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Abstract—This paper presents a review of techniques used fordigital
* encoding of picture material. Statistical models of picture signals and

elements of psychophysics relevant to picture coding are coveredfirst,
followed by a description of the coding techniques. Detailed examples
of three typical systems, which combine some of the coding principles,
are given. A bright future for new systems is forecasted based on
emerging new concepts, technology of integrated circuits and the need
to digitize in a variety of contexts.

I. INTRODUCTION

ROADCASTtelevision has assumed a dominantrole in

Be everyday life to such an extent that today in theU.S. there are more homes that contain a television set

than have telephone service. So it is natural that in thinking of
television transmission we immediately think of the signal that
is broadcast into the home. More efficient encoding of this
signal would free valuable spectrum space. A difficulty in
modifying the television signal that is broadcasted for local dis-
tribution is that the television receiver would most likely need
to be modified or replaced.! The difficulty of achievingthis
with an invested base of over $10 Billion is staggering.

There is a large amount of point-to-point transmission ofpic-
ture material taking place today apart from the UHF/VHF
broadcasting. For example, each of the four U.S. television
networks has a distribution system spanning the whole of the
continental United States; international satellite links transmit
live programs around the world. Video-conferencing services

Manuscript received May 11, 1979; revised October 2, 1979.
A. N. Netravali is with Bell Laboratories, Holmdel, NJ 07733.
J. O. Limb is with Bell Laboratories, Murray Hill, NJ 07974.
‘However, there is the possibility of improving picture quality by

modifying the transmitted signal such that it remains compatible with
existing television receivers.

are receiving increasing attention, and facsimile transmission of
newspapers and printed material is becoming more wide-
spread. Satellites are beaming to earth a continuousstream of
weather photographs and earth-resource pictures, and there are
a number of important military applications such as the con-
trol of remotely piloted vehicles. Efficient coding of picture
material for these applications provides the opportunity for
significantly decreasing transmission costs. These costs can be
quite large; in comparison with a digitized speech signal at 64
kb/s, straightforward digitization of a broadcast television sig-
nal requires approximately 100 Mb/s. The aim of efficient
coding is to reduce the required transmission rate for a given
picture quality so as to yield a reduction in transmission costs.

A further area of application of efficient coding is where pic-
ture material needs to be stored, for example, in archiving X-
ray material and in storing picture databases such as engineer-
ing drawings and fingerprints. Efficient representation will
permit the storage requirements to be reduced.

Some early efforts in picture coding used analog coding
techniques and attempted to reduce the required analog band-
width, giving rise to the term ‘‘bandwidth compression”’.”
Complex manipulations of the signal are today much more
easily done by first sampling and digitizing the signal and then
processing the signal in the digital domain rather than using
analog techniques. The resulting signal may be converted back
to analog form for transmission over an analog channel or be
retained in digital form for transmission over a digital channel.
Almost all coding methods have been oriented toward digital

* Channel capacity is a function of both bandwidth and signal-to-noise
ratio, thus compressing bandwidth may not reduce channel capacity if a
lower noise channel is required as a result.
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Block diagram of the encoding process.

transmission for a numberofreasons: it offers greater flexibil-
ity, it may be regenerated, it is easily multiplexed and en-
crypted, and its ubiquity is increasing [1].

Efficient coding is usually achieved in three stages (Fig. 1).
1) An initial stage in which an appropriate representation of

the signal is made, for example, a set of transform coefficients
for transform encoding. This operation is generally reversible.?
Statistical redundancy mayalso be reduced.

2) A stage in which the. accuracy of representation is re-
duced while still meeting the required picture quality objec-
tives [2]. For example, dark portions of a picture may be
coded more accurately than lighter portions to utilize the fact
that the visual system is more sensitive to small signal changes
in the darker areas. This operationis irreversible.

3) A stage in which statistical redundancy in the signal is
eliminated. For example, a Huffman code [3] may be used to
assign shorter code words to signal values that occur more fre-
quently and longer code words to values that occur rarely.
This operation is reversible.

In practice transmission channels.are frequently prone to er-
rors and a “catch 22” of coding is that when thesignal is rep-
resented more efficiently the effect of an error becomesfar
more serious. Consequently, it is frequently necessary to add
a controlled form of redundancy back into the signal in the
form of channel encoding in order to reduce the impact of
transmission errors. The typical configuration then, is shown
in Fig. 2 with the coding broken down into source encoding,
in which redundancy is removed from the signal for the pur-
pose of achieving a more efficient representation, and channel
coding where redundancyis reinserted into the signal in order
to obtain better channel-error performance. It goes without
saying that the increase in bit rate resulting from the channel
coding stage should be significantly less than the decrease in
bit rate resulting from the source encoding operation in order
to realize a saving. In practice the application of picture cod-
ing to transmission channels is an economic tradeoff in system
design, balancing picture quality, circuit complexity, bit rate,
and error performance.

Where coding is used to reduce storage requirements the
tradeoffs are different in that the coding operation usually
need not be performed in real time and buffering may not be
needed to match the output generation rate of the coder to
the transmission rate of the channel, Further, the error rate
encountered in the process of storage and retrieval is usually
many orders of magnitude lower than the design error rate for
a digital channel. As a result, for purposes of storage one can
consider more complicated encoding algorithms without con-
cern aboutthe effects of a large error rate.

In this paper, we will be concerned primarily with describing
efficient picture coding algorithms. The paperis addressed to
the nonspecialist but does assume some backgroundin digital
Processing techniques. The literature in this area is extensive

> DPCM encoding (see Section IV-B) combines stages 1 and 2.
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Fig. 2. Source and channel encoding.

[4], [5] and we will describe those aspects of the art which
we feel are most significant. References [6]-[12] are special
issues which give more detail about certain aspects of the sub-
ject. The whole topic of the efficient coding of color signals is
covered in a recent paper [13] and for this reason color coding
will be discussed very cursorily. One specific type of signal is
the two level (black/white) waveform that results from scan-
ning a facsimile image. This special topic is covered in [14]
and is not discussed here. A recent book contains reviews of

many aspects of picture coding [15].
Westart by providing background on the nature and proper-

ties of the television signal source in Section II and on the hu-
man observer (who is in most applications the ultimate re-
ceiver) in Section III. In Section IV, basic waveform coding
techniques are first classified and then discussed under the
categories pulse-code modulation (PCM), differential PCM
(DPCM), transform, hybrid, interpolative, and contour. Sec-
tion V contains descriptions of state-of-the-art examples of
transform encoding, frame-to-frame DPCM and frame-to-frame
interpolative encoding and indicates how the techniquesof the
previous section have been combinedin practical encoders. In
Section VI issues such as the direction of new developments
and the effect of new technology are discussed.

IJ. SourRcE CopING AND PICTURE STATISTICS

Ideally, one would like to take advantage of any structure
(both geometric and statistical) in a picture signal to increase
the efficiency of the encoding operation. Also the coding pro-
cess should take into consideration the resolution (amplitude,
spatial, and temporal) requirements of the receiver, i.e., the
television display and very often the human viewer.* This
problem of encoding can be formulated in the general frame-
work of information theory as a source coding problem. In
this section, we describe briefly the source coding problem and
point out someof the difficulties in the use of results from in-
formation theory. We then present some knownstatistics of
the picture signals and models based on thesestatistics.

A. Source Coding Problem

The source coding problem can be stated mathematically as
follows. Given a random source waveform L(x, y, ¢) repre-
senting, for example, the luminance information in the picture,
obtain an encoding strategy such that for a given transmission
bit rate it minimizes the average distortion D defined as

D=E[d(L,£)) a)

where a(L, L) is ameasureofdistortion between two intensity
fields, L and L; Lc being the coded representation and F de-
notes the statistical expectation over the ensemble of source
waveforms. Design of such an encoding strategy depends ob-
viously on the statistical description of the random source
waveform, LZ, and on the characteristics of the distortion func-
tion d, Shannon’s rate distortion theory [16], [17] provides

‘There are many instances where pictures are processed and/or trans-
mitted for interpretation by a machine. 
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Fig. 4. Histogram of intensities of a typical image. The two peaks are
in the dark and light region of the image.

the mathematical framework for analysis of this source coding

problem, Let p,(L) be the probability density function of L,
and p2(L|L) be a conditional density corresponding perhaps
to an encoding and decoding operation, then the rate distor-
tion function R (D) is defined as

R(D*)= min {1(L, £)} (2)

where /(L, f) is the average mutual information between the
two random waveforms, source J and its reconstruction L, and
the minimum is taken overall the encoding strategies which re-
sult in average distortion D less than or equal to a given num-
ber D*. Average mutual information /(L, L) is defined by

rt, B)=~fpy(t)px(£L) toes x dL «dbp3{L)

(3)

where p3(L)is the probability density of £. Qualitatively, the
mutual information represents the average uncertainty in the
source output minus the average uncertainty in the source out-
put given the coded output L. The above definition of the
rate distortion function becomessignificant in the light of the
coding theorem of Shannon, which states that for stationary
sources an encoding strategy, however complex, cannotbe de-
signed to give an average distortion less than D for an average
transmission rate R(D); but it is possible to have an encoding
strategy to give an average distortion D at a transmission bit
rate arbitrarily close to R(D). Thus the rate distortion func-
tion gives the minimum transmission rate to achieve an average
distortion D and, therefore, provides a bound on the perfor-
mance of any given encoding strategy, i.e., we can find out
how far from the optimum any given practical encodingstrat-
egy is. Also it is possible to construct codes (e.g., block codes,
tree codes) whose asymptotic performance in terms of rate
will be close to R(D); however, this information does nottell
us precisely how to build practical encoders, but it is valuable
in calibrating them.

In addition to the problem that rate distortion theory does
not tell us how to synthesize a practical coder, it has other lim-
itations. It is difficult to compute rate distortion functions for
many realistic models of the picture source and distortion cri-
teria. One of the combinations of source distributions and dis-

tortion criteria for which the minimization problem of (2) is
solved is when the waveform L(x, y, ¢) is taken to be a se-

quence of spatial images L(x, y) representing a Gaussian ran-
dom field, and distortion between Z and L is measured by a
weighted square error [18]. In this case, the optimum en-
coder first filters the luminance field L(x, y) by the error
weighting function and expands the filtered image into its
Karhunen-Loeve components. (See Section [V-C.) Karhunen-
Loeve components are then represented(in binary bits, for ex-
ample) with equal mean-square error and transmitted. At the
receiver, an estimate of the filtered luminance field is recon-
structed, and it is inverse filtered to obtain an approximation
of the original image. Although the optimal encoder is known
explicitly in this case, the assumptions under which it is de-
rived are not entirely appropriate for the problem of picture
communication. The luminance of most picture signals does

me

 
 

a

-—$—a
——+
ws

PMC Exhibit 2025

Apple v. PMC
IPR2016-01520

Page 3



PMC Exhibit 2025 
Apple v. PMC 

IPR2016-01520 
Page 4 

NETRAVALI AND LIMB: PICTURE CODING

not approximate a Gaussian process, and the weighted square
error criterion (see Section III) is not appropriate if the pic-
tures are viewed by human observers. Summarizing, there are
four problems in the use of the rate distortion theory : 1) lack
of good statistical models for picture signals; 2) a distortion
criterion consistent with the visual processing of the human ob-
servers; 3) calculation of rate distortion functions; and 4) syn-
thesis of an encoder to perform close to R(D).

B. Picture Signal Statistics and Models

Perhaps because rate distortion theory presents many prob-
lems in its use for picture coding, many ad-hoc encoding
schemes have been proposed to exploit different types of ob-
served redundancies in the picture signal. We give a brief sum-
mary of picture signal statistics that is useful in the discussion
of encoding schemes described in Section IV.

We start with the first-order statistics. We employ the con-
ventional scanning and sampling process shown in Fig. 3 to
convert the television signal from a scene into a sequence of
samples. This is done by first sampling in time to get fields
and then a periodic sampling of a matrix of picture elements
(pels) of chosen resolution in the field. We note that the two
consecutive fields are interlaced vertically in space, i.e., spatial
position of a scanningline in a field is in the middle of the spa-
tial position of scanning lines in either of its two adjacent
fields. Also note that due to this interlace, distance between
two horizontally adjacent pels is smaller than the distance be-
tween twovertically adjacent pels. The probability density of
luminance samples thus generated is highly nonuniform, de-
pends upon the camera settings and scene illumination, and
varies widely from picture to picture. A histogram of pelin-
tensities from a typical picture shown in Fig. 4 demonstrates
that, even based on the first-order statistics, the luminance
does not approximate a Gaussian process [19].

Measurements of some second-order statistics [20]-[22]
show that the autocorrelation function depends upon the de-
tail in the picture. In general, the shape of the autocorrelation
function can be qualitatively related to the structure of the
picture. Fig. 5 shows two pictures: a head and shoulders view
of a person, and a picture containing white letters on black
background. It is easy to see the relationship betwecnthese
pictures and their autocorrelations shown in Fig. 5(e) and (f).
Figs. 5(c) and (d) show that the autocorrelation functions de-
crease with increasing shift in the pels. The rate of decrease is
large -for shifts close to zero, but becomes smaller for large
shifts. The envelope of the power spectrum shownin Fig.6 is
relatively flat to about twice the line rate (30 kHz for broad-
cast television), where it begins to drop at about 6 dB/octave,
implying that most of the video energy is contained in the low
frequencies [23], or equivalently that the neighboring pels are
highly correlated. Based on these measurements, autocorrela-
tion functions in two dimensions have been approximated
[24], [25] by the functions of the form

exp (-k,|Ax| - kz|Ay|) and exp [-(k, Ax? + ky Ay? ya/2)]

where Ax and Ay are spatial displacements and k, and k2 are
Positive constants. Each one of these appears to be a better
approximation than the other depending on the type of pic-
ture. In general, however, the second expression appears to be
closer to the measured data. Using these expressions, different
models have been made and used to synthesize optimal en-
coders [25], [26]. One of the consequences of such a high
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degree of correlation is that the histogram of the adjacent ele-
mentdifference signal, {L(x;»,) - L(x;-,, ¥p} is highly peaked
at zero [27], [28]. Also, as measurements of Schreiber [27]
and others [20], [28] indicate, most of the second-order re-
dundancy (i.e., redundancy contained in blocks of two adja-
cent samples) is removed by coding adjacent element differ-
ences. Therefore, use of three previous samples for prediction
does not result in significantly lower sample entropies of the
prediction error histograms than the use of two previous sam-
ples. Due to the highly peaked nature of the histogramsof the
prediction errors, they have been modeled by the Laplacian
density [29], [30]. Very few measurements [31] have been
made of statistics of order higher than the second, primarily
due to its variability from picture to picture, and due to the
fact that a good methodofutilizing such statistics for the pur-
pose of coding does notexist.

Just as the statistical measurements and modelsforstill pic-
tures are lacking, there are even less measurements on the lu-
minance signal taken as a function both of space and time. In-
terframe statistics depend very heavily on the type of scene
and, therefore, show a wide variation from scene to scene.
Some early measurements [32] indicate that since television
frames are taken at 30 times a second,there is a high degree of
correlation from frame to frame. Thus the histogram of the
frame-difference signal is highly peaked at zero. For video-
telephone-type scenes, where the camera is stationary and the
movement of subjects is rather limited, on the average only
about 9 percent of the samples change by a significant amount
(i.e., more than about 1.5 percent of the peak intensity) from
frame to frame [33]. In broadcast television, where the cam-
eras are not always stationary and there is frequently very
large movement in scenes, there would be less frame-to-frame
correlation than in videotelephone or videoconference scenes.
More recent measurements [34] on thestatistics of frame-
difference signals indicate that, for scenes containing objects
more or less in rectilinear motion, the power spectrum of the
frame-difference signal is essentially flat at low speeds, and
that the power of the frame difference signal in low frequen-
cies increases by about 7 dB for every doubling of the speed.
This is seen for a typical scene in Fig. 7. As would be ex-
pected, the spectra of frame difference signals measured in the
direction of motion, show nulls at appropriate speeds, whereas
spectra measured in the direction orthogonal to the direction
of motion show no such nulls. Another interesting observa-
tion is that as the amount of motion increases, due to integra-
tion of the signal in the camera, the spatial correlation of pic-
ture elements increases and the temporal correlation decreases
(see Fig. 7). Also there is more correlation spatially orthogo-
nal to the direction of motion than spatially parallel or in the
temporal direction. It is obvious from these measurements
that there are still quite a lot of interframe statistics that are
unknown.

Weclose this section by pointing out some recent models of
picture signals which appear to be morerealistic and promising.
As mentioned before, the picture signal, in general, is highly
nonstationary, and the local statistics vary considerably from
region to region. Some ofthis difficulty can be overcome by
considering the picture signal as the output of many sources
each tuned to a certain type ofstatistics [35], [36]. Yan and
Sakrison [35], for example, consider a two-component model
in which the vertical edges (or the high-frequency components)
are treated as one componentandtherest (texture details) are
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Fig. 5. (a) Head and shoulders view of a person. (b) White text on black background. (c) and (d) The autocorrelation function in horizontal and
vertical direction for both scenes (a) and (b). These are for a typical videotelephone display, with 208 samples/line and 250 lines/frame and with
a picture size of 5.5 in by Sin. Horizontal sample spacing is then 0.02644 in and vertical line spacing is 0.02000 in (without regard to interlace).
(e) and (f) The contours of equal autocorrelations for scenes (a) and (b). HU denotes the horizontal sample distance unit.
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Fig. 6. Envelope of the power spectrum of a typical video signal. Note
that the envelope is relatively flat, up to about twice the line rate,
where it begins to drop at about 6 dB/octave (from Connoretal.
[23]).

treated as the other component. They argue that if the edge
information is subtracted from the picture signal, the rest of
the signals appear to be close to a Gaussian process and, there-
fore, an optimal encoder, mentioned earlier, can be applied.
Rate distortion theory of such two-component models may
find greater use and a beginning has already been made [37].
In a different context, Lebedev and Mirkin [38] , [39] develop
a composite source model and describe experiments in which a
picture signal is broken down into many components byusing
correlations at 0°, 45°, 90°, and 135° to the horizontal. They
look at the picture signal as the weighted sum of these five
components, weights being given by a random variable. Thus
the model can be considered to be locally anisotropic, but
on the average isotropic. Impressive results are claimed by
Lebedev and Mirkin for image restoration using such a model.
Such models have a large potential, if appropriate components
could be determined and a suitable method of combining these
components to form the composite picture signal could be
found. A similar idea has been explored by Maxemchuk and
Stuller [36], who model the image as a random field that is
partitioned into independent quasi-stationary subfields. Each
subfield is the output of one of six possible autoregressive
sources, whose selection is governed by a space-varying proba-
bility distribution that is unknown a priori to the observer,
The mode! also includes a white subsource that initiates the

autoregressive sources at certain boundaries within the picture.
Maxemchuk and Stuller apply this model to adaptive DPCM
using a mean-square error criterion for each point and claim
goodresults.

