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226 Chapter 5 Transient Conduction

In our treatment of conduction we have gradually considered more compli-

cated conditions. We began with the simple case of one—dimensional, steady-

state conduction with no internal generation, and we subsequently considered

complications due to rrgiltidimensional and generation effects. However, We
have not yet considered situations for which conditions change with time.

We now recognize that many heat transfer problems are time dependent.

Such unsteady, or transient, problems typically arise when the boundary

conditions of a system are changed. For example, if the surface temperature of

a system is altered, the temperature at each. point in the system will also begin

to change. The changes will continue to occur until a steady-state temperature

distribution is reached. Consider a hot metal billet that is removed from a
furnace and exposed to a cool airstream. Energy is transferred by convection

and radiation from its surface to the surroundings. Energy transfer byaconduc-

tion also occurs from the interior of the metal to the surface, and the

temperature at each point in the billet decreases until a steady-state condition .

is reached. Such time-dependent effects occur in many industrial heating and 3, '
cooling processes. ’

To determine the time dependence of the temperature" distribution within . 1;

a solid during a transient process, we could begin by solving the appropriate ‘- ~-

form of the heat equation, for example, Equation 2.13. Some cases for which

solutions have been obtained are discussed in Sections 5.4 to 5.8. However,
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such solutions are often diflicult to obtain, and where possible a simpler

approach is preferred. One such approach may be used under conditions for

which temperature gradients within the solid are small. It is termed the lumped , II1t1‘QCll
capacitance method. C

5.1 THE LUMPED CAPACITANCE METHOD

A simple, yet common, transient conduction problem is one in which a solid
experiences a sudden change in its thermal environment. Consider a hot metal

forging that is initially at a uniform temperature T, and is quenched by

immersing it in a liquid of lower temperature Too < T, (Figure 5.1). If the

quenching is said to begin at time t = O, the temperature of the solid will

Figure 5.1 Cooling of a hot rnetal forging.
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5.1 The Luniped Capacitance Method 227

decrease for time t > 0, until it eventually reaches Too. This reduction is due to

convection heat transfer at the solid~liquid interface. The essence of the

lumped capacitance method is the assumption that the temperature of the

solid is spatially uniform at any instant during the transient process. This

assumption implies that temperature gradients within the solid are negligible.

From Fourier’s law, heat conduction in the absence of a temperature

gradient implies the existence of infinite thermal conductivity. Such a condi-

tion is clearly impossible. However, although the condition is never satisfied

exactly, it is closely approximated if the resistance to conduction within the

solid is small compared with the resistance to heat transfer between the solid

and its surroundings. For now we assume that this is, in fact, the case.

In neglecting temperature gradients within the solid, we can no longer

consider the problem from within the framework of the heat equation. Instead,

the transient temperature response is determined by formulating an overall

energy balance on the solid. This balance must relate the rate of heat loss at .

the surface to the rate of change of the internal energy. Applying Equation

l.1la to the control volume of Figure 5.1, this requirement takes the form

_Eout =

dT

~hAS(T— Too) = pVc—d-t- (5.2)

Introducing the temperature difference

and recognizing that (d0/dt) = (dT/dt), it follows that

pVc d0

hAs dt "

Separating variables and integrating from the initial condition, for which t = O

and T(0) = T,-, we then obtain

V d0

5-‘: °— = — far
hAs 9. 0 0

1

where
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Tt,1 73,2 7't,_ 3 7't,4

Figure 5.2 Transient temperature response of
lumped capacitance ‘solids corresponding to
difierent thermal time constants r,.

01'

ill: ;9I T 7" Tee; in HTl1A§ : f (56),
M ".‘.€:XP. L PVC, tip pg :::.pA
Equation 5.5 may be used to determine the time required for the solid to reach
some temperature T, or, conversely, Equation 5.6 may be used to compute the
temperature reached by the solid at some time t.

The foregoing results indicate that the difierence between the solid and

fluid temperatures must decay exponentially to zero as t approaches infinity.
This behavior is shown in Figure 5.2. From Equation 5.6 it is also evident that
the quantity (pVc/hAs) may be interpreted as a thermal time constant. This
time constant may be expressed as

t 5,

where R , is the resistance to convection heat transfer and C, is the lumped
thermal capacitance of the solid. Any increase in R , or C, will cause a solid to
respond more slowly to changes in its thermal environment and will increase
the timerequired to reach thermal equilibrium (0 = 0).

It is useful to note that the foregoing behavior is analogous to the voltage
decay that occurs when a capacitor is discharged through a resistor in an
electrical RC circuit. Accordingly, the process may be represented by an
equivalent thermal circuit, which is shown in Figure 5.3. With the switchclosed
the solid is charged to the temperature 0,. When the switch is opened, the
energy that is stored in the solid is discharged through the thermal resistance
and the temperature of the solid decays with time. This analogy suggests that
RC electrical circuits may be used to determine the transient behavior of
thermal systems. In fact, before the advent of digital computers, RC circuits
were widely used to simulate transient thermal behavior.
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5.2 Validity of the Lumped Capacitance Method 229

Figure 5.3 Equivalent thermal circuit for a

lumped capacitance solid.

To determine the total energy transfer Q occurring up to some time 2‘, we

simply write

Q = jgqdt = hAsf0t0dt

Substituting for 0 from Equation 5.6 and integrating, we obtain

The quantity Q is, of course, related to the change in the internal energy of the

solid, and from Equation 1.11b

For quenching Q is positive and the solid experiences a decrease in energy.

Equations 5.5. 5.6, and 5.8a also apply to situations where the solid is heated
(6 < O), in which case Q is negative and the internal energy of the solid
increases.

5.2 VALIDITY OF THE LUMPED CAPACITANCE NEETHOD

From the foregoing results it is easy to see Why there is a strong preference for

usingithe lumped capacitance method. It is certainly the simplest and most
convenient method that can be used to solve transient conduction problems.

Hence it is important to determine under what conditions it may be used with

reasonable accuracy. ' '

To develop a suitable criterion consider steady-state conduction through

the plane wall of area A (Figure 5.4). Although We are assuming steady-state
conditions, this criterion is readily extended to transient processes. One

surface is maintained at a temperature T“ and the other surface is exposed to
a fluid of temperature Tm < TS,1. The temperature of this surface will be some
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Tm ’ h Figure 5.4 Effect of Biot number on

* steady-state temperature distribution in aI’ ' plane wall with surface convection.

intermediate value, Tsiz, for which Too < 3,2 < T“. Hence under steady-state
conditions the surface energy balance, Equation 1.12, reduces to

kA

"Z‘(7l,1 “ 71,2) = hA(Ts,2 ‘ T)00

where k is the thermal conductivity of the solid. Rearranging, we then obtain

=<--—, 2-: Bi M p : (5.9) "T..."(1/hA.)::l."R5 5 ink
coud 5

' : conv”

The quantity (hL/k) appearing in Equation 5.9 is a dimensionless param-
eter. It is termed the Biot number, and it plays a fundamental role in

conduction problems that involve surface convection effects. According to
Equation 5.9 and’ as illustrated in Figure 5.4, the Biot number provides a
measure of the temperature drop in the solid relative to the temperature
difference between the surface and the fluid. Note especially the conditions
corresponding to Bi << 1. The results suggest that, for these conditions, it is
reasonable to assume a uniform temperature distribution across a solid at any
time during a transient process. This result may also be associated with

interpretation of the Biot numberas a ratio of thermal resistances, Equation
5.9. If Bi << 1, the resistance to conduction within the solid is much less than the

resistance to convection across the fluid boundary layer. Hence the assumption of
a uniform temperature distribution is reasonable.

We have introduced the Biot number because of its significance to
transient conduction problems. Consider the plane wall of Figure 5.5, which is
initially at a uniform temperature T, and experiences convection cooling when
it is immersed in a fluid of Too < 1}. The problem may be treated as one
dimensional in x, and we are interested in the temperature variation with
position and time, T(x, t). This variation is a strong function of the Biot
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5.2 Validity of the Lumped Capacitance Method 231

T: T(t) T = The, t) T = T(x, t)

Figure 5.5 Transient temperature distribution for different Biot numbers in a plane
wall symmetrically cooled by convection.

number, and three conditions are shown in Figure 5.5. For Bi << 1 the

temperature gradient in the solid is small and T(x, z) z T(t). Virtually all
the temperature difference is between the solid and the fluid, and the solid
temperature remains nearly uniform as it decreases to Tea. For moderate to
large values of the Biot number, however, the temperature gradients within the
solid are significant. Hence T = T(x, t). Note that for Bi >> 1, the tempera-
ture difference across the solid is now much larger than that between the

surface and the fluid.

We conclude this section by emphasizing the importance of the lumped

capacitance method. Its inherent simplicity renders it the preferred method for
solving transient conduction problems. Hence, when confronted with such a
problem, the very first thing that one should do is calculate the Biot number. If
the following condition is satisfied ' ‘

 i hL

Bi_-‘-7 ‘ ,‘;<_o.1 ‘ , l V T . l - {(5.10),

the error associated with using the lumped capacitance method is small. For

convenience, it is customary to define the characteristic length of Equation 5.10

as the ratio of the solid’s volume to surface area, LC —=— V/As. Such a definition

facilitates calculation of LC for solids of complicated shape and reduces to the
half—thickness L for a plane Wall of thickness 2L (Figure 5.5), to r0/2 for a

long cylinder, and to r,,/3 for a sphere. However, if one wishes to implement
the criterion in a conservative fashion, LC should be associated with the length

scale corresponding to the maximum spatial temperature difference. Accord-

ingly, for a symmetrically heated (or cooled) plane wall of thickness 2L, LC
would remain equal to the half-thickness L. However, for a long cylinder or

sphere, LC would equal the actual radius ro, rather than ro/2 or r,,/3.
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Finally, we note that, with LC 2 V/As, the exponent of Equation 5.6 may
be expressed as

hASt ht

pVc p CL‘,

MrS

PVC = ' - F0, ' (5.11)

Where

‘ j p H cg if L’ [M M ‘p

is termed the Fourier number. It is a dimensionless time, which, with the Biot
number, characterizes transient conduction problems. Substituting Equation
5.11 into 5.6, we obtain 1

0 r—2;° “
-0-’: T_ T =exp(—Bz-F0) (5.13)

EXAMPLE 5.1

A thermocouple junction, which may be approximated as a sphere, is to be
used for temperature measurement in a gas stream. The convection coefficient
between the junction surface and the gas is known to be h = 4004 W/m2 ‘ K,
and the junction thermophysical properties are k = 20 W/m - K, c = 400 A
J/kg - K, and p = 8500 kg/m3. Determine the junction diameter needed for
the thermocouple to have a time constant of 1 s. If the junction is at 25°C and
is placed in a gas stream that is at 200°C, how long will it take for the junction
to reach 199°C?

SOLUTION

Known: Thermophysical properties of thermocouple junction used to mea-
sure temperature of a gas stream.

Find:

1. Junction diameter needed for a time constant of 1 s.

2. Time required to reach 199°C in gas stream at 200°C.



Page 13 of 92

5.2 Validity of the Lumped Capacitance Method 233

tion 5.6 may Schematic:

Thermocouple k = 20 W/m - K
junction c = 400 J/kg- K

T; = 25 °C p = 8500 kg/m3

(5.11)

Assumptions:

5 1. Temperature of junction is uniform at any instant.
5 L _ 2. Radiation exchange with the surroundings is negligible.

Am the mot i 1 it 3. Losses by conduction through the leads are negligible.
1g Equation 4. Constant properties.

Analysis:

(5.13)

Because the junction diameter is unknown, it is not possible to begin
the solution by determining whether the criterion for using the lumped

capacitance method, Equation 5.10, is satisfied. However, a reasonable
approach is to use the method to find the diameter and to then
determine whether the criterion is satisfied. From Equation 5.7 and the

are’ is ‘to be fact that A3 = 7rD2 and V = 77D 3/6 for a sphere, it follows that
n coefficient

W/ID2 ' K, _ 1 D3
K, c = 400 T! = - 2 X P” C

' needed for yj IWD 6
at 25°C and 5 5
the junction, Rearrangmg and substituting numerical values,

6hr, 6><400.W/m2-K><1s
= ———~——-—— = 7.06 10-4

pc ssookg/m3><400 J/kg-K X _ m <1

With L6 = r0/3 it then follows from Equation 5.10 that

h(ro/3) 400 W/ml - K x 3.53 x 104 m
B‘ — = 2.35 10‘4

’ k > 3 x 20 W/m - K X

Accordingly, Equation 5.10’ is satisfied (for L0 = r0, as well as for

LC = r0/3) and the lumped capacitance method may be used to an
excellent approximation.
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2. From Equation 5.5 the time required for the junction to reach T = heat fir 1
199°C is the tel ;

surrou =

P(7TD3/(5)6 Ti ‘ PDC Ti ” Too are in} T1t = —-——————ln = ——ln 5

h(7rD2) T—~ Tm 6h T— Too ° ‘ transfc
it respec

1 , surfaccn __.___ .

6 x 400 W/m2 - K 199 - 200 L A Equal]

t=5.2s==5r, <1

3500 kg/m3 x 7.06 x 10*‘ m x 400 J/kg - K 25 — 200t_—_'

Comments: Heat losses due to radiation exchange between the -junction
and the surroundings and conduction through the leads would necessitate
using a smaller junction diameter to achieve the desired time response.

5.3 GENERAL LUMPED CAPACITANCE ANALYSIS eous ;_11

Although transient conduction in a solid is commonly initiated by convection ‘ exact Iv
heat transfer to or from an adjoining fluid, other processes may induce Vet510
transient thermal conditions within the solid. For example, a solid may be ‘ gener: a
separated from large surroundings by a gas or vacuum. If the temperatures of i Elam _
the solid and surroundings differ, radiation exchange could cause the internal 5
thermal energy, and hence the temperature, of the solid to change. Tempera-
ture changes could also be induced by applying a heat flux at a portion, or all,
of» the surface and/or by initiating thermal energy generation within the solid.
Surface heating could, for example, be applied by attaching a film or sheet
electrical heater to the surface, while thermal energy could be generated by
passing an electrical current through the solid.

Figure 5.6 depicts a situation for which thermal conditions within a solid

may be simultaneously influenced by convection, radiation, an applied surface

Surroundings

Figure 5.6 Contral surface for general
lumped capacitance analysis.
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53 General Lumped Capacitance Analysis 235

heat flux, and internal energy generation. It is presumed that, initially (t = O),

the temperature of the solid (T,) differs from that of the fluid, T00, and the
surroundings, TM, and that both surface and volumetric heating (q;’ and q)
are initiated. The imposed heat flux q;’ and the convection—radiation heat

transfer occur at mutually exclusive portions of the surface, As“) and AS“, r),
respectively, and convection—radiation transfer is presumed to be from the
surface. Applying conservation of energy at any instant I, it follows from

Equation 1.11a that

dT

qi‘/As, h + E-g — (qt/:bnv + q;lad)As(c, r) =

or, from Equations 1.3a and 1.7,

q;/A,,,, + E", — [h(T — Too) + ea(T4 4 T3,

Unfortunately, Equation 5.15 is a nonlinear, first—order, nonhomoge-
neous, ordinary differential equation which cannot be integrated to obtain an
exact solution.‘ However, exact solutions may be obtained for simplified

versions of the equation. For example, if there is no imposed heat flux or

generation and convection is either nonexistent (a vacuum) or negligible
relative to radiation, Equation 5.15 reduces to

a'T

pl/C71‘ = —eAS,,cr(T4 -— 7:3,) (5.16)

Separating variables and integrating from the initial condition to any time 2‘, it
follows that

A , dT
5 S‘ U]-1-dt = ‘I-7:7-j-Z

pVc 0 T. T - TI SUI‘
(5 .17)

Evaluating both integrals and rearranging, the time required to reach the

temperature T becomes

1‘ pVc { TSur+T
Tsur+Ti

_1n_____
T -1".S11!‘ 1T—TS111‘

+2[tan'1 - tan” (5.18)
This expression cannot be used to evaluate T explicitly in terms ‘of t, T,., and
T nor does it readily reduce to the limiting result for Tm = 0 (radiation toSUI’ ’

= 43A 0T3 1”V Slll‘

1 An approximate,‘finite-difference solution may be obtained by discretizing the time
derivative (Section 5.9) and marching the solution out in time. -
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deep space). Returning to Equation 5.17, it is readily shown that, for Tm = O 7

t
pVc 1 1

= 3.2 a(§~? ‘ F) (5-19)
An exact solution to Equation 5.15 may also be obtained if radiation may

be neglected and h is independent of time. Introducing a reduced temperature,
0 E T —— Tm, where d6/dt = dT/dz‘, Equation 5.15 reduces to a linear, first-
order, nonhomogeneous differential equation of the form

d0

—C—l?+a0—b=0 (5.20)

where a 2 (hAM/pVc) and b 2 [(q;'AS, ,, + E3)/pVc]. Although Equation
5.20 may be solved by summing its homogeneous and particular solutions, an
alternative approach is to eliminate the nonhomogeneity by introducing the
transformation

0’ E 0 — — (5.21)U

Recognizing that d0’/dt = d0/dt, Equation 5.21 may be substituted into
(5.20) to yield

—— + '= .am, 0 0 5 22dt ‘' ( )

Separating variables and integrating from 0 to I (6,? to 6’), it follows that
0/

E7 = exp (—at) (5.23)

or substituting for 0’ and 9,

 _ (_ t)
T.— Too — (b/a) “exp “

Hence,

T— Tm b/a

Ti __ Tm = exp(—at) + Ti __ Too [1 - exp(-iat)] (5.25)

As it must, Equation 5.25 reduces to (5.6) when b = O and yields T = Ti at
t = 0. As t —-> oo, Equation 5.25 reduces to (T — TOO) = (b/a), which could
also be obtained by performing an energy balance on the control surface of
Figure 5.6 for steady—state conditions.
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5.4 SPATIAL EFFECTS

Situations frequently arise for which the lumped capacitance method is inap-

propriate, and alternative methods must be used. Regardless of the particular
form of the method, we must now cope with the fact that gradients within the

medium are no longer negligible. ’

In their most general form, transient conduction problems are described

by the heat equation, Equation 2.13 for rectangular coordinates or Equations
2.20 and 2.23, respectively, for cylindrical and spherical coordinates. The

solution to these partial differential equations provides the variation of tem-

perature with both time and the spatial coordinates. However, in many

problems, such as the plane wall of Figure 5.5, only one spatial coordinate is
needed to describe the internal temperature distribution. With no internal

generation and the assumption of constant thermal conductivity, Equation
2.13 then reduces to

air 1 ar (5 26)
9x2 " 01 3t 5'

To solve Equation 5.26 for the temperature distribution T(x, t), it is

necessary to specify an initial condition and two boundary conditions. For the

typical transient conduction problem of Figure 5.5, the initial condition is

T(x,0) = T,. . (5.27)

and the boundary conditions are

6T

—— (5.28)
Bx

(5.29)

Equation 5.27 presumes a uniform temperature distribution at time t = 0;
Equation 5.28 reflects the symmetry requirement for the midplane of the wall;
and Equation 5.29 describes the surface condition experienced for time t > 0.
From Equations 5.26 to 5.29, it is evident that, in addition to depending on x
and t, temperatures in the wall also depend on a number of physical parame-
ters. In particular

:r= T(x,t T T L,k,a,h) ' (5.30)vi: 507

The foregoing problem may be solved analytically or numerically. These
methods will be considered in subsequent sections, but first it is important to

note the advantages that may be obtained by nondimensionalizing the govern-
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ing equations. This may be done by arranging the relevant variables into
suitable groups. Consider the dependent variable T. If the temperature differ-
ence 0 E T ~ T00 is divided by the maximum possible temperature di erence
01. E T’. — Tm, a dimensionless form of the dependent variable may be definedas

k0*fT [*~f.=fZ;j :*=!°.°( y 5 3 i j — ’ _l if 5 5.31

Accordingly, 0* must lie in the range 0 s 30* s 1. A dimensionless spatial
coordinate may be defined as

where L is the half-thickness of the planewall, and a dimensionless time may
be defined as

r (5.33)
where t* is equivalent to the dimensionless Fourier number, Equation 5.12.

