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[57] ABSTRACT

A software version management system. also called
system modeller. provides for automatically collecting
and recompiling updated versiOns of component soft-
ware objects comprising a software program for opera-
tion on a plurality of personal computers coupled to-
gether in a distributed software environment via a local
area network. The component software objects include
the source and binary files for the software program.
which stored in various different local and remote stor»

age means through the environment. The compoaent
software objects are periodically updated. via a system
editor, by various users at their personal computers and
then stored in designated storage means. The manage-
ment system includes models which are also objects.
Each of the models is representative of the scurce ver-
sions of a particular component software object and
contain object pointers including a unique name of the
object. a unique identifier descriptive of the cronologi-
cal updating of its current version, informatiori as to an
object‘s dependencies on other objects and a pathname
representative of the residence storage means of the
object. Means are provided in the system editor to no-
tify the management system when any one of the ob-
jects is being edited by a user and the management
system is responsive to such notification to track the
edited objects and alter their respective models to the
current version thereof.
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C1ient:PRUGRAH IMPORTS SqrtInt = {

 
  
 

  

 
  
 

 

Imp'lemantor: PROGRAM EXPORTS SqrtInt ={

Sqrt: PUBLIC PRDC[s: HEAL]RETURN[REAL]={

..coda to compute sqrt of a number

}:
 

Sqr‘tInt:DEFINITIONS I {

Sqrt: PROCEREAL]RETURHS[REAL]:

}.
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C1ient1mp1.Hesa

 

 

 
 

DIRECTORY

Sort:

C1ientmp1zPRDGRAM IMPORTS Sort={

TastTham:PROC[I:LIST 0F Dbject]={

 
 
 
 

~~ca11 USortList with this list

I#Sort.USortL1st[I.Compareobjact]; 
 
  
 

}:

ComparaObject:PROC[n.b:0bjact] 

  
RETURNSEComparisOn]-{

--compares the two objects  

 --raturns less. equa1. or greater

}:

  Sort.Mesa

Sort:DEFINITIOHS-{

0bject:TYPE-RECORD[

x.y:INT

]:

USortL1st:PRDC[LIST 0F Object. CompareProc]

RETURNS[LIST 0F Object]:

FIG. 13A
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SortImp1.Mesa

DIRECTORY

Sort:

SortImp‘l :PRDGRAM EXPORTS Sort-{I

USortList:PROC[I:LIST 0F Object.

compareProc: ComparePruc]

RETURNS[newI:LIST 0F Object]-{

"code to sort the Hat I.

e1‘im1nat1ng dupHcates

}; 
T0 FIG. 13A
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SortCoord.Mesa

Sort:DEFINITIONS={

0bject:TYPE=RECORD[

x.y:INT

]:

USortList:PROC[LI5T 0F Object. CompareProc]

RETURNS[LIST OF Object]: 
SortNames.Masa

Sort:DEFINITIONS*{

0bject:TYPE-RECORD{

1:5TRIHG

]:

USurtList:PROC[LIST 0F Object. CompareProc]

RETURNSELIST 0F Object]: 
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SertQuickImp1.Masa

DIRECTORY

Sort:

SortQuickImp1:PROGRAH EXPORTS Sort={

USortList:PUBLIC PROC[I:LIST 0F Object.

comparePro¢zCumpareProcj

RETURNSCnewI:LIST 0F Object]-{

--code to sort the list I. eIiminating dup11cates

--use QuickSort

}:

 
SortHeapImp1.Masa

DIRECTORY

Sort;

SortHaapImp1:PROGRAH EXPORTS Sort-{

USortListtPUBLIC PROC[I:LIST 0F Object.

comparaProc:CompareProc]

RETURNSEnewI:LISI OF Dbjact]={

--code to sort the list I. e11m1nat1ng dup11cates

--use HeapSort

}:
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Clientlmp1.Masa

DIRECTORY

Sort:

C1ient1mp1:IMPORTS SortQuickInst:Sort.SurtHeapInst:Sort=

TestThem:PROC[I:LIST 0F Object}={

--ca]1 USOftLiSt with this 11$t. try QuickSort

newI+SortQu1cklnst.USortList[I.CompareObject]:

---now try HaapSort

newl+$ortHeapInst.USortListEI.CompareObject]:

}:

CompareObject:PROC[a.b:0bject]

RETURHSECompar1son]-{

--compares the two objects

--returns 1955. equal. or greater

}:
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ClientImp1.Hesa

DIRECTORY

SortCoord:INTERFfiCE Sort.

SortNamesxlflTERFACE Sort:

C1ientImpI:PROGRAH IMPORTS SortQuickCooruInst:SortCoord.

SartQuickNamesInst:SortNames.SortHeapCoordInst:SortCoord.

SartHeapNamesInst={

TestThem:PROC[Il:LIST 0F SortCaord.Dbject.IZ:LIST 0F SartNames.0bject]=

newI-SortQuickCoordInst.USortList[11. CompareCoordinataObjects];

newI-SortHeapCoordInst.USurtList[11. CompareCanrdinateObjects]:

nauI~SortQuickNameslnst.USortListhZ. CompereNamaObjects].

newI~SortHeapNamesInst.USortListEIZ. CompereNamesObjects]:

CompareCoordinateObjects:PRDC[a.b:?sgrtCoord.Object]RETURNS{Compar1son]={

--compares a and b. returns 1e55, equa1. or greater

}:

CompereNameObjects:PRDC[a.b:SortNames.0bject]RETURN5[Comparison]={

--compares a and b. returns 1ess. equal. or greater
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LET®I|ndigaj<Cedar}Ced-armsraces.nrodef!iJuiy 25. 1932. 14:03:033IN
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Objecttype table

 
Source 0019c! Type

BTreeCedarEtSept 9. 1982. 13:52:55] [lNTEHFACEAscaJ- [INTERFACES Tree]

BTreermpl.ceder!lJan 9. 1983‘ 14:44:09) [Rope-.INTERFACERODE. FO,Space:INTEFIFACE Space-1

BTree:tNTERFACEBTree]

[[Ropelnstrfiope. JO. Spacemsrfipace] {arreeinst
arreen

Projection table
 

 
Source object Parameter values Results object

BTree.cedar![Sept9.l982. [145chbinaryl23ACD904EFFA] BTree.binaryE43956A3C32F0
13:52:55)

Brreeu‘mpmedariuan 14. 1983. [F1ope.bu‘nary!AC9023E76FA6. BTreeimprinaryEZMSFFDZBSC
14:44:09) 10.bmary!23843396A24f.

Space. b1nary!8348823FF?61.
BTree.ba‘nary143956A3C32FU]
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Version map
 

 

 

Object name File location

8Tree.cedar![8ept 9. 1982. 13:52:55} [Ivy](Schmidt>BTree.cedar4

BTreeJmchedar!(Jan 14,1983. 14:44:09} [ivy](SchmidDBTree|rnpl.cedar!9

BTree.binary!43956A3C32F0 [ivy}<Schmidt>BTree.binary!2

BTreelmpLbinary!2045FF0283C [Ivy](SchmidDBTreelrnpl.binaryIS

Ascii.binary!23ACDQO4EFFA [lndigo]<Cedar>AscEi.binary23

FIG. 19
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Cedar Mode11er. started on 3—Feb-83 16:16:01 PST

Startflode'fiBegin Continue StoreBack Unioad Stophlode1
MakeHodech Bind NewModeHer

Compi1e Load Start

  

 
  
  

 
 

Modelflame: Examplo.Hodai

Compiling: Examplelmp1A.Mese no errors.

Compi‘ling: ExamplelmpTB.Mesa

StarModo‘t Examp‘lo.Mode1

Prasing Examp1o.Hode1

Ane1yzing Parameters

q a o u q - - - _ _ _ _ _ _ _ _ - _ _ __

- — u — a u — u p _ _ _ __-_—___--

  
  

  
 

Begin Examp1e.Moda1

Try for compilation:

Examp1eImp1A.Hesa:Confirm Compflation ? Yes

Compilation completed. no errors.

ExamplelmpIB.Hesa: Confirm Compi'lation 1‘ Yes

FIG. 20
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@[Ivy]<5¢hmidt)x.flesal(July 25. 1982 14:03:02}

   

  
  
 
  

  

 

Lnokup in F119 Type Tab1e

Found Not found

Lookup f11e in Version map

Not found

  

 Search [Ivy]<8chm1dt> for a11 "X.Mesa"

Not found

Enter in version map

Read F113

Enter 1n F113 Type Tab1e
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Look for X.Mesa of Juiy 25. 1932 14:03:02 with

no parameters in projection table

Found Not found

Generate unique id it wou1d have = X.Bcd of

1ABC023460£D Lookup in Version Map

Not found 

 

  Enumerate [Ivy]<Schmitd> 1ooking for
X.Bcd of 1ABCDZS460ED

Not found

Enter in version map

Compi1e X.Hosa with no parameters

Enter X.Bcd of IABCDZE4SDED

in projection tah1e

  
Object fi1e X.Bcd of 1ABCD234GDED exists

FIG. 23
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Load XImp1.Bcd 0f 2ADEF345EDCA  
 

   

 
  

 

  
 

  

Lookup in Version Map

Found Not found

 Enumerate [Ivy]<5chmidt>

100k for XImpl.Bcd 0F ZADFE245EDCA

Not found

Read f11e [Ivy]<Schm1dt>XImp1.Bcdlzz and 103d

FIG. 24

Enter in Version map

ReIease T001: Phase Hove

[Ivy]<5chmiat)x.nesal4 [Indigo]<tedar>x.flasalz

[Ivy]<$chmidt>XImp1.Mesalfi [Indigo]<Cedar>XImp1.Mesala

[Ivy]<5chmidt>¥.flesal43 [Ind1go](Cedar>Y.Hasar1 
[Ivy]<5chm1dt>YImp1.Mesal34 [Indigo]<Cedar>YImp1.Mesalz

FIG. 25
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Re1ease T001: Phase Buiid

[Ivy]<5chmidt)x.3cd[23 [Indigo]<0edar>X.BchZ

[Ivy}(Schmidt>lep1.Bcd!22 [Indigo]<Cedar>XImp1.Bcdll

[Ivy]<$chmidt>Y.Bcd116 [Indigo]<Cedar>Y.Bchl 
[Ivy]<5chmidt)YImp1.Bcdllz [Indign](Cedar>YImp1.Bcdlz

FIG. 26

Version Map After Release

File Location

X.Mesa of JuTy 25.1982 14:03:02 [Indigo]<Cedar>X.Mesal2

XImp'l.Hasa of Ju'Iy 25.1982 14:05:06 [Indigo]<Cedar>XImp1.Mesa13

Y.Masa of July 25.1982 15:06:08 [Indigo]<Cedar>Y.Hesa11

YImp1.Mesa of Ju'lyI 25.1962 16:07:03 [Indigo]<Cedar‘>YImp1.Mesalz

X.Bcd of IABCDZ346DED [Indigo]<Cedar>x.Bcd!2

XImp1.Bcd of ZAD£F345EDCA [Indigo]<Cedar>XImp1.Bcdll

Y.Bcd 0f 3421ABD4235A [Ind1go]<Cedar‘>Y.Bcdl1

YImp1.Bcd of 234553000638 [Ind1go]<Cedar)YImp1.Bcdlz

 
FIG. 27
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SOFTWARE VERSION WAGMNT SYSTEM

BACKGROUND OF THE INVENTION

This invention relates to software version manage-
ment system and method for handling and maintaining
software, e.g. software updating uniformin across the
system. particularly in a large software development
environment having a group of users or programmers.
The system is also referred to as the “System Mo-
deller".

Programs consisting of a large number of modules
need to be managed. When the number of modules
making up a software environment and system exceeds
some small. manageable set, a programmer cannot be
sure that every new version of each module in his pro-
gram will be handled correctly. After each version is
created, it must be compiled and loaded. In a distributed
computing environment. files containing the source text
ofa module can be stored in many places in a distributed
system. The programmer may have to save it some-
where so others may use it. Without some automatic
tool to help. the programmer cannot be sure that ver-
sions of software being transferred to another user or
programmer are the versiOns intended to be used.

A programmer unfamiliar with the composition of
the program is more likely to make mistakes when a
simple change is made. Giving this new programmer a
list of the files involved is not sufficient. since he needs

to know where they are stored and which versions are
needed. A tool to verify a list of files. locations and
correct versions would help to allow the program to be
built correctly and accurately. A program can be so
large that simply verifying a description is not suff-
cient, since the description of the program is so large
that it is impractical to maintain it by hand.

The confusion ofa single programmer becomes much
worse, and the cost of mistakes much higher. when
many programmers collaborate on a software project.
In multi-person projects, changes to one part of a soft-
ware system can have far-reaching effects. There is
often confusion about the number of modules affected

and how to rebuild affected pieces. For example. user-
visible changes to heavily-used parts of an operating
system are made very seldom and only at great cost.
since other programs that depend on the old version of
the operating system have to be changed to use the
newer version. To change these programs, the “cor-
rect” versions of each have to be found, each has to be
modified. tested, and the new versions installed with the
new operating system. Changes of this type often have
to be made quickly because the new system may be
useless until all components have been convened. Mem-
bers or users of large software projects are unlikely to
make such changes without some automatic support.

The software management problems faced by a pro-
grammer when he is developing software are made
worse by the size of the software, the number of refer-
ences to modules that must agree in version. and the
need for explicit file movement between computers.
For example. a programming environment and system
used at the Palo Alto Research Center of Xerox Corpo-
ration at Palo Alto, Calif, called "Cedar" now has
approximately 441,000 lines of Cedar code. and approx-
imately 2030 source and 2000 object files. Almost all
binary or object files refer to other binary or object files
by explicit version stamp. A program will not run until
all references to an binary or object file refer to the
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2
same version of that file. Cedar is too large to store all
Cedar software on the file system ofeach programmer‘s
machine. so each Cedar programmer has to explicitly
retrieve the versions he needs to run his system from
remote storage facilities or file servers.

Thus, the problem falls in the realm of "Program-
ming-the-Large" wherein the unit of discourses the
sofiware module. instead of “Programming-in-the-
Small", where units include scalor variables. statements.
expressions and the like. See the Article of Frank
DeRerner and H. Kron, “Programming-in-the-Large
versus Programming in the small". IEEE Transactions
on Sojhvare Engineering. Vol. 2(2). pp. 80—86. June 1976.

To provide solutions solving these problems over-
viewed above, consider the following:

1. Languages are provided in which the user can
describe his system.

2. Tools are provided for the individual programmer
that automate management of versions of his programs.
These tools are used to acquire the desired versions of
files. automatically recompile and load aprogram. save
new versions of software for others to use. and provide
useful informatiou for other program analysis tools such
as cross-reference programs.

3. In a large programming project. software is
grouped together as a release when the versions are all
compatible and the programs in the release run cor-
rectly. The languages and tools for the individual pro-
grammer are extended to include informatiou about
cross-package dependencies. The release process is
designed so production of release does not lower the
productivity of programmers while the release is occur-
ring.

To accomplish the foregoing, one must identify the
kinds of information that must be maintained to describe

the software systems being developed. The information
needed can be broken down into three categories:

1. File Information: For each version of a system. the
versions of each file in the system must be specified.
There must be a way of locating a copy of each version
in a distributed environment. Because the software is

always changing. the file information must be change-
able to reflect new versions m they are created.

2. Compilation Information: All files needed to com-
pile the system must be identified. It must be possible to
compute which files need to be translated or compiled
or loaded and which are already in machine runnable
format. This is called "Dependency Analysis." The
compilation information must also include other param-
eters of compilation such as compiler switches or flags
that affect the operation of the compiler when it is run.

3. interface Information: In languages that require
explicit delineation of interconnections between mod-
ules (e.g. Mesa. Ada}. there must he means to express
these interconnections.

There has been little research in version control and

automatic software management. or that, almost none
has built on other research in the field. Despite good
reasons for it. e.g. the many differences between pro-
gram environments. and the fact that programming
environments ususally emphasize one or two program-
ming languages. so the management systems available
are often closely related to those programming lan-
guages. this fact reinforces the singularity of this re-
search. The following is brief review of previous work
in this area.

[1} Make Program
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The Make program, discussed in the Article of Stuart
J. Feldman, “Make-A Program for Maintaining Com-
puter Programs", Soflmre Practice t! Experience, Vol. 9
(4), April, 1979, use: a system description called the
Makefile. which lists an acyclic dependency graph ex- 5
plicitly given by the programmer. For each node in the
dependency graph1 the Maltefile contains a Make Rule,
which is to be executed to produce a new version of the
parent node if any of the son nodes change.

For example the dependency graph illustrated in
FIG. 1 shows that xl.o depends on x1.c. and the file
aout depends on xl.o and x2.o. The Makefile that rep-
resents this graph is shown in Table 1 below.
 

 
TABLE I .5

a.out: xl.o xl.o x10
cc xl.o x2.o

xl.0: xl.c
cc -c xl.c

x10 x2.c 20
cc —c x2.c 

In Table I. the expression, “cc-c xl.c" is the com-
mand to execute and produce a new version of xl.o
when xl.c is changed. Make decides to execute the
make rule i.e.. compile xl.c, if the file modification time
ofxlc is newer than that of xl.o.

The description mechanism shown in Table I is intu-
itively easy to use and explain. The simple notion of
dependency. e.g., a file xl.o, that depends on xl.c must 39
be recompiled if xl.c is newer, works correctly vitually
all the time. The Maltefile can also be used as a place to
keep useful commands the programmer might want to
execute, e.g.,

print:
pr xl.c 11c

defines a name “print” that depends on no other files
(names). The command "make print" will print the
source files xl.c and x2.c. There is usually only one
Maltefile per directory, and, by convention, the soft-
ware in that directory is described by the Makefile. This
makes it easy to examine unfamiliar directodes simply
by reading the Makefile.

Make is an extremely fast and versatile tool that has
become very popular among UNIX users. Unfortu-
nately, Make uses modificaan times from the file sys-
tem to tell which files need to be re-made. These times

are easily changed by accident and are a very crude
way of establishing consistency. Often the programmer so
omits some of the dependencies in the dependency
graph, sometimes by choice. Thus, even if Make em-
ployed a better algorithm to determine the consistency
of a system, the Maltefile could still omit many impor-
tant files of a system.

(2) Source Code Control System (SCCS)
The Source Code Control System (SCCS) manages

versions of C source programs enforcing a check-in and
check-out regimen, controlling access to versions of
programs being changed. For a. description of such a}
systems. see the Articles of Alan L. Glasser, “The Evo-
lution of a Source Code Control System", Free. Soft-
ware Quality & Assurance Workshctp, Software Engi-
neering Notes, Vol. 3(5), pp. I22—125, November 1978;
Evan L. Ivie. “The Programmer's Workbench-A Ma-
chine for Software Development", Communications of
the ACM, Vol 2000} pp. new}, October, 1977; and
Marc J. Rochkind “The Source Code Control System".
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4
IEEE Transactions on Software Engineering, Vol. 1(4),
pp. 25-34, April 198].

A programmer who wants to change a file under
SCCS control does so by (l) gaining exclusive access to
the file by issuing a "get" command. (2) making his
changes, and (3) saving his changed versiOn as part of
the SCCS—controlled file by issuing a "delta" command.
His changes are called a “delta” and are identified by a
release and level number. e.g., "2.3". Subsequent users
of this file can obtain a version with or without the

changes made as part of “delta 2.3". While the program-
mer has “checked-on ” the file. no other programmers
may store new deltas. Other programmers may obtain
copies of the file for reading, however. SCCS requires
that there be only one modification of a file at a time.
There is much evidence this is a useful restriction in

multi-person projects. See Glasser, Supra. SCCS stores
all versions of a file in a special file that has a name
prefixed by “s.". This "5." file represents these deltas as
insertions, modifications, and deletions of lines in the
file. Their representation allows the “get” command to
be very fast.

(3) Software Manufacturing Facility (SMF)
Make and SCCS were unified in special tools for a

development project at Bell Labs called the Software
Manufacturing Facility {Shall-7) and discussed in the
Article of Eugene Cristofer, F. A. Wendt and B. C.
Wonsiewicz, "Source Control & Tools=Stable Sys-
tems”, Proceedings of the Fourth Computer Softwre &
Applications Conference. pp. 527-532. Oct. 29—31., I980.
The SMF uses Make and SCCS augmented by special
files called slists. which list desired versions of files by
their SCCS version number.

A slist may refer to other slists as well as files. In the
SMF, a system coasists of a master slist and references
to a set of slists that describe subsystems. Each subsys-
tem may in turn describe other subsystems or files that
are part of the system. The SMF introduces the notion
of a consistent software system: only One version of a
file can be present in all slists that are part of the system.
Part of the process of building a system is checking the
consistency.

SMF also requires that each slist refer to at least one
Makefile. Building a system involves (l) obtaining the
SCCS versions of each file, as described in each slists.

(2) performing the consistency check. (3) running the
Make program on the version of the Makefile listed in
the slist, and (4) moving files from this slist to an appro-
priate directory. FIG. 2 shows an example of a hierar-
chy of slists, where ab.sl is the master slist.

