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Carrier and Bit Synchronization  in  Data  Communication- 
A Tutorial Review 

L. E. FRANKS, FELLOW.  IEEE 

Absrmcr-This paper  examines the problems of  carrier  phase 
estimation  and  symbol timing estimation for carrier-type  synchronous 
digital  data  signals, with tutorial  objectives  foremost. Carrier phase 
recovery  for  suppressed-carrier  versions  of  double sideband (DSB), 
vestigial  sideband (VSB), and  quadrature  amplitude modulation 
(QAM) signal  formats  is  considered  first. Then the problem of symbol 
timing  recovery  for a baseband pulse-amplitude modulation (PAM) 
signal is examined.  Timing  recovery  circuits based on elementary 
statistical  properties  are  discussed  as well as timing recovery based on 
maximum-likelihood  estimation  theory. A relatively simple  approach 
to  evaluation  of  timing  recovery  circuit performance in terms of  rms 
jitter  of  the  timing  parameters  is  presented. 

I 
I. INTRODUCTION 

N digital data communication there is a hierarchy of syn- 
chronization problems to  be considered. First, assuming 

that a carrier-type system is  involved, there is the problem of 
carrier synchronization which concerns the generation of a 
reference carrier with a phase closely matching that of the  data 
signal. This reference carrier is  used at  the  data receiver to  per- 
form a coherent  demodulation  operation, creating a baseband 
data signal. Next comes the problem of synchronizing a receiver 
clock with the baseband data-symbol sequence. This is com- 
monly called bit synchronization, even when the symbol alpha- 
bet happens not  to  be binary. 

Depending on the  type of system under  consideration, 
problems of word-, frame-, and packet-synchronization will be 
encountered further  down  the  hierarchy. A feature  that distin- 
guishes the  latter problems from  those of carrier and  bit syn- 
chronization is that  they  are usually solved by means of special 
design of  the message format, involving the repetitive insertion 
of bits  or words into  the  data sequence solely for synchroniza- 
tion purposes. On the  other  hand,  it is desirable that carrier 
and  bit  synchronization be  effected  without multiplexing spe- 
cial timing signals onto  the  data signal, which would use up a 
portion of the available channel capacity. Only timing recov- 
ery  problems  of  this type are discussed in  this paper. This 
excludes those systems wherein the  transmitted signal contains 
an  unmodulated component  of sinusoidal carrier (such  as with 
“on-off’ keying).  When an  unmodulated component  or  pilot 
is present, the standard  approach to  carrier synchronization is 
to use a phase-locked loop (PLL) which locks  onto  the carrier 
component,  and has a narrow  enough loop bandwidth so as 
not to  be excessively perturbed by  the sideband components 
of the signal. There is a vast literature  on  the performance and 
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design of  the PLL and  there  are several textbooks dealing with 
synchronous  communication systems which treat  the  PLL in 
great detail [ l]  -[SI. Although we consider only suppressed- 
carrier signal formats  here, the PLL material is still relevant 
since these devices are often used  as component parts of  the 
overall  phase  recovery system. 

For  modulation  formats which exhibit a high bandwidth 
efficiency, i.e., which have a large “bits per cycle” figure of 
merit, we find  the accuracy requirements on carrier and  bit 
synchronization increasingly  severe. Unfortunately, it is  also 
in these high-efficiency systems that we find  it most difficult 
to  extract  accurate carrier phase and symbol  timing  informa- 
tion  by means of simple operations  performed on  the received 
signal. The pressure to develop higher efficiency data transmis- 
sion has led to a dramatically increased interest  in timing recov- 
ery  problems and,  in particular, in  the  ultimate performance 
that can be achieved with optimal recovery  schemes. 

