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226 Chapter 5 Transient Conduction

In our treatment of conduction we have gradually considered more compli-

cated conditions. We began with the simple case of one-dimensional, steady- cclglc]rveeaiz
state conduction with no internal generation, and we subsequently considered lumped
complications due to multidimensional and generation effects. However, we solid is
have not yet considered situations for which conditions change with time. assumpt
We now recognize that many heat transfer problems are time dependent. Fro
Such unsteady, or transient, problems typically arise when the boundary gradient
conditions of a system are changed. For example, if the surface temperature of tion is ¢
a system is altered, the temperature at each point in the system will also begin exactly,
to change. The changes will continue to occur until a steady-state temperature solid is
distribution is reached. Consider a hot metal billet that is removed from a and its
furnace and exposed to a cool airstream. Energy is transferred by convection In
and radiation from its surface to the surroundings. Energy transfer by conduc- conside |
tion also occurs from the interior of the metal to the surface, and the the tra
temperature at each point in the billet decreases until a steady-state condition g energy
is reached. Such time-dependent effects occur in many industrial heating and " the sur
cooling processes. 111a t¢
To determine the time dependence of the temperature distribution within
a solid during a transient process, we could begin by solving the appropriate -
form of the heat equation, for example, Equation 2.13. Some cases for which or
solutions have been obtained are discussed in Sections 5.4 to 5.8. However,
such solutions are often difficult to obtain, and where possible a simpler —
approach is preferred. One such approach may be used under conditions for
‘which temperature gradients within the solid are small. It is termed the lumped Introdh
capacitance method.
by
5.1 THE LUMPED CAPACITANCE METHOD and re
A simple, yet common, transient conduction problem is one in which a solid P
experiences a sudden change in its thermal environment. Consider a hot metal h
forging that is initially at a uniform temperature 7; and is quenched by ‘
immersing it in a liquid of lower temperature 7, < T; (Figure 5.1). If the § Separ:
quenching is said to begin at time ¢ = 0, the temperature of the solid will i and T
% [
i where
: | 0
Eout= qconv |
Evalu

Figure 5.1 Cooling of a hot metal forging.
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51 The Lumped Capacitance Method =~ 227

decrease for time ¢ > 0, until it eventually reaches T . This reduction is due to
convection heat transfer at the solid-liquid interface. The essence of the
lumped capacitance method is the assumption that the temperature of the
solid is spatially uniform at any instant during the transient process. This
assumption implies that temperature gradients within the solid are negligible.

From Fourier’s law, heat conduction in the absence of a temperature
gradient implies the existence of infinite thermal conductivity. Such a condi-
tion is clearly impossible. However, although the condition is never satisfied
exactly, it is closely approximated if the resistance to conduction within the
solid is small compared with the resistance to heat transfer between the solid
and its surroundings. For now we assume that this is, in fact, the case.

In neglecting temperature gradients within the solid, we can no longer
consider the probiem from within the framework of the heat equation. Instead,
the transient temperature response is determined by formulating an overall

energy balance on the solid. This balance must relate the rate of heat loss at |

the surface to the rate of change of the internal energy. Applying Equation
1.11a to the control volume of Figure 5.1, this requirement takes the form

—Eout = Est (51)
or

dT
—hA (T~ T,) = pVe—- (5.2)
Introducing the temperature difference |

and recognizing that (d6/dt) = (dT/dt), it follows that
oVe db

hA, dt

Separating variables and integrating from the initial condition, for which ¢ = 0
and T(0) = T, we then obtain

Ve ,9d
e .
hA, Y, 0 0

where

G

ey

g



228 Chapter 5 Transient Conduction

1, i =
t
1 T2 T3 Tt4 | Figure !
Figure 5.2 Transient temperature response of ? lumped
lumped capacitance solids corresponding to L
different thermal time constants r,. Tc
- simply
or
L [ (hAH . - ¢
e e peemene S DOL ) AFA TR T ‘
o Uin, I, S Vel | el 1 Substit
Equation 5.5 may be used to determine the time required for the solid to reach |
some temperature T, or, conversely, Equation 5.6 may be used to compute the '; i 0
temperature reached by the solid at some time ¢.

The foregoing results indicate that the difference between the solid and
fluid temperatures must decay exponentially to zero as ¢ approaches infinity. | The qu
This behavior is shown in Figure 5.2. From Equation 5.6 it is also evident that - solid,
the quantity (pVc/hA,) may be interpreted as a thermal time constant. This
time constant may be expressed as %

o sz(hA )(ch}# RC e o " (5.7) g Equat
where R, is the resistance to convection heat transfer and C, 1s the lumped % Increa |
thermal capacitance of the solid. Any increase in R . or C, will cause a solid to § -
respond more slowly to changes in its thermal environment and will increase ‘ § 52 VAL
the time required to reach thermal equilibrium (0 =0). %

It is useful to note that the foregoing behavior is analogous to the voltage From
decay that occurs when a capacitor is discharged through a resistor in an | using
electrical RC circuit. Accordingly, the process may be represented by an conve
equivalent thermal circuit, which is shown in Figure 5.3. With the switch closed 0 Henc
the solid is charged to the temperature 6,. When the switch is opened, the g reasor
energy that is stored in the solid is discharged through the thermal resistance i 1
and the temperature of the solid decays with time. This analogy suggests that the p.
RC electrical circuits may be used to determine the transient behavior of condi
thermal systems. In fact, before the advent of digital computers, RC circuits surfa
were widely used to simulate transient thermal behavior, a flui
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5.2 Validity of the Lumped Capacitance Method 229

t=0
—O%/C
t<0
= 1 1
— 6; Ci=pVe = Ry = e
g 8
0=.0

Figure 53 Equivalent thermal circuit for a
lumped capacitance solid.

To determine the total energy transfer Q occurring up to some time ¢, we
simply write :

0= fotth=hASfOt0a’t

Substituting for 6 from Equation 5.6 and integrating, we obtain

The quantity Q is, of course, related to the change in the internal energy of the
solid, and from Equatlon 1.11b

- “"(SL"$a) ,

0= AE s 8b)
For quenchmg Q is pos1t1ve and the sohd experiences a decrease in energy.
Equatlons 5.5, 5.6, and 5.8a also apply to situations where the solid is heated
(6 <0), in which case Q is negative and the internal energy of the solid
increases.

VALIDITY OF THE LUMPED CAPACITANCE METHOD

From the foregoing results it is easy to see why there is a strong preference for
using the lumped capacitance method. It is certainly the simplest and most
convenient method that can be used to solve transient conduction problems.
Hence it is important to determine under what cond1t1ons it may be used with
reasonable accuracy.

To develop a suitable criterion consider steady-state conduction through
the plane wall of area A (Figure 5.4). Although we are assuming steady-state
conditions, this criterion is readily extended. to transient processes. One
surface is maintained at a temperature T, ; and the other surface is exposed to
a fluid of temperature T, < T, ;. The temperature of this surface will be some
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Qeond—P

T h

To, h

Figure 54 Effect of Biot number on | l

| " ?ﬁléf steady-state temperature distribution in a t
Loy L I " plane wall with surface convection.
, | 4 Figure
4 . wall s
intermediate value, 7, ,, for which T, < T; , < T, ;. Hence under steady-state ’
conditions the surface energy balance, Equation 1.12, reduces to . numk
kA tempc -
"i—(Ts,l - T:,z) = hA(Ts,z - T,) _ ' o the t¢
. .. . . . , temp!
where k is the thermal conductivity of the solid. Rearranging, we then obtain , Jarge
Ta=To U/kA) Rew B G 0 o
1, "Too ] (1/hA) Rconv Tk B : % surfa
The quantity (hL/k) appearing in Equation 5.9 is a dimensionless param- % "
eter. It is termed the Bior number, and it plays a fundamental role in . capac
conduction problems that involve surface convection effects. According to solvis
Equation 5.9 and' as illustrated in Figure 5.4, the Biot number provides a L prol;]
measure of the temperature drop in the solid relative to the temperature 1 the fi
difference between the surface and the fluid. Note especially the conditions %
corresponding to Bi < 1. The results suggest that, for these conditions, it is
reasonable to assume a uniform temperature distribution across a solid at any
time during a transient process. This result may also be associated with - the €
interpretation of the Biot number as a ratio of thermal resistances, Equation conv -
5.9. If Bi <1, the resistance to conduction within the solid is much less than the ‘ as th
resistance to convection across the fluid boundary layer. Hence the assumption of o facili
a uniform temperature distribution is reasonable. * half-
We have introduced the Biot number because of its significance to long
transient conduction problems. Consider the plane wall of Figure 5.5, which is ‘ the ¢
initially at a uniform temperature T, and experiences convection cooling when scale
it is immersed in a fluid of 7, < T,. The problem may be treated as one ‘ ingly |
dimensional in x, and we are interested in the temperature variation with ‘ wou.
position and time, T(x, t). This variation is a strong function of the Biot sphe
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5.2 Validity of the Lumped Capacitance Method ~ 231

L T(x, 0) =V'T,-; L T(x, 0) = T; !
I 0l

' /"1‘\
| |
¢ s

1 T, — Tw T ' T,
| | ~L L -L | L -L 'L
-L L
x BiK1 Biz1 Bi>>1
T2 T(t) T=T(x,t) T=T(x,t)

Figure 5.5 Transient temperature distribution for different Biot numbers in a plane
wall symmetrically cooled by convection.

number, and three conditions are shown in Figure 5.5. For Bi < 1 the
temperature gradient in the solid is small and T(x, ¢) = T(¢). Virtually all
the temperature difference is between the solid and the fluid, and the solid
temperature remains nearly uniform as it decreases to T,. For moderate to
large values of the Biot number, however, the temperature gradients within the
solid are significant. Hence T = T(x, t). Note that for Bi > 1, the tempera-
ture difference across the solid is now much larger than that between the
surface and the fluid.

We conclude this section by emphasizing the importance of the lumped
capacitance method. Its inherent simplicity renders it the preferred method for
solving transient conduction problems. Hence, when confronted with such a
problem, the very first thing that one should do is calculate the Biot number. 1f
the followmg condmon is sat1sﬁed

hL
;k_

the error assoc1ated Wlth using the lumped capac1tance method is small For
convenience, it is customary to define the characteristic length of Equation 5.10
as the ratio of the solid’s volume to surface area, L, = V/A,. Such a definition
facilitates calculation of L_ for solids of complicated shape and reduces to the
half-thickness L for a plane wall of thickness 2L (Figure 5.5), to r,/2 for a
long cylinder, and to r,/3 for a sphere. However, if one wishes to implement
the criterion in a conservative fashion, L_ should be associated with the length
scale corresponding to the maximum spatial temperature difference. Accord-
ingly, for a symmetrically heated (or cooled) plane wall of thickness 2L, L,
would remain equal to the half-thickness L. However, for a long cylinder or
sphere, L, would equal the actual radius r,, rather than r,/2 or r,/3.

-‘B‘zj - (510)




232 Chapter 5 Transient Conduction

-0 O

Finally, we note that, with L, = V/A,, the exponent of Equation 5.6 may Schem !
be expressed as

hA t ht hL, k ¢ hL, at o= 2C

ch_chc_ k chf—— k L? < h_éf
or -

Gas ¢

e Bi - F. ' (5.11)

N7 i - Fo .

where A ssum
3 s L & e e ( ) | 2. R

is termed the Fourier number. It is a dimensionless time, which, with the Biot ’

number, characterizes transient conduction problems. Substituting Equation 4.

5.11 into 5.6, we obtain ' 0
i 7 E Analy
T T°° = exp (- Bi - Fo) (5.13)

4 1 [eo] ‘ 31 1. B

.;é tl
EXAMPLE 5.1 .
|

A thermocouple junction, which may be approximated as a sphere, is to be U

used for temperature measurement in a gas stream. The convection coefficient %

between the junction surface and the gas is known to be & = 400 W/m? - K, |

and the junction thermophysical properties are k = 20 W/m-K, ¢c=400" .

J/kg - K, and p = 8500 kg/m’. Determine the junction diameter needed for

the thermocouple to have a time constant of 1 s. If the junction is at 25°C and . ]

is placed in a gas stream that is at 200°C, how long will it take for the junction o :

to reach 199°C?

SOLUTION

Known: Thermophysical properties of thermocouple junction used to mea-
sure temperature of a gas stream.

Find:

1. Junction diameter needed for a time constant of 1s.
2. Time required to reach 199°C in gas stream at 200°C.

Page 12 of 92




5.2 Validity of the Lumped Capacitance Method ~ 233

A SN 5 0 o

tion 5.6 may i Schematic:
Leads
T, = 200°C
, = 400 W/m? -K Thermocouple{ & =20 W/m-K
—> junction ¢ =400J/kg- K
- T; = 25°C | p = 8500 kg/m’
—
Gas stream \(— [)»‘
(5.11)
Assumptions:
. (512) 1. Temperature of junction is uniform at any instant.
: - 2. Radiation exchange with the surroundings is negligible.
/ith the Biot 3. Losses by conduction through the leads are negligible.
1g Equation 4. Constant properties.
, Analysis:
(5.13)

1. Because the junction diameter is unknown, it is not possible to begin
the solution by determining whether the criterion for using the lumped
capacitance method, Equation 5.10, is satisfied. However, a reasonable
approach is to use the method to find the diameter and to then
determine whether the criterion is satisfied. From Equation 5.7 and the

xre, is to be fact that A, = #D? and ¥ = «D>/6 for a sphere, it follows that

n coefficient

W/m? - K 3

? 1 D
K, ¢ =400 T, = 2Xp77 c
' needed for haD 6
at 25°C and R . d substituti :cal val
the junction’ earranging and substituting numerical vaiues,

D 6h, 6 X 400 W/m?- K X 1s 706 % 10~
= ] = /[ X - <
pc 8500 kg/m® X 400 J/kg - K com
| With L, =r,/3 it then follows from Equation 5.10 that
to mea-

5 h(r,/3) 400 W/m?-K X353 X107 m
1 = =

=235 %107
k T 3x20W/m-K

Accordingly, Equation 5.10 is satisfied (for L,=r,, as well as for
L,=r,/3) and the lumped capacitance method may be used to an

excellent approximation.

Page 13 0f 92




234  Chapter 5 Transient Conduction

2. From Equation 5.5 the time required for the junction to reach T = heat fli
199°C is the ter
o surrou
p(7D°/6)c T,~T, pDc o i L | are in
" h(=D?) "T-1, 6 "T-T, transfc
respec
8500 kg/m’ X 7.06 X 10~ m X 400 J/kg - K 25— 200 surfac:
6 X 400 W/m? - K 199 — 200 | Equat |
t=52s= 51 | 4
Comments: Heat losses due to radiation exchange between the junction ~
and the surroundings and conduction through the leads would necessitate or, frc |
using a smaller junction diameter to achieve the desired time response.
q
5.3 GENERAL LUMPED CAPACITANCE ANALYSIS - t
neous
Although transient conduction in a solid is commonly initiated by convection - exact
heat transfer to or from an adjoining fluid, other processes may induce | VEISIO
transient thermal conditions within the solid. For example, a solid may be generi
separated from large surroundings by a gas or vacuum. If the temperatures of relati
the solid and surroundings differ, radiation exchange could cause the internal
thermal energy, and hence the temperature, of the solid to change. Tempera-
ture changes could also be induced by applying a heat flux at a portion, or all, -
of the surface and /or by initiating thermal energy generation within the solid. Separ
Surface heating could, for example, be applied by attaching a film or sheet follov
electrical heater to the surface, while thermal energy could be generated by
passing an electrical current through the solid.
. Figure 5.6 depicts a situation for which thermal conditions within a solid
may be simultaneously influenced by convection, radiation, an applied surface Eval =
. valt
Surroundings temp -
Tour :
i 4—‘ Te B , This
' | T
As(c, r
Figure 5.6 Contral surface for general .
lumped capacitance analysis. deriv:
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5.3 General Lumped Capacitance Analysis 235

heat flux, and internal energy generation. It is presumed that, initially (z = 0),
the temperature of the solid (7;) differs from that of the fluid, 7., and the
surroundings, T,,., and that both surface and volumetric heating (¢;" and §)
are initiated. The imposed heat flux ¢/ and the convection-radiation heat
transfer occur at mutually exclusive portions of the surface, 4, and 4 ,),
respectively, and convection-radiation transfer is presumed to be from the
surface. Applying conservation of energy at any instant ¢, it follows from
Equation 1.11a that

. dar
q;/As,h + Eg - (qc/:imv + q;/ad)As(c, r) = PVC“E (514)

or, from Equations 1.3a and 1.7,

. dar
g/, + By = [W(T = T,) + eo(T* = Ti) [ Ay = oV
Unfortunately, Equation 5.15 is a nonlinear, first-order, nonhomoge-
neous, ordinary differential equation which cannot be integrated to obtain an
exact solution.! However, exact solutions may be obtained for simplified
versions of the equation. For example, if there is no imposed heat flux or
generation and convection is either nonexistent (a2 vacuum) or negligible
relative to radiation, Equation 5.15 reduces to

dT
dt

(5.15)

pVe— = —ed, o(T* - Tj,) (5.16)
Separating variables and integrating from the initial condition to any time ¢, it
follows that

EAs,ro ? T dT .
Tl 617

sur

Evaluating both integrals and rearranging, the time required to reach the
temperature T becomes

pVe
t= 5~ {In
ded, o1,

sur

n|————
T — T,

sur 1

+2[tan'1 ( TT) ~ tan™! (—%)]} (5.18)

This expression cannot be used to evaluate T explicitly in terms of t, T;, and

T.,., nor does it readily reduce to the limiting result for T;,, = 0 (radiation to

sur fTsur - T

Tsur+T‘

T, +T,.‘

! An approximate, finite-difference solution may be obtained by discretizing the time
derivative (Section 5.9) and marching the solution out in time. :
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deep space). Returning to Equation 5.17, it is readily shown that, for 7. = 0

sur — Y

pVe 1 1
t= 3¢d, o\ T? T3 (5.19)

An exact solution to Equation 5.15 may also be obtained if radiation may
be neglected and 4 is independent of time. Introducing a reduced temperature,
0 =T-— T, where df/dt = dT/dt, Equation 5.15 reduces to a linear, first-
order, nonhomogeneous differential equation of the form

49 0—-b=0 (5.20
dt a )

where a = (h4, ./pVc) and b= (g4, , + Eg)/ch]‘ Although Equation
5.20 may be solved by summing its homogeneous and particular solutions, an
alternative approach is to eliminate the nonhomogeneity by introducing the

transformation
8 =0 b (5.21
= ~ 21)

