The lpDatal field points to a BITMAPINFOHEADER data structure. The size of this
structure is specified in dwSizel.

Changing the fonnat can affect overall dimensions of the active frame buffer as well as bit
depth and color space representation. Since changing between NTSC and PAL video
standards can also affect image dimensions, applications should request the current fonnat
following display of the EXTERNAL_fN channel dialog box.

If an application just wants to know if your driver supports DVM _FORMAT, it sends the
VIDEO_CONFIGURE_QUERY flag with the message. (Using the
VIDEO_CONFIGURE_ QUERY flag without VIDEO_CONFIGURE_GET or
VIDEO_CONFIGURE_SET is invalid.) Your device driver should return DV _ERR_OK
if it supp01ts the message. Otherwise, it should return DV _ERR_NOTSUPPORTED.

If an application wants to determine the amount of memory it needs to aJlocate for the
format infonnation, it sends the DVM _FORMAT message with the
VIDEO_CONFIGURE_GET and VIDEO_CONFIGURE_QUERYSIZE flags set. Your
driver should specify the format size in the lpdwReturn field of the
VIDEOCONFIGUREPARMS structure.

Setting and Obtaining the Video Source and Destination
Rectangles

Video capture drivers might support a source rectangle to specify a portion of an image
that is digitized or transferred to the display. External in ports use the source rectangle to
specify the po1tion of the analog image digitized. External out po1ts use the source
rectangle to specify the portion of frame buffer shown on the external output.

Similarly, video capture drivers might support a destination rectangle to specify the
pmtion of the frame buffer or screen used to receive the image. External in p01ts can use a
destination rectangle to specify the portion of the frame buffer used for the digitized video
input. External out po1ts can use the rectangle to specify the client rectangle on the
display.

The following messages are used to set and obtain the video source and destination
rectangles:

DVM DST RECT
Sets and retrieves the destination rectangle used by video devices .

DVM SRC R.ECT
Sets and retrieves the source rectangle used by video devices.

02110193

230

E1TOr! Main Document Only.-20 Video for Windows Programmer's Guide

02110193

The calling application must modify these messages with flags to indicate their exact
meaning. Your driver must examine the flags sent with the messages to detem1ine the
proper response. The flags are specified in !Param2. The following flags define the
meaning of the DVM_DST_RECT and DVM_SRC_RECT messages:

VIDEO CONFIGURE SET - -
Indicates values are being sent to the driver.

VIDEO CONFIGURE GET
Indicates the application is interrogating the driver.

VIDEO_ CONFIGURE_ QUERY
Determines if the driver supports the message.

The VIDEO_ CONFIGURE_ SET flag indicates the application is setting a source or
destination rectangle. The rectangle coordinates are specified in a RECT structure pointed
to by !Paraml.

If an application sets a source or destination rectangle for an external out channel, your
driver will normally receive a series of messages. For these channels, applications
normally send both DVM_SRC_RECT and DVM_DST_RECT to your driver to properly
set the rectangles. The application follows these messages with DVM _UPDATE. Video
overlay devices should paint their key color in response to DVM_ UPDATE.

Applications use VIDEO_CONFIGURE_GET to determine the coordinates of the source
and destination rectangles. Applications use additional flags with
VIDEO_CONFIGURE_GET to indicate if they want the coordinates of the rectangle
currently defined, the maximum size of the rectangle, or the minimum size of the
rectangle. The following flags are defined for these operations:

VIDEO CONFIGURE MIN
Used with VIDEO_CONFIGURE_GET to determine the minimum rectangle
suppo1ted.

VIDEO CONFIGURE MAX - -
Used with VIDEO_CONFIGURE_GET to determine the maximum rectangle
suppo1ted.

VIDEO CONFIGURE CURRENT
Used with VIDEO_CONFIGURE_GET to detennine the current rectangle.

Your driver should return the coordinates for the appropriate rectangle in the RECT
structure pointed to by !Paraml.

An application uses VIDEO_CONFIGURE_QUERY to determine if your driver suppo1ts
VIDEO_CONF IGURE_QUERYor VIDEO_CONFJGURE_SET. (The
VLDEO_CONFIGURE_QUERY flag without V!DEO_CONFIGURE_GET or
VIDEO_CONFlGURE_SET is invalid.) Your device driver should return DV _ERR_OK
if it supports the flag. Otherwise, it should return DV _ERR_NOTSUPPORTED.

231

Video Capture Device Drivers Error! Main Document Only.-21

Determining Channel Capabilities
Channel capabili ties include overlaying video, scaling of images with the source and
destination rectangles, and cl ipping of images with the source and destination rectangles.
The following message retrieves the channel capabilities of a driver:

DVM GET CHANNEL CAPS - -
Return the capabilities of a channel to the application.

Applications use DVM_GET_CHANNEL_CAPS to obtain information about the
capabilities of a channel. The !Paraml parameter specifies a far pointer to a

CHANNEL_ CAPS data structure and the !Param2 parameter specifies its size. The
CHANNEL_ CAPS structure has the following fields:

t yp e def s t r uct channel_caps_tag
DWORD dwFlags ;

DWORD dwSrcRectXMod;

DWORD dwSrcRectYMod;
DWORD dwSrc RectWi d t hMod ;

DWORD dwSrcRectHeightMod;
DWORD dwDs t RectXMod;

DWORD dwDs tRectYMod ;

DWORD dwDstRectWidthMod;
DWORD dwDstRectHeightMod;

CHANNEL_ CAPS ;

Your driver should use the dwFlags field to return flags indicating its capabilities for
overlaying video, and clipping and scaling images with the source and destination
rectangles. The following flags are defined:

YCAPS OVERLAY
Indicates the channel is capable of overlay. This flag is used only for
EXTERNAL OUT channels.

VCAPS SRC CAN CLIP - - -
Indicates that the source rectangle can be set smaller than the maximum dimensions.

VCAPS DST CAN CLIP
Indicates that the destination rectangle can be set smaller than the maximum
dimensions.

YCAPS CAN SCALE - -
Indicates that the source rectangle can be a different s ize than the destination rectangle.

If your driver supports changing the size and position of the source rectangle, it should
indicate the finest granularity used for changes to the rectangle in the dwSrcRectXMod .
dwSrcR ectYMod, dwSrcRcctWidthMod, and dwSrcRcctHeightMod fie lds.

If your driver supports changing the s ize and position of the destination rectangle. it
should indicate the finest granularity used fo r changes to the rectangle in the
dwDstRectXMod, dwDstRectYMod. dwDstRectWidthMod. and

02/ 10/93

232

Error! Main Document Only.-22 Video for Windows Programmer's Guide

dwDstRectHeightMod fields. If a channel supports arbitrarily positioned rectangles, with
arbitrary sizes, the values above should all be set to I.

Your driver returns DY _ERR_ OK if the message was processed successfully. It returns
DV _ERR_NOTSUPPORTED ifthe message is not supp01ted.

Setting and Obtaining a Video Capture Palette

02/10/93

Applications can set and retrieve the palette used with captured video. This gives
applications the ability to control and modify the palette used for video sequences. The
palette messages apply only to the video in and video out channels. The following
messages apply to the video capture palette:

DVM PALETTE
Assigns or obtains palette information.

DVM PALEITERGB555
Associates an RGB555 palette with a video device channel.

The calling application must modify these messages with flags to indicate their purpose.
Your driver must examine the flags sent with the messages to determine the proper
response. The flags are specified in lParaml. The following flags define the meaning of
the messages:

VIDEO CONFIGURE SET
Indicates values are being sent to the driver.

VIDEO CONFIGURE GET
Indicates the application is interrogating the driver.

VIDEO_CONFIGURE_QUERY
Determines if the driver supports the message.

VIDEO_CONFIGURE_QUERYS IZE
Requests the size of the palette data structure.

The VIDEO_CONFIGURE_GET or VIDEO_CONFIGURE_ SET flag modifies the
DVM_PALETTE message to indicate that the driver should return the current palette or
that the driver should set a new palette. The lParam2 parameter used with
DVM_PALEITE contains a pointer to a VIDEOCONFIGPARMS data structure. This
structure has the following fields:

233

Video Capture Device Drivers

typedef struct tag_v ideo_configure_parms
LPDWORD lpdwReturn;

LPVOID lpDatal;

DWORD dwSizel;
LPVOID lpData2;

DWORD dwSize2;

] VIDEOCONFI GPARMS;

EITor! Main Document Only.-23

If the VIDEO_CONFIGURE_SET flag is used with DVM_PALETTE, the lpDatal field
points to a LOGPALETTE structure containing the new palette. The size of the memory
allocated for the LOGPALETTE structure is specified in the dwSizel field.

lfthe VIDEO_CONFIGURE_GET flag is used with DVM_PALETTE, the lpDatal field
points to a LOGPALETTE structure used to retrieve the palette. The size of the memo1y
allocated for the LOGP ALETTE structure is specified in the dwSizel field. Your driver
should transfer the palette to the structure indicated by lpDatal.

