
PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 1

United States Patent [:91 [11] 4,138,718

Toke et a1. [45] Feb. 6, 1979

[S4] NUMERICAL CONTROL SYSTEM WITH Bensaude et n].—“Host Processor Control of Satellite

DOWNLOADING CAPABILITY Disk Storage".

[75] Inventors: Ronald J. Toke. Bralenahl Village;

Willi" *- M Memo“ both or Primary Examiner—Harvey E. Springborn

Ohio Attorney. Agent, wfi‘m—erles 5: Brady

[73] Assignee: Allen-Bradley Conway. Milwaukeo
“’1'- [57] ABSTRACT

[2}] App" No“ “50"” A numerical control system which employs a pro-
[22] Fund; Nov. :4, 1m grnmmed numerical control processor to perform the

numerical control functions is coupled to a bulk storage

C(lfi1 Goa? 3/132: device by . W mpum_ The bulk storage device
[58] ml}! m 364/200 MS We. 9w Ms File stores a download Iibnry which includes not only part

programs, but also system software programs and diag-
[56] Reform Cited - nostlc programs which my be downloaded to the nu-

U.s. PATENT DOCUMENTS maria! control system upon request By domdoadins II
system software program the numerical control capabil-1 3 . . .

lgizj; flag! .I_ _ mes ol' the syotem can be comoletely reconfigured to. In
3.310.104 5/1914 Lunacy mono met, Prowde I new mint-

OTHER PUBLICATIONS

IBM TDD-vol. 14. No. II, Apr. 1972. pp. 3418-3419— 9 Gal-I, 22 [howling figures

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 2

U.S. Patent Feb. 6, 1979 Sheet 1 of 21 4,138,718

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 3

US. Patent Feb. 6, 1979 Sheet 2 of 21 4,138,718

‘34:; 2

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 4

US. Patent Feb. 6, 1979 Sheet 3 of 21 4,138,718

0*-

J.) .1

y. N < .J
4 u 0 :5t— _J _ I:

a: a. c: :—
U 0‘! r“ m z

_. n1 2 OD
_ D U

z

Ewi—z:

g H.

e uw m

x a. n “ 2%

r— — .-o

N — ‘-

\“=l.ff W!

3%

550

55!READ/WRITE

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 5

|
C05mmmmmv.n.”P.mmmXD.0

... ED.m\mamE3«8385.cAw3xm11...amno0m.35xx?3558:5.5.3..

1

4,298352723:«53E05:

 “mun—mg.4.56mIIIIxmplmwwIWleI-
2mRIIuIHmwmmammummbmtno.rm\mn"ngofi55832..»4.kmIIIIIIIIIIIIII.2.t.flJInmGIlllllllllllI-EIwoamehMIsEI

MIIII

9

man6.lllllllllllI-
.m

F3
t

mSign?..\zuooozuIfi.\ |||||||||||I-M..Efl.szan.llllllllllI-P.mu.>595..fl.5528Son m¢_o:.5.m.4mg4%5MIIIIIIIIIIllU<¢.mwm.

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 6

Sheet 5 of 21 4,138,718Feb. 6, 1979US. Patent

Smmmoomn.Orruiztmd
mam«Go5330:...

INSTRUCTION

REGISTER
s?Kuhn—Guma);45.xV.‘

s?any

cuxudfiaz.
..\\

5.02m!>1.acuadumgOO¢m|O¢0§

Om_m9

#5050x030c8309:
PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 6

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 7

4,138,718

Sheet 6 of 21Patent Feb. 6. 1979U.S.

Apple v. PMC

|PR2016-01520

PMC Exhibit 2123

.1...y
a?

56030W1|“WEfl
3.2

 L REGISTER

m<mwxuudmths.1.3.011

3

$7mmE55.3.".aE?
:92...

as:vi

muhmammZ".inhmauia

mEm.

0*-
\0

,2

Page 7

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 8

US. Patent Feb. 6. 1979 Sheet 7 of 21 4,138,718

ADDRESS

REGISTER

lUT/OUTPU DATA BUS

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 9

U.S. Patent Feb. 6, 1979 Sheet 3 of21 4,138,718

BINARY is.7I2?

M0

BO

JG h!fl§:2ra

i

1'28

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 10

U.S. Patent Feb. 6. 1979 Sheet 9 of 21 4,138,718

'13-‘43. 8A3 C

5” DISABLE
INTEHRUPTS cc

TURN-OFF
OUTPUTS

F ETC H DOWN-

525 LOAD REQUEST
wono {JUMP
TO TRANSMIT
SU BROUTINE

FETCH VERSION
1.0. CHARACTERG

JUMP TO
TRANSMIT

SUBROUTINE

526

5 JUMP TO
27 RECEIVE

SUBROUTINE

NEGATE6
STORE RECORD

52? SIZE AT
“COUNT”

 lNlTiALIZE
CHECKSUM

IN
B REGISTER

5.30

JUMP TO

535 RECEIVE
SUBROUTINE

T0

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 11

US. Patent Feb. 6. 1979 Sheet no of21 4,138,718

 $18. SB

STORE STARTING
ADDRESS OF
DOWNLOADED

RECORD AT
"ADDR"

 5:51

 CHECK “ADDR”

TO DETERMINE
IF WITHIN

COM MUNICATIONS
PROGRAM

 INDICATE
“ADDRESS ERRCIR'I

ON CRT 9

 JUMP TO

RECEIVE
SUBROUTINE

STORE

INSTRUCTION IN
MEMORY 30

AT LOCATION
INDICATED BY

“ADDR'I

535

INCRE ME NT
"A DDR" G“COUNT"

‘- UPDATE
CHECKSUM

AC CUMMULATOR

536

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 11

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 12

US. Patent Feb. 6, 1979 Sheet 11 of 21 4,138,718

JUMP TO

REC EIVE

SUBROUTINE

COMPARE

CHECKSUM WORD

WITH CHECKSUM

ACCUMMULATOR

INDICATE
"CHECKSUM

ERROR"

ON CRT 9

‘F-ig. 8c

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 13

4,138,718Sheet 12 of 21

mar—50¢oxguruxto29.5.09.hazy—cut:
.9.

US. Patent Feb. 6, 1979

mun—(mmundk
02

u2that«.029.501Panto—uh:—

.5

1m—

mar—bocnamzeta-5933.2.muu_>un_02.95.20tonabs—hban—PDQ

wadihuOmhz<nzumuo2:101!.uhaouxu

mwutfiawzwmzum“.0nabsrmPanz—mztbomu0.>¢wm2m.2¢:om!0:¢um

mmESOm0230:exudm

mt

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 13

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 14

US. Patent Feb. 6, 1979 Sheet 13 of 21 4,138,718

@113. 10
INITIALIZE

FOR NEW

PROGRAH

UPDATE

CRT

DISPLAY

MANUAL

MODE

?

CALL BLOCK

EXECUTE

ROUTINE

DECODE

AND SET UP

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 14

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 15

U.S. Patent Feb. 6, 1979 Sheet 14 of21 4,138,718

 BLOCK

EXECUTE

ROUTINE
‘3‘1'65. 11A

SET UP

BLOCK

EXECUTION

FLAGS

INITIALIZ

NSC II DATA

BUFFERS

YES BLOCK

'DELETE

?

R ESET EXCHANGE

STATE OF ICT IVE AND

pREwou3 TEMPORARY
BLOCK BUFFER POINT 3‘

EXECUTE
PRELUDE

UPDATE FUNCTIONS AND
POINTERS WE aLocx
T0 NEXT ACTIVE

BLOCK

ENABLE

INTERPOLATION

SET UP

NEXT

BLOCK

 INITIATE

TAPE REMER

IF STORAGE
AVAILABLE

RELEASE

A36 11 DATA

BLOCK

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 15

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 16

US. Patent Feb. 6, 1979 Sheet 15 of 21 4,138,718

@ %Ic3. llB

UPDATE UPDATE

CRT CRT

DISPLAY DISPLAY

BLOCK END

POINT

YES

YES 60¢
MODE

?
no

EXECUTE

POSTLUDE

FUNCTIONS

UPDATE

CRT

DISPLhY

 OFFSETS

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 17

US. Patent Feb. 6, 1979 Sheet 16 of 21 4,138,718

 l0.24

MSEC.

INTERRUPT $1.5. 12A

ALL

REGISTERS

 IO USE

INTERRUPT

NO

RESET

PRELUDE fl

POSTLIJDE

FLAGS

SERVO-
HECHANISM

SERVICE

I64-

Il CODE

I56

STATU 3 OF
SENS I N6
DEVICES CLEAR

VARIOUS

BLOCK DATA
FLAG S EXECUTE

MACHINE
DEPENDQNT
SOFTWARE

ROUTINE

IE?

 OUTPUT
STATUS OF
OPERATING

DEVICES

194
INHIBIT

INTERPOLATION
PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 17

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 18

U.S. Patent Feb. 6, 1979 Sheet 17 of 21 4,138,718

‘313. 123

ANY

EN D no YES

0F Bil—00"

STOP

CO D?ES
YES

REG U E ST

CYCLE

RESET

POSTLUDE

FL”

STOP

EMERGENCY "53

TURN on 57,9"
PROGRhI

STOP FLAG

Eon
STOP

?
I66

‘uo

EMERGENCY
STOP

FROG ESSOR

YES
INHIBIT INTER-

SUBROUTINE

SET TIMED

RESTORE INTERRUPT
5"" FLAG T0

REGISTERS nor BUSY

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 19

US. Patent Feb. 6, 1979 Sheet 13 of 21 4,138,718

$13. 13A FE"?

5|?

HOST COMPUTER

AND DISPLAY ON

DISSABLE
INTERRUF’TS é

TUFIN OF

OUT PUT DEV ICES

5L3

SIB

514

 RECEIVE

REPLY FROM

DISPLAY

“READY”

0N CRT 9
CHT 9

INPUT COMMAND

' FROM

KEYBOARD 7

TRANSMIT

COMMAND
TO HOST

COM PUTER

 "SIGN ON"
COMMAND ?

'SIGN OFF"
COMMAND?

(I.
 DOW NLOAD

COMMAND 7!

YES

SEI
TRANSMIT

DOWNLOAD
COMMAND TO

HOST COMFUT ER

DISPLAY

*-

ON CRT 9

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 19

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 20

US. Patent Feb. 5, 1979 Sheet 19 0:21 4,138,718

RECBVE

REPLY FROM

HOST COMPUTER
AND DISPLAY

IT ON CRTS

522.

5.7.3

TYPE "1"

CODE

REPLY

?

 JUMP To

‘10A02" OF

RESIDENT

COMMUMCATIONS

PROGRAM

$13. 133

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 21

U.S. Patent Feb. 6, 1979 Sheet 20 of 21

‘3‘1g. M-

REQUEST
FROM NC

ACHINE

REC EIVE AND

STORE MACHINE

IDENTIFICATION

TRANSMIT

I ll

'BUSV RECEIVE AND

“55’5ng STORE FILENAM AND TYPE
MACHINE E

 TRANSMIT

ERROR

MESSAGE TO

NC MACHINE

ANY
REQUEST
FROM NC
MACHINE

SECURITY

CLE?RED

TRANSMIT

DATA RECORD
TO NC

MACHINE

READ DATA

RECORD FROM

DOWNLOAD

LIBRARY

CONV ERT

DATA RECORD
TO ASCII

C HARAC T ERS

554-

550

4,138,718

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 22

US. Patent Feb. 6, 1979 Sheet 21 of 21 4,138,718

. RESlDENTCOMMUNICATIONS

$13. 15 PROGRAM (I28 LINES}
HIGHEST 4K MEMORY ADDRESS

00000

551

READ/WRITE

MEMORY

31:5. 16

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 22

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 23

4,133,718

1

NUMERICAL CONTROL srsrm WITH
DOWNLOADING CAPABILITY

BACKGROUND OF THE INVENTION

The field of the invention is numerical control sys-
tems, and particularly. numerical control systems of the
type which employ programmed processors as the
means for carrying out the numerical control functions.

Such a numerical control system is known in the art
as a computer numerical control or “CNC” and they
are characterized generally by their use of a pro-
grammed minicomputer or microprocessor in lieu of
hardwired logic circuitry. Such a system which em-
ploys a programmed processor is disclosed in 1.7.5. Pat.
No. 4,038,533 which issued on July 26, 1977 and is
entitled “Industrial Control Processor System." Al-
though CNC systems are programmable and do there-
fore ofl‘er a certain amount of flexibility, as a practical
matter the system program which determines the basic
operational characteristics of the system is seldom ai-
tered once the system is attached to a specific machine
tool. For example, the CNC system may be pro-
grammed to provide full contouring for a three-axis
milling machine without automatic tool changer and
with certain “canned cycles." That software system is
usually not altered during the life of the machine despite
the fact that for much of the time the machine tool may
not require contouring capability and could make better
use of the memory space occupied by the circular and
linear interpolation programs.

The flexibility afforded by the use ofa programmable
processor in a numerical control system has thus never
been fully realized in prior systems.

SUMMARY OF THE INVENTION

The present invention relates to a numerical control
system in which a system program may be readily
downloaded from a library stored in a bull: storage
device. More specifically. the invented numerical con-
trol system includes a main memory. a processor, a
read-only memory which stores a resident communica-
tion program. means for transferring the resident com-
munications program from the read-only memory to the
main memory and for initiating the execution of said
program by the numerical control system processor. a
storage device for storing a plurality of programs in-
cluding a system program for the numerical control
system, and a host processor coupled to said storage
device and said numerical control system processor and
being responsive to a download command generated by
said numerical control system processor during its exe-
cution of the resident communications program to
download said system program to the main memory.
wherein the numerical control system processor jumps
from the resident communications program to said
downloaded system program after the download has
been completed.

A general object of the invention is to download a
system program to the memory of a CNC system. If the
main memory is completely empty. as for example, after
a prolonged power failure or a malfunctiOn which
erases part or all of the system program, a new system
program can be downloaded from the download library
in the storage device by initiating the execution of the
resident communications program.

Another object of the invention is to enable the oper-
star to select a system program from the download

10

15

2.0

25

35

45

55

60

65

2

library. A manual data entry means such as a keyboard
is associated with the numerical control processor and
the download command is selected by the operator to
identify a specific program in the download library. In
this manner different system programs may be down-
loaded to alter the capabilities of the numerical control
system to meet the requirements of the machine tool to
which it is attached and the part being machined.

The foregoing and other objects and advantages of
the invention will appear from the following descrip-
tion. In the description reference is made to the accom-
panying drawings which form a part hereof. and in
which there is shown by way of illustration a preferred
embodiment of the invention. Such embodiment does

not necessarily represent the full scope of the invention,
however, and reference is made to the claims herein for
interpreting the breadth of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. I. is a perspective View of the system of the
present invention connected to a machine tool;

FIG. 2 is a perspective view of the numerical control
system which forms part of the system of FIG. 1 with
the enclosure door open;

FIG. 3 is a block diagram of the system of FIG. 1;
FIGS. 4a and 4b are a block diagram of the industrial

control processor which forms part of the system of
FIG. 3;

FIG. 5 is a block diagram of the arithmetic and logic
processor which forms part of the industrial control
processor of FIG. 46;

FIG. 6 is a block diagram of the input/output cir-
cuitry which forms a part of the industrial control pro-
cessor of FIG. 4b,-

FIG. 7 is a schematic diagram of the priority encoder
circuit which forms part of the industrial control pro-
cessor of FIG. 40:

FIGS. Ina—c are a flow chart of the resident communi-

cations program whieh forms part of the industrial con-
trol processor of FIG. 4;

FIG. 9 is a flow chart of a system program which
may be stored in the numerical control processor mem-
cry;

FIG. 10 is a flow chart of the main controller routine

which forms part of the software system of FIG. 9;
FIGS. 11:: and 11b is a flow chart of the block exe-

cute routine which forms part of the software system of
FIG. 9,

FIGS. 12:! and 125 is a flow chart of the ten millisec-

ond timed interrupt routine which forms part of the
software system of FIG. 9;

FIGS. 13a and 13b is a flow chart of a program called
COMPAC which is stored in the download library;

FIG. 14 is a flow chart of the download program
(DNLDNC) stored in the host computer memory of
FIG. 3;

FIG. 15 is a representation of the contents of the
numerical control system memory at one stage of the
download procedure; and

FIG. 16 is a block diagram of the host computer of
FIG. 1.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

Referring to FIG. 1, a numerical control system is
housed in a cabinet 1 and connected through a cable 2 to
a multi-function machine tool with automatic tool

changer 3. The numerical control system controls the

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 24

4,138,718

3
motion of a cutting tool 4 along two or more axes of
motion in response to a part program which is read
from a tape reader 5. In addition, the numerical control
system operates in response to commands read from the
tape reader 5 to control auxiliary functions on the ma-
chine tool 3, such as autOmatic tool selection and chang-
ing from a tool magazine 6. pallet selection and chang-
ing. spindle speed and coolant operation. The imple-
mentation of such auxiliary functions involves the sens-
ing of one-bit signals generated by numerous input de-
vices such as limit switches, selector switches. and
photo-electric cells. which are mounted to the machine
tool 3, and the operation of numerous output devices
such as solenoids. lights, relays and motor starters. The
numbers and types of such input and output devices. as
well as the manner in which they are operated. will
vary considerably from machine to machine.

The numerical control system includes a programma-
ble interface which allows it to be easily interfaced with
machine tools of any make and model. This interface is
accomplished by entering a control program comprised
of programmable controller-type instructions through a
keyboard 7. When this control program is executed the
system operates as a programmable controller to selec-
tively sense the status of the particular input devices on
the machine tool to be controlled and to selectively
operate the output devices thereon to provide the de-
sired manner of operation.

