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Preface

I have been working with the NFS protocol since Ijoined Sun Microsystems in

1986. At that time the NFS market was expanding rapidly and I was excited to

be working with the group, led by Bob Lyon, that developed the protocol and

its first implementation in SunOS. In the NFS group, the protocol was a pow-
erful but raw technology that needed to be exploited. We wanted it to run on

as many platforms as possible, so an NFS porting group was assigned the task

of helping other companies implement NFS on their computers.

Our NFS evangelism was a little ahead of its time. Before the phrase

”open systems” had yet become hackneyed, we'd made the source code for

Sun RPC available for free download via FTP server1 and organized the first
Connectathon event. At Connectathon our enthusiasm for NFS was shared

with engineers from other companies who brought along their machines,

source code, and junk food and spent a few days connected to a network, test-

ing their NFS client and server implementations against each other.

Implementations of the NFS protocol have been successful in bringing

remote file access to programs through existing interfaces. There is no need to

change the software for remote file access or to name files differently. NFS has

been almost too successful at making remote files indistinguishable from local

files. For instance, a program that backs up files on a local disk to tape needs

to avoid stumbling into NFS filesystems. For everyone but system administra-

tors, NFS is invisible——if you ignore the rare ”NFS server not responding”
message.

It's easy to forget NFS is there. NFS has no programming interface of its

own. Even software engineers have no need to deal with NFS directly. There

are no conference tutorials called ”Programming with NFS,” there are no

magazine screen shots of NFS-enabled applications, and there are no demon-

1. It is still available today via the Connectathon Web site (zuww.cormectnthorz.org).
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strations of NFS at trade shows. Except for server administrators, NFS seems
not to exist.

There are many server implementations of the NFS protocol, each with its

own features. Each of theseserver implementationshas its own documenta-

tion, each slightly different. Perhaps this explains why there are so few NFS

books available. NFS is never more than a chapter in‘ a book about the operat-

ing system in which it is embedded.

Although NFS implementations vary, there is an underlying invariant: the

protocol itself. NFS is not a single protocol. Not only are there two versions of

the protocol in use now, but there is a third version in development as well.

The NFS protocol is layered on XDR and RPC protocols, and no implementa-

tion is complete without the MOUNT and Lock Manager protocols. I wanted

to bring all the NFS protocols together into a single volume along with other

topics unique to NFS, such as Connectathon and the SPEC SFS benchmarks.

I wanted this book to describe the protocol in detail in a more interesting

way than a dry, text—only specification. I was inspired by Richard Stevens’s

book TCP/IP Illustrated, Volume 1. This book is an excellent example of net-

work protocols animated through the use of diagrams and real protocol

traces that show the protocol in action. I have used that book as a model for

my own description of the NFS protocols. I hope you will appreciate it as a
useful reference.
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Chapter 1

Introduction

he NFSTM protocol (hereafter simply called ”NFS”) is a network protocol

that makes files stored on a file server accessible to any computer on a

network. In this book I describe not only the NFS protocol and its implemen-

tation, but other protocols that NFS depends on. The book is intended for peo-

ple who are interested in a better understanding of the NFS protocol:

developers interested in creating new NFS implementations or system admin-

istrators and users curious about how NFS works. For such a popular proto-
col, it is unusual that there are no books that describe it in detail. NFS is

accorded a mention in many books that describe TCP/IP-based protocols, but

there is no reference that provides a complete description of NFS that extends

to the companion protocols such as MOUNT, Network Lock Manager, and

PCNFSD. I hope this book provides a valuable reference.

This book assumes that you are already familiar, at some basic level, with

the concepts of TCP/IP networking and have a reasonable working knowl-

edge of computer filesystems, programming languages, and operating sys-

tems principles. If you wish to brush up on some of this knowledge, I
recommend Richard Stevens’s book TCP/IP Illustrated, Volume 1 [Stevens94]

as an excellent introduction to TCP/IP networking. It not only describes the

protocols on which NFS and ONC RPC are built, but alsoincludes a chapter

on version 2 of the NFS protocol. For a more complete introduction to distrib-

uted systems and network protocols, I recommend Distributed Systems, Con-

cepts and Design, by George Coulouris, Jean Dollimore, and Tim Kindberg

[Cou1ouris+96]. It also includes a chapter that discusses NFS along with other

distributed filesystem protocols.

You will notice that the book emphasizes protocol over implementation. In

most chapters, NFS and the protocols it depends on are discussed at the level

of a protocol specification: What are the bits that move across the wire and

what do they mean? There are many implementations of NFS, each with its

own features and administration requirements. A description of the details of

these implementations is best left for other books or technical manuals. How-
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ever, if there were no mention of implementation, this book would be just a

very dry protocol specification. Chapter 8 is dedicated to a discussion of

issues common to all implementations of NFS, and the protocol descriptions

themselves have an Implementation section for every protocol procedure.

File Access and File Transfer

File transfer was one of the first ”killer apps” for computer networks begin-

ning with the FTP‘ protocol designed for use on the ARPANET in 1971. The

objective of file transfer is to move an entire file across a network from one

computer to another, which is more convenient than transporting the file on a

floppy disk or magnetic tape. FTP supports a number of different file types,

displays directory listings, and allows some directory manipulation on the
server. With FTP, files can be created, removed, and renamed. However, FTP

does not allow file content to be manipulated directly by applications. You

need to transfer a file in its entirety to a local disk before you can view or

change it. The need for file transfer makes accessing remote data less attrac-
tive. You need to remember which files are ”remote” and which are “local.” A

remote file that needs file transfer cannot be opened directly by a program. It
must be transferred to a local disk before it can be viewed and transferred

back if it has been modified. The management of transferred files can cause

problems: you need to find a location on disk with enough space and assign a

name to a transferred file. Your local disk may also become cluttered with

transferred files that you have forgotten about.

File access protocols like NFS are designed to remove the need to transfer
the file (Figure 1.1). The file stays where it is, on the server, and is manipu-

lated in place. ln—place manipulation has obvious benefits if the changes are

minor. For instance, it's easy to append a new record to a large file just by

sending the data in the new record. The file transfer alternative requires the

file to be transferred in its entirety in both directions. File access protocols

have significant advantages over file transfer protocols:

n You get just what you need. If the client application wants only a small

piece of the file, then only that piece needs to be transferred. For instance,

a multipage document may consist of an initial table of contents that de-

scribes the location of data within the file. The client may obtain the table
of contents, then obtain the data of interest from a location within the file.

- Remotefiles appear to be local. A remote file access protocol makes a remote

server's files appear as if they were on a local disk. The user of an applica-

tion no longer has to consciously transfer a file before accessing it.

1. See RFC 959.
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FTP Client File Server

Application
File

Transfer

Application 
FIGURE 1.1 A file transfer protocol like FTP must move the file in its entirety to the client’s
disk before an application can access it. A file access protocol like NFS allows the
application to access the file directly on the server.

in N0 stale data. Since file access protocols access the server's file directly, the

file data are always up to date (assuming that there is no inconsistency

caused by caching).

n Diskless clients. If the client has no disk or less than enough disk space left ~

to hold a large file, then the file cannot be transferred. A file access proto-

col has no local storage requirements.

n No waiting. File transfer generally requires that the entire file be trans-

ferred before the data can be accessed by an application. A file access pro-

tocol can provide data to an application as soon as it arrives from the file
server.

- File locking. Using a file access protocol, a client application can lock a file

on the server to prevent other clients from obtaining or changing the data.

Locking avoids problems caused by clients overwriting each other’s

changes to a file.

With all these clear advantages, what are the disadvantages? Why do file

transfer protocols like FTP continue to be so popular? To make a remote file-

system appear to be local, the client and file server need a network connection

that is approximately as fast as the local disk drive connection; otherwise, the
illusion of a ”local” disk cannot be maintained. The File Transfer Protocol was

written for the ARPANET, which at the time could transmit data at a speed of

56K bits /sec; however, the speed of a local SCSI disk connection was approxi-

mately 12M bits/sec———that’s about 200 times faster! It took Ethernet and

Token Ring networks that could move data at 1M bytes/sec to bring the

speed of network access close enough to that of local SCSI connections for

remote access to become practical. On high speed, local area networks’ file

access protocols are most popular, but for modem users, where bandwidth is

still a precious commodity, file transfer is easier to use.
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NFS versions 2 and 3 are designed for these high-speed, local area net-

works. In the final chapter of the book I discuss the challenges facing NFS ver-

sion 4, designed to be competitive with the FTP protocol on the Internet.

Early File Access Protocols

The high-speed networking that became available in the early 1980s created

interest in many researchers in building file access protocols. At about this

time, interest was growing in protocols based on Remote Procedure Calls

(RPC). NFS was not the first, nor did it support many of the features offered

by some of its predecessors. Perhaps the feature that most distinguished NFS

from the others was its publication as a protocol from which many different

implementations could be built. The other distributed filesystems of the time

were described as implementations. This feature, a distributed filesystem as a

protocol, continues to distinguish NFS today.

AT&T’s RPS filesystem (described in chapter 13) was a contemporary of

NFS but a commercial failure due to its complexity and poor performance.

The Apollo DOMAIN operating system supported remote file access, though

it was so tightly integrated with the operating system and Apollo hardware

that it was impractical to implement it on other operating systems. The

LOCUS distributed operating system [Popek+83], developed at UCLA in the

early 1980s, provided many advanced remote file access features, such as con-

sistent, high—performance caching, location independence, file migration and

replication, and crash recovery. However, like RPS and DOMAIN, its distrib-

uted filesystem was inextricably integrated with the LOCUS operating sys-

tem. Its fate was tied to a complex implementation with limited portability.

The Newcastle Connection [Brownbridge+82] was another remote file

access implementation that preceded NFS by several years, and it succeeded

in building expectations of a distributed filesystem that could be ported to

other UNIX-like operating systems (Figure 1.2). The Newcastle Connection

achieved its portability by implementing a distributed filesystem outside the

Host A Host B
RPC

 
 
  

Daemon

C Library

UNlX Kernel

Program

C Library

UNlX Kernel

  

FIGURE 1.2 Newcastle Connection implementation. A modified C library intercepted UNIX
I/O system calls, redirecting them locally or remotely. Remote calls were handled by an
RPC protocol.
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UNIX kernel through a modified C library on the clients and a user~level dae-

mon process on the server. The C library interposed functions to intercept

UNIX system calls for file I /0. System calls that related to local files were sim-

ply forwarded to the kernel, but calls destined forvfiles on other computers

were packaged into an RPC call and sent via the network (originally a Cam-

bridge Token Ring) to a daemon on the remote computer. Its use of a remote
system call model was similar to that of RFS. A simple naming convention

was used to distinguish remote files from local files. A superroot directory

above the local root directory was assumed to contain the hostnames of other

computers. Above this superroot the hierarchy could extend further to

include named departments or organizations.

Once a file was opened, the Newcastle Connection client code would use a

table of file descriptors to distinguish remote files from local files (Figure 1.3).

On the server, a daemon process would accept remote system calls from clients

and apply them locally. Since servers could also run the Newcastle Connection

client code, the calls made by the daemon process could be forwarded to other

servers. To create a user context for the remote calls, the daemon process

would fork a new process to handle the remote calls for a specific process on

the client. If the client process forked a new child process, then the server

process would also fork a new child. To control access to the server's file-

systems, a system administrator could maintain a list of users to which access
was authorized.

Chemistry ‘ ‘
(Superroot) _ ‘ ‘

  

 
arbuckle

FIGURE 1.3 Newcastle Connection naming. Using the notion of a superroot directory that
has hostnames for entries, a process on “arbuckle” could open the file Z on “iangdon” with
path /. ./langdon/X/Y/Z. Going higher, a file on a computer in another university
department might be named with the hostname /. ./. ./physi cs/fermi /M/N/O.
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The Newcastle Connection was popular in the early 1980s because it pro-

vided UNIX users with the advantages of a distributed filesystem. These

users’ previous experience with remote file access was through file transfer
via ftp or uucpz commands. While the Newcastle Connection was convenient

for casual access to remote files, performance was not as good as a local disk,

since the code did no Caching of data or file attributes. An additional problem

was the requirement for programs to be relinked with a new C library that

would interpose system calls. It was common to encounter programs that

were linked with a C library that did not include the magic interposition func-

tions and hence could not make use of the Newcastle Connection namespace.

These limitations of the Newcastle Connection may have influenced the NFS

design team in choosing a kernel-based client that would be more transparent

to applications-—no need to relink or recompile. Also, a kernel-based imple-
mentation would be able to cache file attributes and data that could be shared

across multiple processes.

ONC RPC

The NFS protocol marks the genesis of the ONC RPC protocol (Figure 1.4).

The Remote Procedure Call programming paradigm was based on work at

Xerox PARC in the early 1980s that led to the Xerox Courier RPC system. Bob

Lyon, one of the Sun designers of the NFS protocol, decided to create NFS as

an RPC protocol. Protocol simplicity and high performance were cornerstones

of NFS design and are reflected in the clean design of ONC RFC and its use of

XDR encoding. With the NFS protocol as its initial motivation, the ONC RPC

protocol led to further protocols such as portmapper, NIS, and eventually a

public specification of the protocol, along with a C/C++ API, source code,

and documentation. Several hundred ONC RPC-based protocols have been

implemented, each registered with a unique program number.

Organization of This Book

The NFS protocol is built on the foundations of the XDR and ONC RPC proto-

cols, so they are introduced in chapters 2 and 3. Since NFS security is imple-

mented within the RPC protocol, it is appropriate to describe that next, in

chapter 4. The protocol descriptions in all chapters use a variant of the RPC

language described in [RFC 1832]. The RPC language syntax is described in
sections 2.6.3 and 2.6.4.

2. UNIX to UNIX CoPy. A variation of the UNIX cp command that copied files from one
UNIX system to another over a serial line or modem connection.
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ONC RPC

 
F Transport (UDP or TCP) _l

FIGURE 1.4 NFS protocol layering. The NFS protocol is built on ONC RPC, which uses
XDR to encode data for transmission over a network transport.

Chapter 5 introduces the filesystem model that the NFS protocol assumes.

The common filesystem model is a strength of the NFS protocol. NFS clients

are much easier to implement because the peculiarities of different server file-

systems are mapped into a common model. Chapters 6 and 7 describe ver-

sions 2 and 3 of the protocol, procedure by procedure. I illustrate these

protocols in use with examples of real protocol calls and replies through snoop

traces. Snoop is a packet-sniffing program that captures protocol packets from

the network and displays their contents. Snoop is bundled with the Solaris

and Irix operating systems. Another packet—sniffing program, tcpdump, is

more widely available than snoop, but it does not provide as much detail as

snoop for the NFS, MOUNT, and Network Lock Manager protocols. Chapter

8 Covers implementation issues that are encountered by anyone attempting to
build an NFS client or server.

The NFS protocol cannot implement a complete distributed filesystem

without two important companion protocols; chapters 9 and 10 describe the

MOUNT and Network Lock Manager protocols that enable the mounting of

NFS filesystems and file locking functions.

Chapter 11 describes the automounter. The automounter is an example of

the NFS approach to protocol layering. The NFS protocol itself does not

implement a global namespace. It depends on the automounter to implement

a namespace above it. The scope of the book broadens still further with chap-

ter 12, NFS Variants. These variant protocols explore extensions to the NFS

protocol. Some of these extensions were later incorporated into NFS version 3.

Chapter 13 expands this survey to other distributed filesystem implementa-

tions that are not derived from NFS. Chapter 14 focuses on the challenges

involved in implementing NFS on PC operating systems. Included in this

chapter is a description of the PCNFSD protocol that is used by PC clients.

Server implementations of the NFS protocol owe much of their good per-

formance to the SPEC SFS benchmarks, also known as LADDIS. Chapter 15
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gives a history of these benchmarks, beginning with nfsstone. Chapter 16 is

dedicated to WebNFS, a recent addition to the NFS protocol. WebNFS simpli-

fies the connection to NFS servers, making it possible to connect to servers

through firewalls. The WebNFS chapter is a good introduction to the final

chapter, which speculates on the features of NFS version 4. At the time .of

writing, the NFS version 4 specification is still under development, yet the

requirements for this new protocol are clear: to run well over the Internet and
to further extend the interoperability and security of the protocol. Hopefully,

a future revision of this book will add a complete description of this protocol
when it becomes an Internet standard.
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Chapter 2  

XDR—External Data

Representation

he NFS protocol data in RPC messages must be represented in a format

that can be understood by both the sender and the recipient computer.

This chapter explains the need for the common data representation provided

by XDR, then examines the representation of primitive values such as integers

and strings, followed by structured types such as arrays, linked lists, and dis-

criminated unions. The chapter closes with a description of the XDR lan-

guage: a notation for describing XDR encoded data. This chapter is not

intended to be a complete description of all XDR types. For instance, there is

no mention of enum and void types, nor of the XDR floating point data types

such asfloat, double, and quadruple. It describes only the data types used by the

NFS protocol and related protocols presented in this book. For a more com-

plete description see [Bloomer92], [RFC 1832], or [X/OpenNFS96] in the Ref-
erences section near the end of the book.

Protocols and Transportable Data

Network protocols must use a common encoding scheme to represent the

data that flies across the wires. Iust as people represent their thoughts and

ideas in different languages and character sets, computers also use a variety
of data encoding schemes to represent their data internally. Back in the 1950s

and 1960s, computer manufacturers found it advantageous to represent text

using a common encoding scheme so that the letter ”A” on one computer

could be written to a tape or transmitted on a wire and read as the letter ”A”

by another computer of a different model or even a different manufacturer.

These character encoding schemes have names like ASCII and UTF-8.

As well as having their own representations for characters, computers

also differ in their representations for other data, like integers, floating point

numbers, boolean values, and collections of values such as variable-length

lists and tree structures. Some network protocols, like HTTP for Web pages
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and SMTP for mail, convert the protocol elements to readable ASCII text,

which is then ”parsed” by the recipient. For instance, the date field used in the

HTTP 1.1 protocol is defined by RFC 1123 as an ASCII string that looks like
this: ”Date: Sun, 06 Nov 1999 08:49:37 GMT.” The word ”Date” labels the

field and the colon is a delimiter for the value. The value is represented as day

of week, day, month, year, and time in hours, minutes, and seconds. Repre-

sentation of protocol elements as text fields has some good features:

- Network engineers can read the raw protocol traffic without the need for

protocol interpreter software, which makes these text-based protocols

easier to debug.

u Client and server implementations can be built using simple data format—

ting functions, like the printf function in the C language, to create and

parse network messages.

u The protocol elements themselves are inherently variable length.

Text representation also has several disadvantages:

n It takes more space to encode data this way (the value part of the date

field shown above requires 29 bytes, whereas a binary representation,

such as a UNIX time, can represent dates in as little as 8 bytes).

I Parsing of variable—length fields and text to binary data conversion is

expensive in CPU cycles.

I Data in text fields must be carefully inspected in case they contain charac-

ters that might be confused with protocol delimiters. Such ”special” char-

acters must be escaped in some way.

XDR is a standard for encoding binary data in a common, interoperable for-

mat. RPC-based protocols like NFS use XDR to encode data in network call

and reply messages. As Figure 2.1 explains, without a standard data represen-

tation machines cannot accurately exchange binary data. Not only might the

byte order be different, but the machines might have different data alignment

requirements or different representations for floating point numbers and

more elaborate structured items like linked lists, which contain pointers that

are meaningless outside the address space in which they were created.

XDR provides a similar function to that of the ISO Abstract Syntax Nota-

tion} While XDR uses implicit typing, ASN uses explicit typing, labeling each

data item with a type code. XDR uses no data typing. There is an implicit

assumption that the application parsing an XDR stream knows what type of

data to expect. Use of implicit typing provides a more compact data represen-

tation, since type codes do not need to be included with the data and there is

1. ISO ASN.1 X.209
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Big-Endian Little-Endian
Value = 3 Value = 50,331,648

Byte 0 Byte 1 Byte 2 Byte 3 Byte 3 Byte 2 Byte 1 Byte O

2.2

33222222 22221111 111111 33222222 22221111 1171111
10987654 32109876 54321098 76543210 10987654 32109876 54321098 76543210

L__<fll__0ll_JL_?l K:E]1ll::E

FIGURE 2.1 While big-endian and little-endian machines may both represent an
integer as a two’s-complement, 32-bit integer, they store these values with different
byte orders in memory. if the big-endian machine transmits the integer as a byte
stream, the little-endian machine will receive the bytes in reverse order and interpret
the 32-bit integer incorrectly.

no overhead in interpreting the type codes. Additionally, most client—server

protocols already define a well-known sequence of data fields, which makes

the inclusion of data type tags redundant. XDR can be used selectively to label

variable data types through the use of a discriminant tag. ASN .1 also includes

an explicit length with each data item.

The length field allows a parser to skip or postpone the evaluation of

unknown data fields. It also allows some flexibility in the representation of

data. For instance, an XDR protocol that encodes an integer will represent it in

4 bytes even if the value is small and can be represented in a smaller number

of bytes. An ASN.1 protocol allows the length to vary according to the amount

of storage required. The saving in space provided by the flexible data lengths

of ASN.1 is usually negated by the additional space required to store the

length field itself.

A Canonical Standard

The XDR standard assumes that 8-bit bytes, or octets, are portable and defines

each data type as a sequence of bytes. XDR uses a canonical data representa—

tion; that is, every data type has just one XDR encoding: a single byte order

for integers (big-endian), a single floating point representation (IEEE stan-

dard), and so on. Any program that needs to transmit data to another

machine (either on a network or via a medium such as tape or floppy disk)
can convert its local representation of the data to the XDR encoding. A pro-

gram that receives this XDR encoded data simply converts the data back to its

own local representation.

An alternative coding is used by an alternative remote procedure call sys-

tem, DCE/RPC, which evolved from the NCS RPC that was developed by

Apollo Computer. Rather than use a canonical encoding, DCE/RPC allows

alternative encodings, sometimes called ”receiver makes it right” because the
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sender typically uses its native encoding style and the receiver is responsible

for converting the encoded data to its own representation. For instance, an
Intel-based sender uses a native little-endian format. If received by another

Intel machine, then no data manipulation is required since the data are

already in native format. A big-endian receiver detects the little-endian data

and performs the appropriate conversion. DCE/RPC supports multiple for-

mats for floating point representations as well.

XDR’s use of a canonical standard is sometimes criticized for being waste-

ful. For example, if a program on a little-endian machine transmits an array of

integers to a program on another little-endian machine, then the programs

each incur the unnecessary overhead of a conversion between little-endian

and big-endian representations. In practice, this overhead is not significant

except perhaps in the rare case where the programs are exchanging large

arrays of integers.

Some have suggested that the XDR use of big-endian representation for

integer values favors Sun Microsystems’ computers since they used Motorola

680x CPUs followed by SPARC CPUs—both big-endian. VAX and Intel 808x

CPUs are little-endian. The big-endian representation for XDR was based on

big-endian network byte order used in the headers of Internet protocols like

UDP and TCP. In practice, the additional byte swapping required of little-

endian architectures in marshaling XDR data is not significant for most proto~

cols. Typically, the amount of integer data is small and the processing over-

head is dwarfed by other data movement and protocol processing.

XDR Unit

XDR data items are encoded as a sequence of XDR data units, each containing

four 8-bit bytes, or 32 bits. Any encoded data item that is not a multiple of 4

bytes in length must be padded with zero bytes (Figure 2.2).

The minimum data unit requirement achieves suitable alignment on most

computer architectures, and the zero padding allows fields to be efficiently

compared or checksummed. Although XDR is commonly perceived as just a

standard for the representation of data, its alignment and padding require-

ments are important for the portability of groups of data.

Byte0 Byte1iE—§Byten—1 O E—} 0
Item length =~n bytes *‘ r bytes of ze_ro padding >

(n+r)mod4=04 D

FIGURE 2.2 An XDR field always contains an integral number of 4-byte XDR units.
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Data Alignment in Memory (bytes)

Alignment OT 17 2 F3
8-bit tag

16-bit tag

32-bit i tag
FIGURE 2.3 Data alignment in memory.

For instance, the C structure

struct mydata {
int tag;
char flags;
short link;

might be represented in a computer's memory in several different ways

depending on the padding and alignment requirements of the C compiler and

the computer architecture. In each case in Figure 2.3 the structure fields are a

32-bit, an 8-bit, and a 16-bit quantity, but the padding requirements increase

with the alignment unit. Although 8-bit alignment is the most efficient

because it requires no padding, it increases marshaling overhead for modern

computer architectures with stricter alignments.

2.4 Primitive XDR Data Types

Each of the following sections describes a data type within the XDR standard.

2.4.1 Integer

An XDR integer is a 32-bit field that represents an integer in two's comple-

ment form in the range [—2,147,483,648, 2,147,483,647]. The byte order is big-

endian (i.e., the most significant byte is O and the least significant is 3).

MSB LSB

1 ByteO|Byte1 ‘ Byte2’By1e3 ’
32 bits

<————————————+
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2.4.2

2.4.3

Two's complement form is commonly used on computers to represent signed

binary numbers. In straight binary representation, each digit represents a

power of two with increasing weights from right to left; for example, in an 8-

bit field the value 12 would be represented as

Ox27+Ox2‘+Ox25+1x2“+1x23+,1x22+
0x21+0x2°
8+4+O+O
12

00001100

The leftmost digit of a number represented in two's complement form has a

negative weight, so negative 12 is represented as

11110100 —1x27+1x26+1x25+1X2“+0X23+1x22+
0x21+0x2°
—128+64+32+16+O+4+O+0
-12

A nice feature of two's complement form is that the normal rules for

binary addition work correctly. It's also easy to negate a number (make it neg-

ative): simply complement each bit and add one to the result.

Unsigned Integer

An XDR unsigned integer is a bit field that represents a nonnegative integer in

the range [0, 4294967295]. Like the signed integer, the byte order is big-endian;

that is, the most significant byte is 0 and the least significant is 3. Unlike a

signed integer, the most significant bit has a positive weight.

MSB LSB

32 bits
 

Boolean

A boolean value is represented as a signed integer with assigned values: 0 =
false and 1 = true.

MSB LSB

Byte0 Byte1 Byte2 Byte3
=0 :0 =0 =0or1

32 bits



2.4 Primitive XDR Data Types 15

2.4.4 Hyper Integer and Unsigned Hyper Integer

Hyper integers are extensions of the 32-bit integer encodings to 64 bits.

LSBMSB

IByte 2 Byte 3 Byte 4 Byte 5 -Byte 6 .Byte 7
64 bits

4 ->

2.4.5 Fixed-Length Opaque Data

XDR allows an uninterpreted sequence of bytes (numbered 0 through 11-1) to

be conveyed from one machine to another. Byte m of the sequence always pre-

cedes byte m+1 of the sequence. Other than preserving the original byte order,
the data format is not interpreted. Where the opaque data is fixed length it is
assumed that the recipient has knowledge of the number of bytes in the

sequence. As with any XDR field, it must contain an integral number of 4-byte

XDR units so up to 3 pad bytes may be appended to the end of the sequence.

=5]
n bytes of opaque data rbytes of zero padding

<————-———j—:———><—-—————>

(n+r)mod4=0 

2.4.6 Variable-Length Opaque Data

Where the number of bytes is not known to the recipient, XDR allows opaque
data to have a prepended integer containing the byte count The byte count
does not include any pad bytes.

= Eii
4 bytes n bytes of opaque data rbytes of zero padding

<————————~—>
(n+r)moE4=o 

2.4.7 String

A string of ASCII characters can be encoded as variable-length opaque data.
Although the standard describes these as ”ASCII” bytes, they can be re-

garded as simple 8-bit bytes with no particular character encoding assumed.

The string length does not include any pad bytes. Although it is a convention
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of C programs to terminate strings with a null byte, XDR strings are not null
terminated.

»n4
4 bytes n bytes of string r bytes of zero padding<——— >¢ —~—+ ‘

(n + r) mod 4 = 04- —+

2.5 Structured XDR Data Types

The XDR standard includes encodings for structured types built from sets of

primitive types.

2.5.1 Fixed-Length Array

A fixed-length array of n elements can be XDR encoded simply by encoding

each element in order beginning with element 0 and ending with element n—1.

_ It is assumed that the recipient of the array already knows the number of ele-
ments, n, that the array comprises. Each element must comprise an integral

number of XDR units, though the elements themselves may have different

sizes. For instance, in a fixed-length array of strings, all of the elements must

be a string, but the strings themselves may vary in length. '

Element 0 Element 1 E - - Element n—1
n elements

<—— ——>

2.5.2 Variable-Length Array

A counted array can be used to encode an array of elements where the num-

ber of elements in the array is not known to the recipient. It is equivalent to a

fixed—length array with a prepended integer that contains the element count.

Length Fl Element 0 Element 1 - Element n—1
l l l _

4 bytes ‘ n elements _>

Note that there is no padding required between elements because each ele-

ment is internally padded out to an integral number of XDR units.
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2.5.3

2.5.4

2.6

Discriminated Union

While XDR does not require data items to have type tags, programs can insert

integer or boolean values into the X_DR sequence to describe the data that fol—

low. A discriminated union is particularly useful where the data types that

follow in the sequence cannot be predicted. For instance, a protocol reply
message may contain a status code to indicate that a valid result follows, but
if nonzero, the status indicates an error code and no result follows. Note the
reference to discriminated unions in section 2.6.4.

integer Or Boolean Discriminant-dependent
Discriminant Values

Linked Lists

Data tags may also be used to encode linked list structures. Since a linked list

is similar to a variable—size array, it may seem reasonable to use a variable-

length array encoding by prepending a size value on a sequence of elements.

However, this encoding assumes that the number of data elements is known
in advance. The number of elements in a linked list cannot be known without

first traversing the list and Counting the elements. An XDR encoding of a

linked list can be achieved in a single traverse of the list by including an XDR

boolean value with each list element in the sequence that indicates whether

there is a next element in the sequence.

fagtrue [true Element ij: - Eve

Linked list encoding can be reasonably efficient if the space occupied by
the list elements is significantly larger than the space taken by the boolean

tags. If the elements are relatively compact, then a variable—length array will

provide a more space—efficient encoding.

This book uses a variant of the XDR language to describe a linked list. The

list keyword introduces a structure that is replicated as a linked list. See sec-
tion 2.6.6.

 [Element 0   [Element n—1   

XDR Language

The XDR language is a notation for describing the sequence and types of

XDR-encoded data. Although it is not a programming language, the XDR lan-

guage can be used by ”compilers” like Rpcgen2 to convert an XDR language

2. The Rpcgen compiler is made available by vendors that support the ONC RPC toolkit. It
is bundled with most versions of UNIX.
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description into C or C++ data structures and functions to carry out the XDR

encoding and decoding. It is no coincidence that the XDR language resembles

the C language, since there is almost a one-to-one conversion of XDR lan-

guage components to those of C and C++.

The language description in sections 2.6.1 through 2.6.5 {is reproduced

from Section 5 of RFC 1832, ”XDR: External Data Representation Standard.”

2.6.1 Notationalconventions

This specification uses an extended Backus—Naur Form notation for describ-

ing the XDR language. Here is a brief description of the notation:

- The characters I, (,), [,1 , ", and * are special.

u Terminal symbols are strings of any characters surrounded by double

quotes.

Nonterminal symbols are strings of nonspecial characters.

Alternative items are separated by a vertical bar (I ).

Optional items are enclosed in brackets.

Items are grouped together by parentheses.

A * following an item means 0 or more occurrences of that item.

For example, consider the following pattern:

a very"
IIn_i ghtn)

II’ II IlverylV)* [II II "and II] II ll (lldayll |

An infinite number of strings match this pattern. A few of them are

"a very rainy day"
"a very, very rainy day"
"a very cold and rainy day"
"a very, very, very cold and rainy night"

2.6.2 Lexical Notes

- Comments begin with / * and terminate with * / .

u White space serves to separate items and is otherwise ignored.

I An identifier is a letter followed by an optional sequence of letters, digits,

or underbar (_). The case of identifiers is not ignored.

I A constant is a sequence of one or more decimal digits, optionally pre-

ceded by a minus sign (—).
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2.6.3 Syntax Information
,-/

deciaration:
type_specifier identifier

| type_specifier identifier "[" vaiue "]"
| type_specifier identifier ”<” [ va1ue ] “>"
[ "opaque" identifier "[" vaiue "]"
I "opaque" identifier ”<” [ va1ue ] ">"
| "string" identifier ”<” [ va1ue ] ">"
1 type_specifier "*" identifier
[ "void"

vaiue:
constant

| identifier

type_specifier:
[ "unsigned" ] "int"
[ "unsigned" ] "hyper"
"fioat" ‘
"doubie"

"quadrupie"
"boo1"

enum_type_spec
struct_type_spec

union_type_spec
identifier

enum_type_spec:

"enum" enum_body

enum_body:
Il{Il

( identifier "=" va1ue )
C "," identifier "=" va1ue )*

Il}l|

struct_type_spec:

"struct" struct_body

struct_body:
Il{lI

( dec1aration ";" )
( deciaration ";" )*

1|}lI

union_type_spec:
"union" union_body

union_body:
llswi tchll "(ll ll)H ll{1l

( "case" vaiue ";" dec1aration ";" )

19
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( "case" value ":" declaration ";" )*
[ "default" ‘'1'’ declaration ";" ]

ll}

constant_def:
"const“ identifier ''=''

II II
constant ;

type_def:
"typedef" declaration ";"

| "enum" identifier enum_body ";"
| "struct" identifier struct_body ";"
1 "union" identifier union_b0dy ";"

definition:

type_def

1 constant_def

specification:
definition *

2.6.4 Syntax Notes

The following are keywords and cannot be used as identifiers: boo'|, case,

const, default, double, quadruple, enum, float, hyper, opaque, string,
struct, switch, typedef, union, unsigned, and void.

Only unsigned constants may be used as size specifications for arrays. If

an identifier is used, it must have been declared previously as an

unsigned constant in a const definition.

Constant and type identifiers within the scope of a specification are in the '

same namespace and must be declared uniquely within this scope.

Similarly, variable identifiers must be unique within the scope of struct
and union declarations. Nested struct and union declarations create new

scopes.

The discriminant of a union must be of a type that evaluates to an integer.

That is, int, unsigned int, boo'|, an enumerated type, or any typedef

type that evaluates one of these is legal. Also, the case values must be one

of the legal values of the discriminant. Finally, a case value may not be

specified more than once within the scope of a union declaration.

2.6.5 Example of an XDR Data Description

Here is a short XDR data description of a thing called a file, which might be
used to transfer files from one machine to another.

const MAXUSERNAME = 32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a filename */
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/2‘:

* Types of fiiesz
71‘!

enum fiiekind { '
TEXT = O, /* ascii data */
DATA = 1, /* raw data */
EXEC = 2 /* executabie */

};

/1‘:

* Fiie information, per kind of file:
‘It!

union filetype switch Cfilekind kind) {
case TEXT:

void; /* no extra information*/

case DATA: V
string creator<MAXNAMELEN>; /* data creator */

case EXEC:

string interpretor<MAXNAMELEN>; /* program interpretor*/
};

/5‘:

* A compiete fiie:
*/

2.6.6

struct file {
string fi1ename<MAXNAMELEN>; /* name of file */
fiietype type; /* info about fiie */
string owner<MAXUSERNAME>; /* owner of fiie */
opaque data<MAXFILELEN>; /* fi1e data */

}

Suppose now that there is a user named ”john” who wants to store his Lisp

program ”sillyprog” that contains just the data ”(quit).” His file would be
encoded as shown in Table 2.1.

XDR Language Variant in This Book

The XDR language was not designed with the goal of making XDR or RPC

protocol descriptions easy to read. Because of its close association with C and

C++ and the requirement that XDR data descriptions be readily converted

into data structures for these languages, data descriptions in XDR language

may appear somewhat long—winded. Any sequence of XDR fields must be

represented by a named struct, even if the sequence comprises an unnamed

sequence of parameters from a function call or the multiple items in the arm

of a discriminated union. As a consequence, XDR language descriptions con-

tain large numbers of named structures.

In this book I use a variant of the XDR language to describe XDR—based

protocols. This variant makes protocol descriptions more compact and easier

to comprehend.
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TABLE 2.1 Lisp Program “sillyprog”

Oflset Hex bytes ASCII Comments

0 00 00 00 09 Length of filename = 9
73696c6c sill Fflenmnechmadem

8 79 70 72 6f ypro . . . and more characters . . .

12 67 00 00 00 g. . . . . . and 3 zero-bytes of padding
16 00000002 .... FflehndisEXECI=2

20 00 00 00 04 . . . . Length of interpreter = 4

24 6c 69 73 70 lisp Interpreter characters

28 00 00 00 04 . . . . Length of owner = 4

32 6a 6f 68 6e john Owner characters

36 00 00 00 06 . . . . Length of file data = 6

40 28 71 75 69 (qui File data bytes . . .

44 74 29 00 00 t) . . . . . and 2 zero-bytes of padding

1. The keyword int32 is used as a substitute for int and uint32 for

unsigned int.

2. The keyword uni on and the union name may be omitted from a union

body:

un+en—#ep4y:beéy switch (uint32 msg_type) {
case CALL:

case.§CPLY:

}

3. Data items may be left unnamed if no name follows a type specifier. For
instance, in a discriminant Value,

switch (uint32) {
case CALL:

case-§CPLY:

}

4. A sequence of declarations may exist without an enclosing struct. For

example, multiple declarations may appear in a discriminant arm:
switch (uint) {

case CALL:

uint32 rpcvers;
uint32 prog;
uint32 vers;

uint32 proc;
opaque_auth cred;
opaque_auth verf;
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2.7

case REPLY:

}

5. A case value may be associated with a variable name without the use of
an enum:

switch (uint32) {
case CALL 0:

case REPLY = 1:

}

. The size of a counted array optionally follows the type specifier:
opaque[4] timestamp;
string<2SS> filename;

A list keyword may be used to introduce one or more items that consti-
tute a ”linked list.” For instance, the declarations

struct *str'1'ng11'st {
str'1'ng<> iteml;
uint32 1'tem2;
stringlist next;

};

stringlist *names;

are replaced by

list {

str'1'ng<> iteml;
u1' nt32 1'tem2;

}

See descriptions of the NFS READDIR procedure in section 6.2.15 (ver-

sion 2) and section 7.3.17 (version 3) for further examples of this simpli-

fied syntax.

Note: This language variant cannot be compiled with the XDR language com-

piler Rpcgen.

Summary

XDR is a data encoding method that represents data in a common format suit-

able for transfer between computers that represent the data differently. The

XDR encoding does not include data description tags—programs that receive

XDR dataare assumed to know the expected sequence of data types. XDR

defines encodings for primitive data types such as integers, floating point

numbers, booleans, and strings. Each primitive type is represented in an inte-
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gral number of 4-byte XDR units. Primitive types can be assembled into struc-

tured types such as arrays and linked lists.

The XDR language is used to describe streams of XDR encoded data. A

program like Rpcgen can be used to ’’compile’’ an XDR description into C or
C++ data structures and code to transfer data between these data structures

and their XDR encoding. Y
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Chapter 3

ONC RPC

he NFS protocol is independent of the type of operating system, network

architecture, and transport protocols. This means that the NFS protocol is

the same whether it is used between an IBM mainframe and an Apple iMac,

whether it is using a TCP connection or UDP datagrams, whether it is run-

ning over an ethernet or a token ring network. This independence is due in

part to the NFS protocol being an ONC RPC protocol. ONC is an acronym for

Open Network Computing, the name Sun Microsystems gives to the RPC

protocol described here. It is also known as ”SunRPC.” ONC RPC is now an

Internet ”standards track” protocol described in [RFC 1831] and [RFC 1832].

This chapter is not intended to be a complete description of ONC RPC.

Enough of the RPC protocol is described so that you can understand how the

protocol works for NFS and its associated RPC protocols: MOUNT, Network

Lock Manager, PCNFSD, and so on. The C programming API is not described.

If you would like details of the RPC programming interface, make note of the

”RPC” man page on UNIX systems that support ONC, or refer to [Bloomer92].

Remote Procedure Call Model

A Remote Procedure Call is a message sent to a server with the expectation of

a reply message, as shown in Figure 3.1. The call message identifies a server

program and invokes a ”procedure” within the program. Encoded along with

the message are the parameters for the procedure. The reply message may be

either an error code or reply data.

For instance, when an NFS client needs to read a file, it sends an RPC call

to the server's NFS program to invoke the READ procedure and provides

three arguments: the filehandle that identifies the file, an offset into the file,

and the number of bytes that are to be read. The reply message contains the

requested data from the file.

In a local procedure call there is one logical thread of execution; control is

transferred to the procedure code and then back to the caller when execution

25
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Call .

' Program Procedure Parameter Parameter Parameter

NFS Read Filehandle Offset-I Length

Reply

Attributes

FIGURE 3.1 The call message identifies the pro ram, the procedure within that
program, and the parameters for the procedure. he reply message conveys the
procedure results back to the caller.

of the procedure is complete. A remote procedure call is no different; the call-

ing program waits until the remote procedure is complete and returns its

reply. It is not a requirement that the calling program do nothing while it waits

for the remote procedure—it could carry on with other work while waiting.

The ability to work while waiting is usually expressed as some form of multi-

threading within the client program, where the threads making an RPC call

block until the remote call is complete.

The server program generally waits for a call message, decodes the

arguments, dispatches them to the appropriate procedure, encodes the reply,

and waits for another call message. A simple server program may process

calls one at a time, though if the server is to handle concurrent calls from

many clients (like an NFS server), then it may be necessary to have a more

complex interface that can dispatch each call to a separate process or thread of
execution.

While remote procedure calls are similar to local procedure calls, there are

some important differences:

u Error handling. Failures of the remote server or network must be handled

when using RPCs.

n Global variables and side eflects. Since the server does not have access to the

client's address space, hidden arguments cannot be passed as global vari-
ables or returned as side effects.

n Performance. Remote procedures usually operate one or more orders of

magnitude slower than local procedure calls. There are notable excep-

tions: the first users of the NFS protocol sometimes saw better perfor-

mance from their NFS mounted disks than from locally mounted disks,

since the the file server disks had significantly faster seek time and 1/O
bandwidth.
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3.2

- Authentication. Since remote procedure calls can be transported over

unsecured networks, authentication may be necessary. Authentication .

prevents one entity from masquerading as some other entity.

The remote procedure call programming paradigm was introduced in a land-
mark paper by Andrew Birrell and Bruce Nelson, called“ ”Implementing

Remote Procedure Calls” [Birrell+84]. They were the first to create an opera-

tional RPC system while at the Computer Science Laboratory of the Xerox

Palo Alto Research Center (PARC) in 1981. Their RPC made it possible for

programs written in the Cedar language to communicate with each other over

the Xerox datagram network via a simple procedure call interface. Their work

was preceded by the release of Xerox Courier RPC, a standard intended to be

used to build distributed applications. In 1994 Birrell and Nelson received the

ACM Software System Award in recognition of their work.

ONC RPC is just one of several RPC systems that are based on the RPC

work at Xerox PARC. The Open Group's DCE/RPC, Microsoft's DCOM, and

the Iava RMI are other RPC systems in common use. ONC RPC and XDR

encoding were developed principally by Bob Lyon while at Sun. He infor-

mally referred to this RPC scheme as ”Sun of Courier.”

RPC Transport Independence and Semantics

The RPC protocol describes a standard for call and reply messages, but it does

not require that the messages be conveyed between the client and server sys-

tem over any particular transport protocol like TCP/IP. It would be possible,

albeit slow, to move the messages back and forth using floppy disks!

While the RPC protocol itself does not assume any particular transport for

conveying call and reply data, the initial C programming API for ONC RPC

was based on Berkeley Sockets, which assumed some transport dependencies

such as address size. In 1989, Sun developed a revised transport-independent

API known as TI—RPC that rid the API of transport dependencies so that RPC

could operate over other transports such as AT&T’s Datakit, Novell Netware,

or OSI. None of the TI—RPC changes affected the RPC protocol itself since the

call and reply message formats had no transport dependencies in them. A

new version of the Portmap protocol was added, which introduced the trans-

port-independent universal address (section 3.8.1).

Although the RPC protocol is transport independent, it does not attempt

to hide the limitations of the transport~a datagram transport like UDP will

impose an absolute limit on the size of an RPC message (64 KB), while TCP

will convey messages of any length. RPC does not guarantee any kind of reli-

ability. If an application knows that it is using a reliable transport like TCP,

then it can assume that the transport itself will handle reliable delivery of

messages; however, if it is using an unreliable protocol like UDP, then it is
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possible that the call or reply message may be lost and the application will

need to implement a time-out and retransmission policy.

Transport independence implies that RPC cannot attach specific seman-

tics to the execution of remote procedures. For instance, if running over UDP

where call or reply datagrams may be lost, the client will need toimplement a

retransmission policy (Figure 3.2). The use of a reliable transport like TCP
does not completely remove the need for retransmissions. For instance, if the

server drops the TCP connection because it crashed or is overloaded, then the

client will need to reestablish the connection and retransmit any call messages

that were pending when the connection was lost. If a client receives no reply

from the server, it cannot assume that the remote procedure was not executed

since it may be the reply that was lost. Additionally, if a client receives a reply

after some number of retransmissions, it can assume only that the remote pro-
cedure was executed at least once.

For this reason it is preferable that remote procedures be idempotent; that

is, if the procedure is repeatedly presented with the same arguments, it will

always generate the same result. An example of a nonidempotent procedure
would be one that takes a record in the call message and appends it to a file. If

the call message is retransmitted, then the record may be appended more than

once. The NFS READ request is a good example of an idempotent procedure;

the call arguments specify the file offset and length so that the same file data

are returned no matter how often the request is retransmitted.

Idempotent procedures are desirable but not always possible to imple-

ment. For instance, the NFS RENAME procedure is used to rename a file. If a

RENAME request is retransmitted because the reply was lost, then the second

request will attempt to rename the file again and the server will return a ”no

such entry” error. The client will be unable to tell whether the file was ever

  
 

 
Guaranteed delivery.
TCP does retransmission.
At—|east-once semantics.

No guaranteed delivery.
Need time-out/retransmit
at RPC level.

FIGURE 3.2 RPC transport independence does not insulate the protocol completely
from the properties of the underlying transport. Since UDP does not guarantee
message delivery, RPC uses a time-out/retransmission policy. Since TCP already
provides its own time-out/retransmission, RPC utilizes it instead of its own. In practice,
RPC does retransmit overTCP though with a longer time-out than it would use over
TCP to handle the case of a broken TCP connection that must be reestablished.
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Client Server

Rename file

Time RENAME XlD=1234 and cache

reply to XID .1234‘X

*9‘ OK L,___‘/>
Retransmit Return cached

reply

Kg! J L " I1' V ‘I

Retransmit RENAME XlD=1234 Return cached

reply

OK <——‘

3.3

FIGURE 3.3 Problems due to retransmission of requests to nonidempotent
procedures can be avoided by having the server cache reply to recent calls. In this
example the server’s reply is lost. if the server detects a retransmission (via the XID),
then it can return the lost reply from the cache.

there. The server can mitigate the impact of retransmitted, nonidempotent

requests by keeping a cache of recent requests (Figure 3.3). Each RPC request

is distinguished by a transaction identifier (XID) that is kept constant across

retransmissions. Using the XID, the server can check the cache for previous

transmissions of the same request and send a cached reply to the client while

taking no action.

Using a duplicate request cache, an RPC server can approximate ”at most

once” semantics, preventing a retransmitted RPC call from being executed

twice. Since a duplicate request cache does not record all previous RPC calls,

there is still a risk that an RPC call that is retransmitted after a long delay may

miss the cache and be executed more than once. Additionally, if the cache is

lost through a server reboot, RPC calls that were sent but not acknowledged

before the reboot will not be detected as duplicate requests after the server

reboot. For details on the duplicate request cache implemented by NFS serv-
ers, see section 8.9.

Program Numbers and Versioning

The RPC call message has three unsigned integer fields—remote program

number, remote program version number, and remote procedure number——

which uniquely identify the procedure to be called. Program numbers are

administered by the Internet Assigned Numbers Authority——also known as

IANA (1' ana@1' ana . org). Once implementors have a program number, they can
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implement their remote program. The first implementation would probably

have the version number 1. Because most new protocols evolve, a version

field of the call message identifies which version of the protocol the caller is

using. Version numbers enable support of both old and new protocols

through the same server process. The procedure number identifies the proce-

dure to be called. These numbers are documented in the specific program's

protocol specification. For example, a file service's protocol specification may

state that its procedure number 5 is ”read” and procedure number 12 is
”write.”

Just as remote program protocols may change over several versions, the

actual RPC message protocol can also change. Therefore, the call message also

has in it the RPC version number, which always equals 2 for the RPC

described here. The version number of the RPC protocol should not be con-

fused with the version number of an RPC protocol. The RPC call header con-
tains both version numbers.

The reply message to a request message has enough information to distin-

guish the following error conditions:

u The remote implementation of RPC does not support protocol version 2.

The lowest and highest supported RPC version numbers are returned.

The RPC «version error is not likely to be encountered since RPC version 2

is the only version of RPC and will be for the forseeable future.

u The remote program is not available on the remote system.

u The remote program does not support the requested version number. The

lowest and highest supported remote program version numbers are
returned.

a The requested procedure number does not exist. This is usually a client-

side protocol or programming error.

I The parameters to the remote procedure appear to be garbage from the

server's point of view. Again, this is usually caused by a disagreement

about the protocol between client and service.

u The authentication flavor is invalid or unsupported.

3.4 Requirements of the RPC Protocol

The RPC protocol must provide for the following:

u Unique specification of a procedure to be called. Each procedure is

assigned a unique number. Procedure 0 is reserved for the 7121" procedure.

I Provisions for matching response messages to request messages. The

transaction ID or XID is selected by the client to be a unique identifier for

each call and response. The XID may also be used by the server to detect

duplicate requests.
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3.5

- Provisions for authenticating the caller to the service and vice versa. The

use of credentials and verifiers in the RPC header is discussed in chapter 4.

Besides these requirements, features that detect the following are worth sup~

porting because of protocol errors, implementation bugs, and user error: _

u RPC protocol mismatches. Since there is (currently) only one version of
the ONC RPC protocol (version 2), this is rarely a problem.

u Remote program protocol version mismatches. The client requests a ver-

sion of the protocol that the server does not support. The server responds

with the highest and lowest version numbers it supports.

u Protocol errors (such as invalid procedure parameters). For instance, on

receiving an invalid NFS filehandle, the server will return an
NFSERR_STALE error.

I Reasons the remote authentication failed, for example, where the client's
credential is invalid or cannot be verified.

I Any other reasons the desired procedure was not called, for instance, if

the server is out of memory.

RPC Call Message

RPC call and reply messages contain XDR-encoded parameters as required by

the RPC protocol. The RPC call header is quite simple, requiring only six

fields in addition to the credential and verifier (Figure 3.4).

The first value in both call and response messages is the XID, which

uniquely identifies the RPC call and its response. The XID is useful to both the

client and the server. Since the client may be waiting for several concurrent

calls to the server, it needs the XID in the response to match it with the pend-

ing request. If the client needs to retransmit the request, it should use the

same XID since a reply to the original transmission or retransmission will sat-

isfy the request. The client must be careful to generate a unique XID for each

new request; otherwise, an incorrect request-response matching is possible.

The easiest way to achieve uniqueness is to increment the XID value by 1

for each new request, beginning with a random number or a rapidly changing

time value; otherwise, a client that crashes and restarts quickly could generate

repeated XID sequences that would be confused with requests generated

before the crash. The server is not required to do anything with the XID other

than copy it from the request header to the response. Servers can use the XID

to identify retransmitted requests and return a cached reply. Not only can the

server avoid unnecessary work, but it can avoid problems resulting from

retransmitted requests that are not idempotent, for instance, a request that

appends a record to a log. Because the XID uniquely identifies a client request,
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_ XlD - Transaction ID

RPC Version = 2

Pro ram Number 

RPC Version Number

Call V
Header Procedure Number 

I

Remote Procedure .
Parameters 'I

FIGURE 3.4 The RPC call header. Note that it contains two version fields. The first is

the version number of the RPC protocol that identifies the layout of the call and
response headers. The RPC version number is 2. The second version field identifies
the version of the protocol identified by the program number. It identifies the valid set of
procedures for the program including the call and reply arguments for each procedure.

the server can use it to approximate at—most-once semantics; that is, the RPC

request will not be processed by the server more than one time even if the cli-
ent retransmits it.

A discriminant value of zero after the XID value identifies an RPC call

header. The RPC version identifies the layout of the RPC header. Currently

there is only one version of the ONC RPC protocol—version 2. The RPC ver-

sion number is followed by the program number, the version of this protocol

for the program, and the number of the procedure to be called within the pro-

gram. The credential and verifier are variable-length items that are used for
authentication. The credential authenticates the client to the server, and the

verifier validates the credential. The next chapter, dedicated to the RPC
authentication, describes several authentication flavors that make use of the
credential and verifier.

Immediately following the RPC call header are the parameters to the

remote procedure.
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3.6 RPC Reply Message

The RPC reply header is somewhat more complex than the call header. It has

several variants, depending on the success or failure of the request (Figure
3.5). _ - - ‘

The reply header begins with the XID the server has copied from the call

header, followed by a value of 1 that identifies it as a reply. Unlike the call,

there is nothing in the reply that identifies the program, version, or procedure

number. This information is redundant since it is already present in the con-

text that generated the request. The reply status indicates whether the server

accepted or rejected the call. a

The call can be rejected for two reasons: either the server is not running a

compatible version of the RPC protocol (RPC MISMATCH), or the server

rejects the identity of the caller (AUTH ERROR). In case of an RPC version

mismatch error, the-server returns the lowest and highest supported RPC ver-

sion numbers. It is expected that the client will try another version that is in

the version range low~high. Note that the RPC version number is distinct

from the version number associated with the program. In case of invalid

XID - Transaction ID = 0
RPC MISMATCH

Rejected :;
S

1
AUTH ERROR

  

   
 

 
 

  
 

MSG_DENIED

  
 

= 0

MSG_ACCEPTED
—- 1 PROG UNAVAIL

3 PROC UNAVAIL
4 GARBAGE ARGS
5 SYSTEM ERR

 

1 AUTH_BADCRED
2 AUTH_REJ ECTEDCRED
3 AUTH_BADVERF
4 AUTH_REJ ECTEDVERF
5 AUTH_TOOWEAK
6 AUTH_INVALIDRESP
7 AUTH_FAILED
8 AUTH_KERB_GENERIC
9
0
1
2
3
4

  
= 2
PROG MISMATCH

AUTH_T|MEEXP|RE
AUTH_TKT_FlLE
AUTH_DECODE
AUTH_NET_ADDR
RPCSEC_GSS_CREDPROBLEM
RPCSEC_GSS_CTXPROBLEM

Results

-1
I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIII 

FIGURE 3.5 RPC reply header. Notice the two levels ofverrors: RPC protocol errors
due to a protocol version error or an authentication error and errors where the server
returns a verifier but indicates that it cannot invoke the requested program, program
version, or procedure. '
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authentication, failure status is returned. The authentication failure errors

appear in Table 3.1 .

Only if the accepted status indicates SUCCESS can the client proceed to

decode the results from the remote procedure. If the reply status indicates that

the call was accepted, the server returns an authentication verifier that the

server uses to validate itself to the client. The accepted status field indicates
whether the specified program, version, and procedure were invoked or
whether an error occurred (Table 3.2).

An accepted status of SUCCESS indicates only that the remote procedure

was successfully invoked. If the remote procedure detects some kind of error,

then it will return a failure indication with the procedure results, If the server

returns a PROG MISMATCH error, then the client should retry the request

with a version of the protocol that is acceptable to the server, that is, within

the low—high range. For instance, if an NFS client sends a version 3 request to

a server that supports only version 2, then the server will return a PROG

TABLE 3.1 Authentication Failure Errors

Value Name Meaning

0 AL TH_OK OK

Failure at Server

1 AL'TH_BADCRED Bad credential

2 AL'TH_RE]ECTEDCRED Client must begin new session

3 AL TH_BADVERF . Bad verifier

4 AL TH_RE]ECTEDVERF

5 AL TH_TOOWEAK

Failed Locally

6 AL'TH__INVALIDRESP

7 AL TH_FAILED

Kerberos V4 Errors

8 AL TH__KERB_GENERIC

9 AL'TH__TIMEEXPlRE

1 0 AL'TH_TKT_FILE

11 AL'TH_DECODE

1 2 AL'TH_NET_ADDR

RPCSEC_GSS Errors

13 RPCSEC__GSS_CREDPROBLEM Invalid context or credential

14 RPCSEC_GSS_CTXPROBLEM Problem with context or credential

Verifier expired or replayed

Rejected for security reasons

Bogus response verifier
SOITLQ l1I'1l(I'lOWI'l reason

Miscellaneous Kerberos error

Client's ticket has expired
Server cannot locate ticket file

Client’s ticket authenticator invalid

Client's address and ticket address mismatch
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TABLE 3.2 Accepted Status Errors

Value Name Meaning

0 SUCCESS The remote procedure was invoked successfully.

1 PROG UNAVAIL The server does not recognize the program number.

2 PROG MISMATCH The requested version of the program does not exist.

3 PROC UNAVAIL The server does not recognize the procedure number.

4 GARBAGE ARGS The arguments to the remote procedure cannot be XDR
decoded.

5 SYSTEM_ERR Unknown error on server

MISMATCH error with the low and high both set to 2. The client should retry
that request (and all following requests to that server) using version 2 of the

protocol

The ”extended” XDR Language definition of RPC call and reply headers
follows:

struct rpc_msg {
uint xid; /* Transaction ID "=/

switch (uint) { /* message type */

case CALL = 0:

uint rpcvers; /* RPC version (=2) */
uint prog; /* Program number */
uint vers; /* Version number */
uint proc; /* Procedure number */
opaque_auth cred; /* Credential ='~‘/
opaque_auth verf; /* Verifier
/* Call parameters here */

case REPLY = 1:

switch (uint reply_stat) {
case MSG_ACCEPTED = 0:

opaque_auth verf;
switch (uint accept_stat) {

case SUCCESS = 0:

/* Procedure Results */;
case PROC_UNAVAIL = 1:;
case PROG_MISMATCH = 2:

uint low;

uint high;
case PROC_UNAVAIL = 3:
case GARBAGE_ARGS = 4:
case SYSTEM_ERR = 5:;

}
case MSG_DENIED = 1:

switch (uint rejected_reply) {
case RPC_MISMATCH = O:
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3.7

uint low;

uint high;
case AUTH_ERROR = 1:

enum auth_stat {
. AUTH_0K ='0,

AUTH_BADCRED = 1,
AUTH_REJECTEDCRED
AUTH_BADVERF = 3,
AUTH_REJECTEDVERF = 4,
AUTH_TOOWEAK = 5,
AUTH_INVALIDRESP = 6,
AUTH_FAILED = 7,
AUTH_KERB_GENERIC = 8,
AUTH_TIMEEXPIRE = 9,
AUTH_TKT_FILE = 10,
AUTH_DECODE = 11,
AUTH_NET_ADDR = 12,
RPCSEC_GSS_CREDPROBLEM = 13,
RPCSEC_GSS_CTXPROBLEM = 14

2.

Call

V

Reply

FIGURE 3.6 RPC call or reply using UDP must be contained in a single datagram.

  

Record-Marking Standard

RPC requests and replies conveyed on a datagram protocol like UDP use a

single datagram for each request or reply (Figure 3.6), which may be further

divided into packets according to the IP fragmentation requirements. In the
case of UDP, the datagram size cannot exceed 64 KB of data} If a protocol

requires larger requests or replies, then a protocol such as TCP must be used.

1. Although in principle UDP can support 64-KB datagrams, in practice large datagrams
will be fragmented according to the MTU (message transfer unit) size of the underlying
medium. Ethernet, for instance, supports an MTU of about 1500 KB. 80 an 8-KB NFS READ
will require 6 fragments. A 64-KB datagram on Ethernet will use 45 fragments!



 

3.7 Record-Marking Standard . 37

Protocols such as TCP support a stream of-data. Unlike a datagram proto-

col, there is no sure way to delimit one RPC request or reply from the next in

the stream. If XDR encoding of requests and replies were followed strictly,

then in theory it would be possible to determine the end of a request or reply

and assume that the next byte in the stream is the beginning of the next. How-

ever, if the client or server runs afoul of a protocol encoding error (e.g., GAR-

BAGE ARGS), then it can be extremely difficult to determine where the next

valid request or response begins in the stream.

The RPC record-marking standard splits the data stream into a sequence

of variable-length records. Each record is composed of one or more recordfrag-

ments (Figure 3.7). A record fragment is a 4—byte header followed by 0 to 231-1

bytes of fragment data. The bytes encode an unsigned binary number; as with

XDR integers, the byte order is from highest to lowest. The number encodes

two values——a boolean that indicates whether the fragment is the last frag-

ment of the record (bit value 1 implies that the fragment is the last fragment)

and a 31-bit unsigned binary value that is the length in bytes of the fragment's

data. The boolean value is the highest—order bit of the header; the length is in
the 31 low—order bits.

The RPC record—marl<ing standard assumes that the data stream is reliable

and error free. If for some reason the receiver of the data stream incorrectly

computes the offset to the next record or if data are added to or missing from

the record, there is no way for the receiver to resynchronize the record bound-

aries. For example, hardware devices often implement record-marking proto~

cols that utilize a unique bit pattern that can be used to detect record

boundaries if synchronization is lost.

One Fragment

 

Length Field
(4 bytes)

%ngth = nbytes I _ _ - — — - — —%_L1\K______,

Last Fragment '7 bYte5
Bit

fragment fragment fragment fragment
    

One Record

FIGURE 3.7 On a stream-based protocol like TCP, an RPC request or reply is
contained in a record that consists of one or more variable-length fragments. The last
fragment is flagged by the last fragment bit.
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3.8 Portmapper and Rpcbind

The names portmapper and Rpcbind refer to different versions of the same RPC

service (program number 100000). Portmapper refers to version 2, the most

common implementation of the service, and Rpcbind refers to Versions 3 and
4 (there is no version 1). 0 V

Each RPC protocol is uniquely identified by its program number and ver-

sion. When a client needs to send a request to a server that supports that RPC

protocol, it needs to know the server's network address (usually an IP

address) as well as the transport erzdpoirzt—~for UDP and TCP transports this is

identified by the port number. If an RPC service has a well-known port num-

ber, then the client can send its requests to this port. For instance, NFS servers

default to port 2049, so WebNFS clients automatically send requests to this

port. However, it would be burdensome to require every RPC protocol to

have a fixed port assignment. In addition, the TCP and UDP port number is

constrained to an unsigned, 16-bit field, which limits the number of ports to
65,535.

The portmapper service allows an RPC service to listen for requests on

any free port as long as it registers that port with the portmapper along with

its program number, version, and transport protocol (Figure 3.8). Client pro-

grams that need to know the port assignment for a particular program num-

ber can then query the portmapper service. The portmapper service itself is

registered on a well-known TCP and UDP port: 111. Port 111 is also a privi-

leged port on UNIX systems. A privileged port is any port number less than

cue. ,t Portmapper Program 54321
" (Port 111) (Port 1234)  
 

 
  

 
 

 

Registration

Que“, SETPORT 1234 = prog 11 54321

GETPORT for --z———————:———>

program # 54321 OK 
Time

Port 1234

RPC Call

RPC Reply

FIGURE 3.8 Clients use the portmapper to discover the port on which an RPC service
is listening. An RPC service registers its TCP or UDP port using a local RPC call to the
portmapper. A remote client can then query the portmapper for the port assignment
and send RPC calls directly to the service.

 

 
 

 



3.8 Portmapper and Rpcbind 39

3.8.1

1024 and can be used as a source port only by a UNIX superuser process. This

restriction was intended to make it more difficult for a malicous UNIX process
to masquerade as a portmapper service. The port restriction made sense when

UNIX computers were large, expensive machines tended by system adminis-

trators. Modern networks include many non-UNIX serversand devices ‘that

have no notion of privileged ports, so the port restriction is almost worthless

now as a security feature. RPC services can be registered on any available port

(even on privileged ports if the process is authorized). NFS servers register on

port 2049, which is not privileged.

Portmap Protocol

Version 2 of the Portmap protocol supports the following procedures:

0 PMAPPROC_NULL

This procedure does no work. By convention, procedure 0 of any RPC

protocol is a "null” procedure that takes no arguments and returns no
results.

1 PMAPPROC*SET

When an RPC service starts, it uses this call to register itself with the

portmapper on the same machine. Along with the port number on which

it is listening, it registers its program number, version, and the transport

protocol number (6 for TCP, 17 for UDP). The reply is a boolean value

that is true if the registration is successful, false if there is already a ser-

vice registered with the same program, version, and protocol number. A

correct implementation of the portmap protocol will allow a SET call

only from a local client. Any attempt to register a port from a remote cli-

ent must be rejected.

2 PMAPPROC_UNSET

Used by the RPC program to unregister the port assignment. The RPC

service should do this before it exits, though this cannot always be done

reliably if the service crashes. If the client should use a ”stale” mapping,

then it will receive an error when it tries to connect or send a request to

the port. A correct implementation of the portmap protocol will allow an _

UNSET call only from a local client. Any attempt to unregister a port,

from a remote client or from a local user different from the one that regis-

tered the port, will be rejected.

3 PMAPPROC_GETPORT

Used by an RPC client to obtain the port number for an RPC program.

The parameters to this call are the program number, version, protocol

number, and port, though the port argument is ignored. The portmapper

returns the port on which the requested program, version, and protocol
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are registered. If the mapping cannot be found, then a zero port number

is returned. The return of a nonzero port number does not guarantee that

the requested service is available since it may have crashed without call-

ing PMAPPROC_UNSET. If the requested version number cannot be

found, then the portmapper may return the port _for another version of-

the same program and protocol number so that the client receives a

"PROG MlSMATCH” error including the high and low version num-
bers, which the client can then use to determine which versions of the

program the server supports.

4 PMAPPROC_DUMP

Returns a list of all the service registrations. This list is used by adminis-

trative commands like "rpcinfo” to determine the list of RPC services

that are running on the server. There is some debate as to whether this

procedure makes it too easy for hackers to determine if an RPC service

worthy of attack is running on the server.

5 PMAPPROC_CALLIT

This procedure allows the client to call a remote procedure on the server

without knowing the port number. The portmapper simply forwards the

remainder of the request to the procedure in the requested program. This

portmap procedure is intended for use by clients using broadcast RPC,

where a request is sent to a broadcast address using the portmapper’s

well-known port 111. To avoid the possibility of ”network implosion,”

no errors or unsuccessful replies are returned, for instance, if the pro-

gram is not available on the server. PMAPPROC_CALLlT has been

exploited as a security hole since the redirection makes it appear that the

caller is a ”local” process on the server. Most portmappers now restrict

the use of this procedure.