Recognizing that df’/dt = df/dt, Equation 5.21 may be substituted into
(5.20) to yield

dae’

— +af’ =0 5.22
- Ta (5.22)

Separating variables and integrating from 0 to ¢ (6 to 6), it follows that
HI

i f:xp (—at) (5.23)

or substituting for §’ and 4,

r-T, - (b/a)

T =T~ (b/a) =exp (—at) ‘ (5.24)
Hence,

T-T, b/a

T exp (—at) + - [1 - exp(—ar)] (5.25)

As it must, Equation 5.25 reduces to (5.6) when b = 0 and yields T'= T, at

t = 0. As t - o0, Equation 5.25 reduces to (T'—T,)=(b/a), which could

also be obtained by performing an energy balance on the control surface of
Figure 5.6 for steady-state conditions.
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5.4 Spatial Effects 237

54 SPATIAL EFFECTS

Situations frequently arise for which the lumped capacitance method is inap-
propriate, and alternative methods must be used. Regardless of the particular
form of the method, we must now cope with the fact that gradients within the
medium are no longer negligible. '

In their most general form, transient conduction problems are described
by the heat equation, Equation 2.13 for rectangular coordinates or Equations
2.20 and 2.23, respectively, for cylindrical and spherical coordinates. The
solution to these partial differential equations provides the variation of tem-
perature with both time and the spatial coordinates. However, in many
problems, such as the plane wall of Figure 5.5, only one spatial coordinate is
needed to describe the internal temperature distribution. With no internal

generation and the assumption of constant thermal conductivity, Equation
2.13 then reduces to

a’T 19T (5.26)
x> a 0t .
To solve Equation 5.26 for the temperature distribution T(x, ), it is

necessary to specify an initial condition and two boundary conditions. For the
typical transient conduction problem of Figure 5.5, the initial condition is

T(x,0) =T, . (5.27)
and the boundary conditions are
T
- =0 (5.28)
x|, _o
and
T o
—k— =h|T(L,t) —T,| - 5.29
L DR (529)

Equation 5.27 presumes a uniform temperature distribution at time 7 = 0;
Equation 5.28 reflects the symmetry requirement for the midplane of the wall;
and Equation 5.29 describes the surface condition experienced for time ¢ > 0.
From Equations 5.26 to 5.29, it is evident that, in addition to depending on x
and ¢, temperatures in the wall also depend on a number of physical parame-
ters. In particular

T=T(x,tT,T,,L,k,ah) | (5.30)

s i oo

The foregoing problem may be solved analytically or numerically. These
methods will be considered in subsequent sections, but first it is important to
note the advantages that may be obtained by nondimensionalizing the govern-
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ing equations. This may be done by arranging the relevant variables into distril
suitable groups. Consider the dependent variable 7. If the temperature differ- soluti
ence § =T — T, is divided by the maximum possible temperature difference . value
0;= T, — T, a dimensionless form of the dependent variable may be defined ‘ prese
a~$ e 7 e are u
e 2 L e ey
Accordingly, #* must lie in the range 0 < 6* < 1. A dimensionless spatial
coordinate may be defined as Exac
. U — ‘ taine
A s L s e s docu
cax¥EaL Cedandh a0 (539 :
where L is the half-thickness of the plane wall, and a dimensionless time may : tion,
be defined as very
e e SR singl
where £* is equivalent to the dimensionless Fourier number, Equation 5.12. 551 E
Substituting the definitions of Equations 5.31 to 5.33 into Equations 5.26
to 5.29, the heat equation becomes . Con:
: “ relat
ax* 9+ ‘
5 = (5.34) : conc
ax* dFo ‘ unif
and the initial and boundary conditions become . T°°bj:'
su
0*(x*,0) =1 (535) CON(
50+ tion
=0 . |
8x* x*=0 : ‘ (5 36)
and :
o0 Bif*(1, t*) (5.37) .
= - , 1 . o
ax* | ., : Arlr
where the Biot number is Bi = hL/k. In dimensionless form the functional
dependence may now be expressed as
6% = f(x*, Fo, Bi) (5.38)
Recall that this functional dependence, wiihout the x* variation, was obtained 5 )
for the lumped capacitance method, as shown in Equation 5.13. | Fign
Comparing Equations 5.30 and 5.38, the considerable advantage associ- te;’,
ated with casting the problem in dimensionless form becomes apparent. v
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Equation 5.38 implies that for a prescribed geometry, the transient temperature
distribution is a universal function of x*, Fo, and Bi. That is, the dimensionless
solution assumes a prescribed form that does not depend on the particular
value of T}, T,,, L, k, a, or h. Since this generalization greatly simplifies the
presentation and utilization of transient solutions, the dimensionless variables
are used extensively in subsequent sections.

5.5 THE PLANE WALL WITH CONVECTION

Exact, analytical solutions to transient conduction problems have been ob-
tained for many simplified geometries and boundary conditions and are well
documented in the literature [1-4]. Several mathematical techniques, including
the method of separation of variables (Section 4.2), may be used for this
purpose, and typically the solution for the dimensionless temperature distribu-
tion, Equation 5.38, is in the form of an infinite series. However, except for
very small values of the Fourier number, this series may be approximated by a
single term and the results may be represented in a convenient graphical form.

5.5.1 Exact Solution {1
Consider the plane wall of thickness 2L (Figure 5.7a). If the thickness is small
relative to the width and height of the wall, it is reasonable to assume that
conduction occurs exclusively in the x direction. If the wall is initially at a
uniform temperature, T(x,0) = 7;, and is suddenly immersed in a fluid of
T,, + T,, the resulting temperatures may be obtained by solving Equation 5.34
subject to the conditions of Equations 5.35 to 5.37. Since the convection
conditions for the surfaces at x* = +1 are the same, the temperature distribu-
tion at any instant must be symmetrical about the midplane (x* = 0). An

T(x,0) =T; T(r,0) =T;
e

T,

4

(a) (b)

Figure 5.7 One-dimensional systems with an initial uniform
temperature subjected to sudden convection conditions. (a) Plane
wall. (b) Infinite cylinder or sphere.
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. : . . Table 5.
exact solution to this problem has been obtained and is of the form [2]
6* = C, exp (—{2Fo) cos (§,x*) (5.39a)
n=1 ’ )
where the coefficient C, is Bi“
c 4sin ¢, ‘ (5.39) 0.01
" 2g, + sin (2¢,) : 0.02
. 0.03 *
and the discrete values (eigenvalues) of {, are positive roots of the transcen- 0.04
dental equation 0.05
. 0.06
{,tan{, = Bi (5.39¢) 0.07
The first four roots of this equation are given in Appendix B.3. 0.08
0.09
: . . 0.10
5.5.2 Approximate Solution 015
It can be shown (Problem 5.24) that for values of Fo > 0.2, the infinite series 0.20
solution, Equation 5.39a, can be approximated by the first term of the series. 0.25
Invoking this approximation, the dimensionless form of the temperature 0.30
distribution becomes 0.4
0.5
8% = C,exp (—{7Fo) cos ({,x*) (5.40a) 06
or 0.7
0.8
6* = 6 cos (¢, x*) (5.40b) 0.9
where 6 represents the midplane (x* = 0) temperature 10
2.0
8} = C, exp (—{2Fo) (5.41) , 3.0
. 4.0
An important implication of Equation 5.40b is that the time dependence of the . - 50
temperature at any location within the wall is the same as that of the midplane | '0
temperature. The coefficients C; and §, are evaluated from Equations 5.39b E 6.
and 5.39c, respectively, and are given in Table 5.1 for a range of Biot numbers. . § 70
0 20
' | 9.0
5.5.3 Total Energy Transfer % 100
In many situations it is useful to know the total energy that has left the wall i 200
up to any time ¢ in the transient process. The conservation of energy ;; 30.0
requirement, Equation 1.11b, may be applied for the time interval bounded by , 400
the initial condition (¢ = 0) and time ¢ > 0 50.0
100.0
Ein - Eout = AES( (542)
“Bi = h.
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Table 5.1 Coefficients used in the one-term approximation

m [2] to the series solutions for transient one-dimensional conduction
(5.39) INFINITE
074 PLANE WALL CYLINDER SPHERE
§1 §1 §1
Bi“ (rad) (o} (rad) (o (rad) o
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
(5.39b) 002 01410  1.0033 01995  1.0050 02445  1.0060
0.03 0.1732 1.0049 0.2439 1.0075 0.2989 1.0090
1€ transcen- 0.04 0.1987 1.0066 02814 1.0099 0.3450 1.0120
0.05 0.2217 1.0082 0.3142 1.0124 03852 1.0149
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
(5.39¢) ,

0.07 0.2615 1.0114 0.3708 1.0173 0.4550 1.0209
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.09 0.2956 1.0145 0.4195 1.0222 0.5150 1.0268
0.10 0.3111 1.0160 0.4417 1.0246 0.5423 1.0298
0.15 0.3779 1.0237 0.5376 1.0365 0.6608 1.0445

[finite series 020 04328 10311 06170 10483 07593  1.0592

f the series. 025 04801 10382 06856  1.0598 08448  1.0737

temperature 030 05218 10450 07465 10712 09208 10880

0.4 05932 10580 08516  1.0932 10528 . 1.1164

0.5 06533 10701 09408 11143 11656 11441

(5.402) 0.6 07051 10814 10185 11346 12644 11713

0.7 07506 10919 10873 11539 13525 11978

0.8 07910 11016 11490 11725 14320 12236

(5.40b) 0.9 08274 11107 12048 11902 15044 102488

' 1.0 0.8603 11191 12558 12071 15708 12732

20 10769 11795 15995 13384 20288 14793

(5.41) 30 11925 12102 17887 14191 22889  1.6227

. 4.0 12646 12287 19081 14698 24556 17201
idence of the

he midplane 5.0 13138 12402 19898 15029 25704 L7870

stions 5.30b 6.0 13496 12479 20490 15253 26537  1.8338

ot numbers. 7.0 13766 12532 20937 15411 27165 - 1.8674

8.0 13978 12570 21286 15526 27654  1.8921

9.0 14149 12598 21566 15611 28044 19106

10.0 14289 12620 21795 15677 28363  1.9249

left the wall 200 14961 12699 22881 15919 29857 19781

. of energy 300 15202 12717 23261 15973 30372 19898

bounded by 40.0 15325 12723 23455 15993 30632  1.9942

50.0 15400 12727 23572 16002  3.0788  1.9962

100.0 15552 12731 23809  1.6015 31102 1.9990

(5.42) '

“Bi = hL/k for the plane wall and hr,/k for the infinite cylinder and sphere. See Figure 5.7.

41
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Equating the energy transferred from the wall Q to E_, and setting E,_ = 0
and AE, = E(t) — E(0), it follows that -

0= ~[£() - E0)] , | (5:430)

or

Q= [oc[T(r,1) - T, a¥ | (5.43b)

where the integration is performed over the volume of the wall. It is conve-
nient to nondimensionalize this result by introducing the quantity

Q,=pcV(T; - T,,) (5.44)

which may be interpreted as the initial internal energy of the wall relative to
the fluid temperature. It is also the maximum amount of energy transfer which
could occur if the process were continued to time ¢ = oo. Hence, assuming
constant properties, the ratio of the total energy transferred from the wall over
the time interval ¢ to the maximum possible transfer is

ngf“[T("J)“Ti]fiz=if(1_g*)d1/ (5.45)

T,-T, Vv V
Employing the approximate form of the temperature distribution for the plane
wall, Equation 5.40b, the integration prescribed by Equation 5.45 can be
performed to obtain

Q sin §; ,
— =1 - a9* {5.46
0. i O | (5.46)

where 6* can be determined from Equation 5.41, using Table 5.1 for values of
the coefficients C; and ¢;.

5.5.4 Graphical Representations

Graphical representations of the approximate relations for the transient tem-
perature distribution and energy transfer were first presented by Heisler [5]
and Grober et al. [6]. The graphs have been widely used for nearly four
decades; in addition to offering computational convenience, they illustrate the
functional dependence of the transient, dimensionless temperature distribution
on the Biot and Fourier numbers.

Results for the plane wall are presented in Figures 5.8 to 5.10. Figure 5.8
may be used to obtain the midplane temperature of the wall, T(0, t) = T.(¢),
at any time during the transient process. If T, is known for particular values
of Fo and Bi, Figure 5.9 may be used to determine the corresponding
temperature at any location off the midplane. Hence, Figure 5.9 must be used
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Figure 5.9 Temperature distribution in a plane wall of
thickness 2 L [S]. Used with permission.

in conjunction with Figure 5.8. For example, if one wishes to determine the
surface temperature (x* = +1) at some time ¢, Figure 5.8 would first be used
to determine 7, at ¢. Figure 5.9 would then be used to determine the surface
temperature from knowledge of T,. The procedure would be inverted if the
problem were one of determining the time required for the surface to reach a
prescribed temperature.

](.)Z T // *d /, /; /; / 1A A
e /] /
~ 08 . / /
¢ ® ST T
O 0.7 S
™
‘06 < Sf s i / /
Q SSPSISIS) Sz & SIS S
2 05 g SYASYISTAS, Q]LQ/LD | fg\/]z,jtol;\./z, N ©
% 7 | 1]
04 N
Y /L
0.3 y
NS - Iy %
) o1 V] VY V] :/// / A LM
107 107* 100 1072 107! 1 10 102 10° 104

2
(——"kjt) = Bi%Fo

Figure 5.10 Internal energy change as a function of time for a plane wall of
thickness 2L [6]. Adapted with permission.
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5.6 Radial Systems with Convection 245

Absence of the Fourier number in Figure 5.9 implies that the time
dependence of any temperature off the midplane corresponds to the time
dependence of the midplane temperature. This result is, of course, a conse-
quence of the approximation that led to Equation 5.40b and is valid for all but
the earliest stages of the transient process (Fo > 0.2).

Graphical results for the energy transferred from a plane wall over the
time interval ¢ are presented in Figure 5.10. These results were generated from
Equation 5.46. The dimensionless energy transfer Q/Q, is expressed exclu-
sively in terms of Fo and Bi. :

Because the mathematical problem is precisely the same, the foregoing
results may also be applied to a plane wall of thickness L, which is insulated
on one side (x* = 0) and experiences convective transport on the other side
(x* = +1). This equivalence is a consequence of the fact that, regardless of
whether a symmetrical or an adiabatic requirement is prescribed at x* =
the boundary condition is of the form d6*/dx* = 0.

2

RADIAL SYSTEMS WITH CONVECTION

For an infinite cylinder or sphere of radius r, (Figure 5.7b), which is at an
initial uniform temperature and experiences a change in convective conditions,
results similar to those of Section 5.5 may be developed. That is, an exact
series solution may be obtained for the time dependence of the radial tempera-
ture distribution; a one-term approximation may be used for most conditions;
and the approximation may be conveniently represented in graphical form.
The infinite cylinder is an idealization that permits the assumption of one-
dimensional conduction in the radial direction. It is a reasonable approxima-
tion for cylinders having L/r, > 10.

5.6.1 Exact Solutions

Exact solutions to the transient, one-dimensional form of the heat equation
have been developed for the infinite cylinder and for the sphere. For a uniform

initial temperature and convective boundary conditions, the solutions [2] are
as follows.

Infinite Cylinder In dimensionless form, the temperature is

g* = f} C,exp (—$2F0) Jy($ur*) | (5.47a)

n=1
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where

2 Jl(g‘n)
L R + ) 4

and the discrete values of {, are positive roots of the transcendental equation

a)
§nm = Bi (5.47¢)

The quantities J; and J,, are Bessel functions of the first kind and their values
are tabulated in Appendix B.4. Roots of the transcendental equation (5.47¢)
are tabulated by Schneider [2].

Sphere Similarly, for the sphere

© 1
0* = Y. C,exp(—{2Fo) T sin (§,r*) (5.48a)
n=1 n
where
_ Afsin(¢,) — yoos (§,)]
G = = ) (5.48b)

and the discrete values of {, are positive roots of the transcendental equation
1—¢,cotl, = Bi (5.48c¢)

Roots of the transcendental equation are tabulated by Schneider [2].

5.6.2 Approximate Solutions

For the infinite cylinder and sphere, Heisler [5] has shown that for Fo > 0.2,
the foregoing series solutions can be approximated by a single term. Hence, as
for the case of the plane wall, the time dependence of the temperature at any

location within the radial system is the same as that of the centerline or
centerpoint. '

Infinite Cylinder The one-term approximation to Equation 5.47 is

0* = C,exp (—{2Fo) Jy(4,r*) (5.49a)

or

0% = 0xJ,(¢,r*) (5.49b)
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where 6 represents the centerline temperature and is of the form
8 = C,exp (—{2Fo) (5.49¢)

Values of the coefficients C; and §; have been determined and are listed in
Table 5.1 for a range of Biot numbers.

Sphere From Equation 5.48a, the one-term approximation is

0*

I

C, exp (—{iFo) sin (§,7*) (5.50a)

§1r*

or

1 .
6* = 6* o sin (&%) (5.50b)
1

where 6* represents the center temperature and is of the form

<
*
f

* = Cexp(—{2Fo) (5.50c)

Values of the coefficients C; and {; have been determined and are listed in
Table 5.1 for a range of Biot numbers.

5.6.3 Total Energy Transfer

As in Section 5.5.3, an energy balance may be performed to determine the
total energy transfer from the infinite cylinder or sphere over the time interval
At = t. Substituting from the approximate solutions, Equations 5.49b and
5.50b, and introducing Q, from Equation 5.44, the results are as follows.

Infinite Cylinder

N
20%* ‘

£ - S5 (5.51)

o 1
Sphere

-3y

2 Y n(s) - feos (4)] (5:52)
0, - &7

Values of the center temperature 8* are determined from Equation 5.49¢ or
5.50c, using the coefficients of Table 5.1 for the appropriate system.
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= Lg . Figure 5.12 Temperature distribution in an infinite cylinder
oo g | of radius r, [5]. Used with permission.
© | :
= i
- & % 5.6.4 Graphical Representation
Q
” 5 Graphical representations similar to those for the plane wall (Figures 5.8 to
- o 5.10) have also been generated by Heisler [5] and Grober et al. [6] for an
'% infinite cylinder and a sphere. Results for the infinite cylinder are presented in
— § Figures 5.11 to 5.13, and those for the sphere are presented in Figures 5.14 to
g 5.16. Note that, with respect to the use of these figures, the Biot number is-
o 4
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Figure 5.13 Internal energy change as a function of time for an infinite cylinder of
radius r, [6]. Adapted with permission.
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Figure 5.14 Center temperature as a function of time in a sphere of radius 7, [5]. Used with permission.
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Figure 5.15 Temperature distribution in a sphere of radius
r, [5]. Used with permission.

defined in terms of r,. In contrast recall that, for the lumped capacitance method,
the characteristic length in the Biot number is customarily defined as r,/2 for the
cylinder and r,/3 for the sphere.

