
PMC Exhibit 2141
Apple v. PMC

IPR2016-01520
Page 1

United States Patent [19] [11] Patent Number: 4,888,798

Earnest . [45] Date of Patent: Dec. 19, 1989

[54] MODULAR SOFTWARE SECURITY 4.465.901 3/1984 Best 178/22.08
' 4,471,l63 9/1984 Donald et al. 380/4

[75] Inventor: Lester 0- Earnest. L08 Aitos Hflls. 4,593,353 6/1986 Piekholtz , , . . ,. 330/25
Calif. 4,652,990 3/193? Pailen er al. .. 364/200

. . 4,120,860 1/1938 Weiss 380/23

[73] ASS‘gnee‘ OMS! I'm" MOb‘le' Ala' 4,123,234 2/1933 Munck eta]. . 330/25
[21] AWL No; 394,035 4,759,062 7/1983 Traub et a1. 380/25

[22] Filed: Aug. 7. 1986 ' OTHER PUBLICATIONS

_ _ Deming, Cypragmphy and Data Security, 9. 25; (Ad-
Related U.S. Appllcatlon Data dison—Wesley, 1982).

I [63] Continuation of Ser. No. 725.254, Apr. 19, 1935, aban» “Cipher Systems" by Beker and Piper, p. 180, 233—235,
cloned. 1982.

Int. CL‘ mu...u..u..u......................-...... Examiner—Stephen C_ Bucmki
[52] 13.5. CI. 330/4; 380/25; Assists”; Emmfflgr_gemm Ear} Gregory

340/325-1513 340325-34 Attorney, Agent, or Firm—Webb, Burden, Ziesenheim &
[53} Field of Search 123/2203, 22.09, 22.10, web},

128/2114; 380/23—25, 23, 3, 4; 364/200, 900
. [57] ABSTRACT

[56] References Cited
Disclosed is a. computer method and apparatus that

US PATENT DOCUMENTS permits identical copies of encrypted cornputer soft-
3,962.539 6/1976 Ehxsam et al. ITS/22.07 were (including a number of software elements) to be
413502.310 11/1931 BOIII'iCius at 31- ------- 354/200 distributed to many users while retaining central con—

fi’igg'ggg '3‘ 31' 83:12:02,3: trol over which elements are "unlocked", that is, are
4:433:20? 211934 Best 173122.09 _ a“th°md f0” “5'3 by 33°11 “35"-
4.439,330 3/1934 Chueh 1:... 364/200
4,446,519 5/1939 Thomas 330/25 13 Claims, 1 Drawing Sheet

COMPUTER
(MC 68000)

' CAPABILITY

DIRECTORY

FLOPPY
DISC

CRACKER
COUNT

NOVRAM 12-] SERIAL NO.

mn-

PMC Exhibit 2141

Apple v. PMC
|PR2016-01520

Page 1

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PMC Exhibit 2141
Apple v. PMC

IPR2016-01520
Page 2

US. Patent Dec. 19,1939

COMPUTER

(MC SBOOOI

4,888,798

KEY

FILE

SERIAL N0.

' MATCH ACCESS KEYS -

IN FILES WITH "0"
CAPABILITY KEYS.

IF MATCHED,ENTER
CAPABILITY KEY

IN DIRECTORY

 TICATION KEY

COMPUTE CONTROL
WORDS FORM

SERIAL NO.

INCREMENT
CRACKER

COUNT

TRANSFORM

CAPABILITY KEY

INTO AUTHEN-
TICATION BI

EXCESS PERFORM
ACCESS KEYS CRACKER CRACKER

COgNT COUNTER MEASURES

I FIg. 2

PMC Exhibit 2141

Apple v. PMC
|PR2016-01520

Page 2

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PMC Exhibit 2141
Apple v. PMC

IPR2016-01520
Page 3

1

MODULAR SOFTWARE SECURITY

BACKGROUND OF THE INVENTION

This application is a continuation of application
06/125,254. filed Apr. 19. 1985. now abandoned.