3.8.2 Rpcbind Protocol

Versions 3 and 4 of the portmap service are associated with transport—indepen-

dent RPC (Tl-RPC). TI—RPC was an effort to rid RPC of transport dependencies

during the development of UNIX System V release 4 so that RPC could oper-

ate over other transports such as AT&T’s Datakit, Novell Netware, and OSI.

None of the Tl-RPC changes affected the RPC protocol itself since the call and

reply message formats had no transport dependencies in them. The Portmap

protocol does have a transport dependency in its use of ports, since a ”port” is

considered to be a feature unique to IP-based protocols. These transport—inde-

pendent versions of the protocol were renamed "Rpcbind/’

In place of a PMAPPROC_GETPORT request, a Tl-RPC client sends an

RPCBPROC_GETATTR request that contains a program number and version.

There is no longer a protocol number value since the transport protocol is

assumed to be whatever is used for the RPCBPROC_GETATTR request.
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3.9

Instead of a port number, the client receives a Lmiverszzl address for the RPC ser-

vice. A Universal Address is a string representation of the transport address

that designates a transport endpoint. In the case of UDP or TCP, this is just the

dotted IP address with the port number appended. For instance, the NFS

server running on port 2049 on the host 129.144.15.35 has the universal

address 129.144.15.35.8.1, where the ”8.1” are the high and low octets of port
number 2049.

In practice, it's rare to see RPCBPROC_GETATTR calls on networks.

When Sun engineers came to implement the RPC-based client services using

the new Rpcbind request it was no surprise that no existing servers sup-

ported the new Rpcbind protocol. These servers would return a ”version

mismatch” error for Rpcbind and the client would revert to the previous ver—

sion of the protocol, so the port number was eventually obtained but at the

cost of additional network overhead and reduced performance, Eventually

the decision was made to forego transport independence ”temporarily” and

stick with the TCP/IP dependency of PMAPPROC_GETPORT. This decision

will be revisited now with the advent of version 6 of the IP protocol (IPv6)

since PMAPPROC_GETPORT provides no indication of whether the service

supports IPv6.

The RPCBPROC_GETTIME request returns the server's time in seconds

relative to the 1970 epoch. This call is particularly useful for security schemes

that require coordinated client and server clocks for validation of timestamps.

Summary

The remote procedure call model extends the well—known concept of proce-

dure calls to a network where the call and response may transit a communica-

tions link between two computers. While ONC RPC insulates applications

from the specifics of network transport protocols, it requires applications to

consider message size limitations and unreliability of some transports.

An RPC message comprises a call or reply header followed by parameters

or results. The call header contains a unique transaction ID followed by the

program number and number of the procedure to be invoked within the pro-

gram. The call header also includes a credential and verifier that can be used

to identify the caller. The response header contains a matching transaction ID

followed by the server verifier that can be used to authenticate the server to

the client. The reply header may also contain error codes from the RPC service

or the program. RPC messages that transit data stream protocols like TCP use

a record—marking standard to separate one message from another.

The Portmap or Rpcbind protocol is an RPC service that is registered on

port 111 and is used by clients to map an RPC program number to a server

port or transport endpoint.
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Chapter 4

RPC Authentication

H ow does an RPC service like NFS identify a client? Is the client's host-
name sufficient if multiple users can log into the client computer? RPC

authentication addresses this problem. It allows the server to identify the

sender of each RPC request, which we will further refer to as a principal. A

principal may identify some service on a client computer (such as a superuser

or administrator) or a person (e.g., Bob or Alice).

This chapter describes several types of authentication credentials. By far

the most commonly used for NFS is the easy—to—use but notoriously insecure
AUTH_SYS credential. The secure Diffie-Hellman and Kerberos credentials

are much less commonly used because they are more difficult to implement

and require the administration of a security infrastructure on the network.

The chapter concludes with an in-depth description of the RPCSEC_GSS,

which is not a security mechanism itself but a framework into which other

security mechanisms can be incorporated more easily.

RPC Credential and Verifier

The RPC protocol provides for the authentication of the caller to the server

and vice versa. The call message has two authentication fields, the credential

and the verifier (shown in Figure 3.4). The reply message has one authentica-

tion field, the response verifier. The RPC protocol specification defines all

three fields to be the opaque type shown in Figure 4.1.

The credential field contains information that identifies the principal (e.g., a

UNIX UID/GID or a Kerberos netname). The call and response verifier are

used by the recipient to check whether the credential is authentic, that it truly

represents the principal it claims to be from. You may wonder why there is an

upper limit of 400 bytes imposed on the size of the RPC credential. Bob Lyon,

the designer of the RPC protocol, insisted that excessively large credentials

43
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4.2

struct opaque_auth {
uint32 flavor;
opaque<400> body;

 

} .

Authenficafion Leng"1n _ _j_ Y
Flavor _ _

4 bytes 4 bytes n bytes (<=400)

FIGURE 4.1 The RPC credential or verifier consists of an authentication f/avorthat

identifies the type of authentication, followed by variable~length data specific to the
flavor. The credential length field is implicit in the definition of body.

were an unnecessary overhead and that RPC flavor developers should be

forced to think of compact, efficient ways to represent credential data.

Authentication Flavors

4.3

This chapter describes several authentication flavors. As originally designed,

protocol developers are free to invent new authentication types, with the

same rules of flavor number assignment as for program number assignment.
The flavor of a credential or verifier refers to the value of the flavor field in the

credential or verifier. Flavor numbers, like RPC program numbers, are admin-

istered centrally, and developers can assign new flavor numbers by applying

through electronic mail to ianacii ana. org.

The RPCSEC_GSS flavor signals a departure in the policy that determines

the future direction of RPC authentication. RPCSEC_GSS provides not only an

open-ended framework for dynamic inclusion of new security types, but also

broadens the focus from authentication to include data integrity and privacy.

These will be described in more depth in section 4.7. RPCSEC_GSS removes

the need for a fixed set of centrally administered authentication flavors.

Now that RPCSEC_GSS offers more than just authentication, RPC authen-

tication flavors are now referred to as security flavors. Credentials and verifi-

ers are represented as variable length opaque data. The flavors currently

assigned are listed in Table 4.1.

Null Authentication

Some services may not require authentication of client or server. In this case,

the flavor of the RPC message's credential, verifier, and reply verifier can be

set to AUTH_NONE. Opaque data associated with AUTH_NONE is unde-

fined. The length of the opaque data should be zero.  
5,-,,-»-/i'e3_-om,~7;n‘,"’I.»;a:~u.WW3.

 



4.4 System Authentication 45

TABLE 4.1 Authentication Flavors

Value Name Meaning

0 AUTH_NONE Null authentication

AUTH__SYS System authentication: UID, GID, groups. Also known as

AUTHJHflXa

2 AUTH__SHORT Token authenticator for AUTH_SYS

3 AUTH_DH ' Diffie—Hellman exchange of DES key.
V AboknmNnasAUTH_DES

4 AUTH_KERB4 Kerberos Version 4 exchange of DES key.
% Ab0kn0wnasAUTH_KERB

AUTH_RSA (Never implemented)

RPCSEC_GSS Generic security services API

AUTH_NONE is used by protocols that do not require user authentica-
tion. For instance the portmapper protocol as shown in the following snoop

I trace:

RPC: ————— SUN RPC Header —————
' RPC:

RPC: Transaction id = 881913697

RPC: Type = 0 (Call)
RPC: RPC version = 2

RPC: Program = 100000 (PMAP), version = 2, procedure = 3
RPC: Credentials: Flavor = 0 (None), len = 0 bytes
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:

PMAP: ¥———— Portmapper -———-
PMAP:

PMAP: Proc = 3 (Get port number)
PMAP: "Program 100005 (MOUNT)
PMAP: Version 3

PMAP: Protocol = 17 (UDP)

4.4 System Authentication

AUTH_SYS was originally labelled ”AUTH_UNIX” authentication since it

was based on the credential used by the UNIX operating system. To avoid

trademark problems, it was changed to AUTH_SYS. A client can use the

AUTH_SYS flavor if it needs to identify itself with a user ID (UID) and group

ID (GID) as it is identified on a UNIX system. The opaque data of the creden-

tial contains the data shown in Figure 4.2.
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struct authsys_cred {
uint32 stamp;
string<255> hostname;
uint32 uid;
uint32 gid;
uint32<16> gids;

}

Hoaname ‘Y__' ~-
Stamp Hostname uuo GID G'D5 GlDs

Lengflin _ Countn _

n bytes n GlDs
4 bytes 4 bytes (<=255) 4 bytes 4 bytes 4 bytes (<=16)<~:+ <————> 4—-———-—+ <———> ¢————> <~—~—>

FIGURE 4.2 AUTH_SYS credential.

The stamp is an arbitrary value generated by the caller, generally a times-

tamp. The hostname is the name of the caller's machine (like ”krypton”). Nei-

ther the timestamp nor the hostname are used by the server for any security

purpose. Servers that need the hostname for some reason will usually ignore

this field and obtain the hostname via the source IP address of the request.
The LIID is the caller’s effective user ID. The GID is the caller's effective

group ID. The GID is a counted array of groups to which the caller belongs.

The limit of 16 groups was problematic for some NFS implementations.

Early versions of SunOS supported only 8 or 10 groups. Clients that used

system credentials containing more than 10 groups would receive an authen— 4

tication error. Solaris implementations now support the full 16 groups, yet

there can still be problems when a 16-group client tries to communicate with

an old 8- or 10-group server.

The verifier accompanying the credential should have AUTH_NONE fla-

vor value (defined in section 4.3). Note that this credential is unique only

within a particular domain of machine names, UIDs, and GlDs. The flavor

value of the verifier received in the reply message from the server may be
AUTH_NONE or AUTH_SHORT. The AUTH_SHORT verifier was intended

to be a token created by the server that the client could use in place of the

AUTH_SYS credential to save space; however, it is not widely supported. The

following snoop trace shows a system credential in the RPC header from an

NFS request:

RPC: Transaction id = 881913699

RPC: Type = 0 (Call)
RPC: RPC version = 2

RPC: Program = 100005 (MOUNT), version = 3, procedure = 1
RPC: Credentials: Flavor = 1 (UNIX), len = 32 bytes
RPC: Time = 18-Dec~98 02:01:39
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RPC: Hostname = terra

RPC: Uid = 0, Cid = 10
RPC: Groups = 10 15 259

RPC: Verifier : Flavor = 0 (None), len = 0 bytes

The AUTH_SYS credential identifies a principal and his /her group mem-

bership, but since there is nothing in the verifier, the server» cannot authenti-

cate the credential. The client can enter any values for UID or GID and the

server has no way of knowing whether the values are legitimate. The server

trusts that the client machine has already authenticated the user by accept-

ing a login with user name and password and that the user cannot forge

another’s credential. Some servers will accept NFS requests only from a priv-

ileged port. On UNIX clients, a privileged port is any port numbered lower

than 1024 that can be used as a source port only by system processes with

superuser credentials.

A In a network of carefully administered UNIX systems, the server may

enjoy some degree of assurance that requests from a privileged port are not

from a user process using concocted AUTH_SYS credentials. Since TCP/IP

stacks on PC operating systems (MacOS, DOS, Windows) do not have a privi-

leged port restriction, a server's confidence in requests from privileged ports

would be misplaced if the network environment includes systems running

non—UNIX operating systems outside the system administrator's realm; there

can be no assurance of secure AUTI-I_SYS credential use. Generally, the server

A will make a service available to a list of ”trusted” clients. This trust may be

misplaced, however, if the user has superuser access to the client (and can

assume another’s user ID without typing the password) or if the network is

accessible to other clients that can spoof the IP addresses of the trusted clients.

Despite the weaknesses in the ”trusted host” model of AUTH_SYS, it is the

most commonly used authentication by NFS system administrators since it

makes no assumption of a security infrastructure and is easy to administer

(Figure 4.3). Corporate system administrators assume that employees are

trustworthy and that their networks are secure. In environments where NFS—

accessible data needs to be confidential, safe from unauthorized tampering, or
where the network is not secure, one of the more secure authentication fla-

vors, described in sections 4.5, 4.6, and 4.7, must be used.

AUTH_SHORT is a token—based variation on AUTH_SYS intended to

reduce the header space requirement of AUTH_SYS. Consider that an

AUTI-I_SYS credential with a hostname string and maximal group list could

have a length up to 340 bytes. Rather than send a lengthy AUTH_SYS creden-

tial on every call, the server has the option of caching the credential and

returning a variable length token in an AUTH_SHORT verifier. If the client

sends this token in place of a full AUTH_SYS credential on subsequent calls,
then the server can use the token to locate the cached credential. If the server

crashes and loses the cached credential, or if it just flushes the credential cache
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4.5

 
Valid user Superuser on Spoofs Client A and
—‘‘Bob’‘ Trusted Client becomes trusted;

pretends to be Prelends 10
«Bob» be “Bob”

FIGURE 4.3 AUTH_SYS requires the server to trust the clients. The server may
enumerate the clients it trusts in an access list enforced by checking the source IP
address of RPC requests. Client A has validated the user’s login and password and is
given access by the server because it is in the server’s access list. The user on client B
has superuser access, which means that the user can easily assume the credential of
the user on A without knowledge of his/her password. The user on client C has gained
access to the network and has spoofed the lP address of A. RPC requests from C look
like they come from A. Now C is trusted even though it isn’t in the server’s access list.

(as it is entitled to), then it will reject the client’s use of an AUTH_SHORT

token with an AUTH_RE]ECTEDCRED error. On receiving this error, the cli~

ent must use the original AUTH_SYS credential. Clients are not obliged to use

an AUTH_SHORT token and servers are not obliged to use them either. So in

practice AUTH_SHORT is rarely used.

Diffie-Hellman Authentication

Diffie-Hellman authentication (AUTH_DH or just DH) was the first secure

authentication flavor to be developed. Its developers, Sun engineers David

Goldberg and Brad Taylor, intended DH to be the basis of what was then

called secure NFS. As well as providing secure authentication, it was designed

to overcome additional problems in system authentication. System authenti-

cation is very UNIX oriented. It assumes that the recipient of the credential

can handle the UID representation of a user and can utilize the user’s group '

and group list. The system credential can be easily faked, since the contents

are not cryptographically secure. Diffie-Hellman authentication was created

to address these problems. While the information provided here will be useful

for implementors to ensure interoperability with existing applications that

use DH authentication, it is strongly recommended that new applications use

more secure authentication and that existing applications, which currently

use DH authentication, migrate to more robust authentication mechanisms.
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4.5.1

4.5.2

Naming

The client is identified by a simple string of characters instead of an operating

system—specific integer. This string of up to 255 characters is known as the net-

work name or netname of the client. The server is not allowed to interpret the

contents of the client's name in any other way except to identify the client.

Thus, netnames should be unique for every client in the Internet.

It is up to each operating system's implementation of DH authentication

to generate netnames for its users that insure this uniqueness when they call

on remote servers. Operating systems already know how to distinguish users

local to their systems. It is usually a simple matter to extend this mechanism

to the network. For example, a UNIX user at Sun with a user ID of 515 might

be assigned the following netname:

unix. 515@sun.com

This netname contains three items that serve to ensure its uniqueness:

going backward, there is only one naming domain called sun . com in the Inter-

net. Within this domain, there is only one UNIX user with user ID 515. How-

ever, there may be another user on another operating system, for example

VMS, within the same naming domain that, by coincidence, happens to have

the same user ID. To ensure that these two users can be distinguished, we add

the operating system name. So one user is un1‘x.515@sun . com and the other is

vms.515@sun.com. The first field is actually a naming method rather than an

operating system name. It happens that today there is almost a one—to-one

correspondence between naming methods and operating systems. If the

world could agree on a naming standard, the first field could be the name of

the standard instead of an operating system name.

DH Authentication Verifiers

Unlike system authentication, DH authentication does have a verifier that

allows the server to validate the client's credential (and vice versa). The con-

tents of this verifier are primarily an encrypted timestamp. The server can

decrypt this timestamp, and if it is within an accepted range relative to the

current time, then the server knows that the client is authentic since only the

client could have encrypted it correctly. The only way the client could encrypt

it correctly is to know the conversation key of the RPC session, and if the client

knows the conversation key, then it must be the real client. The conversation

key is a DES [NBS77] key that the client generates and passes to the server in

the first RPC call of a session. The conversation key is encrypted using a pub-

lic key scheme in this first transaction. The particular public key scheme used

in DH authentication is Diffie—Hellman [Diffie+76] with 192-bit keys. The

details of this encryption method are described in section 4.5.8.
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4.5.3

The client and the server need the same notion of the current time for all

of this to work. There is risk in an assumption that clients and servers have

the same notion of time. It is feasible for an adversary to manipulate the net-
work so that clients and servers have an inconsistent view of the time.

Although the client can obtain the server's time by using the _RPCBPROC_

GETTIME procedure in Rpcbind versions 3 and 4, a more secure method is to

use the Network Time Protocol version 3 using cryptographic authentication

[Mills92] to reduce this risk. The way a server determines if a client's times-

tamp is valid is somewhat complicated. For any other transaction but the first,

the server just checks for two things:

1. The timestamp is greater than the one previously seen from the same cli-

ent. The timestamp check prevents the possibility of an attacker replay-

ing a previously recorded client request.

2. The timestamp has not expired. The expiry check limits the possibility

that a more determined attacker might crack the conversation key and

hijack the session.

A timestamp is expired if the server's time is later than the sum of the cli-

ent’s timestamp plus what is known as the client's TTL (time—to-live-—you can

think of this as the lifetime for the client's credential). The TTL is a number the

client passes (encrypted) to the server in its first transaction. In the first trans-

action, the server checks only that the timestamp has not expired. Also, as an

added check, the client sends an encrypted item in the first transaction known

as the TTL verifier, which must be equal to TTL—1 or the server will reject the

credential. If either check fails, the server rejects the credential with an

authentication status of AUTH_BADCRED. However, if the timestamp is

earlier than the previous one seen, the server returns an authentication status
of AUTH_RE]ECTEDCRED. The client too must check the verifier returned

from the server to be sure it is legitimate. The server sends back to the client

the timestamp it received from the client, minus one second, encrypted with

the conversation key. If the client gets anything different than this, it will reject

it, returning an AUTH_INVALIDRESP authentication status to the user.

Timestamp checking can be problematic if the client or server uses multiple

threads of execution (Figure 4.4). If multiple client threads share the same cre-

dential (an NFS client using read-ahead), then the asynchronous use of time-

stamps can cause problems if the order in which RPC requests are executed by

the server is different from the order in which they were sent by the client.

Nicknames and Clock Synchronization

After the first transaction, the server's DH authentication system returns a ver-

ifier to the client. In the verifier is an integer nickname, which the client may use

in its further transactions instead of passing its netname. Not only will the nick-
name be shorter than the netname, but it could be an index into a table on the
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4.5.4

4.5.5

Server
Client A

Thread 1 FlPC call. Timestamp = 12:07 Thread 1 Thread 2

RPC call. Timestamp = 12:08

a, Blocked

_§ Timestamp Il-
RPC reply. OK OK

RPC reply. Error AUTH_BADCFlED
 

  

 

Timestamp
Error

12:07 <12:08i

FIGURE 4.4 Timestamp checking in a multithreaded environment. Since requests may
be executed in a different order than they are sent from the client, unexpected errors can
occur if the server uses strict timestamp comparison to validate requests.

server that stores for each client its netname, decrypted conversation key, and

TTL. Though they originally were synchronized, the client's and server's

clocks can get out of synchronization again. When this happens, the server
returns to the client an authentication status of AUTH_RE]ECTEDVERF, at

which point the client should attempt to resynchronize. A client may also get

an AUTH_BADCRED error when using a nickname that was previously valid.

The reason is that the server's nickname table is limited in size, and it may flush

entries whenever it wants. A Client should resend its original fullname creden-

tial in this case and the server will give it a new nickname. If a server crashes,

the entire nickname table gets flushed, and all clients have to resend their origi-
nal credentials.

DH Authentication Protocol

There are two kinds of credentials: one in which the client uses its full network

name and one in which it uses the nickname (just an unsigned integer) given to

it by the server. The client must use its fullname in its first transaction with the

server, in which the server will return to the client its nickname. The client may

use its nickname in all further transactions with the server. There is no require-

ment to use the nickname, but it is wise to use it for performance reasons.

DH Full Network Name Credential and Verifier

The client first creates a conversation key for the session, then fills out the fol-

lowing structure:
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Timestamp Timestamp

(seconds) (microseconds):l TTL T TTL " 1
———><32 bits I 32 bits ¢ 32 bits 32 bits

‘_ 128 bits V f _’

——>

The fields are stored in XDR format. The timestamp encodes the time since

midnight, January 1, 1970. These 128 bits of data are then encrypted in the

DES CBC (cipher block chaining) mode} using the conversation key for the

session, with an initialization vector of O, which yields

T

T1 T2 W1 1 w2
32 bits ‘ 32 bits _" 32 bits ‘ 32 bits >

‘_ 128 bits p _,

where T1, T2, W1, and W2 are all 32-bit quantities and have some cor-

respondence to the original quantities occupying their positions but are now

interdependent on each other for proper decryption. The 64-bit sequence

comprising T1 and T2 is denoted by T (Figure 4.5).

The conversation key is encrypted with the ”common key” using the ECB

(Electronic Code Book) mode. The common key is a DES key that is derived

from the Diffie-Hellman public and private keys, and is described in section

0 = Netname N.et\na:ne Conversation Key W1
Credential Fullname Length n (encrypted)
Body ”

 

n bytes
4 bytes 4 bytes (<=255) 64 bits 32 bits<—————> t > 4 % <— -> 4- -——>

Verifier 0 =

Body Fullname T W2

4 bytes 64 bits 32 bits<————> +———————-—-> +~——>

FIGURE 4.5 Fullname credential and verifier.

1. Both CBC and ECB are methods for encrypting blocks of information. These standards
are documented in ANSI X3.l06 [ANSI83].
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4.5.6

4.5.8. Note that all of the encrypted quantities (key, w1, w2, timestamp) in

Figure 4.5 are opaque. The fullname credential and its associated verifier

together contain the network name of the client, an encrypted conversation

key, the TTL, a timestamp, and a TTL verifier that is one less than the TTL

The TTL is actually the lifetime for the credential. The server will accept the
credential if the current server time is ”within” the time indicated in the l

timestamp plus the TTL. Otherwise, the server rejects the credential with an
authentication status of AUTH_BADCRED. One way to ensure that requests

are not replayed would be for the server to insist that timestamps are greater

than the previous one seen, unless it is the first transaction. If the timestamp is

earlier than the previous one seen, the server returns an authentication status

of AUTH_RE]ECTEDCRED. The server returns a verifier that contains a nick-

name that may be used for subsequent requests in the current conversation.

DH Nickname Credential and Verifier

In transactions following the first, the client may use the shorter nickname

credential and verifier for efficiency. First, the client fills out the following
structure:

Timestamp Timestamp
(seconds) (microseconds)

‘_ 32 bits " 32 bits _>

‘_ 64 bits ,

The fields are stored in XDR (external data representation) format. These 64

bits of data are then encrypted in the DES ECB mode, using the conversation

key for the session, which yields

  

T

‘T T1 T2
‘_ 32 bits _" 32 bits >

64 bits _’

The nickname credential is represented as in Figure 4.6.

The nickname credential may be rejected by the server for several reasons.
An authentication status of AUTH_BADCRED indicates that the nickname is

no longer valid. The client should retry the request using the fullname creden-
tial. AUTH_RE]ECTEDVERF indicates that the nickname verifier is not valid.

Again the client should retry the request using the fullname credential.
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4 bytes 64 bits 32 bits

Credential 1 = N, k
Body Nickname 'c name

Verifier 1 =

Body Nickname T W = 0

4———> <—————————> <————->

FIGURE 4.6 DH nickname credential and verifier.

 Server . V _f_ New
Verifier T"“e5‘a'“F’ e"'°' Nickname

64 bits 32 bits

FIGURE 4.7 DH verifier from server.

4.5.7 Server Verifier

The server never returns a credential. It returns only one kind of verifier, i.e.,

the nickname verifier. The server verifier has the XDR representation shown

in Figure 4.7.

The timestamp verifier is constructed in exactly the same way as the client

nickname credential. The server sets the timestamp value to the value the cli-

ent sent minus one second and encrypts it in DES ECB mode using the ‘con-

versation Key. The server also sends the client a nickname to be used in future

transactions (unencrypted). The complete XDR language description of the
AUTH_DH credential and verifiers is as follows:

struct authdh_cred {
switch (uint32) {
case ADN_FULLNAME = 0:

string<2SS> netname;
opaque[8] key;

opaque[8] wl;
case ADN_NICKNAME = 1:

uint32 nickname;
}

}

struct authdh_verf {
switch (u1'nt32) {
case ADN_FULLNAME = 0:

opaque[8] timestamp;
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opaque[4] w2;
case ADNANICKNAME = 1:

opaque[8] timestamp;
opaque[4] w;

}

struct authdh_server_verf {

opaque[8] timestamp;
uint32 nickname;

}

The initial exchange of fullname and nickname credentials is illustrated in the

following snoop trace:

Initial call to the server with fullname credential:

RPC: ———~— SUN RPC Header —————
RPC:

RPC: Record Mark: last fragment, length = 128
RPC: Transaction id = 882191572

RPC: Type = 0 (Call)
RPC: RPC version = 2

RPC: Program = 100300 (NIS+), version = 3, procedure = 1
RPC: Credentials: Flavor = 3 (DES), len = 48 bytes
RPC: Name kind = 0 (fullname)
RPC: Network name = unix.34186@mpk17.eng.sun.com
RPC: Conversation key = 0x838D303DCC2E59D9 (DES encrypted)
RPC: Window = Ox8A895653 (DES encrypted)
RPC: Verifier : Flavor = 3 (DES), len = 12 bytes
RPC: Timestamp = 0x237320D91277C897 (DES encrypted)
RPC: Window = 0xA1058323 (DES encrypted)

Response from server containing nickname
RPC: ————— SUN RPC Header —————
RPC: ‘

RPC: Record Mark: last fragment, length = 2460
RPC: Transaction id = 882191572

RPC: Type = 1 (Reply)
RPC: This is a reply to frame 15
RPC: Status = 0 (Accepted)
RPC: Verifier T Flavor = 3 (DES), len = 12 bytes
RPC: Timestamp = 0x70C94BCEF5D467D1 (DES encrypted)
RPC: Nickname = 0x50000000

RPC: Accept status = 0 (Success)

Client's next request uses nickname credential
RPC: ————— SUN RPC Header —————
RPC:

RPC: Record Mark: last fragment, length = 108
RPC: Transaction id = 882191571

RPC: Type = 0 (Call)
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RPC: RPC version = 2

RPC: Program = 100300 (NIS+), version = 3, procedure = 5
RPC: Credentials: Flavor = 3 (DES), len 8 bytes

RPC:» Name kind = 1 (nickname)
RPC: Nickname = 0x50000000

Q RPC: Verifier : Flavor = 3 (DES), len = 12 bytes ‘
l RPC: Timestamp 0x4FC3C38B93CADDA9 (DES encrypted)

RPC: window 0x00000000 (DES encrypted)

Figure 4.8 illustrates the use of fullname and nickname credentials in initial

session setup and recovery after error.

4.5.8 Diffie-Hellman Encryption

In this scheme, there are two constants BASE and MODULUS [Diffie+76]. The

particular values Sun has chosen for these constants for the DH authentica-

tion protocol are

BASE = 3

MODULUS = "d4a0ba0250b6fd2eC626e7efd637df76C7l6e22d0944b88b";

‘l Note that the modulus is represented as a 192-bit hexadecimal string. The

‘ way this scheme works is best explained by an example. Suppose there are
l two people A and B who want to send encrypted messages to each other. A

g » and B both generate at random ”secret” keys that they do not reveal to any-

one. Let these keys be represented as SKA and SKB. They also publish in a

public directory their public keys. These keys are computed as follows:

PKA = BASESK‘ mod MODULUS

PKB = BASESKB mod MODULUS

Now, both A and B can arrive at the ”common” key between them, repre-

sented here as CKAB, without revealing their secret keys. A computes

CKAB = (PKBSKA) mod MODULUS

while B computes ‘

CKAB = (PKASK")mod MODULUS

To show that these are the same; in other words, that -

(PK3”‘) mod MOD ULUS = (PKA5K“) mod MODULUS

We drop the MODULUS parts and assume modulo arithmetic to simplify

things:
SK

PKB ‘ = PKASK"
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FIGURE 4.8 The client sends a fullname credential on the first request and receives a
nickname credential from the server, which may be used in subsequent requests. If the
credential or its verifier is rejected, then the client must send a new fullname credential
to reestablish the session.

Then we replace PKB by what B computed earlier and likewise for PKA:
SKA sK,,

(BASESK”) = (BASESKA)

which leads to

BASESKASKB = BASESKASKB

The common key CKAB is not used to encrypt the timestamps used in the pro-

tocol. Rather, it is used only to encrypt a conversation key, which is then used

to encrypt the timestamps. The reason for doing this is to use the common key

as little as possible for fear that it could be broken. Breaking the conversation

key is far less damaging, since conversations are relatively short-lived. The

conversation key is encrypted using 56-bit DES keys, yet the common key is
192 bits. To reduce the number of bits, 56 bits are selected from the common

key as follows. The middle 8 bytes are selected from the common key, and

then parity is added to the lower—order bit of each byte, producing a 56-bit key

with 8 bits of parity. Only 48 bits of the 8-byte conversation key is used in the

DH authentication scheme. The least and most significant bits of each byte of

the conversation key are unused.

Weaknesses of DH Authentication

DH authentication does not describe a secure method to obtain the server's

public key. While it would be reasonably secure to obtain public keys from a

local file, it would be burdensome to keep the file up to date and distributed

securely to a large number of clients. The first implementation of DH authen-
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4.6

tication obtained server public keys from an NIS netname map. Since the NIS

name service is not itself secure, it would be easy for an attacker to spoof the

NIS server and distribute bogus public keys. The lack of a secure name service

was an obstacle to the deployment of DH authentication.
While the arrival of the NIS+ name service, which uses DH authentica~

tion, provided a secure name service, the implementation of"DH authenti-
cation has been shown to be weak due to the selection of a small key (192

bits). While a larger modulus provides better security, it takes longer to com-

pute the common key. Originally Goldberg and Taylor chose 256 bits, but this

was too large for the then-current processor technology (Motorola M68010) to

handle within a reasonable time. The 192-bit key length was a compromise

between speed and security. In 1991, Brian LaMacchia and Andrew Odlyzko

at AT&T Bell Laboratories [LaMacchia+91] discovered a technique that for a

given Diffie~Hellman system with a common BASE and modulus could gen-

erate a table that could be used to derive the private key from any public key.

The cost of generating this table was trivial for a 192-bit modulus. Using this

technique, a moderately powerful computer could compute a database for a

particular user that would allow any AUTH_DH key for that user to be
obtained within a few minutes.

While the information provided here will be useful for implementors to

ensure interoperability with existing applications that use DH authentication,

it is strongly recommended that new applications use more secure authentica-

tion and that existing applications that currently use DH authentication

migrate to more robust authentication mechanisms. While the use of a

fullname credential piggybacked on the first RPC request is an economical

way to establish a security context by eliminating unnecessary messages,

there is an implicit risk that sensitive data within the call arguments, for

instance a credit card number, may be delivered to a server that is not authen-

ticated. Establishing a security context via dataless control messages, as in

RPCSEC_GSS security (see section 4.7.1), is more secure.

Kerberos Version 4 Authentication

The Kerberos security model [Kohl+93] is based in part on Needham and

Schroeder‘s trusted third—party authentication protocol [Needham+78] and on

modifications suggested by Denning and Sacco [Denning+81] to detect replay.

Conceptually, Kerberos-based authentication is very similar to DH authentica-

tion. The major difference is that Kerberos-based authentication takes advan-

tage of the fact that Kerberos tickets have encoded in them the client name and

the conversation key. This section does not describe Kerberos name syntax, pro-

tocols, and ticket formats. The reader is referred to [Miller+87] and [Steiner+88].
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4.6.1

4.6.2

4.6.3

TABLE 4.2 Valid Kerberos Names

Kerberos version 4 name Principal Instance Kerberos realm

b1‘ 11b b'i11b (null) (use local realm)

j ‘i 5 . admin jis admin I (use local realm)

srz@1 cs.m1't.edu srz (null) 1 cs.m1'f.edu
treese. root@athena.m1't.edu treese root athena.m1‘t.edu

Kerberos Naming

A Kerberos name contains three parts. The first is the principal name, which is
usually a user's or service's name. The second is the instance, which in the

case of a user is usually null. Some users may have privileged instances, how-
ever, such as root or admin. In the case of a service, the instance is the name of

the machine on which it runs; that is, there can be an NFS service running on

machine ABC, which is different from the NFS service running on machine
XYZ. The third part of a Kerberos name is the realm. The realm corresponds to

the Kerberos service providing authentication for the principal. When writing
a Kerberos name, the principal name is separated from the instance (if not

NULL) by a period, and the realm (if not the local realm) follows, preceded by
an @ symbol. Examples of valid Kerberos names are given in Table 4.2.

Kerberos-Based Authentication Protocol Specification

The Kerberos-based authentication protocol described here is based on Ker-
beros version 4 and uses the fullname/nickname credential scheme of the

AUTH_DH protocol that preceded it.

Kerberos Full Network Name Credential and Verifier

First, the client must obtain a Kerberos ticket from the Kerberos server. The

ticket contains a Kerberos session key, which will become the conversation

key. Next, the client fills out the following structure:

Timesiamp Timestampl (Seconds) l'(microseconds) TTL TTL 1 1
32 bits 32 bits ‘ 32 bits _, '32 bits >

‘ 128 bits >

The fields are stored in XDR (external data representation) format. The time-

stamp encodes the time since midnight, January 1, 1970. TTL is identical in

meaning to the corresponding field in Diffie—Hellman authentication, the cre-

dential ”time—to—live” for the conversation being initiated. These 128 bits of"  
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data are then encrypted in the DES CBC mode, using the conversation key,

and with an initialization vector of 0, which yields

T
/\

[ T1 T2 ' W1 W2 ‘
‘_ 32 bits " 32 bits _" 32 bits _’ 32 bits _’

128 bits _’

where T1, T2, W1, and W2 are all 32-bit quantities and have some correspon-

dence to the original quantities occupying their positions but are now inter-

dependent on each other for proper decryption. The 64-bit sequence

comprising T1 and T2 is denoted by T.

Note that all the client-encrypted quantities (W1, W2, and timestamp T)

in the structures are opaque. The client does not encrypt the Kerberos ticket

for the server. The fullname credential and its associated verifier together

contain the Kerberos ticket (which contains the client name and the conversa-

tion key), the TTL, a timestamp, and a TTL verifier that is one less than the

TTL (Figure 4.9). The TTL is actually the lifetime for the credential. The server

will accept the credential if the current server time is "within" the time indi-

cated in the timestamp plus the TTL. Otherwise, the server rejects the creden-
tial with an authentication status of AUTH_BADCRED. One way to ensure

that requests are not replayed would be for the server to insist that time-

stamps are greater than the previous one seen, unless it is the first transaction.

If the timestamp is earlier than the previous one seen, the server returns
an authentication status of AUTH_RE]ECTEDCRED. As in Diffie-Hellman

authentication, the server returns a verifier, which is described in the next sec-

tion. The verifier structure contains a nickname, which may be used for sub-

sequent requests in the current session.

Credential 0 = Ticket ’— _ ;.

Body Fullname Length n Kertflfs T{Cket W1
4---—~>4 bytes 4 bytes n bytes 32 bits<———————>

  

<—————> <———~>

Verifier 0:

Body Fullname T W2 .

4b ' 2 '
+ ytes ’ ‘ 64 bits ’ ‘ 3 b|tS_’

FIGURE 4.9 Kerberos fullname credential and verifier.
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4.6.4 Kerberos Nickname Credential and Verifier

In transactions following the first, the client may use the shorter nickname

credential and verifier for efficiency. First, the client fills out the following

 

structure:

Timestamp Timestamp “ ' “'
(seconds) (microseconds)

‘ 32 bits _’ 32 bits +
64 bits

4———————————————>

The fields are stored in XDR (external data representation) format. These 64

bits of data are then encrypted in the DES ECB mode, using the conversation

key for the session, which yields
T
g

' T1 ' T2 T1
‘_ 32 bits '{_ 32 bits }

‘ 64 bits +

The nickname credential is represented in Figure 4.10.

The nickname credential may be rejected by the server for several reasons.
An authentication status of AUTH_BADCRED indicates that the nickname is

no longer valid. The client should retry the request using the fullname creden-
tial. AUTH_RE]ECTEDVERF indicates that the nickname verifier is not Valid.

Again, the client should retry the request using the fullname credential.

AUTH_TIMEEXPIRE indicates that the session’s Kerberos ticket has expired.

The client should initiate a new session by obtaining a new Kerberos ticket.

Credential 1 = .

Body Nickname Nlckname

4 bytes 4 bytes

   
Verifier 1 -_-

Body Nickname T W = 0

4 bytes ‘_ 64 bits ‘ 32 b|lS_>

FIGURE 4.10 Kerberos nickname credential and verifier.

 



Chapter 4 RPC Authentication

Server _ . _ New
Verifier Timestamp Verifier Nickname

64 bits 32 bits

FIGURE 4.11 Kerberos verifier from server.

4.6.5 Server Verifier

The server never returns a credential. It returns only one kind of verifier, i.e.,

the nickname verifier. The verifier has the XDR representation shown in Fig-

ure 4.11. The timestamp Verifier is constructed in exactly the same way as the

client nickname credential. The server sets the timestamp Value to the Value

the client sent minus one second and encrypts it in DES ECB mode using the

conversation key. The server also sends the client a nickname to be used in

future transactions (unencrypted).

The complete XDR language description of the AUTH_KERB4 credential
and verifiers follows:

struct authkerb4_cred {
switch (uint32) {
Case AKN_FULLNAME = O:

opaque<> ticket; /* Kerberos ticket for server */
opaque[8] w1;

case AKN_NICKNAME = 1:
uint32 nickname;

 
\

>5‘
Nickname returned by server ’-'/

}
}

struct authkerb4_verf {
switch (uint32) {
case AKN_FULLNAME = 0:

opaque[8] timestamp; /* T */
opaque[4] w2;

case AKN_NICKNAME = 1:

opaque[8] timestamp; /* T */
opaque[4] w; /* set to 0 */

}
}

struct authkerb4_server_verf {

opaque[8] timestamp; /* timestamp verifier (encrypted) */
uint32 nickname; /* new nickname (unencrypted) */

4.6.6 Kerberos-Specific Authentication Status Values

The server may return to the client one of the errors listed in Table 4.3 in the
authentication status field. The client's actions are illustrated in Figure 4.12.
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TABLE 4.3 Kerberos-Specific Authentication Errors

Value Name Meaning

6 AUTH_DECODE The server is unable to decode the authenticator of the
client's ticket. ’

7 AUTH_TIMEEXPlRE The client's ticket has expired.

8 AUTH_TKT_FILE The server was unable to find the ticket file. The client

should create a new session by obtaining a new ticket.

9 AUTH_NET_ADDR The network address of the client does not match the
address contained in the ticket.

10 AUTH__KERB_GENERIC Any other Kerberos-specific error.
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FIGURE 4.12 Kerberos authentication state diagram. Errors such as
AUTH_TlMEEXPlFiE can be resolved by obtaining a new Kerberos ticket, though
unresolvable errors like AUTH_KEFiB_GENEFilC may require the session to be
terminated.

4.6.7 Weaknesses of Kerberos Authentication

As with AUTH_DH authentication, there is a risk that sensitive data in the call

arguments might be delivered via a message with the fullname credential to a

server that is not authenticated. Kerberos version 4 can also run into problems

with multihomed hosts that have an IP address for each of many interfaces. The

Kerberos ticket acknowledges only one IP address per host.

Weaknesses of the Kerberos authentication protocol itself are beyond the

scope of this chapter but are well documented in a paper by Steven Bellovin
and Michael Merrit [Bellovin+91].
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4.7 RPCSEC_GSS Authentication

Client

Kerberos V5

The RPCSEC_GSS security flavor is a radical departure from previous authen-

tication flavor policy. It is referred to as a security flavor rather than an authen-

tication flavor because it provides security not only for the credential but also

for the data in the payload of the RPC call and reply. The RPCSEC_GSS speci-

fication was developed by the ONC RPC Working Group of the IETF and is

described in [RFC 2203]. Since it is a new standard, it is not widely deployed,

though there is already an implementation in Solaris 7. This section assumes

that you have knowledge of the Generic Security Services API (GSS-API),

which is documented in [RFC 1508] and [RFC 1509]. Most of the text in sec-

tions 4.7.4 through 4.7.8 is adapted directly from [RFC 2203].

Using RPCSEC_GSS, a client or server can protect the integrity of the data

in a call or reply with a secure checksum. This protection prevents the infor-

mation from being changed as it travels across the network. The privacy of the

data can be protected by the use of encryption schemes. Most important,

RPCSEC_GSS is intended to be the last security flavor since it is an open~

ended framework that can include many different security mechanisms such

as Kerberos V5, RSA public key, Diffie-Hellman public key, PGP, and so on.

The authentication flavors previously described associate a specific secu-

rity mechanism with a network representation. The RPCSEC_GSS flavor

makes the security mechanism independent of the network representation,

making it much easier to add new mechanisms without rewriting parts of the

client or server RPC implementation. RPCSEC_GSS is designed to be used

with the Generic Security Services API (GSS—API) [Linn97], which presents a

common API to all security mechanisms (Figure 4.13). The GSS-API provides

RPC Messages

0 . Server
RPCSEC_GSS

GSS—APl

RPCSEC_GSS

GSS-API

Kerberos V5 
FIGURE 4.13 An implementation of RPCSEC_GSS security can accommodate any
security mechanism that is compatible with the GSS-API interface. These mechanisms

can be “plugged in” without requiring changes to the RPC implementation or the networkprotoco.
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4.7.1

TABLE 4.4 GSS-API Functions

Function Sender Receiver

Establish securityicontext CS S-In1' t_SeC_C0nteXt 0
Message integrity checksum CS S_CetMIC ()

GS S_wrap O

CSS__Accept_sec_context ()

GSS_Ve r1"FyMIC()

Message data encryption GSS_Unwrap'()

functions that allow principals (machines, programs, or people) to establish a

security context that can then be used to authenticate messages between them
or protect the message integrity or privacy. The version of the API for the C

language described in [RFC 2078] contains many functions, but in this

description I refer only to the ones in Table 4.4.

FtPCSEC_GSS Security Protocol

An RPC session based on the RPCSEC_GSS security flavor consists of three

phases:

1. Context creation

2. RFC data exchange
3. Context destruction

The context of a session is information shared by both client and server, for

example, the full identity of the client and server, initial sequence numbers,

session keys, and so on. The creation of a context usually includes the mutual
authentication of client and server. The AUTH,DH and AUTH_KERB4

authentication protocols combine context creation within the RPC data

exchange by the use of fullname and nickname credentials. A fullname cre-
dential is used to establish context and a nickname credential utilizes the con-

text. However, not all security mechanisms can conveniently combine context

creation and data exchange. In some cases the amount of context creation data

may not fit within the 400—byte limit of the RPC credential. To support these

mechanisms, RPCSEC_GSS embeds control messages within the null proce~

dure call of the RFC protocol to convey context information. All RPC proto-
cols support a null procedure (procedure 0) that normally takes no arguments

and returns no results (Figure 4.14).

These control messages are not dispatched to service procedures regis-

tered by an RPC server, even though the program and version numbers used

in these control messages are the same as the RPC service's program and ver-

sion numbers. A field in the RPCSEC_GSS credential information specifies

whether a message is to be interpreted as a control message or a regular RPC
message. If this field is set to RPCSEC_GSS_DATA, no control action is

implied—it is a regular data message. If this field is set to any other value, a

control action is implied. Just as with normal RPC data exchange messages,
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4.7.2

4.7.3

 

Client Server

Control Message

 }Procedure 0
Context Creation

Data Messages OlhefProcedures

Control Message

Context Destruction Procedure 0

FIGURE 4.14 RPCSEC_GSS context can be created and destroyed by the use of
control messages sent to procedure 0 of the service. Control messages need be used
only if the security mechanism requires them and may require more than one message
to establish context creation or destruction.

the RFC transaction identifier (XID) should be set to unique values on each
call for context creation and destruction.

RPCSEC_GSS Credential

The first field in the credential is the RPCSEC_GSS version number (Figure

4.15). The client should assume that the server supports version 1 credentials

when it issues a context creation message.

Context Creation

Before RPC data are exchanged on a session using the RPCSEC_GSS flavor,

the client and server must agree on a security mechanism and a quality of pro-

tection (QOP) to be used. Applications can specify the QOP (cryptographic

algorithms to be used in conjunction with integrity or privacy service) for each

RPC exchange. There is no facility in the RPCSEC_GSS protocol to negotiate

GSS-API mechanism identifiers or QOP values. Applications may depend on

negotiation schemes constructed as pseudomechanisms under the GSS-API,
such as the SPNEGO mechanism [RFC 2478]. Because such schemes are below

the GSS-API layer, the RPCSEC_GSS protocol can make use of them.

The first RPC request from the client to the server may be a control mes-

sage for context creation (Figure 4.16). The GSS procedure field must be set to

1 (RPCSEC_GSS_INIT) for the first creation request and 2 (RPCSEC_GSS_

CONTINUE_INIT) in any subsequent requests in a creation sequence. In a
creation request, the sequence number and service fields are not set. In the

first creation request, the handle field is null (opaque data of zero length). In

subsequent creation requests, the context handle must be equal to the value
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struct rpc_gss_cred {
switch (uint32 version) {/* version of RPCSEC_CSS */

case RPCSEC_GSS_VERS_1 = 1:

enum gss_proc {/* control procedure */
RPCSEC_GSS_DATA = 0,
RPCSEC_GSS_INIT = 1;
RPCSEC_GSS_CONTINUE_INIT = 2,
RPCSEC_GSS_DESTROY = 3
};

uint32 seq_num;/* sequence number */
enum service {/* service used */

RPCSEC_CSS_SVC_NONE = 1,
RPCSEC_CSS_SVC_INTECRITY =
RPCSEC_GSS_SVC_PRIVACY = 3
};

opaque<> handie;/* context handle */

21

0 = RPCSEC_GSS_DATA
1=RPCSEC_GSSJNW

2 = RPCSEC_GSS_CONT|NUE_|N|T
3 RPCSEC GSS DESTROY 

. . “\‘
Version GSS Sequence Service Handle Context gandle

=1 Procedure Number Required Length /7 K K

4bwes 4bwes 4bwes ‘4bwes 4bwes nbwes

FIGURE 4.15 RPCSEC_GSS credential. The version number provides for future
revision of the credential format. The GSS procedure fieid indicates whether the
message constitutes context creation or destruction control message or a data
exchange message. The sequence number is used to detect duplicate or replayed
credentials. The service field allows the client to change the data protection from call to
call. The variable-length context handle contains data that is private to the security
scheme in use.

returned by the server. The context handle field serves as the identifier for the

context and does not change for the duration of the context, including

responses to ”Continue Init” calls. All context creation requests have a null

verifier (AUTH_NONE flavor with zero-length opaque data).

Normally a null procedure call takes no arguments, but an RPCSEC_GSS

context creation request requires an opaque token obtained from the security

mechanism via the GSS-API interface. Since version 2 of the RPC protocol

limits the size of the credential to 400 bytes, the token cannot reliably be

packed into the credential; hence it is provided instead as an argument to the
null procedure call. '
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Cfedentlal 1 = lnit (not set) not set( )

RPCSEC_GSS Credential Version GSS Sequence Service Handle
=6 Size = n :1 Procedure Number Required Length 0

-P4 bytes 4 bytes (4 bytes *4 bytes ‘ 4 bytes__> 4 bytes 4 bytes,

‘* n bytes

  

D

Verifier

RPCSEC_GSS=6
Credential
Size = 0

4 bytes 4 bytes4-——————————> <————~>

Argument

T k T _iLenogtinm Opaque Token

4 bytes rn bytes<——~———> 4————-————->

FIGURE 4.16 FlPCSEC_GSS context creation request. The first request in the
sequence sets the GSS procedure field to 1 (lnit); subsequent calls in the creation
sequence set this field to 2 (Continue lnit).

4.7.4 Successful Creation Response

The response to a successful creation request is MSG_ACCEPTED with a sta-

tus of SUCCESS. The results field encodes a response with the structure

shown in Figure 4.17.

The returned context handle must be used in all subsequent requests
whether control or otherwise. The gss_major and gss__m1' nor fields contain the

results of the call to GSS_Accept_sec_context O executed by the server. The val-

ues for gss_major are defined in [Eisler+96]. The values for the gss_m1' nor field

are GSS—API mechanism specific and are defined in the mechanism’s specifica-
tion. If gss_major is not 0 (GSS_S_COMPLETE) or 1 (GSS_S_CONTINUE

_NEEDED), the context setup has failed; in this case the handle and token will

be set to NULL by the server. The value of the gss_m1' nor field is dependent on

the value of gss_major' and the security mechanism used. The gss_token field

contains any token returned by the GSS_ accept_sec_context() call executed
by the server. A token may be returned for both successful values of gss_maj or.

If the value is GSS_'S_COMPLETE, it indicates that the server is not expecting

any more tokens, and the RPC data exchange phase must begin on the subse-

quent request from the client. If the value is GSS_S_CON'IINUE_NEEDED,

the server is expecting another token. Hence the client must send at least one
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}

Handle Come?“ kindle _ ‘ Sequence
Length n M310’ Mmor Window

4 bytes n bytes 4 bytes 4 bytes

struct rpc_gss_init_res {
opaque<> handle;

uint32 gss_major;
uint32 gss_minor;
uint32 seq_window;

opaque<> gss_token;

 
\_ _\

T°ke" Opaque Token
Length m S K

4 bytes 4 bytes 4 m bytes‘,__ >4— >4 —>4- >1- -54- ><* --D

FIGURE 4.17 RPCSEC_GSS context creation reply. If the context creation requires
more than one call, then the token must be returned to the server as the argument for
the next call.

more creation request (with gss__p roc set to RPCSEC_GSS_CONTINUE_INIT

in the request’s credential) carrying the required token.

In a successful response, the seq_w1' ndow field is set to the sequence win-

dow length supported by the server for this context (see Figure 4.22 on page

74). This window specifies the maximum number of client requests that may

be outstanding for this context. The server will accept seq_w1' ndow number of

requests at a time, and these may be out of order. The client may use this

number to determine the number of threads that can simultaneously send

requests on this context.

If gss__major' is GSS_S__COMPLETE, the flavor field of the verifier (the verf

element in the response) is set to RPCSEC_GSS and the body field set to the
checksum of the seq_w1' ndow (in network order). The QOP used for this check-

sum is 0 (zero), which is the default QOP. For all other values of gs s_major, a

NULL verifier (AUTH_NONE flavor with zero-length opaque data) is used.
If the value of gss_major in the response is GSS_S_CONTINUE_NEEDED,

then the client, per the GSS-API specification, must invoke GSS_1'n1‘t_sec_

context C) using the token returned in gss_token in the context creation

response. The client must then generate a context creation request, with
gss_p r'oc set to RPCSEC_GSS_CONTINUE_INIT.

If the value of gss_major in the response is GSS_S_COMPLETE, and if

client's previous invocation of GSS_1' n1‘ t_sec_context() returned a gss_major'

value of GSS_S_CONTINUE_NEEDED, then the client, per GSS—API speci-

fication, must invoke GSS1'_1'n1't_sec_context() using the token returned

in gss_token in the context creation response (Figure 4.18). If
GSS_1'n1't_sec_context() returns GSS_S_COMPLETE, the context is success-

fully set up, and the RFC data exchange phase must begin on the subse-

quent request from the client.
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4.7.5

4.7.6

gss_'i ni t_sec_context O

  

 
  

 
 

  

FlPCSEC__GSS_lNlT

FiPCSEC_GSS_CONTlNUE_|NlT 955;aCCePt§5€C—C°"teXtC>

GSS_S_COMPLETE

FiPCSEC_GSS_l5ATA

FIGURE 4.18 The protocol that establishes context between the client and server
is controlled by the chosen security mechanism via the client’s GSS-APl calls to
gss_1' n'i t_sec_context C) and the server's calls to gss_accept_sec_contextC).
The gss_token contains information private to the security mechanism.

Unsuccessful Context Creation

An MSG_ACCEPTED reply (to a creation request) with an acceptance status

of other than SUCCESS has a NULL verifier (flavor set to AUTH_NONE,

zero—length opaque data in body field) and is formulated as usual for different
status values.

A MSG_DENIED reply (to a creation request) is also formulated as usual.

Note that MSG_DENIED could be returned because the server's RPC imple-

mentation does not recognize the RPCSEC_GSS security flavor. RFC 1831

(Remote Procedure Call Protocol Version 2) does not specify the appropriate

reply status in this instance, but common implementation practice appears to

be to return a rejection status of AUTH_ERROR with an auth_stat of

AUTH_RE]ECTEDCRED. Even though two new values (RPCSEC_GSS_

CREDPROBLEM and RPCSEC_GSS_CTXPROBLEM) have been defined for

the auth_stat type, neither can be returned in responses to context creation

requests. The auth_stat new values can be used for responses to normal

(data) requests. These are described in section 4.7.11.

MSCLDENIED might also be returned if the RPCSEC_GSS version num-

ber in the credential is not supported on the server. In that case, the server

returns a rejection status of AUTH_ERROR with an auth_stat of

AUTH_RE]ECTED_CRED.

RPC Data Exchange

Once the context phase is complete, the client and server can exchange nor-
mal RPC calls and responses using the procedure numbers defined for the
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4.7.7

XlD - Transaction ID

RPC Version —
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Call
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Encrypted Checksum

 
FIGURE 4.19 The RPCSEC_GSS verifier used in RPC data calls contains an encrypted
checksum of the RPC header. The verifier not only authenticates the user (since only an
authenticated principal can know the key) but also protects the header from modification.

RPC protocol in use. RPCSEC_GSS provides three services: message authenti-

cation, data integrity, and data privacy. For all three services, the

RPCSEC_GSS credential has the format shown in Figure 4.15.
The gss_proc field is set to RPCSEC_GSS_DATA. The service field is set to

indicate the desired service: none, integrity, or privacy. The handle field is set

to the context handle value received from the RPC server during context

creation. The seq_num value must be incremented for successive requests. Use

of sequence numbers is described in detail when server processing of the
request is discussed.

The RPCSEC_GSS verifier contains a checksum of the RPC header (up to

and including the credential) computed using the GSS_GetMIC() call with the

desired QOP (Figure 4.19). This returns the checksum as an opaque octet

stream and its length. Note that the QOP is not explicitly specified anywhere

in the request. It is implicit in the checksum or encrypted data. The same QOP
value as is used for the header checksum must also be used for the data if it is

to be checksummed for integrity or encrypted for privacy.

Data Integrity Protection

If the data integrity protection service is chosen, the procedure arguments and

results are protected with a secure checksum that depends on the chosen

security mechanism (Figure 4.20). The request data are represented as follows:
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rpc—sec_gss_data . ;
' " § ‘\ '\

Le”9th Sequence Procedure Argu;nents checksum’ Checksum '
n bytes Number Length in bytes

4 b 4 b 4 b tes bytes ytes y m ytes

I I n bytes4 >

FIGURE 4.20 The procedure arguments are integrity protected within the
rpcsec_gss_'i nteg_data structure.The sequence number prevents the arguments from
being separated from the header since it must match the sequence number in the

hfiadier. The procedure arguments cannot be modified without invalidating thec ec sum.

struct r'pc_gss_integ_data {
opaque<> databodyjnteg;
opaque<> checksum;

}

The databodyjnteg field is created as follows. A structure consisting of a

sequence number followed by the procedure arguments is constructed. This

structure is shown as the type rpc_gss_data:

struct rpc_gss_data {
u1'nt32 seq_num;
proc_req_ar'g arg;

}

Here, seq__num must have the same value it has in the credential. The type

proc_req_arg is the procedure—specific XDR type describing the procedure

arguments (and so is not specified here). The octet stream corresponding to

the XDR-encoded rpc_gss_data structure and its length are placed in the

databody_1’ nteg field. Note that because the XDR type of databody_i nteg is

opaque, the XDR encoding of databody_1' nteg will include an initial four-octet

length field, followed by the XDR-encoded octet stream of r‘pc_gss_data.

The checksum field represents the checksum of the XDR-encoded octet

stream corresponding to the XDR-encoded r'pc_gss__data structure (note: this

is not the checksum of the databody_1‘nteg field). This is obtained using the

GSS_GetMIC() call, with the same QOP as was used to compute the header

checksum (in the verifier). The GSS_GetMIC() call returns the checksum as an

opaque octet stream and its length. The checksum field of struct

r'pc_gss_1'nteg_data has an XDR type of opaque. Thus the checksum length

from GSS_GetMIC() is encoded as a four-octet length field, followed by the

checksum, padded to a multiple of four octets.

 
'l'z<»';2ré«».rzls/»\<«»>m...“E«w.».\r;~.a&a>.:}:\’7r.«.'r:\
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4.7.8 Data Privacy

When data privacy is used (Figure 4.21), the request data are represented as
follows:

struct rpc_gss_pr1'v_data {
opaque<> databody_pr'1'v;

}

The databody_pr1'v field is created as follows: The rpc_gss_data structure

described earlier is constructed again in the same way as for data integrity.

Next, the GSS_wrap 0 call is invoked to encrypt the octet stream corresponding
to the rpc_gss_data structure, using the same value for QOP (argument qop_req

to GSS_wrap()) as was used for the header checksum (in the verifier) and

com°_req_f1 ag (an argument to GSS_wrap()) of TRUE. The GSS_WrapO call

returns an opaque octet stream (representing the encrypted rpc_gss_data struc-

ture) and its length, and this is encoded as the databody_pr1'v field. Since

databody_pri v has an XDR type of opaque, the length returned by GSS_wrap()

is encoded as the four—octet length, followed by the encrypted octet stream

(padded to a multiple of four octets).

The privacy option encrypts only the call arguments and results. Informa-

tion about the application in the form of RPC program number, version num-

ber, and procedure number is transmitted in the clear. Encrypting these fields’

in the RPC call header would have changed the size and format of the call

header. A change in the layout of the RPC call header would have required

revising the RPC protocol, which was not considered desirable by the design-
ers of RPCSEC_GSS.

kiggég Sflggnegée Procedure Arguments
4 bytes 4 bytes _ —

<———~—> ::————-> n bytes _’

rpc—sec_gss_data

  
¢ Encryption
' Y

Encrypted .‘length m bytes datQEody“p N V
4 bytes rn bytes<é————>

FIGURE 4.21 The data privacy option is similar to that of data integrity: a sequence
number that matches a counterpart in the RPC header is encrypted along with the
arguments. The sequence number prevents the encrypted data from being separated
and recombined with another header.
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4.7.9 Server Processing of RPC Data Requests

When a request is received by the server, it checks the version number, ser-
vice, and context handle in the credential. In addition, the header checksum in
the verifier is checked to make sure that the RPC header that contains the cre-

dential has not been changed. A
Finally, the seq_num sequence number is checked; The server maintains a

window of seq_wi ndow sequence numbers, starting with the lastsequence num-

ber seen and extending backwards (Figure 4.22). Whenever a sequence number

higher than the last number seen is received, the window is moved forward to

the new sequence number. Requests with sequence numbers within the win-

dow can be received in any order, but if a sequencenumber has already been

seen or if it is below the limit of the window, then it is silently discarded. The
server should select a seq_w'indow value based on the number of concurrent

requests it is prepared to handle. Instead of returning an error, duplicate or out-

of-range requests are discarded silently because the server cannot know

whether the erroneous request is due to a replay attack or a network problem. A

client can recover from a dropped request by retransmitting it, although it must

take care to increment the sequence number to remain within seq_w'i ndow.

Note that the sequence number algorithm requires that the client incre-

ment the sequence number even if it is retrying a request with the same RPC

transaction identifier (XID); otherwise the server will silently discard the

retransmitted request rather than resend a cached reply. It is not infrequent

for clients to get into a situation where they send two or more attempts and a

slow server sends the reply for the first attempt. With RPCSEC_GSS, each

request and reply has a unique sequence number.

seq_w'i ndow
Highest seq
number
received.  

 
RPC - .

Requests _

Requests with seq
Requests outside Requests accepted in this number greater than
W_md0W are range. Discarded if duplicate. highest seq number
d'3C3'd9d- advance the window.

FIGURE 4.22 Within a given security context, the server associates a window within
which it will accept requests with a given sequence number. Sequence numbering of
requests makes it difficult for an attacker to replay requests. Rather than require a strict
ordering of requests, the server will accept requests in any order within the window,
which provides some flexibility for multithreaded clients. An attacker cannot coax the
server into raising the sequence number beyond the range the legitimate client is aware
of (and thus engineer a denial of service attack) without constructing an RPC request
that will pass the header checksum.
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4.7.10

4.7.11

Following the sequence number check, the request arguments are

decoded according to the service specified in the credential. If no integrity or

privacy was specified, then no decoding is necessary. If integrity checking
was requested, then the server will verify the request argument checksum. If

privacy was requested, then the server will decrypt the arguments. For both
integrity and privacy, the embedded sequence number will be compared with
its counterpart in the credential. The embedded sequence number prevents an

attacker from simply separating the request arguments from the header and

splicing them with another header. If the integrity or privacy check does not

pass, then the server will return a GARBAGE_ARGS error.

Server’s Reply

The server's verifier in the reply header contains a checksum (the output of

GSS_GetMIC()) of the sequence number from the client's request (Figure
4.23). If data integrity or privacy was requested, the results are encoded in the

reply as the parameters were in the corresponding request.

RPCSEC_GSS Errors

The authentication errors, as shown in Table 3.1, include two new values,

RPCSEC_GSS_CREDPROBLEM and RPCSEC_GSS_CTXPROBLEM. If the

server loses the client's context information set up during the control messages

_ XID — Transaction ID

  RPC
RPCSEC_GSS Verifier Header

Checksum Size

Checksum of Request seq number

Results

FIGURE 4.23 The RPCSEC_GSS server verifier returned in the RPC reply contains a
checksum of the sequence number that came with the client’s request.
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4.7.12

4.7.13

(perhaps because the server rebooted or needed to reclaim some memory),

then the server will reject the request with RPCSEC_GSS_CREDPROBLEM.

The client can recover from this by destroying the context and reestablishing it

with more control messages. This error is also returned if the GSS__Ver1' fyMIC()

call on the header checksum (contained in the verifier) fails to return

GSS_S_COMPLETE. The RPCSEC_GSS_CTXPROBLEM’ is returned if the cre-

dential is invalid due to some mechanism-specific reason, for instance, if a

Kerberos V5 ticket expires. The client can recover by fixing the mechanism-

specific problem, for instance, obtaining a new Kerberos ticket. For other

errors, retrying will not fix the problem, and the client cannot refresh the con-

text until the problem is rectified.

Performance of RPCSEC_GSS

The computation of integrity checksums and data encryption requires

additional computation on the client and server, depending on the security

mechanism used. Computation of the header checksum adds a small, fixed

overhead to an RPC transaction that should be barely noticeable to an appli-

cation or end user. The use of integrity and privacy protection of the request

and reply data can add considerable computational overhead that increases in

proportion to the amount of data in the request or reply. An end user or appli-

cation will perceive this overhead as additional latency on the RPC transac-

tion~—it might be large enough to require an application developer to

recalculate RPC request time—outs. An end user or system administrator will

have to consider the trade-off between data security and network throughput

and server loading. As a rule of thumb, data integrity will increase client and

server latency 50 percent and data privacy will increase latency by 300 percent

[Eisler+96]. These factors will vary depending on the processor speed, bus

bandwidth, and computational requirements of the cryptographic algorithm.

We can expect the performance cost of data integrity and privacy to drop with

the steady improvement of computer performance.

Snoop Trace of Session

A detailed snoop trace of an NFS session using Kerberos V5 as the authentica-
tion mechanism demonstrates the use of RPCSEC_GSS to establish and use a

security context.. This trace shows just the RPC headers.

First the client sends the Kerberos ticket to the server within the argument

to the NFS null procedure call using an RPCSEC_GSS credential indicating a

control request of RPCSEC_GSS#INIT.

RPC: —-—-— SUN RPC Header‘ -----
RPC:

RPC: Record Mark: last fragment, length = 568
RPC: Transaction id = 3733815415
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RPC: Type = 0 (Call)
RPC: RPC version = 2

RPC: Program = 100003 (NFS), version = 3, procedure = 0

RPC: Credentials: Flavor _= 6 (RPCSEC_GSS), len = 20 bytes
RPC: version = 1 _

RPC: gss control procedure = 1 (RPCSEC_GSS_INIT)_
RPC: sequence num = 0 ' :“ ’
RPC: service = 1 (none)

RPC: handle: length = 0, data = []
RPC: Verifier : Flavor = 0 (None), len = 0 bytes
RPC:

RPC: RPCSEC_GSS_INIT args:
RPC: gss token: length = 502 bytes
RPC: ... (context information) ...
RPC:

The server responds with a control message indicating that it has accepted the
client's Kerberos ticket and includes a context handle [O0O00003] that the cli-

ent will use in the following data requests.

RPC: ————— SUN RPC Header —————
RPC:

RPC: Record Mark: last fragment, length = 196
RPC: Transaction id = 3733815415

RPC: Type = 1 (Reply)
RPC: This is a reply to frame 26
RPC: Status = 0 (Accepted)
RPC: Verifier : Flavor = 6 (RPCSEC_GSS), len = 37 bytes
RPC: ... checksum of seq_window ...
RPC: Accept status = 0 (Success)
RPC:

RPC: RPCSEC‘GSS_INIT result:

RPC: handle: length = 4, data = [00000003]
RPC: gss_major status = 0
RPC: gss_minor status = O
RPC: sequence window = 128
RPC: gss token: length = 106 bytes
RPC: ... gss token data ...

The gss_maj or status in the result indicates that the context creation is

complete. The client can now send a data request to the server. In this case it is
an NFS version 3 FSINFO call. The RPCSEC_GSS credential contains a

sequence number and a context handle [00000003] that identifies the security

context set up in the prior control request.