Substituting the definitions of Equations 5.31 to 5.33 into Equations 5.26
to 5.29, the heat equation becomes

6 20 * 80*

8x*2 = 6Fo 3 (5-34)

and the initial and boundary conditions become

0*(x*,0) = 1 J (5.35)
60*

(M p p (5.36)x*=0

and

86*

6 * —Bi0*(1,t*) (5.37)X x*=1

where the Biot number is Bi 2 hL/k. In dimensionless form the functional
dependence may now be expressed as

0* =f(x*, F0, Bi) (5.38)

Recall that this functional dependence, without the x* variation, was obtained
for the lumped capacitance method, as shown in Equation 5.13.

Comparing Equations 5.30 and 5.38, the considerable advantage associ-
ated with casting the problem in dimensionless form becomes apparent.
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Equation 5.38 implies that for a prescribed geometry, the transient temperature

distribution is a universal function of x*, F0, and Bi. That is, the dimensionless

solution assumes a prescribed form that does not depend on the particular

value of T, Too, L, k, oz, or it. Since this generalization greatly simplifies the
presentation and utilization of transient solutions, the dimensionless variables

are used extensively in subsequent sections.

THE PLANE WALL WITH CONVECTION

Exact, analytical solutions to transient conduction problems have been ob-

tained for many simplified geometries and boundary conditions and are well

documented in the literature [1—4]. Several mathematical techniques, including

the method of separation of variables (Section 4.2), may be used for this

purpose, and typically the solution for the dimensionless temperature distribu-
tion, Equation 5.38, is in the form of an infinite series. However, except for

very small values of the Fourier number, this series may be approximated by a

single term and the results may be represented in a convenient graphical form.

5.5.1 Exact Solution <‘T:v<\‘~-.\\n‘-5

Consider the plane wall of thickness 2L (Figure 5.7a). If thethickness is small

relative to the width and height of the wall, it is reasonable to assume that

conduction occurs exclusively in the x direction. If the wall is initially at a

uniform temperature, T(x,O) = T,., and is suddenly immersed in a fluid of
Too #= T,., the resulting temperatures may be obtained by solving Equation 5.34
subject to the conditions of Equations 5.35 to 5.37. Since the convection
conditions for the surfaces at x* = i 1 are the same, the temperature distribu-

tion at any instant must be symmetrical about the midplane (x* = 0). An

T(r,O) = Ti

ro

iii

(b)

Figure 5.7 One-dimensional systems with an initial uniform

temperature subjected to sudden convection conditions. (a) Plane
wall. (b) Infinite cylinder or sphere.
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exact solution to this problem has been obtained and is of the form [2]

0* = 2 C” exp (— §n2Fo) cos (§,,x*) (5.39a)
n=1 I

where the coefficient C" is

4 sin §,,
C

and the discrete values (eigenvalues) of §,_ are positive roots of the transcen-
dental equation

fn tan {M = Bi (5.39c)

The first four roots of this equation are given in Appendix B.3.

5.5.2 Approximate Solution

It can be shown (Problem 5.24) that for values of F0 2 0.2, the infinite series
solution, Equation 5.39a, can be approximated by the first term of the series.

Invoking this approximation, the dimensionless form of the temperature
distribution becomes

0* = C1exp(—§'12F0)cos(§1x*) (5.40a)

0* = 0: cos (§1x*) (5.4%)

where 0;‘ represents the midplane (x* = 0) temperature

0; = C1exp(—§12Fo) (5.41)

An important implication of Equation 5.40b is that the time dependence of the
temperature at any location within the wall is the same as that of the midplane
temperature. The coeflicients C1 and {I are evaluated from Equations 5.39b
and 5.390, respectively, and are given in Table 5.1 for a range of Biot numbers.

5.5.3 Total Energy Transfer

In many situations it is useful to know the total energy that has left the wall
up to any time t in the transient process. The conservation of energy
requirement, Equation 1.11b, may be applied for the time interval bounded by
the initial condition (if = O) and time t > 0 V

Ein _ Eout = AEst
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Table 5.1 Coefiicients used in the one—term approximation
to the series solutions for transient one-dimensional conduction

INFINITE

PLANE WALL CYLINDER SPHERE

Q Q 5
Bi" (rad) C1 (rad) C1 (rad) Cl

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060

6 1 0.03 0.1732 1.0049 0.2439 1.0075 0.2989 1.0090

1e transcen— ;]f{[V 0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
7 I 0.05 0.2217 1.0082 0.3142 1.0124 0.3852 1.0149

(5390) I I 0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.07 0.2615 1.0114 0.3708 1.0173 0.4550 1.0209

0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239

0.09 0.2956 1.0145 0.4195 1.0222 0.5150 1.0268

0.10 0.3111 1.0160 0.4417 1.0246 0.5423 1.0298

2 L 0.15 0.3779 1.0237 0.5376 1.0365‘ 0.6608 1.0445

lfinite Series 0.20 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592

.f the semi jf._ 0.25 0.4801 1.0382 0.6856 1.0598 0.8448 1.0737

temperature 0.30 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
:7 2 0.4 0.5932 1.0580 0.8516 1.0932 1.0528 . 1.1164

(5.4021) 0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441~ 0.6 0.7051 1.0814 1.0185 1.1346 1.2644 1.1713

0.7 0.7506 1.0919 1.0873 1.1539 1.3525 1.1978

0.8 0.7910 1.1016 1.1490 1.1725 14320 1.2236

0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488

1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732

2 _ 2.0 1.0769 1.1795 1.5995 1.3384 2.0288 1.4793

15 -41)  ”if} 3.0 1.1925 1.2102 1.7887 . 1.4191 2.2889 1.6227
.. 4.0 1.2646 1.2287 1.9081 1.4698 _ 2.4556 1.7201

zdence of the

he midplane : 5.0 1.3138 1.2402 1.9898 1.5029 2.5704 1.7870
mom 53% 6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
Qt numberS_ . 7.0 1.3766 1.2532 2.0937 1.5411 2.7165 ’ 1.8674

8.0 1.3978 » 1.2570 2.1286 1.5526 2.7654 1.8921

9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106

_ 10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249

left the Wall 1 20.0 1.4961 1.2699 2.2881 1.5919 2.9857 1.9781
L of emrgy 30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
bounded by. .f;: 40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942

' 50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962

100.0 1.5552 1.2731 2.3809 _ 1.6015 3.1102 1.9990

(5.3%)

(5.4%)

(5 .42)
“Bi = hL/k for the plane wall and hr‘,/k for the infinite cylinder and sphere. See Figure 5.7.
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Equating the energy transferred from the wall to out and setting Em = O
and AES‘ = E(t) — E(0), it follows that

Q = - [E(t) ~ E(0)l . (5~43a)

Q = —]pc[T(r,z) — 1.] dV A (5.43b)

where the integration is performed over the volume of the wall. It is conve-

nient to nondimensionalize this result by introducing the quantity

Q. = pcV(T.- - T...) (5-44)

which may be interpreted as the initial internal energy of the wall relative to

the fluid temperature. It is also the maximum amount of energy transfer which

could occur if the process were continued to time t = oo. Hence, assuming
constant properties, the ratio of the total energy transferred from the wall over

the time interval 1 to the maximum possible transfer is

QQ f ‘[T¥’_t)T— T”] ‘if = 3-/[(1 — 0*) dV (5.45)
Employing the approximate form of the temperature distribution for the plane

wall, Equation 5.4%, the integration prescribed by Equation 5.45 can be
performed to obtain

1 — S11?‘ 0: ' -(5.46)1 .

where 0;‘ can be determined from Equation 5.41, using Table 5.1 for values of

the coeflicients C1 and fl.

5.5.4 Graphical Representations

Graphical representations of the approximate relations for the transient tem-

perature distribution and energy transfer were first presented by Heisler [5]
and Grober et al. [6]. The graphs have been widely used for nearly four

decades; in addition to offering computational convenience, they illustrate the

functional dependence of the transient, dimensionless temperature distribution
on the Biot and Fourier numbers.

Results for the plane wall are presented in Figures 5.8 to 5.10. Figure 5.8

may be used to obtain the midplane temperature of the wall, T(0, t) = T0(t),
at any time during the transient process. If To is known for particular values

of F0 and Bi, Figure 5.9 may be used to determine the corresponding
temperature at any location ofi’ the midplane. Hence, Figure 5.9 must be used
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I=E== E“-'

1II

0---e3.1%-1I‘III!II; ._—————EI———I——— --I-I1IS§fl‘iL‘I‘Il_:——-—Z-§RQk‘lII——i-—-Z11
0010.02 0.05 0.10.2 0.5 .0 2 3 5 10 20 50 100

(k/hL)=Bi"1

Figure 5.9 Temperature distribution in a plane Wall of

thickness 2L [5]. Used with permission.

in conjunction with Figure 5.8. For example, if one wishes to determine the

surface temperature (x* = -J; 1) at some time t, Figure 5.8 would first be used

to determine T0 at t. Figure 5.9 would then be used to determine the surface

temperature from knowledge of T0. The procedure would be inverted if the

problem were one of determining the time required for the surface to reach a

prescribed temperature.

1.0

0.9
0.8

; » 0.7
0.5

0.5

0.4

0.3

0.2

0.1

0
10'5 1o‘3 10'2 10-1 1 103 104

112 t .
(7§!")=BL2FO

moA»»4~,v»2s<r-xkkaau47%;:ivrvam3-((5VvhvrrtgxxwzbwI1\«¥v<3\¢)u~;—k‘;i‘liS‘«;)V¢\«\~?»fi*«’<IV<i{€'l.M VV3~..
Figure 5.10 Internal energy change as a function of time for a plane wall of
thickness 2L [6]. Adapted with permission.
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Absence of the Fourier number in Figure 5.9 implies that the time

dependence of any temperature off the rnidplane corresponds to the time

dependence of the midplane temperature. This result is, of course, a conse-

quence of the approximation that led to Equation 5.40b and is valid for all but

the earliest stages of the transient process (F0 2 0.2).

Graphical results for the energy transferred from a plane wall over the

time interval 2 are presented in Figure 5.10. These results were generated from

Equation 5.46. The dimensionless energy transfer Q/Q0 is expressed exclu-
sively in terms of F0 and Bi. Ii

Because the mathematical problem is precisely the same, the foregoing
results may also be applied to a plane wall of thickness L, which is insulated

on one side (x* = 0) and experiences convective transport on the other side

(x* = +1). This equivalence is a consequence of the fact that, regardless of

whether a symmetrical or an adiabatic requirement is prescribed at x* =

the boundary condition is of the form 60*/6x* = 0.

7

RADIAL SYSTEMS WITH CONVECTION

For an infinite cylinder or sphere of radius ro (Figure 5.7b), which is at an

initial uniform temperature and experiences achange in convective conditions,

mm-He the p as results similar to those of Section 5.5 may be developed. That is, an exact

-St be used g series solution may be obtained for the time dependence of the radial tempera-
he Surface ture distribution; a one-term approximation may be used for most conditions;
fled if the r and the approximation may be conveniently represented in graphical form.
to reach 3 T E The infinite cylinder is an idealization that permits the assumption of one-

dimensional conduction in the radial direction. It is a reasonable approxima-
tion for' cylinders having L/ra 2 10.

5.6.1 Exact Solutions

Exact solutions to the transient, one-dimensional form of the heat equation

have been developed for the infinite cylinder and for the sphere. For a uniform

initial temperature and convective boundary conditions, the solutions [2] are
as follows.

Infinite Cylinder In dimensionless form, the temperature is

0* = i Cn—exp(—g*,3Fo)J0(§,,r*)
r1=1



Page 26 of 92

246 Chapter 5 Transient Conduction

where

‘Il(§n)

9 = E; W")

and the discrete values of Q, are positive roots of the transcendental equation

(5 .47c)

The quantities J1 and J0 are Bessel functions of the first kind and their values
are tabulated in Appendix B.4. Roots of the transcendental equation (5.47c)

are tabulated by Schneider [ ].

Sphere Similarly, for the sphere
O0

6* Cnexp(—§fF0) §r* sin (§nr*)n=1 71

C 4[SiI1(§n) - §n<>0S(§n)l
" 2;” — smtzm ‘SW

and the discrete values of {,1 are positive roots of the transcendental equation

1 —~ §’n cot f" = Bi (5.48c)

Roots of the transcendental equation are tabulated by Schneider [2].

5.6.2 Approximate Solutions

For the infinite cylinder and sphere, Heisler [5] has shown that for F0 2 0.2,

the foregoing series solutions can be approximated by a single term. Hence, as

for the case of the plane wall, the time dependence of the temperature at any

location within the radial system is the same as that of the centerline or

ccnterpoint. ‘

Infinite Cylinder The one-term approximation to Equation 5.47 is

0* = C1exp(— 12F0)J0(§1r*) (5.493)

0* = 0jJ0(§1r*) (5.4%)
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where 6;“ represents the centerline temperature and is of the form

6;‘ = C1exp(—-§fFo) (5.49c)

Values of the coefficients C1 and {I have been determined and are listed in

Table 5.1 for a range of Biot numbers.

Sphere From Equation 5.4851, the one-term approximation is

0* = C1 exp (—§12Fo) sin(§1r*)
§1r*

1 5

* = 0: S“ r* sin(§1r*) T (5.50b) ,1

where 0: represents the center temperature and is of the form

6; = C1exp(—§12F0) (5.50c)

Values of the coefiicients C1 and §‘1 have been determined and are listed in

Table 5.1 for a range of Biot numbers.

5.6.3 Total Energy Transfer

As in Section 5.5.3, an energy balance may be performed to determine the

total energy transfer from the infinite cylinder or sphere over the time interval

At = t. Substituting from the approximate solutions, Equations 5.49b and

5.50b; and introducing Q0 from Equation 5.44, the results are as follows.

Infinite Cylinder

293 r

— = 1 - (1 J1(s“r) (5.51)0

p 1 — tsmrm - :.cos<:.>] (5.52)
Values of the center temperature 0;“ are determined from Equation 5.49c or

5.500, using the coefficients of Table 5.1 for the appropriate system.
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Figure 5.12 Temperature distribution in an infinite cylinder

of radius r” [5]. Used with permission.

468101214161820-2224262830405060708090100110
5.6.4 Graphical Representation

Graphical representations similar to those for the plane wall (Figures 5.8 to
5.10) have also been generated by Heisler [5] and Grober et al. [6] for an

infinite cylinder and a sphere. Results for the infinite cylinder are presented in

Figures 5.11 to 5.13, and those for the sphere are presented in Figures 5.14 to

5.16. Note that, with respect to the use of these figures, the Biot number is‘
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Figure 5.13 Internal energy change as a function of time for an infinite cylinder of

radius r0 [6]. Adapted with permission.
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Figure 5.15 Temperature distribution in a sphere of radius

r0 [5]. Used with permission.

defined in terms of r0. In contrast recall that, for the lumped capacitance method,

the characteristic length in the Biot number is customarily defined as r0/2 for the
cylinder and r0/3 for the sphere.

In closing it should be noted that the Heisler charts may also be used to

determine the transient response of a plane wall, an infinite cylinder, or a
sphere subjected to a sudden change in surface temperature. For such a
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Figure 5.16 Internal energy change as a function of time for a sphere of radius re
[6]. Adapted with permission.
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condition it is only necessary to replace Too by the prescribed surface tempera-
ture TS and to set Bz'"1 equal to zero. In so doing the convection coefiicientis

tacitly assumed to be infinite, in which case Too = Ts.