The present invention relates to computers and cryp-
tosystems for use with computer software to prevent
unauthorized use of the software on computers.

Frequently, a computer system is capable of receiv-
ing software which includes a number of different ele-
ments (sometimes called til. hinotions. modules. capa-
bilities or options). Each element (file) may be segre-
gated from the other elements so that the elements may
be priced separately or othenvise separately controlled.
The software distributor needs to deliver to each com-

puter user those elements for which the computer user
pays or is otherwise authorized. The software distribu-
tor wishes to prevent unauthorized users from having
access to the elents for which the users have not paid
or are otherwise unauthorized. Also. the distributor

does not wish the user to be able to cOpy or otherwise
share the software with other unauthorized users.

The ease with which computer software can be cop-
ied is both a great operational convenience and a great
commercial weakness. Once a copy of sofiware for
standard computers has been delivered to a user in some
form. it is usually a simple matter for the user to repli-
cate and redistribute the software to other users

_whether or not the other users are authorized. Legal
barriers. such as software licensing agreements and
copyrights. offer some protection against unauthorized
use. particularly for expensive software that has a lim-
ited number of users. Legal barriers offer less practical
protection for low-priced software that runs on many
machines such as personal computers.

In the environment where the software distributor

also controls the design of the computer hardware on
which the software will run. it is possible to erect barri-
ers to unauthorized use by using encrypted software.
For example. each computer may have an assigned
identity key (typically, a unique serial number) that is
accessible to the computer program and may have a
built—in decryptiOn mechanism which utilizes’the iden-
tity ltcy as a decryption key. When encrypted software
is loaded into the computer. the software is automati-
cally decrypted using the assigned computer identity
key as the decryption key. In such a eryptosystem, any
attempt to load encrypted software created for a differ-
ent computer will fail because ofthe inability to decrypt
the sofiware. Key stream crypting in a cryptosystem is
executed typically as follows.

Key-stream encryden uses the same process to ei-
ther encrypt an unencrypted software element (file) or
to decrypt an encrypted software element (file) to re-
store the encrypted element (file) to its original unen-
crypted form. The source data from the unencrypted
software element (file) is treated as a data stream (that
is. as a string of bits). Typically. the encryption process
performs an "exclusive-or” operation between each bit
of the source data stream and a corresponding bit from
a key data stream. The key data stream is typically a
random or pseudo-random sequence of bits. The result
of this encryption operation is an encrypted data stream
in which 0‘s and 1‘s occur with approiiimately equal
probability. . _

Decryption of the encrypted data stream is accom-
plished by performing exactly the same “exclusive-or"

4,888,798

5

ll]

15

20

25

30

35

45

55

65

2

operation on the encrypted data stream, using the same
key data stream as was used during encryption. The
second “exclusive-or" operation utilizing the same key
data stream restores the encrypted data stream to its

original unencrypted source data stream form. In other
words. the "exclusive or" operation is its own inverse.
In order for this key-stream cryptosystem to work. it is
necessary to use identical key data streams in both the
encryption and decryption prosesses.

By using key-stream crypting on software elements
(files) stored on floppy disk or other media. the contents
of those elements (files) are rendered unintelligible in
the sense that a static analysis yields no information
since the stored data looks like random bit patterns.

Pseudorandom number generators can be made to
synthesize suitable key data streams. They have the nice
property that they can generate a wide variety of such
key streams under parametric control. In one system.
for example. a simple additive process is used to gener-
ate the irey-stream. Beginning with a “seed key" {a
starting value for the “old key”). a “new key” is gener-
ated using 32-bit words by the following calculation of
Eq.(1).

"new key"=(“seed key"+"code")rnndulo 32 mm

In Eq.(1). the "code" is a constant in any given software
version. By choosing different values of the “seed key"
and “code” for differt software versions. Eq.(l) gen-

erates a series of quite different "new keys".
Many other simple or elaborate key-stream generaa

tors are possible and have been described in well-known
literature under the category “pseudo-random number
generators."