RPC: ————— SUN RPC Header —————
RPC:

RPC: Record Mark: last fragment, length = 140
RPC: Transaction id = 3733815418

RPC: Type = 0 (Call)
RPC: RPC version = 2
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RPC: Program = 100003 (NFS), version = 3, procedure = 19
RPC: Credentia'ls: F1avor = 6 (RPCSEC_GSS), Ten = 24 bytes
RPC: version = 1

RPC: gss control procedure = 0 (RPCSEC_GSS~DATA)
RPC: sequence num = 2
RPC: service = 1 (none)

RPC: hand1e: Tength = 4, data = [00000003] =
RPC: Verifier : F1avor = 6 (RPCSEC_GSS), Ten = 37 bytes
RPC: ... checksum of seq_num ...
RPC:
NFS: ——-—— Sun NFS -——-—
NFS:

NFS: Proc = 19 (Get filesystem information)
NFS: Fi1e handie = 0080000800000002000A000000001700
NFS: 3D83CDE1000A0000000017003D83CDE1

The verifier in the server's reply contains a checksum of the sequence number

from the client's request.

RPC: -——-— SUN RPC Header -——-—
RPC:

RPC: Record Mark: last fragment, Tength = 204
RPC: Transaction id = 3733815418

RPC: Type = 1 (Reply)
RPC: This is a reply to frame 29
RPC: Status = 0 (Accepted)
RPC: Verifier : Flavor = 6 (RPCSEC_GSS), Ten = 37 bytes
RPC: encrypted seq_no
RPC: Accept status = 0 (Success)
RPC:
NFS: ———~— Sun NFS ———~—
NFS:

NFS: Proc = 19 (Get filesystem information)
NFS: Status = 0 (OK)

NFS: Post—operation attributes:
NFS: Fi1e type = 2 (Directory)
NFS: Mode = 0755

NFS: Setuid = 0, Setgid = 0, Sticky = O
NFS: Owner's permissions = rwx
NFS::
NFS::

4.8 Connection-Based Security

So far, this chapter has presented the various flavors of security built into the

RPC protocol. Security can also be provided outside the RPC protocol in the

connection layer. The most common use of secure communication today is via
secure TCP connections on the Internet.

The Secure Shell (ssh) provides strong authentication, data privacy, and

data integrity protection for remote login sessions. The transport layer of the  
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Secure Shell can be used independently to provide a secure data stream for

other network protocols. For instance, an X—window session can be tunneled

through a Secure Shell connection.

The most common use of secure connections is through the SSL protocol

when used to protect transactions over the HTTP protocol with the "https”
URL. The SSL protocol also provides authentication,'data privacy, and integ-
rity. The SSL protocol is now described as transport layer security (TLS) by an

IETF working group [RFC 2246]. Connection-based security will be available

at the IP layer via lPsec, another Internet protocol developed initially for IPv6
and to be made available also for IPV4 [RFC 2401].

RPC-based protocols can utilize these secure connections by making sure

that the protocol is run over a secure connection (Figure 4.24). With a creden-

tial of AUTH_NONE, the task of authenticating the user and guaranteeing

privacy and data integrity can be left entirely up to the secure connection.

This option is particularly attractive where implementations of RPC-based

security are not implemented or not available. If for other reasons the RPC

protocol is tunneled over a secure connection, it makes no sense to further

authenticate or protect the data, so it's appropriate to be able to disable the

RPC-based security.

- 4 Secure

® Application E - Server
Connection :

K RPC
Protocol

  

User=Jane

© Secure

User=Fred Connection :Se:”’:e:'
k Multiplexed

Connection

User=A|ice

FIGURE 4.24 (A) An RPC-based protocol using a secure connection can delegate its
security to that of the connection. This delegation is fine if the connection is dedicated to
a single user. (B) RPC-based security must be used for authentication if the connection
is shared by multiple users because the connection-based security cannot distinguish
the call and response data of each user. The secure connection may still be useful if it
provides privacy and data integrity.
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4.9

The RPC protocol can be used to multiplex the requests and replies of sev-

eral users onto a single connection. Some NFS clients, for instance, set up a

single connection to the server for all users or on a per-mount basis. In this

' case the requests and replies of several users may be intermixed on the same

connection. A connection—based security scheme will not be able to distin-

guish the RPC calls of each user. In this situation it is more appropriate to use

the RPC-based security. The secure connection may still be useful if it provides

privacy and data integrity.

RPC can also use UDP datagrams rather than a TCP stream to transport

requests and responses. Connection-based security that assumes a persistent,
stateful connection between the client and server cannot be used over UDP.

Again, NFS is a good example. Although many NFS products support TCP

connections, UDP is still widely used. RPC-based security must be used over
UDP.

Summary

RPC authentication was designed as an open-ended framework to allow cli-

ents and servers to be able to authenticate each other through the use of cre-
dential and verifier information embedded in the RFC header. The flavor of

RPC authentication is determined by the application or service and may vary

from no authentication at all (AUTH_NONE), to unverified authentication

(AUTH_SYS) or one of the secure forms of authentication (AUTH_DH and

AUTH_KERB4). Both AUTH_DH and AUTH_KERB4 have shortcomings that

have limited their deployment. RPCSEC_GSS is called the ”final” authentica-

tion flavor because it provides a framework that allows any GSS-API-based

security mechanism to be plugged in dynamically. As improved security

mechanisms are developed, they can be used by existing RPCSEC_GSS imple-

mentations without modification of the RPC code. RPCSEC_GSS not only

provides secure authentication but also supports integrity protection and pri-

vacy of call arguments and results. Connection-based security mechanisms

like SSL and IPsec may be used to provide security for RPC protocols in some

situations. More detail on security issues with AUTH_SYS, AUTH_DH, and

AUTH_KERB4, as well as a description of RPCSEC_GSS implementation

using Kerberos V5, can be found in [RFC 2623].
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NFS Filesystem Model  '.

The NFS protocol supports the common model of a hierarchically orga-
nized filesystem comprising named directories that group related files

and directories. Each file or directory has a string name that is unique within
the directory. Although this common model appears to be heavily biased

toward the UNIX filesystem model, it encompasses many filesystems imple-
mented on UNIX and other operating systems. The common filesystem

model of NFS is largely responsible for the success of NFS as an interoperable
protocol.

Filesystem and Filesystem Objects

Afilesystem is a tree on a single server (usually a single disk or physical parti-
tion) with a specified ”root” (Figure 5.1). UNIX operating systems provide a
mount operation to make all file systems appear as a single tree, while DOS,

Windows, and Windows NT assign filesystems to disk letters or top-level

names. The NFS file attribute fsid uniquely identifies a filesystem on a server

and the fileid attribute identifies a file or directory within that filesystem. NFS

clients assume that the fsid/fileid pair are unique for each file on a particular
server. NFS requests, like STATFS (version 2) and FSSTAT (version 3), return

filesystem attributes such as the amount of available space left in the filesys-
tem.

Although files and directories are similar objects in many ways, different

procedures are used to read directories and files. The NFS READDIR proce-

dure provides a network standard format for representing directories. NFS

provides access to several different kinds of filesystem objects:

1. Files are assumed to be uninterpreted byte sequences. The client and

server are not expected to translate file data in any way. For instance, UNIX

text files delimit lines of text with a single newline character, whereas DOS

81
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FIGURE 5.1 A filesystem is a hierarchy of directories containing files or subdirectories. Any
file or directory can be named uniquely by a series of names forming a path from the root
directory. A symbolic link contains a path that references another file or directory. A hard
link allows a single file to have multiple names.

text files delimit text lines with a pair of characters: carriage return followed

by newline. An application on a DOS client reading a text file from a UNIX

server is expected to handle the different line delimiter conventions. Similarly,

NFS clients and servers are not expected to translate character encodings like
ASCII, EBCDIC, or Unicode.

An NFS file may have multiple names or hard links indicated by the nlinks

file attribute. These additional links are created with the LINK request.

2. Directories are assumed to be lists of simple file names. NFS provides

READDIR and READDIRPLUS (version 3) requests to read these lists of

names. If the size of a directory is larger than the maximum size of an NFS

reply, then the client can continue a partial list using the cookie value associ-

ated with each entry in a subsequent READDIR request. An NFS directory

can have only one name——its nlinks attribute cannot be greater than 1.

3. Symbolic links are assumed to contain a text pathname that can be read

and interpreted by the client and are assumed to be an indirect reference to

another file or directory. A symbolic link has properties distinct from those of

a hard link: it may refer to either a file or a directory and the referenced object

is not required to exist. The requirement for the client to interpret the path-

name contained in a symbolic link is rather a strange dichotomy for the NFS

protocol: NFS clients are not required to know of server pathname syntax, yet

a symbolic link implies knowledge of some pathname syntax. WebNFS clients

assume that symbolic links contain either base or relative URLs (see section

16.5.5). ‘
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4. Special files. NFS appears to provide access to a number of special files or

device types: block special, character special, socket, and named pipes. How-

ever, these filetypes are just place holders and provide no real remote access to

these file types. The device major and minor attributes for these types refer to

special files on the clierzt—not the server. A p _

In contrast to the RPS protocol (described at the beginning of chapter 13),

the NFS protocol designers made a conscious decision not to support direct

access to remote data devices such as tape drives or printers. It is possible to fit

file access into a generalized model that can be used to provide interoperabil-

ity between different kinds of clients and servers. It is much harder to general-

ize access to the much larger variety of data devices. The RPS protocol

provided device access through UNIX ioctl calls, but only between UNIX cli-

ents and servers and for a very limited set of devices.

Filehandles

An NFS filehandle is a reference to a file or directory that is independent of

the filename. All NFS operations use a filehandle to identify the file or direc-

tory to which the operation applies. An NFS filehandle is opaque to the client.

The server creates filehandles and only the server can interpret the data con-

tained within them. The opaque nature of filehandles gives servers a lot of

flexibility in determining the most efficient way to reference a file. UNIX serv-

ers, for instance, typically identify a file or directory by its filesystem identifier
and inode number.

An NFS version 2 filehandle is 32 bytes long and the length is fixed (Fig-

ure 5.2). NFS version 3 allowed the filehandle to be of variable length up to 64

bytes. Variable length allows a server to use a much smaller filehandle if it

chooses. The increase in maximum size to 64 bytes makes life a bit easier for

servers that cannot easily cram a complete file reference into the smaller NFS

Version 2

I 32 bytes I

Version 3

I Up to 64 bytes I

 I III :: 

K, Length

FIGURE 5.2 NFS version 2 filehandles are a 32-byte fixed-length quantity. Version 3
filehandles can be variable length up to a maximum of 64 bytes.
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version 2 filehandle. NFS version 3 set a limit of 64 bytes to facilitate server

memory management——for instance, a server could preallocate 64-byte buf-

fers knowing that any Version 3 filehandle would fit. The WebNFS extensions

to both versions of the protocol included a public filehandle (see section 16.4)

that defines a reserved value for the filehandle: all—zero bytes for a version 2

filehandle, zero-length for a version 3 filehandle. ' ’ T ‘

The reference that the server places in the filehandle to reference the file or

directory must meet a couple of important criteria:

1. Persistence. Clients will assume that the filehandle is a persistent refer-

ence to the file or directory. An NFS client will cache filehandles expecting

them to be valid until the file or directory is removed from the server. The cli-

ent's assumption ofpersistent filehandles means that a filehandle value must

survive a crash and reboot of the server, whether the server is implemented as

a kernel module or as a user—level process. This property precludes the use of

a filehandle as an index into a table of file descriptors, unless the table and the

assignment of filehandles to files can be stored in a file.

2. Pathname independence. The most obvious way to create a persistent ref-

erence is to store the pathname to the file or directory in the filehandle. That's

a tight fit for NFS version 2 filehandles, since pathnames would be limited to

just 32 bytes; even the NFS version 3 filehandle would limit pathnames to 64

bytes. Although pathnames are indeed persistent, NFS requires a reference to

the file or directory that is independent of the pathname. If the pathname to a file

is changed through a RENAME operation (perhaps by another client) or if the

pathname is removed, the filehandle must continue to be a Valid reference to

the file. This property reflects a requirement of UNIX filesystems: once a file is

open, it can be renamed or unlinked without affecting access to the file.

The dual requirement for filehandle persistence and pathname indepen-

dence creates a problem for NFS servers implemented as a user—level process.

A UNIX kernel server can identify a file or directory by its device and inode

numbers and meet the persistence and pathname independence require-

ments. However, a UNIX process cannotopen a file identified by a device and

inode number. Only a pathname will suffice as a persistent reference for the

file. For example, the Linux user—level server, unfs, stores a compressed path-

name in the filehandle. Each pathname component is hashed into an 8-bit

quantity and the file inode number is included as a check. The filehandle
becomes invalid if the file is renamed.

The server will return a new filehandle in response to several procedures.

The LOOKUP procedure is used sequentially to evaluate pathnames, and file-

handles are returned when new objects are created by CREATE, MKDIR,

LINK, SYMLINK. The READDIRPLUS procedure in version 3 will return a

filehandle for each directory entry Each of these procedures assumes that the
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client already has a filehandle for the parent directory. Until WebNFS (chapter

16) provided the public filehandle, there was no way to obtain an initial file-

handle within the NFS protocol itself. The NFS design team intended that the

MOUNT protocol (chapter 9) be used to obtain an initial filehandle from a

server pathname.

Pathnames

5.3.1

A pathname is a sequence of component names that uniquely names a file or

directory within the hierarchy. Different operating systems may have restric-

tions on the depth of the tree or the names used, as well as using different syn-

tax to represent the pathname, which is the concatenation of all the components

(directory and file names) in the name. For instance, UNIX pathname compo-

nents are separated with a slash character, Windows uses a backslash, and the
Macintosh uses a colon.

Filename Component Handling

Servers frequently impose restrictions on the names that can be created. The

maximum length of a component name may vary: UNIX components can be

up to 255 characters in length, whereas DOS components are limited to 8 char-

acters with a 3-character extension. Although the XDR standard limits the

characters of a string to 7-bit ASCII characters, common usage is to allow any

ISO Latin-1 (8-bit) character to be encoded in a filename.

Many servers also forbid the use of names that contain certain characters,

such as the path component separator used by the server operating system.

For example, the UNIX operating system will reject a name that contains /,

while . and . . are distinguished in UNIX and may not be specified as the

name when creating a filesystem object. Windows short names will be
restricted to an 8-character name with a 3-character extension and names can-

not contain any of the characters "./\[] :+|<>=; ,*?. If the server receives a

filename containing characters that it cannot handle, the error NFSERR_

EACCES (version 2) or NFS3ERR_EACCES (version 3) should be returned.

Client implementations should be prepared to handle this side effect of heter-

ogeneity.

The following comments apply to all NFS filenames.

I The filename must not be null, nor may it be the null string. The server

should return the error NFSERR_ACCES (version 2) or NFS3ERR__ACCES

(version 3) if it receives such a filename. On some clients, the filename, "”,

or a null string is assumed to be an alias for the current directory. Clients

that require this functionality must implement it for themselves and not

depend on the server to support such semantics.
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5.3.2

- A filename having the value of . is assumed to be an alias for the current

directory. Clients that require this functionality should implement it for

themselves and not depend on the server to support such semantics.

However, the server should be able to handle such a filename correctly.

u A filename having the value of . . is assumed to bean alias for the parent
of the current directory, i.e., the directory that contains the current direc-‘

tory. The server should be prepared to handle this semantic, if it supports

directories, even if those directories do not contain UNIX~style . or . .
entries.

If the filename is longer than the maximum for the filesystem, the result

depends on the value of the PATHCONF flag, no_t runc. NFS version 2 clients

must obtain this field using the MOUNTPROC_PATHCONF procedure from

version 2 of the MOUNT protocol. NFS version 3 clients can use the PATH-

CONF procedure in the protocol itself (see section 7.3.21). If no_trunc is

FALSE, the filename will be silently truncated to name_max bytes. If no_trunc is

TRUE and the filename exceeds the server's filesystem maximum filename

length, the operation will fail with the error NFSERR_NAMETOOLONG (ver-’

sion 2) or NFS3ERR_NAMETOOLONG (version 3).

Pathname Evaluation

The NFS LOOKUP operation evaluates only one pathname component at a

time. At first this seems a rather pedestrian way to evaluate a long pathname;

why not just send the entire pathname to the server for evaluation? There are
several reasons:

1. Pathname syntax. One—component-at-a-time evaluation makes it easier

for clients and servers with different pathname conventions to evaluate path-

names. It doesn't matter if the client's pathname component separator charac-

ter is different from the server's because the separator is never sent over the
wire.

2. Client namespace. UNIX clients typically evaluate pathnames one com-

ponent at a time so that filesystem mountpoints on the client can be detected

and crossed (Figure 5.3).

3. Caching and latency. At first glance the component—at—a—time require-

ment would seem to be expensive in network requests and latency. For

instance, the path /a/b/c/d/e would require five LOOKUP requests to the

server. Most UNIX clients use a directory name lookup cache (DNLC) to

cache previous pathname evaluations. In practice, the hit rate on this cache is

very high (typically > 98 percent) since naming operations exhibit a high

degree of directory locality. Thanks to the caching of the DNLC, it's rare that

pathnames with many components are evaluated with multiple LOOKUP
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Server 2 mount___._._.._....

d  
FIGURE 5.3 Mountpoint crossing. A client must take mountpoints into account when
evaluating pathnames. Here the pathname /a/b/c/d/e crosses two mountpoints that take
the evaluation path first into the filesystem on server 1 then into server 2. Neither server is
aware of the mountpoints on the client.

requests. In addition, the NFS protocol was designed with an assumption of

low latency. Typically an NFS LOOKUP request receives a response within a

couple of milliseconds on a LAN.

The design team for NFS version 3 considered a multicomponent

LOOKUP operation but rejected it due to the additional complexity of imple-

mentation and negligible benefit~—multicomponent LOOKUP operations

appeared to be rare, thanks to the effectiveness of the client's DNLC cache.

Subsequently, the WebNFS extensions to NFS versions 2 and 3 (see chapter 16)

added multicomponent LOOKUP support via a pathname with slash-

separated components relative to the public filehandle with the intent that it

be used to replace the MOUNT request of the MOUNT protocol.

Stateless Server

An initial goal of the NFS protocol design was to make each request stand-

alone so that a server would not be required to preserve any client state from

one NFS request to the next. The ”stateless” server feature is often mistakenly

quoted as a ”requirement” of the protocol. In practice, most NFS servers do

maintain some client state to improve performance, but the protocol itself

does not require it. In practice, it can be argued that the protocol should

require some state to preserve at-most-once semantics, which can be approxi-

mated by a duplicate request cache (see section 8.9). The Network Lock Man-

ager protocol, which handles all the file locking for NFS, is, by necessity,

highly stateful.
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5.4.1

5.4.2

The most obvious manifestation of statelessness in the protocol is the lack

of a file OPEN or CLOSE request. An NFS server does not need to know

which clients have open files. VVhen a client is reading a file the server is not

required to retain a ”current” file offset since each READ request specifies the

offset to be used. The NFS server expects the client to retain all necessary state
information. ’ . ‘

The statelessness of the NFS protocol may become a historical artifact

when version 4 of the NFS protocol (chapter 17) is complete. Drafts of version

4 include a file locking protocol that is inherently stateful. Further statefulness

may be introduced with support for more aggressive caching.

Server Recovery

The NFS protocol was intended to be as stateless as possible. That is, a server

should not need to maintain any protocol state information about any of its

clients in order to function correctly Stateless servers have a distinct advan-

tage over stateful servers in the event of a failure. With stateless servers, a cli-

ent need only retry a request until the server responds; it does not even need

to know that the server has crashed or the network temporarily went down.
The client of a stateful server, on the other hand, needs to either detect a

server failure and rebuild the server's state when it comes back up or cause

client operations to fail.

In practice, the NFS protocol does not meet the ideal of a completely state-

less protocol. Since the underlying RPC protocol does not provide at-most-

once semantics, an NFS server must implement a duplicate request cache if it

is to respond correctly to retransmitted requests (see section 8.9). Some RPC

authentication flavors require context state to be maintained on the server,

and programs that require file locking must use the very stateful Network

Lock Manager protocol, described in chapter 10.

idempotent Operations

The NFS protocol simplifies server recovery by making many operations

idempotent. An idempotent operation is one that returns the same result if it is

repeated. If an NFS client does not receive a response to a request within a

reasonable time, it will retransmit the request periodically until the server

responds. If the client retransmits because the server's response was lost, then

the server may receive the same request multiple times. If the request is idem-

potent, then the effect will be the same no matter how many times the server

receives the request. If the request is not idempotent, then the client may

receive an error if the request is retransmitted. For example, the READ

request is idempotent (Figure 5.4), but a REMOVE request is not (Figure 5.5).

The failure of a server or network is more likely to occur between a cli-

ent’s NFS requests, not between the server's receipt of a request and the trans-.
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5.4.3

Client Server

. READ offset=1024, length = 8192
Original Request

READ offset=1024, length = 8192Retransmit

Data Received
 

FIGURE 5.4 Retransmission of the idempotent READ request produces the same result
no matter how many times it is retransmitted.

or t
"3" REMOVE dirfh=Oxff3b "xyz” se"’°'

Original Request

  
Remy ‘G’ “xyz” removedLost , , OK

REMOVE dirfh=OXff3b “Xyz"Retransmit

Error Received Errorl——file not found

FIGURE 5.5 Retransmission of the nonidempotent REMOVE request will return an error if
a previous transmission removed the file.

mission of a response—retransmissions due to lost responses are relatively

rare. Hence, errors resulting from retransmissions of nonidempotent requests

are rare. These rare circumstances can be almost completely eliminated by the

server's use of a duplicate request cache (section 8.9).

Statelessness and High Availability

While the stateless server feature was intended to facilitate server recovery in

the event of a server crash due to a software or hardware problem, in subse-

quent years this design feature has paid dividends in the straightforward

implementation of highly available servers and clients (Figure 5.6). Highly
available NFS servers (HA-NFS) consist of two or more NFS servers connected

to a common set of disk drives. The drive sets are configured so that each

server is solely responsible for a subset of the drives but can take over the other

server’s drives if it detects that the other server is no longer providing access.
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5.5

  

 

High

Repficafion 'Server
Servers ‘

FIGURE 5.6 Statelessness and high availability. Because NFS servers are not required to
maintain client state, it is easy to configure highly available servers and replica failover
clients.

Since there is little NFS client state to be transferred from one server to the

other, it is easy for one server to assume the other server's functions. If the

server uses a duplicate request cache (see section 8.9), then data in the cache

should be accessible to the server taking control. One method, exploited in

[Bhide+91], is to maintain the cache as log records within a logging filesystem.

Since the Network Lock Manager protocol is highly stateful, failover for cli~

ents holding locks can be made transparent (invisible to clients) only if all cli-

ent locks are recorded in stable storage accessible to the standby server. Rather

than rely on stable storage for recording lock state (and affecting server perfor~

mance), a more practical scheme is to handle the failover as a fast server crash

and recovery (to standby server) so that clients will reclaim their locks
[Bhide+92].

Client—side failover allows a client to switch its NFS requests from one

server that is no longer responding to another replica server. Once the client
has obtained filehandles for the new server, it can retransmit any unanswered

requests to the new server. A failover client does not have to reestablish state
on the new server.

Summary

The NFS protocol assumes a hierarchically organized filesystem with a single

root. Files are located relative to an initial filehandle by a sequence of

LOOKUP operations. NFS has no formal pathname representation. The proto-

col recognizes directories, files, symbolic links, and a small number of ”spe-

cial” file types. Since the protocol does not require the server to maintain

 www:»wmsmmx~asm»i,M;sm»,VV~.r...»»\.,
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client state, recovery following a server crash is simple, and highly available

server configurations featuring failover are easy to configure.
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Chapter 6

NFS Version 2

D espite its designation as ”version 2" of the protocol, NFS version 2 was
the first published version of the NFS protocol. Version 1 of the protocol

existed briefly at Sun as a prototype that was deployed on a few clients and

servers within the development group. When substantial changes were made

to the version 1 protocol, the development group decided to apply the
changes as a new version number to verify the ability of the server to support
multiple versions concurrently and to verify the RPC version fallback of the

prototype clients. NFS version 1 was never published.

Implementation of NFS version 2 began at Sun in March 1984. It was
based on the SunOS UNIX kernel, which was based on BSD 4.2. In 1985, NFS

version 2 became a product in SunOS 3.2. This implementation was first

described in a paper presented at the Usenix conference later that year [Sand-

berg+85]. Soon after, Geoff Arnold in Sun's East Coast engineering labs, built
the first PC version of NFS. At that time, PC-NFS was constrained to be run

within the 640-KB DOS memory limit.

NFS version 2 was received well by customers. Its good performance

made it practical to take data scattered around the disks of individual work-

stations and move them to centralized servers, promoting data sharing, easier

file backup, cheaper disk storage, and in some cases better performance from
server disks.

Although NFS version 2 has been superseded in recent years by NFS ver-

sion 3, system administrators are slow to upgrade the operating systems of

their clients and servers, so NFS version 2 use is not only widespread, it is still

by far the most popular version of NFS.

The following description of the NFS version 2 protocol follows RFC 1094

(the first public specification of the protocol) in explaining the data types used

in the protocol and the semantics of the procedures that make up the protocol.

The description is designed to suit the needs of a protocol implementor or a

person interested in the details of the protocol.

91
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6.1 Common Data Types

The following XDR definitions are common structures and types used in the

arguments and results of several protocol procedures. First, the sizes, given in

decimal bytes, of various XDR structures used in the protocol:

const MAXDATA = 8192; /* Max size of a READ or WRITE request */
const MAXPATHLEN = 1024; /* Max length of a pathname argument */
const MAXNAMLEN = 255; /* Max length of a file name argument *~‘/
const COOKIESIZE = 4; /* Size of READDIR cookie*/
const FHSIZE = 32; /* Size of file handle */

The following structures are used as arguments or results by many proce-

dures in the protocol. Procedure descriptions refer to these structures.

shat

enum stat {
NFS_OK = 0,
NFSERR_PERM=1,
NFSERR_NOENT=2,
NFSERR_IO=5,
NFSERR_NXIO=6,
NFSERR_ACCES=13,
NFSERR_EXIST=17,
NFSERR_NODEV=19,
NFSERR_NOTDIR=20,
NFSERR_ISDIR=21,
NFSERR_FBIG=27,
NFSERR_NOSPC=28,
NFSERR_ROFS=30,
NFSERR_NAMETOOLONG=63,
NFSERR_NOTEMPTY=66,
NFSERR_DQUOT=69,
NFSERR_STALE=70,
NFSERR_wFLUSH=99

}

The stat type is returned with every procedure’s results. A value of NFS_OK

indicates that the call completed successfully and the results are valid. The
other values indicate that some kind of error occurred on the server side dur-

ing the servicing of the procedure (Table 6.1). The error values are derived
from UNIX error numbers.
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TABLE 6.1 NFS Errors

Error name Value Meaning

NFS_OI< 0 Indicates that the call completed successfully.

NFSERR_PERM 1 Not owner. The callerdoes not have correct _
_ ownership to perform the requested operation.

NFSERR_NOENT 2 No such file or directory. The file or directory
specified does not exist.

NFSERR_lO 5 Some sort of hard error occurred when the opera-
tion was in progress—a disk error, for example.

NFSERR_NXIO 6 No such device or address.

NFSERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested
operation.

NFSERR_EX1ST 17 File exists. The file specified already exists.

NFSI-jRR_NODEV 19 No such device.

NFSERR_NOTD1R 20 Is not a directory The caller specified a non-

directory in a directory operation.

NFSERR_1SDIR 21 Is a directory. The caller specified a directory in a
nondirectory operation.

NFSERR_FB1G 27 File too large. The operation caused a file to grow
beyond the server’s limit.

NFSERR_NOsPC 28 No space left on device. The operation caused the
server's filesystem to reach its limit.

NFSERR_ROFS 30 Read-only filesystem. Write attempted on a read-
only filesystem.

NFsERR_NAMETO0LON 63 Filename too long. The filename in an operation
G was too long.

NFSI-jRR_NOTvEMPTY 66 Directory not empty. Attempted to remove a

directory that was not empty.

NFsERR_DQUOT 69 Disk quota exceeded. The client's disk quota on
the server has been exceeded.

NFSERR_STALE 70 The filehandle given in the arguments was

invalid. That is, the file referred to by that file-
handle no longer exists, or access to it has been
revoked.

NFSERR_wFLUSH 99 The server's write cache used in the WRITE-
CACHE call was flushed to disk. This error will
never be encountered since the WRITECACI-IE

procedure was never fully defined or imple-
mented.
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ftype

enum ftype {
NFNON = 0, /* Non-file */

NFREG = 1, /* Regular file */
NFDIR = 2, /* Directory */
NFBLK = 3, /* B1ock—specia1 device */
NFCHR = 4, /* Character—specia1 device */
NFLNK = 5 /* Symbolic link */
NFSOCK = 6, /* Socket */

NFFIFO = 7 /* Named pipe */
}

The enumeration ftype gives the type of a file. The type NFNON indicates a

nonfile, NFREG is a regular file, NFDIR is a directory, and NFLNK is a sym-
bolic link.

The remaining types are special types intended for use by diskless UNIX

clients. NFBLK is a block-special device, NFCHR is a character-special device,

NFSOCK is a UNIX domain socket, and NFFIFO is a named pipe. While there

are no procedures within the NFS protocol that operate on these special

objects directly, the protocol does allow these objects to be created. NFS ver-

sion 2 implementations support an overloaded form of CREATE (section

6.2.8) and NFS version 3 provides a MKNOD procedure (section 7.3.12).

fhandle

typedef opaque fhand1e[FHSIZE] ;

The fhandi e is the filehandle passed between the server and the client. All file

operations are done using filehandles to refer to a file or directory. The file-

handle is defined as an opaque sequence of bytes. This means that the con-

tents of a filehandle are not defined by the protocol. The server can put

anything in the filehandle that will reliably and persistently identify a file or

directory. For additional information on filehandles see section 5.2.

timeval

struct timeval {
u1'nt32 seconds;
uint32 useconds;

}

The timeval structure is the number of seconds and microseconds since mid-

night Greenwich Mean Time January 1, 1970. It is used to pass time and date
information. There are some limitations on the times and dates that can be

represented with this format; since the seconds value is unsigned it is impos-

sible to represent dates prior to 1970 and the 32-bit seconds value overflows

after 136 years, on February 5, 2106. A more immediate problem exists for
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UNIX clients since their system time uses the same epoch (1970) with a signed
a 32-bit seconds value that will overflow in 2038.

fattr

struct fattr {

ftypetype; /* Type of file */ *
uint32mode; /* Permission bits */
uint32n1ink; /* Number of hard links (names)*/
uint32uid; /* User identification number */

uint32gid; /* Group identification number */
uint32size; /* Size of file in bytes */

uint32b1ocksize; ‘ /* Size of a disk block in bytes */
uint32rdev; /* Device number of a file */
uint32b1ocks; /* Number of disk blocks used */

uint32fsid; /* Identifier of filesystem */
uint32fileid; /* Identifier of file in filesystem */
timevalatime; /* Last access time */
timevalmtime; /* Last modification time */
timevalctime; /* Attribute modification time */

}

The fattr structure contains the attributes of a file (Table 6.2).

TABLE 6.2 File Attributes in fattr Structure

Attribute Description

type Type of the file

mode Protection mode bits (see Table 6.3)

nl 1 nk Number of hard links to the file—that is, the number of different names for
the same file

ui d User ID of the owner of the file

gi d Group ID of the group of the file

size Size of the file in bytes

bl ocksi ze Size in bytes of a file block

rdev Identifies the device file if the file type is NFCHR or NFBLK

blocks Number of blocks the file takes up on disk

fsi d Filesystem identifier for the filesystem containing the file

fi 1 ei d Number that uniquely identifies the file within its filesystem (on UNIX
. this would be the inode number)

ati me The time when the file data were last accessed for read or write

mti me The time when the file data were last modified (written)
ctime

The time when the attributes of the file were last changed. Writing to the
file changes the ctime in addition to the mtime.
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Mode is the access mode encoded as a set of bits. Notice that the file type is

specified both in the mode bits and in the file type, which duplicates the spec-

ification of mode in the POSIX stat structure. This redundancy was removed

in version 3 of the protocol. The descriptions in Table 6.3 use the UNIX con-

vention of representing the bit positions with octal numbers.

The collection of file attributes supported by NFS version 2 closely fol-

lows the POSIX stat structure that is implemented by UNIX operating sys-

tems (Table 6.4). Although this close correspondence of file attributes has

been criticized as unduly favoring UNIX clients and servers, the attributes in

the fattr structure have served the needs of implementations on other oper-

ating systems.

TABLE 6.3 fattr Structure Access Modes

Mode Bit Description

0040000 This is a directory; ”type” field should be NFDIR,

0020000 This is a character special file; ”type” field should be NFCHR.

0060000 This is a block special file; ”type” field should be NFBLK.

0100000 This is a regular file; "type” field should be NFREG.

0120000 This is a symbolic link file; ”type” field should be NFLNK.

0140000 This is a named socket; ”type” field should be NFNON.
0004000 Set user id on execution.

0002000 Set group id on execution.

0001000 On directories, restricted deletion flag. On regular files, do-not-cache

flag.

0000400 Read permission for owner.

0000200 Write permission for owner.

0000100 Execute and search permission for owner.

0000040 Read permission for group.

0000020 Write permission for group.

0000010 Execute and search permission for group.

0000004 Read permission for others.

0000002 Write permission for others.

0000001 Execute and search permission for others.
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TABLE 6.4 POSIX stat and NFS Version 2 File Attributes

POSIX stat structure NFS version 2 file attributes

stjype type
stgnode inode

st_in0 fileid

st_dev fsid

st_rdevv rdev

st_nlink nlink

st_uid uid

st_gid gid
st_size size

st_atime atime

st_mtime mtime

st_ctime ctime

st_b1ksize blocks

st_blocl<s blocksize

sattr

The sattr structure contains the file attributes that can be set from the client.

The fields are the same as for fattr. A value of.-1 indicates a field that should

be ignored.

struct sattr {
uint32 mode;
uint32 uid;
uint32 gid;
uint32 size;
timeval atime;
timeval mtime;

}

UNIX clients will restrict change of file ownership (uid) to the superuser

or the current owner of the file. The client may apply further restrictions to

prevent a user -”giving away” a file or changing its group (gid) if ”restricted

chown” semantics apply (see chown_restricted on page 219). If the file owner-

ship or group is changed, then the client will probably reset the setuid and

setgi d bits in the file mode attribute to avoid any security problems.

Setting of the S1 ze field controls the size of the file on the server. A 51' 2e of
zero means that the file should be truncated. The client should take care to

flush any cached writes to the server before setting the size to preserve the

correct ordering of operations. Some servers may refuse to increase the size of
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6.2

the file through a change in the size field and return no error. The client can

work around this problem by unconditionally writing a byte of data at the
maximum offset.

If the useconds field of the mtime is set to 1 million, it is a signal to the
server to set the atime and mtime to the current time on the server. The client

may be unable to set an accurate time in these fields because of clock skew

between the client's and the server's clock or because the server's clock has

more precision that the client's. This overloading of the mt1'me.useconds field

is eliminated in version 3 with an explicit indication of whether client or
server time is to be used.

filename

typedef st ri ng<MAXNAMLEN> fi 1 ename;

The type filename is used for passing filenames or pathname components.

The protocol makes no restrictions on the characters that can appear in a file-

name though the server's operating system, or the filesystem on the server

- may reject names that contain ”illegal” characters (NFSERR_IO) or if the

name is too long (NFSERR_NAMETOOLONG). Although the XDR standard

limits the characters of a string to 7-bit ASCII characters, common usage is to
allow any ISO Latin—1 (8-bit) character to be encoded in a filename. Refer to

section 5.3.1 for more information on pathnames.

path

typedef string<MAXPATHLEN> path;

The type path is a pathname. The server considers it as a string with no inter-

nal structure, but to the client it is the name of a node in a filesystem tree. The

path is used only to set or return the text in a symbolic link (SYMLINK and

READLINK).

Server Procedures

The following sections define the RPC procedures that are supplied by an

NFS version 2 protocol server (Table 6.5). The RPC procedure number is fol-

lowed by its name. The Description part of each section details the XDR for-

mat of the procedure arguments and results and tells what the procedure is

expected to do and how its arguments and results are used. The Implemen-

tation part gives information about how the procedure is expected to work

and how’ it should be used by clients. The Errors part lists the errors

returned for specific types of failures. These lists are intended not as the

definitive statement of all of the errors that can be returned by any specific

procedure but as a guide for the more common errors that may be returned.
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TABLE 6.5 Summary of NFS Version 2 Procedures

Number Name Description Section

0 .\lFSPROC_NULL Null procedure 6.2.1, page 99

1 .\lFSPROC_GETATTR Get file attributes _ 6.2.2, page 100

2 .\lFSPROC_SETATTR Set file attributes’ I 6.2.3, page 102
3 .\lFSPROC_ROOT Not implemented

4 .\lFSPROC_LOOKUP Lookup file name 6.2.4, page 104

5 .\lFSPROC_READLlNK Read from symbolic link 6.2.5, page 106

6 \lFSPROC_READ Read from file 6.2.6, page 107

7 \lFSPROC_WRITECACHE Not implemented

8 .\lFSPROC_WRITE Write to file 6.2.7, page 109

9 \lFSPROC_CREATE Create file 6.2.8, page 112

10 .\IFSPROC._REMOVE Remove file 6.2.9, page 115
11 _\IFSPROC_RENAME Rename file 6.2.10, page 116

12 \lFSPROC_LlNK Create ink to file 6.2.11, page 119

13 .\IFSPROC_SYMLlNK Create symbolic link 6.2.12, page 120

14 ,\lFSPROC_MKDIR Create directory 6.2.13, page 122

15 .\lFSPROC_RMDlR Remove directory 6.2.14, page 124

16 \lFSPROC_READDlR Read directory 6.2.15, page 126

17 NFSPROC_STATFS Get file systems attributes 6.2.16, page 128

Client implementations should be prepared to deal with unexpected errors

coming from a server. Finally, a Snoop Trace of the procedure is included to

show a typical call and response.

6.2.1 Procedure 0: NULL—Do Nothing

Description

This procedure does no work. It is made available in all RPC services to allow

server response testing and timing.

Results

void void
Arguments

Arguments

None.

Results

None.
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Implementation

It is important that this procedure do no work at all so that it can be used to

measure the overhead of processing a service request. By convention, the

NULL procedure should never require any authentication. A server may

choose to ignore this convention, in a more secure implementation, where

responding to the NULL procedure call acknowledges the existence of a
resource to an unauthenticated client. The null procedure call is most com-

monly used to establish whether the NFS service is available and responding.

The null procedure is also used to establish an RPCSEC_GSS security con-

text. Security information is exchanged as arguments and results on the null

procedure call. For more information see section 4.7.2.

Errors

Since the NULL procedure takes no arguments and returns nothing, it cannot

return an error except where it is used to establish an RPCSEC_C-ZSS context.

Procedure 1: GETATTR—Get File Attributes

Description

Retrieves the attributes of a specified filesystem object.

Arguments Results

fhandle file; switch (uint32 status) {
case NFS_0K = O:

fattr attributes;
default:

void;
}

Arguments

file

The filehandle of an object whose attributes are to be retrieved.

Results

status

NFS_OK if successful, otherwise an error code.

attributes

The attributes for the object. The file attribute structure is described in
Table 6.2.
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Implementation

The attributes of filesystem objects are a point of major disagreement between

different operating systems. Servers should make a best attempt to support all
the attributes in the fattr structure so that clients can count on it as common

ground. Some mapping may be required to map loc_al attributes to those in
thefattrsfiucnue. 7 _

Most client NFS protocol implementations implement a time-bounded

attribute caching scheme to reduce over-the-wire attribute checks. In addi-

tion, NFS version 3 returns attributes on almost all calls, further reducing the

number of GETATTR requests. If the client is using a large memory cache or a

disk cache then the GETATTR call may be the most common NFS call from

these clients—simply checking whether cached objects have changed on the
server.

Clients that cache writes to the file should flush any cached data before

sending a GETATTR request so that the file mt ime attribute will return a sane

value that will not surprise an application that expects to see a recent modifi-
cation time due to recent writes.

Errors
 

NFSERR_IO 5 Some sort of hard error occurred when the opera-
tion was in progress——a disk error, for example.

NFsERR_STALE 70 The filehandle given in the arguments was invalid.
That is, the file referred to by that filehandle no
longer exists, or access to it has been revoked.
 

Snoop Trace of GETATTR

NFS: Proc = 1 (Get file attributes)
NFS: File handle = 0080001800000002000A00000001CE8C
NFS: 0E1FB8A2000A00000001CE8COE1FB8A2

U\/
NFS: Proc = 1 (Get file attributes)
NFS: Status = 0 (OK)

NFS: File type = 2 (Di rectory)
NFS: Mode = 040777

NFS: Type = Di rectory
NFS: Setuid = O, Setgid = O, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: 0ther's permissions = rwx
NFS: Link count = 17, UID = 0, GID = 1
NFS: File size = 1536, Block size = 8192, No. of blocks = 4
NFS: File system id = 8388632, File id = 118412
NFS: Access time 10-Aug-98 18:31:41.570007 GMT
NFS: Modification time 10-Aug-98 18:32:16.770002 GMT
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NFS: Inode change time = 10-Aug-98 18:32:16.770002 GMT

6.2.3 Procedure 2: SETATTR——Set File Attributes

Description

Procedure SETATTR changes one or more of the attributes ofva file system

object on the server. The new attributes are specified by a sattr structure.

Arguments Results

fhandle file; switch (uint32 status) {
sattr attributes; case NFS_OK = 0:

fattr attributes;
default:

void;
}

Arguments

fi 1 e

The filehandle for the object.

attributes

The attributes argument contains fields which are either -1 or are the new
value for the attribute of fi 1 e.

Results

status

NFS_OK if successful, otherwise an error code.

attributes

A fattr structure containing the new attributes for the object.

lmplementation

The size field is used to request changes to the size of a file. A value of 0
causes the file to be truncated, a value less than the current size of the file

causes data from new size to the end of the file to be discarded, and a size

greater than the current size of the file causes logically zeroed data bytes to be

added to the end of the file. Servers are free to implement this using holes or

actual zero data bytes. Clients should not make any assumptions regarding a

server's implementation of this feature, beyond that the bytes returned will

be zeroed. Servers must support extending the file size via SETATTR.

SETATTR is not guaranteed atomic. A failed SETATTR may partially

change a file’s attributes. Changing the size of a file with SETATTR indirectly

changes the mt ime. A client must account for this, as size changes can result
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in data deletion. If server and client times differ, programs that compare client

time to file times can break.

  Errors

NFSERR_PERM 1

NFSERR_IO 5

NFSERR_ACCES 13

NFSERR_lSDIR 21

NFSERR_ROFS 30

NFSERR_STALE 70

Not owner. The caller does not have correct owner-

ship to perform the requested operation.

‘ Some sort of hard error occurred when the opera-
tion was in progress——a disk error, for example.

i Permission denied. The caller does not have the
correct permission to perform the requested opera-
tion.

Is a directory. The caller specified a directory in a
nondirectory operation.

Read-only filesystem. Write was attempted on a
read—only filesystem.

The filehandle given in the arguments was invalid.
That is, the file referred to by that filehandle no
longer exists, or access to it has been revoked.
 

Snoop Trace of SETATTR

NFS: Proc = 2 (Set file at
NFS: File handle = 0080001
NFS: 4C87FC5
NFS: Mode = 037777777777

NFS: Type = ?

NFS: Setuid = 1, Setgid =
NFS: Owner's permissions
NFS: Group's permissions
NFS: Other's permissions
NFS: UID = -1
NFS: CID = -1
NFS: Size = -1
NFS: Access time = 1
NFS: Modification time =

0
NFS: Proc = 2 (Set file at
NFS: Status = 0 (OK)

NFS: File type = 1 (Regula
NFS: Mode = 0100664

NFS: Type = Regular file
NFS: Setuid = 0, Setgid =
NFS: Owner's permissions
NFS: Group's permissions
NFS: Other's permissions
NFS: Link count = 1, UID =
NFS: File size = 0, Block

tributes)
800000002000A00000001CE95
B000A00000001CE8COE1FB8A2

1, Sticky = 1
rwx
rwx
rwx

0—Aug—98 18:31:26.000000 GMT
10-Aug-98 18 : 31: 26 . 1000000 GMT

tributes)

r File)

0, Sticky = O
rw-
rw-

.. f‘——

3497, CID = 10
size = 8192, No. of blocks = 0

lllll
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NFS: File system id = 8388632, File id = 118421
NFS: Access time — 10-Aug-98 18:34:37.280001 GMT
NFS: Modification time 10-Aug-98 18:34:37.280001 GMT
NFS: Inode change time 10-Aug-98 18:34:37.280001 GMT

6.2.4 Procedure 4: LOOKUP—Look Up File Name

Description

Procedure LOOKUP searches a directory for a specific name and returns the

filehandle and attributes for the corresponding filesystem object.

Arguments Results

fhandle dir; switch (uint32 status) {
filename name; case NFS_OK = O:

fhandle file;
fattr attributes;

default:

void;

Arguments

dir A

The filehandle for the directory to search.
name

The name of the object to find.

Results

status

NFS_OK if successful, otherwise an error code.

fiie

The filehandle of the object corresponding to name.

attributes

The attributes of the object corresponding to name.

Implementation

At first glance, in the case where name refers to a mountpoint on the server,

two different replies seem possible. The server can return either the filehandle

for the underlying directory it is mounted on or the filehandle of the root of

the mounted directory. This ambiguity is resolved simply. A server will not

allow a LOOKUP operation to cross a mountpoint to the root of a different

filesystem, even if the filesystem is exported. This does not prevent a client
from accessing a hierarchy of filesystems exported by a server, but the client
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must mount each of the filesystems individually so that the mountpoint cross-

ing takes place on the client. A given server implementation may refine these

rules, given capabilities or limitations particular to that implementation. See

section 5.3.2for further description of pathname evaluation and section 8.5 for

a discussion of mountpoint crossing issues. _ i .
Two filenames are distinguished: . is an alias for the current directory, and

the name .. is an alias for the parent directory, that is, the directory that

includes the specified directory as a member. There is no facility for dealing

with a multiparented directory, and the NFS protocol assumes a hierarchy

organized as a single-rooted tree. If the name represents a symbolic link, the

server will return the filehandle for the symbolic link———not the file it points to.

Except in the case of multicomponent lookup, the client is responsible for all

parsing of filenames, including filenames that are modified by symbolic links

encountered during the lookup process.

Normally the filename is a single pathname component, but if a public

filehandle is used, then the filename may contain an entire pathname limited

to 255 bytes in size. For more details of WebNFS lookups, see section 16.5.

Errors
 

NFSERR,PERM 1 Not owner. The caller does not have correct owner-

ship to perform the requested operation.

NFSERR_NOENT 2 No such file or directory. The file or directory speci~
fied does not exist.

NFSERR_IO 5 Some sort of hard error occurred when the opera-
tion was in progress-—a disk error, for example.

NFSERR_ACCES 13 Permission denied. The caller does not have the Cor-

rect permission to perform the requested operation.

NFSERR_NOTD1R 20 Not a directory. The caller specified a nondirectory
in a directory operation.

NFSERR_NAMETOOLON 63 Filename too long. The filename in an operation
G was too long.

NFSERR_STA]_,E 70 The filehandle given in the arguments was invalid.
That is, the file referred to by that filehandle no

longer exists, or access to it has been revoked.
 

Snoop Trace of LOOKUP

NFS: Proc = 4 (Look up file name)
NFS: File handle = 0080001800000O02000AOO00OO01CE8C
NFS: OElFB8A2000AOOOOOOOlCE8COElFB8A2
NFS: File name = newfile *

N7\/
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NFS: Proc = 4 (Look up file name)
NFS: Status = 0 (OK)
NFS: File handle = 0080001800000002000A0OOOOO01CE95
NFS: 4C87FC5B00OA000OO0O1CE8COE1FB8A2

NFS: File type = 1 (Regular File)
NFS: Mode = 0100664

NFS: Type = Regular file
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions rw—
NFS: Group's permissions rw—
NFS: 0ther's permissions r——
NFS: Link count = 1, UID = 3497, GID = 10
NFS: File size = 0, Block size = 8192, No. of blocks = 0

NFS: File system id = 8388632, File id = 118421
NFS: Access time - 10-Aug-98 18:34:37.280001 GMT
NFS: Modification time 10-Aug-98 18:34:37.280001 GMT
NFS: Inode change time 10-Aug-98 18:34:37.280001 GMT

6.2.5 Procedure 5: READL|NK—Read from Symbolic Link

Description

Procedure READLINK reads the pathname stored in a symbolic link. The

pathname is an ASCII string that is opaque to the server. Whether created by

the client or created locally on the server, the data in a symbolic link are not

interpreted when created; they are simply stored. Since NFS normally parses

pathnames on the client, the pathname in a symbolic link may mean some-

thing different (or be meaningless) on a different client or on the server if a

different pathname syntax is used.

Arguments Results

fhandle symlink; switch (uint32 status) { 1
case NFS_OK = O: i

path data; £

default: 3
void; g

}

Arguments ‘
symlink §

The filehandle for a symbolic link (filesystem object of type NFLNK). 1

Results

5 tat U S

NFS_OK if successful, otherwise an error code.

data

The data associated with the symbolic link.  
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6.2.6

Implementation

A symbolic link is nominally a reference to another file. The data are not nec-

essarily interpreted by the server; they are just stored in the file. It is possible

for a client implementation to store a pathname that is not meaningful to the

server operating system in a symbolic link. A READLINK operation returns
the data to the client for interpretation. If different implementations want to

share access to symbolic links, then they must agree on the interpretation of

the data in the symbolic link.

The READLINK operation is allowed only on objects of type NFLNK. The

server should return the error NFS3ERR_INVAL if the object is not of type

NFLNK. (Note: The X/Open XNFS Specification for the NFS version 2 proto-
col defined the error status in this case as NFSERR~NXIO. This is inconsistent

with existing server practice.)

The server may be required to interpret the text in a symbolic link if a

WebNFS client sends a multicomponent lookup pathname that names a

symbolic link as an intermediate (not final) component. For more details, see
section 16.5.5.

 
Errors

NFSERR_IO 5 Some sort of hard error occurred when the opera-
tion was in progress——a disk error, for example.

NFsERR_NXIO 6 No such device or address.

NFSERR_STALE 70 The filehandle given in the arguments was invalid.
That is, the file referred to by that filehandle no
longer exists, or access to it has been revoked.
 

Snoop Trace of READLINK

NFS: Proc = 5 (Read from symbolic link)
NFS: File handle = 0080001800000002000A00O0O001CE9S
NFS: 4C886EDB000A0000O001CE8COE1FB8A2

X7

NFS: Proc = 5 (Read from symbolic link)
NFS: Status = 0 (OK)

NFS: Path = /export/home/data

Procedure 6: HEAD—Head from File

Description

Reads the data from a given offset in a file returning the data and the file
attributes.
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Arguments Results

fhandle file; switch (uint32 status) {
uint32 offset; case NFS_OK = O:
uint32 count; fattr attributes;
uint32 totalcount; opaque<MAXDATA> data;

default:

void;

Arguments

fi ie

The filehandle of the file from which data are to be read. It must identify a

file system object of type NFREG.

offset

The position within the file at which the read is to begin. An offset of 0
means to read data starting at the beginning of the file. If the offset is

greater than or equal to the size of the file, the status NFS_OK is returned

but the data field is zero length.
count

The number of bytes of data that are to be read. If the count is 0, the READ

will succeed and return 0 bytes of data, subject to access permissions check-

ing. The count must be less than or equal to the value of the tsize field in

the STATFS reply structure for the file system that contains file. If it is

greater, the server may return only tsi ze bytes, resulting in a short read.

totalcount

Unused. Removed in version 3.

Results

status

NFS_OK if successful, otherwise an error code.

attributes

The attributes of the file on completion of the read.

data

The counted data read from the file.

Implementation

If the server returns a ”short read,” (i.e., fewer than count bytes of data) to the

client, the client will assume that the last byte of data is the end of file. The

MAXDATA value of 8,912 bytes limits the absolute size of a read request,

though the server may require a smaller transfer size asindicated by the tsi ze
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attribute of the STATFS request in section 6.2.16. NFS version 3 adds a more

positive indication of end-of-file allowing a server to return less data than

requested without implying end-of—file.

 
 

 
Errors

NFSERR_IO 5 Some sort of hard error occurred when the opera-
tion was in progress———a disk error, for example.

NFSERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested opera~
tion. ’

NFSERR_lSDlR 21 Is a directory. The caller specified a directory in a
nondirectory operation.

NFSERR_STALE 70 The filehandle given in the arguments was invalid.
That is, the file referred to by that filehandle no
longer exists, or access to it has been revoked.
 

Snoop Trace of READ

NFS: Proc = 6 (Read from file)
NFS: File handle = 0080001800000002000A0000000lCE8F
NFS: 73135A03000A00000001CE8COE1FB8A2
NFS: Offset = 0
NFS: Count = 8192

T\.7

NFS: Proc = 6 (Read from file)
NFS: Status = 0 (OK)

NFS: File type = 1 (Regular File)
NFS: Mode = 0100644

NFS: Type = Regular file
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rw—
NFS: Group's permissions = r——
NFS: Other‘s permissions = r——
NFS: Link count = 1, UID = 0, GID = 1
NFS: File size = 29, Block size = 8192, No. of blocks = 2

NFS: File system id = 8388632, File id = 118415
NFS: Access time - 10-Aug-98 18:36:26.459999 GMT
NFS: Modification time 13-Aug-97 21:05:17.000000 GMT
NFS: Inode change time — 10-Aug-98 18:3S:44.800000 GMT
NFS: (29 byte(s) of data)

6.2.7 Procedure 8: WRITE--—Write to File

Description

Writes data beginning offset bytes from the beginning of file. The first byte

of the file is at offset zero. If the reply status is NFS_OK, then the reply
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attributes contains the attributes of the file after the write is complete. The

write operation is atomic. Data from this WRITE will not be mixed with data

from another client's WRITE. The arguments begi noffset and totalcount are

ignored and are removed in version 3.

Arguments Results

fhandle file; switch (uint32 status),:[
uint32 beginoffset; case NFS_OK = O:
uint32 offset; fattr attributes;
uint32 total count; default:
opaque<MAXDATA> data; void;

}

Arguments

fi 1 e

The filehandle for the file to which data are to be written. This must identify

a filesystem object of type NFREG.

begi noffset

Not used. Eliminated in version 3.

offset

The position within the file at which the write is to begin. An offset of 0

means to write data starting at the beginning of the file.

totalcount

Not used. Eliminated in version 3.

data

The data to be written to the file. If the size of the opaque data is O, the

WRITE will succeed and return a count of O, barring errors due to permis-

sions checking. The size of data must be less than or equal to the value of

the tsize field in the STATFS reply structure for the file system that con-

tains file. If greater, the server may write only tsize bytes, resulting in a
short write.

Results

status

NFS_OK if successful, otherwise an error code.

attributes

The attributes of the file at completion of the write.

Implementation

It is assumed that the act of writing data to a file will cause the mti me of the file

to be updated. However, the mtime of the file should not be changed unless
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the contents of the file are changed. Thus, a WRITE request with no data
should not cause the mt1‘ me of the file to be updated. V

The server must write all data in the write request. If the write cannot be

completed in its entirety, then an error must be returned. Additionally, the

data must be written to stable storage. The definition of stable storage.has
been historically a point of contention. The following expecifedrproperties of
stable storage may help in resolving design issues in the implementation. Sta-

ble storage is persistent storage that survives (1) repeated power failures; (2)

hardware failures (of any board, power supply, and so on); (3) repeated soft-

ware crashes, including reboot cycle. '

This definition does not address failure of the stable storage module itself.

Some implementations may return NFSERR_NOSPC instead of NFSERR_

DQUOT when a user's quota is exceeded.

 
  Errors

NFSERR_IO 5 Some sort of hard error occurred when the opera-
tion was in progress———a disk error, for example.

NFsERR_ACCEs 13 Permission denied. The caller does not have the

correct permission to perform the requested opera-
tion.

NFSERR_1SD1R 21 Is a directory. The caller specified a directory in a
nondirectory operation.

NFSERR_FB1G 27 File too large. The operation caused a file to grow
beyond the server's limit.

NFSERR_NOSPC 28 No space left on device. The operation caused the

server's filesystern to reach its limit.

NFSERR_ROFS 30 Read-only filesystem. Write was attempted on a
read~only filesystem.

NFsERR_DQUOT 69 Disk quota exceeded. The client's disk quota on the
server has been exceeded.

NFSERR_sTALE 70 The filehandle given in the arguments was invalid.
That is, the file referred to by that filehandle no

longer exists, or access to it has been revoked.
 

Snoop Trace of WRITE

NFS: Proc = 8 (write to file)
NFS: File handle = OO80001800000002000A00000001CE95
NFS: 4C892188000AO0000001CE8COE1FB8A2
NFS: Offset = 0

NFS: (29 bytes(s) of data)

J3
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NFS: Proc = 8 (write to file)
NFS: Status = 0 (OK)

NFS: File type = 1 (Regular File)
NFS: Mode = 0100644

NFS: Type = Regular fi1e
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions rw—
NFS: Group's permissions r——
NFS: Other's permissions r——
NFS: Link count = 1, UID = 3497, GID = 10
NFS: File size = 29, Block size = 8192, No. of blocks = 2

NFS: File system id = 8388632, File id = 118421
NFS: Access time — 10-Aug-98 18:36:26.410001 GMT
NFS: Modification time 10-Aug-98 18:36:26.470000 GMT
NFS: Inode change time 10-Aug-98 18:36:26.470000 GMT

6.2.8 Procedure 9: CREATE—Create File

Description

» Creates a regular file.

Arguments Results

fhandie dir; switch (uint32 status) {
filename name; case NFS_OK =vO:
sattr attributes; fhandle file;

fattr attributes; gr

default: if
void; i‘

3+

Arguments i

dir ‘,

The file handle for the directory in which the file is to be created. _ L11
name

The name that is to be associated with the created file.

attributes

The initial attributes assigned to the file.

Results

status

NFS_OK if successful, otherwise an error code.

file

The filehandle of the newly created regular file.  
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attributes

The attributes of the regular file just created.

Implementation

The create request does not support ”exclusive create” semantics; i.e., it does
not create the file only if it doesn't already exist. Clients can approximate this

feature by use of a prior LOOKUP request to establish the file's existence,

though this leaves open the possibility that another client or process might

create the file between the LOOKUP and CREATE request. Exclusive create is

supported by version 3.

As well as creating regular files (NFREG), the semantics of the CREATE

request are overloaded to permit the creation of devices nodes (NFCHR,

NFBLK, NFSOCK, and NFFIFO). These device nodes are just ”place holder”

nodes intended to be used by diskless NFS clients that need to be able to

create device entries in their NFS-mounted /dev directory. These filetypes are

indicated by setting of the mode bits to indicate the file type. The device major

and minor numbers require additional arguments to be set. These parameters

are compressed and inserted into the size attribute. The major and minor

attributes for these types refer to devices on the client, not the server. The

device overloading of the version 2 CREATE is not a formal part of the proto-

col and is not intended to be interoperable between different client and server

implementations. NFS version 3 adds an explicit MKNOD operation to create
these nodes (see section 7.3.12).

 
Errors

NFSERR_IO 5 Some sort of hard error occurred when the opera-
tion was in progress—a disk error, for example.

NFSERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested oper—
ation.

NFSERR_1SD1R 21 Is a directory. The caller specified a directory in a
nondirectory operation.

NFSERR_NOSPC 28 No space left on device. The operation caused the
server's fiiesystem to reach its limit.

NFSERR_ROFS 30 Read—0nly filesystem. Write was attempted on a
read-only filesystem.

NFSERR_NAMETOOLON 63 Filename too long. The filename in an operation
G was too long.

continued

r
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NFSERR_DQUOT 69 Disk quota exceeded. The client's disk quota on
the server has been exceeded.

NFSERR_sTALE 70 The filehandle given in the arguments was in-
valid. That is, the file referred to by that filehandle

no longer exists, or access to it has been revoked.
 

Snoop Trace of CHEATE

NFS: Proc = 9 (Create fi1e)
NFS: Fi1e hand1e = 00800018000O0O02000A0000O00lCE8C
NFS: 0E1FB8A2000A00O0O001CE8COE1FB8A2
NFS: Fi1e name = newfiie
NFS: Mode = 0664

NFS: Type = ?
NFS: Setuid = O, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rw—
NFS: Group's permissions = rw—
NFS: 0ther's permissions = r--
NFS: UID = -1
NFS: GID = 10
NFS: Size = O
NFS: Access time = -1

NFS: Modification time = -1

£7
NFS: Proc = 9 (Create fi1e)
NFS: Status = 0 (OK)
NFS: Fi1e hand1e = 00800018000O00O2000AO000O0O1CE95
NFS: 4C87FC5BO0OA00OOO0O1CE8COE1FB8A2

NFS: File type = 1 (Regu1ar Fi1e)
NFS: Mode = 0100664

NFS: Type = Reguiar fiie
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions rw—
NFS: Group's permissions rw—
NFS: 0ther's permissions r——
NFS: Link count = 1, UID = 3497, CID = 10
NFS: Fi1e size = 0, B1ock size = 8192, No. of b1ocks = O

NFS: Fi1e system id = 8388632, Fi1e id = 118421
NFS: Access time — 10-Aug-98 18:34:37.230001 GMT
NFS: Modification time 10-Aug-98 18:34:37.230001 GMT
NFS: Inode change time 10-Aug-98 18:34:37.230001 GMT
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6.2.9 Procedure 10: REMOVE--Remove File

Description

Procedure REMOVE removes (deletes) an entry from a directory. If the entry
in the directory was the last reference to the corresponding filesystem object,

the object may be destroyed. ’ ‘ '

Argztmetzts Results

fhand1e d1‘ r;
fflename name;

u1nt32 status;

Arguments

d1’ r

The filehandle for the directory from which the entry is to be removed.
name

The name of the entry to be removed.

Ftesults

status

NFS_OK if successful, otherwise an error code.

Implementation

In general, REMOVE is intended to remove nondirectory file objects and
RMDIR is to be used to remove directories. However, REMOVE can be used

to remove directories, subject to restrictions imposed by either the client or
server interfaces.

Since a file may have multiple names (as indicated by the n11‘nks file

attribute), the remove request may have no effect on the file data since

another valid name may still exist. Since a filehandle refers to the content of a

file (not its name), the filehandle for the file may continue to be valid after the

remove is complete.

If two processes on a UNIX client are accessing an NFS file and one client

removes (unlinks) the file, the other process must continue to have access to

the file data until it closes the file. This feature is implemented by having the

first process check the nhnks attribute. If it is greater than 1 (more than one

name), then the REMOVE request can be issued secure in the knowledge that

the filehandle will continue to be valid for the other process. If the nlinks
attribute is 1, a REMOVE cannot be sent since it would delete the file data

from under the other process and invalidate the filehandle. Instead, the first

process can issue a RENAME request to change the name to a hidden name.

Solaris clients use the name .nfsxxxx, where the x’s are digits intended to

make the name unique within the directory. These hidden files are deleted
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later by the server when it has determined that they are no longer in use. For
more details, see section 8.4.

Errors    

NFSERR_NOENT 2 No such file or directory. The file or directory
specified does not exist.

NFSERRJO 5 Some sort of hard error occurred when the opera-
tion was in progress——a disk error, for example.

NFSERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested
operation.

NFsERR_NOTDIR 20 Is not a directory. The caller specified a nondirec-

tory in a directory operation.

NFsERR_1sD1R 21 Is a directory. The caller specified a directory in a
nondirectory operation.

NFSERR_ROFS 30 Read-only filesystem. Write was attempted on a
read—only filesystem.

NFsERR_NAMETOOLONG 63 Filename too long. The filename in an operation

was too long.

NFSERR_sTALE 70 The filehandle given in the arguments was in-
valid. That is, the file referred to by that file-
handle no longer exists, or access to it has been
revoked.
 

Snoop Trace of REMOVE

NFS: Proc = 10 (Remove file)
NFS: File handle = OO800018000OOOO2000AOOOOOOO1CE8C
NFS: OE1FB8A2000AOOOOOOO1CE8COE1FB8A2
NFS: File name = newfile

Q
NFS: Proc = 10 (Remove file)
NFS: Status = 0 (OK)

6.2.10 Procedure 11: RENAME——Rename File

Description

Procedure RENAME renames the directory entry identified by fromname in the

directory fromdi r to toname in the directory todi r. The operation is required to

be atomic to the client; it cannot be interrupted in the middle or leave a partial
result on failure. Todi r and fromdi r must reside on the same filesystem and
server.



 6.2 Server Procedures 117

Arguments Results

fhandle fromdir; ‘uint32 status;
filename fromname;
fhandle todi r;
f1"|ename toname;

Arguments

fromdi r

The filehandle for the directory from which the entry is to be renamed.

fromname

The name of the entry that identifies the object to be renamed.

todi r

The filehandle for the directory to which the object is to be renamed.
toname

The new name for the object.

If the directory todi r already contains an entry with the name toname,

the source object must be compatible with the target: either both are nondi-

rectories or both are directories and the target must be empty. If compatible,

the existing target is removed before the rename occurs. If they are not com-

patible or if the target is a directory but not empty, the server should return
the error NFSERR_EXIST.

Results

status

NFS_OK if successful, otherwise an error code.

Implementation

The RENAME operation must be atomic to the client. This means that the

RENAME operation must not fail in a way that leaves a directory entry in a

partially renamed state nor should a client be able to detect any partially
renamed state on the server. If the fromdir and todir directories do not

reside on the same filesystem (fsid attributes are the same), then the server

may return an undetermined error. NFS version 3 servers will return
NFS3ERR_XDEV.

A filehandle may or may not become stale on a rename. However, server

implementors are strongly encouraged to attempt to keep filehandles from

becoming stale in this fashion.
On some servers, the filenames . and . . are illegal as either fromname or

toname. In addition, neither fromname nor toname can be an alias for fromdi r. If

fromdi r/fromname and todi r/toname both refer to the same file (they might be
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hard links of each other), then RENAME should perform no action and return
NFS_OK.

Errors   

specified does not exist.

NFsERR_1O 5 Some sort of hard error occurred when the opera-
tion was in progress——a disk error, for example.

NFsERR_ACCEs 13 Permission denied. The caller does not have the

correct permission to perform the requested oper-
ation.

NFsERR_EX1sT 17 File exists. The file specified already exists.

NFsERR_NQTD1R 20 Is not a directory. The caller specified a nondirec-
tory in a directory operation.

NFsERR_1sD1R 21 Is a directory. The caller specified a directory in a
nondirectory operation.