EXAMPLE 5.2

Consider a steel pipeline (AISI 1010) that is 1 m in diameter and has a wall

thickness of 40 mm. The pipe is heavily insulated on the outside, and before

the initiation of flow, the Walls of the pipe are at a uniform temperature of

—20°C. With the initiation of flow, hot oil at 60°C is pumped through the

pipe creating a convective surface condition corresponding to h = 500

W/m2 - K at the inner surface of the pipe.

1. What are the appropriate Biot and Fourier numbers 8 min after the
initiation of flow?

At t = 8 min, what is the temperature of the exterior pipe surface covered
by the insulation?

What is the heat flux q” (W/ml) to the pipe from the oil at t = 8 min?

How much energy per meter of pipe length has been transferred from the

oil to the pipe at t = 8 min?

SOLUTION .

Known: Wall subjected to sudden change in convective surface condition.

Find:

Biot and Fourier numbers after 8 min.

Temperature of exterior pipe surface after 8 min.

Heat flux to the wall at 8

Energy transferred to pipe per unit length after 8 min.

Schematic:

T(x, 0) =

,~= — 20°C _’ m, n

T(0, 3) ., = 60°C
h = 500 W/m2- K‘

Steel, AISI 1010 (ff?
on

Insulation
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A ssumptions:
tempera-

ifficiem 18 1. Pipe wall can be approximated as plane wall, since thickness is much
less than diameter.

2. Constant properties.

3. Outer surface of pipe is adiabatic.

as a wall

nd before

zrature of

tough the
h = 500

Properties: Table A.l, steel type AISI 1010 [T= (-20 + 60)°C/2 z
300 K]: p = 7823 kg/m3, C = 434 J/kg - K, k = 63.9 W/m - K,
oz = 18.8 ><lO“6 m2/s.

A nal_i2sis:

after the L 1. At z‘: 8 min, the Biot and Fourier numbers are computed from
5 Equations 5.10 and 5.12, respectively, with LC = L. Hence

=6 covered ‘i hL 500 W/ml - K x 0.04 m
B‘ = — — 0.313

' k 63.9 W/m - K
= 8 min?

. from the at 18.8 x 10-6 ml/s x 8 min x 60 s/min
F = — = = 5.64

0 L2 (0.04 m)2

2. With Bi = 0.313, use of the lumped capacitance method is inappropri-
ate. However, since transient conditions in the insulated pipe ‘wall of
thickness L correspond to those in a plane wall of thickness 2L

experiencing the same surface condition, the desired results may be
obtained from the charts for the plane wall. Using Figure 5.8, with
Bi "1 = 3.2, it follows that

00 T(O, t) — Too
— = —-«j = 0.22

0i _ Too

Hence after 8 min, the temperature of the exterior pipe surface, which
corresponds to the midplane temperature of a plane wall, is

I; = T(0,480 s) z Too + 0.22(T,. — Too)

To = 60°C + 0.22(—20 — 60)°C z 42°C <1

Heat transfer to the inner surface at x = L is by convection, and at any
time t the heat flux may be obtained from Newton’s law of cooling.
Hence at t = 480 s,

q;;(L,480 s) 2 qg = h[T(L,480 s) — Tw]

The surface _temperature T(L, 480 s) may be obtained from Figure 5.9.
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For the prescribed conditions

and Bi‘1 = 3.2

it follows that

0(L,480s) T(L,480s)—T°o

60(480s) ' T0(48Os) — Tm
z 0.86

Hence

T(L,480 s) : Tm + 0.86[T0(480 s) — Tm]

T(L,480 s) z 60°C + 0.86[42 — 60]°C z 45°C

The heat flux at I = 8 min is then

qg = 500 W/m2 - K (45 — 60)°C = -7500 W/ml <1

The energy transfer to the pipewall over the 8-min interval may be

obtained from Figure 5.10 and Equation 5.44. With

Bi = 0.313 Bi2Fo = 0.55

it follows that

E z 0.78
0

Hence

Q z 0.78pcV(T,. — Too)

or with a Volume per unit pipe length of V’ = 71DL,

Q’ = 0.78pc7rDL(Ti — Tm)

Q’ z 0.78 X 7823 kg/m3 X 434 J/kg - K

X 77 X 1 m X 0.04m(—20 — 60)°C

Q’ z —2.7 X 107 J/m

Comments:

1. The minus sign associated with q” and Q’ simply implies that the

direction of heat transfer is from the oil to the pipe (into the pipe wall).

2. Since F0 > 0.2, the one-term approximation can be used to calculate

wall temperatures and the total energy transfer. The midplane tempera-
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ture can be determined from Equation 5.41

T,-T

0:: T_ T°° = C1exp(—12Fo)

where, with Bi = 0.313, C1 = 1.047 and §1 = 0.531 rad from Table 5.1.
With F0 = 5.64, '

0: = 1.047 exp [— (0.531 rad)2 x 5.64] = 0.214

This result is in good agreement with the value of 0.22 obtained from

Figure 5.8. Hence,

T(O,8 min) = 1;, + 6;'=(i;. - Tm) = 60°C + 0.214(—~20 — 60)°C = 429°C

which is within 2% of the value determined from the Heisler chart.

Using the one—term approximation for the surface temperature, Equa-
tion 5.40b with x* = 1 has the form

49* = 0;“ cos (§1)

T(L, t) = Too + (T, — T°°)6;" cos(§1) V

T(L, 8 min) = 60°C + (-20 — 60)°C x 0.214 x cos (0.531 rad)

T(L,8 min) = 452°C 0

which is within 1% of the value determined from the Heisler chart.

The total energy transferred during the transient process can be deter-

mined from the result associated with the one-term approximation,

‘Equation 5.46. *

2 _ 1 _ sin(§1)0:
., §i

2 = 1 — >< 0.214=0.30

Q

Q, 4 0.531 rad

which is within 3% of the Value determined from the Grober chart.

EXAMPLE 5.3

; that the
_ A new process for treatment of a special material is to be evaluated. The

)1pe wall).
material, a sphere of radius r,, = 5 mm, is initially in equilibrium at 400°C in a

' Ca1C1113t€ furnace. It is suddenly removed from the furnace and subjected to a two-step
5 tempera‘ cooling process.
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Step 1 Cooling in air at 20°C for a period of time ta until the center

temperature reaches a critical value, Ta(0, ta) = 335°C. For this situation,
the convective heat transfer coefiicient is ha = 10 W/m2 - K.

After the sphere has reached this critical temperature, the second step is
initiated.

Step 2 Cooling in a well—stirred water bath at 20°C, with a convective heat

transfer coefficient of hw = 6000 W/m2 - K.

The thermophysical properties of the material are p = 3000 kg/m3, k = 20

W/m- K, c = 1000 I/kg - K, and at _= 6.66 X 10‘° m2/s.

Calculate the time in required for step 1 of the cooling process to be
completed.

Calculate the time tw required during step 2 of the process for the center
of the sphere to cool from 335°C (the condition at the completion of step

1) to 50°C.

SOLUTION V

Known: Temperature requirements for cooling a sphere.

Find:

1. Time ta required to accomplish desired cooling in air.

2. Time tw required to complete cooling in Water bath.

Schematic:

aT,,,=20°’C § ;Tw=2o°c
E ha: 10 W/m2-K j hw= eooo W/m2-K
' ’’“‘D l * —l> 1

-—*l> 2 I” Water -—*l>

3 i ——l> :

-————~;’—Sphere,rD = 5 mm .
p = 3000, kg/m3

e« T,-=400°c Z “=1”/kg'K_6, T,-=335°c
pTu(0, ta) = 335 “C ; 0‘ = ffigfsx 10 1‘ Tw(0, tw) = 50 °c

.. H .. ' k=20 W/m-K t ...
Step 1 Step 2
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the center
. . . Assumptions:
us situation,

1. One-dimensional conduction in r.

. 2. Constant properties.
ond step 1S

Analysis:

Vecfive heat 1. To determine ‘whether the lumped capacitance method can be used, the
5 Biot number is calculated. From Equation 5.10, with L6 = ro/3,

3 B huro 10 W/m2 - K X 0.005 In
m’k 20 0 ’ 3k 3><20W/m-K

= 8.33 X 1O'4

Accordingly, the lumped capacitance method may be used, and the
focess to be temperature is nearly uniform throughout the sphere. From Equation

*1 5.5 it follows that

)r the center

etion of step PVC " _ W06 T‘ — T°°= 1—— 1———
’“ h,,A no 3}; 71T,—T,,

where V = (4/3)vrr,,3 and A3 = 47rr02. Hence

3000 kg/m3 x 0.005 m x 1000 J/kg - K A 400 — 20
r. ~——1—————~2?-—1n——

3><10W/m -K . 335-20

=94s

<1

To determine whether the lumped capacitance method may also be

used for the second step of the cooling process, the Biot number is

again calculated. In this case

hwr 6000 W/11120 K X 0.005 In
13'— "_ =0.50

’ 3k 3><20W/m-K

and the lumped capacitance method is not appropriate. However, to an
excellent approximation, the temperature of the sphere is uniform at

1‘ = ta and the Heisler charts may be used for the calculations from ‘

I = ta to t = ta + tw. Using Figure 5.14 with

20W/In-K
= —~————————— = 0.67

6000 W/ml - K x 0.005 m
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it follows that F0 z 0.80, and

F r} 080 (0.005 m)2
t” H. 0 a ~ ' 6.66 X 10’° ml/s

=3.0s

Comments:

1. If the temperature distribution in the sphere at the conclusion of step 1
were not uniform, the Heisler chart could not be used for the calcula-

tions of step 2.

The surface temperature of the sphere at the conclusion of step 2 may
be obtained from Figure 5.15. With

Bi” = 0.67 and

um_nw—n
00 To — Tm

Hence

T(r0) = 20°C + 0.52(50 — 20)°C = 36°C

The variation of the center and surface temperature with time is then as
follows.

T; = 400 °C

T(0, t) = Ttro, t)

335 °C

T(0, t)

50 °C

36 °C

ta ta + tw t

For the step 2 transient process in water, the one—term approximation is

appropriate for determining the time tw at which the center tempera-
ture reaches 50°C, that is, T(0, tw) = 50°C. Rearranging Equation
5.500,

Using Table 5.1 to obtain the coeflicients for Bi = 1/0.67 = 1.50
(C1 = 1.376 and Q = 1.800 rad) and substituting appropriate tempera-

I
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tures, it follows that

1 1 1 (50 — 2o)°c
(1300 mdy 1.376 (335 — 20)°C

*‘'.».».yw»a'ww'>«««>«».7";zw»e-x.:as.w2.«».»»'x.»,e«~.«‘.»ay.-mxusuaxw-at.»»..,.ug§
F0 = = 0.82

Substituting for r0 and oz, it follows that tw = 3.1 s, which is within 3%
of the value of 3.0 s obtained from the Heisler chart.

)n of step 1 .1

the Ca1Cu1a- 5.7 THE SEMI-INFINITE SOLID

step 2 may Another simple geometry for which analytical solutions may be obtained is the
7 semi—infinite solid. Since such a solid extends to infinity in all but one direction,

it is characterizedby a single identifiable surface (Figure 5.17). If a sudden

change of conditions is imposed at this surface, transient, one-dimensional
conduction will occur within the solid. The sen1i—infinite solid provides a useful

idealization for many practical problems. It may be used to determine tran-
sient heat transfer near the surface of the earth or to approximate the transient

response of a finite solid, such as a thick slab. For this second situation the

approximation would be reasonable for the early portion of the transient,

during which temperatures in the slab interior (well removed from the surface)

are uninfluenced by the change in surface conditions.

The heat equation for transient conduction in a semi—infinite solid is given

by Equation 5.26. The initial condition is prescribed by Equation 5.27, and the

interior boundary condition is of the form

T(oo,t) = 2; (5.53)

l6 is then as

Case (1) Case (2) Case (3)

T06, 0) = Ti T(x, 0) = T; T(x, 0) = T;

T(O, t) = Ts —k 6T/ax|x=0 = qg _k 3T/ax|x=0= h[Tm— T(O, t)]

iii
t——>x ‘ }—>x |—> x

)ximation is T(x. t)

er ternpera- Ts T°°

S Equation / t /(t
T; \& Ti Ti \x x x

0 67 _ 1 50 . Figure 5.17 Transient temperature distributions in a serni-infinite solid for three
' _ ' surface conditions: constant surface temperature, constant surface heat flux, and

te tempera" surface convection.
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Closed—form solutions have been obtained for three important surface condi-
tions, instantaneously applied at t = O [1, 2]. These conditions are shown in

Figure 5.17. They include application of a constant surface temperature
Ts +‘ T,., application of a constant surface heat flux q;', and exposure of the
surface to a fluid characterized by Tee aé T1. and the convection coefficient h.
The solutions are summarized as follows. '

Case 1 Constant Surface Temperature

rm, 1‘) = 1; - (5.54)

T(x, t) — 7; f x21- ~ 2; “ at (ya?)
3T k(I-YD v

” -k—-- = --—-:--~- 5.56 Figure‘ {6150) ax rt ( ) L pX 0 solid wi “

permiss 1

(5.55)

Case 2 Constant Surface Heat Flux

61;’ = 41;’ (5.57)

2q;’(at/W)” eXp(T(x,t)—7:.= k (5.53)

Case 3 Surface Convection

= h[T°o — :r(o, :)]

,[exp hf + ill-:(:—t)Herfc(2;;t. + hf” (5.60)
The quantity erf w appearing in Equation 5.55 is the Gaussian error function,
which is tabulated in Section B1 of Appendix B. The complementary error
function, erfc w, is defined as

erfcw‘=“1 —erfw

Temperature histories for the three cases are also shown in Figure 5.17.
Carefully note their distinguishing features. For case 3 the specific temperature
histories computed from Equation 5.60 are plotted in Figure 5.18. Note that
the curve corresponding to h = oo is equivalent to the result that would be

obtained for a sudden change in the surface temperature to T3 = Too. That is,
for h = oo the second term on the right—hand side of Equation 5.60 goes to
zero, and the result is equivalent to Equation 5.55.
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Figure 5.18 Temperature histories in a semi—infinite

solid with surface convection [2]. Adapted with

permission.

Figure 5.19 Interfacial contact between two
semi—infinite solids at different initial

temperatures.

An interesting permutation of case 1 results when two serni—infinite solids,

initially at uniform temperatures TA, 1. and TB, 1., are placed in contact at their
free surfaces (Figure 5.19). If the contact resistance is negligible, the require-

ment of thermal equilibrium dictates that, at the instant of contact (I = 0),

both surfaces must assume the same temperature '1}, for which TBJ. < Ts <

TA’, Since TS does not change with increasing time, it follows that the
transient thermal response and the surface heat flux of each of the solids is
determined by Equations 5.55 and 5.56, respectively. ’

The equilibrium surface temperature of Figure 5.19 may be determined

from a surface energy balance, which requires that 1

qéf A = qéfis (5-61)

Substituting from Equation 5.56 for q;:A and egg}; and recognizing that the x
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coordinate of Figure 5.19 requires a sign change for q” it follows thats,A9

_kA(Ti '" TA,i) ___ kB(Ts ‘ Tag) (5 62)
(WaAt)1/2 I/2 '(Want)

or, solving for T5,

__ (kPC)ix/2TA,i 1" (kPC)113/2TB,iT

(kpc)lA/2 +. (kpc is/2

S
(5.63)

Hence, the quantity m E (kpc)1/2 is a weighting factor which determines

whether 7; will more closely approach TA, l.(mA > mB) or TB, ,.(m§ > mA).

EXAMPLE 5.4

In laying water mains, utilities must be concerned with the possibility of
freezing during cold periods. Although the problem of determining the tem-
perature in soil as a function of time is complicated by changing surface
conditions, reasonable estimates can be based on the assumption of a constant
surface temperature over a prolonged period of cold weather. What minimum

burial depth xm would you recommend to avoid freezing under conditions for
which soil, initially at a uniform temperature of 20°C, is subjected to a
constant surface temperature of — 15°C for 60 days?

SOLUTION

Known: Temperature imposed at the surface of soil that is initially at
20°C.

Find: The depth xm to which the soil has frozen after 60 days.

Schematic:

Atmosphere

I:T(’€rm 6,96“ = 0 ‘C~7_'x’ 7

Assumptions:

1. One-dimensional conduction in x.

2. Soil is a semi-infinite medium.

3. Constant properties.
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(5.63)

1 determines

‘is > mA)'

)ossibility of

ring the tem-

tging surface
of a constant

1at minimum

onditions for

bjected to a

nitially at
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Properties: Table A.3, soil (300 K): p = 2050 kg/m3, k = 0.52 W/m - K,
c = 1840 J/kg - K, a = (k/pc) = 0.138 x 1046 m2/s.

Analysis: The prescribed conditions correspond to those of case 1 of

Figure 5.17, and the transient temperature response of the soil is governed

by Equation 5.55. Hence at the time I = 60 days after the surface tempera-

ture change,

T<xm5 I) _ Ts xm

“me = erf( )T. — T, 2\/:17

0—(—15)

20—(—15)

X

=0.429= r ’"

Hence from Appendix B.1

X N1

= 0.40
MB

and

X”, = 0.80%? = 0.80(O.138 x 10-6 ml/s x 60 days x 24 h/day

‘/2: 0.68m <1x 3600 s/h)

Comments: The properties of soil are highly Variable, depending on the
nature of the soil and its moisture content.

5.8 MULTIDIMENSIONAL EFFECTS

Transient problems are frequently encountered for which two- and even
three-dimensional effects are significant. Solution to a class of such problems
can be obtained from the one-dimensional results of Sections 5.6 and 5.7.

