
t'iC 2 91991

Trust Management for the World Wide Web

by

Yang-hua Chu

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

June 13, 1997

Copyright 1997 Yang-hua Chu. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
distribute publicly paper and electronic copies of this thesis

and to grant others the rights to do so.

Author 	

Department of Electrical Engineering and Computer Science

Certified by 	

Dr. Joan Feigenbaum
. 	Mehntilrfinrir Consultant, AT&T Labs—Research

Certified b
• 	

-es S. Miller
Lecturer

Accepted by 	
rromssur ruuiui C. Smith

Chairman, Department Committee on Graduate Thesis

BC00032396

t'iC 2 91991

Trust Management for the World Wide Web

by

Yang-hua Chu

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

June 13, 1997

Copyright 1997 Yang-hua Chu. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce
distribute publicly paper and electronic copies of this thesis

and to grant others the rights to do so.

Author 	

Department of Electrical Engineering and Computer Science

Certified by 	

Dr. Joan Feigenbaum
. 	Mehntilrfinrir Consultant, AT&T Labs—Research

Certified b
• 	

-es S. Miller
Lecturer

Accepted by 	
rromssur ruuiui C. Smith

Chairman, Department Committee on Graduate Thesis

BC00032396

Blue Coat Systems - Exhibit 1014
0001

Trust Management for the World Wide Web
by

Yang-hua Chu

Submitted to the Department of Electrical Engineering and Computer Science

June 13,1997

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

ABSTRACT

Digital signatures alone are not sufficient for code signing and other Web applications:
Signatures can solve the problems of message integrity and authentication, but they do
not adequately address more general notions of security and trust. These applications
require not only cryptographic tools for determining authenticity and message integrity
but also a robust notion of "security policy" and a way to decide whether a request for
action complies with a policy. For example, in a code-signing application, a user's
security policy must state the properties that the code is required to have in order to be
considered "safe" in the user's environment. Similarly, the entity signing the code must
state precisely what properties he claims the code has.

My thesis will identify what trust management is in the context of the World Wide Web
and propose a general architecture to close the gap between trust and cryptography. I will
describe two specific languages for describing trust policies and a general mechanism for
evaluating whether a request for action complies with policy.

Thesis Supervisor Title Affiliation

Dr. Joan Feigenbaum Technology Consultant AT&T Labs—Research

Dr. James S. Miller Technology and
Society Domain Leader

The World Wide Web Consortium,
MIT Laboratory for Computer Science

3

BC00032397

Trust Management for the World Wide Web
by

Yang-hua Chu

Submitted to the Department of Electrical Engineering and Computer Science

June 13,1997

in Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

ABSTRACT

Digital signatures alone are not sufficient for code signing and other Web applications:
Signatures can solve the problems of message integrity and authentication, but they do
not adequately address more general notions of security and trust. These applications
require not only cryptographic tools for determining authenticity and message integrity
but also a robust notion of "security policy" and a way to decide whether a request for
action complies with a policy. For example, in a code-signing application, a user's
security policy must state the properties that the code is required to have in order to be
considered "safe" in the user's environment. Similarly, the entity signing the code must
state precisely what properties he claims the code has.

My thesis will identify what trust management is in the context of the World Wide Web
and propose a general architecture to close the gap between trust and cryptography. I will
describe two specific languages for describing trust policies and a general mechanism for
evaluating whether a request for action complies with policy.

Thesis Supervisor Title Affiliation

Dr. Joan Feigenbaum Technology Consultant AT&T Labs—Research

Dr. James S. Miller Technology and
Society Domain Leader

The World Wide Web Consortium,
MIT Laboratory for Computer Science

3

BC00032397

Blue Coat Systems - Exhibit 1014
0002

ACKNOWLEDGEMENTS

First I thank my thesis supervisors, Dr. Joan Feigenbaum and Dr. Jim Miller. They were
always ready to give me guidance and support when I encountered problems during my
research and thesis writing. They also provided me invaluable opportunities to attend
conferences and give presentations.

I was grateful to work with several talented researchers at AT&T Labs— Research,
including Brian LaMacchia, Paul Resnick, and Martin Strauss. We co-developed
REFEREE, which ultimately became the focus of my research and thesis work. Their
enthusiasm and devotion to doing research made them inspiring role models.

Many thanks to the team members at the World Wide Web Consortium, where I spent the
past year writing my thesis. Special thanks to the T&S team members Eui-suk Chung,
Philip DesAutels, Rohit Khare, and Joseph Reagle. Their presence and encouragement
make my daily work on the third floor of LCS fun and worthwhile. Special thanks to
Philip, whom I spent a great deal of time with in the Digital Signature Initiative project,
and Joseph, who lent me the thesis template.

Finally I have to thank my personal support team: my mom and dad, my brothers Yung-
hua, Ching-hua, and Hao-hua, and my girlfriend Wendy. Although land and sea
separated us most of the time, we were always connected deep in our hearts. Every bit of
caring and encouragement was my most precious source of energy. There are no words
that can express my gratitude to them.

5

BC00032398

ACKNOWLEDGEMENTS

First I thank my thesis supervisors, Dr. Joan Feigenbaum and Dr. Jim Miller. They were
always ready to give me guidance and support when I encountered problems during my
research and thesis writing. They also provided me invaluable opportunities to attend
conferences and give presentations.

I was grateful to work with several talented researchers at AT&T Labs— Research,
including Brian LaMacchia, Paul Resnick, and Martin Strauss. We co-developed
REFEREE, which ultimately became the focus of my research and thesis work. Their
enthusiasm and devotion to doing research made them inspiring role models.

Many thanks to the team members at the World Wide Web Consortium, where I spent the
past year writing my thesis. Special thanks to the T&S team members Eui-suk Chung,
Philip DesAutels, Rohit Khare, and Joseph Reagle. Their presence and encouragement
make my daily work on the third floor of LCS fun and worthwhile. Special thanks to
Philip, whom I spent a great deal of time with in the Digital Signature Initiative project,
and Joseph, who lent me the thesis template.

Finally I have to thank my personal support team: my mom and dad, my brothers Yung-
hua, Ching-hua, and Hao-hua, and my girlfriend Wendy. Although land and sea
separated us most of the time, we were always connected deep in our hearts. Every bit of
caring and encouragement was my most precious source of energy. There are no words
that can express my gratitude to them.

5

BC00032398

Blue Coat Systems - Exhibit 1014
0003

Table of Contents

1 INTRODUCTION 	 9

2 	TRUST MANAGEMENT 	 11

2.1 	WHAT IS TRUST MANAGEMENT 	 11

2.2 	TRUST MANAGEMENT INFRASTRUCTURE 	 12

2.3 	REVIEW OF EXISTING TRUST SYSTEMS AND PROTOCOLS 	 15

2.3.1 	PICS 	 15
2.3.2 	X.509 	 16
2.3.3 	PolicyMaker 	 18
2.3.4 	Microsoft Authenticode 	 19

2.4 	EXAMPLES OF TRUST MANAGEMENT PROBLEMS IN THE WWW 	 23

2.4.1 	Code Distribution 	 23
2.4.2 	Document Authentication 	 25

3 	EXECUTION ENVIRONMENT 	 28

3.1 	DESIGN GOAL 	 28
3.2 REFEREE 	 29
3.3 	REFEREE INTERNAL ARCHITECTURE 	 30

3.4 	REFEREE PRIMITIVE DATA TYPES 	 31
3.4.1 	Tri-Value 	 31
3.4.2 	Statement and Statement-list 	 32
3.4.3 	Module Databases 	 32

3.5 	BOOTSTRAPPING REFEREE 	 33

3.6 	QUERYING REFEREE 	 34

4 	POLICY LANGUAGE 	 35

4.1 	DESIGN GOALS 	 35
4.2 PicsRULZ 	 36
4.3 PROFILES-0.92 	 38
4.4 	SAMPLE POLICIES 	 43

4.4.1 	Sample policy 1: determine Access Based on the URL 	 44
4.4.2 	Sample policy 2: determine access based on PICS labels 	 44
4.4.3 	Sample Policy 3: Determine Access Based on Multiple PICS Labels and Sources 	46
4.4.4 	Sample Policy 4: Defer Trust Using Extension Mechanism 	 47

5 	REFEREE REFERENCE IMPLEMENTATION 	 49

5.1 	JIGSAW PROXY: THE HOST APPLICATION 	 49
5.2 	REFEREE IN THE JIGSAW PROXY 	 51
5.3 	THE SCOPE OF THE REFEREE IMPLEMENTATION 	 51
5.4 	AN EXECUTION TRACE 	 53
5.5 DISCUSSIONS 	 56

6 CONCLUSION 	 58

APPENDICES 	 59

APPENDIX A. MODIFIED BNF FOR PicsRULZ POLICY LANGUAGE 	 59
APPENDIX B. MODIFIED BNF FOR PROFILES-0.92 POLICY LANGUAGE 	 60
APPENDIX C. MODIFIED BNF FOR THE RETURNED STATEMENT-LIST OF LABEL LOADER 	61

REFERENCES 	 62

7

BC00032399

Table of Contents

1 INTRODUCTION 	 9

2 	TRUST MANAGEMENT 	 11

2.1 	WHAT IS TRUST MANAGEMENT 	 11

2.2 	TRUST MANAGEMENT INFRASTRUCTURE 	 12

2.3 	REVIEW OF EXISTING TRUST SYSTEMS AND PROTOCOLS 	 15

2.3.1 	PICS 	 15
2.3.2 	X.509 	 16
2.3.3 	PolicyMaker 	 18
2.3.4 	Microsoft Authenticode 	 19

2.4 	EXAMPLES OF TRUST MANAGEMENT PROBLEMS IN THE WWW 	 23

2.4.1 	Code Distribution 	 23
2.4.2 	Document Authentication 	 25

3 	EXECUTION ENVIRONMENT 	 28

3.1 	DESIGN GOAL 	 28
3.2 REFEREE 	 29
3.3 	REFEREE INTERNAL ARCHITECTURE 	 30

3.4 	REFEREE PRIMITIVE DATA TYPES 	 31
3.4.1 	Tri-Value 	 31
3.4.2 	Statement and Statement-list 	 32
3.4.3 	Module Databases 	 32

3.5 	BOOTSTRAPPING REFEREE 	 33

3.6 	QUERYING REFEREE 	 34

4 	POLICY LANGUAGE 	 35

4.1 	DESIGN GOALS 	 35
4.2 PicsRULZ 	 36
4.3 PROFILES-0.92 	 38
4.4 	SAMPLE POLICIES 	 43

4.4.1 	Sample policy 1: determine Access Based on the URL 	 44
4.4.2 	Sample policy 2: determine access based on PICS labels 	 44
4.4.3 	Sample Policy 3: Determine Access Based on Multiple PICS Labels and Sources 	46
4.4.4 	Sample Policy 4: Defer Trust Using Extension Mechanism 	 47

5 	REFEREE REFERENCE IMPLEMENTATION 	 49

5.1 	JIGSAW PROXY: THE HOST APPLICATION 	 49
5.2 	REFEREE IN THE JIGSAW PROXY 	 51
5.3 	THE SCOPE OF THE REFEREE IMPLEMENTATION 	 51
5.4 	AN EXECUTION TRACE 	 53
5.5 DISCUSSIONS 	 56

6 CONCLUSION 	 58

APPENDICES 	 59

APPENDIX A. MODIFIED BNF FOR PicsRULZ POLICY LANGUAGE 	 59
APPENDIX B. MODIFIED BNF FOR PROFILES-0.92 POLICY LANGUAGE 	 60
APPENDIX C. MODIFIED BNF FOR THE RETURNED STATEMENT-LIST OF LABEL LOADER 	61

REFERENCES 	 62

7

BC00032399

Blue Coat Systems - Exhibit 1014
0004

List of Figures and Tables

FIGURE 2 DEPENDENCY GRAPH OF TRUST MANAGEMENT INFRASTRUCTURE COMPONENTS 	 14
FIGURE 3 PICS IN THE TRUST MANAGEMENT INFRASTRUCTURE 	 15
FIGURE 4 X.509 IN THE TRUST MANAGEMENT INFRASTRUCTURE 	 17
FIGURE 5 POLICYMAKER IN THE TRUST MANAGEMENT INFRASTRUCTURE 	 18
FIGURE 6 AUTHENTICODE IN THE TRUST MANAGEMENT INFRASTRUCTURE 	 20
FIGURE 7 AUTHENTICODE USER PERMISSION INTERFACE 	 21
FIGURE 8 CONFIGURING A LIST OF TRUSTED ENTITIES IN AUTHENTICODE 	 22
FIGURE 9 COOL GAME DOWNLOAD 	 23
FIGURE 10 A SNAPSHOT OF THE BOSTON GLOBE WEB DOCUMENT 	 25
FIGURE 11 FLOW CHART FOR SIGNING AND VERIFYING A DIGITAL SIGNATURE 	 26
FIGURE 12 REFEREE EXTERNAL API 	 29
FIGURE 13 SAMPLE BLOCK DIAGRAM OF REFEREE INTERNAL STRUCTURE. 	 30
FIGURE 14 REQUIRED INTERFACE FOR EVERY REFEREE MODULE 	 31
FIGURE 15 SAMPLE REFEREE IMPLEMENTATION 	 34
FIGURE 16 JIGSAW PROXY ARCHITECTURE 	 50
FIGURE 17 SAMPLE REFEREE IMPLEMENTATION 	 54