In closing it should be noted that the Heisler charts may also be used to
determine the transient response of a plane wall, an infinite cylinder, or a
sphere subjected to a sudden change in surface temperature. For such a
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Figure 5.16 Internal energy change as a function of time for a sphere of radius r,
[6]. Adapted with permission.
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condition it is only necessary to replace T, by the prescribed surface tempera-
ture T, and to set Bi~! equal to zero. In so doing the convection coefficient is
tacitly assumed to be infinite, in which case 7, = T,.

EXAMPLE 5.2

Consider a steel pipeline (AISI 1010) that is 1 m in diameter and has a wall
thickness of 40 mm. The pipe is heavily insulated on the outside, and before
the initiation of flow, the walls of the pipe are at a uniform temperature of
—20°C. With the initiation of flow, hot oil at 60°C is pumped through the
pipe creating a convective surface condition corresponding to A = 500
W ,/m? - K at the inner surface of the pipe.

1. What are the appropriate Biot and Fourier numbers 8 min after the
initiation of flow?

2. At t = 8 min, what is the temperature of the exterior pipe surface covered
by the insulation?

3. What is the heat flux ¢” (W/m?) to the pipe from the oil at = 8 min?

How much energy per meter of pipe length has been transferred from the
oil to the pipe at ¢ = 8 min? :

SOLUTION .

Known: Wall subjected to sudden change in convective surface condition.
Find:

Biot and Fourier numbers after 8 min.

1

2. Temperature of exterior pipe surface after 8 min.
3. Heat flux to the wall at 8 min.
4

Energy transferred to pipe per unit length after 8 min.

Schematic:
T(x, 0) =
T;=~20°C T(L, t)
T, t) T = 60°C
. h =500 W/n?-K:
Insulation ———%

Steel, AISI 1010 — ? Zr T

La Qit
L=140

< “mm >
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Assumptions:

1.

Pipe wall can be approximated as plane wall, since thickness is much
less than diameter.

2. Constant properties.

3.

Outer surface of pipe is adiabatic.

Properties: Table A.l, steel type AISI 1010 [T = (—20 + 60)°C/2 ~
300 K]: p=7823 kg/m’, ¢ =434 J/kg-K, k=639 W/m-K,

= 18.8 X106 m?/s.

Analysis:

1.

At ¢ =28 min, the Biot and Fourier numbers are computed from
Equations 5.10 and 5.12, respectively, with L, = L. Hence

hL 500 W/m?- K X 0.04 m

Bi— — = = 0.313 q
Tk 63.9 W, /m - K
at  18.8 X 107% m?/s X 8 min X 60 s/min
Fo= -5 = 564 <

(0.04 m)

With Bi = 0.313, use of the lumped capacitance method is inappropri-
ate. However, since transient conditions in the insulated pipe wall of
thickness L correspond to those in a plane wall of thickness 2L
sxperiencing the same surface condition, the desired results may be
obtained from the charts for the plane wall. Using Figure 5.8, with
Bi~1' =32, it follows that

6, T(0,:)-T, 02
01'_ T;_Too e

Hence after 8 min, the temperature of the exterior pipe surface, which
corresponds to the midplane temperature of a plane wall, is

T,=T(0,480s) = T, + 0.22(T,— T..)

T, = 60°C + 0.22(—20 — 60)°C =~ 42°C N
Heat transfer to the inner surface at x = L is by convection, and at any
time ¢ the heat flux may be obtained from Newton’s law of cooling.
Hence at ¢t = 480 s,

q7(L,480s) = g = h[T(L,480s) — T, ]

The surface temperature T(L, 480 s) may be obtained from Figure 5.9.
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For the prescribed conditions
—=1 and Bi'=32

it follows that

6(L,480s) T(L,480s) — T,
6,(480s)  T,(480s) — T,

= 0.86

Hence
T(L,480s) = T, + 0.86[7,(480s) — T, ]
T(L,480s) = 60°C + 0.86[42 — 60]°C =~ 45°C
The heat flux at 7 = § min is then

gy = 500 W/m? - K (45 — 60)°C = —7500 W /m’ q

4. The energy transfer to the pipewall over the 8-min interval may be
obtained from Figure 5.10 and Equation 5.44. With
Bi =0.313  Bi*Fo = 0.55
it follows that
—QQ—O =~ (.78
Hence
Q = 0.780cV(T,— T,)
or with a volume per unit pipe length of V' = #DL,
Q' = 0.78pc7DL(T, — T,,)
Q' = 0.78 X 7823 kg/m® X 434 J /kg - K
X 7 X 1m X 0.04m (—20 — 60)°C
Q' = —27x10"J/m N
Comments:
1. The minus sign associated with ¢ and Q’ simply implies that the
direction of heat transfer is from the oil to the pipe (into the pipe wall).
2. Since Fo > 0.2, the one-term approximation can be used to calculate

wall temperatures and the total energy transfer. The midplane tempera-
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ture can be determined from Equation 5.41
T,-T,
T.— T,

6x =

= C, exp (—{2Fo)

where, with Bi = 0.313, C; = 1.047 and 1 = 0.531 rad from Table 5.1.
With Fo = 5.64,

6 = 1.047 exp [ — (0.531 rad)” x 5.64] = 0.214

This result is in good agreement with the value of 0.22 obtained from
Figure 5.8. Hence,

T(0,8 min) = T, + 6*(T, — T,)) = 60°C + 0.214( —20 — 60)°C = 42.9°C

which is within 2% of the value determined from the Heisler chart.

3. Using the one-term approximation for the surface temperature, Equa-
tion 5.40b with x* = 1 has the form

0* = 0*cos (&)
T(L,t) =T, + (T,— T,)0*cos(¢;) '
T(L,8 min) = 60°C + (=20 — 60)°C X 0.214 X cos (0.531 rad)
T(L, 8 min) = 45.2°C |

which is within 1% of the value détermined from the Heisler chart.

4. The total energy transferred during the transient process can be deter-
mined from the result associated with the one-term approximation,
‘Equation 5.46.

Q 1 sin ({) g

Qo §l ’

sin (0.531 rad
2=1———(——)><0.214=0.80
o, -~ 0.531 rad

which is within 3% of the value determined from the Grober chart.

EXAMPLE 5.3

A new process for treatment of a special material is to be evaluated. The
material, a sphere of radius r, = 5 mm, is initially in equilibrium at 400°C in a
furnace. It is suddenly removed from the furnace and subjected to a two-step
cooling process.
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Step 1 Cooling in air at 20°C for a period of time ¢, until the center
temperature reaches a critical value, T,(0, t,) = 335°C. For this situation,
the convective heat transfer coefficient is 4, = 10 W/m? - K.

After the sphere has reached this critical temperature, the second step is

initiated.

Step 2 Cooling in a well-stirred water bath at 20°C, with a convective heat

transfer coefficient of &, = 6000 W,/m” - K.

The thermophysical properties of the material are p = 3000 kg/m?, k = 20

W/m - K, ¢ = 1000 J/kg - K, and a = 6.66 X 107 m?/s.

1. Calculate the time ¢, required for step 1 of the cooling procesks to be

completed.

2. Calculate the time ¢, required during step 2 of the process for the center
of the sphere to cool from 335°C (the condition at the completion of step

1) to 50°C.

SOLUTION'

Known: Temperature requirements for cooling a sphere.

Find:

1. Time ¢, required to accomplish desired cooling in air.

2. Time ¢, required to complete cooling in water bath.

Schematic:

Tm= i ENerT T

! hg=10 Wma-K | * hyw = 6000 W/m2-K
Air —> © o Water — |

—>

-———-%Sphere, ro=5mm:
* p=3000 kg/m3 '

; T,=400°c = 1M/keK T, =335 °C
Ta0,t)=335°C @=666x10""" 71 (9t y=50°C
. i m?/s !
o BR=20W/meK e
Step 1 Step 2
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Assumptions:

1. One-dimensional conduction in r.
2. Constant properties.

Analysis:

1. To determine whether the lumped capacitance method can be used, the
Biot number is calculated. From Equation 5.10, with L, = r,/3,

h,r, 10W/m?-K X 0.005m
3%  3X20W/m-K

Bi

=8.33 X 107*

Accordingly, the lumped capacitance method may be used, and the
temperature is nearly uniform throughout the sphere. From Equation
5.5 it follows that

t, = In —
“Tha g 3m, T, -T,

s a a

oVe 0,  prc | T.— T,

where V = (4/3)7r> and A, = 4=r}. Hence

3000 kg,/m® X 0.005 m X 1000 J /kg - K 1 400 — 20
t = p——1
“ 3Ix 10W,/m - K ™ 335~ 20 °

4

2. To determine whether the lumped capacitance method may also be
used for the second step of the cooling process, the Biot number is
again calculated. In this case

 h,r, 6000 W,/m?-K X 0.005m
Bi= = - = 0.50
3k 3X20W/m - K

and the lumped capacitance method is not appropriate. However, to an
excellent approximation, the temperature of the sphere is uniform at
t = t, and the Heisler charts may be used for the calculations from
t=1t,t0t=t,+t, Using Figure 5.14 with

k 20W/m - K
Bi7l= = =0.67
h,r, 6000 W/m*- K X 0.005m

6, T, —-T, 50-—20

o [ee]

9. T -1, 335-20

=]

= 0.095
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it follows that Fo =~ 0.80, and

- r? 0.80 ~ (0.005 m)*
t = —_— R =
w0 6.66 X 106 m?/s

Comments:

1. If the temperature distribution in the sphere at the conclusion of step 1

were not uniform, the Heisler chart could not be used for the calcula-
tions of step 2.

2. The surface temperature of the sphere at the conclusion of step 2 may
be obtained from Figure 5.15. With

’
Bi~'=0.67 and — =1
rO
g(r T(r)—T
(r,) _ T(r,) = _ 05
00 TG - Too
Hence

T(r,) = 20°C + 0.52(50 — 20)°C = 36°C

The variation of the center and surface temperature with time is then as
follows.

T; =400 °C
T, t) = T(ro, £)

335°C

X 200 —
0 °C
100 TG0t >
0[T®=20 C‘ [ 36°C
0 tg ta+ty ¢

3. For the step 2 transient process in water, the one-term approximation is
appropriate for determining the time ¢, at which the center tempera-

ture reaches 50°C, that is, T(0,¢,) = 50°C. Rearranging Equation
5.50c,

v Lo L[ T(0,1,) — T,
= e —_— = — — ———X————
M e 2 G T,- T,

Using Table 5.1 to obtain the coefficients for Bi =1/0.67 = 1.50
(C; = 1.376 and {; = 1.800 rad) and substituting appropriate tempera-
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tures, it follows that

1 1 (50 — 20)°C
- > In X
(1.800 rad)> | 1376 ~ (335 — 20)°C

= 0.82

Substituting for r, and a, it follows that 7, = 3.1 s, which is within 3%
of the value of 3.0 s obtained from the Heisler chart.

5.7 THE SEMI-INFINITE SOLID

Another simple geometry for which analytical solutions may be obtained is the
semi-infinite solid. Since such a solid extends to infinity in all but one direction,
it is characterized by a single identifiable surface (Figure 5.17). If a sudden
change of conditions is imposed at this surface, transient, one-dimensional
conduction will occur within the solid. The semi-infinite solid provides a useful
idealization for many practical problems. It may be used to determine tran-
sient heat transfer near the surface of the earth or to approximate the transient
response of a finite solid, such as a thick slab. For this second situation the
approximation would be reasonable for the early portion of the transient,
during which temperatures in the slab interior (well removed from the surface)
are uninfluenced by the change in surface conditions.

The heat equation for transient conduction in a semi-infinite solid is given
by Equation 5.26. The initial condition is prescribed by Equation 5.27, and the
interior boundary condition is of the form

T(c0,t) =T, (5.53)
Case (1) Case (2) Case (3)
T(x,0)=T; T(x,0)=T; T(x,0)=T;
T, t)=T; =k 3T/3x) _o=q, =k 8T/8x| o= h[ T~ T(0, 1)]
T . T, b
o
I 79
——1 b—x f—>x
T(x, t)
T T,
/ t \/t / t
T; \\ T p\\ T; \
x x X

Figure 5.17 Transient temperature distributions in a semi-infinite solid for three
surface conditions: constant surface temperature, constant surface heat flux, and
surface convection.
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Closed-form solutions have been obtained for three important surface condi- 10
tions, instantaneously applied at ¢ = 0 [1,2]. These conditions are shown in
Figure 5.17. They include application of a constant surface temperature 0.5
I, # T, application of a constant surface heat flux g, and exposure of the
surface to a fluid characterized by T, # T, and the convection coefficient .
The solutions are summarized as follows. ' <7 o1
=8
Case 1 Constant Surface Temperature 0.0%
7(0,1) =17, (5.54)
T(x,t)— T, X
( ) - erf( ) (555) 0.01
T,-T, 2Vt
T k(T - T,) , |
)= k== =—F7— 5.56 Figure |
4 (1) x|, _o Vrat ( ) solid wi
permiss
Case 2 Constant Surface Heat Flux
@ =aq (5.57)
2g;(at/m)"? [ —x?\  glx x
T'(x,t) - T,= ————— - erfc 5.58
(1) =7, k Pl Gt k (2\/5) (5:58)
Case 3 Surface Convection

—k—| =h[T, — T(0, )] (5.59) o

dx x=0 L

Rat

T(x,t) - T, eof % S
T, - T, erc(zx/'&?) Figure

hx  h*at x hat L i:ﬁgz :

{‘”‘P PEE )Herfc(%/f?? Tk ” 50 . N

The quantity erf w appearing in Equation 5.55 is the Gaussian error function, % initial

which is tabulated in Section B.1 of Appendix B. The complementary error i free s ©
function, erfc w, is defined as % ment
i both
erffcw=1—erfw | T, ..

Temperature histories for the three cases are also shown in Figure 5.17. tra{rllsi

Carefully note their distinguishing features. For case 3 the specific temperature o deter |

histories computed from Equation 5.60 are plotted in Figure 5.18. Note that ' -
the curve corresponding to h = oo is equivalent to the result that would be from

obtained for a sudden change in the surface temperature to T, = T,,. That is,

for h = oo the second term on the right-hand side of Equation 5.60 goes to ‘
zero, and the result is equivalent to Equation 5.55. Subs
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T ol Tl 8y

Figure 5.18 Temperature histories in a semi-infinite
solid with surface convection [2]. Adapted with
permission.

CEA
kn paic

L.

Figure 5.19 Interfacial contact between two
semi-infinite solids at different initial
temperatures.

An interesting permutation of case 1 results when two serm—mﬁmte solids,
initially at uniform temperatures T, ;, and Tg ;, are placed in contact at their
free surfaces (Figure 5.19). If the contact resistance is negligible, the require-
ment of thermal equilibrium dictates that, at the instant of contact (¢ = 0),
both surfaces must assume the same temperature T,, for which Ty ; < T, <

T, ;. Since T, does not change with increasing time, it follows that the
transient thermal response and the surface heat flux of each of the solids is
determined by Equations 5.55 and 5.56, respectively.

The equilibrium surface temperature of Figure 5.19 may be deterrmned
from a surface energy balance, which requires that

N (5.61)
Substituting from Equation 5.56 for ¢, , and q;'p and recognizing that the x




262 Chapter 5 Transient Conduction

coordinate of Figure 5.19 requires a sign change for qs a> it follows that f ':p fgi ;
~kA(Ts B TA,i) ky(T, — TB,i)
' (7a t)1/2 = (e t)1/2 (5-62) Analysi
s B Figure
or, solving for T, by Equ
. L ture ch
(kPC)A/ZTA i T (kPC)B/ Ty,
I, = v VR (5.63) T
(kpe){™ + (kpc)g -
Hence, the quantity m = (kpc)'/? is a weighting factor which determines
whether 7, will more closely approach T,,:(ms > myp) or Ty ;(my > my). or
(
EXAMPLE 54 5
In laying water mains, utilities must be concerned with the possibility of Hence
freezing during cold periods. Although the problem of determining the tem-
perature in soil as a function of time is complicated by changing surface - i
conditions, reasonable estimates can be based on the assumption of a constant 2.
surface temperature over a prolonged period of cold weather. What minimum
burial depth x,, would you recommend to avoid freezing under conditions for and
which soil, initially at a uniform temperature of 20°C, is subjected to a X
constant surface temperature of —15°C for 60 days?
SOLUTION
- - . . Comn
Known: Temperature imposed at the surface of soil that is initially at natur
20°C.
Find: The depth x,, to which the soil has frozen after 60 days.
: 58 MU
Schematic: ' :
Atmosphere [—‘Ts =—15°C Tran¢

three
cant
Soil

T;=20°C

R B B e A S S A

‘ aun
Ty, 60d) = 0°C . lengt
'T(x'm' N )= Cond
ain 1%

) temp -

Assumptions:

the b
1. One-dimensional conduction in x.

2. Soil is a semi-infinite medium.
3. Constant properties.
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Properties: Table A.3, soil (300 K): p = 2050 kg/m’, k = 0.52 W/m - K,
c=1840 J/kg - K, a = (k/pc) = 0.138 X 107° m?/s.

Analysis: The prescribed conditions correspond to those of case 1 of
Figure 5.17, and the transient temperature response of the soil is governed

by Equation 5.55. Hence at the time ¢ = 60 days after the surface tempera-
ture change,

T(xm’t)_T; xm
———————=erf( )
T,— T 2t
or
0- (1) 0.429 = exf | —2 )
20 - (-15) _er(z\/&f

Hence from Appendix B.1

xm

Wat

= 0.40

and
x,, = 0.80Var = 0.80(0.138 X 107¢ m*/s X 60 days X 24 h/day
X 3600 s/h)" = 0.68 m q

Comments: The properties of soil are highly variable, depending on the
nature of the soil and its moisture content.