III. PROPERTIES OF THE RECEIVER

A. Picture Quality

Systematic distortions occur in representing a live scene by a
television picture. For example, the contrast ratio in a scene
(the ratio of the luminance of the lightest to the darkest parts)
can frequently be 200:1 or greater whereasit is difficult to
obtain a contrast ratio much greater than 50:1 under normal
television viewing conditions; the color television tube, by
mixing three primary colors reproduces the approximate
chromaticities of the original scene, not a scene having the
same spectral distribution. The fact that the vieweris usually
happy to accept these approximations implies that he is not
particularly sensitive to them, even when he can makea direct
comparison between the original and the reproduction.
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Fig. 7. (a) Power density spectra of the video signal at speeds of 0.5,
2.0 and 4.0 pels per frame (pef). This is for a video telephone type
of signal containing a head and shoulders view of a person, The
attenuation at high frequencies is due to the pre- and postfiltering.
The effect of camera integration on the video signal at higher speeds
is seen in the reduced power at high frequencies. (b) Power density
spectra of the frame-difference signal at speeds of 0.5, 2.0, and
4.0 pef. Note the increase in power density at low frequencies as
the speed increases and the small dip at approximately 0.45 MHz in
the curve for a speed of 4 pef. (c) Comparison of power density
spectra of the element-difference signal and the frame-differencesignal,
both recorded at a speed of 1 pef. The dashed curveis for the frame-
difference signal (from Connor and Limb [34]).

Instead of seeking to make the reproducedpictureas similar
to the original as possible, consistent with the shortcomings of
the system, one can purposely distort the picture to obtain a
more pleasing effect. Examples would be filtering the signal
(linear or nonlinear) in order to make it appear crisper [40] ;
altering hue so as to give the appearance ofa healthy tan.

The task to be performed will largely determine the criteria
that are used to determine picture quality. Thus a photoin-
terpreter would attach great importance to sharpness and
probably less to accurate tonal reproduction. We will be
mainly concerned with an average television viewer who is per-
forming no specific task related to the image structure in con-
tradistinction to, say, imaging for medical diagnostics. It is
convenient to start with the existing analog signal as a refer-
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TABLE I

(a) (b) (c)

S Excellent 5 Imperceptible 3 Much better

4 Good 4 Perceptible but not annoying 2 Bewer

3 Fair 3 Slightly annoying 1 Slightly beter

2 Poor 2 Annoying 0 Same

1 Bad I Very annoying -1 Slightly worse
-2 Worse

+3 Much worse

ence and measure distortion by the extent to which the dis-
torted picture differs in appearance from the analogsignal.

B. Measurement of Picture Quality

Measurements of picture quality must depend upon subjec-
tive evaluations either directly or indirectly [41]. Subjective
testing is very time consuming and consequently is avoided
where possible. In primary or explicit measurement of picture
quality a group of subjects make subjective decisions while in
secondary or implicit measurement, objective characteristics of
standardized waveforms are measured andtheresults are then

converted to quality measures through previously established
relations. In the digital processing of pictures, distortions are
frequently introduced that are complex in nature (e.g., they
can be a complex function of the signal) such as edge noise,
slope overload, and movement related distortion [42]. In
such instances existing indirect methodsare of little use.

Subjective evaluations are of two broad types, rating-scale
methods and comparison methods. In the rating-scale method,
the subject views a sequence of pictures under comfortable,
natural conditions and assigns each picture to one of the sev-
eral given categories. The subject may be assigning an overall
quality rating to the picture using categories such as those
listed in Table I(a) or he may use an impairment scale as
shown in Table I(b). The results of a rating will depend upon
many factors: the experience and motivation of the subjects,
the range of the picture material used and the conditions un-
der which the picture is viewed (e.g., ambient illumination,
contrast ratio and viewing distance), These variables have been
explored in depth and standardization is taking place at the in-
ternational level [43]. This enhances the utility of the proce-
dure making it more feasible to compare results obtained at
different times and in different laboratories.

In the comparison method, the subject adds impairmentof a
standard type (e.g., white noise) to a reference picture until he
judges the impaired and reference pictures to be of equal qual-
ity. This can be done very accurately where the two types of
distortion are similar in appearance, for example, equating ad-
ditive noise of differing spectral distribution. ~The distortion
can then be assigned a quality by referring to rating scale tests
on the standard impairment. One should not expect that the
resulting ratings will necessarily be transitive. In a variation of
this method the subject uses a comparison rating scale (Table
I(c)) to compare pictures having various levels of a distortion
with a reference picture. The resulting data is then processed
to obtain the level which produces the “point of subjective
equality” between the distorted picture and the reference.

Secondary measures of quality are more useful in the field
and are usually developed after primary measurements have
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Fig. 8. (a) Test signals used for K-rating measurement method. Signal
A is a sine-squared pulse of half-amplitude duration 27, where T
equals the sampling period. Pulse B is a bar signal of width approxi-
mately half the duration of a horizontal scanning line. (b) K-rating
graticule for the 2 T pulse for the NTSC system.

been established. An example is the pulse and bar waveform
(Fig. 8(a)). Consider the pulse; it is chosen to yield quickly an
estimate of the performance of a transmission link at the high
end of the frequency band. A template has been determined
such that waveform deviations reaching the edge of the tem-
plate are about equiobjectionable [44]. Notice that the error
tolerance varies greatly throughout the waveform (Fig. 8(b)).
For other secondary measures see [45].

C. Visibility ofDistortion

Loosely speaking, the less accurately a pel needs to be repro-
duced, the fewer the bits required to encode that pel. The re-
quired accuracy, in turn, depends upon the visibility of the
coding distortions or perturbationsat, or in the neighborhood,
of the pel. Certain types of distortion rarely occur in the
types of coding algorithms commonly used today. For exam-
ple, geometric distortions (e.g., pin-cushion distortion) would
not be expected in spatial or transform domain coding. How-
ever, if more complicated algorithms are explored that are able
to recognize and manipulate commonshapes, then thevisibil-
ity of such types of distortion would be more important.

For pel-domain coding we would like to know the amount
of error tolerable at each element in the picture and how the
errors in adjacent points combine. Similarly, for transform do-
main coding we would like to know the amountoferror toler-
able in each transform coefficient and howerrors in different

coefficients add. The amountof distortion that may betoler-
ated will depend upon the overall quality that is desired. For
high-quality coding any differences between the coded and un-
coded pictures will be subjectively small which implies that
coding distortions will be close to the visual threshold. Visual
threshold is the point at which a stimulus (a perturbation or
distortion) just becomes visible or just ceases to be visible. It
is a statistical measure and is usually defined as the amplitude
of the stimulus such that it will be detected on 50 percent of
occasions. It is very difficult for a subject to specify the sub-
jective amplitude of a distortion that he sees, the exception
being the visual threshold (and even at threshold the judge-
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ment is often very noisy). Thus, where we are concerned with
coding for high-quality images, knowledge of visual threshold
will be a valuable guide in determining the relative amount of
tolerable distortion at a pel. There is much work in the psy-
chological literature describing visual threshold under a wide
range of viewing conditions. On the other hand, thereis little
known about the visibility of transform domain perturbations
(however,see [46] -[48] ).

For lower quality encoding, the subjective amplitude ofdis-
tortions may be quite large and we cannot assumethatvisibil-
ity changes with stimulus configuration in the same way for
small amplitude distortions (near threshold) as it does for large
amplitude distortions. Indeed, we know that the suprathresh-
old grating visibility function is much flatter than the corre-
sponding threshold function [49]. However, thereis relatively
little known about suprathreshold visibility, but see [50].
Fortunately, most applications call for medium- or high-quality
encoding where threshold visibilities are much more relevant
and so wewill briefly review some of the information available
on threshold vision.

D. Threshold Vision

The question naturally arises as to whether the pel-domain
is most appropriate for describing threshold vision or whether
some transform domain is more suitable. This question has
produced much heated debate in the psychological literature
[51], [52] and two brief comments in favor of a pel-domain
description will suffice: 1) as will be described in more detail
below spatial masking is a highly local effect and depends
strongly on the spatial configuration of the masking stimulus;
2) the visual field is highly inhomogeneous with a point spread
function that changes rapidly with location in the visual field.
Both these effects are more easily described and handled in the
spatial domain.

We will now briefly review information concerning visual
threshold. Three factors affecting the threshold of a stimulus
can beisolated:

1) the overall luminance background against which the per-
turbation is presented (global effect);

2) the masking effect of suprathreshold luminance changes
immediately adjacent in space and time to a perturbation
(local effect);

3) contribution to threshold from perturbations in spatio-
temporally adjacent elements.

These three factors have been studied separately and to date
there has been little experiment to explore interactions, in par-
ticular between 2 and 3. (For example, we havelittle idea of
how distortions sum across a luminance edge.) For simplicity,
we will assume that the above factors act independently. Let
us consider them in turn.

1) Global Threshold Effects: Consider that a luminance
perturbation is presented against a background region of lumi-
nance Lg, subtending an angle of approximately 1.8° sub-
tended arc, the area outside the background area will be re-
ferred to as the surround having luminance Lg (Fig. 9). This
particular stimulus configuration has been studied extensively
{53]. We can nowask howthethreshold visibility of a pertur-
bation varies as the background and surround luminances are
changed. This information will be very important in deciding
how to quantize the video signal for PCM encoding or where a
signal is being digitized prior to further coding (see Section
IV-A). The threshold will be primarily dependent on the back-
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Fig.9. Display assumed for calculating functions shown in Fig. 10(a).

ground luminance with the surround having muchless effect.
When Ls equals Lp we have a condition corresponding to that
typically used to explore the Weberfraction AL/L, where AL
represents the visual threshold luminance of the perturbation
presented on a background of luminance Lg. AL increases
monotonically with Lg. At high luminances(say greater than
10 mL) the Weber fraction is fairly constant but as the Inmi-
nance falls below this value AL/Lp starts to rise. A plot of
AL versus Lg is shown in Fig. 10(a) (for the condition Ly =
Lg) by the full line, with the long-dashed line representing the
condition AL/Lg = constant (Webers law). We are interested
primarily in the range of luminances encountered in a typical
viewing situation and they correspond to a minimum of about
0.5 mL to a maximum of about 50 mL. If the surround is

held constant at the maximum luminance, as Ly decreases,
AL/Lp decreases much less rapidly and bottoms out at about
seven times the threshold for the condition Lp = Lg (Fig. 10(a))
[54]-[56]. Setting the size of the background to 1.5° diame-
ter is rather arbitrary and local effects extend over an area that
is probably significantly smaller than this value. So if we con-
sidered a background of say 0.5° diameter then again, for Lys
held constant at Lmax, AL/Lg would be even larger at lower
values of Lg. The effect of nonuniform surrounds has been
studied in some detail [53] and it has been shown that any
nonuniformity in the surround is equivalent in effect to a uni-
form surround with a luminance referred to as the adapting
luminance. The effect of a bright spot, for example, decreases
rapidly as the spot increases in angular distance from the stim-
ulus [53].

We have described how visibility changes with variations in
the luminance of the background and the surround. Let us
now consider the picture tube and lookatvisibility in units of
the electrical signal F applied to the picture tube. The transfer
characteristic of the picture tube may be described by

L=kEY (4)

where k and ¥ are constants and y is in the range 2 to 2.5 fora
typical cathode ray tube. Thus in spite of the fact that AL de-
creases as L decreases the slope of the £ versus £ characteristic,
dE/dL increases, in partial compensation for the Webereffect.
Under normal viewing conditions the situation is more com-
plex in that ambient illumination falling on the screen further
modifies the transfer characteristic shown in (4). It is impossi-
ble to obtain very low luminances and the transfer function
asymptotically approaches the luminance set by the luminance
of the ambient screen

L=kE’ +Lamp- (5)
Thus, for backgrounds having a luminance approaching the
ambient screen illumination, dE/d< increases dramatically,
producing a large decrease in the visibility of a perturbation
when expressed as a signal rather than a luminance. For a
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Fig. 10. (a) Threshold AL as a function of background luminance, Lp.

The Weberlaw relation (AL/Lp = constant) is shown by thestraight
dashed line. The other two curves are for different values of surround
luminance. The short dashed curve is for surround luminance, Lg,
maintained at a maximum value, while the full curve gives the result
when the surround luminance is maintained equal to the background
luminance. (b) Perturbing-signal levels necessary to give constant
visibility: (a) random noise or pattern having low coherence between
successive displays, (b) stationary patterns, (c) pattern displayed in
alternate polarities (from Newell and Geddes [57]).

of

given viewing condition experiments can be conducted to de-
termine the threshold voltage versus luminance (or normalized
signal voltage).

Fig. 10(b) shows results obtained for stimuli of different
types presented within small test squares inserted into a fixed
test pattern [57]. For a stationary pattern the amplitude
changes by about 8 dB as the test square changes from light to
dark. Note that stimuli that change from frame-to-frame pro-
duce quite different results, showing even less variation over
the gray scale. Evidently, the amount of temporal integration
taking place in the visual system increases significantly at
lower luminances andas a result the perceived amplitude of the
time-varying stimulus is reduced.

In summary, visual threshold at a pel is not a function of a
single variable as the Weber fraction would tend to imply but
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Fig. 11. Threshold luminance of the test spot as a function of bar dis-
placement. Parameter is the exposure duration of the test spot and
bar. Data for 50- and 10-ms durations have been moved up anarbi-
trary amount (from Novak and Sperling [62] ).
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Fig. 12. Stimulus threshold versus distance from edge for both stabilized
and unstabilized viewing. The edge was continuously presented and
went from 1 mL on theleft to 20 mL on the right. The stimulus to
be detected was a thin line of 1 X 30’ of subtended arc, oriented
parallel to the edge. It was presented for a duration of 100 ms
(from Lukas er ai. [$9]).

depends upon the luminance in both the neighboring back-
ground (strong dependence) and surrounding areas that are
further removed (weak dependence). Further confounding the
situation is a change in temporal response with luminance. In
terms of the signal that is transmitted, the threshold AF does
not change as rapidly as AL due to the nonlinear conversion in
the picture tube. However, the exact relationship will depend
upon viewing conditions, in particular on the ambient illumi-
nation falling on the screen. High signal thresholds will occur
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VISIBILITY(dB) 
5 10 20 50

CENTER FREQUENCY OF NARROW-BAND THRESHOLD NOISE
(CYCLES / DEGREE )

Fig. 13. Visibility of narrow-band noise of varying center frequency
superposed on narrow-band background of a fixed frequency. Full
curve at top is for a plain background (no noise). Lower full curveis
for background centered at 4.5 cpd, Dashed curve is for background
centered at 12 cpd. The presence of the background reduces overall
visibility with maximum reduction occuring near the center frequency
of the background (from Sakrison ef al. [67]).

in the regions of pictures that are very dark on the one hand or
very bright on the other; greatest sensitivity will occur in me-
dium to dark-gray regions.

2) Local Thresholds Effects: Let us now consider back-
grounds that are no longer uniform but contain large changes
in luminance. It has been known for a long time that visual
threshold increases on both sides of a change in luminance
[58]. This effect is important in DPCM coding where changes
in signal amplitude are directly quantized (Section [V-B). Fig.
11 shows how visual threshold changes adjacent to a vertical
edge which increases in luminance by a factor of 20 from the
dark side to the light side [59]. The target used to determine
threshold was a line I’ in width and 30’ in length orientedpar-.
allel to the edge. On the light side the threshold adjacent to
the edge has increased between three and four times the
threshold further from the edge; there is a similarly large in-
crease adjacent to the edge on the dark side. But notice that
these effects are very local and the typical spread is of the or-
der of only 5’ of subtended arc (approximately 4 pels at a
viewing distance of 8 times picture height for broadcast televi-
sion), We say that the edge “masks” the perception ofthesig-
nal adjacent to the edge in that the signal is perceived less ac-
curately than would be possible in the absence of the edge.
The edge effect is often confused with the Mach effect [60];
however, the Mach effect refers to a change in brightness at an
edge and while the brightness increases on the light side of the
edge, it decreases on the dark side. While there may well be a
connection between the Macheffect and the edge thresholdef-
fect, it is certainly not straightforward [61].

There is no comprehensive model to explain threshold eleva-
tion at borders; however, certain facts are known [62]-[64].
When an edgeis briefly presented (=10 ms), the threshold is
not elevated (see Fig. 11) [62]. This experiment would tend
to suggest that the edge threshold effect is related to involun-
tary eye movements. Recent experiments tend to confirm this
view; as shown in Fig. 12 when the image of an edgeis stabi-
lized on the retina so that involuntary eye movements are
eliminated, the edge effect is markedly decreased. It is unclear
whether the remaining edge effect is due to residual eye move-
ments or to neural interactions. Other work [63] shows that
the length of the edge in the vicinity of the picture element be-
ing examinedalso increases the amountof threshold elevation.

