
A Study of File Sizes and Functional Lifetimes

M. Satyanarayanan

DEPARTMENT OF COMPUTER SCIENCE

CARNEGIE-MELLON UNIVERSITY

1. I n t r o d u c t i o n

The performance of a file system depends strongly on the charac-

teristics of the files stored in it. This paper discusses the collection,

analysis and interpretation of data pertaining to files in the computing

environment of the Computer Science Department at Carnegie-Mellon

University (CMU-CSD). The information gathered from this work will

be used in a variety of ways:

1. As a data point in the body of information available on file
systems.

2, As input to a simulation or analytic model of a file system
for a local network, being designed and implemented at
CMU-CSD [1],

3. AS the basis of implementation decisions and parameters
for the file system just mentioned.

4. As a step toward understanding how a user community
creates, maintains and uses files.

2. Data Collection

2.1. The Environment

The data used in this paper was obtained on a Digital Equipment

Corp. PDP-10 Model KL-10 processor[7/with 1 Mword of primary

memory and eight 200 Mbyte disk drives, running the TOPS-10

operating system [13]. This machine has been the main computational

resource of the CMU-CSD for the past five years. Towards the end of

this period, a number of other machines were added to this envi-

ronment. Though the machine used for this study is now off-loaded by

those machines, it continues to play a very important role and is still

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1981 A C M 0 - 8 9 7 9 1 - 0 6 2 - 1 - 1 2 / 8 1 - 0 0 9 6 $ 0 0 . 7 5

heavily used. Consequently, it is expected that the data presented here

is a good reflection of the file usage characteristics of this community.

2.2. The File Sys tem

I n the TOPS-10 operating system, every file has a &character file

name and a 3-character file extension, and is a member of exactly one

directory. The file extension indicates the nature of the contents of a

file. For example, a Pascal program source would have the extension

PAS, while its relocatable object module would have the extension REL.

An installation-dependent number of extensions are regarded as

"standard" extensions. Though system and user programs often make

assumptions about a file based on its extension, there is no mechanism

for validating or guaranteeing these assumptions. In practice, it is

extremely rare that a standard extension is used for non-standard

purposes. A quarter of the files examined had non-standard

extensions; such files were ignored for those parts of this study that

discriminated on the basis of file type. File names, unlike extensions,

have no system-wide significance and were not examined.

A file consists of a sequence of fixed-length blocks, Which are. the

units of addressability on the disks. Each block consists of 128 36-bit

words. The last block in a file may be only partially written; such

blocks were regarded, in this study, as whole blocks, The size of a file is

limited only by the amount of secondary storage available. Unlike

some file systems, such as OS/VS2 for the IBM 370 [5], a user does not

have to estimate the size of a file at the time of its creation.

The operating system maintains, for each file, information regarding

its size, its owner, the date it was last written, the date it was last

accessed and its physical storage map. This information may be

obtained by queries from user programs to the operating system.

In the environment in which this study was done, a manual file

migration scheme is used to relieve the paucity of disk space. Every

month, the operations staff runs a program which copies onto magnetic

tape, and deletes from disks, those files which have neither been written

96

APPLE EXHIBIT 1078
APPLE v. PMC
IPR2016-01520

Page 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

nor read in the preceeding three months. Files so migrated may be

restored to disk at the request of their owners; in practice, very few such

requests are received. Each user has a file named MIGRAT.DIR to which

the migration program appends details of every file of that user it

migrates. The union of a user's current directory and his MIGRAT.DIR

entries constitutes the set of all files created, but not deleted, by that

user. Users who wish to edit their MIGRATDIR files may do so; in

practice this is quite rare. Files may also be migrated at the explicit

request of users; it is observed that fcw files are migrated for this

reason.