5.8

MULTIDIMENSIONAL EFFECTS

Transient problems are frequently encountered for which two- and even
three-dimensional effects are significant. Solution to a class of such problems
can be obtained from the one-dimensional results of Sections 5.6 and 5.7.

Consider immersing the short cylinder of Figure 5.20, which is initially at
a uniform temperature T, in a fluid of temperature T, # T;. Because the
length and diameter are comparable, the subsequent transfer of energy by
conduction will be significant for both the r and x coordinate directions. The
temperature within the cylinder will therefore depend on r, x, and ¢.

Assuming constant properties and no generation, the appropriate form of
the heat equation is, from Equation 2.20,

1 a( a‘T) 32T 19T

| — |+ — = ——
rarrar x> a Ot
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i
bl

+L r-ro\

T(r, x, t)

- Tey h ST T ~~< T,k
==

-Midplane :

T
L

L
K

o

i O(rox,t) _8(rt) _ O 1)
-\FJT“’ ,h : T = e X ==
:

i

6* = C(r*, t*) x P(x*, t%) !

Figure 520 Two-dimensional, transient conduction in a short cylinder. (a) Geometry.
(b) Form of the product solution.

where x has been used in place of z to designate the axial coordinate. A
closed-form solution to this equation may be obtained by the separation of
variables method. Although we will not consider the details of this solution, it

is important to note that the end result may be expressed in the following
form.

T(r,x,t) =T, T(x,t)-T,
T, - T, - T,-T,

T(r,t) — T,
Plal;e ' T — T

wall ! ®

Infinite
cylinder

That is, the two-dimensional solution may be expressed as a product of
one-dimensional solutions that correspond to those for a plane wall of thick-
ness 2L and an infinite cylinder of radius r,. These solutions are available
from Figures 5.8 and 5.9 for the plane wall and Figures 5.11 and 5.12 for the
mfinite cylinder. They are also available from the one-term approximations
given by Equations 5.40 and 5.49.

Results for other multidimensional geometries are summarized in Figure
5.21. In each case the multidimensional solution is prescribed in terms of a
product involving one or more of the following one-dimensional solutions.

S(x l‘) = M (5 64)
" T =T, |Semiinfinite .
solid
T(x,t) - T,
Pt ===\, (3:65)
i o W:ﬁm
T(r,t) - T,
C(r,t) = T |t (5.66)
d o cylinder

The x coordinate for the semi-infinite solid is measured from the surface,
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S(x, t) P(x, t) C(r, t)

L oo ]

!
I
|
—~d

|
— Ihw\

' L;?_Ll—J &\Iﬁj

O S b e @ S
S(x1, t) P(xg, t) P(x1, t) P(x, t) C(r, t)S(x, t)

o

T/ k)
_||,._

X1

- s
__ .
L—sz—-l ARl 2 7o~

Infinite

(d) Semi-infinite (e) rectangular () Semi-infinite
plate bar cylinder
S(xs, t)P(x1, t)P(xa, t) P(x1, t) P(xg, t)P(x3, t) C(r, t) P(x, t)
T D
| sz : ! .
| | s
' 2L |/
e | o2 |28 op, | —40- A
| 4 x2 /l r
¥ A |
H x
L) I T S
‘)~ o1 d /oLy "
A‘ZLT“'/ AZLZ—’,/ I—ro—>.
(g) Semi-infinite (h)  Rectangular (i) Short cylinder

rectangular bar parallelepiped

Figure 5.21 Solutions for multidimensional systems expressed as
products of one-dimensional results.

265

whereas for the plane wall it is measured from the midplane. In using Figure
5.21 the coordinate origins should be carefully noted. The transient, three-
dimensional temperature distribution in a rectangular parallelepiped, Figure
5.21h, is then, for example, the product of three one-dimensional solutions for

plane walls of thicknesses 2L, 2L,, and 2 L,. That is,
T(x,, x5, X3,8) — T,
T,- T,

= P(x,,t) - P(x,,1) P(x5,1)
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The distances x,, x,, and x, are all measured with respect to a rectangular

Assum
coordinate system whose origin is at the center of the parallelepiped. |
The amount of energy Q transferred to or from a solid during a multidi- 1. T

mensional transient conduction process may also be determined by combining 2 G

one-dimensional results, as shown by Langston [7]. '
Prope

EXAMPLE 5.5 450 F
k/pc

In a manufacturing process stainless steel cylinders (AISI 304) initially at

600 K are quenched by submersion in an oil bath maintained at 300 K with Analy

h = 500 W/m* - K. Each cylinder is of length 2L = 60 mm and diameter the te

= 80 mm. Consider a time 3 min into the cooling process and determine follov
temperatures at the center of the cylinder, at the center of a circular face, and

at the midheight of the side.

SOLUTION '
where
tively

Known: Initial temperature and dimensions of cylinder and temperature

and convection conditions of an oil bath. - 7(0,

Find: ‘Temperatures T(r, x, t) after 3 min at the cylinder center, T(0,0,

3 min), at the center of a circular face, 70, L, 3 min), and at the midheight | . Henc
of the side, T(r,,0,3 min).

Schematic:

= T, L, t) . ,
ro=40 mm ‘ it fol
T(r, x,0)=T; =600 K
x L=30mm /‘T(rm 0, ¢)
L “*’“ "_ Simi -
L =30 mm
N ——T(0, 0, t)
Cylinderb\‘/
AISI 304 o T 00 K
1| =
bath 2 _‘> = 500 W/m?-K
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Assumptions:

1. Two-dimensional conduction in r and x.
2. Constant properties.

Properties: Table A.l, stainless steel, AISI 304 [T = (600 + 300)/2 =
450 K]: p=7900 kg/m’, ¢ =526 J/kg K, k=174 W/m - K, a =
k/pc= 419 X 107 m*/s.

Analysis: The solid steel cylinder corresponds to case i of Figure 5.21, and
the temperature at any point in the cylinder may be expressed as the
following product of one-dimensional solutions.

T(‘r, X, t) - T,
T,- T,

= P(x,t)C(r, 1)

where P(x, t) and C(r,t) are defined by quiations 5.65 and 5.66, respec-
tively. Accordingly, for the center of the cylinder,

7(0,0,3 min) — 7,  T(0,3 min) — T, 7(0,3 min) — T,

T.— T . T.— T Plane T.— T Infinite
! b ! 0 wall ! «® cylinder

Hence, for the plane wall, with

¢

k 174W/m - K
Bi'l=—= > =1.16
AL 500 W/m*- K X 0.03m
at 419 X 107 m?*/s X 180 s
Fo=— = ) = 0.84
L (0.03 m}
it follows from Figure 5.8 that
6, T(0,3min) — T,
— = , =~ (.64
0,. T, - Too Plane
wall
Similarly, for the infinite cylinder, with
. k 174W/m - K
Birl=—= — = 0.87
hr, 500 W/m"- K X 0.04 m
ot 419X 1078 m?/s X 180 s
Fo=— = = 0.47

r, (0.04 m)®
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it follows from Figure 5.11 that where, f
6, T(0,3min) — T, 6(:
— = =~ 0.55 —
8. T —-T Infinite
! ¢ o cylinder
Hence, for the center of the cylinder, | Hence
7(0,0,3min) — T
( ) ~ 0.64 X 0.55 = 0.35 Zﬂ
T, -1,
T(0,0,3 min) =~ 300 K + 0.35(600 — 300) K = 405 K N
The temperature at the center of a circular face may be obtained from the
requirement that |
7(0, L,3min) - T, T(L,3min) — T, T(0,3 min) — T, T(
T,— T, h T,— T, Plane I,—-T, Infinite o
wall cylinder
where, from Figure 5.9 with (x/L) =1 and Bi~! = 1.16, § ‘ Hence
0(L) T(L,3min) — T, 068 |
= = (. e
30 T(O, 3 IIlln) - Too Plane % -
wall fg
Hence Z
T(L,3 min) — T, T(L,3 min) — T, 7(0,3 min) — T, E
T,— T, plane  T(0,3 min) — T, |Plane T,~ T, Plane 1 Comm,
wall wall wall - i
T(L,3 min) — T, |
> T tw Ve
~0.68 X 0.64 = 0.44 . L
Ti - Too Plane % 31
wall b
- 2. Tt
Hence . 4 les
: o
7(0, L,3 min) — T,
~ 0.44 X 0.55 = 0.24
I,- T,
T(0, L,3 min) = 300 K + 0.24(600 — 300) K = 372K N
The temperature at the midheight of the side may be obtained from the : W].
requirement that ' w
7(r,,0,3min) — 7, 7(0,3 min) — T, T(r,,3min) — T,
T, - T, - T,-T, Plane T,— T, Infinite
) wall cylinder
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A L 1 MBS B oA S A

where, from Figure 5.12 with (r/r,) = 1 and Bi~! = 0.87,
o(r, T(r,,3min) — T,
(r,) _ T( . ) 0kl
8, T(0,3 min) — T, |Inite
cylinder
Hence
T(r,,3min) — T, T(r,,3 min) — T,
T,-T, Infinite T(0,3 min) — 7, |Infinite
cylinder cylinder
<
T(0,3 min) — T,
1 from the : T -1, Infinite
cylinder
-1, T(r,,3 min) — T,
T | tnfinite . =0.61 X 0.55=0.34
cylinde; T; - Too i;ﬁsg:r
Hence
T(r,,0,3 min) — T,
~ 0.64 X 0.34 = 0.22
T,- T,
T(r,,0,3 min) = 300 K + 0.22(600 — 300) K =~ 366 K <
~T, ' '
o Plane Comments:
wall
1. Verify that the temperature at the edge of the cylinder is 7r,, L,
3 min) = 345 K.
2. The one-term approximations can be used to calculate the dimension-
less temperatures read from the Heisler charts. For the plane wall, the
midplane temperature can be determined from Equation 5.41
6* = ;o = C,exp (—7Fo)
4 i
| from the where, with Bi = 0.862, C; = 1.109 and {; = 0.814 rad from Table 5.1.
With Fo = 0.84, :
. 0,
T 2| =1.109exp [~ (0.814 rad)* x 0.84] = 0.636
Htinder gty | .

il

Page 49 of 92




270 Chapfer’S Transient Conduction

The surface temperature can be evaluated using Equation 5.40b finite-di
* state cc
- ®) conside
6 6, 0s (§1x%) conduc
may be
with x* = 1 to give
6*(1, Fo) 6(L,t) 59.1 Disc |
— = g —cos (0.814rad X 1) = 0.687
- ’ ‘ Once ¢
For the infinite cylinder, the centerline temperature can be determined sient ¢
from Equation 5.49c. approp
9, 1
93‘=‘é:=clexp(—§121’0) o
where, with Bi = 1.15, C; = 1.227 and {; = 1.307 from Table 5.1. With To obt
Fo =047, differer
431 a1 -
b, 2 the x |
T oge = 11090 [~ (1.307 rad)® x 0.47] = 0.550 Teoret
cylinder intro d
‘The surface temperature can be evaluated using Equation 5.49b y
0* 0 ' :
— = — = Jo(&r*) and th |
6, b, is exp:
with r* =1 and the value of the Bessel function determined from ¢
Table B4, -
0*(1, Fo)  6(L, 1) , i
P =3 = J;(1.307 rad X 1) = 0.616 | Thes
o o derive |
The one-term approximations are in good agreement with results from | with |
. - perfor
the Heisler charts. o )
| finite-
in sp¢
I
5.9 FINITE-DIFFERENCE METHODS | finite-
tures
Analytical solutions to transient problems are restricted to simple geometries deriv:
and boundary conditions, such as those considered in the preceding sections. ated
Extensive coverage of these and other solutions is treated in the literature forwa
[1-4]. However, in many cases the geometry and/or boundary conditions the r
preclude the use of analytical techniques, and recourse must be made to Equa
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5.9 Finite-Difference Methods 271
0b finite-difference methods. Such methods, introduced in Section 4.4 for steady-
state conditions, are readily extended to transient problems. In this section we
consider explicit and implicit forms of finite-difference solutions to transient
conduction problems. More detailed treatments, as well as related algorithms,
may be found in the literature [8-10].

59.1 Discretization of the Heat Equation: The Explicit Method

Once again consider the two-dimensional system of Figure 4.5. Under tran-
sient conditions with constant properties and no internal generation, the
appropriate form of the heat equation, Equation 2.15, is

stermined

10T 9°T 9°T

S 67
a 3t Ix® ay? ~ (5 )

5.1. With

To obtain the finite-difference form of this equation, we may use the central-
difference approximations to the spatial derivatives prescribed by Equations
4.31 and 4.32. Once again the m and n subscripts may be used to designate
the x and y locations of discrete nodal points. However, in addition to being
discretized in space, the problem must be discretized in time. The integer p is
introduced for this purpose, where

e e S e o A s o R A

ob t=pAt (5.68)

and the finite-difference approximation to the time derivative in Equation 5.67
is expressed as

ned from 1
oT TR = TF

— ~ 5.69
at |, At (5.69)

The superscript p is used to denote the time dependence of T, and the time
derivative is expressed in terms of the difference in temperatures associated
with the new (p + 1) and previous (p) times. Hence calculations must be
performed at successive times separated by the interval Ar, and just as a
finite-difference solution restricts temperature determination to discrete points
in space, it also restricts it to discrete points in time.

If Equation 5.69 is substituted into Equation 5.67, the nature of the
finite-difference solution will depend on the specific time at which tempera-
tures are evaluated in the finite-difference approximations to the spatial
derivatives. In the explicit method of solution, these temperatures are evalu-
ated at the previous (p) time. Hence Equation 5.69 is considered to be a
forward-difference approximation to the time derivative. Evaluating terms on
the right-hand side of Equations 4.31 and 4.32 at p and substituting into
Equation 5.67, the explicit form of the finite-difference equation for the

;f@ g
|
i
|
i g,
%
i

sults from

e geometries
ing sections.
he literature
y conditions
be made to

Page 51 0of 92



272 Chapter 5 Transient Conduction

interior node m, n is An |

Fe :‘

Fe

v ally sta
LT —Th, TP, + T, ,—2T2, should -
- = 3 Howeve
* At (4x) numeric
4 P — P tions |
+ Tm,n+1 + Tm,n;l 2Tm,n (570) steady-: .
(Ay) value o =
and otl
Solving for the nodal temperature at the new (p + 1) time and assuming that criteriol
Ax = Ay, it follows that thermo |
T2 = Fo(T2,, ,+ T2, ,+ T2 .o+ T2 ) this tex
m,n m+1,n m—1,n m,n+1 m,n—1 with the |
general
+(1 - 4Fo)T? , (5.71) of the
where Fo is a finite-difference form of the Fourier number involvi
determ
a At ‘ the des
Fo = (Ax)? - ‘ (5.72) interior
If the system is one-dimensional in x, the explicit form of the finite-difference
equation for an interior node m reduces to and fo
T2 =Fo(TE  + T2 ) + (1 — 2Fo)T? (5.73)
) For pr
Equations 5.71 and 5.73 are explicit because unknown nodal temperatures § upper
for the new time are determined exclusively by. known nodal temperatures at : « E
the previous time. Hence calculation of the unknown temperatures is straight- | balanc
forward. Since the temperature of each interior node is known at ¢ = 0 § Accou
(p = 0) from prescribed initial conditions, the calculations begin at t = At % energy
(p = 1), where Equation 5.71 or 5.73 is applied to each interior node to .
determine its temperature. With temperatures known for ¢ = Az, the appropri- o E
ate finite-difference equation is then applied at each node to determine its §
temperature at ¢ =2A¢ (p=2). In this way, the transient temperature 2 In the
distribution is obtained by marching out in time, using intervals of Ar. g all he:
The accuracy of the finite-difference solution may be improved by de- i T
creasing the values of Ax and Az. Of course, the number of interior nodal 0 the or -
points that must be considered increases with decreasing Ax, and the number : mine
of time intervals required to carry the solution to a prescribed final time thickn
increases with decreasing Arz. Hence, the computation time increases with transt
decreasing Ax and At. The choice of Ax is typically based on a compromise 576 t
between accuracy and computational requirements. Once this selection has
been made, however, the value of A7 may not be chosen independently. It is, h

instead, determined by stability requirements. :
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te-difference
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emperatures
peratures at
s 1s straight-

m at t=0
n at t = At
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An undesirable feature of the explicit method is that it is not uncondition-
ally stable. In a transient problem, the solution for the nodal temperatures
should continuously approach final (steady-state) values with increasing time.
However, with the explicit method, this solution may be characterized by
numerically induced oscillations, which are physically impossible. The oscilla-
tions may become unstable, causing the solution to diverge from the actual
steady-state conditions. To prevent such erroneous results, the prescribed
value of Az must be maintained below a certain limit, which depends on Ax
and other parameters of the system. This dependence is termed a stability
criterion, which may be obtained mathematically [8] or demonstrated from a
thermodynamic argument (see Problem 5.69). For the problems of interest in
this text, the criterion is determined by requiring that the coefficient associated
with the node of interest at the previous time is greater than or equal to zero. In
general, this is done by collecting all terms involving 77 , to obtain the form
of the coefficient. This result is then used to obtain a limiting relation
involving Fo, from which the maximum allowable value of At may be
determined. For example, with Equations 5.71 and 5.73 already expressed in
the desired form, it follows that the stability criterion for a one-dimensional
interior node is (1 — 2Fo) > 0, or

Fox<1i (5.74)
and for a two-dimensional node, it is (1 — 4Fo) > 0, or
Fo<?% (5.75)

For prescribed values of Ax and «, these criteria may be used to determine
upper limits to the value of Ar. '

Equations 5.71 and 5.73 may also be derived by applying the energy
balance method of Section 4.4.3 to a control volume about the interior node.
Accounting for changes in thermal energy storage, a general form of the
energy balance equation may be expressed as

E,+E,=E, ’ (5.76)

In the interest of adopting a consistent methodology, it is again assumed that
all heat flow is into the node.