Masking can be thought of in the frequency domain by
studying the threshold of a grating in the presence of either a
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Fig. 14. Contrast sensitivity for sine-wave gratings at luminance of
500 cd/m? (after Campbell and Robson [69])-
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Fig. 15. Simple single-channel model of visual threshold for a stimulus
presented against a plain background.

suprathreshold masking grating or narrow-band noise [65]-
[67]. Fig. 13 shows the effect on the frequency response of
narrow-band noise when presented against a masking back-
ground also of narrow-band noise having center frequencies of
4.5 cycles per degree (cpd) and 12 cpd. Although the effect
of the masking stimulus is maximum near the center frequency
of the mask, there is also a very large overall reduction in
sensitivity.

Thus far we have treated the influence of nonuniformities as

belonging to one of twoclasses: global or local. A theory that
integrates these effects is clearly needed. The effect of non-
uniformities in the range of 10’ to 60’ are not covered by
either existing treatment.

3) Model of Stimulus Summation: If we knew how sub-
threshold perturbations combine, then we could predict the
visibility of arbitrarily shaped stimuli (assuming a linear sys-
tem, which is not too unreasonable under small signal condi-
tions). This is important, for example, in interpolative coding
where one would like to know whether coding distortion in
a number of adjacent elements is visible or not (see Section
IV-D). The eye filters the “signal” applied to it and a typical
frequency response, measured by determining the threshold
of spatial sine wave patterns is shownin Fig. 14. Fig. 15 gives
a simple single-channel model of threshold vision that has been
used with some success to determine visibility. The input
stimulus /(x, y) is linearly filtered, and if the resulting filtered
signal exceeds some threshold, the stimulus is regardedasvisi-
ble, otherwise it is not perceived. Simple as this modelis,it is
rather successful in predicting the visibility of certain high-
frequency stimuli [68]. However, it fails at least on one par-
ticular type of stimulus, one in which luminance is varied in
the horizontal direction of the display as the sum of two sine
waves that are separated in frequency by more than an octave.
Campbell and Robson [69] have proposed a multichannel
model which consists of a number of simple models (channels)
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Fig. 16. Single-channel model of visual threshold incorporating visual
inhomogeneity and noise (from Limb and Rubinstein [71]).

like that shown in Fig. 14 connected in parallel, with each
channel tuned toadifferent spatial frequency. The outputs of
the channels are combined such that the stimulus is detected

whenever, the output of at least one channel exceeds its own
separate threshold. This model predicts that sine waves that
are sufficiently separated in frequency will be detected inde-
pendently. Indeed experiments by Graham and Nachmias
show that this is the case [52]. Sakrison ef ai. have conducted
a series of experiments in an attempt to characterize channels
more fully [67]. They have determined that the bandwidth of
the channel having maximum sensitivity at 4.5 cpd is 2.5 cpd.
Following the filtering they assume that the signal is raised to
some power 7 and integrated (ie., [Z|x|/"]""). Experiments
with narrow-band noise having different probability density
functions suggests that n = 5.

The single and multichannel models mentioned above as-
sume linear filtering, isotropy, and homogeneity. Since the
stimuli being processed are small (near threshold), the assump-
tion of linearity is probably quite reasonable. Further, while
we know that the visual system is slightly anisotropic, having
poorer resolution on the diagonal than vertically or horizon-
tally, this is a relatively small effect and is less important where
we are dealing with stimuli that vary only in one dimension.

However, the visual system is by no means homogeneous.
On the contrary, the visual field has high spatial resolution in
the fovea (the central portion of the retinal field) and decreas-
ing resolution toward the periphery [70]. The single-channel
model may be extended to take accountof visual inhomogene-
ity as shown in Fig. 16 [71]. The input filter now has an im-
pulse response f(x, y) that depends on the position in the in-
put field (¥, Y) at which the impulse is applied. Noise is
added to the filtered signal to simulate the effect of neural
noise, and the resulting signal is fed to a detector. If any single
point on the waveform W(x, y) exceeds a pair of symmetrical
thresholds placed on either side of the backgroundlevel, then
we consider that the waveform is visible. This is a probabilistic
event, since random noise has been added to the waveform.
The input amplitude is said to be at threshold when there is
more than a certain probability that one or more points on
the signal W will exceed either of the symmetrical thresholds.

A series of subjective measurements were used to determine
the impulse response of the visual filter of the model at vary-
ing eccentricities. As can be seen in Fig. 17, the spread of the
impulse response approximately doubles in going from the
fovea 0' (Fig. 17(a)) to an eccentricity of 500’ (Fig. 17(f)).
There is also an accompanying change in sensitivity. The
model predicts the visibility of a number of different line
stimuli in both fovea and periphery, andin all cases the predic-
tions agree closely with experimental measurements. Because
of the change in impulse response, the relative visibility of
stimuli changes markedly with position in the visual field, and
any model that does not incorporate this will not be accurate.
These results help in accurately evaluating the visibility of
small distortions but to date they have not been directly ap-
plied in an encoding algorithm.

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 3, MARCH 1980
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Fig. 17. Visual inhomogeneity change in shape of the line-spread func-
tion with change in position in the visual field. From top to bottom
the positions are 0’, 50’, 100, 200’, 300’, and 500’ from the point of
fixation (from Limb and Rubinstein [71 ]).

4) Perception in Moving Areas: Twostudies [72], [73] ex-
plore the spatial resolution requirements when viewing a mov-
ing object. Connor and Berrang [72] had subjects view a man-
ikin head that was moving back and forth across a plain gray

background. He concluded that over the range of speeds he
studied the reduction in resolution due to integration of the
image on the target of the camera dominated any reduction in
resolution introduced by the visual system.

In these studies the observer could easily track the moving
object and, bearing this in mind, the results are not so surpris-
ing. Evidently, the eye acts very differently when a moving
object is not tracked. Direct measurements of the temporal
impulse response of the eye are at an early stage but it appears
that the situation is not too dissimilar to the spatial situation.
Rashbass has measured the correlation function of the tempo-
ral response to a stimulus of low spatial frequency (Fig. 1 8(a))
[74]. A guess at the shape of the corresponding impulse re-
sponse is shown in Fig. 18(b). Measurements of the temporal
impulse response of sine waves using reaction time have been
made but the overall spread of the response is significantly
larger than that suggested by other experiments [75].° It
would appear that once the spatiotemporal impulse response is
determined for a given viewing condition, the visibility of an
arbitrarily shaped stimulus presented against a flat background
could be predicted by extension of the models that are being
developed,

‘Indirect measurements of the spatiotemporal impulse response of
the eye may be obtained byan inverse transform of the spatiotemporal
modulation transfer function, There are a number of problems with
this approach: assumptions must be made about the missing phase in-
formation; inhomogeneity will modify the results; eye movements can
have a large effect.
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Fig. 18. (a) Autocorrelation function of the temporal impulse-response
of the visual system (from Rashbass [74]). (b) Postulated form of
the temporal impulse response of the visual system.

Miyahara [73] measured the temporal and spatial resolution
requirements of images that could be tracked and found simi-
lar results. However, he also studied moving objects (wind-up
toys) that are not so easily tracked and found that subjects
could detect loss of resolutionless easily (a just detectable res-
olution loss equivalent to a bandwidth of 2 MHz for tracked
movement versus 1.2 MHzforless easily tracked movement).
Most movement displayed on a screen is not easily tracked
since it is difficult to accurately predict (e.g., head or hand
movements). Further, the viewer does not bother to track
much of the movement he sees since it does not occupy his
visual attention. We have little quantitative data about when a
viewer tracks an object and how accurately he tracks it [76].
It is also unclear how the information could best be used to

improve coding efficiency where a picture is being viewed by a
large number of observers.

Further measurements of Miyahara [73] show smooth move-

ment is perceived in viewing normal television (60 fields/s) up
to angular speeds of 24’/s. If alternate fields are transmitted
with the missing fields filled in by repeating the previously
transmitted field, the speed at which degradation is just per-
ceptible drops to 54'/s, and to 34'/s when every third field is
transmitted. He also measured the speeds at which movement
is reproduced with acceptable quality for normal viewing and
found that the speeds are approximately 3 times the just per-
ceptible value.

Temporal masking has been studied by Seyler and Budrikis
{77] who found that spatial resolution could be reduced sig-
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Fig. 19. (a) Impairment rating versus error measure (on a scale of 1 to

5). Error measure is global rmse (from Limb [80]). (b) Sameas (a)
but error measure is now the average of the two maximum local
measures using a masking function. For both plots the curves are
least mean-squarefits to the data points.

nificantly immediately following a scene change and need only
be increased slowly thereafter. As long as full resolution was
restored within approximately 0.75 s the observer did not de-
tect the reduction.

Although the psychological literature contains much work
on temporal masking (e.g., [78]), apparently no attempt has
been madeto relate the results to picture coding.

E. Measures ofPicture Quality

One factor complicating the design and evaluation of new
coding algorithms is the lack of an objective measure of pic-
ture quality. This is not surprising since an accurate measure
would imply an accurate visual model and, as we have seen,
there is muchstill not understood aboutvisual perception.

In the photographic sciences much study of picture quality
criteria has been performed and the short paper by Higgins
[79] summarizes some of this work.© However, the approach
is not well suited to digital picture processing where the range
of impairments encountered is much greater than in photo-
graphic systems and where much ofthe distortion may be de-

*It is unclear how and to what extent the large amount of work on
task related quality measures (such as target detection and identifica-
tion) relates to quality measures where the observer is viewing forentertainment.
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Fig. 20. Model used for study of picture quality evaluation.

pendent on the value of the signal (e.g., error resulting from
nonuniform quantization). Sakrison discusses distortion mea-
sures of the observer and suggests a criterion based on a thresh-
old modelof vision [18].

A measure that is frequently used is the root mean-square er-
ror (rmse) between the original and the distorted picture. The
measure is usually applied to the signal after nonlinear conver-
sion to offset for the Weber effect (e.g., ‘y (power law) correc-
tion or logarithmic conversion). It is a simple matter to incor-
porate frequency weighting of the error to further improve

performance. However, such a measureis signal independent
and therefore cannot reflect the effect of masking. The chief
appeal of the rmseisits simplicity.

Fig. 19 shows the performance of the rmse [80] measure.
Subjects rated five different pictures to which 16 different
types of distortion were added, producing 80 picturesinall.
For each picture a point is shown plotting rmse against the av-
erage of the observers’ ratings, made using a 5-point impair-

mentscale. If the rmse were a good measureof picture quality,
the points would lie close to a smooth monotonically decreas-
ing curve. The extent to which the points deviate from a
smooth curve may be usedas an indication of the performance
of the measure. As can be seen, there is quite a large spread in
reported quality for pictures having similar rmse.

A study of more sophisticated models was made. Best re-
sults were obtained with the model shown in Fig. 20. We will
consider briefly the operations of filtering, masking and error
summation. One would expect that the best filter would have
emphasized errors occurring in the mid-frequency range (say
2-8 cpd) as suggested by the frequency response curve of Fig.
14. However, for the pictures and distortions considered in
this study best results were obtained for a filter with an essen-
tially flat frequency response or with a small amountof atten-
uation at high frequencies; we can only postulate why this is
$0.

In a simulation of the masking action of vision, an activity
function was first evaluated which measures the ‘“‘amount of

change”’ or “amount of busyness” in the signal in a neighbor-
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hood close to the point being processed. This value, after a
nonlinear mapping, was used to normalize the errorsignal.

It was postulated that the observer does not necessarily sum
errors over the whole picture as one does with the mse. The
observer bases his estimate on the worse few local areas. Thus

weighted error signal was first squared and then summed over
local areas 1° X 1° (corresponding roughly to the size of the
fovea). The average of the errors in the two local areas having
the greatest value of summed errors was taken as the final mea-
sure of quality. The performance of the measure is shown in
Fig. 19(b). Comparison with Fig. 19(a) shows very little im-
provement over rmse. There is good reason for this. Unless
distortions are carefully tailored to concentrate error at edges,
the distortion will be most visible in flat areas of the picture
and overall quality will be determined mainly by these areas.
Now since mean-square-error predicts quality reasonably well
for areas of just this one type, rmse will provide a good predic-
tion of overall quality. Thus, if distortion should be greater at
edges, such as in DPCM coding (see Section IV-B), the rmse is
less satisfactory [80]. It is only through development of more
sophisticated models that we can discover where to better
“hide” coding inaccuracies with consequent improvement in
coding efficiency.

IV. CopINnG APPROACHES

In this section, we first give a classification of the approaches
that have been used for picture coding and then describe them
in detail giving an account of the procedures for optimizing
their parameters. Theclassification is given in Table II. Gen-
eral waveform coding can be classified into four major catego-
ries: PCM, predictive coding, transform coding, interpolative
and extrapolative coding, and the fifth class which consists of
miscellaneous schemes that do notfall into any of these four
major classes. Each of these classes can be further divided
based on whether the parameters of the coder are fixed or
whether they change as a function of the type of data that is
being coded (adaptive).

In PCM a time discrete, amplitude discrete, representation of
the sample is made without removing muchstatistical or per-
ceptual redundancy from the signal. The time discreteness is
provided by sampling the signal generally at the Nyquist rate;
amplitude discreteness is provided by using a sufficeint num-
ber of quantization levels so that the degradation due to quan-
tization is not easily visible. In predictive coding, also known
as DPCM, the sample to be encoded is predicted from the en-
coded values of the previously transmitted samples and only
the prediction error is quantized for transmission. Such an ap-
proach can be made adaptive either by changing the prediction
or quantization or by not transmitting the prediction error
whenever it is below a certain threshold, as in conditional re-
plenishment. It is also possible to delay the encoding of a sam-
ple by observing the trend of the signal as indicated by certain
subsequent samples. In transform coding, an alternative repre-
sentation of the signal is made first by taking linear combina-
tions of samples in a block of data (called the coefficients) and
then quantizing the selected coefficients for transmission. Sev-
eral transformations (such as the simple Hadamardtoafairly
complex data dependent Karhunen-Loeve) have been used.
Transform coders can be made adaptive by changing the type
of transformation and the criteria for selection and quantiza-
tion of the coefficients. The next class of coding techniques,
called interpolative and extrapolative coders, attempts to send
certain samples to the receiver and either interpolate or extra-
polate all the rest. Again, adaptation can be built in by vary-
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TABLEII  
PICTURE CODING
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AND CODING
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PREDICTION KARHUNEN —J»TRANSFOR- SPATIAL HUFFMAN RUN LENGTH
LOEVE MATION

QUANTIZATION TEMPORAL SHANNON= BIT PLANE
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Fig. 21. PCM Encoding. (a) Components of a PCM encoder. (b) Four-
bit binary representation of amplitude levels between 0 to 15.
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ing the criterion for selection of the samples to be sent and the
strategy for interpolating or extrapolating the remaining sam-
ples. Predictive and transform coding can be combined by
techniques of hybrid coding in which the linear transformation
of the signal is madefirst, and then predictive coding of the re-
sulting coefficients from the adjacent (spatially or temporally)
blocks is done. Besides these four categories, there are many

other schemesthat do notfall precisely into the four classes or
are a result of unique combinations of schemes of these four
classes. Some of them are applicable to the types of picture
data that are not being considered in this review paper (e.g.,
tun length coding for bilevel pictures). Notable among these
schemes is the contour coding scheme, in which the picture
signal is first separated into high contrast edges or contours
andall the rest. Contours are typically coded by some form of
run-length coding, and the other part of the signal is coded
either using transform coding or predictive coding. Run-length
coding of two-level signals can be extended to multilevel sig-
nals by coding the runs in several bit planes. As we explained
in the introduction, the binary representation of either PCM,
DPCM,or transform coded signals can be made based on the
statistics of the occurrence of the various source symbols. An
efficient method of assigning a comma-free code to the source
symbols, such that the average number of transmitted bits is
minimized, is given by the Huffman codes. The code assign-
ment depends upon the probability of occurrence of the
source symbols; therefore, this assignment can be fixed based
on a long-term averagestatistic, or adaptive based on the short-
term statistic.

A. Pulse Code Modulation

Waveform coding by PCM [81] is nothing more than a time
discrete, amplitude discrete, representation of the signal. It
was first applied to television signals by Goodall [82] in 1951
and continues to be used as a digitizing scheme for purposes of
transmission and also for digitizing before the application of
other more sophisticated coding techniques. As shownin Fig.
21 basic PCM consists of sampling the waveform (usually at
the Nyquist rate) and quantizing each sample using N levels.
Each level is represented by a binary word containing B bits.
N is usually taken to be a power of two (i.e., N= 28). In the
decoder, these binary words are converted to discrete ampli-
tude levels, and then the time sequence of the amplitude levels
is low-pass filtered. Basic PCM affords a simplicity uncommon
to most other coders, but suffers from inefficiency since it
does not use redundancypresentin the picture signal.

Application of PCM to television [82] produces distortions
which depend upon both the number of quantizing levels used
and the signal-to-noise (S/N) ratio of the input signal. Several
efforts have been made to optimize the placement of the quan-
tizing levels to take advantage of the fact that the noise detec-
tion threshold AL increases almost linearly with increasing
luminance L (known as Weber’s law; see Section III-D). This
implies that the visibility of unit quantization noise decreases
with the luminance level, and, therefore, coarseness of the
quantizer is usually made to increase with the luminancelevel.
As shown by Kretz [56], this does improve the quality of
PCM-coded pictures for a given number of bits per sample.
However, the improvements are not very significant due to the
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Fig. 22. Nonlinear input/output characteristic of a cathode-ray tube
(from Sharma and Netravali [121]).

nonlinear characteristics of most cathode ray tubes used in
television display. The nonlinear characteristics shown in Fig.
22, referred to as the gammaof the display, increases the am-
plitude of the quantization error at larger values of the lumi-
nance to some extent and, therefore, partially compensates for
the Weber’s law effects.