TABLE 1 A SAMPLE MODULE DATABASE 	 33
TABLE 2 TRUTH TABLE FOR THE AND OPERATOR 	 41
TABLE 3 TRUTH TABLE FOR THE OR OPERATOR 	 41
TABLE 4 TRUTH TABLE FOR THE NOT OPERATOR 	 42
TABLE 5 TRUTH TABLE FOR THE TRUE-IF-UNKNOWN OPERATOR 	 42
TABLE 6 TRUTH TABLE FOR THE FALSE-IF-UNKNOWN OPERATOR 	 42

8

BC00032400

List of Figures and Tables

FIGURE 2 DEPENDENCY GRAPH OF TRUST MANAGEMENT INFRASTRUCTURE COMPONENTS 	 14
FIGURE 3 PICS IN THE TRUST MANAGEMENT INFRASTRUCTURE 	 15
FIGURE 4 X.509 IN THE TRUST MANAGEMENT INFRASTRUCTURE 	 17
FIGURE 5 POLICYMAKER IN THE TRUST MANAGEMENT INFRASTRUCTURE 	 18
FIGURE 6 AUTHENTICODE IN THE TRUST MANAGEMENT INFRASTRUCTURE 	 20
FIGURE 7 AUTHENTICODE USER PERMISSION INTERFACE 	 21
FIGURE 8 CONFIGURING A LIST OF TRUSTED ENTITIES IN AUTHENTICODE 	 22
FIGURE 9 COOL GAME DOWNLOAD 	 23
FIGURE 10 A SNAPSHOT OF THE BOSTON GLOBE WEB DOCUMENT 	 25
FIGURE 11 FLOW CHART FOR SIGNING AND VERIFYING A DIGITAL SIGNATURE 	 26
FIGURE 12 REFEREE EXTERNAL API 	 29
FIGURE 13 SAMPLE BLOCK DIAGRAM OF REFEREE INTERNAL STRUCTURE. 	 30
FIGURE 14 REQUIRED INTERFACE FOR EVERY REFEREE MODULE 	 31
FIGURE 15 SAMPLE REFEREE IMPLEMENTATION 	 34
FIGURE 16 JIGSAW PROXY ARCHITECTURE 	 50
FIGURE 17 SAMPLE REFEREE IMPLEMENTATION 	 54

TABLE 1 A SAMPLE MODULE DATABASE 	 33
TABLE 2 TRUTH TABLE FOR THE AND OPERATOR 	 41
TABLE 3 TRUTH TABLE FOR THE OR OPERATOR 	 41
TABLE 4 TRUTH TABLE FOR THE NOT OPERATOR 	 42
TABLE 5 TRUTH TABLE FOR THE TRUE-IF-UNKNOWN OPERATOR 	 42
TABLE 6 TRUTH TABLE FOR THE FALSE-IF-UNKNOWN OPERATOR 	 42

8

BC00032400

Blue Coat Systems - Exhibit 1014
0005

1 Introduction

Many activities of growing importance in the "information infrastructure," including
electronic commerce and mobile programming, depend critically on precise and reliable
ways to manage trust. Users will need to know how trustworthy information is before
they act on it. For example, they will need to know where the information comes from
(authentication), what kind of information it is (content), what it can do (capability), and
whether it was altered during transmission (integrity). Without knowledge of what or
whom to trust, users may treat a piece of potentially valuable information as yet another
stream of random bits. Worse yet, malicious parties may lure users into believing that a
false piece of information is trustworthy.

Many existing mechanisms and protocols address specific aspects of trust in the
information infrastructure, but none provides a complete solution. For example, digital
signatures allow publishers to create and distribute non-refutable proofs of authorship of
documents. Public key infrastructures bind public keys to entities so that users can
establish trust chains from digital signatures to signers. Metadata formats allow creators
of information resources or trusted third parties to make assertions about these resources.
Users can query and process the trusted assertions before deciding what to do with the
information resources. Each of these mechanisms and protocols defines a subset of all
potential trust problems and solves or partially solves this subset.

The goal of my research is to design a complete trust management infrastructure, in
which trust is specified, disseminated, and evaluated in parallel with the information
infrastructure. I have identified four major components of a trust management
infrastructure: the metadata format, the trust protocol, the trust policy language, and the
execution environment, which are defined in Chapter two. Under this framework of
study, I discovered that most existing approaches to trust deal with metadata formats and
trust protocols but lacked general trust policy languages for specifying user preferences
and generic environments for evaluating them. This finding leads to my interest and
involvement in REFEREE.

REFEREE is a result of collaboration among researchers from AT&T and W3C,
including myself. It was designed to be a general-purpose execution environment for all
Web applications requiring trust. REFEREE evaluates user policies in response to a host
application's request for actions. Policies are treated as programs in REFEREE. For a
given request, REFEREE invokes the appropriate user policy and interpreter module and
returns to the host application an answer (with justification) to the question of whether or
not the request complies with the policy.

The underlying architecture of REFEREE allows different trust policy languages and
trust protocols to co-exist in one execution environment. They are treated as add-on
software modules and can be installed or de-installed modularly. At the time of
development, we were unable to find a suitable policy language to demonstrate all the
features of REFEREE, and so we designed the Profiles-0.92 language.

In order to develop a deeper understanding of REFEREE and to demonstrate its
feasibility, power, and efficiency, I built a reference implementation of the REFEREE

9

BC00032401

1 Introduction

Many activities of growing importance in the "information infrastructure," including
electronic commerce and mobile programming, depend critically on precise and reliable
ways to manage trust. Users will need to know how trustworthy information is before
they act on it. For example, they will need to know where the information comes from
(authentication), what kind of information it is (content), what it can do (capability), and
whether it was altered during transmission (integrity). Without knowledge of what or
whom to trust, users may treat a piece of potentially valuable information as yet another
stream of random bits. Worse yet, malicious parties may lure users into believing that a
false piece of information is trustworthy.

Many existing mechanisms and protocols address specific aspects of trust in the
information infrastructure, but none provides a complete solution. For example, digital
signatures allow publishers to create and distribute non-refutable proofs of authorship of
documents. Public key infrastructures bind public keys to entities so that users can
establish trust chains from digital signatures to signers. Metadata formats allow creators
of information resources or trusted third parties to make assertions about these resources.
Users can query and process the trusted assertions before deciding what to do with the
information resources. Each of these mechanisms and protocols defines a subset of all
potential trust problems and solves or partially solves this subset.

The goal of my research is to design a complete trust management infrastructure, in
which trust is specified, disseminated, and evaluated in parallel with the information
infrastructure. I have identified four major components of a trust management
infrastructure: the metadata format, the trust protocol, the trust policy language, and the
execution environment, which are defined in Chapter two. Under this framework of
study, I discovered that most existing approaches to trust deal with metadata formats and
trust protocols but lacked general trust policy languages for specifying user preferences
and generic environments for evaluating them. This finding leads to my interest and
involvement in REFEREE.

REFEREE is a result of collaboration among researchers from AT&T and W3C,
including myself. It was designed to be a general-purpose execution environment for all
Web applications requiring trust. REFEREE evaluates user policies in response to a host
application's request for actions. Policies are treated as programs in REFEREE. For a
given request, REFEREE invokes the appropriate user policy and interpreter module and
returns to the host application an answer (with justification) to the question of whether or
not the request complies with the policy.

The underlying architecture of REFEREE allows different trust policy languages and
trust protocols to co-exist in one execution environment. They are treated as add-on
software modules and can be installed or de-installed modularly. At the time of
development, we were unable to find a suitable policy language to demonstrate all the
features of REFEREE, and so we designed the Profiles-0.92 language.

In order to develop a deeper understanding of REFEREE and to demonstrate its
feasibility, power, and efficiency, I built a reference implementation of the REFEREE

9

BC00032401

Blue Coat Systems - Exhibit 1014
0006

10 Chapter One

trust management system. The implementation includes a set of the core REFEREE data
types and methods, a PICS protocol, and a Profiles-0.92 policy interpreter to evaluate
polices based on the PICS metadata format. In addition, I implemented another policy
language called PicsRULZ and integrated it into the reference implementation, in order to
demonstrate REFEREE's ability to handle multiple policy languages in particular and
multiple software modules generally.

This thesis is about the work I have done on trust management during the last year.
Chapter two introduces readers to the term trust management infrastructure and explains
how existing systems and protocols map into my framework of infrastructure. Chapter
two also identifies trust management problems that are common to several current Web
applications.

Chapter three is devoted to the REFEREE execution environment. It explains in detail its
requirements, architectural design, primitive data types, and standard methods of
bootstrapping and querying.

Chapter four describes two different policy languages, PicsRULZ and Profiles-0.92.
They represent two different approaches to writing user policies. The chapter also
provides four sample policies of varying degrees of complexity and typicality. These
policies are expressed in both PicsRULZ and Profiles-0.92, so that I can compare and
contrast the strengths and weaknesses of the two languages.

Chapter five describes my implementation work on REFEREE and analyzes the system
from the implementation perspective. I chose Jigsaw proxy as the host application and
Java Virtual Machine as the underlying REFEREE execution environment. The work
sheds light on how to use REFEREE in a real-world application.

Chapter six concludes my thesis.

BC00032402

10 Chapter One

trust management system. The implementation includes a set of the core REFEREE data
types and methods, a PICS protocol, and a Profiles-0.92 policy interpreter to evaluate
polices based on the PICS metadata format. In addition, I implemented another policy
language called PicsRULZ and integrated it into the reference implementation, in order to
demonstrate REFEREE's ability to handle multiple policy languages in particular and
multiple software modules generally.

This thesis is about the work I have done on trust management during the last year.
Chapter two introduces readers to the term trust management infrastructure and explains
how existing systems and protocols map into my framework of infrastructure. Chapter
two also identifies trust management problems that are common to several current Web
applications.

Chapter three is devoted to the REFEREE execution environment. It explains in detail its
requirements, architectural design, primitive data types, and standard methods of
bootstrapping and querying.

Chapter four describes two different policy languages, PicsRULZ and Profiles-0.92.
They represent two different approaches to writing user policies. The chapter also
provides four sample policies of varying degrees of complexity and typicality. These
policies are expressed in both PicsRULZ and Profiles-0.92, so that I can compare and
contrast the strengths and weaknesses of the two languages.

Chapter five describes my implementation work on REFEREE and analyzes the system
from the implementation perspective. I chose Jigsaw proxy as the host application and
Java Virtual Machine as the underlying REFEREE execution environment. The work
sheds light on how to use REFEREE in a real-world application.

Chapter six concludes my thesis.

BC00032402

Blue Coat Systems - Exhibit 1014
0007

2 Trust Management

The term trust management has received a great deal of attention in the network security
community since it was first introduced in the paper "Decentralized Trust Management"
by Blaze, Feigenbaum, and Lacy [BFL96]. Many existing systems have since been
identified as trust management systems in the sense of [BFL96], including PolicyMaker
[BFL96], SDSI [RL96], SPKI [EFRT97], and X.509 [CCITT88a, CCITT88b]. People
have compared and contrasted these systems and their capabilities and limitations.

This chapter reviews the concept of "trust management" as the starting point for my
thesis work. Later discussions of REFEREE in Chapter three and PicsRULZ and
Profiles-0.92 in Chapter four address specific components of "trust management".

Section one introduces the trust management problem in the [BFL96]. Section two
presents my alternative notion of trust management infrastructure. Section three
analyzes several well-known systems in the "trust management infrastructure" framework
and highlights their strengths and weaknesses. Section four sets the context of my thesis
work by identifying several common Web applications that have similar trust
management needs.