NFsERR_NOsPC 4 28 No space left on device. The operation caused the
server's filesystem to reach its limit.

NFsERR_ROFs 30 Read—only filesystem. Write was attempted on a
read-only filesystem.

NFsERR_NAMETOOLONG 63 Filename too long. The filename in an operation
was too long.

NFSERR_NOTEMPTY 66 Directory not empty. Attempted to remove a
directory that was not empty.

NFSERR_DQUOT 69 Disk quota exceeded. The client's disk quota on
the server has been exceeded.

NFsERR_sTALE 70 The filehandle given in the arguments was in-
valid. That is, the file referred to by that filehandle
no longer exists, or access to it has been revoked.
 

Snoop Trace of RENAME

NFS: Proc = 11 (Rename)
NFS: File handle = 008000l800000002000A000000OlCE8C
NFS: 0ElFB8A2000A0000000lCE8COElFB8A2
NFS: File name = oldname.txt
NFS: File handle = 008000l800000002000A0000000lCE8C
NFS: 0E1FB8A2000A0000000lCE8COElFB8A2

NFS: File name = newname.txt

J;
NFS: Proc = 11 (Rename)
NFS: Status = 0 (OK)

NFSERR_NOENT 2 No such file or directory. The file or directory -
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6.2.11 Procedure 12: L|NK—Create Link to File

Description

Creates the file toname in the directory given by todi r, which is a hard link to

the existing file given by fromfi 1 e. A hard link should have the property that
changes to either of the linked files as reflected in both files. When a hard ‘link
is made to a file, the attributes for the file should have a value for nl 1' nk that is

one greater than the value before the link.

Arguments Results

fhandle fromfile; u1'nt32 status;
fhandle todi r;
filename toname;

Arguments

fromfile

The filehandle for the existing filesystem object.

todi r

The filehandle for the directory in which the link is to be created.
toname

The name that is to be associated with the created link.

Results

status

NFS_OK if successful, otherwise an error code.

Implementation

Changes to any property of the hard—linked files are reflected in all the linked
files. When a hard link is made to a file, the attributes for the file should have

a value for n11‘ nk that is one greater than the value before the LINK.

The comments under RENAME regarding object and target residing on

the same file system apply here as well. The comments regarding the target

name apply as well.
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Errors  

NFSERR_PERM 1 Not owner. The caller does not have correct own-

' ership to perform the requested operation.

NFSERR_IO 5 Some sort of hard error occurred when the opera-

tion was in progress (e.g., could be a disk error).

Permission denied. The caller does not have the

correct permission to perform requested opera-
tion.

NFSERR_ACCES 13

NFSERR_EXIST 17

NFSERR_NOTDIR 20

File exists. The file specified already exists.

Not a directory. The caller specified a nondirec-
tory in a directory operation.

NFSERR_NOSPC 28 No space left on device. The operation caused the
server's filesystem to reach its limit.

NFSERR_ROFS 30 Read-only filesystem. Write was attempted on a

read-only filesystem.

NFSERR__NAMETOOLONG 63 Filename too long. The filename in an operation
was too long.

NFSERR__DQUOT 69 Disk quota exceeded. The client's disk quota on
the server has been exceeded.

NFSERR_STALE 70 The filehandle given in the arguments was in-

valid. That is, the file referred to by that filehandle
no longer exists, or access to it has been revoked.
 

Snoop Trace of LINK

NFS: Proc = 12 (Link)
NFS: File handle = 0080001800000002000A00O00001CE8F
NFS: 7313SAO3000AOOOOOOOlCE8COElFB8A2
NFS: File handle = O080001800000002000AOOOOOOOICEBC
NFS: OElFB8A2000AOOOOOOOlCE8COElFB8A2
NFS: File name = hardlink

5}\,

NFS: Proc = 12 (Link)
NFS: Status = 0 (OK)

6.2.12 Procedure 13: SYML|NK—Create Symbolic Link

Description

Creates a new symbolic link.
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Arguments Results

fhandle fromdir; u1'nt32 status;
filename fromname;
path linktext;
sattr attributes;

Arguments

fromdi r

The filehandle for the directory in which the symbolic link is to be created.

fromname

The name that is to be associated with the created symbolic link.

linktext

The string containing the symbolic link data.

attributes

The initial attributes for the symbolic link. On UNIX servers the attributes

are never used, since symbolic links always have mode 0777.

Results

status

NFS_OK if successful, otherwise an error code.

Implementation

A symbolic link is a reference to another file. The name given in to is not

interpreted by the server; it is only stored in the newly created file. When the

client references a file that is a symbolic link, the contents of the symbolic link

are normally transparently reinterpreted as a pathname to substitute. A

READLINK operation returns the data to the client for interpretation.

For symbolic links, the actual filesystem node and its contents must be

created in a single atomic operation. That is, once the symbolic link is visible,
there must not be a window where a READLINK would fail or return incor-

rect data.

Errors  

NFSERR_IO 5 Some sort of hard error occurred when the opera-
tion was in progress—a disk error, for example.

Permission denied. The caller does not have the

correct permission to perform the requested opera-
tion.

NFSERR_ACCES 13

NFsERR_EX[ST 17 File exists. The file specified already exists.

continued
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NFSERR_NOTDIR 20

NFSERR_NOSPC 28

NFSERR_ROFS 30

NFSERR_NAMETOOLO 63

Snoop
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:

NFS:
NFS:
NFS:
NFS:
NFS:

NFS:
NFS:

NG

NFSERR_DQUOT 69

NFSERR_STALE 70

Trace of SYMLINK

0E1FB8

File name = symlink
Path — pathname
Mode 0777

Type = ?

Setuid = O, Setgid
Owner's permissions
Group's permissions
Other's permissions

UID = -1
GID = -1
Size = -1
Access time
Modification time

III

\/.

Status = 0 (OK)

No‘: a directory. The caller specified a nondirectory
in a directory operation.

No space left on device. The operation caused the

server's filesystem to reach its limit.

Read-only filesystem. Write was attempted on a ,
read~only filesystem. :

Filename too long. The filename in an operation
was too long.

Disk quota exceeded. The client's disk quota on the
server has been exceeded.

The filehandle given in the arguments was in-
valid. That is, the file referred to by that filehandle
no longer exists, or access to it has been revoked.
 

Proc = 13 (Make symbolic link)
File handle = 0080001800000002000A00000OO1CE8C

A2000AO00OO0OlCE8COElFB8A2

= O, Sticky = 0
= rwx
= rwx

rwx

Proc = 13 (Make symbolic link)
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6.2.13 Procedure 14: MKD|R—Create Directory

Description

Creates a new directory.

Arguments

fhandle dir;
fiiename dirname;

Results

E switch (uint3i'status3 {
5 case NFS_OK = O:

 sattr attributes; E fhandle newdir;
§ fattr attributes;
§ default:

g void;
1 }

Arguments

dir

The filehandle for the directory in which the new directory is to be created.
di rname

The name that is to be associated with the new directory.

attributes

The initial attributes for the new directory.

Results

status

NFS_OK if successful, otherwise an error code.

newdi r

The filehandle for the new directory.

attributes

The attributes for the new directory.

Implementation

Many server implementations will not allow the filenames . or . . to be used

as targets in a MKDIR operation. In this case, the server should return
NFSERR_EXIST.

Errors   

NFSERR_IO 5 Some sort of hard error occurred when the opera-
tion was in progress——a disk error, for example.

NFSERR_ACCES 13 Permission denied. The caller does not ha\g§,fl,1;e,,ed

correct permission to perform the requested
operation.
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NFSERR_EX1ST 17 File exists. The file specified already exists.

NFSERR_NOTD1R 20 Not a directory. The caller specified a nondirec—

tory in a directory operation.

NFSERR_NOSPC 28 No space left on device. The operation caused the
server’s filesystem to reach its limit.

NFSERR_ROFS 30 Read—only filesystem. Write was attempted on a
read-only filesystem.

NFSERR_NAMETOOLONG 63 Filename too long. The filename in an operation

was too long.

NFSERR_DQUOT 69 Disk quota exceeded. The client's disk quota on
the server has been exceeded.

NFSERR_sTALE 70 The filehandle given in the arguments was in~

valid. That is, the file referred to by that filehandle

no longer exists, or access to it has been revoked.
 

Snoop Trace of MKDIR

NFS: Proc = 14 (Make directory)
NFS: File handle = 0080001800000002000A00000001CE8C
NFS: 0E1FB8A2000A00000001CE8COE1FB8A2
NFS: File name = newdir
NFS: Mode = 0775

NFS: Type = 7
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group‘s permissions = rwx
NFS: 0ther‘s permissions = r—x
NFS: UID = -1
NFS: GID = 10
NFS: Size = —1
NFS: Access time = -1
NFS: Modification time = -1

Q
NFS: Proc = 14 (Make directory)
NFS: Status = 0 (OK)
NFS: File handle = 0080001800000002000A00000000D32A
NFS: 6078F015000A00000001CE8COE1FB8A2

NFS: File type = 2 (Directory)
NFS: Mode = 040775

NFS: Type = Directory
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: 0ther's permissions = r—x
NFS: Link count = 2, UID = 3497, CID = 10

NFS: File size = 512, Block size = 8192, No. of blocks = 2
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NFS: File system id = 8388632, File id = 54058
NFS: Access time — 10-Aug-98 18:34:47.S1000O GMT
NFS: Modification time 10—Aug~98 18:34:47.51000O GMT
NFS: Inode change time 10-Aug-98 18:34:47.51000O GMT

lllll

6.2.14 Procedure 15: RMDlR—Remove Directory

Description

Removes a subdirectory from a directory.

Arguments Results

fhandle dir; uint32 status;
filename dirname;

Arguments

d i r

The filehandle for the directory from which subdirectory is to be removed.

di rname

The name of the subdirectory to be removed.

Results

status

NFS_OK if successful, otherwise an error code.

Implementation

Note that on some servers, removal of a non-empty directory is disallowed.

The client should not rely on the resources (disk space, directory entry, and so
on) formerly associated with the directory becoming immediately available.

Errors

Snoop Trace of RMDIH

NFS: Proc = 15 (Remove directory)
NFS: File handle = 0080001800000002000A0OOO0OO1CE8C
NFS: 0E1FB8A2000A00000OO1CE8COE1FB8A2
NFS: File name = newdir

U;
NFS: Proc = 15 (Remove directory)
NFS: Status = 0 (OK)
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NFSERR_NOENT

NFSERR_IO

NFSERR_ACCES

NFSERR_NOTDIR

NFSERR_ROFS.

NFSERR_NAMETOOLON
G

NFSERR_NOTEMPTY

NFSERR_STALE

13

20

30

63

66

70

No such file or directory. The file or directory

specified does not exist. 7

Some sort of hard error occurred when the opera-

tion was in progress—a disk error, for example.

Permission denied. The caller does not have the‘

correct permission to perform the requested
operation.

Not a directory. The caller specified a non-
directory in a directory operation.

Read—only filesystem. Write was attempted on a

read-only filesystem.

Filename too long. The filename in an operation

was too long.

Directory not empty. Attempted to remove a
directory that was not empty.

The filehandle given in the arguments was

invalid. That is, the file referred to by that file
handle no longer exists, or access to it has been
revoked.
 

6.2.15 Procedure 16: READDlR—Read from Directory

Description

Procedure READDIR retrieves a variable number of entries, in sequence, from

a directory and returns the name and file identifier for each, with information

to allow the client to request additional directory entries in a subsequent

READDIR request.

Arguments

fhandl e di r;
nfscooki e cookie;
ui nt32 count;

Results

switch (uint32 status) {
case NFS_0K = 0:

list {
uint32
filename
nfscookie

fileid;
name;

cookie;
}
bool eof;

default:

void;
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Arguments

d1" r

The filehandle for the directory to be read.

cookie

This should be set to O in the first request to read the directory. On subse-
quent requests, it should be the cookie as returned by the server from the

last entry returned by the previous READDIR call.
count

The maximum size of the results in bytes. The size must include all XDR

overhead. The server is free to return fewer than count bytes of data.

Results

status

NFS_OK if successful, otherwise an error code.

entries

A list of directory entries consisting of

Fileid

The F1‘ 1 e1‘ d attribute of each entry.
name

The name of the directory entry

cookie

An opaque reference to the next entry in the directory The cookie is

used in the next READDIR call to get more entries starting at a given

point in the directory.

eof

TRUE if the last entry in the list is the last entry in the directory or the list is

empty and the cookie corresponded to the end of the directory. If FALSE,

there may be more entries to read.

Implementation

A cookie can become invalid if two READDIRs are separated by one or more

operations that change the directory in some way (for example, reordering or

compressing it). On some servers a rename or unlink operation will invalidate

cookie values, for instance if the cookie represents the ordinal value of the

directory entry It is possible that the second or subsequent READDIR could

miss entries or process entries more than once. Version 3 adds a cookie verifier
that allows the client to detect whether the cookie is still valid.

confinued
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The server may return fewer than count bytes of XDR—encoded entries.

The count specified by the client in the request should be greater than or equal
to STATFS tsi ze.

Since UNIX clients give a special meaning to the fi 1 ei d value zero, UNIX

clients should be careful to map zero fileid values to some other value and

servers should try to avoid sending a zero fi lei d. ‘ '6 ‘ ‘

Errors    

NFSERR_NOENT 2 No such file or directory. The file or directory spec-
ified does not exist.

NFSERR_IO 5 Some sort of hard error occurred when the opera-

tion was in progress~a disk error, for example.

13 Permission denied. The caller does not have the

correct permission to perform the requested opera-
tion.

NFSERR_ACCES

NFSERR_NOTD1R 20 Not a directory. The caller specified a nondirectory
in a directory operation.

NFSERR_STALE 70 The fileandle given in the arguments was invalid.
That is, the file referred to by that file handle no
longer exists, or access to it has been revoked.
 

Snoop Trace of READDIR

NFS: Proc = 16 (Read from directory)
NFS: File handle = 0080001800000002000AOOOOO0O1EDD7
NFS: 3834CDO3000A000OOOO1CE8COE1FB8A2
NFS: Cookie = 0
NFS: Count = 1048

J}
NFS: Proc = 16 (Read from directory)
NFS: Status = 0 (OK)
NFS: File id Cookie Name
NFS: 126423 12 .
NFS: 118412 24 ..
NFS: 126424 44 index.html

NFS: 126425 512 hostname.pl
NFS: 4 entries
NFS: EOF = 1
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6.2.16 Procedure 17: STATFS-—Get Filesystem Attributes

Description

Returns the attributes of a filesystem.

Arguments K
fhandie fiie;

§ Resuhs

3 switch (uint32 status) {
1 case NFS_OK = 0:

uint32 tsize;
uint32 bsize;
uint32 biocks;
uint32 bfree;
uint32 bavaii;

defauit:

void;
 

E Arguments
5 f1‘ 1 e

A filehandle that identifies an object within the filesystem.

, Results

status

NFS_OK if successful, otherwise an error code.

tsize

The optimum transfer size of the server in bytes. This is the number of

bytes the server would like to have in the data part of READ and WRITE

requests.

bsize

The block size in bytes of the filesystem.

b1ocks

The total number of bsize blocks on the filesystem.

bfree

The number of free bsize blocks on the filesystem.

bavai1

The number of bsize blocks available to nonprivileged users.
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Implementation

Not all implementations can support the entire list of attributes. It is expected

that servers will make a best effort at supporting all the attributes. Note: This

call does not work well if a filesystem has variable sizeblocks.

 

NFSERR_STALE 70

Errors 

NFSERR_lO 5 Some sort of hard error occurred when the opera-
tion was in progress——a disk error, for example.

The filehandle given in the arguments was invalid.
That is, the file referred to by that filehandle no

longer exists, or access to it has been revoked.

Snoop Trace of STATFS
NFS:
NFS: ‘
NFS:

PL\/

NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:

Proc = 17 (Get filesystem attributes)
File handle = 00800018000O0002000A00000001CE8C

OElFB8A2000AOOO0OO0lCE8COElFB8A2

Proc = 17 (Get filesystem attributes)
Status = 0 (OK)
Transfer size = 8192
Block size = 1024
Total blocks = 292015
Free blocks = 115552
Available blocks = 86352



 
Chapter 7

NFS Version 3

lthough NFS version 2 has been successfully implemented on many
different operating systems and filesystems, its UNIX orientation and

simplicity made it difficult or impossible for the protocol to provide com-
plete access to all the features offered by the operating systems on which it
was implemented. The NFS engineers at Sun received many requests for

protocol enhancements that might be incorporated into a future version of

the protocol:

n File versioning
- Record—oriented I/O
- Macintosh file formats

1 Extensible file types
- Extended attributes

n and many more . . .

The draft version 3 protocol specification became a ”kitchen sink” of fea-

tures that evolved from one draft to another over several years. Eventually it

became clear that in trying to please everybody, the complexity of the protocol
precluded any practical implementation. It pleased nobody.

Meanwhile, the need for changes did not relent. Most notable was the

need for access to large files. The NFS Version 2 protocol allowed only 32-bit
unsigned file offsets, which limited accessible file size to 4 GB. Several ven-

dors were upgrading their operating systems to support 64-bit memory

addresses and file offsets, and the NFS file offset field needed a corresponding

increase; however, this could not be done without creating a new version of

the protocol. At the February 1992 Connectathon event in San Jose, a group of

NFS vendors met and resolved to empty the kitchen sink and get NFS version

3 on the road with support for 64-bit file offsets and a modest collection of

other protocol fixes and improvements. The utility of some of these fixes had

been demonstrated already in an NFS variant called NQNFS in the 4.4BSD

implementation of NFS (described in section 12.2). NQNFS included 64-bit

131
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7.1

7.1.1

7.1.2

file offsets, procedures similar to ACCESS and READDIRPLUS, and caching

hints similar to version 3 weak cache consistency.

Engineers from Auspex, Inc., Cray Research, Digital Equipment Corpora-

tion, Data General, Hewlett Packard, IBM, Legato, Network Appliance, the

Open Software Foundation, and Sun Microsystems formed a mailing list and

designed the NFS version 3 protocol cooperatively by e—mail. With an agreed

goal of completing the design and first implementations of the protocol

within a year, guiding principles of the protocol design effort were to keep it

simple and throw out any controversial proposals. The effort was low key and

described as a ”minor rev” consisting of some field extensions (64-bit offsets),

protocol ”fixes” (remove field overloading), and performance improvements

(speed up writes and reduce the number of GETATTR calls). The first protocol

draft followed a week-long Boston meeting in July 1992, and the first imple-

mentations by Peter Staubach of Sun and Chet Iuczcak of Digital were inter-

operating several months later and tested at Connectathon in 1993.

Much of the text in this section is adapted directly from [RFC 1813].

Changes from the NFS Version 2 Protocol

As an evolutionary revision of the NFS protocol, NFS version 3 is best under-
stood in relation to NFS version 2. This section describes these changes.

Deleted Procedures

The ROOT and WRITECACHE procedures were removed. These were never

' described or implemented in the version 2 protocol.

Modified Procedures

LOOKUP

The LOOKUP return structure now includes the attributes for the directory
searched.

READ

The reply structure includes a boolean that is TRUE if the end-of-file was

encountered during the READ. This allows the client to detect end-of-file

correctly.

WHITE

1 The begi noffset and total count fields were removed from the WRITE argu-
ments. These fields were never described or used by the NFS version 2 proto-

col. The reply now includes a count so that the server can write less than the

requested amount of data, if required. An indicator was added to the argu-  
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7.1.3

ments to instruct the server as to the level of cache synchronization that is
required by the client.

CREATE

An exclusive flag and a create verifier were added for the exclusive creation of

regular files. An exclusive create is forced by the O_EXCL flag to the POSIX
open() call and requires an error to be returned if the file already exists.
Although NFS version 2 clients could approximate the semantic via a

LOOKUP call before the CREATE, there was nothing to prevent another client

or server process from creating the file between the LOOKUP and the

CREATE requests.

READDIR

The READDIR arguments now include a verifier to allow the server to

validate the cookie. The cookie is now a 64-bit unsigned integer instead of the

4—byte array that was used in the NFS version 2 protocol. This will help to
reduce interoperability problems.

New Procedures

ACCESS

Provides an explicit over—the-wire permissions check, which addresses

known problems with the superuser ID mapping feature in many server

implementations (where, due to mapping of root user, unexpected permis-

sion-denied errors could occur while reading from or writing to a file).

ACCESS also provides correct results where file access is controlled by an

ACL (access control list). It removes the assumption, which was made in the

NFS version 2 protocol, that access to files was controlled by UNIX-style
mode bits.

MKNOD

Supports the creation of special files, which avoids overloading fields of

CREATE as was done in some NFS version 2 protocol implementations.

READDIFIPLUS

Extends the functionality of READDIR by returning not only filenames and

file IDs, but also filehandles and attributes for each entry in a directory

Fsuvro

Provides nonvolatile information about a file system. The reply includes pre-

ferred and maximum read transfer size, preferred and maximum write trans-

fer size, and flags stating whether hard links or symbolic links are supported.
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7.1.4

7.1.5

Also returned are preferred transfer size for READDIR procedure replies,

server time granularity, and whether times can be set in a SETATTR request.

FSSTAT

Replaces the NFS version 2 STATFS procedure, providing volatile information
about a file system for use by utilities such as the UNIX df Command. The
reply includes the total size and free space in the filesystem specified in bytes,
the total number of files and number of free file slots in the filesystem, and an

estimate of time between filesystem modifications (for use in cache consis-

tency checking algorithms).

PATHCONF

Returns information on filesystem characteristics necessary to support the

POSIX pathconf call.

COMMIT

Commits buffered data on the server to stable storage. Used in conjunction

with the new asynchronous WRITE modes.

Filehandle Size

The NFS version 2 filehandle was a fixed-length opaque array of 32 bytes. Ver-

sion 3 changed this to a variable length array with an upper limit of 64 bytes.
The filehandle was converted from fixed length to variable length to reduce

local storage and network bandwidth requirements for systems that do not

utilize the full 64 bytes of length.

Maximum Data Sizes

NFS version 2 limited the amount of data that could be transferred in a single

READ or WRITE request to 8192 bytes. NFS version 3 sets the maximum size
of a data transfer to values in the FSINFO return structure. In addition, pre-

ferred transfer sizes are returned by FSINFO. The protocol does not place any
artificial limits on the maximum transfer sizes; clients and server can use

whatever transfer size is mutually acceptable. Version 2 filenames and path-

names were limited to 255 and 1024 characters. Version 3 specifies these as

strings of variable length. The actual length restrictions are determined by the

client and server implementations as appropriate. The error NFS3ERR_

NAMETOOLONG is provided to allow the server to return an indication to

the client that it received a pathname that was too long for it to handle.
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7.1.6 Error Return

Error returns in some instances now return data (for example, postoperation
attributes). The nfsstat3 enumeration now defines the full set of errors that

can be returned by a server. No other values are allowed.

7.1.7 File Type

The version 3 file type includes NF3CHR and NF3BLI< for special files.

Attributes for these types include subfields for UNIX major and minor
devices numbers. NF3SOCK and NF3FIFO are now defined for sockets and

fifos in the file system.

7.1.8 File Attributes

The biocksi ze (the size in bytes of a block in the file) field was removed and

the mode field no longer contains file type information. The size and fi 1 e1’ d

fields were widened to 64-bit unsigned integers from 32-bit integers. Major

and minor device information is presented in a distinct structure. The bi ocks

field name was changed to used and contains the total number of bytes used

by the file. It is also a 64-bit unsigned integer.

NFS version 2 returned file attributes only for the following seven opera-
tions: GETATTR, SETATTR, LOOKUP, READ, WRITE, CREATE, and MKDIR.

NFS version 3 returns file attributes in the results of all procedures to preempt

the need for the client to make explicit GETATTR calls to update cached

attributes. In addition, directory operations like CREATE, MKDIR, MKNOD,
LINK and SYMLINK return not only the attributes of the new directory entry

but also the attributes of the directory.
NFS version 3 introduced a new subset of the file attributes that are used

to implement weak cache consistency. This subset, consisting of the file size,

mti me, and cti me, can be used by the client to detect any changes in attributes

on the ‘server that would have been masked by the client's own request. For

instance, when the client creates a new file, it can detect whether the directory

was already modified before the server created the client's file. The client can

then invalidate any cached directory information.

7.1.9 Set File Attributes

In the NFS version 2 protocol, the settable attributes were represented by a
subset of the file attributes structure; the client indicated attributes that were

not to be modified by setting the corresponding field to -1, overloading some

unsigned fields. The sattr3 structure uses a discriminated union for each
field to tell whether or how to set that field. In addition, the ati me and mti me

fields can be set to either the server's current time or a time supplied by the
client.

.
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7.1.10

7.2

32-Bit Clients/Servers and 64-Bit Clients/Servers

The 64-bit nature of the NFS version 3 protocol introduced several compatibil-

ity problems. The most notable emerged from mismatched clients and servers,
that is, a 32-bit client and a 64-bit server or a 64-bit client and a 32-bit server.

The problems of a 64-bit client and a 32-bit server are easy to handle. The
client will never encounter a file it cannot handle. If it sends a request to the
server that the server cannot handle, the server should reject the request with

an appropriate error.

The problems of a 32-bit client and a 64-bit server are much harder to han-

dle. In this situation, the server does not have a problem because it can handle

anything the client can generate. However, the client may encounter a file it
cannot handle. The client will not be able to handle a file whose size cannot be

expressed in 32 bits. Thus, the client will not be able to properly decode the
size of the file into its local attributes structure. Also, a file can grow beyond

the limit of the client while the client is accessing the file.

The solutions to these problems are left up to the individual implementor.

However, there are two common approaches used to resolve this situation.

The implementor can choose between them or even can invent a new solution
altogether. The most common solution is for the client to deny access to any

file whose size cannot be expressed in 32 bits. This is probably the safest, but it

does introduce some strange semantics when the file grows beyond the limit

of the client while it is being accessed by that client. The file becomes inacces-

sible even while it is being accessed. ' A
The second solution is for the client to map any size greater than it can

handle to the maximum size it can handle. Effectively, it is lying to the appli-

cation program. This allows the application access to as much of the file as

possible given the 32-bit offset restriction. This eliminates the strange seman-
tic of the file effectively disappearing after it has been accessed, but it does

introduce other problems. The client will not be able to access the entire file.

Currently, the first solution is the recommended solution. However, client

implementors are encouraged to do the best they can to reduce the effects of
this situation.

A different kind of problem exists with the NFS version 3 directory cook-

ies. These cookie values (section 7.3.17) were extended from a 32-bit quantity

in NFS version 2 to 64 bits in NFS version 3. Operating systems that use a 32-

bit directory offset can run into difficulties if they receive 64-bit cookie values.

Basic Data Types

This section describes data structures used as arguments and results by the

protocol procedures.
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7.2.1 Sizes

These are the sizes of various XDR structures used in the following protocol
description:

const NFS3_FHSIZE = 64; , _:
/* Max size in bytes of a file handTe */

const NFS3_COOKIEVERFSIZE = 8;

/"" Max size in bytes of cookie verifier
* used by READDIR and READDIRPLUS */

const NFS3_CREATEVERFSIZE = 8;

/* The size in bytes of the opaque verifier
used for exclusive CREATE "~'/

const NFS3_wRITEVERFSIZE = 8;

/* The size in bytes of the opaque verifier used
* for asynchronous WRITE */

7.2.2 Basic Data Types

The following XDR definitions are basic definitions that are used in other
structures.

fiIename3

typedef string<> fi1ename3;

Refer to section 5.3.1 for a description of allowable filenames.

nfspath3

typedef stri ng<> nfspath3;

Pathnames are used only to contain symbolic link text in the procedures
SYMLINK and READLINK.

coakieverf3

typedef opaque [NFS3_COOKIEVERFSIZE] cooki everf3;

A cookie verifier returned in the response to READDIR and READDIRPLUS

calls to verify that the cookie is still valid (sections 7.3.17 and 7.3.18).

createverf3

typedef opaque [NFS3_CREATEVERFSIZE] createve rf3;
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An opaque verifier supplied by the client and checked by the server to sup-

port exclusive CREATE semantics (section 7.3.9).

writeverf3

typedef opaque[NFS3_wRITEVERFSIZE] writeverf3;

A verifier provided by the server that allows the client to check whether the

server has rebooted and lost pending asynchronous writes (section 7.3.8).

nfsstat3

enum nfsstat3 {
NFS3_OK = 0, /* Successful call */
NFS3ERR_PERM = 1, /* Not owner */
NFS3ERR_NOENT = 2, /* No such file or directory */
NFS3ERR_I0 = 5, /* I/O Error */ ,
NFS3ERR_NXI0 = 6, /* I/O Error — no such device */
NFS3ERR_ACCES = 13, /* Permission denied */
NFS3ERR_EXIST = 17, /* File already exists */
NFS3ERR_XDEV = 18, /* Invalid cross device link */
NFS3ERR_NODEV = 19, /* No such device */

NFS3ERR_NOTDIR = 20, /* Not a directory */
NFS3ERR_ISDIR = 21, /* Is a directory */
NFS3ERR_INVAL = 22, /* Invalid argument */
NFS3ERR_FBIG = 27, /* File too big */
NFS3ERR_NOSPC = 28, /* No space left on device */
NFS3ERR_ROFS = 30, /* Read—only filesystem */
NFS3ERR_MLINK = 31, /* Too many hard links */
NFS3ERR_NAMETO0LONG = 63, /* Filename is too long */
NFS3ERR_NOTEMPTY = 66, /* Directory is not empty */
NFS3ERR_DQUOT = 69, /* Resource quota exceeded */
NFS3ERR_STALE
NFS3ERR_REMOTE
NFS3ERR_BADHANDLE
NFS3ERR_NOT_SYNC
NFS3ERR_BAD_CO0KIE
NFS3ERR_NOTSUPP
NFS3ERR_TOOSMALL
NFS3ERR_SERVERFAULT
NFS3ERR_BADTYPE
NFS3ERR_JUKEBOX

70, /* Invalid filehandle */
71, /* Filehandle not server local */

10001, /* Illegal Filehandle */
10002, /* Setattr update problem */
10003, /* Bad readdir cookie */

10004, /* Operation not supported */
10005, /* Buffer is too small */
10006, /* Unknown server error */
10007, /* Invalid filetype */
10008 /* Server operation pending */

}

The nfsstat3 type is returned with every procedure’s results except for

the NULL procedure. A value of NFS3_OK indicates that the call completed

successfully. Any other valueindicates that some error occurred on the call, as

identified by the error code. Note that the precise numeric encoding must be

followed. No other values maybe returned by a server. Servers are expected
to make a best effort mapping of error conditions to the set of error codes
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defined. In addition, no error precedences are specified. Error precedences
determine the error value that should be returned when more than one error

applies in a given situation. The error precedence will be determined by the

individual server implementation. If the client requires specific error prece-

dences, it should check for the specific errors for itself. A description of each
defined error appears in Table 7.1. ' '

ftype3

The enumeration ftype3 gives the type of a file. The type NF3REG is a regular

file, NFBDIR is a directory, and NF3LNK is a symbolic link.

The remaining types are special types intended for use by diskless UNIX

clients. NF3BLK is a block special device, NF3CHR is a character special

device, NF3SOCK is a UNIX domain socket, and NFBFIFO is a named pipe.

While there are no procedures within the NFS protocol that operate on these

special objects directly, the protocol does allow these objects to be created via

the MKNOD procedure (section 7.3.12).

enum ftype3 {
NF3REG= 1, /* Regular file */
NF3DIR= 2, /* Directory */
NF3BLK= 3, /* Block special device */
NF3CHR= 4, /* Character special device */
NF3LNK= S, /* Symbolic link */
NF3SOCK= 6, /* Socket ""/

NF3FIFO= 7 /* Named pipe */
}

specdatas

struct specdata3 {

uint32 specdatal;
uint32 specdata2;

}

The interpretation of the specdata fields depends on the type of filesystem

object. For a block special (NF3BLK) or character special (NFBCHR) file,

specdatal and specdata2 are the major and minor device numbers, respec-

tively (this is obviously a UNIX-specific interpretation). For all other file

types, these two elements should either be set to 0 or the values should be

agreed on by the Client and server. If the client and server do not agree on the

values, the client should treat these fields as if they are set to 0. This data field

is returned as part of the fattr3 structure and so is available from all replies

returning attributes. Since these fields are otherwise unused for objects that

are not devices, out-of—band information can be passed from the server to the

client. However, once again, both the server and the client must agree on the

values passed. C0,m,,,,ed
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TABLE 7.1 NFS Version 3 Errors

Error name Value Meaning

NFS3_OK 0 Indicates that the call completed successfully.

NFS3ERR'_PERM 1 Not owner. The operation was not allowed because the caller is
either not a privileged user (root) or not the owner of the target
of the operation.

NFS3ERR_NOENT 2 No such file or directory. The file or directory name specified
does not exist.

NFS3ERR_IO 5 I /0 error. A hard error (for example, a disk error) occurred

while processing the requested operation.

NFS3ERR_NXIO 6 1/0 error. No such device or address.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the correct permis-

sion to perform the requested operation. Contrast this with
NFS3ERR_PERM, which restricts itself to owner or privileged

user permission failures.

NFS3ERR_EXIST 17 File exists. The file specified already exists.

NFS3ERR_XDEV 18 Attempt to do a cross-device hard link.

NFS3ERR_NODEV 19 No such device.

NFS3ERR_NOTDIR 20 Not a directory. The caller specified a nondirectory in a direc-

tory operation. '

NFS3ERR_ISDIR 21 Is a directory. The caller specified a directory in a nondirectory
operation.

NFS3ERR_INVAL 22 Invalid argument or unsupported argument for an operation.

Two examples are attempting a READLINK on an object other
than a symbolic link and attempting to SETATTR a time field
on a server that does not support this operation.

NFS3ERR__FBIG 27 File too large. The operation would have caused a file to grow

beyond the server's limit. V

NFS3ERR_NOSPC 28 No space left on device. The operation would have caused the
server's filesystem to exceed its limit.

NFS3ERR_ROFS 30 Read-only filesystem. A modifying operation was attempted

on a read-only filesystem.

NFS3ERR_MLINK 31 Too many hard links.

NFS3ERR_NAMETOOLONG 63 The filename in an operation was too long.
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TABLE 7.1 NFS Version 3 Errors
 

Error name Value Meaning

NFS3ERR_NOTEMPTY 66 An attempt was made to remove a directory that was not
empty. V

NFS3ERR_DQUOT 69 Resource (quota) hard limit exceeded. The user's resource limit
on the server has been exceeded.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the arguments was
invalid. The file referred to by that filehandle no longer exists,
or access to it has been revoked.

NFS3ERR_REMOTE 71 Too many levels of remote in path. The file handle given in the
arguments referred to a file on a nonlocal file system on the
server.

NFS3ERR_BADI-IANDLE 10001 Illegal NFS filehandle. The filehandle failed internal consis-
tency checks.

NFS3ERR_NOT_SYNC 10002 Update synchronization mismatch was detected during a
SETATTR operation.

NFS3ERR_BAD_COOKIE 10003 READDIR or READDIRPLUS cookie is stale.

NFS3ERR_NOTSUPP 10004 Operation is not supported.

NFS3ERR_TOOSMALL 10005 Buffer or request is too small.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not map to any legal
NFS version 3 protocol error values. Client should translate

this into an appropriate error. UNIX clients may choose to
translate this to EIO. '

‘NFS3ERR_BADTYPE 10007 An attempt was made to create an object of a type not sup-
ported by the server.

NFS3ERR_]UKEBOX 10008 Server initiated the request but was not able to complete it in a
timely fashion. Client should wait and then try the request
with a new RPC transaction ID. For example, this error should

be returned from a server that supports hierarchical storage
and receives a request to process a file that has been migrated.
In this case, server should start the immigration process and re-
spond to client with this error.

nfs_fh3

: struct nfs_fh3 { t

‘ opaque<NFS3_FHSIZE>data;
}
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The nfs_fh3 filehandle is the variable-length opaque object that is returned

by the server on LOOKUP, CREATE, MKDIR, SYMLINK, MKNOD, LINK, or

READDIRPLUS operations, which is used by the client on subsequent opera-

tions to reference a filesystem object such as a file or directory. The filehandle

contains all the information the server needs to distinguish an individual file.

To the client, the filehandle is opaque. The client stores filehandles for use in‘a

later request and can compare two filehandles from the same server for equal-

ity by doing a byte-by-byte comparison but cannot otherwise interpret the

contents of filehandles. If two filehandles from the same server are equal, they

must refer to the same file, but if they are not equal, no conclusions can be

drawn. Servers should try to maintain a one-to-one correspondence between

filehandles and files, but this is not required. Clients should use filehandle

comparisons only to improve performance, not for correct behavior.

Servers can revoke the access provided by a filehandle at any time. If

the filehandle passed in a call refers to a filesystem object that no longer exists
on the server or access for that filehandle has been revoked, the error

NFS3ERR_STALE should be returned.

WebNFS clients and servers recognize a public filehandle as one that has

zero length (see section 16.4).

nfstime3

The nfsti me3 structure gives the number of seconds and nanoseconds since

midnight, Greenwich Mean Time, January 1, 1970. It is used to pass time and
date information.

struct nfstime3 {

uint32 seconds; /* Time in sec since midnight 1/1/70 */
uint32 nseconds; /* Fractional nanoseconds */

}

Since negative values are not permitted, it cannot be used to refer to files older

than 1970. The times associated with files are all server times except in the

case of a SETATTR operation where the client can explicitly set the file time. A

server converts to and from local time when processing time values, preserv-

ing as much accuracy as possible.

fattr3

The file attribute structure defines the attributes of a filesystem object (Table

7.2). It is returned by most operations on an object; in the case of operations

that affect two objects (for example, a MKDIR that modifies the target direc-

tory attributes and defines new attributes for the newly created directory), the
attributes for both are returned.

struct fattr3 {
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ftype3 type; /* The file type */
uint32 mode; /* File permission bits */
uint32 nlink; /* Number of hard links */
uint32 uid; /* File user ID (owner) */

uint32 gid; /* File group ID */
uint64 size; /* File size in bytes */
uint64 used; /* Disk space used */
specdata3 rdev; /* File device information */
uint64 fsid; /* Filesystem identifier */
uint64 fileid; /* File number within filesystem */
nfstime3 atime; /* Last access time */

nfstime3 mtime; /* Last modify time */
nfstime3 ctime; /* Last attribute change time */

TABLE 7.2 fattr3 File Attributes

Attribute Description

W99 Type of the file

mode Protection mode bits (see Table 7.3)

n‘! i nk Number of hard links to file—-that is, number of different names for same file

ui d User ID of the owner of the file

gi d Group ID of the group of the file

si ze Size of the file in bytes

used Number of bytes of disk space that the file actually uses (which can be

smaller than the size because the file may have holes or it may be larger
due to fragmentation)

r'deV Identifies the device file if the file type is NFBCHR or NF3BLK (see
specdata3 on page 141)

fsi d Filesystem identifier for the filesystem

fi ‘I ei d Number that uniquely identifies the file within its filesystem (on UNIX this
would be the inode number)

a’C‘i me The time when the file data were last accessed

mti me The time when the file data were last modified

cti me The time when the attributes of the file were last changed. Writing to the file
changes the cti me in addition to the mti me.

In some cases, the attributes are returned in the structure wcc_data, which

is defined later; in other cases the attributes are returned alone. The main

changes from the NFS version 2 protocol are that many of the fields have been

widened and the major/minor device information is now presented in a dis-

tinct structure rather than being packed into a 32-bit field. All servers should
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support this set of attributes even if they have to simulate some of the fields.
The mode bits are defined in Table 7.3.

TABLE 7.3 fattr3 Structure Access Modes

Mode Bit

(Octal) Description

0004000 Set user ID on execution.

0002000 Set group ID on execution. _

0001000 On directories, restricted deletion flag. On regular files, do-not—cache flag
(not defined in POSIX).

0000400 Read permission for owner.

0000200 Write permission for owner.

0000100 Execute permission for owner on a file.
Or 1oo1<up (search) permission for owner in directory.

0000040 Read permission for group.

0000020 Write permission for group.

0000010 Execute permission for group on a file.
Or 1oo1<up (search) permission for group in directory.

0000004 Read permission for others.

0000002 Write permission for others.

0000001 Execute permission for others on a file.

Or lookup (search) permission for others in directory.

post_op_attr

This structure is used for returning attributes in operations that are not

directly involved with manipulating attributes. One of the principles of the

NFS version 3 protocol is to return the real value from the indicated operation

and not an error from an incidental operation. The post_op_attr structure

was designed to allow the server to recover from errors encountered while

getting attributes.

union post_op_attr switch Cboolean) {
case TRUE:

fattr3 attributes;
case FALSE:

void;
}

This structure appears to make returning attributes optional. However, server
implementors are strongly encouraged to make their best effort to return
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attributes whenever possible, even when returning an error. In returning

attributes in the results of all version 3 procedures, the protocol provides cli-

ents with a frequent supply of fresh attributes, precluding the need for addi-

tional GETATTR requests to restore stale, cached attributes.

pre_op_-attr

This is the subset of preoperation attributes needed to better support the weak
cache consistency semantics.

union pre_op_attr switch (boolean) {
case TRUE:

uint64 size; /* File size in bytes */

nfstime3 mtime; /* File modification time */
nfstime3 ctime; /* Attribute modification time */

case FALSE:

void;
}

The size is the file size in bytes of the object before the operation; mti me is the

time of last modification of the object before the operation; cti me is the time of

last change to the attributes of the object before the operation.

The use of mti me by clients to detect changes to filesystem objects residing

on a server is dependent on the granularity of the time base on the server.

wcc_data

\/Vhen a client performs an operation that modifies the state of a file or direc-

tory on the server, it cannot immediately determine from the postoperation

attributes whether the operation just performed was the only operation on the

object since the last time the client received the attributes for the object. This is

important, since if an intervening operation has changed the object, the client

will need to invalidate any cached data for the object (except for the data that

it just wrote).

To deal with this, the notion of weak cache consistency data or wc c_data is

introduced. A wcc_data structure consists of certain key fields from the object

attributes before the operation, together with the object attributes after the

operation. This information allows the client to manage its cache more ac-

curately than in NFS version 2 protocol implementations. The term weak cache

consistency emphasizes the fact that this mechanism does not provide the

strict server-client consistency that a strong cache consistency protocol would

provide.

struct wcc_data {
pre_op_attr before;
post_op_attr after;
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To support the weak cache consistency model, the server needs to be able to

get the preoperation attributes of the object, perform the intended modify

operation, and then get the postoperation attributes atomically. If there is a

window for the object to be modified between the operation and either of the

get attributes operations, then the client will not be able to determine whether

it was the only entity to modify the object. Some information will have been

lost, thus weakening the weak cache consistency guarantees.

For those procedures that return either post_op_attr or wcc_data struc-

tures on failure, the discriminated union may contain the preoperation at-

tributes of the object or object parent directory. This depends on the error

encountered and may also depend on the particular server implementation.

Implementors are strongly encouraged to return as much attribute data as

possible. on failure, but client implementors need to be aware that their imple-

mentation must correctly handle the variant return instance where no at-

tributes or consistency data is returned.

post_op_fh3

The post_op_fh3 structure is designed to allow the server to recover from

« errors encountered while constructing a file handle.

union post_op_fh3 switch (boolean) {
case TRUE:

nfs_fh3 handle;
case FALSE:

void;
}

This is the structure used to return a filehandle from the CREATE, MKDIR,

SYMLINK, MKNOD, and READDIRPLUS requests. In each case, the client

can get the file handle by issuing a LOOKUP request after a successful return

from one of the listed operations. Returning the filehandle is an optimization

so that the client is not forced to immediately issue a LOOKUP request to get
the filehandle.

sattr3

The sattr3 structure contains the file attributes that can be set from the client.

The fields are the same as the similarly named fields in the fatt r3 structure.

In the NFS version 3 protocol, the settable attributes are described by a struc-

ture containing a set of discriminated unions. Each union indicates whether

the corresponding attribute is to be updated, and if so, how.

struct sattr3 {
switch (boolean) {

case TRUE:
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uint32 mode;
case FALSE:

void;
};
switch Cboolean) {

case TRUE:

uint32 uid;
case FALSE:

void;
};
switch Cbooiean) {

case TRUE:

uint32 gid;
case FALSE:

void;
};
switch Cbooiean) {

case TRUE:

uint64 size;
case FALSE:

void;
};
switch (uint32) {

case DONT_CHANGE = 0:
case SET_TO_SERVER_TIME

void;
case SET_TO_CLIENT_TIME

nfstime3 atime;

II
P-‘
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K’\)

};
switch (uint32) {

case DONT_CHANGE
case SET_TO_SERVER_TIME

void;
case SET_TO_CLIENT_TIME

nfstime3 mtime;

IIIIII NF-‘O
}

There are two forms of discriminated unions used. In setting the mode,
ui d, gi d, or size, the discriminated union is switched on a boolean, set_i t; if

it is TRUE, a Value of the appropriate type is then encoded.

In setting the atime or mtime, the union is switched on an enumeration

type, set_it. If set_it has the Value DONT_CHANGE, the corresponding

attribute is unchanged. If it has the Value SET_TO_SERVER_TIME, the corre-

sponding attribute is set by the server to its local time; no data is provided by

the client. Finally, if set_i t has the value SET_TO_CLIENT_TIME, the

attribute is set to the time passed by the client in an nfst1'me3 structure.
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7.3 Server Procedures

The following sections define the RPC procedures that are supplied by an

NFS version 3 protocol server (Table 7.4). The RPC procedure number and

name head each section. The Description part details the XDR format of the

procedure arguments and results and tells what the procedure;is expected ‘to

do and how its arguments and results are used. The Implementation part

gives information about how the procedure is expected to work and how it

should be used by clients. The Errors part lists the errors returned for specific

types of failures. These lists are intended not as the definitive statement of all

of the errors that can be returned by any specific procedure but as a guide for

the more common errors that may be returned. Client implementations

should be prepared to deal with unexpected errors coming from a server.

Finally, a Snoop Trace of the procedure shows a typical call and response.

TABLE 7.4 Summary of NFS Version 3 Procedures

Number Name Description Section

0 NFSPROC3_NULL Null procedure 7.3.1, page 149

1 NFSPROC3_GETATTR Get file attributes 7.3.2, page 149

2 NFSPROC3_SETATTR Set file attributes 7.3.3, page 151

3 NFSPROC3_LOOKUP Look up filename 7.3.4, page 155

4 NFSPROC3_ACCESS Check access permission 7.3.5, page 158

5 NFSPROC3_READLINK Read from symbolic link 7.3.6, page 162

6 NFSPROC3_READ Read from file 7.3.7, page 164

7 NFSPROC3_WRITE Write to file 7.3.8, page 168

8 NFSPROC3_CREATE Create file 7.3.9, page 174

9 NFSPROC3_MKDIR Create directory 7.3.10, page 179

10 NFSPROC3_SYMLINK Create symbolic link 7.3.11, page 182

11 NFSPROC3_MKNOD Create a special device 7.3.12, page 186

12 NFSPROC3_REMOVE Remove file 7.3.13, page 190

13 NFSPROC3_RMDIR Remove directory 7.3.14, page 192

14 NFSPROC3_RENAME Rename file or directory 7.3.15, page 195

15 NFSPROC3_LINK Create link to file 7.3.16, page 199

16 NFSPROC3_READDIR Read directory 7.3.17, page 202

17 NFSPROC3_READDIRPLUS Extended read from directory 7.3.18, page 205

18 NFSPROC3_FSSTAT Get file systems attributes 7.3.19, page 212

19 NFSPROC3_FSINFO Get static file system information 7.3.20, page 214

20 NFSPROC3_PATl-ICONF Retrieve POSIX information 7.3.21, page 218
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TABLE 7.4 Summary of NFS Version 3 Procedures

149

Number

21

Name

NFSPROC3_COMMIT

Description

Commit cached data on a server

to stable storage

Section

7.3.22, page 221
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7.3.1

7.3.2

Procedure 0: NULL—Do Nothing

Description

Although the null procedure does nothing, it is useful for testing the availabil-

ity and responsiveness of the server. It is also used to establish a security con~

text by RPCSEC_GSS security (see section 4.7).

Results

void
Arguments
void

Arguments

None

Results

None

Implementation

It is important that this procedure do no work at all so that it can be used to

measure the overhead of processing a service request. By convention, the null

procedure should never require any authentication. A server may choose to

ignore this convention, in a more secure implementation, where responding

to the NULL procedure call acknowledges the existence of a resource to an

unauthenticated client. The NULL procedure call is most commonly used to

establish whether the NFS service is available and responding.

The null procedure is also used to establish an RPCSEC_GSS security con-

text. Security information is exchanged as arguments and results on the

NULL procedure call. For more information see section 4.7.2.

Errors

Since the null procedure takes no arguments and returns nothing, it cannot

return an error except where it is used to establish an RPCSEC_GSS context.

Procedure 1: GETATTR—Get File Attributes

Description

GETATTR retrieves the attributes for a specified filesystem object.

Results

switch (nfsstat3 status) {
case NFS3_0K = O:

fattr3 0bj_attr;
defauit:

void;

Arguments

nfs_fh3 object;
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Arguments

object

The filehandle of an object for which the attributes are to be retrieved.

Results

status

NFS3_OK if successful, otherwise an error code.

obj_attr

The attributes for the object. The fattr3 attribute structure was described
before.

Implementation

The attributes of filesystem objects are a point of major disagreement between

different operating systems. Servers should make a best attempt to support all
the attributes in the fattr3 structure so that clients can count on it as common

ground. Some mapping may be required to map local attributes to those in
the fattr3 structure.

Since almost all the NFS version 3 procedures return file attributes that are

‘used to update cached attributes, GETATTR operations are not common from

version 3 clients. Generally, a client will issue a GETATTR request when open-

ing a file that is already cached to guarantee close-to-open cache consistency
(section 8.14.2).

   Errors

NFS3ERR_IO I /0 error. A hard error (for example, a disk error)
5 occurred while processing the requested operation.

NFS3ERR_STALE 7 Invalid filehandle. The filehandle given in the argu-
0 ments was invalid. The file referred to by that file-

handle no longer exists, or access to it has been
revoked.

NFS3ERR_BADHANDLE 1000 Illegal NFS filehandle. The filehandle failed internal

1 consistency checks.

NFS3ERR_SERVERFAULT 1000 An error occurred on the server that does not map
6 to any of the legal NFS version 3 protocol error val-

ues. The client should translate this into an appro-
priate error. UNIX clients may choose to translate
this to EIO.
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Snoop Trace of GETATTR

NFS: Proc = 1 (Get fiie attributes)
NFS: Fiie handie = OO800018000000O2000AOOOOOOOODDOA
NFS: . 50295369000AO0O000O0DDOAS029S369

{E
NFS: Proc = 1 (Get fiie attributes)
NFS: Status = 0 (OK)

NFS: Fiie type = 2 (Directory)
NFS: Mode = 0777

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: Other's permissions = rwx
NFS: Link count = 3, User ID = 0, Group ID = 3
NFS: Fiie size = 512, Used = 1024

NFS: Speciai: Major = 0, Minor = 0
NFS: Fiie system id = 8388632, Fiie id = 56586
NFS: Last access time = ll-Ju1—98 lO:lS:00.835416000 GMT

NFS: Modification time = 24-Apr-98 03:55:41.840716000 GMT

NFS: Attribute change time = 24—Apr—98 03:55:41.840716000 GMT

7.3.3 Procedure 2: SETATTR-Set File Attributes

Description

Procedure SETATTR changes one or more of the attributes of a file system

object on the server. The new attributes are specified by a sattr3 structure.

Ilesizlts

nfsstat3

wcc_data

Arguments

nfs~fh3 obj_fh;
sattr3 new_attr;
switch Cbooiean check) {

case TRUE:

nfstime3 obj_ctime;
case FALSE:

void;

status;

obj_wcc;

Arguments

obj_fh

The filehandle for the object.

new_attr

A sattr3 structure (described earlier) containing booleans and enumera-

tions describing the attributes to be set and the new Values for those
attributes.
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check

TRUE if the server is to verify that obj__ct‘ime matches the ctime for the

object.

A client may request that the server check that the object is in an

expected state before performing the SETATTR operation.To do this, it sets
the argument check to TRUE and the client passes a‘ time value in

obj_ct1' me. If check is TRUE, the server must compare the value of

obj__ct1'me to the Current ctime of the object. If the values are different, the

server must preserve the object attributes and must return a status of

NFS3ERR_NOT_SYNC. If check is FALSE, the server will not perform this
check.

Results

obj_wcc

A wcc_data structure containing the old and new attributes for the object.

Implementation

The check mechanism allows the client to avoid changing the attributes of an

object on the basis of stale attributes. It does not guarantee exactly—once

semantics. In particular, if a reply is lost and the server does not detect the

retransmission of the request, the procedure can fail with the error

NFS3ERR_NOT_SYNC, even though the attribute setting was previously per-

formed successfully. The client can attempt to recover from this error by get-

ting fresh attributes from the server and sending a new SETATTR request

using the new ctime. The client can optionally check the attributes to avoid

the second SETATTR request if the new attributes show that the attributes

have already been setas desired (though it may not have been the issuing

client that set the attributes).

The new_attr . 51' 2e field is used to request changes to the 51' 2e of a file. A
value of 0 causes the file to be truncated, a value less than the current size of

the file causes data from new size to the end of the file to be discarded, and a

size greater than the current size of the file causes logically zeroed data bytes

to be added to the end of the file. Servers are free to implement this size

change using holes or actual zero data bytes. Clients should not make any
assumptions regarding a server's implementation of this feature, other than
the added bytes being zeroed}

SETATTR is not guaranteed atomic. A failed SETATTR may partially

change a file's attributes. Changing the size of a file with SETATTR indirectly

1. Althou h servers are expected to support extending the file size this way, experiaptthxxzedindicates t at some do not.

,..,~,,,
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changes the mti me. A client must account for this, as size changes can result in

data deletion. If server and client times differ, programs that compare client

time to file times can break. A time maintenance protocol should be used to

limit client/server time skew. In a heterogeneous environment, it is quite pos-

sible that the server will not be able to support the full range of SETATTR

requests. The error NFS3ERR_INVAL may be returned if theserver cannot
store a ui d or gi d in its own representation of uids or gids, respectively. If the

server can support only 32-bit offsets and sizes, a SETATTR request to set the

size of a file to larger than can be represented in 32 bits will be rejected with
this same error.

UNIX clients will restrict change of file ownership (ui d) to the superuser

or the current owner of the file. The client may apply further restrictions to T

prevent a user from ”giving away” a file or changing its group (gid) if
”restricted chown” semantics apply (see chown_restr1' cted in section 7.3.21).

If the file ownership or group is changed, then the client will probably reset’
the setui d and setgi d bits in the file mode attribute to avoid any security

problems.

To change either the ati me or mti me of a file on a UNIX server, the request
must come from either the owner of the file or the superuser (UID O), or the

client must have write permission on the file.

The client should take care to flush any cached writes to the server before

setting the size to preserve the correct ordering of operations. Some servers

may refuse to increase the size of the file through a change in the size field and

return no error. The client can work around this problem by unconditionally
writing a byte of data at the maximum offset.

Errors  

NFS3ERR_PERM 1 Not owner. The operation was not allowed because
the caller is either not a privileged user (root) or
not the owner of the target of the operation.

NFS3ERR_IO 5 I/0 error. A hard error (for example, a disk error)

occurred while processing the requested operation.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested opera-
tion. Contrast this with NFS3ERR_PERM, which

restricts itself to owner or privileged-user permis-
sion failures‘

NFS3ERR_INVAL 22 Invalid argument or unsupported argument for an
operation.

NFS3ERR_NOSPC 28 No space left on device. The operation would have
~ caused the server's file system to exceed its limit.  
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NFS3ERR_ROFS 30 Read—only filesystem. A modifying operation was

attempted on a read-only filesystem.

NFS3ERR_DQUOT 69 Resource (quota) hard limit exceeded. The user's
resource limit on the server has been exceeded.

NFS3ERR_STALE 70 Invalid filehandle. The -filehandle‘ given in the '
arguments was invalid. The file referred to by that
filehandle no longer exists, or access to it has been
revoked.

NFS3ERR_BADI-IANDLE 10001 Illegal NFS filehandle. The filehandle failed inter-

nal consistency checks.

I NFS3ERR_NOT_SYNC 10002 Update synchronization mismatch was detected
during a SETATTR operation. '

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not map
to any of the legal NFS version 3 protocol error val-

ues. The client should translate this into an appro-
priate error. UNIX clients may choose to translate
this to EIO.
 

Snoop Trace of SETATTR

NFS: Proc = 2 (Set file attributes)
NFS: File handle = 0080001800000O02000A00000O011183
NFS: SS11FO4S0O0A00000000DDOA5029S369
NFS: Mode = 0666

NFS: Setuid = O, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rw—
NFS: Group's permissions = rw—
NFS: Other‘s permissions = rw—
NFS: User ID = (not set)
NFS: Group ID = (not set)
NFS: Size = (not set)
NFS: Access time = (do not set)
NFS: Modification time = (do not set)

F;

NFS: Proc = 2 (Set file attributes)
NFS: Status = 0 (OK)

NFS: Pre—operation attributes:
NFS: Size = 3499 bytes
NFS: Modification time = 12-Jul-98 00:S9:11.0S112S000 GMT

NFS: Attribute change time = 12-Jul-98 OO:S9:11.0S112S0OO GMT
NFS:

NFS: Post—operation attributes:
NFS: File type = 1 (Regular File)
NFS: Mode = 0666

NFS: Setuid = O, Setgid = O, Sticky = 0
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NFS: Owner's permissions = rw—
NFS: Group's permissions = rw—
NFS: Other’s permissions = rw—
NFS: Link count = 1, User ID = 3497, Group ID = 10

NFS: Fi1e size = 3499, Used = 4096
NFS: Specia1: Major = 0, Minor = 0
NFS: Fi1e system id = 8388632, Fi1e id = 70019 ,
NFS: Last access time = 12-Ju1—98 00:59:09.091125000 GMT
NFS: Modification time = l2—Ju1—98 00:59:11.05ll25000 GMT

NFS: Attribute change time = 12—Ju1—98 00:59:11.071125000 GMT

7.3.4 Procedure 3: LOOKUP—Loo.k Up Filename

Description

Procedure LOOKUP searches a directory for a specific name and returns the

filehandle for the corresponding filesystem object.

Arguments Results

nfs_fh3 dir; switch (nfsstat3 status) {
fi1ename3 name; case NFS3_OK = O:

nfs_fh3 obj_fh;
post_op_attr obj_attr;
post_op_attr dir_attr;

defau1t:

post_op_attr dir_attr;

Arguments

dir

The filehandle for the directory to search.

name

The filename to find.

Results

5 12 atU S

NFS3‘OK if successful, otherwise an error code.

obj_fh '

The filehandle of the object corresponding to name.

obj_attr

The postoperation attributes of the object corresponding to name.
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d1‘ r_attr

The postoperation attributes of the directory di r.

Results on Failure

status

Error code.

di r_attr 9

The postoperation attributes for the directory d1‘ r.

Implementation

At first glance, in the case where name refers to a mountpoint on the server,

two different replies seem possible. The server can return either the filehandle

for the underlying directory it is mounted on or the filehandle of the root of

the mounted directory. This ambiguity is simply resolved. A server will not

allow a LOOKUP operation to cross a mountpoint to the root of a different

filesystem, even if the filesystem is exported. This does not prevent a client

from accessing a hierarchy of filesystems exported by a server, but the client

must mount each of the filesystems individually so that the mountpoint cross-

ing takes place on the client. A given server implementation may refine these

rules given capabilities or limitations particular to that implementation. See

section 5.3.2 for further description of pathname evaluation and section 8.5 for

a discussion of mountpoint crossing issues.

Two filenames are distinguished, as in the NFS version 2 protocol. The

name . is an alias for the current directory and the name . . is an alias for the

parent directory, that is, the directory that includes the specified directory as a

member. There is no facility for dealing with a multiparented directory, and

the NFS filesystem model assumes a hierarchy organized as a single-rooted

tree. Note that this procedure does not follow symbolic links on the server.

The client is responsible for all parsing of filenames, including filenames that

are modified by symbolic links encountered during the lookup process.

Normally, the filename is a single pathname component, but if a public

filehandle is used, then the filename may contain an entire pathname. For

more details of WebNFS lookups, see section 16.5. ,

UNIX clients cache the results of previous LOOKUP operations in a direc-

tory name lookup cache (DNLC). Cache entries are addressed by the file-

handle of the directory and the name to be looked up. If the cache entry exists,

then the client can obtain the required filehandle and file attributes from the

cache. The DNLC cache is very effective; hit rates above 90 percent are typical.

The client must take some care to keep the DNLC cache consistent; for

instance, if the client detects that a directory has changed on the server, then it

must purge any entries from the cache for that directory. Similarly, if the client

removes or renames a directory entry, then it must update the cache accord-

E\.«..-.\.._.,
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ingly. The DNLC does not do any negative caching. If the client frequently

looks up a name that does not exist, as is common when a UNIX client is

searching a sequence of directories in a PATH, then it can benefit from a nega-

tive cache that precludes unproductive LOOKUPs. One way to implement

negative caching is to cache all the names in a directory. If the required name
does not exist in the cached directory, then it can be assumed‘ not to exist.

Alternatively, the client could record the results of negative LOOKUPs in the
DNLC. To maintain some reasonable level of consistency with the server's

directory, the cached directory validity must be time—bounded and verified
with a GETATTR request to the server to check that the server's directory has

not changed.

Errors

name specified does not exist...

NFS3ERR_IO 5 I /0 error. A hard error (for example, a disk

error) occurred while processing the requested
operation.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the
correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner or privileged-user

permission failures.

NFS3ERR_NOTDlR 20 Not a directory. The caller specified a non-
directory in a directory operation.

NFS3ERR_NAMETOOLONG 63 The filename in an operation was too long.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by
that filehandle no longer exists or access to it has
been revoked.

Illegal NFS filehandle. The filehandle failed
internal consistency checks.

NFS3ERR_5ERVERFAULT 10006 An error occurred on the server that does not

map to any of the legal NFS version 3 protocol
error values. The client should translate this into

NFS3ERR_BADHANDLE. 10001

an appropriate error. UNIX clients may choose to
translate this to EIO.
 

NFS3ERR_NOENT 2 No such file or directory. The file or directory
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Snoop Trace of LOOKUP

NFS: Proc = 3 (Look up file name)
NFS: File handle = 0080001800000002000AOOOOOOOODDOA
NFS: S0295369000A00000000DDOAS029S369
NFS: File name = test

<1J
NFS: Proc = 3 (Look up file name)
NFS: Status = 0 (OK)
NFS: File handle = 0080001800000002000AOO0000O11168
NFS: 1027S4F8000A0O0O000ODDOAS0295369

NFS: Post—operation attributes: (object)
NFS: File type = 2 (Directory)
NFS: Mode = 0777

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: Other's permissions = rwx
NFS: Link count = 9, User ID = 3497, Group ID = 1
NFS: File size = 1024, Used = 1024

NFS: Special: Major = 0, Minor = 0
NFS: File system id = 8388632, File id = 69992
NFS: Last access time — 11-Jul-98 10:15:OO.83S417000 GMT
NFS: Modification time O8-Jul—98 20:49:23.011564000 GMT

NFS: Attribute change time = 08-Jul-98 20:49:23.011564000 GMT
NFS:

NFS: Post—operation attributes: (directory)
NFS: File type = 2 (Directory)
NFS: ' Mode = 0777 _

NFS: Setuid = 0, Setgid = O, Sticky = O
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: Other's permissions = rwx
NFS: Link count = 3, User ID = 0, Group ID = 3
NFS: File size = 512, Used = 1024

NFS: Special: Major = 0, Minor = O

I NFS: File system id = 8388632, File id = 56586
i NFS: Last access time = 11—Jul—98 10:l5:00.8354l6000 GMT

T NFS: Modification time = 24-Apr-98 O3:55:41.840716000 GMT
7 NFS: Attribute change time = 24-Apr-98 O3:55:41.840716000 GMT

7.3.5 Procedure 4: ACCESS-—Check Access Permission

Description

Procedure ACCESS determines the access rights that a user, as identified by

the credentials in the request, has with respect to a filesystem object. The cli-

ent encodes the set of permissions that are to be checked in a bit mask. The

server checks the permissions encoded in the bit mask and returns a bit mask

encoded with the permissions that the client is allowed.
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The results of this procedure are necessarily advisory in nature. That is,
the result does not imply that such access will be allowed to the filesystem
object in the future, as access rights can be revoked by the server at any time.

Arguments Results

nfs_fh3 object; switch (nfsstati-I status) {
uint32 accessbits; case NFS3_0K = 0:

post_op_attr obj'_attr;
u'int32 accessbits;

default:

post_op_attr 'obj_attr;
}

Arguments

object

The file handle for the file system object to which access is to be checked.

accessbits

A bit mask of access permissions to check. The access permissions in Table
7.5 may be requested. The server should return a status of NFS3_OK if no
errors occurred that prevented the server from making the required access
checks.

Results

status

NFS3_OK.

obj_att r

The postoperation attributes of the object.

TABLE 7.5 Access Permissions

Bit Value Name Type of Access

0x01 ACCESS3_READ Read data from file or read a directory.

0x02 ACCESS3_LOOKUP Look up a name in a directory (no meaning for
nondirectory objects). '

0x04 ACCESS3_MODIFY Rewrite existing file data or modify existing direc-
tory entries.

0x08 ACCESS3_EXTEND Write new data or add directory entries.

0x10 ACCESS3_DELETE Delete an existing directory entry.

0x20 ACCESS3_EXECUTE Executable file (no meaning for a directory).
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accessbits

A bit mask of access permissions indicating access rights for the authentica-
tion credentials provided with the request.

Results on Failure

status

Error code.

obj_attr

The attributes of object, if access to attributes is permitted.

 
Implementation

In general, it is not sufficient for the client to attempt to deduce access permis-
sions by inspecting the ui d, g1‘ d, and mode fields in the file attributes, since the
server may perform uid or gid mapping or enforce additional access control

restrictions. It is also possible that the server may not be in the same ID space
as the client. In these cases (and perhaps others), the client cannot reliably per-
form an access check with only current file attributes.

In the NFS version 2 protocol, the only reliable way to determine whether
an operation was allowed was to try it and see if it succeeded or failed. Using

3 the ACCESS procedure, the client can ask the server to indicate whether or

not one or more classes of operations are permitted. The ACCESS operation is
provided to allow clients to check before doing a series of operations. This is
useful in operating systems (such as UNIX) where permission checking is
done only when a file or directory is opened. The intent is to make the behav-

ior of opening a remote file more consistent with the behavior of opening a
local file.