SMF includes a database of standard versions for

common files such as the system library. Use of SMF
solves the problem created when more than one pro-
grammer is making changes to the sofiware of a system
and no one knOws exactly which files are included in
the currently executing systems.

(4} PIE Project
The PIE project is an extension to Smalltalk devel—

oped at the Palo Alto Research Center of Xerox Cpl-po-
ratiOn and set forth in the Articles of Ira P. Goldstein

and Daniel G. Bobrow. “A Layered Approach to Soft-
ware Design". Xerox PARC Technical Report CSL-SO—S.
December 1980; Ira P. Goldstein and Daniel G. Bo-
brow, "Descriptions for a Programming Environment".
Proceedings of the First Annual Conference of the Na-
tional Association of Artificial Intelligence. Stanford.
Califl, August 1980; Ira P. Goldstein and Daniel G.
Bobrow, “Representing Design Alternatives”, Proceed-
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mg: ofti'te Artificial Intelligence and Simulation ofBehav-
for Confirms-e. Amsterdam. July I930; and the back
"Smalltalk-80, The Language and It Implemention" by
Adele Goldberg and David Robson and published by
Addison-Wesley, I983. PIE implements a network
database of Smalltalk objects, i.e.. data and procedures
and more powerful display and usage primitives. PIE
allows users to categorize different versions of a Small-
talk object into layers, which are typically numbered
starting at zero. A list of these layers, most-preferred
layer first, is called a context. A context is a search path
of layers, applied dynamically whenever an object in
the network database is referenced. Among objects of
the same name, the one with the layer number that
occurs first in the context is picked for execution.
Whenever the user wants to switch versions, he or she

arranges his context so the desired layer occurs before
any other layers that might apply to his object. The
user’s context is used whenever any object is refer-
enced.

The distinction of PIE's solution to the version con-

trol problem is the ease with which it handles the dis~
play of and control over versiorts. PIE inserts objects or
procedures into a network that corresponds to a tradi-
tional hierarchy plus the threads of layers through the
network. The links of the network can be traversed in

any order. As a result, sophisticated analysis tools can
examine the logically-related procedures that are
grouped together in what is called a Smalltalk "class".
More often, a PIE browser is used to move through the
network. The browser displays the "categories", com-
prising a grouping of classes, in One corner of a display
window. Selection of a category displays a list of classes
associated with that category. and so on until a list of
procedures is displayed. By changing the value of a
field labeled “Contexts:” the user can see a complete
picture of the system as viewed from each context. This
interactive browsing features makes comparison of dif-
ferent versions of software very convenient.

(5) Gandalf Project
A project. termed the Gandalf project at Carnegie

Mellon University. and discussed in the Article of A.
Nico Habermann et al., “The Second Compendium of
Gandalf Documention", CMU Department of Com-
puter Science, May 1930. is implementing parts of an
integrated software development environment for the
GC language. an extension of the C language. Included
are a syntax-directed editor. a configuration database.
and a language for describing what is called system
compositions. See the Articles of A. Nico Haberman
and Dewayne E. Perry “System Compositions and
Version Control for Ada“, CMU Computer Science
Department, May I980 and A. Nico Haberman “Tools
for Software System Constructmn". Proceedings of the
Software Tools Workshop. Boulder. Colo. May 1979.
Various PhD these have explored this language for
system composition. See the Ph.D Thesis of Lee W.
Cooprider “The Representation of Families of Software
Systems", CMU Computer Science Department, CMU-
CS-79-116. Apr. 14, 1979 and Walter F. Tichy, “Soft-
ware Development Control Based on System Structure
Description", CMU Computer Science Department,
CMU-CS-BO—iZO, January I980.

Recent work on a System Version Control Environ-
ment (SVCE) combines Gandalf‘s system composition
language with version control over multiple versions of
the same component, as explained in the Article of Gail
E. kaiser and A. Nico Habermann. “An Environment
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6

for System Version Control", in “The Second Compen-
dium of Gandalf Documentation", CMU Department
of Computer Science, Feb. 4. 1982. Parallel versions,
which are different implementations of the same specifi-
cation, can be specified using the name of the specific
version. There may be serial versions of each compo-
nent which are organized in a time-dependent manner.
One of the serial versions. called a revision. may be
referenced using an explicit time stamp. One of these
revisions is designated as the "standard" version that is
used when no version is specified.

Descriptions in the System Version Cantrol Lan-
guage (SVCL) specify which module versions and revi-
sions to use and is illustrated, in part. in FIG. 3. A col-
lection of logically-related software modules is de-
scribed by a box that names the versions and revisions
of modules available. Boxes can include other boxes or

modules. A module lists each parallel version and revi-
sion available. Other boxes or modules may refer to
each version using postfix qualifiers on module names.
For example, "M" denotes the standard version of the
module whose name is “M,” and "MN I" denote paral-
lel version V1. Each serial revision can be specified
with an “@.“ e.g.. "M.V1@2" for revision 2.

Each of these expressions. called pathnames. identi-
fies a specific parallel version and revision. Pathnames
behave like those in the UNIX system: a path name that
begins, for example, {Al/BIC refers to box C contained
in box B contained in A. Pathnames without a leading
"I" are relative to the current module. Implementations
can be used to specify the modules of a system. and
compositions can be used to group implementations
together and to specify which module to use when
several modules provide the same facilities. These ways
of specifying and grouping versions and revisions alloy
virtually any level of binding: the user may choose
standard versions or. if it is important, the user can be
very specific about versions desired. The resulting sys-
tem can be modified by use of components that special-
ize versions for any particular application as illustrated
in FIG. 3.

SVCE also contains facilities for “System Genera-
tion". The Gandalf environment provides a command
to make a new instantiation. or executable system. for

an implementation or mmposition. This command com-
piles. links. and loads the constituent modules. The
Gandalf editor is used to edit modules and edit SVCL

implementations directly, and the command to build a
new instantiation is given while using the Gandalf edi-
tor. Since the editor has built-in templates for valid
SVCL censtructs. entering new implementations and
compositions is very my.

SVCE combines system descriptions with version
control, coordinated with a database of programs. 0f
the existing systems, this system comes closest to ful-
fillng the three previously mentioned requirements:
Their file information is in the database, their recompi-
lation information is represented as lines in the database
between programs and their interface information is
represented by system compositions.

(6) Intermetrics Approach
A system used to maintain a program of over one

million lines of Pascal code is described in an Article of

Arra Avakian et al, "The Design of an Integrated Sup-
port Software System". Proceedings ofthe SIGPLAN ‘82
Syposfum on Compiler Construction. pp. 308—317, lune
23-25, 1982. The program is composed of 1500 sopa-
rately-compiled components developed by over 200
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technical people on an IBM 370 system. Separately-
compiled Pascal modules communicate through a' data
base, called a compool, of common symbols and their
absolute addresses. Because of its large size (90 mega-
bytes, 42,000 names), a compool is stored as a base tree
of objects plus some incremental revisions. A simple
consistency check can be applied by a link editor to
determine that two modules were compiled with mutu-
ally-inconsistent compools. since references to code are
stamped with the time after which the object file had to
be recompiled.

Management of a project this size poses huge prob-
lems. Many of their problems were caused by the lack
of facilities for separate compilation in standard Pascal,
such as interface-unplementation distinctions. The com—
pool includes all symbols or procedures and variables
that are referenced by modules other than the module in
which they are declared. This giant interface between
modules severely restricts changes that affect more than

. one separately-compiled module. Such a solution is only
suitable in projects that are tightly managed. Their use
of differential-updates to the compool and creation
times to check consistency makes independent changes
by programmers on different machines possible, since
conflicts will ultimately be discovered by the link edi-
tor.

(7) Mesa. C/Mesa and Cedar
Reference is now made to the Cedar/Mesa Environ-

ment developed at Palo Alto Research Center of Xerox
Corporation. The software version management system
or system modeller of the instant invention is imple-
mented on this envirOment. However, it should be clear
to those skilled in the art of organizing software in a
distributed environment that the system modeller may
be implemented in other programming systems involv»
ing a distributed environment and is not dependent in
principle on the Cedar/Mesa environment. In other

. words, the system modeller may handle descriptions of
software systems written in other programming lan-
guages. However, since the system modeller has been
implemented in the Cedar/Mesa environment. sufficient
description of this environment is necessary to be famil-
iar with its characteristics and thus better understand

the implementation of the instant invention. This de-
scription appears briefly here and more specifcally lateron.

The Mesa Language is a derivative of Pascal and the
Mesa language and programming is generally disclosed
and discussed in the published report of James (3.
Mitchell et 31. "Mesa Language Manual, Version 5.0",
Xerox. PARC Technical Report CSL-79-3, April l9‘l9.
Mesa programs can be one of two kinds: interfaces or
definitions and implementations. The code of a program
is in the implementation, and the interface describes the
procedures and types, as in Pascal, that are available to
client programs. These clients reference the procedures
in the implementation file by naming the interface and
the procedure name, exactly like record or structure
qualification, e.g., RunTime.GetMemory|] refers to the
procedure GetMernory in the interface RunTime. The
Mesa compiler checks the types of both the parameters
and results of procedure calls so that the procedures in
the interfaces are as strongly type-checked as local.
private procedures appearing in a single module.

The interconnections are implemented using records

of pointers to procedure bodies, called interface re-
cords. Each client is passed a pointer to an interface
record and accesses the procedures in it by dereferenc-
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ing once to get the procedure descriptors. which are an
encoded representatiori sufficient to call the procedure
bodies.

A connection must be made between implementa-
tions (or exporters) and clients {or importers) of inter-
faces. In Mesa this is done by writing programs in
0’Mesa, a configuration language that was designed to
allow users to express the interconnection between
modules, specifying which interfaces are exported to
which importers. With sufficient analysis, C/Mesa can
prcIvide much of the information needed to recompile
the system. However. C/Mesa gives no help with ver-
sion control since no version information can appear in
C/Mesa configurations.

Using this configuration language, users may express
complex interconnections, which may possibly involve
interfaces that have been renamed to achieve informa-

tion hiding and flexibility of implementation. In prac-
tice, very few configuration descriptions are anything
more than a list of implementation and client modules,
whose interconnections are resolved using defaulting
rules.

A program called the Mesa Binder takes object files
and configuration descriptions and produces a single
object file suitable for execution. See the Article of
Hugh C. Lauer and Edwin H. Satterthwaite. “The Im-
pact of Mesa on System Design", Proceedings of the 4th
International Conference on Soflware Engineering. pp.
[74-132, 1979. Since specific versions of files cannot be
listed in C/Mesa descriptions, the Binder tries to match
the implementations listed in the description with flies
of similar names on the invoker’s disk. Each object file

is given a 48-bit unique version Stamp, and the imported
interfaces of each module must agree in version stamp.
If there is a version conflict, e.g., different versions ofan
interface. the Binder gives an error message and stops
binding. Most users have elaborate command files to
retrieve what they believe are suitable versions of files
to their local disk.

A Librarian, discussed in the Article of Thomas R.
Horsley and William C. Lynch, “Pilot: A Software
Engineering Case Study", Proceedings ofthe 4!!! Interest»
trbnol Conference on Software Engineering, pp. 94-99,
1979. is available to help control changes to software in
multi-person projects. Files in a system under its control
can be checked out by a programmer. While a file is
checked out by one programmer, no one else is allowed
to check it out until it has been checked in. While it is

checked out, others may read it, but no one else may
change it.

In one very large Mesa-language project. which is
exemplified in the Article of Eric Harslern and Leroy E.
Nelson, “A Retrospective on the Development of Star“
Proceedings of the 6th International Conference on Soft-
ware Engineering. September 1982, programmers submit
modules to an integration service that recompiles all
modules in a system quite frequently. A newly-com-
piled system is stored on a file system and testing begins.
A team of programmers. whose only duty is to perform
integrations of other programmer‘s software. fix incom-
patibilities between modules when possible. The major
disadvantage of this approach is the amount of time
between a change made by the programmer and when
the change is tested.

The central concern with this environment is that

even experienced priong have a problem manag-
ing versions of Mesa or Cedar modules. The lack of a
uniform file system, lack of look to move version-ocu-
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sistent sets of modules between machines. and lack of

complete descriptions of their systems contribute to the
problem.

The first solution developed for version mangement
of files is based on description files, also designated as
DF files. The D? system automates version control for
the user or programmer. This version management is
described in more detail later on because experience
with it is what led to the creation of the version manage-

ment system of the instant invention. Also. the version
management of the instant invention includes some
functionality of the DF system integrated into an auto—
matic program deveIOpment system. DF files have in-
formation about software versions of files and their
locations. DF files that describe packages of software
are input to a release process. The release process
checks the submitted DF files to see if the programs

they describe are made from compatible versions of
software. and, if so. copies the files to a safe location. A
Release Tool performs these checks and copies the files.
If errors in UP files are found and fixed employing an
interactive algorithm. Use of the Release Tool allows
one matting a release, called a Release Master. to release
software with which he may in part or even to a large
extent, not be familiar with.

SUMMARY OF THE INVENTION

According to this invention, the system modeller
provides for automatically collecting and recompiling
updated versions of component software objects com-
prising a software program for operatiOn on a plurality
of personal computers coupled together in a distributed
software environment via a local area network. As used

herein, the term "objects" generally has reference to
source modules or files. object modules or files and
system models. The component software objects are
stored in various different local and remote storage
means throught the envirournent. The component soft-
ware objects are periodically updated, via a system
editor, by various users at their personal computers and
then stored in designated storage means.

The system modeller employes models which are also
objects. Each of the models is representative of the
source versions of a particular component sofiware
object and contain object pointers including a unique
name of the object, a unique identifier descriptive of the
cronological updating of its current version, informa-
tiou as to an object’s dependencies on other objects and
a pathname representative of the residence storage
means of the object. Means are provided in the system
editor to notify the system modeller when any one of
the objects is being edited by a user and the system
modeller is responsive to such notification to track the
edited objects and alter their respective models to the
current version thereof. The system modeller upon
command is adapted to retieve and recompile source
files corresponding to altered models and load the bi-
nary files of the altered component software objects and
their dependent objects into the user's computer.

The system modeller also includes accelerator means
to cache the object pointers in the object models that
never change to thereby avoid further retrieving of the
objects to parse and to discern the object pointers. The
accelerator means for the models includes (I) an object
type table for caching the unique name of the object and
its object type to enhance the analysis of a model by the
modeller, (2) a projection table for caching the unique
name of the source object. names of object parameters,
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compiler Switches and compiler version to enhance the
translation of objects into derived objects. and (3) a
version map for caching the object pathname.

The system modeller is an ideal support system in a
distributed software environment for noting and moni-
toring new and edited versions of objects or modules.
i.e.. source or binary or model files. and automatically
managing the compilation. loading saving of such mod-
ules as they are produced. Further, the system modeller
provides a means for organizing and controlling soft-
ware and its revision to provide automatic support for
several different kinds of program development cycles
in a programming system. The modeller handles the
daily evolution of a single module or a small group of
modules modified by a single person. the assembly of
numerous modules into a large system with complex
interconnections. and the formal release of a program-
ming system. The modeller can also efficiently locate a
large number of modules in a big distributed file system,
and move them from one machine to another to meet

operational requirements or improve performance.
More particularly. the system modeller automatically

manages the compilation. loading and saving of new
modules as they are produced. The system modeller is
connected to the system editor and is notified of new
and edited versions of files as they are created by the
system editor, and automatically recompiles and loads
new versions of software. The system user decribes his
software in a system model that list the versious of files
used, the information needed to compile the system. and
the interconnectious between the various modules. The
modeller allows the user or programmer to maintain
three kinds of information stored in system models. The
models. which are similar to a blueprint or schematic.
describe particular versions of a system. A model corn-
bines in one place (1) information about the versions of
files needed and hints about their locations. (2) addi-
tional informatiOn needed to compile the system, and (3)
information about intercounections between modules.

such as which procedures are used and where they are
defined. To provide fast response. the modeller behaves
like an incremental compiler so that only those software
modules that have experienced a change are analyzed
and recompiled.

System models are written in a SML language. which
allows complete descriptions of all interconnections
between software modules in the environment. Since
these interconnections can be very complicated. the
language includes defaulting rules that simplify system
models in common situations.

The programmer uses the system modeller to manip-
ulate systems described by the system models. The sys~
tern modeller {1) manipulates the versions of files listed
in models (2) tracks changes made by the programmer
to files listed in the models. (3} automatically recompiles
and loads the system, and (4) provides complete support
for the release process. The modeller recompiles new
versions of modules and any modules that depend On
them.

The advantages of the system modeller is (1) the use
of a powerful module interconnection language that
expresses interconnections. (2) the provision of a user
interface that allows interactive use of the modeller

while maintaining an accurate description of the system.
and (3) the data structures and algorithms developed to
maintain caches that enable fast analysis of modules by
the modeller. These advantages are further expandable
as follows.
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First. the system modeller is easy to rise. perform
functions quickly and is to run while the programmer is
developing his software and automatically update sys-
tem descriptions whenever possible. It is important that
a software version management system be used while
the pregrammer is developing software so he can get
the most benefit from them. When components are
changed, the descriptions are adjusted to refer to the
changed components. Manual updates of descriptions
by the programmer would slow his software develop-
ment and proper voluntary use of the system seems
unlikely. The system modeller functioning as an incre-
mental compiler, i.e. only those pieces of the system that
are actually change are recompiled, loaded and saved.

Second, the exemplified computing environment
upon which the described system modeller is utilized is
a distributed persorral computer environment with the
computers connected over an Ethernet local area net-
work [LAN]. This environment introduces two types of
delays in access to versions of software stored in files:
(1) if the file is on a remote machine, it has to be found,
and {2} once found. it has to be retrieved. Since retrieval
time is determined by the speed of file transfer across
the network, the task of retrieving files is circumvented
when the information desired about a file can be com-

puted once and stored in a database. For example, the
size of data needed to compute recompilation informa-
tion about a module is small compared to the size of the
module‘s object file. Recompilation information can be
saved in a database stored in a file on the local disk for
fast access. In cases where the file must be retrieved

determining which machine and directory has a copy of
the version desired can be very time corisuming. The
file servers can deliver information about versions of
files in a remote file server directory at a rate of up to six
versions per second. Since directories can have many
hundreds of versions of files, it is not practical to enu-
merate the contents of a file server while looking for a
particular version of a file. The solution presented here
depends on the construction of databases for each soft-
ware package or system that contains information about
the locations.

Third, since many software modules, e.g., Cedar
software modules, have a complicated interconnection
structure. the system modeller includes a. description
language that can express the interconnection structure
between the modules. These interconnection structures

are maintained automatically for the programmer.
When new interconnections between modules are

added by the programmer, the modeller updates the
model to add the interconnection when possible. This
means the user has to maintain these interconnections

very seldom. The modeller checks interconnections
listed in models for accuracy by checking the parame~
terization of modules.

Further advantages. objects and attainments together
with a fuller understanding of the invention will be-
come apparent and appreciated by referring to the fol-
lowing description and claims taken in conjunction with
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a dependency graph for a
prior art software management system.

FIG. 2 is an illustration for a hierarchy of another
prior art software management system.

FIG. 3 is an illustratiou of the description specifiers of
a still another prior art software management system.
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FIG. 4 is an illustration of 3 Cedar system client and

implementor module dependency.
FIG. 5 is an illustration of a Cedar system source and

object file dependency.
FIG. I5 is an illustration of a dependency graph for a

Cedar System.
FIG. 7 is an example of a typical distributed com-

puter evironment.
FIG. 8 is a flow diagram of the steps for making a

release in a distributed computer environment.
FIG. 9 is a dependency graph for DF files in the boot

file.

FIG. 10 is a dependency graph illustrative of a detail
in the boot file.

FIG. 11 is a dependency graph for interfaces.
FIG. 12 is a dependency graph for files outside the

boot file.
FIGS. 13a and 136 illustrate interconnections be

tween implementation and interface modules.
FIG. 14 illustrates two different versions of a client

module.
FIGS. 150 and 15b illustrate a client module to IM-

PORT different versions of the module that EXPORTs.
FIG. 16 illustrates a client module with different

types of objects.
FIG. 17 is an example of a. model.
FIG. 18 are examples of object type and projection

tables.

FIG. 19 is an example of a version map.
FIG. 20 is an illustration the user‘s screen for system

modeller in the Cedar system.
FIG. 21 is a flow diagram illustrating the steps the

user takes in employing the system modeller.
FIG. 22 is a modeller implementation flow diagram

illustrating “StartModel” analysis.
FIG. 23 is a modeller implementation flow diagram

illustrating computation analysis
FIG. 24 is a modeller implementation flow diagram

illustrating loader analysis.
FIG. 25 illustrates the Move Phase two of the release

utilitity.
FIG. 26 illustrates the Build Phase three of the release

utility.
FIG. 27 is an example of a version map after release.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

I. The Cedar Environment. DF Software and the
Release Process For The Cedar Environment

One kind of management system of versions of soft-
ware for a programmer in a distribution environment is
a version control system of modest goals utilizing DF
files. Each programmer lists files that are part of his
system in a description file which is called a DF file.