Consider immersing the short cylinder of Figure 5.20, which is initially at

a uniform temperature T,, in a fluid of temperature Too 3% Ti. Because the

length and diameter are comparable, the subsequent transfer of energy by
conduction will be significant for both the r and x coordinate directions. The

temperature within the cylinder will therefore depend on r, x, and 1.‘.
Assuming constant properties and no generation, the appropriate form of

the heat equation is, from Equation 2.20,
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6_(r. x. 1) _ 0(r, 1) X 0(x, t)‘
0,: — 9,’ 0i

0* = C(r* t*) x P(x*, t*)
v

Figure 5.20 Two-dimensional, transient conduction in a short cylinder. (a) Geometry.
(b) Form of the product solution.

where x has been used in place of z to designate the axial coordinate. A

closed-form solution to this equation may be obtained by the separation of
variables method. Although we will not consider the details of this solution, it
is important to note that the end result may be expressed in the following
form.

T(r, x, t) — Tm T(x, t) — Too T(r,t) — Too

T—TZ 00:r.—T..
InfiniteT- — T

' °° cylinder

Plane
wall

That is, the two-dimensional solution may be expressed as a product of
one-dimensional solutions that correspond to those for a plane wall of thick-
ness 2L and an infinite cylinder of radius ra. These solutions are available
from Figures 5.8 and 5.9 for the plane wall and Figures 5.11 and 5.12 for the
infinite cylinder. They are also available from the one-term approximations
given by Equations 5.40 and 5.49.

Results for other multidimensional geometries are summarized in Figure
5.21. In each case the multidimensional solution is prescribed in terms of a
product involving one or more of the following one-dimensional solutions.

T(x, t) — Tm
S(x,t) E T._T (5 .64)Semi-infinite

solid

T(x, t) — Too
(5.65)Plane

wall

T(r, t) — Too
C(r,z‘) E T._ T Infinite (5 '66)

cylinder

The x coordinate for the semi-infinite solid is measured from the surface,
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0(r,t) 0(x.t)‘
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a) Geometry.
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are available

I 5.12 for the
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r1 terms of a
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(5.64)

(5.65)

(5.66))

the surface,

(a) Sen:c;:3fin'te (b) Plane wall
Sm. t)P(x2. t) P(I1, t)P(x2, t)

(d) Semi—infinite (e) rectangular
’ plate bar

3063, t)P(x1. t)P(x2. t) P(x1, t)P(x2, t)P(x3, t)

(g) Semi-infinite Rectangular
rectangular bar parallelepiped
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C(r, t)

l—ro ’>l

(f) Semi-infinite
cylinder

(i) Short cylinder

Figure 5.21 Solutions for multidimensional systems expressed as

products of one-dimensional results.

whereas for the plane wall it is measured frornthe midplane. In using Figure
5.21 the coordinate origins should be carefully noted. The transient, three-

dimensional temperature distribution in a rectangular parallelepiped, Figure

5.21h, is then, for example, the product of three one-dimensional solutions for

plane walls of thicknesses 2L1, 2L2, and 2L3. That is,

T(x1, x2, x3,_t) — Tm

Ta " Too
= P(x1=t)' P(x2>t) 'P(x37t)
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The distances x1, x2, and x3 are all measured with respect to a rectangular
coordinate system whose origin is at the center of the parallelepiped.

The amount of energy Q transferred to or from a solid during a multidi-
mensional transient conduction process may also be determined by combining
one—dimensional results, as shown by Langston [7].

EXAMPLE 5.5

In a manufacturing process stainless steel cylinders (AISI 304) initially at
600 K are quenched by submersion in an oil bath maintained at 300 K with

h = 500 W/m2 - K. Each cylinder is of length 2L = 60 mm and. diameter
D = 80 mm. Consider a time 3 min into the cooling process and determine

temperatures at the center of the cylinder, at the center of a circular face, and
at the midheight of the side.

SOLUTION

Known: Initial temperature and dimensions of cylinder and temperature
and convection conditions of an oil bath.

Find: Temperatures T(r, x, t) after 3 min at the cylinder center, T(O, O,
3 min), at the center of a circular face, T(O, L, 3 min), and at the midheight
of the side, T(r0,O, 3 min).

Schernatic:

T(r,x,0)= T,'= 600 K

T(7‘o, 0, t)

Oil ED 7;, = 300 K
bath E h = 500 W/m2- K
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A ssumptions:

1. Two-dimensional conduction in r and x.

2. Constant properties.

Properties: Table A.1, stainless steel, AISI 304 [T= (600 + 300)/2 =

450 K]: p = 7900 kg/m3, = 526 J/kg - K, k = 17.4 W/m - K, or =

k/pc = 4.19 X 10‘6 1112/8.

Analysis: The solid steel cylinder corresponds to case i of Figure 5.21, and

the temperature at any point in the cylinder may be expressed as the
following product of one—dimensional solutions.

T , , t — Too

= P(x, t)C(r, 1‘)
where P(x, t) and C(r, t) are defined by Equations 5.65 and 5.66, respec-
tively. Accordingly, for the center of the cylinder,

T(0,0,3 min) — T T(0,3 — Tm T(0,3 — T0000

T, — Tm . T — T Plane T, — Too Infinite1 oc W311 cylinder

Hence, for the plane wall, with l

k 17.4 W/m - K
— = —-——z—-~ = 1.16

hL 500 W/m2 - K x 0.03 m
Brl =»

at 4.19 X 10"“ m2/s X 180 s
F0 = -,,—, = -—————;,————— = 0.84

L (0.03 In)

it follows from Figure 5.8 that

6 T(0,3min)—T°O0
z 0.64

0i _ Too gljllile

Similarly, for the infinite cylinder, with

k 17.4w/m - K
Bi_1 = -'— = ————*_'—2“"'—“"':‘

hro 500 W/m - K >< 0.04m

= 0.87

‘at 4.19 X 10‘5 m2/s X 180 s
2 = 0.47

(0.04 in)
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it follows from Figure 5.11 that

00 T(0,31nin) — Tm
? = ———--—— z 0.55. T. - T Infinite

I 1 °° cylinder

Hence, for the center of the cylinder, A

T(0,0,3 min) — Tm
-—~—-—— = 0.64 x 0.55 z 0.35

7: — 7;,

T(0,0, 3 min) z 300 K + 0.35(600 — 300) K z 405 K <1

The temperature at the center of a circular face may be obtained from the
requirement that

T(0, L, 3 min) — T30 T(L, 3 min) — Too T(0, 3 min) — Too
T. — T T. — T p1 T — T Infinite

I 00 l X Wfilne 1 00 der

where, from Figure 5.9 with (x/L) = 1 and Bi” = 1.16,

0(L) _ T(L,3rnin) .— T00
60 _ T(0,3min) —T°o Planewall

z 068

Hence

T(L,3 min) — Tm T(L,3 min) — Tm T(0,3 min) — T

T, — Tm Plane _ T(0, 3 min) — Tm Plane T. ~ Twall wall 1 00

5.944;;t.,W.ic§,.~wm4ws«u;5.wgw<«éaMa»~4.e;w~»-«w—»+,4~«W~**''‘‘“‘*“’“‘“‘“’“"' ''<' ,'
T(L, 3 min) — Too

Ti” 73» Ear
z 0.68 X 0.64 z 0.44

Hence

T(0, L,3min) — T
°° 2 0.44 x 0.55 -— 0.24

T,~ - Too

T(0, L,3 min) z 300 K + 0.24(600 ~ 300) K z 372 K <1

The temperature at the midheight of the side may be obtained from the
requirement that

00
T(r0,0,3 min) — T T(O,3 — T T(r0,3min) — TOO

Infinite

°° wall cylinder
T,-*"Tw Plane T;«"TOC
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where, from Figure 5.12 with (r/ro) = 1 and Bi ’1 = 0.87,

0(r0) T(r0,3 min) — T00

00 T(0,3 min) — Too Infinitecylinder

z 0.61

Hence
~,..'.,.,,.v,,,

T(r0,3 min) - Tm T(r0,3 min) — Too

TI. — Tm Infinite _ T(0, 3 min) — Tm Infinite
cylinder cylinder

T(0, 3 — Tm

' Tl. — T00 Infinitecylinder

T(r0,3rnin) ~ Too
Infinite

. . —- Infi ‘t
cyhnder K Ti Too cyfifiiijr

z 0.61 X 0.55 z 0.34

Hence

T(r0,0,3min) — Tm
z 0.64 X 0.34 z 0.22

T. — T...

T(r0,0, 3 min) 2 300 K + O.22(6OO — 300) K z 366 K

Comments:

1. Verify that the temperature at the edge of the cylinder is T(r0, L,
3 min) z 345 K.

The one—term approximations can be used to calculate the dimension-

less temperatures read from the Heisler charts. For the plane wall, the
midplane temperature can be determined from Equation 5.41

0

0;“ = E0 = C1exp(— 12170)
<1 i

l from the A where, with Bi = 0.862, C1 = 1.109 and Q = 0.814 rad from Table 5.1.
With F0 = 0.84, ~

0

—‘1 P1 = 1.109 exp [—(0.814 rad)2 x 0.84] = 0.636
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The surface temperature can be evaluated using Equation 5.40b fin,-,e_d,: .
state cc

3 __ * 0 conside 1
9 — cos(§1x ) » .0 conduc

may be
with x* .= 1 to give

t9*(1,F0) t9(L,t)

6* — 00 0

5.9.1 Disc
= cos (0.814 rad X 1) = 0.687

Once a

For the infinite cylinder, the centerline temperature can be determined 0 sient c

from Equation 5.490. BPPYOF .

9

0;“ = = C1exp(—12Fo)I

where, with B1’ = 1.15, C1 = 1.227 and {l = 1.307 from Table 5.1. With
F0 = 0.47,

00

— I fi 1 = 1.109 exp [—(1..307 rad)2 x 0.47] = 0.550
i c131/Ii:-deer

The surface temperature can be evaluated using Equation 5.4%

6 .

5:; = jg" = Jo(§1r*)0 0

with r* = 1 and the value of the Bessel function determined from

Table B.4,

6*(1,Fo) 0(L,z)

0* ‘ 00 0 = J0(l.307 rad x 1) = 0.616

The one—term approximations are in good agreement with results from
the Heisler charts.

5.9 FINITE-DIFFERENCE METHODS

Analytical solutions to transient problems -are restricted to simple geometries
and boundary conditions, such as those considered in the preceding sections.‘
Extensive coverage of these and other solutions is treated in the literature
[1—4]. However, in many cases the geometry and/or boundary conditions
preclude the use of analytical techniques, and recourse must be made to



Page 51 of 92

5.9 Finite~DilTerence Methods 271

finite-dzfierence methods. Such methods, introduced in Section 4.4 for steady-
state conditions, are readily extended to transient problems. In this section we

consider explicit and implicit forms of finite—difference solutions to transient

conduction problems. More detailed treatments, as well as related algorithms,

may be found in the literature [8—10].

5.9.1 Discretization of the Heat Equation: The Explicit Method

Once again consider the two-dimensional system of Figure 4.5. Under tran-
sient conditions with constant properties and no internal generation, the

appropriate form of the heat equation, Equation 2.15, is

1 ar azr azr 567
or 62.‘ ' 8.762 Byz . l’(. ' )

5-1- With To obtain the finite-difi"erence form of this equation, we may use the central-

diflerence approximations to the spatial derivatives prescribed by Equations

4.31 and 4.32. Once again the m and n subscripts may be used to designate

the x and y locations of discrete nodal points. However, in addition to being

discretized in space, the problem must be discretized in time. The integer p is

introduced for this purpose, where

t = p At (5.68)

and the finite-difference approximation to the time derivative in Equation 5.67

is expressed as

6T T::t.‘—T.s. i
*5 “"“i7" (5-69)

The superscript p is used to denote the time dependence of T, and the time
, derivative is expressed in terms of the difierence in temperatures associated

gults from f with the new (p + 1) and previous (p) times. Hence calculations must be
5 5 performed at successive times separated by the interval At, and just as a

finite-difference solution restricts temperature determination to discrete points

in space, it also restricts it to discrete points in time.

If Equation 5.69 is substituted into Equation" 5.67, the nature of the
finite—difference solution will depend on the specific time at which tempera-
tures are evaluated in the finite-difference approximations to the spatial

derivatives. In the explicit method of solution, these temperatures are evalu-

-ing 33310115-v ated at the previous (p) time. Hence Equation 5.69 is considered to be a
116 literature ‘ f0rward—dzfference approximation to the time derivative. Evaluating terms on
Y C0f1diti0I1S 1} the right-hand side of Equations 4.31 and 4.32 at p and substituting into

be made i0 1*’ Equation 5.67, the explicit form of the finite-difference equation for the

e geometries
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+ (1 — 4Fo)T,§’,, (5.71) if the
where F0 is a finite-difierence form of the Fourier number if mvolvil

1;, determ M

F "‘ A’ A A (5 72) the def0 = A . A“ ' ‘ 2.;
( Ax)2 , I piggy, p interioi E;

+

Solving for the nodal temperature at the new (p + 1) time and assuming that
Ax = A y, it follows that A

Fr 1:
If the system is one-dimensional in x, the explicit form of the finite-diflerence

equation for an interior node m reduces to . i and f0

T5“ = Fo(r,g+, + r,,2:;,) + (1 — 21ro)r;,z; (5.73) t F‘
For pr

Equations 5.71 and 5.73 are explicit because unknown nodal temperatures

for the new time are determined exclusively by. known nodal temperatures at uppelrg
the previous time. Hence calculation of _the unknown temperatures is straight- if balanc
forward. Since the temperature of each interior node is known at t: O Accou
(p = 0) from prescribed initial conditions, the calculations begin at t = At energy 3
(p = 1), where Equation 5.71 or 5.73 is applied to each interior node to .
determine its temperature. With temperatures known for t = At, the appropri- L E
ate finite-difference equation is then applied at each node to determine its

temperature at t= 2 At (p = 2). In this way, the transient temperature
distribution is obtained by marching out in time, using intervals of At.

The accuracy of the finite-difference solution may be improved by de-
creasing the values of Ax and At. Of course, the number of interior nodal

points that must be considered increases with decreasing Ax,‘ and the number
of time intervals required to carry the solution to a prescribed final time
increases with decreasing At. Hence, the computation time increases with
decreasing Ax and At. The choice of Ax is typically based on a compromise
between accuracy and computational requirements. Once this selection has

been made, however, the value of At may not be chosen independently. It is,
instead, determined by stability requirements. ‘

»$a«ma;ww«wxv¥e~‘'~i*r°r*“3'‘5
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An undesirable feature of the explicit method is that it is not uncondition-

ally stable. In a transient problem, the solution for the nodal temperatures

should continuously approach final (steady-state) values with increasing time.

However, with the explicit method, this solution may be characterized by

numerically induced oscillations, which are physically impossible. The oscilla-

tions may become unstable, causing the solution to diverge from the actual

steady-state conditions. To prevent such erroneous results, the prescribed

Value of At must be maintained below a certain limit, which depends on Ax

and other parameters of the system. This dependence is termed a stability

criterion, which may be obtained mathematically [8] or demonstrated from a

thermodynamic argument (see Problem 5.69). For the problems of interest in

this text, the criterion is determined by requiring that the coefiicient associated

with the node of interest at the previous time is greater than or equal to zero. In

general, this is done by collecting all terms involving THE, n to obtain the form
of the coefficient. This result is then used to obtain a limiting relation

involving F0, from which the maximum allowable value of At may be

determined. For example, with Equations 5.71 and 5.73 already expressed in

the desired form, it follows that the stability criterion for a one-dimensional

interior node is (1 — 2Fo) 2 0, or

F0 s § (5.74)

and for a two—dimensional node, it is (1 — 4F0) 2 0, or

F0 3 % (5.75)

For prescribed values of Ax and at, these criteria may be used to determine

upper limits to the value of At. ‘

Equations 5.71 and 5.73 may also be derived by applying the energy
balance method of Section 4.4.3 to a control volume about the interior node.

Accounting for changes in thermal energy storage, a general form of the

(energy balance equation may be expressed as

Em + Eg = ES.‘ A (5.76)

In the interest of adopting a consistent methodology, it is again assumed that

all heat flow is into the node.

To illustrate application of Equation 5.76, consider the surface node of

the one-dimensional system shown in Figure 5.22. To more accurately deter-

mine thermal conditions near the surface, this node has been assigned a

thickness which is one—half that of the interior nodes. Assuming convection

transfer from an adjoining fluid and no generation, it follows from Equation
5.76 that i

. kA Ax 715“ — Tg
hA<z:. — To + ~(Tr ~ 73’) = pm-———

Ax 2 At
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Figure 5.22 Surface node with convection and one—dime11sio11al g
transient conduction.

or, solving for the surface temperature at 2.‘ + At,

212 At 201 At

T0P+1: pcAx<r.. — 22,») + Ax. (T: — 23> + 2:;

Recognizing that (2h At/pc Ax) = 2(h Ax/k)(a At/Axz) = 2Bz’Fo and
grouping terms involving T01’, it follows that

TOP“ = 2Fo(Tf’ + BiToO) + (1 — 2Fo — 2BiF0)T01’

The finite-dilference form of the Biot number is

B. hAx
'7 k

(5 .77)

(5.78)

Recalling the procedure for determining the stability criterion, we require
that the coeflicient for T01’ be greater than or equal to zero. Hence

1 — 2F0 — 2BiF0 2.0

Fo(1 + Bi) 3% (5.79)

Since the complete finite-difference solution requires the use of Equation 5.73
for the interior nodes, as well as Equation 5.77 for the surface node, Equation
5.79 must be contrasted with Equation 5.74 to determine which requirement is
the more stringent. Since Bi 2 0, it is apparent that the limiting value of F0
for Equation 5.79 is less than that for Equation 5.74. To ensure stability for all
nodes, Equation 579 should therefore be used to select the maximum allow-
able value of F0, and hence Al, to be used in the calculations.

Forms of the explicit finite-difference equation for several common ge-
ometries are presented in Table 5.2. Each equation may be derived by
applying the energy balance method to a control volume about the corre-
sponding node. To develop confidence in your ability to apply this method,
you should attempt to verify at least one of these equations.