If an application just wants to determine the size of the palette, it sends the
DVM_PALETTE message with both the VIDEO_CONFIGURE_GET and
VIDEO_CONFIGURE_QUERYSIZE flags. Your driver should return the palette size in
the IpdwReturn field.

If an application just wants to know if your driver supports DVM _PALETTE and its flags,
it also sets the VIDEO_CONFIGURE_QUERY flag with VIDEO_CONFIGURE_GET or
VIDEO_CONFIGURE_SET. (The VIDEO_CONFIGURE_QUERY flag without
VIDEO_CONFIGURE_GET or VIDEO_CONFIGURE_SET is invalid.) Your device
driver should return DV _ERR_OK ifit supports the DVM_PALETTE message and the
operation indicated with the set or get flag. Otherwise, it should return
DV ERR NOTSUPPORTED. - -

DVM_PALETTE does not use the IpData2 and dwSize2 fields.

Applications use the DVM_PALETTERGB555 message to associate an RGB555 palette
with a video device channel. Only the VIDEO_CONFIGURE_SET and
VIDEO_ CONFIGURE_ QUERY flags apply to this message. The
VIDEO_CONFIGURE_SET flag modifies the DVM_PALETTERGB555 message to
indicate that the driver should set a new palette. The !Param2 parameter used with
DVM_PALETTERGB555 contains a pointer to a VIDEOCONFIGPARMS data
structure.

When setting the palette, the IpDatal field points to a LOGPALETTE structure
containing the new palette. The lpData2 field points to a 32 kilobyte RGB555 translation
table. The device driver uses this table to translate the RGB555 triples into palette colors
when capturing data in an 8 bit palette mode. The dwSizel and dwSize2 fields specify the
size of the structures indicated by lpDatal and IpData2.

If an application just wants to know if your driver supports DVM _PALETTERGB555, it
sends the VlDEO_CONFIGURE_QUERY flag with VIDEO_CONFIGURE_SET. (The
VIDEO_CONFlGURE_QUERY flag without VTDEO_CONFIGURE_SET is invalid.)
Your device driver should return DV _ERR_OK if it supports the
DVM_PALETTERGB555 message. Otherwise, it should return
DV ERR NOTSUPPORTED. - -

02/ 10/93

234

EtTor! Main Document Only.-24 Video for Windows Programmer's Guide

02/ l 0193

The following example shows how the Bravado device driver handles the
DVM_PALETTE message. The structure for DVM]ALETTERGB555 is similar.

DWORD NEAR PASCAL VideoConfigureMessage(PCHANNEL pChannel, UINT msg, LONG

lParaml, LONG 1Param2)

LPVIDEOCONFIGPARMS lpcp;

LPDWORD lpdwReturn; II Return parameter from configure

LPVOID lpDatal; II Pointer to dat al

DWORD dwSizel; II size o f data bufferl

LPVOID 1pData2; II Pointer to data2

DWORD dwSize2; II size of data buffer2

DWORD dwFlags ;

if (pChannel-> dwOpenType != VIDEO_IN)

return DV_ERR_NOTSUPPORTED;

dwFlags = lParaml;

lpcp = (LPVIDEOCONFIGPARMS) 1Param2;

lpdwReturn = lpcp-> lpdwReturn;

lpDatal lpcp-> lpDatal;

dwSizel

lpData2

dwSize2

switch (msg)

lpcp- > dwS i zel ;

lpcp-> lpData2 ;

lpcp-> dwSize2;

case DVM PALETTE :

switch (dwFl ags)

case (VIDEO_CONFIGURE_QUERY

case (VIDEO_ CONFIGURE_ QUERY

return DV_ERR_OK;

VIDEO_CONFIGURE_SET):

VIDEO_CONFIGURE_GET) :

case VIDEO CONFI GURE_ QUERYSIZE:

case (VIDEO_CONFIGURE_ QUERYSIZE I VIDEO_ CONFIGURE_ GET) :

*lpdwReturn = sizeof(LOGPALETTE) +

(palCurrent.palNumEntries - 1) *

sizeo f (PALETTEENTRY);

break;

case VI DEO CONFI GURE SET : - -
c ase (VI DEO CONFIGURE SET I VI DEO_ CONFIGURE_ CURRENT) :

i f (!lpData l) / / p o in t s to a LOGPALETTE struc t u r e .

retu r n DV_ ERR_ PARAM l ;

retur~ (Set De s r Pa l e t t e ({LPLOG?ALETTE) lpDc t c l,

(LPBYTE) NULL)) ;

bre ak ;

235

Video Capture Device Drivers En-or! Main Document Only.-25

case VIDEO CONFIGURE GET: - -
case (VIDEO_CONFIGURE_GET I VIDEO_CONFIGURE_CURRENT):

return (GetDestPalette { {LPLOGPALETTE) lpDatal,

{WORD) dwSizel));

break;

default :

return DV ERR NOTSUPPORTED;

} // end of DVH PALETTE switch

return DV_ERR_OK;

default: //Not a message that we understand

return DV_ERR_NOTSUPPORTED;

II end o f message switch

return DV_ ERR_ NOTSOPPORTED;

Obtaining the Device Driver Version
The following message lets an application interrogate your device driver to determine the
version of the video capture command set.

DVM GETVIDEOAPIVER
Obtains the version of the video capture command set.

Your driver should return VIDEOAPNERSION in the DWORD buffer that !Paraml
points to. This message does not have any flags associated with it.

Transferring Data From the Frame Buffer
The following message lets an application obtain a single frame from the frame buffer:

DVM FRAME
Obtains a single frame from the frame buffer.

This message is the basis for the simplest form of video capture. Applications might use
this to record animated sequences created frame-by-frame or to capture a single still image
such as a photograph. The follovv·ing sequence of operations occurs when a client
application requests the transfer of a single video frame:

1. The client allocates the memory for the data buffer.

2 . The client sets a pointer to the empty data buffer in the VIDEO HOR data structme.

02110/93

236

Error! Main Document On ly.-26 Video for Windows Programmer's Guide

3. The client sends the device driver a pointer to the VIDEOHDR data structure with the
videoFrame function. (The destination channel must be a VIDEO_IN channel.)

4. When the device driver receives the DVM_FRAME messages that Windows sends in
response to videoFrame, it fills the data buffer with information from the frame buffer
and updates the VIDEOHDR data structure. Note that the buffer might not have been
prepared.

5. When the device driver has filled a data buffer, it returns from the DVM _FRAME
message. This returns control back to the client.

6. After the client has finished with the data, it frees the memory used for the data.

Streaming Video Capture
Video capture device drivers use the DVM_STREAM messages sent to a VIDEO_IN
chrumel to stream full motion video to the client application. Your device driver will use
the following messages while it is streaming video:

DVM STREAM lNIT - -
Initializes a video input stream.

DVM STREAM PREPAREHEADER
Requests that the driver prepare a data buffer for input.

DVM STREAM ADDBUFFER - -
Adds a buffer to the video input stream queue.

DVM STREAM START - -
Begins streaming video input.

DVM_STREAM_STOP
Ends video input streaming.

DVM STREAM UNPREPAREHEADER - -
Requests that a driver clean up the preparation previously done on a data buffer.

DVM STREAM FINI
Closes and deallocates a video stream.

The Data Transfer Model For Streaming Video Input

02/10193

The data transfer model for streaming video input is similar to the model defined for the
waveform device drivers. If you have worked with the wavefonn device drivers, many of
the concepts used there will be usable with video capture device drivers.

The following sequence of operations occurs when streaming video data between a video
capture device driver and a client application:

1. The client allocates the memory buffers for the video data.

2. The client initializes the data stream (DVM_STREAM_INIT).

3. The client requests that the driver prepare the data buffers
(DVM_STREAM_PREPAREHEADER).

4. The client sends the empty data buffers to the driver
(DVM_STREAM_ADD BUFFER).

237

Video Capture Device Drivers Error! Main Document Only.-27

5. The driver puts the data buffers in its input queue.

6. When the streaming operation begins with DVM_STREAM_START, the driver fills a
data buffer and sets the done bit for the data buffer. The driver will then release the
buffer from its queue and proceed to fill the next buffer.

7. When the client is ready for data, it uses the done bit or callback to see if the data in
the buffer is ready.

8. After the client empties the buffer, it resets the done bit and sends the empty buffer
back to the driver for it to add to its queue (DVM_STREAM_ADDBUFFER).