Each entry in a DP file consists of a file name. its
location. and the version desired. The programmer can
use tools to retrieve files listed in a DP file and to save

new versions of files in the locatiOn specified in the DF
file. Because recompiling the files in his system can
involve use of other systems. DF files can refer also to
other DF files. The programmer can verify that. for
each file in the DF file, the files it depends on are also
listed in the DF file.

DF files are input to a release process that verifies
that the cross-package references in DF files are valid.
The dependencies of each file on other files are checked
to make sure all film needed are also part of the release.
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The release process copies all files to a place where they
cannot be erroneously destroyed or modifed.

The information about file location and file versions

in DF files is used by programs running in the distrib-
uted programming environment. Each programmer has
a personal computer on which he develops software.
Each personal computer has its own disk and file sys-
tem. Machines are connected to other machines using
an Ethernet local area network. Files can be transferred

by explicit request from the file system on one machine
or computer to another machine or computer. Often
transfers occur between a personal machine and a file
storage means. e.g., a file server. which is a machine
dedicated to servicing file requests, i.e., storing and
permitting the retrieval of stored files.

The major research contributions of the DF system
are (l) a language that, for each package or system
described. difi'erentiates between (a) files that are part of
the package or system and (b) files needed from other
packages or systems. and (2) a release process that does
not place too high a burden on programmers and can
bring together packages being released. A release is
complete if and only if every object file needed to com-
pile every source file is among the files being released.
A release is consistent if, and only if. only one version of
each package is being released and every other package
depends on the version being released. The release pro-
cess is controlled by a person acting as a Release Mas-
ter, who Spends a few days per monthly release running
programs that verify that the release is consistent and
complete. Errors in UP files. such as references to non-
existent files or references to the wrong versions of files,
are detected by a program called the Release Tool.
After errors are detected. the Release Master contacts

the implementor and has him fix the appropriate DF
file.

Releases can be frequent since performing each re-
lease imposes a low cost on the Release Master and on
the programmers. The Release Master does not need to
knOw details about the packages being released, which
is important when the software of the system becomes
too large to be undersde by any one programmer. The
implementor of each package can continue to make
changes to his package until the release occurs, secure
in the knowledge that his package will be verified be-
fore the release completes. Many programmers make
such changes at the last minute before the release. The
release process supports a high degree of parallel activ-
ity by programmers engaged in software development
of a large dsitributed programing environment.

The BF system does not offer all that is needed to
automate software development. DF files have oniy
that information needed to control versions of files. No

support for automatic reoompilation of changed soft-
ware modules is provided in the DF system. The only
tool provided is a consistency checker that verifies that
an existing system does not need to be recompiled.

In order to better understand the software versiOn

control system of the instant invention. a general under-
standing of the programming environment in which it is
implemented is desirable. The programming environ-
ment is called Cedar. First. some general characteristics
of Cedar.

The Cedar system changes frequently, both to intro-
duce new function and also to fix bugs. Radical changes
are possible and may involve recompilation of the entire
system. System requirements are:
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l. The system must manage these frequent changes
and must give guarantees about the location and consis-
tency of each set of files.

2. Each consistent set of Cedar software is called at
"Cedar Release", which is a set of software modules
carefully packaged into a system that can be loaded and
run on the programmer’s personal machine. These re-
leases must be carefully stored in one place. docu-
mented and easily accessible.

3. Cedar releases should be accomplished, e.g., as
often as once a week. since frequent releases make avail-
able in a systematic way new features and bug fixes. The
number of users or programmers is small enough that
releases do not need to be bug-free since users are gen-
erally tolerant of bugs in new components or packages
in the system. When bugs do occur, it must be clear who
is responsible for the software in which the bug occurs.

4. The system must minimize inconvenience to imple-
mentors and cannot require much effort from the per-
son in charge of constructing the release. The scheme
must not require a separate person whose sole job is
control and maintenance of the system.

5. The system must be added on top of existing pro-
gram development facilities, since it is not possible to
change key properties of such a large distributed pro-
graming environment.

A limited understanding of the dependency relation-
ships in the Cedar software systems is necessary. i.e.. an
overview of Cedar modules and dependencies.

The view taken in the Cedar system is that the soft-
ware of a system is completely described by a single unit
of text. An appropriate analogy is the sort of card deck
that was used in the 19505 to boot. load and run a bare

computer. Note that everything is said explicitly in such
a system description. There is no operator intervention.
such as to supply compiler switches or loader options.
after the "go" button is initiated. In such a description
there is no issue of “compilation order". and “version
control" is handled by distributing copies of the deck
with a version number written on the top of each copy.

The text of such a system naturally will have integral
structure appropriate to the machine on which it runs as
well as to the software system itelf. The present system
is composed of modules that are stored as text in files
termed modules or objects. This representation pro-
vides modularity in a physical representation, i.e.. a file
can name other files instead of literally including their
text. In Cedar, these objects are Cedar modules or sys-
tem models. This representation is convenient for users
to manipulate. it allows sharing of identical objects or
modules. and facilitates the separate compilation of
objects or modules. But it is important to appreciate that
there is nothing essential in such a representation. In
principle. a system can always be expressed as a single
text unit.

Unless care is taken. however, the integrity of the
system will be lost. since the contents of the named files
may change. To prevent this, files are abstracted into
named objects, which are simply pieces of text. The file
names must be unique and objects must be immutable.
By this it is meant that each object has a unique name.
never used for any other object. The name is stored as
part of the object, so there is no doubt about whether a
particular collection of bits is the object with a given
name. A name is made unique by appending a unique
identifier to a human-sensible string.

The contents of an object or module never change
once the object is created. The object may be erased, in
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which case the contents are no longer accessible. If the
file system does not guarantee immutability, it can be
ensured by using a suitable checksum as the unique
identifier of the object.

These rules ensure that a name can be used instead of
the text of a module without any loss of integrity. in the
sense that either the entire text of a system will be cor-
rectly assembled, or the lack of some module will be
detected.

In Cedar, a Cedar module A depends on another
Cedar module B when a change to B may require a
change to A. If module A depends on module B. and B
changes. then a system that contains the changed ver-
sion of B and an unchanged version of A could be in-
consistent. Depending on the severity of the change to
B. the resulting system may not work at all, or may
work while being tested but fail after being distributed
to users. Cedar requires inter-module version checking
between A and B that is very similar to Pascal type-
checking for variables and procedures. As in Pascal.
Cedar's module version checking is designed to detect
inconsistency as soon as possible at compile time so that
the resulting system is more likely to run successfully
after development is completed.

Each Cedar module is represented as a source file
whose names. for example. ends in "Mesa". The Cedar
compiler produces an object file whose name, for exam-
ple. ends in “Bed”. Each object file can be uniquely-
identified by a 48-bit version stamp so no two object
files have the same version stamp. Cedar modules de-
pend on other modules by listing in each object file the
names and 48-bit version stamps of object files they
depend on. A collection of modules that depend on
each other are required to agree exactly in 48-bit ver-
sion stamps. For example, module A depends on version
35268AADB3E4 (hexadecimal) of module B, but B has
been changed and is now version 31253FAFBFE4. then
the system is inconsistent.

The version stamp of a compiled module is a function
of the source file and the version stamps of the object
files on which it depends on. If module A depends on
module B which in turn depends on module C, and C is
changed and compiled, then when H and A are com-
piled their version starnps will change because of the
change to C.

There are three kinds of software modules in Cedar.

They are called interface, implementation. and configu-
ration. There are two programs that produce object
files. They are the Cedar Complier and the Cedar
Binder.

Executing code for a Cedar system is contained in an
implementation module. Each implementation module
can contain procedures. global variables, and local vari-
ables that are scoped using Pascal scoping rules. To call
a procedure defined in another implementation module,
the caller or client module must IMPORT a interface

module that defines the procedure‘s type i.e. the type of
the procedure's argument and result values. This inter-
face module must be EXPORTED by the implementa-
tion module that defines it. This module is called the

implementor.
Both the client and implementor modules depend 0n

the interface module. This dependency is illustrated in
FIG. 3. If the interface is recompiled. both client and
implementor must be recompiled. The client and imple-
mentor modules do not depend on each other. so if
either is compiled the other does not need to be. Thus.
Cedar uses the interface-implementor module distinc-
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tion to provide type safety with minimal recompilationcost.

A compiler-produced object file depends on (1) the
source module that was compiled and (2) the object files
of any interfaces that this module IMPORTS or EX-
PORTs. This dependency is illustrated in FIG. 5. These
interface modules are compiled separately from the
implementations they described, and interface object
files contain explicit dependency information. In this
respect. Cedar differs from most other languages with
interface or header files.

Another level of dependency is introduced by config-
uration modules. which contain implementation mod—
ules or other configuratiOn modules. The programmer
describes a set of modules to be packaged together as a
system by writing a description of those modules and
the interconnections among them in a language called
C/Mesa. A C/Mesa description is called a configura-
tion module. The source file for a c0nfiguration is input
to the Cedar Binder which then produces an object file
that contains all the implementation module object files.
The Binder ensures the object file is composed of a
logically-related set of modules whose IMPORTS and
EXPORTs all agree in version. Large system of mod-
ules are often made from a set of configurations called
sub~configurations A configuration object file depends
on [1) its source file and (2) the sub-configurations and
implementation object files that are used to bind the
configuration. These object files can be run by loading
them with the Cedar Loader which will resolve any
IMPORTS not bound by the Binder.

In general. a Cedar system has a dependency graph
like that illustrated in FIG. 6.

Each Cedar programmer has its own personal com-
puter. which is connected to other computers by an
Ethernet local area network (LAN). Most files compris-
ing a system are stored on central file servers dedicated
to serving file requests and are copied from the central
file serverfs) to the personal machine by an explicit
command, which is similar to the Arpanet “ftp” com-
mand. FIG. 1' illustrates a typical environment. In such
an environment. a plurality of workstations comprising
a personal computer or machine 10 with keyboard.
display and local memory are connected to an Ethernet
LAN via cable 11 Also connected to cable 12 is file

server 14 comprising a server computer 16 and storage
disk units 18 capable of storing large amounts of files
under designated path or directory names. Cable 12 is
also connected to a gateway computer 20 which pro-
vides access and communication to other LANs.

The user of a machine 1|) must first install a boot file

that is given control after the machine is powered on.
Cedar users install the Cedar boot file that contains the

operating system and possibly pre-loaded programs.
Since the Binder and Loader ensure that the version

stamps of Cedar modules all agree. all Cedar modules
could be bound together and distributed to all users for
use as the Cedar boot file. However, users who wanted

to make changes would have to re~bind and load the
system every time they changed a module to test their
changes. The resulting boot file would be very large
and difficult to transfer and store on the disks of the

perSOnal machines. To avoid these problems. Cedar
users install this boot file on their machine. which con-

tains a basic system to load and execute Cedar pro-
grams. a file system. and a preloaded editor and then
retrieve copies of programs they want to run that are
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not already in the boot file. These programs are thus
loaded as they are needed.

Changes to these programs are possible as long as the
versions of interfaces pre-loaded in the Cedar boot file
agree with the versions lMPORTed by the program
being loaded. Since the boot file EXPORTs are more
than 100 interfaces, the programmer can quickly be-
come coufused by version error messages for each of
the interfaces he uses. This problem could be solved
simply by disallowing changes to the Cedar interfaces
except, say, once annually. However, it is desirable to
be able to adjust interfaces frequently to reflect new
features and refinements as they are understood.

Control of software in module interconnection lan-

guages is analogous to control over types in conven-
tional programming languages, such as Pascal. Still
opposed by some, strong typechecking in a language
can be viewed as a conservative approach to program-
ming, where extra rules, in the form of type equiva-
lence, are imposed on the program. Proponents claim
these rules lead to the discovery of many programming
errors while the program is being compiled, rather than
afier it has started execution.

Like strong type-checking of variables, type-check-
ing in a language like Cedar with the explicit notion of
an interface module can be performed at the module
level so that incompatibilities between modules can be
resolved when they are being collected together rather
than when they are executing. As in the strong type-
checking case, proponents claim this promotes the dis-
covery of errors sooner in the development of pro-
grams.

Incompatible versions of modules, like incompatible
types in a programming languages. may be corrected by
the programmers involved. Many times, complex and
subtle interdependencies exist between modules, espe-
cially when more than a few programmers are involved
and the lines of communication between them are

frayed or partially broken. In the Cedar Xerox environ-
ment, where each module is a separate file and develop-
ment occurs on different personal computers or ma-
chines, module-level type-checking is more important
than type-checking of variables in conventional pro-
gramming languages. This is because maintaining inter-
module type consistency is by definition spread over
different files, possibly on different computers by more
than one programmer/user, while maintaining type-
consistency of variables is usually localized in one file
by one programmeduser on one computer.

Users in Cedar are required to group logically-related
files, such as the source and object files for a program
they are developing, into a package. Each software
package is described by a DP file that is a simple text
file with little inherent structure that is editable by the

programmer/user. The BF file lists all the files grouped
together by the implementor as a package. For each file,
the DF file gives a pathname or location where the file
can be found and information about which version is
needed.

In Cedar, files are stored on remote file servers with
names like “Ivy” or "Indigo" and have path or direc-
tory names, e.g., “Levin>BTrees>“. A file like
“BTreeDefs.Mesa“ would be referenced as “[Ivy] < Le-
vin>BTrees>BTreeDefs.Mesa“. In addition, when
created, each file is assigned a creation time. Therefore
“BTreeDefs.Mesa Of May 13. 1982 2:30 P " on
“[lvyl< Levin) BTrees) “ defines a particular version.
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A DF file is a list of such files. For syntactic group-

ing, we allow the user to list files grouped under com-
mon directories. The implementor of a B-tree package,
for example. might write in his DF file, called
B’TreesDF;

 

Directory [Ivy]<1.evin) BTrees>
BTreeDefs.Mesa 2-0ct-I I
 

15:43:09 

to refer to the file [Ivy] < Levin > B'I'rees > BTreeDefs.-
Mesa created at Z-OCt-Sl 15:43:09.

If, for example, the BTree package included an object
file for BTreeDefsMesa, and an implementatiori of a
B-tree package, it could be described in B’Trees.DF as:

 

Directory [Ivy] < Levin ) flTrecs} 
BTmDel's.Mesa 10CI-3l [5:43.09
BTmeDefsfled l-Ocl-S I [Gm 28
Frmlmpl.Mm loci-31 “13:54
BTtteImpl.“ LOCPSl lerll 

Two different DF files could refer to different ver-

sions of the same file by using references to files with
different create dates.

There are cases where the programmer wants the
newest version of a file. If the notation, “>“, appears in
place of a create time notation. the DF file refers to the
newest version of a file on the directory listed in the DF
file. For example,
 

Directory [ivy] < Pilot > Defs >

SpaceBed >

 

 

refers to the newest version of Space.Bcd on the direc-
tory [Ivy]<Pilot>Defs>. This is used mostly when
the file is maintained by someone other than the pro-
grammer and is content to accept the latest version of
the file.

Users are encouraged to think of the local disk On
their personal computer as a cache of files whose "true"
locations are the remote servers. A program called
BringOver assures the versions listed in a DP file are on
the local computer disk.

Since DF files are editable, the programmer who
edits, for example. BTreeDefs.Mesa could. when ready
to place a new copy on the serverva, store it manually
and edite the DF file to insert the new create time for
the new version.

For large numbers of files, this would always be error
prone, so a StoreBaclt program provides automatic
backup of changed versiorts (l) by storing files that are
listed in the DF file but whose create date differs from

the one listed in the DF on the assumption that the file
has been edited, and (2) by updating the DF file to list
the new create dates. The BF file is to be saved on the
file server, so we allow for a DF self-reference that
indicates where the DF file is stored. For example, in
BTrees.DF:

 

Directory [Ivy] 4 Levin > BTrees) 
BTrees.DF 10-Oct-3 I 9:35:0‘}
BTreeDefs.Mesa l-Oct-El 15:43:09
BTreeDel's.Bed 2-Oct~3| 16:00:28
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«continued

Direcwrry [lvyl < Levin) BTrees )-
ZOc‘t—El
2-0c1-I1

 

[5:28:54-
l6:«:3lB’TreeImpl.Mesa

B‘TreelmplBed 

the first file listed is a self-reference. The StoreBack

program arranges that the new version of BTreesDF
will have the current time as its create date.

The Cedar system itself is a set of implementaton lo
modules that export common system interfaces to the
file system, memory allocator. and graphics packages.
Assume the B—tree package uses an interface from the
allocator. The user makes this dependency explicit in
their DF file. The BTree package will then IMPORT [5
the interface "Space". which is stored in object form in
the file "Space.Bcd”.

The BTree DF package will reflect this dependency
by "importing" Space.Bcd from a DP file “Pilotlnter—
facesDF" that lists all such interfaces. BTrees.DF will 20
have an entry:
 

imports [lndigol-(Cedarb‘l'op‘; 2-Oet~81 5:43:09PilotlnrerfaceaDF 0f

UdagISpacefled] 25 

The "Imports" in a DF file is analogous to the IM-
PORTS in at Cedar program. As in Cedar modules.
BTreesDF depends on PilotDF. Should "Space.Bcd"
and its containing DF file “PilotDF” change. then
BTreesJJF may have to also change.

The programmer/user may want to list special pro-
grams. such as a cOmpiler-compiler or other preproces-
sors. that are needed to make changes to his system.
This is accomplished using the same technique of IM-
PORng the program's DF file.

For the individual programmer. there are two direct
benefits from making dependency information explicit
in his DF file. First. the BringOver program will ensure
that the correct version of any imported DF files are on
the local disk, so programmers can move from one
personal computer to another and guarantee they will
have the correct version of any interfaces they refer-
ence. Second. listing dependency informatiOn in the DF
file puts in one place information that is otherwise scat-
tered across modules in the system.

How does the programmer/user know which files to
list in his DF file? For large systems. under constant
development. the list of files is IOng and changes fre-
quently. The programmer can run a program VerifyDF
that analyzes the files listed in the DF file and warns
about files that are omitted. VerifyDF analyzes the
dependency graph. an example of which is illustrated in
FIG. 6. and analyzes the versions of (l) the source file
that was compiled to produce the object file and (2) all
object files that this object file depends on. VerifyDF
analyzes the modules listed in the DF file and constructs
a dependency graph. VerifyDF stops its analysis when
it reaches a module defined in another package that is
referenced by IMPORTs in the DF. Any modules de-
fined in other packages are checked for versionstamp
equality. but no modules that they depend upon are
analyzed, and their sources do not need to be listed in
the package‘s DF file.

VerifyDF understands the file format of object files
and uses the format to discover the dependency graph,
but otherwise it is quite general. For example. it does
not differentiate between interface and implementation
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files. VerifyDF could be modified to understand object
files produced by other language compilers as long as
they record all dependencies in the object file with a
unique version stamp. For each new such language,
VerifyDF needs (1} a procedure that returns the object
version stamp. source file name and source create time,
and (2) a procedure that returns a list of object file
names and object version stamps that a particular object
file depends on.

If the programmer lists all such package and files he
depends on, then some other programmer on another
machine will be able to retrieve. using BringOver com-
mand, all the files he needs to make a change to the
program and then run StoreBack to store new versions
and produce a new DF file.

Using these tools. that is BringOver, StoreBack. Veri-
fyDF, the programmer/user can be Sure he has a DF
file that lists all the files that are needed to compile the
package (completeness) and that the object files were
produced from the source files listed in the DF file, and
there are no version stamp discrepancies (consistency).
The programmer can be sure the files are stored on
central file servers and can turn responsibility for a
package over to another programmer by simply giving
the name of the DF file.

DF files can be used to describe releases of software.

Releases are made by following a set of Release Proce-
dures. which are essentially managerial functions by a
Release Master and requirements placed on implemen-
tors/users. A crucial element of these Release Proce-

dures is a program called the Release Tool, which is
used to verify that the release is consistent and com-
plete. and is used to move the files being released to a
common directory on a designated file server.

If the packages a programmer depends on change
very seldom, then use of the tools outlined above is
sufficient to manage versions of software However.
packages that almost everyone depends on may be
changed. A release must consist of packages that. for
example. all use the same versions of interfaces supplied
by others. If version mismatches are present. modules
that IMPORT and EXPORT different versions of the

same interface will not be connected properly by the
loader. In addition to the need for consistency and com-
pleteness across an entire release. the component files of
a particular release must be carefully saved somewhere
where they are readily available and will not be
changed or deleted by mistake, until an entire release is
no longer needed.

The administration of Cedar releases are organized
aroand an implementor/user who is appointed Release
Master. In addition to running the programs that pro-
duce a release, he is expected to have a general under-
standing of the system. to make decisions about when to
try to make a release. and to compose a message de«
scribing the major changes to components of the re-
lease.

Once he decides to begin the release process after
conferring with other implementors and users. the Re-
lease Master sends a “call for submissions" message
through an electrOnic mail system of the distributed
system to a distribution list of programmers/users who
have been or are planning to contribute packages to the
release. Over a period of a few days. implementors/us—
ers are expected to wait until new version of any pack-
ages they depend on are announced. produce a new
version on some file server and directory of their choos-
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ing. and then announce the availability of their own
packages.