2 . 3 . The C o l l e c t i o n T e c h n i q u e

The flies in this study fall into two classes: current files and migrated

files. Data for both classes were obtained without any modifications to

the operating system. A vendor-supplied utility program which creates

a file containing details of every other file in the system was used to

obtain data on current files. Data on migrated files was obtained by

examining the MIGRAT.DIR file of every user in the system. For both

classes the data extracted was organized as a 3-dimensional array with

logarithmic age histogram buckets on one dimension, logarithmic size

histogram buckets on another dimension, and the set of standard file

extensions on the third. This array was created once each for current

and migrated files, recorded in a file, and used as a database for

software written to answer questions such as "What is the distribution

of file sizes for current files with ages in a given range and with a given

set o f extensions." Table 6-1 shows an example of the output for one

such query.

It should be noted that the data gathered by this method is a

snapshot of the file system at one point in time. To examine the

temporal behavior Of the file properties described here, one would have

to take snapshots spaced apart in time and compare the data from each.

2 . 4 . The Q u a n t i t i e s M e a s u r e d

Probably the three most common questions asked about any file are:

1. "What does it contain?"

2. "How big is it?"

3. "How old is it?"

To the designer of a file system, the first question is probably only of

marginal relevance. In any case, a precise answer to it requires a

complete specification of the contents of a file! Specifying the

extension e r a file answers this question at one level of granularity. One

outcome of this study is, therefore, a histogram of file extensions for

any cross-section of the set of files examined. Figure 6-1 shows such a

histogram. The integers on the abscissa are mappings from the set of

extensions to integers; Table 6-2 gives some of these mappings.

The size distribution of files is a crucial factor in deciding many of

the file system parameters. The size of a file, measured in blocks, is one

of the two quantities of primary interest in this study.

The other important quantity is the age of a file. "Age" is usually

understood to mean the interval between the creation of a file and the

instant of data collection. However, the original date of creation of a

file is not maintained by TOPS-10; only the dates of last modification

and last access are available. The difference between these two dates is

a measure of the usefulness of the current data in the file. This

quantity, the functional lifetime of a file, is the second item of interest in

this study. For brevity, the term "f-lifetime" will mean "functional

lifetime" in the rest of this paper. Fortuitously, it is the f-lifetime of a

file, not its chronological age, which is important in the design of file

migration algorithms. Further, the file system design described in [li

and referred to in Section 1 is predicated on the assumption that the f-

lifetime of files is short - - this study was conducted, in part, to verify

this assumption.

3. Data I n t e r p r e t a t i o n

3.1. General Observations

A total of about 36,000 current files and 50,000 migrated files were

examined in this study. About 99% of the files examined had sizes less

than 1000 blocks and f-lifetimes Jess than 2000 days. 1 Both size and f-

lifetime are discrete variables, with minimum values of 1 block and 1

day respectively. However, for ease of data interpretation and

analytical approximation, both variables are treated as continuous

variables.

Even a cursory examination of the data reveals some interesting facts.

As Figure 6-2 indicates, the size distribution is skewed towards small

sizes: 50% of the files are less than 5 blocks long and 95% of them are

less than 100 blocks long. Figure 6-3 shows that the f-lifetime

distribution is also skewed towards the low end, though not as sharply

as the size distribution. Nearly 30% of the files have f-lifetimes of one

day and 50% of them have f-lifetimes less than 30 days. Tables 3-1 and

3-2 present a subset of the data points used to generate Figures 6-2 and

6-3.

]There are some files which are older than the system -- they were obtained from
other, older, PDP-10 systems.

97
APPLE EXHIBIT 1078

APPLE v. PMC
IPR2016-01520

Page 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Size Cure. Fraction

1 block 0.245

5 blocks 0.518

10 blocks 0,665

100 blocks 0.952
I

1000 blocks I 1.000

Table 3-1: Cum. Dist. Fn. &Fi le Sizes

F-Lifetime] Cure. Fraction
1 day 0.320

10 days 0.410

100 days 0.651

1000 days 0,947

2000 days 0.986

Table 3-2: Cum. Dist. Fn. of File F-Lifetimes

The preponderance of very small files indicates that the TOPS-10 file

allocation algorithm, which allocates disk storage in units of 5 blocks

called clusters, tends to waste a significant amount of storage. However,

the size of allocation tables increases as the unit of allocation decreases.