To illustrate application of Equation 5.76, consider the surface node of
the one-dimensional system shown in Figure 5.22. To more accurately deter-
mine thermal conditions near the surface, this node has been assigned a
thickness which is one-half that of the interior nodes. Assuming convection

transfer from an adjoining fluid and no generation, it follows from Equation
5.76 that

_ k4 - AAx TPt — T8
— TP —_— — f— —_—
hA(Too T3 ) + Ax(‘TI 0 ) pc ) Az
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|< ;
b g, |

i Bt =

qclonv :M! 9cond _4 - L—qu

Figure 5.22 Surface node with convection and one-dimensional 7
transient conduction.

or, solving for the surface temperature at ¢ + A,

" 2h At 2a At . )
197 = (T = ) + S (7~ T§) + 1

Recognizing that (2k At/pc Ax) = 2(h Ax/k)a At/Ax?) = 2BiFo and
grouping terms involving T, it follows that

TOerl = 2Fo(T1P + BiTm) + (1 — 2Fo — 2BiFo)T0P
The finite-difference form of the Biot number is
hAx

(5.77)

Bi =

(5.78)

Recalling the procedure for determining the stability criterion, we require
that the coefficient for T¢ be greater than or equal to zero. Hence

1 —2Fo — 2BiFo > ()
or

Fo(1+ Bi) <} (5.79)
Since the complete finite-difference solution requires the use of Equation 5.73
for the interior nodes, as well as Equation 5.77 for the surface node, Equation
5.79 must be contrasted with Equation 5.74 to determine which requirement is
the more stringent. Since Bi > 0, it is apparent that the limiting value of Fo
for Equation 5.79 is less than that for Equation 5.74. To ensure stability for all
nodes, Equation 5.79 should therefore be used to select the maximum allow-
able value of Fo, and hence Az, to be used in the calculations.

Forms of the explicit finite-difference equation for several common ge-
ometries are presented in Table 5.2. Each equation may be derived by
applying the energy balance method to a control volume about the corre-

sponding node. To develop confidence in your ability to apply this method,
you should attempt to verify at least one of these equations.
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EXAMPLE 5.6

A fuel element of a nuclear reactor is in the shape of a plane wall of thickness
2L =720 mm and is convectively cooled at both surfaces, with % = 1100
W/m? - K and T,, = 250°C. At normal operating power, heat is generated
uniformly within the element at a volumetric rate of g =107 W/m’. A
departure from the steady-state conditions associated with normal operation
will occur if there is a change in the generation rate. Consider a sudden change
to ¢, =2X 10" W/m’, and use the explicit finite-difference method to
determine the fuel element temperature distribution after 1.5 s. The fuel
element thermal properties are k = 30 W/m - K and a = 5 X 10~6 m?/s.

SOLUTION

Known: Conditions associated with heat generation in a rectangular fuel
element with surface cooling.

Find: Temperature distribution 1.5 s after a change in operating power.

Schematic:
Fuel element A
g, =1 x 107 W/m3 B i
q; = 2 x 107 W/m3 ,‘4 Tw = 250°C
a =5 x10"6m?/s B h = 1100 W/m2 - K
kE=30Wm-K o

pRatiy

v
0
»

47 on

\

Symmetry adiabat

&

Assumptions:

1. One-dimensional conduction in x.
2. Uniform generation.
3. Constant properties.

Analpsis: A numerical solution will be obtained using a space increment of
Ax =2 mm. Since there is symmetry about the midplane, the nodal

network yields six unknown nodal temperatures. Using the energy balance
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method, Equation 5.76, an explicit finite-difference equation may be derived
for any interior node m. '

T T TR T T
S + —_— + 3 — —_—
T Ax Ax 448X = pASXCTN

Solving for T2*! and rearranging,

g(Ax)’

T2 = Fo|Tp y + T + — } + (1 — 2Fo)T? (1)

This equation may be used for node 0, with T}_, = T}, as weﬂ as for
nodes 1, 2, 3, and 4. Applying energy conservation to a control volume
about node 5,

WA (T, — T2 + A S = a2 LA
ST+ kA 4 GA— = pA—

( ) 5) Ax 4 2 p 2 ¢ At

or
T2+ = 2Fo|Tf + BiT,, + Q(Zk) + (1 - 2Fo—2BiFo)T?  (2)

Since the most restrictive stability criterion is associated with Equation
2, we select Fo from the requirement that

Fo(1 + Bi) < %

Hence, with
hAx 1100 W/m? - K (0.002 m)
Bi = = = 0.0733
k 30W/m- K
it follows that
Fo < 0.466
or
Fo(Ax)®  0.466(2 X 107> m)’
At = <0373s

<
a 5% 107¢mP/s

To be well within the stability limit, we select At = 0.3 s, which corre-
sponds to

5% 107¢ m?/s(0.3 5)

Fo = - =10375
(2 X 1073 m)
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Substituting numerical values, including ¢ = ¢, = 2 X 107 W /n?’, the nodal
equations become

TE*! = 0375217 + 2.67) + 0.250TF
TP = 0375(TF + TP + 2.67) + 0.250T7
Ty = 0.375(TF + TP + 2.67) + 0.250T7
Ty = 0.375(TF + TP + 2.67) + 0.250T7
TP = 0.375(TF + T + 2.67) + 0.250T7
T2 = 0.750(TF + 19.67) + 0.195T7

To begin the marching solution, the initial temperature distribution
must be known. This distribution is given by Equation 3.42, with § = 4.
Obtaining T, = T; from Equation 3.46,

T.=T aL 250°C 107 W/m’ X 0.01 m 340.91°C
= 4 — = o + — . o
> 1100 W/m? - K
it follows that
. x2
T(x) = 16.67(1 -+ 340.91°C

Computed temperatures for the nodal points of interest are shown in the
first row of the accompanying table.

Using the finite-difference equations, the nodal temperatures may be
sequentially calculated with a time increment of 0.3 s until the desired final
time is reached. The results are illustrated in rows 2 through 6 of the table
and may be contrasted with the new steady-state condition (row 7), which
was obtained by using Equations 3.42 and 3.46 with ¢ = 4,,

Tabulated nodal temperatures

i) L L L L T, T

0 357.58 35691 35491 351.58 34691 340.91
0.3 358.08 35741 35541 352.08 34741 - 341.41
0.6 358.58 35791 35591 352.58 34791 341.88
0.9  359.08 35841 35641 353.08 34841 34235
12 359.58 35891 35691 353.58 348.89 342.82
15 360.08 35941 35741 354.07 349.37 34327
) 46515  463.82 459.82 45315 44382 431.82

8u-J>wN>—-O*t:
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Comments: It is evident that at 1.5 s, the wall is in the early stages of the
transient process and that many additional calculations would have to be
made to reach steady-state conditions with the finite-difference solution.
The computation time could be slightly reduced by using the maximum
allowable time increment (At = 0.373 s), but with some loss of accuracy. In
the interest of maximizing accuracy, the time interval should be reduced
until the computed results become independent of further reductions in At.

5.9.2 Discretization of the Heat Equation: The Implicit Method

In the explicit finite-difference scheme, the temperature of any node at ¢ + Az
may be calculated from knowledge of temperatures at the same and neighbor-
ing nodes for the preceding time t. Hence, determination of a nodal tempera-
ture at some time is independent of temperatures at other nodes for the same
time. Although the method offers computational convenience, it suffers from
limitations on the selection of Af. For a given space increment, the time
interval must be compatible with stability requirements. Frequently, this
dictates the use of extremely small values of Af, and a very large number of
time intervals may be necessary to obtain a solution.

A reduction in the amount of computation time may often be realized by
employing an implicit, rather than explicit, finite-difference scheme. The
implicit form of a finite-difference equation may be derived by using Equation
5.69 to approximate the time derivative, while evaluating all other tempera-
tures at the new (p + 1) time, instead of the previous ( p) time. Equation 5.69
is then considered to provide a backward-difference approximation to the time
derivative. In contrast to Equation 5.70, the implicit form of the finite-difference
equation for the interior node of a two-dimensional system is then

p+1l _ Tp p+1 p+1 p+1
1 Tm,n Tm,n m+1,n + Tm—l,n 2Tm,n

a At (Ax)2

p+1 p+1l p+1
Tm,n+1 + Tm,n—l 2Tm,n

(Ay)?

Rearranging and assuming Ax = Ay, it follows that

(5.86)

(1 + 4Fo)TE* Y — Fo(T2{L , + TE*H 4+ TRHL + T2 L) = T2,
(5.87)

From Equation 5.87 it is evident that the new temperature of the m, n
node depends on the new temperatures of its adjoining nodes, which are, in
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general, unknown. Hence, to determine the unknown nodal temperatures at | Find:

1 + At, the corresponding nodal equations must be solved simultaneously. Such ‘ .

a solution may be effected by using Gauss—Seidel iteration or matrix inversion, L Ust

as discussed in Section 4.5. The marching solution would then involve simulta- . th?

neously solving the nodal equations at each time ¢ = At,2A¢, ..., until the . min

desired final time was reached. - Reg
Although computations involving the implicit method are more compli- 3. Det

cated than those of the explicit method, the implicit formulation has the i

important advantage of being unconditionally stable. That is, the solution Schema

remains stable for all space and time intervals, in which case there are no :

restrictions on Ax and Ar. Since larger values of Af may therefore be used

with an implicit method, computation times may often be reduced, with little {

- loss of accuracy. Nevertheless, to maximize accuracy, At should be sufficiently 0
small to ensure that the results are independent of further reductions in its e
value. % |

The implicit form of a finite-difference equation may also be derived from !
the energy balance method. For the surface node of Figure 522, it is readily
shown that
‘ Assum,
(1 +2Fo + 2FoBi)T{ ™! — 2FoTP** = 2FoBIT, + TF - (5.88) o
1 T
For any interior node of Figure 5.22, it may also be shown that T: |
. cO
(1 +2Fo)T2*" — Fo(Tp*! + T2t) = 12 (5.89) 3 o
Forms of the implicit finite-difference equation for other common geometries Proper
are presented in Table 5.2. Each equation may be derived by applying the 1061
energy balance method. )
Analy: |
EXAMPLE 5.7 1. A
A thick slab of copper initially at a uniform temperature of 20°C is suddenly
exposed to radiation at one surface such that the net heat flux is maintained at
a.constant value of 3 X 10° W/m? Using the explicit and implicit finite-
difference techniques with a space increment of Ax = 75 mm, determine the
temperature at the irradiated surface and at an interior point that is 150 mm
from the surface after 2 min have elapsed. Compare the results with those o
obtained from an appropriate analytical solution.
SOLUTION

Known: Thick slab of copper, initially at a uniform temperature, is sub- : ;I] ‘

jected to a constant net heat flux at one surface.
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Find:

1. Using the explicit finite-difference method, determine tempefatures at
the surface and 150 mm from the surface after an elapsed time of 2
min. - '
Repeat the calculations using the implicit finite-difference method.

3. Determine the same temperatures analytically.

Schematic:

g, =3 x 105 W/m?
—>

Assumptions:

1. One-dimensional conduction in x.

2. Thick slab may be approximated as a semi-infinite medium with

constant surface heat flux.

3. Constant properties.

Properties: Table A.1, copper (300 K): k=401 W/m -K, a =117 X
1076 m?/s.

Analysis:
1. An explicit form of the finite-difference equation for the surface node

may be obtained by applying an energy balance to a control volume
about the node. ‘

.y T? — T} ) Ax TP - 17
” + p— —_—,—
1o Ax S
or
q) Ax
TF+t = 2Fo + TP |+ (1 —2Fo)T¢

The finite-difference equation for any interior node is given by Equa-
tion 5.73. Both the surface and interior nodes are governed by the
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stability criterion ' ‘; finit |
Fo <3
Noting that the finite-difference equations are simplified by choos- {
ing the maximum allowable value of Fo, we select Fo = 1 Hence j and |
A (Ax)* 1 (0.075 m)* o -—;
e T 2T x 10 °miss Expl
p
With -
1
g)Ax 3 x10° W/m? (0.075 m) 56.1°C )
ko 401 W/m - K e 3
. . . 4
the finite-difference equations become S
TP, + TP 6
T§*t =561°C+ Tf and T2%!= —“—2—u 7
' 8
for the surface and interior nodes, respectively. Performing the calcula- 9
tions, the results are tabulated as follows. 10
o . ) | Af
Explicit finite-difference solution for Fo = 1 o a4
p 1(s) T n L L T ; is
0 0 20 20 20 20 20 3 rec |
1 24 761 20 20 20 20 tra ¢
2 48 761 481 20 20 20 | me
3 72 104.2 48.1 341 20 20 3‘ : f
4 96 104.2 69.1 34.1 271 20 | 2. Pe .
5 120 1253 691 481 211 20 | ne
After 2 min, the surface temperature and the desired interior tempera-
ture are 75 = 125.3°C and T, = 48.1°C.
Note that calculation of identical temperatures at successive times or
for the same node is an idiosyncrasy of using the maximum allowable
value of Fo with the explicit finite-difference technique. The actual
physical condition is, of course, one in which the temperature changes
continuously with time. The idiosyncrasy is eliminated and the accu-
racy of the calculations is improved by reducing the value of Fo. ’ A
To determine the extent to which the accuracy may be improved
by reducing Fo, let us redo the calculations for Fo = L(At =12 5). The
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finite-difference equations are then of the form
T+t = 1(56.1°C + TF) + 3T1¢
Tt = {(Tho + Thy) + 3T

and the results of the calculations are tabulated as follows.

Explicit finite-difference solution for Fo = 1/4

p 1) T L ) L T I Ti T, Ty
0 0 20 20 20 20 20 20 20 20 20
1 12 48.1 20 20 20 20 20 20 20 20
2 24 62.1 27.0 20 20 20 20 20 20 20
3 36 72.6 34.0 21.8 20 20. 20 20 20 20
4 48 81.4 40.6 24.4 20.4 20 20 20 20 20
5 60 89.0 46.7 21.5 21.3 20.1 20 20 20 20
6 72 95.9 52.5 30.7 22.6 204 20.0 20 20 20
7 84 102.3 57.9 341 241 20.8 20.1 20.0 20 20
8 96 108.1 63.1 37.6 25.8 21.5 20.3 20.0 20.0 20
9 108 113.7 68.0 41.0 27.6 22,2 20.5 20.1 20.0 20.0

-
<

120 118.9 726 444  29.6 23.2 208 202 20.0 200

After 2 min, the desired temperatures are T, = 118.9°C and T, =
44.4°C. Comparing the above results with those obtained for Fo = 3, it
is clear that by reducing Fo we have eliminated the problem of
recurring temperatures. We have also predicted greater thermal pene-
tration (to node 6 instead of node 3). An assessment of the improve-

ment in accuracy must await a comparison with results based on an
exact solution.

Performing an energy balance on a control volume about the surface
node, the implicit form of the finite-difference equation is

- lep+1 o T0p+1 _ _Aic T({J-l—l . T(f’
% Ax - Az

or,

2aq] At

(1 + 2Fo)Tf* — 2FoTf* = A

+ TP

Arbitrarily choosing Fo = 3(At = 24 s), it follows that

TP — TP =561 + T¢
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From Equation 5.89, the finite-difference equation for any interior node 4 coe
is then of the form ‘ the
. ‘ obt

—TE 1 + 4T+ — TPil = 2717 ing

Since we are dealing with a semi-infinite solid, the number of
nodes is, in principle, infinite. In practice, however, the number may be
limited to the nodes that are affected by the change in the boundary
condition for the time period of interest. From the results of the explicit
method, it is evident that we are safe in choosing nine nodes corre-
sponding to Ty, Ty,..., T;. We are thereby assuming that, at r = 120 s,
there has been no change in 7.

We now have a set of nine equations that must be solved simulta-
neously for each time increment. Using the matrix inversion method,
we express the equations in the form [A][T] = [C], where

2 -1 0 0 0 0 0 ]
-1 4 -1 0 0 0 0
0 -1 4 -1 0 0 0
0 -1 4 -1 0 0
0

1

4

o
I
i
S
|
p—t

l

—= A - O O O O O O

!

o O O O o O

oS O O O O

o O O O

S

(e}

o

|
PO O O O O O O

277
2T?
2T7 3. A
| 277 | o
277
217
277

2T¢ + TP+ ‘-

0

1

2
56.1 + T? | y :
1+ T )

5

It

[C]

Note that numerical values for the components of [C] are determined .-
from previous values of the nodal temperatures. Note also how the 7(0, 1
finite-difference equation for node 8 appears in matrices [ 4] and [C].
A table of nodal temperatures may be compiled, beginning with
the first row (p = 0) corresponding to the prescribed initial condition.
To obtain nodal temperatures for subsequent times, the inverse of the
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coefficient matrix [ 4]™! must first be found. At each time p + 1, it is
then multiplied by the column vector [C],-which is evaluated at p, to
obtain the temperatures T/ *', T7*%, ..., T#*. For example, multiply-
ing [4]7! by the column vector corresponding to p = 0,

76.1 ]
40
40
40
[Clp=0= |40
40
40
40
60.

the second row of the table is obtained. Updating [C], the process is
repeated four more times to determine the nodal temperatures at 120 s.
The desired temperatures are T, = 114.7°C and T, = 44.2°C.

Implicit finite-difference solution for Fo =

p t® % L L & T L L T,

0 0 200 200 200 200 200 200 200 200 200
1 24 524 287 223 206 202 200 200 200 200
2 48 740 395 266 221 207 202 201 200 200
3 72 92 503 320 244 216 206 202 201 200
4 9% 1034 605 380 274 229 211 204 202 201
5 120 1147 700 442 309 247 219 208 203 201

3. Approximating the slab as a semi-infinite medium, the appropriate
analytical expression is given by Equation 5.58, which may be applied
to any point in the slab.

2

2q; (at/m)"* ( x) q;x (x)

dat

- T = -
T(x,1t) : .