Once the stream starts, the client application and the video capture driver do not
communicate directly. The video capture driver fills the data buffers at the rate specified
by the client application using the frame rate infonnation provided with the
DVM_STREAM_INTT message. It fills the buffers without waiting for any
synchronization signal from the application as long as buffers are available and it is not
paused or stopped by the application. The buffers are filled in the order that the driver
receives them from the application. (If the device driver runs out of buffers, it should set
an error flag. A client application can use the DVM_STREAM_GETERROR message to
test for this condition.)

The client application expects the buffers back in the order that it sends them to the device
driver. When it is ready for more data, it will check the done bit of the next buffer it
expects to receive from the device driver. If the done bit is set, the application continues
operation with that buffer. If the done bit is not set, the application will periodically check
the done bit while it waits for the buffer.

Streaming continues until it is stopped by the application. The following sequence of
operations occurs when the application has finished capturing data:

• When the client stops the streaming operation with DVM_STREAM_STOP, the driver
stops filling buffers.

• If the client wants to restart streaming, it sends DVM_STREAM_START. If the client
is finished streaming, it requests that the driver unprepare the data buffers
(DVM _STREAM_ UNPREPAREHEA DER).

• The client releases the data stream (DVM_STREAM_FINI) and frees the memory
allocated for the video data.

02/ 10/93

238

Error! Main Document Only.-28 Video for Windows Programmer's Guide

02/10/93

Initializing the Data Stream
The DVM_STREAM_INIT message initializes a video device for data streaming. This
message must precede all other streaming messages for a channel.

The !Paraml parameter of DVM_ STREAM_INIT specifies a far pointer to a
VIDEO_STREAM_INIT_PARMS structure and the !Param2 specifies its size in bytes.
The VIDEO_ STREAM_ INIT _PARMS structure has the following fields:

typedef str uct t a g_vi d e o_ stream_ i n it_pa rms

DWORD d wMicr oSe c PerFr ame;

DWORD dwCallback;

DWORD dwCallback i nst ;

DWORD dwFlags;

DWORD hVide o ;

VIDEO_STREAM_INIT PARMS;

The different chaimels handle the message and data structure in different ways.

For external in channels, DVM_STREAM_INIT enables capture of images into the frame
buffer. External in channels should expect this message at any time. They can ignore the
dwMicroSecPerFrame, dwCallback, and dwCaUbacklnst fields. The dwFlags field
must contain the VIDEO_ ALLOWSYNC flag for synchronous devices.

For video in channels, DVM_STREAM_INIT sets the capture rate and callback
information. The dwMicroSecPerFrame field specifies the number of microseconds
between successive capture fraines. The dwCallback field contains the address of a
callback function or the handle to a window called during video streaming. (This
parameter is set to NULL if a callback function or window is not used.) The callback
procedure processes any messages related to the progress of recording. If a callback
function address is specified, dwFlags is set to CALLBACK_FUNCTION. ff the
application has any data to pass to the callback function, it specifies the data in
dwCallbacklnst. If a callback window handle is specified, dwFlags is set to
CALLBACK_ WINDOW. Drivers can also use DriverCallback to send a message to a
window or callback function. For more information on DriverCallback, see the Windows
Multimedia Device Adaptation Guide. For more information on using the video capture
callback, see the "Video Capture Device Driver Reference."

For external out channels, DVM_STREAM_INIT enables overlay display. External out
chaimels should expect this message at any time. They can ignore the
dwMicroSecPerFrame, dwCallback, and dwCallbacklnst fields. The dwFlags field
contains any flags that might affect the external out channel.

All chaimels return DV _ERR_OK ifthe message was processed successfully. All
channels should return DV _ERR_ ALLOCATED if the channel is already allocated or
DV _ERR_NOMEM if they are unable to allocate or lock memory.

Preparing Data Buffers
Because video data buffers must be accessed at interrupt time, the memory al located for
them is subject to the requirements mentioned previously in ' ·Considerations for lnterrupt
Driven Drivers ." Rather than have the client application prepare the memory before
sending data blocks to the driver. the client requests that the driver do the preparation.

239

Video Capture Device Drivers Error! Main Document Only.-29

Most drivers can respond to the DVM_STREAM_PREPAREHEADER and
DVM_STREAM_UNPREPAREHEADER messages) by returning a
DV _ERR_UNSUPPORTED error. When your driver returns
DY _ERR_ UNSUPPORTED, the system will perform the necessary preparation on the
data block. This consists of page Jocking the header and data sections so the driver can
access them at interrupt time.

If your device driver does not need the data to be page locked (for example, if you
immediately copy the data to an on-card buffer) or if you have additional preparation to do
to the buffer, you might respond to these messages yourself instead of having the system
handle them. You should respond to both DVM_STREAM_PREPAREHEADER and
DVM_STREAM_UNPREPAREHEADER, or to neither.

Starting and Stopping Streaming
DVM_STREAM_START staits a video stream. For video in channels, this message
begins transferring the contents of the frame buffer to the system supplied buffers. In
response to DVM _ STREAM_ START, your driver should enable the intenupts it needs
and begin capturing the images and copying them to the application supplied buffers.

DVM_STREAM_STOP stops a video stream. When a video in chamwl receives this
message, it stops filling buffers and retains ai1y empty buffers remaining in the queue.
Your driver can disable any interrupts it needs to capture data, however, it should be
prepared to receive the DVM_STREAM_START message to resume captwing data. Tf
data capture has not staited, this message has no effect and the device driver returns
DV ERR OK.

Neither DVM_STREAM_START nor DVM_STEAM_STOP use !Paraml or lParam2.
Yom driver should return DY_ ERR_ OK if it processed the message successfully. It
should return DV _ERR_NOTSUPPORTED if it does not support the message.

Ending Capture
The DVM_STREAM_FINI message terminates data streaming. This should always be the
last streaming message received by a channel.

For external in channels, DVM_STREAM_FINI disables capture of images into the frame
buffer. External in channels should expect this message at any time.
DVM _STREAM _FINI might not have a corresponding DVM _STREAM_ TNIT message.

For video in channels, DVM_STREAM_INIT finishes data streai11ing process. Your
driver cai1 free any resources that it used to capture data.

For external out channels, DVM_STREAM_ INIT disables overlay display. External out
channels should expect this message at any time. DVM _STREAM _FINI might not have a
correspondi ng DVM_STREAM_INIT message.

All channels return DV _ERR_OK if the message was processed successfully. The video
in channels should return DV ERR STILLPLA YING if there are still buffers in its - -

queue .

02110193

240

Error! Main Document Only.-30 Video for W indows Programmer's Guide

02/ 10/93

Additional Stream Messages
The following messages are used in support of data streaming:

DVM STREAM RESET
Stops video input streaming and returns all data buffers to the client application.

DVM STREAM GETERROR
Returns the e1Tor encountered while streaming data.

DVM STREAM GETPOSITION - -
Requests the current position in the video stream.

The client application uses DVM_STREAM_RESET to stop data streaming and release
all buffers. When your driver gets this message it should return to the state set with
DVM STREAM INIT.

The client application uses DVM _STREAM_ GETERROR to obtain the error status of a
channel. The /Paraml and /Param2 parameters point to two DWORDS your driver
should use to return error information. Fill the DWORD specified by /Paraml with the
value of the most recent error. Typically, the error encountered is
DV _ERR_NO_BUFFERS. If your driver has not encountered an error or if it receives this
message when a stream is not initialized, set the DWORD to DY_ ERR_ OK. Fill the
DWORD specified by /Param2 with the number of frames dropped because of the e1Tor.

After processing this message your driver should reset its error value and count of frames
dropped. Drivers that do not have access to interrupts might use this message to trigger
buffer processing.

Return DV _ERR_ OK if your driver processes the message without an error. If your driver
does not support this message, return DV _ERR_NOTSUPPORTED.

Applications use the DVM_STREAM_GETPOSITION message to retrieve the current
position of the video in stream. The /Paraml parameter specifies a far pointer to a
MMTIME data structure and the lParam2 parameter specifies its size. The MMTIME
structure has the following fields:

t ypede f str u c t nuntime_t ag

UINT wType;

union {
DWORD ms ;

DWORD sample ;

DWORD c b ;

241

Video Capture Device Drivers Error! Main Document Only.-31

u ;

struct
BYTE hou r ;
BYTE min;

BYTE s ec ;
BYTE frame;
BYTE fps;

BYTE dummy;
smpte;

s truct {
DWORD songptrpos;

midi;

MMTIME;

When your device gets DVM_STREAM_POS ITION, it should check the wtype field. If
your driver does not support the format specified, it specifies its current time format in the
field. The application checks the format specified in this field when the message returns.

Video capture drivers typically return time in the millisecond format. Normally, your
driver sets the position to zero when streaming starts with DVM_STREAM_START.

Your driver should returns DV _ERR_OK if .it processed the message successfully. It can
return DV _ERR _PARM 1 if the data structure supplied for the format has invalid data or
DV ERR SIZEFIELD if the data structure is too small.