Mounted to the door of the cabinet 1 immediately
above the keyboard 7 is an amociated cathode ray tube
(CRT) display 9. Mounted to the right of the keyboard
7 and CRT display 9 is a main control panel III which
includes a variety of pushbuttons and selector switches
for providing standard operator controls such as mode
selection. feedrate override. spindle speed override. jog
select. axis select. etc. One of the pushbuttons enables
the keyboard 7 to enter data.

Referring particularly to FIGS. 2 and 3. the elements
ofthe numerical control system are mounted within the
cabinet 1 to allow easy access for inspection. testing and
maintenanceThekeMd'lismounIedtothecabinet
door 11 along with the tape reader 5. CRT display 9 and
main control panel 10. A secondary control panel 12
mounts immediately above the tape reader 5 and all of

IO

15

25

35

these system 1/0 devices are connected to a numerical 45
control processor 13 which is housed at the bottom of
the cabinet I. More specifically. the tape reader 5 con-
nects through a cable 14. the secondary control panel 12
connects through a cable 15. the keyboard 1 connects
through a cable 25. the CRT display 9 connects through
a cable 1‘1, and the main control panel 10 connects
through a cable 18 to a wire harness 19 which leads to
the processor 13. A processor Front panel 26 provides a
number of manually operable pualtbuttons and visual
indicators which relate to the operation ofthe procmor
l3 and which are connected thereto through a bus 21.

Two input/output (1/0) interface racks 20 and 21 are
mounted in the cabinet 1 above the processor 13 and are
connected thereto by a wiring barn 22 which extends
upward along their left-hand side. A main power supply
23 mounts above the 1/0 interface rack 21 and a mem—

ory power supply 24 mounts on the left side wall of the
cabinet 1.

The 1/0 interface racks 20 and 21 mount a variety of
inth circuits and output circuits on closely spaced,
vertically disposed printed circuit boards (not shown in
the drawings}. These input and output circuits serve to
couple the industrial control processor 13 with the

55

65

4
cable 2 that leads to the machine tool 3 and may include
input circuits for sensing the status of limit, selector and
pushbutton switches such as that disclosed in U.S. Pat.
No. 3,643,115 entitled "Interface Circuit for Industrial
Control Systems." and output circuits for driving sole-
noids and motors such as that disclosed in U.S. Pat. No.

3.745.546 entitled "Controller Output Circuit." The
input circuits also include position feedback accumula-
tors which receive feedback data from the position
transducers on the machine tool 3 and the output cir-
cuits include registers for prOViding axis motion com-
mand words to the machine tool servo mechanisms.

Referring particularly to FIGS. 1-3, the numerical
control system 1 is connected to a host computer 500
through a cable 301 in what is known in the art as a
DNC configuration. The cable 50] connects to a uni-
versal asynchronous receiver/transmitter (UAR/T) 8
which is mounted within the numerical control preces-
sor housing 13 and it in tum is connected to the numeri-
cal control processor 13 through the wire harness 19.
The UAR/T 8 is treated as another input/output device
by the processor 13 as will be described in more detail
hereinafter.

The host computer 500 is a general purpose digital
computer such as the Model 7/32 manufactured by
lnterdata. Inc. As will be described in more detail here-
inafter. it is coupled to the cable 50! by a UAR/l" 502
which connects to an 1/0 port on a coniputer processor
550. The processor 550 is coupled to a read/write mem—
ory 551 through a bus 552 and a bulk storage device 507
in the form of a disc couples to the memory 551 and it
serves to store not only a large number of part pro-
grams. but also. a variety of numerical control system
software packages which may be downloaded to the
numerical control system 1. Programs stored in the host
computer memory 331 enable the computer to commu-
nicate with the numerical control system 1 and to man-
age the library of programs stored in the bulk storage
507.

As will be described in more detail hereinafter. an
Operator at the numerical control system 1 can call up a
particular part program or a particular numerical con-
trol software system by generating commands through
the keyboard 7. Referring particularly to FIG. 3. a
communications package stored in a numerical control
system memory 34 couples these commands to the host
computer sun. which in turn reads the selected part
program or numerical control system software package
out of the bulk storage 501 and downloads it to the
numerical control system 1. The downloaded program
is stored in the memory 34 at a location determined by
the communications package. To better understand the
nature of a numerical control sofiware system package
which can be downloaded from the bulk storage 507 to
the memory 3‘, a description of a preferred numerical
control system — both hardware and software — will
now be made. This preferred numerical control system
is sold commercially by the Allen-Bradley Company as
the Model 13111 B and it is described in detail in U.S.
Pat. No. 4,038,533.

Referring particularly to FIGS. 4:: and 4b, the numer-
ical control processor 13 is organized around a sixteen-
bit bidirectional processor data bus 30. Data is moved
from one element of the procmsor to another through
this data bus 3|) in response to the execution of a micro-
instruction which is held in a 24—bit micro-instruction

register 31. Each such micro-instruction indicates the
source of the data to be applied to the data bus 30. the

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 24

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 25

4,138,718
5

destination of the data, and any operations that are to be
performed on that data. The micro-instructions are
stored in a micro-program read—only memory 32, and
one is read out every 200 hand-seconds through a bus 33
to the micro-instruction register. 31. The readronly
memory 32 stores a large number of separately address-
able, or selectable, micro-routines, each of which is
comprised of a set of micro-instructions. To enable the
processor 13 to perform a desired function, the appro-
priate micro-routine is stored in the read-only memory
32 and it is selected for execution by a 16-bit macro-
instruction which is stored in a read/write main mem-

ory 34.
The main memory 34 is comprised of 4K by l dy—

namic MOS RAMs which are organized to store up to
32,000 16-bit words. Macro-instructions and data are
read out of and written into the main memory 3‘
through a l6—bit memory data register 35 which con-
nects to the processor data bus 30. The memory words
are selected, or addressed, through a 15-bit ory
address register 36 which also connects to the processor
data bus 30. To write into the main memory 3‘, an
address is first loaded into the memory address register
36 by applying a logic high voltage to its clock lead 29.
The data to be loaded appears on the processor data bus
30 and is gated through the memory data register by
applying a logic high voltage to its data in clack lead 2‘7.
A logic high voltage is then applied to a read/write
control line 34’ on the memory 34 to complete the load-
ing operation. Data or a macro-instruction is read out of
an addressed line of the main memory 34 when a
READ micro-instruction is executed. A logic low volt-
age is applied to the read/write control line 34' and a
logic high voltage is applied to a data out enable line 28
on the memory data register 35. The data word is mo-
mentarily stored in the register 35 and is subsequently
transferred through the processor data bus 30 to the
desired destination.

In response to the execution ofa micro-routine called
FETCH, which includes the READ micro-instruction,
a macro-hastruction is read from the main memory 34
and coupled to a 16-bit macro-imitruction register 37
through the data bus 30. The macro-instruction is stored
in the register 37 by a logic high voltage which is ap-
plied to a macro-instruction register clock line 37'. Cer-
tain of the macro-instructions include operation codes
which are coupied through an instructiOn register bus
39 to a macro-decoder circuit 38, and other instmctions
also include a bit pointer code which is coupled through
the same instruction register bus 39 to a bit pointer
circuit 4-0. The bit pointer circuit 10 is a binary decoder
having four inputs connected to the least significant
digit outputs of the macro—instruction register 37 and
having a set of 16 outputs connected to mpective leads
in the processor data bus 30. In response to the execu-
tion of a selected micro-instruction (MASK), a logic
high voltage is applied to a terminal 41, and the bit
pointer circuit 40 drives a selected one of the sixteen
leads in the prooessor data bus 30 to a logic low voltage.
The bit pointer circuit 40 facilitates the execution of
certain programmable controller type macro-instruc-
tions.

In response to an Operation code in a macro-instruc-
tion stored in the register 37, one of the micro-routines
in the read-only memory 32 is selected. The operation
code is applied to the macro-decoder circuit 38 which
enables one of four mapper proms 42-45 and addresses
a selected line in the enabled mapper prom. Each line of

5

IO

[5

20

25

30

35

4O

45

50

55

60

65

6

the mapper proms I‘ll—45 stores a twelve-bit nucro-rou-
tine starting addresa. which when read out, is coupled
through a anew-program address bus 46 to preset a
twelve-bit micro-program sequencer 47. The sequencer
47 is a presenable counter which includes a load tenni-
md 52, an increment terminal 53 and a clock terminal 54.
The clock terminal 54 is driven by a five-megahertz
clock signal which is generated by a processor clock
circuit 85 that is coupled to the sequencer 47 through an
AND gate 86. Each time a logic high clock pulse is
applied to the terminal 54 on the micro-program se-
quencer 4'7, it is either preset to an address which ap-
pears on the bus 46 or it is incremented one count. Con-
currently, the micro-histruction register 31 is clocked
through a line 88 and AND gate 88' to read and store
the micro-instructiou which is addressed by the micro-
program sequencer 47. The AND gates 86 and 88 can
be disabled in response to selected codes in a micro-
instruction to decouple the 5 mHz clock. Such decou-
pling of the clock 85 from the sequencer 47 occurs. for
example, during input and output operatiOns to allow
data one micro-second to propagate.

Each micro-second which is read out of the read-only
memory 32 to the micro-instruction register 31 is cou-
pled through a micro-nonunion bus 31a to a micro-
instruction decoder circuit 18 which is also coupled to
the clock line 88. The micro-instructions are decoded

and executed before the next clock pulse is applied to
the terminal 54 on the micro-program sequencer 47.
Each micro-instruction is comprised of a plurality of
separate codes called micro-orders which are each sepa-
rately decoded to enable one of the processor elements.

Each micro-routine stored in the micro-program
read-Only memory 32 is terminated with a special mi-
cro-instruction which includes a code, or micro-order,

identified hereinafier by the mnemonic BOX or EOXS.
When coupled to the micro-instruction decoder circuit
48, this code causes a logic high voltage to be generated
on an BOX line ‘9 to a priority mapper prom 50. If the
industrial control processor 13 is in the RUN mode. the
starting address of the FETCH micro-routine is read
from the priority mapper prom 50 and is applied to the
micro-sequencer 1!? through the bus 46. The micro-
instruction decoder circuit 48 also generates a logic
high voltage on a preset line 51 which connects to the
load terminal 52 on the micro-program sequencer 47 to
preset the sequencer 47 to the starting address of the
FETCH micro-routine.

As indicated above, the FETCH micro-routine func-
tions to read the next macro-instruction to be executed

from the main memory 34, couple it to the macro-
instruction register 37, and initiate the execution of that
macro-instruction. The last micro-instruction in the
FETCH micro-routine includes a code which is identi—

fied hereinafter by the mnemonic MAP. This micro-
instrucu'on code causes the micro-instruction decoder

circuit 48 to generate a logic high voltage to the macro-
decoder circuit 38 through a MAP line 52 and to
thereby initiate decoding of the macro-instruction
which is stored in the macro-instruction register 37. A
logic high voltage is also generated on the preset line 51
to load the micro-program sequencer 4'7 with the start-
ing address of the micro-routine called for by the de-
coded macro-instruction.

As shown in FIG. db, mathematical and logical oper-
ations are performed by the industrial control processor
13 in an arithmetic and logic processor 55 which con—
nects to the prooessor data bus 30 and to the micro-

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 26

4,138,718

7

instruction decoder circuit 48 through a bus 56. Refer-
ring particularly to FIG. 5. the arithmetic and logic
processor 55 includes a 16-bit "L" register 57 which has
inputs that connect to the leads in the processor data bus
30 and a corresponding set of outputs which connect
through a bus 58 to the “B” inputs ofa 16-bit arithmetic
and logic unit (ALU) 59. Data on the bus 30 is clocked
into the L register 51 when a logic high is applied to a
lead 60 and the L register 57 is cleared when a logic
high is applied to a lead 61. The leads 60 and 61 connect
to the micro-instruction decoder circuit 48 through the
bus 56 and are thus controlled by selected micro-
instructions.

The ALU 59 is campfised of four commercially
available arithmetic logic units combined with a com-
mercially available full carry look-ahead circuit to per-
form high speed functions such as add, substract. decre-
ment and straight transfer. The ALU 59 has a set of 16
“A” inputs which connect directly to the leads in the
prooessor data bus 30 and a set of four function-select
lines 62 which connect to the micro-instruction decoder

circuit 48 through the bus 56. In response to selected
micro-instructions. the ALU 59 performs functions on
data applied to its A and 8 inputs and generates the
16-bit results to a shifter circuit 63 through a bus 64.

Also, the ALU 59 generates signals to an ALU de-
coder 114 which indicate when the result of a logical or
arithmetic function is zero. all “ones,” odd, negative or
when it causes an overflow or a carry. The existence of
such a condition is separately tested by micro-orders, or
codes in micro-instructions which enable the ALU de-

coder 114 through the bus 56. The existence of the
tested condition results in the generation of a logic high
on a skip line 115 which connects to the decoder 48.

The existence of an overflow condition in the ALU

59 can also be stored in an overflow flip-flop 116 when
a logic high is applied to its clock terminal through a
line 117 by the decoder circuit 48. The Q output on the
flip-flop 116 connects to the ALU decoder 114 and its
condition can be tested by an appropriate micro-order.
A system flag flip-flop 118 connects to the ALU de-
coder 114 and it can be clocked in response to an appro-
priate micro-order through a line 119 from. the micro-
instruction decoder 48. The flag flip-flop 118 may be set
in response to one of the tested ALU conditions, and its
state, or condition can in turn be tested by an appropri—
ate micro-order acting through the ALU decoder 114.

The shifter circuit 63 is comprised of eight commer-
cially available, dual four-line-to-one-line data selectors
having their inputs connected to selected leads in the
bus 64. Sixteen outputs on the shifter 63 connect to a
l6-lead ALU data bus 65 and a pair of control leads 66
connect it to the micro-instruction decoder circuit 48.

In response to selected micro-instructions. the shifter 63
passes the sixteen-bit data word from the ALU 59 di-
rectly to the ALU data bus 65, or it shifts or rotates that
data one or four bits.

The 16-bit data word on the ALU bus 65 is coupled
to a 16-bit "A" register 67, a 16-bit “B” register 68, or a
random access memory bank 69. The data is clocked
into the A register 6'! by applying a logic high voltage
to a lead 70 which connects the A register 67 to the
micro-instruction decoder circuit 47, or the data is

clocked into the B register 68 by applying a logic high
voltage to a lead 71 which connects the B register 68 to
the micro-instruction decoder circuit 48. The sixteen

outputs of the A. register 6‘7 connect to the "A" inputs
on a 16-bit multiplexer '72 and the 16 outputs on the B

5

10

15

20

25

30

35

45

55

65

register 68 connect to the "B" inputs on the multiplexer
72. Sixteen outputs on the multiplexer 72 connect to the
leads in the processor data bus 30. and when a logic
high voltage is applied to an enable lead 73 thereon, the
contents of either the A register 67 or the B register 68
are coupled to the prooessor data bus 30. The selection
is made through a select lead 74 which, along with the
enable lead 73. connect to the micro-instruction de-
coder circuit 48. In response to the execution of selected
micro-instructions, therefore, the A register 67 or the B
register 68 may provide the source of data to the pro-
cessor data bus 30 through the multiplexer 72. or they
may be designated by selected micro-instructions as the
destination of data on the processor bus 30 which is
coupled through the ALU 59 and the shifter circuit 63.

The random access memory 69 is comprised of four
commercially available 64-bit (16x4) random access
memories which are arranged to provide 16 l6-bit regis-
ters identified hereinafter as the “P” register and the
111—1115 registers. A sixteen-bit data word is written
into the random access memory 69 from the ALU data
bus 65 when a logic high voltage is applied to a read-
write line 75. On the other hand. the contents of one of
the 16 registers in the memory 69 are read out through
a bus 76 to a 16-bit data latch 77 when the line 75 is at

a logic low voltage and the data latch 77 stores this
word when a logic high voltage is applied to its clock
line 78. The lines 75 and 78 connect to the micro-
instruction decoder circuit 48 and both the random

access memory 69 and the data latch 77 are thus respon-
sive to selected micro-instructions.

The particular register in the random access memory
69 which is to be accessed is determined by a four-bit
address code which is applied to a set of terminals '79.
The address terminals 79 are connected to the outputs
of a four-bit multiplexer 80 which has a set of “A”
inputs connected to receive bits 4—? of the micro—
instruction (source field) and a set of four “13" inputs
which are connected to receive bits 9-12 of the micro-

instruction [destination field) through the micro-
instruction bus 310. The multiplexer 80 is enabled
through a lead 81 which connects to the micro—instruc-
tion decoder circuit 48 and the four-bit address on the A

or B inputs is selected by the logic signal applied to a
lead 82 which connects to receive a 5 mil: “destina-
tiOn” signal from the clock circuit 85. When the random
access memory 69 is identified as the source of data. the
address of the particular register in the memory 69 from
which the data is to be read appears at the A inputs of
the multiplexer 8|], and when the random access mem-
ory 69 is identified as the destination ofdata, the address
of the particular register into which the data is to be
written appears on the B inputs.

Data read from the random access memory 69 and
stored in the data latch 77 is coupled to the processor
data bus 30 by a set of 16 gates 83. The gates 83 are
enabled through a lead 84 which connects to, and is
controlled by. the micro-instruction decoder circuit 48.
For example, the P register in the memory 69 serves as
the macro-program counter. and when the FETCH
micro-routine is executed. the contents of the P register
is read out through the data latch T! and the gates 83 to
the processor data bus 30 where it is coupled to the
main memory address register 36.

