
•

•
A Friendly Programming Environment

for the ALTO Mini-Computer

Uri Shani
Computer Science Department

University of Rochester
Rochester, NY, 14627

TR54

May 198~

This work was supported in part by the Alfred P. Sloan
Foundation under Grant 74-12-5.

APPLE EXHIBIT 1077
APPLE v. PMC
IPR2016-01520

Page 1
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

page 2

Table of Contents •
1. Introduction

•
2. Underlying Concepts and Incentives

3. programming Activities and Tools

4. 	 The User-Profile

Example

5. Implementation

No Changes

Minimizing Time Overhead

Human Engineering

File Name parsing

Remembering File Names

6. Discussion

Conclusions

Appendix: Actual Practice and Experience

References

APPLE EXHIBIT 1077
APPLE v. PMC
IPR2016-01520

Page 2
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 3

..

Abstract

• Personal minicomputers sophisticated enough to
work under a disk operating system are considered in
light of their convenience as a programming
environment.

Programming activities are classified as editing,
compiling, loading, and so forth. Each such activity
is carried out by one or more programs, called
(programming) tools. The files processed by those
tools are referenced via names entered by the user.
Names of files involved in programming activities
should be chosen to reflect file ~ information.
Like variables in a programmrng language, a type of
file defines what activities (operations) are
applicable to it.

Guided by this idea, file naming convention should
be defined by the user and stored in a ~ profile
structure. This definition is then used by the
computer's command-interpreter (executive) to decide
what programming tool to activate in order to carry out
a requested activity on a file.

An extension to an .existing executive program for
a minicomputer (16 bit, 64KW with 3Mb disk and raster
CRT display) that makes use of such a user profile is
described in this paper. The system utilizes good
human engineering and, with minimum overhead, improves
significantly the usefulness of the computer as a
programming vehicle.

ACKNOWLEDGMENTS:

I wish to thank Richard F. Rashid for his
encouragement, and helpful suggestions during the
design and implementation of the system. Keith Knox at
Xerox Research Center in Webster, New York, suggested
the "commented load command." Thanks are also due to
Keith A. Lantz, Anil Nigam and Mark W. Kahrs for
their useful comments during the preparation of this
paper.

APPLE EXHIBIT 1077
APPLE v. PMC
IPR2016-01520

Page 3
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 4

1.9 INTRODUCTION

A very important part of a computing system is its
user interface - the collection of rules and mechanisms
by which a user gains access to services provided by
the machine. This is the responsibility of a program
usually called the executive or command-interpreter. A
user communicates with the executive by use of a
command language. The executive will perform file
maintenance functions and the like. In particular, the
executive will invoke other programs (also called
subsystems). If the machine is used for programming,
it wlll include subsystems for text editing, compiling,
and loading of user written programs. These subsystems
are termed programming tools.

Each of these tools operates on input file(s) and
produces output file(s). Input and output files may
have different properties depending on their purpose.
For example, an input file to a Fortran compiler will
not work for an Algol compiler. An executive, which
invokes a programming tool irrespectively of the
program, will allow the user to mistakenly feed the
wrong file to the wrong tool. In an active programming
site, where these tools are extensively used, special
commands for performing programming activities should
be provided by the executive so that the user will
avoid such mistakes.

This need was recognized by many system designers
and computer users. It led to the development of
compile-class-commands in the TOP8l9 operating system
for the DEC PDP19 computer [1] and the development of
the Rapid Program Generator RPG [2]. In these
systems, a distinguished logical part of the file name
is the extension, used to decide which tool will
perform a particular compile class command. A set of
conventions for file extensions was set by the system
designers. The 8D8949 [3] is a time sharing system in
which file types are encoded internally in the files
(*) in a limited variety for use by the system.

At Rochester, we extensively use the· ALTO
minicomputer [4] for programming. It is a 16 bit 64KW
machine with a keyboard, raster CRT display and 3M
bytes removable disk storage (Fig. 1); it runs under
a disk operating system (D08) that is similar in
capabilities to 086 [5,6].

* 	A user can not tell the file's type by looking at its
name.

•

APPLE EXHIBIT 1077
APPLE v. PMC
IPR2016-01520

Page 4
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Page 5

•

Fig. 1: ALTO machine configuration.

The executive program on the ALTO is simple and
does not have any bias towards programming activities.
File names do have extensions that are used by the
executive when invoking a subsystem (a subsystem name
is expected to have the extension "run"). I have
extended the executive capabilities to include the
commands Edit, Compile and Load. These commands use
file extensions as file-types to decide what tool
should be invoked for a particula.r programming
activity. The notion of file type was expanded so that
it is defined by the user in a user profile. In it,
associations between file extensions, programming
activities and programming tools are defined and can be
easily changed. As our system is dynamic, when new
tools are added they can immediately be incorporated
into the existing programming env~ronment. Some
varieties of user pr.ofile exist in many systems (the
"switch.ini" file in the TOPS19, a profile structure in
TSO [7], and the "user.cm" file in the Alto), but they
are not used for defining file types.

File extension does not have to be fully
specified; a partially specified extension is matched
against all possible extensions of existing files with
the same name, in a priority order defined by the user,
and the best match is chosen. If no file name is given
in the command line, then the name used in the last
command invocation is taken (i.e. ellipsis).

These additions to the executiv~ do not involve
any changes to existing programming tools or the
executive itself. They are simple, easy to implement,
and are suitable to any other personal computer of a
configuration similar to that of the Alto. This
extension is considered the friendly programming
environment.

APPLE EXHIBIT 1077
APPLE v. PMC
IPR2016-01520

Page 5
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