Video Capture Device Driver Reference
This section is an alphabetic reference to the messages and data structures provided by
Windows for use by video capture device drivers. There are separate sections for
messages and data structures. The messages and data structures are defined in
MSVlDDRY.H and MSVIDEO.H.

Video Capture Device Driver Message Reference
Windows communicates with video capture device drivers through messages sent to the
driver. The driver processes these messages with its DriverProc entry-point function.

This section contains an alphabetical list of the video capture messages that can be
received and sent by video capture device drivers. Each message name contains a prefix,
identifying the type of the message.

A message consists oftlu·ee parts: a message number and two OW ORD parameters.
Message numbers are identified by predefined message names. The two DWORD
parameters contain message-dependent values.

02/ 10/93

242

Error! Main Document Only.-32 Video for Windows Programmer's Guide

02110193

Message Summary
The following messages are used for error handling:

DVM GETERRORTEXT
This message retrieves a string which contains the description of an error.

DVM STREAM GETERROR - -
This message returns the last eJTor encountered by a channel.

The following messages are used for configuring the device driver and obtaining
information from it:

DVM DIALOG
This message displays a dialog box which controls video parameters for a chaimel.

DVM DST RECT
This message sets and retrieves the destination rectangle used by a video device
cha1mel.

DVM FORMAT
This message is for configuring the fo1111at of the video device channel.

DVM_ GET_ CHANNEL_ CAPS
This message is used to return the capabilities of a chaimel to the application.

DVM GETVIDEOAPIVER
This message returns the version of the video API used by the driver.

DVM PALETTE
This message sets and retrieves a logical palette used by a video device channel.

DVM PALETTERGB555
This message associates an RGB555 palette with a video device channel.

DVM SRC RECT - -
This message sets and retrieves the source rectangle used by a video device channel.

The following messages are used for capturing data:

DVM FRAME
This message processes a single frame from the video device.

DVM STREAM ADDBUFFER - -
This message sends an input buffer to a video device.

DVM STREAM FINI - -
This message tenninates streaming on a video channel.

DVM _STREAM_ GETPOSITION
This message retrieves the current position of the stream.

243

Video Capture Device Drivers E1TOr! Main Document Only.-33

DVM STREAM INIT
This message initializes a video device for streaming.

DVM STREAM PREPAREHEADER - -
This message prepares an input buffer for video streaming.

DVM STREAM RESET - -
This message stops input of a video stream and resets the current position to 0.

DVM STREAM START - -
This message starts a video stream.

DVM STREAM STOP
This message stops a video stream.

DVM STREAM UNPREPAREHEADER - -
This message cleans up the preparation perfonned by
DVM STREAM PREPAREHEADER. - -

DVM UPDATE
This message is used with a EXTERNAL_ OUT channel to indicate that the display
needs to be updated.

The following messages are used with video callback functions :

MM DRVM CLOSE
This message is sent to a video callback function or window when a video channel is
closed.

MM DRVM DATA - -
This message is sent to a video callback function or window when the specified buffer
is being returned to the application.

MM DRVM ERROR - -
This message is sent to a video callback function or window when an error has
occurred.

MM DRVM OPEN - -
This message is sent to a video callback function or window when a video channel is
opened.

Video Capture Device Driver Messages
This section contains an alphabetical list of the video capture messages that can be
received and sent by video capture device drivers. Each message name contains a prefix,
identifying the type of the message.

A message consists of three pai1s: a message number and two DWORD parameters.
Message numbers are identified by predefined message names. The two DWORD
parameters contain message-dependent values .

02110193

244

Error! Main Document Only.-34 Video for Windows Programmer's Guide

DVM DIALOG

Parameters

Return Value

Comments

This message displays a dialog box for setting the video parameters of a channel.

DWORD dwParaml
Specifies the handle to the parent window.

DWORD dwFlags
Specifies flags for the dialog box. The following flag is defined:

VIDEO_DLG_QUERY
If this flag is set, the driver immediately returns DY _ERR_OK if it supplies a
dialog box for the channel, or DV _ERR_NOTSUPPORTED if it does not.

Returns DY _ERR_ OK if the message was successful. Otherwise, it returns an en-or
number. The following errors are defined:

DV ERR INVALHANDLE - -
Specified device handle is invalid.

DY ERR NOTSUPPORTED
Message is not supp01ted.

Typically, this dialog box lets the user configure a video channel. For example, a
VIDEO _ IN channel might supply a dialog box to let the user select image dimensions and
bit depth. Each channel type (VIDEO_IN, VIDEO_OUT, VIDEO_EXTERNALIN, and
VIDEO_EXTERNALOUT) can have a unique configuration dialog box.

DVM DST RECT

Parameters

02110193

This message sets and retrieves the destination rectangle used by a video device channel.

LPRECT lpDstRect
A far pointer to a RECT structure.

DWORD dwFlags
Specifies flags that indicate the type of transfer requested. Either the
VIDEO_CONFIGURE_SET or the VIDEO_CONFIGURE_GET flag must be set,
specifying the direction of the transfer. The following flags are defined:

VIDEO CONFIGURE SET - -
Send a rectangle to the device driver.

VIDEO CONFIGURE GET - -
Get the cunent rectangle from the device driver.

VIDEO CONFIGURE MIN - -
Get the minimum destination rectangle from the device driver.

VIDEO CONFIGURE MAX - -
Get the maximum destination rectangle from the device driver.

VIDEO CONFIGURE CURRENT - -
Get or set the current destination rectangle.

VIDEO_CONFIGURE_QUERY
T hi s flag is used to query the device driver to determine if it supports the message.

245

Return Value

Comments

Video Capture Device Drivers Error! Main Document Only.-35

Returns DV _ERR_OK ifthe message was successful. Otherwise, it returns an error
number. The following error is defined:

DV ERR NOTSUPPORTED
Message is not supported.

The use of the destination rectangle for a chaimel depends on the channel type. For the
VIDEO_EXTERNALIN channel, the destination rectangle specifies the location in the
frame buffer used to digitize the image. This rectangle is specified in pixel coordinates.

For the VIDEO_EXTERNALOUT channel, the destination rectangle specifies the
location used to display the overlay image. This rectangle is given in Windows screen
coordinates.

For the VIDEO _IN and VIDEO_ OUT channels, the destination rectangle is currently
undefined.

DVM FORMAT

Parameters

This message is used for configuring the format of the VIDEO _IN channel.

DWORD dwFlags
Specifies flags to indicate the type of format transfer requested. Either the
VIDEO_CONFIGURE_SET or the VTDEO_CONFIGURE_GET flag must be set,
specifying the direction of the transfer. The following flags are defined:

VIDEO CONFIGURE SET - -
Set the current fonnat.

VIDEO CONFIGURE GET - -
Get the cuiTent format.

VIDEO_CONFIGURE_QUERY
Queries the driver whether it supports the message.

VIDEO_CONFIGURE_QUERYSIZE
Returns the size in bytes of the format in lpdwReturn. This flag must be used with
VIDEO CONFIGURE GET.

LPVIDEOCONFIGPARMS lpVConjigParms
Specifies a far pointer to a VIDEOCONFIGPARMS structure. This structure has the
following fields:

lpdwReturn
Specifies a far pointer to a DWORD. If the
VIDEO_CONFIGURE_QUERYSTZE flag is used, the driver fills this field with
the size (in bytes) of the BITMAPINFOHEADER data structure.

lpDatal
Specifies a far pointer to a BITMAPTNFOHEADER data structure.

dwSizel
Specifies the size in bytes of the BITMAPINFOHEADER data strncture.

lpData2
Not used.

02110193

246

Error! Main Document Only.-36 Video for Windows Programmer's Guide

Return Value

Comments

dwSize2
Not used.

Returns DV _ERR_OK if the message was successful. Otherwise, it returns an enor
number. The following error is defined:

DV ERR NOTSUPPORTED - -
Message is not supported.

The DVM_FORMAT message globally defines the attributes of the frame buffer. This
includes dimensions, color depth, and compression of images transferred with
DVM_FRAME and buffers transfened during streaming capture. Changing the format
may affect overall dimensions of the active frame buffer as well as bit depth and color
space representation. Since changing between NTSC and PAL video standards can also
affect image dimensions, applications should request the cu1Tent format following display
of the VIDEO_EXTERNALIN channel dialog box.

DVM FRAME

Parameters

Return Value

Comments

This message transfers a single frame from the video device.

DWORD dwParaml
Specifies a far pointer to a VIDEOHDR structure identifying the buffer.

DWORD dwParam2
Contains the size of the VIDEOHDR structure.

Returns DV _ERR_OK if the message was successful. Otherwise, it returns an enor
number. The following error is defined:

DV ERR STZEFIELD
Specified field size is too small.