.~7tions(Ax=A5’)'-dimensionalfinite-differenceequa
Table5.2SummaryOftranslent’two
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EXAMPLE 5.6

A fuel element of a nuclear reactor is in the shape of a plane wall of thickness
2L = 20 mm and is convectively cooled at both surfaces, with h = 1100
W/m2 - K and T00 = 250°C. At normal operating power, heat is generated
uniformly within the element at a volumetric rate of q'1 = 107 W/m3. A
departure from the steady-state conditions associated with normal operation
will occur if there is a change in the generation rate. Consider a sudden change
to 42 = 2 X 107 W/m3, and use the explicit finite-difference method to
determine the fuel element temperature distribution after 1.5 s. The fuel
element thermal properties are k = 30 W/m - K and at = 5 X 10*“ ml/s.

SOLUTION

Known: Conditions associated with heat generation in a rectangular fuel
element with surface cooling.

Find: Temperature distribution 1.5 s after a change in operating power.

Schematic:

'n C 2 1°.
'm
3 (‘D

Symmetry adiabat

IIIIIIn

Assumptions:

1. One-dimensional conduction in x.

2. Uniform generation.

3. Constant properties.

Analysis: A numerical solution will be obtained using a space increment of
Ax = 2 mm. Since there is symmetry about the midplane, the nodal
network yields six unknown nodal temperatures. Using the energy balance
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method, Equation 5.76, an explicit finite-difference equation may be derived
for any interior node m. "

Tp—1 _ TIE Tr5+1 _ Tp TPH “ Trg
kA_—’1——+kA ’“+qAAx=pAAxc ”‘

Ax Ax At

Solving for T,{f+1 and rearranging,

. Ax 2
T,5+1 = F0 T,f_1 + 715,, + q( ) l + (1 — 2Fo)T,5 (1)

This equation may be used for node 0, with T,§_1 = 5+1, as well as for
nodes 1, 2, 3, and 4. Applying energy conservation to a control Volume
about node 5,

T: — T:
hA(Tw — T5”) + kA Ax

+ (1 — 2Fo — 2Bz'Fo)T5P (2)

Since the most restrictive stability criterion is associated with Equation

2, we select F0 from the requirement that

F0(1 + Bi) 3 §

Hence, with

B_ h Ax 1100 W/ml - K (0.002 m) = 0.0733

k 30 W/m - K

it follows that

,F0 5 0.466

Fo(Ax)2 O.466(2 x 10* m)2
At=-:“jS $0.373S

oz 5 X 10 m /5

To be well within the stability limit, we select At = 0.3 s, which corre-

sponds to

5 x 10*’ m2/s(0.3 s‘)
F0 = ——————————,_— = 0.375

(2 x 10-3 m)
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Substituting numerical values, including 4; = 42 = 2 X 107 W/m3, the nodal
equations become

0 5 2T; + 2.67) + 0.250T0P

0 5 TO’ + T; + 2.67) + 0.250T1P~

T2p+1

5 T; + T41’ + 2.67) + 0.250T3”

.37

.37

.37

.37

.375 T3” + T5!’ + 2.67) + 0.25015

.75

(

(

5(r;' + 7;!’ + 2.67) + 0.25OT2-”

(

(

(

O

O

O

V O 0 T; + 19.67) + 0.1957‘:

T0 begin the marching solution, the initial temperature distribution

must be known. This distribution is given by Equation 3.42, with q = 41.
Obtaining T5 = T5 from Equation 3.46,

T T 4L 250 C 107 W/m3 X 0'01 m 340 91 C1 + -—j 1 O +  ‘j— 1' _ O
5 °° h 1100 W/m2 - K

it follows that

x2

T(x) = 16.67(1 — -17 + 340.91°C
Computed temperatures for the nodal points of interest are shown in the
first row of the accompanying table.

Using the finite—difference equations, the nodal temperatures may be
sequentially calculated with a time increment of 0.3 s until the desired final

time is reached. The results are illustrated in rows 2 through 6 of the table
and may be contrasted with the new steady-state condition (row 7), which
was obtained by using Equations 3.42 and 3.46 with 6} = 42,

Tabulated nodal temperatures

t (s)

O

0.3

0.6

0.9

1.2

1.5

00

8L/:.&laJl\3>—‘©'Tj
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the nodal Comments: It is evident that at 1.5 s, the wall is in the early stages of the
transient process and that many additional calculations would have to be
made to reach steady-state conditions with the finite—difIerence solution.

The computation time could be slightly reduced by using the maximum

allowable time increment (At = 0.373 s), but with some loss of accuracy. In

the interest of maximizing accuracy, the time interval should be reduced

until the computed results become independent of further reductions in At.

5.9.2 Discretization of the Heat Equation: The Implicit Method

gtfibutjon i . In the explicit finite-difference scheme, the temperature of any node at t + At
h 4 = 41_ _ . may be calculated from knowledge of temperatures at the same and neighbor-

ing nodes for the preceding time t. Hence, determination of a nodal tempera-
ture at some time is independent of temperatures at other nodes for the same

time. Although the method offers computational convenience, it suifers from

limitations on the selection of At. For a given space increment, the time

interval must be compatible with stability requirements. Frequently, this

dictates the use of extremely small values of At, and a very large number of

time intervals may be necessary to obtain a solution.

A reduction in the amount of computation time may often be realized by
employing an implicit, rather than explicit, finite-difference scheme. The

. implicit form of a finite—difference equation may be derived by using Equation
vn in the 5.69 to approximate the time derivative, while evaluating all other tempera-

E I tures at the new (p + 1) time, instead of the previous (p) time. Equation 5.69

3 may be f 7 is then considered to provide a backward-diflerence approximation to the time

zired final . ig . derivative. In contrast to Equation 5.70, the implicit form of the finite-difference
the table J , equation for the interior node of a two-dimensional system is then

7)’ which '7 p+1 p p+1 p+l p+l
1 Tm,n — Tm,n __ m+1,n+ Tm—1,n — 2Tm,n

Oi At x )2

T,5,+,.1+1 + Tn’f,+,,1—1 — 2T,5,+n1

(A)/)2

Rearranging and assuming Ax = A y, it follows that

(5.86)

(1 + 4Fo)T.:,*;1~ Fo(T,::%,. + 25:11,. + T,:,’,t,1.1+ mil) = Ti.

(5.87)

From Equation 5.87 it is evident that the new temperature of the m, n

node depends on the new temperatures of its adjoining nodes, which are, in
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general, unknown. Hence, to determine the unknown nodal temperatures at
t + At, the corresponding nodal equations must be solved simultaneously. Such
a solution may be effected by using Gauss—Seidel iteration or matrix inversion,
as discussed in Section 4.5. The marching solution would then involve simulta-
neously solving the nodal equations at each time t = At,2At, . . . , until the
desired final time was reached.

Although computations involving the implicit method are more compli-
cated than those of the explicit method, the implicit formulation has the
important advantage of being unconditionally stable. That is, the solution
remains stable for all space and time intervals, in which case there are no
restrictions on Ax and At. Since larger values of At may therefore be used
with an implicit method, computation times may often be reduced, with little

- loss of accuracy. Nevertheless, to maximize accuracy, At should be sufficiently
small to ensure that the results are independent of further reductions in its
value.

The implicit form of a finite—difi"erence equation may also be derived from
the energy balance method. For the surface node of Figure 5.22, it is readily
shown that

(1 + 2F0 +’2FoBz‘)TOP“ — 2FoT1P“ = 2FoBz'Tm + jg’ . (5.88)

For any interior node of Figure 5.22, it may also be shown that

m+1(1 + 2Fo)T,,f+1 — Fo(T,5:,1+ T9“) = T5; (5.89)

Forms of the implicit finite-difference equation for other common geometries
are presented in Table 5.2. Each equation may be derived by applying the
energy balance method. ‘

EXAMPLE 5.7

A thick slab of copper.initially at a uniform temperature of 20°C is suddenly
exposed to radiation at one surface such that the net heat flux is maintained at
aconstant value of 3 X 105 W/m2. Using the explicit and implicit finite-
diiference techniques with a space increment of Ax = 75 mm, determine the
temperature at the irradiated surface and at an interior point that is 150 mm
from the surface after 2 min have elapsed. Compare the results with those
obtained from an appropriate analytical solution.

SOLUTION

Known: Thick slab of copper, initially at a uniform temperature, is sub-
jected to a constant net heat flux at one surface.
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Find:

1. Using the explicit finite-difference method, determine temperatures at
the surface and 150 mm from the surface after an elapsed time of 2
min.

Repeat the calculations using the implicit finite-difference method.

3. Determine the same temperatures analytically.

Schematic:

Assumptions:

1. One-dimensional conduction in x.

2. Thick slab may be approximated as a semi—infinite medium with
constant surface heat flux.

3. Constant properties.

Properties: Table A1, copper (300 K): k = 401 W/In - K, at = 117 X

1O“6 m2/s.

Analysis:

1. An explicit form of the finite-difi“erence equation for the surface node

may be obtained by applying an energy balance to a control volume
about the node.

qf,’ Ax

Td"+1A= 2F0( k + T11’) + (1 — 2Fo)Tg’
The finite—difference equation for any interior node is given by Equa-
tion S.73. Both the surface and interior nodes are governed by the
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stability criterion

F0 5 %

Noting that the finite—difTerence equations are simplified by choos-
ing the maximum allowable value of F0, we select F0 = -in Hence

(/3202 (0.075 m)2
At = F0 = =24s

1

at 5 117 x 1076 m2/s

With

qf,’ Ax 3 X 105 W/m2 (0.075 m)
= ——————————-— = 56.1°c

k 401 W/m - K

the finite-difference equations become

T.5+1 + Tn’I—1

TOP“ = 56.1°C + T11’ and T,,I;+1 = 2

for the surface and interior nodes, respectively. Performing the calcula-
tions, the results are tabulated as follows.

 

Explicit finite-difference solution for F0 = % 

I (S) To T1 T2 T3 T4 

0 20 20 20 20 20

24 76.1 20 20 29 20

43 76.1 43.1 20 20 20

72 104.2 43.1 34.1 20 20

96 104.2 69.1 34.1 27.1 20

120 125.3 69.1 43.1 0 27.1 20 _

After 2 min, the surface temperature and the desired interior tempera-
ture are To = 125.3°C and T2 = 48.1°C.

Note that calculation of identical temperatures at successive times
for the same node is an idiosyncrasy of using the maximum allowable
value of F0 with the explicit finite-difference technique. The actual
physical condition is, of course, one in which the temperature changes
continuously with time. The idiosyncrasy is eliminated and the accu-
racy of the calculations is improved by reducing the value of F0.

To determine the extent to which the accuracy may be improved
by reducing F0, let us redo the calculations for F0 = §(Az = 12 s). The
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finite—difi"erence equations are then of the form

TOP“ = §(56.1°C + T11’) + §T0P

Tr5+1 -%(T,5+1 + 715.1) + %TJ.’

and the results of the calculations are tabulated as follows.

Explicit finite—difference solution for F0 = 1/4

P I (S) To T1 T2 T3 T4

0 20 20 20 20 20

12 48.1 20 20 20 20

24 62.1 27.0 20 20 20

36 72.6 34.0 21.8 20 20 .

48 81.4 40.6 24.4 20.4 20
60 89.0 46.7 27.5 21.3 20.1

72 95.9 52.5 30.7 22.6 20.4 20.0

84 102.3 57.9 34.1 24.1 20.8 20.1 20.0 20

96 108.1 63.1 37.6 25.8 21.5 20.3 20.0 20.0 20

108 113.7 68.0 41.0 27.6 22,2 20.5 20.1 20.0 20.0

120 118.9 72.6 44.4 29.6 23.2 20.8 20.2 20.0 20.0

\OOO\lO\LII.hU)I\)P-‘©
.e calcula-

r-‘9

After 2 min, the desired temperatures are To = l18.9°C and T2 =

44.4°C. Comparing the above results with those obtained for F0 = it

is clear that by reducing F0 we have eliminated the problem of

recurring temperatures. We have also predicted greater thermal pene-

tration (to node 6 instead of node 3). An assessment of the improve-

ment in accuracy must await a comparison with results based on an

exact solution. _

Performing an energy balance on a control Volume about the surface

node, the implicit form of the finite—dilTerence equation is

H kT]-1J+1_T$+1 Ax T6p+1_TOp
0+ —‘A;”—“P 2 C Attempera— . 7 q

sive times

allowable _ .
he actual ' 2114;’ At

e changes (1 + 2F0)T°P+l _ 2F0T1P+1 2 kAx
the accu- 1

F0_ M * Arbitrarily choosing F0 = -‘2—(At = 24 s), it follows that

improved .1 PH PH
12 S)_ The ‘S. 2T0 — T1 ‘ = 56.1 + TOP

+ :13’
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From Equation 5.89, the finite-dilference equation for any interior node
is then of the form

—iT,,1ff11+ 4T,,I;+1 — TP“ = 2T,§m+1

Since we are dealing with a _semi-infinite solid, the number of
nodes is, in principle, infinite. In practice, however, the number may be
limited to the nodes that are affected by the change in the boundary
condition for the time period of interest. From the results of the explicit
method, it is evident that we are safe in choosing nine nodes corre-
sponding to T0, T1, . . ., T8. We are thereby assuming that, at t = 120 s,
there has been no change in T8.

We now have a set of nine equations that must be solved simulta-

neously for each time increment. Using the matrix inversion method,
we express the equations in the form [A][T] = [C], where

2-10000

—1_4—10

0-1

0

0

0

0

0

0

0

0

-1

4

56.1 + TOP

2T;

2T;

27*;

’ 2T4P

2T5”

2T;

2T;

2T; + T9?“

Note that numerical values for the components of [C] are determined
from previous values of the nodal temperatures. Note also how the

finite-difference equation for node 8 appears in matrices [A] and [C].
A table of nodal temperatures may be compiled, beginning with

the first row (p = 0) corresponding to the prescribed initial condition.
To obtain nodal temperatures for subsequent times, the inverse of the
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coefficient matrix [A]‘1 must first be found. At each time p + 1, it is
then multiplied by the column Vector [C ],«which is evaluated at p, to

obtain the temperatures T6” +1, T11’ +1, . . . , TSP“. For example, multiply-
ing [A]‘1 by the column vector corresponding to p = 0,

76 .1

40

40

40

40

40

40

40 i

60

the second row of the table is obtained. Updating [C], the process is

repeated four more times to determine the nodal temperatures at 120 s.

The desired temperatures are To = l14.7°C and T2 = 44.2°C.

Implicit finite-difference solution for F0 = %

t(S)TOTlV T.T57;T7Tg
0 20.0 20.0 . 20.0 20.0 20.0 20.0

24 52.4 28.7 2012 20.0 20.0 20.0 20.0

48 74.0 39.5 20.7 20.2 20.1 20.0 20.0
72 90.2 50.3 . 21.6 20.6 20.2 20.1 20.0

96 103.4 60.5 33.0 22.9 21.1 20.4 20.2 20.1

120 114.7; 70.0 . 24.7 21.9 20.8 20.3 20.1

Approximating the slab as a semi-infinite medium, the appropriate

analytical expression is given by Equation 5.58, which may be applied

to any point in the slab.

2q;’(at/W)” exp(_ x2 ) _ q;'xT(x,t) — T,= erfc(2‘ k Ta: k

At the surface, this expression yields

2x 3 x 105 W/m2
0 120 — 20°C =

T( ’ S) 401 W/m ~ K (117 x 10-6 m2/s x 120 s/7r)1/2

T(0,120 s) =' 120.0°c
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At the interior point (x = 0.15 m)

T(0.15 m, 120 s) — 20°C:
2 x 3 x 105W/m2

401W/m-K

x (117 X 1o~6 m2/s x 120 s/vr)1/2

>< exp [- 3 X 105 W/m-‘’- x 0.15 m

401 W/m - K

(0.15 m)2 ‘

4‘>< 117 x 10-6 m2/s x 120 s

0.15 In
x 1 — erf V _ 45.4°c2t/117 X 10'6 m2/s x 120 s
Comments:

1.
Comparing the exact results with those obtained from the three approx-
imate solutions, it is clear that the explicit method with F0 = 1/4
provides the most accurate predictions.

METHOD 7;, 2 T(0,12O s) T2 = T(O.15 m,12O s)

Explicit (Fa = i) ’ . 48.1

Explicit (F0 = §) . 44.4

§) . 44.2

Exact . 45.4

Implicit (F0 =

This is not unexpected, since the corresponding value of A2.‘ is 50%
smaller than that used in the other two methods.

Although computations are simplified by using the maximum allowable
value of F0 in the explicit method, the accuracy of the results is seldom
satisfactory.

Note that the coefficient matrix [A] is tridiagonal. That is, all elements
are zero except those which are on, or to either side of, the main
diagonal. Tridiagonal matrices are associated with one-dimensional

conduction problems. In such cases the problem of solving for the
unknown temperatures is greatly simplified, and stock computer pro-
grams may readily be obtained for this purpose.

A more general radiative heating condition would be one in which the

surface is suddenly exposed to large surroundings at an elevated tem-
perature Tsur (Problem 5.84). The net rate at which radiation is trans-

ferred to the surface may then be calculated from Equation 1.7.
Allowing for convection heat transfer to the surface, application of
conservation of energy to the surface node yields an explicit finite-

pvt
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difierence equation of the form

Tr ~ Ta’

AxO[Tsi1r - (To”l4l + h(Too - To”) + k

Use of this finite-difference equation in a numerical solution is compli-

cated by the fact that it is nonlinear. However, the equation may be

linearized by introducing the radiation heat transfer coeflicient h,

defined by Equation 1.9, and the finite~difference equation is

TP—TP Ax TP+1—TP
:7 _ p h T _Tp k1__9_= __ _°__.__.__°_hr(Tsur T0)+ (loo O)+ Ax p 2 C‘ At

The solution may proceed in the usual manner, although the effect of a

radiative Biot number (Bi , E h, Ax/k) must be included in the stabil-

ity criterion and the value of h, must be updated at each step in the

calculations. If the implicit method is used, h, is calculated at p + 1, in

which case an iterative calculation must be made at each time step.