Further, sequential access to a file is likely to be faster if successive

blocks of the file are close to each other; this is more likely with larger

allocation units. The TOPS-10 choice of 5 blocks as the unit of

allocation probably represents a reasonable tradeoff between minimi-

zing storage fragmentation and improving performance. Powell [8]

discusses these tradeoffs and the use of adaptive disk allocation

strategies in the context of the Demos file system. The minimum unit

of allocation in that system is one disk sector, 4K bytes, which is of the

same order o f magnitude as the unit &allocation, 2.5K bytes, in TOPS-

10.

The rest of the data analysis discusses three questions:

1. Are the properties of migrated files different from those of
current ones?

2. Does the type of a file affect its properties?

3. Does the size of a t'de influence its f-lifetime?

3.2. Effect of Migration

Figure 6-4 compares the size distributions of current and migrated

files. Except at the very low end, there is virtually no difference

between the curves. At the low end, there are fewer migrated files than

current files. The following explanation may explain this phenomenon:

a large number of very short files are created by system programs. Text

editors and mail servers are two examples of programs which create

short auxiliary files which are used only once. These files are

automatically deleted by the programs which created them when they

are run a second time, or by users when they run out of disk quotas.

Such files are unlikely to remain both unaltered and undcleted for a

period of time long enough to qualify them for migration, Conse-

quently, small files are likely to form a smaller fraction of the migrated

population than the current population.

Figure 6-5 shows that migrated files tend to have shorter f-lifetimes

than current files. To see why this is so, consider how a long-f-lifetime

file gets migrated. It would have to get created, then read (but not

written) frequently for a long time and then all accesses to it would have

to stop for a period long enough for it to qualify for migration. The

only obvious files that meet these criteria are the successive versions of

commonly used system or user programs. The infrequency of

generation of such files leads to the fact that there are fewer long-f-

lifetime files in the migrated population than in the current population.

The rest of this paper discusses only current files. Unless otherwise

specified, the comments about current files also hold for migrated files

with, perhaps, slightly different absolute numbers.

3.3. Effect of File Type

Since it is located in a research-oriented, academic environment, the

machine on which this study was conducted is used primarily for two

activities: document preparation and program development. Nearly

half the files examined were created in conjunction with one of these

two activities: program sources files, program object files, document

processor input files, and document processor output files. This section

examines the characteristics of these four classes. The remaining half of

the files was highly fragmented, with no clearly identifiable, large

classes. Detailed study, discriminating on the basis of file type, of that

set of files is unlikely to yield any fresh insights.

Figure 6-6 shows the effect of file type on file size. Object files and

document processor output flies tend to have much larger sizes than

source files and document processor input files. The size characteristics

of the entire population resembles that of source and document

processor input files.

Figure 6-7 shows the effect of file type on file f-lifetimes. Document

processor files tend to have much shorter f-lifetimes than program files.

It is possible that this is due to the fact that once a document is

complete, people tend to read the hard copy rather than the machine-

readable copy. Important programs, on the other hand, tend to be used

many times after they are debugged. Certain program source files are

read long after they are debugged; for example, useful macro defini-

tions are often included in other programs.

Table 3-3 summarizes the important characteristics of different file

types. Probably the most important lesson to be learned in this section

98 APPLE EXHIBIT 1078
APPLE v. PMC
IPR2016-01520

Page 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

is that the type of activities engaged in by a user community strongly

influences the size and f-lifetime properties of the files created by it.

Files in a commercial data processing environment or a fusion research

center can be expected to exhibit markedly different characteristics

from those reported here.