2.1 	What is Trust Management

As formulated by Blaze, Feigenbaum, and Lacy, trust management addresses the question
"is this request, supported by these credentials, in compliance with this user policy?" The
[BFL96] paper identified three components of trust management:

• security policies
• security credentials
• trust relationships

Security policies are local policies that an application trusts unconditionally. Security
credentials are assertions about objects by trusted third parties. Trust relationships are
special cases of security policies. An example in the paper illustrated the use and the
interactions among the three components:

An electronic banking system must enable a bank to state that at
least k bank officers are needed to approve loans of $1,000,000 or
less (a policy), it must enable a bank employee to prove that he can
be counted as 1 out of k approvers (a credential), and it must
enable the bank to specify who may issue such credentials (a trust
relationship).

The paper referred to the study of the three components and their interactions as the trust
management problem. The authors believe that the trust management problem is a
distinct and an important aspect of security in network services and that such problems
can be solved using a general mechanism that is independent of any particular application
or service. They propose is a trust management layer that applications and services can
build on top of.

PolicyMaker, described in [BFL96], is a trust management system designed to meet the
needs of this layer. It is a three-part solution: a credential format to represent

11

BC00032403

2 Trust Management

The term trust management has received a great deal of attention in the network security
community since it was first introduced in the paper "Decentralized Trust Management"
by Blaze, Feigenbaum, and Lacy [BFL96]. Many existing systems have since been
identified as trust management systems in the sense of [BFL96], including PolicyMaker
[BFL96], SDSI [RL96], SPKI [EFRT97], and X.509 [CCITT88a, CCITT88b]. People
have compared and contrasted these systems and their capabilities and limitations.

This chapter reviews the concept of "trust management" as the starting point for my
thesis work. Later discussions of REFEREE in Chapter three and PicsRULZ and
Profiles-0.92 in Chapter four address specific components of "trust management".

Section one introduces the trust management problem in the [BFL96]. Section two
presents my alternative notion of trust management infrastructure. Section three
analyzes several well-known systems in the "trust management infrastructure" framework
and highlights their strengths and weaknesses. Section four sets the context of my thesis
work by identifying several common Web applications that have similar trust
management needs.

2.1 	What is Trust Management

As formulated by Blaze, Feigenbaum, and Lacy, trust management addresses the question
"is this request, supported by these credentials, in compliance with this user policy?" The
[BFL96] paper identified three components of trust management:

• security policies
• security credentials
• trust relationships

Security policies are local policies that an application trusts unconditionally. Security
credentials are assertions about objects by trusted third parties. Trust relationships are
special cases of security policies. An example in the paper illustrated the use and the
interactions among the three components:

An electronic banking system must enable a bank to state that at
least k bank officers are needed to approve loans of $1,000,000 or
less (a policy), it must enable a bank employee to prove that he can
be counted as 1 out of k approvers (a credential), and it must
enable the bank to specify who may issue such credentials (a trust
relationship).

The paper referred to the study of the three components and their interactions as the trust
management problem. The authors believe that the trust management problem is a
distinct and an important aspect of security in network services and that such problems
can be solved using a general mechanism that is independent of any particular application
or service. They propose is a trust management layer that applications and services can
build on top of.

PolicyMaker, described in [BFL96], is a trust management system designed to meet the
needs of this layer. It is a three-part solution: a credential format to represent

11

BC00032403

Blue Coat Systems - Exhibit 1014
0008

12 Chapter Two

authorization assertions, a security policy language to express user preferences, and an
execution environment to evaluate certificates and policies. PolicyMaker broke new
ground by expressing credentials and policies as programs. The execution environment
acts like a database query engine: The host application sends to the execution
environment a request for action and a user policy, and the environment returns an
answer to the question of whether the credentials prove that the request complies with the
policy.

What is missing from PolicyMaker is consideration of "trust protocols", in particular, of
mechanisms for acquiring additional trust information in the course of evaluating
policies. PolicyMaker assumes the application is responsible for providing all credentials
at the time a query is made to the trust management engine. In practice, the "right" set of
credentials is often determined by the semantics of the policy and the state of the
evaluation. For example, the "right" set of credentials to validate a PICS label may
depend on the type of signature and certificate, the intended use of the Web document,
the semantics of the label, the processor speed, or the network connection. These factors
are often known only at the time of policy evaluation. A better approach is to put trust
protocols under policy control. That is, a policy is capable of determining how, where,
when, and under what circumstances to invoke a trust protocol to fetch credentials.

Adding "trust protocols" to the execution environment necessitates substantial changes in
the [BFL96] framework. First, a trust policy needs a language construct with which to
invoke trust protocols. The PolicyMaker language is only able to express authorizations.
Moreover, a trust policy needs to be able to parse the retrieved credentials in order to
make intelligent trust decisions. PolicyMaker avoids this by requiring the host
application to translate the credentials into a special format before querying the engine.
Furthermore, the underlying execution environment needs to be powerful enough to
handle protocol invocations during the interpretation of a trust policy. It needs either to
run the protocol inside its environment or to delegate the request to another software
module. Finally, a trust management system should be extensible enough to install and
de-install trust protocols. A given trust policy does not know a priori which trust
protocols are available. When a protocol is unknown during the policy interpretation, the
execution environment should be able to install it.

The need to treat metadata formats, trust protocols, trust policy languages, and execution
environments as distinct components in trust management is the main conceptual
contribution of my work on trust management infrastructure as explained in the next
section. My framework draws the lines that separate components and assigns duties to
each of them. Later the readers will see the importance of this component-wise view of
trust management. It leads to several important design decisions in the REFEREE
architecture: Policies and protocols are both software components of REFEREE, and
these components not only coexist under one execution environment but also work
together by invoking each other through a standard REFEREE interface.

2.2 Trust Management Infrastructure

A trust management infrastructure is a conceptual framework for the design of a coherent
solution to various trust decisions that must be made in what is commonly referred to as

BC00032404

12 Chapter Two

authorization assertions, a security policy language to express user preferences, and an
execution environment to evaluate certificates and policies. PolicyMaker broke new
ground by expressing credentials and policies as programs. The execution environment
acts like a database query engine: The host application sends to the execution
environment a request for action and a user policy, and the environment returns an
answer to the question of whether the credentials prove that the request complies with the
policy.

What is missing from PolicyMaker is consideration of "trust protocols", in particular, of
mechanisms for acquiring additional trust information in the course of evaluating
policies. PolicyMaker assumes the application is responsible for providing all credentials
at the time a query is made to the trust management engine. In practice, the "right" set of
credentials is often determined by the semantics of the policy and the state of the
evaluation. For example, the "right" set of credentials to validate a PICS label may
depend on the type of signature and certificate, the intended use of the Web document,
the semantics of the label, the processor speed, or the network connection. These factors
are often known only at the time of policy evaluation. A better approach is to put trust
protocols under policy control. That is, a policy is capable of determining how, where,
when, and under what circumstances to invoke a trust protocol to fetch credentials.

Adding "trust protocols" to the execution environment necessitates substantial changes in
the [BFL96] framework. First, a trust policy needs a language construct with which to
invoke trust protocols. The PolicyMaker language is only able to express authorizations.
Moreover, a trust policy needs to be able to parse the retrieved credentials in order to
make intelligent trust decisions. PolicyMaker avoids this by requiring the host
application to translate the credentials into a special format before querying the engine.
Furthermore, the underlying execution environment needs to be powerful enough to
handle protocol invocations during the interpretation of a trust policy. It needs either to
run the protocol inside its environment or to delegate the request to another software
module. Finally, a trust management system should be extensible enough to install and
de-install trust protocols. A given trust policy does not know a priori which trust
protocols are available. When a protocol is unknown during the policy interpretation, the
execution environment should be able to install it.

The need to treat metadata formats, trust protocols, trust policy languages, and execution
environments as distinct components in trust management is the main conceptual
contribution of my work on trust management infrastructure as explained in the next
section. My framework draws the lines that separate components and assigns duties to
each of them. Later the readers will see the importance of this component-wise view of
trust management. It leads to several important design decisions in the REFEREE
architecture: Policies and protocols are both software components of REFEREE, and
these components not only coexist under one execution environment but also work
together by invoking each other through a standard REFEREE interface.

2.2 Trust Management Infrastructure

A trust management infrastructure is a conceptual framework for the design of a coherent
solution to various trust decisions that must be made in what is commonly referred to as

BC00032404

Blue Coat Systems - Exhibit 1014
0009

Trust Management 13

the "information infrastructure". A trust management infrastructure allows parties to
make trusted assertions about objects in the information infrastructure, and applications
to acquire these assertions and make trust decisions based on them. The framework is
independent of the trust criteria imposed by any particular application and of the type of
assertions made by a trusted party. There are four components in a trust management
infrastructure:

Metadata format
is a format for describing information about an object, often called an assertion
system. Metadata exists in various forms and under various names, but its function
is similar throughout. For example, the content-filtering community calls its
metadata "labels"; an instance of a label is "the code pointed to by this URL is safe
to download." The security community calls its metadata "identify certificates"; an
example of an identify certificate is "this person is over 18 years of age." Metadata
is the medium in which trust flows from the entity creating the metadata to the
application making the trust decision. It represents a token of trust.

Metadata itself is an object; it may be described by other metadata. The ability to
form a chain of metadata allows trust to branch and decentralize into a Web-like
structure. Actually, a collection of interconnected metadata look just like objects in
an information infrastructure without trust. It is the duty of the trust policies and
trust protocols to weave these objects together and provide them meanings.

Trust protocol
is a method for applications to acquire assertions from third parties. In X.509, there
is an algorithm to walk up the certification path (a hierarchical chain) and gather the
appropriate certificates along the path for a given directory name. In PICS and
PGP, there is no algorithm for finding the "right certificates"; some metadata come
with the original source, and others are acquired from named trusted parties.

The sole duty of a trust protocol is to gather an appropriate set of trusted assertions
in order for a given request to comply with a trust policy. Algorithms used in a
trust protocol do not perform any trust evaluation; rather they help a trust policy to
collect a set of metadata likely to be used during a policy evaluation.

Trust policy language
is a language to specify a set of criteria for an object to be trustworthy to perform a
given action. For example, there can be a policy about "downloading and running
Java Applets in my browser", which requires "signed credentials from two trusted
parties asserting that the Applet contains no virus".

Chapter 4 is devoted to the discussion of trust policy languages. PicsRULZ and
Profiles-0.92, described in that chapter, are examples of trust policy languages.

Execution environment
is an environment for interpreting trust policies and administering trust protocols.
An execution environment takes requests from its host application and returns an
answer that is compliant with trust policies.

BC00032405

Trust Management 13

the "information infrastructure". A trust management infrastructure allows parties to
make trusted assertions about objects in the information infrastructure, and applications
to acquire these assertions and make trust decisions based on them. The framework is
independent of the trust criteria imposed by any particular application and of the type of
assertions made by a trusted party. There are four components in a trust management
infrastructure:

Metadata format
is a format for describing information about an object, often called an assertion
system. Metadata exists in various forms and under various names, but its function
is similar throughout. For example, the content-filtering community calls its
metadata "labels"; an instance of a label is "the code pointed to by this URL is safe
to download." The security community calls its metadata "identify certificates"; an
example of an identify certificate is "this person is over 18 years of age." Metadata
is the medium in which trust flows from the entity creating the metadata to the
application making the trust decision. It represents a token of trust.

Metadata itself is an object; it may be described by other metadata. The ability to
form a chain of metadata allows trust to branch and decentralize into a Web-like
structure. Actually, a collection of interconnected metadata look just like objects in
an information infrastructure without trust. It is the duty of the trust policies and
trust protocols to weave these objects together and provide them meanings.

Trust protocol
is a method for applications to acquire assertions from third parties. In X.509, there
is an algorithm to walk up the certification path (a hierarchical chain) and gather the
appropriate certificates along the path for a given directory name. In PICS and
PGP, there is no algorithm for finding the "right certificates"; some metadata come
with the original source, and others are acquired from named trusted parties.

The sole duty of a trust protocol is to gather an appropriate set of trusted assertions
in order for a given request to comply with a trust policy. Algorithms used in a
trust protocol do not perform any trust evaluation; rather they help a trust policy to
collect a set of metadata likely to be used during a policy evaluation.

Trust policy language
is a language to specify a set of criteria for an object to be trustworthy to perform a
given action. For example, there can be a policy about "downloading and running
Java Applets in my browser", which requires "signed credentials from two trusted
parties asserting that the Applet contains no virus".

Chapter 4 is devoted to the discussion of trust policy languages. PicsRULZ and
Profiles-0.92, described in that chapter, are examples of trust policy languages.

Execution environment
is an environment for interpreting trust policies and administering trust protocols.
An execution environment takes requests from its host application and returns an
answer that is compliant with trust policies.

BC00032405

Blue Coat Systems - Exhibit 1014
0010

14

Chapter 3 is devoted to the discussion of execution environments. Both
PolicyMaker and REFEREE have a notion of a general-purpose execution
environment in which policies are evaluated.