For good quality original pictures, as the number of quanti-
zation levels is decreased, quantization errors are seen as false
contours in low detail areas of the picture. This is shown in
Fig. 23(a) where a 5-bit PCM encoded picture is shown starting
with an original signal of 50-dB S/N ratio. As seen in this pic-
ture, the quantization contours are visible in the sky. Visibil-
ity of this quantization noise can be decreased by adding some
high-frequency noise to the original signal before quantizing.
This noise causes the coded signal to oscillate between the
quantizing levels thereby increasing the frequency content of
the quantizing noise. This is seen in Fig. 23(b) where the
quantizing contours are no longer visible. Noise in the input
signal can be increased by deliberately adding a pseudorandom
noise sequence to the input before quantization and subtract-
ing it out at the receiver. This technique, called dither, was
used successfully by Roberts [83] to produce good-quality
PCM coded pictures at low bit rates. Deterministic patterns
have been used to produce further improvement in two and
three dimensions[84], [85].

PCM coding systems, in general, require about 128 to 256
levels (7-8 bits} for good-quality pictures under most viewing
conditions. For monochrometelevision with a sampling rate
of 8 MHz, this amounts to a bit rate of about 56 to 64 Mb/s.

B. Predictive Coding

In basic predictive coding systems [86]-[88] (Fig. 24) a pre-
diction of the sample to be encoded is made from previously
coded information that has been transmitted. The error result-

ing from the subtraction of the prediction from the actual
value of the sample is quantized into a set of discrete ampli-
tude levels. These levels are represented as binary words of
either fixed or variable word length and sent to the channel
coder for transmission. Thus the predictive coder has three
basic components: 1) predictor, 2) quantizer, 3) code assigner.

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 3, MARCH 1980

   
  

  
Fig. 23. Effect of coarse quantization in PCM coded picture (from

Connor et af. [23]). (a) Contouring is visible in this high input
signal-to-noise ratio, five-bit PCM picture. (b) Increasing input noise
level reduces the visibility of contours.
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Fig. 24. Block diagram of a DPCM transmitter and receiver.

Depending upon the number of levels of the quantizer, a dis-
tinction is often made between delta modulation (DM) [86]
(N = 2) and DPCM [87], which has N greater than two. Al-
though DM has been used extensively in encoding other wave-
forms (e.g., speech), it has not found great use in encoding of
pictures, due perhaps to the high sampling rates required; con-
sequently, we will limit our discussion to DPCM encoders. In
its simplest form, DPCM uses the coded value of the horizon-
tally previous pel as the prediction. However, more sophisti-
cated predictors use the previous line (two-dimensional pre-
dictor) as well as previous frame of information (interframe
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Fig.25. An outline of linear prediction used for predictive coding.
Note that quantization effects are neglected. The prediction, there-
fore, is made by using a weighted sum of k previous samples of the
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Fig. 26. Performance of different linear predictors (from Habibi [28]).

(a) mse is plotted as a function of the order of the predictor (number
of points employed in the predictor). (b) Mean-square error of DPCM
systems as a function of the order of the predictors and using different
quantization levels. Statistically optimum (Max) quantizers are used.

predictor). In this subsection we shall look at how the three
components of the predictive coder have been optimized for
coding of the picture signal.

1) Predictors: Predictors for DPCM coding can be classified
as linear or nonlinear depending upon whether the prediction
is a linear or a nonlinear function of the previously transmitted
sample values. A further division can be made depending upon
the location of previous elements used: one-dimensional pre-
dictors use previous elements in the sameline, two-dimensional
predictors use elements in the previous lines as well, whereas

-K 38 weights.

interframe predictors use picture elements also from the pre-
viously transmitted frames. Predictors can be fixed or adap-
tive. Adaptive predictors change their characteristics as a func-
tion of the data, whereas fixed predictors maintain the same
characteristics independent of the data.

Linear predictors for television have been studied using the
general theory of linear prediction [89]. If {S;} are a set of
picture elements indexed according to their time occurrence,
and assuming them to be identically distributed with zero
mean and variance 07, a linear predictor for the nth element
5, using K previous elements, 8, -1,5,-2,°°",Sn_-K, can be
written as

a K
Sn= >, 4Sn-i: (6)i=1

This is shown in Fig. 25. The coefficients {a;};=1,-..,x, can
be obtained by minimizing the mean-square prediction error
(mse). The best coefficients are given by

col (a),°**,ax)=Rcol(Ry,R2,°°*,Re) (7)

where R;=(S,°S5,-;), and matrix R has (i, j)th element
(Sn-i°S,-j), where the bar on the top denotes an average.
Using these coefficients, the mse is given by 0? - Dj_, Rj.
Thus the mean square of the input to the DPCM quantizeris
reduced by oy a;R; from o*, the mean square ofthe input
to a PCM quantizer.

It should be noted that the above analysis assumes station-
arity and neglects the effects of quantization in the DPCM
coder (i.e., in a real DPCM encoder, prediction of sample 5,
can only be made by using encoded representations of the past
samples S,-;,5,-2,°°*,S,-xK and not by using theoriginal
uncoded sample values). For coders which produce high qual-
ity pictures, effects of quantization are small and may be ne-
glected. The mse has been computed by Habibi [28] for pre-
dictors which use different numbers of picture elements within
a frame. His results, reproduced in Fig. 26, show that if the
predictor coefficients are matched to the statistics of a picture,
then for that picture the mse decreases significantly by using
up to three picture elements; further decreases are rather small.
However, if coefficients are not exactly matched, the decrease
in mse is not significant by using three previous elements as
compared to one element. Also, this improvement with the
numberof picture elements changeslittle with the coarseness
of the quantizer in the DPCM loop(Fig. 26(b)).
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Fig. 27. Entropy of prediction error for different predictors as a func-
tion of motion and the type of scene (from Haskell [91]). Four
different scenes are used. (a) Entropy of the frame difference signal
in the moving area versus speed. Starting with 8-bit PCM, the differ-
ential signal could assume any of 511 different levels(due to 8 bil
initial quantization). Results are also shown for coarser quantization
of signals, which still gives good picture quality. Solid curves are
for the mannequin head at various distances from the camera. Un-
connected points are for live subjects. (b) Entropy of the element
difference signal in the moving area versus speed.

Two-dimensional predictors have also been used for DPCM
coding. In general, the improvement in mse by using two-
dimensional prediction is small [29]. However, subjective
evaluation indicates that the rendition of vertical edges due to
two-dimensional prediction is significantly improved [90].
Also, by proper choice of the coefficients, it is possible to get
improved prediction as well as quick decay of the effects of
the transmission errors in the reconstructed picture.

Predictors for frame-to-frame coding have used a combina-
tion of elements from the present frame as well as previous
frame. For scenes with low detail and small motion, frame dif-
ference prediction appears to be the best. In scenes with
higher detail and motion, field difference prediction does bet-
ter than frame difference prediction [91]. As the motion in
the scene is increased further, intrafield predictors do better
[92]. This is largely due to two reasons: |) for higher motion,
there is less correlation between the present pel and either the
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Fig. 28. Graham’s rule for adaptive prediction.

previous field or the frame pels, 2) due to the integration of
the signal in the video camera, the spatial correlation of the
television signal in the direction of movement is increased
[34]. For the same reason, predictions such as elementorline
difference of frame or field differences perform better than
frame or field difference for higher motion. A typical varia-
tion of the entropy of the prediction error for elements which
are significantly different from the corresponding elements of
the previous frame (or “moving area pels’’) is shown in Fig. 27
as a function of different predictors and motion of the object
in the scene [91].

We mentioned before that the picture signal is highly nonsta-
tionary, and that it is advantageous to change the prediction
based on the local properties of the picture signal. For the in-
traframe situation, one popular method has been to compute
some measures of directional correlation based on the local

neighboring transmitted pels and use it to select a predictor
along the direction of largest correlation. The set of predictors
from which a predictor is selected are usually linear and are
chosen such that each one of them will give small prediction
error if the signal was correlated in a certain manner. Examples
of this type of approach are the predictors used by Graham
[93], Zschunke [94], and Dukhovich and O’Neal [95]. In
Graham’s predictor, either the previous line or the previous
element is used for prediction, and the switching is done by
the surrounding line and element differences as shown in Fig.
28. Several extensions have been madeof this basic philoso-
phy. However, the results have not been very encouraging in
terms of the mse or the entropy of the prediction error. In
some cases the rendition of certain types of edges can be re-
markably improved by these adaptive predictors. Another
variation [96] in adaptive prediction is to use a weighted sum
of several predictors, where the weights are switched from ele-
ment to element and are chosen by observing certain charac-
teristics of already transmitted neighboring pels. As distinct
from the earlier “switched” predictors, they may not use
weights of | or 0. As an example, assume that pel A is already
transmitted (Fig. 28). The prediction error of A using all the
predictors in a set of predictors is then evaluated. The predic-
tor that gives the least prediction error is used for the predic-
tion of X. The same calculation can be performed at the re-
ceiver and, therefore, the predictor switching information does
not need to be transmitted. Such techniques have been suc-
cessful in color component coding [96], and are being consid-
ered for gray-level signals [97].

Generalizations of Graham’s rule have been made for frame-

to-frame prediction, where one selects either a previous frame
or an intraframe predictor, depending on surrounding informa-
tion [95]. However, more successful adaptive predictors for
frame-to-frame coding are the ones that take into account mo-
tion of objects. These are based on the notion that, if there
are objects moving in the field of view of a television camera
and if an estimate of their translation is available, then more
efficient predictive coding can be performed by taking differ-
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Fig. 29. Improvement in entropy of the prediction error due to motion
compensation for a typical scene containing fairly active head and
shoulders movement (from Netravali and Robbins [102]).

ences of elements with respect to elements in the previous
frame that are appropriately spatially translated. Such predic-
tion has been called motion compensated prediction [98],
[99]. Its success obviously depends upon the amount of
translational motion of objects in real television scenes and the
ability of an algorithm to estimate translation with the accu-
racy that is desirable for good prediction. One set of tech-
niques developed by Limb and Murphy [100], and Rocca
[101] obtain an estimate of translation in a block of pels,
whereas techniques developed by Netravali ef a/. [102],[103],
[104], recursively adjust the translational estimate at every pel
or at every smal! block of pels. Another approach to motion
compensation is adaptive linear prediction by using elements
in both the present and the previous frame (or field), which
surround the element being encoded, and adapting the coeffi-
cients to minimize an intensity error function [105]. Such an
approach is implementationally difficult and requires transmis-
sion of coefficients of the predictors.

Performance of motion-compensated prediction for videosig-
nals with initial quantization of 8 bit/sample is superior to the
frame difference predictor by about one or two bits (entropy
of the prediction error) depending upon the type of motion in
the scene. A typical set of results for motion-compensatedpre-
diction is shown in Fig. 29 for a scene containing head and
shoulders view of a person involved in an active conversation
and occupying about 15-51 percent area of the picture. Four
frames of this scene are shown in [102]. In terms of the total
coderbit rate, the decrease due to motion compensation might
be 20-70 percent [103]. With the cost of processing coming
down, future coder implementationswill certainly take advan-
tage of this significant bit-rate reduction.

2) Effect of Transmission Errors: One of the questions that
is often overlooked in the design of predictors is the propaga-
tion of transmission errors in the reconstructed pictures. Since
prediction of the next sample is made in the DPCM coder us-
ing certain previously transmitted samples, a transmission error
in any of the previous samples could affect the present sample
which in turn could affect all the future samples. The amount
and spread of this effect depends upon the type of predictor
used. In the case of optimum linear one-dimensional predic-
tors, it is known [106] that for most types of correlations gen-
erally found in pictures, the predictor is stable, which implies
that the effect of transmission error decays. The previous ele-
ment predictor is unstable, and transmission errors result in

horizontal streaks in the reconstructed pictures. However, this
predictor can be stabilized by providing leak,i.e., using a frac-
tion (<1) of the previous element value for prediction. For
two-dimensional predictors the situation is somewhat difficult.
Optimum linear predictors for many commonly used correla-
tion functions may be unstable [106]. A good criterion for
stability is not yet known [107], [108]. However, as pointed
out earlier, there are some stable two-dimensional predictors
for which the pattern of distortion produced by transmission
errors is much less annoying than the one-dimensional predic-
tors [90], [107]. Many methods of error concealment and/or
correction exist. In some, an erroneousscanline is substituted
by either previous line or an average of the surroundinglines
[109]. Other methods depend upon theerror pattern and the
statistics of the video signal for error correction [110], [111].
In the case of adaptive predictors, a transmission error can
have two types of effects—one due to the use of the wrong
value for the prediction, and the other due to selecting a
wrong predictor. Some improvement in the performance may
be obtained by providing a “‘leak” in the rule of adaptation as
suggested by MaxemchukandStuller [112]. However, in gen-
eral, criteria for stability of such predictors and methods of
transmission error correction are much less understood. The

only recourse appears to be the use of error detecting and cor-
recting codes. Someof the patterns produced by transmission
errors for a previous element predictor and a spatial average
predictor are shownin Fig. 30.

3) Quantization: DPCM schemes achieve compression, to a
large extent, by not quantizing the prediction erroras finely as
the original signal itself. Several methods of optimizing quan-
tizers have been studied, but quantizer design still remains an
art and somewhat ad hoc. Most of the work on systematic
procedures for quantizer optimization has been for the previ-
ous element DPCM coding, in which approximate horizontal
slope of the input signal is quantized. Although obvious ex-
tensions can be madeto the case of two-dimensional and inter-

frame predictors, they have not yet received enough attention.
For this reason, we shall discuss in detail quantizers for the
previous element DPCM and point out how extensions to the
other cases can be made. Three types of degradations can be
seen due to improper design of the quantizer of a DPCM coder.
These are referred to as granular noise, edge busyness and
slope overload as shown in Fig, 31. If the inner levels (for
small magnitudes of differential signal) of the quantizer are

 
PMC Exhibit 2025

Apple v. PMC
IPR2016-01520

Page 18



PMC Exhibit 2025 
Apple v. PMC 

IPR2016-01520 
Page 19 

 
384

 
   
  

     
         

(b)

 
 

  
  

 
 

 
  
  

 
 

   
     

  
  
 

  
 

  
 
 
     
 

(d)

Vig. 360. Effect of transmission errors in DPCMcoders (from Connor
ef al. [23|). (a) Previous element prediction. (b) Error patterns for
previous element prediction. (c) Spatial average prediction. (d) Error
patterns for spatial average prediction.
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Fig. 31. An intuitive classification of quantizing distortion due to
DPCM coding. Three classes of noise are identified: granular noise,
edge busyness, and slope overload.
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Fig. 32. Characteristics of a quantizer. x is the input and y is the out-

put. {x;} and {¥;} are decision and representative levels, respectively.
Inputs between X; and X;, 1 are represented by Y;.

too coarse, then the flat areas are coarsely quantized and have
the appearance of random noise added to the picture. On the
other hand, if the dynamic range {i.e., largest representative
level) of the quantizer is small, then for every high contrast
edge it takes several samples for the output to followthe in- i
put, resulting in slope overload, which appears similar to low-
pass filtering of the image. For edges whose contrast changes
somewhat gradually, the quantizer output oscillates around
the signal value and may change fromline to line, or frame to
frame, giving the appearance of a “‘busy edge.’’ Quantizers can
be designed purely on a statistical basis or by using certain |
psychovisual measures. They may be adaptive or fixed. We
shall discuss each of these cases in the following sections.

a) Nonadaptive quantization: Optimum quantizers that

are statistically based have been derived using the work of Max |
[113]. Considering Fig. 32, if x is the input to the DPCM
quantizer with probability density p(x), then quantizer param-
eters can be obtained to minimize the following measure of
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Fig. 33. Amplitude threshold versus slope for a single luminance edge
which rises within one element to its peak value. Edge height and
luminance difference threshold are plotted in units 0 to 255 (8-b
number) for two cases 1) without any additive noise and 2) with
additive noise (from Sharma and Netravali [121]).

quantization error:

N Xie

p=> [ f(x ~ Y;)- p(x) dx (8)
f=1 “Xj;

where ¥; <X¥_<+++<¥Xyy,, and Yy C¥, <---< Vy are
decision and representative levels, respectively, and f(-) is a
nonnegative function. We assume, as shownin Fig. 32, thatall
inputs X;<x <Xj;,, to the quantizer are represented as Yj.
Necessary conditions for the optimality with respect to X; and
Y; for a fixed numberoflevels N are given by:
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and

as edge busyness for high contrast, vertical edges. Thus for

Xj+1 df(x - are -¥)) subjective reasons, the qauntizers should not be designed based
_ *p(x)dx=0, jfHlt+N. on the mean squareerrorcriterion.

xj a Minimization of an error measure for a fixed numberof lev-

(10)

assuming that f(-) is differentiable. In the case of the mean-
square error criterion, f(z)=z?, and the above equations re-
duce to

Xj=(¥j+ Yj-1)/2 ql)

X41 A+Y;= f xp(x) w/f p(x) dx. (12)
*Y a

Several algorithms and approximations exist for the solution
of these equations. The probability density, p(x), for the case
of a previous element differential coder can be approximated
by a Laplacian density, and the optimum quantizer [114] for
this case is companded, i.e., the step size (X; ~ X;-, ) increases
as x increases in magnitude. Since most of the time the pic-
ture signal has slope x close to zero, this results in fine spacing
of levels near x = 0 and rather coarse spacingoflevels as |x| in-
creases. This results in overspecification of the low detailed
areas of the picture and consequently a small amount of granu-
lar noise but poor reproduction of detailed areas or edges.
Due to the small dynamic range of the quantizer, this is visible

and

els is relevant for DPCM systems which represent the quantizer
outputs with fixed-length binary words, since in that case the
output bit rate depends on the logarithm of the numberoflev-
els of the quantizer. However, since the distribution of occur-
rence of different-quantizer levels is highly skewed, there is a
considerable advantage to using variable length words [3] to
represent quantizer outputs. In such a case, since the average
bit rate is lower bounded by the entropy of the quantizer out-
put, it is more relevant to minimize a measure of distortion
subject to the entropy of the quantizer output being less than
a given number. It is known that [115], for random variables
with Laplacian density, quantizers optimum with respect to
this criterion are uniform. Although such quantizers may pro-
vide adequate picture quality for small step sizes, they may be
complex to implement because of the large numberoflevels
[116].