5.10 SUMMARY

Transient conduction occurs in numerous engineering applications, and it is

important to appreciate the different methods for dealing with it. There is

certainly much to be said for simplicity, in which case, when confronted with a

transient problem, the first thing you should do is calculate the Biot number.
If this number is much less than unity, you may use the lumped capacitance

method to obtain accurate results with minimal computational requirements.

However, if the Biot number is not much less than unity, spatial effects must

be considered, and someother method must be used. Analytical results are

available in convenient graphicaland equation form for the plane wall, the
infinite cylinder, the sphere, and the semi—infinite solid. You should know
when and how to use these results. If geometrical complexities and/or the

form of the boundary conditions preclude their use, recourse must be made to

finite—difference methods. With the digital computer, such methods may be

used to solve any conductionproblem, regardless of complexity.
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PROBLEMS

Qualitative Considerations

5.1 Consider a thin electrical heater attached to a plate and backed by insulation.
Initially, the heater and plate. are at the temperature of the ambient air, Too.
Suddenly, the power to the heater is switched on giving rise to a constant heat flux
qg (W/m2) at the inner surface of the plate.

Insulation Plate

Power
leads

(a) Sketch and label, on T—x coordinates, the temperature distributions: initial,
steady-state, and at two intermediate times. ‘

(b) Sketch the heat flux at the outer surface q,’,’(L, t) as a function of time.

The inner surface of a plane wall is insulated while the outer surface is exposed to
an airstream at Too. The wall is at a uniform temperature corresponding to that of
the airstream. Suddenly, a radiation heat source is switched on applying a uniform
flux q; to the outer surface. N.-—>('\1.Jf\._]br‘/‘.OfI7

.‘:qgfort>O

A T°°’h

Insulation (‘H

r\ _
1;,3.,

L, x

(a) Sketch and label, on T—x coordinates, the temperature distributions: initial,
steady-state, and at two intermediate times.

(b) Sketch the heat flux at the ‘outer surface q,',’(L, t) as a function of time.
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5.3 A microwave oven operates on the principle that application of a high frequency
field causes electrically polarized molecules in food to oscillate. The net effect is a

uni orm generation of thermal energy within the food, which enables it to be

heated from refrigeration temperatures to 90°C in as short a time as 30 s.

Consider the process of cooking a slab of beef of thickness 2L in a

microwave oven and compare it with cooking in a conventional oven, where each

side of the slab is heated by radiation for a period of approximately 30 min. In

each case the meat is to be heated from 0°C to a minimum temperature of 90°C.
Base your comparison on a sketch of thetemperature distribution at selected

times for each of the cooking processes. In particular consider the time to at

which heating is initiated, a time tl during the heating process, the time I2
corresponding to the conclusion of heating, and a time t3 well into the subsequent
cooling process.

A plate of thickness 2L, surface area AS, mass M, and specific heat cp, initially at
a uniform temperature T,, is suddenly heated on both surfaces by a convection

process (Tm, h) for a period of time to, following which the plate is insulated.

Assume that the midplane temperature does not reach Too within this period of
time.

(a) Assuming Bi >> 1 for the heating process, sketch and label, on T—x coordi-

nates, the following temperature distributions: initial, steady—state (I —> oo),

T(x, to), and at two intermediate times between t = to and t —> oo.

(b) Sketch and label, on T—t coordinates, the midplane and exposed surface
temperature distributions.

(c) Repeat parts a and b assuming Bi << 1 for the plate.

(d) Derive an expression for the steady-state temperature T(x, oo) = 7}, leaving
your result in terms of plate parameters (M, cp ), thermal conditions (T,., Tm , h),
the surface temperature T(L, t), and the heating time to. '

Lumped Capacitance Method

5.5 ‘Steel balls 12 mm in diameter are annealed by heating to 1150 K and then slowly
cooling to 400 K in an air environment for which Tm = 325 K and h = 20

W/m2 - Ki Assumin the ro erties of the—steel to be k = 40 W/m - K, p ="7800eE P P

k0 m3, and c = 600 J k - K, estimate the time re uired for the coolin process.a S ‘l 8

The heat transfer coefficient for air flowing over a sphere is to be determined by

observing the temperature—time history of a sphere fabricated from pure copper.

The sphere, which is 12.7 mm in diameter, is at 66°C before it is inserted into an

‘ airstream having a temperature of 27°C. A thermocouple on the outer surface of

the sphere indicates 55°C 69 s after the sphere is inserted in the airstream.

Assume, and then justify, that the sphere behaves as a spacewise isothermal object
and calculate the heat transfer coeflicient.

’ A solid steel sphere (AISI 1010), 300 mm in diameter, is coated with a dielectric
material layer of thickness 2 mm and thermal conductivity 0.04 W/m - K. The

Coated sphere is initially at a uniform temperature of 500°C and is suddenly

quenched in a large oil bath for which Tm = 100°C and h = 3300 W/mg - K.
Estimate the time required for the coated sphere temperature to reach 140°C.

Hint: Neglect the effect of energy storage in the dielectric material, since its

thermal capacitance (pcV) is smallcompared to that of the steel sphere.
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5.8 A spherical lead bullet of 6 mm diameter is moving at a Mach number of
approximately 3. The resulting shock wave heats the air around the bullet to 700

K, and the average convection coefiicient for heat transfer between the air and the

bullet is 500 W/ml ~ K. If the bullet leaves the barrel at 300 K and the time of

flight is 0.4 s, what is its surface temperature on impact?

Carbon steel (AISI 1010) shafts of 0.1 m diameter are heat treated in a gas—fired
furnace whose gases are at 1200 K and provide a convection coefficient of 100

W/1112 - K. If the shafts enter the furnace at 300 K, how long must they remain in
the furnace to achieve a centerline temperature of 800 K?

A thermal energy storage unit consists of a large rectangular channel, which is

well insulated on its outer surface and encloses alternating layers of the storage
material and the flow passage.

Each layer of the storage material is an aluminum slab of Width W = 0.05 In,
which is at an initial temperature of 25°C. Consider conditions for which the

storage unit is charged by passing a hot gas through the passages, with the gas
temperature and the convection coefficient assumed to have constant values of

TOO =_600°C and h = 100 W/ml - K throughout the channel. How long will it
take to achieve 75% of the maximum possible energy storage? What is the
temperature of the aluminum at this time?

A leaf spring of dimensions 32 mm by 10 mm by 1.1 m is sprayed with a thin

anticorrosion coating which is heat treated by suspending the spring vertically in
the lengthwise direction and passing it through a conveyor oven maintained at an

air temperature of 175°C. Satisfactory coatings have been obtained on springs,
initially at 25°C, with an oven residence time of 35 min. The coating supplier has
specified that the coating should be treated for 10 min above a temperature of
140°C. How long should a spring of dimensions 76 mm by 35 mm by 1.6 m

remain in the oven in order to properly heat treat the coating? The thermophysi-

cal properties of the spring material are p = 8131 kg/m3, cl, Y= 473 J/kg - K, and
k = 42 W/m - K.

A 3-mm-thick panel of aluminum alloy (k = 177 W/m - K and oz = 73 X 104’
m2/s) is finished on both sides with an epoxy coating that must be cured at or
above 150°C for at least 5 min. The production line for the curing operation
involves two steps: (1) heating in an oven with air at 175°C and a convection
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coefficient of 20 W/m2 - K, and (2) cooling in an enclosure with air at 25°C and a

convection coefiicient of 10 W/m2 - K.

(a) Assuming the panel is initially at 25°C, what is the minimum residence time
for the panel in the oven?

(b) What is the total elapsed time for the tWo—step curing operation if it is

completed when the panel has been cured and cooled to the safe—t0-touch

temperature of 37°C?

A plane wall of a furnace is fabricated from plain carbon steel (k = 60 W/m - K,

p = 7850 kg/m3, c = 430 J/kg - K) and is of thickness L = 10 mm. To protect it
from the corrosive effects of the furnace combustion gases, one surface of the Wall

is coated with a thin ceramic film which, for a unit surface area, has a thermal

resistance of Rf f = 0.01 m2 ~ K/W. The opposite surface is well insulated from
the surroundings.

Ceramic film, , Carbon steel,
Rgf , , A p.c,k,72
Furnace
gases
T,,,, h

‘tit
s.

bx x=L

At furnace start-up the Wall is at an initial temperature of 1} = 300 K, and
combustion gases at Too = 1300 K enter the furnace, providing a convection

coefficient of h = 25 W/m2 - K at the ceramic film. Assuming the film to have

negligible thermal capacitance, how long will it take for the inner surface of the

steel to achieve a temperature of T“. = 1200 K? What is the temperature 111,0 of
the exposed surface of the ceramic film at this time?

In an industrial process requiring high dc currents, water-jacketed copper rods, 20

mm in diameter, are used to carry the current. The water, which flows continu-

ously between the jacket and the rod, maintains the rod temperature at 75°C

during normal operation at 1000 A. The electrical resistance of the rod is known

to be 0.15 S2/m. Problems would arise if the coolant water ceased to be available

(e. g. because of a valve malfunction). In such a situation heat transfer from the

rod surface would diminish greatly, and the rod would eventually melt. Estimate

the time required for melting to occur.

A long wire of diameter D = 1 mm is submerged in an oil bath of temperature

Ta, = 25°C. The wire has an electrical resistance per unit length of R; = 0.01

(2/m. If a current of I = 100 A flows through the wire and the convection

coeflicient is h = 500 W/m2 - K, what is the steady—state temperature of the Wire?

From the time the current is applied, how long does it take for the wire to reach a

temperature which is within 1°C of the steady—state value? The properties of the

Wire are p = 8000 kg/m3, c = 500 J/kg - K, and k = 20 W/m - K.

5.16 Consider the system of Problem 5.1 where the temperature of the plate is

spacewise isothermal during the transient process.
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(a) Obtain an expression for the temperature of the plate as a function of time

T(t) in terms of q;', Too, h, L, and the plate properties p and c.

(b) Determine the thermal time constant and the steady-state temperature for a

12-mm-thick plate of pure copper when T0,, = 27°C, h = 50 W/m2 - K, and

q,’,’ = 5000 W/1112. Estimate the time required to reach steady-state conditions.

5.17 An electronic device, such as a power transistor mounted on a finned heat sink,

can be modeled as a spatially isothermal object with internal heat generation and
an external convection resistance.

(a) Consider such a system of mass M, specific heat c, and surface area AS, which

is initially in equilibrium with the environment at Too. Suddenly, the electronic

device is energized such that a constant heat generation E; (W) occurs. Show
that the temperature response of the device is

where 0 E T — T(oo) and T(oo) is the steady-state temperature correspond-
ing to t—> oo; 0, = 7} — T(oo); 7} = initial temperature of‘device; R =

thermal resistance 1/72A,; and C = thermal capacitance Mc.

(b) An electronic device, which generates 60 W of heat, is mounted on an

aluminum heat sink weighing 0.31 kg and reaches a temperature of 100°C in

ambient air at 20°C under steady-state conditions. If the device is initially at

20°C, what temperature will it reach 5 min after the power is switched on?

Before being injected into a furnace, pulverized coal is preheated by passing it

through a cylindrical tube whose surface is maintained at 7;“, = 1000°C. The coal
pellets are suspended in an airflow and are known to move with a speed of 3 m/s.

If the pellets may be approximated as spheres of 1—mm diameter and it may be

assumed that they are heated by radiation transfer from the tube surface, how

long must the tube be to heat coal entering at 25°C to a temperature of 600°C? Is
the use of the lumped capacitance method justified?

A metal sphere of diameter D, which is at a uniform temperature fl}, is suddenly

removed from a furnace and suspended from a fine wire in a large room with air

at a uniform temperature T“, and the surrounding walls at a temperature T
SUI ‘

(a) Neglecting heat transfer by radiation, obtain an expression for the time

required to cool the sphere to some temperature T.

(b) Neglecting heat transfer by convection, obtain an expression for the time

required to cool the sphere to the temperature T.

(c) How would you go about determining the time required for the sphere to cool

to the temperature T if both convection and radiation are of the same order
of magnitude?

((1) Consider an anodized aluminum sphere (5 = 0.75) 50 mm in diameter, which

is at an initial temperature of 7} = 800 K. Both the air and the surroundings
are at 300 K, and the convection coefficient is 10 W/m2 - K. Calculate and

- compare the time it will take for the sphere to cool to 400 K using the results
of parts a, b, and c.

5.20 As permanent space stations increase in size, there is an attendant increase in the

amount of electrical power they dissipate. To keep station compartment tempera-
tures from exceeding prescribed limits, it is necessary to transfer the dissipated
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heat to space. A novel heat rejection scheme that has been proposed for this
purpose is termed a Liquid Droplet Radiator (LDR). The heat is first transferred

to a high vacuum oil, which is then injected into outer space as a stream of small

droplets. The stream is allowed to traverse a distance L, over which it cools by
radiating energy to outer space at absolute zero temperature. The droplets are
then collected and routed back to the space station. '

Outer space
Tsur = O K

®

'
L

Cold oil return

Consider conditions for which droplets of emissivity is = 0.95 and diameter

D = 0.5 mm are injected at a temperature of CI} = 500 K and a velocity of
V = 0.1 m/s. Properties of the oil are p = 885 kg/m3, c = 1900 J/kg - K, and
k = 0.145 W/m - K. Assuming each drop to radiate to deep space at flu, = 0 K,
determine the distance L required for the droplets to impact the collector at a

final temperature of I} = 300 K. What is the amount. of thermal energy rejected
by each droplet?

Long metallic rods of circular cross section are heat treated by passing an electric

current through the rods to provide uniform volumetric heat generation at a rate 4
(W/m3). The rods are of diameter D and are placed in a large chamber whose
Walls are maintained at the same temperature Tm as the enclosed air. Convection

from the surface of the rods to the air is characterized by the coefficient h.

(a) Obtain an expression that could be used to determine the steady-state
A temperature of the rod.

(b) Neglecting radiation and prescribing an initial (t = 0) rod temperature of
T, = Tm, obtain the transient temperature response of the rod.

A chip that is of length L = 5 mm on a side and thickness 1 = 1 mm is encased in

a ceramic substrate, and its exposed surface is convectively cooled by a dielectric

liquid for which h = 150 W/m2 - K and T00 = 20°C.
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In the ofl'-mode the chip is in thermal equilibrium with the coolant (1? = Too).
When the chip is energized, however, its temperature increases until a new

steady-state is established. For purposes of analysis, the energized chip is charac-

terized by uniform volumetric heating with q = 9 X 106 W/m3. Assuming an
infinite Contact resistance between the chip and substrate and negligible conduc-

tion resistance within the chip, determine the steady-state chip temperature
Following activation of the chip, how long does it take to come within 1°C of this

temperature? The chip density and specific heat are p = 2000 kg/m3 and c = 700

J/kg - K, respectively. _

Consider the conditions of Problem 5.22. In addition to treating heat transfer by

convection directly from the chip to the coolant, a more realistic analysis would

account for indirect transfer from the chip to the substrate and then from the
substrate to the coolant. The total thermal resistance associated with this indirect

route includes contributions due to the chip—substrate interface (a contact resis-

tance), multidimensional conduction in the substrate, and convection from the

surface of the substrate to the coolant. If this total thermal resistance is R, = 200

K/W, what is the steady-state chip temperature 7}? Following activation of the
chip, how long does it take to come within 1°C of this temperature?

One-Dimensional Conduction: The Plane Wall

5.24 Consider the series solution, Equation 5.39, for the plane wall with convection.

Calculate rnidplane (x* = 0) and surface (x* = 1) temperatures 0* for F0 = 0.1

and 1, using Bi = 0.1, 1, and 10. Consider only the first four eigenvalues. Based

on these results discuss the validity of the approximate solutions, Equations 5.40
and 5.41.

Consider the one-dimensional wall shown in the sketch which is initially at a

uniform temperature T, and is suddenly subjected to the convection boundary

condition with a fluid at Too.

Wall, T(x, O) = 7",, Insulation
k, or ,

L

For a particular wall, case 1, the temperature at x = L1 after 11 = 100 s is
Tl(L1, t1) = 315°C. Another wall, case 2, has different thickness and thermal
conditions as shown below.

CASE L(rn) a(m1/s) k(W/m-K) I/}(°C) T°°(°C) ;,(w/m2.K)

1 0.10 15><10-6 50 300 400 200

2 0.40 25><10“’> 100 30 20 100
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How long will it take for the second wall to reach 28.5°C at the position x = L2?

Use as the basis for analysis, the dimensionless functional dependence for

transient temperature distribution as expressed in Equation 5.26.

A large aluminum (2024 alloy) plate of thickness 0.15 m, initially at a uniform

temperature of 300 K, is placed in a furnace having an ambient temperature of
800 K for which the convection heat transfer coefficient is estimated to be 500

W/mz - K.

(a) Determine the time required for the plate midplane to reach 700 K.

(b) What is the surface temperature of the plate for this condition?

(C) Repeat the calculations if the material were stainless steel (type 304).

After a long, hard week on the books, you and your friend are ready to relax. You

take a steak 50 mm thick from the freezer. How long do you have to let the good

times roll before the steak has thawed? Assume that the steak is initially at — 6°C,

that it thaws when the midplane temperature reaches 4°C, and that the room

temperature is 23°C with a convection heat transfer coeflieient of 10 W/m2 - K.

Treat the steak as a slab having the properties of liquid water at 0°C. Neglect the
heat of fusion associated with the melting phase change. ’

A one—dimensional plane wall with a thickness of 0.1 m initially at a uniform

temperature of 250°C is suddenly immersed in an oil bath at 30°C. Assuming the

convection heat transfer coefiicient for the wall in the bath is 500 W/ml - K,

calculate the surface temperature of the wall 9 min after immersion. The proper-

ties of the wall are k = 50 W/m - K, p = 7835 kg/m3, and c = 465 J/kg - K.