One message is sent per package, containing. for
example. “New Version of Pkg can be found on [Ivy-
]<Schmidt>Pkg.DF. that fixes the bug . . . ". Pro-
grammers who depend on PngF are expected to edit
their DF files by changing them to refer to the new
version. Since ofien it is the newest version. clients of

PngF usually replace an explicit date by the notation,
“>“. They might refer to PlthF by inserting:
 

Imports [Ivy] <Sch midt‘) Pkg. DF 0f)
Using[File1.Bed. File1.BedI 

in their DF file.

If the package is not changed. a message to that effect
will be sent. These submissions do not appear in look
step since changes by one implementor may affect pack-
ages that are "above" them in the dependency graph.

This pre-release integration period is a parallel explo-
ration of the dependency graph of Cedar soflware by its
implementor/users. If an implementor is unsure
whether he will have to make changes as a result of
IOwer level bug fixes. for instance, he is expected to
contact the implementor of the lower package and co-
ordinate with him. Circular DF-dependencies may oc-
cur, where two or more packages use interfaces ex-
ported by each ether. In circular cases. the DF files in
the cycle have to be announced at the same time or one
of the DF files has to be split into two parts: a bottom
half that the other DF file depends on and a top half that
depends on the other DF file.

The Release Master simply monitors this integration
process and when the final packages are ready, begins
the release. FIG. 1 illustrates the steps being taken to
accomplish a release.

Once all packages that will be submitted to the re-
lease are ready. the Release Master prepares a top-level
DF file that lists all the DF files that are part of the
release. Packages that are not changed relative to a
previous release are also listed in this DF file. DF files
are described using a coustruct similar to "Imports"
discussed earlier. The contents of each DF file are refer-
enced by an Include statement, e.g.,

Include [Ivy] (Levin > BTreeu)BTreeaDF 0f)

refers to the newest version of the BTree package
stored on Levin‘s working directory <Levin>BTr-
ees). lnclude is treated as macro-substitution, where
the entire contents of BTrees.DF are analyzed by the
Release Tool as if they were listed directly in the top-
level DF.

The Release Master uses the tOp-level DF as input to
phase one of the Release Tool. Phase one reads all the
included DF files of the release and performs a system-
wide consistency check. A warning message is given if
there are files that are part of the release with the same
name and different creation times (e.g., BTreeDefs.-
Mesa of 20-May-82 15:58:23 and also another versiou of 60
17-Apr-82 12:68:33}. Such conflicts may indicate that
two programmers are using different versions of the
same interface in a way that would not otherwise be
detected until both programs were loaded on the same
computer. These warnings may be ignored in cases
where the Release Master is convinced that no harm

will come from the mismatch. For example, there may
be more than om: version of “Queue. Mesa" in a release
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since more than one package has a queue implementa-
tion. but each version is carefully separated and the
versions do not conflict.

Phase one also checks for common blunders, such as
a DP file that does not refer to newest versions of BF

files it depends on. or a [ZIP file that refers to system or
program files that do not exist where the DF file indi-
cates they can be found. The Release Master makes a
list, package by package, of such blunders and calls
each user and notifies them they must fix their DF files.

Phase one is usually repeated once or twice until all
such problems are fixed and any other warnings are
judged benign. Phase two guarantees system wide com-
pleteness of a release by running VerifyDF will warn of
files that should have been listed in the DF file but were

omitted. lmplementor/users are expected to run Veri-
fyDF themselves, but during every release. ot is easy
for at least one to forget. Any omissions must be fitted
by the implementor/user.

Ones phases one and two are completed successfully,
the Release Master is fairly certain there are no out-
standing version of system composition problems. and
he can proceed to phase three.

To have control over the deletion of old releases,

phase three moves all files that are part of a release to a
directory that is mutable only by the Release Master.
Moving files that are part of the release also helps users
by centralizing the files in One phase. The BF files
produced by users, however, refer to the files on their
working directories. We therefore require that every
file mentioned in the DF files that are being released
have an additional phrase “ReleaseAsreleasePlace”.
The BTreesDF examiple would look like:
 

 Directory [ivy] < Levin ) BTrees >
Release As Indi (Cedar) To
BTIGESJDF 10001-3 l 9:35:09
ReleaseAs ndi 0 (Cedar BTree-s >
B'TreeDefsMc-sl l-OCt-lll 5:43:09
B'TreeDel'sBed Z-OCt-El $51328
BTreeImpi.Mesa l-Oct-El 5:28:54
B‘TreelmplBed Z-Oct-Sl usual 

which indicates a working directory as before and a
place to put the stable. released versions. By conven-
tion. all such files must be released onto subdirectories
of [Indigo]<Cedar>. To make searching for released
DF files on the (Cedar) directory easier. each DF
file‘s self-reference must release the DF file to the spe-
cial subdirectory <Cedar) Top). When the third
phase is run. each file is copied to the release directory,
e.g., B-tree files are copied to (Cedar) BTrees) and
new DF files are written that describe these files in their

release positions. e.g.,
 

Directory [lndigo]<Cedar>Tup)
Came From [Ivy] <_ Levin > BTree-s‘}
BTrees.DF IWillow-3 I 10:32:45
Directory [Indigo] (Cedar) B'I'rees )
Came From [Ivy] < Levin ) BTrees)
BTreeDel'lefil l-Oct-Sl 15:43:89
BTreeDefs.Bed LOCI-81 16:00:28
B’I'neelmpl. Mesa mat—s: Iszzses
B'rrcEImpl. Bed LOCI-SI Ihr4413'l 

The additional phrase "CameFrorn" is inserted as a
comment saying where the file(s) were copied from.
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The other major function of phase three is to convert
references using the "newest version" notation. ">", to
be explicit dates, since “newest version” will change for
every release. Phase three arranges that a reference like:

 

Importsflvy] 4: Levin) B'Trees) BTreea DF 0f}
Usuth BtreeDeRBed] 

becomes

 

imports [Indigo] < Cedar)me HtmDF or date
Came from “viii-(Levin) Wren)

Using [B'I‘reeDefs.Bed] 

where date is approximately the time that phase three isrun.

The notion of a "Cedar Release" has many advan-

tages. In addition to a strong guarantee that the soft-
ware will work as documented. it has an important
psychological benefit to users as a firewall against disas-
ters, since programmers are free to make major changes
that may not work at all, and are secure in the knowl-
edge that last release is still available to fall back upon.
Since users can convert back and forth between re-
leases, users have more control over which versions
they use. There is nothing wrong with more than one
such release being in use at one time by different pro-
grammer/users. since each programmer has his own
personal computer. Users are also allowed to convert to
new releases at their own pace.

This approach to performing releases fulfills initial
requirements:

(I). All files in the release have been moved to the
release directory. These files are mutually consistent
versions ofsoftware. All DF files refer to files known to
be on the release directory.

(2). As described earlier, we cannot make a configu-
ration module that contains all the modules in a release.

Cedar releases are composed of (a) a boot file and (b)
programs that are mutually consistent and can be run on
a personal machine with the boot file being released.
Phase two runs Verifbe on all the components to
guarantee that the version of source and object files
listed in the DF file are the ones actually used to build
the component and guarantees that all files needed to
build the component are listed in the DF file. so no files
that conflict in version can be omitted.

(3). The release process is automatic enough that
frequent releases are possible. Bugs in frequent releases
are easily reported since the concept of ownership is
very strongly enforced by our approach. The program-
mer who provides new versions of software is the recip-
ient of bug reports of his software.

(4). The Release Master is required to (a) decide
when to make a release, (b) send a call-for-submissions
message, (c) make a to-level DF file and run the Release
Tool, and (d) send a message announcing the release‘s
completion. Because releases are expected, over time, to
include more and more system programs. it is important
that the Release Master not need to compile packages
other than any packages he may be contributing to the
release. Indeed, no single person has ever known how
to compile the entire system by himself.

Since the implementors use DF files for maintaining
their own software as well as for submitting compo-
nents to the release, there is little additional burden on
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the implementors when doing a release. If the burden
were too high, the implementors would delay releases
and overall progress would be slowed as the feedback
from users to implementors suffered.

(S). A general database system to describe the depen-
dency hierarchy of packages when we are producing
systems is not needed. A message system is used. rather
than a database of information that the programmers
can query, to notify implementors that packages they
may depend on are ready.

Many aspects of bootstrapping Cedar are simplified
when interfaces to the lowest and most heavily used
parts of the boot file are not changed. Some major re-
leases use the same versions of interfaces to the system
object allocator and fundamental string manipulation
primitives. Most major releases use the same versions of
interfaces to the underlying Pilot system such as the file
system and process machinery. The implementations of
these stable parts of the system may be changed in ways
that do not require interface changes.

In the Cedar environment, two previous releases
have included changes to the interfaces of the operating
system, called Pilot and discussed in the Article of Re-
dell et al. “Pilot: An Operating System for a Personal
Computer", Proceedings of the Seventh Symposium on
Operating System Principles. December 1979, and
thereby forced changes in the style of integration for
those releases. Since the released loader cannot lead

modules that refer to the new versions of operating
system interfaces. the software of Cedar environment
that is preloaded in the boot file must all be recompiled
before any changes can be tested. Highest priority is
given to producing a boot file in which these changes
can be tested.

If the DF files describing the Cedar system were
layered in hierarchical order. with the operating system
at the bottom, this boot file could be built by producing
new versions of the software in each DF file in DF-

dependency order. FIG. 9 shows the dependency graph
for DF files in the boot file. where an arrow from one

DF file, e.g., RiggingDF. to another. e.g., Cedar-
RealsDF. indicates RiggingDF IMPORTS some
file(s] from CedarReals.DF. in this dependency graph.
"tail" DF files depend on “head” DF files. Double
headed arrows indicate mutual dependency. Basic
HeadsDF means that this DF file includes other files.
BasicHeadsDorado.DF, BasicHeadsD0.DF and Basi-
cHeadCommon. DF, Communication.DF includes
CommunicationPublic.DF. CommunicatiOn-
Friends. DF and RSZJZInterfacesDF. Com-

patabilityl’ackageDF‘ includes MesaBAsicsDF.
Note that RiggingDF also depends on Com-

patibilityPackageDF, but the dependency by Cedar-
RealsDF on CompatibilityPacltageDF ensures a new
version of Rigging.DF will be made after both lower
DF files. The Pilotlnterfaces.DF file is at the bottom

and must be changed before any other DF files.
This dependency graph is not acrylic, however. The

most extreme cycle is in the box with six DF files in it,
which is expanded in FIG. 10. Each DF file is in a cycle
with at least one other DF file. so each DF file depends
0n the other. and possibly indirectly, and no DF file can
be announced “first”. There is an ordering in which
these component can be built: If the interfaces listed in
each of the DF files are compiled and DF files contain-
ing those interfaces are stored on (PreCedar), each
programmer can then compile the implementatiOn mod-
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ules in this component and then store the remaining files
on < PreCedar).

An example for the dependency graph for interfaces
is shown in FIG. 11. This graph indicates that the inter-
faces of CIFS. VersionMap, Runtime, WorldVM. List-
sAndAtoms, and 10 can be cornpiled in that order. This
interface dependency graph had cycles in it in the
Cedar release that have since been eliminated. Appen-
dix A contains eramaples of some of these DF files
before and after the release.

Reoompilation of all the interfaces in the boot lile
requires that at least nine program/users partici-
pate. Since the boot file cannot be produced until all
interfaces and implementation modules in the DF files
of FIG. 9 are compiled. interface changes are encour-
aged to be made as soon as possible after a successful
release and only once per release. Once the users have
made their interface changes and a boot file using the
new interfaces is built, the normal period of testing can
occur and new changes to implementation modules can
be made relatively painlessly.

Components being released that are outside the boot
file have a much simpler dependency structure, shown
in FIG. 12. The majority of these components are appli-
cation programs that use Cedar system facilities already
loaded in the boot file.

The information in the DF files of a release help to
permit study and planning for the development of the
Cedar system. The ability to scan. or query, the inter-
connection information gives a complete view of the
use of software by other programs in the system. For
example. One can mechanically scan the DF files of an
entire release and build a dependency graph describing
the interfaces used in Cedar and which implementors

depend on these interfaces. Since VerifyDF ensures all
interfaces needed by a component are described in its
DF file. an accurate database of information can be
assured. This information can be used to evaluate the

magnitude of changes and anticipate which components
can be affected. One can also determine which inter-

faces are no longer used, and plan to eliminate the im~
plementation of those interfaces. which happens often
in a large programming environment while it is under
active development.

The Cedar release/BF approach assumes only one
person is changing a DF fiie at a time. How would we
cope with more than one modifier of a package? If the
package is easily divided. as with the Cedar system
window manager and editor. two or more DF files can
be included by an "umbrella" DF file that is released.
One of the implementors must “own” the umbrella DF
file and must make sure that the versions included are

consistent by running Verifbe check on the umbrella
file. If the package is not easin divided. then either a
check in/check out facility must be used on the DF and
its comet-its to guarantee only One person is making
changes at a time. or a merge facility would be needed
to incorporate mutually exclusive changes. Should
more than one programmer change the same module.
this merge facility would have to ask for advice on
which of the new versions, if any. to include on the DF
file. 2. Module Interconnection Language—SML

SML is a polymorphic and applicative language that
is used to describe packages of Cedar modules. The
programmer/user writes SML programs. which are
called system models. to specify the modules in the
system the user is responsible for and the interconnec—
tions between them. These system models are analyzed
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by a system modeller of the instant invention that auto-
mates the compile-edit—debug cycle by tracking changes
to modules and performs the compilation and loading of
systems.

The specification of module interconnection facilities
of the Cedar system requires use of polymorphism,
where the specification can compute a value that is later
used as the type for another value. This kind of poly-
morphism is explained in detail later. The desire to have
a crisp specification of the language and its use of poly-
morphism led to base SML on the Cedar Kernal lan-
guage, which is used to describe the semantics of Cedar
developed programs.

The semantics of the SML language have to be unam-
biguOus so every syntactically-valid system model has
clear meaning. The Cedar Kernel language has a small
set of principles and is easily implemented. The clear
semantics of Kermel language descriptions give a cor:-
cise specification of the SML language and give good
support to the needs of the module interconnection
specification. SML could have been designed without
reference to the Kernal language. However. without
the Kernel language as a bone. there would be less confi»
dence that all language forms had clear meaning.

SML is an applicative language, since it has no assign-
ment statement. Names or identifiers in BM]. are given
values once. when the names are declared and the value
of a name may not be changed later unless the name is
declared in some inner scope. SML is easier to imple-
ment because it is applicative and function invocatiOn
has no side effects.

The fundamental concepts of SML are now pres—
ented, followed by a description of SML‘s treatment of
files. The Cedar Kernal language, which serves as a
basis for SML. is described, followed by a section on the
syntax and semantics of SML expressions.

The Cedar System is based on the Mesa language see
Mitchell et al., supra and Latter et at. supra. The system
contains features for automatic storage management
(garbage collection} and allows binding of types at run-
time, i.e. pointers to objects whose types are known
only at runtime. The system derives from the Mesa
language a rich module interconnection structure that
provides information hiding and strong type checking
at the module level. rather than at the procedure level.
In order to better understand SML. it is important to
know about the existing module interconnection facili-
ties used in the Cedar system.

As previously indicated in part, a Cedar system con-
sists of a set of modules. each of which is stored in a

separate file. A module can be one of two types: an
implementation (PROGRAM) module. or an interface
(DEFINITIONS) module. Interface modules contain
constants found in other Pascal-like languages: proce-
dure declarations. type declarations. and other vari-
ables. A module that wishes to call a procedure de»
clared in another module must do so by lMPORTing an
interface module that declares this procedure. This
interface module must be EXPORTED by a PRO
GRAM module. For example. a procedure "USortList"
declared in a module "Sonlmpl" would also be de-
clared in an interface Sort. and Sortlmpl would EX-
PORT Sort. A PROGRAM that wants to call the pro-
cedure USortList does so by IMPORTing Sort. We call
the importer of Sort the “client” module and say Sor-
tlrnpl (the exporter) “implements” Sort. Of course.
SortImpl may IMPORT interfaces to use that are de-
fined elsewhere.
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These interconnections are shown in FIG. [3, which

shows filenames for each module in the upper left cor-
ner. The interface Sort defines an object composed of a
pair of x,y coordinates. The EXPORTer, Sortlmpl-
.Mesa, declares a procedure that takes a list of these
objects and sorts them, eliminating duplicates. LIST in
the Cedar system is a built-in type with a structure
similar to a Lisp list. Clientlmpl.Mesa defines a proce-
dure that calls USortList to sort a list of such objects.
Details about “CompareProc” have been omitted for
simplicity.

Most collections of modules in the system use the
same version of interfaces. e.g., there is usually only one
version of the interface for the BTree package in a
given system. Situations arise when more than one ver-
sion is used in a system. For example, there could be
two versions of an interface to a list manipulation sys-
tem, each one manipulating a different type of object.

FIG. 14 shows, on the left. the module from FIG. 13

and, on the right, another similar module that defines an
"Object" to be a string instead ofcoordinates. A module
that refers to the Sort interface would have to be com-

piled with one of the two versions of the Sort interface.
since the compiler checks types of the objects being
assembled for the sort. This is referred to as interface

type parameterization since the types of items from the
interface used by a client (Clientlmpl.Mesa) are deter-
mined by the specific version of the interface (Sort-
Coord.Mesa or SortNames. Mesa).

A different kind of parameterization may occur when
two different implementatioas for the same interface are
used. For example, a package that uses the left version
of the Sort interface in FIG. 14 above might use two
different versions of the module that EXPORTs Sort.
one of which uses the QuickSort algorithm and the
other uses the HeapSort algorithm to perform the sort.
Such a package includes both implementors of Son and
must specify which sort routine the clients (IMPORT-
ers) use when they call Sort.USortList|]. In the Cedar
system, it is possible for a client module to IMPORT
both versions. as shown in FIG. 15.

In FIG. 15. SortQuickImpl and SortHeapImpl both
EXPORT different procedures for the Sort interface.
One procedure, SortQuickIrnpl, uses QuickSort to sort
the list. The other uses HeapSort to sort the list. The
importer, Clientlmpl, IMPORTS each version under a
different name. SortQuickInst and SortI-leapInst are
called interface records. since they are represented as
records comaining pointers to procedures. The client
procedure “TestThem” calls each in turn by specifying
the name of the interface and the name of the proce-
dure, e.g.. SortQuicltInst.USortList[].

How are the two interface records that are EX-

PORTED by SortQuickImpl and SortHeaplmpl con-
nected to the two interface records (SortQuicldnst and
SortHeapIInst) required by ClientImpl? A program
called the Mesa Binder makes these connections by
reading a specification written in a subset of Mesa called
C/Mesa. C/Mesa source files. called CONFIGURA-

TIONS, name the implementation modules involved
and specify the interconnections. Below is shown the
configuration that makes this ennnection:
 

ClientConfig: CONFIGURATION - {
SQ]: Son 4- SortQuicklmplD;
SHI: Sort -—- SortHeaplmplfl:
ClientlmpflSortQuicitInst: SQl.
SortHeaplnst: 5H1]:

5
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28
continued 

}. 

Two variables are declared (SQl and SHI) that corre-
spond to the interface records EXPORTED by the two
modules. The client module is named, followed by the
two interfaces given in keywork parameter notation.

This is called interface record parameterization, since
the behavior of the client module is a function of which

interfaces SortQuickInst and Sortl-Ieaplnst refer to
when they are called in Clientlmpl.

C/Mesa, as currently defined, cannot express inter-
face type parameterization at all. The semantics of some
C/Mesa specifications are ambiguous. Because of this.
the use of SML was choosen to replace the use of
0"Mesa.

SML programs give the programmer/user the ability
to express both kinds of parameterization. It is possible
to think of SML as an extension of C/Mesa, although
their underlying principles are quite different. Before
explaining SML, reference is first made to an example
of modules that use both interface type and interface
record parameterization and show how this can be eit-
pressed in SML.

The essential features of SML are illustrated by the
following simple model and are discussed later on rela-
tive to SML‘s treatment of files. A description of the
SML language is also given later.

Consider two versiOns of the Sort interface from
FIG. 14 and two EXPORTERs of Sort from FIG. 15.

Since the EXPORTERs do not depend on the kind of
object (coordinates or names), the EXPORTERs can
each be constructed with a different type of object.
Assume the client module wants to call USortList with

all four combinations of object type and sort algorithm:
(coordinates+quickson. coordinates+heapsom na—
mes +quicltsort, names+heapsort). FIG. 16 shOws a
version of Clientlmpl module that uses all four combi-
nations of object type.

In SML, a model to express this is shown in Table II
below.