Instances of the components work together to form a trust management system, which is
an instance of a trust management infrastructure. For example, PolicyMaker trust
management system has a metadata format, a trust policy language, and an execution
environment. How components interact with each other may be application specific.
This section provides a rule of thumb on how components should interact, based on their
defined properties. Figure 2 shows a component dependency graph in the trust
management infrastructure. Diamonds represent components in the trust management
infrastructure and arrows represent dependency relations.

Figure 2 Dependency Graph of Trust Management Infrastructure Components

A metadata format is independent of any other components in the trust management
infrastructure. It can be distributed by multiple protocols and operated on by multiple
trust policy languages. For example, it is possible to represent SDSI certificates as PICS
labels and use them in the SDSI public-key distribution protocol.

A trust protocol generally depends on the metadata format. A typical protocol contains
methods to query specific metadata, heuristics to chain the metadata together, and ways
to transport them. The specific properties in the metadata format enable the trust protocol
to perform these methods.

A trust policy language depends on both the trust protocol and the metadata format. It
must understand the syntax and the semantics of the metadata in order to write a policy
on it. A trust policy may depend on trust protocols in order to fetch metadata at runtime.

An execution environment depends on both the trust policy language and the trust
protocol. The underlying execution environment in the system needs to be powerful
enough to interpret the policies and run the protocols. However, an execution
environment need not understand the syntax or the semantics of the metadata formats
directly. It is the duty of trust policies to parse the syntax and reason about the semantics.

BC00032406

14

Chapter 3 is devoted to the discussion of execution environments. Both
PolicyMaker and REFEREE have a notion of a general-purpose execution
environment in which policies are evaluated.

Instances of the components work together to form a trust management system, which is
an instance of a trust management infrastructure. For example, PolicyMaker trust
management system has a metadata format, a trust policy language, and an execution
environment. How components interact with each other may be application specific.
This section provides a rule of thumb on how components should interact, based on their
defined properties. Figure 2 shows a component dependency graph in the trust
management infrastructure. Diamonds represent components in the trust management
infrastructure and arrows represent dependency relations.

Figure 2 Dependency Graph of Trust Management Infrastructure Components

A metadata format is independent of any other components in the trust management
infrastructure. It can be distributed by multiple protocols and operated on by multiple
trust policy languages. For example, it is possible to represent SDSI certificates as PICS
labels and use them in the SDSI public-key distribution protocol.

A trust protocol generally depends on the metadata format. A typical protocol contains
methods to query specific metadata, heuristics to chain the metadata together, and ways
to transport them. The specific properties in the metadata format enable the trust protocol
to perform these methods.

A trust policy language depends on both the trust protocol and the metadata format. It
must understand the syntax and the semantics of the metadata in order to write a policy
on it. A trust policy may depend on trust protocols in order to fetch metadata at runtime.

An execution environment depends on both the trust policy language and the trust
protocol. The underlying execution environment in the system needs to be powerful
enough to interpret the policies and run the protocols. However, an execution
environment need not understand the syntax or the semantics of the metadata formats
directly. It is the duty of trust policies to parse the syntax and reason about the semantics.

BC00032406

Blue Coat Systems - Exhibit 1014
0011

Trust Management 15

Most existing trust systems can be mapped into this infrastructure, marked by their
component dependencies. Not surprising, these solutions are geared toward neither a
single component nor a complete infrastructure. For example, PICS is both a metadata
format and a trust protocol, but it has neither a policy language to express trust
relationships nor an execution environment to evaluate it. The next section discusses
some well-known trust systems in greater detail and fits them into this framework.

2.3 Review of Existing Trust Systems and Protocols

There are many existing systems and protocols built to deal with trust issues; none of
them represents a satisfying solution for Web applications. This section identifies what
they do and do not do, by mapping them onto the trust management infrastructure
framework discussed above. This is not to say that a system missing a component is
useless, but rather to show how to add its missing pieces or to show how it can
collaborate with other systems toward in building a general trust management system.

2.3.1 PICS

PICS, which stands for Platform for Internet Content Selection, is both a metadata format
and a protocol. The system was originally designed as a technical solution to protect
children from pornography on the Internet without suppressing freedom of speech. PICS
enables content providers and trusted third parties to rate their sites and parents and
supervisors to set filtering criteria for their children based on the ratings.

Figure 3 PICS in the Trust Management Infrastructure

Figure 3 shows a graphical representation of PICS in the trust management infrastructure.
The main strength of PICS is its ability to express complex semantics within a machine-
readable syntax structure. The trust protocol is relatively straightforward; there are ways
to distribute labels and methods for querying them with certain attributes. The original
PICS specification has neither a policy language nor an execution environment, although
there is a proposed policy language called PicsRULZ described in detail in Section 4.2.

BC00032407

Trust Management 15

Most existing trust systems can be mapped into this infrastructure, marked by their
component dependencies. Not surprising, these solutions are geared toward neither a
single component nor a complete infrastructure. For example, PICS is both a metadata
format and a trust protocol, but it has neither a policy language to express trust
relationships nor an execution environment to evaluate it. The next section discusses
some well-known trust systems in greater detail and fits them into this framework.

2.3 Review of Existing Trust Systems and Protocols

There are many existing systems and protocols built to deal with trust issues; none of
them represents a satisfying solution for Web applications. This section identifies what
they do and do not do, by mapping them onto the trust management infrastructure
framework discussed above. This is not to say that a system missing a component is
useless, but rather to show how to add its missing pieces or to show how it can
collaborate with other systems toward in building a general trust management system.

2.3.1 PICS

PICS, which stands for Platform for Internet Content Selection, is both a metadata format
and a protocol. The system was originally designed as a technical solution to protect
children from pornography on the Internet without suppressing freedom of speech. PICS
enables content providers and trusted third parties to rate their sites and parents and
supervisors to set filtering criteria for their children based on the ratings.

Figure 3 PICS in the Trust Management Infrastructure

Figure 3 shows a graphical representation of PICS in the trust management infrastructure.
The main strength of PICS is its ability to express complex semantics within a machine-
readable syntax structure. The trust protocol is relatively straightforward; there are ways
to distribute labels and methods for querying them with certain attributes. The original
PICS specification has neither a policy language nor an execution environment, although
there is a proposed policy language called PicsRULZ described in detail in Section 4.2.

BC00032407

Blue Coat Systems - Exhibit 1014
0012

16 Chapter Two

It turns out that many other applications have the same need for a general metadata
format to make rich assertions as PICS does in content selection. For example, the digital
library community needs metadata for cataloging books and journals. The privacy
community needs metadata for labeling Web sites in terms of privacy practice. The
security community needs metadata to express the semantics of a digital signature. PICS
has moved quickly to become the standard, general metadata format on the Internet, with
some modifications from its original specification.'

The lack of a trust policy language and an execution environment limit the extent PICS
can apply to Web applications requiring trust. PICS may be sufficient for applications
involving content selection, where application-specific, proprietary policy language and
execution environment can select content by matching PICS labels against user policies
for acceptable ratings. However, PICS may not be applicable for applications involving
database search based on PICS labels. One deficiency in content selection applications is
that a fraction of the "hits" from a normal search engine will not comply with a user's
policy for content selection and a user must test each "hit" to ensure compliance. A more
efficient method is to give the user's policy for content selection to a search engine and
the engine would return only hits that comply with that policy. In order to facilitate this
database search application, both the clients and the search engines must agree on certain
open-standard policy languages for PICS. In addition, both sides also need to have
general execution environments to handle possibly various trust policy languages, or
various metadata formats beside PICS, or various protocols to negotiate the transfer of
the client's policy.

PICS alone does not provide the complete solution for managing trust, and it does not
need to do so. Rather, the rich assertion system in PICS is a valuable building block in
the trust management infrastructure. Other protocols and policies can simply take PICS
as a component and build on top of it, as the PicsRULZ and Profiles-0.92 policy
languages have already done.

2.3.2 X.509

X.509 [CCITT88b] is a standard for authenticating users in an X.500 directory server
[CCITT88a]. It is often referred to as an identity certification scheme, because the
certificate is a signed statement that maps an identity to a public key. X.509 has a simple
metadata format to express identity and a simple protocol for requesting a set of
certificates. Figure 4 shows how X.509 maps to the trust management infrastructure.

There is a Next Generation of PICS (PICS-NG) Working Group in W3C, whose goal is to create a next
generation of PICS label format.

BC00032408

16 Chapter Two

It turns out that many other applications have the same need for a general metadata
format to make rich assertions as PICS does in content selection. For example, the digital
library community needs metadata for cataloging books and journals. The privacy
community needs metadata for labeling Web sites in terms of privacy practice. The
security community needs metadata to express the semantics of a digital signature. PICS
has moved quickly to become the standard, general metadata format on the Internet, with
some modifications from its original specification.'

The lack of a trust policy language and an execution environment limit the extent PICS
can apply to Web applications requiring trust. PICS may be sufficient for applications
involving content selection, where application-specific, proprietary policy language and
execution environment can select content by matching PICS labels against user policies
for acceptable ratings. However, PICS may not be applicable for applications involving
database search based on PICS labels. One deficiency in content selection applications is
that a fraction of the "hits" from a normal search engine will not comply with a user's
policy for content selection and a user must test each "hit" to ensure compliance. A more
efficient method is to give the user's policy for content selection to a search engine and
the engine would return only hits that comply with that policy. In order to facilitate this
database search application, both the clients and the search engines must agree on certain
open-standard policy languages for PICS. In addition, both sides also need to have
general execution environments to handle possibly various trust policy languages, or
various metadata formats beside PICS, or various protocols to negotiate the transfer of
the client's policy.

PICS alone does not provide the complete solution for managing trust, and it does not
need to do so. Rather, the rich assertion system in PICS is a valuable building block in
the trust management infrastructure. Other protocols and policies can simply take PICS
as a component and build on top of it, as the PicsRULZ and Profiles-0.92 policy
languages have already done.

2.3.2 X.509

X.509 [CCITT88b] is a standard for authenticating users in an X.500 directory server
[CCITT88a]. It is often referred to as an identity certification scheme, because the
certificate is a signed statement that maps an identity to a public key. X.509 has a simple
metadata format to express identity and a simple protocol for requesting a set of
certificates. Figure 4 shows how X.509 maps to the trust management infrastructure.

There is a Next Generation of PICS (PICS-NG) Working Group in W3C, whose goal is to create a next
generation of PICS label format.

BC00032408

Blue Coat Systems - Exhibit 1014
0013

Trust Management 17

Figure 4 X.509 in the Trust Management Infrastructure

The metadata format in X.509 is called an identity certificate. It contains seven static
fields encoded in ASN.1: version number, serial number, signature algorithm and
signature bits, certificate issuer, validity period, name of the subject, and the public key
information of the subject. The metadata format cannot be extended to carry additional
information about who the certificate issuers are or what the certificate is authorized to
do.

The certification structure in X.509 is hierarchical. The root is called the Internet Policy
Registration Authority (IPRA). Beneath the IPRA are Policy Certification Authorities
(PCA), each of which establishes and publishes its policies for registration of users or
organizations. PCAs in turn certify CM, which in turn certify subordinate CAs, users, or
organizations.

The trust protocol in X.509 is simple and is based on the hierarchical certification
structure. When user A wants to authenticate user B, user A finds the proper certification
path by traversing up the certification hierarchy until a mutual CA is reached and then
traversing down the hierarchy until user B is reached.

As mentioned in Section 2.2, X.509 does not have a trust policy component. The
certification path is simply a data structure for trust delegation in a certification structure.
Interpretation of the information conveyed by this algorithm requires a mechanism that is
extrinsic to X.509.

X.509 standard is good at authenticating public keys, but that alone is not enough for
most Web applications. For example, in a Web application which approves on-line
purchase order in a company Intranet, it is not enough to-authenticate the purchase order
form. The application needs to have a trust policy language to specify who are
authorized to place certain purchase orders and an execution environment to evaluate
these policies. Authenticating a purchase form is simply not enough.

From the standpoint of the trust management infrastructure, X.509 is similar to PICS.
They both contain and omit the same component. Functionally, PICS conveys
information about an information resource, and X.509 conveys information about an

BC00032409

Trust Management 17

Figure 4 X.509 in the Trust Management Infrastructure

The metadata format in X.509 is called an identity certificate. It contains seven static
fields encoded in ASN.1: version number, serial number, signature algorithm and
signature bits, certificate issuer, validity period, name of the subject, and the public key
information of the subject. The metadata format cannot be extended to carry additional
information about who the certificate issuers are or what the certificate is authorized to
do.