We begin our review of carrier synchronization problems 
with a brief discussion of  the major types of modulation  for- 
mat. In each case  (DSB,  VSB, or QAM), we assume coherent 
demodulation  whereby the received  signal  is multiplied by a 
locally generated reference carrier and  the product is  passed 
through a low-pass filter. We can get some idea of the phase 
accuracy, or degree of coherency,  requirements  for the various 
modulation  formats by examining the expressions for the 
coherent detector  output, assuming a noise-free input. Let us 
assume that  the message  signal, say, a(t), is incorporated by 
the  modulation scheme into  the complex envelope @(t) of  the 
carrier  signal.’ 

v(t) = Re [Nt> exp ( i o )  exp 0’2rf0t)l (1) 

and  the reference carrier r(t) is characterized by a constant 
complex envelope 

r(t) = Re [exp 0;) exp (j2rfot)] . (2)  

From (A-8), the  output  of  the coherent  detector is 

z1 (f) = 3 Re [p(t) exp (je - ji)] . (3) 

For  the case of DSB modulation, we  have @(t) = a(t) 4- 
je, sf z l ( t )  i s  simply proportional to  a(t). The phase error 
8 - 8 in the reference carrier has  only a second-order  effect 

See  the  Appendix for definitions  and  basic  relations  concerning 
complex  envelope  representation of signals. 
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on detector  performance. The only loss is that phase error 
causes a  reduction,  proportional to cos’ (6 - b ) ,  insignal- 
to-noise  ratio at  the detector output when additive noise  is 
present on  the received signal. 

For VSB modulation, however, phase error  produces  a 
more severe distortion.  In  this case P(t) = a(t) + jZ(t), where 
Z ( t )  is related to a(t) by  a time-invariant fdtering operation 
which causes a  cancellation  of  a  major  portion of one  of  the 
sidebands.  In the limiting case of  complete  cancellation  of a 
sideband (SSB),  we  have Z( t )  = ;(t), the Hilbert transform  of 
a(t) [ 6 ] .  The  coherent  detector output (3)  for the VSB  signal 
is 

z1 (t) = 3 a(t> COS (6 - 4) - 3 y t )  sin (6 - 6) (4) 

and the second  term  in (4) introduces  an  interference called 
quadrature distortion when # 6. As Z(t) has roughly the 
same  power level as a(t), a  relatively small phase error  must  be 
maintained  for  low  distortion, e.g., about  0.032  radian  error 
for  a  30 dB signal-to-distortion  ratio. 

In the QAM case, two superimposed DSB  signals at  the 
same carrier  frequency  are  employed by making P(t) = a(t) + 
jb(t), where a(t) and b(t) are two separate, possibly independ- 
ent, message  signals. A dual  coherent  detector, using a  refer- 
ence  carrier  and  its n/2 phase-shifted  version,  separates the 
received signal into its.  in-phase (Z) and  quadrature (Q) com- 
ponents. Again considering  only the noise-free case, these  com- 
ponents  are 

cr(t) = 3 a(t) cos (6 - 6) - 3 b(t)  sin (6 - 6) 

cQ(t) = 3 b(t) cos (6 - 4) + 4 a(t) sin (6 - 6). ( 5 )  

From (5) it is clear that t$ # 6 introduces  a crosstalk interfer- 
ence into  the I and Q channels. As a(t) and b(t)  can  be  expec- 
ted to  be at similar power levels, the phase accuracy  require- 
ments  for QAM are  high  compared to  straight DSB modula- 
tion. 

From the previous discussion we see that  the price  for the 
approximate  doubling  of  bandwidth  efficiency  in VSB or 
QAM, relative to  DSB,  is a  greatly  increased  sensitivity to 
phase error.  The  problem is compounded by  the  fact  that car- 
rier phase recovery is much more  difficult  for VSB and QAM, 
compared to DSB. 

11. CARRIER PHASE RECOVERY 

Before  examining  specific  carrier recovery circuits  for the 
suppressed-carrier  format, it is helpful to  ask, “What proper- 
ties  must the carrier signal y(t)  possess in order that  operations 
on y( t )  will produce  a  good  estimate of  the phase parameter 
e?” A general answer to  this  question lies in  the cyclostation- 
ary nature  of  the y( t )  process.’ A cyclostationary process has 
statistical moments which  are  periodic in  time,  rather  than 
constant as in the case of  stationary processes [2], [ 6 ] ,  [71. 
TO  a large extent, synchronization  capability  can be character- 