TABLE [I 

C!ientModel-—[

interface tyE
SortCOOrd: lNTER FACE. - @SortCoordMual]:
SortNamea: INTERFACE~©SortNamaMesaEI1
interface records

SQCI: SortCoord~ @SortQuickImpl.Mesa[SortCoord];
SQNI: SortNamesm @SonQuicklrnpl.Mesa[SortNames];
SHCI: SortCoord~@Sortfieaplmpl.Mesa[SortCoord];
give all to client
Ciient: CONTROL~®ClientlmpLMesa
[SonCmrd.SonNamSQCl.
SONLSHCISHNI]
l

 

 

SML allows names to given types and bound to val-
ues. After the header, two names “SortCoord” and
“SortNames” are given values that stand for the two
versions of the Sort interface. Each has the same type,
since both are versions of the Sort interface. Their type
is “INTERFACE Sort", where “INTERFACE” is a
reserved word in SML and "Sort" is the interface name.
The next four lines bind four names to interface records

that correspond to the different sort implementations.
"SQCI" is a name of type “SortCoord" and has as value
the interface record with a procedure that uses Quick—

PMC Exhibit 2121

Apple v. PMC
|PR2016-01520

Page 40

 



PMC Exhibit 2121 
Apple v. PMC 

IPR2016-01520 
Page 41 

 
4,558,413

29
Sort on objects with coordinates. Similarly, “SQNI”
has as value an interface record with a procedure for
QuickSort on objects with strings, etc. Note that each
of the four implementations is parameterized by the
correct interface, indicating which type to use when the S
module is compiled.

The last line specifies a name “Client” of reserved
type “CONTROL” and gives it as value the source file
for Clientlmpl. parameterized by all the previously
defined names. The first two. SortCoord and Sort- l0
Names, are vain to use for the names “SortCoord:
INTERFACE Sort“ and "SortNarnes: INTERFACE
Sort" in the DIRECTORY clause of Clientlntpl. The
last four, in order, give interface records for each of the
four imports.

There are a number of nearly-equal names in the
example. If all related names were uniform. e.g., Sort-
QuickCoordImpl instead of SQHI and SortQuicltCoor-
dInst, and SortHeapCoordImpl instead of SQI-II and
SortHeapCoordlnst. then the parameter lists in the ex- 29
ample could be omitted.

The kinds of values in SML follow naturally from the
objects being represented: the value of "@ SortCoord-
.Mesafl" is the object file for the interface module Sort-
Coot'd.Mesa when it is compiled. The value of "@ 25
SortQuickImpl.Mesa|]" is an interface record produced
when the object file for SortQuicklmpl.Mesa is loaded.
Note there are two versions of the object file for Sort-
Quicklmpl.Mesa: one has been compiled with Sort-
Coord as the interface it EXPORTS, and the other has 30
been compiled with SortNames as the interface it EX-
PORTS.

It is helpful to differentiate the two types of parame-
terizatt'on by the difference in uses: Interface type pa-
rameterization is applied when a module is compiled
and the types of the various objects and procedures are
checked for equality. Interface record parameterization
is applied when a module is loaded and the imports of
other modules are resolved. The interface records by
which a module is parameterized are used to satisfy
these inter-module references.

The SML language is built around four concepts:
1. Application: The basic method of computing.
2. Values: Everything is a value, including types

(polymorphism) and functions. 45
3. Binding: Correspondence between names and val-

ues is made by binding.
4. Groups: Objects can be grouped together.

IS

35

4O

ApplicatiOn 50

The basic method of computation in the SML lan-
guage is by applying a function to argument values. A
function is a mapping from argument values to result
values.

A functiori is implemented either by a primitive sup-
plied by the language (whose inner workings are not
open to inapection) or by a closure. which is the value of
a Pt-eitpression whose body. in turn, consists of applica-

tions of functions to arguments. In SML, h-expressions 60have the form

h[free-variable—list]—-{returns-Iist}lebody-exptes—
SiOtI}

For example. a h-expression could look like 65

Mr: STRING. y: STRING]—-[a: sramolmnxpl

30

where "x" and “y” are the free variables in the A—ex-
pression, “a” is the name of the value returned when
this )t-expression is invoked, and exp is any SML expres-
sion that computes a value for name "a". “IN” is like "."
in standard l—I‘lfltfltlon. It is helpful to think of a closure
as a program fragment that includes all values necessary
for execution except the A’s parameters. hence the term
closure. Every h-expression must return values, since
the language has no side effects. Application is denoted
in programs by expressions of the form flarg, arg, . . . ].

A SML program manipulates values. Anything that
can be denoted by a name or expression in the program
is a value. Thus strings, functions. interfaces, and types
are all values. In the SML language, all values are
treated uniformly, in the sense that any can be passed as
an argument. bound to a name, or returned as a result.

These operations must work on all values so that
application can be used as the basis for computation and
Pt-expressions as the basis for program structure. In
addition, each particular kind or type of value has its
own primitive functions. Some of these (like equality)
are defined for most types. Others (like subscripting)
exist only for specific types (like groups). None of these
operations. however. is fundamental to the language.

There is a basic mechanism for making a composite
value out of several simpler ones. Such a composite
value is called a group. and the simpler ones are its
components or elements. Thus {3, x+ 1. "Hello"] de—
notes a group, with components 3. x+ l. and "Hello".
The main use of groups is for passing arguments to
functions without naming them. These are sometimes
called positional arguments. Groups are similar to other
Ianguage‘s "structures" or “records”: ordered and
typed sequences of values.

A binding is an ordered set of [name type, value]
triples. often denoted by a constructor like the follow-
ing: [x: S'I'RING-“s", y: STRIN ~“t”], or simply
[x~“s". y~“t"]. Individual components can be se-
lected from a binding using the “.“ operation. similar to
Pascal record selection: bindingelement yields the
value of the component named "element" in binding.

A scope is a region of the program in which the value
bound to a name does not change. For each scope there
is a binding that determines these values. A new scope
is introduced by a [. . . ] constructor for a declaration or
binding. or a LET statement illustrated below.

A declaration is an ordered set of [name type] pairs,
often denoted [:t: STRING. y: STRING]. A declaration
can be instantiated {c.g. on block entry) to produce a
binding in which each name is bound to a name of the
proper type. If d is a declaration. a binding b has type d
if it has the same names. and for each name It the value

b.n. has the type d.n.
in addition to the scopes defined by nested bindings.

5 a binding can be added to the scope using a LET state-
merit.

LET binding IN espr

that makes the names in binding accessible in expr with-
out qualification.

Every name has a type. either because the name is in
a binding or the name is in a declaration. Names are
given values using bindings. [f a name is given an ex-
plicit type in the binding, the resulting value must have
that type. For example.

rt: t-v
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the type of “v” must be "t". Similarly, if “p” is a )t-ex-
pression with “a” as a free variable of type "STRING",
then

nib]

type-checks if "b" has type "STRING"-
There are no restrictions on use of type as values in

SML. For example.
 

[nl:l -- vl.
n2:rtl — v2] 

declares a name “nl” with a type t and a value v1, and
then declares a name “:12” with type "n1" and value
“v2”. Although each such value can in turn be used as
the type of another name. the modeller implementation
does not attach semantics to all such combinations.

Strings are useful in a module interconnection lan-
guage for compiler options and as components of file
names. SML contains facilities to declare strings. For
example, the binding
 

lit: STRING - "lit".
y; STRING —- it] 

gives it and y the string literal value “lit”.
SM]. describes software by specifying a file contain—

ing data. This file is named in SML by a filename
preceded by an @. SML defines @ as source-file inclu-
sion: The semantics of an @expression are idential to
those of an SML program that replaced the @ expres-
sion by its contents. For example, if the file innersm
contained

"m"

which is a valid SML expression, the binding
 

[5: STRING - @inner.sm.
y: STRING - @inner.srnl

and
[ac STRING m "lit",

y.- STRING - "lit"] 

The @-e:tpression is used in SML to refer to source
modules. Although we cannot substitute the @expres-
sion by the contents of the source file since it is written
in C/Cedar, we treat the Cedar source file as a value in
the language with a type. This type is almOst always a
procedure type. The values in SML that describe mod-

10

15

20

25

35

45

ule interconnection are all obtained by invoking one of 55
the procedure values defined by an @expression.

When compiling a system module. all interfaces it
depends on must be compiled first and the compiler
must be given unambiguous referenCes to those files. In
order to load a module. all imports must be satisfied by
filling in indirect pointers used by the micrmode with
references to procedure descriptors EXPORTed by
other modules. Both kinds of information are described

in SML by requiring that the user declare objects corre-
sponding to an interface file (for compilation} or an
interface record with procedure descriptors (for load-
ing). and then parameterize module objects in SML as
appropriate.

65

32
Consider an interface that depends on no other inter-

faces, i.e., it can be compiled without reference to any
files. SML treats the file containing the interface as a
function whose closure is stored in the file. The proce-

dure type of this interface is for a procedure that takes
no parameters and returns one result. e.g.,

HINTERFACE Sort]

where “Sort” is the name of the interface. as in FIG. 13.

The application of this )L-expression (with no argu-
ments) will result in an object of type "INTERFACE,
Mod“.

m: INTERFACE Sort~© SorLMesaI]

declares a variable “Id” that can be used for subsequent
dependencies in other files An interface “BTree” de-
fined in the file "BTree.Mesa” that depends on an inter-
face named "Sort" would have a procedure type like:

(INTERFACE Sank-[INTERFACE BTI‘ee]

The parameters and results are normally given the same
name as the interface type they are declared with, so the
procedure type would be:

{5011: INTERFACE SOH]—~{BTree: INTERFACE
BTree]

In order to express this in his model, the user would
apply the file object to an argument list:

Sort: INTERFACE Sort - @ 50¢an;

BTree: INTERFACE BTree~®
BTree.Mesa[S-ort];

These interfaces can be used to reflect other compila-
tion dependencies.

An interface that is EXPORTed is represented as an
interface record that contains procedure descriptors.
etc. These procedures are declared both in the interface
being EXPORTed and in the exporting PROGRAM
module. One can thinlt of the interface record as an
instance of a record declared by the interface module.
Consider the implementation module Sortlmpl.Mesa in
FIG. 13. Sortlmpl EXPORTS an interface record for
the Sort interface and calls no procedures in other Sor-
tImpl EXPORTS an interface record for the Sort inter-
face and calls no procedures in other modules (i.e., has
no IMPORTs). This file would have as procedure type:

[59": INTERFACE Sorl}—-[Sortlnst: Sort]

and would be used as follows:

Sort: INTERFACE Sort-—@ Sorl.Mesa[]:

Sortlnst: Sort -— @ Sonlmpl.Mesa[Sort]:

which declares an identifier “Sortlnst” of the type
"Sort", whose value is the interface record exported by
Sortlmpl.Mesa. If SortIrnpl.Mesa imported an interface
reocrd for "BTree." then the procedure type would be:

[Sor'c INTERACE Sort. B'I'ree: INTERFACE
flTree. B'I'reelnsl: BTroe]—-[Sortlrtst: Sort]

and the exported record would be computed by:
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Sortlnst: Serb-Q SortIrnpl.Mesa[Sort. BTree.
B'l'reelnst]:

where [Sea-t, BTree, BTreelnstr] is a group that is 5
marched to parameters of the procedure by position.
Keyword matching of actuals to formals can be accom-
plished through a binding described later.

LET statements are useful for including definitions
from other SML files. A set of standard Cedar inter-
faces could be defined in the file CedarDefs.Model: 1"
 

[
Rope: INTERFACE Rope - @RopeJflesa.
ID: INTERFACE lO - @10.Mfi8. 15
Space: INTERFhCE Space - @Spaee.Mesa

l 

Then a LET statement like:

LET @ Cedar Defs.Model IN {expression} 20

is equal to:
 

LET [ 25
Rope: INTERFACE Rope - @Rope.MeSI.
IO: INTERFACE IO - @[CLMese
Space: INTERFACE Space ~ @Space.Mesa

)lN [expression] 

and nukes the identifiers "Rope", "IO". and "Scope" 3'0
available within [expression].

SML syntax is described by the BNF grammar be-
IOw. Whenever "x. . . . " appears. it refers to 0 or more
occurrences of x separated by commas. ‘|“ separates
different productions for the same non-terminal. Words
in which all letters are capitalized are reserved key-
words. Words that are all lower case are non-terminals.

except for
id. which stands for an identifier,
string, which stands for a string literal in quotes. and
filenarne, which stands for a string of characters that

are legal in a file name. not surrounded by quotes.
Subscripts are used to identify specific non-terminals,

so they can be referenced without ambiguity in the
accompanying explanation.

35

as

 

exp :: = l [dech] —-[dec11] IN exp]
|let [binding] IN cxpl
lexpl —- exp:
lcxpllcxml so
|exp| . id
“up. - - - ]
lldcdl
libindiflel
lid
istrmg 55
I INTERFACE id
JSTRING
1@filertan1e

decl :: = id: exp. . ..
binding 1: = bindelem. . . .
bindelenl :: = [decl] - cam 60

|id: exp] a- exp;
lid -— exp: 

A model is evaluated by running a Lisp-style evalua»
tor on it. This evaluator analyzes each construct and 65
reduces it to a minimal form. where all applications of
closures to known values have been replaced by the
result of the applications using ,fl-reduction. The evalua-

34

tor saves partial values to make subsequent compilation
and loading easier. The evaluator returns a single value.
which is the value of the model, usually a binding.

The semantics for the productions are:

e1p1: = Ji[dec|1]—-[decl;}lN exp.

The expression is a value coasisting of the parameters
and returned names. and the closure consisting of the
exprefiiOn exp1 and the bindings that are accessible
statically from exp. The type is “dealt—deck". The
value of this expression is similar to a procedure vari-
able in conventional languages. which can be given to
other procedures that call it within their own contexts.
The closure is included with the value of this expression
so that, when the A-expreesion is invoked. the body
(exPI) will be evaluated in the corect environment or
context.

exp::= LET [bindingllN esp]

The current environment of exp] is modified by add-
ing the names in the binding to the scope of expl. The
type and value of this expression are the type and value
of exp:.

exp:: =exp g—eexpz

The value of exp is a function type that takes values
of type expl and returns values of type exp}.

as p:: =exp dam]

The value of expt. which must be a closure. is applied
to the argument list exp: as follows. A binding is made
for the values of the free variables in the F's-expression. If
exp: is a group, then the components of the group are
matched by type to the formals of the A-expressiOn. The
group’s components must have unique types for this
option. If exp; is a binding then the parameters are given
values using the normal binding rules to bind fn-expz
where exp; is a binding and f is the decl of the h-expres-ston.

There are two cases to consider:

I. The )L-expression has a closure composed of SML
expressions. This is treated like a nested function. The
evaluation is done by substitution or fi-reduction: All
occurrences of the parameters are replaced by their
values. The resulting closure is then evaluated to pro-
duce a result binding. The )t-expression returns clause is
used to form a binding on only those values listed in the
lt-expression returns list, and that binding is the value of
the function call.

2. If the function being applied is a Cedar source or
object file. the evaluator constructs interface types of
interface records that correspond to the interface mod-
ule or to the implementation module’s exported inter-
faces, as appropriate. After the function is evaluated.
the evaluator constructs a binding between the returned
types in its procedure type and the values of the func-
tion call.

exp::=[exp. . . .]

The cap: is evaluated and must be a binding. The
component with name "id" is extracted and its value
returned. This is ordinary Pascal record element selec-
tion.
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eap::=[exp. . . .]

A group of the values of the component exp's is made
and returned as a value. 5

e:p::=[decl]

declt:=id:exp. . _ .

Adds names "id" to the current scope with type equal In
to value of exp. A list of decls is a fundamental object.

 

 

eap :: = [binding] [5
binding :: = bindelem. . . .
bindelem :: = [deal] '— esp.

lid: expl — £192
|id - um

20
A bindelem binds the names in decl to the value of

expl. lfan id is given instead ofa decl. the type of id is
inferred from that of exp.. The binding between the
names in dad and the values in exp; follows the same
rules as those for binding arguments to parameters of 25
functions.

e1p::=id

id stands for an identifier in some binding (i.e.. in an 30
enclosing scope). The value or id is its current binding.

exp::=strtng

A string literal like "she" is a fundamental value in 35
the language.

exp: a INTERFACE. id

This fundamental type can be used as the type of any m.module with module name id. Note id is used as a literal,
not an identifier. and its cur-rent binding is irrelevant.
The value of this expression is the atom that represents
“INTERFACE id".

up: = STRING ‘5

A fundamental type in the language. The value of
"STRING" is the atom that represents string types.

exp: = @ filename

This expression denotes an object whose value is
stored in file filename. If the file is another model, then
the string @ filename can be replaced by the content of
the file. If it is another file. such as a source or object 55
file, it stands for a fundamental objectlfor which the
evauator must be able to compute a procedure type.

Function calls in SML are made by applying a clo-
sure to (l) a group or (2) a binding. If the argument is a
group. the parameters of the closure are matched to the
components by type. which must be unique. If the argu-
ment is a binding, the parameters of the closure are
matched by name with the free variables. For example,
if p is bound to:

60

65

p-vhinz STRING. y: INTERFACE Y}—-[Z:
INTERFACE Z]IN[ . . . ]

36 _
then p takes two parameter, which may be specified as
a group:
 

[
deft: INTEFACE v -. @Del's.Mes-l].
z: INTERFACE z _ p["lit". Defs]

where the arguments are matched by type to the param-
eters of the closure. The order of “lit” and Defs in the

example above does not matter. Also the order of J: and
y in the call of p in the example does not matter. The
function may also be called with a binding as follows:

[
defs: INTERFACE Y - @Defs.Mcsafl.
z: INTERFACE z -. p[x —. "m". y -. Defs]
l 

which corresponds to keyword notation in other pro-
gramming languages.

Since the parameter lists for Cedar modules are quite
long, the SML language includes defaulting rules that
allow the programmer to omit many parameters. When
a parameter list. either a group or a binding. has too few
elements. the given parameters are matched to the for-
mal parameters and any formals not matched are given
default values. The value for each defaulted far-mal

parameter is the value of a variable defined in some
scope enclosing the call with the ame name and type as
the formal. Therefore. the binding for Z in:
 

[
x: STRING m "In".
y: INTERFACE v -. @DefsMesafl.
z: INTERFACE z a pl]

is equivalent to “p[x. y]" by the equal-name defaulting
rule.

SML also allows projections of closures into new
closures with parameter. For example.
 

[
r: INTERFACE Y - @Del's.Meal].
pl:[‘l’: INTERFACE v1.42: INTERFACE z] -. p{"lil"].
2-. INTERFACE z -. plm
l 

sets 2 to the same value as before but does it in one extra

step by creating a procedure value with one fewer free
variable, and then applied the procedure value to a
value for the remaining free variable. The defaulting
rules allow parameter to be omitted when mixed with
projections:

[
x: STRING _ "lit".
1'.- INTERFACE Y - @DefsMesafl.
pl: pr: INTERFACE r] -12.- lN‘I'ERFACE a] m p[].
z: INTERFACE z .. plfl
l

Enough parameters are defaulted to produce a value
with the same type as the target type of the binding (the
type on the left side of the notation, “—-"). When the
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type on the left side is omitted, the semantics of SML
guarantee that all parameters are defaulted in order to
produce result values rather than a projection. Thus

Zmpll] 5

in the preceding examples declares a value 2 of type
INTERFACE Z and not a projection whose value is a
Iii-expression. These rules are stated more concisely
below. In

If the number of components is less than those re-
quired to evaluate the function body, a coercion is ap-
plied to produce either (I) the complete argument list.
so the function body may be evaluated. or (2) a projec-

tion of the original A-expression into a new lt-expression 15
with fewer free variables. If the type of the result of
“exp1[exp2}" is supplied, one of (l) or (2) will be per-
formed. When the target type is not given, e.g.,

x-uprocm 20

case (1) is assumed and all parameters of "proc" are
assumed defaulted. For example, the expression:

pmc: [Yr STRING. Z: STRINGF-[n R], 25

it: T—procm

binds the result of applying proc to Y to x of type T. If
T is a simple type (e.g., "STRING"), then the proon]
expression is coerced into prochU, Z], where Z is the 30
name of the omitted formal in the l—expression and R
must equal T. If Z is undefined (has no binding) an error
has occurred and the result of the expression is unde-
fined. If T is a function type (e.g., [Z: STRINGI—r[r:
Rl). then a new closure is replaced by tghe value of Y. 35
This closure may be subsequently applied to a value of
Z and the result value can be computed. The type of Z
must agree with the parameters of the target function
type.

The SMI. evaluator is embedded in a program man- 40
agement system that separates the functions of file re-
trieval, compilation, and loading of modules. Each of
these functions is implemented by analyzing the partial
values of the evaluated SML expression. For example,
the application of a file to arguments is analyzed to see 45
whether compilation or loading is required. For each of
these phases, the evaluator could be invoked on the
initial SML expression, but this would be inefficient.
Since the SML language has no iteration constructs and
no recursively-defined functions. the evaluator can sub- 50
stitute indirect references to SML expressions through
@expressiOns by the file‘s contents and can expand
each function by its defining expression with for-trials
replaced by actuals.