It had been realized for some time that for a better picture
quality, quantizers should be designed on the basis of psycho-
visual criteria. However, a debate [117]-[119] continues on
what is a good criterion to use, and expectedly so, consider-
ing the complexities of the human visual system (see Section
III-E). We will describe two approaches and point the reader
to other works. In the first method, a quantizer is designed
such that the quantization erroris at the threshold ofvisibility
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{b)
Fig. 35. Characteristics of quantizers optimized under different criteria (from Netravali [117]). (a)

Input and output characteristics of quantizers optimized under three criteria are shown: (1) mini-
mum mean-square error (mse); (2) minimum weighted mean-square error (mssd); (3) mssd with a
constraint on the entropy (mssde) of the quantizer output. For (2) and (3), weights are subjectively
derived. (b) Quantizer levels are shown in units of 0 to 255 (eight bits).

(using a certain model of the error visibility) while minimizing
the number of quantizer levels or the entropy of the quantizer
output. We mentioned in the previous section that the visibil-
ity of small perturbations in intensity is masked by spatial
variations of intensity. Threshold at an edge is the value by
which the magnitude of an edge can be perturbed such that
the perturbation is just visible. A typical relationship [120],
[121] for an edge of one pel width, and luminance Ly = 100
(on a scale of 0-255) and variable height, is given in Fig. 33.
Knowing this relationship’ between the edge threshold and

"Real pictures instead of a single edge, can be used to determine this
relationship [122].

slope of a single edge the quantization error can be constrained
to be below the amplitude threshold for all slopes of the signal.
Optimum quantizers satisfying such a constraint turn out coin-
cidentally to be the same whether the numberoflevels is mini-
mized or the entropy is minimized [121]. For a videotele-
phone type signal, 27 levels are required for no visible error at
normal(six times the picture height) viewing distance [121].

Another method of designing psychovisual quantizers is to
minimize a weighted mean-square quantization error, where
the weights are derived from subjective tests. Such optimiza-
tion would be similar to the mean-square error quantization,
where the probability density is replaced by a weighting func-
tion. Limb [120] used a product of the probability density

en
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afieee:
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Fig. 36. Performance of quantizers optimized under different criteria
for a typical head and shoulders picture “‘Teri,”” Mean-square weighted
quantization noise (mssd) is plotted with respect to entropy. It is
assumed that mssd is a reasonable measure of picture quality (from
Netravali [117]).

and a function of the amplitude threshold as the weighting
function, whereas Candy and Bosworth, [123] and Netravali
[117] have used complex pictures as stimuli and derived a
weighting function by measuring visibility of noise added to
regions of the picture as determined by the edge contrast. A
typical weighting function for a head and shoulders type of
picture is shown in Fig. 34. Such weighting functions are pic-
ture dependent, but the variation for a class of pictures (e.g.,
head and shoulders view) may not be significant. There has
been and perhaps will continue to be considerable debate on
the choice of weighting functions. Although the optimum
choice of the weighting function is unknown, optimum quan-
tizers designed on the basis of the above weighting functions
have been quite successful. In general, quantizers which mini-
mize the weighted mean square error for a fixed number of
levels are less companded than the minimum mean-squareer-
ror quantizers and reproduce edgesfaithfully. Figs. 35 and 36
give characteristics of the quantizers optimized under different
criteria and the performance of these quantizers in terms of
entropy of the quantizer output and a measure of picture qual-
ity. Other criteria for quantizer design and their comparisons
have been considered in [117], [118], [121], [124], [125].

Quantizer design for intraframe coders which use a more
sophisticated predictor has been either on the basis of mini-
mum mean square error or by trial and error. However, the
methods of psychovisual quantizers discussed above can be ex-
tended easily for this case. For interframe coders, the situa-
tion is somewhat complicated since the quantization error oc-
curs predominantly in the moving areas of the picture andits
visibility depends upon the spatial as well as temporal varia-
tions in the scene. Because of the lack of suitable models for

——1}— CHECKER GIRL
=—O-—TERI

VISIBILITY—» 
0 20 40 60 60 4100 120 140

MASKING FUNCTION (0-255) —#

Fig. 37. Relationship between visibility of noise and a measure ofspatial
detail (called Masking function), which uses a combination of element
and line differences in a 3 X 3 neighborhood. Dependence of the
visibility on the picture content is shown for two head and shoulders
views, checkered girl (Fig. 38(a)) and “Teri” (from Netravali and
Prasada [131]).

both the distribution of the prediction error and the visibility
of quantizing error, the problem of designing both minimum
mean-square and psychovisual quantizers has not been tackled.
Quantizers used in practice are based on trial and error.

b) Adaptive quantization: Dueto the variation of the pic-
ture statistics and the required fidelity of reproduction in dif-
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Fig. 38. Original picture (a) and its four segments (b), (c), (d), (e) designed on the basis of spatial
detail (two-dimensional) and noise visibility. Segment (b) has highest noise visibility, whereas
segment (e) has the least noise visibility (from Netravali and Prasada [131]).

ferent regions of the picture, adapting the DPCM quantizeris
advantageous. In general, one would like to segment a picture
into several subpictures such that both the perception of the
quantization noise and the statistical properties of the differ-
ential signal within the subpicture are uniform andstationary.
However, this is an extremely difficult task since the percep-
tion of noise and the statistics may not be sufficiently related

to each other. Several approximations to this goal have been
made, some purely statistical [126], [127] and some based on
certain psychovisual criteria [128]-[133]. One can work in
the frequency domain [128], [129] and split the signal into
two frequency bands to exploit detail sensitivity of the eye.
In such a case, signal in the low-frequency band is sampled at
a low rate, but is quantized finely because of the high sensitiv-
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Fig. 39. Plots of conditional histograms of prediction errors conditioned
on the four segments {Z,,2Z,,Z,,Z,}of Fig. 38 (from Netravali and
Prasada [131]).

ity of the eye to the noise in the low frequency region. The
high frequency component of the video signal is sampled at a
higher rate, but is quantized coarsely due to reduced sensitiv-
ity to noise in highly detailed regions. Pel domain approaches
[130]-[132] start out with a measure of spatial detail and ob-
tain experimentally the relationship between the visibility of
noise and the measure of spatial detail. A typical relationship
for the head and shoulders pictures is shown in Fig. 37, where
a weighted sum of slopes in a 3 X 3 neighborhoodis used as a
measure of spatial detail, Many other measures of spatial de-
tail may be used. As an example see Musmann and Erdmann
[132]. This relationship is then used to segment a picture
into subpictures, such that a unit noise would be approximately
equally visible in the entire subpicture. Such a segmentation,
using the relationship shown in Fig. 37, is shown in Fig. 38.
Fig. 38(a) shows an original picture and Figs. 38(b) through
38(e) show four subpictures which are in the order of increas-
ing spatial detail or decreasing noise visibility. Thus flat areas
of the picture are covered by the first subpicture (i.e., Fig.
38(b)) and severe edges are included in the last subpicture(i.e.,
Fig. 38(e)). Quantizers for each of the subpictures could be
designed in a way similar to the earlier nonadaptive techniques.
One side benefit of such a schemeis that the prediction error
(i.e., the differential signal) statistics shows a marked change
from one segment to the other. In Fig. 39, the prediction er-
ror histograms are shown for four subpictures of the picture in
Fig. 38(a). It is evident that since these histograms are quite
different from segment to segment, a different variable length
code may be used to represent the quantizer outputs from

This together with the adaptive quantizer is
capable of reducing the bit rate by about 30 percent over the
Previous element DPCM coder [131]. However, much ofthis
teduction is a result of coarser quantization of different seg-
Ments rather than use of different variable codes for different

_ Segments [130]. It is also interesting to note that the advan-
tage of adaptation increases with the number of segments used,
up to four, after which further increase is small. Another
Method of adapting the quantizer, called delayed coding

. [133]-[135], is to treat the operations of quantization as that

389

LEVEL CODE WORD
NO. LENGTH CODE

4 412 4100401010104

2 410 1004010100

3 8 40010100

4 6 100400

5 4 1000

6 4 1444

7 3 440

8 2 O41

9 2 00

410 3 104

ail 4 414110

42 5 410044

43 7 1001044

414 9 400101044

15 441 10010101044

16 42 100101010100

Fig. 40. A typical variable-length code for a DPCM coded signal, with
16 quantizer levels.

of following a path through the encoding tree determined by
the quantizer steps. The path is chosen to minimize the
weighted quantization error at several samples, including some
subsequent samples. Since the quantization steps are not var-
ied sample to sample, it is not necessary to send the adaptation
information to the receiver. In summary, for intraframe cod-
ing, although the optimum rules for adaptation are not known,
rules based on intuition, and trial and error have shownsignifi-
cant reduction in bit rate over nonadaptive systems. In the
case of interframe coders, no systematic investigation of adap-
tive quantizers has been made, primarily due to lack of under-
standing of statistics as well as the perceptual basis for adapt-
ing the quantizers. Quantizers have also been adapted in an ad
hoc mannerto facilitate matching of the variable bit rate coder
to the constant bit rate channel. We shall discuss this in detail
next.

4) Code Assignment: We mentioned eariler that the fre-
quency of occurrence of the quantizer outputlevels is not uni-
form for intraframe as well as interframe predictive coders
and, therefore, lends itself to representation using code words
of variable lengths (e.g., Huffman codes). The average bit rate
for such a code is very close to and is lower bounded by the
entropy of the quantizer output signal. A typical variable
length code for a previous element DPCM coder with 16 quan-
tizer levels is shown [136] in Fig. 40. Inner levels occur much
more often and, therefore, are represented by a smaller length
word. This type of optimum code requires exact knowledge
of the probabilities of the quantized output. There are other
procedures which work with approximate probabilities and re-
main reasonably efficient even when the probabilities start to
depart from their approximate values [137]. The optimum
code is not too sensitive to changes in the probability distribu-
tion [138] and, therefore, it appears that for picture-type sta-
tistics, optimum codes based on an average of many pictures,
remain quite efficient compared with optimum codes designed
on the basis of knowledge of the statistics of the individual
pictures. For most pictures, the entropy of the quantizer out-
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BIT TO
QUANTIZER ASSIGNOR CHANNEL

TRANSFORM ENCODER

FROM
CHANNEL

DECODER INVERSE
TRANSFORM DISPLAY

TRANSFORM DECODER

Fig. 41. Block diagram of a transform encoder/decoder pair.

put (and consequently the average bit rate using Huffman cod-
ing) is about one bit per pel less than the corresponding bit
(=logzN, N: number of quantizer levels) for a fixed length
code [139]. Stated differently, an optimum variable length
code results in an improvement of about 6-dB S/N ratio with
no change in the average transmission bit rate. A similar con-
clusion was arrived at quantitatively by O’Neal [140], who
proved that for a Laplacian density (a good approximation for
the probability density of the differential signal), optimum
variable length code improves the S/N ratio by about 5.6 dB if
the number of quantizerlevelsis large.

One of the problems with the use of variable length codesis
that the output rate from the source coder changes with local
picture content. In order to send such a signal over a constant
bit rate channel, the source coder output has to be held tem-
porarily in a buffer which can accept inputs at a nonuniform
rate and can be read out to the channel at a uniform rate,

Since in any practical system a finite length buffer is used,
there are problems of buffer overflow and underflow, which
depend upon thesize of the buffer, type of the variable length
code used, and the channel rate. By using a channel whose
rate is higher than the entropy of the quantizer output, proba-
bility of buffer overflow is reduced [141]. Also, by designing
codes which minimize the probability of the length of the
code words exceeding a certain number, probability of buffer
overflow can be reduced [136]. However, since the buffer
overflow cannot always be prevented, strategies have been de-
signed by which, as the buffer begins tofill, the output bit rate
of the coder is gradually reduced. This is particularly impor-
tant in the case of frame-to-frame coders since the motion ina

television scene is bursty. Several techniques of reducing the
input to the buffer have been tried, e.g., subsampling, coarser
quantization [142]. These techniques allow graceful degrada-
tion of picture quality when the source coder is overloaded.
Some of these will be discussed in the next subsection.

C. Transform Coding

A straightforward application of rate-distortion theory to
picture coding indicates that we assign a probability measure
on the picture ensemble and then use a variable length code to
give smaller length codes to those pictures that are morelikely.
However, the numberof possible pictures is so large that it is
impossible to assign a probability measure on it, much less
construct a code book. Onealternative is to divide a picture
into subpictures (called blocks) of smaller size and then do
“block-coding” using a code book. However, here again, sub-
pictures of reasonable size (e.g., 4 elements X 4 lines) result in
a large code book. So instead, we take the picture elements in
the block and transform them into certain coordinates which

can be treated independently and which are related to the
probability measure on the original subpicture. Thus, in trans-
form coding, we divide a picture into subpictures and then
transform each of these subpictures into a set of “‘more inde-

pendent” coefficients. The coefficients are then quantized
and coded for transmission. At the receiver, the received bits
are decoded into transform coefficients. An inverse transfor-

mation is applied to recover intensities of picture elements.
These operations are shown in Fig. 41. Much of the compres-
sion is a result of dropping coefficients from the transmission
that are small and coarsely quantizing the others as required
by the picture quality. It is seen from this figure that impor-
tant parameters that determine the performance of a trans-
form coder are: size and shape of the subpictures, type of
transformation used, selection of the coefficients to be trans-
mitted and quantization of them, and the bit assignor which
assigns a binary word for each of the quantizer outputs.

In this section, we describe both fixed and adaptive (data de-
pendent) transform coding schemesandtheir performance. It
should be noted that due to the inherent complexity of imple-
mentation, most of the transform coding literature describes
computer simulations onstill pictures, rather than real-time
hardware implementations. Also, most of them use sequen-
tially scanned (rather than interlaced) pictures. This poses
problems in comparative judgment of picture quality since the
coding degradations which do not change with respect to time
(as in computer simulation ofstill pictures) are muchless visi-
ble than the coding degradations which change with respect to
time (as in real-time hardware).

Although transform coding is a natural outgrowth of the
principles of rate-distortion theory, it was first applied to one-
dimensional signals and then after many years, applied to the
coding of pictures [143]-[148] by many workers indepen-
dently. Since then, a significant effort has been devoted to it.
Wintz [148] contains an excellent survey of transform coding
work,

1) Transformations: The primary purpose of the transfor-
mation is to convert statistically dependent picture elements
into “somewhat independent”coefficients. Most of the trans-
formations that are used are linear and unitary. Transforma-
tion and separate coding of each subpicture neglects the redun-
dancies that exist between the subpictures, and therefore,
purely on a statistical basis, it is advantageous to have a large
subpicture. However, for implementational simplicity as well
as to exploit local changes in picture statistics and visual fidel-
ity, a smaller subpicture is desirable. Of course, for practical
reasons, an important consideration is that, since most of the
compression results from dropping the coefficients with small
energy, it is desirable to have a transform which compacts
most of the image energy in a few coefficients as possible.
Another consideration is the ease of performing the transfor-
mationitself.

a) Optimum transform: A truly optimum transform
would result in the best picture quality using the least number
of bits, but this criterion is difficult to specify quantitatively.
A simpler criterion is to require that the transform coefficients
be statistically’ independent, but this requires knowledge of
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higher order (higher than 2) statistics of the images, which we
do not yet have. So we seek a transformation that results in
uncorrelated coefficients. Considering pels in a subpicture as
an N-component vector X, we would like a transform “A”in
the form of aN X N matrix that results in uncorrelated coeffi-
cient vector Y having V components, i.e.,

Y=AX (13)

Since we are interested in dropping someof the coefficients,
we may also want the error (mean-square) in reconstruction of
X, due to dropping of some coefficients be the least. Also we
would like image energy to be compacted into as few coeffi-
cients as possible. Fortunately, there is one transform that
satisfies all these criteria, and it is known as the Hotelling
transform [149] or Karhunen-Loeve transform® (KLT) [150].
Although KLT has been known for some time, its use for the
problems of information transmission was made much later
{151], [152]. The optimum transformation can be computed
from the covariance of the pel vector X:

Cx = E {(X - E(X))* (X- EXT} (14)

where £ is the statistical expectation and superscript T de-
notes transpose. Rows of the optimum matrix A are nor-
malized eigenvectors of the matrix Cy,i.e., they are solutions
of the equation

CyX = A,X (15)

The coefficients Y that are obtained by such transformation,
have a covariance matrix given by

4 0 0 258 0

0 de Oo: 0

Cy=|9 0 A3*7: 0 (16)

ee Aw

where \,,°°*, A, are the eigenvalues of the matrix Cy. Cy
being a covariance matrix hasall its eigenvalues nonnegative,
and if we order them according to their magnitude, maximum
energy is compacted in the first K coefficients (K < N) corre-
sponding to the eigenvectors of the K largest eigenvalues. If
only the & coefficients corresponding to the largest eigenvalues
are sent, then at the receiver there will be some reconstruction
error whose mean squareis given by

N

xX
J=K+1

(17)

This is usually small, since only the smallest eigenvaluesare in-
cluded in the above summation.