The arithmetic and logic processor 55 also includes a
10-bit binary transfer counter 141 which has its inputs
connected to the ten least significant digit leads in the
processor data bus 30. A constant can be loaded into the

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 26

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 27

4,138,718

9

transfer counter 141 by a micro-order which designates '
it as the destination of the data and which enables it

through. an enable lead 142. The same micro-order gen-
erates a logic high voltage to a preset terminal through
a lead 143. The transfer counter 141 can be incremted

through a lead 144 and an output signal is generated on
respective leads 156 and 15".I when a count of 15 or 1,023
is reached. The leads 142-144. 156 and 157 connect to
the micro-instruction decoder 411.

Connectedtotheprocessor databusslland the trans-
fer counter 141 is a resident communication program
read-only memory 158. The ROM 158 is a 4-bit by 1024
line read-only memory which has its address terminals
connected to the counter 141 through a nine-lead bus
159 and its four data output terminals connected to the
four least significant leads in the data bus 30. The ROM
158 is enabled to read a four-bit byte of data onto the
bus 30 when a logic high voltage is applied to an enable
tetminal 159 by the micro-instruction decoder 48.

Referring again to FIGS. 3 and 46. data is coupled to
and is received from the [/0 interface racks 20 and 21

and the system [/0 devices 5, 7, 8. 9 and 10 through an
input/output interface circuit 87 which connects to- the
processor data bus 30. Referring particularly to FIG. 6,
the [/0 interface circuit 87 includes a set of sixteen data

output gates 90 which have inputs connected to the
leads in the processor data bus 30 and outputs which
connect to a 16-bit input/output data bus 91. An enable
line 92 connects a second input on each of the data
output gates 90 to the micro-instruction decoder circuit
48. and when driven to a logic high voltage. a 16-bit
data word on the processor data bus 30 is coupled to the
input/output data bus 91. The input/output data bus 91
connects to the wiring harness 19 and 22 which couple
the industrial control processor 13 to the interface rocks
20 and 11 and to the respective system [/0 devices such
as the CRT display 9.

The input/output interface circuit 81' also includes a
six—bit input/output address register 93 which connects
to the sin least significant digit leads in the processor
data bus 30. The 1/0 address register 93 connects to the
micro-instruction decoder circuit 48 through a clock
lead 94 and when a logic high voltage is generated on
the clock lead 94, a six-bit [/0 address is clocked into
the register 93 from the processor data bus 30. Six out-
put terminals on the register 93 connect to leads in a
six-bit [/0 address bus 95. The [/0 address bus 95 joins
the wiring harness 22. and the I/O address stored in the
register 93 is thus coupled through the bus 95 to the [/0
interface racks 20 and 21. A clear line 96 connects the

address register 93 to the micro-instruction decoder
circuit 48. and when a logic high voltage is generated
thereon. the register 93 is reset to zero. As will be de-
scribed in more detail hereinafter, when an OTA mac-
ro-instruction is executed, the [/0 address (rack num-
ber and slot number) is loaded into the output address
register 93 and is applied to the [/0 address bus 95. The
addressed device acknowledges receipt of its address
and a l6—bit data word may then be applied to the pro-
cessor data bus 30 and gated onto the input/output data
bus 91 to the addressed device.

Data is coupled into the industrial control processor
13 through a. liS-bit multiplexer 97 which forms part of
the input/output interface circuit of FIG. 6. A set of 16
“B” input terminals on the multiplexer 9? connect to the
input/output data bus 91 and a set of 16 output terminals
thereon connect to the respective leads in the processor
data bus 30. The six least significant digit inputs of a set

10

15

20

25

35

45

55

65

10
of 16 "A" inputs on the multiplexer 9? connect to an
interrupt address bus 950. An enable line 98 and a select
line 99 on the multiplexer 9'! connect to the micro—
instruction decoder circuit 40. When a logic high volt-
age is generated on the enable line 90. the data on either
the [/0 data bus 91 or the interrupt addr bus 950 is
coupled to the processor data bus 30. The selection is
made by the logic state of the select line 99 which is also
controlled by selected micro-instructions through the
decoder circuit 48.

Decoding of the [/0 address for the system l/O
deVices 5. 7. 8. 9 and 10 is accomplished in the input-
/output interface circuit of FIG. 6. The three most
significant digit leads ofthe input/output address bus 95
connect to the respective inputs on three exclusive
NOR gates 102-104 and the three least significant digit
leads therein connect to the inputs of a BCD decoder
105. A second input on each of the exclusive NOR gates
102-104 connects through respective switches 106-108
to a logic low voltage supply terminal 109 and an output
terminal on each of the gates 102—104 connects to re-
spective inputs on an AND gate 110. An output on the
AND gate 110 connects to an enable terminal 112 On
the BCD decoder 105, and when a logic high voltage is
generated titer-eat, the three-bit binary coded decimal
number applied to the inputs of the decoder 105 is de-
coded. As a result, a logic low voltage is generated at
one of eight terminals 113, the five least significant of
which connect to the respective system [/0 devices 5,
7, 8. 9 and 10 through the wire harness 19. The three
switches 106—100 are set to indicate the rack number

(which in the preferred embodiment is number 1). and
when this number appears on the three most significant
digit leads of the I/O address bus 95. one of the system
I/O devices is addressed.

The input/output interface circuit 8‘! of FIG. 6 also
includes a tinted interrupt circuit 162. The circuit 162
includes an R—S flip-flop 163 having a set terminal con-
nected through a lead 164 to the processor clock circuit
85 (FIG. 41:). Every 10.25 milliseconds a logic high
clock pulse is applied to set the flip-flop 163 and a logic
high voltage is generated at its Q output terminal and
applied to an interrupt request line 160. The interrupt
request line connects to a priority encoder circuit 127
(FIG. 4a) as will be described hereinafier, and when the
interrupt is granted, a logic high voltage is generated On
an interrupt acknowledge line 161. The htterrupt ac-
knowledge signal is gated through an AND gate 166
and clocked into a dc. flip-flop 16‘} connects through a
lead 168 to one input on each of six. AND gates 169 and
through a lead 170 to an AND gate 1'11. The outputs of
the AND gates 169 connect to the respective leads in
the interrupt address bus 959 and their respective sec-
ond input terminals are connected to logic high and
logic low voltage sources in such fashion as to generate
the octal address seventeen on the bus 95:; when the d.c.

flip-flop 16? is set. Thus. every 10.24 milliseconds the
circuit 162 generates an interrupt request to the priority
encoder 127 and when an acknowledge signal is re-
ceived it asserts the [/0 address seventeen on the inter-
rupt address bus 95a.

Circuits similar to the timed interrupt circuit 162
reside in the keyboard 7, the UAR/T 8 and the tape
reader 5. Each of these system [/0 devices connect to
the interrupt request line 160 and each is connected in
"daisy chain" fashion to the interrupt acknowledge line
161. As shown in FIG. 6. the interrupt acknowledge
line 161 is coupled through the interrupt circuit 162 by

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 28

4.138.718

11

an AND gate 1‘72 which is controlled by the Q output
terminal on the 11—5 flip-flop 163. Thus, when the
circuit 162 requests the interrupt. it not only responds to
the resulting interrupt acknowledge signal. but it also
prevents that signal from being coupled to subsequent
system [/0 devices in the daisy chain. In this manner.
only one interrupting 1/0 device is serviced at a time.
As will be described in more detail hereinafter, when an
interrupt is acknowledged by the priority encoder cir-
cuit 127. it also the execution of an interrupt
service micro-routine which loads the [/0 address of

the interrupting device into register R4 of the memory
69. This 1/0 address is then employed to locate the
starting address in the main read/write memory 34 of a
macro-routine which services that particular system
[/0 device. For example, the timed interrupt circuit 162
calls up a ten millisecond timed interrupt routine.

It should be apparent from the description thus far
that the various elements of the industrial control pro-
cessor tamopentedinscqumceinresponsetomicro-
instmctions which are read from the micro-program
read-only memory 32 into the micro—instruction register
alandwhicharethendecodedbythedecodercircuit
4B. The address of the first micro-instruction in any
micro—routine to be executed is loaded into the micro-

program sequencer 47 from one of the mapper prom
42—45 or 50 and as the are executed.
the micro-program sequencer ‘7 is incremented one
count to read out the next micro-instruction in the mi-
cro-routine until an EOX or EOXS code is detected
which indicates the end of the micro-routine.

Referring particularly to FIG. db. to enable the use of
JUMP micro-instructions. and to thus allow one level of
micro-subroutine. a 12-bit save register 120 is connected
to the outputs of the micro-program sequencer 47
through a bus 121. and a twelve-bit multiplexer 122 is
connected to the inputs ofthe sequencer 4"! through the
address bus 46. The save register includes a clock lead
123 which connects to the micro-instruction decoder
circuit 48, and when selected JUMP micro-instructions
are executed. the address stored in the micro-program
sequencer 47 is stored in the save register 120. The
outputs ofthe save register 120 connect toasetof 12
“A” inputs on the multiplexer 122. and when a return
call micro-instruction is subsequently executed. the
address stored in the save register is coupled through
the multiplexer 122 and loaded back into the micro-pro-
gram sequencer ‘1'. The multiplexer 122 also includes a
set of "B" inputs which connect to the micro-instruc-
tion bus 31a, and when a JUMP micro-instruction is
executed. the target address in the instruction is coupled
from the micro-instruction register 31 to the micro-pro-
gram sequencer 47 through the multiplexer 122. The
multiplexer 122 is controlled by the data select lead 124
and an enable lead 125. both of which connect to the
micro-instruction decoder circuit ts.

Referring to FIG. 4b. the micro-hasn'uction bus 31::
also couples to the processor data bus 30 through a set
of 16 AND gates 158. One input on each gate 1511 con-
nectstoaleadinthebusifloandasecond inputoneach
is commonly connected through a lead 159 to the rui-
cro-instruction decoder circuit ‘8. Their outputs con-
nect to the respective leads in the processor data bus 30.

Referring particularly to FIG. 4a. the switches, lights
and other control and devices on the proces-
sor front panel 26 and the secondary control panel 12
are coupled to the processor data bus 30 by a control
panel interface circuit 126. The control panel interface

5

10

15

25

30

35

‘0

4-5

55

65

12

circuit 126 in turn is connected to inputs of a priority
encoder 12":I through a seventeen-lead bus 128 and five
outputs on the priority encoder 12'! connect to the pri-
ority mapper prom 50 through a bus 129. The control
panel interface circuit 126 receives signals frOm panels
12 and 26 through the cables 15 and 27, and it receives
signals through the prooessor data bus 30. In response.
it generates a logic low on one or more of the leads in
the cable 128 which determine the mode in which the

industrial control processor 13 is to operate.
Referring particnlarly to FIG. 7, the priority encoder

127 includes a first three-bit binary encoder 130 which
has a set of eight inputs, seven of which connect to the
bus 123. The eighth input connects to the interrupt
request line 160 from the I/O interface circuit 8'}. An
eight-bit data latch 131 also has a. set of eight inputs
which connect to leads in the bus 128 and its eight
output terminals connect to respective inputs on a sec-
ond three-bit binary encoder circuit 132. Three output
terminals 133 on the first binary encoder 130 connect to
respective first inputs on three HAND gates 134—136.
Similarly, three output terminals 137 on the second
encoder 132 connect to respective second inputs on the
NAND gates 134—136 and a fourth output terminal 138
on the second encoder 132 connects to an enable termi-

nal 139 on the first binary encoder 130. The fourth
output 133. the outputs of the respective NAND gator:
134—136 and a seventeenth lead 140 in the bus 128 con-

nect to respective leads in the bus 129 which in turn
connects to the priority mapper prom 50. The lead 140
also connects to input number 4 on the first binary eu-
coder 130.

The priority encoder 127 generates a five-bit binary
code to the priority mapper prom 50 which is respon-
sive to a logic low voltage at one of the seventeen leads
in the bus 128. and which operates to address a line of
the mapper prom 50. The mapper prom 50 is enabled
when its BOX terminal 49 is driven to a logic high
voltage at the completiOn of the micro-routine then
being executed and a twelve—bit starting address is read
out of the addressed line of the enabled mapper prom 51]
to the micro-program sequencer 47. Although more
than one ofthe leads in the bus 128 may be low at any
given time. the encoder circuit 12"lI generates the code,
or mapper prom line address. only for that lead which
has the hight priority. Listed from the lowest to high-
est priority, the signals on the respective lead numbers
0—16 in the bus 128 result in the following functions
being performed:

Micro

Lead No. -llout.ine BMW
0 FETCH RUN mode in which the program

stored in the main memory is

I R executed.I N I E. - A requested interrupt isRUFF serviced.
2 POWER UP A hi r priority interrupt{DOWN whic is serviced before other

intermpta
3 START Initiates the processor whenit is switched from HALT to

RUN mode.
4 “ALT Three-instruction micro-loop

in which no execution of macro—
instmctions or servicing of
interrupts will occur.

5 CL]! DISPL Display register on processorfront pane 26 is cleared.
6 PAR NHLT Interrupts and displays "memoryerror"cn CRT.
'l' PAR. HLT Interrupts and halls processor.
8 DISPL R Display contents ofa selected

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 28

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 29

4,138,718

l4

PROCESSOR FUNCTION MICRO-ORDER CODES

Mnemottic Bit Pattern Description

13

continued ‘
Micro

Lead No. -Routi.ne Description
room-or re ‘ teron moesaor
mm is P 5 ASGI Halo

9 DISPL T Display contents of I selected A502 "0“
memory location on processor
from par-cl 26x CFLG ol Ill

10 STORE R Store contents of prctoeaaor

front panel display to selected cov mm;W, 1 1
ll STORET miende 10 cm ml

front paqu display in selectedmemory ocation.
12 DECM Decrement memory address DIV lm

register 36.
I3 lNCM Increment memory address DMA 91°”

register 36.
I4 STEP Execute one macro-Mitchell. 15 [)ng namethan halt.
l5 BBL A micro~prognm which flat-afoul

the resident communiqu Fm “10'
program stored in ROM 158 to
mainmemoryl-laadinitiatu m5 .1109

hi MPFF i: Mme coda 'ntea In every

location ofthe main 10“ m mm mmwhen battery wer is
during an unlisted shutdown. 10F? mml

_ _ _ ‘ too more
The priority encoder 127 also includes a bmary-to- LI 1mm

Octal decoder 165 which has a set ofthreeinputs which 25 u m. H
connect to the respective NAND gates 134—136. The
second of eight output terminals on the decoder 165 "W “m
connects to the interrupt acknowledge line 161. and no]: my

when the interrupt service micro-routine is requested “0"”
by a logic high voltage on the interrupt request line 160. 30 m 10.01
a logic high voltage is generated on the interrupt ac-
knowledge line 161 when the request is granted. READ mm

The above described hardware is operated in re-

sponse to micro-routine comprised of micro—instruc- RP]. mo“. .
tions which are executed at a rate of one every 200

nanoseconds. These micro-instructions include codes R55 mm
which are decoded by the circuit 48 to generate eo-
abling signals to the appropriate system elemts. The SFLO 01110

Operation of the hardware will become more apparent 50‘, m 100
after the micro-instmction set which this hardware 4'0 SR6! limo
executes is discussed.

The micro-instruction set is comprised of three types
or instructions. The first type of micro-instruction has 53-03 "a"
the following format and is employed to transfer data
between processor elements which couple to the pro- ‘5 WRTE 0mm
cessor data bus 30. to perform logical and arithmetic
functions on data applied to the ALU 59, and to per-
form data test and micro-instruction skip operations.

BitNo. 23222120” lBIT!61514|3I1|1109 31154 3210

mocessoa aw DESTINATION souaca SKIP. FLAG
Description FUNCTION FUNCTION FIELD FIELD and MAP

55

The micro-instruction decoder circuit 48 simulta-

neously decodes each of the five "micro-orders” in this
first type of micro-instruction and enables the appropri-
ate processor elements to perform one or more func-
tions. The processor element identified by the destina-
tion code is not enabled, however. until the last 50 nano-

second portion of the zoo nanoaecorid execution time
period. The codes which may be employed in the live
micro-orders of a “type one" micro-instruction are as
follows:

60

65

Enables decoding of alter/skip

mp I of macro-instruction.let decoding of alter/slip
up 2 of macroinsn-uction.

a! processor flag flip-flop113.

Clear overflow fllipflop noIf processor flag ip-flop [18is set. carry “1 to
ALU :9.Divide 32-bit number in A and

B registers by number in Ltegaster.
Enables DMA cycle after execution
of micro-instntcdon.
Causes 1 usec. freeze by dis-

:gling AND gate 36 on sequencer
Enables setting of processor
flag bit.
Inverts condition of processor
flag bit.Increments the transfer counter
I41 by one count
Disables interrupt recognition
except party errors and powerfail interru ta
Initiates a usec. U0 cycle.
Performs a one-oil lo '
left shift on dala leavtng ALU.
Performs a four-bit logical
left shift on data leaving ALU.
Multipllcs number in A register
by number in L register.
No Operation is performed.

Performs a one-bit logical
right shift on data leaving ALU.
Loads address into main memory
address register 36 and reads outdata or macwirutruction into
manory data register 35.

meats neat microiustroctionhvcrements transfer counter
14L
Reversu sense of SKIP/FLAG
micro-order.
Sets the pm! flag flip-
flop 118.
Sets overflow flip-flop llflArithmetic or rotational shift
ofdala leaving ALL! as deter-
mined by hits 6 through 9 in themacroinatruetlon register 3?.
Similar to above. but controlled
bybitsO, 1.2 and He the
macro-batan register 37.
Loads address into main memory
addrea r 'ler 36 and writes
contents 0 memory data register
35 into main memory 34.