2 In [ 21, these processes are called periodic nonstutionary. 

ized by the lowest-order  moments  of the process, such as the 
mean  and  autocorrelation.  The y( t )  process is  said to  be cycle- 
stationary in  the wide sense if Eb( t ) J  and kyv(t + 7 ,  t )  = 
E b ( t  + T)Y(t)] are both periodic  functions  of t. A process 
modeled by (1) is typically  cyclostationary  with  a  period of 
l/fo or 1/2f0. The  statistical moments  of  this process depend 
upon the value of  the phase parameter 6 and  it is  not  surpris- 
ing that efficient phase estimation  procedures are similar to  
moment estimation  procedures.  It is important  to note  here 
that we are regarding 6 as an  unknown but  nonrandom param- 
eter. If instead we regarded 6 as a  random parameter  uni- 
formly  distributed over a  2n interval, then  the y(t)  process 
would  typically be  stationary,  not cyclostationary. 

A general property  of  cyclostationary processes is that 
there  may  be  a  correlation  between  components  in  different 
frequency  bands, in contrast to  the situation  for  stationary 
processes [8] . For  carrier-type signals, the significance lies  in 
the correlation  between message components  centered  around 
the carrier frequency (+fo) and the image components  around 
(-fo). This correlation is characterized by  the cross-correlation 
function. kpp*(7) = E[P(t + 7)P(t)] for  a y(t)  process as in (1) 
when p(t) is  a  stationary p r o ~ e s s . ~  

Considering  first the DSB case with P(t) = a(t) + j 6 ,  and 
using (A-10) we have 

krr(t + 7 ,  t )  = 3 Re [ k , , ( ~ )  exp O’277f0dl 

+ 3 Re [kaa(7)  exp (j477fot + j2nh7 +j26)] 

(6) 

where the second term  in (6) exhibits the periodicity in t that 
makes y( t )  a  cyclostationary  process. 

We are assuming that y(t)  contains  no  periodic  components. 
Consider what  happens,  however,  when y( t )  is  passed through 
a square-law device. We see immediately  from (6) that  the  out- 
put  of  the squarer  has  a  periodic  mean value, since 

E[Y2(t)l = k,,(t, t> 

= 3 kau(0) + kaa(0) Re [exp  (j26+j4nfor)J. (7) 

If the squarer output ‘is passed through  a  bandpass  fdter  with 
transfer  function H ( f )  as shown in Fig. 1, and if H(f)  has  a  uni- 
ty-gain  passband in  the vicinity  of f = 2f0, then  the mean 
value of  the filter output is  a  sinusoid  with  frequency  2f0, 
phase 26,  and  amplitude + E [ a 2 ( t ) ] .  In thissense,  the squarer 
has  produced  a  periodic component from the y(t)  signal. 

It is often  stated  that  the effect  of the squarer is to  produce 
a  discrete component (a line  at 2f0) in the  spectrum  of  its  out- 
put signal. This statement  lacks  precision  and  can  lead to seri- 
ous  misinterpretations  because y’(t) is not  a  stationary  process, 
so the usual  spectral  density  concept  has  no  meaning. A 
stationary process can  be  dpived  fromy2(t)  by phase  random- 
izing [ 6 ] ,  but  then  the relevance to  carrier phase recovery is 
lost  because the discrete component has  a  completely  indeter- 
minate  phase. 

3 Despite its appearance, this is not an autocorrelation function, due 
to the definition of autocorrelation for complex processes; see (A-1 1). 
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Squarer PLL BpF(2fo) Timing wove 

H ( f )  

Fig. 1. Timing  recovery  circuit. 

The output of the bandpass  filter  in Fig. 1 can be  used direc- 
tly to generate  a  reference  carrier. Assuming that Hcf) com- 
pletely suppresses the low-frequency  terms [see (A-8)] the fil- 
ter  output is the reference  waveform 

w( t )  = 4 Re { [ w B p2 ] (t) exp ( i 2 e )  exp 0'47rfo t)) (8) 

where the convolution  product [w B p 2 ]  represents the  filter- 
ing action of H(J) in  terms  of  its low-pass equivalent in 
(A-5). For the DSB case, p2( t )  = a2( t )  is real and o(t) is real4 
if Zlcf) has  a  symmetric  response about 2f0.  Then the phase of 
the  reference waveform is 20 and the amplitude  of the refer- 
ence waveform fluctuates slowly [depending on the bandwidth 
of H(J)] .  The reference  carrier can be obtained by passing w(t )  
through an infinite-gain  clipper  which removes the amplitude 
fluctuations. The square wave from the clipper can drive a  fre- 
quency divider circuit  which halves the frequency  and phase. 
Alternatively, the bandpass  filter output can be  tracked by a 
PLL and the PLL oscillator output passed through  the  fre- 
quency-divider  circuit. 