Type of File Number Size F-Lifetime
Mean Std Dev Mean StdDev

Program Sources 4010 21.84 47.63 363.6 73i .3

Object Files 3474 53.99 116.3 414.6 681.4

Doc. Proc. Input 7085 29.28 70.95 137.5 322.7

Doc. Proc. Output 872 61.6 111.04 45.2 207.9

Entire Population 35652 23.89 66.83 238.9 531.9

Table 3-3: Effect of Fiie Type on File Sizes and F-Lifetimes

3.4 . S ize /F-Li fe t ime Correlation

How does the size of a file affect its f-lifetime? Since the

environment contains no large, frequently-modified databases, the most

likely type of large files are infrequently-modified databases, or

frequently-used and rarely-modified system programs such as compi-

lers and editors. Small files, on the other hand, are likely to be

temporary files of various sorts, or files associated with use-once-and-

throw-away programs. Intuitively, therefore, one would expect large

files to exhibit longer f-lifetimes than small files.

Figure 6-8 shows the f-lifetime distribution of files, with size as a

parameter 2. Suprisingly, the curves indicate that large files tend to have

shorter, not longer, f-lifetimes than small files. The largest average f-

lifetime is, in fact, that of 1-block files! Table 3-4 summarizes the

information in Figure 6-8.

Size

1 block

10 blocks

91-100 blocks

401-500 blocks

901-1000 blocks

Number

8745

762

207

101

13

F-Lifetime

Mean Std Dev
204.8 833.1

231.4 512.8

170.5 908.8

1~.1 ~4.5

1~.2 ~0.6

Table 3-4: Effect of Size on F-Lifetime

The data was closely examined to see if any particular file type, with

markedly different characteristics from the total population, was

causing this anomaly. Perhaps document processor output files, whose

f-lifetimes tend to be short, perturb the data) However, the data fails to

support this hypothesis - - document processor output files tend to have

There are too few files of size 500 blocks or more to obtain a smooth cumulative
distribution function: a discrete function is therefore shown for such files.

3This suggestion was offered by one of the reviewers of this paper.

short f-lifetimes independent of size, and they do not form more than

9% of the total population larger than 100 blocks. Removing document

processor output files from the total population does not change the

size/f-lifetime correlation. One file type, with extension MSG, exhibits

an average size nearly four times and an average f-lifetime one-tenth

that of the total population. Files with this extension are used as

repositories of electronic mail messages which have been received and

read by users, but not yet deleted by them. Table 3-5 presents the

size/f-lifetime correlation for MSG files. However, excluding such files

does not change the size/f-lifetime behaviour. In fact, no single file

type, constituting 5% or more of the total population, is responsible for

this characteristic of files. For example, Table 3-6 shows the effect of

excluding MSG files and document processor output files ~ there is still

a falloff of f-lifetime with size. One can therefore take this to be a

characteristic of files in general. If one were to assume that every bit of

information stored in a file system is equally likely to be modified, the

probability of a file being modified is directly proportional to the size of

the file. Under this assumption, large files are indeed likely to have

shorter f-lifetimes than small files.

Size

1 block

10 blocks

9%100 blocks

401-500 blocks

901-1000 blocks

Number

7

16

13

11

3

F-Lifetime

Mean Std Dev
414.0 581.0

50.9 115.0

25.9 71.5

29.5 76.5

1.0 O.O

Table 3-5: Size/F-Lifetime Correlation for MSG Files

Size

1 block

10 blocks

91-100 blocks

401-500 blocks

901-1000 blocks

Number
i-

8725

717

182

80

9

F-Lifetime

Mean Std Dev
266.5 640.3

243.0 528.2

189,3 322.7

142.4 375.1

173.1 272.1

Table 3-6: Effect of excluding MSG and Doc. Proc. Output Files

4. A n a l y t i c A p p r o x i m a t i o n

4.1. General Discussion

Analytic approximations to the size and f-lifetime distributions are

investigated here for two reasons:

• To obtain a simple and computationally efficient means of
generating random size and f-lifetime variables.