The certification structure in X.509 is hierarchical. The root is called the Internet Policy
Registration Authority (IPRA). Beneath the IPRA are Policy Certification Authorities
(PCA), each of which establishes and publishes its policies for registration of users or
organizations. PCAs in turn certify CM, which in turn certify subordinate CAs, users, or
organizations.

The trust protocol in X.509 is simple and is based on the hierarchical certification
structure. When user A wants to authenticate user B, user A finds the proper certification
path by traversing up the certification hierarchy until a mutual CA is reached and then
traversing down the hierarchy until user B is reached.

As mentioned in Section 2.2, X.509 does not have a trust policy component. The
certification path is simply a data structure for trust delegation in a certification structure.
Interpretation of the information conveyed by this algorithm requires a mechanism that is
extrinsic to X.509.

X.509 standard is good at authenticating public keys, but that alone is not enough for
most Web applications. For example, in a Web application which approves on-line
purchase order in a company Intranet, it is not enough to-authenticate the purchase order
form. The application needs to have a trust policy language to specify who are
authorized to place certain purchase orders and an execution environment to evaluate
these policies. Authenticating a purchase form is simply not enough.

From the standpoint of the trust management infrastructure, X.509 is similar to PICS.
They both contain and omit the same component. Functionally, PICS conveys
information about an information resource, and X.509 conveys information about an

BC00032409

Blue Coat Systems - Exhibit 1014
0014

18 Chapter Two

entity. Both of them have wide user bases and are the important steps toward a general
trust management infrastructure.

2.3.3 PolicyMaker

PolicyMaker [BFL96] was the first system to take a comprehensive approach to trust
problems independent of any particular application or service. It has a general metadata
format ("credentials"), a trust policy language, and an execution environment. As
indicated in Section 2.1, PolicyMaker does not deal with the trust protocol component of
what I call the trust management infrastructure. Figure 5 shows a graphical
representation of PolicyMaker in the trust management infrastructure.

Figure 5 PdicyMaker in the Trust Management Infrastructure

PolicyMaker has its metadata format called credentials2. It broke new ground by treating
credentials as programs. A credential is a type of "assertion." It binds a predicate, called
a filter, to a sequence of public keys, called an authority structure. The form of an
assertion is:

Source ASSERTS AuthorityStruct WHERE Filter

Here, source indicates the source of authority, generally a public key of an entity in the
case of a credential assertion. AuthorityStruct specifies the public key or keys to which
authority is granted. Filter specifies the nature of the authority that is being granted.
Both AuthorityStruct and Filter are represented as programs to maximize their generality.
For example, the following PolicyMaker credential

pgp:',0x01234567abcdefa0b1c2d3e4f5a6b7"
ASSERTS

pgp:"Uxf0012203a4b51677d8090aabb3cdd9e2f"
WHERE

PREDICATE=regexp. From Alice";

2 PolicyMaker credential syntax has evolved since [BFL96] was published. Readers should consult
[BFRS97] for up to date information.

BC00032410

18 Chapter Two

entity. Both of them have wide user bases and are the important steps toward a general
trust management infrastructure.

2.3.3 PolicyMaker

PolicyMaker [BFL96] was the first system to take a comprehensive approach to trust
problems independent of any particular application or service. It has a general metadata
format ("credentials"), a trust policy language, and an execution environment. As
indicated in Section 2.1, PolicyMaker does not deal with the trust protocol component of
what I call the trust management infrastructure. Figure 5 shows a graphical
representation of PolicyMaker in the trust management infrastructure.

Figure 5 PdicyMaker in the Trust Management Infrastructure

PolicyMaker has its metadata format called credentials2. It broke new ground by treating
credentials as programs. A credential is a type of "assertion." It binds a predicate, called
a filter, to a sequence of public keys, called an authority structure. The form of an
assertion is:

Source ASSERTS AuthorityStruct WHERE Filter

Here, source indicates the source of authority, generally a public key of an entity in the
case of a credential assertion. AuthorityStruct specifies the public key or keys to which
authority is granted. Filter specifies the nature of the authority that is being granted.
Both AuthorityStruct and Filter are represented as programs to maximize their generality.
For example, the following PolicyMaker credential

pgp:',0x01234567abcdefa0b1c2d3e4f5a6b7"
ASSERTS

pgp:"Uxf0012203a4b51677d8090aabb3cdd9e2f"
WHERE

PREDICATE=regexp. From Alice";

2 PolicyMaker credential syntax has evolved since [BFL96] was published. Readers should consult
[BFRS97] for up to date information.

BC00032410

Blue Coat Systems - Exhibit 1014
0015

Trust Management 19

indicates that the source PGP key "Ox01234567abcdefa0b1c2d3e4f5a6b7" asserts that
Alice's PGP key is "Oxf0012203a4b51677d8090aabb3cdd9e2f".

Another major innovation in PolicyMaker is the decision to make credentials and policies
the same type of object. A policy is also an assertion. The only difference is that policies
are unconditionally trusted locally, and credentials are not. The source field in a policy
assertion is just the keyword "POLICY", rather than the public key of an entity granting
authority. Credentials are signed assertions, and the public key in the source field can be
used to verify the signature.

Both credentials and policies are interpreted within a safe PolicyMaker execution
environment. A PolicyMaker engine has no need to make any network connection,
because it does not run trust protocols. Therefore, one property of a "safe" execution
environment is limited network and resource access. The PolicyMaker engine is not
dynamically extensible; if an unknown language is encountered during execution,
PolicyMaker does not install software modules dynamically.

Because it does not have a trust protocol, PolicyMaker requires that the host application
send all relevant credentials at the time it submits a request. This is considered a
drawback, which limits its applicability in the context of the World Wide Web. The
drawback can be illustrated in the following trust policy, which finds an authorized PICS
label to make assertions about a particular Web object:

Retrieve the Web object first. If there is an embedded PICS label
and the label is rated by entity A, B, or C, return that label (the
label is authorized) and exit. If the label is rated by a unknown
entity, query an auditor D for an endorsement of that entity. If
the entity is endorsed by D, return the label and exit. If no label
is found authorized, retrieve labels from bureau E and F in turn and
process the labels as if they were embedded labels.

Clearly, an application evaluating the policy above cannot predict the "right" set of
credentials and retrieve them prior to the policy evaluation, an assumption of the
PolicyMaker approach. Moreover, the "right" set of credentials changes constantly with
respect to the state of the Web object, the label bureaus, the auditor, and the network
connection. The only way to evaluate that policy correctly and efficiently is to put the
PICS trust protocol under policy control. REFEREE, as a successor of PolicyMaker,
realized this deficiency early in the design phase, and it put trust protocols under policy
control.

2.3.4 Microsoft Authenticode

Microsoft Corporation was the first, among its competitors, to create a standard to tackle
a particular trust management problem called code signing (see Section 2.4.1).
Authenticode provides users with the assurance of accountability and authenticity for
software downloaded over the Internet. The proposal went public in April 1996 [MS96],
and the system was available in Microsoft Internet Explorer 3.0 in October 1996.
Authenticode uses PKCS#7 [RSA97] and X.509 as the metadata format, X.509 as the
trust protocol, a graphical interface to specify user policies and an implicit, non-
extensible execution environment to evaluate user policies and run trust protocols.

BC00032411

Trust Management 19

indicates that the source PGP key "Ox01234567abcdefa0b1c2d3e4f5a6b7" asserts that
Alice's PGP key is "Oxf0012203a4b51677d8090aabb3cdd9e2f".

Another major innovation in PolicyMaker is the decision to make credentials and policies
the same type of object. A policy is also an assertion. The only difference is that policies
are unconditionally trusted locally, and credentials are not. The source field in a policy
assertion is just the keyword "POLICY", rather than the public key of an entity granting
authority. Credentials are signed assertions, and the public key in the source field can be
used to verify the signature.

Both credentials and policies are interpreted within a safe PolicyMaker execution
environment. A PolicyMaker engine has no need to make any network connection,
because it does not run trust protocols. Therefore, one property of a "safe" execution
environment is limited network and resource access. The PolicyMaker engine is not
dynamically extensible; if an unknown language is encountered during execution,
PolicyMaker does not install software modules dynamically.

Because it does not have a trust protocol, PolicyMaker requires that the host application
send all relevant credentials at the time it submits a request. This is considered a
drawback, which limits its applicability in the context of the World Wide Web. The
drawback can be illustrated in the following trust policy, which finds an authorized PICS
label to make assertions about a particular Web object:

Retrieve the Web object first. If there is an embedded PICS label
and the label is rated by entity A, B, or C, return that label (the
label is authorized) and exit. If the label is rated by a unknown
entity, query an auditor D for an endorsement of that entity. If
the entity is endorsed by D, return the label and exit. If no label
is found authorized, retrieve labels from bureau E and F in turn and
process the labels as if they were embedded labels.

Clearly, an application evaluating the policy above cannot predict the "right" set of
credentials and retrieve them prior to the policy evaluation, an assumption of the
PolicyMaker approach. Moreover, the "right" set of credentials changes constantly with
respect to the state of the Web object, the label bureaus, the auditor, and the network
connection. The only way to evaluate that policy correctly and efficiently is to put the
PICS trust protocol under policy control. REFEREE, as a successor of PolicyMaker,
realized this deficiency early in the design phase, and it put trust protocols under policy
control.

2.3.4 Microsoft Authenticode

Microsoft Corporation was the first, among its competitors, to create a standard to tackle
a particular trust management problem called code signing (see Section 2.4.1).
Authenticode provides users with the assurance of accountability and authenticity for
software downloaded over the Internet. The proposal went public in April 1996 [MS96],
and the system was available in Microsoft Internet Explorer 3.0 in October 1996.
Authenticode uses PKCS#7 [RSA97] and X.509 as the metadata format, X.509 as the
trust protocol, a graphical interface to specify user policies and an implicit, non-
extensible execution environment to evaluate user policies and run trust protocols.

BC00032411

Blue Coat Systems - Exhibit 1014
0016

20 Chapter Two

Below is a graphical representation of Authenticode in the trust management
infrastructure.

Figure 6 Authenticode in the Trust Management Infrastructure

Authenticode is a complete trust management infrastructure in the sense that all
components work together to solve a particular variation of "code-signing" problem. The
drawbacks include:

Limited metadata format
Authenticode uses the PKCS#7 signature format and the X.509 identity certificate
as the accepted metadata formats. The PKCS#7 signature format is used for
making assertions about the software. The X.509 identity certificate is used for
authenticating the PKCS#7 signature format. No other metadata formats are
allowed.

Limited trust protocol
Authenticode uses the standard X.509 protocol to get a set of certificates for
authentication purpose, as described in Section 2.3.2. No other trust protocols are
allowed.

This single standard protocol imposes a serious constraint on the generality and
applicability of Authenticode. For users who do not trust the X.509 authentication
scheme, Authenticode becomes a useless system. For users who want to use
Authenticode, they must accept all properties in X.509 as part of their trust policies.
And if one day X.509 is compromised (e.g. if a root key is stolen), Authenticode
will go down with it.

This analysis shows that it is almost a necessity to allow multiple trust protocols in
the trust management infrastructure. It not only gives users the freedom to choose
what they trust, but it also eliminates the single point of failure in an interconnected
infrastructure of trust.

BC00032412

20 Chapter Two

Below is a graphical representation of Authenticode in the trust management
infrastructure.

Figure 6 Authenticode in the Trust Management Infrastructure

Authenticode is a complete trust management infrastructure in the sense that all
components work together to solve a particular variation of "code-signing" problem. The
drawbacks include:

Limited metadata format
Authenticode uses the PKCS#7 signature format and the X.509 identity certificate
as the accepted metadata formats. The PKCS#7 signature format is used for
making assertions about the software. The X.509 identity certificate is used for
authenticating the PKCS#7 signature format. No other metadata formats are
allowed.

Limited trust protocol
Authenticode uses the standard X.509 protocol to get a set of certificates for
authentication purpose, as described in Section 2.3.2. No other trust protocols are
allowed.

This single standard protocol imposes a serious constraint on the generality and
applicability of Authenticode. For users who do not trust the X.509 authentication
scheme, Authenticode becomes a useless system. For users who want to use
Authenticode, they must accept all properties in X.509 as part of their trust policies.
And if one day X.509 is compromised (e.g. if a root key is stolen), Authenticode
will go down with it.

This analysis shows that it is almost a necessity to allow multiple trust protocols in
the trust management infrastructure. It not only gives users the freedom to choose
what they trust, but it also eliminates the single point of failure in an interconnected
infrastructure of trust.