This process of substitutiOn must be applied recur- 55
sively, as the expansion of a lt-expression may involve
expansion of inner lt-expressions. The evaluator does
this expansion by copying the body of the )L-expression,
and then evaluating it using the scope in which the
h-expression was defined after adding the actual paratn- 60
cters as a binding for the function to the scope.

The scope is maintained as a tree of bindings in which
each level corresponds to a level of binding, a binding
added by a LET statement, or a binding for parameters
to a lt-expression. 65

Bindings are represented as lists of triples of name,
type, value. A closure is represented as a quadruple
comprising "list of formals, list of returns, body of func-

38

tion, scope printer", where the scope pointer is used to
establish the naming environment for variables inside
the body that are not fonnal parameter. The @expres-
sion is represented by an object that contains a pointer
to the disk file named. A variable declared as INTER-
FACE mod (i.e., an interface type variable), is repre-
sented as a “module name, pointer to module file" pair,
and a variable given as type and interface type variable.
i.e., an interface record variable, is repreented as a
“pointer to procedure descriptors, pointer to loaded
module".

The substitution property of Russell, discussed in the
Article of A. Demers et al., “Data Types, Parameters &
Type Checking", Proceedings of the Seventh Sympo-
sium on Principles of Programming Languages, Las
Vegas, Nev., pp. 12—23, [980, guarantees that variable-
free expressions can be replaced by their values without
altering the semantics of Russell programs. Since SML
programs have no variables and allow no recursion. the
substitution property holds for SML programs as well.
This implies that the type-equivalence algorithm for
SML programs always terminates, since the value of
each type can always be determined statically.

The following are two further examples of models
described in SML.

EXAMPLE I

The B-tree package consists of an implementation
module in the file “BTreeImpl.Mesa" and an interface
“B'l'ree.Mesa" that BTreelmpl EXPORTS. There is no
client of BTree, so this model returns a value for the
interface type and record for BTree. Some other model
contains a reference to this model and a client for that
interface. The BTree interface uses some constants
found in “Ascii.Mesa", which contains names for the
ASCII chaacter set. The BTreelrnpl module depends
on the BTree interface since it EXPORTs it and makes
use of three standard Cedar interfaces. "Rope" defines

procedures to cperate on immutable, garbage collected
strings. “10" is an interface that defines procedures to
read and write formatted data to a stream. often the

user‘s computer terminal. “Space” defines procedures
to allocate Cedar virtual memory for large objects, in
this case the B-tree pages.
 
- Eleodel
LET [
Rope: INTERFACE Rope - @Rope.Bed.
[0: INTERFACE I0 -- @10.Bed,
Space: INTERFACE Space -v @SpaeeBed,
] IN
E'I'reeProc —
lthopelnst: Rope. IOIsnt:]0. Spacelnst: Splice]
—- INTERFACE arm. BTreeInst: BTree]
IN [
Ascii: INTERFACE Aacu - Asciildesa
BTI‘ee: INTERFACE BTree - @BtreelAscii],
B‘l’reelnst: B'l‘ree ~I@BTreelrnpl.Mesa[BTree. Rope.]0.5pace.
Ropelnet, IOInst. Spa-cellist]
l 

This model, stored in the file “Exl.ModeI“, describes
a BTree system composed of an interface “BTree” and
an implementation for it. The first three lines declare
three names used later. Since they are given values that
are object or binary (.bcd) files, they take no parame-
ters. This model assumes those files have already been
compiled. Note they could appear as:
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Rose—@1191”. Bed.

[0 — fl [0. Bed.

Spawn-@SpaceBcd 5

since the types ofthe three identifiers can be determined
from their values. The seventh line binds an identifier

“BTreeProc” to a h-eitpression with three interface

records as parameters. If those are supplied, the func- 10
tion will return (1) an interface type for the B'I‘ree sys-
tem. and (2) an interface record that has that type.
Within the body of the closure of the Nexpression,
there are bindings for the identifiers “Ascii”. "BTree",
and “BTreeInst”. in all cases. the type could be omitted
as well.

The file "Exl.Model" can be evaluated. Its value will

be a binding of BTreeProc to a procedure value. The
value is a Jt-expression that must be applied to an argu-
ment list to yield its return values. Another model might
refer to the BTree package by:

15

20

[BTree.
B'l’reelrlst}~®Exl.Model).BTreeProc[Ropelnst.

101nm. Spacelnst] 25

EXAMPLE 2

 
—- CedarDefaModel
[
Rope: INTERFACE Rope ~ @RopeBed.
IO: INTERFACE IO -— @10.Bed.
Space: INTERFACE SM —- @SpaceBed
l
- B‘Tree.Model
Let @CedarDefsModel [N{
BTreeProc -
it[Ropelnst: Rope. lOlsnt:}O. Spacellnst: Space]
—- [HTre-e: INTERFACE BTree. B'I'reelnst: BTree]
lNl
Ascii: INTERFACE Ascii ~ @Ascii.Mesa.
BTree: INTERFACE BTree - @B’I‘rfifiscii].

. BTreeInst: B'I'ree - @BTreeImpl.Mesa[BTree. RopeJO. Space.
Ropelmhlolnat. Spacelnst]
l
l

35

45

The prefix part is split into a separate file. The
BTree.Model file contains (1) a binding that gives a
name to the binding in CedarDefs. Model, and (2) a
LET statement that makes the values in CedarDefs-

Model accessible in the lt-expression of BTree.Model.
Dividing Example 1 into two models like this allows

us to establish standard naming environments, such as a
model that names the commonlyused Cedar interfaces.
Programmer/users are free to redefine these names
with their models if they so desire. 55

3. System Modeller—Software Version Management
System

The System modeller is a camplete software develop-
ment system which uses information stored in a system
model, which describes a software system in the envi-
ronment, e.g., the Cedar system. by specifying:

l. The versions of various modules that make up a
particular software system.

2. The interconnections between modules. such as
which procedures are used and where they are defined.

3. Additional information needed to compile and load
the system.

65

, 40
4. Hints for locating the modules in a distributed file

system.
Under the direction of the user or programmer, the

modeller performs a variety of operations on the sys-
tems described by the system models:

1. It implements the representation of the system by
source text in a collection of files.

2. It tracks changes made by the programmer. To do
this. it is connected to the system editor and is notified
when files are edited and new versions are created.

3. It automatically builds an executable version of the
system, by recompiling and loading the modules. To
provide fast response. the modeller behaves like an
incremental complier: only those modules that change
are analyzed and recompiled.

4. It provid complete support for the integration of
packages as part of a release.

Thus, the modeller can manage the files of a system as
they are changing, providing a user interface through
which the programmer edits. compiles. loads and de-
bug: changes interactively while developing software.
The models are automatically updated to refer to the
changed components. Manual updates of models by the
programmer are, therefore, not normally necessary.

The programmer writes a model in SML notation for
describing how to compose a set of related programs
from their components. The model refers to a compo-
nent module of the program by its unique name, inde-
pendently of the location in the file system where its bits
are stored. The development of a program can be de-
scribed by a collection of models, one for each stage in
the development; certain models define releases.

As previously indicated, SML has general facilities
for abstraction. These are of two kinds:

(1) A model can be organized hierarchially into parts.
each of which is a set of named sub-parts called a bind-
ing. Like the names of files in a directory, the names in
a binding can be used to select any daired part or parts
of the binding.

(2) A model can be parameterized, and several differ-
ent versions can be constructed by supplying different
arguments for the parameters. This is the way that SML
cans for planned variation in a program.

The distributed computing environment means that
files containing the source text of a module can be
stored in many places. A file is accessed most efficiently
if it happens to be on the programmer's own machine or
computer. Remote files must first be located and then
retrieved. The modeller imposes minimal requirements
on the capabilities of the distributed file system. In fact.
it requires only that there be a way to enumerate the
versions of a particular file in a remote directory. and to
store or retrieve an entire remote file. When possible, it
caches information about a module. such as its depen-
dencies on other modules, to avoid retrieving the entire
module and parsing its téitt. It also caches the complete
path names ofobjects to avoid searches in remote direc-tones.

When invoked. the modeller uses the objects in a
model to determine which modules need to be recom-

piled. ‘I‘he modeller will get any files it needs and try to
put the system together. Since it has unique-ids for all
the needed sources, it can check to see if they are
nearby. If not. it can take the path name in the model as
a hint and. if the file is there, it can be retrieved. The
modeller may have difficulty retrieving files, but it will
not retrieve the wrong version. Having retrieved as
many files as possible. it will compile any source files if
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necessary. load the resulting binary files. and run the
program.

A model normally refers to source files rather than
the less flexible binary or object files produced by the
compiler. whose interface types are already bound. The
system modeller takes the view that these binary files
are just accelerators. since every binary file can be com-
piled using the right source files and parameters The
model has no entry for a binary file when the source file
it was compiled from is listed. Such an entry is unneces-
sary since the binary file can always be reconstructed
from the source. Of course, wholesale recompilation is
time consuming, so various databases are used to avoid
unnecessary recompilation.

Models refer to objects. i.e., source or binary (object)
files or other models, using so @-sign followed by a
host. directory. and file name. optionally followed by
version information- In a model. the expression,

@[ln-digo] e Cedar) X.Mesal(.luly 23. 19:12 intone)

refers to the source version of X.Mesa created on July
25. 1932 16:10:09 that is stored on file server [Indigo] in
the directory (Cedar). The !( . . . ) is not part of the
file name but is used to specify explicitly which version
of the file is present. The expression.

@[Indigo] (Cedar) XBedfl lABlFBBd-GZB D)

refers to the binary or object version of X.Bcd on [In-
digo]<Cedar>X.Bcd that has a 48-bit version stamp
“IAB3FBB462BD” (hexadecimal). For cases wh the
user wants the most recently-saved version of X.Mesa
or X.Bcd,

@[Indigo]<Cedar> 21:.an

refers to the most recently stored version of X.Mesa on
[Indigo<Ced.ar>. This "IE" is a form of implicit pa-
rameterization- If a model containing such a reference is
submitted as part of a software release. this reference to
the highest version is changed into a reference to a
specific versiOn.

The system modeller takes a very conservative ap-
proach. so the users can be sure there is no confusion on
which versions have been tested and are out in the field

of the distributed software system.
What happens. however. when a new version V; of

an object is created? In this view, such a version is a
new object. Any model M; which refers to the old
object V1 continues to do so. However, it is possible to
create a new model M: which is identical to M1 except
that every reference to V1 is replaced by a reference to
V1. This operation is performed by the modeller and
called Notice. In this way, the notion that objects are
immutable is reconciled with the fact of evolution.

With these conventions. a model can incorporate the
text of an object by using the tissue of the object. This is
done in SML expression by writing an object name
preceded by sign “@". The meaning of an SML expres-
sion containing an @«expression is defined to be the
meaning of an expression in which the @ expression is
replaced by its coutents. For example, if the object
innermodel contains

which is an SML expression. the binding
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has identical values for x and y.
With these conventions. a system model is a stable,

unambiguous representation for a system. It is easily
transferred among programmers and file systems. It has
a readable text representation that can be edited by a
user at any time. Finally, it is usable by other program
utilies such as cross—reference programs, debuggers, and
optimizers that analyze intermodule relationships.

The modeller uses the creation date of a source object
as its unique identifier. Thus. an object name might have
the form BTree.Cedsrl(July 22. 1982 2:23:56); in this
representation the unique identifier follows the I'!" char-
acter.

For a derived object such as a binary module. the
modeller uses a 48-bit version stamp which is con-
structed by hashing the name of the source object. the
compiler version and switches, and the version stamps
of any interfaces which are parameters of the compila-
tion. In this way, derived objects constructed at differ-
ent times will have the same names. as bag as they are
made in exactly the same way. This property can make
a considerable difference in the time required to rebuild
a system when some binary modules must be rebuilt.
especially if there are other modules which depend on
the ones being rebuilt.

It is also possible to use an ambiguous name for an
object, such as in the form, B’Tree.cedarlH. This means
to consider all the objects whose names begin BTree.ce-
dar, and take the one with the most recent create date.

As previously explained. Cedar programing consists
of a set of modules. There is included two kinds of

modules: implementation (PROGRAM) modules. and
interface (DEFINITIONS) modules. An interface
module contains constants (numbers. types, inline pro-
cedures. etc.) and declarations for values to be supplied
by an implementation (usually procedures. but also
types and other values). A module Ml that calls a proce-
dure in another module M1 must IMPORT an instance
Inst of an interface I that declares this procedure. Inst
must be EXPORTED by the PROGRAM module M2.
For example, a procedure Insert declared in a module
BTreeIrnpl would also be declared in an interface
BTree, and BTreelmpl would EXPORT an instance of
BTree. A PROGRAM calls Insert by IMPORTing this
instance of BTree and referring to the Insert component
of the instance. The IMPORTer of BTree is called the

client module. and BTreeImp, the EXPORTer, imple-
ments Btree. Of course BTreeImpl may itself IMPORT
and uses interfaces that are defined elsewhere.

FIG. 17 discloses a very simple system model called
BTree, which defines one interface BTree and one in-
stance BTreeInst of BTree.

BTreemodel in FIG. 1‘? refers to two modules.

BTree.cedatl(Sept. 9. 1981. 13:52:55) and BTreeImpl-
.cedaflflan. 14. 1933 “Ad-:09). Each is named by a user-
sensible name (e.g.. BTree.ceda.r). pat of which identi-
fies the source language as Cedar, and a creation time
(eg. !(Sept. 9. 1982. 13:52:55)) to ensure uniqueness. The
@ indicates that a unique object name follows. Each
object also has a file location hint. e.g.. ([Ivy]<Sch-
midt). i.e.. file server. Ivy, and the directory,
Schmidt).
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B’I‘reemodel refers to two other models, CedarInter-

faceamodellfluly 25, 1982, 14:03:03) and Cedarlnstan-
ces.modell(luly 25, [982. 14:10:12}. Each of these is a
binding which gives names to four interface or instance
modules that are part of the software system. A clause
such as

LET Cedulnnrfmmodel IN . . .

makes the names bound in Cedarlnterfaces (Acii, Rope,
IO, Space) denote the associated values (Ascii.cedarl-
(July It), 1932, 12:25 00”], etc.) in the expression follow»
ing the IN.

Models denote dependency by parameterization.
There are two kinds of dependency: on interfaces, and
on implementations, or instances of the interfaces. Cor-
respondingly, each source module is viewed as a func-
tion which takes interface arguments and returns an-
other function which takes instance argument. Apply-
ing the first function to its interface arguments is done
by the compiler; applying the resulting second function
to its instance arguments is done by the loader as it links
up definitions with uses.

In the example of FIG. 11‘. the B’I'ree interface de-
pends on the Ascii interface from CedarInterfaces.
Since it is an interface. it does not depend on any imple-
mentations. BTreemel depends on a set of interfaces
which the model does not specify in detail. The ““'" in
front of the first parameter list for BTreelmpl means
that its arguments are defaulted by name matching from
the system environment. In particular. it probably has
interface parameters BTree, Rope. IO. and Space. All
these names are defined in the environment, BTree

explicitly and the others from Cedarlnterfaces through
the LET clause. BTreelmpl also depends on Rope, IO
and Space instances from Cearlnstances, as indicated in
the second argument list.

The interface parameters are used by the compiler for
type-checking, and so that details about the types can be
used to improve the quality of the object code. The
instance parameters are used by the loader and they
specify how procedures EXPORTed by one module
should be linked to other modules which IMPORT
them.

A. User interface

I. General

The system modeller provides an interactive inter-
face for ordinary incremental program development.
When used interactively, the role of the modeller is
similar to that of an incremental compiler: it tries to do
as little work as it can as quickly as possible in order to
produce a runnable system. To do this. it keeps track
incrementally of as much information as possible about
the objects in the active models under use.

For example, consider the following Scenario. As-'
sume a model already exists, say BTree.model. and a
user wants to change one module to fix a bug (code
error}. Earlier, the user has started the modeller with
BTree.model as the current model. The user uses the

system editor to make a change to BTreeIrnpi.cedar!(-
Jan 14, [933 14:44-09). when the user finishes editing
the module and creates a new version BTreeImpl-

.cedarl(Apr. 1, 1983, 9:22:12). the editor notifies the
modeller by calling its Notice procedure. indicating the
BTreelmpl.cedar!(Apr. I, I983. 9:22:l2) has been pro-
duced from BTreeImpl.cedarl(Jan. 14. 1983, 14:44:09).
If the latter is referenced by the current model. the
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modeller notices the new version and updates BTree.-
modell(lan. 14, 1983. 14:44:11) to produce BTree.-
modell(Apr. l. 1983, 9:22:20). which refers to the new
version. The user may edit and continue to change more
files. When the user wants to make a runnable version of

the system, upon command to the modellerI which then
compiles everything in correct order and. if there are no
errors, produces a binary file.

A more complex scenario involves the parallel devel-
opment of the same system by two programmers. Sup-
pose both start with a system described by the model
Mo, and end up with different models M1 and M2. They
may wish to make a new version M 3 which merges their
changes. The modeller can provide help for this com-
mon case as follows: If one programmer has added
deleted or changed some object not changed by the
other, the modeller will add, delete. or change that
object in a merged model. If both programmers have
changed the same object in different ways, the modeller
cannot know which version to prefer and will either
explore the changed objects recursively. or ask the user
for help.

More precisely, we have

M3=Merge{3ase—-Mo. New] ~Ml. Nan—whiz]

and Merge traces out the three models depthwfirst. At
each level, for a component named p:
 

 [f Add to result

Base.p=Mt.p—_-M2.p Bump
Base.p=Mi.p¢M2/l.p My”:
Base.p=Mj.p. no Mil/1p leave 1) out
no Base.p or M“: huh/pp
Buse.p=#M1.p;L-M1.p, all models
ELSE

MergeIBese.p:.M1.p.Mg.p}
error. or ask what to do. 

At all points, the modeller maintains a model that
describes the current program. When a user makes a
decision to save a module or program, this is accom-
plished by an accurate dmcription in the model. Since
the models are simply text files. the user always has the
option of editing the model as preferred, so the modeller
does not have to deal with specifically obscure special
cases of editing.

In a session which is part of the daily evolution of a
program ofsoftware system. the user begins by creating
an instance of the modeller. which provides a window
on the user’s screen, as shown in FIG. 20. in this case
being that of the Cedar environment. The following
explanation and subseqth sections to follow give an
overview of its use, suggested by the contents of the
Figure per se.

The modeller window is divided into four fields.

which are. from top to bottom: ( l) A set of screen initi-
ated names in field 3|] that function as buttons to control

the modeller, (2) A field 32 where object names may be
typed, (3) A feedback. field 34 for compiler progress
messages. and (4) A feedback field 36 for modeller mes-
sages.

To aid in the explanation modeller. the following
example follows the steps the user performs to use the
modeller. These steps are illustrated in the flow diagram
of FIG. 21.

Step 1. Assume that the modeller instance has just
been created. The user decides to make changes to the
modules in ExampleModel. The name of the model is
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entered in the field 32 following the "ModelName:"
prompt. and initiates the StartModel button in field 30.
From this point on the modeller is bound to Example.-
Model. StopModel in field 30 must be initiated before
using this instance of the modeller on another model.
StartModel initializes data structurm in this instance of

the modeller, StopModel frees the data.
Step 2. The user makes changes to objects on the

user’s personal machine or computer. The system editor
calls the modeller's Notice procedure to report that a
new version of an object exists. If the object being ed—
ited is in the model. the modeller updates its internal
representation of the model to reflect the new version.
If the changes involve adding or deleting parameters to
modules, the modeller uses standard defaulting rules to
modify the argument list for the object in the model.

Step 3. Once the user has made the intended edits, the
user initiates Begin in field 30, which (a) recompiles
modules as necessary. (b) loads their object files into
memory. and (c) forks a process that starts the user’s
program running. Modules need to be recompiled if the
corresponding source files have been changed. or if any
modules they depend on have been compiled. Should
(a) or (b) encounter errors. the modeller does not pro-
ceed to (c).

Step 4. After testing the programs, the user may want
to make changes simple enough that the old module
may be replaced by the new module without rc-loading
and restarting the system. If so. after editing the mod-
ules, the user "Continue" in field 30. which tries
to replace modules in the already loaded system. If this
is successful. the user may proceed with the testing of
the program and the new code will be used. If the mod-
ule is not replaceable, the user must initiate “Begin” in
field 30. which will unload all the old modules in this
model and load in the new modules.

Step 5. After completing desired changes, the user
can initiate “StoreBack” in field 30 to store copies ofhis
files on remote file servers. and then initiate “Unload”
to unload the modules previome loaded. and finally
initiate "StopModel" to free modeller data structures.

The fOlIOwing is a more further explanation of some
of the field 30 initiated functions.

StartModel: The modeller begins by reading in the
source text of a model and buiding an internal tree struc-
ture traversed by subsequent phases. These phases use
this tree to determine which modules must be compiled
and loaded and in what order. Since parameters to files
may have been defaulted, the modeller uses a database
of information about the file to check its parameteriza-
tion in the model and supply defaults, if necessary. If the
database does not have an entry for the version of the
file listed in the model, the modeller will read the file
and analyze it, adding the parameterization informatiOn
to the database for future reference. This database is
described later. ‘

Notice Operation: The system editor notifies a mo-
deller running on the machine when a new version of a
file is created. The modeller searches its internal data
structure for a reference to an earlier version of the file.