There is another  tracking  loop  arrangement, called the 
Costas loop, where the  voltage-controlled  oscillator (VCO) 
operates  directly at f o .  We digress momentarily to describe the 
Costas loop and to point out  that it is equivalent to  the squarer 
followed by a PLL [ l ]  -[3]. The equivalence is established by 
noting that  the  inputs to  the loop  filters in  the  two configura- 
tions  shown  in Fig. 2 are  identical. In the PLL quiescent  lock 
condition,  the VCO output is in  quadrature  with  the  input sig- 
nal so we introduce  a n/2 phase shift into  the VCO in the con- 
figurations  of Fig. 2.. Then using (A-8) to get the  output  of  the 
multiplier/low-pass  filter  combinations, we  see that  the  input 
to  the loop  filter is 

V(t) = + Re [A2p2(t) exp 0'26 - j28 -jr/2)] (9) 

in both configurations if the amplitude  of the VCO output is 
taken as f A' in the squarer/PLL  configuration,  and  taken as 
A in the Costas loop. 

Going back to (8), we see that phase recovery is perfect  if 
[w 0 p 2 ]  is real. Assuming w(t) real, a phase error will result 
only if a  quadrature  component [relative to p2 ( t ) ]  appears at 
the  output  of  the squarer. This points out  the  error, from  a 
different  viewpoint,  of using the phase randomized  spectrum 
of the squarer output  to analyze the phase recovery perform- 
ance because the spectrum  approach  obliterates the distinction 
between I and Q components.  For  the DSB case, a  quadrature 
component will appear at  the squarer output only  if  there is a 
quadrature  component  of  interference  added to  the  input sig- 
nal y(t). We can demonstrate  this  effect by considering the 

4 A real w(t) corresponds to the case  where  the cross-coupling  paths 
between  input and output  [and Q components in Fig. 10 are absent. If 
the  bandpass function H(n does not exhibit  the  symmetrical  amplitude 
response  and  antisymmetrical phase response  about 2fo for a real w(t), 
then there simply is a fwed phase offset  introduced  by  the bandpass 
filter. 

I 

(a) 

(b) 
Fig. 2. Carrier phase  tracking loops. (a) SquarerlPLL (b) Costas loop. 

input signal to  be z( t )  = y( t )  + n(t) where n(t) is white noise 
with  a  double-sided  spectral  density  of No W/Hz. We can  rep- 
resent n(t) by the complex  envelope, [uI(t) + juQ(t)]  exp 0'6) 
where,  from (A-1 5) the I and Q noise components relative to a 
phase 6 are  uncorrelated  and have a  spectral  density  of u V o .  
The resulting phase of the reference waveform (8) is 

We can approximate the phase error @I = 0 - 0 (also called 
phase jitter because 8 is a  quantity  that fluctuates  with  time) 
by neglecting the noise X noise term  in  the  numerator  and 
both signal X noise and noise X noise terms  in the denomina- 
tor in (10). Furthermore, we replace w C3 p2 by  its  expected 
value  (averaging  over the message process) and use the  tan-' 
x % x approximation. With all these  simplifications,  which  are 
valid at sufficiently high signal-to-noise ratio  and  with  suffici- 
ently  narrow-band H O ,  it is easy to .derive an expression  for 
the variance of the phase jitter. 

var @I = (2NoB)S- ' (1 la) 