ALU FUNCTION MICRO-ORDER CODES
Mnemonie Bit Pattern Description
ADD

ADDO

AND

ARS

CLIPS

{DIM

03ml

OIHII

1 I010

OIOIO

Adds the data on processor data
bus 10 to contents ofL register51".
Same as ADD. hut extend and
overflow Io ' enabled.
Performs a ogical "and"ocf the
data on the processor bus 30 and
the contents of L register 51'.Used in combination with shift
processor function codes to
perform arithmetic shift of
combined contents of A register
6? and B register 63.
Ones complement data on processor

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 30

15

continued

Mnemonic

CR5

DEC

INC

[NCO

103

L05

LWF

NA ND

NOR

ONES

PASS
RSB

SUB

5WD

SW5

XNOR

XOR

ZERO

DESTINATION FIELD MICRO-ORDER CODES
Mnernonic BitPattem Description

11001

00110

DWI!)

00001

01110

HOW

100“

[ll 10]

Ollll

OIOII

loom

DOIII

lllll

llllfl

(Dill!

mom

DICK]!

ALU FUNCTION MICRODRDER CODES
Bit Pattern Description

data bus 30.
Used in combination with shift
processor function codes to
perform circular rotate shift
of contents of A register 15?
and B register fill.
Decrement data on processor
data bus 30 by one count.
Increment data on processor
data bus 30 by one count.
increment data on processor
data bus 30 by one count with
extend and overflow logic enabied.
Logical "cr"ol' the data on
processor data bus 30 and
contents of L register 5?.
Logical lefl shift of combined
A register 61 and B register 68
when combined with processorshift codes.
Combined with proper prmessor
shift codes. it performs rotational
shift of data applied to shifter
63 and the flag bit.
Performs a logical “riand"on
the data on processor data bus
30 and contents of I. register 5?.
Performs a logical "nor"of
the data on processor data bus

:11; and contents of L register

gasses all "ones"to the shifter
Passes the data unchanged.
Loads contents of save register

fit] into micro-program sequencer
Sublracts contents of L register
5? from data on procer databus 30.
Switch on the processor control

Panel specifies the destinationleld
Switch on the processor control
panel specifies the source field.
Performs logical exclusive
"nor"of'l|1e data on the processordata bus 30 and the contents of
L register 57.
Performs logical exclusive "or"
of the data on the processor
data bus 30 and the contents of
L re am 57.
AL pram all zeros.

4,138,718
16

continued

A

ABT

B

CAB

CNTR

DSPL

100

IR

IRIO

N0?

[0100

IOIIO

1010]

1000]

llllU

11010

IOIII

IlDll

[NIH

[0000

IDIJII

111]]

Stores data on ALU bus I55 in
A register 6?.
A register 6‘}, B register 68 or
memoryr 34 depending on contents
of memory address register 36.Slore-sdata on ALU bus 65 in B
register 68.
A register a? or B register 63
depending on bit II in macro—
instruction register 37.
Stores lower eight bits onr data bus 30 in
transfer counter [41.
Stores data on processor data
bus 30 in processor front panel
display.
Couples data on processor data
bus 30 to 1X0 data bus 91.
Stores data on processor databus 30 in macro-instntction
register 3?.Stores lower six bits on ro
cessor data bus 30 in I!
address register 93.
Stores data on processor databus 3:: in L register 57.
Stores data on processor data
bus Ell in memory address
register 36.
No store operation.

5

10

15

20

25

30

35

45

50

55

65

DESTINATION FIELD MICRO-ORDER CODES

Bil Pattern DescriptionMnemoriic
F

'I'

ll!-
RIS

m

10qu

com:
throu

OI I Islh

Store data on ALU bus 65 in the
P register of memory 69.
Store data on processor data
bus 30 in the memory data
register 33.
Store data on ALU bus 65 in one
of the respective registers
B] through RES of the men-torsI 69.

SOURCE FIELD MICROORDEII. CODES
Bit Pattern DescriptionMnemonic

ABT

ADDR

CIR

DSPL

IO!

Ill

LDII.

MA SK
NOF

RI
R15

TIMI!

Mnemonic

10100

I01 10

11001

I010!

IUDI

“(In

IIOIU

Ifllll

110”

“ml

lMIl

[1100
Hill

m1
throughoil I I

10010

[[110

Couples data from A register 67
to the processor data bus 30.
A register 67. B register 68
or memory 34 depending on contents
of memory address register 36.
Couples low portion of macro-
instruction register 37 and high
portion of memory address register
36 to the processor data bus 30.
Couples data from B register fill
to the processor data bus 30.
(30an data from A register 67
to the processor data bus 30 if
bit I! in macro-instructirm reg—
ister 31 is 0; couples data from
B register 68 to the processordata hnsfiflifbir ll iaaone.
Couples six-bit addrem from 1/0
interrupl bus 95a to the preceaaordata bus 3-0.
Couples contents of processor
front panel display register (not
shown) to the processor data bus30.

Cougles data from the U0 data
3333 I to the processor data bus
Couples data in macroinatruction
register 37 to the proomor data
bus 30.

Couples data from resident coni-
I'oumcationa program ROM 15! to
prowssor data bus 30.
Couples data in memory address
register 36 to the processor databus 3|}.
Enables bit pointer circuil 40.Processor data bus 30 coatmm‘
all ones.
Couples contents of P register
in Mary 69 to the processordata bus 3|].
Couplu data from respective
registers RI through R15 in the
memory 69 to the processor databus 30.
Couples main memory data from
register 35 to the processordata bus 30.
Couple output of real-time clock
145 to the processor data bus 30.

SKIP MICRO-ORDER CODES
Bit Pattern Description

ALO

ALIS

ALZ

CNT4

CNTE

COUT

{[110

(Ill!

(Hill

lUOl

1W

moo

Ski the neat micro-instruction
if bit 0 at output of ALU 59 isone.
Ski the nest microinatruelion
if but 15 at output of ALU 59 isa one.

Skips the neat micro-instruction
il'output of ALU 59 is zero.
Ski the neat micro-instruction
if t four least significant bitsof the transfer counter l4l are
all ones.
Ski the next microinstruelion
if I the bits of the transfer
counter 14] are ones (i.e.. count =
2047').
Skips the next micro-instruction

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 30

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 31

4,138,718
17

continued '
SKIP MICRO-ORDER CODES

18

The processor function micro-order coders and the
destination micro-order codes are the same as those for

“type one" micro—instructions which are listed above.

Moment Bit Pettertt Descn' lion . .

.t. [he Km 59 I There are only two ALU function mere-order codes
FLO mu :3“ me ml Mwim:' 5 and addition the functions which two codes

llflr gm M '5th speedy as descrtbed beiow, they serve to tdenttfy the
m“, "no stigma m“ “Mmmlm mtcro-tnstmctton as one havmg the type two format.

ifen interrupt is pending.
NOE m po net‘skip the next micro

0 mm I I _ l1 l0 ALU FUNCTION MICRO-ORDER conesNBS MI mete-turner: ton - - - -

if AL” 59 “If”! m In Mnemome Ell Pattern Descriptionones. IMM IDIEIJ Hones lintee'n bin onto the
OVFL Dill] S ‘ the next micro-Motion processor dsts bus 30 consisting

il' fmeessor overflow flip- ol' the I‘s complement of theflop I 6 is set. eight-bit him OPERAN'D end
UNCD Oil! Skips the next micro-instruction mother eight hits of sll ones.

monditiomfly. 15 The ALU 59 perfonm It PASS
opentim.

IMMC IOIOI Sense I: [MM except the ALU 59
perfom s I's complement of thedate on the date but 3-0.

mo MICROORDER cones M _ “a???” “I'CRQ'Q ER CODES
Mnemrmit: Bit Pattern Description m “cm ‘ m “Pm”. HIGH I S ' that lhe I‘ kernel:
ALO mm Set the processor _ flip-GOP mgmnn icd to it:

IlSIfthcklflll lb“ ' tmoetsi ‘fmtuprlm
outputofALU iteope. mwrdlubumAL” mu 5“ PM? . “IMP? LOW D S 'fies that the 1': coin lenient
“WWW . W“ omeOPERANDiseppiiedtolhe

AL: Ml gm“ AL” “Es'gg‘fla 25 ei t least significant but leadsprocessor
llsiftheoutputsoftheAL 59 _ MM““°‘”3°'

com 0100 a an If nm 1

us ire: ALL] 59 The OPERAND mtcro-order code 13 an etght-btt
ONES 919' ff; WAL ’33:?” binary integer which specifies a decimal number from 0

m m 3,0 to 255 or an octal number from 0 to 377.
OVFL 0| IO St! 112 Wm' NIB flip-“DP The third type of micro-instruction has the following

IIE II' an overflow occurs r t_UNCD om Settheprnceuorflngflipflop 0m-

BitNo. 132211109 I8I71615l4 I3I2 IllD93765432l0
PROCESSOR ALU

DESCRIPTION FUNCTION FUNCTION MODIFIER OPERA‘ND

1I3 unconditionuly.

The FLAG micro-orders are enabled only when the
FLG or FLGS processor function micro-order appears
in the same nficro-instructiou. Absent the FLO or
FLGS micro-order. the SKIP micro-orders are en-
abled.

MAPPING MICRO-ORDER CODES

£0

45

The processor function micro-order codes are the
same as those for "type one” micro-instmctions which
sre listed above. There are only two ALU function
micro-order codes and in addition to the functions

which these two codes specify as described below, they
serve to identify the micro-instruction as one having the
type three format.

ALU FUNCTION MICRO-ORDER CODES

” . a“, n rj . Mnemonic Bitme Description '-
BOX um lodlca'tee um micro-routine is so 1”” "mo gflmflmmrg“

“PM” '3‘! ‘WWW “W” Ipecified in the OPERAND.
""1 $51“ :53 10111 Jump unconditioeelly to the

ons "01 new nu: mu:Jrte-routine is “Wm”;“the”:gfim m,
mmggflflmm mummmmm

MAP llll Wham-Hm circuit 'm “m m
38 to cell up micro-routine 55

specified b5 macro-instructionin 7.
MAPL I110 Bash macro-decoder circuit

33 to cell It sfier MODIFIER MICRO-ORDER CODES
Indirect result: I: resolved. MW 3;, m M11,”

60 no 01 hi othehfotgpleut 3‘ Din- um. . . cent tl I e ERA WI

_ The second type of rmero-mstmetton has the follow- the m In“ W, m,
Ins format: in the mm—imtruction register

BitNo. 231232019 ll11l61514lallltlfl‘i s 163432“)
PROCESSOR ALU

Description FUNCTION FUNCTION DESTINATION MODIFIER OPERAND

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 32

4,138,718

19
-continued

MODIFIER MICRO-ORDER CODES
Mnemonic Bit Pattern Description

3?.
J“ 10 Replaces the four least ' ' :-clnt bits ofthe DPERA D with

bits 4—? in the nacroinstnacticn
register 31'.ND? ll No modification of the OPERAND

The OPERAND micro-order code in a type three 10
micro-instruction is a 12-bit address which is coupled
through the multiplexer 122 to the micro-program se-
quencer 47.

The above-defined micro-instructions are combined
to form micro-routines which are stored in the micro-

program read-only memory 32. These micro-routines
are in turn employed to execute mom-instructions
whicharestoredinthemainmemoryu‘l'hemacro-
instructions are combined to form programs. or rou-
tines. which when executed, perform the various nu-
merical control functions and operate the discrete digi-
tal devices associated with the machine tool. Before a

more detailed description is made of the manner in
which macro-hrstructions are executed by selected mi-
cro-routines. a general description of the software sys-
tem of the industrial control procemor 13 will be made
in order to acquaint the reader with the objectives
which are to be accomplished and the general manner in
which the system Operates to accomplish these objec—
tives.

The operation of the industrial control processor 13 is
determined by the software routim stored in its main
memory 34 which together form the software system.
Theme system iscomprised offour main catego-
ries: background routines; Ill-millisecond timed inter-
rupt control routine; tape reader service routine; and
keyboard service routine.

Referring to FIG. 9. the background routines 1‘75
consist of such basic numerical control routines as

setup, decode. noninterrupt portion ofthe keyboard and
tape reader routines. display update subroutine, ASCII-
to-octal and octal-to-ASCII converters, math and sup-
port routines. jog. keyboard servicing, tool and fixture
offset. cutter compensation. and part program editing.
The background routines also include those associated
with the programmable controller aspects of the sys-
tem. such as machine dependent software loader and
editor. hardoopy output. punch output and 1/0 mom?
tor. Moat of these background routines are selectively
called up by a main control. or executive, routine 176
which is comprised of three program loops 177-179.
The three loops 177-179 are selected by the mode
switches on the main control panel 10; the first loop 1??
responding to the selection of the automatic or block-
by-block modes; the second loop 178 responding to the
keyboard mode; and the third loop 179 responding to
the manual mode. A detailed flow chart of the main
control routine 176 is shown in FIG. 10.

The automatic and block-by-block modes of opera-
tion are performed by a common loop 171 which calls
up selected background routines 175. These routines
initialize the tape reader 5. read in the block of part
program data. decode it and set it up. The routine 1??
then calls up a block execute routine which performs
the actual execution of the block of part program data.

As shown in the detailed flow chart of FIGS. Ho and

11b. the block execute routine is divided into a pre-
block. or prelude, portion. an interpolation portion and

I5

25

35

45

55

60

65

20

a post-block, or postlude, portion. During the prelude
ponion selected system flags are set to indicate that
certain functions such as turn on Spindle. coolsnts. etc,
are to be performed. These flags are stored in selected
memory locations in a system flag table 182 in the main
memory 34. Similarly. during the postlude portion of
the block execute routine flags are set in the table 132 to
indicate that certain functions such as tool changes.
shuttles. turning off coolants and spindle. etc., are to be
performed by the machine dependent discrete devices.
The flag table 182 interfaces the numerical central func-
tions of the system with the programmable controller
functions of the system.

The second loop 178 of the main control routine 176
is entered when the keyboard enable pushbutton on the
main control panel 10 is pushed. This mode is em-
ployed. for example, to perform such functions as part
program editing of the machine dependent software
routine. The third loop 179 of the main control routine
1'76 is entered when the front panel selector switch is set
to manual. The manual routine contains all of the Opera-
tor functions such as jog. tape controls, and set zero
which are each performed by rapective routines that
are selectively called up. The main control routine 176
thus manages all of the background functions of the
system which serve to prepare the industrial control
processor 13 to provide data to the servo mechanisms
on the machine tool and to indicate to the associated

discrete digital devices the auxiliary function that are
to be performed.

The remaining portions of the software system inter-
rupt the main control routine 176 to service the U0
interfacerscksflandflandthesysteml/Odevicmla
ten millisecond timed interrupt routine 183 performs the
actual transfer of data from the industrial control pro-
cessor13t0themxchiueservomechanismsandthe

discrete digital devices on the controlled machine. This
routine is indicated generally in FIG. 9 and it is exe-
cuted to the finish every 10.24 milliseconds following an
interrupt posted by the timed interrupt circuit 162. As
indicated above, an interrupt service micro-routine
loadsthestartingmemoryaddressofthetenmillisecond
timed interrupt routine 183 in the P register (program
counter) ofthe memory 69 and it is then executed to the
finish.

Referring to FIG. 9 and the detailed flow chart of the
ID millisecond timed interrupt routine in FIGS. 120 and
12b. after various housekeeng functions are per-
formed. position feedback data and position command
data is coupled between the [/0 interface rack 20 and
the industrial control processor 13 by a servo mecha—
nism service routine ras. For a three-axis machine, for

example. the x, y and z. axis position feedback accumula-
tors are connected to slots 0-2 ofthe first 1/0 interface

rack 20 and servo mechanism command registers are
connected to slots 3-5. The routine 184 sequentially
couples the three sixteen-bit feedback words to come--
spending lines in the read/write memory 34 and the
three 16-bit command words previously calculated and
stored at three memory locations in the main memory
34 are coupled to slats 3-5 of [/0 interface rack 20.

The status of all sensing devices connected to the [/0
interface racks 20 and 21 are then coupled to the main
memory 34 by an input status routine 186. The routine
186 sequentially couples the sixteen bits of status data
from slots in the [/0 interface racks 20 and 21 to an

associated line in the main memory 34. A portion of the

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 32

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 33

4,138,713

21
main memory 34, hereinafter called the [/0 image table
185. is dedicated to storing this status data as well as the
data which is to be outputted to the [/0 interface racks
20 and 21.

A machine dependent software routine 1!? is exe-
cuted next to determine the state to which all operating
devices connected to the [/0 interface racks 20 and 2!

are to be driven. The machine dependent software rou-
tine 187 is comprised of programmable controller in-
structions which are executed in sequence to solve
Boolean expressions and thereby determine the state of
operating devices. In making these determinations the
status of selected bits in the 1/0 image table 185 and the
system flag table 132 are examined to ascertain a picture
of the current state of both the numerical control system
process and the machine dependent devices connected
to the system. The determined states are stored in the
[/0 image table 185. and after the routine 187 is exe«
cuted. these states are coupled to the output circuits in
the [/0 interface racks which drive the associated oper-
ating devices by an output status routine 19‘. The rou-
tine 195 couples sixteen-hit status words from the main
memory 34 to their associated [/0 interface rack and
slot.

{fa block ofpart program data has been set up and
the prelude functions completed, an interpolation sub-
routine 188 is executed to calculate position command
data for the machine servo mechanisms. These calcu—

lated position command words control the servo mech-
anisms for a l0.24 millisecond time period and are out-
putted by the servo mechanism service routine 184
during the subsequent ten-millisecond interrupt. The
timed interrupt routine 183 is exited back to the main
control routine 1'76.

