

BENNETT JONES LLP

Attorney Docket 45023-7

Sir:

U.S.A.

Transmitted herewith for filing is the patent application of:

Inventors	FEHR, Jim; Edmonton, CANADA and THEMIG, Daniel Jon; Cochrane, CANADA
Title	METHOD AND APPARATUS FOR WELLBORE FLUID TREATMENT
Priority	US Provisional Application 60/331,491 filed November 19, 2001 US Provisional Application 60/404,783 filed August 21, 2002

The application comprising:

BOX: PATENT APPLICATION

21 pages of Disclosure;

4 pages of Claims;

pages of Abstract;

<u>9</u> sheet(s) of drawings.

and enclosed with the application are:

[XX] A post card.

This patent application is being submitted under 37 CFR 1.53(f) and 35 U.S.C. 111, without a Declaration and without the filing fee.

Respectfully submitted Roseann B. Caldwell

No.

Registration No. 37,077

November 18, 2002

BENNETT JONES 4500 Bankers Hall East 855 - 2nd Street SW Calgary, Alberta T2P 4K7 Canada'

Telephone: (403) 298-3661

OCKF

Encl.

WEATHERFORD INTERNATIONAL, LLC, et al.

EXHIBIT 1023

WEATHERFORD INTERNATIONAL, LLC, et al. v. PACKERS PLUS ENERGY SERVICES, INC.

Method and Apparatus for Wellbore Fluid Treatment

Field of the Invention

The invention relates to a method and apparatus for wellbore fluid treatment and, in particular, to a method and apparatus for selective communication to a wellbore for fluid treatment.

i

Background of the Invention

An oil or gas well relies on inflow of petroleum products. When drilling an oil or gas well, an operator may decide to leave productive intervals uncased (open hole) to expose porosity and permit unrestricted wellbore inflow of petroleum products. Alternately, the hole may be cased with a liner, which is then perforated to permit inflow through the openings created by perforating.

When natural inflow from the well is not economical, the well may require wellbore treatment termed stimulation. This is accomplished by pumping stimulation fluids such as fracturing fluids, acid, cleaning chemicals and/or proppant laden fluids to improve wellbore inflow.

In one previous method, the well is isolated in segments and each segment is individually treated so that concentrated and controlled fluid treatment can be provided along the wellbore. Often, in this method a tubing string is used with inflatable element packers thereabout which provide for segment isolation. The packers, which are inflated with pressure using a bladder, are used to isolate segments of the well and the tubing is used to convey treatment fluids to the isolated segment. Such inflatable packers may be limited with respect to pressure capabilities as well as durability under high pressure conditions. Generally, the packers are run for a wellbore treatment, but must be moved after each treatment if it is desired to isolate other segments of the well for treatment. This process can be expensive and time consuming. Furthermore, it may require stimulation pumping equipment to be at the well site for long periods of time or for multiple visits. This method can be very time consuming and costly. 2

Other procedures for stimulation treatments use foam diverters, gelled diverters and/or limited entry procedures through tubulars to distribute fluids. Each of these may or may not be effective in distributing fluids to the desired segments in the wellbore.

The tubing string, which conveys the treatment fluid, can include ports or openings for the fluid to pass therethrough into the borehole. Where more concentrated fluid treatment is desired in one position along the wellbore, a small number of larger ports are used. In another method, where it is desired to distribute treatment fluids over a greater area, a perforated tubing string is used having a plurality of spaced apart perforations through its wall. The perforations can be distributed along the length of the tube or only at selected segments. The open area of each perforation can be preselected to control the volume of fluid passing from the tube during use. When fluids are pumped into the liner, a pressure drop is created across the sized ports. The pressure drop causes approximate equal volumes of fluid to exit each port in order to distribute stimulation fluids to desired segments of the well. Where there are significant numbers of perforations, the fluid must be pumped at high rates to achieve a consistent distribution of treatment fluids along the wellbore.

In many previous systems, it is necessary to run the tubing string into the bore hole with the ports or perforations already opened. This is especially true where a distributed application of treatment fluid is desired such that a plurality of ports or perforations must be open at the same time for passage therethrough of fluid. This need to run in a tube already including open perforations can hinder the running operation and limit usefulness of the tubing string.