If one is found. the modeller changes the internal data
structure to refer to the new version.

While melting edits to modules. users often alter the
parameterization of modules. i.e.. the interface types
and lMPORTed interface records. Since editing the
model whenever this happens is time-consuming, the
modeller automatically adjusts the parameterization.
whenever possible. by using the defaulting rules of the
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modelling language: If a parameter is added and there is
a variable with the same name and type as the new
parameter, that variable is used for the actual parame-
ter. If a parameter is removed. then the corresponding
actual parameter is removed. The modeller reoparses
the header of a "noticed" module to determine the

parameters it takes.
Some changes made by the user cannot be handled

using these rules. For example, if the user changes a
module so that it IMPORTs an interface record. and
there is no interface record in the model with that name.
the modeller cannot known which interface record was

intended. Similarly, if the user changes the module to
EXPORT a new interface record. the modeller cannot
know what name to give the EXPORTed record in the
model. In these situations. the user must edit the model

by hand to add this information and start the modeller
again on the new version of the model.

Compilation and Loading: After the user initiates
“Begin.” the modeller uses the internal data structure as
a description of a software system the user wants to run
on the particular machine. To run the system. each
module must have been compiled. then loaded and ini»
tialized for exeCutiOn. The modeller examines each

module using the dependency graph implied by the
internal data structure. Each module is compiled in
correct compilation order if no suitable object file is
available. Modules that take 110 parameters are exam-
ined first, then modules that depend on modules already
analyzed are examined for possible recompilatiOn. and
so on. until, if necessary. all modules are compiled.
Modules are only recompiled if (1) the modules they
depend on have been recompiled, or (2} they were com-
piled with a different version of the compiler or differ-
ent compiler switches than those specified in the model.
If there are no errors. the modeller loads the modules by
allocating memory for the global variables of each mod-
ule and setting up links between modules by filling in
the interface records declared in the module. When

loading is completed. execution begins.
StoreBack: Models refer to files stored on central file

servers accessable by users on the distributed system.
The user types a file name without file server or direc-
tory information to the system editor. such as
“BTreeImpl.Mesa." and the editor uses information
supplied by the modeller to add location information
(file server and directory) for the files. If the file name
without location information is ambiguous, the user
must give the entire file name to' the editor. To avoid
filling file servers with excess versions. the modeller
does not store a new version of a source file on a file
server after the source fiie is edited. Instead. the new
versions are saved on the local disk. When the user
initiates “StoreBack”. all source files that have been
edited are saved on designated remote directories. A
new version of the model is written to its remote direc-

tory. with references to the new versions of source files
it mentions.

The compiler may have produced new versions of
object files for source files listed in the model. Each
object file so produced is stored on the same directory
as its corresp0nding source file.

Multiple Instances of Modellers: More than one mo—
deller may be in use on the same machine. The user can
initiate the “NewModel” button to create another win-
dOw with the four subwindows or fields shown in FIG.
20 and is used in the same manner. Two instances of a
modeller can even model two versiOns of the same
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system model. Since file names without locations are
likely to be ambiguous in this case. the user will have to
type file names and locations to the editor and do the
same for the “ModelName:" field 32 in the modeller
window.

Other aspects of the operation of the modeller and
modeller window in FIG. 20 is described in the follow-

ing sections.

[1. Model Accelerators

Some models are shared among many users, who
refer to them in their own models by using the @-n0ta.-
ticn and then using returned values from these shared
models. An example is the model. "BasicCedar.Model."
which returns a large number of commonly used inter-
faces (interface types} that a user might use. Although it
is always possible to analyze all sub-models such as
BasicCedar.Model. retrieving the files needed for analy-
sis is very time consuming.

When the user initiates "Machodechd" in field 30.

the modeller makes an object file for a model. much as
a compiler makes an object file for a source file. This
model object file. called a .modechd file, is produced
so that all parameters except interface records are given
values. so it is a projection of the source file for the
model and all non-interface record parameters. The
.modechd file acts as an accelerator, since it is always

possible to work from the wurces to derive the same
result as is encoded in the .modechd.

III. Binding Functions

The loading ability of the modeller gives the user the
ability to load the object files of any valid model. This
speed ofloading is proportional to the size of the system
being loaded and the inter-module references. As the
system gets larger, it takes more time to load. However,
the Cedar Binder has the ability to take the instructions
and symbol table stored in each object file. merge these
pieces of object. and produce an object file that contains
all the information of the constituent modules while

combining some tables used as runtime. This transfor-
mation resolves references from one module‘ to another

in the model. which reduces the time required to load
the system and also saves space. both in the object file
and when the modules are loaded. To speed loading of
large systems. this feature has been preserved in the
modeller. If "Bind" is initiated after “StartModel” and

then "Compile" or "Begin" are initiated, an object file
with instructions and symbol tables merged is pro-
duced.

The programmer may choose to produce a bound
object file for a model instead of a .modechd file when
(1) the model is very large and loading takes too long or
the compression described above is effective in reduc-
ing the size of the file or [ZJ'the object file will be input
to the program that makes the boot file for the system.

IV. Module Replacement

The ability to replace a module in an already loaded
system can provide faster turnaround for small program
changes. Module replacement in the Cedar type system
is possible if the following conditions are met:

(1). The existing global data of the module being
replace may change in very restricted ways. Variables
in the old global data. must not change in position rela-
tive to other variables in the same file. New variables

can only be added after the existing data. if the order

10

15

20

25

30

35

45

55

65

48

changed, outstanding pointers to that data saved by
other modules might be invalidated.

(2). Any procedures that were EXPORTed by the
old version of the module must also be EXPORTed by
the new version. since the address of these objects could
have been passed to other modulw, e.g., a procedure
that is passed as a parameter.

(3). There are a number of architectural restrictions.
such as the number of indices in certain tables, that must
be obeyed.

(4). No procedures from the affected module can be
executing or stopped as a breakpoint during the short
period of time the replacement is occurring.

The modeller can easily provide module replacement
since it loaded the modules initially and invokes the
compiler on modules that have been changed. When the
user "Continue" in the field, the modeller at-
tempts to hasten the oompile-Ioad-debug cycle by re-
placing modules in the system, if possible. Successful
module replacement preserves the state of the system in
which the replacement is performed.

The modeller calls the compiler through a procedural
interface that returns a boolean true if rules (I) and (2)
are obeyed; the modeller will also check to see that
rules (3) and (4) are obeyed. If all four checks succeed.
the modeller will change the runtime structures to use a
new pointer to the instructions in the new module.
which in effect replaces the old instructions by the newones.

Some changes are substantial enough to violate rules
(1H4), so after edits to a set of modules. some modules
are replaceable and others are not. When this happens.
the modules that are replaceable are replaced by new
versions. The modules for which replacement faded are
left undisturbed, with the old instructions still loaded. If
desire. the user may try to debug those changes that
were made to modules that were replaceable. If not, the
user can initiate the "Begin" button to unload the cur-
rent version and reload the system. Since no extra com-
pilations are required by this approach, the user will
always try module replacement if there is a possibility
that it will succeed and the user wants to preverse the
current state of the program or software system.

V. Debugger Interface

When the Cedar debugger examines a stopped sys-
tem. e.g.. at a breakpoint, the debugger can follow the
procedure call stack and fine the global variables for the
module in which the procedure is declared. These
global variables are stored in the global frame. The
modeller can provide the debugger with module-level
information about the model in which this module ap-
pears, and provide file location and version information.
This is particularly useful when the debugger wants to
inspect the symbol table for a module. and the symbol
table is stored in another file that is not on the local

machine or computer disk or the user.
The programmer/user deals with the model naturally

while debugging the system.
Since more than one modeller can be in use on a

machine or computer. the modellefls) call procedures in
an independent runtime loader to add each model to a
list of models maintained for the entire running system.
When the modules of a model are loaded or unloaded,

this list is updated. as appropriate. To simplify the de-
sign, the list of models is represented by the internal
data structures used by the modeller to describe a
model. This model has no formal parameters and no file
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where it is stored in text form, but it can be printed. This
allows the debugger to use a simple notion of scope: a
local frame is contained in the global frame of a module.
This module is listed in a model, which may be part of
another model that invokes it. and so on, until this top-
most model is encountered. The debugger can easily
enumerate the siblings in this containment tree. It can
enumerate the procedures in a module. or all the other
modules in this model. as appropriate. This type of
enumeration occurs when the debugger tries to match
the name ofa module typed by the user against the set
of modules that are loaded, e.g., to set the naming envi-
ronment for expressions typed to the debugger.

B. Data Structures and Tables (Caches)

The procedures of the modeller can be categorized
into these functional groups:

1. Procedures to parse model source files and build an
internal parse tree.

2. Procedures to parse source and object files to de-
termine needed parameterization.

3. Procedures that maintain a table, called the projec-
tion table, that expresses relationships between object
files and source files. as described below.

4. Procedures that maintain a table. called the file

type table, that gives information about files described
in models. This includes information about the parame-
ters needed by the file, e.g., interface types. and infor-
mation about its location on the file system.

5. Procedures that load modules and maintain the

top-level model used by the debugger.
6. Procedures used to call the compiler, connect the

modeller to the editor, and other utility procedures.
7. Procedures to maintain version maps.
The sections below discuss essential internal data

structures used in these groups. illustrations of which
are shown in the tables of FIGS. 18 and 19.

I. Internal Parse Tree

The model is read in from a text file and must be

processed. The modeller parses the source text and
builds an internal parse tree. This parse tree has leaves
reserved for information that may be computed by the
modeller when compiling or loading information.
When a Notice Operation is given to the modeller, it
alters the internal data structures to refer to new ver-
sions of files. Since new models are derived from old

models when Notice operations occur, the modeller
must be able to write a new copy of the model it is
working on.

There is One parse tree per source model file. The
links between model files that are "called" by other
model files are represented as pointers from one model‘s
internal data structure to another in virtual memory.

The internal data structure represents the depen-
dency graph used to compile modules in correct compi-
lation order by threading pointers from one file name to
another in the parse tree.

[1. Model Independent Tables

[t is impractical to repeat the entire procedure just
described whenever any change is made to a system.
Among other things. this would imply recompiling
every module. Since the entire system is applicative.
however. and the value of an object never changes. the
results of any computation can be saved in a cache. and
reused instead of repeating the computation. In particu-
lar. the results of the type analysis of objects and the

S

10

IS

20

25

35

45

55

65

50

results of compilations can be saved. To this end. the
modeller keeps three tables that record the results of
computations that are too extensive to repeat. These
tables serve as accelerators for the modeller and are

stored as files on the local computer disk.
These tables are of three types and are maintained

independently from instances of the modeller on a local
computer disk.

The information in a table is like a cache for the mo-

deller. It can be automatically reconstructed whenever
it is not present. as the information is never purged.
When the file containing the table becomes too large.
the user simply deletes it from his local disk and the
information is reconstructed.

Object Type Table: This table contains a list of ob-
jects that are referenced by models and have been ana-
lyzed as to their types. An example is shown in FIG. 18.
The modeller abstracts essential properties of the ob-
jects in models and stores the information in this table.
For example, a Cedar source file is listed along with the
implied procedure type used by the modeller to compile
and load it. The unique name of an object is the key in
this table and its type is the value. The object type table
also contains information that records whether a file has

been edited, and if so. whether it has been saved on a
remote file server.

Projection Table: This table keeps a list of entries that
describe the results of running the commler or other
program that takes a source object file and any needed
parameters, such as interfaces. and produces a binary
object file. An example is shown in FIG. 18. Before
invoking, for example, the compiler on a source file to
produce an object file, the modeller consults this table
to see if such a file is already available. The key in this
table is all the information that affects the result: the

name of the source object. the names of all the parame-
ter objects. the compiler switches. and the compiler
version. The value of a table entry is the name of the
binary object that results. This name is constructed
from user-sensible name of the source object. plus the
version stamp. the 48-bit hash code of all the other
information. An entry is added to the projection table
whenever the compiler is successfully run.

If an entry is not in the table, there may be an object
file on the disk made by the compiler that predates the
information in the projection table. If not, the compiler
is invoked to produce the object file. In either case a
new' entry is added to the table for later use.

It is possible for these tables to fill up with obsolete
information. Since they are just caches and can always
be reconstructed from the sources, or from information
in the .modelBinary objects. they can be purged by any
convenient method, including deleting them com-
pletely. As information is needed again. it will be re-
computed and reentered in the tables.

The projection table is augmented by a different kind
of cache provided by the file system. Whenever the
result of a needed compilation is not found in the pro-
jection table. the modeller constructs the 48-bit version
staanp that the resulting binary object will have by hash-
ing the source name and parameters, and searches for
this object in the file system. If it is found. the compila-
tion need not be redone. The result is put into the pro-
jection table so that the file system need not be searched
again. This search of the file system is suppressed for
source files that have just been edited. since it would
never succeed in this case.
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The projection table does not include the location of
object files. Version maps, described below, are used for
this.

Versiori Maps: The central file servers used by the
system modeller can store more than one version of a
source file in a directory. An example is shown in FIG.
19. Each version is given a version number, which
ranges from I to 32767 and is typically less than [00.
Obtaining the creation time of a source file or the 48-bit
version stamp of object files from a central file server
takes between i and 1 second. For directories with
many versions of a. file, searching for the create time or
version stamp can take a few seconds per file.

Since the modeller must determine the explicit ver-
sion number of the file that is referenced in the model.

this slow search for large numbers of files referenced by
models is prohibitively excessive. To avoid this exces-
sive searching when it is running. the modeller uses an
index between create times or version stamps and full

path names that include explicit version numbers for
files. Since the version numbers used by the file servers
are not unique and may be reused, the modeller uses this
index as a cache of hints that are checked when data in

the file is actually used. If there is no entry for a file in
the cache, or if it is no longer valid, the versions of a file
are searched and an entry is added or updated if already
present. Commonly referenced files of the software
system are inserted in a. version map maintained on each
computer or machine.

In summary. the Object Type table speeds the analy-
sis of files, the Projection table speeds the translation of
objects into derived objects, and Version Maps are used
to avoid extensive directory searches.

The modeller keeps its caches on each machine or
computer. It is also desirable to include this kind of
precomputed information with a stored model, since a
model is often moved from one computer or machine to
another. and some models are shared among many us-
ers, who refer to them in their own models by using the

_ @-notation. An example is the model Cedarlnterfaces.-
model, which returns a large number of commonly used
interfaces that a program might need. Furthermore,
even with the caches, it is still quite extensive to do all
the typechecking for a sizable model.

For these reasons. the modeller has the ability to

create and read back compiled models. A compiled
model contains

{1) a tree which represents a parsed and typechecked
version of the model;

(2) object type and projection tables with entries for
all the objects in the model;

{3) a version map with entries for all the objects in the
_ model.

When the user initiates the “MalteModechd" button

in field 30 of FIG. 20, the modeller makes this binary
object for the current model, much as a compiler makes
a binary file from a source file. In a .modechd object
any parameters of the model which are not instances
may be given specific argument values. This is much
like the binary objects produced by the compiler, in
which the interface parameters are fixed. The .rno-
dellilcd objects acts merely as an accelerator. since it is
always possible to work from the sources of the model
and the objects it references, to derive the same result as
is encoded in the .modechd.
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III. Interaction Between Tables and .modechd files

As just indicated, .modechd file can be produced for
a model that has been analyzed by initiath the
“MalteModechd” buttori. The .modechd file contains

the same information described in the previous tables.
Only information relevant to the model being is ana-
lyzed is stored. The .modechd contains (a) a represen-
tation of the internal parse tree that realms from reading
and parsing the source file for the model, (b) an object
type table for source files referenced by the model, (c)
a projection table describing the object files are are
produced, for example, by the compiler. and (d) a ver-
sion map that describes, for each source and object file
in (b) and (c), a file location including a version number.

A model may refer to other models in the same way
it refers to other source files. The projection table in-
cludes references to .modechd files for these inner
models.

The information stored in the model-independent
tables or present in .modechd files is used in four differ-
ent ways: three ways when the modeller is used, and
once by the release process, which is described later.

Startlvlodel Analysis: Each application of a source
file to a parameter list in the model is checked for accu-
racy aud to see if any parameters have been defaulted.
The version information (create time) following the
source file name is employed to look up the parameters
needed by the file in the file type table. If no entry is
present, the source file must be parsed to get its parame-
ters. The version map is used to obtain an explicit file on
a file server. if there is no entry for the create time of
this file in a version map. all versions of the source file
on the directory listed in the model are examined to see
if they have the right create time. If so, an entry for that
version is added to the version map and the file is read
and its type is added to the object type table. If so such
version can be found by enumeration. an error is re-
ported in field 36.

If the version of the source file is given as “1H”, mean-
ing the highest version on that directory, the directory
is probed for the create time of the highest version, and
that create time is used as if it were given instead of
"ll-l".

FIG. 22 illustrates by flow diagram how a reference
to “[‘Ivfl <Schrnidt >X.Mesa“ ofJuly 25, 1982 14:03:02
is treated by the StartModel analysis.

Compilation Analysis: After the user initiates "Be-
gin” or “Compile” in field 30, the modeller constructs
object files for each source file in the model. Each
source file and its parameters is looked up in the projec-
tion table. If not present, the modeller constructs the
48-bit version stamp that an object file would have if it
had been compiled from the source and parameters
given. The version map is used to search for an object
file with this 48-bit version stamp. If not found in the
version map, the modeller searches for an object file in
the directory where the source file is stored. If found, an
entry is added to the version map and to the projection
table.

The modeller does not search for object files com-
piled from source files that have just been edited since it
has knowledge that these have to be compiled.

If the modeller must compile a source file because it
cannot find an object file previoust compiled. the
source file is read using the version map entry for the
source and an object file produced on the local com-
puter disk. Information about this object file is added to
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the model-independent tales and version maps. The
object file is stored on a file server later when “Store-
Baclt" is initiated. The compilation analysis for this is
illustrated in FIG. 23.

Loader Analysis: Each object file must be read to
copy the object instructions into memory. The modeller
loader, as illustrated in the loading analysis of FIG. 24,
looks up the 48—bit version stamp in the version map to
find the explicit version of the file to read.

Since the version maps are hints, the presence of an
entry for a file in a version map does not guarantee that
the file is actually present on the file server and. there-
fore, each successful probe to the version map delays
the discovery of a missing file. For example. the fact
that a source file does not exist may not be discovered
until the compilation phase, when the modeller tries to
compile it.

IV. Retenticm of Information in Tables

When the modeller stores file type. projection. and
version map information in .modechd files, it stores
only information relevant to the model in use. When the
modeller reads .modechd files. it takes the information
from the .modechd and adds it to cache tables main-

tained on each machine or computer. When a module is
compiled for the first time. this information is added to
the tables manage centrally on each computer. This
information can, over time, become obsolete and re-
quire large amounts of disk space, since these tables are
stored in files on the local computer disk. If these files
are deleted from the local disk, the modeller will recon-
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ter, who runs the modeller to verin that a proposed
release is consistent and complete, and takes corrective
action if it is not. Errors in models, such as references to
non-existent files or references to the wrong versions of
files. are detected by the Release procedure of the mo-
deller. When errors are detected. the Release Master

notifies appropriate irnplementor/user to correct the
model.

Releases can be frequent. since performing each re
lease imposes a low cost on the Release Master and on
the environment programmers. The Release Master
does not need to know any details about the packages
being released, which is important when the software of
the system becomes too large to be understood by any
single programmer/user. The implementor/user of
each package can continue to make changes until the
release occurs, secure in the knowledge that the pack-
age will be verified before the release completes. Many
prOgrammers make such changes at the last minute
before the release. The release process supports a high
degree of parallel activity by programmers engaged in
sofiware development.

11. The Top Model
The Release Master maintains a model with one com-

ponent for each component of the release. This list.
called the Top model, defines, for every model named
in the list, a file server and directory where it can be
found. While a release is being deveIOped. this model
refers to objects on their working directories, e.g.. the
top model might be
 

Tor-I
Mme - @{indigc}<lnt)BTree.Model!I-l —ReleaseAs [lndigo]<Cedar)—.
Runlime ~ @[lndigo]< Int > Runtime.Model!H -ReleaseAa {lndigO]<Cedar3~ -
 

struct the information as it uses it.

C. Releases

I. General

As previonsly indicated. Release is a software system
composed of a collection of modules which have been
tested for conformance to some kind of specification.
and filed so that any one of them can be retrieved sim-
ply and reliably as long as the release remains active.
The Release procedure in the modeller takes a model,
performs various checks on its components, builds the
system it describes. and moves the' system and all the
components to designated directories. In more detail.
Release[M]:

( 1) Checks that M and each component of M is legal:
syntactically correct. typeocorrect, and causes no com-
piler errors.