• To see ifa model useful in analytic performance evaluations
can be postulated for file sizes and f-lifetimes.

99 APPLE EXHIBIT 1078
APPLE v. PMC
IPR2016-01520

Page 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

The models examined in this paper were motivated by the fi)llowing

observations:

• At least to a first approximation, the size and f-lifetime of a
file one creates is independent of the files one has created in
the past.

• Both size and f-lifetime distributions are sharply skewed
toward the low end,

• A Markovian model is analytically the most tractable [2, 3].

The simplest model meeting these criteria is an exponential distri-

bution. If the size distribution is exponential with mean M, the

probability that a random file has a size less than X is given by

1 - e "X/M. Both the mean and standard deviation of such a distribution

are equal to M. Unfortunately, almost all the size and f-lifetime

distributions observed have standard deviations between two and three

times that of the corresponding means. This implies that a simple

exponential model is certain to be unsuitable.

A hyperexponential model can exhibit coefficients of variation (i.e.,

ratio of standard deviation to mean) greater than unity. A k-stage

hyperexponential Consists ofk simple exponentials with means M I, M2,

......... M k, weighted so that they have probabilities a l , a 2 a k of

being chosen. Figure 4-1 shows such a model.

M

a k

Figure 4-1: A k-Stage Hyperexponential Server

To generate a value for the random variable represented by this model,

one proceeds in two steps:

1. With probability a i. select one of the k stages.

2. Generate one value from an exponential distribution of
mean M i.

Each of the k stages can be viewed as being one population class with a

simple exponential distribution. There is no guarantee, however, that

such classes correspond to any clearly identifiable types of files. To fit a

hyperexponential model to empirical data one needs to determine the

number of stages, k, the means Mi, and the probabilities a i. The next

two sections discuss two alternative approaches for estimating these

parameters.

4 . 2 . T h e M o m e n t M a t c h i n g M e t h o d

In this method we try to find a hyperexponential model whose first

few moments match the corresponding moments of the empirical

distribution. If the empirical distribution were truly hyperexponential,

one could find a model with all its moments matching. Otherwise the

model is only an approximation to the empirical distribution.

The pth moment of a k-stage hyperexponential is related to its

parameters (a ' s and M's) by the following relationship:

a lM1 p + a2M2 p akMkP = (pthmoment)/pI

This is easily derived using the moment generating function

technique [3]. By using an iterative solution technique on 2k-1 such

equations and the constraint a 1 + a 2 + ... + a k = 1, one can solve for

the 2k unknowns, a 1 to a k and M 1 t o M k.

Figure 6-9 compares the empirical size distribution of cu'rrent files

with a 2-stage hyperexponential fit. 4 The first three moments of these

two curves are identical. The two curves differ by no more than 5% at

all points except at the very low end. Figure 6-10 shows the distribution

of f-lifetimes of current files versus a 2-stage hyperexponential fit.

Clearly the fit is not as good as for file sizes, especially at the low end,

where the hyperexponential grossly underestimates the empirical

distribution.

Adding more stages to the hypemxponential, thereby matching more

moments, yielded negligible improvements in the fit (less than 0.5%

except at the very low end, where the improvement was close to 1%.)

The moment matching technique is thus only of limited usefulness in

analytically approximating the empirical data presented here.

Hg. No. a i Mi
6.9 0.089 184.9

0.91 10,08

6.10 0.835 77.49
0.165 900.8
0.518 2.0

6.11 0.433 23,83

0,048 252,1

0.407 1.66
6.12 0,337 70.0

0.256 795.0

0.32 1 (const)
6.13 0,132 7.97

0.385 132.1
0,162 1082.8

Table 4-1: Derived Parameters for Fitted Curves

4Table 4-1 presents the derived parameters a i and M i for all the fitted curves discussed
in this section and the next,

I00 APPLE EXHIBIT 1078
APPLE v. PMC
IPR2016-01520

Page 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