The information returned by the server in response to an ACCESS call is
not permanent. It was correct at the exact time the server performed the
checks, but not necessarily afterwards. The server can revoke access permis-
sion at any time.

The client should use the effective credentials of the user to build the

authentication information in the ACCESS request used to determine access
rights. It is the effective user and group credentials that are used in subse-
quent read and write operations. See the comments in section 8.7 for more
information on this topic.

‘Many implementations do not directly support the ACCESS3_DELETE
permission. Operating systems like UNIX will ignore the ACCESS3_DELETE
bit if set on an access request on a nondirectory object. In these systems, delete
permission on a file is determined by the access permissions on the directory
in which the file resides instead of being determined by the permissions of the
file itself. Thus, the bit mask returned for such a request will have the

-my’
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ACCESS3_DELETE bit set to 0, indicating that the client does not have this

permission. ‘
Clients can cache the returned access information and avoid the need for

frequent access calls for the same file from the same user. Since the cache
entries are valid only for a single user, a multiuser client may require multiple
cache entries for a single file if multiple users are accessing the same file. To
maintain a reasonable level of consistency with the server's access control, the
cached access information must be time—bounded and checked against the
modification time of the file or directory either through postoperations
attributes or an explicit GETATTR or ACCESS call. The cached access infor-
mation for a file must be purged if the file owner, group, or permission bits
are changed by the client.

Errors

NFS3ERR_IO 5 I /0 error. A hard error (for example, a disk
error) occurred while processing the requested
operation.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by
that filehandle no longer exists, or access to it has
been revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS filehandle. The filehandle failed inter-
nal consistency checks.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not map
to any of the legal NFS version 3 protocol error V
values. The client should translate this into an

appropriate error. UNIX clients may choose to
translate this to EIO.

 

Snoop Trace of ACCESS

NFS: Proc = 4 (Check access permission)
NFS: File handle = 0080001800000002000A000O0001117F
NFS: SE58S378000AO0O00O00DDOA50295369
NFS: Access bits = 0x0000O00c
NFS: .... ...0 = (no read)
NFS: .... ..0. = (no lookup)
NFS: .... .1.. = Modify
NFS: .... 1... = Extend
NFS: ...O .... = (no delete)
NFS: 0. = (no execute)

NFS: Proc = 4 (Check access permission)
NFS: Status = 0 (OK)

i

l

-1
4
9
3

3
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NFS: Post—operati on attributes:

NFS: File type = 1 (Regular File)
NFS: Mode = 0777

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx

i NFS: Group's permissions = rwx
; NFS: Other's permissions = rwx ' ' ”

NFS: Link count = 1, User ID = 3497, Group ID = 10
NFS: File size = 10, Used = 1024
NFS: Special: Major = 0, Minor = 0 '

NFS: Fi1e system id = 8388632, File id = 70015

NFS: Last access time = 08-Jul-98 20:50:21.981577000 GMT
NFS: Modification time = 08—Ju1~98 20:50:18.221565000 GMT
NFS: Attribute change time = O8—Ju1—98 20:50:18.221565000 GMTNFS:

NFS: Access = modify,extend

7.3.6 Procedure 5: READLINK-Read from Symbolic Link

Description

Procedure READLINK reads the pathname stored in a symbolic link. The
pathname is an ASCII string that is opaque to the server. That is, whether cre-

ated by the NFS version 3 protocol software from a client or created locally on
the server, the data in a symbolic link are not interpreted when created but are
simply stored.

Arguments Results

nfs_fh3 symlink; » switch (nfsstat3 status) {
case NFS3_OK = O:

post_op_attr sym_attr;
nfspath3 data;

default:

post_op_attr sym_attr;
}

Arguments

symlink

The filehandle for a symbolic link (filesystem object of type NF3LNK).

Results

status

NFS3_OK.

sym_attr

The postoperation attributes for the symbolic link.
continued
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data

The data associated with the symbolic link.

Results on Failure

status

Error code.

sym_att r ‘

The postoperation attributes for the symbolic link.

Implementation

A symbolic link is nominally a reference to another file. The data are not nec-
essarily interpreted by the server; they are just stored in the link object. It is
possible for a client implementation to store a pathname that is not meaning-
ful to the server operating system in a symbolic link; for instance, WebNFS cli-
ents may store a URL in a symbolic link. A READLINK operation returns the
data to the client for interpretation. If different implementations want to share
access to symbolic links, then they must agree on the interpretation of the data
in the symbolic link.

The READLINK operation is allowed only on objects of type NFBLNK.
The server should return the error NFS3ERR_INVAL if the object is not of

type NFBLNK. .
Client implementations can cache symbolic link text just as they do file

data. This avoids unnecessary READLINK calls. As with cached data, the
cached symbolic link text must be time-bounded, and the link mti me must be
compared with the server's link mti me periodically.

Errors
   

NFS3ERR_lO 5 I /0 error. A hard error (for example, a disk error)
occurred while processing the requested operation.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the
correct permission to perform the requested opera-
tion. Contrast this with NFS3ERR_PERM, which

restricts itself to owner or privileged-user permis-
sion failures.

NFS3ERR_lNVAL 22 Invalid argumentor unsupported argument for an
operation.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by that
filehandle no longer exists or access to it has been
revoked.
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NFS3ERR_BADI-IANDLE

NFS3ERR_NOTSUPP

NFS3ERR_SERVERFAULT

 

10001

165

Illegal NFS filehandle. The filehandle failed inter-

nal consistency checks.

10004

10006
to

Operation is not supported.

An error occurred onthe serverthat does not rnap
any of the legal NFS 'version'35protocol error val-

ues. The client should translate this into an appro-
pl‘iate error. UNIX clients may choose to translate
this to EIO. ‘

bolic link)
File handle = 0O8000l8000OOOO2000A0OOO0OO1ll81

Snoop Trace of FIEADLINK

NFS: Proc = 5 (Read from sym
NFS:

NFS: 13761BA90

J;
NFS: Proc = 5 (Read from sym
NFS: Status = 0 (OK)
NFS: Post-operation attribut

NFS: File type = 5 (Symbol
NFS: Mode = 0777

NFS: Setuid = O, Setgid =
NFS: Owner's permissions
NFS: Group's permissions
NFS: 0ther's permissions
NFS: Link count = 1, User
NFS: File size = 8, Used =

NFS: Special: Major = O, M
NFS: File system id = 8388
NFS: Last access time
NFS: Modification time

NFS: Attribute change time
N F S : ‘

NFS: Path = linktext

0OAO00O0000DDOA502 95 369

bolic link)

es:

ic Link)

0, Sticky = 0
rwx
rwx
rwx

ID = 3497, Group ID = 10
1024

inor = 0

632, File id = 70017

— 10-Aug-98 21:50:31.573290000 GMT
12-Jul-98 00:45:35.766869000 GMT
12-Jul-98 O0:45:35.766869000 GMT

7.3.7 Procedure 6: READ—Read from File

Description

Procedure READ reads data from a file.
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Arguments Results

nfs_fh3 file; switch (nfsstat3 status) {
uint64 offset; case NFS3_OK = 0:
uint32 count; post_op_attr fi1e_attr;

uint32 . count;

boolean eof;_
opaque<> ' data:

default: -

post_op_attr file_attr;
} Q

Arguments

file

The filehandle of the file from which data are to be read. It must identify a

file system object of type NFBREG.

offset

The position within the file at which the read is to begin. An offset of 0
means to read data starting at the beginning of the file. If the offset is
greater than or equal to the size of the file, the status NFS3_OK is returned
with count set to O and eof set to TRUE, subject to access permissions

checking.

count

The number of bytes of data that are to be read. If the count is O, the READ
will succeed and return 0 bytes of data, subject to access permissions check-
ing. The count must be less than or equal to the value of the rtmax field in
the FSINFO reply structure for the file system that contains file. If it is
greater, the server may return only rtmax bytes, resulting in a short read.

Results

status

NFS3_OK.

fi 1 e_att r V

The attributes of the file on completion of the read.

count

The number of bytes of data returned by the read.

eof

If the ‘read ended at the end-of—file (formally, in a correctly formed READ

request, if offset plus count is equal to the size of the file), eof is returned
as TRUE; otherwise it is FALSE. A successful READ of an empty file will

always return eof as TRUE.
continued

 

é
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data

The counted data read from the file.

3 Results on Failure
status

Error code.

f1" 1 e_att r , ~

The postoperation attributes of the file.

Implementation

The nfsdata type used for the READ and WRITE operations in the NFS ver-
sion 2 protocol defining the data portion of a request or reply was changed to
a variable-length opaque byte array. The maximum size allowed by the NFS
version 3 protocol is limited by what XDR and underlying transports will
allow. There are no artificial limits imposed by the NFS version 3 protocol. See

. section 73.20 for details of transfer size.

It is possible for the server to return fewer than count bytes of data. If the
server returns fewer than the count requested and em‘ set to FALSE, the client
should issue another READ to get the remaining data. A server may return
fewer data than requested under several circumstances. The file may have
been truncated by another client or perhaps on the server itself, changing the
file size from what the requesting client believes to be the case. This would

reduce the actual quantity of data available to the client. It is possible, through
server resource exhaustion, that the server may back off the transfer size and
reduce the quantity of data returned.

Some NFS version 2 protocol client implementations chose to interpret a
short read response as indicating EOF. The addition of the em‘ flag in the NFS
version 3 protocol provides a correct way of handling EOF.

Some NFS version 2 protocol server implementations incorrectly returned
NFSERR_ISDIR where the file system object type was not a regular file. The
correct return value for the NFS version 3 protocol is NFS3ERR_INVAL.

Errors

NFS3ERR_IO 5 I/O error. A hard error (for example, a disk error)
- occurred while processing the requested operation.

NFS3ERR_NXIO 6 I/O error. No such device or address.

NFS3ERR__ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested opera-
tion. Contrast this with NFS3ERR_PERM, which

restricts itself to owner or privileged-user permis-
sion failures.
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NFS3ERR_INVAL 22

NFS3ERR_STALE 70

NFS3ERR_BADHANDLE 10001

NFS3ERR_SERVERFAULT 10006

Snoop
NFS:
NFS:
NFS:
NFS:
NFS:

NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:

Trace of READ

Offset = 0
Count = 32768

{7

Status = 0 (OK)

Mode = 0644

File system id =
Last access time
Modification time

NFS:
NFS:
NFS: End of file = False

Attribute change time

Invalid argument or unsupported argument for an
operation.

Invalid filehandle. The filehandle given in the

arguments was invalid. The file referred to by that
filehandle no longer exists or access to it has been
revoked. — ' I * '

Illegal NFS filehandle. The filehandle failed inter-
nal consistency checks.‘

An error occurred on the server that does not map

to any of the legal NFS version 3 protocol error val-
ues. The client should translate this into an appro-

priate error. UNIX clients may choose to translate
this to EIO.

 

Proc = 6 (Read from file)
File handle = 0080001800000002000A00000001l169

6D7FBD47000A00000000DDOA50295369

Proc = 6 (Read. from file)

Post—operation attributes:
File type = 1 (Regular File)

Setuid = 0, Setgid = 0, Sticky = 0
Owner's permissions
Group's permissions
0ther's permissions

Link count = 1, User ID = 3497, Group ID = 10
File size = 4352096, Used = 4366336

Special: Major = 0, Minor = 0
8388632, File id = 69993

FW-
r!__
r..-

— 12-Jul-98 00:43:27.496866000 GMT

18-Sep-97 01:52:06.5253l3000 GMT
10-Oct-97 06:52:29.747375000 GMT

Count = 32768 bytes read
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7.3.8 Procedure 7: WRlTE—Write to File
 

Description

Procedure WRITE writes data to a file.

Argu ments

nfs_fh3 file;
uint64 offset;

 g Resuhs

5 switch (nfsstat3 status) {
case NFS3_OK = O:

 
opaque<> data;

 uint32 count; 2 wcc_data fi1e_wcc;
enum stab1e_how { § uint32 count;

UNSTABLE = 0, j stab1e_how committed;
DATA_SYNC = 1, I writeverf3 verf;
FILE_SYNC = 2 § default:

}; § wcc_data fi1e_wcc;
E }

Arguments

f1’ 1 e

The filehandle for the file to which data is to be written. It must identify a
filesystem object of type NFBREG.

offset

The position within the file at which the write is to begin. An offset of 0
means to write data starting at the beginning of the file.

count

The number of bytes of data to be written. If the count is O, the WRITE will

succeed and return a count of O, barring errors due to permissions checking.
The size of data must be less than or equal to the value of the wtmax field in
the FSINFO reply structure for the filesystem that contains the file. If greater,
the server may write only wtmax bytes, resulting in a short write.

stab1e_how

If stab1e_how is UNSTABLE, the server is free to commit any part of the
data and the metadata to stable storage, including all or none, before return-
ing a reply to the client. There is no guarantee whether or when any uncom-
mitted data will subsequently be committed to stable storage. The only
guarantees made by the server are that it will not destroy any data without
changing the value of verf and that it will not commit the data and meta-
data at a level lower than that requested by the client. T

If stab1e_how is DATA_SYNC, then the server must commit all the data
to stable storage and enough of the metadata to retrieve the data before

returning.The server implementor is free to implement DATA_SYNC in the
same fashion as FILE_SYNC, but with a possible performance drop.
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If stab1e_how is FILE_SYNC, the server must commit the data written

plus all filesystem metadata to stable storage before returning results. This
corresponds to the NFS version 2 protocol semantics. Any other behavior
constitutes a protocol violation.

See section 7.3.22 for more information about the transfer of data"to sta-

ble storage.

Value Name Requirement

0 UNSTABLE Server is free to commit any of the data and the metadata to
stable storage, including all or none, before returning a reply to
the client. .

1 DATA_SYNC The server must commit all the data to stable storage and enough
of the metadata to retrieve the data before replying.

2 FILE_SYNC Version 2 requirement: the server must commit the data written
plus all filesystem metadata to stable storage before replying.

data

The data to be written to the file.

Results

status

NFS3_OI(.

f1’ 1e_wcc

Weak cache consistency data for the file. For a client that requires only the
postwrite file attributes, the attributes can be found in wcc_data.after
(page 145).

COUITC

The number of bytes of data written to the file. The server may write fewer
bytes than requested. If so, the actual number of bytes written starting at
location offset is returned.

committed

The server should return an indication of the level of commitment of the
data and metadata via committed. .

If the server committed all data and metadata to stable storage, commi t-
ted should be set to FILE_SYNC. If the level of commitment was at least as

strong as DATA_SYNC, then commi tted should be set to DATA_SYNC. Oth-
erwise, commi tted must be returned as UNSTABLE. If stabl e_how was
FILE_SYNC, then commi tted must also be FILE_SYNC: anything else consti-
tutes a protocol violation. If stab1e_how was DATA_SYNC, then commi tted

.......;...;.~»».ses-e;§\eaase.x»ams>.m>m.
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may be FILE_SYNC or DATA_SYNC: anything else constitutes a protocol
violation. If stable_how was UNSTABLE, then commi tted may be either
FILE_SYNC, DATA_SYNC, or UNSTABLE.

 
verf

This is a cookie that the client can use to determinewhether the server has

changed state between a call to WRITE and a subsequent call to either
WRITE or COMMIT. This cookie must be consistent during a single invoca-
tion of the NFS version 3 protocol service and must be unique between
instances of the NFS version 3 protocol server, where uncommitted data
may be lost.

 

Results on Failure

status

Error code. 
f1"le_wcc

Weak cache consistency data for the file. For a client that requires only the
postwrite file attributes, the attributes can be found in f1'1e_wcc. Even
though the write failed, full wcc_data is returned to allow the client to deter-

mine whether the failed write resulted in any change to the file.
If a client writes data to the server with the stable argument set to

UNSTABLE and the reply yields a committed response of DATA_SYNC or
UNSTABLE, the client will follow up some time in the future with a COM-
MIT operation to synchronize outstanding asynchronous data and metadata
with the server's stable storage, barring client error. It is possible that due to
client crash or other error, a subsequent COMMIT will not be received by
the server.

Implementation

The nfsdata type used for the READ and WRITE operations in the NFS ver-
sion 2 protocol defining the data portion of a request or reply has been
changed to a variable-length opaque byte array. The maximum size allowed
by the protocol is now limited by what XDR and underlying transports will
allow. There are no artificial limits imposed by the NFS version 3 protocol.
Consult the FSINFO procedure description for details.

It is possible for the server to write fewer than count bytes of data. In this
case, the server should not return an error unless no data was written at all. If

the server writes less than count bytes, the client should issue another WRITE
to write the remaining data.

 
.

E;
2
E
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Writing of data to a file will have the side effect of updating the file mti me;
however, the mtime of the file should not be changed unless the contents of
the file are changed. Thus, a WRITE request with count set to 0 should not
cause the mti me of the file to be updated.

The NFS version 3 protocol introduces safe asynchronous writes. The
combination of WRITE with stable set to UNSTABLE followed7by a COMMIT

addresses the performance bottleneck found in the NFS version 2 protocol,
the need to synchronously commit all writes to stable storage.

Historically,the definition of stable storage has been a point of contention.
The following expected properties of stable storage may help in resolving
design issues in the implementation. Stable storage is persistent storage that
survives repeated power failures; hardware failures (of any board, power
supply, and so on); repeated software crashes, including reboot cycle.

This definition does not address failure of the stable storage module itself.

A cookie, verf, is defined to allow a client to detect different invocations of a
server over which cached, uncommitted data may be lost. In the most likely

case, the verf allows the client to detect server reboots. This informationis
required so that the client can safely determine whether the server could have
lost cached data. If the server fails unexpectedly and the client has uncommit-

ted data from previous WRITE requests (done with the stabl e_how argument
set to UNSTABLE and in which the result committed was returned as

UNSTABLE as well), it may not have flushed cached data to stable storage.
The burden of recovery is on the client, and the client will need to retransmit
the data to the server. A suggested verf cookie would be to use the time that
the server was booted or the time the server was last started (if restarting the
server without a reboot results in lost buffers).

The committed field in the results allows the client to do more effective

caching. If the server is committing all WRITE requests to stable storage, then
it should return with committed set to FILE_SYNC, regardless of the value of
the stabl e_how field in the arguments. A server that uses an NVRAM acceler-
ator may choose to implement this policy. The client can use this choice to
increase the effectiveness of the cache by discarding cached data that have

already been committed on the server. I
Some implementations may return NFS3ERR_NOSPC instead of

NFS3ERR_DQUOT when a user's quota is exceeded. Some version 2 server

implementations incorrectly returned NFSERR_ISDIR if the filesystem object
type was not a regular file. The correct return value for the version 3 protocol
is NFS3ERR_INVAL.

Stable vs. Unstable Writes

The setting of the stable field in the WRITE arguments, that is, whether or not
to do asynchronous WRITE requests, is straightforward on a UNIX client. If
the version 3 protocol client receives a write request that is not marked as
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being asynchronous, it should generate the WRITE with stable set to TRUE.

If the request is marked as being asynchronous, the WRITE should be gener-
ated with stable set to FALSE. If the response comes back with the commi tted

field set to TRUE, the client should just mark the write request as done and no
further action is required. If committed is set to FALSE, indicatingthat_the
buffer was not synchronized with the server's disk,‘ the client will need to

mark the buffer in some way that indicates that a copy of the buffer lives on
the server and that a new copy does not need to be sent to the server but that
a COMMIT is required.

Note that this algorithm introduces a new state for buffers; thus there are

now three states for buffers: (1) dirty, (2) done but needs to be committed, and

(3) done. This extra state on the client will probably require modifications to
the system outside the version 3 client.

One proposal that was rejected was the addition of a boolean commit
argument to the WRITE operation. It would have been used to indicate

whether the server should do a full file commit after doing the write. This
seems as if it could be useful if the client knew that it was doing the last write
on the file. It is difficult, though, to see how it could be used, given existing
client architectures.

The asynchronous write opens up the window of problems associated
with write sharing. For example: client A writes some data asynchronously.
Client A is still holding the buffers cached, waiting to commit them later. Cli-
ent B reads the modified data and writes it back to the server. The server then

crashes. When it comes back up, client A issues a COMMIT operation, which
returns with a different cookie as well as changed attributes. In this case, the
correct action may or may not be to retransmit the cached buffers. Unfortu-
nately, client A can’t tell for sure, so it will need to retransmit the buffers, thus

overwriting the changes from client B. Fortunately, write sharing is rare, and
the solution matches the current write-sharing situation. Without using lock-
ing for synchronization, the behavior will be indeterminate.

In a high-availability (redundant system) server implementation, two
cases exist that relate to the verf changing. If the high-availability server
implementation does not use a shared—memory scheme, then the verf should
change on failover, since the unsynchronized data are not available to the sec-

ond processor and there is no guarantee that the system that had the data
cached was able to flush it to stable storage before going down. The client will
need to retransmit the data to be safe. In a shared—memory high-availability
server implementation, the verf would not need to change because the server
would still have the cached data available to be flushed. The exact policy
regarding the verf in a shared—memory high-availability implementation,
however, is up to the server implementor.
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Errors
   

NFS3ERR_IO 5 I /0 error. A hard error (for example, a disk error)
occurred while processing the requested operation.

NFS3ERR_ACCES 13 Permission denied. The-caller does not have the
correct permission to perform thegequested opera-
tion. Contrast this with NFS3ERR__PERM, which
restricts itself to owner or privileged-user permis—
sion failures.

NFS3ERR__INVAL 22 Invalid argument or unsupported argument for an
operation.

NFS3ERR_FBIG 27 File too large. The operation would have caused a
file to grow beyond the server's limit.

NFS3ERR_NOSPC 28 No space left on device. The operation would have
caused the server's filesystem to exceed its limit.

NFS3ERR_ROFS 30 Read—only filesystem. A modifying operation was
attempted on a read-only filesystem.

NFS3ERR_DQUOT 69 Resource (quota) hard limit exceeded. The user's
resource limit on the server has been exceeded.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by that
filehandle no longer exists or access to it has been
revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS filehandle. The filehandle failed inter-
nal consistency checks.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not map
to any of the legal NFS version 3 protocol error val-
ues. The client should translate this into an appro-

priate error. UNIX clients may choose to translate
this to EIO.

 

Snoop Trace of WRITE

NFS: Proc = 7 (write to file)
NFS: F1"|e hand'|e = 0080001800000002000A00000001ll82
NFS: 56CBl52E000A00000000DDOA50295369
NFS: Offset = 0
NFS: Size = 32768
NFS: Stab1e = ASYNC

@
NFS: Proc = 7 (Write to file)
NFS: Status = 0 (OK)

NFS: Pre—operat1'on attributes:
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NFS: Size = 0 bytes

NFS: Modification time = l2—Ju1—98 OO:56:47.701l27000 GMT
NFS: Attribute change time = l2—Ju1—98 OO:56:47.701l27000 GMTNFS:

NFS: Post—operation attributes:

NFS: Fi1e type = 1 (Reguiar Fi1e) b S,
NFS: Mode = 0664 ' ”

NFS: Setuid = O, Setgid = O, Sticky = O
NFS: Owner's permissions = rw—
NFS: ’Group's permissions = rw—
NFS: Other's permissions = r——

NFS: Link count = 1, User ID = 3497, Group ID = 10
NFS: Fi1e size = 32768, Used = 32768
NFS: Specia1: Major = 0, Minor = 0
NFS: Fi1e system id = 8388632, Fi1e id = 70018

NFS: Last access time = 12—Ju1—98 OO:56:47.701l27000 GMT
NFS: Modification time = l2—Ju1—98 O0:S6:47.891129000 GMT
NFS: Attribute change time = 12—Ju1—98 O0:S6:47.891129000 GMT
NFS:

NFS: Count = 32768 bytes written
NFS: Stab1e = ASYNC

NFS: Verifier = 72602A263369254D

7.3.9 Procedure 8: CREATE—Create a File

Description

Procedure CREATE creates a regular file.

; Arguments

§ nfs_fh3 dir;
» fi1ename3 name;

3 switch (enum mode) {

Z Resuks

E switch (nfsstat3 status) {
’ case NFS3_OK = 0:

switch Cbooiean) {

  case UNCHECKED = 0: § case TRUE:
case GUARDED = 1: f nfs_fh3 obj_fh;

sattr3 obj_attr; § case FALSE:
case EXCLUSIVE = 2: ; void;

createverf3 verf; g };

§ } i post_op_attr obj_attr;
§ 2 wcc_data dir_wcc;

E defauitz

f wcc_data dir_wcc;
. }

Arguments

dir

The filehandle for the directory in which the file is to be created.
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name

The name that is to be associated with the created file. Refer to section 5.3.1

for a description of allowable names.

mode

Controls the conditions under which the file is created.
. K."

«

n UNCI-IECKED The file is created without checking for the existence of a

duplicate file in the same directory. In this case, obj_attr is a s.attr3
describing the initial attributes for the file.

u GUARDED The server checks for the presence of a duplicate file before
performing the create and must fail the request with NFS3ERR_EXIST if a
duplicate file exists. If the file does not exist, the request is performed as
described for UNCHECKED.

I EXCLUSIVE The server follows exclusive creation semantics, using the
verifier to ensure exclusive creation of the target. No attributes may be

provided in this case, since the server may use the target file metadata to
store the c reateve rf3 verifier.

Results

status

NFS3_OK.

obj_fh

The file handle of the newly created regular file.

obj_attr

The attributes of the regular file just created (page 143).

d1‘ r_wcc «

Weak cache consistency data for the directory di r. For a client that requires
only the post—CREATE directory attributes, the attributes can be found in
wcc_data. after (page 145).

Results (on Failure)

status

Error code.

di r_wcc

Weak cache consistency data for the directory d1‘ r. For a client that requires
only the post—CREATE directory attributes, the attributes can be found in
wcc_data. after. Even though the CREATE failed, full wcc_data is returned
to allow the client to determine whether the failing CREATE resulted in any
change to the directory.
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Implementation

Unlike the NFS version 2 protocol, in which certain fields in the initial
attributes structure were overloaded to indicate creation of devices and FIFOs

in addition to regular files, this procedure supports only the creationof regu-
lar files. The MKNOD procedure was introduced in the NFS.yersion 3 proto-
col to handle creation of devices and FIFOs. Implementations'should have no
reason in the NFS version 3 protocol to overload CREATE semantics.

The UNIX open and create system calls support an exclusive option. The
call must fail if the file already exists. Some applications use the exclusive cre-
ate option to implement lock files—prior to using some resource, a program
attempts to create a lock file with exclusive create. If the call fails, indicating
that the file already exists, the program can infer that the resource is already
in use. The NFS version 2 CREATE procedure did not support exclusive cre-
ate semantics directly. To approximate exclusive semantics, version 2 clients

had to first check for the existence of the file via a LOOKUP request, then fol-
low that with a CREATE request if the LOOKUP failed. This was unsatisfac-

tory because it left a window of opportunity for another client to create the
file between the LOOKUP and CREATE calls. NFS version 3 solved the prob-
lem by adding exclusive create semantics to the CREATE call.

An NFS version 3 client can set mode to EXCLUSIVE. In this case, verf
contains a verifier that can reasonably be expected to be unique. A combina-
tion.of a client identifier, perhaps the client network address, and a unique
number generated by the client, perhaps the RPC transaction identifier, may
be appropriate. If the file does not exist, the server creates the file and stores

the verifier in stable storage. For filesystems that do not provide a mechanism
for the storage of arbitrary file attributes, the server may use one or more ele-
ments of the file metadata to store the verifier. The verifier must be stored in

stable storage to prevent erroneous failure on retransmission of the request. It
is assumed that an exclusive create being performed because exclusive
semantics are critical to the application. Because of the expected usage, exclu-
sive CREATE does not rely solely on the normally volatile duplicate request
cache for storage of the verifier. The duplicate request cache in volatile storage
does not survive a crash and may actually flush on a long network partition,
opening failure windows. In the UNIX local filesystem environment, the
expected storage location, for the verifier on creation is the metadata (time-
stamps) of the file. For this reason, an exclusive file create may not include
initial attributes because the server would have nowhere to store the verifier.

The use of a file timestamp for verifier storage (the file mtime is most com-
monly used) can cause difficulties if the client sends a 64-bit verifier value that

exceeds the capacity of the server's time attribute.

If the server cannot support these exclusive create semantics, possibly
because of the requirement to commit the verifier to stable storage, it should
fail the CREATE request with the error NFS3ERR_NOTSUPP.

 
continued
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During an exclusive CREATE request, if the file already exists, the server
reconstructs the file's verifier and compares it with the verifier in the request.

If they match, the server treats the request as a success. The request is pre-
sumed to be a duplicate of an earlier, successful request for which the reply
was lost and that the server duplicate request cache mechanism did not
detect. If the verifiers do not match, the request is erejectedwith the status
NFS3ERR_EXIST. Once the client has performed a successful exclusive create,
it must issue a SETATTR to set the correct file attributes. Until it does so, it

should not rely on any of the file attributes, since the server implementation
may need to overload file metadata to store the verifier.

Use of the GUARDED attribute does not provide exactly-once semantics.

In particular, if a reply is lost and the server does not detect the retransmission
of the request, the procedure can fail with NFS3ERR_EXIST, even though the
create was performed successfully.

Errors

NFS3ERR_lO 5 1/0 error. Ahard error (for example, a disk
error) occurred while processing the requested
operation.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the
correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner or privileged-user

permission failures.

NFS3ERR_EXIST V 17 File exists. The file specified already exists.

NFS3ERR_NOTDlR 20 Not a directory. The caller specified a non-
directory in a directory operation.

NFS3ERR_NOSPC 28 No space left on device. The operation would
have caused the server's filesystem to exceed its
limit.

NFS3ERR_ROFS 30 Read—only filesystem. A modifying operation
was attempted on a read-only filesystem.

NFS3ERR_NAMETOOLONG 63 The filename in an operation was too long.

NFS3ERR_DQUOT 69 Resource (quota) hard limit exceeded. The
user's resource limit on the server has been
exceeded.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by
that filehandle no longer exists or access to it has
been revoked.
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NFS3ERR_BADHANDLE 10001 Illegal NFS file handle. The filehandle failed
internal consistency checks.

NFS3ERR_NOTSUPP 10004 Operation is not supported.

NFS3ERR_SERVERFAULT 10006 An error occurred on the sen‘/er that oloes not
map to any of the legal NFS version 3 protocol
error values. The client should translate this into

an appropriate error. UNIX clients may Choose
to translate this to EIO.

 

Snoop Trace of CREATE

NFS: Proc = 8 (Create file)

NFS: File handle = 0080001800000002000A000000011168
NFS: V 102 754F8000A00000000DDOA50295369
NFS: File name = foofile
NFS: Method = Guarded
NFS: Mode = 0644

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rw—
NFS: Group's permissions = r——
NFS: Other's permissions = r——
NFS: User ID = (not set)
NFS: Group ID = 10
NFS: Size = 0

NFS: Access time = (do not set)
NFS: Modification time = (do not set)

J\/

NFS: Proc = 8 (Create file)
NFS: Status = 0 (OK)

NFS: File handle = 0080001800000002000A00000001117F
NFS: 5E58E82F000A00000000DDOA50295369
NFS: Post—operation attributes:

NFS: File type = 1 (Regular File)
NFS: Mode = 0644

NFS: Setuid = 0, Setgid = O, Sticky = 0
NFS: Owner's permissions = rw—
NFS: Group's permissions = r——
NFS: Other's permissions = r——

NFS: Link count = 1, User ID = 3497, Group ID = 10
NFS: File size = 0, Used = 0
NFS: Special: Major = 0, Minor = O
NFS: File system id = 8388632, File id = 70015

NFS: Last access time = 12—Jul—98 O0:43:56.746868000 GMT
NFS: Modification time 12-Jul-98 O0:43:56.746868000 GMT
NFS: Attribute change time 12-Jul-98 O0:43:56.746868000 GMT
NFS:

NFS: Pre—operation attributes:
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NFS: Size = 1024 bytes

NFS: Modification time = 12-Jul-98 00:43:09.676869000 GMT
NFS: Attribute change time = 12-Jul-98 00:43:09.676869000 GMT
NFS:

NFS: Post-operation attributes:
NFS: File type = 2 (Directory) ‘ ”
NFS: Mode = 0777 . v
NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: 0ther's permissions = rwx
NFS: Link count = 8, User ID = 3497, Group ID = 1
NFS: File size = 1024, Used = 1024

NFS: Special: Major = 0, Minor = 0
NFS: File system id = 8388632, File id = 69992
NFS: Last access time = 12-Jul-98 00:42:20.S86866000 GMT
NFS: Modification time = 12-Jul-98 00:43:56.776866000 GMT
NFS: Attribute change time = 12-Jul-98 00:43:S6.776866000 GMT

7.3.10 Procedure 9: MKD|R—Create a Directory

Description

Procedure MKDIR creates a new subdirectory.

Arguments Results

nfs_fh3 dir; switch (nfsstat3 status) {
fi1ename3 name; case NFS3_OK = 0:
sattr3 attr; ' post_op_fh3 obj_fh;

post_op_attr obj_attr;
wcc_data dir_wcc;

default:

wcc_data dir_wcc;
}

Arguments

dir

The filehandle for the directory in which the subdirectory is to be created.

name

The name that is to be associated with the created subdirectory. Refer to sec-

tion 5.3.1 for a description of allowable filenames.

attr

The initial attributes for the subdirectory. See page 146.
continued
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Results

status

NFS3_OK.

0bj_fh

The filehandle for the newly created directory.

obj_att r .

The attributes for the newly created subdirectory (page 143).
d1’ r__wcc

Weak cache consistency data for the directory d1’ r. For a client that requires
only the post—MKDIR directory attributes, the attributes can beqfound in
wcc_data.after (page 145).

Results on Failure

status

Error code.

d1'r_wcc

Weak cache consistency data for the directory d1‘ r. For a client that requires
only the post—MKDIR directory attributes, the attributes can be found in
di r_wcc . afte r. Even though the MKDIR failed, full wc c_data is returned to

allow the client to determine whether the failing MKDIR resulted in any
change to the directory.

Implementation

Many server implementations will not allow the filenames . or . . to be used

as targets in a MKDIR operation. In this case, the server should return

NFS3ERR_EXIST. Refer to section 5.3.1 for a description of allowable file-

    

names.

Errors

NFS3ERR_IO 5 I/0 error. A hard error (for example, a disk
error) occurred while processing the requested
operation.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,

which restricts itself to owner or privileged user
permission ‘failures.

NFS3ERR_EXIST 17 File exists. The file specified already exists.
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NFS3ERR_NOTDIR 20 Not a directory. The caller specified a non-
directory in a directory operation.

NFS3ERR_NOSPC 28 No space left on device. The operation would
have caused the server's filesystem to exceed its
limit. - H»

NFS3ERR_ROFS 30 Read-only filesystem.'A modifying operation'
was attempted on a read-onlyfilesystem.

NFS3ERR_NAMETOOLONG 63 The filename in an operation was too long.

NFS3ERR_DQUOT 69 Resource (quota) hard limit exceeded. The
user's resource limit on the server has been
exceeded.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by
that filehandle no longer exists or access to it
has been revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS filehandle. The filehandle failed
internal consistency checks.

NFS3ERR_NOTSUPP 10004 Operation is not supported.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not
map to any of the legal NFS version 3 protocol
error values. The client should translate this

into an appropriate error. UNIX clients may
choose to translate this to EIO.

 

Snoop Trace of MKDIR
NFS: Proc = 9 (Make directory)
NFS: File handle = 0O8000l80000O002000A0000000lll68
NFS: 1027S4F8000A00000000DDOAS0295369
NFS: File name = newdir
NFS: Mode = 0775

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: Other's permissions = r—x
NFS: User ID = (not set)

NFS: Group ID = 10
NFS: Size = (not set)

NFS: Access time = (do not set)
NFS: Modification time = (do not set)

5;
NFS: Proc = 9 (Make directory)
NFS: Status = 0 (OK)



 
é

2
%?%

E
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NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:

NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:

Fi1e hand1e = 008000180
4508B8F10

Post—operation attribut
Fi1e type = 2 (Direct
Mode = 0775

Setuid = 0, Setgid =
Owner's permissions
Group's permissions
Other's permissions

Link count = 2, User
Fi1e size = 512, Used

0000002000A0000000l6FD4
00A00000000DDOA50295369
es:

ory)
\

0, Sticky = 0 V?= rwx V 4
= rwx
= r—x

ID = 3497, Group ID = 10
= 1024

Specia1: Major = 0, Minor = 0
Fi1e system id = 8388
Last access time

Modification time

Attribute change time

Pre—operation attribute

Size = 1024 bytes
Modification time

Attribute change time

Post—operation attribut
Fi1e type = 2 (Direct
Mode = 0777

Setuid = 0, Setgid =
Owner's permissions
Group's permissions
Other's permissions

Link count = 9, User
Fi1e size = 1024, Use
Specia1: Major = 0, M
Fi1e system id = 8388
Last-access time
Modification time

Attribute change time

632, Fi1e id = 94164
- 12-JuT~98 00:56:08.llll2lO00 GMT

l2—Ju1-98 O0:56:08.llll2lO00 GMT
12-]u1-98 00:56:08.llll2l000 GMT

52

l2—Ju1-98 00:55:55.2lll2l0O0 GMT
l2—Ju1-98 00:55:55.2lll2lO00 GMTHII

es:

ory)

0, Sticky = 0
rwx
rwx

= rwx

ID = 3497, Group ID = 1
d = 1024

inor = 0

632, Fi1e id = 69992
— 12—Ju1—98 00:55:34.961134000 GMT

12—Ju1—98 00:56:08.151121000 GMT
12—]u1—98 00:56:08.151121000 GMT
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Procedure 10: SYMLINK—Create a Symbolic Link

Description

Procedure SYMLINK creates a new symbolic link.

Results I P‘,

switch (nfsstat3l status)‘ {
case NFS3_OK = 0: '

post_op_fh3 obj_fh;

Arguments

nfs_fh3 d1' r;
f1’ "I ename3 name;

sattr3 sym_attr;

nfspath3 sym_data; post_op_attr obj_attr;
wcc_data d1‘ r_wcc;

default:

wcc_data d1’ r'_wcc;
}

Arguments

di r

The filehandle for the directory in which the symbolic link is to be created.
name

The name that is to be associated with the created symbolic link. Refer to
section 5.3.1 for a description of allowable filenames.

sym_attr

The initial attributes for the symbolic link. On UNIX servers the attributes
are never used, since symbolic links always have mode 0777.

sym_data

The string containing the symbolic link data.

Results

status

NFS3_OK.

obj_fh

The filehandle for the newly created symbolic link.

obj_att r

The attributes for the newly created symbolic link (page 143).

d1‘ r_wcc

Weak cache consistency data for the directory d1" r. For a client that requires
only the post-SYMLINK directory attributes, the attributes can be found in
d1‘ r_wcc . after.
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Results on Failure

status

Error code.

d1’ r_wcc

Weak cache consistency data for the directory Idi r. a client that
requires only the post—SYMLINK directory attributes, the attributes can be
found in wcc_data . after (page 145). Even though the SYMLINK failed, full
wcc_data is returned to allow the client to determine whether the failing
SYMLINK changed the directory.

 
Implementation 

E For symbolic links, the actual filesystem node and its contents are expected to
i be created in a single atomic operation. That is, once the symbolic link is
E visible, there must not be a window where a READLINK would fail or return
i incorrect data.Q

  
Errors _

NFS3ERR_IO 5 I/O error. A hard error (for example, a disk
error) occurred while processing the requested
operation.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,

which restricts itself to owner or privileged~user
permission failures.

NFS3ERR_EXIST 17 File exists. The file specified already exists.

NFS3ERR__NOTDIR 20 Not a directory. The caller specified a nondirec-
tory in a directory operation.

NFS3ERR_NOSPC 28 No space left on device. The operation would
have caused the server's filesystem to exceed its
limit.

NFS3ERR_ROFS 30 Read-only filesystem. A modifying operation
was attempted on a read-only filesystem.

NFS3ERR_NAMETOOLONG 63 The filename in an operation was too long.

NFS3ERR_DQUOT 69 Resource (quota) hard limit exceeded. The
user's resource limit on the server has been
exceeded.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
’ arguments was invalid. The file referred to by

that filehandle no longer exists, or access to it
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internal consistency checks. 1

NFS3ERR_NOTSUPP 10004 Operation is not supported.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not
map to any of the legal NFS version 3 protocol
error values. The client should translate this into

an appropriate error. UNIX clients may choose
to translate this to EIO.

 

Snoop Trace of SYMLINK

NFS: Proc = 10 (Make symbolic link)
NFS: File handle = 008000l800000002000A000000011168
NFS: 102754F8000A00000000DDOA50295369
NFS: File name = symlink
NFS: Mode = 0777

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx

NFS: Group's permissions = rwx
NFS: Other's permissions = rwx
NFS: User ID = (not set)

NFS: Group ID = (not set)
NFS: Size = (not set)
NFS: Access time = (do not set)
NFS: Modification time = (do not set)
NFS:

NFS: Path l i nktext

\.

NFS: Proc = 10 (Make symbolic link)
NFS: Status = 0 (OK)
NFS: File handle = 0080001800000002000A000000011181
NFS: 13761BA9000A00000O00DDOA50295369

NFS: Post—operation attributes:
NFS: File type = 5 (Symbolic Link)
NFS: Mode = 0777

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx

NFS: Group's permissions = rwx
NFS: Other's permissions = rwx
NFS: Link count = 1, User ID = 3497, Group ID = 10
NFS: File size = 8, Used = 1024

NFS: Special: Major = 0, Minor = 0
NFS: File system id = 8388632, File id = 70017
NFS: Last access time = 12-Jul-98 00:45:35.736869000 GMT
NFS: Modification time = 12-Jul-98 0O:45:35.766869000 GMT
NFS: Attribute change time = 12-Jul-98 00:45:35.766869000 GMT
NFS:

NFS: Pre—operation attributes:
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Size = 1024 bytes

Modification time = 12-Jul-98 O0:45:26.5l6867000 GMT
Attribute change time = 12-Jul-98 O0:45:26.5l6867000 GMT

Post-operation attributes:

File type = 2 (Directory)
Mode = 0777 V

Setuid = 0, Setgid = 0, Sticky = 0
Owner's permissions = rwx
Group's permissions = rwx
Other's permissions = rwx

Link count = 8, User ID = 3497, Group ID = 1
File size = 1024, Used = 1024
Special: Major = 0, Minor = 0
File system id = 8388632, File id = 69992
Last access time = 12-Jul-98 O0:42:20.586866000 GMT

Modification time 12-Jul-98 00:45:35.766868000 GMT
Attribute change time l2—Ju1—98 00:45:35.766868000 GMT

7.3.12 Procedure 11: MKNOD—Create a Special Device

Description

Procedure MKNQD creates a new special file. Special files can be device files,
sockets, or named pipes.

  
; Arguments f Results

E nfs,fh3 dir; g switch (nfsstat3 status) {
f filename3 name; ; case NFS3_OK = 0:
i switch (ftype3 type) { § post_op_fh3 obj_fh;
i case NF3CHR: E post_op_attr obj_attr;

case NF3BLK: 5 wcc_data dir_wcc;
sattr3 dev_attr; § default:

specdata3 spec; § wcc_data dir_wcc;
case NF3SOCK: f }
case NF3FIFO: =

sattr3 pipe_attr;
. default:

§ void;
E }

Arguments

dir

The filehandle for the directory in which the special file is to be created.
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name

The name that is to be associated with the created special file. Refer to sec-

tion 5.3.1 for a description of allowable filenames.

type .

The type of the object to be created. v »‘¢"‘;

When creating a character special file (type is NF3CHR)l or a block spe-
cial file (type is NFBBLK), the following arguments are included:

dev_attr A

The initial attributes for a character or block device.

spec

The major and minor device number (see specdata3 on page 141).

When creating a socket (type is NFBSOCK) or a FIFO (type is NFBFIFO),
the following argument is included:

pi pe_att r

The initial attributes for the special file.

Results

status

NFS3_OK.

ob j_fh

The filehandle for the newly created special file.

obj_att r

The attributes for the newly created special file (page 143).

di r_wcc

Weak cache consistency data for the directory di r. For a client that requires
only the post-MKNOD directory attributes, the attributes can be found in
wcc_data. after (page 145).

Results on Failure

status

Error code.

di r_wcc

Weak cache consistency data for the directory di r. For a client that requires
only the post-MKNOD directory attributes, the attributes can be found in
di r_wcc . after. Even though the MKNOD failed, full wcc_data is returned‘ _
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to allow the client to determine whether the failing MKNOD changed the
directory.

Implementation

Without explicit support for special filetype creation in the NES version 2 pro-
tocol, fields in the CREATE arguments were overloaded to indicate creation of

certain types of objects. This overloading is not necessary in the version 3 pro-
tocol.

If the server does not support any of the defined types, the error
NFS3ERR_NOTSUPP should be returned. Otherwise, if the server does not

support the target type or the target type is illegal, the error NFS3ERR_
BADTYPE should be returned. Note that NF3REG, NF3DIR, and NF3LNK are
illegal types for MKNOD. The procedures CREATE, MKDIR, and SYMLINK
should be used to create these file types, respectively, instead of MKNOD.

Errors -
  

NFS3ERR_IO 5 I /0 error. A hard error (eg, a disk error) oc-
curred while processing the requested opera-tion.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,

which restricts itself to owner or privileged-user
permission failures.

NFS3ERR_EXIST A 17 File exists. The file specified already exists.

NFS3ERR_NOTDIR 20 Not a directory. The caller specified a non-
directory in a directory operation.

NFS3ERR_INVAL 22 Invalid argument or unsupported argument for
= - an operation.

NFS3ERR_NOSPC 28 No space left on device. Operation would have
caused server's filesystem to exceed its limit.

NFS3ERR_ROFS 30 Read-only filesystem. A modifying operation
was attempted on a read-only filesystem.

NFS3ERR_NAMETOOLONG 63 The filename in an operation was too long.

NFS3ERR_DQUOT 69 Resource (quota) hard limit exceeded. User's
resource limit on the server has beenexceeded.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by
that filehandle no longer exists or access to it
has been revoked.
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NFS3ERR_BADI-IANDLE 10001 Illegal NFS filehandle. The filehandle failed
internal consistency checks.

NFS3ERR_NOTSUPP 10004 Operation is not supported.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not
. map to any of the legal NFS version 3 protocol

error values. The client should_translate this into

an appropriate error. UNIX clients may choose
to translate this to E10.

NFS3ERR_BADTYPE 10007 An attempt was made to create an object of a
type not supported by the server.
  

Snoop Trace of MKNOD

NFS: Proc = 11 (Make special file)
NFS: File handle = [0082]
NFS: 0080000000000002000A000000000002

3B72A359000A0000000000023B72A359
NFS: File name = foo

NFS: File type = Block special
NFS: Mode = 0664

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rw—
NFS: Group's permissions = rw—
NFS: Other's permissions = r——
NFS: User ID = (not set)

NFS: Group ID = 0
NFS: Size = (not set)
NFS: Access time = (do not set)
NFS: Modification time = (do not set)
NFS:

NFS: Major = 1943
NFS: Minor = 224
NFS:

\/

NFS: Proc = 11 (Make special file)
NFS: Status = 0 (OK)
NFS: File handle = [896F]
NFS: 0080000000000002000A0000000000F6

46B35781000A0000000000023B72A359

NFS: Post—operation attributes:
NFS: File type = 3 (Block special)
NFS: Mode = 0664

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rw—
NFS: Group's permissions = rw—
NFS: Other's permissions = r——
NFS: Link count = 1, User ID = 0, Group ID = 0
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NFS: File size = 2147483647, Used = 0
NFS: Special: Major = 1943, Minor = 224
NFS: File system id = 8388608, File id = 246

NFS: Last access time — 21-Jun-99 07:16:48.000000000 GMT 
NFS: Modification time = 21-Jun-99 07:16:48.00000000Q GMT
NFS: Attribute change time = 21~Jun—99 07:16:48.Q9Q000000 GMT

N; NFS: . v .
§ NFS: Pre—operation attributes:

NFS: Size = 512 bytes
§ NFS: Modification time = 21-Jun-99 07:l6:23.877293000 GMT
E NFS: Attribute change time = 21-Jun-99 07:l6:23.877293000 GMT
E NFS:

§ NFS: Post—operation attributes:
§ NFS: File type = 2 (Directory)

NFS: Mode = 0755 .
§ NFS: Setuid = 0, Setgid = 0, Sticky = 0
§ NFS: Owner's permissions = rwx
§ NFS: Group's permissions = r—x
§ NFS: Other's permissions = r—x

g NFS: Link count = 29, User ID = 0, Group ID = 0
E NFS: File size = 512, Used = 1024

NFS: Special: Major = 0, Minor = 0

3 , NFS: File system id = 8388608, File id = 2
§ NFS: Last access time = 21-Jun-99 07:13:54.555393000 GMT
i NFS: Modification time = 21-Jun-99 07:l6:48.057573000 GMT

NFS: Attribute change time = 21-Jun-99 07:l6:48.057573000 GMT

7.3.13 Procedure 12: REMOVE—Remove a File

Description

Procedure REMOVE removes (deletes) an entry from a directory. If the entry
in the directory was the last reference to the corresponding filesystem object,
the object may be destroyed.

Arguments Results

nfs_fh3 dir; nfsstat3 status;
fiTename3 name; wcc_data dir_wcc;

Arguments

di r

The filehandle for the directory from which the entry is to be removed.
name

The name of the entry to be removed. Refer to section 5.3.1 for a description
of allowable filenames. “’"“""ed
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Results

status

NFS3_OK.

d1‘ r_wcc ' 1}:

Weak cache consistency data for the directory d1‘ r. For a client that requires
only the post-REMOVE directory attributes, the attributes can be found in
wcc_data. after (page 145).

Results on Failure

status

Error code.

d1" r_wcc

Weak cache consistency data for the directory d1’ r. For a client that requires
only the post-REMOVE directory attributes, the attributes can be found in
d1’ r_wcc . after. Even though the REMOVE failed, full wcc_data is returned
to allow the client to determine whether the failing REMOVE changed the

directory.

Implementation.
In general, REMOVE is intended to remove nondirectory file objects and
RMDIR is to be used to remove directories. However, REMOVE can be used
to remove directories, subject to restrictions imposed by either the client or
server interfaces. This had been a source of confusion in the NFS version 2

protocol.
The concept of last reference is server specific. However, if the nl ink field

in the previous attributes of the object had the value 1, the client should not
rely on referring to the object via a filehandle. Likewise, the client should not
rely on the resources (disk space, directory entry, and so on) formerly associ-
ated with the object becoming immediately available. Thus, if a client needs to
be able to continue to access a file after using REMOVE to remove it, the client

should take steps to make sure that the file will still be accessible. The usual
mechanism used is to use RENAME to rename the file from its old name to a
new hidden name. For more details see section 8.4.

Errors
 

NFS3ERR_NOENT 2 No such file or directory. The file or directory
name specified does not exist.

NFS3ERR_lO 5 1/0 error. A hard error (for example, a disk
error) occurred while processing the requested
operation.
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NFS3ERR_ACCES 13

NFS3ERR_NOTDIR 20

NFS3ERR_ROFS 30

NFS3ERR_NAMETOOLONG 63

NFS3ERR_BADHANDLE

NFS3ERR_SERVERFAULT

 

NFS3ERR_STALE 70

10001

1 0006
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Permission denied. The caller does not have the

correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,

which restricts itself to owner or privileged-user
permission failures. ’pi:

Not a directory. The caller specified a non-
directory in a directory operation.

Read-only filesystem. A modifying operation
was attempted on a read-only filesystem.

The filename in an operation was too long.

Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by
that filehandle no longer exists or access to it has
been revoked.

Illegal NFS filehandle. The filehandle failed

internal consistency checks.

An error occurred on the server that does not

map to any of the legal NFS version 3 protocol
error values. The client should translate this into

an appropriate error. UNIX clients may choose
to translate this to EIO.

000O002000A000000017A4O
09BD9D63000A00000000DDOA502 95 3 69

Snoop Trace of REMOVE

NFS: Proc = 12 (Remove file)
NFS: File handle = 008000180
NFS:

NFS: File name = subfile

J
\V7

NFS: Proc = 12 (Remove file)
NFS: Status = 0 (OK)
NFS: Pre—operation attribute

NFS: Size = 512 bytes
NFS: Modification time

NFS: Attribute change time
NFS:

NFS: Post—operation attribut
NFS: File type = 2 (Direct
NFS: Mode = 0775

NFS: Setuid = O, Setgid =
NFS: Owner's permissions
NFS: Group's permissions
NFS: 0ther's permissions
NFS: Link count = 2, User
NFS: File size = 512, Used

S1

13-Nov-97 23:04:50.261264000 GMT
13-Nov-97 23:04:50.261264000 GMT

es:

Ory)

0, Sticky = 0
rwx
rwx
r—x

= 3497, Group ID = 10
1024

1-!IIHII
D continued



4.

Chapter 7 NFS Version 3194

NFS: Special: Major = 0, Minor = 0
NFS: File system id = 8388632, File id = 96832
NFS: Last access time = 12-Jul-98 00:42:58.986867000 GMT
NFS: Modification time = 12-Jul-98 00:42:59.006869000 GMT
NFS: Attribute change time = 12-Jul-98 00:42:59.00686900Q GMT

3.3:‘

7.3.14 Procedure 13: RMDlR—Remove Directory

Description

Procedure RMDIR removes (deletes) a subdirectory from a directory. If the
directory entry of the subdirectory is the last reference to the subdirectory, the
subdirectory may be destroyed.

Arguments Results
n'Fs_'Fh3 dir; n'Fsstat3 status;
'FiTename3 name; wcc_data di r_wcc;

Arguments

di r

The filehandle for the directory from which the subdirectory is to be
removed.

name

The name of the subdirectory to be removed._ Refer to section 5.3.1 for a
description of allowable filenames.

Results

status

NFS3_OK.

di r_wcc

Weak cache consistency data for the directory di r. For a client that requires
only the post—RMDIR directory attributes, the attributes can be found in
wcc_data.after (page 145).

Results on Failure

status

Error code.

di r_wcc .

Weak cache consistency data for the directory di r. For a client that requires
only the post—RMDIR directory attributes, the attributes can be found in
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d1‘ r_wcc . after. Note that even though the RMDIR failed, full wcc_data is

returned to allow the client to determine whether the failing RMDIR
changed the directory.

Implementation
'

On some servers, removal of a nonempty directory is" disallowed. The client
should not rely on the resources (disk space, directory entry, and so on) for-
merly associated with the directory becoming immediately available.

   
Errors

NFS3ERR_NOENT 2 No such file or directory. The file or directory
name specified does not exist.

NFS3ERR_IO 5 I /0 error. A hard error (eg., a disk error)
' occurred while processing the requested

operation.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the

correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,

which restricts itself to owner or privileged-user
permission failures.

NFS3ERR_EXIST 17 File exists. The file specified already exists.

N'FS3ERR_NOTDIR 20 Not a directory The caller specified a non-
directory in a directory operation.

 
NFS3ERR_INVAL ' 22 Invalid argument or unsupported argument for

an operation.

NFS3ERR_ROFS 30 Read-only filesystem. A modifying operation
was attempted on a read-only filesystem.

NFS3ERR_NAMETOOLONG 31 The filename in an operation was too long.

NFS3ERR_NOTEMPTY 66 An attempt was made to remove a directory that
was not empty.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by
that filehandle no longer exists or access to it has
been revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS filehandle. The filehandle failed
internal consistency checks.

NFS3ERR_NOTSUPP 10004 Operation is not supported.
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NFS3ERR_SERVERFAULT 10006

 

An error occurred on the server that does not

map to any of the legal NFS version 3 protocol
error values. The client should translate this into

an appropriate error. UNIX clients may choose
to translate this to EIO.

Snoop Trace of RMDIR
NFS: Proc = 13 (Remove directory)
NFS: File handle = O080001800000002000A000000016FD4
NFS: 4507FA5SOOOAOOOOOOOODDOASOZ95369
NFS: File name = subdir

NFS: Proc = 13 (Remove directory)
NFS: Status = 0 (OK)

NFS: Pre-operation attributes:
NFS: Size = 512 bytes

NFS: Modification time = 13-Nov-97 23:04:39.201266000 GMT
NFS: Attribute change time = 13-Nov-97 23:04:39.201266000 GMT
NFS:

NFS: Post—operation attributes:
NFS: File type = 2 (Directory)
NFS: Mode = 0775

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx

NFS: Group's permissions = rwx
NFS: Other's permissions = r—x
NFS: Link count = 2, User ID = 3497, Group ID = 10
NFS: File size = 512, Used = 1024

NFS: Special: Major = 0, Minor = 0
NFS: File system id = 8388632, File id = 94164
NFS: Last access time = 12-Jul-98 00:42:58.956866000 GMT
NFS: Modification time = 12-Jul-98 O0:42:59.066867000 GMT
NFS: Attribute change time = 12-Jul-98 O0:42:59.066867000 GMT

7.31.15 Procedure 14: RENAME—-Rename File or Directory

Description

Procedure RENAME renames the file identified by fromname in the directory
fromdirto toname hithe dkeckxy todin The operafion.k;requked k)be

continued
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atomic to the client. The directories todi r and fromdir must reside on the
same filesystem and server.

Arguments Results

nfs_fh3 fromdir; nfsstat3 status;

fi1ename3 fromname; wcc_data fromdir_fiE§;
nfs~fh3 todir; wcc_data todir_wcc;
fi1ename3 toname;

Arguments

fromdir

The filehandle for the directory from which the entry is to be renamed.
fromname

The name of the entry that identifies the object to be renamed. Refer to sec-
tion 5.3.1 for a description of allowable filenames.

todir

The filehandle for the directory to which the object is to be renamed. It is
commonly the same as fromdi r.

toname

The new name for the object. Refer to section 5.3.1 for a description of allow-
able filenames. If the directory todi r already contains an entry with the
name toname, the source object must be compatible with the target: either
both are nondirectories or both are directories and the target must be empty
If compatible, the existing target is removed before the rename occurs. If

they are not compatible or if the target is a directory but not empty, the
server should return the error NFS3ERR_EXIST.

Results

status

NFS3_OK if successful, otherwise an error code.

fromd1'r_wcc

Weak cache consistency data for the directory fromdi r.

todi r_wcc

Weak cache consistency data for the directory todi r.

Implementation

The RENAME operation must be atomic to the client. This means that the

RENAME operation must not fail in a way that leaves a directory entry in a
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partially renamed state nor should a client be able to detect any partially
renamed state on the server. The phrase ”tod1' r and fromdi r must reside on
the same filesystem on the server [or the operation will fail]” means that the
fsi d fields in the attributes for the directories are the same. If they reside on

different filesystems, the error NFS3ERR_XDEV is returned. Even though the
operation is atomic, the status NFS3ERR_MLINK may begfrveturned if the
server used an ”unlink/link/unlink” sequence internally.

A filehandle may or may not become stale on a rename. However, server
implementors are strongly encouraged to attempt to keep filehandles from
becoming stale in this fashion. '

If fromdi r/fromname and todi r/toname both refer to the same file (they

might be hard links of each other), then RENAME should perform no action
and return NFS3_OK.

  

NFS3ERR_NOENT 2 No such file or directory. The file or directory
name specified does not exist.

NFS3ERR_IO 5 1/0 error. A hard error (e.g., a disk error) oc-
curred while processing the requested opera-
tion.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the
correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,
which restricts itself to owner or privileged-user

permission failures.

NFS3ERR_EXIST 17 File exists. The file specified already exists.

NFS3ERR_XDEV 19 Attempt to do a cross-device hard link.

NFS3ERR_NOTDIR 20 Not a directory. The caller specified a non-
directory in a directory operation.

NFS3ERR_ISDIR 21 Is a directory. The caller specified a directory in
a nondirectory operation.

NFS3ERR_INVAL 22 Invalid argument or unsupported argument for
an operation.

NFS3ERR_NOSPC 28 No space left on device. The operation would
have caused the server's filesystem to exceed its
limit.

NFS3ERR_ROFS 30 Read-only filesystem. A modifying operation
was attempted on a read-only filesystem.

NFS3ERR_MLINK 31 Too many hard links.

NFS3ERR_NAMETOOLONG 63 The filename in an operation was too long.
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NFS3ERR_NOTEMPTY 66

NFS3ERR_DQUOT 69

l§lFS3ERR_STALE 70

NFS3ERR_BADHANDLE 10001

NFS3ERR_NOTSUPP 10004

NFS3ERR_SERVERFAULT 10006

 

An attempt was made to remove a directory
that was not empty.

Resource (quota) hard limit exceeded. The
user's resource limit on the server has been
exceeded. Ave .

Invalid filehandle. The filehandle given in the

arguments was invalid. The file referred to by
that filehandle no longer exists or access to it
has been revoked.

Illegal NFS filehandle. The filehandle failed

internal consistency checks.

Operation is not supported.

An error occurred on the server that does not

map to any of the legal NFS version 3 protocol
error values. The client should translate this into

an appropriate error. UNIX clients may choose
to translate this to EIO.

File handle = 008000l800000002000AOO000O011168
OOAOOOOOOOODDOASOZ9 S 369

File handle = 0080001800000002000AO000OO011l68

Snoop Trace of RENAME

NFS: Proc = 14 (Rename)
NFS:

NFS: 1027S4F8O
NFS: File name = fubar
NFS:

NFS: 1027S4F8O
NFS: File name = barfu

NFS: Proc = 14 (Rename)
NFS: Status = 0 (OK)
NFS: Pre-operation attribute

NFS: Size = 1024 bytes
NFS: Modification time

NFS: Attribute change time
NFS:

NFS: Post—operation attribut
NFS: File type = 2 (Direct
NFS: Mode = 0777

NFS: Setuid = 0, Setgid =
NFS: Owner's permissions
NFS: Group's permissions
NFS: Other's permissions
NFS: Link count = 8, User
NFS: File size = 1024, Use
NFS: Special: Major = O, M

OOAOOOOOOOODDOASOZ9 S 369

s: (from directory)

12-Jul-98 0O:46:O0.246866000 GMT
12-Jul-98 0O:46:O0.246866000 GMT

es: (from directory)
ory)

0, Sticky = 0
rwx
rwx

— rwx

ID = 3497, Group ID = 1
d = 1024
inor = 0
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NFS: File system id = 8388632, File id = 69992
NFS: Last access time - 12-Jul-98 00:55:34.961134000 GMT
NFS: Modification time = 12-Jul-98 00:55:55.211121000 GMT
NFS: Attribute change time = 12-Jul-98 00:55:55.211121000 GMT
NFS:

NFS: Pre—operation attributes: (to directory) _%
NFS: Size = 1024 bytes . v ‘
NFS: Modification time = 12-Jul-98 00:46:00.246866000 GMT
NFS: Attribute change time = 12-Jul-98 00:46:00.246866000 GMT
NFS:

NFS: Post—operation attributes: (to directory)
NFS: File type = 2 (Directory)
NFS: Mode = 0777

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: 0wner‘s permissions = rwx

NFS: Group's permissions = rwx
NFS: 0ther's permissions = rwx
NFS: Link count = 8, User ID = 3497, Group ID = 1
NFS: File size = 1024, Used = 1024

NFS: Special: Major = 0, Minor = 0
NFS: File system id = 8388632, File id = 69992
NFS: Last access time = 12-Jul-98 00:55:34.961134000 GMT
NFS: Modification time = 12-Jul-98 00:55:55.211121000 GMT
NFS: Attribute change time = 12-Jul-98 00:55:55.211121000 GMT

7.3.16 Procedure 15: L|NK—Create Link to an Object

Description

Procedure LINK creates a hard link fromname in the directory fromdi r for
fi 1 e. The file and its hard link must reside on the same filesystem and server.

Arguments Results
nfs_fh3 fi1e; nfsstat3 status;
nfs_fh3 fromdir; post_op_attr fromdir_wcc;
fi1ename3 fromname; wcc_data 1inkdir_wcc;

Arguments
fi 1 e

The filehandle for the existing filesystem object.

fromdi r

The filehandle for the directory in which the link is to be created.

fromname

The name that is to be associated with the created link. Refer to section 5.3.1
for a description of allowable filenames.
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Results

status

NFS3_OI< if successful, otherwise an error code.

fromdi r_wcc I

The postoperation attributes of the filesystem object identified by fi 1 e (page
144).

11' nkd1' r_wcc

Weak cache consistency data for the directory fromdi r (page 145).

Implementation

Changes to any property of the hard—linked files are reflected in all the linked
files. When a hard link is made to a file, the attributes for the file should have

a value for n1 1' nk that is one greater than the value before the LINK.

The comments under RENAME regarding object and target residing on
the same filesystem apply here as well. The comments regarding the target
name apply as well.

Errors
    

NFS3ERR_IO 5 I /O error. A hard error (for example, a disk
error) occurred while processing the requested
operation.

NFS3ERR_ACCES _ 13 Permission denied. The caller does not have the

correct permission to perform the requested
operation. Contrast this with NFS3ERR_PERM,

which restricts itself to owner or priVileged—user
permission failures.

NFS3ERR_EXlST 17 File exists. The file specified already exists.

NFS3ERR_XDEV 18 Attempt to do a cross-device hard link.

NFS3ERR_NOTDIR 20 Not a directory. The caller specified a non-
directory in a directory operation.

NFS3ERR_INVAL 22 Invalid argument or unsupported argument for
an operation.

NFS3ERR_NOSPC 28 No space left on device. The operation would
have caused the server's filesystem to exceed its
limit.

NFS3ERR_ROFS 30 Read-only filesystem. A modifying operation
was attempted on a read—only filesystem.

NFS3ERR_MLINK 31 Too many hard links.
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NFS3ERR_STALE 70

NFS3ERR__BADHANDLE 10001

NFS3ERR_NOTSUPP 10004

NFS3ERR_SERVERFAULT 10006

 

Resource (quota) hard limit excee .
user's resource limit on the server has been
exceeded.

Invalid filehandle. The filehandle given in the

arguments was invalid. The_\f_ile referred to by
that filehandle no longer exists, or access to it
has been revoked.

Illegal NFS filehandle. The filehandle failed
internal consistency checks.

Operation is not supported.

An error occurred on the server that does not

map to any of the legal NFS version 3 protocol
error values. The client should translate this

into an appropriate error. UNIX clients may
choose to translate this to EIO.