BC00032412

Blue Coat Systems - Exhibit 1014
0017

uthrnOt ,14,p111)

AS 0 COrn$4.-4,C4

VoriSign Commend I S oflwnro PwWIs o

xpicer 7r3fli 7

Soda! Connection
is published by

Dan E nembienold
ass'i ,m9vodwil publisher under credentials issued

VeriSign Individual Software Publiehe

Expires: 3/3/98

Auiherwlit odeittid SLIcuttly T eclottilotly

Trust Management 21

Limited trust policy
The trust policy in Authenticode is limited by the expressiveness of the graphical
interface in the Internet Explorer. Below is a tour of the interface followed by
discussion of its advantages and drawbacks.

Authenticode separates individual software publishers from commercial software
publishers to distinguish between hobbyist code publishers and professionals. If a
user receives a program signed by an unknown entity, Authenticode prompts the
user for permission. Figure 7 shows the graphical interface for getting users'
permission. On the left, the window interface prompts users to install a Microsoft
program from a commercial software publisher. On the right, the window prompts
users to install Dan Ziembienski's software from an individual software publisher.

Figure 7 Authenticode User Permission Interface

Inside the windows there are links to more information about the publisher, the
software, and the certification authority. In Figure 8, users can configure their trust
policies to trust a list of named entities unconditionally (i.e. "don't prompt me"). A
checkbox lets users trust all commercial software publishers certified by a named
CA.

BC00032413

uthrnOt ,14,p111)

AS 0 COrn$4.-4,C4

VoriSign Commend I S oflwnro PwWIs o

xpicer 7r3fli 7

Soda! Connection
is published by

Dan E nembienold
ass'i ,m9vodwil publisher under credentials issued

VeriSign Individual Software Publiehe

Expires: 3/3/98

Auiherwlit odeittid SLIcuttly T eclottilotly

Trust Management 21

Limited trust policy
The trust policy in Authenticode is limited by the expressiveness of the graphical
interface in the Internet Explorer. Below is a tour of the interface followed by
discussion of its advantages and drawbacks.

Authenticode separates individual software publishers from commercial software
publishers to distinguish between hobbyist code publishers and professionals. If a
user receives a program signed by an unknown entity, Authenticode prompts the
user for permission. Figure 7 shows the graphical interface for getting users'
permission. On the left, the window interface prompts users to install a Microsoft
program from a commercial software publisher. On the right, the window prompts
users to install Dan Ziembienski's software from an individual software publisher.

Figure 7 Authenticode User Permission Interface

Inside the windows there are links to more information about the publisher, the
software, and the certification authority. In Figure 8, users can configure their trust
policies to trust a list of named entities unconditionally (i.e. "don't prompt me"). A
checkbox lets users trust all commercial software publishers certified by a named
CA.

BC00032413

Blue Coat Systems - Exhibit 1014
0018

Figure 8 Configuring a List of Trusted Entities in Authenticode

The advantage of this "interface driven" trust policy configuration is the ease of use.
The drawback is the lack of expressiveness. For example, such policy schemes
cannot do trust delegation. As an example in Figure 7, most users would not know
Dan Ziembienski or whether he is trustworthy to publish software on the Internet.
A solution is to delegate trust to a trusted auditor, who would vouch for the
publishers that are considered trustworthy under the auditor's judgement. As long
as the users trust the auditor, they can simply query the auditor once they encounter
an unknown publisher. Trust delegation is just one of the many scenarios users will
need to express their complex trust relationships. It is my belief that a carefully
crafted policy language should come first in the design order and that the graphical
interface should build on top of it.

Limited applicability

The inability to do trust delegation in Authenticode blurs the distinction between
authentication and authorization from the application point of view, which imposes
a serious limitation on its applicability. Given that all authenticated entities look
alike, there is no way for an application to assign different authorizations. It is ok
for applications where authorizations are trivial, such as electronic mail where
anyone is authorized to write his or her own email messages. It is not ok for
applications where authorizations are non-trivial, as in code signing where some
content providers may not have the authorization to run their software in some
users' local environments.

On the spectrum of simplicity versus generality in a system design, Authenticode sits at
the simplicity end of the spectrum, and my thesis sits at the generality end of the
spectrum. Authenticode technology is good in the sense that it forces both the content
providers and the end users to face the problem of trust management in code signing.
However, Authenticode does not adequately address the code signing problem or other
trust management problems. It is my belief that when application developers have
growing needs for trust management for their particular Web applications, they will

BC00032414

Figure 8 Configuring a List of Trusted Entities in Authenticode

The advantage of this "interface driven" trust policy configuration is the ease of use.
The drawback is the lack of expressiveness. For example, such policy schemes
cannot do trust delegation. As an example in Figure 7, most users would not know
Dan Ziembienski or whether he is trustworthy to publish software on the Internet.
A solution is to delegate trust to a trusted auditor, who would vouch for the
publishers that are considered trustworthy under the auditor's judgement. As long
as the users trust the auditor, they can simply query the auditor once they encounter
an unknown publisher. Trust delegation is just one of the many scenarios users will
need to express their complex trust relationships. It is my belief that a carefully
crafted policy language should come first in the design order and that the graphical
interface should build on top of it.

Limited applicability

The inability to do trust delegation in Authenticode blurs the distinction between
authentication and authorization from the application point of view, which imposes
a serious limitation on its applicability. Given that all authenticated entities look
alike, there is no way for an application to assign different authorizations. It is ok
for applications where authorizations are trivial, such as electronic mail where
anyone is authorized to write his or her own email messages. It is not ok for
applications where authorizations are non-trivial, as in code signing where some
content providers may not have the authorization to run their software in some
users' local environments.

On the spectrum of simplicity versus generality in a system design, Authenticode sits at
the simplicity end of the spectrum, and my thesis sits at the generality end of the
spectrum. Authenticode technology is good in the sense that it forces both the content
providers and the end users to face the problem of trust management in code signing.
However, Authenticode does not adequately address the code signing problem or other
trust management problems. It is my belief that when application developers have
growing needs for trust management for their particular Web applications, they will

BC00032414

Blue Coat Systems - Exhibit 1014
0019

Trust Management 23

realize the limitation on what Authenticode can do and demand a more general
framework.

2.4 Examples of Trust Management Problems In the WWW

Trust management problems exist in many Web applications. This section presents
different types of trust management problems and identifies their complexities.

2.4.1 Code Distribution

When she was surfing the Web, Alice found the following Web page:

11 ape• Cool

1

Figure 9 Cod Game Download

Despite how "cool" the game is, Alice has concerns that prevent her from downloading
the game on her machine:

Does this game contain a virus that would erase her hard drive? (security issue)
Does this game secretly collect information from her computer? (privacy issue)
Does this game run in her MacOS with 16MB of RAM? (capability issues)
Is this game fun to play? (content issue)
Whom should she trust to make assertions about this cool game? (trust delegation

issue)
Does this code come from the author or the trusted sources? (authentication issue)
Has the code been altered during transmission? (integrity issue)

These concerns are all parts of the trust management problem in code distribution. With
the growing popularity of Internet access and higher network bandwidth, the active code
distribution channel has moved away from the shrink-wrapped model toward network
distribution. Typical examples of active code on the Web are Java applets, Netscape
plug-ins, Microsoft ActiveX controls, freeware, shareware, and commercial software,
software patches, and even macros in static documents3. The traditional shrink-wrapped

3 Macro is considered active code, and active code can be malicious in the form of a virus. An example of
a macro virus is "Winword Concept" in Microsoft Word documents [NCSA95]. The virus is automatically

BC00032415

Trust Management 23

realize the limitation on what Authenticode can do and demand a more general
framework.

2.4 Examples of Trust Management Problems In the WWW

Trust management problems exist in many Web applications. This section presents
different types of trust management problems and identifies their complexities.

2.4.1 Code Distribution

When she was surfing the Web, Alice found the following Web page:

11 ape• Cool

1

Figure 9 Cod Game Download

Despite how "cool" the game is, Alice has concerns that prevent her from downloading
the game on her machine:

Does this game contain a virus that would erase her hard drive? (security issue)
Does this game secretly collect information from her computer? (privacy issue)
Does this game run in her MacOS with 16MB of RAM? (capability issues)
Is this game fun to play? (content issue)
Whom should she trust to make assertions about this cool game? (trust delegation

issue)
Does this code come from the author or the trusted sources? (authentication issue)
Has the code been altered during transmission? (integrity issue)

These concerns are all parts of the trust management problem in code distribution. With
the growing popularity of Internet access and higher network bandwidth, the active code
distribution channel has moved away from the shrink-wrapped model toward network
distribution. Typical examples of active code on the Web are Java applets, Netscape
plug-ins, Microsoft ActiveX controls, freeware, shareware, and commercial software,
software patches, and even macros in static documents3. The traditional shrink-wrapped

3 Macro is considered active code, and active code can be malicious in the form of a virus. An example of
a macro virus is "Winword Concept" in Microsoft Word documents [NCSA95]. The virus is automatically

BC00032415

Blue Coat Systems - Exhibit 1014
0020

24 Chapter Two

model, which establishes authentication through a branded cover from a known
distribution channel (such as a neighborhood computer store) and establishes integrity
through a tamper-proof seal outside software diskettes, no longer applies, and an
alternative approach is needed to establish trust.

There are currently three approaches to deal with untrusted code. The first is the sandbox
approach, used in the Java Virtual Machine. The Java sandbox restricts untrusted Java
applets to perform a limited set of actions in the host computer. This "trusting no one but
yourself' model is ideal in theory but hard to achieve in practice. The sandbox is very
hard to make 100% bulletproof, from the engineering perspective. No matter how much
effort is put into building a robust sandbox, hackers can always fmd security holes to
compromise the sandbox4. Moreover, the restrictions in the sandbox seriously limit what
Java applets can do. For example, Java 1.0.x applets can make connection only to their
originating host. Programmers cannot create applets that are, for example, groupware or
network games, where connections to other sites on the Internet are needed. The new
release of the Java 1.1 specification patched this deficiency by granting signed applets
more access on top of the sandbox; this utilizes the code-signing approach described
below.

The second approach is proof-carrying code developed at the Carnegie Mellon
University [Necula97]. It is a software mechanism that allows a host application to
determine with certainty that code is safe to execute regardless of where it came from.
For this to be possible, the code author or the third party distributor must provide a safety
proof that attests to certain code's safety properties. The application can then easily and
quickly validate the safety proof without using cryptography or consulting any trusted
third parties. The main concern about this approach is applicability. Since the
construction and the validation of proof depends on the particular language syntax and
semantics, this approach is not practical in view of the number of different types of
executable currently used on the Web (Java Bytecode, Java Script, Visual Basic Script,
ActiveX Control, • • • etc).

The third approach is code-signing, which uses cryptography to establish authentication
and integrity of an untrusted piece of code. Software vendors or trusted third parties
provide digitally signed metadata to express trust, and applications can make local trust
decisions based on them. Most current systems support this approach, including PICS
with DSig extensions [DLLC97], PKCS#7, and Java JAR. The main advantage in this
approach over the previous two is that it not only works with any type of active code, but
it also works with any type of object that can be properly described using a metadata
format, including static documents, identities, or other metadata.

executed whenever an infected document is opened within Microsoft Word. Once active, all documents
using the File 'Save As' menu item are automatically infected.
4 For example, on May 16 1997 a team of researchers at the University of Washington found a verifier bug
as part of a research effort developing automatic Java verification services. The team found that JDK1.1.1
Bytecode verifier does not check whether a method allocates enough space to hold the input arguments
passed in from a caller. If a method is given more arguments than it has room for in the space allocated to
its local variables, this could cause a stack overflow. This most likely leads to the Java VM crashing, but it
can potentially be used for malicious attacks. See http://java.sun.com/sfaq for more information.

BC00032416

24 Chapter Two

model, which establishes authentication through a branded cover from a known
distribution channel (such as a neighborhood computer store) and establishes integrity
through a tamper-proof seal outside software diskettes, no longer applies, and an
alternative approach is needed to establish trust.

There are currently three approaches to deal with untrusted code. The first is the sandbox
approach, used in the Java Virtual Machine. The Java sandbox restricts untrusted Java
applets to perform a limited set of actions in the host computer. This "trusting no one but
yourself' model is ideal in theory but hard to achieve in practice. The sandbox is very
hard to make 100% bulletproof, from the engineering perspective. No matter how much
effort is put into building a robust sandbox, hackers can always fmd security holes to
compromise the sandbox4. Moreover, the restrictions in the sandbox seriously limit what
Java applets can do. For example, Java 1.0.x applets can make connection only to their
originating host. Programmers cannot create applets that are, for example, groupware or
network games, where connections to other sites on the Internet are needed. The new
release of the Java 1.1 specification patched this deficiency by granting signed applets
more access on top of the sandbox; this utilizes the code-signing approach described
below.