This message returns immediately after transfening the frame. For a VIDEO _IN channel,
this message transfers an image from the hardware frame buffer to the buffer specified in
the VIDEOHDR. For a VIDEO_ OUT channel, this message transfers an image from the
buffer specified in the VIDEOHDR to the hardware frame buffer.

DVM GET CHANNEL CAPS

Parameters

Return Value

02110193

This message is used to return the capabilities of a channel to the application.

LPCHANNEL_CAPS lpChannelCaps
Specifies a far pointer to a CHANNEL_ CAPS data structure.

DWORD dwSize
Specifies the size of the CHANNEL_ CAPS data structure.

Returns DV _ERR_ OK if the message was successful. Otherwise. it returns an error
number. The follovv'ing error is defined:

DV ERR NOTSUPPORTED - -
Message is not suppo1ted.

247

Video Capture Device Drivers E1TOi-! Main Document Only.-37

DVM GETERRORTEXT

Parameters

Return Value

Comments

This message retrieves a string describing an error.

DWORD dwParaml
Specifies a far pointer to a VIDEO_GETERRORTEXT_PARMS structure. The
structure identifies the e1Tor number and return buffer.

DWORD dwParam2
Not used.

Returns DV _ERR_OK ifthe message was successful. Otherwise, it returns an error
number. The following en-or is defined:

DV ERR BADERRNUM
Indicates the specified en-or number is out of range.

If the error description is longer than the specified buffer, the description is truncated. The
returned error string is always null-terminated. If the size of the return buffer is zero, a
string description is not returned and DV _ERR_ OK is used as the return value.

DVM GETVIDEOAPIVER

Parameters

Return Value

This message returns the version of the video capture command set used by the driver.

DWORD dwParaml
Specifies a far pointer to a DWORD which will be filled with the version.

DWORD dwParam2
Not used.

Returns DV _ERR_ OK if the message is successful.

DVM PALETTE

Parameters

This message sets and retrieves a logical palette used by a video device channel. This
message applies only to VIDEO_IN and VIDEO_OUT channels.

DWORD dwFlags
Specifies any flags that indicate the type of palette transfer requested . Either the
VIDEO_CONFIGURE_SET or the VIDEO_CONFIGURE_GET flag must be set,
specifying the direction of the transfer. The following flags are defined:

VIDEO CONFIGURE SET - -
Send a palette to the driver.

VIDEO CONFIGURE GET - -
Get the current palette from the driver.

VIDEO_ CONFIGURE_ QUERY
This fl ag is used to query the driver to determine ifit supports the message.

VJD EO_CONFIG URE_QUERYSIZE
Returns the size in bytes of the pal ette in lpdwReturn. Thi s flag is only valid if the
VIDEO_CONFIG URE_GET flag is also set.

02/ 10/93

248

Error! Main Document Only.-38 Video for Windows Programmer's Guide

Return Value

Comments

See Also

LPVIDEOCONFIGPARMS Ip VConfigParms
A far pointer to a VIDEOCONFIGPARMS structure. The
VIDEOCONFIGPARMS structure has the following fields:

lpdwReturn is a far pointer to a DWORD. If the
VIDEO_CONFIGURE_QUERYSIZE flag is used, the driver fills this field with the
size of the logical palette (in bytes).

lpDatal is a far pointer to a LOGPALETTE structure.

dwSizel is the size in bytes of the LOGPALETTE.

IpData2 is not used.

dwSize2 is not used.

Returns D V _ERR_ OK if the message was successful. Otherwise, it returns an enor
number. The following error is defined:

DV ERR NOTSUPPORTED - -
Message is not supported.

A palette is used when converting between frame buffer internal data formats and 8-bit
palettized Dills.

DVM PALETTERGB

DVM PALETTERGB555

Parameters

02/ 10193

This message associates an RGB555 palette with a video device channel. Applications can
provide an RGB555 translation table to a driver for fast conversions between RGB
formats and 8 bit palettized fo1mats. This message applies only to VIDEO_ IN and
VIDEO OUT channels.

DWORD dwFlags
Specifies the flags indicating the type of palette transfer requested. The following flags
are defined:

VIDEO CONFIGURE SET - -
Indicates values are being sent to the driver.

VIDEO_CONFIGURE_QUERY
This flag, when combined with VIDEO_CONFIG URE_SET is used to query the
driver to determine if it supports the message.

LPVIDEOCONFIGPARMS lpVConjigParms
Specifies a far pointer to a VIDEOCONFIGPARMS data structure. This data
structure has the following fields:

lpdwReturn
Not used.

lpDatal
Specifies a far pointer to a LOGPALETTE data structure.

dwSizel
Specifies the size (in bytes) of the LOGPALETTE data structure.

249

Return Value

Comments

Video Capture Device Drivers Error! Main Document Only.-39

lpData2
Specifies a far pointer to a 32 kilobyte RGB555 translation table. This table is used
by the device driver to translate from RGB555 triplets into palette colors when
capturing in 8 bit palette mode.

dwSize2
Specifies the size of the translate table in bytes. This value must be 32,768.

Returns DV _ERR_OK if the message was successful. Otherwise, it returns an e1Tor
number. The following errors are defined:

DV ERR NOTSUPPORTED - -
Message is not supported.

DV ERR CREATEPALETTE - -
The device driver was not able to associate the palette with the video device channel.

DV ERR PARMl
The information supplied for dwParaml is invalid .

DV ERR PARM2
- -
The infonnation supplied for dwParam2 is invalid.

DV ERR SIZEFlELD - -
The data structure supplied for the format is too small.

A translation table provides a fast method of converting between RGB and palettized
color spaces. The palette index corresponding to an RGB color is found by indexing the
translation table at xRRRRRGGGGGBBBBB (the five most significant bits of each color
component is used to create the index).

DVM SRC RECT

Parameters

This message sets and retrieves the source rectangle used by a video device channel.

LPRECT lpSrcRect
A far pointer to a RECT structure.

DWORD dwFlags
Specifies flags that indicate the type of transfer requested. Either the
VIDEO_CONFIGURE_SET or the VIDEO_CONFTGURE_GET flag must be set,
specifying the direction of the transfer. The following flags are defined:

VIDEO CONFIGURE SET - -
Send a source rectangle to the device driver.

VIDEO CONFIG URE G ET
- -

Get the current source rectangle from the device driver.

VIDEO CONFIGURE MIN - -
Get the minimum source rectangle from the device driver.

VIDEO CON FIGU RE MAX - -
Get the maximum source rectangle from the device driver.

VIDEO_CONFIGURE_CU RRENT
Get or set the current source rectangle.

02/l 0/93

250

Error! Main Document Only.-40 Video for Windows Programmer's Guide

Return Value

Comments

VIDEO_CONFIGURE_QUERY
This flag is used to query the driver to determine if it supports the message.

Returns DV _ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DY ERR NOTSUPPORTED
Message is not supported.

The use of the source rectangle for a channel depends on the channel type. For the
YlDEO_EXTERNALOUT channel, the source rectangle specifies the po1iion of the
frame buffer displayed in the overlay window, in pixel coordinates. For the VIDEO_ IN,
VIDEO_ EXTERN AUN, and VIDEO_ OUT channels, the source rectangle is currently
undefined.

DVM STREAM ADDBUFFER

Parameters

Return Value

Comments

This message sends an input buffer to a video device. When the buffer is filled, the device
sends it back to the application.

DWORD dwParaml
Specifies a far pointer to a VIDEOHDR structure identifying the buffer.

DWORD dwParam2
Specifies the size of the VIDEOHDR structure.

Returns DV _ERR_ OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

DV ERR NONSPECIFIC
A buffer is not specified.

DY ERR UNPREPARED
The buffer was not prepared .

The data buffer must be prepared with DVM_STREAM_PREPAREHEADER before it
is passed with DVM_STREAM_ADDBUFFER. The VIDEOHDR data structure and
the data buffer pointed to by its lpData field must be allocated with GlobalAlloc using the
GMEM_MOVEABLE and GMEM_SHARE flags, and locked with GlobalLock.

DVM STREAM FINI

Parameters

Return Value

02110193

This message tenninates streaming on a video channel. This should always be the last
streaming message received by a channel.

DWORD dwParaml
Not used.

DWORD dwParwn2
Not used.

Returns DY _ERR_ OK if the message was successful. Otherwise, it returns an error
number. The follO\ving errors are defined:

251

Comments

See Also

Video Capture Device Drivers faTOr! Main Document Only.-41

DV ERR STJLLPLA YING
There are still buffers in the queue.

lf all the input buffers sent with DVM_STREAM_ADDBUFFER haven't been returned
to the application, your driver should fail the message. Client applications should send
DVM_STREAM_RESET to mark all pending buffers as done prior to sending
DVM STREAM FINI. - -

For VIDEO_ EXTERNALIN channels, this message halts capturing of data to the frame
buffer.