= (5)-' ('w ) 
where 

00 m 

B G  ~ w l n l t ) 1 2 d f =  4 I H ( n I 2 d f  

is the noise bandwidth of  the  bandpass  filter, recalling that we 
have set n(0) = 1. The message  signal power is S = E[a2 (t)] 
and  for the second version of  the  jitter formula (1 1 b) we  have 
assumed a signal bandwidth  of W Hz and have defined  a noise 
power over this  band  of N = 2N0 W. This allows the satisfying 
physical interpretation  of  jitter variance being inversely pro- 
portional to signal-to-noise  ratio  and  directly  proportional to 
the bandwidth  ratio of the phase recovery circuit  and the mes- 
sage  signal. For  the smaller signal-to-noise  ratios,  the  accuracy 
and  convenience  of  the  expression can be maintained by incor- 
porating  a  correction  factor  known as the squaring loss [3] . 
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When the signal itself carries  a significant quadrature com- 
ponent, as in the case of the VSB signal, there will be  a quad- 
rature  component  at  the squarer output  that interferes  with 
the phase recovery operation even at high signal-to-noise ratios. 
h t  us  suppose that  the VSB signal  is obtained  by  filtering  a 
DSB signal with  a  bandpass  filter  with  a real transfer  function 
(no phase shift)  and  with  a  cutoff  in  the  vicinity of fo. The 
resulting  quadrature  component  for  the VSB signal  is Z(t)  = 
[PQ @ a] ( t )  and p ~ ( t )  is  derived from the low-pass equivalent 
transfer  function  for the bandpass filter  in  accordance  with 
(A-7). The real transfer  function  condition makes p Q ( t )  an 
odd  function of  time,  which also makes the cross-correlation 
function  for a(t) and Z(t) an odd  function. 

The  result is that,  for P(t) = a(t) + lZ(t), the  autocorre- 
lation  for  the VSB signal is 

kyy( t  + T, t )  = a Re [{k,,(~) + kzz(r) +j2ksiiT(~)} 

exp (j27rfo7)] + 4 Re [{k,,(~) - ~;;;T(T)} 

- exp (j47rfot + j271foT + j20)] . (1 2) 

Comparing  (12)  with  (6), we see that  the second,  cyclostation- 
ary,  term is much smaller for  the VSB case than  the DSB case 
since the  autocorrelation  functions  for a(t) and Z(t) differ  only 
to  the  extent  that some  of the low-frequency  components  in 
Z(t) are missing because of the VSB rolloff  characteristic. 
Although the  jitter performance will be  poorer, the phase 
recovery circuit in Fig. 1 can  still be used since the mean value 
of the reference waveform is  a  sinusoid  exhibiting the desired 
phase, but  with  an  amplitude which  is  proportional to  the dif- 
ference  in power levels in a(t) and Z(t). 

E[ w(t)] = 3 [k,,(O) - k;;(O)] Re [exp (j477f0t +i20)1. 

(1 3) 

However, it is not possible to  get  a very simple formula  for the 
variance  of phase jitter, as in (1 l), because the power spectral 
density  of the  quadrature  component  of P2 (t), which is pro- 
portional to a(t) Z(t), vanishes at f = 0, unlike in  the additive 
noise case. An accurate variance expression  must take  into 
account.  the particular  shape  of the 520 filtering  function as 
well as the shape  of the VSB rolloff  characteristic. 

Our examination  of phase recovery  for DS3 (with  additive 
noise)  and VSB modulation  formats  has  indicated that rms 
phase jitter can  be  made as small as desired by making the 
width  of 520 sufficiently  small.  The  corresponding  parameter 
in the case of  the tracking loop configuration is called the  loop 
bandwidth [3]. These results,  however,  are  for steady-state 
phase jitter since the signals at  the receiver input were 
presumed to extend  into  the  remote past.  The  difficulty  with  a 
very narrow phase recovery bandwidth is that excessive time is 
taken to get to  the steady-state  condition  when  a new signal’ 
process begins. This  time  interval is referred to as the acquisi- 
tion time of the recovery circuit  and  in  switched  communica- 
tion networks or polling  systems it is usually  very  important to 
keep  this  interval small, even at  the expense  of the larger 
steady-state phase jitter. One way to accommodate  the  conflict- 
ing objectives in designing a  carrier recovery circuit is to spe- 

cify  a minimum phase-recovery  bandwidth  and then adjust 
other  parameters  of the system to minimize the steady-state 
phase jitter. 