(2) Ensures that all objects needed by any component
of M are components of M, and that only one version of
each object exists (unless multiple versions are explicitly
specified).

[3) Builds the system described by M.
(4) Copies all the files representing objects in M to a

place where they cannot be erroneously destroyed or
modified.

A release is complete if and only if every scarce file
needed to compile every object file is among the files
being released. A release is consistent if and Only if only
one version ofeach package is being released. and other
packages depend only on that version. The release pro-
cess is controlled by a person acting as a Release Mas-
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The Top model is used during the development phase
as a description of models that will be in the release and
gives the locations of these objects while they are being
developed. The Top model provides the list of moldels
that will be released. Models not mentioned in the Top
model will not be releaSEd.

Every model M being released must have a LET
statement at the beginning that makes the components
in the Top model accessible in M. Thereafter. M must
use the names from Top to refer to other models. 'I‘hus,
M must begin
 

LET@[Indigo< lnthOp.Model!l-l IN [

RTypes: lN'l'ERFACE m Runtime.

] 

Clients of a release component. e.g., RTTypes, are
not allowed to refer to its model by @-reference, since
there is no way to tell whether that model is part of the
release. Aside from the initial reference to Top, a re-
lease component may have (all—references only to sub-
components of that component.

A model M being released must also have a comment
that gives its object name in the Top Model (cg.
BTree). and the working directory that has a copy of
the model. e.g.,
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-—Re|easeNuue B’Tree

—WorkingModelOn [Indigolac Int > BTree.Model

These comments are redundant but allow a check that 5
TOp and the component, and hence the Release Master
and the implementor/user, agree abOut what is being
releasad.

M must also declare the release position of each file,
by appending it as a comment ater the filename in the
model. 1.1.3.,

10

@[lvy] C Wort )- Xl mpl.Mesale-ReleaseAs
findigoI<Cedar> XPack > —El

A global ReleaseAs comment can define the default '5
release position of files in the model (which may differ
from the release position of the model itself). Thus if the
model contains a cornment.

—Defau1|Rel-eaaeAs [Indigo] (Cedar) BTreca) — 20

then the user may omit the

—RelesseAa [Indigo{(Cedar> Wm}—
25

clauses.

D. Modeller Implementation

The modeller must be able to analyze large collec-
tions of modules quickly, and must provide interfaces to

' the compiler, loader, debugger, and other programs.
Described first are the basic algorithms used for evalua-
tion and then a description of the algorithms used for
releases. The cache tables used have been previOusly
explained which gently improve performance in the
normal case of incremental changes to a large software
system.

35

1. Evaluation

In order to build a program or system, the modeller
must evaluate the model for the program. As previously

- explained. a model is an expression written in SMI.
notation. Evaluating an SML expression is done in three
steps:

(I) The Standard B-reduction evaluation algorithm of 45
the typed lambda calculus converts the expression into
one in which all the applicatiOns are of primitive ob-
jects. namely system modules. Each such application
corresponds to compilation or loading of a module.
fl-reductiorr works by simply substituting each argu-
ment for all occurrences of the correspOnding parame-
ter. SML operations such as selecting a named compo-
nent of a binding are executed as part of this process.
Thus, in the example.

55
LET lastsnces~©CedarInstancea.model IN

lrutanceaRflpe

evaluates to

@[Indigo] < Cedar ) RopelmplcedarltJulyr ll]. 19”.
1T:10:24J[. . . H. _ _]

where the arguments of Ropelmpl are filled in accord-
ing to the defaulting rules.

(2) Each application of a .cedar object is evaluated by
the compiler, using the interface arguments computed
by (l). The result is a .binary or .Bcd object. or course.
each interface argument must itself be evaluated first;

65

56
Le. the interfaces on which a module depends must be
compiled before the module itself can be compiled.

(3) Finally, each application of a Bed object com-
puted in (2) is evaluated by the loader. using the in-
stance arguments computed by (1). Cedar permits mu-
tual recursion between procedures in different modules.
so it is not always possible to fully evaluate the instance
arguments. Instead. for each instance of an interface, a
record is allocated with space for all the components of
the interface. A pointer to the record is passed as an
argument. rather than the record itself. Later. when the
.binary object application which defines the interface
has been evaluated by loading the object, the record is
filled in with the results, namely the procedures and
other values defined by that module.

Once everything has been loaded, the result is a runn-
able version of the program or software system.

Step (I) is done when the user initiates the Start-
Model screen button shown in FIG. 20 or on the af-
fected subtree whenever the current model is modified

by a Notice operation. For StartModel. the modeller
reads the model from its source file, parses the source
text and builds an internal parse tree. For Notice, the
parse tree already exists, and is simply modified by
substituting the new version for each occurrence of the
old one. The leaves of this parse tree are the system
modules referenced with "@" from the model. If an-
other model is referenced. it does not become a leaf.
Instead. its parse tree is computed and becames a sub-
tree of the containing model.

After the parse tree is built. it is evaluated to produce
a value tree. The evaluatiOn applies functions by substi-
tuting arguments for parameters in the functiOn body.
looks up names in bindings, does type checking, and
supplies defaulted argumants. The first two operations
have already been discussed. Typechecking requires
knowing the type of every value. For a value which is
a system module. the modeller obtains its type by exam-
ining the first few lines of the module, where the inter-
faces and instances imported by the module are de-
clared in DIRECTORY and IMPORTS clauses, to-

gether with the instances EXPORTed in an EXPORTS
clause.

For example. a module M which uses interfaces A
and B, IMPORTs an instance of A, and EXPORTS an
instance of B. begins
 

DIRECTORY 1MB;
M: PROGRAM
IMPORTS A:
EXPORTS B:

 

 

and has the type

[INTERFACE it. INTEFACE B]-—-[[A]—-[Bl]

i.e.. it is a function taking two interface arguments
and returning. after it is compiled. another function that
takes an instance of A and returns an instance of B. The

modeller checks that the arguments supplied in the
model have thee types. and defaults them ifappropriate.
SML typechecking is discussed in detail in the Article
of B. W. Larnpson et a]. "Practical Use of a Polymor—
phic Applicative Language", Proceedings of the 10th
Symport'um on Principles of Programming Languages,
Austin, Tex.. January 1933.
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After the entire model has been evaluated, the mo-

deller has determined the type of each module and has
checked to determine that every module obtains the
arguments of the type it wants. Any syntactic or type
errors discovered are reported to the user. If there are
non. then whenever a value is defined in one module
and used in another, the two modules agree on its type.
Nothing at this point has yet been compiled or loaded.

After step (I) , the value of the model is a tree with
one application for each compilation or loading opera-
tion that must be done. The compilation dependencies
among the modules are expressed by the aguments: if
module A is an argument to module B, then A must be
compiled first, and if A changes, B must be recompiled.
Because of the level of indirection in the implementa-
tion of loading, it is not necessary to reload a module
when other modules change.

To get from this use to a fully compiled program or
system, each application of a source module must be
evaluated by the compiler. as described in (2). During
this evaluation, the compiler may find errors within the
module. This step is done when the user initiates the
“Compile” or "Begin" button.

After step (2), the value of the model is a tree in
which each application of a source object has been
replaced by the binary object that the compiler pro-
duoed. To get from this tree to a runnable program or
system, each binary object must be loaded. and teach
instance record filled in with the procedures EX-
PORTed from the modules that implement it. The de-
tails of how this is done are very dependent on the
machine architecture and the runtime data structures of

the implementing language

E. Release Utility

After preparation of all models that are to be re-
leased. the Relase Master runs the Release Utility. Re-
lease, which makes three passes over the module being
released.

I. Phase one: Check

The Check phase of Release checks the Top model
and all its sub-models for problems that might prevent a
suGCessfiJl release. Each model is parsed and all files
listed in the model are checked. Check ensures that the

versions listed in the models exist and that their parame-
teriration is correct. The directory containing each
source file is checked to make sure it contains a valid

object file. This guards against compilation errors in the
source files. Common blunders are caught, such as a
reference to a model that is not in the Top model. The
Release Master contacts implementors and asks for
correction of errors caught in this phase.

11. Phase two: Move

The Move phase moves the files of the release orito
the release directory and makes new versions of the
models that refer to files on the release directory instead
of the working directory. For each model listed in the
release position list, Move:

(1) reads in the model from the working directory.
(2) moves each file explicitly mentioned in the model

to its release position.
{3) writes a new version of the source file for the

model in the release directory.
This release version of the model is like the working

version except that (a) all working directory paths are
replaced by paths on the release directory, (b) a com-
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ment is added recording the working directory that
contained the working version of the model, and (c) the
LET statement referring to the Top model is changed
to refer to the one on the release directory.

For example, the model may look like the following:

 
—IlelesseName B'l'reeModel
—CameFromModelOn [Indigo] ( Int ‘) Btreel'lod eI
—DefanltCameFrom [Indigo] < Int > B'I'reea >
LET @[ivy] {Rel ) ReleasePOaition.Model I'N [

RTFM:
lNTERFACE -- @[Indigo] (Cedar) XPack > tilebedl | 234
meme [Indigo] ( Int > XPackpu-I

 

Any references to highest version. "iii". are changed
to be explicit create times as the model is written.

At the end of phase Move. the working position
model is automatically converted to a release position
model that defines the same variables as the working

position model, but sets those variables to refer to the
model stored on the release directory. A release posi-
tion model might be
 

Position - [
B‘TreeModel — @[IndigolCCflllI} BTree.Modelllz34.
Rmdeodel — @[Indigo]<Cedar)Runfirne.Model!]234$]
l 

Note that the LET switch is a deviation from explicit
parameterization that allows us to change the nature of
each model from being a development version to being
it released version. The LET switch could be avoided if

every model tool: a parameter that controlled whether
its LET statement should refer to the working position
model or the release positioa model. The SML lan-
guage could be augmented with a type "BOOLEAN"
and an IF—THEN»ELSE expression to accomplish this.
Because Release has to rewrite models anyway to elimi-
nate “ll-I" references. the LET switch is chosen to be
accomplished automatically.

Phase Move also constructs a directed graph of mod-
els in reverse dependency order that will be used in
phase Build. In this dependency graph. if Model A
refers to model B. then B has an edge to A.

FIG. 22 illustrates the movement of files by this
phase.

III. Phase Three: Build

The Build phase takes the dependency graph com~
puted during the move phase and uses it to traverse all
the models in the release. For each model:

(1) All models on incoming edges must have been
examined.

(2) For every source file in the model. its object file is
moved to the release directory from the working direc-
tory.

(3) A.modeIB-ed file is made for the version on the
release directory.

(4) If a special comment in the model is given. a fully-
bound object file is produced for the model. usually to
use as a boot file.

After this is done for every model, a version map of
the entire release is stored on the release directory.

PMC Exhibit 2121

Apple v. PMC
|PR2016-01520

Page 55

 



PMC Exhibit 2121 
Apple v. PMC 

IPR2016-01520 
Page 56 

 
4,558,413

59
FIG. 23 illustrates the movement of files by this

phase.
At the conclusion of phases Check, Move and Build,

Release has established that:

(1) Check: All reachable objects exisL and derived
objects for all but the top object have been com-
puted. This means the files input to the release are
statically correct.

(2) Move: All objects are on the release directory. All
references to files in these models are by explicit create
time (for source files) or version stamps (for object
files).

(3) Build: The system has been built and is ready for
execution. All desired accelerators are made. i.e.. .mo-
dechd files and a version map for the entire release.

1V. Phase Implementation Details

Phase Check. In order to know the parameterization
of files referenced in the model. some part of each sys-
tem file must be read and parsed. Because of the large
number of film involved. phase Check maintains object
type and projection tables and a version map for all the
files on their working directories. Tliese tables are filled
by extracting the files stored in the .modechd files for
the models being submitted to the release. Any models
without .modelB-cd accelerators are read last in phase
Check and the result of analyzing each file is entered
into the database. The version map information abOut
object file locationts) and projection table are used later
in phase Build.

Because files can be deleted by mistake alter the .mo-
dechd file is made and before phase Check is run, He-
lease checks that every version of every file in the re-
lease is present on the file server by verifying the file
location hints from the .modechd files.

Phases Move and Build. The Move and Build phases
could have been combined into a single phase. Separat-
ing them encourages the view that the Build phase is not
logically necessary, since any programmer can build a
running system using the source models and source files
that are moved to the release directory during the Move
phase. The Build phase makes a runnahle system once
for all users and stores the object files on the release
directory.

The Build phase could be done incrementally. as each
model is used for the first time after a release. This
would be useful when a release included models that

have parameters that are unbound. which requires the
user to build the model when the model is used and its

parameter are given values.
The Check phase file type and projection tables and

version map are used to make production of the .mo-
dechd files faster. The projection table is used to com-
pute the version stamps of object files needed. and the
version map is used to get the file name of the object
file. This object file is then copied to the release direc-
tory. The file type entry. projection entry and new
release positiOn of source and object files are recorded
in the .modechd being built for the released model.

The Build phase has enough information to compile
sources files if no suitable object files exist. To speed up
releases, it is preferred that the programmer/user make
valid object files before the operation of Move and
Build. If such an object file is not on the same directory
as the Emma file. the programmer/user is notified of his
error and ask to prepare one. If the Release Master ran
the compiler, he would most likely compile a file that
the programmer had fogotten to recompile, and this file
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might have compilation errors in it. The ability to auto-
matically compile every file during a release is useful in
extensive bootstraps. however. For example. a conver-
sion to a new instruction set. where every module in the
release must be compiled, is easily completed using a
cross-compiler during the phase Build.

The Build phase produces the version map of the
release by recording the create time or version stamp of
every file stored by Release on the release directory.
along with file server, directory. and version number
for the file. The version maps supplied by the .mo-
dechd files that were submitted to the release cannot be

used, since they refer to files on their development
directories and not on the release directories. This re-

leased version map is distributed to every machine or
computer. Although the .modechd files also have this
information. it is convenient to have allthe version in-
formation released in one map.

FIG. 24 is an example of a single version map.
The working position model may list other nested

working position models. The objects defined in the
nested working position model are named by qualifying
the name of the outer object. For example. if Top con-
tained

 

Top~l

bleatodSet -. @[Indigo]<lnt>NcmlePM.Modelll-l _ am
flndignI<Cedar> —

 

Then, the elements of the nested working position
model can be referred to using notation, e.g., Top.-
NestedSet.Element. The “ReleaseAs” clause in Top
indicates the directory in which the analogous release
position model is written. The same algorithm is used to
translate the working model into a release model.

4. Summary

A model refers to objects. i.e. sourco files, binary
(object) files or other models, by their unique names. In
order to build a system from a model, however. the
modeller must obtain the representations of the objects.
Since objects are represented by files. the modeller must
be able to deal with files. There are two aspects to this:

(1) Locating the file which represents an object, start-
ing from the object's name.

(2} Deciding where in the file system a file should
reside. and when it is no longer needed and can be
deleted.

It would be desirable if an object name could simply
be used as a file system name. Unfortunately. file sys-
tems do not provide the properties of uniqueness and
immutability that object names and objects must have.
Furthermore, most file systems require a file name to
include information about the machine or computer that
physically stores the file. Hence, a mapping is required
from object names to the full pathnames that unambigu-
ously locate files in the file system.

To locate a file. the modeller uses a location hint in
the model. The object reference @[lel < Schmidt) B-
Treelmplcedarlaan. 14, 1983, 14:44:09) contains such a
hint. [lvy]<S-chmidt>. To find the file, the modeller
looks on the file server lvy in the directory Schmidt for
a file named BTreelmpl.cedar. There may be one or
more versions of this file; they are enumerated. looking
for one with a creation date of Jan. 14, I983. [4:44:09. lf
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such a file is found, it must be the representation of this
object.

The distributed environment introduces two types of
delays in access to objects represented by files: (1) If the
file is on a remote machine, it has to be found. (2) Once
found. it has to be retrieved.

Since retrieval time is determined by the speed of file
transfer across the network and the load on the file

serVer, the modeller tries to avoid retrieVing files when
the information it wants about a file can be computed
once and stored in a database. For example, the type of
an object, which is the information needed to compute
its compilation dependencies, is small compared to the
object itself. The object type table stores the types ofall
objects of current interest; a source object in the table
does not have to be examined, or even retrieved, unless
it actually needs to be recompiled.

In cases where the file must be retrieved. determining
which machine or computer and directory has a copy of
the version desired can be very time consuming. Even
when a file location hint is present and correct, it may
still be necessary to determine several versions of the
file to find the one with the right creation date. The
modeller minimizes these problems by keeping another
cache, which maps an object name into the full path
name in the distributed file system of a file which repre-
sents the object. This cache is the Version Map, dis-
cussed previously. Note that both source objects, whose
unique identifiers are creation dates, and binary objects,
whose unique identifiers are version stamps. appear in
the version map. The full pathname includes the version
number of the file, which is the number after the "i".
This version number makes the file name unique in the
file system so that a single reference is sulficient to
obtain the file.

Thus. the modeller’s strategy for minimizing the cost
of referencing objects has three paths:

{1) Consult the object type table or the projection
table, in the hope that the information needed about the
object is recorded there. If it is, the object need not be
referenced at all.

(2) Next, consult the version map. If the object is
there, a single reference to the file system is usually
sufficient to obtain it.

(3} If there is no entry for the object in the version
map, or if there is an entry but the file it mentions does
not exist. or does not actually represent the object, then

' use the file location hint to identify a directory, and
enumerate all the versions of the file to find one which

does represent the object. If this search is successful.
make a new entry in the version map so that the search
need not be repeated.

Like the other caches, a version map is maintained on
each computer or machine and in each .modechd ob‘
ject. A .modelEcd version map has an entry for each
object mentioned in the model. A machine version map
has an entry for each object which has been referenced
recently on that machine. In addition, commonly refer-
enced objects of the software system are added to the
machine version map as part of each release.

Since the version maps are hints, a version map entry
for an object does not guarantee that the file is actually
present on the file server. Therefore, each successful
probe to the version map delays the discovery of a
missing file. For example. the fact that source file does
not exist may not be discovered until the compilation
phase, when the modeller tries to compile it. This means
that the modeller must be robust in the face of such
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errors. The release process, however, guarantees that
the files are present as long as the release remains active.

While the system modeller has been described in
conjunction with specific embodiments, it is evident
that alternatives, modifiCatioris and variations will be
apparent to those skilled in this artin light of the forego-
ing description. Accordingly, it is intended to embrace
all such alternatives. modifications and variations as fall
within the spirit and scope of the appended claims.

What is claimed is:

1. A software version management system for auto-
matically collecting and recompiling updated versions
of component software objects comprising a software
program for operation on a plurality of personal com-
puters coupled together in a distributed software envi-
ronment via a local area network and wherein said

objects include the source and binary files for various of
said software program and are stored in various differ-
ent local and remote storage means through said envi-
ronment, said component sofiware objects being peri-
odically updated via environment editing means by
various users at said personal computers and stored in
designated storage means, said system including:

models comprising system objeczs,
each of said models representative of the source ver»

sioas of a particular component software object.
each of said models containing object pointers includ-

ing a unique name of the object, a unique identifier
descriptive of the cronological updating of its cur-
rent version, information as to an object’s depen-
dencies on other objects and a pathname represen-
tative of the residence storage means of the object,

means in Said editing means to notify said manage-
ment system when any one of said objects is being
edited by a user.

means in said management system in response to noti-
fication of object editing to track said edited ob-
jects and alter their respective models to the cur-
rent version thereof.

said management system upon command adapted to
retieve and recompile said source files correspond-
ing to said altered models and load the binary files
of said altered component software objects and
their dependent objects into said computers.

2. The software version management system of claim
1 wherein said system includes accelerator means to
cache said object pointers in said models that never
change to thereby avoid further retrieving of said ob-
jects-to parse and to discern said object pointers.

3. The software version management system of claim
2 wherein said accelerator means for said models in-
cludes

an object type table for caching the unique name of
the object and its object type to enhance the analy-
sis of a model by said management system,

a projection table for caching the unique name of the
source object, names of object parameters, com-
piler switches and compiler version to enhance the
translation of objects into derived objects. and

a version map for caching said pathname.
4. A method for automatically collecting updated

versions of component software modules together
which comprise a software program Operative on a
plurality of computers. said computers coupled to-
gether in a distributed software environment via a local
area network and wherein said modules are stored in

various different local and remote storage means
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throughout said environment and comprising the steps
of

creating models representative of said modules, each

of said models containing object pointers compris-

ing a unique name of the module, a unique identi-

fier descriptive of the chronological updating of its

current version, information as to a module's de-

pendencies on other modules in the software pro-

gram and a pathname representative of the resi-

dence storage means where the module resides.
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monitoring the editor facilities of said computers to
determine when a module is being edited to form
an updated version thereof.

altering the model to reflect said updated version
upon completion of editing.

5. The method of claim 4 which includes the steps of
retrieving and recompiling said modules correspond-

ing to the models altered, and
loading the recompiled modules and their dependent

modules into said computers.
6. The method of claim 4 which includes the step of

caching model object pointers that do not change to
avoid discerning and parsing of said object pointers
each time a model is altered.t I t t ‘
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