Referring again to FIG. 9. a third category of rou-
tines which comprise the software system is the tape
reader routine which is divided into two portions; the
interrupt portion 190 and the background portion. The
tape reader routine is called by the main controller
routine 176 which employs the background portion of
the tape reader routine to perform the initialization
functions. After initialization by the background por-
tion. a tape reader interrupt will then occur whenever a
new tape character is positioned under the read head of
the tape reader 5 and the interrupt portion of the tape
reader routine 190 is executed. This routine reads the

tape character and stores it in a selected data buffer in
the main memory 34. It also sets flags in the system table
181 when the end of block character is read or when the
block limit is exceeded.

A fourth category of routines which comprise the
software system is the keyboard and CRT routine. This
includes an interrupt portion 191 which is entered each
time a key is depressed on the keyboard 7. Backgron
portions of the keyboard and CRT routine interpret the
received ASCII characters as data which is stored in

It]

IS

25

22

the main memory 34 or as codes which call for the
execution of specific subroutines.

The above described software forms no part of the
present invention, but instead, the description illustrates
the nature of the system software, machine dependent
software. tables and storage areas which reside in a
computerbssed numerical control system (CNC). These
elements. which are referred to collectively herein as a
system program. or system software package. deter-
mine the functions which the numerical control system
csn perform. As is known to those skilled in the art.
such system software packages vary considerably in
content and sinicture depending on the type of machine
tool the numerical control system is to operate, the
types of parts to be run on the machine. and the types of
optional features to be included. For examples, the ma-
chine tool may perform drilling operations or punching
operations which require only point-tmpoint control
rather than contouring. The system software would not
include interpolation capability and more space in the
numerical control system memory would he made
available for part program storage. The contrary is the
case where full contouring is required with linear, cir-
cular and perhaps even spline interpolation present.

The present invention enables the entire resident
software system in the numerical control system mem-
cry to be changed by downioading a different software
system package from the bulk storage device 507. Such

‘ a change may be required. for example. because a differ-

35

40

45

50

55

em type ofpart is to be machined which requires differ-
ent interpolation capability or special “canned cycles"
for efficient production. Also, the ability to download
an entire system software package enhances the reliabil—
ity of CNC systems which employ destructable memo-
ries. That is, rather than providing expensive and bulky
battery backup systems for maintaining power to the
system memory during power outages, the system soft-
ware packagc may be downloaded by the present inven—
tion from a non-destructable memory after power is
restored.

Downloading is initiatmi by depressing a pushbutton
510 located on the secondary control panel 12 of the
numerical control system I. Referring to FIGS. 4 and 7.
the logic high voltage thus generated is coupled
through the control panel interface 126 to lead number
fifieen of the priority encoder 127. As a result, the prior-
ity encoder 127 generates a five-bit binary code to the
priority mapper prom 50 which addresses the BBL
micro-routine stored in the micro-program read-only
memory 32.

The BBL micro-routine is then executed to load a

communications program into the top of the main mem-
ory 34, load the starting address of the communications
program into the program register (P), and then execute
a macro-instruction fetch to begin execution of that
program. The BBL micro-routine is as follows:

Proc. ALU Best. Source Field or

Label Function Function Field Mod. a Operand Comments
BBL ZERO RI Load Zeros in Ill.
LOAD ll IMM R9 HIGH zoos Initialize R9 to

maximum possible
memory address.

DMA IMMC R8 HIGH 0208 Initialize R8 to
GIMME.

LOAD l IMM L LOW 01’?!) Load mask (1711mm
into I. register.

AND P R9 Load maximum memory
address into P register.

DMA CUPS RID P Penn 2‘: complement
INC RID R I0 of memory address

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 34

23
-continued

Label Function
ALU
Function

Dost.
Field

Source Field or
Mod. e Operand

4,138,718

Comments

WRTE

DMA

READ

DMA
LOAD 2 U

ICNT

lCNT

ICNT

DMA

WRTE

ICNT

INC
PASS

PASS

INC
SUB
PASS

XOR
1MP

PASS

IMM
PASS

PASS

AND

PASS

AND

PASS

AND

INC
PASS

IMP

CMPS
INC

T

R9

CNTR
R8

R8

R8

R9
R [0

RE

R9
R9
R [O

T ALZ
LOAD l

P

LOW 37TH
LDR

R5

LDR

R8

LDR

R8

LDR

R9
R8 CN'I'B

LOAD 2

P Box

and store in Rio.
Write conth of
RIB into memry location
indicated by R9 andincrement R9.
Store contents of RI
in latch L.
Reed contents of
location written Into
to determine if
memory is present.
15 memory present?I
No. loop beck and try
with maximum memory
address reduced by 4K.
Yes. save maximum
memory address in R9.Clear transfer counter.
Read out contents of
addressed line in ROM
ISS. shift left four
laces and store in RS.
ncrernent transfer

counter and store con—
tents of R8 in latch I...
Read out contents of
Iddreseed line in ROM
I58. AND with contents
of L. shift result left
four places and storein RI.
Increment transfer
counter and store con-
tents of!“ in latch L.
Read out contents of
addressed line in ROM
l58. AND with contents
of L. shift result
left four laces and
store in 8.
Increment transfer
counter and store con-
tents of R8 in latch L.
Read out contents of
addressed line in ROM
[58. AND with contents of
L and store in R8.
Write lo‘bit word in
R8 into memory 34 at
location indicated by
R9, increment R9 and
check to see if transfer
counter is all ones.
No. loop back to transfernext 16bit word to
memory 34.
YES. put startingaddress of resident
communications program
in A register and
jump to first instruc-tion therein.

The BBL micro-program operates first to determine the size of the memory 34. It performs this function by
writing into the maximum possible memory address
(i.e.. the maximum memory address when the largest
possible memory is employed in the system) and then
reading data out of the memory location. If the data
differs no memory is present at that address and the
same procedure is carried out with an address which is
4K less.

When the memory size is determined the BBL micro-
program sequentially transfers the instructions of the
resident communications program from the ROM 58 to
the top of the memory 34. The 16-bit instructions are
stored as 4-bit bytes which are read out in sequence into
the register R8. The reconstructed 16-bit instruction is
then transfer to the memory 34 at the address indi-
cated in the register R9. When the transfer counter 141
counts out (i.e.. all one‘s) the starting address of the
resident communications. program is stored in the P and
A registers and the micro-routine is completed. The

50 system then fetch and executes the first macro-

55

65

instruction in the resident communications program.
The resident communications program is stored on

the top 128 lines of the main memory 34. Referring to
FIG. 84. when executed this resident communications

program fust disables all interrupts and turns off all
output devices as indicated by process block 511. As
indicated by process blocks 525 and 526 a download
request word foetal 20) is then fetched from a location
in the memory 34 and is transmitted to the host com-
puter 500 along with a version character. This data is
interpreted as a download command by the host com-
puter 500. The acts] 2|} identifies a communications
program, COMPAQ, and the version character distin-
guishes the various versions of this program which may
reside in the host computer library.

As will be described in more detail hereinafter, the
host computer 500 reads COMPAC out of the disc
memory 507 and divides it into a series of records, each

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 34

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 35

4,138,718

25

of which record is comprised of a-predetermined num-
ber of words which are downloaded to the numerical

control syst 1 via the UAR/Ts 502 and E. The host
computer 500 first downloads a record size number. a
record load address number. a series of ASCII charac-
ters and then a checksum number. As shown in FIG. 8,

the resident communications program jumps to a RE-
CEIVE subroutine as indicated by process blocks 521'
and 528 to input this data. The record size number is
stored at memory location "COUNT" after being ne-
gated as indicated by process block 529, the B register is

as indicated by process block 530 and the
record load address is stored in the memory 34 at
OIADDR‘)!

Referring particularly to FIG. 8b. a loop is then es-
tablished in the program during which a. record com-
prised of the number of words indicated by COUNT is
downloaded and stored in the memory 34 at the loca-
tion indicated by ADDR. A check is first made to in-
sure that the downloaded record will not destroy any
part of the resident communications program as indi-
cated by process blocks 531 and 532 and the decision
block 533. If a program is detected the message “AD-
DRESS ERROR" is displayed on the CRT 9 as indi-
cated by process block 534 and the program loops back
to START to begin the entire doumload procedure
again. If everything is in order, the system remains in
the loop to sequentially download words until the entire
record has been received and stored. The contents of
“ADDR,” "COUNT" and the checksum accumulator
(B register) are adjusted accordingly as each word is
received and stored as indicated by process block 535,
and when COUNT reaches zero as indicated by deci-
sion block 536, the loop is exited.

Referring particularly to FIG. be. after an entire re»
cord has been doumloaded a checksum word is down-

loaded and compared with the checksum accumulator
as indicated by process blocks 53‘! and 538 and decision
block 539. If an error in the number of words down-

loaded has occurred. the message "CHECKSUM ER-
ROR" is displayed on CRT 9 as indicated by process
block 54-0 and the system loops back to START. Other-
wise, the system loops back to process block 527 (FIG.
Ba) to commence downloading the next record. The
system continues downloading records comprised of
fixed numbers of words until the end of transmission

code (ETX) is received. This is detected in the BYTE
subroutine which forms part of the RECEIVE subrou-
tine, and when it occurs. the system jumps to the first
instruction in the downloaded program.

The listing of the resident communications program
slang with the RECEIVE and BYTE subroutines ap-
pear in APPENDIX A. A definition of the instruction
set appears in “Instruction Manual 7320/40/69 pub—
lished in 1977 by the Allen-Bradley Company.

An examination of the resident communications pro-
gram listing reveals that it is relatively short and thus of
limited capability. This is done in the preferred embodi-
ment to minimize the amount of space required within
the numerical control system ROM 158 for permanent
storage of the resident communications program. It can
be appreciated. however, that where space permits.
communications programs of greater capability may be
stored at the numerical comrol system and loaded by
the BBL micro-routine.

The program downloaded by the resident communi-
cations program described above is a more powerful
communications program referred to hereinafter as

I!)

IS

20

25

30

35

4-5

55

65

26
COMPAC. Whereas the resident communications pro-
gram merely downloads a program and indicates any
transmission errors which might occur. COMPAC ena-
bles the operator at the numerical control system 1 to
interractively communicate with the host computer 500
through the numerical control system keyboard 7 and
CRT 9. In this manner the Operator is able to identify
the particular program which is to be downloaded and
stored in the main memory 34. As shown in FIG. 15. at
this juncture in‘the download procedure the main nu-
merical control system memory 34 contains the resident
communications program and COMPAQ The remain-
tier of the memory 34 is empty.

Referring to FIGS. I30 and 13b COMPAC is entered
from the resident communications program at the point
512 when the “ETX” character is received at the
UAR/T 8. This indicates that the entire COMPAC

program has been downloaded (see BYTE SURROU-
TINE — APPENDIX A) and that it can now be exe-
cuted. As indicated by process block 513 interrupts are
disabled and all operating devices connected to inter-
face raclts 20 and 21 are deenergized. The word
“READY” is then displayed on the CRT 9 as indicated
by process block 514 and the system waits for the opera-
tor to enter a command through the keyboard 1. The
only valid commands at this point are sign-on, sign—off
and download. If either the sign-en or sign-off com-
mand is entered the system branches at decision blocks
515 and 516 and the command is transmitted via the

UAR/T 8 to the host computer 500 as indicated by
process block 517. The reply from the host computer
500 is then received and displayed on the CRT 9 as
indicated by process block 518 and the system loops
back to procms block 519 to await a further command
from the operator. If an invalid command is entered by
the operator an asterisk is displayed on the CRT 9 as
indicated by the process block 520.

When a proper download command is entered the
code is transmitted to the host computer 500 as indi»
cated by process block 521. The reply from the host
computer 500 is received and displayed on the CRT 9 as
indicated by process block 522 and the reply is then
analyzed as indicated by decision block 523 to deter-
mine whether it is a type "I" or type “2.” [is type "I"
reply is received a problem has been detected by the
host computer 500 and the system loops back to start.
Otherwise, it jumps to the resident communications
program to commence the download sequence. The
actual downloading is thus performed by the resident
communications program in the manner described
above. The downloaded executive program is written
over the COMPAC program since in most instances the
downloaded executive system will include its own so-
phisticated communications programs.

It should be apparent from the above description that
COMPAC enables the keyboard 1 and CRT 9 so that
the operator may enter commands and transmit them to
the host computer 5N. A sign-on command (SNJC)
indicates to the host computer that a new user has
logged in. The X is a 6—character identification number,
or pasSword. which may be associated with specific
access privileges. The host computer 500 responds with
a message such as PASSWORD NOT FOUND which
is displayed on the CRT 9 if a mistake is made in the
6—character identification number. Otherwise, a blank is
transmitted to the numerical control system by the host
computer 500. A sign—off command (SF) notifies the
host computer 500 that the current user has logged out.

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 36

4,138,718

27

A blank is sent back by the host computer 500 as an
acknowledgement.

A download command is entered through the key—
board 7 and has the following format:

CT. ST. TX. file name. type of file (A, T or X)
where:

CT indicates to the numerical control system that
data is to be transmitted to the host computer 500;

ST indicates to the host computer that a task is to be
started;

TX indicates that the task to be performed is a down—
load;

file name identifies the name of the program to be
downloaded; and

file type indicates the file to be downloaded. A =
application, or part program. T = testing or diagnostic
program. X = system software package.

COMPAC does not recognize any commands other
than these three even though the host computer 51” is
programmed to carry out a large number of other tasks.
A complete listing of OOMPAC is provided in AP-
PENDIX B using the same instruction set as the resi-
dent communications program.

Referring to FIG. 16. the host computer 500 is a
32-bit minicomputer such as the Model 7/32 manufac-
tured by lnterdata, Inc. It includes a processor 550
which has 16 32-bit general registers and which per-
forms logical and arithmetic functions in response to
program instructions. The processor 550 is coupled to a
read]write memory 551 through a bidirectional bus 552.
The memory stores the programs which direct the pro-
cessor 550 to perform its function. including the down—
load NC system program (DNLDNC) to be described
hereinafter. A selector channel 553 also couples to the
memory 551 through a bidirectional DMA bus 554. The
selector channel 553 controls the transfer of data di-

rectly between the disc 507 and the memory 551. The
selector channel 553 operates simultaneously with the
processor 550 by stealing memory cycles to couple data
between the disc 50'! and memory 551. A “downward
library“ comprised of COMPAC. NC system software
packages. testing and diagnostic programs and applica-
tion programs is stored in the disc 507 and when a
download command is received at processor 550. the
selector channel 553 is directed to read the requested
program from the disc 501' and store it in the memory
551.

The processor 550 couples to the UAR/T 502
through a bidirectional multiplexer bus 555. The
UAR/T 502 is an interrupt driven I/O device and each
time it receives an ASCII character or transmits an

ASCII character it interrupts the operation of the pro-
cessor 550. During the interrupt the processor 550 ente-
cutes an interrupt service routine for the UAR/1‘ 502
which inputs an ASCII character therefrom or outputs
an ASCII character thereto. A buffer storage area
within the read/write memory 551 is dedicated to the
UAR/T 502 and as characters are received they are
stored in this buffer until an ETX code is received.

Similarly, the buffer stores data which is to be down-
loaded to the numerical control system. and during each
interrupt by the UAR/T 502 one of the ASCII charac-
ters in this buffer is coupled to the UAR/I" 502 for
transmission.

The library of programs and files which may be
downloaded is stored as binary data in the disc memory
507. This “download library" is compressed, with each
file comprised of a plurality of records, and with each

10

15

25

35

45

SS

65

28

record preceded by a record length number and an
absolute load address number. The last halfword of

each record is the checksum number. The 16-bit binary
words stored in the download library must be con-
verted to ASCII data before they can be transmitted
through UAR/Ts 502 and 8 to the numerical control
system. This is accomplished by converting each 16-bit
binary word into three 7-bit ASCII characters and
transmitting these characters sequentially via UAR/T
502 to the numerical control system 1. The division is
made as follows:

ASCII
arr NUMBER 6 s 4 J 2 t o

CHARACTER l l o a. B; 32 BI Bo
CHARACTER 2 I o 39 B: B1 Be 3:
CHARACTER 3 I 3., 3.. a” 3.2 B“ BIO

When a download command (TX) is received from
the numerical control system 1 and stored in the buffer
storage area in memory 551. a download NC system
program (DNLDNC) stored in the host computer
memory 551 is entered and executed. Referring particu‘
Iarly to the flow chart of this program in FIG. 14. the
identification number of the requesting machine is first
received and stored as indicated by process block 5‘5
and then the file name and file type codes are received
and stored as indicated by process block 54-6. The ma-
chine identification number is then checked to deter-

mine whether or not the requested file can be down»
loaded to it. If not. as indicated by decision block 547.
the system branches to a routine called OUCI-l which
transmits an error message to the numerical control
system 1 as indicated by process block 548. If the re-
questing machine is cleared to receive the identified file,
the first record in that file is read from the disc'memory
507 as indicated by process block 549 and is converted
to ASCII characters as indicated by process block 550.
As indicated by process block 551. the characters in the
record are then sequentially transmitted to the request-
ing machine and a check is then made to determine
whether a further request from the machine has been
made. If so. as indicated by decision block 552. a
"BUSY" message is transmitted to the machine as indi-
cated by process block 553. Regardless. the system
loops back to the procem block 549 to read the next
record from the disc 501 and transmit it to the numerical

control system I. As indicated by decision block 554.
when the end of file code (ETX) is read out of the disc
507 and downloaded. the system branches back to start
to await the nest request. A listing of DNLDNC ap-
pears in APPENDIX C and a definition of the instruc-
tions which appear in this listing is given in “Model
7/32 Processor User's Manual" published by Interdata.
Inc. in I916.