For VIDEO_EXTERNALOUT channels that support overlay, this message disables the
overlay video.

videoStreaminit

DVM STREAM GETERROR

Parameters

Return Value

Comments

This message returns the error status of a channel.

DWORD dwParaml
Specifies a far pointer to a DWORD that the device will fill with the value of the most
recent etTor.

DWORD dwParam2
Specifies a far pointer to a DWORD that the device will fill with the number of frames
dropped.

Returns DV _ERR_OK ifthere is no error. Otherwise, it returns an e1Tor number. The
following error is defined:

DV ERR NOTSUPPORTED
Message is not supported.

A device driver should reset its internal error values and count of frames dropped to zero
after it processes this message.

Client applications should send this message frequently during capture since some device
drivers that do not have access to interrupts use this message to trigger buffer processing.

DVM STREAM GETPOSITION

Parameters

Return Value

This message retrieves the current position of the VIDEO _IN stream.

DWORD dwParaml
Specifies a far pointer to a MMTIM E structure.

DWORD dwI'aram2
Specifies the size in bytes of the MM TIME structure.

Returns D V _ERR_ OK if the message was successful. Otherwise, it return s an error
number. The fo llowing errors are defined:

DV ERR PARM! - -
The data structure supplied for the forn1at has invalid data.

02110193

252

Error! Main Document Only.-42 Video for Windows Programmer's Guide

Comments

DV ERR SIZEFIELD
The data structure supplied for the fonnat is too small.

If a device does not support the fomrnt specified in the wtype field of the MMTIME data
structure it specifies the current time format in the field. The application checks the format
specified in this field when the message returns. Video capture drivers typically return
time in the milliseconds format.

The device sets the position to zero when it receives the DVM_STREAM_START
message.

DVM STREAM INIT

Parameters

Return Value

Comments

02/ l 0/93

This message initializes a video device for streaming. This message must precede all other
streaming messages for a channel.

DWORD dwParaml
Specifies a far pointer to a VIDEO_STREAM_INIT_PARMS structure. This
structure has the following fields:

dw MicroSecPer Frame
Contains the number of microseconds between successive capture frames.

dwCallback
Specifies the address of a callback function or the handle to a window called during
video streaming to process messages related to the progress of recording. This
parameter can be NULL.

dwCallbacklnst
Specifies the instance data passed to the callback function. This parameter is not
used with window callbacks.

dwFlags
Specifies flags for opening the device. The following flags are defined:

CALLBACK WINDOW

If this flag is specified, dwCallback is a window handle.

CALLBACK FUNCTION

If this flag is specified, dwCallback is a callback function address.

DWORD dwParam2
Specifies the size, in bytes, of the data structure.

Returns DY _ERR_OK if the message was successful. Otherwise, it returns an enor
number. The following errors are defined:

DY ERR ALLOCATED
Specified resource is already allocated.

DY ERR NOMEM
Unable to allocate or lock memory.

If a window or call back function will receive callback messages, the device driver uses the
fo llowing messages to indicate the progress of video input: MM_DRVM_OPEN.
MM_DRVM_CLOSE, MM_DRVM_DATA. and MM_DRVM_ERROR.

253

Video Capture Device Drivers Error! Main Document Only.-43

If a callback function is used, it must reside in a DLL. You do not have to use
MakeProclnstance to get a procedure-instance address for the callback function.

For VIDEO_ EXTERNALIN channels, DVM _STREAM_ INIT triggers capturing of data
to the frame buffer.

For VIDEO_ EXTERNALOUT chaimels with overlay capabilities,
DVM_STREAM_INlT enables the overlay.

DVM STREAM PREPAREHEADER

Parameters

Return Value

Comments

This message prepares ai1 input buffer for video streaming.

DWORD dwParaml
Specifies a far pointer to a VIDEOHDR structure identifying the buffer.

DWORD dwParam2
Specifies the size of the VIDEOHDR structure.

Returns DY _ERR_ OK ifthe message was successful. Otherwise, it returns an enor
number. The following errors are defined:

DV ERR NO.l'vf.EM
Unable to allocate or lock memory.

DV ERR NOTSUPPORTED - -
Unable to prepare data block. (This return lets MS VIDEO prepare the data block.)

The VIDEOHDR data structure and the data block pointed to by its lpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags,
and locked with GlobalLock. Preparing a header previously prepared will have no effect,
and the message will return zero. Typically, this operation is used to ensure that the buffer
will be available for use at interrupt time.

DVM STREAM RESET

Parameters

Return Value

Comments

This message stops input of a video streain and resets the cunent position to 0. All
pending buffers are marked as done and returned to the application.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

Returns DV _ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV ERR NOTSUPPORTED - -
Message is not supported.

When a device driver receives this message, it should return to the state established fo r
DVM STREAM INIT. - -

0211 0193

254

Error! Main Document Only.-44 Video for Windows Programmer's Guide

DVM STREAM START

Parameters

Return Value

Comments

This message starts a video stream.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

Returns DV _ERR_OK ifthe message was successful. Otherwise, it returns an etTor
number. The following error is defined:

DV ERR NOTSUPPORTED
Message is not supported.

For VIDEO _IN channels, this message begins transfelTing the contents of the frame buffer
to the system supplied buffers.

DVM STREAM STOP

Parameters

Return Value

Comments

This message stops a video stream.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

Returns DY _ERR_ OK ifthe message was successful. Otherwise, it returns an error
number. The following error is defined:

DV ERR NOTSUPPORTED
Message is not supported.

When a device receives this message, it marks the current buffer as done and retains any
empty buffers remaining in the queue. For the buffer marked as done, the device places
the actual length of the data in the dwBytesUsed field of the VIDEOHDR structure.

If the input is not stm1ed, this message has no effect and the device driver returns
DV ERR OK.

DVM STREAM UNPREPAREHEADER

Parameters

Return Value

02/10/93

This message cleans up the preparation perfonned by
DVM STREAM PREP AREHEADER.

DWORD dwParaml
Specifies a far pointer to a VIDEOHDR structure identifying the buffer.

DWORD dwParam2
Specifies the size of the VIDEOHDR structure.

Returns D V _ERR_ OK if the message was successfu 1. Otherwise. it returns an error
number. The following errors are defined :

255

Comments

Video Capture Device Drivers Error! Main Document Only.-45

DV ERR STILLPLA YING
The data buffer is still in the device driver's available queue.

DV ERR NOTSUPPORTED - -
Unable to handle data block preparation. (This return lets MS VIDEO unprepare the
data block.)

This message is the complementary message to DVM_STREAM_PREPAREHEADER.
This message unlocks the data buffer. Unpreparing a buffer not previously prepared has
no effect, and the device driver returns DRV _ERR_OK.

DVM UPDATE

Parameters

Return Value

Comments

This message is used with a VIDEO_EXTERNALOUT channel to indicate the display
needs updating. This is typically sent to an overlay device whenever its client window is
moved, sized, or requires painting.

HWND hWndClient
Specifies a window handle to the client window in which the
VIDEO_EXTERNALOUT channel is displayed.

HDChDC
Specifies the device context to be repainted.

Returns DV _ERR_ OK ifthe message was successful. Otherwise, it returns an error
number. The following error is defined:

DV ERR NOTSUPPORTED - -
Message is not suppmied.

This message is sent to a driver when video overlay is enabled and the overlay key color
might need updating. Painting the key color is the responsibility of the driver. An
application initiates this message whenever it receives a WM_PAINT, WM_MOVE,
WM_POSITIONCHANGED, or WM_SIZE message.

This message always follows DVM_SRC_RECT and DVM_DST_RECT messages for
the VIDEO EXTERNALOUT channel.

The DVM_STREAM_INIT and DVM_STREAM_FINI messages are used to enable
and disable the overlay.

MM DRVM CLOSE

Parameters

Comments

This message is sent by a driver to a video callback functi on or window when a
DYM_STREAM_ FINI message is received.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

This message is used by video capture drivers, installable compressors. and other types of
inslallable drivers whenever a device is closed.

02/10/93

256

Error! Main Document Only.-46 Video for Windows Programmer's Guide

MM DRVM DATA

Parameters

Comments

This message is sent by a driver to a video callback function or window when the
specified buffer is returned to the application.

DWORD dwParaml
Specifies a far pointer to a VIDEOHDR structure identifying the buffer.

DWORD dwParam2
Not used.

For VIDEO _IN cha1mels, buffers are returned when they have been filled. For
VIDEO_ OUT channels, buffers are returned after they are displayed. All buffers are
returned for the DVM_STREAM_RESET message.

This message is used by video capture drivers, installable compressors, and other types of
installable drivers to signal an application that new data is available.