An alternative way of expressing the aboveis to use a set of
basis vectors@,,°*-,@, which are orthonormal and then
represent the pel vector X as a linear sum of these basis
vectors, i.¢.,

N

i=l

It is well known that the optimum a; which minimize the error

®Strictly speaking, KLT was derived for the case of continuous wave-
forms rather than vectors obtained by sampling a continuous waveform.
However, it is used widely for continuous as well as discrete cases.

391

between X and its representation (ie., aN a;@;) are given by
aj = X7;. (19)

Now instead of transmitting picture element intensities (or
components of X), we transmit projections of X on@y,ie.,
{a;}. In order to achieve the maximum degree of compression,
we would like to send as few {a;} as possible, without a sig-
nificant error in the reconstruction of X at the receiver. The

basis vectors which compact maximum energy in the fewest
{a;} turn out to be the eigenvectors of the covariance matrix
Cy. Thus the KLT provides us with the optimum basis func-
tions for representing a subpicture. In the above, we have con-
verted a two-dimensional subpicture into a vector ¥. The
above analysis can be easily extended to the case where the
image is treated as a matrix and an optimum transformation is
sought to convert it into a coefficient matrix. All the above re-
sults hold and a KLT can again be defined. However, no gen-
erality is lost by treating the subpicture intensities as vectors.

Although the optimum transformation is explicitly known,
its use in practice presents many problems. First of all, the
covariance function of an image is not stationary, and there-
fore, one must either choose a different covariance matrix
matched to different regions of the picture or use an average
(with a consequent loss in performance). The second problem
is in the computation of the eigenvectors of Cy. In many
cases [147] this matrix Cy turns out to be singular, and then
some eigenvectors cannot be uniquely defined. Another prob-
lem is the difficulty of implementing the optimum transform.
In general, it requires N? multiplications by constants which
may be complicated (i.e., not simple powers of 2 for easy
binary arithmetic). These problems have prevented any hard-
ware implementation of the optimum transform. It is mainly
studied in computer simulations to obtain a bound on the
mean square error performance using any other transform.

b) Suboptimum transforms: Many other transforms have
been invented which produceless correlated coefficients than
the image itself and which are easier to implement. Some of
the popular transforms are: discrete Fourier transforma-
tion [144]

 

A = Matrix {aj} (20)
where

i

4IN exp [-24V-1° ()].
Discrete cosine transform [153]

2K i

ay = <a cos [(2j + 1) in/2N] (21)
where

Ipn/2,  fori=1
K()=41, fori=2,°'+,N

0, otherwise.

Hadamardtransform [134], [138].
Symmetric Hadamard transformation of order N = 2” is de-

fined by

=k epuaaij iN (22)
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(15)

Fig. 42. Basis functions of a 4X 4 Hadamard transform. Note that,
in general, the sequency increases as the coefficient number (from
Landau and Slepian [147]).

 
(14)

where
“1

bG,/)= >> init.l=0

=

The terms i, and j, are the bit states of the binary representa-
tions of i and /, respectively. Thus a 4 X 4 Hadamard trans-
form matrix can be written as:

1 @ 2] J

1 d.=t =!

L=1.-f£ a4 (28)
T=] I 1

Many other transforms have been used [154],[155]. Slant
transforms, in particular, contain basis vectors which have
a piecewise linear variation of their components. One obvious
difference between these transforms and the KLTis that they
are not dependent on imagestatistics. Another differenceis in
the ease of implementation. All the above transforms are
unitary, ie., A7" = A7! (where A?” is the complex conjugate
of A’), and therefore inverse transformation which is done at
the receiver is as easy to implement as the transformation it-
self. The discrete Fourier transform can be implemented by
using the fast Fourier transforms (FFT) techniques [156].
Instead of the N? multiplications required for the KLT,
2N' log, N! multiplications and additions are required. The
discrete cosine transform can be implemented by a technique
developed by Chen ef al. [157] using (3.V/2 (logy N- 1) +2)
real additions and {N log, N~ (3N/2)+ 4} real multiplica-
tions. The Hadamard transform is the simplest to implement
since the Hadamard matrix consists of +1’s and, therefore,
only additions and no multiplications are required.

Although not optimum, these transforms possess good energy
compaction properties. In general, the bases that they repre-
sent correspond to some most likely subpictures as well as
somevery unlikely subpictures. The basis functions of a4 X 4
Hadamard transform [147] are shown in Fig. 42. As is easy to
see, the first basis function is a most likely subpicture, whereas
the last basis function being a very chaotic subpictureis highly
unlikely. The coefficients using these transforms, although not
uncorrelated as in the case of the KLT, are “more independent”’
than the pels. Precisely how far from optimum are these trans-
forms? That is a difficult question since it requires knowledge
of the image statistics and judgment of picture quality using
each of the individual transform codes. However, some answers
can be given for simplified image models. If the image is as-
sumed to be stationary, with separable correlation which is ex-
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Fig. 43. Mean-square error performance of different transforms for
two-dimensional Markov image source with horizontal correlation
factor of p, and vertical correlation factor of p,-

gx8

ponential in both the horizontal and vertical directions, then
the mean-square error for encoding at a fixed bit rate varies
with respect to the transform used and the blocksize as shown
in Fig. 43. Although this model of the correlation is less
typical for pictures, results of Fig. 43 are quite typical. It is
interesting to observe that for small subpictures the mean-
square error performance of different transforms is similar to
that of the KLT. As the block size increases the Hadamard

transform does not perform as well, but the Fourier transform
gets better. In fact, it can be proved that the asymptotic per-
formance of the Fourier transform is the same as that of the

KLT. The discrete cosine transform, on the other hand, re-
mains close to the optimum forall block sizes. Fig. 44 shows
the basis functions of the discrete cosine transform and the

KLT. Due to the similarity of the two basis functions, discrete
cosine and KLT performances are very close to each other. It
can be proved that for a first-order Markov process with ex-
ponential correlation, for most correlation coefficients [158],
the best fast? transform is the discrete cosine transform. In
fact, for many specific types of image models, the eigenvectors
of the covariance matrix can be explicitly evaluated to con-
struct the so called fast KLT [158]-[160]. It should be re-
membered, however, that the above remarksarestrictly valid
only for data from the stationary Markov processes with ex-
ponential correlation. For real images, these assumptions are
not valid, particularly if the block size is small; and therefore,
the simulations using these unitary transforms show results
which in many cases, are quite inferior to those obtained by
the KLT.

Computer simulations on real pictures show that the mse
produced by transform coding (for a given bit rate) improves
with the size of the subpicture. However, the improvementis
not significant as subpicture size is increased beyond 16 X 16.
In fact the penalty in mean-square error by using a block of
8 X 8 is rather small compared to blocks of 16 X 16 andlarger.
Subjective quality of pictures, however, does not appear to im-
prove with the size of the block beyond 4 X 4 [148]. Also,
for real images, performances of KLT, Hadamard, and Fourier
transforms are roughly the same for subpictures of 4 X 4; but

9One which can be computed by analgorithm similar to the FFT.

PMC Exhibit 2025

Apple v. PMC
IPR2016-01520

Page 27



PMC Exhibit 2025 
Apple v. PMC 

IPR2016-01520 
Page 28 

oe

=

NETRAVALI AND LIMB: PICTURE CODING

Karhunen—
Loeve Discrete Cosine

0.4 0 Ode °
ad Sioa) pd) he att it heed

OO ee 0.0peepeeng sibelae
“0.4 -0.4'
0.4 1 0.4 1

wt Lf ai ad al fos Lindofp Ooi 126“0.4 <oae
: ‘ 2

j S

O4

 
“0.4

393

0.1 or 0.2 bit/pel. Also, a subpicture consisting of pels from
many scan lines, (i.e., a two-dimensional block), does better
than the subpicture consisting of elements from the same scan-
ning line, (i-e., a one-dimensional block). However, the im-
provement is rather small [161], [162], about 0.2 bit/pel.
This observation is analogous to the one for predictive en-
coders, where use of two-dimensional predictors does not im-
prove the performance substantially over that obtained by
one-dimensional predictors.

We have so far concerned ourselves with subpictures which
are either one or two dimensional. It is possible to use three-
dimensional subpictures, using the temporal dimension as the
third dimension [163]-[165]. Block sizes of 4X 4X 4
(elements X line X frames) have been usedin real-time imple-
mentation, and 16 X 16 X 16 blocks have been used in com-

°F 4 puter simulations [163]. As expected, the performance of
0.0)febectidat oly the transform coders is considerably improved by using the

coat three-dimensional blocks. However, this improvement is
a achieved at the expense of a significant increase in the amount

of storage, which at this time appears impractical.
2) Quantization: The next step in transform coding is the

selection and quantization of certain coefficients. In this sub-
section, we only discuss nonadaptive techniques, deferring
adaptive techniques until later. One method of choosing the
coefficients for transmission, is to evaluate the coefficient
variances on a set of “average” pictures, and then discardall0.4, - 7 0.4 ?

cafbp odefly the coefficients whose variance is lower than a certain value.a sia Le Such a scheme is called ‘‘zonal filtering” or “zonal sub-
0.4 ‘ 0.4 ‘ sampling.” Obviously its performance will vary depending

TL Lal VP upon the type of picture being encoded. Coding degradationsoff if if taI“]i6 osLALLA can be large if the picture contains Jarge components of the
-0.4 -0.4 type of basis functions that are discarded from transmission.

0.4

At the receiver the discarded coefficients are usually set to
zero. Using the Hadamard basis of Fig. 42 and a typical
picture [147] (Fig. 45(a)), the measured variances of each of
the coefficients are shown in Table III]. Landau and Slepian
[147] found that for a 4 X 4 transform by discarding coeffi-
cients 11, 12,..., 16 from the transmission, very little picture
degradation is seen for most pictures. Most of the picture

“E mee BoE 1s n energy is contained in the first coefficient. Indeed,if all theeal Lane 0.0) Ty itl, coefficients except the first are dropped from the transmission,
0.8 -0.4! then the reconstructed picture is quite reasonable as shown in12   mt N \4 8 , n e dividing a given total numberof bits amongall the coefficients.# “lll [fs on ‘ull In order to minimize the mean-squareerror for a given total
“0.4 “0.4 numberof bits for Gaussian variables, the optimum assignment

ot ll “ BAe. - 4 of bits is done by making the average quantization error of6 ‘ill al] i “alll lf. each coefficient the same [152], [166]. This requires that bits
sna <bia be assigned to the coefficients in proportion to the logarithm

0 15 0.4 is of their variances. An improvementin the bit assignment tech-

7s a]Ih Ly oslo niqueis given by O’Neal and Natarajan [25].1U j Optimum quantizers for the transform coefficients have been |
= es ‘ons f ea . ; designed mainly onastatistical basis. Approximations to the
isthePatifonctions forKL,anddisretecosine transformsfor histograms of the coefficients have been made. The first co |
cosine bases are very similar to the KLT bases. efficient, which is an average of the picture elements within a |

block, is usually modeled by a Rayleigh density, whereasall
the other coefficients are modeled with Gaussian densities as-

for 8X 8 and 16 X 16 blocks, KLTis better than Fourier by
about 0.1 or 0.2 bit/pel (comparing bit rate for a given mean-
Square error), which in turn is better than Hadamard by about

Fig. 45(b). The block structure and the loss of resolution is
clearly seen in this picture.

Having decided which coefficients to transmit, we must de-
sign a quantizer for each of them. This could be done by

suming a given variance. Since each coefficient is made of
linear combinations of the picture elements, as the block size
is increased by the central limit theorem, the histograms of the

PMC Exhibit 2025

 
 

Apple v. PMC
IPR2016-01520

Page 28



PMC Exhibit 2025 
Apple v. PMC 

IPR2016-01520 
Page 29 

394

 
oO e

Fig. 45. (a) Original picture. (b) Reconstructed picture by using only
the first coefficient in a 4 X 4 transform shown in Fig. 42 (from
Landau and Slepian [147]).

coefficients are indeed roughly bell shaped. If each coefficient
is quantized independently, optimum quantization can be
achieved by minimizing the mean-square error as done by
Max [113].

For better subjective picture quality, the quantizers should
be designed to optimize the picture quality for a given bit rate.
This problem is difficult since there are no accurate measures
of picture quality. Landau and Slepian [147] found bytrial
and error that among all the quantization scales that they
tried, a companding characteristic of the form Kx was best
subjectively. Mounts et al. [47] gave a systematic procedure
for designing better subjectively matched quantizers for a
Hadamard transform coder which used a 2X 2X 2 block.

Their technique is similar to the one used for predictive coding
which was described in Section IV-B. It takes complex pic-
tures as stimuli and obtains weighting functions which give
visibility of a unit quantization noise as a function of the
amplitude of the coefficient. Quantizers are designed to
minimize the weighted quantization noise. They compared
these optimum quantizers to the quantizers which minimize
the mean-square quantization errors and found them to be
superior [47].

PROCEEDINGS OF THE IEEE, VOL. 68, NO. 3, MARCH 1980

 

  
 

  

 
 
 
 
 
 
 

TABLEIll

COEFFICIENT,COEFFICIENT
NUMBER VARIANCE

4 4.00
2 0.096
3 0.087
4 0.035
5 0.038
6 0.054
7 0.048
8 0.034
9 0.024

40 0024
4 0.020
42 0.022
43 0.0419
414 0.0418
45 0.0416

0.044

 
3} Adaptive Transform Coding: The parameters of a trans-

form coder can be matched to the statistics of the subpicture
being coded. Since the picture statistics may be highly non-
stationary, adaptation can increase the coding efficiency sig-
nificantly. Two types of adaptations are possible: one in
which changes in parameters are based on the previously trans-
mitted data, and the other in which some future data is used
to compute the parameter changes. In the latter case, there is
some overhead due to transmission of the adaptation informa-
tion. The latter appear to be more suited for transforms with
large blocks, since it would require less percent overhead in-
formation, and nonstationarity between the blocks would be
more significant for larger blocks. Nearly all parameters of
transform coders, such as dropping and quantizing the coeffi-
cients and bit assignment for the quantized coefficients, have
been adapted to the local image statistics. Very little effort
has been made, however, in adapting parameters based on
psychovisual criteria, mainly because these criteria are not well
understood, especially in the transform domain.

The transformation can be made adaptive by computing the
covariance of each subpicture and the associated KLT. How-
ever, this is highly impractical since due to the problems of
singularity, the KLT of each blockis difficult to derive, and
the overhead due to the transmission of basis vectors of KLT

may be excessive. A more practical approach is taken by Tasto
and Wintz [167], who classify a 6 X 6 block into one of three
categories based on the block statistics. For each category, an
average covariance matrix and the corresponding set of eigen-
vectors are used for transforming the picture elements of the
subpicture. The overhead information for adaptation is only
2 bits per block, which is small. Tasto and Wintz report im-
provement in coding efficiency of as much as 30 to 50 percent
over the nonadaptive case.

The procedure given by Tasto and Wintz is still perhaps too »
complex to be practical. Also, it is not clear how much of the
advantage of adaptation is due to the adaptive transform and
how muchis due to the adaptive quantization. It appears that
most of the advantages of adaptation can be derived by using a
simple unitary transform followed by adaptive selection of the
coefficients for transmission and adaptive quantization. This
approach is more widely used. Threshold sampling [168],
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[169], one of the popular techniques in this class, selects a
threshold and transmits all the coefficients that are above this

threshold. Thus the number,as well as the type of coefficients
are adapted to the local structure of the subpicture. However,
the overhead for adaptation informationis rather large. Efforts
have been made to decrease this overhead [169], [170].

Another type of adaptation is to construct a measure of
spatial activity in the subpicture and then to adapt the co-
efficient selection. This would make use of the lower sensi-

tivity to amplitude variations in regions of high spatial detail.
Claire [171] and Gimlett [172] have proposed a definition of
“activity index” using a weighted sum of the absolute values
of the transform coefficients, and assigned more bits for coding
those subpictures having a higher activity index. Netravalier al.
[173] eliminated the adaptation overhead informationbyfirst
selecting certain coefficients for transmission (by zonal sub-
sampling) and then choosing a certain order for coefficient
transmission. Having transmitted the first & coefficients for
each block, quantization of the (k +1)th coefficient was
adapted using a weighted sum ofthefirst k coefficients. They
demonstrated this technique on a 2 X 2 X 2 Hadamard trans-
form in which quantization of the first coefficient was made
coarse if the weighted sum of the magnitudesof all the other
coefficients was above a certain threshold. Quantization scales
and the threshold for adaptation were obtained by subjective
measurements to optimize the picture quality. They reported
gains of only about 15 percent by such adaptation. Chen and
Smith [174] describe a scheme which requires two passes
through the image; one pass to collect the relevant statistics,
and the other to code the image using the statistics. They com-
pute the “‘ac” energy of the pels in each subpicture and then
classify it into one of four classes. Thresholds for classifica-
tion, as well as the bits assigned to the coding of each coeffi-
cient are selected specifically for each image. They report
good picture quality at 1 bit/pel and satisfactory quality at 0.5
bit/pel on still pictures. Instead of using a weighted sum of
the magnitudes of the coefficients as measures of activity,
variances of the coefficients may be used to define spatial ac-
tivity, which is then used for adaptive sampling and quantiza-
tion of the coefficients. Tescher et al. [175], [176] estimate
the variance of the transform coefficient and then assign bits
in proportion to the logarithm of the estimated variance.
Overall, this results in assigning more bits for transform blocks
with large coefficients. Most of the methods described above
require an excessive amount of computation and have not been
implemented in real-time.