It should be apparent that the invention has been
described herein as embodied in a DNC system in
which the host computer 500 is a relatively large com-
puter system which may serve a plurality of numerical
control systems on a time shared basis. The present
invention may, however, be applied in other hardware
configurations without departing from the spirit of the
invention. For example. the host computer may be a
commercially available microprocessOr which is con-
nected only to the single numerical control system and
which is programmed to manage the files in the "down-
load Iibrary" and download a file when requested by

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 36

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 37

4,138,718

29
the numerical control system. In such a configuration
the dowrlload library may be stored in devices such as
W proms or bubble memories and the microprocessor
and associated download library storage device may be
located adjacent to or even in the same enclosure as the
numerical control system. In such case, communication

5 trots.

30

links other than the UAR/Ts may be employed since
industrial noise may not be as great a factor. Also, the
present invention may apply to process comrollers and
programmable controllers as well as numerich con-

APPENDIX A
RESIDENT COMMUNICATIONS PROGRAM

label Instruction Comment

LOAD STA MAXAD SAVE boundary address of
resident communications ogram
at memory location AD.

CLF COB Disable interrupts.
CLC 0,1: Turn off all [/0 devices

LOAD I EQU
LDA DLE Fetch constant at memory

location DLE.
ISB TRANS Jump to TRANS subroutine and

tramit constant 20 (octet).
LDA VERSN Fetch ASCII version character

from memory 34.
153 TRANS Jump to TRANS subroutine Indtransmit version character.

LOAD 2 BQU
ISB RECEIVE Jump to RECEIVE subroutine and
SZA. 355 input word count.
1MP LOAD 2
ALF, ALF

CHA. CLE. INA Negale word count and storeSTA coutrr at COUNT."
ISB RECEIVE Input record load addressSTA ll Initialize checksom in B

STA ADDR Store record load sddrese at
"ADDR."

LOAD 3 EQU
LDA ADDR Check to determine whether
ADA. MAXA‘D downloaded program will write
SSA. RSS over resident communication

IMF AER]. If so. jump to address errorindication subroutine.
JSB RECEIVE Jump to RECEIVE subroutineand download next word.
ADB A

" STA ADDRJ Store download word in memory
34 at location indicated by ADDR.

182. ADDR Increment memory address
stored at ADDR.

ISZ COUNT Has the lust word in the
record been downloaded?

IMPLOAD3 IfmhlofiptoLOADlandcontinue tit-unloading.
ISB RECEIVE ll’ycs. download “checkout”
CPR A number and compete With value

“ Emil1MP LOAD 1 If e agree loop backto LOAD 1 to downloed nest
record.

CERR EQU

STA WORD Save contents of Aat memory location 0RD.
LDA NAIL Fetch 025 (octal) stored at

memory location NAK.
ISB TRANS Transmit 825 {octal} to host

computer.
LDA WORD Restore contents of A register.
HLT llB Output "CHECKSUM ERROR" to CRT 9.
Hull“ LOAD Loop back to restart download

proculure.
ALERR EQU

LDA NAK Fetch 013 (octall stored a]
memory location NAK.

133 TRANS Transmit 025 (octlll.
HL'I' 553 Output "ADDRESS ERROR" to CRT 9.
IMP LOAD loop back to restart download

Mum.
BEER EQU

LDA NAK Fetch 01! (coal) from memory
locetion NAIL.

ISB TRANS Transmit 015 (octel).
HLT 223 Output "PARITY ERROR" to CRT 9.
I'M? LOAD loop but to restart download

procedure.
EERR EQU

LDA NAK Fetch 025 (coral) from memory
Imo'n NAK.

JSB TRANS Transmit 025 {ocmlj to host
computer.

HLT 449 Out at "FRAMING ERROR" Io
CR 9.

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 38

KERR

Label
BYTE.

CLFI
LIA]

CLFZ
LIA?

Label
BEGIN
DCRTI

START
ICRTI

BUFAD

4,138,718

31 32
-contmued

IMP LOAD Imp hack to restart download
procedure.

EQU
HLT 33]! Output "HOST ERROR“ to CRT 9.
Mi? LOAD Leap back to restart download

procedure.
WEEInstructions Comment

NOP
CLA
STA LPCNI' Setup loops.STA CNTLP
CLF R5232 Enable "Interrupl."

lilsg R5132 Clear UAR/T receiver.IMP ELF!
ISZ LPCNT Wait for "Interrupt."5MP SFSl
[SZ CN‘TLP
3MP SFSI
JMP LOADl
CLF R5132
LIA R3232 Input UAR/T status and received

Witt. d haUTA DIE ' 1y status an c meter on
33'; g.

SSA Signal present?
JMP KERR If not jump to Subroutine

which displays "HOST ERROR."ALESLA Data recewed?
RSS
3MP SFSI If not. loop back to SFSI.
ALESLA Parity.r error?
JMP PERI! If yes, jum to subroutine

which disp ays “PARITY ERROR."
RAILSLA Overrun or framing error?
IMP FERR [I~ yes, juln to subroutine

which disp ys "FRAMING ERROR."
RAL Align bytes.
ALEALF ll' ht justify received chatacter.
AND CHAR [agate bits 6-0.
CPA ENQ Is the received character the

start of a message?
JMP BYTE+I If so. loop beck to receive

next byte.
CPA ETX Is the character ETX‘!
IMP 000023 [I' so. jump to and begin

executing downloaded program.AND BITS Isolate bits 5—0.
IMP B'I'TEJ Return to receive subroutine.

APPENDIX B

OOMPAC PROGRAM

Instruction Commenl

EQ‘U '
153 .020 Output "READY" mange to CRT 9.DEF " +2
1MP START
ASC 3. READY
OCT [tut-KI]
EQU '
153 .120 Reed in command from keyboard 7,
DEC —30
DEF BUFER
LDA BUFER Fetch first two CHAR in CMD "CT"
CPA =ACT command?
RSS Nee-
1MP ERROR -No-
LDA BUFAD Fetch n (Bufi'er)
INA Skip "CP'RAL Form character ADDR
STA ADDR Save for .UPK
JSB .UPK Fetch 3rd character
DEF ADDR
CPA =50“ Comma?
RSS Net-
JMP ERROR -No-
153 .UPK Fetch 4th ByteDEF ADDR
ALEALF Swap BytesSTA HOLD Save for later
153 .UPK Fetch 5th ByteDEF ADDR
10R HOLD Merge with 4th Byte
CPA =AST Is it a "START TASK" cement?
JMP STCMD Nes-
CPA =ASN Is it a "SIGN ON“ command?

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 38

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 39

ERROR
OCRT‘I

SNCMD
SFC'M’D

DEF]

OCRTJ

SI'CMD

COPY

DEF}

OCRTA

J’AK

33

IMP SNCMD
CI"! =ASF

gil'JEFCMDISR .039
DEF ' + 2
IMP START
OCT 025813
WU "
WU "
153 .UPK
DEF ADD“
CPA Erx
R35
1MP " —‘
CCA
ADA ADDR
STA ADDR
LDA CR
.153 .PAK
DEF ADDR
110A ETX
JSB ‘PAK
DEF ADDR
LOA BUFAD
INA
[OR SIGN
STA DEFI
JSH .SEND
NOP
JSB .RECV
DEC +30
DEF BUFER
153 .020
DEF BUFER
IMP START

EQU ‘
LDA BUFER+ 3
CPA =ATX
RSS
IMF ERROR
153 .UPK
DEF ADD]!
CPA ETI'X
R55
IMP ' —4
CCA
ADA ADDR
STA ADDR
LDA ASIZE
RA].
STA POINT
EQU '
JSB .UPK
DEF POINT
CPA ETX
1MP ‘ +4
JSB .PAK
DEF ADDR
JM‘P COPY
JSB .PAK

DEF ADDR
LDA BUFAD
INA
10R SIGN
STA DEF:
JSR .SEND
NOP
JSB .RECV

DEC —3€I
DEF BUFER
153 .020
DEF BUFER
LDA TYPE
CPA ONE
1MP START
LDA TB
ADA =D6
CLF MB
CLC {LC
JMP AJ

NOP
AND = 33??
STA CHAR
LDA .PAKJ
LDB A.[
152. A.I
CLEERB

4,138,718

‘ APPENDIX B—conlinued

-Ye|-
In it a "SIGN OFF“ command?
“fee-

Output ""' to CRT 9.

Fetch Byte from buffer SW

End of message?-Yes
—No-Q

' Decremem pointer
Fetch CR
Piece CR into buffer

Fetch 513‘
Place ET’X into buffer

Fetch e (Bufl'er)
Skip In and End Bytes
Skip 3rd Byte
Save for .SEND
Said command to Heat Computer

Wait for reply from hon computer

Disphy reply on CRT Q

Go read in next command from
keyboard 7
Fetch mt ID code
annloed Ink?
flies-
-Ncr
Fetch Bye: from buffer

End of manage?.ch.
we»-

:Dectemeut pointer
Fetch a (size)Form chm ADDR
Save for .UPK

Fetch Byte of size
End of size?
Xu-
Add Ii“ to commend

Loop until donePlace end of download code
(E'I'X) into buffer

Fetch a (buffer)
Skip lat and 1nd Bytes
Skip 3nd ByteSave for .SEND
Send mainland to host computer

Wait for replyI from haul
computer

Display reply on CRT 9

Fetch mange type nodeT
15:”

IMP Io LOAD 2 in resident
communications program
Charmer pack wbrautineIsolate alternate!
Save for later
Fetch 1(CHAR ADDR)
Fetch I (CHAR)
Increment cm ADDR
Form word ADDR and UXL Bil

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 40

4,138,718

35 36

APPENDIX B—cominued

LDA 13.] Fetch word
SELRSS Upper at lower Byte?
ALF.ALF U r - route
AND —Bl?7400 afl'lower by‘hc
ICIR CHAR Merge in CHAR
5122,1158 Upper or lower byte?
ALF.ALF Upper - rotate
STA 8.1 Star: in buffer
182 .PAK P+2 return
IMP .PAKJ Exit

CHAR NOP
.UPK NOP Character an I: subroutine

LDA .UPKJ Fetch a (R ADD!)
LDB A.I Fetch a (CHAR)
ISZ A.I Incrcmcnt CHAR ADDR
CLEERB Form word ADDR. and [UL Bil
LDA 3.1 Fetch word
SELRSS Upper or lower Byte?
ALEALF U - rotate
AND - 3371' 193% characterISZ ‘UPK P-l-Z (Hutu

mo {S‘o'i-“m 5% mm. ounpul
LDA 1330.] thm)RAL Form charIc'ch' ADDR
STA ADD! Save for III-er
132. .020 P+2
LDA =30“ Fetch “FORM FEED"
1530mm OulputitloClT9

Loom EQU -
ISB .UPK Fetch character from bull'cr
DEF ADDR
CPA ETX End of W
IMP "3 “(ca-
ISB OUT 29 Output CW to CRT 9
IMP LOOP I unitl buffet em yLDA =30” Fetch "ERASE TO ND OF PAGE"

comman
ISB OUT 2:0 Output It to CRT 5|
IMP .03).! Return

0111‘ 20 NO? CRT character output Mae

LIB CRT 20 Influx CRT Icarus851; c '1' buy:IMP " — 2 -Yea-
ID]! = Hill) Make charlcler bright

UTA CRT 20 OM31 characterAND = B] 71 off blight brl
IMP OUT 20.! Return

1.20 NOP Keyboard Inc—3e input lab

I: l l Emu?”LD . 10. etc parameters
RBL Form character ADDR
8TB HOLD Save for test
DST COUNT Save for later
[82. .1211 P+2
152. .120 p... 3
LDA =MI1 Fetch "HOME" command
:51 OUT 20 Output [1' to CRT 9

R1320 EQU "
ISB INP 20 Input character from keyboard T
CPA ETX Menage end code?

JCth BO 21? gig-lame?A = I
IMP BKSPC -ch-
CPA =33” ABS?
IMP R1320 Jin-
CPA dam CAR?
IMP [DID o'l'ec-
CPA 25022 BTU?
IMP R020 Nec-
CPA =M3 Offset?
IMP R1320 Bice-
CPA =m Right arrow?IMP RDZU Nec-

CPA =31“) I? arrow?IMP RDZO - cs-
CPA 4012 Down snow?
IMP RDIJU Jinn-
CPA =HJ43 EDD?
LDA =A # New
153 OUT” Diaphy character on CRT 9I53 .PAK. Place CHAR into bufl'cr
DEF ADDR
ISZ COUNT Buffer full?
IMP [DIG -NI}
LDA ETX Fetch ETX

ETXZO II “
IS .PAK Place ETX into buffer
DEF ADD]!
LDA =31” Fetch right bracket
ISB OUTZD Diaphy ItLDA -BOI3 Fetch "Eli-'40P" comm-11nd

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 40

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 41

4,138,718

37 38
' APPENDIX B—continued

JSB OU'UD Output it to CRT 9
IMP 120.1 Return

axsm EQU '
LDA ADDR Fetch bufler inter

CPA HOLD Buffer empty;IMP RDDO -Ye'.t-
LDA =ml6 Fetch "CURSOR LEFT" mend
JSB OUTIO Output it to CRT 9LDA =30“) Fetch blank
JSB OUTZO Output it to CRT 9LDA =BDI6 Fetch "CURWR LEFT" commend
JSB Om Output it to CRT 9CCA '
ADA ADDR " Dacrement pointerSTA ADD]! "
IMP R020

le NOP Keyboard chuIctet' input

STC CRT” 'Elllb] ‘e Input
CLC CITE Disable keybnutl interrupt

erCRm Input status'chlndet
CMASSA Character in?
IMP ' — 3 -No-
EAR
AND =Bl't‘7 Isolate cmtfl'
IMP mm! Return

.SEND NOP Sulmauline to tnnmn't I
message to the boot contqu

LDA .SENDJ Fetch I (buffet)
RAJ. Pom chatter ADDR
STA HOLD - Save for Inter
[52 5151‘“) P+2

STCI STC 3.82321: Enable lulu:
LIAZ LIA R5232 Clan UAR/T receiver

LDA =D—1EI Fetchloopcottnt
STA LOOP Setup loop count

SEND! EQU ‘
LDA ENQ Fetch uiry
JSB .OUT Time:qu to host computer153 .IN Wait In: replyR55 Error
IMP SEND3 Character OK

SENDZ EQU '

iitfinmsm" 7mm“;DI Try 'OCRTS 153 .029 -
DEF '+ 2
IMP START
ASC 9. DNC NOT IlESPON'DING
OCT 0‘3403

SEND] EQU '
CPA. ACK Acknowiedge?IMP SEND‘ Nu-
CPA 501' End of We?
JSB .O'U'T Nes-
J'MP SEND! -ND-

SEND‘I FQU '
LDA SOH Fetch 50H
STA BCC lnitidiu BCC
JSB .OUT TM 301!
LDA =A C Fetch ASCIT‘C"
JSB .OUT Trmunit it to host computerLDA STX Fetch STX
15]) .OUT Trumm't it to boat computer
LDA HOLD Fetch I (bufl‘er)STA ADD]! Sure for .UPX

SENDS EQU -
JSB .UPK Fetch character from bttfl'er
DEF ADDR
CPA ETX Buffet empty?IMP ‘ + 3 Net-
JSB .OUT Transmit CHAR to host computer
IMP SENDS Loop until bulfet emptyIS]! .OUT Transmit ETx code to host

cont let
LDA BCC Fete BCC
JSB .OUT Transmit it to host computer
LDA =D—4 Fetch loop count
STA LOOP Setup loop count

SEND6 EQU ‘-
JSB .IN WI". for replyIMP SEND? Emr
RSS Ctmacter 0K
JMP SEND? Time-out
CPA ACK Acknowledge?