While the above key-stream cryptosystem makes
unauthorized use of software difficult, the cryptosystem

creates a serious problem for the software distributor
since the cryptosystem requires that the software be
specifically encrypted for each machine on which it is
to be run based on the identity key of that machine.
Therefore. the software to be distributed is different for
each computer so that the distributor must treat every
user’s computer differently and such treatment is obvi-
ously inefficient and expensive;

In view of the above limitations, there is a need for

impmved software cryptosystems which do not require
a different encrypting of the software for each com-
puter authorized to use the software.

SUMMARY OF THE INVENTION

The present invention is a computer method and
apparatus that permits identical cepies of encrypted
computer software (including a number of software
elements) to be distributéd to many users while retain-
ing central control over which elements are "un-
locked". that is. are authorized for use by each user.

The computer software after distribution to a user is
stored udthin the user’s computer and may include both
authorized and unauthorized elements. The user may

“unlock” any one or more of the authorized elements by
entering corresponding encrypted capability keys. usu-
ally one ltey for each authorised element. Each of the
capability keys typically is a short string of alphanu-
meric characters entered through a keyboard or equiva-
lent input device. While the capability keys may be
different for each computer. the computer software
including the encrypted elements are the same for all

PMC Exhibit 2141

Apple v. PMC
|PR2016-01520

Page 3

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PMC Exhibit 2141
Apple v. PMC

IPR2016-01520
Page 4

3

computers so that the software can be copied and dis-
seminated by a distributor without concern about
whether or not use of any particular element is autho-
rized.

The user’s computer syst has interlocks that per-
mit only those elements that have been "unlocked" by
entry of a capability key to function in the computer. At
the time of the delivery of the'software. the user
is given capability keys for only those elements that the
user has purchased or for which the user is otherwise
authorized. If the user later obtains additional capability
keys corresponding to newly authorized elements. the
user is then able to access the corresponding newly
authorized elements. Typically, the newly authorized
elements are already stored in the user’s computer so
that there is no need for the user to again receive the
newly authorized software elements. The user need
only receive the capability keys for those elements.

The computer software is typically distributed in
different versions where each version has a different
key-stream generator and encrypts software elements
differently.

The present invention ofl‘ers a substantial barrier to
casual software piracy while facilitating software up-
dates. Key-stream crypting (encryption and decryption)
is used in the security system as a "first line of defense"
together with capability keys which provide modular
control of access to software elements.

In one embodiment. the number of uses of a software
element authorized by a capability key is limited. When
the limit for one capability key is reached. a user is
required to enter another capability key to obtain autho-
rization for additional uses of the same software ele-
ment.

In a specific embodiment. the modular sofiware secu-
rity system permits modular control of access to soft—
ware elements using specific "keys". including a “capa-
bility” key. an “identity” key. and a “stor " key.

The stored key is a key which is identical to the trans-
formed key resulting from the transform of the capabil-
ity key and the identity key. In one typical system, the
stored key has two components. namely. an “authenti-
cation" key and an "access" key. '

When .the user is authorized to use a particular soft—
ware element, as evidenced by the user having the cor-
responding capability key. the user enters the capability
key into the user's computer system. The user’s com-
puter system transforms the capability key using the
identity key to form a transformed key. The trans-
formed key is then compared with the stored key and if
a match occurs. that match indicates that access to the

protected software element is authorized. Each “capa-
bility” key is provided to the user by the software dis-
tributor and controls access to a particular software
elemt.

The "identity" key is a number for identifying a par-
ticular computer. user or other thing. When used to
identify a computer, the identity key is permanently
stored in the user's computer and is unique to the user's
computer and therefore can function to assure that the
authorized software element is authorized only for the

computer having the proper identity key. The identity
key transforms the capability key.

The “authentication” key is an arbitrary number that
is compiled into the firmware of the computer system.
The authentication key is used to check the validity of
capability keys that are entered. All systems that use a'
given firmware version typically have the same authen-

4.888.798

lo

15

20

25

30

35

d5

50

55

60

65

4

tication key. but the authentication key may be changed
between versions.