File handle = 0080001800000002000A00000001l17F
5E58E82F000A00000000DDOA50295369

File handle = 0080001800000002000A00000001ll68
102754F8000A00000000DDOA50295369

Snoop Trace of LINK
NFS: Proc = 15 (Link)
NFS:
NFS:
NFS:
NFS:

NFS: File name = hardlink

NFS: Proc = 15 (Link)
NFS: Status = 0 (OK)

NFS: Post—operation attribut
NFS: File type = 1 (Regula
NFS: Mode = 0644

NFS: Setuid = 0, Setgid =
NFS: Owner's permissions

NFS: Group's permissions
NFS: 0ther‘s permissions
NFS: Link count = 2, User
NFS: File size = 445, Used

NFS: Special: Major = 0, M
NFS: File system id = 8388
NFS: Last access time
NFS: Modification time
NFS: Attribute change time
NFS:

NFS: Pre—operation attribute
NFS: Size = 1024 bytes
NFS: Modification time

es:

r File)

0, Sticky = 0
rw—
r‘..-
r__

ID = 3497, Group ID = 10
= 1024

inor = 0

632, File id = 70015
- 12-Jul-98 00:43:56 746868000 GMT

12-Jul-98 00:43:56.806866000 GMT
12-Jul-98 00:46:00 216871000 GMT

5:

~ = 12-Jul-98 00:45:35.766868000 GMT
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NFS: Attribute change time = 12—Ju1—98 00:45:35.766868000 GMT
NFS:

NFS: Post—operation attributes:

NFS: File type = 2 (Directory)

NFS: Mode = 0777 V
NFS: Setuid = 0, Setgid = 0, Sticky = 0 '§
NFS: Owner's permissions = rwx "
NFS: Group's permissions = rwx
NFS: Other's permissions = rwx

NFS: Link count = 8, User ID = 3497, Group ID = 1
NFS: File size = 1024, Used = 1024
NFS: Special: Major = 0, Minor = 0

NFS: File system id = 8388632, File id = 69992_
NFS: Last access time = 12-Jul-98 00:42:20.586866000 GMT
NFS: Modification time = 12-Jul-98 00:46:00.246866000 GMT
NFS: Attribute change time = 12-Jul-98 00:46:00.246866000 GMT

7.3.17 Procedure 16: READDlR—Read from Directory

Description

Procedure REAIDDIR retrieves a variable number of entries, in sequence, from
a directory and returns the name and file identifier for each, with information

to allow the client to request additional directory entries in a subsequent
READDIR request.

Argtmzents

f nfs_fh3 dir;
j uint64 cookie;

E cookieverf3 cookieverf;
E uint32 count;

Results

; switch (nfsstat3 status) {
: case NFS3_0K = 0:

post_op_attr dir_attr;
cookieverf3 cookieverf;
list {

uint64 fileid;
fi1ename3 name;
uint64 cookie;

  
};
boolean eof;

default:

post_op_attr dir_attr;

  
Arguments

dir

The filehandle for the directory to be read.

cookie

This should be set to O in the first request to read the directory. On subse-
quent requests, it should be a cookie as returned_by the server.
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cookieverf

This should be set to 0 in the first request to read the directory. On subse-

quent requests, it should be a cookieverf as returned by the server. The
cooki eve rf must match thatreturned by the READDIR in which the cookie

was acquired. "If

COUflt

The maximum size of the reply arguments, in bytes. The size must include
all XDR overhead. The server is free to return fewer than count bytes of
data.

Results

status

NFS3_OK.

d1‘ r_attr

The attributes of the directory di r.

cookieverf

The cookie verifier.

entries

A list of directory entries, each containing

fileid

The fi 1 e1" d attribute of each entry.

name

The name of the directory entry.

cookie

An opaque reference to the next entry in the directory. The cookie is used
in the next READDIR call to get more entries starting at a given point in

the directory di r.

em‘

TRUE if the last member of entry list is the last entry in the directory or the
list of entries is empty and the cookie corresponded to the end of the direc-
tory. If FALSE, there may be more entries to read.

Results on Failure

status

Error Code continued
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d1" r_att r

The attributes of the directory d1’ r (page 143).

 
Implementation

In the NFS version 2 protocol, each directory entry returned included a cookie
identifying a point in the directory. By including this cookiein a subsequent
READDIR, the client could resume the directory read at any point in the
directory. One problem with this scheme was that there was no easy way for a
server to verify that a cookie was valid. If two READDIRS were separated by
one or more operations that changed the directory in some way (for example,
reordering or compressing it), it was possible that the second READDIR could

miss entries or process entries more than once. If the cookie was no longer
usable, for example, pointing into the middle of a directory entry, the server
would have to either round the cookie down to the cookie of the previous
entry or round it up to the cookie of the next entry in the directory. Either way
would possibly lead to incorrect results and the client would be unaware that
any problem existed.

In the NFS version 3 protocol, each READDIR request includes both a
cookie and a cookie Verifier. For the first call, both are set to 0. The response
includes anew cookie verifier, with a cookie per entry For subsequent READ-
DIRs, the client must present both the cookie and the corresponding cookie
verifier. If the server detects that the cookie is no longer valid, the server will
reject the READDIR request with the status NFS3ERR_BAD_COOKIE. The

client should be careful to avoid holding directory entry cookies across opera-
tions that modify the directory contents, such as REMOVE and CREATE.

One implementation of the cookie—verifier mechanism might be for the
server to use the modification time of the directory. This might be overly
restrictive, however. A better approach would be to record the time of the last

directory modification that changed the directory organization in a way that
would make it impossible to reliably interpret a cookie. Servers in which
directory cookies are always valid are free to use zero as the verifier always.

The server may return fewer than count bytes of XDR-encoded entries.
The count specified by the client in the request should be greater than or equal
to FSINFO dtpref. Since UNIX clients give a special meaning to the f1'1e1' d
value zero, UNIX clients should be careful to map zero f1‘ 1 e1" d values to some
other value, and servers should try to avoid sending a zero f1‘ 1 e1" d.
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Errors
  

NF53ERR_1O 5 I /0 error. A hard error (for example, a disk error)

occurred while processing the requested operation.

NFS3ERR_ACCES 13 Permission denied. The callerdoes not have the
correct permission to perform tlfé',requested opera-
tion. Contrast this with NFS3ERR_PERM, which

restricts itself to owner or privileged-user permis-
sion failures.

NFS3ERR_NOTDlR 20 Not a directory. The caller specified a nondirectory
in a directory operation.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by that
filehandle no longer exists or access to it has been
revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS filehandle. The filehandle failed inter-
nal consistency checks.

NFS3ERR_BAD_COOKIE 10003 READDIR or READDIRPLUS cookie is stale.

NFS3ERR__TOOSMALL 10005 Buffer or request is too small.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not map
to any of the legal NFS version 3 protocol error val-
ues. The client should translate this into an appro-

priate error. UNIX clients may choose to translate
this to E10.

  

Snoop Trace of READDIR

NFS: Proc = 16 (Read from directory)
NFS: File handle = 0080001800000002000A0O00000l7A40
NFS: 09BD9D63000AO0000000DDOA50295369
NFS: Cookie = 512

NFS: Verifier = 0000000000000000
NFS: Count = 048

NFS: Proc = 16 (Read from directory) .
NFS: Status = 0 (OK)

NFS: Post—operation attributes:
NFS: File type = 2 (Directory)
NFS: Mode = 0775

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: 0ther's permissions = r—x
NFS: Link count = 2, User ID = 3497, Group ID = 10
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NFS: File size = 512, Used = 1024
NFS: Speciai: Major = 0, Minor = 0
NFS: Fi1e system id = 8388632, File id = 94164
NFS: Last access time — 12—JuT—98 00:42:58.956866000 GMT

NFS: Modification time = 12-Jul-98 00:42:59.12687200p GMT
NFS: Attribute change time = 12-Jul-98 O0:42:59:;g6872000 GMT
NFS: . ' *1

NFS: Cookie verifier = OOOOOOOOOOOOOOOO
NFS:

NFS: File id Cookie Name
NFS: 0 entries
NFS: EOF = True

7.3.18 Procedure 17: READDIRPLUS—Extended Read from Directory —

Description

Procedure READDIRPLUS retrieves a variable number of entries from a file-

system directory and returns complete information about each entry along
with information to allow the client to request additional directory entries in a
subsequent READDIRPLUS. READDIRPLUS differs from READDIR only in
the amount of information returned for each entry. In READDIR, each entry
returns the filename and the filei d. In READDIRPLUS, each entry returns
the name, the fi 1 ei d, attributes (including the fi 1 ei d), and filehandle.

% Results

f switch (nfsstat3 status) {
i case NFS3_OK = 0:

post_op_attr dir_attr;
cookieverf3 cookieverf;
list {

uint64 fileid;
fi1ename3 name;
uint64 cookie;
post_op_attr name_attr;
switch (boolean) {

Arguments

E nfs_fh3 dir;
T uint64 cookie;
' cookieverf3 cookieverf;

uint32 dircount;
uint32 maxcount;

case TRUE:

nfs_fh3 obj_fh;
case FALSE:

void;
}

};
boolean eof;

default:

post_op_attr dir_attr;
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Arguments

dir

The filehandle for the directory to be read.

cooki e

This should be set to 0 on the first request to read a directory.

requests, it should be a cookie as returned by the server.

On subsequent

cookieverf

This should be set to 0 on the first request to read a directory. On subsequent
requests, it should be a cookieverf as returned by the server. The cookieverf
must match that returned by the READDIRPLUS call in which the cookie
was acquired.

d1" rcount

The maximum number of bytes of directory information returned. This
number should not include the size of the attributes and filehandle portions
of the result.

maxcount

The maximum size of the READDIRPLUS3 reply in bytes. The size must
include all XDR overhead. The server is free to return fewer than maxcount

bytes of data.

Results

statu S

NFS3_OK.

di r_att r

The attributes of the directory, di r (page 143).

cookieverf

The cookie verifier.

entries

A list of directory entries, each containing

fileid

The fi 1 e1’ d attribute of each entry.

name

The name of the directory entry.
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cookie

An opaque reference to the next entry in the directory. The cookie is used
in the next READDIR call to get more entries starting at a given point in
the directory di r.

name_attr

File attributes for the entry returned in a post_op_attr structure, giving
the server the option of not returning attributes.

obj_fh

Filehandle for the entry.

eof

TRUE if the last member of the entries list is the last entry in the directory or
the list is empty and the cookie corresponded to the end of the directory. If
FALSE, there may be more entries to read.

Results on Failure

5tat u 5

Error code.

d1’ r_att r

The attributes of the directory d1’ r.

Implementation

Issues that need to be understood for this procedure include increased cache
flushing activity on the client (as new filehandles are returned with names

that are entered into caches) and over—the—wire overhead versus expected sub-
sequent LOOKUP elimination. The intent of this procedure is to improve per-
formance for directory browsing where attributes are always required, as
when navigating a file tree with a graphical file browser.

The d1‘ rcount and maxcount fields are included as an optimization. Con-
sider a READDIRPLUS call on a UNIX operating system implementation for
1048 bytes: the reply does not contain many entries because of the overhead
due to attributes and filehandles. An alternative is to issue a READDIRPLUS

call for 8192 bytes and then only use the first 1048 bytes of directory informa-
tion. However, the server doesn’t know that all that is needed is 1048 bytes of
directory information (as would be returned by READDIR). It sees the 8192
byte request and issues a VOP_READDIR for 8192 bytes. It then steps through
all those directory entries, obtaining attributes and filehandles for each entry.
When it encodes the result, the server encodes only until it gets 8192 bytes of
results, which include the attributes and filehandles. Thus, it has done a larger
VOP_READDIR and many more attribute fetches than it needed to. The ratio

of the directory entry size to the size of the attributes plus the size of the file-
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handle is usually at least 8 to 1. The server has done much more work than it
needed to.

The solution to this problem is for the client to provide two counts to the
server. The first is the number of bytes of directory information the client
really wants, di rcount. The second is the maximumnumber of bytes in the
result, including the attributes and file handles, maxcount. Thus, the server
will issue a VOP_READDIR for only the number of bytes that the client really
wants to get, not an inflated number. This should help to reduce the size of
VOP_READDIR requests on the server, thus reducing the amount of work
done there, and to reduce the number of VOP_LOOKUP, VOP_GETATTR,
and other calls done by the server to construct attributes and filehandles.

The server may return fewer than maxcount bytes of XDR-encoded
entries. The maxcount specified by the client in the request should be greater
than or equal to FSINFO dtpref. Since UNIX clients give a special meaning to
the fi 1 ei d value zero, UNIX clients should be careful to map zero fi 1 ei cl val-
ues to some other value, and servers should try to avoid sending a zero
f1"|e1'd.

   
Errors

NFS3ERR_IO 5 I/O error. A hard error (for example, a disk error)
occurred while processing the requested operation.

NFS3ERR_ACCES 13 Permission denied. The caller does not have the
correct permission to perform the requested opera-
tion. Contrast this with NFS3ERR_PERM, which

restricts itself to owner or privileged-user permis-
sion failures.

NFS3ERR_NOTDIR 20 Not a directory. The caller specified a nondirectory
in a directory operation.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by that
filehandle no longer exists, or access to it has been
revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS file handle. The file handle failed inter-
nal consistency checks.

NFS3ERR_BAD_COOKIE 10003 READDIR or READDIRPLUS cookie is stale.

NFS3ERR_NOTSUPP 10004 Operation is not supported.

NFS3ERR_TOOSMALL 10005 Buffer or request is too small.
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to any of the legal NFS version 3 protocol error va1~

ues. The client should translate this into an appro-
priate error. UNIX clients may choose to translatethis to EIO. ".8-.—

 

Snoop Trace of READDIRPLUS

NFS: Proc = 17 (Read from directory — p1us)
NFS: Fi1e hand1e = 0080001800000002000A000000016FD4

 
I 2.; NFS: 4507FA55000A00000000DDOA50295369

jg NFS: Cookie = 0

NFS: Verifier = 0000000000000000
ig NFS: Dircount = 1048
{§ NFS: Maxcount = 8192

£7
NFS: Proc = 17 (Read from directory — p1us)
NFS: Status = 0 (OK)
NFS: Post—operation attributes:n~saww4<¢k?€tW‘1\'>flY5Eb‘:?,§\‘.\i‘¥393‘k§?;¥%tvu«7;>~su:«va~:m/:

 

NFS: Fi1e type = 2 (Directory)
NFS: Mode = 0775

NFS: Setuid = 0, Setgid = 0, Sticky = 0
f NFS: Owner's permissions = rwx

NFS: Group's permissions = rwx
NFS: Other‘s permissions = r—x

h NFS: Link count = 3, User ID = 3497, Group ID = 10
§ NFS: Fi1e size = 512, Used = 1024

.5 NFS: Specia1: Major = 0, Minor = 0
; NFS: Fi1e system id = 8388632, Fi1e id = 94164

NFS: Last access time - 12—Ju1—98 00:42:58.956866000 GMT
E

 

 

NFS: Modification time = 13-Nov-97 23:04:39.201266000 GMT
NFS: Attribute change time = 13-Nov-97 23:04:39.201266000 GMT
NFS:

NFS: Cookie verifier = O000000000000000
NFS: -

NFS: ———————————————— —— entry #1
NFS: Fi1e ID = 94164
NFS: Name = .
NFS: Cookie = 12

NFS: Post—operation attributes:

NFS: Fi1e type = 2 (Directory)
NFS: Mode = 0775

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: Other‘s permissions = r—x

NFS: Link count = 3, User ID = 3497, Group ID = 10
NFS: Fi1e size = 512, Used = 1024
NFS: Specia1: Major = 0, Minor = 0
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NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:

Fi1e system id = 8388632, Fi1e id = 94164
Last access time = 12—Ju1—98 00:42:58.956866000 GMT

13-Nov-97 23:04:39.201266000 GMT
13-Nov-97 23:04:39.201266000 GMT

Modification time

Attribute change time

Fiie hand1e = O0800018000000O2000AOO0000016FD4»%
4507FA55O00AO0OO0OO0DD0A50295369V‘?

———————————————— —- entry #2
FiTe ID = 69992
Name = ..

Cookie = 24

Post-operation attributes:
FiTe type = 2 (Directory)
Mode = 0777

Setuid = O, Setgid = 0, Sticky = 0
Owner's permissions = rwx
Group's permissions = rwx
Other's permissions - rwx

Link count = 9, User ID = 3497, Group ID = 1
Fi1e size = 1024, Used = 1024

Specia1: Major = 0, Minor = 0
Fi1e system id = 8388632, Fi1e id = 69992
Last access time — 12—Ju1—98 O0:42:20.586866000 GMT
Modification time O8—Ju1—98 20:49:23.011564000 GMT

Attribute change time O8—Ju1—98 20:49:23.011564000 GMT

Fi1e handTe = O080001800000O02000A00OO00O11168
102754F8000A000OO000DDOA50295369

———————————————— —— entry #3
Fi1e ID = 96832
Name = subdir
Cookie = 40

Post—operation attributes:
Fi1e type = 2 (Directory)
Mode = 0775

Setuid = O, Setgid = 0, Sticky = 0
Owner's permissions = rwx
Group's permissions = rwx
Other's permissions = r—x

Link count = 2, User ID = 3497, Group ID = 10
Fi1e size = 512, Used = 1024

SpeciaT: Major = 0, Minor = 0
Fi1e system id = 8388632, Fi1e id = 96832
Last access time = 11—Ju1-98 10:15:O0.835423000 GMT
Modification time 13-Nov-97 23:04:50.261264000 GMT
Attribute change time 13-Nov-97 23:04:50.261264000 GMT

Fi1e hand1e = OO800018000O0002000A000OO0017A40
09BD9D63000AO000O0OODDOA50295369

—————————— --—————— entry #4
Fi1e ID = 94165

Name = afi1e
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NFS: Cookie = 512

NFS: Post—operation attributes: 
NFS: File type = 1 (Regular File)

A g NFS: Mode = 0664

§ NFS: Setuid = 0, Setgid = 0, Sticky = 0.
y;§ NFS: Owner's permissions = rw— _ as.

ig NFS: Group's permissions = rw— ‘ ‘ “
“TE NFS: Other's permissions = r—- ’
ISE NFS: Link count = 1, User ID = 3497, Group ID = 10

i NFS: File size = 11, Used = 1024
§ NFS: Special: Major = 0, Minor = 0

7 § NFS: File system id = 8388632, File id = 94165’
; % NFS: Last access time = 26-May-98 23:24:34.037944000 GMT
jp: NFS: Modification time = 13-Nov-97 23:O4:39.201268000 GMT

L NFS: Attribute change time = 13-Nov-97 23:O4:39.201268000 GMT
§ NFS:

‘E NFS: File handle = 0080001800000002000AO00OO00l6FD5
§ NFS: lAB7F898000AO00O0000DDOA50295369
E NFS: .

E NFS: 4 entries
% NFS: EOF = True
E

7.3.19 Procedure 18: FSSTAT-—Get Dynamic Filesystem Information

Description

i Procedure FSSTAT retrieves volatile filesystem state information.

Arguments Results

E nfs_fh3 obj_fh; i switch (nfsstat3 status) {
§ case NFS3_OK = 0:
§ post_op;attr obj_attr;
§ uint64 tbytes;
§ uint64 fbytes;
§ uint64 abytes;
Z uint64 tfiles;
Q uint64 ffiles;
f uint64 afiles;
i uint32 invarsec;
§ default:
§ post_op_attr obj_attr;
E }

Arguments

* obj_fh

A filehandle identifying an object in the filesystem. This is normally a file-
handle for a mountpoint for a filesystem, as originally obtained from the
MOUNT service on the server.

continued
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Results

status

NFS3_OK.

obj_attr ,6

The attributes of the filesystem object specified in obj_fh (page 141).
tbytes

The total size, in bytes, of the filesystem.

fbytes

The amount of free space, in bytes, in the filesystem.

abytes

The amount of free space, in bytes, available to the user identified by the
authentication information in the RPC. (This reflects space that is reserved

by the filesystem; it does not reflect any quota system implemented by the
server.)

tfi 1 es

The total number of file slots in the filesystem. (On a UNIX server, this often

corresponds to the number of inodes configured.)

ffiles

The number of free file slots in the filesystem.

afiles

The number of free file slots that are available to the user corresponding to
the authentication information in the RPC. (This reflects slots that are

reserved by the filesystem; it does not reflect any quota system implemented
by the server.)

invarsec

A measure of filesystem volatility: this is the number of seconds for which
the filesystem is not expected to change. For a volatile, frequently updated
filesystem, this will be 0. For an immutable filesystem, such as a CD-ROM,
this would be the largest unsigned integer. For filesystems that are infre-
quently modified, for example, one containing local executable programs
and on—line documentation, a value corresponding to a few hours or days

might be used. The client may use this as a hint in tuning its cache manage-
ment. Note, however, that this measure is assumed to be dynamic and may

change at any time.
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Results on Failure

status

Error code.

obj_attr Na“

The attributes of the filesystem object specified in ob j‘_fh (page'143).

Implementation

Not all implementations can support the entire list of attributes. It is expected ‘”
that servers will make a best effort at supporting all the attributes.

Errors

 

NFS3ERR_IO 5 I /O error. A hard error (e.g., a disk error) occurred
while processing the requested operation.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by that
filehandle no longer exists, or access to it has been
revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS filehandle. The filehandle failed inter-
nal consistency checks.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not map to
any of the legal NFS version 3 protocol error values.

The client should translate this into an appropriate
) . error. UNIX clients may choose to translate this to

EIO.

Snoop Trace of FSSTAT
NFS: Proc = 18 (Get filesystem statistics)
NFS: File handle = 0080001800000002000AOOOOOOOODDOA
NFS: 50295369000A00000000DDOA50295369

NFS: Procl= 18 (Get filesystem statistics)
NFS: Status = 0 (OK)
NFS: Post—operation attributes:

 
NFS: File type = 2 (Directory)
NFS: Mode = 0777

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions = rwx
NFS: Group's permissions = rwx
NFS: Other's permissions = rwx

NFS: .Link count = 3, User ID = 0, Group ID = 3
NFS: File size = 512, Used = 1024

NFS: Special: Major = 0, Minor = 0
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NFS: File system id = 8388632, File id = 56586
NFS: Last access time = 11-Jul-98 l0:l5:00.835416000 GMT
NFS: Modification time = 24-Apr-98 03:55:41.8407l6000 GMT
NFS: Attribute change time = 24-Apr-98 03:55:4l.840716000 GMT
NFS:

NFS: Total space = 334838784 bytes
NFS: Available space = 34195456 bytes .‘
NFS: Available space — this user = 720896 bytes
NFS: Total file slots = 163968
NFS: Available file slots = 153028
NFS: Available file slots — this user = 153028
NFS: Invariant time = 0 sec ’

‘firs.

7.3.20 Procedure 19: FSlNFO—Get Static Filesystem Information

Description

Procedure FSINFO retrieves nonvolatile filesystem state information and gen-
eral information about the NFS Version 3 protocol server implementation.
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y Arguments i Results

f nfs_fh3 obj_fh; § switch (nfsstat3 status) {
5 case NFS3_0K = O:

post_op_attr obj_attr;

uint32 rtmax; :
uint32 I rtbhef;
uint32 " ' rtmult;
uint32 wtmax;
uint32 wtpref;
uint32 wtmult;
uint32 dtpref;
uint64 maxfilesize;

. nfstime3 time_delta;
uint32 properties;

default:

3 post_op_attr obj_attr;
5: }

Arguments

0bj_fh

A filehandle identifying a file object. Normal usage is to provide a filehandle
for a mountpoint for a filesystem, as originally obtained from the MOUNT
service on the server.

Results

status

NFS3_OK.

obj_attr

The attributes of the filesystem object specified in obj_fh (page 144).
rtmax

V_,,»“.Wq,§u¥f;§p§\7b/1/(,§(}?§_b}‘VWfr§1Yw5vlt»Ax(s¢¢«n..l.....»..t,4avym.mmw:mwrm»wwmw««wW mwm«mm
The maximum size in bytes of a READ request supported by the server. Any
READ with a number greater than rtmax will result in a short read of rtmax
bytes or less.

rtpref

The preferred size in bytes of a READ request. This should be the same as
rtmax unless there is a clear benefit in performance or efficiency

rtmult

The suggested multiple for the size of a READ request.

 
wtmax

The maximum size in bytes of a WRITE request supported by the server. In
general, the client is limited by wtmax since there is no guarantee that a
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server can handle a larger write. Any WRITE with a count greater than
wtmax will result in a short write of at most wtmax bytes. ‘

wtpref

The preferred size in bytes of a WRITE request. This shouldbe the same as
wtmax unless there is a clear benefit in performance or efficiency. ‘

wtmult

The suggested multiple for the size of a WRITE request.

dtpref

The preferred size in bytes of a READDIR request.

maxfilesize

The maximum size in bytes of a file on the filesystem.

ti me_del ta

The server time granularity. When setting a file time using SETATTR, the
server guarantees only to preserve times to this accuracy. If this is {0, 1}, the
server can support nanosecond times; {0, 1000000} denotes millisecond pre-
cision, and {1, 0} indicates that times are accurate only to the nearest second.

properties

A bit mask of filesystem properties. The following values are defined.

Value Name

0x0001 FSF3_LINK

0x0002 FSF3_SYMLINK The file system supports symbolic links.

0x0008 FSF3_HOMOGENEOUS The information returned by PATHCONF is identi-
cal for every file and directory in the filesystem. If
not set, the client should retrieve PATHCONF infor-
mation for each file and directory as required.

The server will set the times for a file via SETATTR if

requested (to the accuracy indicated by ti me_de'| ta).
If not set, the server cannot set times as requested.

Property bit is set

The file system supports hard links.

0x0010 FSF3_CANSETTIME

Results on Failure

status

Error code.

attributes

The attributes of the filesystem object specified in obj_fh.
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Implementation

Not all implementations can support the entire list of attributes. It is expected
that a server will make a best effort at supporting all the attributes.

The filehandle provided is expected to be the filehandle of the filegystem
root, as returned to the MOUNT operation. Since mounts.,rnay occur any-
where within an exported tree, the server should expect FSINFO requests
specifying filehandles within the exported filesystem. A server may export
different types of filesystems with different attributes returned to the FSINFO
call. The client should retrieve FSINFO information for each mount com-

pleted. Though a server may return different FSINFO information for differ-

ent files within a filesystem, there is no requirement that a client obtain
FSINFO information for other than the filehandle returned at mount.

The maxfilesi ze field determines whether a server's particular file-
system uses 32-bit sizes and offsets or 64-bit file sizes and offsets. This may
affect a client's processing.

The preferred sizes for requests are nominally tied to an exported file-
system mounted by a client. A surmountable issue arises in that the transfer

size for an NFS version 3 protocol request depends not only on characteristics
of the filesystem but also on characteristics of the network interface, particu-
larly the maximum transfer unit (MTU). A server implementation can adver-

1 % tise different transfer sizes (for the fields rtmax, rtpref, wtmax, wtpref, and
dtpref) depending on the interface on which the FSINFO request is received.
This is an implementation issue.

Errors

 

%

E

2 NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
_ arguments was invalid. The file referred to by that

filehandle no longer exists, or access to it has been
E revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS filehandle. The filehandle failed inter-
nal consistency checks.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not map
to any of the legal NFS version 3 protocol error val-

ues. The client should translate this into an appro-
priate error. UNIX clients may choose to translate
this to EIO.

 

Snoop Trace of FSINFO

NFS: Proc = 19 (Get filesystem information)
NFS: File handle = 0080001800000002000AOOOOOOOODDOA.M~..W,.W,.«-,a~,.-5L-e>w~.«.~.W..m.W.s,..
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7Jl21

NFS:

NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:
NFS:

50295369000A00000000DDOA50295369

5;
Proc = 19 (Get filesystem information)
Status = 0 (OK)

Post—operation attributes:
File type = 2 (Directory)
Mode = 0777

Setuid = 0, Setgid = 0, Sticky = 0
Owner's permissions = rwx

Group's permissions = rwx
Other's permissions = rwx

Link count = 3, User ID = 0, Group I
File size = 512, Used = 1024

Special: Major = 0, Minor = 0
File system id = 8388632, File id =
Last access time —
Modification time

Attribute change time

24-Apr-98 03
24-Apr-98 03

Read transfer sizes:
Maximum = 32768 bytes
Preferred = 32768 bytes

Suggested multiple = 512 bytes
write transfer sizes:

Maximum = 32768 bytes
Preferred = 32768 bytes

Suggested multiple = 512 bytes
Directory read size:

Preferred = 8192 bytes

File system limits: .
Max file size = 1099511627775 bytes
Server minimum time discrimination

Properties = Oxlb
...1 Hard links supported

.. ..1. Symbolic links supported
.... 1...
..1 ....

D = 3

56586

11-Jul-98 10:15:00.835416000 GMT
:55:41.8407l6000 GMT
:55:41.8407l6000 GMT

= 0.001000 sec

Pathconf cannot vary per file

Server can always set file times

Procedure 20: PATHCONF—Retrieve POSIX Information

Description

Procedure PATHCONF retrieves the pathconf information for a file or direc-

tory. If the FSF_HOMOGENEOUS bit is set in FSFINFO3resok.properties,
the pathconf information will be the same for all files and directories in the
exported filesystem in which this file or directory resides.
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I Arguments 1’ Results

nfs_fh3 obj_fh; § switch (nfsstat3 status) {
I E case NFS3_OK = O:

post_op_attr obj~attr;

uint32 linkmax; _
uint32 name_max;*;
boolean no_trunc; 3
boolean chown_restricted;
boolean case_insensitive;
boolean case_preserving;

default:

3 post_op_attr obj_attr;
: }

Arguments

obj_fh

The filehandle for the filesystem object.

Results

status

NFS3_OK.

obj_att r

The attributes of the object specified by object (page 143).
linkmax

The maximum number of hard links to an object.
name_max

The maximum length of a component of a filename.
no_trunc

If TRUE, the server will reject any request that includes a name longer than
name_max with the error NFS3ERR_NAMETOOLONG. If FALSE, any length
name over name_max bytes will be silently truncated to name_max bytes. 

chown_restri cted

If TRUE, the server will reject any request to change either the owner or the
group associated with a file if the caller is not the privileged user (uid O).

ii./mwxw/m:
case_insens1't1've

If TRUE, the server filesystem does not distinguish case when interpreting
filenames.»b--mr!@V"V’fi"»"r’$‘,-‘;3‘»‘\'.\‘§f’Y‘?'<‘?1’>Y‘N»r:4‘-:rr/wxe-/>4
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case_preservi ng

If TRUE, the server filesystem will preserve the case of a name during a
CREATE, MKDIR, MKNOD, SYMLINK, RENAME, or LINK operation.

Results on Failure ,3‘ ‘

status

Error code.

obj_attr'

The attributes of the object specified by object.

Implementation

In some implementations of the NFS version 2 protocol, pathconf informa-
tion was obtained at mount time through the MOUNT protocol. The proper

place to obtain it is as here, in the NFS version 3 protocol itself.

Errors
    

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by that
filehandle no longer exists, or access to it has been
revoked.

NFS3ERR_BADHANDLE 10001 Illegal NFS filehandle. The filehandle failed inter-‘
nal consistency checks.

NFS3ERR_SERVERFAULT 10006 An error occurred on the server that does not map
to any of the legal NFS version 3 protocol error
values. The client should translate this into an

appropriate error. UNIX clients may choose to
translate this to EIO.

 

Snoop Trace of PATHCONF

NFS: Proc = 20 (Get POSIX information)
NFS: File handle = 008000180000O002000AOOOOOOO11171
NFS: 3FAF141C000A00000000DDOA50295369

\/

NFS: Proc = 20 (Get POSIX information)
NFS: Status = 0 (OK) *

NFS: Post—operation attributes:
NFS: File type = 1 (Regular File)
NFS: Mode = 0666

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: Owner's permissions rw—
NFS: . Group's permissions rw—

i
5
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NFS: Other's permissions = rw—

NFS: Link count = 1, User ID = 4294967294, Group ID = 429496729
NFS: Fi1e size = 398520, Used = 409600
NFS: Specia1: Major = 0, Minor = 0
NFS: File system id = 8388632, File id = 70001

NFS: Last access time — 21-Apr-98 03:55:19.883238000 GMT
NFS: Modification time = 21-Apr-98 03:54:51.853236000 GMT
NFS: Attribute change time = 24-Apr-98 00:07:36.737699000 GMT
NFS:

NFS: Link max = 32767
NFS: Name max = 255

NFS: No trunc = True
NFS: Chown restricted = True

NFS:, Case insensitive = Fa1se

NFS: Case preserving = True

7.3.22 Procedure 21: COMM|T—Commit Cached Data on a Server

‘ to Stable Storage

Description

Procedure COMMIT forces or flushes data to stable storage that was pre-
viously written with a WRITE procedure call with the stable field set to

'3 UNSTABLE.

. Arguments Results
'% nfs_fh3 file; switch (nfsstat3 status) {

2 uint64 offset; ~ case NFS3_OK = 0:
E uint32 count; . wcc_data file_wcc;
§ writeverf3 verf;
§ default:

7 wcc_data fiTe_wcc;

§

Arguments
fi1e

? . .
The filehandle for the file to which data is to be flushed (committed). This
must identify a filesystem object of type NFBREG.

offset

The position within the file at which the flush is to begin. An offset of 0
means to flush data starting at the beginning of the file.

count

The number of bytes of data to flush. If count is O, a flush from offset to the
end of the file is done.

continued
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Results

status

NFS3_OK.

f1’ I e_wcc A ‘W

Weak cache consistenc data for the file. For a client that re’ uires onl theY _ Cl Y

postoperation file attributes, the attributes can be found in wcc_data . after
(page 145).

verf

This is a cookie that the client can use to determine whether the server has

rebooted between a call to WRITE and a subsequent call to COMMIT. This

cookie must be consistent during a single boot session and must be unique
between instances of the NFS version 3 protocol server where uncommitted

data may be lost.

Results on Failure

status

Error code.

f1" I e wcc

Weak cache consistency data for the file. For a client that requires only the
postwrite file attributes, the attributes can be found in wcc_data.after.
Even though the COMMIT failed, full wcc_data is returned to allow the cli-
ent to determine whetherthe file changed on the server between calls to
WRITE and COMMIT.

Implementation

Procedure COMMIT is similar in operation and semantics to the POSIX

fsync(2) system call that synchronizes a file's state with the disk; that is, it
flushes the file's data and metadata to disk. COMMIT performs the same

operation for a client, flushing any unsynchronized data and metadata on the
server to the server's disk for the specified file. Like fsync(2), it may be that
there is some modified data or no modified data to synchronize. The data may

have been synchronized by the server's normal periodic buffer synchroniza-
tion activity. COMMIT will return NFS3_OK unless there has been an unex-
pected error.

COMMIT differs from fsync(2) in that it is possible for the client to flush a
range of the file (most likely triggered by a buffer-reclamation scheme on the
client before file has been completely written).

The server implementation of COMMIT is reasonably simple. If the server
receives a full file COMMIT request, that is, starting at offset 0 and count 0, it
should do the equivalent of fsync()—ing the file. Otherwise, it should arrange

3
3

I
3
5
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to have the cached data in the range specified by the offset and count to be
flushed to stable storage. In both cases, any metadata associated with the file
must be flushed to stable storage before returning. It is not an error for there
to be nothing to flush on the server. This means that the data and metadata

that needed to be flushed have already been flushed or lost; during the last
server failure. V ’ “ - »

The client implementation of COMMIT is a little more complex. There are
two reasons for wanting to commit a client buffer to stable storage. The first is
that the client wants to reuse a buffer. In this case, the offset and count of the

buffer are sent to the server in the COMMIT request. The server then flushes
any cached data based on the offset and count and flushes any metadata
associated with the file. It then returns the status of the flush and the verf ver-

ifier. The other reason for the client to generate a COMMIT is for a full file
flush, such as may be done at close. In this case, the client would gather all the
buffers for this file that contain uncommitted data, do the COMMIT operation
with an offset of O and count of O, and then free all of those buffers. Any other
dirty buffers would be sent to the server in the normal fashion.

This implementation will require some modifications to the buffer cache
on the client. After a buffer is written with stable UNSTABLE, it must be con-
sidered as dirty by the client system until it is either flushed via a COMMIT

operation or written via a WRITE operation with stable set to FILE_SYNC or

DATA_SYNC. This is done to prevent the buffer from being freed and reused
before the data can be flushed to stable storage on the server. .

When a response comes back from either a WRITE or a COMMIT opera-
tion that contains an unexpected verf, the client will need to retransmit all the
buffers containing uncommitted cached data to the server. How this is to be

done is up to the implementor. If there is only one buffer of interest, then it
should probably be sent back over in a WRITE request with the appropriate
stable flag. If there are more than one, it might be worthwhile to retransmit all
the buffers in WRITE requests with stable set _to UNSTABLE and then retrans-
mit the COMMIT operation to flush all the data on the server to stable stor-

age. The timing of these retransmissions is left to the implementor.
This description applies to page-cache-based systems as well as buffer-

cache-based systems. In page-cache-based systems, the virtual memory sys-
tem will need to be modified instead of the buffer cache.

 

mw-,~.~,wv.~.v«rmnewmamum.mu».WM...W.y:4wms-sxvmw-mm»mw.».m.m..,..M..s...m.u.,....«mmsm«w«7a-n-w,....~»-«««-«~.ww~»»
Errors
   

NFS3ERR_IO 5 I /0 error. A hard error (for example, a disk error)
occurred while processing the requested operation.

NFS3ERR_STALE 70 Invalid filehandle. The filehandle given in the
arguments was invalid. The file referred to by that
filehandle no longer exists, or access to it has been
revoked.

.......«».
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NFS3ERR_BADHANDLE 10001

NFS3ERR_SERVERFAULT 10006

 

Illegal NFS filehandle. The filehandle failed inter-
nal consistency checks.

An error occurred on the server that does not map

to any of the legal NFS Version 3 protocol error Val-
ues. The client should translate this into an appro-

priate error. UNIX clients ‘may choose to translate‘
this to EIO.

Snoop Trace of COMMIT

NFS: Proc = 21 (Commit to stable storage)
NFS: File handle = 0080001800000002000A0000O0011182
NFS: 56CB152E000A00000000DDOA50295369
NFS: Offset = 0
NFS: Count = 98304

C;
NFS: Proc = 21 (Commit to stable storage)
NFS: Status = 0 (OK)

NFS: Pre—operation attributes:
NFS: Size = 100000 bytes
NFS: Modification time = 12-Jul-98 00:56:48.091126000 GMT
NFS: Attribute change time = 12-Jul-98 00:56:48.091126000 GMT
NFS:

NFS: Post-operation attributes:

NFS: File type = 1 (Regular File)
NFS: Mode = 0664

NFS: Setuid = 0, Setgid = 0, Sticky = 0
NFS: 0wner's permissions = rw—
NFS: Group's permissions = rw—
NFS: 0ther's permissions = r—-
NFS: Link count = 1, User ID = 3497, Group ID = 10
NFS: File size = 100000, Used = 114688

NFS: Special: Major = 0, Minor = 0
NFS: File system id = 8388632, File id = 70018
NFS: Last access time = 12-Jul-98 O0:56:47.701127000 GMT
NFS: Modification time = 12-Jul-98 00:56:48.091126000 GMT
NFS: Attribute change time = 12-Jul-98 00:56:48.091126000 GMT
NFS:

NFS: Verifier = 72602A263369254D



 

8.1

 

Chapter 8

NFS Implementation  '.

lthough this book focuses on the NFS protocol and filesystem model, itA would be incomplete if it did not discuss issues that are common to all
implementations. Most of the material in this chapter applies to both versions
2 and 3 of the protocol.

File Attributes

8.2

The NFS filesystem model has strong similarities to the POSIX 1003.1 specifi-
cation. Some might say that the two are almost indistinguishable, a conclu-
sion that is borne out by a comparison of the supported file attributes. Table
8.1 compares some of the filerattributes supported by POSIX, NFS versions 2
and 3, DOS FAT filesystem, and Windows NTFS.

In some cases, a server can support most of the semantics described by the
protocol but not all. For example, the ctime file attribute gives the time that a
file's attributes were last modified. Many filesystems do not keep this infor-
mation. In this case, rather than not support the GETATTR operation, a server
could simulate it by returning the last modified time (mti me) in place of cti me.
Servers must be careful when simulating attribute information because of
possible side effects on clients. For example, many clients use file modification
times as a basis for their cache consistency scheme.

Unsupported Procedures

The NFS filesystem model contains many procedures that are common to all
popular filesystem types, for instance, directory lookup, file read and write, and
operations to get and set file attributes. However, there are some operations that
cannot be supported by some servers or filesystems. The server will return a
”not supported” error for any request that cannot be supported directly or
approximated. There are many servers that cannot support symbolic links or

225
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TABLE 8.17 Comparison of File Attributes Supported by POSIX, NFS Versions 2
and 3, DOS FAT, and Windows NTFS

POSIX NFS ‘()2 NFS ‘()3 FAT NTF5 Description

type type File type

st_mode mode mode readonl y ACL Permissiorifbits
st_ino fileid fileid File ID .

st_dev \ fsi d fsi d Filesystern ID

st_rdev rdev rdev Device ID

st_nlink nlink nlink names Number of links

st_uid uid uid owner Owner ID

st_gid gid gid group Group ID
st_size size size size size File size

Used Space used

st_ati me ati me ati me Last access time

st_mti me mti me mti me mti me mti me Last modification time

st_cti me cti me cti me Metadata modification time

st_bl ksi ze blocks Number of file blocks

st_bl ocks bl ocksi ze File block size

hard links, that is, the SYMLINK, READLINK, and LINK requests. There is no
reliable way to predict in advance which procedures a server will support,
though in NFS version 3 the FSINFO procedure can be used to determine if sym-
bolic or hard links are supported.

Multiple Version Support

The RPC protocol provides support for explicit versioning of a service. Both
client and server might support multiple versions of a protocol. The client
should use the highest version number that is supported by both it and the
server (Figure 8.1).

Client

  

Server

 
 

FIGURE 8.1 Client and server should use highest mutually supported version.
1‘
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8.4 Last Close Problem

The statelessness of the NFS server can be a challenge when implementing
POSIX clients that allow removal of open files. A process can open a file and,
while it is open, remove it from the directory. The file can befiread and written
as long as the process keeps it open, even though thefile has’no name in the
filesystem. The filesystem must maintain a count of all processes that cur-
rently have the unnamed file open and remove the file when the last process
closes the file (otherwise the filesystem would become polluted with invisi-
ble, unreachable files). Since an NFS server has no knowledge of file opens, it
cannot implement this ”last close” requirement. The client can approximate
the requirement by renaming the file to a hidden name (e.g., .nfsxxxx, where
xxxx is the process’s ID) and only physically removing it after the last close
(Figure 8.2).

Since it's possible for a client to crash or otherwise neglect to remove the
hidden file, the server may need to periodically remove accumulated hidden
files. Solaris servers have a daily cron script that searches writeable, exported
filesystems for hidden files that haven't been accessed for more than a week

and deletes them with the assumption that they are no longer in use. The
script presumes that all clients use the same convention for naming hidden
files (name starts with .nfs).

There is no general solution for the situation where processes on other cli-
ents have the file open. They will continue to have access on the renamed file

since the filehandle is independent of the filename, but they will receive a
“stale filehandle” error when they attempt to access the file after it is removed
from the server.

Process 1234 Process 3421 NFS Client Code

|ookup(“file”)

I

I

I

I refcnt= 2

I rename(“fiie”, “.nfs1234”)
I

I

I

I

I

..,__.~..mwm~.ur~»mmm<m<.m.V.w.m.  
read(“.nfs1234”)

refcnt = 1

remove(“.nfs1 234”)  
FIGURE 8.2 Last close problem. The limitation of a stateless server can be
overcome by renaming the file. The name seems to disappear from the directory
but the file data are preserved. The client removes the renamed file from the server
after the last close.
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Crossing of Server Mountpoints

An NFS client can also be a server, with remote and local mounted filesystems

freely mixed. The mounting of remote filesystems within local filesystems
(and vice versa) leads to some problems when a client travels down the direc-
tory tree of a remote filesystem and reaches the mountpointson the server‘ for
another filesystem.

1. 1-"ilesystem identification. The crossing of a server mountpoint implies a
change in the filesystem ID (fsid) for the files and directories in the new file-
system. UNIX clients require each filesystem ID to have a corresponding
mounted filesystem that has previously been configured with a mount system
call and recorded in associated system files.

2. 1-"ilehandle limitations. NFS filehandles have a finite size: 32 bytes in ver-

sion 2 and up to 64 bytes in version 3. If the server mountpoint represents
another NFS mount, then it would seem easy just to pass these NFS filehan-
dles back to the client. However, the server in the middle cannot reliably dis-

tinguish the remote NFS server filehandles from the filehandles for its own
exported filesystems. The remote filehandles could be tagged with additional
data, but this will not work for fixed-length version 2 filehandles, nor will it
work indefinitely for version 3 filehandles. The server could set up a file-
handle mapping table, though making it persistent across a server crash
would be difficult.

3. Namespace cycles. If the remote NFS server is the client itself or some
NFS server that mounts from a server earlier in a chain of references, then the

risk of a namespace cycle exists (Figure 8.3). Generally, client operating sys-
tems are unprepared for such cycles; a client application that encountered a

Client/Server 2Client/Server 1

 
FIGURE 8.3 A namespace cycle caused by clients and servers mounting each other.
A program that attempts to walk this file tree will become stuck in this cycle crossing
mountpoints from one server to the other. 

i
i

i
i
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Mount

  
FIGURE 8.4 NFS clients are not aware of filesystem mountpoints on the server.

cycle during a file tree walk (e.g., UNIX find command) would never termi-
nate. To prevent these problems from being encountered, NFS servers prevent
NFS client LOOKUPS from crossing server mountpoints. The client sees the
directory underlying the server's mountpoint instead of the mounted direc-
tory (Figure 8.4). i

For example, if a server with a filesystem called /usr mounts another file-
system on /usr/src and a client mounts /us r, it does not see the mounted
version of /usr/src.

Clients solve the mountpoint crossing problem by replicating the server's
mounts to be consistent with the server's view (Figure 8.5). For instance, in
the preceding example the client would mount /usr/src in addition to /us r.

Mount replication is commonly encountered when a client uses the auto-
mounter to gain access to a hierarchy of filesystems mounted from a server
(see section 11.6). The automounter queries the server's mount service to
obtain a list of exported filesystems, then mounts each exported filesystem in
an identical hierarchy

Cflent

 
 

/net/serve /usr

/net/server/usr/s C

/net/server/usr/s C/X

 

FIGURE 8.5 Replicated mounts. To avoid problems inherent in crossing mountpoints
on the server, NFS clients replicate the server’s mounts so that the mountpoint
crossing is performed on the client instead.
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8.6

The Silicon Graphics Inc. Irix implementation of NFS supports a "nohide”
export option that allows a client LOOKUP from an exported mounted—on
filesystem to cross into the ”nohide” exported filesystem. The Linux unfsd
server also permits client LOOKUP requests to cross mountpoints on the
server. The nohide option provides some convenience for clients since a single
”mount” from the server may provide access to a. numbebilkof server file-
systems mounted within that filesystem. The downside is that the client is
unaware that it is crossing into a new filesystem that has its own file ID
namespace. There is a risk that file IDs for files in the mounted and mounted-
on filesystems may be identical, creating unpredictable effects on the client.

Problems with Hierarchical Mounts

8.7

The previous section illustrates the use of hierarchical mounts to replicate a
server's namespace. There is no requirement that all the mounts in a hierar-
chy come from the same server, though that is the most common case. Hier-
archical NFS mounts from the same server can present some unique problems
at both mount time and unmount time.

1. Namespace gaps. If the server did not export the filesystem /us r/s rc in
Figure 8.5, then the client would be unable to mount /us r/ s rc/x because the
required mountpoint would be missing. The client may not be permitted to
create the missing mountpoint since it may have read—only access to the
mounted-on filesystem /usr. The server administrator must be careful to
export these intermediate filesystems if clients are expected to mount the
server hierarchy.

2. Llnmount from dead server. If a client has hierarchical mounts from a
server that is not responding, then it may not be possible for the client to
unmount the filesystems. Normally a client does not have to communicate
with a server to unmount a filesystem from it, but a hierarchical mount pre-
sents a situation where the client is required to span inaccessible directories to
reach a mountpoint. For example, if the server in Figure 8.5 is down, the
mountpoints /net/server/usr/src and /net/server/usr/src/x are inaccessi-
ble and cannot be unmounted. The top-level mount, /net/serve r/usr, cannot
be unmounted either because the submounts keep the filesystem ”busy.” The

problem cannot be resolved until the dead server comes back to life.

Permission Issues

_ The NFS protocol defines neither the method used by the server to authenti-
cate users nor the mechanism used by the server to authorize access to files and
directories. The server relies on the RPC authentication contained in the
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8.7.1

8.7.2

credential of every request. The most commonly used method of authentica-
tion is via the AUTH_SYS credential, discussed in section 4.4. AUTH_SYS

requires the server to trust the client not to forge the credential. Servers that
accept AUTH_SYS credentials generally associatean access list with each

exported filesystem. The access list is a list of client hostnames from which.the
server will accept credentials as well as determine which clients will have

read-only access and which clients will have read—write access. For authoriza-

tion at the filesystem level, the server delegates responsibility to the policy of
the exported filesystem. The access control policy could be a simple model,
such as that of the DOS FAT filesystem, which has no concept of file owner-
ship, or more complex, like that of Windows NTFS, which controls file access

through access control lists (ACLs).

Identifying Users

Despite its lack of security, most implementations use AUTH_SYS authentica-

tion, described in section 4.4. Its popularity is due to its easy integration with
existing UNIX environments and simple administration compared with more
secure private key or public key schemes that require a management infra-
structure to maintain security keys. With AUTH_SYS authentication, the

server gets the client's UID, GID, and group list on each call and uses them to
check permission. Additionally, when a client receives file attributes from a

server, it must convert the UID and GID attributes into usernames and group
names for display. Using UID and GID implies that the client and server share
the same UID assignments. Every server and client pair must have the same
mapping from username to UID and from group name to GID. Since every
client can also be a server, this tends to imply that the whole network shares
the same UID/GID space. If this is not the case, then it usually falls to the
server to perform some custom mapping of credentials from one authentica-

tion domain into another. The requirement for a consistent UID/GID map-
ping across many clients and servers drove the development of the NIS name
service. NIS is a simple protocol that provides access from many clients to a
single database containing the username to UID and group name to GID
mappings.

AUTH_DES and AUTH_KERB use a network name, or netname, as the

basis for identification. Again, it is assumed that the client and server both

have access to a common service that will map the netname to and from the
local credentials. For example, a UNIX server will convert the netname to a

username from which it will derive the user's UID, GID, and group list.

Access to Open Files

Most operating systems check permission to access a file only when the file is
opened. Subsequently access is granted based on the file permissions at open
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8.7.3

8.7.4

time, even if they change after the open. With stateless servers, the server can-
not detect that the file is open and must do permission checking on each read
and write call. A UNIX process can open a file, then change the permissions so
that one is not allowed to touch it but will still be granted access to the file

because it is open. If the process is accessing an NFS file, it vgpuld bedenied
access because the server does not know that the ”client has opened the file.”

To get around this problem, the server's permission-checking algorithm has
to allow the owner of a file access for READ or WRITE calls regardless of the

permission setting.

UID/GID Mapping

On UNIX servers, the superuser has access to all files, no matter what permis-
sion and ownership they have. UNIX servers are configured not to allow
superuserpaccess from NFS clients, since anyone who can become superuser
on their client could gain access to all files on the server. A UNIX server by
default maps the superuser or superuser’s group (UID or GID of 0) to a distin-
guished value (generally -2 or 60001) before doing its access checking. A
server implementation may provide a mechanism to change this mapping on
a per-export basis; for instance, a diskless client may need superuser access to
its root filesystem, which is exported from the server. In this case the server
may allow superuser access (no mapping) for the diskless client.

Checking File Access

The NFS client's view of the server's access control is provided by the mode
field of the file attributes. The mode field determines file access based on three

identities (owner, group, and other) and three capabilities (read, write, and
execute). These match the mode field defined by the POSIX standard com-
monly implemented in UNIX filesystems. These permissions are presented as
a bit map laid out as follows:

Owner Group Other
/\ A A

r w X r w X r w X

Bit 8 7 6 5 4 3 2 1 0

For example, the following bit values in the mode field give the owner of the
file read and write permission, read access only to any user with a group that
matches the file GID, and no access to any other users.

Owner Group Other
A A A

r w — r — —



,,,.,........W_........,.M.».w_<sy~<-r»e<a,,.,,.

 

8.7 Permission Issues 233

8.7.5

Since the permission bits in the mode field are grouped into triples, it is con-
venient to represent the field as an octal value. The field could be represented
by the value 0640. —

A UNIX client will use these permission bits to determine whether the

user can perform some operation on the file or directory. If the user's UID
matches that of the file, then the ”Owner” bits are checked." If the UID does

not match (or if access is not granted), then the ”Group” bits are checked if the
user's GID matches the file's GID. If the GID does not match (or if access is
not granted), the ”Other” bits are checked.

There are cases where the permission bits might give a false indication of
access resulting in an unexpected error from the server when the operation is
attempted.

1. UID/GID mapping. Unknown to the client, the server may map the
user's UID or GID to another value. The most common instance is where the

user is the UNIX superuser (UID = 0), which the server will map to user
nobody (UID = 60001 or -2) to prevent the client from having superuser
access to all the files on the server.

2. Access control lists. The mode field may be viewed as containing a small
access control list with three entries. Some servers can associate an access con-

trol list with a file or directory that may contain entries for users or groups in
addition to owner, group, and other. Since it is not possible to map the infor-
mation in a large ACL into the mode field accurately, the server will make a

‘ best-effort approximation of the ACL in the permission bits that may give the
user a false indication of access or nonaccess.

NFS version 3 resolved the problem of false permission indications by provid-
ing a new ACCESS procedure that allows the client to request permission
information from the server directly rather than attempting to elicit the infor-
mation from the mode field.

Executable Files

A similar problem has to do with paging in an executable program over the
network. The operating system usually checks for execute permission before
opening a file for demand paging and then reads blocks from the open file. In
a local UNIX file system, an executable file does not need read permission to
execute. An NFS server cannot tell the difference between a normal file read

(where the ”r” permission bit is meaningful) and a demand pagein read
(where the server should allow access to the executable file if the execute bit is

set for that user or group or public). To make this work, the server allows

reading of files if the UID given in the call has either execute or read permis-
sion on the file through ownership, group membership, or public access.
Again, this departs from correct local UNIX filesystem semantics.
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8.8 Concurrent RPC Calls

8.9

Until now, we've discussed the use of the NFS protocol only in regard to a sin-

gle client thread or process calling a single server thread or process. Accord-
ing to the RPC model, execution of the client thread is blocked while ‘a reply
to the remote procedure call is pending. We've assumed thaifthe server is‘ a
single thread or process that handles one remote procedure-call at a time.
While it is possible to implement a single-threaded NFS client or server, in
practice most implementations are highly parallel.

If an NFS server is to provide good service to a large number of clients, it
must be able to service concurrent NFS requests. The first UNIX kernel imple-
mentations of NFS_ achieved this concurrency via the use of multiple process
contexts within the UNIX kernel. Each process context was provided by an nfsd
daemon. An nfsd process made a system call into the kernel from which it never
returned. The process context provided the kernel with a thread of execution for
NFS requests. Typically, an NFS server would run with 8 to 16 nfsd processes,
though system administrators have many rules of thumb to determine the opti-
mal number of nfsd processes. More recently, as UNIX vendors have included
multithreading support within their UNIX kernels to support symmetric multi-
processing, the need for a process context has disappeared. NFS requests can be
handled by UNIX kernel threads managed in a thread pool.

An NFS server may get concurrent NFS requests from multiple clients. It
can also get multiple requests from a single client that is able to run multiple
processes, each performing NFS file access independently. In this case, one or
more threads within the process will generate NFS requests. Even a single-
threaded process on a client can generate multiple NFS I/O calls through the
use of read—ahead and write-behind (section 8.12). UNIX client implementa-

tions have used biod daemons to provide a kernel context for generating read-
ahead and write-behind calls (Figure 8.6). Symmetric multiprocessing kernels
that support native kernel threads dispense with the process context provided
by biod daemons and implement the read—ahead and write-behind threads
directly in the kernel.

Duplicate Request Cache

If an NFS client does not receive a response to a request in a reasonable time,
then it retransmits the request. What constitutes a "reasonable” time is an

implementation detail. A client may assign time-out values that depend on
the specific NFS procedure. A READ or WRITE request will generally take
longer for the server to execute than a GETATTR (GET ATTRibutes) request.
Also, the server's response time may depend on the server's load, its CPU,
disk, and network bandwidth, its remoteness on the network, and the band-
width of the network. ’

5.

l2
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NFS Client NFS Server
Concurrent

NFS Requests

  
Process

FIGURE 8.6 NFS servers handle concurrent NFS requests with multiple service
threads implemented with kernel threads or nfsd daemons. The concurrent requests
may come from multiple clients and/or multiple processes on a single client. Client
processes may use biod daemon threads to perform concurrent NFS l/O requests to
improve performance through read-ahead or write-behind.

Some of the NFS procedures are idempotent. An idempotent procedure
can be repeated with equivalent results (see section 5.4.2). Although idempo-
tent procedures can be repeated safely, the server is burdened with the repeti-
tion of a previously completed request. The protocol does contain some
nonidempotent operations that may return an error if repeated. For instance,
a REMOVE procedure will fail if repeated since a file can be removed only
once. This bogus error might lead the client to believe, erroneously, that the
file never existed. Retransmitted nonidempotent operations may even cause
corrupted or lost file data. For instance, consider the scenario in Figure 8.7,
where a server that supports two nfsd processes truncates data written by a
client because one nfsd process servicing a CREATE request became blocked.

These problems can be prevented through the use of a duplicate request
cache. Each RPC request from a client has a unique transaction ID (XID) in the

RPC header. If the server maintains a cache of recent requests keyed by the
XID, then it can identify retransmitted requests from a client. The server can

use this cache to avoid unnecessary work and errors or data corruption from
nonidempotent requests.

- If the cache entry indicates that the request is ”in progress” and has not
been replied to, then the server can just ignore the request.

u If the cache entry indicates that the server replied to the client recently
(within the last few seconds), then it is likely that the retransmitted

request and its reply crossed in transit. Again, the server ignores the
request. If the assumption is wrong (perhaps the reply was lost in transit)
then the client will eventually retransmit the request.

u If the cache entry indicates that the reply was sent, but not recently, then
the server can send the cached reply to the client.
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FIGURE 8.7 Destructive effect of nonidempotent operation. (1) the client's CREATE
request is received by nfsd 2, which becomes blocked. (2) The retransmitted
CREATE request is received by another nfsd, which creates the file. (3) The client
writes data to the new file. (4) The blocked nfsd resumes and recreates the file,
effectively truncating the data written at (3).

The duplicate request cache is typically implemented in RAM with a fixed
size (Figure 8.8). As new entries are added, old entries are deleted. It's possi-
ble that on a busy server the cache could lose its effectiveness if old entries in
the cache are reused so quickly that duplicate requests are not recognized.
Additionally, a memory—based cache will be lost if the server reboots—
retransmission of requests that were completed just before the server crashed
will not be detected. Loss of the cache can be avoided in some highly available
configurations by storing the cache entries in NVRAM (nonvolatile RAM) or
in a disk file. A good description of the implementation and use of a duplicate
request cache can be found in []uszcza1<89].

8.10 Synchronous Operations and Stable Storage

Data-modifying operations in the NFS protocol must be synchronous. When
the server replies to the client, the client can assume that the operation has
completed and any data associated with the request are now in stable storage
(Figure 8.9).

The term stable storage refers to a storage medium that will protect the
integrity of its data from an operating system crash or an unexpected power
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Retransmit CREATE size = 0
Blocked

File

Created

 CREATE OK

WHITE 0, 8192

  Write
Data
to File

 
 

WRITE OK

FIGURE 8.8 Here the server’s duplicate request cache prevents the file truncation
problem. (1) The CREATE request is cached “in progress.” (2) The duplicate request
is detected, and because it is “in progress” the request is dropped. (3) The blocked
nfsd process creates the file and replies. Any further retransmissions of the CREATE
request after this point will be detected and the cached CREATE OK reply will be
sent. (4) The WRITE proceeds without risk of data loss from a pending CREATE
operation.

failure. A disk is assumed to be stable storage assuming that the disk medium
itself does not fail. Servers can guard against data loss due to media failure by
employing mirrored disks or RAID protection. Some disk drives may utilize
one or more track buffers to store modified data so that the data might be
more efficiently written to the disk. A track buffer lets the disk respond to the
server more quickly since it doesn't have to wait for the data to be written to

the disk platter. These disks are stable only if the track buffers are NVRAM or

the disk is protected by a UPS (uninterruptible power supply).
The server itself may buffer the changes in memory, but to be considered

stable storage, the memory must be protected against power failure or crash
and reboot of the server's operating system. After a server reboot the server

must be able to locate and account for all data in the protected memory. Gener-
ally this memory is provided via a small memory card with attached batteries,
such as Legato’s PrestoServeTM, or the server ’s memory is protected with a UPS.

Most data-modifying operations in the NFS protocol are synchronous. That
is, when a data-modifying procedure returns to the client, the client can assume

7:7:.....
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FIGURE 8.9 Client modifications must be committed to stable storage before the
server replies to the client. (1) In the slowest option, the server makes the change
directly on the disk medium. (2) Some disks may provide track buffers to increase
write speed, but they must be protected by standby battery power to protect against
data loss if power is lost. (3) Fast stable storage may also be provided by a device or
region of server memory protected and recoverable from operating system crash or
power failure. (4) NFS version 3 WHITE operations can be buffered to unstable
storage with the assumption that a COMMIT request will move the data to stable
storage.

that the operation has completed and any modified data associated with the
request is now on stable storage. For example, a synchronous client WRITE
request may cause the server to update data blocks, filesystem information
blocks, and file attribute information (metadatal). Operations that modify
directory contents (MKDIR, CREATE, LINK, SYMLINK, MKNOD, RENAME,
REMOVE, RMDIR) must be synchronous as well as operations that modify
attributes (SETATTR). When the WRITE operation completes, the client can
assume that the write data are safe and discard them. The guaranteed safety of
client modifications is a very important part of the stateless nature of the server.
If the server did not save client modifications in stable storage, the client would
have no way of knowing when it was safe to discard modified data.

The requirement for synchronous operations on the server can have a sig-
nificant impact on the performance of these operations if the server has no
stable buffering available (NVRAM). When compared with other protocols
that do not make the stable storage requirement, NFS version 2 write perfor-
mance was poor. Some implementations of NFS version 2 offer asynchronous
server operations as an option to improve performance. But although perfor-
mance is improved, there is a risk of silent data loss. If the server crashes after
it has replied to a client's WRITE request but before the data have been writ-
ten to the disk, then the client's data will be lost. The client will receive no

1. File metadata is information that is not directly read or written. For instance, file
attributes (owner, modification time, permissions, etc.) and structures within the file-
system that organize the file data blocks, such as indirect blocks.
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error message that would give it an opportunity to recover from the data loss.

The issue of asynchronous writes has been debated for many years by NFS
engineers. Those in favor argue that it is wrong to deny a substantial perfor-
mance improvement to customers who are willing to accept the risk of data
loss. Those against asynchronous writes call them "unsafe”..,g,g_r_rites and argue
that the use of unsafe writes exposes customers to an unnecessary risk of data
corruption or loss.

The NFS version 3 protocol has settled the debate with its introduction of

safe asynchronous writes on the server, when asynchronous WRITE requests
are followed with a COMMIT request. The COMMIT procedure provides a
way for the client to flush data from previous asynchronous WRITE requests
on the server to stable storage and to detect whether it is necessary to retrans-
mit the data. Servers have the option of performing synchronous or asynchro-
nous operations but with the full knowledge of the client.

The requirement for changes to be committed to stable storage is relaxed
by some implementations where the changes are made to file metadata (file
attributes). Explicit changes to attributes like the file owner and group, file
permissions, or file size should certainly be committed to stable storage.
However, an implicit change to the file access time (atime) occurs on the

server whenever the file is read. Flushing of the updated atime to stable stor-
age on every file read would have a significant impact on read performance,
while an up-to-date ati me following a server crash would provide little bene-
fit for client applications. Hence server implementations typically relax the
stable storage requirement in this instance.

Adaptive Retransmission for UDP.

NFS client implementations that use UDP generally use an exponential back-
off strategy when retransmitting requests that have timed out. An initial time-
out value is chosen that is then doubled after each retransmission to some
maximum value.

Most client implementations use an exponential back-off strategy that
doubles or quadruples the time—out after each retransmission up to some pre-
set limit (Figure 8.10). Although a short time-out allows the client to recover

quickly from a lost request or reply, if the server is responding slowly because
it is heavily loaded or if the network is congested, then frequent retransmis-
sions can aggravate the problem. The retransmission back-off avoids this
problem.

The initial time-out must be chosen carefully. If it is too short, the client
will retransmit before the server has had a chance to respond, making more
work for the server if it does not have a duplicate request cache. If the time-
out is too long, the client may be unnecessarily idle waiting for a lost reply.
For instance, if a client’s READ requests are each being handled in 100 msec,
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Time

FIGURE 8.10 Exponential back-off. For each retransmission the client doubles the
time-out up to a preset limit—in this case 30 seconds. This strategy allows the client
to recover quickly from a lost request or response while it avoids burdening an
overloaded server or network with a barrage of retransmissions.

then a time-out that is 500 msec too long implies a loss of five READ requests.

If the time—outs are frequent, the drop in throughput will be noticeable.
An initial guess at an appropriate time-out can be based on the knowl-

edge that some NFS requests typically take longer than others. A LOOKUP
request and response exchanges only a small amount of data across the net-
work and is handled quickly by the server, whereas a READ or WRITE
request generally takes longer. "Solaris clients divide NFS requests into three
categories each with an initial time-out estimate (Table 8.2). This time-out esti-
mate is then revised based on a running average of the observed response

time of each procedure for the specific server. For instance, if the client
observes that the READDIR requests take between 1200 and 1300 msec, then
it might adjust the time-out up to 1400 msec. The category time—outs are also
minimums, so if a server that consistently responds much more quickly for
some procedure than its minimum time-out, the procedure time-out will not
be adjusted down. The minimum timeout avoids problems with the client
trimming its time-outs too aggressively and risking unnecessary retransmis-
sions because the server is temporarily indisposed.