Another  problem  with  a very narrow-band  bandpass fdter is 
in the  inherent mistuning  sensitivity, where mistuning is a  result 
of  inaccuracies in filter element values or  a  result  of small inac- 
curacies or  drift  in the carrier frequency. This problem is 
avoided with  tracking  loop  configurations since they  lock  onto 
the carrier  frequency. One the  other  hand, tracking  loops have 
some  problems  also,  one  of the more  serious  being the “hang- 
up”  problem [9] whereby the nonlinear  nature  of the  loop 
can produce  some  greatly  prolonged  acquisition  times. 

Although we have modeled  the phase recovery problem in 
terms of a  constant  unknown  carrier  phase,  it  may be impor- 
tant in some situations to consider the  presence  of  fairly  rapid 
fluctuations  in  carrier phase (independent of the message 
process). Such  fluctuations are often called phase noise and if 
the spectral  density of these  fluctuations has a  greater  band- 
width  than  that of the  phase recovery circuits,  there is a  phase 
error  due to the  inability to track  the  carrier  phase. Phase error 
of this  type, even in  steady state, becomes larger as the  band- 
width of the recovery circuits decreases. 

Another  practical  consideration is a 7r-radian phase ambigu- 
ity in the phase recovery circuits we have been discussing. The 
result is a  polarity  ambiguity in  the  coherently demodulated 
signal. In many cases this  polarity  ambiguity is unimportant, 
but otherwise  some a priori knowledge about  the message  sig- 
nal will have to  be used to  resolve the ambiguity. 

For  a QAM signal with p(t) = a(t) + jb(t), where a(t) and 
b(t) are independent  zero-mean  stationary  processes,  we get 

kyy(f  + 7, t)  = +.Re [{~uu(T) + kbb(7)I exp 0’271fo7)l 

+ 3 Re [{k,,(7) - kbb(7)l  

- exp (j47rfot + j271fO7 +j20)] (14) 

and the  situation is very similar to  the VSB case (12). In this 
case where a(t) and b(t)  are  uncorrelated, the mean  reference 
waveform has the correct  phase, but  the  amplitude vanishes 
if the power levels in the I and Q channels  are  the same. 

E[w(t)l = 4 [k,,(O) - kbb(0)l  Re  [exp  U4nfot +j20)l .  

(1 5) 

Hence, unless the QAM format is intentionally  unbalanced,  the 
squaring  approach in Fig. 1 does not work. We briefly  examine 
what  happens  when the squarer  is  replaced by  a  fourth-power 
device in the recovery schemes we  have been  considering. 
From (I) ,  we can  obtain 

Y 4 ( t )  = Re [@(t) exp ( j h f o t  +j40)] 

+ 3 Re [ I P(t) 12p2(t) exp (j4.rrfot +j2e)] 

+ 5 I P(O 1 4 .  (16) 

Now  if  we use a  bandpass  filter  tuned to 4f0 which passes only 
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the  first  term in (16), then  the mean reference waveform at 
the  filter  output is 

E[ w(t)]  = + Re [ (3 - 3(2)’} exp (j8n& t + j 4 Q ]  (1 7) 

still assuming independent a(t) andb(t) and a balanced QAM 
format, i.e., kaa(0) = kbb(0) = a 2 .  Hence, a mean reference 
waveform exists even in  the balanced Q W  case if a fourth- 
power device  is  used.’ 

One very popular QAM format is quadriphase-shift keying 
(QPSK) where the standard carrier recovery technique is to  use 
a fourth-power device followed by a PLL  or to use an equiva- 
lent  “double” Costas loop  configuration  [3]. The QPSK for- 
mat, with independent data symbols,  can be regarded  as two 
independent binary phase-shift-keyed (BPSK)  signals in phase 
quadrature. In a nonbandlimited  situation  each BPSK signal 
can be regarded as DSB-AM where the message waveform has 
a rectangular shape characterized by a(t) = f 1. In this case, 
the complex envelope of the QPSK  signal  is characterized by 
P(t) = (f 1 t j)/* or P(t) = exp (j(n/4) + j(n/2)k) with k = 
0, 1,  2,  or 3. The result is that p4 ( t )  = -1 and the 4f0 com- 
ponent  in (16) is a pure sinusoid with  no  fluctuations  in 
either phase or amplitude. For PSK systems  with a larger alpha- 
bet of phase positions, the result of (17) cannot generally be 
used  as the I and Q components  are no longer independent. 
Analysis of the larger alphabet cases shows that higher-order 
nonlinearities are required  for successful phase recovery [3], 
[lo] . For any balanced QAM format, such as  QPSK, the phase 
recovery circuits discussed here give a n/2-radian phase ambig- 
uity. This problem is often handled by use of a differential 
PSK scheme, whereby the information is transmitted as a 
sequence of phase changes rather  than  absolute values of phase. 