In spatiotemporal (three-dimensional) transform blocks, spa-
tial as well as temporal activity can be used for adaptive selec-
tion and quantization of the coefficients. Knauer [163] de-
scribes an interesting technique using 4X 4X 4 blocks in
which certain coefficients are taken as measures of temporal
activity. For large temporal changes, coarse sampling and
quantization of the “‘spatial coefficients’ is used, whereas for
small temporal changes, spatial coefficients are transmitted
with higher fidelity. Such techniques attempt to exploit the
decrease in the sensitivity of the human eye to perceive spatial
detail accompanied by large temporal changes. We close this
section by pointing out that although many methods of adap-
tation of spatial transform coders have been attempted, they
are either too difficult or ad hoc. However, we suspect that a
truly optimum adaptive coder is not too far from some of the
coders that have been simulated. Much more needs to be

learned however in adapting spatiotemporal transform coders.
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Fig. 46, Reconstructed pictures obtained after dividing the picture

into 16 X 6 subpictures, coding with 1.5 bit/pel, and making random
bit errors at a rate of 1074. Both zona! (a) and threshold (b) coding
are considered (from Pratt [210]).

Here due to the extra degree of freedom, greater payoff may
be possible.

4) Effect of Channel Errors: One of the advantages of the
nonadaptive transform coders is that the effect of bit errors in
the channel does not spread beyondthe block. If a coefficient
is decoded erroneously at the receiver due to a transmission
error, on inverse transformation only pels in the same block
are affected. The exact nature of the degradation depends
upon the type of transform used and the coefficients in error.
In general, errors in lower frequency (or sequency) coefficients
are more visible than higher frequency coefficients due to the
fact that above a certain frequency the sensitivity of the eye
decreases with frequency. Also, probability of errors taking
place in the lower frequency coefficients is higher due to larger
numberof bits that are required to code them. As the block
size decreases the averaging property (i.e., spreading of error
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Fig. 47, Block diagram of a hybrid transform/DPCM encoder.

over the entire block) decreases, and the transmission errors
appear as blotches in the picture as shown in Fig. 46. It ap-
pears that the visibility of the transmission errors in predictive
coding with two-dimensional predictors is comparable to that
for the nonadaptive transform coders, (compare Figs. 46 and
30). Error concealment techniques have been developed in a
way analogous to those for DPCM coding systems [177].
Adaptive transform coding may result in the spread of the ef-
fects of transmission errors, unless one is careful in not using
information from one block to the next either for adaptation
or for decoding at the receiver. In general if each subpictureis
allowed to generate a fixed numberof bits and adaptation is
done using information within the subpicture, then the effects
of transmission errors can be limited to subpictures, but this
might impose a severe penalty on the coding efficiency es-
pecially for small block sizes. Nevertheless, adaptive coders
have been described which are not overly sensitive to the chan-
nel errors [174].

D. Hybrid Coding

We have pointed out before that transform coding systems
are inherently more complex in terms of both the storage of
data and the number of operations per pel. Although the use
of large block sizes removes statistical redundancy quite ef-
fectively, it has two distinct disadvantages: 1) it requires stor-
age of large amounts of data both at the transmitter and the
receiver, and consequently produces a delay in transmission,
and 2) the accuracy with which different regions of the image
need to be coded may vary widely within the block, and this
makes adaptive coding (e.g., quantization) more difficult to
accomplish. Hybrid codingis a partial answer to this problem.
In hybrid coding, we consider small blocks, evaluate the co-
efficients, and perform DPCM of the coefficients using coeffi-
cients of the previously transmitted blocks as predictors. A
block diagram of a hybrid coder is shown in Fig. 47. Spe-
cifically, three types of schemes have been studied: 1) a one-
dimensional block along the scan line with DPCM in the
vertical direction; 2) a small two-dimensional block, and DPCM
using coefficients of horizontally previous block for prediction;
3) a two-dimensional block, and DPCM in the temporal direc-
tion, The first two schemes are intrafield methods, whereas
the third scheme is interframe. The saving in storage due to
hybrid coding is considerable inthe third scheme compared to
a transform coding scheme which uses a three-dimensional

PROCEEDINGS OF THE IEEE, VOL, 68, NO. 3, MARCH 1980
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block. All the three variations have received attention in the

literature [165], [173], [178]-[184]. Habibi showed that
the theoretical performance of hybrid coders (of the first and
second type) was quite superior. He made some approxima-
tions to the statistics of the difference signals (i.e., the coeffi-
cient minus its prediction) and calculated S/N ratio as a
function of bit rate and block size for different transforms.

He also showed with computer simulations that the per-
formance of the hybrid coders in the presence of transmis-

sion errors was reasonable, although not as good as that of
the nonadaptive transform coders. It is certain that the hybrid
coders may require some type of protection against trans-
mission errors as required in predictive coders (e.g., leak in pre-
diction, etc.). Netravali ef al. [173] used a small two-
dimensional block and showed that if the optimum transform
(i.e., KLT)is not used, there is correlation between coefficients
of the same block; and therefore, a better predictor can be de-
signed by using not just the corresponding coefficient of the
previous block, but by using coefficients of the previous block,
as well as, those of the present block which are available to the
receiver. They showed that such a predictor was 25 percent
moreefficient in terms of bits/pel for the same picture quality,
than a predictor which used the corresponding coefficient of
the previous block. Experimental and theoretical (assuming
simple Markov source approximation for images) performances
have been obtained by simulation by Roese ef al. [165] for
transform coding using three-dimensional blocks, and hybrid
coding using two-dimensional blocks and DPCM in temporal
direction. They show that the hybrid coder is quite efficient
and does as well as a three-dimensional transform coder which

uses four frames of storage. They also claim that the hybrid
coder does not showill effects at bit-error rates of 107*. Just
as in pel domain, predictor in interframe hybrid coding can be
adapted by estimating motion and using a coefficient from dis-
placed block in the previous frame for prediction [185],
[186]. However, motion compensation in transform domain
does not appear to beasefficient as in pel domain.

E. Interpolative Coding

In interpolative coding, a subset of picture elements are
transmitted and the remaining pels are interpolated. As an ex-
ample, Fig. 48 shows a case in which there is a 2:1 sub-
sampling of picture elements along each scan line. The sub-
sampled elements are staggered from one line to the next and
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Fig. 48, An example of interpolative coding using 2:1 horizontal sub-
sampling, which is staggered from one line to the next.

are interpolated by a four-way average as shown by arrows
(e.g., element A is interpolated by averaging elements 8B, C,
D,E).

Interpolative coding techniques have been studied extensively
| in the past for digital coding of pictures [187], [188]. In gen-

eral, they can be divided into twoclasses: fixed, and adaptive.
In fixed interpolative methods, a fixed set of picture elements
are selected for transmission and the rest are interpolated.
Various types of samples can be chosen for transmission: as
examples, one may transmit every alternate sample, one sample
out of four, every alternate scan line, every alternate field or

; frame. The picture quality that results is a function of the
| number and type of samples that are dropped and the method

of interpolation. Most interpolation methods have used
weighted averages either using straight lines or higher degree
polynomials [189]-[191]. It appears that interpolation using
straight lines is quite effective and not much is gained by
interpolation using polynomials of higher degree. Switched
interpolation may be more effective than the fixed interpola-
tion. As an example, in Fig. 48, pel A may be reconstructed
by the following rule:

pu foscrD),
0.5 (B + F),

Such interpolations switch between horizontal, vertical, tem-
poral or other directional averages depending upon the type of
local correlation existing in the data as measured by the trans-
mitted pels. Another method of interpolation is due to Gabor
and Hill [192], which, for example, dropsalternate fields and
attempts to construct them by making movement of edges
temporarily continuous,i.e., placing the edges in the dropped
field at places dictated by their uniform motion between the
adjacent transmitted field. Such a technique may be useful,
but in practice it has been found to be rather difficult to im-
plement, since it requires definition of edges and their motion.
Several techniques have been used to transmit the pels from
which other pels are derived. Predictive coding appears to be
more common [193] duetoits flexibility and simplicity.

Adaptive interpolative coding consists of three parts:
1) choosing certain points for transmission, 2) constructing
the interpolation of nontransmitted pels, and 3) evaluating
the interpolation error; if the error is below a certain thresh-
old, then choosing fewer points for transmission; if it goes
above threshold, then choosing a larger number of points for
transmission. The fewest numberof points that:are needed to

if|C- D|<|B-E| 24
otherwise. (24)
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VIDEO WAVEFORM FOR A SCAN LINE

A B ¢ 5 E

Fig. 49. An illustration of adaptive interpolation technique.

keep the interpolation error below the threshold is normally
the desired characteristic. As an example, consider the video
waveform in a scan line as shown in Fig. 49. Starting with
sample A, one can go up to sample £ and interpolate, using a
straight line, all the in-between samples B, C, and D, keeping
the interpolation error below the threshold. However, when
samples A and F are chosen for transmission, then a simple
straight line interpolation between samples A and F mayresult
in excessive interpolation error for pels B, C, D, and E. Thus
pels A and E should be chosen for transmission and pels B, C,
and D should be interpolated. Several variations exist depend-
ing on: 1) method used for transmission of pels such as A and
£; 2) technique of interpolation and 3) method of judging the
quality of interpolation. It is also possible to treat this as a
problem in waveform approximation in which a value at cer-
tain points (called knots) is transmitted and an approximation
to the entire curve is made from the knot position and the
transmitted value which may not be image intensity at the
knot position, Criteria that are used for the decision to inter-
polate have traditionally been based on mean-square error
[190]; but recently more sophisticated criteria, which may
be closely related to human visual perception, have been used
[193], [194]. Also adaptive two-dimensional interpolation
has been used, which is helpful in decreasing the number of
pels transmitted [189]. It should be remembered that, unlike
in fixed interpolative coding, adaptive interpolative coding re-
quires two kinds of information: 1) addresses of picture
elements chosen for transmission!® and 2) intensity values
of picture elements chosen for transmission.

Performance of the interpolative coders depends upon the
technique used for transmitting samples and for interpolating.
It appears that in terms of the numberof bits required for a
given quality, interpolative coders show an improvement over
nonadaptive DPCM andtransform coding; but they appear to
be inferior to both adaptive DPCM as well as transform tech-
niques. However, they might be useful for applications where
low bit rate is required, and where it may not be possible to
encode each sample.

F. Contour Coding

We close this section by mentioning contour coding andits
variations. In contour coding, a picture is separated into two
parts: edges and all the rest. Such a separation is hypothesized
to do well, since by isolating edges and reproducing them well,
the pictures look sharp. Spatial continuity of edge points per-
mits the use of algorithms developed for two-level (facsimile)
data. Early schemes [196], [197] separated the picture into

'See [195] for a technique which does not require explicit addresstransmission,
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Fig. 50. Block diagram of adaptive orthogonal transform coding system
(from Ohira, Hayakawa, and Matsumoto [199]).

“highs” and “lows,” then used a contour-tracing type algo-
rithm for coding “highs.” The “lows” part of the signal was
subsampled and coded with higher amplitude accuracy. Yan
and Sakrison [35] used a similar approach, in which the
“lows” were coded by transform coding. Since the “lows”
did not contain much high frequency information,a large num-
ber of coefficients could be dropped. They codedstill pictures
using this technique and claimed good quality pictures at
0.83 bit/pel.

V. DESCRIPTION OF THREE SYSTEMS

The previous section describes many different coding tech-
niques in isolation, In this section we consider three specific
coders in some detail in order to show howthe different tech-

niques may be effectively combined. Each coder has been
pursued to the point that the performancein termsofpicture
quality and transmission error response is known. These
coders are designed to operate at transmission rates consistent
with the digital PCM hierarchy. In North America and Japan
the rates of interest are 1.5, 6.3, and 44 Mb/s.

A. Intraframe Transform Coder

Although there have been many computer simulations of
transform coding algorithms, there has been relatively little
real-time exploration. The coder of Ohira ef a/. has been fully
implemented and is evolving in sophistication [198], [199].
The block diagram of the encoder is shown in Fig. 50; the de-
coder performs essentially the reverse operations.

The coder is designed to accept a composite baseband NTSC
signal which is then encoded in composite form. The A/D con-
verter samples at 9.7 MHz and gives 8 bits/sample. The signal
is then formed into two-dimensional blocks 8 elements by 4
lines (from the same field) in such a way that adjacent blocks

PROCEEDINGS OF THEIEEE, VOL. 68, NO. 3, MARCH 1980

TABLE IV

 
across the picture are offset vertically by | line. It is assumed
that the offset simplifies the hardware design by enabling pipe-
lining of operations and by reducing buffering requirements.
In addition block-to-block distortions may beless visible with
the offset structure, A 32nd-order transform is performed by
first calculating an 8th-order slant transform [200] in the
horizontal direction and expanding this to a 32nd-order by
two applications of the well-knownrelation [148],

1{H, ApSl ue
where H,, is a Hadamard matrix of order n.

The algorithm is adaptive in that one of three different
quantization bit assignments is chosen depending upon the
values of the raw transform coefficients. The three bit assign-
ments are shown in Table IV and in each case 97 bits areallo-

cated per block with an additional 2 bits used to specify the
mode. As can be seen from the table, the low-sequency bit
assignment is the same for each mode assuring high quality
transmission of these components. Mode 1 is designed to
handle regions of a contrasty nature with medium-frequency
detail. Mode 2 is designed for regions having saturated colors
and hence those coefficients that represent frequencies around
the color subcarrier are emphasized. The third mode is de-
signed to handle high-frequency vertical detail. In order to
select the appropriate mode the group of coefficients im-
portant to each mode is examined. Any large amplitude com-
ponent in the group will favor the selection of the correspond-
ing mode. However, mode | is given priority over mode 2 and
mode 2 is given priority over mode 3. Both the selection
criteria and the bit allocations were determined experimentally.

The first coefficient (dc term) is linearly quantized and the
remaining coefficients are nonlinearly quantized to take ad-

[Han] = (25)
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Fig. 51. Block diagram of NETEC-6 interframe coder (from linuma
etal. [203]).

vantage of the highly peaked nature of the probability density
functions of the coefficients.

Transmission errors occurring on certain bits of the coded
signal can produce very visible error patches. The moresig-
nificant bits of the lower-sequency coefficients are most sensi-
tive. In order to reduce the visibility of the degradation due
to transmission errors, the eleven most sensitive bits are pro-
tected by a (15,11) Hamming code. The result is that errors
do not start to become objectionable until the error rate is as
high as 10°. The spatial appearance of the errors is shown in
photographs of the television screen, however, no description
of the temporal appearance of the errors is given.

Evidently, at a transmission rate of 32 Mb/s a certain amount
of degradation is noticeable in still areas. In the absence of
adaptation (i.e., using just a single optimized mode) the qual-
ity has been compared with a 6-bits PCM signal [201] which
would be inadequate for broadcast quality television. Adapta-
tion improved the quality of unusual pictures such as those
containing saturated colors or high-frequency vertical com-
ponents but did not change the quality significantly for most
material [199].

B. Conditional Frame-to-Frame Coder

A conditional frame-to-frame coder divides each frame into

a changed part.and an unchanged part. Only the changed part
is coded and transmitted [202]. The NETEC-6 is an example
of this technique, operating at 6 Mb/s [203].

The coder consists of 3 basic blocks, as shown in Fig. 51.
The NTSC/TDM converter takes the composite color signal
and demodulates it into a luminance signal Y and two chromi-
nance signals R-Y and B-Y. One chrominancesignal perline is
time compressed by a factor of 5 and inserted into the blank-
ing interval of the luminance signal. The R-Y and 8-Y signals
are inserted on alternate luminance lines. The result is that

each line contains 420 luminance samples, 84 chrominance
samples and 6 samples are used for synchronization. The re-
sulting composite TDM signal is then processed in the frame-
to-frame coderas a single signal.

A block diagram of the frame-to-frame coder is shown in
Fig. 52 and is essentially a frame-to-frame differential quan-
tizer. In stationary parts of the picture, frame-to-frame differ-
ences will be extremely small and the representation of the
Picture stored in the frame memory need not be updated.
Whensignificant frame differences do occur, they tend to be
clustered, as would be expected from differences generated by
moving objects. The significance determination circuit is used
to determine whether or not the frame difference signal at a
pel is significant. If the difference is greater than a threshold
and it is not an isolated change(it is an isolated change if none
of its neighbors are significant changes) then the frame-to-
frame difference is quantized in the 64-level quantizer and
transmitted to the receiver. A +27-level nonuniform quantizer
is used with the step size varying between | and 5/256th. This
May seem to be a large numberoflevels relative to the number
Tequired to provide high-quality intraframe encoding. How-

 
THRESHOLD CIRCUIT
ISOLATED CHANGE SUPPRESSION

SIGNIFICANCE
DETERMINATION 5-1

54 LEVEL
QUANTIZER |“ © 
 
 

O
OUTPUTSMb/S

 
INTERPOL ATION

Fig. §2. Block diagram of conditional replenishment interframe coder
(from linumaet al. [203]).

ever, fast-moving high-contrast edges can producelarge differ-
ence signals and if these are not quantized reasonably accu-
rately moving edges will appear jagged. A simple two-length
variable-length code is used with the inner levels having a
length of 4 bits and the rarely used outer levels having 6 b.
An address is attached to indicate to the receiver where the

change should be inserted. It would require approximately
9 bits to indicate the horizontal address of each changed pel
and means are needed to reducethis figure. Since changes are
highly clustered one methodis to givea start-of-cluster address
and a word to indicate the end of a cluster [202]. In the
NETEC-6 coder addressing is achieved by first dividing the
signal into 8 element blocks, 4 elements in width and 2 lines
high. A word is then used to indicate whether the block has

significant changes occurring within it; if so, a bit per pelis
used to indicate those elements within the block that have
changed significantly.

A frame-to-frame coder generates data at a very uneven rate
and it is necessary to smooth the data to a constant rate for
transmission over the channel. Even with a large buffer, the
coder may generate information at a short-term average rate
that is greater than the channel rate and there will be a ten-
dency for the buffer to overflow [141], [204], [205]. Feed-
back from the buffer is used in a number of ways to reduce
the data generation rate. They are:

control of threshold level in significant-change determination
circuit;

control of threshold level in adaptive interpolation;
field repeating;
suspension of replenishment.