TABLE 8.18 Solaris NFS Request Categories

Initial

time-out

Category (msec) Operations

LOOKUP 750 GETATTR, LOOKUP, ACCESS, READLINK, FSSTAT, STATFS,
FSINFO, PATHCONF

READ 875 SETATTR, READ, READDIR

WRITE 1250 WRITE, CREATE, MKDIR, SYMLINK, MKNOD, REMOVE,
RMDIR, RENAME, LINK, READDIRPLUS, COMMIT
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8.12 Read-ahead and Write-behind

An NFS client implementation can exploit the parallelism in an NFS server to
improve performance through the use of read—ahead and write-behind tech-

niques, when reading or writing a file (Figure 8.11‘). Thesemtechniques have
been known for many years to operating system designers as‘a way to speed
up sequential access to file data, whether reading or writing. Most programs
tend to read a file beginning with the first byte and proceeding down the file
in byte order until the end of the file is reached. Similarly, programs tend to
write files from beginning to end in sequence. An operating system can take
advantage of a sequential reading pattern by issuing I/O calls for blocks of
the file not yet read in anticipation of the program's need. For instance, if the
program issues a call for block 11 of a file, the operating system will issue an
I/O request to the disk for block 11 and block n+1. If the operating system can
support multiple I/O channels and striped disks, then it may issue I /0
requests several blocks ahead. The operating system can also speed up
sequential writes by allowing the program to write several blocks of data
ahead of the data that the disk has written.

These techniques can be used to speed up sequential reading and writ-
ing of NFS files. When a multithreaded NFS client detects sequential I /O on
a file, it can assign NFS READ or WRITE calls to individual threads. Each of

these threads can issue an RPC call to the server independently and in par-
allel. Even if the server ’s I /O subsystem can service only one call at a time,
the client still receives a net benefit through an overlap in network latency
(Figure 8.12). '

Program Reading
Sequentially

EOF

 
Read-ahead Blocks

Program Writing
Sequentially

  EOF

Write-behind Blocks

FIGURE 8.11 Read-ahead and write-behind can exploit parallel operations in the I/O
system to improve sequential read or write performance.
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FIGURE 8.12 Read-ahead can provide a significant improvement in sequential read
performance if the client assigns READ requests to independent threads that can
make their NFS calls concurrently. Similar throughput gains can be achieved with
write-behind via concurrent NFS WRITE requests.

The first UNIX reference implementations of NFS used user—level dae-
mons on the client and the server to implement concurrent I/O threads. On
the client these were called biod processes. Each biod process would make a
single, nonreturning system call that would block and provide the kernel with
an execution thread in the form of a process context. By increasing the num-
ber of biod processes on the client, an administrator could increase the
amount of NFS I/O concurrency. Similarly, on the server concurrent NFS

requests were handled by nfsd processes. Each nfsd process would make a
nonreturning system call to provide the server's kernel with an execution
context. The number of concurrent NFS requests that the server could handle
scaled with the number of nfsd processes that were run. More recent UNIX
kernels support multiple threads of execution without the need for a user con-
text. For example, the Solaris client and server use kernel threads. The client
has no biod processes and the kernel has only a single nfsd process that exists
to accept TCP connections. One of the more common questions asked by NFS
server administrators was ”How many nfsds should I run on my server for
best throughput?” The answer depended very much on the server's configu-
ration—setting up too many nfsd processes could make the server accept
more NFS requests than it had the I/O bandwidth to handle—and too few
could result in excess I/O bandwidth inaccessible to clients.

On the client side, read-ahead and write-behind throughput increases as

the number of concurrent read-ahead and write-behind threads is increased
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8.13

Throughput

_

Concurrent

1 2 3 4 5 Heads or Writes

FIGURE 8.13 Throughput increases as the number of concurrent READ or WRITE
requests from the client increases. If the client generates more requests than the
server can handle, throughput will drop.

(Figure 8.13). At some point the client will generate concurrent READ or
WRITE requests faster than the server (or network) can absorb them, and the
client will need to retransmit dropped requests, and throughput will suffer. .

NFS write—behind has a secondary effect of delaying write errors. Because
the write operation is no longer synchronous with the application thread, an
error that results from an asynchronous write cannot be reported in the result
of an application write call. In most client implementations, if a biod process
gets a write error (perhaps because the disk is full), the error will be posted
against the file so that it can be reported in the result of a subsequent write or
close call. If the application that is doing the writing is diligent in checking the
results of write and close calls, then it can detect the error and take some

recovery action, for example, alert the user that a disk is full and then rewrite

the data when more space is created. Unfortunately, there are many examples
of poorly written programs that do not check the result of write or close calls

and suffer data loss when unexpected I /0 errors occur.

Write Gathering

Write gathering []uszczak94] describes a server procedure for writing NFS
data to disk that takes advantage of write—behind behavior on multithreaded

NFS clients. An NFS version 2 WRITE operation is an expensive procedure on
the server. The protocol requires the server to commit the client's data to sta-

ble storage. If the server is fitted with fast stable storage like NVRAM, then
writes can be quite fast—but most NFS servers make do with synchronous
writes to disk. Not only is the write to disk inherently slow, but for each syn-
chronous write of data to the disk, the server may have to perform several
additional synchronous writes to write modified indirect blocks and the file

attributes in the mode to update the file modification time (mtime). The server
suffers this per I/O overhead for each synchronous write request-—no matter
how many data are written. The server.may be capable of writing up to 64 KB
of data in a single I/O request to the disk, yet a version 2 NFS client is limited
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FIGURE 8.14 Write gathering. A client that uses write-behind will send multiple
WRITE requests. If the server delays these small WRlTE requests, it can assemble
them into a single large WRlTE request that completes more quickly due to lower l/O
overhead. When the single l/O is complete, individual replies are returned to the
client’s write-behind threads.

to a maximum WRITE size of 8 KB. Write gathering allows the server to accu-

mulate a sequence of smaller 8-KB WRITE requests into a single block of data
that can be written with the overhead of a write to the disk.

On receiving the first WRITE request, a server thread sleeps for some opti-
mal number of milliseconds in case a contiguous write to the same file follows

(Figure 8.14). If no further writes are received during this sleep period, the
accumulated writes are written to the disk in a single I /0. If a contiguous
write is received, then it is accumulated with previously received WRITE

requests. The sleep period for additional writes can negatively affect through-
put if the writes are random or if the client is single-threaded and does not use
write-behind (early PC-NFS clients are in this category), but overall write
throughput is improved.

An alternative write-gathering algorithm is used in the Solaris server.
Instead of delaying the write thread while waiting for additional writes, it
allows the first write to go synchronously to the disk. If additional writes for
the file arrive while the synchronous write is pending, they are accumulated.
When the initial synchronous write is completed, the accumulated WRITES
are written. Although slightly less data are accumulated in the I/O, the effect
on random 1/O or nonwrite—behind clients is less serious.

Caching Policies

All NFS clients cache data returned from the server with the primary objective

of providing faster access to the data and the secondary objective of reduction
in network and server loading. Although file data are most often considered
candidates for caching, there are significant performance benefits in caching
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attributes, results of directory lookups, entire directories, and filesystem infor-
mation. The client’s memory can be used for fast, short-term caching, and if
the client has a disk it can be used for its greater capacity and persistence
through client reboot.

Cached Objects

Although caching is most commonly thought of in terms of file data, NFS cli-
ents cache the result of any NFS operation if there's a chance that the cached

I item may preclude a future RPC request to the server. The following seven
types of results are commonly cached.

1. File data. The data returned by READ requests, which are cached in

memory pages. Data written to a file are also accumulated in memory pages
and consolidated into larger and more efficient WRITE requests to the server;

2. Lookup results. The results of LOOKUP requests, the filehandle and at-'
tributes, are cached. UNIX clients cache these results in the directory name
lookup cache (DNLC), which typically has hit rates above 90 percent. These
DNLC entries are invalidated if the modification time of the directory changes.
Directory changes initiated by the client can be problematic since the client's
changemay mask a previous, undetected change to the directory by another
client. To avoid the risk of missing undetected changes, NFS version 2 clients
invalidate all DNLC entries for the directory if the client changes the direc-
tory. The pre—0p attributes of NFS version 3 allow the client to detect changes
prior to its own, avoiding the need for preemptive purging of the DNLC.

3. Directories. The results of READDIR or READDIRPLUS requests can be
cached, though the results of READDIR can be used only for negative cach-
ing. Since READDIR returns only a list of names (and their file IDs), the
cached directory cannot be used in place of the DNLC, but it can provide an
indication of whether a directory entry exists or does not exist-—thereby
avoiding a DNLC miss and unsuccessful LOOKUP call to the server. The ben-

efit of this negative caching is best observed by the effect of PATH evaluations
by UNIX clients. A UNIX PATH is a sequence of directories that must be
searched for a program. Normally the program is in just one directory, and if
that directory is near the end of the PATH sequence, then many unsuccessful
LOOKUPs will precede the successful location of the program.

Since READDIRPLUS returns the file handle and attributes for each direc-

tory entry, the cached directory information can be used to preclude LOOKUP
calls to the server, successful or not. The most common benefit of this caching
is seen by programs that ”walk” a file tree enumerating all directory entries,
such as the UNIX f1‘ nd command or the ”Find file” facility of Windows 95.

4. Attributes. The attributes of all objects are cached along with the object
both to provide fast access to individual attributes like the permission bits, file
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ID, and so on, and to record the state of the object to detect change. The modi-
fication time is the most accurate and widely used indicator of change, but the

size of the object may also be used, particularly where the modification time is
unreliable.

5. Symbolic links. The pathname that returns as the result ofia READLINK
request can be cached to avoid unnecessary READLINK calls to the server.

6. File access. The results of the ACCESS call in the NFS version 3 protocol
can be cached for each user on the client. The ACCESS call is typically made

when an NFS file is opened to determine the type of access to the file the user
will have. Since a file may be opened and closed many times during the exe-
cution of a client program or script, the cached ACCESS information can pre-
clude unnecessary calls to the server.

7. I-"ilesystem information. NFS clients typically issue a STATFS or FSINFO
call to the server when a filesystem is first mounted to obtain static filesystem
information such as the maximum transfer sizes, pathname properties, and

other invariant information. Filesystem information is assumed not to change
for the duration of a mount.

Cache Consistency

Since data obtained from the server may be cached by many clients at differ-
ent times, there is a possibility that the cached data may be inconsistent
between the client and its server or other clients. The protocol provides no

facility that will guarantee that cached data will always be consistent with the
server——instead, clients are expected to make a best-effort attempt to keep
their cached data in sync with the server.

The most commonly implemented caching scheme uses two times: a cache
time and a modification time. When server data are cached, the server's modifi-
cation time for the data is also cached (along with other attributes). A cache
time associated with the data may vary depending on the type of data (file or
directory). If the data is referenced within the cache time, then the cache data
are used and the server is not consulted. If the cache time has been exceeded,
the client will contact the server and verify that the cached modification time

has not changed. If it is unchanged, then the cache time is reset and cache data
are used. If the modification time is different, then the cached data are invali-

dated and fresh data are obtained from the server.

A client that uses the modification time attribute for caching is making an

assumption that the server will update the modification time if the file or
directory changes. The modification time can be an unreliable indication of
change under the following conditions.

n The server doesn't update the modification time. This is more commonly
observed with non-UNIX server operating systems that do not update the



8.14 Caching Policies 247

directory modification time for some directory operations, for example,
RENAME. "

n The server does not support a modification time attribute. The server may
instead return an approximation to the file creation time or attribute

change time. S. _ .

u The server's clock or modification time value may not have sufficient res-
olution to distinguish two file or directory modifications that are almost
simultaneous.

The cache time is a compromise that trades off cache consistency against
server and network loading. If the cache time is small, then the cache consis-

tency will be high, but the server will be consulted frequently to check if the
modification time has changed. If the cache time is set to 0, then the server
will be consulted whenever the cached data are accessed. If the cache time is

long, then the server will be consulted infrequently, but there's a greater
chance that the client may use stale cached data——consistency is low.

Small Cache Large Cache
Time Time

Good Consistency Poor Consistency
Frequent Server Checks Infrequent Server Checks

Cache time should be small for server data that is likely to change fre-
quently and large if changes on the server are infrequent. Directory data typi-
cally change less frequently’ than file data since files are modified more
frequently than they are created, deleted, or renamed. Hence it would be

appropriate to assign a larger cache time to directories than to files.

Cache time can also be assigned based on the frequency at which a file or
directory is observed to change on the server. A file that changes frequently
can be assigned a smaller cache time than a file that does not change——making
it more likely that the client will check the server's modification time and

notice a change. If the client finds that the server's modification time has

changed, then it computes a new cache time based on the difference between

the old modification time and the new one. The computed cache time is then
bounded by minimum and maximum values so that the cache time is not too

small or too large. Solaris clients use the ranges in Table 8.3 for cache time.

TABLE 8.19 Solaris Cache Time Ranges

Minimum Maximum
E Object cache time cache timei

T File 3 seconds 30 seconds

i 3 Directory 30 seconds 60 seconds

wu 
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FIGURE 8.15 Close-to-open consistency. (1) All data written to a file are flushed to the
server when the file is closed. if a reading program is started after the writing program
completes, then a GETATTR call issued when the file is opened will detect the updated
file on the server so that the read will retrieve the latest data from the server. Close-to-
open consistency works only when the file open of one program follows the :1 ose of
another. (2) It cannot help where the reader may not see the data written by the writer
because the reader’s open does not follow the writer’s close.

8.14.3 Close-to-Open Consistency

8.14.4

Clients may implement a feature called Close-to-open consistency (Figure 8.15).
The time—bounded consistency used by most NFS clients provides no absolute
cache consistency between client and server. It may be several seconds before
the data written by an application are flushed to the server and several more
seconds before the cache time is exceeded, allowing an application on another

client to detect the file change. Close-to-open consistency provides a guaran-
tee of cache consistency at the level of file opens and closes. When a file is
closed by an application, the client flushes any cached changes to the server.
V/Vhen a file is opened, the client ignores any cache time remaining (if the file
data are cached) and makes an explicit GETATTR call to the server to check
the file modification time. The GETATTR on open provides a guarantee that

after a file is closed, any application on the network that opens the file will see .
the latest changes. This close /open level of cache consistency meets the needs
of many applications; for instance, at the completion of editing a source file on
one client, a user can initiate a compile of that file on another client or on the
server, knowing that the compiler will have the latest changes when it opens
the file.

Read and Write Caching

The caching of data on the client for file reading makes it possible for the client
to generate larger, more efficient READ requests to the server. For instance, an
application that reads data in chunks of 512 bytes can obtain 16 of these‘
chunks from a single 8—KB READ request. Similarly, an application that writes

i

lEii
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FIGURE 8.16 Cached writes.The file extent is partitioned into pages and cached in
client memory. Sequential writes to the file progressively fill pages until a write fills a
page or crosses a page boundary that comprises a page cIuster—a collection of file

pages that can be written efficiently to the server within the server’s advertisedtrans er size.

file data in small chunks can benefit if these chunks are accumulated into a

much larger chunk of data before they are written to the server (Figure 8.16).
Clients typically accumulate data written sequentially to a file in memory

pages. When enough pages have been written to fill a cluster of pages that
make up an efficient transfer to the server, the data are then written to the

server via a WRITE request. Partially filled clusters or pages must be written
to the server when the application closes the file. If the server returns an error

that indicates it has no available disk, the application must be informed of the
error either as a result of a write call (if the file is not closed) or when the file is
closed so that the application can take action to prevent data loss.

Other data-modifying operations, such as attribute changes (SETATTR) or
directory operations, are typically not buffered or delayed and are performed
synchronously. There is little advantage in delaying or aggregating these
operations, and recovery from asynchronous errors can be complicated.

Disk Caching

A disk on the client can be used to improve on memory-only caching in two
ways: disk space is typically much cheaper and more plentiful than RAM
memory and disk storage is persistent across client shutdown/restart or sys-
tem crashes. On some UNIX clients the CacheFS is a disk cache that interposes
itself between an application and its access to an NFS mounted filesystem.
Data read from the server are cached in client memory and written to the disk
cache, forming a cache hierarchy. First the memory cache is checked for cached
data followed by the disk cache and finally a call to the server if the data are
found in neither cache. The use of a disk cache must not weaken the cache

consistency of the memory cache. The disk cache must use the same cache

times as the memory cache (Figure 8.17).

The disk cache is particularly effective at caching read-only data that
changes infrequently or not at all on the server. A good example is a
/us r/ local filesystem, common in many organizations, that contains pack-
ages, documents, and other files shared by a large number of people in the
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FIGURE 8.17 Disk cache forms a cache hierarchy. if data cannot be found in the
memory cache, the disk cache is checked, followed by the NFS server.

organization. Once the disk cache of each client is populated with the files in
common usage, the server receives only GETATTR requests from clients vali-
dating their cached data.

A ”write—back” disk cache allows whole files to be written to the disk

cache before being written to the server. Write-back is most beneficial if the
file is removed soon after it is written, as is common with temporary files

written by some applications like compilers. The file creation and deletion can
be managed entirely on the client with no communication with the server at
all. The utility of write—back caching is limited by the implications for error
handling if the writes to the server fail due to lack of disk availability or other
I/O problems. If the errors cannot be returned to the application that wrote
the data, then the client is stuck with data that it cannot dispose of and errors
that cannot be reported reliably to the end user. Consequently, the Solaris
CacheFS uses write—through caching: data are written to the server first, then to
the cache, if the server writes succeed. Alternatively, the client administrator
can select write—around caching where data are written to the server but not to
the cache and any cached data pages for the file are invalidated. Write—around
has the advantage of avoiding unnecessary writes to the cache if the client is
unlikely to read the data written.

_ Disconnection and Reconnection

A cache that can be disconnected from the server provides a client machine

with some independence from the server. A disconnectable cache is useful if
the server is temporarily unavailable because of a network or server problem
or if the client is a laptop computer that the user has disconnected to take on
the road.

Since the cache is usually not big enough to contain a complete copy of
the data on the server, there is a chance that an application may try to access
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data that are not cached. If the cache is disconnected then a cache miss cannot

be satisfied by data retrieval from the server. For this reason, a disconnectable

cache like Sun’s CacheFS or that of the Coda filesystem [Satyanarayanan90]
will include a program that allows the user to select files that must be cached

prior to disconnection. This process is known as packing or haggding. I
While a cache is disconnected, changes to cacheddata cannot be propa-

gated back to the server. File creations, deletions, renames, or modifications
must be recorded and replayed back to the server when the cache is recon-

nected. CacheFS records its changes in a log file. To control the size of the log
file, some optimization is used; for instance, if the creation of a file is followed

some time later by the deletion of the same file, then the file creation record in
the log is deleted, too. ‘

When the cache is reconnected, the accumulated changes in the log are
replayed to the server. File changes are resolved by comparing the modifica-
tion times of the cache copy with the server's copy. This dependence on file
modification times can be risky if the client and server clocks are not well syn-
chronized. If a file has been changed on the client but not on the server, then
it is written back to the server. The reverse is also true—~if a file has been

changed on the server but not on the client, then the client's cache copy is
invalidated. If a file has been changed both in the cache and on the server,
then the conflict must be resolved. The caching policy can be configured to
decide consistently in favor of the server's copy or of the client's copy of the
file—depending on the user's preference. Alternatively, the cache software
can notify the user to resolve the conflict.

A In addition to the possibility of file modification conflict, reconnection
raises’ more interesting issues. Write access to a cached file may be limited to
one or more authorized users. The log replay process must be careful to prop-
agate changes to the server using the credentials of the user that made the

changes while disconnected. A cached file on a multiuser client may contain
changes from several users yet be unable to distinguish which user made each
change. The replay process must choose to use the credentials of one of the

users and hope that access to the server's copy of the file has not been
changed during disconnection. Alternatively, the client cache software could

limit use of the cache to a single user (a reasonable assumption for desktop or
laptop clients). '

If a file or directory is created during disconnection, then it will be created
on the server via log replay at reconnection. The server's copy of this new file
or directory is unlikely to have the same inode number as the cached copy
The change in inode number could create a problem for some applications
that assume the inode number is unchanging. The CacheFS maintains an
inode mapping table that maintains the cache inode number even when new

file attributes are fetched from the server ’s copy of the file.
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8.15 Connectathon

No chapter that discusses the implementation of NFS would be complete
without some mention of the annual Connectathon event. Connectathon is a

testing event where implementors of the protocol bring their engineers,
machines, and source code to a small network where they can test their cli-
ent and server implementations against other client and server implementa-
tions (Figure 8.18). When implementing any protocol from a specification,
it's possible to build a client and server implementation in which client and
server communicate successfully with each other but with no other client or
server implementation. Interoperability testing reveals bugs that originate
with a misinterpretation of the specification or bugs that manifest them-
selves only when testing against an implementation that behaves in a subtly
different way.

Connectathon events are hosted by Sun Microsystems Inc. and are usually
held in San Jose, California, in February or March each year. The event
extends over approximately 10 days and draws 40 to 60 participants. The first
Connectathon (1985) was aimed exclusively at the NFS protocol, though in
recent years other protocols, like NIS/NIS+, PPP, X-Windows and DHCP,
have been included. Connectathon is well known for its relaxed and coopera-

tive atmosphere. As bugs are discovered, engineers fix them on the spot and
retest. The attending engineers have hotel rooms within walking distance and
can work 24 hours a day if they choose. For more information on Connecta-
thon, visit the Web site at www. Connectathon . org.

Vendor Booths

Bulletin Board

  
Test Suites   
 

FIGURE 8.18 Elements of Connectathon. Each attendee brings their protocol
implementation, source code, and client-server machines and connects to a common
network at an assigned vendor booth. Test suites are made available for testing of
clients against servers and servers against clients. Testing progress and results of
the testing are monitored on a bulletin board.

i
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8.16 Summary

Since the NFS protocol file attributes are modeled after those of POSIX, imple-
mentations of NFS on non—POSIX clients or servers must approximate equiva-
lents of the POSIX attributes. Not all implementations can support all the NFS
procedures; for example, servers that do not have symbolic links cannot sup-
port READLINK or SYMLINK procedures. As an RPC protocol, clients and
servers should use the highest mutually supported version number of the
NFS protocol. The ”last close” problem refers to a UNIX filesystem semantic
that cannot easily be supported on a stateless server: since an NFS server has

no knowledge of a client opening or closing a file, it cannot delete an unlinked
file after the last close. The protocol assumes that LOOKUP operations on a
server filesystem will not cross server mountpoints. Hierarchical mounts can
in some circumstances present namespace gaps and unmountable filesystems.

The AUTH_SYS authentication flavor assumes a consistent set of UID and

GID values for all clients. The netnames used by other authentication flavors
do not have this problem. NFS servers will map the superuser UID value 0 to
a harmless ”nobody” value. A --

Servers use a duplicate request cache to avoid problems caused by the
retransmission of nonidempotent requests. The duplicate request cache also
improves server performance by allowing the server to avoid unnecessary
work. Clients use a time-out/retransmit scheme to increase reliability in the
event that requests or replies are lost. NFS WRITE requests are committed to
stable storage on the server to eliminate the risk of data loss in the event of a

server crash. NFS version 3 improves write performance by allowing the cli-
ent to control the commitment of data to stable storage.

NFS clients use extensive data caching with cache validation based on fre-
quency of update and detection of changes on the server. Network and server
loading is reduced by caching both READ and WRITE requests. A client's
disk can be used to extend the space available for caching and to increase the
persistence of cached data across client reboots.

The Connectathon event presents an annual opportunity for vendors of
NFS implementations to test the interoperability of their products on a com-
mon network.
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NFS MOUNT Protocol . .

An NFS server provides a filehandle for each directory or file a client needs
to access. It also provides a LOOKUP operation that lets a client name

any directory entry and obtain its filehandle. An NFS client evaluates a path-
name as a sequence of LOOKUP operations. It may seem strange, though,
that the protocol provides no procedure to obtain an initial filehandle for the

root of an exported filesystem.1 The initial filehandle is obtained using the
MOUNT protocol (Figure 9.1).

Why have a separate protocol from NFS? Why not integrate features of
the MOUNT protocol with the NFS protocol? The team that designed the NFS
protocol wanted these functions to remain outside the NFS protocol for tworeasons.

1. Checking access to exportedfilesystems. On UNIX systems, the NFS server
is implemented within the kernel. A kernel process can be more tightly inte-
grated with the supported filesystems and does not suffer the context switch

and data movement overheads of user—level processes. However, a kernel
process cannot as easily access user-level services and files for checking access
to exported filesystems. For instance, a UNIX kernel cannot easily make a call
to a name service like NIS, NIS+, or LDAP to check for netgroupz member-
ship. This explains why UNIX servers handle the NFS protocol in the kernel
and implement the MOUNT protocol in a daemon (user-level) process.

2. Alternative protocols. The NFS protocol designers felt that to integrate a
V single pathname to filehandle mapping procedure into NFS would unneces-

sarily limit its implementation to UNIX systems. They imagined that file-

1. Until WebNFS provided the public filehandle and multicomponent LOOKUP (chap-
ter 16).

2. A netgroup is a set of hostnames and other netgroups supported by NIS and NIS+ nameservices.

255'
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9.1

.Once the initial filehandle is obtained, the client will again call the portmapp

Server

client P H W Portmap Mount i NFSo moun .

or r __> ‘ g
" Port 1234 l :

Filehandle for /export/data? I I l l i
‘ I

Filehandle = Ox7fc455 I 3

Port for NFS? I 1 l
 ————————:Port 2049 I 3

1. , l
Lookup Ox7fc455 docroot’ l _>

- l l
Filehandle = 0x7fc456 I 3

Lookup 0x7fc456 “index.html" I 3 I

< Filehandle = 0x7fc457 l— 5
Read Fh=0x7fc457 l 3

‘ l 2 ’I i
(data)

FIGURE 9.1 An NFS client cannot access any file on the server without first
obtaining a filehandle via the MOUNT protocol. A client’s NFS traffic to a server
begins with a call to the portmapper to locate the UDP port for the MOUNT service.er to

verify the NFS port. Initial NFS traffic will probably be a series of LOOKUP calls to
evaluate a pathname from the initial filehandle.

handles might be made available to clients by other MOUNT protocols or
name services.

As it turned out, all NFS implementations use a common MOUNT protocol,
driven by the need to interoperate with other implementations. Although the
protocol has had two minor revisions, future revisions are unlikely. WebNFS
clients and servers make the use of the MOUNT protocol optional, and NFS

version 4 (chapter 17) seeks to avoid the need for a MOUNT protocol.
Since all three versions of the MOUNT protocol are so similar, this chapter

presents a unified description of the protocol, with version differences
pointed out as necessary.

Protocol Revisions

Version 1 of the protocol met the needs of most NFS version 2 implementa-
tions for many years. In 1990, seeking compliance with the IEEE POSIX 1003.1
standard, Sun created version‘ 2 of the protocol, which added one additional
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9.2

procedure: MOUNTPROC_PATHCONF. It retrieves additional filesystem
information from the server to make NFS filesystems comply with the needs
of the POSIX-sanctioned pathconf procedure. It would have been more appro-
priate to add this procedure to the NFS protocol, but it was thought easier to
add it to the MOUNT protocol rather than create industry upheaval with. an
NFS protocol revision. ' ' ll '

The MOUNTPROC_MNT procedure of versions 1 and 2 of the protocol
returned a fixed—length, 32—byte filehandle for NFS version 2. Since NFS ver-

sion 3 required a variable-length filehandle with up to 64 bytes, version 3 of
the MOUNT protocol was created. The MOUNTPROC_MNT procedure of
this new version returned the larger NFS version 3 filehandle as well as an

array of authentication flavors that allowed the client to determine the type of
NFS authentication required by the server. Since NFS version 3 returned

POSIX pathconf information in a new PATHCONF procedure built into the
protocol, the MOUNTPROC_PATHCONF procedure was removed, as well as
the unused MOUNTPROC_EXPORTALL procedure.

Transport

9.3

Most NFS servers provide access to the MOUNT protocol by both UDP and
TCP transports. UDP is used in preference to TCP for the MOUNT call since it
requires only a single RPC that conveys a small amount of data. The overhead

in setting up a TCP connection cannot justify such a brief exchange. Clients
will favor a TCP connection for calls like DUMP or EXPORT that may result
in the transfer of a very large amount of information that could exceed the
maximum size of a UDP datagram.

Authentication

Since the MOUNT protocol cannot be used to change state on the server
(other than indirect modification of the MOUNT table), client authentication

is not particularly important. Since MOUNT requests generally originate from
a system mount process using superuser (UID = O) credentials, there is no

need to identify a particular user. Servers generally ignore the credential, per-
mitting either AUTH_NONE or AUTH_SYS credentials. Digital UNIX servers
require an AUTH__SYS credential and check that the UID is 0.

Some servers will use a port monitoring or portmon feature to check that a

MOUNT request comes from a privileged port (< 1024). A program on a
UNIX client cannot use a privileged port unless it has superuser credentials.
For some system administrators this may provide some level of comfort that
MOUNT requests from perhaps mischievous user-level processes will be
ignored, though this does not prevent such processes being used on non-
UNIX clients that do not enforce privileged ports.
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9.4 Access Lists

Where the MOUNT daemon is controlling access to exported filesystems, the
server uses the source IP address to identify the client. Although the source IP

address can be spoofed, it is sufficient for the security" needs ofinformal work-
groups. A server administrator associates an access» list withveach exported
filesystem. The access list enumerates the client machines that can access the
filesystem. For instance:

share -o rw='|ucy:char'|ie:snoopy,ro='|inus /export/data

If there is no list associated with an exported filesystem, then access to any cli-
ent is allowed. The types of entries in the share access list vary from one imple-
mentation to another——those of a Solaris server can be any of the following:

1. Client hostname. This hostname must be in the same format as would

be returned by the server's gethostbyaddro function since the hostname to
be matched is derived from the source IP address of the MOUNT

PROC_MNT request. If the server is using DNS to map IP addresses to host-
names, then the access list should contain a fully qualified domain name

(e.g., myserver.corp. com).

2. Netgroup name. A netgroup is a named list of client hostnames or other
netgroup names that is stored in the NIS name service. Because a netgroup
can be maintained in a single place (the NIS server) and can be organized
hierarchically, it can be a labor—saving device for system administrators.

3. Domain name. A name beginning with a dot is assumed to represent a
DNS domain suffix. Any client that has a fully qualified domain name with
the same suffix is assumed to be a member of the domain. For instance,

wonderhog.eng.sun.com is a member of the .eng.sun.com domain as well as
the .sun.com domain.

4. Network name or number. A client might be identified by the network to

which it belongs. For instance, a client that has a Class C IP address of
192.29.44.6 belongs to the network 192.29.44, which can have up to 253 other
clients. The client's network number can be derived directly from its IP
address. The network can be identified either by the network name (which

maps to a network number in the NIS networks.byname map) or by the IP
address, prefixed by an ”@” sign. For instance, @eng—net or @192 . 29 .44.

Access lists can also be used to assign different kinds of access to the cli-

ent. For instance, an exported filesystem can be made read-only to one group
of clients and read-write to another:

share -0 ro=char'| ie : de'| ta, rw=echo: foxtrot/export/data
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The list of allowed security flavors might also be varied from one group of cli-
ents to another:

share -0 auth=sys,ro=char1ie:delta,\ A V
auth=krb5, rw=echo:foxtrot/export/data cw

means that clients char1 1' e and delta must use AUTH_SYS credentials and get
read—only access. Clients echo and foxtrot must use Kerberos version 5 cre-
dentials to get read—write access.

9.5 Server Procedures

The list of protocol procedures has changed over two protocol revisions (Table
91). Version 1 of the protocol supported procedures 1 through 6. Procedure 7

. was added in version 2. Version 3 removed procedures 6 and 7.

9.5.1 Procedure 0: NULL—Do Nothing

Description

This procedure does no work. It is made available in all RPC services to allow
server response testing and timing. 1

Arguments Results

voi d ; voi d;

TABLE 9.1 Summary of MOUNT Procedures

Mount

Number Name Description 5 versions Section

0 MOUNTPROC_NULL NULL procedure 1, 2, 3 9.5.1, page 259
1 MOUNTPROC_MNT Add MOUNT entry , 1, 2, 3 9.5.2, page 260
2 MOUNTPROC_DUMP Return MOUNT entries 1, 2, 3 9.5.3, page 263
3 MOUNTPROC__UMNT Remove MOUNT entry 1, 2, 3 9.5.4, page 264
4 MOUNTPROC_UMNTALL Remove all MOUNT entries 1, 2, 3 9.5.5, page 265
5 MOUNTPROC_EXPORT Return export list 1, 2, 3 9.5.6, page 265
6 MOUNTPROC_EXPORTALL Same as 1, 2 9.5.7, page 267

MOUNTPROC_EXPORT

7 MOUNTPROC_PATHCONF POSIX pathconf information 2 9.5.8, page 267
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9.5.2

Implementation

It is important that this procedure do no work at all so that it can be used to
measure the overhead of processing a service request. By convention, the
NULL procedure should never require any authentication. A server may
choose to ignore this convention in a more secure'implem£ntation, where
responding to the NULL procedure call acknowledges the 9existence of a
resource to an unauthenticated client. The NULL procedure call is most com-

monly used to establish whether the NFS service is available and responding.

Procedure 1: MOUNTPROC_MNT——Add MOUNT Entry

Description

Given a pathname, it returns the corresponding filehandle.

Arguments Results

string<1024> pathname; switch (unsigned status) {case 0:

opaque[32] fhandle;

opaque<64> fhand1e;
uint32<> auth_f1avors;

default:

void;
}

Arguments

pathname

The filehandle of an object whose attributes are to be retrieved.

Results

status

MNT_OK or an error code.

fhandle

Versions 1 and 2 of the protocol return an NFS version 2 filehandle: an
opaque, fixed—length array of 32 bytes. Version 3 of the protocol returns an
NFS version 3 filehandle: a variable-length array of up to 64 bytes.

auth_f1avors

This list is returned only by version 3 of the protocol. It is a list of authenti-
cation flavor numbers that are acceptable to the server for NFS access to this

filesystem. The list is presented in order of preference; that is, the client
should examine each flavor in the list proceeding from left to right until it

finds one it can support. Some security flavors may be limited to read-only
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TABLE 9.2 Registered Entries for Kerberos Version 5 Security

Flavor Flavor Mechanism

number name Mechanism OID algorithrn RPCSEC_GSS aervice

390003 krb5 1.2.840.113554.1.2.2 DES, MAC, MD5 0 rpc_gs§__svc_none I
390004 krb5i 1.2.840.113554.1.2.2 DES, MAC, MD5- "rpc_gss;svc_integrity
390005 krb5p 1.2.840.113554.1.2.2 DES, MAC, MD5 rpc_gss_svc_privacy

access. Generally, a server will arrange for these limited—access flavors to
come later in the list. The list of acceptable flavors is presented in section 4.2.

RPCSEC_GSS security is not represented by a single flavor number
since it is a security mechanism that encapsulates many different security
mechanisms. RPCSEC_GSS security is assigned pseadoflavors that identify a
security triple (mechanisms, algorithms, service) registered with the Inter-
net Assigned Numbers Authority (IANA). For example, the registered
entries for Kerberos version 5 security are given in Table 9.2.

Implementation I

On UNIX systems this procedure is used by the mount command or auto-
mounter to mount NFS filesystems. On DOS clients, the net use command is

used to assign an NFS filesystem to a disk letter.

mount jurassic:/export/test/test (UNIX)
net use d: \\jurassic\export\test (DOS)

The pathname in the request /expo rt/test is sent to the server to obtain a

filehandle to be used for a mounted directory or disk letter. Note that DOS cli-
ents will change the backslashes to forward slashes assuming that the server
is a UNIX system that understands only forward slashes. This path editing is
not required by the protocol but makes it somewhat easier for DOS users who

are mounting from UNIX servers and are unused to typing pathnames with
forward slashes.

Although the pathname most commonly refers to a directory on the server,
the protocol does not prevent a client from requesting the filehandle for a
regular file. Diskless clients mount their swap space as a regular file from the
server. WebNFS clients will also resort to using the MOUNT protocol to get
filehandles for regular files.3

3. A pathname that is evaluated by the server's MOUNT daemon will cross server mount-
points. The same cannot be said of the NFS LOOKUP procedure. WebNFS clients use the
MOUNT protocol to convert the pathname part of an NFS URL to a filehandle if the server
does not support public filehandles or multicomponent LOOKUP (Chapter 16).
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Errors

MOUNTPROC_MNT is the only procedure in the protocol that returns error
codes. Versions 1 and 2 of the protocol defined errors as ”a UNIX error number.”
In practice, these were the same error codes as assigned to the version 2 NFS
protocol. All versions of the MOUNT protocol share the same error numbers. I

   

MNT_OK 0

NFSERR_PERM 1

NFSERR_NOENT 2

NFSERR_IO 5

NFSERR_ACCES 13

NFSERR_NOTDIR 20

NFSERR_INVAL 22

NFSERR_NAMETOOLON 63
G

NFSERR_NOTSUPP 10004

NFSERR_SERVERFAULT 10006
  

Mount successful——filehandle follows.

Not owner. The caller does not have correct own-

ership to perform the requested operation.

No such file or directory. The file or directory

specified does not exist.

Some sort of hard error occurred when the opera-

tion was in progress~—a disk error, for example.

Permission denied. The caller does not have the

correct permission to perform the requested
operation. V

Not a directory. The caller specified a nondirec-
tory in a directory operation.

Invalid argument.

Filename too long. The filename in an operation
was too long.

Operation not supported.

A failure on the server.

The most common errors are NFSERR_NOENT (no such file or directory) and
NFSERR_ACCES (permission denied). Permission to access a filehandle may
be denied if the client's hostname does not appear in an access list associated

with the exported filesystem.

Snoop Trace

MOUNT:——-—- NFS MOUNT ———-—
MOUNT:

MOUNT:Proc = 1 (Add mount entry)
MOUNT:D1' rectory = /export

5;
MOUNT:——-—- NFS MOUNT ———--
MOUNT:

MOUNT:Proc = 1 (Add mount entry)
MOUNT:Status = 0 (OK)

MOUNT:F1'le handTe = 0080001800000002000AOOOOOOOODDOA
MOUNT: 5029 5 3 69000A00000000DDOA5029 5 369
M0UNT:Authent1'cat1'on flavor = unix
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'9.5.3 Procedure 2: MOUNTPROC_DUMP—-Return MOUNT Entries

Description

Returns a list of clients and the exported filesystems they have mounted.

Arguments Results . "flfi:
void; list entries { .

string<255> hostname;
string<1024> pathname;

}

Results

entries

A list of MOUNT entries, each consisting of
hostname

The hostname of the client that sent a MOUNTPROC_MNT request.
pathname

The pathname that the client sent in the MOUNTPROC_MNT request.

Implementation

This procedure is used by the UNIX commands showmount and dfmounts to

display the list of clients and the filesystems they have mounted from a
selected server. Since the number of clients and mounted filesystems can be
Very long, clients should use this call Via a TCP connection.

Errors

If any errors are encountered, a zero-length list is returned.

Snoop Trace
MOUNT:————— NFS MOUNT —-——~
MOUNT‘

MOUNTiProc = 2 (Return mount entries)

G
MOUNT:————— NFS MOUNT -————
MOUNT:

MOUNT:Proc = 2 (Return mount entries)
MOUNT:Mount list

MOUNT: rahil:/exportl
MOUNT: krbsec6:/exportl
MOUNT: fi1eset6:/export2/krb5
MOUNT: fi1eset7:/exportl
MOUNT: gandalfz/exportl
MOUNT: neptune:/export2/home
MOUNT: paratu:/exportl



264 Chapter 9 NFS MOUNT Protocol

9.5.4

MOUNT: wonderhog:/export2/krb5
MOUNT: f1‘ refly:/export2/home
MOUNT: vishwas:/export2/home

MOUNT: aqua:/export2/home
MOUNT: 11 entries.

‘$u— ‘

Procedure 3: MOU NTPROC_UMNT—Remove MOUNT Entry

Description

Removes a MOUNT entry from the server's MOUNT list.

Arguments Results

string<1024> pathname; void;

Arguments

pathname

The pathname that was used in a previous MOUNTPROC_MNT request.

Implementation

This procedure is an advisory call to the server as notification that the client
has unmounted the filesystem and will no longer be using it. Since the call
returns no results, the Solaris umount command sends the call and closes the
UDP socket without waiting for a reply. To wait for a server reply risks an
unnecessary client hang if the server is down.

The server determines the client's hostname from the source IP address of

the call, and with the pathname provided, attempts to locate a record of this
mount within its MOUNT table. If the client sends this request while the server
is unreachable or down, the call will not be retransmitted. The UNMOUNT

request will be lost and a stale MOUNT entry will persist in the server's mount
table.

Web browsers and other NFS clients that use the MOUNT protocol to
access filehandles without actually mounting a filesystem will send a
MNTPROC_UMNT call immediately after a successful MNTPROC_MNT call
to delete the MOUNT record from the server's MOUNT table.

Snoop Trace
MOUNT:————— NFS MOUNT -————
MOUNT:

MOUNT:Proc = 3 (Remove mount entry)
MOUNT:Directory = /export

MOUNT:—-——- NFS MOUNT —————
MOUNT:

MOUNT:Proc = 3 (Remove mount entry)
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9.5.5 Procedure 4: MOUNTPROC_UMNTALL—Remove All MOUNT Entries

Description

Remove all MOUNT entries recorded for this client.

Arguments Results ‘ . W7‘;
void; void;

Implementation

This procedure is intended to be used as a broadcast RPC4 when a client boots

or reboots after a crash. It is supposed to prevent the problem of stale
MOUNT entries remaining on a server if a client crashes before it can issue a

MOUNTPROC_UMNT call. Any server that receives this request is to clear all
entries for this client from its /etc/rmtab file.

In practice, the broadcast RPC is received only by servers on the same
subnet or bridged network as the client. Stale MOUNT entries will persist on
servers that must be reached by routers. Routers will usually not forward
broadcast RPCs.

Snoop Trace
MOUNT:————— NFS MOUNT —————
MOUNT:

MOUNT:Proc

x}

3 (Remove all mount entries)

— no reply —

Description

5

l

g 9.5.6 Procedure 5: MOUNTPROC_EXPORT—Return Export List
l Return a list of exported filesystems and their export information.

Arguments Results

§ list entries {
1 string<1024> directory;

list exportinfo {
string<255> name;

void;

} 
4. A Remote Procedure Call that is sent to a broadcast IP address. The request is received
by multiple servers. '
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Results

entries

A list of export entries consisting of

di recto ry

The pathname of an exported directory.

exportinfo

A list of hostnames or netgroup names that can have access to the exported
directory. A list with no entries implies unrestricted access.

Implementation

Since the export list can be large (perhaps hundreds of entries), a TCP connec-
tion should be used to retrieve this data.

When the protocol was first designed, the expo rt-i nfo strings represented
hostnames or netgroup names that would be given access (via filehandle) to
the exported filesystem. Netgroup names are indistinguishable from host-
names in the list. The SunOS export command allowed a directory to be
exported read-only or read-write (the default). Access could be restricted to a
list of hosts, for example:

share -0 ro=dopey: s'| eepy:bashfu'| /export/di r

The export command was enhanced to allow some clients to have read-write
access to a read-only filesystem-

share -0 ro, rw=dopey /export/di r

——or to control access to both read-only and read-write modes-

share -0 ro=happy : grumpy, rw=dopey /export/di r

Since the export list entry of the MOUNT protocol provides only a single host-
name list, the SunOS server returned the concatenation of read-write and
read-only lists. Not only is it impossible to tell whether a name in the list is a
netgroup or a hostname, it is also impossible to tell whether it has read-only
or read-write access. The situation has become even more complicated with
the advent of Solaris 2.6, which provides not only additional lists attached to
security flavors but increases the list entries to include domain name and net-
work name suffixes. To summarize: clients should not attach any significance
to the entries in an access list other than to note that the absence of a list
implies no host—based restrictions on access.
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This procedure is used by automounters that need to enumerate the list of

mountable filesystems when a user references a /net/server path. Early auto-
mounter implementations would attempt to mount all the exported file-
systems. The Solaris 2.6 automounter records the list of exported filesystems
but delays their mounting until the mountpoint is crossedgn the client. ,On
UNIX systems the showmount or dfshares command can be used to return the

server's export list Via this procedure.

Errors

If any errors are encountered, a zero-length list of entries is returned.

Snoop Trace

MOUNT:————— NFS MOUNT —————
MOUNT:

MOUNT:Proc = 5 (Return export list)

 
MOUNT:————— NFS MOUNT -----
MOUNT:

MOUNT:Proc = 5 (Return export. list)
MOUNT:Di rectory — /exportl

.MOUNT:Di rectory = /export2/home
MOUNT:Di rectory = /export/util
MOUNT: Group
MOUNT: Group
MOUNT: Group
MOUNT: Group .

MOUNT: Group engineering
MOUNT: Group adminz

MOUNT:Directory — /export2/secure
MOUNT:Directory /tmp

.west . sun . com

.east . sun . com

.corp.sun.com
central .sun.com

9.5.7 Procedure 6: MOUNTPFtOC_EXPOFtTALL—Return Export List

Description

Identical to MOUNTPROC_EXPORT. This procedure was eliminated in Ver-
sion 3 of the protocol.

9.5.8 Procedure 7: MOUNTPROC_PATHCONF—-POSIX Pathconf Information

Description

Return filesystem information required by the pathconfprocedure described in
IEEE POSIX standard 1003.1. 
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Arguments Results

string<1024> pathname; uint32 pc_1ink_max;
uint32 pc_max_canon;
uint32 pc_max_input;
uint32 pc_name_max;
uint32 pc_path_max; as‘
uint32 pc_pipe;buf; ”*
u1nt3Z pc_vdisab1e;
uint32 pc_xxx;
uint32 pc_mask;

Results

pc_1 1' nk_max

The maximum number of hard links allowed to a file. A hard link is created

when an NFS client uses the LINK procedure. Most UNIX systems will
return a value of 32,767.

pc_max_canon

The maximum line length for a terminal device. This field is valid only for
NFS device files (NFBCHR).

pc_max_1' nput

The number of input characters that can be buffered by a terminal device.
This field is valid only for NFS device files (NFCHR).

pc_n ame_max

The maximum length of a pathname component. UNIX servers will usually
set this to 255. A value greater than 255 is meaningless for NFS version 2 cli-
ents since the protocol imposes a limit of 255 characters.

pc__path_max

The maximum pathname length. UNIX servers will set this to 1024. The
NFS version 2 protocol imposes an upper limit of 1024 characters.

pc_p1' pe_buf

The size of a pipe in bytes. This number is valid only for NFFIFO device
files. A common value is 5120 bytes.

pc_vd1' sable

This attribute is valid only for NFCHR (terminal) devices. It represents the
value of an ASCII control character that disables the recognition of control
characters.

all
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TABLE 9.3 Validity Bits of pc_mask Field

Bit Meaning

If set, an error occurred and all fields are invalid.

If set, pc_l1'nk_max is valid. .g V
If set, pc_max_canon is valid. I

If set, pc_max_1' nput is valid.

If set, pc_name_max is valid.

If set, pc_path_max is valid.

If set, pC_p1' pe_buf is valid.
\10\U'lr-l>UJI\J>—‘©

pC__chown_r‘estr‘1' Cted . If set, the server will reject any request to change either
the owner or the group associated with a file if the caller is not the privileged user
(uid O). ’

8 pc_no_tr‘unC . If set, the server will reject any request that includes a name longer
than name_max with the error NAMETOOLONG. If not set, any length name over
pc_name_max bytes will be silently truncated to pc_name_max bytes.

9 If set, pc_vd1' sabl e is valid.

pc_xxx

This field is unused. In a C version of the pathconf information, this field
was used as alignment padding for the pc_vdi sable character. XDR encod-

ing makes this unnecessary, but the field was left in by mistake.

pc_mask

This field contains validity bits for previous fields, as well as some single-
bit boolean values (Table 9.3).

Implementation

This procedure was added in version 2 of the MOUNT protocol to provide
compliance with the POSIX pathconf procedure for NFS filesystems. Version 2
of the protocol is identical to version 1 except for this addition.

Since the pathconf information is not expected to change for the duration of
the client's access to a filesystem, it is assumed that a client that needs pathconf
information will make one call at mount time to retrieve the pathconf informa-
tion and cache it. Demands for pathconf information from client processes will
then be met from the cache. NFS version 3 clients are expected to use the pathconf
procedure to obtain POSIX pathconf information (section 7.3.21).

Solaris clients will not use the pathconf procedure unless the posix mount

option is used. The default is to use approximate values for pathconf informa-
tion rather than incur the extra overhead of another MOUNT procedure call
for each NFS mounted filesystem.
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Errors

If any errors are encountered, the error bit of the pc_mask value is set and the
returned values must be ignored.

Snoop Trace A .

Snoop has no code to interpret this procedure.

9.6 MOUNT Table

The MOUNT protocol assumes that the server will maintain a table that lists
the clients that have mounted filesystems from the server and which exported
filesystems they have mounted (Figure 9.2). By this assumption, the MOUNT
protocol is certainly a stateful protocol. The entries in the table can be returned
with the MOUNTPROC_DUMP procedure. An entry is added to the table
whenever a filehandle is returned to the client via the MOUNTPROC_MNT

request, and the entry is removed by a subsequent MOUNTPROC_UMNT or
MOUNTPROC_UMNTALL request.

 
 

 

 
  
  
  
  

  

 
 

   
 
 

Time _ Add Entry
Client Server

mount server.

/export/data /mnt T
FH=ox1 2511 Mount Table

/etc/rmtab

showmount -a server MOUNTPROC DUMP rah” ‘/e"p°'"t1‘ krbsec6:/exportl

 > f'i'leset6:/export2/krb5
—List of Mount *3 f1"|eset7:/exportl
Table Entries... List gandal f : /expo rtl

Entries neptune:/export2/home
paratu:/exportl
wonderhog:/export2/krb
firefly:/export2/home

MOUNTPROC_UMNT /export/data

umount /mnt >
V OK Remove

Entry

FIGURE 9.2 The server maintains a table of clients that have mounted filesystems
(received filehandles). Each entry identifies the client and the filesystem it mounted.
The MOU NTPROC_UM NT request serves only to notify the server that the client has
unmounted the filesystem and should be removed from the MOUNT table.
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9.7

The designers of the protocol intended this table to be a useful record of

the server's clients. For instance, the Solaris shutdown command was config-
ured to use the MOUNT table to send console messages to clients that had
filesystems mounted from the server. The message was intended as a courtesy
to warn users of the pending unavailability of an NFS filesystem mounted
from the server. ‘ l‘ 7’

In practice, the MOUNT table proved to be notoriously unreliable as an
accurate indicator of the server's clients and the filesystems they were using.
The chief difficulty was that clients would sometimes crash or be rebooted

without having the opportunity to send a MOUNTPROC_UMNT request to
the server. The missing MOUNTPROC_UMNT request would result in a
”stale” entry in the MOUNT table. The MOUNTPROC_UMNTALL request
was designed to flush stale entries from the table; when the client recovers it is

supposed to broadcast the request to all NFS servers to remove stale entries

before the client remounts its filesystems. Since the range of a broadcast RPC
call is limited to the local Ethernet segment, servers on the other side of rout-
ers did not receive the request and the stale entries persisted.

Persistent stale entries could be quite annoying to clients. Whenever a
server containing a stale entry was shut down, the shutdown command sent a

message to the client warning of the shutdown. A client could receive shut-

down requests from a server for a filesystem that it had mounted briefly some
months ago. I remember writing a shell script called ”silence” that took a
server name as an argument. The script used the showmount command to

obtain the MOUNT table. It removed the stale entries by mounting from the
server followed immediately by an unmount of the same filesystem.

Submounts

The pathname a client sends in a MOUNTPROC_MNT request normally
matches a pathname in the server's export list. The export list is a list of the
directories the server has made available to NFS clients, for example:

/var/mail rw=engineer1ng
/export/homel rw=eng1' nee r1‘ ng
/export/home2 rw=eng1' nee r1" ng
/export/home3 rw=eng1' nee r1‘ ng
/export/1 ocal rw

The clients of this server mount their /var/ma1'1 directories using a command
like this:

mount server:/var/mail /var/mail
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FIGURE 9.3 A submount allows a client to mount a subdirectory of an exported
directory.

Clients that mount home directories from this server mount individual

home directories as users log into the client. For instance, when user Larry

‘ logs in, the local automounter might issue a request equivalent to

mount server:/export/home2/1arry /home/larry

Notice that the pathname sent to the server, /expo rt/home2 /1 arry, does not
match the exported directory, /expo rt/homez. Instead, it refers to a subdirectory
of the exported directory. This is a nice feature, since it allows a server adminis-
trator to export a disk partition as a single directory that may contain many
users’ home directories that are individually mountable (Figure 9.3).

There is a potential security problem with this feature. Since the path-
name in the MOUNT request is evaluated by a user—level MOUNT daemon
on the server that will be running with superuser permissions, it is possible
for a client to obtain filehandles for directories that are normally protected

from access (Figure 9.4). For example, a user might set the permissions of a
directory to prevent any access to subdirectories by anyone else. On UNIX
servers, the MOUNT daemon runs with superuser permission, so it is
allowed to evaluate pathnames that pass through the restricted directory. The
result is that an NFS client may get a filehandle and access to subdirectories
that users logged into the server would not be able to see.

A workaround for this problem is to provide the system administrator
with an option that restricts the ability of the MOUNT daemon to return file-
handles for subdirectories of an exported directory. The Solaris share com-
mand has a nosub option that requires the pathname in a MOUNT request to
match exactly the exported pathname.
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FIGURE 9.4 Since the MOUNT daemon runs with superuser permission on UNIX
servers, it can override directory permissions that would stop other users, making
subdirectories visible to NFS clients.

A B C

(Client) (Client/Server) (Server)

 
FIGURE 9.5 NFS server B cannot reexport to A the filesystem it has mounted from C.

Export Limitations

Servers limit the directories that can be exported to NFS clients.

1. No filehandle support. Some filesystems will not be exportable at all if
they do not provide a means to obtain a filehandle. The Solaris procfs filesys-
tem is used to present a filesystem view'of UNIX processes under a /proc
directory. Since the information provided by this filesystem is mostly
restricted to superuser processes and is not generally useful to NFS clients,
procfs does not make filehandles available, so /p roc cannot be exported.

2. No reexporting. NFS filesystems are generally not reexportable because
the filehandle is generally large enough to contain only the information for
one server unambiguously. For example, in Figure 9.5, server B cannot reex-

».~.............MV
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port any NFS filesystem it has mounted from C. The filehandles obtained
from server C cannot be used by client A because they might match other file-
handles on B. A prefix added to C's filehandles by B could ”uniquefy” the file-
handles, but not within the constraints of filehandle size limitations (32 bytes
for NFS version 2 and 64 bytes for version 3). Server B could issue its own file-
handles that correspond to those from C, but this would require a filehandle
mapping table that would need to persist across reboots of B. '

Reexporting also presents problems for AUTH_SYS security based on
server access lists. Server C may limit access to client B, but cannot prevent

access from client A through client B.

3. No hierarchical exports. NFS servers use a fairly simple model when
exporting directories: the client gets access to the directory and all directories
below it (subject to directory permission checking). When an NFS server
receives an NFS LOOKUP request, it checks the client's credential against the
directory permissions, but it does not check the access list associated with the
export. The access list is checked only by the MOUNT daemon when the cli-
ent mounts the filesystem (Figure 9.6). The hierarchical export limitation is
imposed by servers to avoid having to validate every client LOOKUP request
against a potential access list associated with the directory.

This limitation may sometimes appear to be violated. For instance, it is
not uncommon to have a server return an export list that looks like this

/expo rt rw
/export/data ro

 / share -0 ro=other /export/D/

‘\i...jL~/
FIGURE 9.6 If directory E is exported, then a client can reach any directory under E
without further access list checking. Directory D cannot be exported because clients
descending from export E would not be checked against the access list for D.

  
Exported
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which would appear to be a case of hierarchical exporting because
/expo rt/data is clearly a subdirectory of /expo rt. However, further investiga-
tion would show that these directories are not in the same filesystem——
/expo rt/data is another filesystem mounted within /expo rt. This hierarchical
export is permissible because NFS LOOKUP request will -not cross from a
mountpoint from one filesystem to another on the server. 'If /export/data
were mounted but not exported, NFS clients would not have access to the file-

system at all; instead, they would see ”underneath” the filesystem mounted
on the server (see section 8..5). "

These exporting limitations are sometimes confusing to system adminis-
trators, but they are driven by a need for simple, high—performance imple-
mentation.

9.9 Summary

The MOUNT protocol is used to obtain an initial filehandle when a client

mounts an NFS filesystem from a server. A server can use this request to vali-
date the client against an access list’ before returning the filehandle. The
MOUNT protocol can be used over a TCP connection or with UDP. The low

overhead of UDP is preferred for short requests like MOUNTPROC_MNT,
but TCP is better for requests that return a lot of information like MOUNT

PROC_DUMP. The protocol has undergone two revisions; version 2 added
the MOUNTPROC_PATHCONF request and version 3 extended the size of

the filehandle to a limit of 64 bytes, as well as returning security flavor infor-
mation. The server’s MOUNT. daemon maintains a MOUNT table that lists

the server's clients and the exported filesystems that they have mounted.
Most NFS servers allow clients to mount subdirectories of an exported direc-
tory. NFS servers apply some limitations on the kinds of filesystems that can
be exported, and on hierarchical exports.

 



 
Chapter 10

NFS Lock Manager Protocol:

T he team that designed the NFS protocol consciously omitted file locking
operations. Although simple file operations like READ and WRITE could

be generalized across different operating systems, there was no clear consen-
sus on what should constitute a general file and record locking protocol. In
1984, Bill Ioy, one of the architects of the NFS protocol, replied to a question
on the omission of file locking:

When we started the company [Sun Microsystems, Inc.] I went around and talked
to the people I respect the most who were doing databases, and asked them well,
if I gave you this and I gave you that . . . first of all, what would you want and if I
gave you this or that would you use it . . . and it was very discouraging because
they just basically said just make the file system fast and we'll do the rest our-

selves, and they almost didn't want anything that I thought of giving them.‘

In addition, locking by its very nature implies a stateful server with additional
complexity in recovering lock state following a server crash and reboot. As it

turned out, there was a customer demand for file locking to be supported for
not only the whole file locks of Berkeley UNIX clients but also the byte-range
locking required by UNIX System V, Release 4 clients. File locking was added
to SunOS clients and servers in the SunOS 3.2 release in 1986.

The Network Lock Manager protocol depends on another RPC protocol,
the Network Status Monitor protocol, to notify clients and/or servers of loss
of lock state resulting from a crash/reboot. The Status Monitor protocol is also
described in this chapter.

The interaction of these protocols, the use of asynchronous RPC calls and
callbacks, and the multiplicity of locking procedures (monitored vs. nonmon-

itored, record vs. share reservations, and so on) make this a difficult protocol
to implement successfully. For this reason, some NFS server implementations

1. From the transcript of a talk given at a workshop on personal computing technology, at
the Certosa di San Giacomo, Capri, Italy, in June 1984.

277

 



278

10.1

Chapter 10 NFS Lock Manager Protocol

 

"°°"_ed Locked Region Beyond
R°9'°" End of File

f:’  

“'9 H.fl$Ha§E§I!HEEEE-HEN
<———> V

{ Length End of 3
Offset File

FIGURE 10.1 A locked region is defined by an offset and a length. The region can
extend beyond the end of the fi|e.The properties of a locked region are further defined
by the shared or exclusive nature of the lock.

have neglected to support the Lock Manager protocol. NFS clients that en-
counter these servers must resort to local locking.

The Lock Manager protocol assumes a locking model that allows a client
application to lock a region of a file defined by an offset and a length. A lock
can span an entire file, starting with an offset of zero and with a length that
extends to the last byte (Figure 10.1). A locked region can also extend beyond
the last byte of a file. The extension of a range beyond the end-of-file is to
allow additional data to be appended to the file within the protection of a
lock. A locked region can be controlled by one of two different types of lock. A
shared lock allows other applications to read the data in the region but not
modify it. Multiple clients can hold shared locks on the same region of a file,
or overlapping regions. An exclusive lock prevents other applications from
reading or writing data in the region. Another client cannot establish any lock
on a region that is covered by an exclusive lock.

Monitored Locking

A file locking protocol must provide a solution for two common scenarios
that relate to the maintenance of lock state by the client and the server.

1. Loss of server state. When a server grants a lock to a client it must main-
tain a record of the lock: the owner of the lock, the offset and length of the

locked byte range (if it is a record lock), the exclusivity of the lock, and so on.
For performance reasons, this state is generally maintained in volatile storage,
that is, the server's memory. If the server crashes and reboots, this lock state
will be lost and the client may continue without the knowledge that it has lost
the lock. The client needs to be notified of the server's crash/ recovery so that
it can reestablish the lock.

2. Loss of client state. If the client crashes, then its record of the locks
assigned to various programs will be lost. The server, unaware that the client
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FIGURE 10.2 The lock manager uses the status monitor to notify it of any loss of
lock state. While a file lock is held, the client monitors the server and the server mon-
itors the client. (1) When the client is granted a lock, the client’s lock manager sends
an SM_MON request to the local status monitor to monitor the server. (2) The moni-
tored hostname is recorded in a file. (3) if the client crashes and recovers, the status
monitor will read the file of monitored hosts and send a notification to the server’s sta-
tus monitor. (4) The server's status monitor will then forward the information to the

server’s lock manager so that it can free the client’s locks. (5) A reciprocal arrange-
ment occurs on the server when it grants a lock: the server’s lock manager asks the
local status monitor to monitor the client so that (6) it will notify the client if it crashesand recovers.

has forgotten its locks, will maintain the locks and prevent other clients from
establishing conflicting locks. It is important that the server learn of the cli-

ent's loss of state so that it can remove the ”forgotten” locks.

The Lock Manager protocol uses the Status Monitor protocol to provide a
timely notification of client or server loss of lock state (Figure 10.2). The status
monitor is a service that notifies other interested hosts if the status monitor

host is restarted. In a reciprocal way, the interested hosts can be monitored by
the status monitor, which receives a notification message if they are restarted.

The Status Monitor protocol is poorly named since it does no active mon-

itoring of other machines. It receives a recovery notification only when a host
recovers, but it cannot be used to signal that a host is down—but not yet
recovered. Its only active role is to notify selected hosts when it recovers
(Figure 10.3). The Status Monitor protocol is described in more detail in sec-
tion 10.15.

Since DOS clients can support only sing1e—threaded applications, a status
monitor service that listens for status notifications may be difficult or impossi-
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FIGURE 10.3 interaction of Lock Manager and Status Monitor protocols. (1) When
the client requests its first lock, it makes an SM_MON call to its status monitor so that
the server will be notified if the client crashes while holding one or more locks. (2) On
granting the first lock request from a client, the server makes an SM_MON call to its
status monitor so that the client will be notified if the server reboots while the client is
holding one or more locks. (4) When the client removes the last lock held on the
server, (5) the server requests its status monitor to cease monitoring the client.
(6) When the client receives confirmation that this last lock has been removed, it
requests its status monitor to stop monitoring the server. The SM_MON and
SM_UNMON messages are used only for the first and last lock held by the client.

ble to run concurrently with an application making LOCK requests. Acknowl-
edging the limitations of these clients, the Lock Manager protocol provides a
procedure that creates a nonmonitored lock. In addition, the file SHARE reser-
vation request, which is used when a DOS or Windows application opens a
file, is also nonmonitored. Without the state change service provided by the
status monitor, clients that use nonmonitored locks cannot readily detect that
a server has rebooted and lost its locks. Similarly, a server cannot easily
recover locked files that remain after a client has crashed and forgotten its
locks. '

A client can create a nonmonitored lock by using the NLM~NM_LOCK

variation of the NLM_LOCK procedure call (section 10.14.9) or by creating a
SHARE reservation. Since these locks are not monitored, the client must be

prepared to deal with errors that may result from the loss of locks on the

:a

la
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server. It is possible that an unmonitored lock may become ”stuck” if the cli-
ent that is holding it crashes and does not recover or if it recovers without

unlocking its locks. Clients that use unmonitored locks should issue an

NLM_FREE_ALL call at reboot to any servers on which it may have held
-

locked files prior to the crash. _p

Advisory vs. Mandatory Locks

The Network Lock Manager (NLM) protocol implements an advisory locking
scheme (Figure 10.4). It assumes that programs running on clients will a lock a
file (or region of a file) before attempting any reads or writes. An advisory
locking scheme doesn't prevent noncooperating clients or applications from
having read or write access to the file.

A mandatory locking scheme prevents noncooperating clients or applica-
tions from having read or write access to the file. The UNIX operating system
has a tradition of supporting only advisory locking. Berkeley UNIX systems
provided advisory locking only, whereas System V systems provided both
advisory and mandatory locking. Since the NLM protocol supports only advi-
sory locking, it does not completely meet the needs of DOS and Windows

clients that assume a mandatory locking scheme. As long as the clients con-
nected to a server are all UNIX or all DOS/Windows, there is no conflict.

However, there is a possibility of data corruption if a file that is locked by a
DOS/Windows application is updated by a noncooperating UNIX applica-
tion. A mandatory locking scheme cannot easily be imposed on UNIX clients

because the errors resulting from READ and WRITE requests would not be

properly handled by the UNIX applications. Nor-is there any support in the
NFS protocol itself to identify the lock holder for a particular READ or WRITE
request.2

Exclusive and Nonexclusive Locks

An exclusive lock is one that excludes other clients or programs from holding
an overlapping lock on the same byte range. It is also referred to as a write

lock because it is most commonly used when the data in the byte range are
about to be updated or changed. It prevents other clients from reading out—of-
date or partially written data.

2. NFS requests identify a user through the RPC credential, but a locking protocol needs to
distinguish between multiple client threads or processes that all may be identified with thesame user.
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FIGURE 10.4 Advisory locking. Clients A and B use advisory locking to coordinate
their changes to a file on the server. They will not proceed with a read or write on a
file unless they successfully establish an advisory lock. The advisory locks do not
prevent client C from ignoring the lock and reading or writing the locked file.

nly includes the offset and length of the file region
to be locked, but also determines whether the lock is exclusive. Nonexclusive locks
can share identical or overlapping regions of the file. if a region is covered by an exclu-
sive lock, then other attempts to lock the same or overlapping regions will be denied.
Similarly, an attempt to create an exclusive look that overlaps a nonexclusively
locked region will be denied.

A nonexclusive or shared lock is one that permits other clients to have their
own nonexclusive locks on the same byte range. It is also referred to as a read
lock because it is used to protect a byte range in the file from modification
while the data are being read. An exclusive lock cannot be established on an
overlapping byte range while a nonexclusive lock is being held.

Each NLM lock request includes a flag to indicate whether the desired
lock is to be exclusive or nonexclusive (Figure 10.5).