5.29 Consider the thermal energy storage unit of Problem 5.10, but with a masonry

material of p = 1900 kg/m3, c = 800 J/kg - K, and k = 0.70 W/m - K used in

place of the aluminum. How long will it take to achieve 75% of the maximum

possible energy storage? What are the maximum and minimum temperatures of

the masonry at this time?

5.30 The wall of a rocket nozzle is of thickness L = 25 mm and is made from a high

5.31

alloy steel for which p = 8000 kg/m3, c = 500 J/kg ~ K, and k = 25 W/m - K.
During a test firing, the wall is initially at T, = 25°C and its inner surface is

exposed to hot combustion gases for which h = 500 W/m2 - K and T0,, = 1750°C.
The outer surface is well insulated.

Nozzle wall

Combustion

D gases

Insulation

If the wall must be maintained at least 100°C below its melting point of

Tmp = 1600°C, what is the maximum allowable firing time tf? The diameter of the
nozzle is much larger than its thickness L.

In a tempering process, glass plate, which is initially at a uniform temperature ,,

is cooled by suddenly reducing the temperature of both surfaces to TS. The plate is
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20 mm thick, and the glass has a thermal dillusivity of 6 X 10‘7 m2/s. One'D"m C

(a) How long will it take for the midplane temperature to achieve 50% of its 5'34 E
maximum possible temperature reduction? 1

(b) If (73. — 7;) = 300°C, what‘ is the maximum temperature gradient in the glass
J, at the above time?

Copper-coated, epoxy—filled fiberglass circuit boards are treated by heating a stack
of them under high pressure as shown in the sketch. The purpose of the

pressing-heating operation is to cure the epoxy which bonds the fiberglass sheets

imparting stiffness to the boards. The stack, referred to as a book, is comprised of

10 boards and 11 pressing plates which prevent epoxy from flowing between the

boards and impart a smooth finish to the cured boards. In order to perform
simplified thermal analyses, it is reasonable to approximate the book as having an

effective thermal conductivity (k) and an effective thermal capacitance (pep).
Calculate the efi"ective properties if each of the boards and plates has a thickness

of 2.36 mm and the following thermophysical properties: board (b) p1, = 1000

kg/m3, cpph = 1500 J/kg - K, kb = 0.30 W/m - K; plate (p) pp = 8000 kg/m3,
c =480J/kg-K,kp=12W/m-K.P~I7

0;:-aw,t3D..d’.'.T‘?‘l'1':1"l'I':i
Applied force

——Platen with
circulating fluid

Metal pressing
plate

\\"&\\\\\\\\\\\\
///////////////// '
 \

Platen

Circuit boards are treated by heating a stack of them under high pressure as
illustrated in Problem 5.32. The platens at the top and bottom of the stack are

maintained at a uniform temperature by a circulating fluid. The purpose of the
pressing—heating operation is to cure the epoxy which bonds the fiberglass sheets
and impart stiffness to the boards. The cure condition is achieved when the epoxy
has been maintained at or above 170°C for at least 5 min. The effective

thermophysical properties of the stack or book (boards and metal pressing plates)
are k = 0.613 W/m — K and pcp = 2.73 X 10° J/m3 - K. M..,,.;.rt..,,_......i.W...n...ii,;~.......‘......,r....,...i.,r.r.«..W...,a...,a.
(a) If the book is initially at 15°C and, following application of pressure, the

platens are suddenly brought to a uniform temperature of 190°C, calculate the
elapsed time te required for the midplane of the book to reach the cure
temperature of 170°C.

(b) If, at this instant of time, I = t5, the platen temperature were reduced
suddenly to 15°C, how much energy would have to be removed from the book

by the coolant circulating in the platen, in order to return the stack to its
initial uniform temperature?
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One-Dimensional Conduction: The Long Cylinder

5.34 Cylindrical steel rods (AISI 1010), 50 mm in diameter, are heat treated by
drawing them through an oven 5 m long in which air is maintained at 750°C. The

rods enter at 50°C and achieve a centerline temperature of 600°C before leaving.
For a convection coefiicient of 125 W/m2 - K, estimate the speed at which the
rods must be drawn through the oven.

Estimate the time required to cook a hot dog in boiling water. Assume that the
hot dog is initially at 6°C, that the convection heat transfer coefficient is 100
W/m2 - K, and that the final temperature is 80°C at the centerline. Treat the hot

dog as a long cylinder of 20—mm diameter having the properties: p = 880 kg/m3,
c = 3350 I/kg - K, and k = 0.52 W/m - K.

A long rod of 60-mm diameter and thermophysical properties p = 8000 kg/m3,
c = 500 J/kg - K and k = 50 W/m - K is initially at a uniform temperature and
is heated in a forced convection furnace maintained at 750 K. The convection

coefficient is estimated to be 1000 W/m2 - K. At a certain time, the surface
temperature of the rod is measured to be 550 K. What is the corresponding center
temperature of the rod?

A long cylinder of 30—mm diameter, initially at a uniform temperature of 1000 K,
is suddenly quenched in a large, constant-temperature oil bath at 350K. The

cylinder properties are k = 1.7 'W/m - K, c = 1600 J/kg ~ K, and p = 400
kg/m3, while the convection coefiicient is 50 W/m2 - K. Calculate the time
required for the surface of the cylinder to reach 500 K.

A long pyroceram rod of diameter 20 mm is clad with a very thin metallic tube for
mechanical protection. The bonding betweenythe rod and the tube has a thermal

contact resistance of Rjyc = 0.12 m - K/W.

—» Thin metallic tube

Ceramic rod

Bonding interface

D=20mm

- If the rod is initially at a uniform temperature of 900 K and is suddenly cooled by
a fluid at Tm = 300 K and h = 100 W/m2 - K, at What time will the rod
centerline reach 600 K?

5.39 A long rod 40 mm in diameter, fabricated from sapphire (aluminum oxide) and
initially at a uniform temperature of 800 K, is suddenly exposed to a cooling
process with a fluid at 300 K having a heat transfer coefficient of 1600 W/mz - K.
After 35 s of exposure to the cooling process, the rod is wrapped in insulation and

experiences no heat losses. What will be the temperature of the rod after a long
period of time?

5.40 A long bar of 70—mm diameter ‘and initially at 90°C is cooled by immersing it in a
water bath which is at 40°C and provides a convection coefficient of 20 W/1111 - K.
The thermophysical properties of the bar are p = 2600 kg/m3, c = 1030 J/kg - K,
and k = 3.50 W/m - K.
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(a) How long should the bar remain in the bath in order that, when it is removed

and allowed to equilibrate while isolated from any surroundings, it achieves a

uniform temperature of 55°C?

(b) What is the surface temperature of the bar when it is removed from the bath?

5.41 A long plastic rod of 30-mm diameter (k = 0.3 W/m - K and pcp = 1040
kl/m3 - K) is uniformly heated in an oven as preparation for a pressing opera-
tion. For best results, the temperature in the rod should not be less than 200°C.

To what uniform temperature should the rod be heated in the oven if, for the

worst case, the rod sits on a conveyor for 3 min while exposed to convection

cooling with ambient air at 25°C and with a convection coefficient of 8 W/mz » K?

A further condition for good results is a maximum-minimum temperature differ-

ence of less than 10°C. Is this condition satisfied and, if not, what could you do to

satisfy it?

P‘ -5ex

i’.~"$1‘”fJ>9."8’Z’+&"E’.>
One-Dimensional Conduction: The Sphere

5.42 In heat treating to harden steel ball bearings (c = 500 I/kg - K, p = 7800 kg/m3,
k = 50 W/m - K), it is desirable to increase the surface temperature for a short

time without significantly warming the interior of the ball. This tyqae of heating

can be accomplished by sudden immersion of the ball in a molten salt bath with

Tm = 1300 K and h = 5000 W/m2 - K. Assume that any location within the ball

whose temperature exceeds 1000 K will be hardened. Estimate the time required
to harden the outer millimeter of a ball of diameter 20 m, if its initial

temperature is 300 K.

A sphere of 80-mm diameter (k = 50 W/m - K and a = 1.5 X 10‘° m2/s) is
initially at a uniform, elevated temperature and is quenched in an oil bath

maintained at 50°C. The convection coeflicient for the cooling process is 1000

W/m2 - K. At a certain time, the surface temperature of the sphere is measured to
be 150°C. What is the corresponding center temperature of the sphere?

A cold air chamber is proposed for quenching steel ball bearings of diameter

D = 0.2 m and initial temperature T, = 400°C. Air in the chamber is maintained

at — 15°C by a refrigeration system, and the steel balls pass through the chamber

on a conveyor belt. Optimum bearing production requires that 70% of the initial

thermal energy content of the ball above ——l5°C be removed- Radiation effects

may be neglected, and the convection heat transfer coefficient within the chamber

is 1000 W/m2 - K. Estimate the residence time of the balls within the chamber,

and recommend, a drive Velocity of the conveyor. The following properties may be

used for the steel: k = 50 W/m - K, or = 2 X lO“5 m2/s, and c = 450 J/kg - K.

A
h\

Chamber
housing

Belt

Stainless steel (AISI 304) ball bearings, which have been uniformly heated to

850°C, are hardened by quenching them in an oil bath that is maintained at 40°C.
The ball diameter is 20mm, and the convection coeflicient associated with the oil

bath is 1000 W/m2 - K.
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Problems 299

(a) If quenching is to occur until the surface temperature of the balls reaches

100°C, how long must the balls be kept in the oil? What is the center

temperature at the conclusion of the cooling period?

(b) If 10,000 balls are to be quenched per hour, what is the rate at which energy

must be removed by the oil bath cooling system in order to maintain its

temperature at 40° C?

A spherical hailstone that is 5 mm in diameter is formed in a high altitude cloud

at — 30°C. If the stone begins to fall through Warmer air at 5°C, how long will it

take before the outer surface begins to melt? What is the temperature of the

stone’s center at this point in time, how much energy (I) has been transferred
to the stone? A convection heat transfer coefiicient of 250 W/m2 - K may be
assumed, and the properties of the hailstone may be taken to be those of ice.

A sphere 30 mm in diameter initially at 800 K is quenched in a large bath having

a constant temperature of 320 K with a convection heat transfer coeflicient of 75
W/m2 - K. The thermophysical properties of the sphere material are: p = 400

kg/m3, c = 1600 J/kg - K, and k = 1.7 W/m - K.

(a) Show, in a qualitative manner on T—t coordinates, the temperatures at the

center and at the surface of the sphere as a function of time.

(b) Calculate the time required for the surface of the sphere to reach 415 K.

(c) Determine the heat flux (W/m2) at the outer surface of the sphere at the time
determined in part b.

(d) Determine the energy (I) that has been lost by the sphere during the process

of cooling to the surface temperature of 415 K.

(e) At thetime determined by part b, the sphere is quickly removed from the bath

and covered with perfect insulation, such that there is no heat loss from the

surface of the sphere. What will be the temperature of the sphere after along

period of time has elapsed?

Spheres A and B are initially at 800 K, and they are simultaneously quenched in

large constant temperature baths, each having a temperature of 320 K. The

following parameters are associated with each of the spheres and their cooling
processes.

SPHERE A SPHERE B

Diameter (mm) 300 30

Density (kg/m3) 1600
Specific heat (kl/kg - K) 0.400

Thermal conductivity (W/m - K) 170

Convection coeflicient (W/m2 - K) 5

(a) Show in a qualitative manner, on T versus t coordinates, the temperatures at

the center and at the surface for each sphere as a function of time. Briefly

explain the reasoning by which you determine the relative positions of the
curves. '

(b) Calculate the time required for the surface of each sphere to reach 415 K.
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(c) Determine the energy that has been gained by each of the baths during the
process of the spheres cooling to 415 K.

5.49 The convection coefficient for flow over a solid sphere may be determined by
submerging the sphere, which is initially at 25°C, into the flow, which is at 75°C,

and measuring its surface temperature at some time during the transient heating

process. The sphere has a diameter of 0.1 m, and its thermal conductivity and

thermal diffusivity are 15 W/m - K and 10’5 rnz/s, respectively. If the convec-
tion coeflicient is 300 W/m2 - K, at what time will a surface temperature of 60°C
be recorded?

Semi-infinite Media

5.50 Two large blocks of different materials, such as copper and concrete, have been

sitting in a room (23°C) for a very long time. Which of the two blocks, if either,
will feel colder to the touch? Assume the blocks to be semi-infinite solids and your
hand to be at a temperature of 37°C.

Asphalt pavement may achieve temperatures as high as 50°C on a hot summer

day. Assume that such a temperature exists throughout the pavement, when

suddenly a rainstorm reduces the surface temperature to 20°C. Calculate the total

amount of energy (J/m2) that will be transferred from the asphalt over a 30-min
period in which the surface is maintained at 20°C.

5.52 A furnace wall is fabricated from fireclay brick (or = 7.1 X l0‘7 ml/s), and its
inner surface is maintained at 1100 K during furnace operation. The wall is

designed according to the criterion that, for an initial temperature of 300 K, its

midpoint temperature will not exceed 325 K after 4 h of furnace operation. What
is the minimum allowable wall thickness?

5.53 A block of material of thickness 20 mm with known thermophysical properties
(k = 15 W/m - K and (X = 2.0 X 10”5 m2/s) is imbedded in the wall of a

channel that is initially at 25°C and is suddenly subjected to a convection process
with gases at 325°C. A thermocouple (TC) is installed 2 mm below the surface of

the channel wall for the purpose of sensing the temperaturc—time history (follow-
ing start—up of the hot gas flow) and thereby determining the transient heat flux.

At an elapsed time of 10 s, the thermocouple indicates a temperature of 167°C.

'\\..W.s,m».i.i;;c..a.i..s....,,.,.,t,;..a,:;s.w,..,;..d«.t.»,,,r\««¢m-vwzu-m,.t.\«m«—-.'...t..'WM
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Problems 301

Calculate the corresponding surface convective heat flux assuming the block

behaves as a semi-infinite solid. Compare this result with that obtained from the
Heisler method of solution. 4

5.54 A tile—iron consists of a massive plate maintained at 150°C by an imbedded

electrical heater. The iron is placed in contact with a tile to soften the adhesive,

allowing the tile to be easily lifted from the subflooring. The adhesive will soften

sufficiently if heated above 50°C for at least 2 min, but its temperature should not
exceed 120°C to avoid deterioration of the adhesive. Assume the tile and subfloor

to have an initial temperature of 25°C and to have equivalent thermophysical

properties of k = 0.15 W/m ~ K and pcp = 1.5 X 10° I/m3 - K.

..-..+—Ti|e, 4—mm thickness

%Subf|ooring, //

(a) How long will it take a worker using the tile-iron to lift a tile? Will the

‘adhesive temperature exceed 120°C?

(b) If the tile—iron has a square surface area 254 mm to the side, how much energy
has been "removed from it during the time it has taken to lift the tile?

The manufacturer of the heat flux gage of the type illustrated in Problem 1.8

claims the time constant for a 63.2% response to be 7 = (4d2pcI,)/772k, where p,
C1,, and k are the thermophysical properties of the gage material and d is its
thickness. Not knowing the origin of this relation, your task is to model the gage

considering the two extreme cases illustrated below. In both cases, the gage,

initially at a uniform temperature 7}, is exposed to a sudden change in surface

temperature, T(0, t) = 7}. For case a the backside of the gage is insulated, and for

case b the gage is imbedded in a se1ni—infinite solid having the same thermophysi-

cal properties as those of the gage.

Same material
as gage

thermocouples

(b)

Develop relationships for predicting the time constant of the gage for the two

cases and compare them to the manufacturer’s relation. What conclusion can you

draw from this analysis regarding the transient response of gages for different

applications? 1 1

A simple procedure for measuring surface convection heat transfer coefficients

involves coating the surface with a thin layer of material having a precise melting

point temperature. The surface is then heated and, by determining the time

required for melting to occur, the convection coeflicient is determined. The
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following experimental arrangement uses the procedure to determine the convec-

tion coeflicient for gas flow normal to a surface. Specifically, a long copper rod is
encased in a super insulator of very low thermal conductivity, and a_ very thin
coating is applied to its exposed surface.

Gas flow T,” h

Surface coating

Copper rod, 4 2k = 400w/m-K, oz :10’ m /5

Super insulator

If the rod is initially at 25°C. and gas flow for which h = 200 W/m2 - K and _ _
Too = 300°C is initiated, what is the melting point temperature of the coating if i . Multldlmenf
melting is observed to occur at t = 400 s? 5_64 A 1

An insurance company has hired you as a consultant to improve their understand— l_ at 3

ing of burn injuries. They are especially interested in injuries induced when a W1"
portion of a Worker’s body comes into contact with machinery that is at elevated 10(

temperatures in the range of 50 to 100°C. Their medical consultant informs them tell
that irreversible thermal injury (cell death) will occur in any living tissue that is 37? 5.65 Fir
maintained at T 2 48°C for a duration‘ At 2 10 s. They want I information if l6(
concerning the extent of irreversible tissue damage (as measured by distance from

the skin surface) as a function of the machinery temperature and the time during
which contact is made between the skin and the machinery. Can you help them?
Assume that living tissue has a normal temperature of 37°C, is isotropic, and has
constant properties equivalent to those of liquid water.

A procedure for determining the thermal conductivity of a solid material involves

embedding a thermocouple in a thick slab of the solid and measuring the response
to a prescribed change in temperature at one surface. Consider an arrangement

,_for which the thermocouple is embedded 10 mm from a surface that is suddenly
brought to a temperature of 100°C by exposure to boiling water. If the initial

temperature of the slab was 30°C and the thermocouple measures a temperature
of 65°C, 2 min after the surface is brought to 100°C, what is its thermal

conductivity? The density and specific heat of the solid are known to be 2200
kg/m3 and 700 I/kg - K.