Summary of the Invention

J

A method and apparatus has been invented which provides for selective communication to a wellbore for fluid treatment. In one aspect of the invention the method and apparatus provide for staged injection of treatment fluids wherein fluid is injected into selected intervals of the wellbore, while other intervals are closed. In another aspect, the method and apparatus provide for the running in of a fluid treatment string, the fluid treatment string having ports substantially closed against the passage of fluid therethrough, but which are openable when desired to permit fluid 3

flow into the wellbore. The apparatus and methods of the present invention can be used in various borehole conditions including open holes, cased holes, vertical holes, horizontal holes, straight holes or deviated holes.

In one embodiment, there is provided an apparatus for fluid treatment of a borehole, the apparatus comprising a tubing string having a long axis, a first port opened through the wall of the tubing string, a second port opened through the wall of the tubing string, the second port offset from the first port along the long axis of the tubing string, a first packer operable to seal about the tubing string and mounted on the tubing string to act in a position offset from the first port along the long axis of the tubing string, a second packer operable to seal about the tubing string and mounted on the tubing string to act in a position between the first port and the second port along the long axis of the tubing string; a third packer operable to seal about the tubing string and mounted on the tubing string to act in a position offset from the second port along the long axis of the tubing string and on a side of the second port opposite the second packer; a first sleeve positioned relative to the first port, the first sleeve being moveable relative to the first port between a closed port position and a position permitting fluid flow through the first port from the tubing string inner bore and a second sleeve being moveable relative to the second port between a closed port position and a position permitting fluid flow through the second port from the tubing string inner bore; and a sleeve shifting means for moving the second sleeve from the closed port position to the position permitting fluid flow, the means for moving the second sleeve selected to create a seal in the tubing string against fluid flow past the second sleeve through the tubing string inner bore.

In one embodiment, the second sleeve has formed thereon a seat and the means for moving the second sleeve includes a sealing device selected to seal against the seat, such that fluid pressure can be applied to move the second sleeve and the sealing device can seal against fluid passage past the second sleeve. The sealing device can be, for example, a plug or a ball, which can be deployed without connection to surface. Thereby avoiding the need for tripping in a string or wire line for manipulation.

The means for moving the second sleeve can be selected to move the second sleeve without also moving the first sleeve. In one such embodiment, the first sleeve has

Find authenticated court documents without watermarks at docketalarm.com.

4

formed thereon a first seat and the means for moving the first sleeve includes a first sealing device selected to seal against the first seat, such that once the first sealing device is seated against the first seat fluid pressure can be applied to move the first sleeve and the first sealing device can seal against fluid passage past the first sleeve and the second sleeve has formed thereon a second seat and the means for moving the second sleeve includes a second sealing device selected to seal against the second seat, such that when the second sealing device is seated against the second seat pressure can be applied to move the second sleeve and the second sealing device can seal against fluid passage past the second sleeve, the first seat having a larger diameter than the second seat, such that the second sealing device can move past the first seat without sealing thereagainst to reach and seal against the second seat.

In the closed port position, the first sleeve can be positioned over the first port to close the first port against fluid flow therethrough. In another embodiment, the first port has mounted thereon a cap extending into the tubing string inner bore and in the position permitting fluid flow, the first sleeve has engaged against and opened the cap. The cap can be opened, for example, by action of the first sleeve shearing the cap from its position over the port. In another embodiment, the apparatus further comprises a third port having mounted thereon a cap extending into the tubing string inner bore and in the position permitting fluid flow, the first sleeve also engages against the cap of the third port to open it.

In another embodiment, the first port has mounted thereover a sliding sleeve and in the position permitting fluid flow, the first sleeve has engaged and moved the sliding sleeve away from the first port. The sliding sleeve can include, for example, a groove and the first sleeve includes a locking dog biased outwardly therefrom and selected to lock into the groove on the sleeve. In another embodiment, there is a third port with a sliding sleeve mounted thereover and the first sleeve is selected to engage and move the third port sliding sleeve after it has moved the sliding sleeve of the first port.

The packers can be of any desired type to seal between the wellbore and the tubing string. In one embodiment, at least one of the first, second and third packer is a solid body packer including multiple packing elements. In such a packer, it is desirable that the multiple packing elements are spaced apart.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.