Perhaps the most effective means of reducing the data rate is
to use a more severe criterion in the definition of a significant
change. The threshold is raised from a minimum value of
2/256th to a maximum value of 5/256th. The high thresholds
result in a small amount of degradation in the moving areas
that appears like viewing a picture through a dirty window.
Adaptive interpolation [130], [193], [194], [203] is a means
of reducing the spatial resolution gradually and in so doing,re-
ducing the numberof elements to be coded in the movingarea.
In this instance the amplitude ofa significant frame difference
is compared with the average of the frame difference for the
adjacent two elements. If they differ by less than an adaptive
threshold then the frame difference is not transmitted and at

the receiver the elementvalue is replaced by the average of the
values of the adjacent two elements. If, on the other hand, the
frame differences differ by more than the threshold then
the frame difference signal is transmitted normally. As the
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threshold increases, fewer and fewer frame differences are
transmitted for the alternate elements, until finally when the
threshold is very large the number of frame differences to be
transmitted in the moving area is halved.

Field repeating further reduces the spatial resolution since
alternate fields are derived from the previous field by using an
average of the two adjacent lines. Field repeating also causes
a slight jerkiness of rapidly moving objects in the scene.
Should the data rate continue to rise in spite of these mea-
sures, rather than risk buffer overload with attendant loss of
synchronization between coder and decoder, replenishment is
halted and the picture freezes until the buffer empties suffi-
ciently for updating to continue. This is a last resort control
and is usually invoked only under conditions of extreme
movement. .

In an encoder of this type a transmission error can have a
large influence on the decodedsignal, particularly if an address
word is affected. Further, once an error is made, it tends to
remain from frame-to-frame. To prevent this a refresh signal
is sent in which a complete line is PCM coded with 8-bits ac-
curacy and transmitted at the rate of two lines per frame.
Thusan error would be visible, on average, for about 4 seconds
before being overwritten by the refresh signal. To reduce the
effect of transmission errors, a rate (11, 12) convolutional
code is used; this code will reduce a random error rate of
10°* to 107°.

There is little standardization on procedures for measuring
performance of frame-to-frame coders and agreement on stan-
dard test material would be a very desirable first step. Like
nearly all frame-to-frame coders, very high quality performance
is achieved by this coder when there is little movement and
quality decreases as the percentage of changed area in thepic-
ture increases. High-quality pictures are obtained up to the
point where field repeating is introduced; approximately 10
percent of the picture can change before this control mechanism
is applied. Since this coder is designed primarily for con-
ferencing applications where the camera is usually stationary
and there is rarely large movements by the conferees, a high
quality picture is obtained for more than 98 percent of the
time.

Another example of a frame-to-frame DPCM coder that has
been implemented is the NETEC 22H coder [206]. Rather
than decomposing the color signal into Y, J, and Q com-
ponents a luminance-like and a chrominance-like signal is gen-
erated by adding and subtracting alternate scan lines of the
composite color signal. The basic encoding algorithm consists
of intraframe DPCM encoding of the framedifference signal.
The intraframe prediction algorithm changes depending on the
state of the buffer and the amount of frame difference. The

coder uses many of the techniques already described for the
NETEC-6 coder, An additional method for reducing bit-rate
is to nonlinearly process the frame difference signal prior to
quantizing so that small values only are attenuated. This is
equivalent to temporal low-pass filtering of the signal. The
level at which the attenuation is switched out is increased as

the buffer fills, producing morevisible temporal smearing.

C. Interpolative Frame-to-Frame Coder

The third coder to be described is a frame-to-frame coder

that uses a combination of DPCM and conditional interpola-
tion [207]. Although the coderis intended for a color broad-
cast television signal, coding of the luminance signal only has
been studied. The coder has been designed to operate at
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Fig. 53. Arrangement of pels that make up a 3-dimensional 2 X 2 X 2

block for interpolative coder (from Limb and Bowen [207]).

10 Mb/s for the luminance signal. Allowing an additional
5 Mb/s for the chrominance signals would give a total bit rate
of 15 Mb/s, permitting three signals to be transmitted over the
third level of the North American digital hierarchy (45 Mb/s).
No hardware has been built; however, the study was performed
on a special simulation facility which allowed the viewing of
coded sequences at 30 frames/s using pictures of approximately
half the vertical and horizontal resolution of normaltelevision.

Thusreal-time evaluation of the coded picture quality could
be made and the effects of transmission errors could be ob-

served. It should be noted that the visibility of coding dis-
tortions varies slightly between the lower resolution picture
of the simulator and the broadcasttelevision picture."

One of the basic considerations in designing the coding algo-
rithm was to limit the tendency for error propagation, whichis
inherent in any coder using variable length codes and/or DPCM
coding techniques. Therefore, the basic coding scheme was lim-
ited to groups of four lines, consisting of pairs of consecutive
lines in consecutive frames as shown in Fig. 53(a). The group of
four lines is subdivided into blocksof eight pels, as shown in Fig.
53(b). The key elements in a block, on which all of the other
elements depend are the Al’s. These elements are DPCM coded
along a line using the previous Al asa predictor. The coding of
the remaining elements (B’s, C’s, D’s) uses the four surrounding
Al’s, two of which are in the next pair of lines which would
not normally be coded with the current block (Fig. 53(c)).
For this reason, the DPCM coding of the Al’s proceeds one
line ahead of the coding of the remaining elements in the
block. Since the 41 elements are critical to the coding (in a

‘From comparison between the two it is known that relative to the
broadcast television picture the picture of the simulator is more sensi-
tive to spatial types of distortion but less sensitive to temporal types of
distortion.
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(DATA GENERATED BY 4 LINE GROUP, ARRANGED FOR TRANSMISSION

 
MIN BITS = 568, MAX BITS «12738, AVG BITS «1590

Fig. 54. Data generated by 4 line group, arranged for transmission.

visual as well as informational sense), they are quite finely
coded (32 levels).

Once the Al elements have been coded, the other threeele-
ments, B1, Cl, and D1 are processed starting with Cl. An
average is found of the surrounding A1’s and compared to C1.
If the resulting error is less than a threshold, the average value
is used, otherwise the error value is transmitted using a coarser
DPCM coder (21 levels). When quantizing the error, quantizer
levels less than the threshold will not be used. They are re-
moved from the scale and the level containing the threshold
becomes the first level and all other higher levels are adjusted
downward accordingly [130]. As explained later, the thresh-
old is determined from the coded Al elements and thus need

not be explicitedly transmitted. The third and fourth points
to be processed are Bl and D1 for which a switched predictor
is used. An estimated value for 81 is found from the average
of either its horizontal (Cl’s) or vertical (A1’s) neighbors,
whichever pair has the least difference. Note that these neigh-
boring points have been encodedat this point. If the interpola-
tion error is less than a second threshold, the interpolated
value is used, otherwise the error value is transmitted using the
coarse DPCM quantizer as described for element Cl. The
method used for D1 is identical to that used for Bl.

The corresponding part of the block in frame 2 (42, 82,
C2, D2) is then processed. A first test is made to seeif it is
permissible to interpolate all four elements from frame | and
frame 1’. If the error of an individual pel, orif the average error
of all four pels, is greater than a third threshold, then the block
must be coded. First, the A2 pel is coded by transmitting a
quantized correction to the value of Al (fine quantizer). (41
is more precisely known than the previous A2 pel from the
same frame.) The other three pels (82, C2, D2) are coded in
precisely the same manner as the corresponding three pels in
frame 1. If all four points in frame 2 can be interpolated, no
additional data is required other than a single bit to designate
coding or interpolation.

High detail areas have a masking effect so that a viewer is
more tolerant of coding errors in these areas (Section III-D2).
Therefore, the intraframe and interframe thresholds are made
dependent uponan activity function derived from the amount
of activity in the area being coded and designed to reflect the
amount of local masking. In order to prevent buffer overflow
during periods of peak activity the threshold range is made a
function of the buffer state. When the bufferfills thresholds

are raised and morepicture elements are interpolated which in
turn results in the use of shorter code words.

The data is not transmitted as generated but in the order
shown in Fig. 54. This enables the Al picture elements, which
are by far the most sensitive to error, to be protected. The
first 1000 bits in a coded line (which with high probability in-
cludes all the Al data) is protected with a BCH (1002, 1023)
distance 6 code. One error would be corrected and virtually
all other errors occurring in the preceding 1000 bits would be
detected at error rates of 107* orless.

401

When an error in the Al pels is detected, the whole lineis re-
placed by repeating the previous good line. Most errors oc-
curring in the B, C, and D data are detected because the length
of the decoded line will not match the length specified by the
line synchronization word. In this case, the B, C, D informa-
tion is set to zero, and the subjective effect is a very smallloss
in picture sharpness on twolines, If the error in the BCD data
is not detected the two lines will appear a little noisy for a
portion ofthe line.

With the threshold adjusted to give a high-quality picture in
open loop operation (that is, no feedback from the buffer),
the scene with normal movementresulted in a bit rate of 0.96

bits per pel. If the second frame were coded in the same man-
ner as the first frame (i.e., no frame to frame coding) thebit-
rate will have increased by 45 percent. With larger amounts of
moving area the advantage of frame-to-frame coding would
have been evenless.

When feedback from the buffer is used to maintain the out-

put bit rate at 1.5 bit/pel average sequences with an average
amount of movementare very easily handled and an excellent
picture quality results. Noisy sequences are also handled very
well; careful comparison between the coded and uncodedse-
quences showsa small increase in the noise level. When highly
detailed scenes are panned slowly, there are small increases in
noise level resulting in a picture quality which is probably
marginal for broadcast television purposes. With fast panning
there is a very noticeable increase in noise level, and the picture
quality is definitely unacceptable. In an attempt to handle the
material containing fast pans, the basic algorithm was modified
to incorporate conditional field interpolation [208]. In con-
ditional field interpolation, the even frame is interpolated
from the adjacent twolines in both the preceding and succeed-
ing field. Only when this interpolated value differs by more
than a threshold quantity from the value of the uncoded
sample is additional information transmitted to improve the
interpolation. The quality of the fast pan scene increased
greatly as a result of using field interpolation to the point
where this extreme condition is handled with only a small in-
crease in noise level.

At transmission error rates of 10°°, very few undetected
errors occur in the picture. At an error rate of 1or*, approxi-
mately five errors are injected per frame, and approximately
one quarter of these are uncorrected. Because of line sub-
stitution, the errors do not result in any streaking, but produce
a small increase in noise level in highly detailed areas of moving
objects. The overall picture quality remains high, and the pic-
ture wouldstill be usable at even lowererrorrates.

VI. Discussion AND CONCLUSIONS

The field of picture coding is now a rather mature one,
stretching back approximately 25 years. With a small stretch
of the imagination one can divide this period into three broad
segments. Until about 1968, basic systems were constructed
in a reasonably straightforward manner. Little attention was
paid to such practical matters as error performance and buffer
overflow. During the next six years the basic designs were em-
bellished greatly and optimization of the various components
of the systems was attempted. For example, multidimensional
optimum predictors were explored, quantizing characteristics
were optimized under various assumptions, and the behavior
of various orthogonal transformers was analyzed. During the
last three or four years attention has turned to making coding
algorithms adaptive both to the local statistics of the picture
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Fig. 55. An attempt to indicate the relative performance of coding tech-
niques in terms of picture quality versus transmission rate. Crosses
and dashed lines indicate results for broadcast television signals.
Dots and full lines indicate results for video conferencing. Abbrevia-
tions F-F, frame-to-frame; Cond. Repl., conditional replenishment;
Intra-Fr., intra-frame; Interp., interpolation; Motion Comp., motion
compensation,

signal and to the local properties of the visual system. This
has resulted in a reexamination of the models that have been

used, implicitly or explicitly, to describe the picture signal
source and the human viewer. We will continueto see refine-

ment of source and receiver models and, looking beyondthis,
the incorporation of the knowledge of these models into en-
coder designs.

A new phase appears to be emerging in which more sophis-
ticated parameters are being extracted from pictures. Rather
than just calculating activity functions or measuring global
speed, one could divide the picture into distinct objects or sec-
tions of objects, identify textured regions and categories, and
accurately track connected regions. Perhaps 3-D representa-
tions of objects within a scene could be stored so that camera
or object movements can be transmitted with just a few pa-
rameters. Already computer simulation of a scheme in which
a local measure of velocity is calculated in order to reduce pre-
diction error is yielding reductions in bit rate of a third toa
half that required for conditional replenishment schemes
[102]. To achieve this level of sophistication in real time (ap-
proximately 100 ns/pel), high speed calculations and large
amounts of storage are required. However, with the prospect
of 32-bit processors on a chip (albeit a large one) and with
64-kb RAM’s already beginning to appear, image segmentation,
identification and manipulation in real time may soon become
economically possible. (It is primarily because of the speed
requirements that microprocessors have had solittle impact to
date on the implementation of real-time coders.)

In Fig, 55 we attempt to show the performance that coders
currently achieve in terms of picture quality as a function of
bit rate. Also shownare expectations for the future, based on
the results of recent studies. The data of Fig. 55 are the per-
sonal interpretation of the authors and no doubt showtheir
bias. The measure of picture quality is purposely vagueas is
the use of the words “simple” and “complex.” A complex
coder would employ more sophisticated algorithms and use
more adaptation; the required hardware would be more
extensive.

The figure is divided into two parts, broadcast television,
represented by crosses and dashed lines, and video conferencing
television, represented by dots and full lines, This distinction

PROCEEDINGSOF THE IEEE, VOL. 68, NO. 3, MARCH 1980

is made necessary by the fact that the quality requirements
for the two situations are rather different. A picture judged
excellent for video conferencing purposes may be regarded as
only mediocre or even poor for broadcast television. For
broadcast television, PCM encoding requires approximately 90
Mb/s for NTSC standards. This can be reduced to the range
30 to 50 Mb/s by intraframe coding techniques depending
upon the quality and coding method. Coding of color com-
ponents yields results that are perhaps 10 to 20 percent lower
than coding of the composite signal; based on systems so far
constructed, DPCM methods give a small improvement over
transform coding. Using complex frame-to-frame techniques
involving conditional replenishment, bit rates in the range 20
to 25 Mb/s are possible. Notice that the improvement in bit-
rate obtained by going to frame-to-frame coding is no more
than a factor of 2. It is quite likely that in the near future we
might be able to achieve bit rates of 15 Mb/s using, for ex-
ample, interpolative coding.

Turning to video conferencing results, we immediately see
that much bigger reductions are possible, primarily due to the
less stringent requirements on motion rendition. For this
reason frame-to-frame coding gives a muchlarger reduction in
bit rates relative to intraframe coding. Intraframe coding
yields bit rates of 10 to 35 Mb/s depending upon the com-
plexity of the algorithm and the picture quality required. For
example, the complex intraframe coder might contain adapta-
tion of the predictor and quantizer with adaptive variable-
length encoding, all under buffer control. Frame-to-frame
coding yields transmission rates in the range 1.5 to 6 Mb/s. In
the near future, we expect to see good-to-excellent results at
bit rates in the range 1.5 to 3 Mb/s using for example, mo-
tion compensation.

Consider now the applications of picture coding. This is
essentially a question of economics. The raison d'etre for
coding in the first place is to reduce overall transmission or
storage costs, thus coders will be used whenever the cost of
encoding is attractively less than the cost of providing addi-
tional channel capacity. On local transmission links coders
will need to be inexpensive, while globe spanning transmissions
can support expensive terminals. While technology will no
doubt reduce the cost of transmission channels, for the same
reasons the cost of coders will also fall and probably more
steeply. Today it is not so mucha question of whetherdigital
encoding of a television signal would be adopted for a digital
transmission facility but rather how sophisticated that coder
will be. Up to this point there has been a big distinction be-
tween intraframe and frame-to-frame coding, but now that a
whole frame can be stored on one IC board, we can expect
this distinction to fade.

One of the primary areas of potential application has been
for the network transmission of broadcast television signals.
Applications in this area have been rather slow. This is partly
due to the fact that broadcasters demand that digital encoding
not degrade the quality of any studio signal [209]. However,
many efficient coders have been designed such that they meet
this requirement under normal operation, but for extreme
types of material which may be encountered very rarely
noticeable degradation may result. More importantly perhaps,
digital transmission facilities to carry the digitally encoded sig-
nal are not readily available. Overlaying digital facilities on
existing analog systemsis notefficient. It is difficult to achieve
a transmission rate of 44 Mb/s on the existing North American
TD-2 broadcast system. Thus, if we assume that a broadcast
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quality signal can be obtained at a transmission rate of 22
Mb/s, then it is not obvious that two digital signals can be
transmitted in place of one analog signal. Digital satellite links
operating in the range 60 to 90 Mb/s offer new possibilities
for digital transmission.

Looking to the future we could expect television scenes with
perhaps twice the horizontal and twice the vertical resolution
of the current standard. This need becomes more obvious with

the proliferation of home projection television systems where
large screens magnify many shortcomings in the currenttele-
vision standard. An upgrading of the picture could be easily
handled within a digital framework. Further, addition of high-
quality stereo sound also would be easily handled (of course,
we have not addressed here the question of the transmission
from the broadcast station to the residence).

Transmission costs are still high enough that we believe they
severely limit potential applications of video systems. In many
cases the function of the system can be performed bya picture
of much lower quality than broadcast television. A good ex-
ample is video conferencing where very rarely is there a large
amount of movement by any of the participants and even
when there is, a small amount of blurring or noisiness would
not be bothersome. Surveillance applications is another area
where high standards are not as important, usable pictures at
bit rates as low as 1-5 Mb/s can be obtained. As both trans-
mission and coding costs decrease, we can expect to see an in-
creased demand for these types of services and a significant
increase in the application of picture coding in these areas.
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