At the surface, this expression yields

2% 3 X 105 W/m?
401 W/m - K

7(0,120 s) — 20°C = (117 x 106 m*/s x 120 s/7)"*

or

(0,120 s) = 120.0°C q
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At the interior point (x = 0.15 m) diffi
0.15m, 120 20°C 2 3 X107 W /m’
—20°C= €o
T(015m,1205) 401 W/m - K
X (117 X 1076 m?/s x 120 s /)" }f{i
, (0.15 m)? © 3x10°W/m? X 0.15m line
X P T N T17 X 105 mP/s X 120 s 401W,/m - K
0.15m
X 11 — erf - = 454°C <
2/117 X 10~* m%/s X 120 s
Comments: ?ac'
1ty
1. Comparing the exact results with those obtained from the three approx- ca}l] /
imate solutions, it is clear that the explicit method with Fo = 1/4 Wi
provides the most accurate predictions.
METHOD Ty = T(0,1205) T, = T(0.15m,120s) ‘ ‘ 5.10 SUN
Explicit (Fo = 1) ~ 125.3 481 g | Transi
Explicit (Fo = 1)  118.9 44.4 | ;; imporf
Implicit (Fo = 1) 1147 442 certair
Exact 120.0 45.4 transic -
If this -
This is not unexpected, since the corresponding value of A is 50% i metho
smaller than that used in the other two methods. Howe'
2. Although computations are simplified by using the maximum allowable ! be co
. . . availa
value of Fo in the explicit method, the accuracy of the results is seldom | finit
satisfactory. !
) . when
3. Note that the coefficient matrix [4] is tridiagonal. That is, all elements form . .
are zero except those which are on, or to either side of, the main finite-
diagonal. Tridiagonal matrices are associated with one-dimensional used 1 -
conduction problems. In such cases the problem of solving for the
unknown temperatures is greatly simplified, and stock computer pro-
grams may readily be obtained for this purpose. , REFERE!
4. A more general radiative heating condition would be one in which the Lo
surface is suddenly exposed to large surroundings at an elevated tem- "
perature 7., (Problem 5.84). The net rate at which radiation is trans- - |
ferred to the surface may then be calculated from Equation 1.7. C
Allowing for convection heat transfer to the surface, application of 3. . :
conservation of energy to the surface node yields an explicit finite- 4.
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difference equation of the form

TP - T¢  Ax T¢*'—-T¢

4 1 0 0 0
o[ T8 = (T)] + h(T = T) + k=g = oo
Use of this finite-difference equation in a numerical solution is compli-
cated by the fact that it is nonlinear. However, the equation may be
linearized by introducing the radiation heat transfer coefficient h,
defined by Equation 1.9, and the finite-difference equation is

TP —TF  Ax TP =17
P TP — TP S S
hr(Tsur T0)+h(Too TO)+k Ax 2 ‘ At
The solution may proceed in the usual manner, although the effect of a
radiative Biot number (Bi, = h, Ax/k) must be included in the stabil-
ity criterion and the value of h, must be updated at each step in the
calculations. If the implicit method is used, %, is calculated at p + 1, in
which case an iterative calculation must be made at each time step.

5.10 SUMMARY

Transient conduction occurs in numerous engineering applications, and it is
important to appreciate the different methods for dealing with it. There is
certainly much to be said for simplicity, in which case, when confronted with a
transient problem, the first thing you should do is calculate the Biot number.
If this number is much less than unity, you may use the lumped capacitance
method to obtain accurate results with minimal computational requirements.
However, if the Biot number is not much less than unity, spatial effects must
be considered, and some other method must be used. Analytical results are
available in convenient graphical and equation form for the plane wall, the
infinite cylinder, the sphere, and the semi-infinite solid. You should know
when and how to use these results. If geometrical complexities and/or the
form of the boundary conditions preclude their use, recourse must be made to
finite-difference methods. With the digital computer, such methods may be
used to solve any conduction. problem, regardless of complexity.
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PROBLEMS 5
‘ ti
Qualitative Considerations ‘ ; » (
5.1 Consider a thin electrical heater attached to a plate and backed by insulation.
Initially, the heater and plate are at the temperature of the ambient air, T,,.
Suddenly, the power to the heater is switched on giving rise to a constant heat flux @
g, (W/n?) at the inner surface of the plate. '
Insulation Plate («
1 ‘ °
x=L
Lumped
Power l—)x P
leads 5.5
(a) Sketch and label, on T-x coordinates, the temperature distributions: initial,
steady-state, and at two intermediate times. ‘
(b) Sketch the heat flux at the outer surface g/(L, ) as a function of time. 56
5.2 The inner surface of a plane wall is insulated while the outer surface is exposed to : '
an airstream at 7. The wall is at a uniform temperature correspending to that of
the airstream. Suddenly, a radiation heat source is switched on applying a uniform
flux g’ to the outer surface.
o &—qgpfort>0 .
-Insulation —<¢f . ¢
% 5.7
:';‘-T; l ? ? Ar T°°’ h
L> x L ' :

[ LS

(a) Sketch and label, on T-x coordinates, the temperature distributions: initial,
steady-state, and at two intermediate times.

(b) Sketch the heat flux at the outer surface g7 (L, t) as a function of time.
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5.3

5.4

Lumped Capacitance Method

5.5

5.6

57

Problems 289

A microwave oven operates on the principle that application of a high frequency
field causes electrically polarized molecules in food to oscillate. The net effect is a
uniform generation of thermal energy within the food, which enables it to be
heated from refrigeration temperatures to 90°C in as short a time as 30 s.

Consider the process of cooking a slab of beef of thickness 2L in a
microwave oven and compare it with cooking in a conventional oven, where each
side of the slab is heated by radiation for a period of approximately 30 min. In
each case the meat is to be heated from 0°C to a minimum temperature of 90°C.
Base your comparison on a sketch of the-temperature distribution at selected
times for each of the cooking processes. In particular consider the time ?, at
which heating is initiated, a time #, during the heating process, the time 1,
corresponding to the conclusion of heating, and a time ¢, well into the subsequent
cooling process.

A plate of thickness 2L, surface area A, mass M, and specific heat c,, initially at
a uniform temperature 7}, is suddenly heated on both surfaces by a convection
process (T, i) for a period of time ¢,, following which the plate is insulated.
Assume that the midplane temperature does not reach 7, within this period of
time.

(a) Assuming Bi > 1 for the heating process, sketch and label, on T-x coordi-
nates, the following temperature distributions: initial, steady-state (¢ — o0),
T(x,t,), and at two intermediate times between ¢ = ¢, and ¢ —> co.

(b) Sketch and label, on T—t coordinates, the midplane and exposed surface
temperature distributions.

(¢) Repeat parts a and b assuming Bi < 1 for the plate.

(d) Derive an expression for the steady-state temperature T(x, o) = T;, leaving
your result in terms of plate parameters (M, c,), thermal conditions (T}, 7., h),
the surface temperature T(L, t), and the heating time ¢,,. '

Steel balls 12 mm in diameter are annealed by heating to 1150 K and then slowly
cooling to 400 K in an air environment for which 7, = 325 K and h =20
W /m? - K. Assuming the properties of the-steel to be k = 40 W/m - K, p = 7800
kg/m’, and ¢ = 600 J/kg - K, estimate the time required for the cooling process.
The heat transfer coefficient for air flowing over a sphere is to be determined by
observing the temperature-time history of a sphere fabricated from pure copper.
The sphere, which is 12.7 mm in diameter, is at 66°C before it is inserted into an

* airstream having a temperature of 27°C. A thermocouple on the outer surface of

the sphere indicates 55°C 69 s after the sphere is inserted in the airstream.
Assume, and then justify, that the sphere behaves as a spacewise isothermal object
and calculate the heat transfer coefficient.

A solid steel sphere (AISI 1010), 300 mm in diameter, is coated with a dielectric
material layer of thickness 2 mm and thermal conductivity 0.04 W/m - K. The
coated sphere is initially at a uniform temperature of 500°C and is suddenly
quenched in a large oil bath for which T, = 100°C and % = 3300 W/m’ - K.
Estimate the time required for the coated sphere temperature to reach 140°C.
Hint: Neglect the effect of energy storage in the dielectric material, since its
thermal capacitance (pcV) is small.compared to that of the steel sphere.
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5.8

5.9

510

511

512
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A spherical lead bullet of 6 mm diameter is moving at a Mach number of
approximately 3. The resulting shock wave heats the air around the bullet to 700
K, and the average convection coefficient for heat transfer between the air and the
bullet is 500 W/m* - K. If the bullet leaves the barrel at 300 K and the time of
flight is 0.4 s, what is its surface temperature on impact?

Carbon steel (AISI 1010) shafts of 0.1 m diameter are heat treated in a gas-fired
furnace whose gases are at 1200 K and provide a convection coefficient of 100
W/ - K. If the shafts enter the furnace at 300 K, how long must they remain in
the furnace to achieve a centerline temperature of 800 K?

A thermal energy storage unit consists of a large rectangular channel, which is
well insulated on its outer surface and encloses alternating layers of the storage
material and the flow passage.

Storage
material .

Hotgas T, h
Each layer of the storage material is an aluminum slab of width W = 0.05 m,
which is at an initial temperature of 25°C. Consider conditions for which the
storage unit is charged by passing a hot gas through the passages, with the gas
temperature and the convection coefficient assumed to have constant values of
T, = 600°C and & =100 W/n* - K throughout the channel. How long will it
take to achieve 75% of the maximum possible energy storage? What is the
temperature of the aluminum at this time?

A leaf spring of dimensions 32 mm by 10 mm by 1.1 m is sprayed with a thin
anticorrosion coating which is heat treated by suspending the spring vertically in
the lengthwise direction and passing it through a conveyor oven maintained at an
air temperature of 175°C. Satisfactory coatings have been obtained on springs,
initially at 25°C, with an oven residence time of 35 min. The coating supplier has
specified that the coating should be treated for 10 min above a temperature of
140°C. How long should a spring of dimensions 76 mm by 35 mm by 1.6 m
remain in the oven in order to properly heat treat the coating? The thermophysi-
cal properties of the spring material are p = 8131 kg/n?, ¢, =473 J/kg - K, and
k=42W/m- K.

A 3-mm-thick panel of aluminum alloy (k=177 W/m - K and a = 73 X 10~6
u’/s) is finished on both sides with an epoxy coating that must be cured at or
above 150°C for at least 5 min. The production line for the curing operation
involves two steps: (1) heating in an oven with air at 175°C and a convection
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coefficient of 20 W/m? - K, and (2) cooling in an enclosure with air at 25°C and a
convection coefficient of 10 W/m* - K.

(a) Assuming the panel is initially at 25°C, what is the minimum residence time
for the panel in the oven?

(b) What is the total elapsed time for the two-step curing operation if it is
completed when the panel has been cured and cooled to the safe-to-touch
temperature of 37°C?

A plane wall of a furnace is fabricated from plain carbon steel (k = 60 W/m - K,
p = 7850 kg /m’, ¢ = 430 J /kg - K) and is of thickness L = 10 mm. To protect it
from the corrosive effects of the furnace combustion gases, one surface of the wall
is coated with a thin ceramic film which, for a unit surface area, has a thermal

resistance of R} = 0.01 m? - K/W, The opposite surface is well insulated from
the surroundings.

- Carbon steel,

Ceramic film,— St
P, C Ry &

Ry

Furnace

|
|——>x x =1L
At furnace start-up the wall is at an initial temperature of 7, = 300 K, and
combustion gases at 7., = 1300 K enter the furnace, providing a convection
coefficient of & = 25 W/m? - K at the ceramic film. Assuming the film to have
negligible thermal capacitance, how long will it take for the inner surface of the

steel to achieve a temperature of 7, ; = 1200 K? What is the temperature 7, , of
the exposed surface of the ceramic film at this time?

In an industrial process requiring high dc currents, water-jacketed copper rods, 20
mm in diameter, are used to carry the current. The water, which flows continu-
ously between the jacket and the rod, maintains the rod temperature at 75°C
during normal operation at 1000 A. The electrical resistance of the rod is known
to be 0.15 € /m. Problems would arise if the coolant water ceased to be available
(e.g. because of a valve malfunction). In such a situation heat transfer from the
rod surface would diminish greatly, and the rod would eventually melt. Estimate
the time required for melting to occur.

A long wire of diameter D = 1 mm is submerged in an oil bath of temperature
T,, = 25°C. The wire has an electrical resistance per unit length of R, = 0.01
Q/m. If a current of I =100 A flows through the wire and the convection
coefficient is & = 500 W/m? - K, what is the steady-state temperature of the wire?
From the time the current is applied, how long does it take for the wire to reach a
temperature which is within 1°C of the steady-state value? The properties of the
wire are p = 8000 kg/m?, ¢ = 500 J/kg - K, and k =20 W/m - K.

Consider the system of Problem 5.1 where the temperature of the plate is
spacewise isothermal during the transient process.
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517

5.18

5.19

5.20

(a) Obtain an expression for the temperature of the plate as a function of time
T(t) in terms of ¢.', T, h, L, and the plate properties p and c.

(b) Determine the thermal time constant and the steady-state temperature for a
12-mm-thick plate of pure copper when T, = 27°C, h = 50 W/m’ - K, and
q! = 5000 W /m’. Estimate the time required to reach steady-state conditions.

An electronic device, such as a power transistor mounted on a finned heat sink,

can be modeled as a spatially isothermal object with internal heat generation and
an external convection resistance.

(a) Consider such a system of mass M, specific heat ¢, and surface area 4, which
is initially in equilibrium with the environment at 7. Suddenly, the electronic
device is energized such that a constant heat generation Eg (W) occurs. Show
that the temperature response of the device is

é t
6, “”‘p(“if)

where § = T — T(o0) and T(co) is the steady-state temperature correspond-
ing to t > c0; 6, =T, — T(c0); T; = initial temperature of -device; R =
thermal resistance 1/h4,; and C = thermal capacitance Mc.

(b) An electronic device, which generates 60 W of heat, is mounted on an
aluminum heat sink weighing 0.31 kg and reaches a temperature of 100°C in
ambient air at 20°C under steady-state conditions. If the device is initially at
20°C, what temperature will it reach 5 min after the power is switched on?

Before being injected into a furnace, pulverized coal is preheated by passing it
through a cylindrical tube whose surface is maintained at T, = 1000°C. The coal
pellets are suspended in an airflow and are known to move with a speed of 3 m /s.
If the pellets may be approximated as spheres of 1-mm diameter and it may be
assumed that they are heated by radiation transfer from the tube surface, how
long must the tube be to heat coal entering at 25°C to a temperature of 600°C? Is

the use of the lumped capacitance method justified?

A metal sphere of diameter D, which is at a uniform temperature T}, is suddenly
removed from a furnace and suspended from a fine wire in a large room with air

at a uniform temperature 7, and the surrounding walls at a temperature T, .

(a) Neglecting heat transfer by radiation, obtain an expression for the time
required to cool the sphere to some temperature 7.

(b) Neglecting heat transfer by convection, obtain an expression for the time
required to cool the sphere to the temperature 7.

(¢) How would you go about determining the time required for the sphere to cool
to the temperature T if both convection and radiation are of the same order
of magnitude?

(d) Consider an anodized aluminum sphere (¢ = 0.75) 50 mm in diameter, which
is at an initial temperature of 7; = 800 K. Both the air and the surroundings
are at 300 K, and the convection coefficient is 10 W/m? - K. Calculate and

- compare the time it will take for the sphere to cool to 400 K using the results
of parts a, b, and c.

As permanent space stations increase in size, there is an attendant increase in the
amount of electrical power they dissipate. To keep station compartment tempera-
tures from exceeding prescribed limits, it is necessary to transfer the dissipated
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Problems 293

heat to space. A novel heat rejection scheme that has been proposed for this
purpose is termed a Liquid Droplet Radiator (LDR). The heat is first transferred
to a high vacuum oil, which is then injected into outer space as a stream of small
droplets. The stream is allowed to traverse a distance L, over which it cools by

radiating energy to outer space at absolute zero temperature. The droplets are
then collected and routed back to the space station. ’

Outer space

Dropl'et Taur = 0K Droplet
injector collector
T, iy

e
® © 1
. © :
ol © |
-
- L ]
q.___

Cold oil return

Consider conditions for which droplets of emissivity & = 0.95 and diameter
D = 0.5 mm are injected at a temperature of 7; = 500 K and a velocity of
V' = 0.1 m/s. Properties of the oil are p = 885 kg/n?, ¢ = 1900 J/kg - K, and
k = 0.145 W/m - K. Assuming each drop to radiate to deep space at T, = 0 K,
determine the distance L required for the droplets to impact the collector at a

final temperature of 7, = 300 K. What is the amount of thermal energy rejected
by each droplet?

Long metallic rods of circular cross section are heat treated by passing an electric
current through the rods to provide uniform volumetric heat generation at a rate ¢
(W/n’). The rods are of diameter D and are placed in a large chamber whose
walls are maintained at the same temperature T, as the enclosed air. Convection
from the surface of the rods to the air is characterized by the coefficient .

(a) Obtain an expression that could be used to determine the steady-state
~ temperature of the rod.

(b) Neglecting radiation and prescribing an initial (¢ = 0) rod temperature of
T, = T, obtain the transient temperature response of the rod.
A chip that is of length L = 5 mm on a side and thickness z = 1 mm is encased in

a ceramic substrate, and its exposed surface is convectively cooled by a dielectric
liquid for which 7 = 150 W/n? - K and T, = 20°C.
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In the off-mode the chip is in thermal equilibrium with the coolant (7, = T,.).
When the chip is energized, however, its temperature increases until a new
steady-state is established. For purposes of analysis, the energized chip is charac-
terized by uniform volumetric heating with ¢ = 9 X 106 W/m’. Assuming an
infinite contact resistance between the chip and substrate and negligible conduc-
tion resistance within the chip, determine the steady-state chip temperature T.
Following activation of the chip, how long does it take to come within 1°C of this
temperature? The chip density and specific heat are p = 2000 kg/m’® and ¢ = 700
J/kg - K, respectively. _

5.23 Consider the conditions of Problem 5.22. In addition to treating heat transfer by
convection directly from the chip to the coolant, a more realistic analysis would
account for inditect transfer from the chip to the substrate and then from the
substrate to the coolant. The total thermal resistance associated with this indirect
route includes contributions due to the chip—substrate interface (a contact resis-
tance), multidimensional conduction in the substrate, and convection from the
surface of the substrate to the coolant. If this total thermal resistance is R, = 200
K /W, what is the steady-state chip temperature 7;? Following activation of the
chip, how long does it take to come within 1°C of this temperature?

One-Dimensional Conduction: The Plane Wall

5.24 Consider the series solution, Equation 5.39, for the plane wall with convection.
Calculate midplane (x* = 0) and surface (x* = 1) temperatures 8* for Fo = 0.1
and 1, using Bi = 0.1, 1, and 10. Consider only the first four eigenvalues. Based

on these results discuss the validity of the approximate solutions, Equations 5.40
and 5.41.

5.25 Consider the one-dimensional wall shown in the sketch which is initially at a

uniform temperature 7, and is suddenly subjected to the convection boundary
condition with a fluid at 7.

Wall, T(x,0) =T},
k,

{— Insulation

L.

For a particular wall, case 1, the temperature at x = L, after t, =100 s is

T,(Ly, ;) = 315°C. Another wall, case 2, has different thickness and thermal
conditions as shown below.

b A

CASE L(m) a(m’/s) kW/m-K) T,(°C) T, (°C) h(W/n K)

1 0.10 15X 1076 50 300 400 200
2 0.40 25 X 107% 100 30 20 100
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How long will it take for the second wall to reach 28.5°C at the position x = L,?
Use as the basis for analysis, the dimensionless functional dependence for
transient temperature distribution as expressed in Equation 5.26.