MM DRVM ERROR

Parameters

Comments

This message is sent by a device driver to a video callback function or window when an
error has occurred.

DWORD dwParaml
Specifies the etTor ID.

DWORD dwParam2
Not used.

Although a device driver can send this message for any reason, it most often indicates that
no more buffers are available for video streaming.

The MM_DRVM_ERROR message is used by video capture drivers, installable
compressors, and other types of installable drivers to signal an application that an error
occurred.

MM DRVM OPEN

Parameters

Comments

02/ 10/93

This message is sent by a driver to a video callback function or window when a
DVM_STREAM_INIT message is received.

DWORD dwParaml
Not used.

DWORD dwParam2
Not used.

This message is used by video capture drivers, installable video compressors, and other
types of installable drivers whenever a device is opened.

257

Video Capture Device Drivers Error! Main Document Only.-47

Video Capture Device Driver Data Structure Reference
This section lists data structures used by video capture device drivers for Windows. The
data structures are presented in alphabetical order. The structure definition is given,
followed by a description of each field.

CHANNEL CAPS

Fields

The CHANNEL CAPS structure is used with the DVM GET CHANNEL CAPS
message to return the capabilities of a channel to an application.

t ypedef struct channel_caps_t ag
DWORD dwFl ags ;
DWORD dwSrcRec tXMod;

DWORD dwSrcRectYMod;

DWORD dwSrcRectWidthMod;
DWORD dwSrcRectHeightMod;

DWORD dwDstRectXMod;

DWORD dwDstRectYMod;
DWORD dwDstRectWidthMod ;

DWORD d wDstRectHeight Mod;

CHANNEL_ CAPS ;

The CHANNEL_CAPS structure has the following fields :

dwFlags
Returns flags giving information about the channel. The following flags are defined:

VCAPS OVERLAY
Indicates the channel is capable of overlay. This flag is used only for
VIDEO EXTERNALOUT channels.

VCAPS SRC CAN CLIP ·
Indicates that the source rectangle can be set smaller than the maximum
dimensions.

VCAPS DST CAN CLIP - - -
Indicates that the destination rectangle can be set smaller than the maximum
dimensions.

VCAPS CAN SCALE
Indicates that the source reCtangle can be a different size than the destination
rectangle.

dwSrcRectXMod
Returns the granularity allowed when positioning the source rectangle in the horizontal
direction.

dwSrcRectYMod
Returns the granularity allowed when positioning the source rectangle in the vertical
direction.

dwSrcRectWidthMod
Returns the granularity allo,ved when setting the width of the source rectangle.

02/10/93

258

Error! Main Document Only.-48 Video for Windows Programmer's Guide

Comments

dwSrcRectHeigh tMod
Returns the granularity allowed when setting the height of the source rectangle.

dwDstRectXMod
Returns the granularity allowed when positioning the destination rectangle in the
horizontal direction.

dwDstRectYMod
Returns the granularity allowed when positioning the destination rectangle in the
vertical direction.

dwDstRectWidthMod
Returns the granularity allowed when setting the width of the destination rectangle.

dwDstRectHeightMod
Returns the granularity allowed when setting the height of the source rectangle.

Some channels can only use source and destination rectangles which fall on 2, 4, or 8
pixel boundaries. Similarly, some channels only accept capture rectangles widths and
heights that are multiples of a fixed value. Rectangle dimensions indicated by modulus
operators are considered advisory. When requesting a particular rectangle, the application
must always check the return value to insure the request was accepted by the driver. For
example, if dwDstRectWidtbMod is set to 64, the application might try to set destination
rectangles with widths of 64, 128, 192, 256, ... , and 640 pixels. The driver might actually
supp01i a subset of these sizes and indicates the supported sizes with the return value of
the DVM_DST_RECT message. If a channel supports arbitrarily positioned rectangles,
with arbitrary sizes, the values above should all be set to I.

VIDEO GETERRORTEXT PARMS

Fields

02/J 0/93

- -
The VIDEO_GETERRORTEXT_PARMS structure specifies a return buffer for the
error text.

typedef struct tag_video_geterrortext_parrns

DWORD dwError;

LPSTR lpText ;

DWORD dwLength;

VIDEO GETERRORTEXT PARMS;

The VIDEO_GETERRORTEXT_PARMS structure has the following fields:

dwError
Specifies the error number.

Ip Text
Specifies a far pointer to the error return buffer.

dwLength
Specifies the length of the error return buffer.

259

Video Capture Device Drivers Error! Main Document Only.-49

VIDEO OPEN PARMS

Fields

Comments

The VIDEO_OPEN_PARMS structure defines the type of channel to open on a video
capture device.

type de f struct

DWORD dwSize;

FOURCC fccTyp e;

FOURCC fccComp ;

DWORD dwVersion ;

DWORD dwFlags;

DWORD dwError;

VIDEO_OPEN_ PARMS;

The VIDE O_OPEN_PARMS structure has the following fields:

dwSize
Specifies the size of the VIDEO_OPEN_PARMS structure.

fee Type
Specifies a four-character code identifying the type of channel being opened. For
capture devices, this is set to "vcap".

fccComp
Unused.

dwVersion
Specifies the cutTent version number of the video capture command set in
MSVIDEO.DLL.

dwFiags
Specifies flags used to indicate the type of channel. The following flags are defined:

VIDEO EXTERNALIN
Specifies a channel that loads data from an external source into a frame buffer. This
can also be called the capture channel.

VIDEO IN
Specifies a channel that transfers data from the frame buffer to system memory.

VIDEO OUT
Specifies a channel that transfers data from system memory to the frame buffer.

VIDEO EXTERNALOUT
Specifies a channel that controls display of fram e buffer images. Display might be
either on a second monitor, or via overlay.

dwError
Specifies an error value the driver should return to the client application if it fails the
open.

This structure is identical to the IC_ OPEN structure used by installable compressors. This
lets a driver handle both video capture and decompressor messages with a single
DrivcrProc entry point.

02110193

260

Error! Main Document Only.-50 Video for Windows Programmer's Guide

VIDEO STREAM INIT PARMS

Fields

02/ l 0/93

The VIDEO STREAM INIT PARMS structure contains the fields used to initialize a
video stream for video capture.

t ypedef s t r u c t tag_vide o_ s tre a m_ i nit_p arms
DWORD dwMi croSecPerFrame ;

DWORD dwCal lback;

DWORD dwCallbackins t;
DWORD dwFla gs ;

DWORD hVideo ;

VI DEO STREAM I NI T PARMS ;

The VIDEO_STREAM_INIT-'PARMS structure has the following fields:

dw MicroSecPer Frame
Specifies the number of microseconds between the start of one frame capture and the
start of the next.

dwCallback
An optional parameter which specifies an address to a callback function or a handle to
a window called during video recording. The callback function or window processes
messages related to the progress of recording.

dwCallbacklnst
Specifies user instance data passed to the callback function. This parameter is not used
with window callbacks.

dwFiags
Specifies flags for the data capture. The following flags are defined:

VIDEO ALLOWSYNC
If this flag is not specified, the device will fail to open if it is a synclu·onous device.

CALLBACK WINDOW
If this flag is specified, dwCallback contains a window handle.

CALLBACK FUNCTION
Tfthis flag is specified, dwCallback contains a callback function address.

hVideo
Specifies a handle to the video channel.

261

Video Capture Device Drivers Error! Main Document Only.-51

VIDEOCONFIGPARMS

Fields

See Also

The VIDEOCONFIGPARMS structure is used to send or return message specific
configuration parameters.

typedef s t ruct {
LPDWORD lpdwReturn;
LPVOI D lpDatal ;
DWORD dwSizel;

LPVOID lpData2;
DWORD dwSize 2 ;

VI DEOCONFIGPARMS;

The VIDEOCONFIGPARMS structure has the following fields:

IpdwReturn
Specifies a far pointer to a DWORD to be filled with a message specific return value.

lpDatal
Specifies a far pointer to message-specific data.

dwSizel
Specifies the size in bytes of data passed in lpDatal.

IpData2
Specifies a far pointer to message specific data.

dwSize2
Specifies the size in bytes of data passed in IpData2.

DVM_FORMAT, DVM_PALETTE, DVM_PALETTERGB555

VIDEOHDR

Fields

The VIDEOHDR structure defines the header used to identify a video data buffer.

typedef struct videohdr_ tag
LPSTR l pData;
DWORD dwBuf ferLength;

DWORD dwBytesUsed;
DWORD dwTimeCaptured;
DWORD dwUser;

DWORD dwFlags;
DWORD dwReserved [4];

VIDEOHDR;

The VIDEOHDR structure has the following fields:

Ip Data
Specifies a far pointer to the video data buffer.

dw Buffer Length
Specifies the length of the data buffer.

dw Bytes Used
Specifies !he number of bytes used in the data buffer.