ébgP iENKDl -‘t"es-A A Negniue acknowledge?IMP SEND! -Yes-
CPA DL‘E Data link taupe?IMP ABORT J's!-

SEND? EQL‘ -

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 42

4,138,718
39 40

APPENDIX B—oontiuued

152. LOOP Give up?R55 vNc»
JMP ABORT Jea-
LDA ENQ Fetch enquiry
JSB .OUT Transmit it to host computer
JMP SENDtS Try again

SENDS EQU '
LDA EOT Fetch HOT
15!! .OUT Transmit it to host computerIMP .SENDJ Return

FAIL EQU ‘ DNC failureOCRT6 153 .020
DEF ' +1
1MP START
ABC 6. DNC FAILURE

.OUT NOP Subrouttne to transmit a
register contents to host
computer

CLFl CLF R5232 'Enahle
LIBI LIB R5232 I"'Interrupt"

AND =31??? Isolate output Byte
OTAI 0T5 R5212 Transmit character

XOR BDC Compute new BCC
STA DOC Updata BCCSFS] SFS RS232 °
IMP SFSI “Wait for "Interrupt"CLF-t CLF R5232 '

LIB! LIB RS232 Input UARIT status
RELSLB Line signal detect?JMP FAIL vNo-
RBI. SLB Transmitter buffer empty?JMP .OUTJ files-
1MP SFSl -No-

BCC NOP Block check character
.IN NO? Subroutihe to wait :00 ma for

a character from host computerLDB =D—22Sfll Fetch time-out count
CLF2 CLF R5232 Enable "Interrupt"LIAJ LIA R5232 Clear UAR/“T meiver
SFSZ SFS R5232 '

JMP 1523 'Wait for "Interrupt"CLFJ (31.? R5232 ‘
LIA! LIA R5232 Input stattts+eharacter

STA INPUT Save status-+ch
SSA Line signal detect?
1MP. lN.l -No-
aLF.SLA Data available?
IMP ERRCK —Yes—

ISZB EQU '
ISZ B Time-out
IMP SF52 -No-
[82 .IN ‘Yea—
152'. .IN P+3 Exit
IMP .1?“ Return

ERRCK EQU ‘
AND = Em Isolate error bits
52A Any errors?
JMP .INJ Nes-
LDA INPUT Fetch status +clm'acter
AND :3”? Isolate character
STA 3 Save character
XOR BCC Compute new BCC
STA BCC Update BCCLDA B Restore character
ISZ .IN P+2 exit
.IMP .INJ Return

INPUT NOF
.RECV NOP Snbrontine to receive a message

from the host computer
DLD .RECVJ Fetch parametersREL Form character ADDR
DST HOLD Save [or later
182 .RFJCV P+ 2
152. .RECV P+ 3

RECVO EQU '
183 .IN Wait For ENQIMP RECVO Error
R55 Character 0K
1MP RECVO Timmm
CPA EOT End of transmission?
1MP RECVI -Yes-
CPA ENQ Enquiry?
IMP RECVZ .Ygg.
CPA DLE Data link escape?JMP ABORT -Yes-
JMP RECW} None of the above

RECVI EQU ’
JSB .OUT Transmit EOT code to host

computer
IMP RECVO Wait again

RECVZ EQU ‘
LDA ACE. Fetch acknowledge code

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 42

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 43

4,138,718
41 42

' APPENDIX B—conlinued

JSB .DUT Trmmil it to halt computer

RECVS my ')5 IN Wait for 801-!
MP RECV4 Error
[(58 Churlc‘ter OK
“I? ABORT Time-out
CPA EN Enquiry?IMP 2 4’6-
CPA DLE Data link escape?IMP ABORT Neo-
CPA 801'! Sun of header?
1MP RECV6 qu-

REC?“ U '
IS ‘IN “hit for time-nu!
JEEP RECV‘ Error
IMP REC‘N cm OK

RECVS EQU "
LDA NAK Fetch ngpfive Icknowledfi: code153 .OUT Tram: it. to heel computer
5MP RECV3 Wail for 30H

“EC” 33% how Fm pmmeten
DST COUNT Copy to work are:CLA Clair A—REG
STA DOC BCC
153m “In: for CMD ByteIMP m4 Error
R55 Chamler OK
I”? RECVS TM!
CPA ONE T "I"?
R53 - ca-
CPA Two Type "1“?R88 ' Nel-
JMP anew “No-

STA TYPE Sure mape153 .IN Wlil for sun let! and:
(STX) from host computerIMP W4 Error

R55 Character 0K
IMP RECVS Time-out
CPA STK sun of text?
R55 Noa-
J'MI’ “CV4 -No-

RECVT EQU ‘153 .IN Wait for text
“I? RECV4 Error
R85 Charmer OK
1MP RECVS Time-out
CPA ETX End of text?
I'M? REC“! -Yfl-
JSB .PAK Place CHAR into buffer
DEF ADDR
1'52. COUNT Buffer full?
JM? RECVT .110.
IMP RBCV4 -Ye|-

RECVS U ‘
JS .PAIL Save ETX in buffer
DEF ADDR
JSB .IN Whit for BCC
JMP RECV4 Error
R55 Cit-mm OK
1MP RECVS Time-out
LDA BCC Fetch FCC
513. BCC correct?
I”? RECVS -Nt>
LDA ACK Fetch acknowledge code
153 .OUT Transmit it to bolt computer

RECV? EQU "
153 .IN Wait for replyIMP ‘ —3 Error
RSS Chum OK

1M? gang“! Time-outCPA ‘
IMP " — 3‘ 53mmCPA BOT End of ummiaion?
RSS Nes-
J'MP RECV‘) «No-
JSB .OUT Trmmit EDT
IMP .RECVJ Return

ABORT U " Ommunicaliom aborted
IS .IN Delay one character time
LDA BOT Fetch EDT
J53 .OUT Trmmit it

OCRTT 155 .020
DEF ' + 2
IMP START
ABC I2. COMMUNICATIONS ABOR'I'ED
OCT moon:

CONSTANT?» / VARIABLES
FOR. ODMPAC PROGRAM

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 43

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 44

4,138,718

43 44
APPENDIX B—coutinued

Label Instruction Comment
PDT OCT 004 End of transmission
ENQ OCT 00: Enquiry
DLE OCT 020 Dale link escape
ACK OCT C06 Acknowledge
50H OCT 00: Start of header
NAK OCT 02! Negative acknowledgeSTX OCT 00: Start of text
ETX OCT 00! End of text
ONE OCT Dal ASCII "1"
TWO OCT 061 ASCII “2“
CR OCT 0|! ' mum
SIGN OCT um Sign but
BUFER EQIJ '

ASC 10.
ASC 10.
OCT M140!)
ASC S

HOLD DEC 0.0 Cmml Ind ADDII hold wade
COUNT NO? Byte coutu-

at? :3: WmM
P NOP w w:

POINT NOP a poinwrASIZE DEF. + I
ASC 1.48.12
OCT mum

APPENDIX C

DNLDNC PROGRAM

Label Imdon 00ml

DNLDNC RTL RS,DNLDNCQ GE! ID numbet of NXC
system from bquer

50 E0103 If no more lulu. jumpto FJJJOB
NI 353W Strip nfl' meson code
BAL REASMACIIIN Jump to ASMACHIN sub-mime
L RQHCECDBFOIS)
LIS 31,3 Search command in buffer
LIS RM I'm after ‘ST......‘.‘
LHI R4.CMDBFSZ CH bufl'er eize

mm LB mama!!!) Fla-d Em comma inWind
CLHI RA.C'.‘
BBS GETFNAME 0121 file male from

commend in buffer
BXLE MFRSTCOMA

GETFNAME B FNCHK Jump to FNCHK mm»GE'I’I'YPE AR R2.“
AIS {12.1
ST RJFATY'PE

EAL RETYPEEI-IK Jump to TYPECIIK lub-mime
DCX 4

ATYPE DCF 0
LE RZTYPE COMPAQ requested?BNZS STOTYPE No - OK
LHI RLC‘A' Yell - Fake T 'A'

STQTYPE. STE R2.FNTP+1 Store type cell
EAL REXRF‘HAN XRFHAN to detetmIne
DAC GBT.DNC.PARM which NC am the

[squat-Ed file can heNeeded to
FNTI' DI 1.0.5.4

DAC FILENAHEMSGLFD
DC? 0

SRFERR ‘DS 2
LII RLXRFERR
BN2 XRF.ERR Elm: in findingimernel name

LH KLTYPE COMPAQ 1'qu

HZ ASGLIB YacSkip magnum!c

L‘H KLDNCASS! get III-chine! m whiche can be signed
LII RLRS A (MCI!)
SI R2.DNC.HCB Subtract a (Fire! MCB}
DH RLDNCMCSZ Get MOB number

LII R413 glacial n) R]SRLS RH FWD offset from
DNCASSI

SLLS R4,!
All R1,!!! Adjust DNCASSI olf‘eet
SLLS R4,]:

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 44

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 45

4,138,718

45 46

' APPENDIX (2—waan

SR R334 Bit olhet
TBT R3.GET(RI) Check is pro; assignedto whine
BNZS ASGLIB
LA RENDTASGD Send “ not
I! SENDTM Ami my:

to C Irma:
ASGLIB SVC LASGJJB Ami rquul for file

BA]. RESVCERR to I min-gem:WOW
DCF 0.?
DAC IMPTBLASGLIB
LH RBJ'fl’B COMPAC requested?BZS READINDX Yen - BR
SVC l,ST.MSG No. Send m means:to NC mum
BAL RESVCERR
DAC D.l.DONE+ 1.81'.MSG

READINDX BAL RERDLIB Jump to RDLIB subroutine
READLIB EAL “.RDLIB to run! mum from dilc

L MATRAIL End of file flag andBNZS SENDEIX ll’ end of file, Jump toSENDETX
BAL REUNIJOAD Jump to UNI-DAD SUBROUTINE
B READLIB Imp luck to read next:- man! from din:

SENDE‘T‘K LA RILTBUF
ST R8.DNLDMCB+IO Slot: sun “It”
AIS R8,}.
51‘ R8.DNLDMCB+ 8 Store and addm
SVC LDNLDMCB Send ETXAO to NfC

um
HAL RESVCERR
DCF 0.!
DAC HAILERLDNLDMCB

DONE LA RB.E0.I.MSG
BA]. REDKOUCH Send END of JOB message
35 CLOSE”! to Hit: systemTMSG LA REWILMSG
EAL REMSGDUCH

CLOSELIB SVC IDEASLIB gets-e downloud libraryBAL RESVCERR
DCF 0,1
DAG NEXTTASX-i- LDEASLIB
BS NEXTTASK

XEFERR LA RBXRFEKA
LA RBXRFERA
EAL REMSQOUCR
BS NEXTI'ASK

ASGERR LA REASGMSG
BAL REMSGDUCH

NEXTTASK SVC IDEASSIGN DEASSIGN MACHINE
EAL RESVCERR
DC? 0.?
DAC EOJOBIH LDEASSION

EOJOB SVC 3.0
BLACKOUT SVC 9.UDLPWRO Resume alter power fliluxeASGMSO DB C‘LU ASSIGNMENT ERROR’. X‘D‘W

FNCHK SUBROUTI'N'E '

Label Imrncliou Gunmen
FNCHK XR R939

AIS R11
SR R932

B'I'TECHK LB “£016,113 Get file name code
CLHI RA.C'.‘
BE GBT'ITPE from buffer storage,5TB “.mLENAME (3.9.11.2)
BXLE R2,an check to mm lune i1
LA RBJFN
BAL RFMSGDUCH ha no more dun IB NEX'I'I‘ASK

IFN DC C'INVALID FILENAME' chancten. thanDCX DOG
ALIEN 4 more It. "FILENAM'E"FILENAME D0 3
DC (2‘ ‘
DC C‘ '
DC C“ '

ASMACHIN SUBROUHNE

Label Instruction Comment——m-—_—.~_._._—___—__—___
ASMACHIN ST REMCRFSAV Save [US

ST R5.MCBADD Store MCB ADDR
L RD,MCB.MFD(R5) Loud machine file

decal-i or
51" RD.LU3FD Stare LU- Anti nlncnt
SVC T.ASSIGN Assign Ifl'l'lfllll] lo U-J
BAL RESVCERR Any errors?

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 46

4,138,718

47 48
continued

DCF 0.1
DAC JMP’TBL.ASSIGN
L REMCRFSAV Load R 15
BR RF Return

MCRFSAV DSF l
ASSIGN DCX 408013 Amiga/SRWfLU-B

DCF D
LUIFD DCF 0 Machine file descriptor

TYPBCHK SUBROUTINE

Label Instruction Comment
TYPECHK AIS RF.‘ filign RF ta fullword

NI RF.—4
STM RETYFERS Save registers
L RD.U(RF}
LE RDJXRD) Load 'TYPE‘ code
CLHI RD.X'C9' Type = COMPACT
BE. JUST Yes - Return
L RC.MCEAP(R5) NO v check operator

m rivilege with
ID e in sign-on
command

STH RD,'I"1'PE Store type
CLHI KDJC'H' Requested Type = ‘A‘?
BNES CHK‘T No - Branch operator
NI RCJDA has Ipplinltion r0 run

download priviggeBN2. RET Yes - Return
3 LOGACS Jump to authorized ween

CHKT CLHI RD.X‘S4‘ Requested Type - 'T‘?
BNES CHKX Np - all
N! RCJDT Yes - check operator

ween privilege
BN2 RET Operator has privilege -return
BS LOGACS Jump to unauthorizedaccess

C‘HKX CLHI RD,X'53' Requested Type = X?
BNES L061“ Na - branch
NI RCJDX Operator hm NKC

system program amen
riv'tiege?

BNZS RET es - return
LOG.ACS LA RB.ACS.MSG

BS SENDITM
IJOGJ'M LA RETYPEMSG
SEND'TM EAL REMSGDUCH Send Type I message to

B NEXTTASK NIC system to indicatedownload commend cannot
be executed

REIT LM RETYPERS Restore registers
B 4(RF)

TYFERS USP 5 Register SAVEAREA

TYPEMSG DB E‘UNRECOGNIZABLE TYPE'.X'D‘ALIGN
ACSMSG DB C‘UNAUWORIZED ACCESS‘X‘D'
TYPE DCX D

BINARY TO ASCII CONVERSION
(ETA) SUBRUUT‘INE

Label Imtruction Conn-neat
ETA AIS RFA» Align RF to fullword

boundary
NI IKE—I‘
STM RD.BTJ\RS Saveregialers
L REAR-F) A (PM!)
Hi REJXRE) Load binary value
L 113.401” A (ASCII)
LR RD.RE Save binary valve
SRHLS RD. 10 Get lint binary purl
AH! RD.X‘4D' Set (37):!
m RD.2(RF) Store Byte
NH! R5101} Mu]:
LR HIRE
Sill-[LS RDJ Get second pan
AHI RD.X'4ID' Set (37):]
8TB RD.I(RF] Store Byte
NH] REJI Mask
AH] RE)?” 111de
STB RE.D('RF) Stare yte
LM RD.BTARS Restore registers
B 8(IIF) Return

BTARS DSF 3 Register save area

TASKQS SUBROUTINE

label Instruction Comment

TaSKQS STM RiTQSRS Save registers
GETLIST RTL R9.DNLDNCO Get 0 request

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 46

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 47

4,138,718

49 50
mnflnued

BO TKQRET No more Q requem —return
EXHR R339
P.an RILRS
NI R9, Y'OO‘FFFFFF' Strip off reason code
NH! R8.X‘FF' Bet meson code
CLHI R8,! New near?
BE NEWREQ Yer - B
CLHI 33,6 Tell Commend FSCA?BE. TELLEND
CLl-Il R8} U0 Req done?
BNE GETLIST

TKQJLET LM ns.msns Load registersBR RF Return
NEWREQ L RSMCBADD

LM REMCEMACHOU) FD of preoeel terminal
5‘!“ RE'I'ERMI
EXHR REEF
ST'H RFJ'ERMZ
LR R539 Log 'duumload has"men-at
L RflMCBEDBFOIS) CMD BUF of new terminal
LA REDNLDBUSY
EAL RFMSGDUCH
B GETLIS‘I‘

TELLEN'D L R?,TELL.BU'F+ I2 Send 'ewepe' m
Cl RT.C‘ESCA'
BNE GETLIFI‘

mm 23" fiffifagm Sm.. 'mepe' rummage
LA RETELLBUF +12 to all leftover Inks
EAL REMSGDUCH
BS TELLQ

TELEND LA RB,'I'ELL.BUF+ l2
1.. R5.MCBADD
EAL REMSGOUCH
SVC 3.0

TELLBUF DAC TELLBUF
DSF I8

TQSRS DSF I1ALIGN 4
DNLDBUSY DC C‘"DNLDNC BUSY : ‘
TERM! DCF fl
TERMZ DCX [LDCI]

0 TASK QUEUE
ALIGN 4

DNLDNCQ DLIST I0

RDLIB SUBROUTINE

Label lnltruction Comm!

RDLIB STM RERDRS Save regimen
SVC LRDPARBLK Reed record from down-

load library inlo mmry
HAL RESVCERR
DCF 0.1
DAC RDLIBERR.RDPARBLK

1113.1.ka LM RERDRS Rulare registersBR RF Return
TRAILER LIS REJ End of file?

ST RETRAIL Le; - let end of file38 RD.LDREG
ALION 4

RDPARBLK DCX 593,0 mmmu-uSmus
DAC BBUF.BBUFEND
DC!" 0.!)

RDRS DSF 2
RDLIBERR DJKC RDLDREGRDLDREG

DCF AITRA! LER)+ YEW
DCF AerAILERH-YWQTRAIL DCF 0

BBUF DS BBUFSZ
BBUFEND WU ' — 1

UNLOAD SUBROU'ITN‘E

Libel lnltmction Comm

UNLDfiD STM RA.ULDRS Save registersLI REBBUFSZ Bulfenize
LA RCAHUF
L RAIEMPKNT Gel lefiaver coma:
BZ. NEWBUF No leftover from last lime
LIS REG
ST RETEMPKN'I‘
LB REJEMP Leftover record lengthAR REJlE. B e count
AIS REG us 3 more hllf words
SR RE.“ Number of Byte: of lef'r-

over record in new buffer
SR REEF. Adjust buffer Byte count

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 48

LEFTOVER

TBB UF
TABUF

NEWBUF
EXAM [N

(301'COUNT

TRANS

ABBUF
MBUF

ASCII!)

STORTEMP

STLFI'VR

ULDLR

SENDERR

ULDRS
TEMPKNT
TEMP

ABUF

DNLDMCB

MSOABRT

Libel
MSOOUCH

DKDUCH
STOREPB

4,138,718
51

«3an
LA RD.TEMP
ST RD.‘1"BBUF
s1“ RC.TABUF
BAL REBTA

xx 5
DCF o
DCF 0
A15 R112
Ais RC}
515 3A.:
BP LEFI‘OVER
LA 1&9.an
B TRANS
LA RD,BBUF
LB Ram)
CI RD.BBUFEND
a? ULDLR
AR RERE

BNZS GOTOOUNT
Als Rm:
815 3.8.2

LH RE.0(RD)
nz ULDLR
as mum
A15 R56

LA RCABUF
sa RERE
and granular
s1“ RDAHBUF
s1“ RCAABUF
nAL REBTA
00x 6
DC? a
DCF 0
A15 no.2
AIs no.3
515 RE:
31' TRANS
3r RGASCIIO
BAL REIITA
DC): a
mu: Bin-ryDDAC 0
MS no.2
5r RGDNLDMCB+S
svc LDNLDMCB

LB m.DNLDHCB+ 2
CLHI R1.X'CA‘
BE saunm
BAL RESVCERR
DCF m
DAC SENDfiRR+ I. DNLDMCII
EAL RETASKQSI! EXAMIN
AR R335
ST RBJ‘EMPKN’I’
LA RCJEMP
XI. REEF
LII WED.