A large aluminum (2024 alloy) plate of thickness 0.15 m, initially at a uniform
temperature of 300 K, is placed in a furnace having an ambient temperature of
800 K for which the convection heat transfer coefficient is estimated to be 500
W/m* - K.

(a) Determine the time required for the plate midplane to reach 700 K.

(b) What is the surface temperature of the plate for this condition?

(¢) Repeat the calculations if the material were stainless steel (type 304).

5.27 After a long, hard week on the books, you and your friend are ready to relax. You

take a steak 50 mm thick from the freezer. Hew long do you have to let the good
times roll before the steak has thawed? Assume that the steak is initially at —6°C,
that it thaws when the midplane temperature reaches 4°C, and that the room
temperature is 23°C with a convection heat transfer coefficient of 10 W/m* - K.
Treat the steak as a slab having the properties of liquid water at 0°C. Neglect the
heat of fusion associated with the melting phase change.

5.28 A one-dimensional plane wall with a thickness of 0.1 m initially at a uniform

temperature of 250°C is suddenly immersed in an oil bath at 30°C. Assuming the
convection heat transfer coefficient for the wall in the bath is 500 W /m? - K,
calculate the surface temperature of the wall 9 min after immersion. The proper-
ties of the wall are k = 50 W/m - K, p = 7835 kg/n?’, and ¢ = 465 J /kg - K.

5.29 Consider the thermal energy storage unit of Problem 5.10, but with a masonry

5.30

531

material of p = 1900 kg/m’, ¢ = 800 J/kg - K, and k = 0.70 W/m - K used in
place of the aluminum. How long will it take to achieve 75% of the maximum
possible energy storage? What are the maximum and minimum temperatures of
the masonry at this time?

The wall of a rocket nozzle is of thickness L = 25 mm and is made from a high
alloy steel for which p = 8000 kg/n?, ¢ = 500 J/kg - K, and k = 25 W/m - K.
During a test firing, the wall is initially at T, = 25°C and its inner surface is
exposed to hot combustion gases for which # = 500 W /m? - K and T, = 1750°C.
The outer surface is well insulated.

— Nozzle wall

gases

- [[ Combustion
—>
L

T ,;:1‘»:_\./\: = \[
Insulation —J 7

If the wall must be maintained at least 100°C below its melting point of
T, = 1600°C, what is the maximum allowable firing time #,? The diameter of the
nozzle is much larger than its thickness L.

In a tempering process, glass plate, which is initially at a uniform temperature T},
is cooled by suddenly reducing the temperature of both surfaces to 7. The plate is
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20 mm thick, and the glass has a thermal diffusivity of 6 X 10~7 m?/s.

(a) How long will it take for the midplane temperature to achieve 50% of its
maximum possible temperature reduction?

(b) If (T; — T,) = 300°C, what is the maximum temperature gradient in the glass
" at the above time?

Copper-coated, epoxy-filled fiberglass circuit boards are treated by heating a stack
of them under high pressure as shown in the sketch. The purpose of the
pressing-heating operation is to cure the epoxy which bonds the fiberglass sheets
imparting stiffness to the boards. The stack, referred to as a book, is comprised of
10 boards and 11 pressing plates which prevent epoxy from flowing between the
boards and impart a smooth finish to the cured boards. In order to perform
simplified thermal analyses, it is reasonable to approximate the book as having an
effective thermal conductivity (k) and an effective thermal capacitance (pcy)-
Calculate the effective properties if each of the boards and plates has a thickness
of 2.36 mm and the following thermophysical properties: board (b) p, = 1000
kg/m?, ¢y = 1500 J/kg - K, k;, = 030 W/m - K; plate (p) p, = 8000 kg /n?,
¢, =4807T/kg - K, k, =12 W/m - K.

Applied force

l l l l l Platen with
circulating fluid
L s - Metal pressing
P - plate
T : DMMMMIN
- { 70020775
~50 mm AMMHMIIITIIS
‘L Circuit
1 R i board

l—Pla'(en

Circuit boards are treated by heating a stack of them under high pressure as
illustrated in Problem 5.32. The platens at the top and bottom of the stack are
maintained at a uniform temperature by a circulating fluid. The purpose of the
pressing—heating operation is to cure the epoxy which bonds the fiberglass sheets
and impart stiffness to the boards. The cure condition is achieved when the epoxy
hds been maintained at or above 170°C for at least 5 min. The effective
thermophysical properties of the stack or book (boards and metal pressing plates)
are k =0.613 W/m - K and pc, = 2.73 X 10° J/m’* - K.

(a) If the book is initially at 15°C and, following application of pressure, the
platens are suddenly brought to a uniform temperature of 190°C, calculate the

elapsed time ¢, required for the midplane of the book to reach the cure
temperature of 170°C.

(b) If, at this instant of time, ¢ =¢,, the platen temperature were reduced
suddenly to 15°C, how much energy would have to be removed from the book

by the coolant circulating in the platen, in order to return the stack to its
initial uniform temperature?
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One-Dimensional Conduction: The Long Cylinder
5.34 Cylindrical steel rods (AISI 1010), 50 mm in diameter, are heat treated by

5.35

5.36

5.37

5.38

drawing them through an oven 5 m long in which air is maintained at 750°C. The
rods enter at 50°C and achieve a centerline temperature of 600°C before leaving,
For a convection coefficient of 125 W/m? - K, estimate the speed at which the
rods must be drawn through the oven.

Estimate the time required to cook a hot dog in boiling water. Assume that the
hot dog is initially at 6°C, that the convection heat transfer coefficient is 100
W/ - K, and that the final temperature is 80°C at the centerline. Treat the hot
dog as a long cylinder of 20-mm diameter having the properties: p = 880 kg/m’,
c¢=3350J/kg - K, and k = 0.52 W/m - K.

A long rod of 60-mm diameter and thermophysical properties p = 8000 kg/m?,
c¢=15007J/kg - K and k = 50 W/m - K is initially at a uniform temperature and
is heated in a forced convection furnace maintained at 750 K. The convection
coeflicient is estimated to be 1000 W/m? - K. At a certain time, the surface

temperature of the rod is measured to be 550 K. What is the corresponding center
temperature of the rod?

A long cylinder of 30-mm diameter, initially at a uniform temperature of 1000 K,
is suddenly quenched in a large, constant-temperature oil bath at 350 K. The
cylinder properties are k=17 W/m - K, ¢ = 1600 J/kg - K, and p = 400
kg/m’, while the convection coefficient is 50 W/m? - K. Calculate the time
required for the surface of the cylinder to reach 500 K.

A long pyroceram rod of diameter 20 mm is clad with a very thin metallic tube for
mechanical protection. The bonding between the rod and the tube has a thermal
contact resistance of R; ., =012 m - K/W.

Thin metallic tube
\ Ceramic rod

/ Bonding interface

D =20 mm

-+ If the rod is initially at a uniform temperature of 900 K and is suddenly cooled by

a fluid at T, =300 K and h =100 W/n? - K, at what time will the rod
centerline reach 600 K?

5.39 A long rod 40 mm in diameter, fabricated from sapphire (aluminum oxide) and

5.40

initially at a uniform temperature of 800 K, is suddenly exposed to a cooling
process with a fluid at 300 K having a heat transfer coefficient of 1600 W /m? - K.
After 35 s of exposure to the cooling process, the rod is wrapped in insulation and

experiences no heat losses. What will be the temperature of the rod after a long
period of time?

A long bar of 70-mm diameter and initially at 90°C is cooled by immersing it in a
water bath which is at 40°C and provides a convection coefficient of 20 W /o - K.

The thermophysical properties of the bar are p = 2600 kg/n?’, ¢ = 1030 J /kg - K,
and k = 3.50 W/m - K.
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5.41

(a) How long should the bar remain in the bath in order that, when it is removed
and allowed to equilibrate while isolated from any surroundings, it achieves a
uniform temperature of 55°C?

(b) What is the surface temperature of the bar when it is removed from the bath?

A long plastic rod of 30-mm diameter (k=03 W/m-K and pc, = 1040
kJ/m® - K) is uniformly heated in an oven as preparation for a pressing opera-
tion. For best results, the temperature in the rod should not be less than 200°C.
To what uniform temperature should the rod be heated in the oven if, for the
worst case, the rod sits on a conveyor for 3 min while exposed to convection
cooling with ambient air at 25°C and with a convection coefficient of 8 W /m? - K?
A further condition for good results is a maximum-minimum temperature differ-

ence of less than 10°C. Is this condition satisfied and, if not, what could you do to
satisfy it? »

One-Dimensional Conduction: The Sphere

542

543

5.44

5.45
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In heat treating to harden steel ball bearings (¢ = 500 J/kg - K, p = 7800 kg/m’,
k =50 W/m - K), it is desirable to increase the surface temperature for a short
time without significantly warming the interior of the ball. This type of heating
can be accomplished by sudden immersion of the ball in a molten salt bath with
T, = 1300 K and & = 5000 W/m? - K. Assume that any location within the ball
whose temperature exceeds 1000 K will be hardened. Estimate the time required
to harden the outer millimeter of a ball of diameter 20 mm, if its initial
temperature is 300 K.

A sphere of 80-mm diameter (k =50 W/m - K and a = 1.5 X 107 m?/s) is
initially at a uniform, elevated temperature and is quenched in an oil bath
maintained at 50°C. The convection coefficient for the cooling process is 1000
W /m? - K. At a certain time, the surface temperature of the sphere is measured to
be 150°C. What is the corresponding center temperature of the sphere?

A cold air chamber is proposed for quenching steel ball bearings of diameter
D = 0.2 m and initial temperature 7; = 400°C. Air in the chamber is maintained
at —15°C by a refrigeration system, and the steel balls pass through the chamber
on a conveyor belt. Optimum bearing production requires that 70% of the initial
thermal energy content of the ball above —15°C be removed. Radiation effects
may be neglected, and the convection heat transfer coefficient within the chamber
is 1000 W/m’ - K. Estimate the residence time of the balls within the chamber,
and recommend a drive velocity of the conveyor. The following properties may be
used for the steel: £k =50 W/m - K, a =2 X 107° m*/s, and ¢ = 450 J /kg - K.

< 5m-———>
. beBaar:Lg Cold air Chamber
o housing
N o o Q o Q Q Q
© —V ©
Beit

Stainless steel (AISI 304) ball bearings, which have been uniformly heated to
850°C, are hardened by quenching them in an oil bath that is maintained at 40°C.
The ball diameter is 20 mm, and the convection coefficient associated with the oil
bath is 1000 W,/m? - K.
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(a) If quenching is to occur until the surface temperature of the balls reaches
100°C, how long must the balls be kept in the o0il? What is the center
temperature at the conclusion of the cooling period?

(b) If 10,000 balls are to be quenched per hour, what is the rate at which energy
must be removed by the oil bath cooling system in order to maintain its
temperature at 40°C?

A spherical hailstone that is 5 mm in diameter is formed in a high altitude cloud
at —30°C. If the stone begins to fall through warmer air at 5°C, how long will it
take before the outer surface begins to melt? What is the temperature of the
stone’s center at this point in time, and how much energy (J) has been transferred
to the stone? A convection heat transfer coefficient of 250 W/m? - K may be
assumed, and the properties of the hailstone may be taken to be those of ice.

A sphere 30 mm in diameter initially at 800 K is quenched in a large bath having

a constant temperature of 320 K with a convection heat transfer coefficient of 75

W ,/m’ - K. The thermophysical properties of the sphere material are: p = 400

kg/m’, ¢ =1600T/kg - K,and k =1.7W/m - K.

(2) Show, in a qualitative manner on 7-¢ coordinates, the temperatures at the
center and at the surface of the sphere as a function of time.

(b) Calculate the time required for the surface of the sphere to reach 415 K.

(¢) Determine the heat flux (W /m?) at the outer surface of the sphere at the time
determined in part b.

(d) Determine the energy (J) that has been lost by the sphere during the process
of cooling to the surface temperature of 415 K.

(e) At the time determined by part b, the sphere is quickly removed from the bath
and covered with perfect insulation, such that there is no heat loss from the
surface of the sphere. What will be the temperature of the sphere after a long
period of time has elapsed?

Spheres A and B are initially at 800 K, and they are simultaneously quenched in
large constant temperature baths, each having a temperature of 320 K. The

following parameters are associated with each of the spheres and their cooling
processes.

SPHERE A SPHERE B
Diameter (mm) 300 30
Density (kg/ m’) 1600 400
Specific heat (kJ /kg - K) 0.400 1.60
Thermal conductivity (W/m - K) 170 1.70

Convection coefficient (W /m” - K) 5 50

(2) Show in a qualitative manner, on T versus ¢ coordinates, the temperatures at
the center and at the surface for each sphere as a function of time. Briefly
explain the reasoning by which you determine the relative positions of the
curves. ’

(b) Calculate the time required for the surface of each sphere to reach 415 K.

s
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(¢) Determine the energy that has been gained by each of the baths during the Ca_
process of the spheres cooling to 415 K. ‘t;lel
5.49 The convection coefficient for flow over a solid sphere may be determined by €
submerging the sphere, which is initially at 25°C, into the flow, which is at 75°C, 3.54 A
and measuring its surface temperature at some time during the transient heating ele
process. The sphere has a diameter of 0.1 m, and its thermal conductivity and all
thermal diffusivity are 15 W/m - K and 10~ S o /8, respectively. If the convec- suf
tion coefficient is 300 W /n? - K, at what time will a surface temperature of 60°C ex(

be recorded? to
Pprc¢

Semi-infinite Media

5.50 Two large blocks of different materials, such as copper and concrete, have been
sitting in a room (23°C) for a very long time. Which of the two blocks, if -either,
will feel colder to the touch? Assume the blocks to be semi-infinite solids and your

cal

a

hand to be at a temperature of 37°C. @
5.51 Asphalt pavement may achieve temperatures as high as 50°C on a hot summer

day. Assume that such a temperature exists throughout the pavement, when ,

suddenly a rainstorm reduces the surface temperature to 20°C. Calculate the total 555 Th

amount of energy (J/m?) that will be transferred from the asphalt over a 30-min '

period in which the surface is maintained at 20°C. c
5.52 A furnace wall is fabricated from fireclay brick (a = 7.1 X 1077 m?/s), and its thi

inner surface is maintained at 1100 K during furnace operation. The wall is cot

designed according to the criterion that, for an initial temperature of 300 K, its ini

midpoint temperature will not exceed 325 K after 4 h of furnace operation. What ter

is the minimum allowable wall thickness? cas
5.53 A block of material of thickness 20 mm with known thermophysical properties

(k=15 W/m-K and « =20 X 1075 m?/s) is imbedded in the wall of a

channel that is initially at 25°C and is suddenly subjected to a convection process

with gases at 325°C. A thermocouple (TC) is installed 2 mm below the surface of

the channel wall for the purpose of sensing the temperature~time history (follow-

ing start-up of the hot gas flow) and thereby determining the transient heat flux. T

At an elapsed time of 10 s, the thermocouple indicates a temperature of 167°C.

Hot gases

Channel wall

ca
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556 A
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Calculate the corresponding surface convective heat flux assuming the block
behaves as a semi-infinite solid. Compare this result with that obtained from the
Heisler method of solution.

5.54 A tile-iron consists of a massive plate maintained at 150°C by an imbedded

555

5.56

electrical heater. The iron is placed in contact with a tile to soften the adhesive,
allowing the tile to be easily lifted from the subflooring. The adhesive will soften
sufficiently if heated above 50°C for at least 2 min, but its temperature should not
exceed 120°C to avoid deterioration of the adhesive. Assume the tile and subfloor
to have an initial temperature of 25°C and to have equivalent thermophysical
properties of k = 0.15 W/m - K and pc, = 1.5 X 10° J/m’ - K.

e Tile, 4—mm thickness
%Subﬂooring
/i

(a) How long will it take a worker using the tile-iron to lift a tile? Will the
‘adhesive temperature exceed 120°C?

(b) If the tile-iron has a square surface area 254 mm to the side, how much energy
has been removed from it during the time it has taken to lift the tile?

The manufacturer of the heat flux gage of the type illustrated in Problem 1.8
claims the time constant for a 63.2% response to be 7 = (4d 2pcp) /mk, where p,
¢,, and k are the thermophysical properties of the gage material and d is its
thickness. Not knowing the origin of this relation, your task is to model the gage
considering the two extreme cases illustrated below. In both cases, the gage,
initially at a uniform temperature T}, is exposed to a sudden change in surface
temperature, 7(0, ¢t) = T. For case a the backside of the gage is insulated, and for
case b the gage is imbedded in a semi-infinite solid having the same thermophysi-
cal properties as those of the gage.

Gage,
T2 P, CP, k

Same material
as gage

T&O =T qhinfiim
thermocouples

(@ (b)

Develop relationships for predicting the time constant of the gage for the two
cases and compare them to the manufacturer’s relation. What conclusion can you
draw from this analysis regarding the transient response of gages for different
applications? ‘ : .

A simple procedure for measuring surface convection heat transfer coefficients
involves coating the surface with a thin layer of material having a precise melting
point temperature. The surface is then heated and, by determining the time
required for melting to occur, the convection coefficient is determined. The
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5.57

following experimental arrangement uses the procedure to determine the convec-
tion coefficient for gas flow normal to a surface. Specifically, a long copper rod is
encased in a super insulator of very low thermal conductivity, and a very thin
coating is applied to its exposed surface.

Gas flow 7', &

Surface coating

Copper rod, 42
k = 400 Wim-K, a = 107 "m“/s

Super insulator

If the rod is initially at 25°C and gas flow for which # =200 W/n? - K and
T, = 300°C is initiated, what is the melting point temperature of the coating if
melting is observed to occur at ¢ = 400 s?

An insurance company has hired you as a consultant to improve their understand-
ing of burn injuries. They are especially interested in injuries induced when a

_portion of a worker’s body comes into contact with machinery that is at elevated

5.58

temperatures in the range of 50 to 100°C. Their medical consuitant informs them
that irreversible thermal injury (cell death) will occur in any living tissue that is
maintained at T > 48°C for a duration Ar> 10 s. They want information
concerning the extent of irreversible tissue da.mage (as measured by distance from
the skin surface) as a function of the machinery temperature and the time during
which contact is made between the skin and the machinery. Can you help them?
Assume that living tissue has a normal temperature of 37°C, is isotropic, and has
constant properties equivalent to those of liquid water.