111.  PAM TIMING RECOVERY 

The receiver synchronization  problem in baseband PAM 
transmission is to find  the  correct sampling instants  for  extract- 
ing a sequence of numerical values from  the received  signal. 
For a synchronous pulse sequence with a pulse rate  of 1/T, the 
sampler operates  synchronously at  the same rate  and  the  prob- 
lem is to determine the  correct sampling phase within a T- 
second interval. The  model for  the baseband PAM signal  is 

m 

x ( t )  = a&(t -kT- T) (18) 
k=-- 

where{ak}  is the message sequence and g(t)  is the signaling 
pulse. We want to make an  accurate  determination  of T ,  from 
operations  performed on x(t).  We assume that g(t) is so 
defined that  the best sampling instants are at t = k T  + T; 
k = 0, t 1, k 2, ... . The objective is to recover a close  replica 
of the message sequence {ak} in terms  of the sequence {hk = 
x(kT + +)}, assuming a normalization of g(0) = 1. In  the 
noise-free case, the  difference between ak and dk is due  to 
intersymbol  interference which can be minimized by proper 
shaping of the  data pulse g(t). With perfect timing (? = T), the 

- -  
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intersymbol interference is 

and  this  term can be made to  vanish for pulses satisfying the 
Nyquist criterion, i.e., g(nT) = 0 for n # 0. For bandlimited 
Nyquist pulses, the intersymbol  interference will not be zero 
when i # T, and if the  bandwidth is not significantly greater 
than  the Nyquist bandwidth (1/2T) the intersymbol  inter- 
ference can be  quite severe  even for small  values of timing 
error.  The  problem is  especially acute  for multilevel (non- 
binary)  data sequences where timing accuracy of  only a few 
percent  of  the symbol period is often required. 

Symbol timing recovery is remarkably similar in most 
respects to carrier phase recovery and we find  that similar 
signal  processing  will  yield suitable estimates of  the param- 
eter T. In the discussion to follow, we assume that {ak}  is a 
zero-mean stationary sequence with independent elements. 
The resulting PAM signal (18) is a zero-mean cyclostationary 
process, although there  are no periodic components present 
[61. The square of  the PAM signal does, however, possess a 
periodic mean value. 

Using the Poisson Sum Formula [ 6 ] ,  we can express (20) in 
the  more convenient form of a Fourier series  whose coefficients 
are given by  the  Fourier transform of g2(t) .  

where 

For high bandwidth efficiency, we are  often concerned with 
data pulses  whose bandwidth is at most equal to twice the 
Nyquist bandwidth.  Then I GCf) I = 0 for I f  I > 1/T and  there 
are  only  three  nonzero terms (l= 0, f 1) in (21). 

This result suggests the use of a timing recovery circuit of 
the same form as shown in Fig. 1, where now the bandpass fii- 
ter is tuned to  the symbol  rate, 1/T. Alternate zero crossings 
of w(t), a timing wave analogous to  the reference waveform in 
Section 11, are  used  as indications of the  correct sampling in- 
stants.  Letting H(l/T) = 1,  the mean timing wave  is a sinusoid 
with a phase of -2nr/T,  for a real GQ. 

a2 [ ( 2;t 2 3 1  
E[w(t)]  = - R e   A ,  exp j - - j -  . 

T (22) 

We see that  the zero crossings of the mean  timing wave are at a 
5 Unless o(t)  and b(r)  are Gaussian processes, for then a4 = 3(u*)2. fined time  offset (T/4)  relative to the desired sampling instants. 
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