Each software element in the system has an associ-
ated “accem” key which must be matched with a por-
tion of the transformed capability key to obtain permis-
sion to access the file. Typically, the access key is inter-
leaved with the file data stored in the software element
in a way that depends on the firmware version.

At the time of delivery of the computer system, the
system has a stored key including an authentication key
(software version dependent) an access key (one for
each element).'and a machine identity key (different for
each computer). When the computer system is started.
the system decrypts and downloads the computer soft-
ware including certain main operating programs from
the floppy disk or other program source using the same
key-stream decryption process for all software. The
cornputer software on the disk has a directory element
that associates software element names with disk ad-
dresses and capability keys. Generally, there is one
capability key per software element. Each software
element stores an access key. generally in a number of
distributed locations that are software version-depend-
ent. Any elements with access keys of “0" are consid-
ered to be “unprotected” and no capability key is
needed to access them.

In its configuration (before entry of any capa-
bility keys). the capability keys of all elements are set to
a pre-establish value. for example. "0". No element with
a capability key “0" can be accessed until a non-zero
capability key has been computed and stored in the
corresponding capability key field of the element direc-
tory except for unprotected elements which, as indi-
cated by a “0" access key. require no capability key.
Initially, therefore. before entry of any capability key,
only the unprotected elements are accessible. Addi-
tional software elements having non-zero access keys
can be “unlock " by a capability key unlocking pro-C55.

In order to the system and to unlock a pro-
tected element using the unlocking process. a capability
key for the protected element is entered into the system.
The entered capability key is transformed with the sys—
tem identity key to form a transformed key- The trans-
formed key is compared with the stored key. Typically.
a portion of the transformed key is compared with the
authentication key stored in firmware to verify the
entered capability key’s authenticity. If an authentica-
tion match occurs. the match resulting from entry of the
correct capability key is used to "unlock" protected
elements provided also that access is authorized. If an

' ' a special

formed.

If the authentication key is matched correctly. each
element that has a “0" in its capability key field in the
element directory is examined to determine which ele-
ments also have an access key matching another portion
of the transformed capability key. Wherever an access
key match is found. the capability key (not the trans-
formed capability key) is stored into the capability key
field of that element in the element directory. When the
capability key is thus stored in the directory. the pro-
tected element has been unlocked and is available for
use. In order to access the protected element. however.
the capability key must be entered before each access.

Thereafter. whenever access to a software element is '
requested. the capability key stored (if any) in the ele-

PMC Exhibit 2141

Apple v. PMC
|PR2016-01520

Page 4

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

PMC Exhibit 2141
Apple v. PMC

IPR2016-01520
Page 5

4,838,793

5
meat directory for that element is transformed in the
same way as when the capability key was entered into
the system. Portions of the transformed key derived
from the stored capability key are compared with the
stored authentication key and the stored access key.

If either the stored authentication key or the stored
access key does not match the corresponding portion of
the transformed key, the failure to match indicates that
access to the element is unauthorized. Access is unau-

thorized, for example, if the element has been repro-
duced from a system with a different version of the
firmware or if a floppy disk storing the element has been
moved from another system to the present system. In
either case, the system typically resets all capability key
fields in the element directory to “0". The user must
then reenter non-zero capability keys into the system in
order to gain access to any protected element.

The transformation of the capability key can be done
in many different ways. The important criterion is that
the capability key transformation be reversible so that,
given a stored key (typically including an authentica-
tion key and an access key) and a system identity key. a
capability key can be computed having the property
that. when transformed, it will match these keys.

Additional objects and feaer of the invention will
appear from the following description in which the
preferred embodiments of the invention have been set
forth in detail in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts a cryptosystem for use in connection
with or a computer.

FIG. 2 depicts a flow chart which represents the
operation of the FIG. 1 cryptosystem in order to enter
a capability key.