The second approach is proof-carrying code developed at the Carnegie Mellon
University [Necula97]. It is a software mechanism that allows a host application to
determine with certainty that code is safe to execute regardless of where it came from.
For this to be possible, the code author or the third party distributor must provide a safety
proof that attests to certain code's safety properties. The application can then easily and
quickly validate the safety proof without using cryptography or consulting any trusted
third parties. The main concern about this approach is applicability. Since the
construction and the validation of proof depends on the particular language syntax and
semantics, this approach is not practical in view of the number of different types of
executable currently used on the Web (Java Bytecode, Java Script, Visual Basic Script,
ActiveX Control, • • • etc).

The third approach is code-signing, which uses cryptography to establish authentication
and integrity of an untrusted piece of code. Software vendors or trusted third parties
provide digitally signed metadata to express trust, and applications can make local trust
decisions based on them. Most current systems support this approach, including PICS
with DSig extensions [DLLC97], PKCS#7, and Java JAR. The main advantage in this
approach over the previous two is that it not only works with any type of active code, but
it also works with any type of object that can be properly described using a metadata
format, including static documents, identities, or other metadata.

executed whenever an infected document is opened within Microsoft Word. Once active, all documents
using the File 'Save As' menu item are automatically infected.
4 For example, on May 16 1997 a team of researchers at the University of Washington found a verifier bug
as part of a research effort developing automatic Java verification services. The team found that JDK1.1.1
Bytecode verifier does not check whether a method allocates enough space to hold the input arguments
passed in from a caller. If a method is given more arguments than it has room for in the space allocated to
its local variables, this could cause a stack overflow. This most likely leads to the Java VM crashing, but it
can potentially be used for malicious attacks. See http://java.sun.com/sfaq for more information.

BC00032416

Blue Coat Systems - Exhibit 1014
0021

ore blob., 	H.J11,,r1 I '4(91.1 	MI. ((il int 	r

1001.2011
Jea finds last-minute redemption

Stockton bails out Utah to square Finals at 2-2

Trust Management 25

All three are valid approaches for solving the trust management problem in code
distribution, and they can be combined to create an even more robust variation. For
example, there is a notion of fine-grain access controls implementation of Java applets,
which combines the code-signing approach with the Java sandbox approach.
Traditionally, the outcome produced by the code-signing approach alone is generally one-
bit: trusted or not trusted to run in its host application. In a sandbox, the outcome can be
different level of access control, which can be safely under aline-grained access control
Java sandbox during execution.

Trust management precisely does the job of bringing various approaches together to work
under one roof. In the trust management infrastructure framework, the three approaches
represent various metadata formats and trust protocols. Trust policy languages glue them
together. This example of a trust policy illustrates the possibilities:

If the code can be formally proved with these named properties,
execute it with full permission. Otherwise, check with my code
validation service agents. If two of my trusted agents say the code
is safe, execute with full permission except for accessing my
private directory. Otherwise, prompt me for my approval to be
executed in the highly restricted environment.

The need to establish trust in code distribution is one of the major driving forces behind
the recognition and use of trust management. Existing applications such as distributed
computing, active networks, and agents rely heavily on establishing trust over an
untrusted network [FL97].

2.4.2 Document Authentication

Alice knew that it was time the score of the Game 4 of the NBA finals was out. She sat
in her dorm room and retrieved the following document from the Boston Globe Web
server:

Figure 10 A Snapshot of the Boston Globe Web Document

5 This concept was advocated by Sun Security Architect Li Gong at the JavaOne conference. See
http://java.sun.com/javaone/sessions/slides/nU3/index.html for more information.

BC00032417

ore blob., 	H.J11,,r1 I '4(91.1 	MI. ((il int 	r

1001.2011
Jea finds last-minute redemption

Stockton bails out Utah to square Finals at 2-2

Trust Management 25

All three are valid approaches for solving the trust management problem in code
distribution, and they can be combined to create an even more robust variation. For
example, there is a notion of fine-grain access controls implementation of Java applets,
which combines the code-signing approach with the Java sandbox approach.
Traditionally, the outcome produced by the code-signing approach alone is generally one-
bit: trusted or not trusted to run in its host application. In a sandbox, the outcome can be
different level of access control, which can be safely under aline-grained access control
Java sandbox during execution.

Trust management precisely does the job of bringing various approaches together to work
under one roof. In the trust management infrastructure framework, the three approaches
represent various metadata formats and trust protocols. Trust policy languages glue them
together. This example of a trust policy illustrates the possibilities:

If the code can be formally proved with these named properties,
execute it with full permission. Otherwise, check with my code
validation service agents. If two of my trusted agents say the code
is safe, execute with full permission except for accessing my
private directory. Otherwise, prompt me for my approval to be
executed in the highly restricted environment.

The need to establish trust in code distribution is one of the major driving forces behind
the recognition and use of trust management. Existing applications such as distributed
computing, active networks, and agents rely heavily on establishing trust over an
untrusted network [FL97].

2.4.2 Document Authentication

Alice knew that it was time the score of the Game 4 of the NBA finals was out. She sat
in her dorm room and retrieved the following document from the Boston Globe Web
server:

Figure 10 A Snapshot of the Boston Globe Web Document

5 This concept was advocated by Sun Security Architect Li Gong at the JavaOne conference. See
http://java.sun.com/javaone/sessions/slides/nU3/index.html for more information.

BC00032417

Blue Coat Systems - Exhibit 1014
0022

Hash! g
Algorithm

Signature
Generation

1-1,1sIting
VIgorithin

26 Chapter Two

The screen showed that that Utah Jazz beat the Chicago Bulls 78 by 73. She was first
saddened by the news that her favorite team, the Chicago Bulls, had lost, but then she
became suspicious that her neighbor, Bob, a Utah Jazz fan, might have played a trick on
her. She needed to know that the article she saw on the screen really came from the
Boston Globe (and not from Bob) and that the information was not altered (by Bob)
during transmission.

This is an instance of the trust management problem in document authentication.
Distributing documents over the network has the benefit of low distribution cost, high
bandwidth, and short latency when compared with physical paper in the traditional
media. However, the traditional authenticity and integrity properties associated with
physical papers are lost when the information is converted into bits and transmitted over
the network.

The current mechanism to address the problem of document authentication is digital
signatures. A graphical representation of the mechanism is illustrated in Figure 11:

Figure 11 Flow chart for signing and verifying a digital signature

To sign a document, the sender chooses a one-way hash algorithm to compute the
message digest of a clear-text document. The digest is then signed using the private key
of the sender. Both the clear-text document and the signed digest are transmitted over a
potentially untrusted network. The receiver verifies the authenticity and the integrity of
the document by checking the signature of the digest and the digest of the clear-text
document.

There are many trust problems not addressed by digital signatures alone. First of all,
there is a problem in getting the correct public key to verify a sender's digital signature.
Public key infrastructures (PM), such as SDSI, SPKI, and X.509, deals specifically with
binding identities to public keys and distributing them securely and efficiently. However,

BC00032418

Hash! g
Algorithm

Signature
Generation

1-1,1sIting
VIgorithin

26 Chapter Two

The screen showed that that Utah Jazz beat the Chicago Bulls 78 by 73. She was first
saddened by the news that her favorite team, the Chicago Bulls, had lost, but then she
became suspicious that her neighbor, Bob, a Utah Jazz fan, might have played a trick on
her. She needed to know that the article she saw on the screen really came from the
Boston Globe (and not from Bob) and that the information was not altered (by Bob)
during transmission.

This is an instance of the trust management problem in document authentication.
Distributing documents over the network has the benefit of low distribution cost, high
bandwidth, and short latency when compared with physical paper in the traditional
media. However, the traditional authenticity and integrity properties associated with
physical papers are lost when the information is converted into bits and transmitted over
the network.

The current mechanism to address the problem of document authentication is digital
signatures. A graphical representation of the mechanism is illustrated in Figure 11:

Figure 11 Flow chart for signing and verifying a digital signature

To sign a document, the sender chooses a one-way hash algorithm to compute the
message digest of a clear-text document. The digest is then signed using the private key
of the sender. Both the clear-text document and the signed digest are transmitted over a
potentially untrusted network. The receiver verifies the authenticity and the integrity of
the document by checking the signature of the digest and the digest of the clear-text
document.

There are many trust problems not addressed by digital signatures alone. First of all,
there is a problem in getting the correct public key to verify a sender's digital signature.
Public key infrastructures (PM), such as SDSI, SPKI, and X.509, deals specifically with
binding identities to public keys and distributing them securely and efficiently. However,

BC00032418

Blue Coat Systems - Exhibit 1014
0023

Trust Management 27

these PKIs do not offer interoperability among them; problems arise if the sender and the
recipient are in different "infrastructures".

Moreover, there are problems in validating digital signatures. Digital signatures come in
a variety of attributes, such as the type of algorithms, the number of bits, the source of
signatures, the creation dates, and the expiration dates. All the attributes are accountable
for determining whether a signature is trustworthy.

In addition, there are problems in determining the semantics of a digital signature. The
presence of a digital signature alone has the weakest semantics; namely the entity
possessing the key that created this signature has access to the secret key used to generate
the signature and the document at the same time [DLLC97]. The semantics of such a
signature is usually not strong enough for the recipient to perform useful actions. The
signer needs to have a mechanism to express a richer semantics of a signature, such as "I
agree with some but not all of this", "I am the second author of the document", or "I
verify that all information in the document is true".

Finally, there are trust problems in what a digital signature is authorized to do. For
example in a particular bank, a signature from Alice can approve loans up to $10,000, a
signature from Bob can approve loans up to $20,000, and when both signatures are
present to the bank, they can approve loans up to $50,000.

Trust management precisely addresses these problems mentioned above. The solution to
each problem is represented as a single component or a set of interconnected components
in the trust management infrastructure. In the trust management infrastructure, a PM
represents an interplay between the metadata format and the trust protocol. The
acceptable attributes of a signature represent a local trust policy. The semantics of a
signature represent a metadata format. The authorization of a signature represents a trust
policy interpreted in a local execution environment.

Document authentication is critical in many Web applications, from Web publishing, to
electronic commerce, to national security. In Web publishing applications, a subscriber
needs to authenticate the information before reading it. In electronic commerce
applications, a consumer needs to authenticate price lists, license contracts, or warranty
information before making a transaction with a merchant. In national security
applications, a missile needs to authenticate a remote order before it launches to a named
target. Digital signatures alone are not enough for these applications and the
development of a generic trust management system is necessary for diverse Web
applications with the common underlying needs for trust management.

BC00032419

Trust Management 27

these PKIs do not offer interoperability among them; problems arise if the sender and the
recipient are in different "infrastructures".

Moreover, there are problems in validating digital signatures. Digital signatures come in
a variety of attributes, such as the type of algorithms, the number of bits, the source of
signatures, the creation dates, and the expiration dates. All the attributes are accountable
for determining whether a signature is trustworthy.

In addition, there are problems in determining the semantics of a digital signature. The
presence of a digital signature alone has the weakest semantics; namely the entity
possessing the key that created this signature has access to the secret key used to generate
the signature and the document at the same time [DLLC97]. The semantics of such a
signature is usually not strong enough for the recipient to perform useful actions. The
signer needs to have a mechanism to express a richer semantics of a signature, such as "I
agree with some but not all of this", "I am the second author of the document", or "I
verify that all information in the document is true".

Finally, there are trust problems in what a digital signature is authorized to do. For
example in a particular bank, a signature from Alice can approve loans up to $10,000, a
signature from Bob can approve loans up to $20,000, and when both signatures are
present to the bank, they can approve loans up to $50,000.

Trust management precisely addresses these problems mentioned above. The solution to
each problem is represented as a single component or a set of interconnected components
in the trust management infrastructure. In the trust management infrastructure, a PM
represents an interplay between the metadata format and the trust protocol. The
acceptable attributes of a signature represent a local trust policy. The semantics of a
signature represent a metadata format. The authorization of a signature represents a trust
policy interpreted in a local execution environment.

Document authentication is critical in many Web applications, from Web publishing, to
electronic commerce, to national security. In Web publishing applications, a subscriber
needs to authenticate the information before reading it. In electronic commerce
applications, a consumer needs to authenticate price lists, license contracts, or warranty
information before making a transaction with a merchant. In national security
applications, a missile needs to authenticate a remote order before it launches to a named
target. Digital signatures alone are not enough for these applications and the
development of a generic trust management system is necessary for diverse Web
applications with the common underlying needs for trust management.

BC00032419

Blue Coat Systems - Exhibit 1014
0024

3 Execution Environment

An execution environment is the heart of a trust management system; it is where the local
trust policies meet with the rest of the trust management infrastructure, through trust
protocols and metadata formats, to make trust decisions as an interconnected entity.