02/10/93

262

Error! Main Document Only.-52 Video for Windows Programmer's Guide

02/1 0/93

dwTimeCa ptured
Specifies the time (in milliseconds) when the frame was captured relative to the first
frame in the stream.

dwUser
Specifies 32 bits of user data.

dwFlags
Specifies flags giving infom1ation about the data buffer. The following flags are
defined for this field :

VHDR DONE
Set by the device driver to indicate it is finished with the data buffer and it Is
returning the buffer to the application .

VHDR PREPARED
Set by Windows to indicate the data buffer has been prepared with
videoStreamPrepareHeader.

VHDR_fNQUEUE
Set by Windows to indicate the data buffer is queued for playback.

VHDR KEYFRAME
Set by the device driver to indicate a key frame.

dwReserved(4]
Reserved for use by the device driver. Typically, these maintain a linked list of buffers in
the queue.

263

NOTE: MCIWnd is an unsupported API for the Video for Windows 1.0
Developer's Kit and is included as a sample only. Your application is free to
use mciwnd.lib and the APIs for mciwnd but you do so at your own risk and
PSS will not answer questions about this component if you ask.

Using MCIWND to Make Developing MCI Applications Easier

Overview

Using the MCI interface to allow your application to play MCI device files can

sometimes be confusing and complicated, especially with all of the different
commands that a device might support. Also, there is no user interface built in to
MCI to let the user control the playback of files - an application must provide its
own scrollbar and buttons for the user to play, pause, rewind, or seek through a file,
or not provide this service at all.

MCIWND is a library that your application can link to that will create a new class of

window. Your application needs only to create a window of this class, and then
send it a message to open an MCI file. It can then send other messages to control
the playback of the file, or give the user this control with the built in toolbar,
scrollbar and menus.

MCIPLAY.C is sample code of an Multiple Document Interface (MDI) application that

uses this window class to allow the playback and control of multiple MCI
devices/files.

Services of the MCIWND window class

 A Toolbar with a PLAY, PAUSE and STOP button

 A Trackbar (scrollbar) to allow seeking within a file

 A Pop-Up Track Menu with some common commands when the right mouse button

is clicked over the window

 Simple single-command macros for many of the common MCI commands which

eliminates the need for longer, multi-line mciSendCommand or mciSendString
calls.

Using MCIWND

264

 Include the file VFW.H in your application's source files to give you access to

function prototypes and Macros and defines you will need.

 Link your application with MCIWND.LIB to get the new functionality.

 Call MCIWndRegisterClass(HINSTANCE hInst) to register the new Window

Class "MCIWND_WINDOW_CLASS". This function returns TRUE if
successful.

 Use the standard windows function CreateWindow() to create a window to play an

MCI file inside of.

 or...

 Use the MCIWndCreate(HWND hwndParent, HINSTANCE hInst, DWORD

dwStyle, LPSTR szFile) function. This takes the place of CreateWindow() and has
the advantage of being able to open an MCI device in the same call as the window is
created in. NOTE: You do not need to call MCIWndRegisterClass() if you use this
function, only if you use CreateWindow().

 For non-windowed devices, you will need a window to hold the toolbar and

trackbar. If there will be no controls, and you are playing a non-windowed device
(EG playing a Sound file) you may want to leave the window invisible.

 For both of these calls, you have some new styles you can choose from as well as

the standard window styles. They are as follows:

 MCIWND_NOAUTOSIZE Let the app size the window. The default is to

automatically size the created window to a default size big enough for the window
and the playbar (if used).

 MCIWND_NOPLAYBAR Do not put a playbar (Toolbar and Trackbar) in the

window. By default, a playbar appears. It provides a PLAY, PAUSE and a STOP
button, as well as a Trackbar to seek through the file.

 MCIWND_NORESIZETOWINDOW For MCI devices that can window

(have video to display), MCIWND will ordinarily resize the image to any size you
make the window. This flag inhibits that action. (The image is a constant size
regardless of the size of the window containing it).

 MCIWND_NOTRACKMENU Do not provide a pop-up menu. Normally,

pressing the right mouse button over the window will bring up a track menu with
commands for Play, Pause, Stop, Rewind, Volume, Speed, and for windowed
devices, a Window (zoom) command.

265

 MCIWND_NOTIFYSTATE Whenever the state of the device changes
(eg. from Stop to Play) the parent window will receive a
MCIWNDM_NOTIFYSTATE msg with an lParam of the new state of the device
(eg. MCI_MODE_STOP).

 MCIWND_NOTIFYPOS Whenever the position of the device changes (eg. as

it's playing) the parent window will receive a MCIWNDM_NOTIFYPOS msg with
an lParam of the new position in the media.

 MCIWND_SHOWNAME Sets the window text of the window to the filename

of any MCI file you open in this window.

 Open an MCI file or device using the macro MCIWndOpen(HWND hwnd,

LPSTR sz, UINT f). Hwnd is the window you have created, and sz is the name of
the file or device to open. F is currently unused and should be set to 0.

 Send the window a command using one of the following macros. Unless otherwise

specified, the return code is the same as you would get from mciSendString() using
the same command.

 MCIWndClose(hwnd) Close the MCI file. You can then re-open

another file in the same window, or just call open again and the currrent file will
close automatically.

 MCIWndPlay(hwnd) Play the file from the current position.

 MCIWndStop(hwnd) Stops the device.

 MCIWndPause(hwnd) Pauses the device.

 MCIWndResume(hwnd) Resumes playing (after a pause).

 MCIWndSeek(hwnd, lPos) Seeks to a specified position in the file. If lpos ==

MCIWND_SEEKSTART it will seek to the beginning. If lpos ==
MCIWND_SEEKEND it will seek to the end.

 MCIWndPlayReverse(hwnd) Play the file backwards starting at the

current position.

 MCIWndGetMode(hwnd) Returns the current mode of the device (eg.

MCI_MODE_PLAY.

 MCIWndGetDeviceID(hwnd) Gets the deviceID of the open file which

you will need if you wish to call mciSendCommand or mciSendString to do any
commands that are not supported by this interface.

266

 MCIWndGetStart(hwnd) Returns the starting position of the file.
Seeking here will place the file at the beginning

 MCIWndGetLength(hwnd) Returns the length of the file. The start plus the

length will give you the end of the media.

 MCIWndGetEnd(hwnd) Returns the end position of the file.

 MCIWndStep(hwnd, n) Steps n frames or milliseconds, depending

on the time format of the device. A positive value is a step forward. A negative
value is a step backwards.

 MCIWndDestroy(hwnd) Destroys the window. No return code.

 MCIWndSetZoom(hwnd, n) For windowed devices, sets the size of the

window to n percent of the original size of the window.

 MCIWndSetVolume(hwnd, n) Sets the volume of audio playback (if

supported) to n. 1000 is normal volume. Higher numbers are louder. Lower
numbers are quieter.

 MCIWndGetVolume(hwnd) Gets the current volume.

 MCIWndSetSpeed(hwnd, n) Sets the playback speed of the device (if

supported) to n. 1000 is normal speed. Higher numbers are faster. Lower numbers
are slower.

 MCIWndGetSpeed(hwnd) Gets the playback speed of the device.

 MCIWndRealize(hwnd, f) Tells MCI to realize the palette of the image it is

displaying in the window. f is TRUE if the window is in a background application.
You should call this function in your app's WM_PALETTECHANGED and
WM_QUERYNEWPALETTE code, instead of using the standard windows function
RealizePalette. This MCIWnd function will use the palette of the MCI device and
call RealizePalette for you. On the other hand, you could just pass the
WM_PALETTECHANGED or WM_QUERYNEWPALETTE msg on to the MCI
window and this will happen automatically.

 MCIWndSendString(hwnd, sz) Takes the place of mciSendString(sz,

NULL, 0, NULL). Simply give the string to send to the window. Leave out the
alias after the first word. (eg. sz = "set time format frames" is a valid command).

 MCIWndUseTime(hwnd)
 MCIWndUseFrames(hwnd) Sets the time format of the device to either

milliseconds or frames mode. This determines how to interpret a position in the

267

file. By default, when you open a file in an MCI Window, the device will be set to
frames mode. If that fails, it will try millisecond mode.

 MCIWndValidateMedia(hwnd) If you ever do anything to a device that

changes the time format of the media (like changing time formats in some other way
than by using an MCIWnd macro) the starting and ending position of the media, as
well as the trackbar will still be using the old values, and need to be updated. Send
this message to update these values. Normally, you should not need to use this
macro.

268

	Prorammer's Guide
	Ch 1
	Ch. 2
	Ch. 3
	Ch. 4
	Ch. 5
	Ch. 6
	Ch. 7
	Ch. 8
	Ch. 9
	Ch. 10
	Ch. 11
	MCIWND