An electric heater in the form of a sheet is placed in good contact with the surface

of a thick slab of Bakelite having a uniform temperature of 300 K. Determine the

temperature of the slab at the surface and at a depth of 25 mm, 10 min after the

heater has been energized and is providing a constant heat flux to the surface of
2500 W/U12.

5.60 A very thick slab with thermal diffusivity 5.6 X 10’° m2/s and thermal conduc-
tivity 20 W/m - K is initially at a uniform temperature. of 325°C. Suddenly, the
surface is exposed to a coolant at 15°C for which the convection heat transfer

coefficient is 100 W/ml - K. Determine the temperatures at the surface and at a
depth of 45 mm after 3 min has elapsed.

‘My~v«~»-mvv«»a/q;-«>:«\«\=<<b2«>-pewszxu/.s».\4<~z4~x<’»w»eI0?s;‘:S>-N-—aefi£vQv§«0‘?*¢l'!R'§’?*"5l!"fl4'€W%!9#«§=§-9$‘*%V'“‘““l"”"*'5'“'“‘€”“‘-' ~I"'5-'' ~‘'
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Problems 303

5.61 A thick oak wall initially at 25°C, is suddenly exposed to combustion products at
800°C. Determine the time of exposure required for the surface to reach the

ignition temperature of 400°C, assuming the convection heat transfer coefficient

between the wall and products to be 20 W/1112 - K.

It is well known that, although two materials are at the same temperature, one

may feel cooler to the touch than the other. Consider thick plates of copper and

glass, each at an initial temperature of 300 K. Assuming your finger to be at an

initial temperature of 310 K and to have thermophysical properties of p = 1000
kg/m3, c = 4180 J/kg - K and k = 0.625 W/m - K, determine whether the

copper or the glass will feel cooler to the touch.

Two stainless steel plates (p = 8000 kg/m3, c = 500 J/kg - K, k = 15 W/m ~ K),
each 20 mm thick and insulated on one surface, are initially at 400 and 300 K

when they are pressed together at their uninsulated surfaces. What is the tempera-

ture of the insulated surface of the hot plate after 1 min has elapsed?

Multidimensional Conduction

5.64 A long steel (plain carbon) billet of square cross section 0.3 In by 0.3 m, initially

at a uniform temperature of 30° C, is placed in a soaking oven having a tempera-

ture of 750°C. If the convection heat transfer coefficientfor the heating process is

‘ 100 W/m2 ~ K, how long must the billet remain in the oven before its center
temperature reaches 600°C?

5.65 Fireclay brick of dimensions 0.06 m X 0.09 m X 0.20 m is removed from a kiln at

1600 K and cooled in air at 40°C with h = 50W/m2 - K. What is the tempera-
ture at the center and at the corners of the brick after 50 min of cooling?

5.66 A cylindrical copper pin 100 mm long and 50 mm in diameter is initially at a

uniform temperature of 20°C. The end faces are suddenly subjected to an intense

heatingrate that raises them to a temperature of 500°C. At the same time, the

cylindrical surface is subjected to heating by gas flow with a temperature 500°C

and a heat transfer coeflicient 100 W/1112 - K.

Gas flow

Jail

 & 
K: 100 mm%1

(a) Determine the temperature at the center point of the cylinder 8 s after sudden

application of the heat.

(b) Considering the parameters governing the temperature distribution in tran-

sient heat ditfusion problems, can any simplifying assumptions be justified in

analyzing this particular problem? Explain briefly.

5.67 Recalling that your mother once said that meat should be cooked until every

portion has attained a temperature of 80°C, how 1ong\will it take to cook a
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2.25-kg roast? Assume that the meat is initially at 6°C and that the oven

temperature is 175°C with a convection heat transfer coefficient of 15 W/m2 - K.

Treat the roast as a cylinder with properties of liquid water, having a diameter
equal to its length.

5.68 A long rod 20 mm in diameter is fabricated from alumina (polycrystalline
aluminum oxide) and is initially at a uniform temperature of 850 K. The I/Od is

suddenly exposed to fluid at 350 K with h = 500 W/m2 - K. Estimate the

centerline temperature of the rod after 30 s at an exposed end and at an axial
distance of 6 mm from the end.

Finite-Difference Solutions

5.69 The stability criterion for the explicit method requires that the coefficient of the

77,11’ term of the ’one»dimensional, finite-difference equation be zero or positive.

Consider the situation for which the temperatures at the two neighboring nodes

(7j,€_1,7:,€+1) are 100°C while the center node (T5) is at 50°C. Show that for

values of F0 > %, the finite—difl‘erence equation will predict a value of Tnfll that
violates the second law of thermodynamics.

A thin rod of diameter D is initially in equilibrium with its surroundings, a large
Vacuum enclosure at temperature, Tm. Suddenly an electrical current I (A) is
passed through the rod having an electrical resistivity pg and emissivity 2. Other
pertinent thermophysical properties are identified in the sketch. Derive the

transient, finite—difierence equation for node m. (

t<~Axe-1<—Ax—>1 5 T5“ 1
Om-—l m Om+ *“——I-A

Tm "Pei Pv C: k

A tantalum rod of diameter 3 mm and length 120 mm is supported by two

electrodes within a large vacuum enclosure. Initially the rod is in equilibrium with

the electrodes and its surroundings, which are maintained at 300 K. Suddenly, an

electrical current, I = 80 A, is passed through the rod. Assume the emissivity of
the rod is 0.1 and the electrical resistivity is 95 X 104‘ S2 - n1. Use Table A.l to

obtain the other thermophysical properties required in your solution. Use a
finite—difference method with a space increment of 10 mm.

El ectrod e,
300 K

Surroundings, Tsu,
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Problems 305

(a) Estimate the time required for the midlength of the rod to reach 1000 K.

(b) Determine the steady—state temperature distribution and estimate approxi-

mately how long it will take to reach this condition.

5.72 A one—dimensional slab of thickness 2L is initially at a uniform temperature T,-.
Suddenly, electric current is passed through the slab causing a uniform volumetric

heating q (W/m3). At the same time, both outer surfaces (x = i L) are subjected

to a convection process at Tm with a heat transfer coeflicient h.

I
—L

l
I +L

LN

Write the finite—difference equation expressing conservation of energy for node 0

located on the outer surface at x = —L. Rearrange your equation and identify

any important dimensionless ‘coefficients.

5.73 A wall 0.12 In thick having a thermal diffusivity of 1.5 X 10‘° ‘m2/s is initially at
a uniform temperature of 85°C. Suddenly one face is lowered to a temperature of

20°C, while the other face is perfectly insulated. Using a numerical method with

space and time increments of 30 mm and 300 s, respectively, determine the

temperature distribution within the Wall after 45 min have elapsed.

5.74 A large plastic casting with thermal diffusivity 6.0 X 10‘7 ml/s is removed from

its mold at a uniform temperature of 150°C. The casting is then exposed to a

high—ve1ocity airstream such that the surface experiences a sudden change in

temperature to 20°C. Assuming the casting approximates a semi-infinite medium

and using a finite-difference method with a space increment of 6 mm, estimate the

temperature at a distance 18 mm from the surface after 3 min have elapsed. Verify

your result by comparison with the appropriate analytical solution.

5.75 A very thick plate with thermal diffusivity 5.6 X l0"° m2/s and thermal conduc-
tivity 20 W/m ~ K is initially at a uniform temperature of 325°C. Suddenly, the

surface is exposed to a coolant at 15 °C for which the convection heat transfer

coefficient is 100 W/m2 - K. Using the finite-difference method with a space
increment of Ax = 15 mm and a time increment of 18 s, determine temperatures

at the surface and at a depth of 45 mm after 3 min have elapsed.

5.76 Consider the fuel element of Example 5.6. Initially, the element is at a uniform

temperature of 250°C with no heat generation. Suddenly, the element is inserted

into the reactor core causing a uniform Volumetric heat generation rate of q = 108

W/m3. The surfaces are.convectively cooled with Tm = 250°C and h = 1100

W/ml - K. Using the explicit method with a space increment of 2 mm, determine

the temperature distribution 1.5 s after the element is inserted into the core.

5.77 A plane wall of thickness 100 mm with a uniform volumetric heat generation of

6] = 1.5 X 10° W/m3 is exposed to convection conditions of Too = 30°C and
h = 1000 W/m2 - K on both surfaces. The wall is maintained under steady—state
conditions when, suddenly, the heat generation level (zj) is reduced to zero. The

thermal diflusivity and thermal conductivity of the Wall material are 1.6 X 10‘°

n12/s and 75 W/m - K. A space increment of 10 mm is suggested.
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(a) Estimate the midplane temperature 3 min after the generation has been
switched off.

(b) Plot on T—x coordinates the temperature distribution obtained in part (a).
Show also the initial and steady-state temperature distributions for the wall.

5.78 For the conditions described in Example 5.6, use the finite-difference method to
estimate the temperature at the midplane (x = 0) 20 s after the power level has
been changed from ()1 to 42.

5.79 A thin circular disk is ‘subjected to induction heating from a coil, the effect of
which is to provide a uniform heat generation within a ring section as shown.
Convection occurs at the upper surface, while the lower surface is well insulated.

(a) Derive the transient, finite-difference equation for node m, which is Within the
region subjected to induction heating.

(b) On T—r coordinates sketch, in a qualitative manner, the steady—state tempera-
ture distribution, identifying important features.

5.80 An electrical cable, experiencing a uniform volumetric generation 4, is half buried
in an insulating material while the upper surface is exposed to a convection
progess (Too, h).

om, n+1
——i>
—«{> T°°,h
~4>

(a) Derive the explicit, finite—difl"erence equations for an interior node (m, n), the
center node (m = 0), and the outer surface nodes (M, n) for the convection
and insulated boundaries.

(b) Obtain the stability criterion for each of the finite-difference equations.
Identify the most restrictive criterion.
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ation has been I“ 5.81 One end of a stainless steel (AISI 316) rod of diameter 10 mm and length 0.16 m
is inserted into a fixture maintained at 200°C. The rod, covered with an insulating

led in part (a)_ 5 7 sleeve, reaches a uniform temperature throughout its length. When the sleeve is
us for the Wall‘ removed, the rod is subjected to ambient air at 25°C such that the convection heat
Once method to transfer coeflicient is 30 W/m2 - K. Using a numerical technique, estimate the‘
gower level has 5 time required for the midlength of the rod to reach 100°C.

The cross section of an oven Wall is composed of 30-mm-thick insulation sand-

,i1, the effect of . wiched between two thin (1.5—mm—thick) stainless steel sheets. Under steady-state
,n as shown. 7 1 conditions, the oven is operating with an inside air temperature of Too, 1. = 150°C
;We11‘msu1ated_ 5; and an ambient air temperature of Tom, = 20°C with hi = 100 W/m2 - K and

ha = 10 W/m2 - K. When the oven heater level is changed and the fan speed
changed to substantially increase air circulation within the oven, the inside surface

of the oven experiences a sudden temperature change to 100°C. The insulation
has a thermal conductivity of 0.03 W/m - K and a thermal dilfusivity of 7.5 X

10‘7 ml/s. In your finite-difference solution, use a space increment of 6 mm.
Assume that the effect of the stainless steel sheets is negligible and that the

outside convection heat transfer coeflicient ho remains unchanged. Estimate the

time required for the oven wall to approximate steady—state conditions after

the inner wall temperature is changed to 100°C.

—Circulating fan
Heater assembly

Lch is within the . «» |nsUlafiOn
Sheet metal

I-state tempera-

Q, is half buried

0 3 convection ' Two very long (in the direction normal to the page) bars having the prescribed
initial temperature distributions are to be soldered together (see next page). At
time t = O, the m = 3 face of the copper (pure) bar contacts the m = 4 face of the

steel (AISI 1010) bar. The solder and flux act as an interfacial layer of negligible
thickness and effective contact resistance R26 = 2 X 10‘5 m2 - K/W.

Initial Temperatures (K)

n/m 1 2 3 4 5 6

700 700 700 1000 900 800

700 800 1000 900 800

700 700 700 1000 900 800

rode (m, n), the
' the convection

(a) Derive the explicit, finite—difference equation in terms of F0 and Bit. =

mce equatiolm Ax/kRjf (. for 7}“ and determine the corresponding stability criterion.
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Interface with
solder and flux

Steel,
AISI 1010

Ax=Ay=20mrn

(b) Using F0 = 0.01, determine 72,1 one time step after contact is made. What is
At? Is the stability criterion satisfied? ’

5.84 Referring to Example 5.7, Comment 4, consider a sudden exposure of the surface
to large surroundings at an elevated temperature (Tm) and to convection (Too, h).

(a) Derive the explicit, finite-difference equation for the surface node in terms of
F0, B2‘, and Bi,

(b) Obtain the stability criterion for the surface node. Does this criterion change
with time? Is the criterion more restrictive than that for an interior node?

(c) A thick slab of material (k = 1.5 W/m - K, or = 7 X 10"7 m2/s, E = 0.9),
initially at a uniform temperature of 27°C, is suddenly exposed to large
surroundings at 1000 K. Neglecting convection and using a space increment
of 10 mm, determine temperatures at the surface and 30 mm from the surface
after an elapsed time of 1 min. ‘

Consider the system of Problem 4.58. Initially with no flue gases flowing, the walls
(or = 5.5 X 10“6 ml/s) are at a uniform temperature of 25°C. Using the implicit,
finite—dilTerence method with a time increment of 1 h, find the temperature
distribution in the wall 1, 2, 5, and 20 h after introduction of the flue gases.

Consider the system of Problem 4.66. Initially, the ceramic plate (or = 1.5 X 10”“
ml/s) is at a uniform temperature of 30°C, and suddenly the electrical heating
elements are energized. Using the implicit, finite—di1Terence method, estimate the
time required for the difference between the surface and initial temperatures to
reach 95% of the difference for steady-state conditions. If you Write a computer
program, use a time increment of 2 s; otherwise use 50 s.

Consider the bonding operation described in Problem 3.79, which was analyzed
under steady-state conditions. In this case, however, the laser will be used to heat
the film for a prescribed period of time, creating the transient heating situation
shown in the sketch.
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The strip is initially at 25°C and the laser provides a uniform flux of 85,000

W/m2 over a time interval of Atom = 10 s. The system dimensions and thermo~
physical properties remain the same, but the convection eoeflicient to the ambient

air at 25°C is now 100 W/m2 - K.

(21) Using an implicit finite—difference method with Ax = 4 mm and At = 1 s,

obtain temperature histories for 0 3 t 3 30 s at the center and film edge,

T(O, t) and T(w1/2, I), respectively, to determine if the adhesive is satisfacto-

rily cured above 90°C for 10 s and if its degradation temperature of 200°C is
exceeded.

(b) Validate your program code by comparing it against the steady—state results of

Problem 3.79. What type of analytical solution would you seek in order to test

the proper transient behavior of your code?

5.88 Circuit boards are treated by heating a stack of them under high pressure as
illustrated in Problem 5.32 and described further in Problem 5.33. A finite-

difference method of solution is sought with two additional considerations. First,

the book is to be treated as having distributed, rather than lumped characteristics,

by using a grid spacing of Ax = 2.36 mm with nodes at the center of the

individual circuit board or plate. Second, rather than bringing the platens —to

190°C in one sudden change, the heating schedule Zl;,(z) shown below is to be
used in order to minimize excessive thermal stresses induced by rapidly changing

thermal gradients in the vicinity of the platens. ‘
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Problems 309

Laser source, qg

mm

The strip is initially at 25°C and the laser provides a uniform flux of 85,000

W/ml over a time interval of Alon = 10 s. The system dimensions and thermo-
physical properties remain the same, but the convection coefficient to the ambient

air at 25°C is now 100 W/ml - K.

(21) Using an implicit finite—diflerence method with Ax = 4 mm and At = l s,

obtain temperature histories for O 5 1‘ 5 30 s at the center and film edge,

T(0, t) and T( wl/2, 2‘), respectively, to determine if the adhesive is satisfacto-

rily cured above 90°C for 10 s and if its degradation temperature of 200°C is
exceeded.

(b) Validate your program code by comparing it against the steady—state results of

Problem 3.79. What type of analytical solution would you seek in order to test

the proper transient behaviorvof your code?

5.88 Circuit boards are treated by heating a stack of them under high pressure as
illustrated in Problem 5.32 and described further in Problem 5.33. A finite-

difference method of solution is sought with two additional considerations. First,

the book is to be treated as having distributed, rather than lumped characteristics,

by using apgrid spacing of Ax = 2.36 mm with nodes at the center of the

individual circuit board or plate. Second, rather than bringing the platens to

190°C in one sudden change, the heating schedule TP(t) shown below is to be
used in order to minimize excessive thermal stresses induced by rapidly changing

thermal gradients in the vicinity of the platens.
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(a) Using a time increment of At = 60 s and the implicit method, find the
temperature history of the midplane of the book and determine whether

curing will occur (l70°C for 5 min).

(b) Following the reduction of the platen temperatures to 15°C (I = 50 min), how
long will it take for the midplane of the book to reach 37°C, a safe
temperature at which the operator can begin unloading the press?

(c) Validate your program code by using the heating schedule of a sudden change
of platen temperature from 15 to 190°C and compare results with those from

an appropriate Heisler solution (see Problem 5.33).

Consider the thermal conduction module and operating conditions of Problem
4.71. To evaluate the transient response of the cold plate, which has a thermal
diffusivity of or = 75 X 10*‘ ml/s, assume that, when the module is activated at

t = 0, the initial temperature of the cold plate is 7} = 15°C and a uniform heat
flux of qf,’ = 105 W/m2 is applied at its base. Using the implicit finite~difl"erence
method and a time increment of At = 0.1 s, compute the designated nodal
temperatures as a function of time. From the temperatures computed at a
particular time, evaluate the ratio of the rate of heat transfer by convection to the
water to the heat input at the base. Terminate the calculations when this ratio

reaches 0.99. Print the temperature field at 5-s intervals and at the time for which
the calculations are terminated.
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