A procedure for determining the thermal conductivity of a solid material involves
embedding a thermocouple in a thick slab of the solid and measuring the response
to a prescribed change in temperature at one surface. Consider an arrangement

for which the thermocouple is embedded 10 mm from a surface that is suddenly

5.59

5.60
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brought to a temperature of 100°C by exposure to boiling water. If the initial
temperature of the slab was 30°C and the thermocouple measures a temperature
of 65°C, 2 min after the surface is brought to 100°C, what is its thermal
conductivity? The density and specific heat of the solid are known to be 2200
kg/m’ and 700 J /kg - K.

An electric heater in the form of a sheet is placed in good contact with the surface
of a thick slab of Bakelite having a uniform temperature of 300 K. Determine the
temperature of the slab at the surface and at a depth of 25 mm, 10 min after the

heater has been energized and is providing a constant heat flux to the surface of
2500 W /m?.

A very thick slab with thermal diffusivity 5.6 X 107 m?/s and thermal conduc-
tivity 20 W/m - K is initially at a uniform temperature of 325°C. Suddenly, the
surface is exposed to a coolant at 15°C for which the convection heat transfer
coefficient is 100 W /nr* - K. Determine the temperatures at the surface and at a
depth of 45 mm after 3 min has elapsed.
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Problems 303

A thick oak wall initially at 25°C, is suddenly exposed to combustion products at
800°C. Determine the time of exposure required for the surface to reach the
ignition temperature of 400°C, assuming the convection heat transfer coefficient
between the wall and products to be 20 W/ - K.

It is well known that, although two materials are at the same temperature, one
may feel cooler to the touch than the other. Consider thick plates of copper and
glass, each at an initial temperature of 300 K. Assuming your finger to be at an
initial temperature of 310 K and to have thermophysical properties of p = 1000
kg/n?’, ¢=4180 J/kg-K and k =0.625 W/m - K, determine whether the
copper or the glass will feel cooler to the touch.

Two stainless steel plates (p = 8000 kg/m’, ¢ = 500 J /kg - K, k = 15 W/m X),
each 20 mm thick and insulated on one surface, are initially at 400 and 300 K

when they are pressed together at their uninsulated surfaces. What is the tempera-
ture of the insulated surface of the hot plate after 1 min has elapsed?

Multidimensional Conduction

A long steel (plain carbon) billet of square cross section 0.3 m by 0.3 m, initially
at a uniform temperature of 30°C, is placed in a soaking oven having a tempera-
ture of 750°C. If the convection heat transfer coefficient for the heating process is

100 W/m* - K, how long must the billet remain in the oven before its center

5.65

5.66

temperature reaches 600°C?

Fireclay brick of dimensions 0.06 m X 0.09 m X 0.20 m is removed from a kiln at
1600 K and cooled in air at 40°C with A = 50 W /m? - K. What is the tempera-
ture at the center and at the corners of the brick after 50 min of cooling?

A cylindrical copper pin 100 mm long and 50 mm in diameter is initially at a
uniform temperature of 20°C. The end faces are suddenly subjected to an intense
heating rate that raises them to a temperature of 500°C. At the same time, the

cylindrical surface is subjected to heating by gas flow with a temperature 500°C
and a heat transfer coefficient 100 W /n? - K.

End face

e— 100 mm —>

(a) Determine the temperature at the center point of the cylinder 8 s after sudden
application of the heat.

(b) Considering the parameters governing the temperature distribution in tran-
sient heat diffusion problems, can any simplifying assumptions be justified in
analyzing this particular problem? Explain briefly.

5.67 Recalling that your mother once said that meat should be cooked until every

portion has attained a temperature of 80°C, how long-will it take to cook a




304 Chapter 5 Transient Conduction

5.68

2.25-kg roast? Assume that the meat is initially at 6°C and that the oven
temperature is 175°C with a convection heat transfer coefficient of 15 W,/m? - K.
Treat the roast as a cylinder with properties of liquid water, having a diameter
equal to its length. .

A long rod 20 mm in diameter is fabricated from alumina (polycrystalline
aluminum oxide) and is initially at a uniform temperature of 850 K. The rod is
suddenly exposed to fluid at 350 K with A =500 W/m’ - K. Estimate the

centerline temperature of the rod after 30 s at an exposed end and at an axial
distance of 6 mm from the end.

Finite-Difference Solutions

5.69

5.70

5.71

Page 84 of 92

The stability criterion for the explicit method requires that the coefficient of the
T2 term of the one-dimensional, finite-difference equation be zero or positive.
Consider the situation for which the temperatures at the two neighboring nodes
(TF_, TP, 1) are 100°C while the center node (7?) is at 50°C. Show that for
values of Fo > 1, the finite-difference equation will predict a value of T?** that
violates the second law of thermodynamics.

A thin rod of diameter D is initially in equilibrium with its surroundings, a large
vacuum enclosure at temperature, 7;,.. Suddenly an electrical current I (A) is
passed through the rod having an electrical resistivity p, and emissivity e. Other
pertinent thermophysical properties are identified in the sketch. Derive the
transient, finite-difference equation for node m. /

A m

1-—»? em—1 ?mT 0m+1&—~-—

Tm Per 01 C B

A tantalum rod of diameter 3 mm and length 120 mm is supported by two
electrodes within a large vacuum enclosure. Initially the rod is in equilibrium with
the electrodes and its surroundings, which are maintained at 300 K. Suddenly, an
electrical current, I = 80 A, is passed through the rod. Assume the emissivity of
the rod is 0.1 and the electrical resistivity is 95 X 1078 @ - m. Use Table A.1 to

obtain the other thermophysical properties required in your solution. Use a
finite-difference method with a space increment of 10 mm.

i

_/ Electrode,
300 K

Electrode,
300 K
Surroundings, Tsyr
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(b)
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(a) Estimate the time required for the midlength of the rod to reach 1000 K.

(b) Determine the steady-state temperature distribution and estimate approxi-
mately how long it will take to reach this condition.

5.72 A one-dimensional slab of thickness 2L is initially at a uniform temperature T,

5.73

5.74

5.75

5.76

5.77

Suddenly, electric current is passed through the slab causing a uniform volumetric
heating ¢ (W /m’). At the same time, both outer surfaces (x = + L) are subjected
to a convection process at T, with a heat transfer coefficient h.

|
-L

N;

-

Write the finite-difference equation expressing conservation of energy for node 0
located on the outer surface at x = — L. Rearrange your equation and identify
any important dimensionless coefficients.

A wall 0.12 m thick having a thermal diffusivity of 1.5 X 10~® m? /s is initially at
a uniform temperature of 85°C. Suddenly one face is lowered to a temperature of
20°C, while the other face is perfectly insulated. Using a numerical method with
space and time increments of 30 mm and 300 s, respectively, determine the
temperature distribution within the wall after 45 min have elapsed.

A large plastic casting with thermal diffusivity 6.0 X 107 m? /s is removed from
its mold at a uniform temperature of 150°C. The casting is then exposed to a
high-velocity airstream such that the surface experiences a sudden change in
temperature to 20°C. Assuming the casting approximates a semi-infinite medium
and using a finite-difference method with a space increment of 6 mm, estimate the
temperature at a distance 18 mm from the surface after 3 min have elapsed. Verify
your result by comparison with the appropriate analytical solution.

A very thick plate with thermal diffusivity 5.6 X 107° m?/s and thermal conduc-
tivity 20 W/m - K is initially at a uniform temperature of 325°C. Suddenly, the
surface is exposed to a coolant at 15°C for which the convection heat transfer
coefficient is 100 W/m’? - K. Using the finite-difference method with a space
increment of Ax = 15 mm and a time increment of 18 s, determine temperatures
at the surface and at a depth of 45 mm after 3 min have elapsed.

Consider the fuel element of Example 5.6. Initially, the element is at a uniform
temperature of 250°C with no heat generation. Suddenly, the element is inserted
into the reactor core causing a uniform volumetric heat generation rate of § = 10%
W ,/m®. The surfaces are convectively cooled with 7., = 250°C and h = 1100
W /m? - K. Using the explicit method with a space increment of 2 mm, determine
the temperature distribution 1.5 s after the element is inserted into the core.

|
|
|
i

A plane wall of thickness 100 mm with a uniform volumetric heat generation of
G=15x10% W/n? is exposed to convection conditions of T, = 30°C and
h = 1000 W/m? - K on both surfaces. The wall is maintained under steady-state
conditions when, suddenly, the heat generation level (§) is reduced to zero. The
thermal diffusivity and thermal conductivity of the wall material are 1.6 X 10~°
m?/s and 75 W/m - K. A space increment of 10 mm is suggested.
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(2) Estimate the midplane temperature 3 min after the generation has been
switched off.
(b) Plot on T-x coordinates the temperature distribution obtained in part (a).
Show also the initial and steady-state temperature distributions for the wall.
5.78 For the conditions described in Example 5.6, use the finite-difference method to
estimate the temperature at the midplane (x = 0) 20 s after the power level has
been changed from §, to ¢,. :
5.79 A thin circular disk is subjected to induction heating from a coil, the effect of
which is to provide a uniform heat generation within a ring section as shown.
Convection occurs at the upper surface, while the lower surface is well insulated.

[ —— Q—‘
G—T, . h
q._

|
|

-
m+ 11 m : m+ 1
@ | ® 1 ‘e

I
I 1

1
r A ~
I m Y

(a) Derive the transient, finite-difference equation for node m, which is within the
region subjected to induction heating.

(b) On T-r coordinates sketch, in a qualitative manner, the steady-state tempera-
ture distribution, identifying important features.
5.80 An electrical cable, experiencing a uniform volumetric generation g, is half buried

in an insulating material while the upper surface is exposed to a convection
progess (1., h).

em,n+1
—>
— > T,k ar—
—_ Ad e———=
r |
m—1,n I mn | m+1,n
] | ° |
| i
L I

em,n—-1

(a) Derive the explicit, finite-difference equations for an interior node (m, n), the

center node (m = 0), and the outer surface nodes (M, n) for the convection
and insulated boundaries.

(b) Obtain the stability criterion for each of the finite-difference equations.
Identify the most restrictive criterion.
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Problems 307

One end of a stainless steel (AISI 316) rod of diameter 10 mm and length 0.16 m
is inserted into a fixture maintained at 200°C. The rod, covered with an insulating
sleeve, reaches a uniform temperature throughout its length. When the sleeve is
removed, the rod is subjected to ambient air at 25°C such that the convection heat
transfer coefficient is 30 W/m? - K. Using a numerical technique, estimate the
time required for the midlength of the rod to reach 100°C.

The cross section of an oven wall is composed of 30-mm-thick insulation sand-
wiched between two thin (1.5-mm-thick) stainless steel sheets. Under steady-state
conditions, the oven is operating with an inside air temperature of 7., ; = 150°C
and an ambient air temperature of T, , = 20°C with 4, = 100 W/n? - K and
h, =10 W/m* - K. When the oven heater level is changed and the fan speed
changed to substantially increase air circulation within the oven, the inside surface
of the oven experiences a sudden temperature change to 100°C. The insulation
has a thermal conductivity of 0.03 W/m - K and a thermal diffusivity of 7.5 X
1077 m?/s. In your finite-difference solution, use a space increment of 6 mm.
Assume that the effect of the stainless steel sheets is negligible and that the
outside convection heat transfer coefficient 4, remains unchanged. Estimate the
time required for the oven wall to approximate steady-state conditions after
the inner wall temperature is changed to 100°C.

Circulating fan
¥ ) FHeater assembly 431_30 mm r—

f \ﬂ\f i | Zf Zf T TLE ,Al, jjo

aoyby hL

(

Insulation
Sheet metal

Two very long (in the direction normal to the page) bars having the prescribed
initial temperature distributions are to be soldered together (see next page). At
time ¢ = 0, the m = 3 face of the copper (pure) bar contacts the m = 4 face of the
steel (AISI 1010) bar. The solder and flux act as an mterfamal layer of negligible
thickness and effective contact resistance R, =2 X 107° m* - K/W.

Initial Temperatures (K)

n/m 1 2 3 4 5 6

1 700 700 700 1000 900 800

2 700 800 700 1000 900 800
700 700 700 1000 900 800

(a) Derive the explicit, finite-difference equation in terms of Fo and Bi. =
Ax/kR!, for T, , and determine the corresponding stability criterion.
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Interface with
(solder and flux

Copper, Steel,
pure AlSI 1010
1,3 2,3 3,3
1,2 2,2 3,2
Y. n
! 1,1 2,1 3,1

x, m '
Ax = Ay = 20 mm

(b) Using Fo = 0.01, determine T, , one time step after contact is made. What is
Ar? Is the stability criterion satisfied?

Referring to Example 5.7, Comment 4, consider a sudden exposure of the surface
to large surroundings at an elevated temperature (7}, ) and to convection (T, h).

(a) Derive the explicit, finite-difference equation for the surface node in terms of
Fo, Bi, and Bi,.

(b) Obtain the stability criterion for the surface node. Does this criterion change
with time? Is the criterion more restrictive than that for an interior node?

(¢) A thick slab of material (k=15 W/m K, a =7 X107 m/s, ¢ = 0.9),
initially at a uniform temperature of 27°C, is suddenly exposed to large
surroundings at 1000 K. Neglecting convection and using a space increment

of 10 mm, determine temperatures at the surface and 30 mm from the surface
after an elapsed time of 1 min. ‘

Consider the system of Problem 4.58. Initially with no flue gases flowing, the walls
(o0 =5.5 X 107 n /5) are at a uniform temperature of 25°C. Using the implicit,
finite-difference method with a time increment of 1 h, find the temperature
distribution in the wall 1, 2, 5, and 20 h after introduction of the flue gases.

Consider the system of Problem 4.66. Initially, the ceramic plate (@ = 1.5 X 10~°
m?’ /s) is at a uniform temperature of 30°C, and suddenly the electrical heating
elements are energized. Using the implicit, finite-difference method, estimate the
time required for the difference between the surface and initial temperatures to
reach 95% of the difference for steady-state conditions. If you write a computer
program, use a time increment of 2 s; otherwise use 50 s.

Consider the bonding operation described in Problem 3.79, which was anélyzed
under steady-state conditions. In this case, however, the laser will be used to heat

the film for a prescribed period of time, creating the transient heating situation
shown in the sketch.
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Laser source, g%
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The strip is initially at 25°C and the laser provides a uniform flux of 85,000

W /m? over a time interval of At = 10 s. The system dimensions and thermo-

physical properties remain the same, but the convection coefficient to the ambient

air at 25°C is now 100 W/m? - K.

(a) Using an implicit finite-difference method with Ax =4 mm and At =1 s,
obtain temperature histories for 0 < ¢ < 30 s at the center and film edge,
T(0, t) and T(w, /2, 1), respectively, to determine if the adhesive is satisfacto-

rily cured above 90°C for 10 s and if its degradation temperature of 200°C is
exceeded.

(b) Validate your program code by comparing it against the steady-state resuits of
Problem 3.79. What type of analytical solution would you seek in order to test
the proper transient behavior of your code?

5.88 Circuit boards are treated by heating a stack of them under high pressure as

illustrated in Problem 5.32 and described further in Problem 5.33. A finite-
difference method of solution is sought with two additional considerations. First,
the book is to be treated as having distributed, rather than lumped characteristics,
by using a grid spacing of Ax = 2.36 mm with nodes at the center of the
individual circuit board or plate. Second, rather than bringing the platens -to
190°C in one sudden change, the heating schedule 7,(7) shown below is to be
used in order to minimize excessive thermal stresses 1nduced by rapidly changing
thermal gradients in the vicinity of the platens.

190 —
160

T,(°C)

LBE 0

0 20 40 60
Time (min)
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The strip is initially at 25°C and the laser provides a uniform flux of 85,000

W /o over a time interval of Az, = 10 s. The system dimensions and thermo-

physical properties remain the same, but the convection coefficient to the ambient

air at 25°C is now 100 W /o’ - K.

(a) Using an implicit finite-difference method with Ax =4 mm and Az =1 s,
obtain temperature histories for 0 < ¢ < 30 s at the center and film edge,
T(0, t) and T(wy /2, 1), respectively, to determine if the adhesive is satisfacto-

rily cured above 90°C for 10 s and if its degradation temperature of 200°C is
exceeded.

(b) Validate your program code by comparing it against the steady-state results of
Problem 3.79. What type of analytical solution would you seek in order to test
the proper transient behavior of your code?

5.88 Circuit boards are treated by heating a stack of them under high pressure as

illustrated in Problem 5.32 and described further in Problem 5.33. A finite-
difference method of solution is sought with two additional considerations. First,
the book is to be treated as having distributed, rather than lumped characteristics,
by using a grid spacing of Ax = 2.36 mm with nodes at the center of the
individual circuit board or plate. Second, rather than bringing the platens to
190°C in one sudden change, the heating schedule T,(#) shown below is to be
used in order to minimize excessive thermal stresses mduced by rapidly changing
thermal gradients in the vicinity of the platens.

190 —
160 —

T,(°C)

15 | | L I 1

0 20 40 60
Time (min)
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(@) Using a time increment of Az = 60 s and the implicit method, find the
temperature history of the midplane of the book and determine whether
curing will occur (170°C for 5 min).

(b) Following the reduction of the platen temperatures to 15°C (¢ = 50 min), how
long will it take for the midplane of the book to reach 37°C, a safe
temperature at which the operator can begin unloading the press?

(c) Validate your program code by using the heating schedule of a sudden change
of platen temperature from 15 to 190°C and compare results with those from
an appropriate Heisler solution (see Problem 5.33).

Consider the thermal conduction module and operating conditions of Problem
4.71. To evaluate the transient response of the cold plate, which has a thermal
diffusivity of & = 75 X 10™¢ m’ /s, assume that, when the module is activated at
t = 0, the initial temperature of the cold plate is 7, = 15°C and a uniform heat
flux of g = 10° W/n? is applied at its base. Using the implicit finite-difference
method and a time increment of Af =01 s, compute the designated nodal
temperatures as a function of time. From the temperatures computed at a
particular time, evaluate the ratio of the rate of heat transfer by convection to the
water to the heat input at the base. Terminate the calculations when this ratio
reaches 0.99. Print the temperature field at 5-s intervals and at the time for which
the calculations are terminated.

e
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