Asynchronous Procedures and Callback

The Network Lock Manager protocol is unusual in its use of optional. asyn-
chronous procedures and the use of a callback procedure for the granting
of blocked locks. Each of the five basic locking operations TEST, LOCK,

ilP!
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CANCEL, UNLOCK, and GRANTED has a corresponding pair of asynchron-
ous procedures (Table 10.1). These procedures implement a message—passing

TABLE 10.1 Network Lock Manager’s Asynchronous Procedures and Callback
Synchronous Asynchronous Asynchronous
procedure call reply

NLM_TEST NLM_TEST_MSG NLM_TEST_RES

NLM_LOCK NLM_LOCK_MSG NLM_LOCK_RES

NLM_CANCEL NLM_CANCEL_MSG NLM_CANCEL_RES

NLM_UNLOCK NLM_UNLOCK_MSG NLM_UNLOCK_RES

NLM_GRANTED NLM_GRANTED_MSG NLM__GRANTED__RES

scheme that was intended to make it easier for single—threaded platforms to
implement asynchronous handling of file locking and unlocking. Each asyn-
chronous procedure handles either the call or reply arguments of its synchro-
nous counterpart and expects no reply.

These asynchronous procedures have an interesting feature: they're
redundant. There's no reason why they need to exist as distinct procedures
within the protocol since the synchronous procedures could be implemented
by an RPC library that supports nonblocking RPC calls.

Of the five basic locking procedures, NLM_GRANTED is interesting
because, except for the asynchronous _MSG and _RES procedures, it is the
only call that is initiated by the server as a callback RPC. Here the roles of client
and server are reversed: the server must determine the network address and

port of the client's network Lock Manager via the client's portmapper service.
Because the client may have to wait for minutes or even hours for a callback,

it is possible that the application that requested the lock might crash or be ter-
minated, making the locking call unnecessary. Hence the protocol provides an
NLM_CANCEL procedure that allows the client to cancel a pending lock
request. The asynchronous nature of this callback creates timing problems
when the calls are retransmitted (see Figure 10.14).

DOS/Windows File Sharing Procedures

The DOS/Windows file sharing procedures (described in section 10147)
were added to version 3 of the protocol to provide file locking for PC clients.
When a DOS or Windows program opens a file, it also has the opportunity to
lock the file, controlling access to the file by other applications while the file is
open. The Win32 API uses the CreateF1'le system call to open existing files
and create new ones:

CreateF1'le ( LPCTSTR1pFi1eName,

m.-ml....
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DWORD dwDes1'redAccess,
DWORD dwShareMode,

LPSECURITY_ATTRIBUTES 1pSecur1'tyAttr1' butes ,
DWORD dwCreat1' onD1' stri buti on,

DWORD dwF1agsAndAttr1' butes ,

HANDLE hTempl ateF1' ‘I e) _

TABLE 10.2 Deny Mode Effect on Other Applications

Deny mode Effect on other applications

Deny all Cannot open the file.

Deny read Can open for writing but not for reading.
Deny write Can open the file for reading but not for writing
Deny none Can open the file for reading or writing.

Of particular interest here are the dwDesi redAccess and dwShareMode argu-
ments. With dwDes1' redAccess, the application indicates its desired file usage:

reading only, writing only, or both reading and writing. The dwShareMode, or
deny mode, argument is used to control access to the file by other applications
while the application has the file open. The deny modes have the values
listed in Table 10.2.

When a PC client creates a file, it uses the NFS protocol to create the file

and the NLM protocol to establish the lock. This process is illustrated in Fig-
ure 10.6. This SHARE-style file locking works well for PC clients——it protects

applications from data corruption caused by concurrent access to files during
update. Since the file locks are advisory within the NLM protocol, the NFS
server will not prevent UNIX clients from reading or writing a file that is open
with a share lock. Hence, data corruption is a risk where files are being

accessed concurrently by PC and UNIX clients.

Server Crash Recovery

When an NFS server recovers from a crash, it restarts the NFS service (nfsd),

the NLM server (lockd), and the status monitor (statd). The status monitor
reads the list of monitored clients from disk and sends an SM_NOTIFY mes-

sage to the status monitor on each client. Each client's status monitor will for-
ward the notification to the client's lock manager. At this point the server will

have entered a grace period where it will grant locks only to requests with the
reclaim field set to true. The grace period gives all clients that were holding
locks an opportunity to reclaim their locks before the server resumes normal
operation.

3
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FIGURE 10.6 Use of NLM_SHARE and NLM__UNSHAFlE. When a PC application
creates a file it uses the NFS protocol to create the file and the NLM protocol to
establish a share lock. Note that there is a window of opportunity for another client to
open the file (1) after it has been created but (2) before it has been locked. This
window can create problems for PC clients that expect the CreateFi 1 e call to be an
atomic operation.

There is no set duration for the grace period. It needs to be long enough
that clients can receive the SM_NOTIFY message from the server's status
monitor and recover all their locks by replaying LOCK requests with the
reclaim argument set to true. If the grace period is too long, then clients will
be unnecessarily delayed in their use of normal locking operations. Solaris
servers use a grace period of 45 seconds.

One problem with a fixed grace period is that it doesn't take into account

any problems that the status monitor may have in notifying all the monitored
clients. If some of the clients do not respond, then the status monitor will take
longer to notify all the clients. It is possible that some of the clients might be
notified after the grace period has expired and not be able to reclaim their
locks. A workaround for this problem is to use a multithreaded status monitor

that can assign a thread to each client. In this way all clients can be notified
. almost simultaneously and only unresponsive clients will lose locl<s. Ideally,
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the status monitor would multicast the notification. A multicast notification

was in the original status monitor design but never implemented.
In the rare circumstance that the server’s status monitor (statd) crashes,

but not the server itself, on restart it will behave as if the server had crashed

and send an SM_NOTIFY message to all the monitored clients. The effect can
be chaotic as clients proceed to reclaim locks that the server’s lock manager '
rejects because it is not in the grace period.

Time
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Lock Lock Status

Manager Manager Monitor

® Sta” Reads List of Sta”nu Monitored Hosls_/>—
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SM_l.JNMON_ALL
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FIGURE 10.7 Server recovery following a crash. (1) When the server Status Monitor
is restarted, it retrieves a list of the monitored clients from stable storage and notifies
each client. (2) The server’s Lock Manager sends a request to clear the monitor list.
(3) When the client Status Monitor receives the notification, it calls the Lock Manager
with the procedure registered in the SM_MON request. (4) On realizing that its looks
have been lost, the client’s Lock Manager sends a new LOCK request for each lock it
was holding when the server crashed. During the grace period, the server will accept
only LOCK requests with the reclaim field set to true. Nonreclaim requests are
rejected with a LCK_DENlED_GRACE_PER|OD error. (5) On receiving the first lock
reclaim request from a client, the server will again ask the Status Monitor to monitor
it. (6) On receiving the server’s granted reply, the client will again monitor the server if
it is the first recovered lock. (7) At the conclusion of the grace period, normal service
resumes.
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In Figure 10.7 at step 5, the server requests its status monitor to monitor

the client before responding to the client's first LOCK request. This request
may be slow, since it requires the status monitor to record the client's host-

name on stable storage. Server implementors, intent on improving server
responsiveness, may be tempted to reply to the client beforerreceiving confir-
mation from the status monitor. An early reply is risky, becauseif the server
crashes before the status monitor has recorded the client in stable storage, the
client will not be notified to reclaim its lock when the server recovers.

Lockd and Statd Implementation

Until now, we've have discussed the Lock Manager and Status Monitor proto-
col implementations rather abstractly. It is interesting to understand how
these services are implemented on top of an existing operating system that
supports file locking.

UNIX implementations typically implement the NLM protocol in a dae-
mon called lockd and the Status Monitor protocol in a daemon called statd
(Figure 10.8). When an application on the client needs to lock or unlock a file,
it makes a system call to the kernel locking code in the kernel. If the kernel
locking code identifies the filesystem as an NFS filesystem, then it makes an
RPC call to the local lockd using a private Kernel Lock Manager RPC proto-
col. When the lockd receives this upcall from the kernel, it makes an NLM call
to the server's lockd, which makes a locking system call to the server's kernel.

The results of the locking call follow the reverse path back to the application
on the client through the server's lockd, the client's lockd, and the client's ker-

nel. Because the lockd holds a great deal of locking state, it was difficult for
the client or server to recover if the lockd crashed or was killed and restarted

by a system administrator. The tortuous route of locking calls through each
daemon also added to the latency of locking calls, and the single-threaded
daemon limited the performance of both client and server locking. In Solaris
2.4, most of the lockd code was moved into the kernel and the private KLM
protocol was eliminated (Figure 10.9).

In the course of moving the lock manager code from the lockd into the ker-

nel, the code was multithreaded, allowing the client's lock manager to handle
concurrent locking requests from multiple applications and allowing the
server's lock manager to handle concurrent locking requests from a large num-

. ber of NFS clients. The failure semantics are much simpler in this configuration:
since all lock state is now held in the kernel, recovery of a crashed lockd is no

longer an issue. In principle, the Status Monitor code could also be imple-
mented in the kernel, though it would result in no significant performance or
reliability advantages.
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Server

_ _US_eL _U_se_r _
Kernel Kernel Kernel

FIGURE 10.8 Typical implementation of looking with LOCK daemon (lockd) and
Status Monitor daemon (statd).

Client Server

FIGURE 10.9 Solaris 2.4 implementation of locking. Lock Manager code is moved
out of lockd into the kernel, simplifying locking calls and improving performance.

10.8 Client Crash Recovery

If an NFS client crashes, the server will continue to hold any locks that the cli-
ent established before it crashed (Figure 10.10). There is no time-out on these
locks—the server will hold them indefinitely. The persistence of locks is some-

times a problem if a client crashes and is disabled for some period of time
(days or weeks) or if the client is disconnected from the network and
removed. Normally, a client will recover within a few minutes and resume
operation. '

When the client's Status Monitor (statd) process restarts, it increments the
client's state number to the next odd Value (server up). The new state number
is sent in an SM_NOTIFY message to each server recorded in its on—disk mon-
itor list. Thanks to the monitor list, the client knows which servers were hold-

ing its locks, but it has no knowledge of which locks were held.
The client's entry in the server's monitor list was created prior to the cli-

ent’s crash in response to SM_MON calls from the server's lock manager
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when the client established its first lock. When the server’s status monitor

receives this notify message, it removes the client from its monitor list (since it
is no longer holding any locks on the server) and passes on the client’s iden-
tity and state number to the server’s lock manager with a callback RPC regis-
tered by the SM_MON call. The server’s lock manager compares the new
value of the state variable to the state variable that was recorded with locks

issued to the client before it crashed (each LOCK request includes the client’s
state variable). Any locks that are older than the new state value are removed.

Recovering Client Server

Lock

Manager
Start

‘\_ Reads list of @Monitored Hosts

Time from File

Manager

SM_NOT|FY

Removes client_/>
from Monitored

Hosts List

RPC Callback

‘yFlemoves Server
from Monitored
Hosts List

LCK__GFlANTED Restores Client

V . to Monitored- Hosts List

 
FIGURE 10.10 Client recovery following a crash. it's important that the server know
when the client has crashed and recovered so that it can remove any stale locks
established before the crash. (1) When the client status monitor is restarted, it
retrieves a list of the monitored clients from stable storage and notifies each server.
(2) When the server’s status monitor receives the notification, it calls the lock
manager with the procedure registered in the SM_MON request. The server’s lock
manager then removes the client’s stale locks. (3) The server is ready to receive new
LOCK requests from the recovered client. On receiving the first request, it will request
the status monitor to restore the client to its list of monitored clients.

Deadlock Detection

A client can receive an NLM_DEADLCK error in response to a LOCK request.
This error signals to the client that the server would create a deadlock if it

granted the client’s request. A deadlock situation exists if the LOCK requests
of two or more processes are blocked because they are waiting for each other
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to release a lock. At least one of the processes must be attempting an exclusive
lock or be holding an exclusive lock for a deadlock situation to occur (Figure
10.11). To detect deadlocks, the server maintains a dependency graph for all

 
Lock Lock

FIGURE 10.11 Deadlock. Each process is blocked on a lock that is held by the other
process. An NLM server will detect a potential deadlock like this and deny any LOCK
request that would result in a deadlock. Deadlock can occur where conflict exists
between locked regions on the same file (as here) or across different files. A deadlock
can result from any circular lock dependency among two or more processes.

blocked LOCK requests that are waiting for locks (Figure 10.12). Any lock
request that would create a cycle in the dependency graph is denied with an
NLM_DEADLCK response.

 > X® \\ LCK_DEN|ED
FIGURE 10.12 A lock dependency graph. The server uses a graph of lock depend-
encies to detect deadlocks. The nodes in the graph represent processes and the
arrows represent dependencies; for example, the arrow from B to A indicates that B
is blocked waiting for a lock held by A. Process G is not permitted to block on a lock
held by process H because it would create a deadlock cycle: G, H, F, A, G.

Deadlocks are usually detected only for locks held on the same server. It is
much more difficult to detect deadlocks between processes blocking on locks
held on different servers; to do so requires servers to maintain a global depen-

dency graph.
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10.10 Locking Cached or Mapped Files

Many NFS client implementations support the mapping of files into virtual
memory. The most common incarnation of this is the mmap system call in Ber-
keley UNIX. It maps the data in a file to an area of virtual memory in the -cli-
ent. Rather than accessing the file in small buffer—sized chunks with read and

write calls,.the client sees the file data as'an array of bytes in memory. The
operating system will partition the mapped file into memory pages that are
demand paged as the client touches them; the server sees these as page-size
READ requests. Similarly, the client’s operating system writes back any
changes to the mapped file data in page-size WRITE requests.

Even if the client does not explicitly use file mapping, a similar page-size
partitioning of the file may be performed by the client's virtual memory sys-
tem to cache file data in page-size chunks. The effect is that small READ and

WRITE requests act on the cached pages of data, and more efficient page-size
READ and WRITE requests are sent to the server (see section 8.14.4).

Although the larger I/O requests that result from file caching and map-
ping are very good at boosting performance, they are not compatible with
applications that need to update small regions of a file that are not page- V
aligned. For instance, an application on one machine may lock the first byte of
a file and read the byte. The NFS client will attempt to optimize that single-
byte I/O by reading an entire page of data from the server, perhaps, 8 kB. An
application on another client may lock the second byte of the same file and
also read a byte. This single-byte read will also be extended to an 8-kB READ
request. The first client updates the first byte and writes it back. Since the cli-

ent’s operating system doesn't keep track of which cached parts of the file
were updated, it will write back an entire 8-kB page when the application
closes the file——even though only 1 byte was changed. However, this updated
byte will be lost when the second client's program writes the second byte and
closes the file. The second client's cached page will be written back, together
with the unmodified first byte. The first client's update is lost (Figure 10.13).

Solaris client implementations avoid this problem by disabling all caching
of file data and disallowing file mapping for any file that has a lock. It fixes
the problem just described because each client's single—byte WRITE request
will be sent directly to the server. Data outside the locked range will not be
overwritten. The data corruption problem is fixed at the cost of poor perfor-
mance through the loss of data caching. Files are more commonly locked in

‘; their entirety. If an application is performing small I/O requests (perhaps 512
bytes at a time) then it will suffer the overhead of an NFS call and response for
every I/O request.

File mapping and caching could be made compatible with file locking if
the client extended the range of a client's LOCK request to be page—aligned
(see ”Page 1" in Figure 10.13). For instance, if the client requested a lock just
for the first byte of a file, the client’s lock manager might extend this lock to

.

.6.
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Client B

Mapping
Client A

Mapping

File on

Server

Page 0

Mapped file is
read or written

in page-size
chunks.

Region
Extended  

I

ll 1: inII II IIII ||

FIGURE 10.13 interaction of mapped files and locking. Clients A and B are using file
mapping to access a file on the server. Each client locks a separate region of the file
that both lie within the same page (page 0) and updates the region in its own
memory. The VM system of each client, unaware of the locks, will pertorm page-size
reads and writes on the file, ignoring the locked regions and potentially corrupting
data. .

cover the first page of a file (8 KB). This extended lock would prevent other
clients from locking regions in the same cached page. Although the restora-
tion of caching would boost performance and permit file mapping, there is a
risk that the extended locks would cause unnecessary lock conflicts and

potential deadlock. For instance, processes on separate clients attempting to
update nonoverlapping, locked regions of the same file may be blocked if the
regions lie within the same page covered by an extended lock.

Transport and Authentication

Lock Manager and Status Monitor protocols can be used over TCP or UDP
transports. Most implementations support both protocols. Since the protocol
messages are short, there is no significant advantage in the ability of TCP to
handle arbitrary—length RPC calls and replies, although there is some benefit in
message sequencing and time-out/retransmission features that TCP provides.

Because the Lock Manager protocol is separate from that of NFS, the
authentication of clients to servers and vice versa needs to be negotiated sepa-

rately. The client should expect to use the same RPC authentication flavor as
that used by the NFS traffic. If the NFS server accepts Kerberos version 5 cre-
dentials via RPCSEC_GSS security, then the client should attempt to use that
when communicating with the server’s LOCK daemon. If the NFS server
accepts AUTH_SYS, then that is what should be used. Where RPCSEC_GSS
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10.12 

security is used, the server must create an initial context with the client so that

the NLM_GRANTED callback message can be sent.

Basic Data Types A _

The Lock Manager protocol has three data types that are usedby all its proce-
dure calls.

netobj

This object is used to identify an object, generally a transaction, owner, or file.
A Variable—length, opaque object, the contents and form of the netobj are
defined by the client. Where the netobj identifies a file,.the contents will be the
filehandle. ’

opaque<1024> netobj;

nIm_stats

This Value is returned when the lock manager indicates a successful result or
an error. The zero result generally indicates that the call succeeded, though
due to the generic nature of this result it would be more appropriately termed
NLM_OK than NLM_GRANTED.

enum n1m_stats {
NLM_GRANTED
NLM_DENIED

NLM_DENIED_NOLOCKS
NLM_BLOCKED

NLM_DENIED_GRACE_PERIOD
NLM_DEADLCK
NLM_ROFS
NLM_STALE_FH
NLM_FBIG
NLM_FAILED

HIIIIIIIIIIHIIIIII kO®\lO3U'1-l>UUl\J|—|©
}

nIm_Iock

This structure identifies a particular lock. It is used by all five basic locking
procedures: TEST, LOCK, CANCEL, UNLOCK, and GRANTED.

struct n1m_1ock {

string<1024> ca11er_name; /* name of client machine */
netobj fh; /* identify the file */
netobj oh; /* identify the lock owner */
int32 svid; /* unique process id */

uint32/64 Loffset; /* offset of locked region */
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u1'nt32/64 l_len; /* extent of locked region */
}

The ca11er_name field identifies the host that is making the request. Where

possible, this name should be a fully qualified domain name so that a unique
name is guaranteed in a multidomain organization. . - '

The fh field contains the filehandle of the file to be locked. In the NLM

version 3 protocol, the filehandle is a fixed—length NFS version 2 protocol file-
handle, which is encoded as a byte count followed by a byte array. In the NFS
version 3 protocol, the filehandle is already variable-length, so it is copied
directly into the fh field. That is, the first four bytes of the fh field are the same
as the byte count in an NFS version 3 filehandle. The rest of the fh field con-
tains the byte array from the NFS version 3 filehandle.

The oh field is an opaque object that identifies the host or process that is
making the request. Most commonly the client puts its IP address or host-
name in this netobj. Early Solaris implementations encoded a timestamp into
the oh field so that it could be used to detect retransmitted requests. The
-encoded timestamp created a problem with some servers that rejected
UNLOCK requests because the oh field didn't match that of the LOCK
request, so the timestamp was removed.The sv1'd field identifies the process
that is making the request.

The l_offset and 1_1 en fields ide_ntify the region of the file that the lock
controls. A 1_1 en of 0 means "to the end of the file." In the NLM version 3 pro-

tocol, the length and offset are 32 bits wide, while they are 64 bits wide in the
NLM version 4 protocol.

Since byte—range locking is supported as an atomic operation on DOS cli-
ents, locks‘ have been used by some DOS applications to synchronize multiple
processes. To flag these special locks, these applications set the high bit in the
32-bit offset——a value that would presumably ”never” occur because it indi-
cates an offset beyond 2 GB. The flag bit caused some problems with UNIX
implementations that use the fcntl function, which assumes that lock offsets
are a 32-bit signed value. The server would reject these special offsets as illegal
negative values. To work around this problem, the server was modified to
detect negative offsets and set bit 31 instead—a large positive value.

Errors

The Lock Manager protocol error returns are returned in the nlm_stat return
argument (Table 10.3). The errors are not described individually for each pro-
cedure; they are described just once in Table 10.3. Any procedure may return
any of these errors.  
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10.14 Lock‘ Manager Procedures

The following sections define the RPC procedures that are supplied by an
NFS version 3 protocol server (Table 10.4). The RPC procedure number and
the name are followed by the Description part, whichvdetailsathe XDR format
of the procedure arguments and results and tells what the procedure is
expected to do and how its arguments and results are used. The Asynchro-
nous Procedures part names the asynchronous procedures that correspond to
the call and response for each synchronous procedure. The Implementation
part gives information about how the procedure is expected to work and how
it should be used by clients. Finally, a Snoop Trace for some procedures is
included to show a typical call and response.
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TABLE 10.3 Network Lock Manager Protocol Errors

Error name Value Meaning

NLM_GRANTED O

NLM__DENIED 1

NLM_DENIED_NOLOCKS 2

NLM_BLOCKED 3

NLM_DENIED_GRACE_PERIOD 4

NLM_DEADLCK 5

NLM_ROFS 6

NLM_STALE_FH 7

NLM_BIG 3

NLM_FAILED 9

The lock was granted.

The lock was not granted, most likely due
to a conflicting lock. % '

The lock was not granted because the
server's lock manager could not allocate the
resources needed to process the request.

The request cannot be granted immediately.
The server will make a callback to the client

with an NLM_GRANTED procedure call

when the lock can be granted.

The procedure call failed because the server
has recently been rebooted and the server is
reestablishing existing locks, and is not yet
ready to receive normal service requests.

The request could not be granted and block-
ing would cause a deadlock.

The remote file system is read-only. For

example, some server implementations
might not support exclusive locks on read-
only file systems.

The filehandle is invalid. This can happen if
the file has been removed or if access to the
file has been revoked on the server.

An offset or length was used that exceeds
the range supported by the server.

The failure is for some reason not already
listed. The client should take this status as a

strong hint not to retry the request.

10.14.1 Procedure 0: NULL—Do Nothing

Description

This procedure does no work. It is made available in all RPC services to allow
server response testing and timing.

Arguments

void;

Results

void;

 



10.14 Lock Manager Procedures « 297

Implementation

It is important that this procedure do no work at all so that it can be used to

measure the overhead of processing a service request. By convention, the



298 Chapter 10 NFS Lock Manager Protocol

10.14.2

TABLE 10.4 Summary of Lock Manager Procedures

Number Name Description Section

Synchronous procedures

0 \lLM_NULL Do nothing 10.14.1, Sage 295

1 VLM_TEST Test for a lock 10.14.2, page 296

2 \‘L‘\/[_LOCK Create a lock 10.14.3, page 299

3 \‘L‘\/[_CANCEL Cancel a lock 10.14.4, page 302

4 VLM_UNLOCK Remove a lock 10.14.5, page 304

5 \‘L‘\/[_GRANTED Lock granted 10.14.6, page 305

Asynchronous requests and responses

6 \‘L‘\/[_TEST_MSG Test lock message 10.14.2, page 296

7 \lLV[_LOCK_MSG Create a lock message 10.14.3, page 299

8 \‘L‘\/I_CANCEL_MSG Cancel a lock message 10.14.4, page 302

9 \‘L‘\/[_UNLOCK_MSG Unlock message 10.14.5, page 304

10 \lLV[_GRANTED_MSG Lock granted message 10.14.6, page 305

11 \lL‘\/[_TEST_RES Test lock result 10.14.2, page 296

12 \lLV[_LOCK_RES Create a lock result 10.14.3, page 299

13 \lLV[_CANCEL_RES Cancel a lock result 10.14.4, page 302

14 \lLV[_UNLOCK_RES Unlock result 10.14.5, page 304

15 NLV[_GRANTED_RES Lock granted result 10.14.6, page 305

16-19 (not assigned)

DOS file sharing and nonmonitored locks (added in version 3)
20

21

22

23

NLM_SI-IARE

NLM_UNSI-IARE

NLM_NM_LOCK

NLM_FREE_ALL

Share a file

Unshare a file

Nonmonitored lock

Free all locks

10.14.7, page 308

10.14.8, page 310

1014.9, page 311

10.14.10, page 311

NULL procedure should never require any authentication. This procedure
was not described in Versions 1 through 3 of the protocol———it was formally
added in version 4.

Procedure 1: NLM_TEST—-—Test for a Lock

Description

This procedure checks whether a lock is available to the client.



10.14 Lock Manager Procedures 299

' I Arguments 5 Results

; netobj cookie; E netobj cookie;
2 bool exclusive; i switch (nlm_stats stat) {
§ n1m_lock alock; 5 case LCK_DENIED = 1:
‘ bool exclusive;

int32 svid;
netobj oh;
uint32/64 l_offset;
uint32/64 l_len;

default:

void;
  

Arguments

cookie

An opaque Value determined by the client that is used to match an asyn-
chronous response with a request.

excl usi ve

Set to true if testing whether the client could get access to the lock.
al ock

Identifies the monitored lock that is being tested.’

Results

cookie

An opaque Value determined by the client that is used to match an asyn-
chronous response with a request.

stat ;

The status returned by the operation. If NLM_DENIED is returned, then

the following results that identify the conflicting lock and its holder are
returned:

excl usi ve
True if the lock is exclusively held by the current holder.

6 svid
Identifies the process ID of the lock holder. p

oh

An opaque quantity that identifies the host or process on the host that
holds the lock.

Loffset

L The byte offset of the lock held by the holder. The offset may not be the
E same as the lock identified by the a1ock argument, but it can be  
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assumed that the locked region overlaps alock. Version 4 of the proto-
col increases the offset value from a 32-bit to a 64-bit quantity.

l_len

The length, in bytes, of the region locked by the holder. The length may
not be the same as the lock identified by the alock arguihent, but it can
be assumed that the locked region overlaps alock. Version 4 of the pro-
tocol increases the length value from a 32-bit to a 64-bit quantity.

Asynchronous Procedures

NLM_TEST_MSG (procedure 6) calls the server with the arguments described.
NLM_TEST_RES (procedure 11) returns the results.

Implementation

This procedure is used by UNIX clients that need to implement the POSIX
fcntl procedure with the F_GETLCK flag and the lockf procedure with the
F_TLOCK and F_TEST flags. The procedure result is transient. A result that
indicates that a lock is held may not be true when the client receives the reply,
since the lock holder may have released the lock soon after the result was
transmitted to the client. Similarly, a result that indicates that a lock is not held

may not be true when the client receives it.

‘ Snoop Trace of NLII/I'_TEST
NLM: —-—-— Network Lock Manager —-—-—
NLM:

NLM: Proc = 1 (Test)
NLM: Cookie = 00000078
NLM: Exclusive = True
NLM: Caller = terra

NLM: Filehandle = 01540262000O00O2000A0O0OOO3B491B
NLM: A8BBB5FAOOOAOOOOOO3B46D4OC39CF83
NLM:

NLM: Lock owner = 0O0006BE74657272

NLM: Svid = 1726 (process id)
NLM: Offset — 0 bytes

NLM: Length = 1 bytes

NLM: —-—-— Network Lock Manager —-—--
NLM:

NLM: Proc = 1 (Test)
NLM: Cookie = 00000078

NLM: Status 0 (granted)
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10.14.3 Procedure 2: NLM_LOCK—Create a Lock

Description

This procedure creates a locked byte range on a file.

 
Arguments Results _ ‘

i netobj cookie; netobj cookie;
bool block; nlm_stat stat;
bool exclusive;

nlm_lock alock;
bool reclaim;

‘ int32 state;

Arguments .

cookie

An opaque value determined by the client that is used to match an asyn-
chronous response with a request.

block

A LOCK request cannot be granted if a conflicting lock is already held. If
block is set to true the client indicates that it expects the call to block on the
server until the request can be granted. The server will first return a

LCK_BLOCKED result, which indicates that the client should expect an
asynchronous NLM_GRANTED callback when the lock is granted. If block
is set to false, the call will return immediately with a LCK_DENIED error if
a conflict is detected.

exclusive

Set to true if exclusive access to the locked region of the file is required. An
exclusive lock blocks other conflicting lock requests. A nonexclusive lock
allows other clients to establish nonexclusive locks on the same locked

, region or overlapping regions.
alock

Identifies the file, lock owner, and process as well as the locked region in
the file.

reclaim

Set to true only if the client is attempting to reestablish a lock during the
server's grace period following a server crash.

state

The current value of the client's Status Monitor state number. This number

is recorded along with the lock information so that the server can determine

which locks can be discarded if the client crashes and recovers. It is possible
that a recovering client may be granted locks before the server has received
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and acted on the SM_NOTIFY message from the client's Status Monitor. In
this case, the server needs to be able to distinguish the old, precrash locks
from the new locks.

Results p A

cookie I

An opaque value determined by the client that is used to match an asyn-
chronous response with a request.

stat

The status returned by the operation. A LCK_GRANTED status indicates
that" the lock was granted and the client is now the lock holder.
LCK_DENIED is returned only if the client set the block argument to false
and the LOCK request conflicted with an existing lock. If the block argu-
ment is true then LCK_BLOCKED will be returned and the client must wait

for a callback NLM_GRANTED from the server when the lock is ready.

Asynchronous Procedures

NLM_LOCK_MSG (procedure 7) calls the server with the same arguments.
NLM_LOCK_RES (procedure 12) returns the results.

Implementation

This procedure is used by UNIX clients that implement the POSIX fcntl and
.lockf procedure and by Windows clients that use the LockPile and Lockl-"z'leEx
procedures.

The Lock Manager protocol implements an advisory locking scheme. The
server will prevent other clients from creating conflicting locks, but it will not
prevent other clients from reading or writing the locked region of the file.

The client can revoke a blocked LOCK request by sending an NLM_

CANCEL request (section 10.14.41).
The implementation of blocking LOCK requests is buggy in some imple-

mentations of the Lock Manager. The asynchronous nature of the NLM_
GRANTED callback can be a problem if the client does not receive the callback
for some reason. Some servers will not retransmit the NLM_GRANTED

request, so the client may retransmit the blocking NLM_LOCK call in case the
NLM_GRANTED message was missed. If the client uses a new RPC XID for the
retransmissions, the server has no way to tell whether the retransmissions are

new requests.

Implementation of a duplicate request cache on the server could fix some
duplicate transmission problems, though the size of the cache would have to
be quite large because LOCK requests can be blocked for long periods of time.
Additionally, the server must be able to handle asynchronous calls that have
unvarying XID values across retransmissions. A duplicate request cache
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FIGURE 10.14 Problems with asynchronous callback of blocking LOCK request.
(1) The client requests a blocking LOCK request and (2) it is granted, but its
acknowledgment of the lock is lost. (3) it unlocks the file and (4) attempts to lock it
again. (5) It receives the retransmitted grant message and incorrectly assumes that ithas the lock.

would need to base its detection of duplicates on the netobj identifiers as well
as on the offset and length.

When locking activity is heavy and the client is locking and unlocking the
same file repeatedly, it may associate a retransmitted NLM_GRANTED from

an old LOCK request with a new LOCK request. As Figure 10.14 demon-
strates, the client might be led to assume that it is holding a lock that the
server has not yet granted.

 

Snoop Trace of NLM_LOCK

NLM: ————— Network Lock Manager —————
NLM:

NLM: Proc = 2 (Lock)
NLM: Cookie = OOOO184E
NLM: Block = False

§ NLM: Exclusive = True
NLM: Caller = terra

NLM: Filehandle = 01S40262000O00O2000A0000OO3B491B
NLM: ASBBBSFAOOOAOOOOOO3B46D4OC39CF83
NLM:
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NLM: Lock owner = OO0006BE746S7272
NLM: Svid = 1726 (process id)
NLM: Offset = 0 bytes

NLM: Length = 0 bytes
NLM: Reclaim = False

NLM: State = 1 .

NLM: ————— Network Lock Manager —————
NLM:

NLM: Proc = 2 (Lock)
NLM: Cookie = 00OO184E

NLM: Status = 0 (granted)

Procedure 3: NLM_CANCEL—Cance| a Lock

Description

This procedure cancels a blocked LOCK request.

Arguments Results

netobj cookie; netobj cookie;
bool block; n1m_stat stat;
bool exclusive;

n1m_1ock alock;

Arguments

cookie

An opaque value determined by the client that is used to match an asyn-
chronous response with a request.

block

This argument must match the b1 ock argument of the pending
NLM_LOCK request that is to be canceled (i.e., it must be set to true).

exclusive

This argument must match the exclusive argument of the pending
NLM_LOCK request.

a1 ock

Identifies the lock that the pending request was attempting to create. It
must match the al ock argument of the pending NLM_LOCK request.

Results

cooki e

An opaque value determined by the client that is used to match an asyn-
chronous response with a request.
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stat

The status returned by the operation.

Asynchronous Procedures

NLM_CANCEL_MSG (procedure 8) calls the server with the slime arguments.
NLM_CANCEL_RES (procedure 13) returns the results.

Implementation

On receiving this request, the server should attempt to locate the blocked
LOCK request and cancel it (Figure 10.15). The server should return a

LCK_DENIED error if there was no matching lock to cancel. Some server
implementations may return a LCK_GRANTED response even if there was
no pending LOCK request to cancel.

Client Server

NLM_LOCK

LCK_BLOCKED ‘\_Server adds
client's request
to waiting
list for lock.

NLM_CANCEL

LCK_GRANTED ‘\Server removes
client's LOCK

request from
waiting list.

 
§ FIGURE 10.15 Cancellation of a blocked LOCK request. A blocking LOCK request

might block for an indefinite amount of time. The NLM_CANCEL message allows an
impatient user on the client to abandon the transaction and notify the server that the
lock is no longer required.

Snoop Trace of NLM_CANCEL

NLM: ——~—~ Network Lock Manager —————
NLM:

NLM: Proc = 3 (Cancel)
NLM: Cookie = OOOO184E
NLM: Block = False
NLM: Exclusive = True
NLM: Caller = terra

NLM: Filehandle = 0154026200000002000A0000003B491B
NLM: A8BBB5FAOOOAOOOOOO3B46D40C39CF83

»._V»/4
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NLM:

NLM: Lock owner = 000006BE74657272

NLM: Sv1'd = 1726 (process id)
NLM: Offset — 0 bytes

NLM: Length = 0 bytes

NLM: ———-- Network Lock Manager ———-—
NLM:

NLM: Proc = 3 (Cancel)
NLM: Cookie — 0000184E

NLM: Status 0 (granted)

10.14.5 Procedure 4: NLM_UNLOCK—Remove a Look

Description

This procedure unlocks a locked region of a file.

Arguments Results

netobj cookie; netobj cookie;
n'|m_'|ock alock; nl m_stat stat;

Arguments

cookie

An opaque value determined by the client that is used to match an asyn-
chronous response with a request.

al ock

Identifies the lock that is to be removed. The 1_offset and 1_1 en fields must

identify a region of the file that is already covered by a lock held by the lock
owner.

Results

cookie

An opaque Value determined by the client that is used to match an asyn-
chronous response with a request.

stat

The status returned by the operation.

Asynchronous Procedures

NLM_UNLOCK_MSG (procedure 9) calls the server with the same argu-
ments. NLM_UNLOCK_RES (procedure 14) returns the results.
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Original Lock
 

 
Unlock

FIGURE 10.16 The Lock Manager protocol allows a subregion within a locked regionto be unlocked.

Implementation

1 The NLM protocol follows the semantics of POSIX file locking, which allows a
subrange of a previously locked region in a file to be unlocked (Figure 10.16).
The subrange can be anywhere within the locked range. Unlocking a sub-
range entirely contained within a locked range may leave two locked ranges.
The server may return a LCK_GRANTED result even if the lock could not be
found.

Snoop Trace of NLM_ UNLOCK

NLM: -———— Network Lock Manager ~————
NLM:

NLM: Proc = 4 (Unlock)
NLM: Cookie = 0O00184F
NLM: Caller = terra

NLM: Filehandle = 0154026200000002000A000O003B491B
NLM: A8BBB5FAOOOAOOOOOO3B46D40C39CF83
NLM:

NLM: Lock owner = 000006BE74657272

NLM: Svid = 1726 (process id)
NLM: Offset — 1124860 bytes
NLM: Length = 0 bytes

\\

NLM: ————— Network Lock Manager —-———
NLM:

NLM: Proc = 4 (Unlock)
NLM: Cookie = OOOO184F

NLM: Status = 0 (granted)

10.14.6 Procedure 5: NLM_GRANTED—Lock Is Granted

Description

This is a callback procedure from the server to the client that indicates that a

blocked LOCK request has been granted.
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Arguments Results

netobj cookie; netobj cookie;
boo1 exclusive; n1m_stat stat;
n'|m__'|ock alock;

Arguments

cookie

An opaque value that is normally the same as the client sent in the LOCK
request, though the client cannot depend on it.

b1ock

The value from the blocked LOCK request—true.

exc'| usi ve

The value from the blocked LOCK request.

a'| ock

The value from the blocked LOCK request.

Results

cook1' e

An opaque value determined by the server (in this case) that is returned by
the client from the request.

stat

The status returned to the server by the client.

Asynchronous Procedures

NLM_GRANTED_MSG (procedure 10) calls the client with the arguments
described. NLM_GRANTED_RES (procedure 15) returns the result from the
client.

Implementation

This callback procedure is unusual in that it reverses the roles of client and
server at the RPC level. The server must use the client's portmapper to obtain

a callback port for the client's lock service.
If a client makes a LOCK request with the b1 ock argument set to true, then

the server will return a LCK_BLOCKED error if there is a conflicting lock (Fig-

ure 10.17). This result indicates to the client that it should wait for an
NLM_GRANTED request from" the server when the lock is granted. The client
must reply to this callback with a result that indicates whether it has accepted
the granted lock: LCK_GRANTED if it has accepted the lock, LCK_DENIED if
for some reason it cannot accept the lock.
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Cfient Server

Time NLM_LOCK

LCK_BLOCKED

Request
_ . Queued

Client I I Waiting
Waits I I for Lockfor Lock

 
 

NLM_GRANTED

LCK_GFiANTED 

 
FIGURE 10.17 A LCK_BLOCKED response to an NLM_LOCK request indicates that
the client will need to wait some period of time for the requested lock to become
available. The NLM_GRANTED message from the server indicates that the client has

beer} granted the lock. The client must acknowledge this call with a LCK_GRANTEDresu t.

When a client receives a LCK_BLOCKED response, it should request the
local status monitor to add the server to its notification list (if it has not done

so already). If the client crashes and recovers while a LOCK request is pend-
ing on the server, then the server will receive a notification and cancel the

pending request.

If the server gets no response from the NLM_GRANTED callback, it

should continue to retransmit the call until it gets a reply from the client. The
client may have accepted the lock but may be unable, for some reason, to
respond to the server.

Snoop Trace of NLM_ GRANTED

NLM: ————— Network Lock Manager —————
NLM:

_ NLM: Proc = S (Granted)

E NLM: Cookie = 00000014E
E

NLM: Exclusive = True

NLM: Caller = swoop
NLM: Filehandle = 0154026ZOOOOOOOZOOOAOOOOOO3B491B
NLM: ASBBB5FAOOOAOOOOOO3B46D4OC39CF83
NLM:

NLM: Lock owner = 000006BE74657272

NLM: Svid = 1726 (process id)

! NLM: Offset — 0 bytes
l NLM: Length = 4 bytes

x}
NLM: ———-— Network Lock Manager —————
NLM:
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10.14.?

NLM:
NLM:
NLM:

Proc = 5 (Granted)
Cookie = 00000014

Status = 0 (granted)

Procedure 20: NLM_SHARE—Share a File _ ~~.,..; ;

Description

This procedure is used by PC clients to create a SHARE reservation on a given
file.

Arguments Results

netobj cookie; netobj cookie;
string<lO24> cal1er_name; n1m_stat stat;
netobj fh; int32 sequence;
netobj oh;
fsh_mode mode;
fsh_access access;
booi reclaim;

Arguments

cookie

An opaque value determined by the client that is used to match an asyn-
chronous response with a request.

cal1er_name

A string that uniquely identifies the caller (e.g., the caller's host-name).
fh

The filehandle for the file to which the SHARE reservation applies.

oh

An opaque object that identifies the owner of the SHARE reservation.
mode

Indicates the file sharing mode. The mode determines the access that
another client will be permitted when it attempts to share the file. A deny
none value indicates that other clients can open the file for any kind of

access. A deny read and write value indicates that no other client can share
the file for read or write access.

enum fsh_mode {
fsm_DN = 0, /* Deny none */
fsn_DR = 1, /* Deny read */
fsm_Dw = 2, /* Deny write */
fsm_DRw = 3 /* Deny read and write */
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access

Indicates the kind of access to the file that the client requires. The SHARE
request may be denied if the desired access is not compatible with the deny
mode of an existing share. ' “eats _

enum fsh_access {

fsa_NONE = O, /* No access */

fsa_R = 1, /* Read only */
fsa_w = 2, /* write only */
fsa_Rw = 3 /* Read and write */

}

reclaim

Set to true if the client is attempting to reestablish a SHARE reservation dur-

ing the grace period following a server crash and reboot. During the grace
period, the server will accept only SHARE reservations with reclaim set to
true.

Results

cookie

An opaque value determined by the client that is used to match an asyn-
chronous response with a request.

stat

The status returned by the operation.

sequence _

Unused. Set to zero.

Implementation

Z A SHARE reservation is created by DOS or Windows clients whenever a file is

i opened. SHARE reservations are not monitored by the status monitor. If a cli-
§ ent crashes and reboots while it holds SHARE reservations on server files, it

E should issue an NLM_FREE_ALL call to the server to release stale shares.
The server can evaluate a share conflict using a simple formula that per-

i forms a bitwise AND operation of the request mode against an established
f share access and the request access against the established share mode. If both
§ AND operations yield a zero result, then the SHARE request is granted. This

formula is illustrated by the following C code:

granted = (request_mode & share_access == 0 && E
(request_access& share_mode) == 0;

A matrix (Figure 10.18) represents this comparison; the figure shows
whether a SHARE request will be granted (indicated by a Y) based on the mode
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First SHARE
Reservation of

a File

Deny
None

L __.._L_

FIGURE 10.18 A Share Conflict Matrix

  
  
 

and access of the request against the mode and access of an established SHARE
reservation on the file.

10.14.8 Procedure 21: NLM_UNSHARE—Unshare a File

Description

This procedure releases a SHARE reservation.

Arguments

— same as NLM_SHARE _

Arguments

Same as NLM_SHARE.

Results

Same as NLM_SHARE.

Results

— same as NLM_SHARE _
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10.14.9

Implementation

This procedure is called by DOS or Windows clients when closing a file. Most
server implementations will return a GRANTED status whether or not the
SHARE reservation exists. 2.‘? _

Procedure 22: NLM_NM_LOCK—Establish a Nonmonitored Lock

Description

This procedure creates a nonmonitored byte-range lock on a file.

  
Arguments Results

netobj cookie; netobj cookie;
bool block; n1m_stat stat;
bool exclusive;

nlm_lock alock;
§ bool reclaim;

1'nt32 state; V

Arguments

The arguments are the same as NLM_LOCK. Since the lock is not monitored

by the Status Monitor, the state argument should be set to 0. Since the proce-
dure does not block, the b1 ock argument should be set to false.

Results

The results are the same as for NLM_LOCK. Since a nonmonitored LOCK

request will not block, a LCK_DENIED error will be returned if another lock
conflicts.

Implementation

A nonmonitored lock is used by clients that do not use the Network Status

Monitor service. For instance, operating systems like DOS that support only a
single-threaded process model cannot easily support a concurrent status
monitor process that must respond to state notifications from servers. The use

of a nonmonitored lock imposes a responsibility on the client to ensure that
the lock is removed from the server if the client crashes and reboots, losing the
lock state. In this case the client should send an NLM_FREE_ALL request to
the server on recovery to make sure that stale locks are removed. There is also

a risk that the server may crash and lose the client's lock state. Since the client

is not running a Status Monitor, the server will not notify the client of the
change of state (loss of lock) when the server has rebooted.

The NLM_UNLOCK procedure must be used to remove nonmonitored
locks.
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10.14.10 Procedure 23: NLM_FREE_ALL—Free All Locks

Description

This procedure notifies the server that the client has lost lock state and all
server locks owned by this client should be freed. _ ‘ I

rl
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Arguments Results

string<l024> name; - no results —
uint32 state;

Arguments _ . ‘ts V~
name

A string that identifies the client uniquely (e.g., the client’s hostname).
state

Unused. Set to 0.

Implementation

This procedure is used by clients that have nonmonitored locks, either

NLM_SHARE or NLM_NM_LOCK. On recovery, the client sends this request

to the server to free any locks that were established before the client crashed

and lost the lock state. The client does not expect a response from the server.

Network Status Monitor Protocol

The Network Status Monitor (NSM) protocol was originally designed as a

general-purpose service for monitoring the state of selected hosts on a net-

work. It was first described in a USENIX paper [Chang85] as a component of

a ”SunNet” architecture. The protocol was designed to be useful to any RPC
protocol that needed to monitor state on a remote host. In practice, the NLM

protocol is the only known protocol that uses NSM.

In the SunNet architecture, the status monitor was a program that actively

monitored other network hosts by probing their network status monitors

with a multicast status request message (SM_STAT) (Table 10.5). Each moni-

tored host would return its state; a monotonically increasing number that is

incremented anytime the host crashes or recovers. An even value for the state

indicates that the host is down, while an odd value indicates that it is up:

127 128 129

Up Down Up

130 131

Down Up

The intent of the state number was to allow the status monitor to detect a

change in state of a monitored host (crash followed by recovery) no matter

how quickly the monitored host recovered. Even if a host crashed and recov-

ered between two successive probes, its incremented state number would

record the fact of a crash. In theory, an odd state (server down) should never

come back in a response to an SM_STAT probe. The SunNet architecture orga-
nized status monitors into a hierarchy that had servers monitoring clients and

servers monitoring each other. If a client failed to respond to an SM_STAT
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10.15.1

10.15.2

TABLE 10.5 Summary of Status Monitor Procedures

Proc# Name Description Section

0 SM_NULL Do nothing 10.15.1, page 313

1 SM_STAT Check status 10.15.2, pa‘ge.313

2 SM_MON Monitor a host 1o.15.3, page 314
3 SM_UNMON Unmonitor a host 10.15.4, page 316

4 SM_UNMON_ALL Unmonitor all hosts 10.15.5, page 317

5 SM_SIMU_CRASH Simulate a crash 10.15.6, page 317

6 SM_NOTIFY Notify a host 10.15.7, page 318

probe within a reasonable time-out, the server assigned an odd status value to
the client, which it would then pass on, if requested, to other hosts’ queries.

The SunNet architecture was never realized, and the nature of the Status

Monitor protocol changed. Instead of actively monitoring hosts with
SM_STAT requests, a passive SM_NOTIFY message was added that was
invoked when a host recovered from a crash. With current implementations of

the protocol, even values (server is down) are never seen and cannot be com-
municated. Obviously, a host cannot notify others that it is down (even value).
If an RPC service maintains state on a host and the state number of the host

has changed since the state was established, then the service can assume that
the host has rebooted and information (like locks) maintained in the host's

RAM memory has been lost.

Procedure 0: SM_NULL—Do Nothing

Description

This procedure does no work. It is made available in all RPC services to allow
server response testing and timing.

Arguments Results

voi d ; vo1' cl;

Implementation

It is important that this procedure do no work at all so that it can be used to
measure the overhead of processing a service request.

Procedure 1: SM_STAT—Check Status

Description

This procedure checks whether the status monitor is monitoring the given
host.
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Arguments Results

str'ing<l024> mon_name; u1'nt32 res;
u1'nt32 state;

L-4,5.._
Arguments

mon_name

The name of the host to be monitored.

Results

res

The return status of the call.

state

The state number of the status monitor.

Implementation

This procedure is a remnant of the original active monitoring architecture for

the status monitor. Do not depend on this procedure being implemented.

Many status monitor implementations will always return STAT_FAIL.

Errors
 

STAT_SUCC 0 Status monitor agrees to monitor.

STAT_FAIL 1 Status monitor cannot monitor.
 

Procedure 2: SM_MON—Monitor a Host

Description

Establish monitoring of a given host.

Arguments Results

str1'ng<l024> mon_name; u1'nt32 res;
str1'ng<1024> my_name; u1'nt32 state;
u1'nt32 my_prog;
u1'nt32 my_vers;
u'int32 my_proc;
opaque[16] priv;

Arguments

mon_name

The name of the host to be monitored. This name should be that received in

the LOCK’request (ca11er_name), though the server may choose to reverse-
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map the client's IP address through DNS to guarantee a fully qualified
domain name that will handle locking properly across multiple domains.

my_name

The client's hostname. For the lock manager, it passes the name of the host
it is running on. ' T7’ 1 '

my_prog

The callback RPC program number. In this context, it will usually be that of
the lock manager, 100021, but need not be.

my_ve rs

The callback program's version number. One of the version numbers sup-
ported by the lock manager.

my_p FOC

The callback program's procedure number. Each implementation of the
lock manager can choose its own procedure number, though it should not
conflict with possible future procedure numbers added to the protocol.
There is a gap in the protocol procedure numbers (16-19) that provides
good candidates. The Solaris lock manager uses procedure 18.

priv

Private information returned as arguments to the callback. Again, each

implementation can choose whether or not to use private data. Solaris does
not use this feature.

Results

re 5

The return status of the call.

state

The state number of the status monitor. The Solaris NLM ignores it.

Implementation

This call is most commonly made from the lock manager to the status monitor
when the lock manager receives the first lock request from a client. Before
granting the lock, the client needs to be monitored by the status monitor so
that if the server crashes, the client will be notified to reclaim its lock. The

same call is also made on the client before it requests its first lock from the
server: the server must be monitored so that if the client crashes and recovers,

it will notify the server to remove stale locks.
The status monitor must record the client's hostname on stable storage so

that it can survive a server crash and recovery The most common method is

to create a directory or zero-length file with the name of the client (mon_name)
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under a well—l<nown directory, for example, /var/sm/. This technique is sim-
ple and efficient because directory operations are atomic on most operating
systems. Maintaining a list of hostnames in a single file is more complex
because each change to the file must be covered by a lock, and deletion of a
hostname may require the entire file to be locked and rewritten; '

The callback information (my:_name, my_prog, etc.) does not need to be

stored in stable storage because it is used only when the status monitor

receives an SM_NOTIFY message from a monitored host that is recovering.
The RPC information for the callback could, in theory, represent any RPC ser-
vice, but in general my_prog is set to 100021 (program number for lock man-

ager) and the version to any version supported by the lock manager (versions
1 through 4). The Solaris locl< manager defines an unpublished procedure
(procedure 18) to receive the callback notification.

Errors
  

STAT_SUCC 0 Status monitor agrees to monitor.

sTAT_FA1L 1 Status monitor cannot monitor.
 

10.15.4 Procedure 3: SM_UNMON—Unmonitor a Host

Description

Stop monitoring the given host.

Arguments Results

s1:r1'ng<l024> mon_name; 1'nt32 state;
str1'ng<1024> my_name;
u1'nt32 my_prog;
u1'n1:32 my_vers;
u1'nt32 my_proc;

Arguments

mon_name

The name of the host for which monitoring is to cease. It should be identical

to the mon_name supplied in the SM_MON request.

my_name, my__prog , my_vers, my_proc

I These must match the arguments supplied in the corresponding SM_MON
E _ request.

Results

state

The state number of the status monitor. Solaris ignores this.



10.15.5

10.15.6

Implementation

The server's lock manager may request the Lock Manager protocol to cease
monitoring a client that has released its last lock. As a performance enhance-
ment, some lock managers may never issue SM_UNMON requests, which

‘ avoids repeated monitor/unmonitor calls for a clientthat repeatedly locks
and unlocks a file. Although this may cause the list of monitored hosts to be
longer than it needs to be, a notification sent to a host that holds no locks will
be ignored.

Procedure 4: SM_UNMON_ALL—Unmonitor All Hosts

Description

Stop monitoring all hosts.

Arguments Results

str1' ng<1024> my_name; 1'nt32 state;
u1'nt32 my_pr0g;
u1'nt32 my_ve rs;
u1'nt32 my_proc;

Arguments

my_name

Not used.

my_name, my_pr‘og, my_vers, my_pr‘oc

These must match the arguments supplied in the corresponding SM_MON

requests.

Results

state

The state number of the status monitor.

Implementation

The Solaris status monitor implements this procedure, but the lock manager
does not use it.

Procedure 5: SM_S|MU_CRASH—Simu|ate a Crash

Description

This procedure simulates a crash.

Arguments Results

void; void;
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10.15.?

10.16

Implementation

This procedure is useful to client-side lock managers that are implemented as

a user-level process. If the Lock Manager daemon crashes, then it will lose the

state of all the client's locks. On restart, it uses this procedure to inform the
status monitor that lock state has been lost. The status monit5°rtwill then send

a notification to all servers on which locks were held so that they can remove
the client's locks.

Procedure 6: SM_NOTlFY—Notify a Host

Description

Notify of state change.

llesrtlts

void;

Arguments

string<l024>
uint32

mon_name;
state;

Arguments

mon_name

The name of the host from which the request is sent.
state

The new state number of the host.

Implementation

When a status monitor restarts after a crash, it examines its list of monitored

hosts from stable storage (recorded by SM_MON requests before the crash)
and sends an SM_NOTIFY call to each host in the list. The status monitor
should make a reasonable effort to retransmit the notification to clients that

do not respond. T

On receiving an SM_NOTIFY request, a status monitor is expected to

invoke the callback procedure registered with a previous SM_MON request.

Summary

 

File locking service for NFS is provided by two cooperating protocols, the

Network Lock Manager protocol and the Network Status Monitor protocol.
The status monitor allows clients and servers to detect a loss of state follow-e

ing a crash and initiate timely recovery.

Due to the complexity of these two protocols, some NFS servers do not

support file locking at all. Some clients cannot support the asynchronous noti-

fications of the Status Monitor protocol, so the Lock Manager protocol makes
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nonmonitored locks available for these clients. NLM locks are advisory: an

NFS server will not prevent a client that does not hold a lock from reading or
writing a locked file. The NLM protocol supports both exclusive (or non-
shared) locks and nonexclusive (or shared) locks. In addition, share reserva~
tions are supported for DOS clients. . aa ‘ I

The NLM and Status Monitor protocols are unusual in their use of asyn-
chronous procedures and callbacks. Vague protocol specifications have made
it difficult to build interoperable implementations of these protocols. In addi-
tion, timing problems inherent in some of the asynchronous procedures make
these protocols unreliable on busy or congested networks.



 

Chapter 11

Automounting  T

he NFS protocol does not require the use of a global or shared namespace.
T A global namespace is a feature supported by other distributed file-
systems, such as the Andrew File System [Morris+86]. AFS provides a consis-
tent pathname to any remote file from any client machine. AFS servers and

their exported filesystems are grouped into cells that are named under an

/afs directory. These invariant paths to shared data make it easy to locate files

from any client on a network. a '

The team at Sun Microsystems, Inc., that designed the NFS protocol and

built its first implementation had a more basic requirement: that a remote file-

system be managed as if it were a local filesystem. Since filesystems on local

disks are mounted using a mount command, remote filesystems accessed with
NFS should also be mountable with a mount command.

mount /dev/dsk/c0tOdOs2 /usr/local (local filesystem)

mount jurassic:/export/home/jane /home/jane (NFS filesystem)

This simple remote—as-local paradigm made it easy for users to adapt to NFS.

NFS mounts could be included with local filesystems in the /etc/fstab or

/etc/vfstab files of UNIX clients so that they would be mounted automati-

cally when the client booted. The following example shows a simple /etc/

vfstab file that lists the filesystems to be mounted at boot time for a particular
UNIX client. It includes two NFS mounts for the client's user: her e—mail and

her own ”home” directory.

# Filesystem Mountpoi nt Type
/dev/dsk/c0tOdOsO / ufs

/proc /proc proc
jurassic:/var/mail /var/mail nfs

jurassic:/export/home/jane /home/jane nfs

321
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11.1

Having each NFS client determine its own set of mounts works well for
small numbers of clients in well—organized workgroups, but as the use of NFS

gained hold in larger organizations, it became clear that the enumeration of
all a client's NFS mounts in a local file would not scale to hundreds or thou-

sands of clients. The problems were numerous, including the. following three:

1. Inconsistent naming. Since each client determined where a filesystem
was mounted in its own namespace, shared files could have inconsistent
names from client to client. For instance, a shared filesystem of commonly

used packages might be mounted on some clients under the name /usr/
local and on others as /1 ocal. Programs and scripts that worked fine on one
client could fail when run on another client because the packages could not be
located.

2. Unavailable mounts. The example vfstab file above shows ]ane’s home

directory being mounted on a particular client. If Iane needs to access files in
another user's home directory, then she must locate the server that holds the
home directory and issue a mount command as the superuser. If the number of
users is small, then a mount for the home directory of each user could be
included in the vfstab file. Mounting in advance is impractical, however, if
there are hundreds or thousands of users.

3. Administration overhead. If the server administrator needs to relocate a

filesystem on the server or move it to another server, then the administrator
needs to notify all clients that are mounting that filesystem so that they can
edit their vfstab files to account for the new location. Having the location of

each filesystem embedded in each client creates enormous system administra-
tion problems.

These problems can be fixed by implementing a global namespace for
NFS access to files that supports consistent naming of files across all clients
and centralizes the location information so that filesystems can be relocated

from one server to another without having to notify all the clients. An auto-

mounter is a service that implements this global namespace by obtaining
name-to—location information from a name service and performing mounts

automatically—hence the name automounter.
This chapter explains how an automounter creates a global namespace for

NFS filesystems.

Automounter as NFS Server

An automounter creates the illusion of a large number of continuously

mounted NFS filesystems by mounting filesystems on demand and unmount-
ing them when they are no longer needed. To mount a filesystem on demand,
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an automounter needs to be able to detect access to a filesystem that is not yet
mounted, mount the filesystem, then redirect any further access to the

- mounted filesystem (Figure 11.1).

The first automounters on UNIX systems were implemented as user—level

NFS servers. The first user—level NFS server was implemented by Bradley
Taylor of the Sun NFS group in 1986. He created an NFS server in a daemon
process that implemented a memory filesystem. The daemon created a socket

to receive NFS RPC calls, then called the mount system call to create an NFS
mount, providing its own address for the NFS server and the name of a direc-

tory to act at the mountpoint. Then, when any program attempted to access
the directory, the NFS client code in the UNIX kernel sent NFS calls to the dae-

mon (see Figure 11.2). The memory filesystem was a simple prototype to dem-
onstrate the utility of the technique: that new types of filesystems could be

implemented by local daemon programs posing as NFS servers. Among file-
systems that have been implemented this way are a caching filesystem called
the Autocacher [Minnich93], an encrypting filesystem [Blaze94], a backup file-
system [Moran+93], and a translucent filesystem [Hendricks 88].

Tom Lyon, in the NFS grouplat Sun, implemented the first automounter as

a user—level NFS daemon. His intent was to create an automatic mounting ser-
vice for NFS clients that would obtain its global namespace information from
a name service like NIS. Using this information, the automounter daemon

would automatically mount and unmount NFS filesystems as needed. This
service was first made available in SunOS 4.0. Another automounter called

Amd was made available in source form and ported to a large number of
UNIX operating systems (section 11.10). Figure 11.2 shows how a daemon can

mount itself as an NFS server. An automounter daemon provides service by
mounting itself on directories that are to receive automounting service. The
daemon reads a list of these directories when it starts up and issues a mount

Automounter

‘ Detects /_,_>
Access

‘ Nounts
1 ‘ \ Filesystem% $
E \$ $
E $1

g’ \ NFS Server3

Program Program Needs

1 Access to NFS
Filesystem

FIGURE 11.1 An automounter detects access to an NFS filesystem that is not yet
mounted and mounts the filesystem.
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11.2

NFS Client

in Kernel

NFS Server
Daemon

mount("/tmp", local host , 567)
Program

 
FIGURE 11.2 A user-level NFS server. The NFS server daemon mounts itself in the
client’s namespace as an NFS server using a local address (localhost) and port
number (in this case, 567). Any access to the daemon’s mountpoint (here it’s /tmp)
will be forwarded as an NFS request to the daemon.

system call for each directory. The UNIX kernel will then notify the auto-
mounter with an NFS LOOKUP call if any program attempts to access an

entry in any of these directories.
The automounter daemon is needed to mount and unmount filesystems,

but it need not be involved in every access to the filesystem once it is
mounted. To have the automounter forwarding data-intensive operations like

NFS READ and WRITE requests would hurt performance, so the NFS mounts
are done in a temporary directory and the daemon returns a symbolic link in
response to any LOOKUP request. This deft sidestep allows the automounter
to remove itself from data-intensive operations; the NFS client in the kernel

will follow the symbolic link and perform those operations on the real NFS
mountpoint.

Problems with Symbolic Links

An automounter implemented as a user—level NFS server is attractive because
it is implemented entirely outside the kernel (Figure 11.3). Since no kernel
modifications are necessary, it is easy to port to a variety of other UNIX oper-

ating systems. The Solaris automounter has been licensed to several other
companies and is available in Irix, HP-UX, Digital UNIX, and AIX. The Amd
automounter has been ported to more than 20 different versions of the UNIX

operating system.

An important measure of the success of an automounter is its ability to
create the illusion of continuously available NFS filesystems. Users should not
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; FIGURE 11.3 Automounter operation. (1) At start-up the automounter daemon reads

the auto.master map, mounts itself at each directory, and associates a map with
’ each directory. (2) A program attempts to open a file in an NFS filesystem that isn‘t

{ mounted. The automounter finds the mount information in the map associated withthe directory. (3) It mounts the filesystem in a temporary directory and returns a
symbolic link to the mountpoint. (4) The program opens the file in the NFS filesystem.
The automounter is not involved in READ or WRITE operations.
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be aware that an automounter is mounting and unmounting filesystems. It

must do its work quickly and unobtrusively. Automounters are pretty good at
mounting quickly. However, the symbolic link that redirects access to the tem-
porary mountpoint directory (/tmp_mnt) can create_problems. When a UNIX
program needs to determine its current directory, it invokeseafunction called
getwd that determines the path to the current directory by walking up the
directory hierarchy with lookups of the . . entry at each directory level (Fig-
ure 11.4). A program that does this within an automounted directory will
receive a path that has /tmpflmnt prepended.

This pathname change can be disconcerting to users with automounted
home directories. When user Jane logs in, she expects her current directory to
be /home/jane—not /tmp_mnt/home/jane. The problem is not just an aes-

thetic one; some programs, like the UNIX at command, record the current
directory in a file and expect the directory to be available at a later time. If the
automounter has unmounted the filesystem, then the program will find that

the recorded path is invalid. References to /tmp_mnt paths do not trigger auto-
matic mounting.

Relative pathnames do not work as expected, either. For instance, if Jane
has /home/jane as her current directory, she should reasonably expect to use

the path . ./1‘ red to refer to Fred's home directory. Because ]ane’s home direc-
tory is mounted under the /tmp_mnt directory, the path . ./fred will be equiv-
alent to the path /tmp_mnt/home/fred, which, if not already mounted, will
appear to be missing.

One workaround is to modify the UNIX getwd function to remove the

prepended /tmp_mnt directory if it appears at the front of a path. However,
this is not a complete solution: both the Solaris automounter and the Amd
automounter can be configured to use a directory different from /tmp_mnt,

not all programs use getwd to determine the current directory, and the relative
pathname problem remains.

/tmp_mnt
/home 
 

/tmp_mnt/homeI

/home/jane

 )\"~«...,\w_wWW_¢,..w

Expects This Path

/tmp_mnt/home/j ane

t/ Sees This Path
FIGURE 11.4 Problems with automounter symbolic links. The user sees a path
different from the one expected.
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11.3

The temporary mountpoint problem can be solved by implementing a
kernel-based filesystem that works with the automounter daemon to perform
in—place mounts: the autofs.

Automounting with Autofs

The autofs is a kernel—based filesystem that supports in-place mounting by
the automount daemon. When the automounter starts up, it mounts the

autofs at each directory that needs automounter service (as determined by the
master map). When the autofs at one of these directories detects access to a

filesystem that is not yet mounted, it sends an RPC call to the automounter

daemon requesting that the missing filesystem be mounted. This automount
daemon is not an NFS server. The autofs communicates with the daemon

using a simple RPC protocol that has only two requests: MOUNT and

UNMOUNT. The MOUNT request contains the name of the directory that
needs to be mounted and the name of the map that contains the mount infor-

mation. The daemon gets the mount information from the map and performs

one or more mounts in place; if there is an autofs mount at /home and a pro-
gram tries to access /home/jane, then the automounter daemon will mount

the filesystem at /home/jane. This process of in-place mounting is illustrated
in Figure 11.5.

As well as eliminating the temporary mountpoint problem, the autofs

automounter has a number of additional features, including the three that
follow.

1. Better performance. Although the NFS—server automounter successfully

avoided heavyweight I/O operations via redirection to the NFS mountpoint
with a symbolic link, it still needed to return the link whenever a program
opened an automounted file. The overhead of this redirection was noticeable

for programs that opened files frequently.

2. Stateless daemon. Since each autofs mount retains the association

between the directory and the associated map, the daemon receives all the

information it needs to perform a mount or unmount in the RPC request from
the autofs. If the daemon crashes, programs continue to have access to exist-

ing mounts, but cannot access new mounts until the daemon is restarted.

3. Changes to autofs mounts. Autofs mounts can be added or removed

without restarting the automounter daemon or affecting existing mounts. The

Solaris automount command compares the desired set of autofs mounts in the

auto.master map with the actual set of autofs mounts from the system
MOUNT table (/etc/mnttab) and adds or removes autofs mounts to resolve

any differences.
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FIGURE 11.5 Autofs operation. (1) At start-up the automounter reads the
auto . master map and mounts an autofs at each directory that associates a map with
each directory. (2) A program attempts to open a file in an NFS filesystem that isn’t
mounted. The autofs makes an RPC call to the daemon to mount the filesystem. (3) It
mounts the filesystem in place and responds to the autofs. (4) The autofs unbiocks the
program, which then opens the file in the NFS filesystem. The automounter daemon is
not involved in further READ, WRITE, or pathname operations.

 




















































































































































































































































































































































