DETAILED DESCRIPTION

Encrypted Capability Keys

A practical realization of the modular capability-key
cryptosystem embodied in a printing system is shown in
FIG. 1. The printing system employs a general purpose
processor and a number of different computer software
elements which represent different capabilities of the
system. Typical hardware elements used in the printing
system are as follows.

A general purpose computer 10 with integral ran-
dom-access memory (RAM) 11 to store computer soft-
ware (including a number of protected and/or unpro-
tected software elements) and to store data is employed.
A Motorola MCGBOOO microcomputer with 256k bytes
of MOS RAM memory is Suitable for computer 10.

An input device 12 for entering an alphanumeric
string representing the capability key is employed. A
display terminal 12-2 and keyboard 12-1 connected to
standard RSZJZC port 13 of computer 10 is suitable for
input device It).

A permanent, machine-readable memory device 14 is
employed to Store the serial number identity key and
other firmware. A PROM {programmable read-only
memory} physically and electronically attached to a
backplane 15 of the computer 10 is suitable for perma—
nent memory device 14.

A small amount of permanent, alterable memory 16 is
employed to keep track ofthe "cracker count" which is
the total number of erroneous capability keys that have
been entered. NOVRAM (non-volitile RAM) storage
associated with the computer is suitable for memory 16.

if}

15

20

25

30

35

45

SS

65

6

Software file storage 17 is employed for storing soft-
ware elements in encrypted form. Storage l’l‘ typically
includes a floppy disk which stores programs (including
a number of protected software elements such as font
files), other data, and an element directory in encrypted
form. .

Key-stream crypting is used to render all software
elements stored in storage 17 unintelligible until key-
Stream decrypting is performed. The key-stream crypt-
ing is the same for all software elements of a particular
version ofthe software and is the same for all computers
(printers) of a particular release; but the crypting may
be different for other versions of the software and other

releases of the cornputer. The function of the key-
stream cryptosystem is to make static analysis of soft-
ware elements difficult, but such a key-Stream cryp-
tosystem is not necessary for the "unlocking" of pro-
tected software elements by use of capability keys. The
unlocking of protected software elements employs ca-
pability keys and requires that the capability keys be
transformed. One couvenient capability-key transfor-
mation that will be used in one embodiment of the sys-
tem is now described.

The computer system‘s identity key, Is. {for example,
a 32-bit serial number} is read {mm the system firmware
stored in PROM memory 14 of FIG. 1. The identity
key. 13;, is then transformed with the capability key. Cr,
entered through keyboard 12 to form a transformed
capability key, Ti, as follows:

It' Car-1T2 liq-(1}

in Eq.(2}, the symbol “"" designates a reversible
transform which typically is performed in a number of
steps. First, the serial number identity key. It, is trans»
formed by one or more arithmetic or logical Operations
into two 32-bit centrol numbers, BI and 82. Typically.
theSe transformations of 1;; are version-dependent. For
example, the transformations consist of multiplying It
by two different constants, ll and 11 (where .l] and I;
may be different for different versions), as follows:

Eqw

3114)

flkX-lll=31

flkXle=Bt

The transformation of the capability key, Ci, then
further proceeds in two steps. The first control number.
131, is transformed with the numeric capability key, Ck.
to yield another 32-bit number, called the intermediate
transform. Xi, as follows:

31' Ct=Xs Eta-(5}

In Eq.(5). the transform is typically an EXCLU-
SIVE-OR operation as follows:

BIEBCk=Xi 54(6)

The EXCLUSIVEOR operation indicated by the
symbol "6;" in Eq.(6) is bit-bysbit between each pair of
correspondings bits of BI and Ck and yields for corre-
sponding" bits of Xka "i" if the corresporiding hits ofB1
and Ck are different and “0" if they are the same.

The second control number, 32, is used to transform

the intermediate transform. Xi. of Eq.(6) to form the
transformed capability key, Tk, as follows:

51' X3=Tg EqI-n

PMC Exhibit 2141

Apple v. PMC
|PR2016-01520

Page 5

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