81'}! we}???AIS .
CR RERF
BPS STLFIVR
LM LLULDRS
BR RF
LA “.MSG.ABRT
3A1. RF. MSGOUCH
B NEX'I'TASK
BS? 6
DCF 0
DS BBUFSZ
ALIGN 4
DS ABU‘FSZ
ALION 4
DCX 2903.0

DAC ABUFfifidJ
DB C‘DNLDNC ABORTS'JC'D'

Flu: aficcfivc word.

Call binlry to ASC Iconversion subroutine

Next binary word
Nut. ASCII loufim
Lgfl our Byte count.

Aura-hing binnry)

Yes - keep lnmlue
HIJf word count
End of binary bufl'fl?Yes - Mum
Byte noun! of record
Wk

an: 3"“ m“
Amy; buffet
mamumwd'PGH
Endol'PGH-murn

Incl I. loud
Amu”

Sun of ASCIIrbuflrwe 0! mod?
Em:

n; 1 Ascn tr.

End of ASCII maid
Tamil In N/C um
(LU-3)
Saw: a: 'CA“?

Yul-error

Chuck onTASK Queue
Stmhllovermordto
Immmmlm

“Abel-I M50

WMMWLUJ;

MSGDUCH SUBROWINE

Inunmfim

LN! R0.X‘31‘
BS STOREPB
LHI IQX‘JZ‘
STB RO.-— KRIS)
LR [1336

Comment

Type I MSG

Tmlflsifi

i‘éfi‘éfin’fi

52

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 48

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 49

4,138,718

53 54

‘ continued
SVC ZMOVE Move meals: to he sent

LHI m D ww‘ ‘ carriage return

STE 0 m
ST R5.NEXTQ AMCI)
SVC GSEND.MSG "Eh-mi: me to

me manBR RF Return
ALIGN 4

MOVE DCX CEIle
DAC ENDSTRNO

EHDSTRNG DCX IOD
ALION 4

SENDHSG DC COUCH '
DC SHJNDDM +SFUN.QM
DB 0.0.0

SENDSTAT DB 0
DCF

NEXTQ DCF 0
DCF 0.0.0

CONSTANTS & VARIABLES
FOR DN'LDNC PROGRAM

Cmmenl
TSKCOM OOMN

DNCEARM DS 4 1133:! PART! field definitionDNC.CDMN DS 4 Emma] comm-Ind mic
table ADDR

DNC.CDID DS 4 Emma! command mnemonic
table ADD]!

DNCJ‘KMN D5 4 External mt ID uhk ADDR
DNC.TK]D DS 4 [Maul task ID nble ADDS.
DNCMHT D5 4 Valuing lam-ii: table ADD!
DNCSVOL DS 4 S vellum VM‘I' ADDR
DNCMDTA D8 4 alum: definition we

ADDR (Amine L)

DNCOUCH D8 4 3;“: Int Q ADDR (Aha Dalia:DNCTASK DS 4 Terminil Slit-Ina table
DNCXGET DS 3 thIn SVC 2 gal stung:

DNCJCFSZ g: i XRFSIZ SXREF Entry in

DNCASSI a 5 A85] Assignments om
DNCDATE % 1 .DATE Date of”2

DNCXTRN : .EXTRN EXT PART? OM

DNC.FMI D: 2 .FM‘I Fm OHMD 1

DNCJNITRN B: i .IN‘I RN INT PART! Ol'flnt

DNCDPTI g .OP'I'I Option: om
DNC.SIZE DS 2 ‘SIZE Foot-gt OffsetDS 2

DNCTIME i .TIME Hm: Offset
DNCIRNS DS 2 .TRANS Trump-run OlflelDS 2
DNCNMSZ DS 2 NAMSIZ EXTERNAL PART! Size
DNQIXLN DS 2 IDXLIN luau line length
DNC.PFLD Ds 2 ms 0 PART Fields
DNCTFLD D5 2 STFLDG # TRANS Plaid:
DNCNMAC D5 2 SNMACH i MACHINES
DNCSYOP D5. 2 SYSOPT SYSTEM OPTIONS
DNCEN D5 2 EN Emmi: Mnemouic
DNCMCSZ DS 2 MCB Size (BM)UNCEXP D5 I52
UNCMCB DS I} MCBTAB Sun

ENDS

‘ DNCOPI'I
‘ XRF ENTRY PART PROGRAM OPTIONS
‘ BIT EQU'S ASSUME OPTION BYTE OCCUPIES L83 0]“ HALFWORD

(BITSS—IS)

gm? 3:: Tm] Rue: Lending. ' = 'in - z

DOPTDPB EQU n 3'nor-r.an EQU x‘w SeinProduclian; Rm:
Development0

- DNC.SYOP

: one SYSTEM OPTIONS
DSYODBB EQU l5
DSYODBM sou x-oom'

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 50

4,133,718

55

connmled

Ds'rosna mu 1
DSYOSDM EQU x-m' Set: Scheduling
DSYOSCB EQU 0
DSYOSCM U x-m Sel = Securin
‘ A(DNC.MCB) + MCB‘ MACHlNEf: ADDRESS OF MACHINES MCBMCB STRUC
MCBMACH DS 6 SMACH Machine ID'S
MCBLMN DS 2 Logical Machine #
NICEMFD DS 4 Machine file descriptor
MCBDPTI D5 2 SOFTI Options
MCBSTAT D5 1 SMSTAT Status
‘BEGIN DUCH SVCI FARBLK

D5 4 MCB ADDR (CDPB—Q
MCBCDPB D5 4 OUCH SVCI PARBLK
MCBEDBF D5 4 Command Bufl'er Stan ADDR

DS 16 Balance of PARBLK
' END OUCH SVCI PARBLK
‘ BEGIN PPCT SVC4 PARBLK.
MCBCMPB ns 4
MCB.FQ DS 4
MCBM'DQ us 4
MCBDSEL I35 l

135 3
' END PPCT svc4 PARBLK
MCBCMBF Ds 4
MCBCMSZ DS 1
mun:sz DS 1

DS 2
MCBEXNM Ds 4
MCBMPAT Ds 4

recap“; DS 3
menar- us 4
MCBAPD D5 4

ENDS-
- mean-AT

: DNC TERMINAL STATUS
MSTALTB EQU 9
SFUNDMS EQU Y-oooom
SFLIN.ECM EQU Y‘lmfl‘
SFUNEDM EQU vmommo‘
SFUNLM EQU Y-zcm'
SFUNLB EQU a
SFUNHM EQU YW'
SFUNHB EQU a
SFUN5M EQU room
sr-‘UNsn EQU 9
SFUN.MM EQU Y'oowoow
SFUNMB EQU 11
SFUNQM EQU Y‘aomo'
SFUNQB EQU 11
SFUN‘PM EQU ram
SFUNPB EQU I3
SFUNDM EQU Y‘SOOO'
SFUNOB EQU 15
SFUN.TM EQU wooe-
SFUNJ'B EQU 1?
SFUNJM EQU rm
SFUNJB EQU ls
SFUN.FM' BQU Y‘IW
SFUNFI! EQU 19
smuum mu Y'soo'
SFUNJJB EQU 20
SFUN.RM EQU Y-ouooouw
sum.“ EQU u
SFUNNM EQU Ymoooo-m’
SFUNNB EQU 25
SFUN.SIM EQU Y'2‘
SFUN.SDM EQU Y‘4'ENDS

no EQU 0
R1 EQU 1
R2 EQU 1
R3 EQU 3
R4 EQU 4
MSTALTM EQU xw-o'
MS’I‘A.ALB EQU 4
MSTAALM EQU x-soo'
MSTADLB BQU 5
MS’I‘AOLM EQU x-mocr
MSI'AABB EQU 2
MSTAABM EQU x1000-
MSTAACB EQU 1
MSTAACM EQU x-«Joo'
MSTAASB EQU o
MSTAASM EQU x-m
manor“
'DNC TERMIN AL OPTIONSI

PPCT SVC4 PARBLK
SFQ FULL QUBUE ADDR
SM'FQ EMPTY QUEUE ADDR
DEVSEL Device Selecl.ASClI,
"Nina". ETC-
Balance of PARBLK

SABUFF ADDR of Isl COMBUF
SBUFSZ #SECTORS/COMBUF

#COMBUFSI‘MACHINE
r

SEXTNM EXTERNAL PART # ADDR
SMPAT MACHINERROGRAM ASSIGN-
MENT TABL
PWTAB PASSWORD CURRENT
APTBL ACCESS PRIVILEGES CURRENT
APDFLT ACCESS DEFAULT

Direction: Self
End Task: Canoe]
End Teak: Delete
Load

Task Resident

Suspend Execution

Send Message

Queue Panmeler

Change Prion’ty

Connect Device la Called Task

Thaw

Sim

Freeze

Unconnect

Release

Task Non-residenl

Sum Immediately
Delay Start

Set=TraiIin : Resel=Leading
Set=P.P. F' e Allocated
Set = PP. File Allocated

Set =Oniine; Reset: Offline

Sct=Aborled

Se! -= Active

Se'l = Assigned

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 50

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 51

4,138,718
57

continued

“‘fi'flifi is 5:1 Mme»: InfMD ‘ - em amnion
MOP‘I‘.PDB EQU 14
MOH.PDM EQU 2 Set=Permanem Default 1COPY SVCfi.
SVCG. STRUC
SVCRICD DS I TASKID
SVCflFU'N US 4 Fimctim
SUCGIST ns 2 Talk Sum
SVCflS‘I‘A DS 1 Error Painter a Code
SVCflLU DS 1 Lou! LU
SVO£PRI BS 1 Priority to be Set
SVCflRPI DS 1 Return Priority

DS 1 Reserved
SVOGSAD DS 4 Sun addre-
SVOfiT‘lM DS 4 Time Type & Delay Time
SVCflDMN DS 4 Device Mneuwm‘c
SVCfiPAR DS 4 Parameter (High Byte must

be Zero)
SVCflMSG DS 4 Miller: Bum

D5 1‘4 Reaervad
ENDS

SFUN. STRUC
SFUNDOM EQU Y‘W Direction: Other Task:
n5 EQU 5
R6 EQU 6
R? EQU 1
R8 EQU 8

M £5 :0RA
RB £011 11
RC EQU 12
RD EQU 13
RE EQU 14
RF mu 1:

COPY UDL
UDL STRUC
U'DLCTOP D5 4 CFO?
UDLUTOP DS 4 LITDP
UDLUBO‘I‘ DB 4 UBOT

DS 4 Ream-wed
UDLTSKQ DS 4 MTASK QUEUE)
UDLSTKQ D6 4 AtSUB’I‘ASK QUEUE)
UDLMSGR DS 4 AMESSAGE RING)
UDLSVH DS 4 4(SVC 14 A116)

D3 16 Reserved
UDLJ’WRD [)6 B Power mien old TSW
UDLPWRN DS 8 Power realm-anion new TSW
UDLARFO as ll Afithmefic fault old 13‘?
UDLAFRN DS ll Arithmetic fault new 'rsw
U'DLSUBO DS 8 Suhtnk Queue service old TSW
UDLSUBN D3 3 Submak service new TSW
UDLSHO D6 8 SW: [4 o TSW
UDLSI4N D5 8 SVC 14 new TSW
UDLTSKO DS 3 Tu]: Queue aervice old TSW
UDLTSKN DS 8 Task Queue service new TSW
UDLHAFO DS 8 Memory um fault old TSW
UDLMAFN D6 ll Memory am fault new TSW
UDLJITO DB 3 Illegal instruction old 'I'SW
UDLJITN DS 8 Illegal inatruelicn new TSWD8 16.1 Reserved
UDLAIDS D6 64 Reserved for aid:

ENDS
TSW.WTM EQU Tm Trap Wail
rswwrn EQU D

TSWPWRM EQU Tm Powelr Restoration TrapEnab e
TSWIWRB EQU l
TSW.AFM EQU I'm Aritli Fault Trap Enable
TSWAFB EQU 2
TSWSMM EQU ‘1" lm SVC l4 Trap Enable
TSW.SI4B EQU 3

TSW.’I'SKM EQU Tm Tuleueue Service TrapEnab e
TSWJ'SKB EQU 4
TSW.MAFM EQU Y‘W Memory Access Fault T11]:Enable
TSW.M.AFB EQU 5

TSWJITM EQU Tm Illegalle Instruction Trap
TSVJJITB EQU l5
rsw.su3M EQU Yum Sum Slalua Change TrapEnable
TSWEUPJ EQU T
TSWNRLM EQU Y‘SOOOOO' Non-Randal:
TSWNRLB EQU ll
TSWDIQM EQU Y'SMO' Queue Entry Device Interrupt
TSWDIQB EQU 16
TSWICM EQU Y'W Queue Entry Task Call
TSWTCB EQU 11
TSWLMM EQU Y'EDOO' Queue Entry Suntan-l: Log

Mus-see
TSW’LMB EQU 18
TSW.FMM EQU Y‘ 1000' Queue Emry Peer Task Mme

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 52

4,138,?18

59 60
continued

“iii? 533 igloo Que En Supertask MTSW. ' ' ue try essage
rswsrs sou to
TSWJOM EQU v-suu' Queue Entry In) ProceedTermination
Tswroa EQU 2|
TSWIMCM EQU Your Queue Entry Timeout Completion
Tswmcs EQU 22
rswn'sr sou r‘luu’ [TAM at:
rswrrs sou 23
rswasst sou Y'str Queue Entry Submit Status

Change
1393.555 sou 2‘
13mm EQU 4 ‘ u of Let: Fullword
50x EQU mas Download EXEC Tape Access
son sou 16384 Download Application Tape

EDT EQU 8192 Downloul Testing Tape Acoeu
cunnrsz EDD 64
asursz sou 2m
asursz sou 126

We claim: mented to successively address each program instruc-
l. A numerical control system, the combination com- 20 tion stored in said read-onl—mesnory.

prising: 5. The numerical control system as recited in claim 4
a read/write memory for storing programs including

an executive system program;
an N/C processor coupled to said read/write mem-

ory byadatabusutdmaddreastLsaidN/C
procmsor being operable to write data into said
lead/write memory through said data bus;

is read-only memory coupled to said N/C processor
and storing a resident communications program;

means coupled to said N/C processor for initiating
the transfer of said resident communications pro-
gmmfromaaidread-onlymemorytosaidreadf-
write memory:

meansassociated with said N/C processor which is
responsive to said initiating means for sequentially
transferring each histruction in said resident com-
munications program to said read/write memory
and for causing said N/C processor to commence
executing said resident communication program;

host processor means coupled to said N/C processor;
storage means for storing executive system programs

for numerical control systems, said storage
being coupled to said host processor to download
selected executive system programs to said N/C
processor;

wherein said N/C processor is operable in response
to said resident communications program to trans—
mit to said host processor a request for a selected
executive system program and to receive and store
in said read/write memory the downloaded in-
structions of said selected executive system pro-
gram.

2. The numerical control system as recited in claim 1
in which a keyboard is coupled to said N/C processor
for enabling the manual selection of the executive sys-
tem program to be downloaded.

3. The numerical control system as recited in claim 1
in which the host processor is located remotely from
the N/C processor and the downloaded executive sys-
tem program is coupled to the N/C processor through
a data link.

4. The numerical control system as recited in claim 1
in which said means for sequentially transferring the
resident communications program to said rad/write
memory includes a transfer counter which connects to
said read-only memory to address memory locations
therein and said transfer countet' is repeatedly incre-

35

as

55

65

in which said N/C processor performs functions in
response to the execution of micromutines stored in a
second read-only memory and said means for initiating
thetransferoftheresidentoommunicafionsprogramia
a manually Operable switch. which when operated,
camestheN/Cprocessortoesecuteaselected oneof
said microroutines.

6. The numerical control processor as recited in claim
SinwhichsaidN/Cprocemoroperatesinresponseto
saidoneselectedmicroroutinetoreadprognminstmc-
tions addressed by said transfer counter out of said
read-only memory and write them into said read/write
memory.

7. A control system. the combination comprising:
aprocessorwhichisOperableinresponseto program

instructions stored in an associated read/write
memory;

ahoatprocessorcoupledtoaaidprocesaorbyadats
link;

astongedevicecoupledtossid hostprocessorfor
storing a download library comprised ol'a plurality
of executive system programs for said processor to
enabieitsocontroltheOperationofamachinetool;

meansforgeneratingadownloadcommandtosaid
host processor. which command includes a code
that identifies one of said executive system pro-
grams. said host processor being responsive to said
received download command to read the selected

executive system program out of said storage de-
vice and download it to said processor read/write
memory through said data link;

secondmemorymeanscoupledtosaidprocessor
read/write memory for storing a resident commu-
nication program; and

means forming part of said processor for transferring
said resident communications program from said
second memory means to said read/write memory
and means for sequentially reading the instructions
of said resident communications program out of
said read/write memory and executing them;

wherein said processor operates in response to the
execution of said resident communications pro-
gram instructions to store instructions of said
downloaded executive system program received
through said data link in its associated read/write
memory.

PMC Exhibit 2123

Apple v. PMC
|PR2016-01520

Page 52

PMC Exhibit 2123
Apple v. PMC

IPR2016-01520
Page 53

4,138,718

61 62

3- The control system as recited-in claim 7 in which data, and to coupled the download command to the host
said means for generating a download oode in- pr: H“. through said data Huh
cludes a keyboard coupled to said processor and said
processor is operable in response to instructions in said ‘ The mum} system “Sim?” m cum?“ 7 m whwh

said keyboard, to form a download command using said ‘ ' ‘ ‘ '

I0

IS

25

35

45

55

65