The primary jobs of an execution environment are two: interpret trust policies and
administer trust protocols. An execution environment takes requests from its host
application, and returns an answer that is compliant with trust policies.

REFEREE is such an execution environment proposed by researchers from AT&T Labs
and W3C, including myself. Under REFEREE, trust protocols and trust policies are
represented as software modules, which can be invoked and installed dynamically. They
can share other's intermediate result through a commonly agreed API. Together they
divide up the trust management tasks into pieces, and solve them as a whole. At each
level of computation, every aspect of REFEREE is under policy control.

Section one lists the design goals of an execution environment in a trust management
system. Section two introduces REFEREE, our proposed solution. Section three and
four describes the REFEREE internal architecture and primitive data types. Sections five
and six provide a standard procedure to bootstrap and query REFEREE.

3.1 Design Goal

In this section I make a wish list of the properties that a trusted execution environment
should have. Some properties may actually be contradictory to each other, and it is up to
the system designers to decide which factors are more critical for their targeted
applications and intended usage.

General Purpose
The underlying execution environment should be powerful enough to compute all
trust decisions users may have. It includes varying degree of complexities of user
requests, user policies and third-party credentials. It is conceivable that the
underlying evaluation mechanism is Turing-complete to serve its purpose.

Constrainable
Despite how powerful the execution environment can be, the host application
should be able to impose constraints on the execution environment. For example, a
Web browser may impose certain memory usage, filesystem access, and network
access constraints on the environment. The environment needs to propagate and
enforce the constraints to its executing policies and protocols.

Extensible
As the trust management infrastructure matures, new trust policies, trust protocols,
and metadata formats are introduced where an existing execution environment does
not understand. An execution environment should be extensible enough to
accommodate new pieces of the components dynamically, instead of returning
"policy not understood" or "protocol not understood" answers.

28

BC00032420

3 Execution Environment

An execution environment is the heart of a trust management system; it is where the local
trust policies meet with the rest of the trust management infrastructure, through trust
protocols and metadata formats, to make trust decisions as an interconnected entity.

The primary jobs of an execution environment are two: interpret trust policies and
administer trust protocols. An execution environment takes requests from its host
application, and returns an answer that is compliant with trust policies.

REFEREE is such an execution environment proposed by researchers from AT&T Labs
and W3C, including myself. Under REFEREE, trust protocols and trust policies are
represented as software modules, which can be invoked and installed dynamically. They
can share other's intermediate result through a commonly agreed API. Together they
divide up the trust management tasks into pieces, and solve them as a whole. At each
level of computation, every aspect of REFEREE is under policy control.

Section one lists the design goals of an execution environment in a trust management
system. Section two introduces REFEREE, our proposed solution. Section three and
four describes the REFEREE internal architecture and primitive data types. Sections five
and six provide a standard procedure to bootstrap and query REFEREE.

3.1 Design Goal

In this section I make a wish list of the properties that a trusted execution environment
should have. Some properties may actually be contradictory to each other, and it is up to
the system designers to decide which factors are more critical for their targeted
applications and intended usage.

General Purpose
The underlying execution environment should be powerful enough to compute all
trust decisions users may have. It includes varying degree of complexities of user
requests, user policies and third-party credentials. It is conceivable that the
underlying evaluation mechanism is Turing-complete to serve its purpose.

Constrainable
Despite how powerful the execution environment can be, the host application
should be able to impose constraints on the execution environment. For example, a
Web browser may impose certain memory usage, filesystem access, and network
access constraints on the environment. The environment needs to propagate and
enforce the constraints to its executing policies and protocols.

Extensible
As the trust management infrastructure matures, new trust policies, trust protocols,
and metadata formats are introduced where an existing execution environment does
not understand. An execution environment should be extensible enough to
accommodate new pieces of the components dynamically, instead of returning
"policy not understood" or "protocol not understood" answers.

28

BC00032420

Blue Coat Systems - Exhibit 1014
0025

Input API : request with arguments
Output API : answer with justification

Execution Environment 29

Deterministic
If all the inputs to the execution environment are the same, the same request should
return the same answer. The order of evaluation may be different, however.

Platform Independent
The execution environment should be platform independent; it should not rely on
specific attributes of the host. This will serve multi-platform operating systems as
exists today, such as Windows, UNIX, and MacOS.

Efficient
The environment and its running software modules should be efficient enough so
that applications do not see a drastic speed penalty for doing trust management.

3.2 REFEREE

REFEREE is not a standalone application; it must reside in a host application. For the
purpose of understanding REFEREE, I model a typical Web application in the following
figure and place REFEREE with respect to the model:

Figure 12 REFEREE External API

The dispatch module is responsible for generating requests. The type of requests depends
largely on the context of the applications. For example, in a Web proxy, the request
might be "fetch this URL from its source"; in a Web server with access control, the
request might be "get this document from the file system"; and in a Web browser, the
request might be "execute this Java applet". Formally these requests are dispatched
directly to the action modules, where the actions take place. The results of the actions are
returned back to the dispatch module.

REFEREE puts a stop sign between the dispatch module and the action module, when
potentially dangerous or unauthorized actions are requested. Instead, the dispatch
module consults first with REFEREE, through a standard request API. REFEREE
invokes the appropriate trust policies and protocols based on the request and its

BC00032421

Input API : request with arguments
Output API : answer with justification

Execution Environment 29

Deterministic
If all the inputs to the execution environment are the same, the same request should
return the same answer. The order of evaluation may be different, however.

Platform Independent
The execution environment should be platform independent; it should not rely on
specific attributes of the host. This will serve multi-platform operating systems as
exists today, such as Windows, UNIX, and MacOS.

Efficient
The environment and its running software modules should be efficient enough so
that applications do not see a drastic speed penalty for doing trust management.

3.2 REFEREE

REFEREE is not a standalone application; it must reside in a host application. For the
purpose of understanding REFEREE, I model a typical Web application in the following
figure and place REFEREE with respect to the model:

Figure 12 REFEREE External API

The dispatch module is responsible for generating requests. The type of requests depends
largely on the context of the applications. For example, in a Web proxy, the request
might be "fetch this URL from its source"; in a Web server with access control, the
request might be "get this document from the file system"; and in a Web browser, the
request might be "execute this Java applet". Formally these requests are dispatched
directly to the action modules, where the actions take place. The results of the actions are
returned back to the dispatch module.

REFEREE puts a stop sign between the dispatch module and the action module, when
potentially dangerous or unauthorized actions are requested. Instead, the dispatch
module consults first with REFEREE, through a standard request API. REFEREE
invokes the appropriate trust policies and protocols based on the request and its

BC00032421

Blue Coat Systems - Exhibit 1014
0026

REFEREE

Module A
(e.g. viewing policy)

Module B
(e.g. applet policy)

V
Module C
(e.g. PICS)

Module D
(e.g. RSA-MD5)

30 Chapter Three

associated arguments. Then REFEREE returns an answer with some justifications. The
dispatch module is then in the position to decide whether to continue the request to the
action modules, modify the request and send to REFEREE again, or terminate the
request.

From this architecture, it can be seen that REFEREE is recommendation-based. The
result returned by REFEREE is purely a recommendation to the dispatch module. It is up
to the dispatch module to enforce, override, or even ignore REFEREE's recommendation.

3.3 REFEREE Internal Architecture

The REFEREE execution environment is an extensible and self-modifiable execution
environment, although it appears to the host application as a monolithic tri-value decision
box. The basic computing unit in REFEREE is a module. A REFEREE module is an
executable block of code that processes input arguments and asserts additional
statements. It can also defer subtasks to other modules and make trust decisions based on
returned assertions. Together the interconnected REFEREE modules can process
requests from the host application and produce a recommendation.

Figure 13 Sample block diagram of REFEREE internal structure.

Figure 13 shows a sample REFEREE execution environment with four modules and their
dependency arrows. Module A contains a trust policy for viewing Web pages. Module B
contains a trust policy for downloading Java applets. Both A and B call D to verify RSA-
MD5 signatures. Module A calls module C to retrieve PICS labels.

The separation of duty among REFEREE modules has several advantages. First of all,
existing modules can be updated without affecting other modules, as long as the upgraded
modules keep the API backward-compatible. For example, module A and B do not care
how module D verifies RSA-MD5 signatures. Therefore module D can be updated with
more optimized code without changing module A and B. Moreover, new modules can be
introduced dynamically. For example, if module C starts returning PICS labels with
DSA-SHA1 signatures that module A cannot verify, module A can upload a module to
handle the verification. Other modules in REFEREE, including module B, can then share
the new module transparently.

Zooming in, a REFEREE module looks like the following figure:

BC00032422

REFEREE

Module A
(e.g. viewing policy)

Module B
(e.g. applet policy)

V
Module C
(e.g. PICS)

Module D
(e.g. RSA-MD5)

30 Chapter Three

associated arguments. Then REFEREE returns an answer with some justifications. The
dispatch module is then in the position to decide whether to continue the request to the
action modules, modify the request and send to REFEREE again, or terminate the
request.

From this architecture, it can be seen that REFEREE is recommendation-based. The
result returned by REFEREE is purely a recommendation to the dispatch module. It is up
to the dispatch module to enforce, override, or even ignore REFEREE's recommendation.

3.3 REFEREE Internal Architecture

The REFEREE execution environment is an extensible and self-modifiable execution
environment, although it appears to the host application as a monolithic tri-value decision
box. The basic computing unit in REFEREE is a module. A REFEREE module is an
executable block of code that processes input arguments and asserts additional
statements. It can also defer subtasks to other modules and make trust decisions based on
returned assertions. Together the interconnected REFEREE modules can process
requests from the host application and produce a recommendation.

Figure 13 Sample block diagram of REFEREE internal structure.

Figure 13 shows a sample REFEREE execution environment with four modules and their
dependency arrows. Module A contains a trust policy for viewing Web pages. Module B
contains a trust policy for downloading Java applets. Both A and B call D to verify RSA-
MD5 signatures. Module A calls module C to retrieve PICS labels.

The separation of duty among REFEREE modules has several advantages. First of all,
existing modules can be updated without affecting other modules, as long as the upgraded
modules keep the API backward-compatible. For example, module A and B do not care
how module D verifies RSA-MD5 signatures. Therefore module D can be updated with
more optimized code without changing module A and B. Moreover, new modules can be
introduced dynamically. For example, if module C starts returning PICS labels with
DSA-SHA1 signatures that module A cannot verify, module A can upload a module to
handle the verification. Other modules in REFEREE, including module B, can then share
the new module transparently.

Zooming in, a REFEREE module looks like the following figure:

BC00032422

Blue Coat Systems - Exhibit 1014
0027

A REFEREE Module

Input API

- an action name
- additional arguments

Policy

Interpreter A

Interpreter B

Output API

- a tri-value
- a list of statements

	10- 	►

Execution Environment 31

Figure 14 Required interface for every REFEREE module

Each REFEREE module has the same API as REFEREE itself. The input is an action
name with additional arguments. The arguments provide additional information about
the action, which are unconditionally trusted by the module. If a module deals with
content selection, the input arguments may contain the URL of interest, or the public keys
of the trusted raters to make assertions about the URL. The output is a tri-value answer
with a list of statements as justification. All REFEREE modules must adhere to the same
API to ensure interoperability among them.

Internally, a REFEREE module consists of a policy and zero or more interpreters. The
policy is a code fragment written in a high-level policy language, and the interpreters are
executable programs for interpreting the policy or other interpreters. The set of
interpreters in a REFEREE module is hierarchical; the module policy is interpreted by the
highest-level interpreter, which is in turn interpreted by a lower-level interpreter, and so
on. The lowest-level interpreter is interpretable by the underlying REFEREE execution
environment. In Figure 14, the module policy runs on top of interpreter A, which runs on
top of interpreter B, which runs on top of REFEREE.

The separation of policies and interpreters has many advantages. First of all, the same
interpreter can run different user policies, as long as they are written in the same policy
language. Conversely, the same policy language can be ported to different REFEREE-
enabled applications using different interpreters. Moreover, from the security point of
view, policies are generally easier to prove correct than interpreters because of the
complexity of language constructs. Therefore mutually untrusted parties are more willing
to exchange and interpret other's policy preferences using high-level policy languages
such as Profiles-0.92 languages (see Chapter 4) than low-level programming languages
such as Java. And fmally, the REFEREE architecture can accommodate policies written
in both high-level languages (for average users) and low-level languages (for
sophisticated users) in the same execution environment. I will discuss more on this
aspect in Chapter 4.

3.4 REFEREE Primitive Data Types

REFEREE has three primitive data types. They are explained in this section.

3.4.1 Tri-Value

Tri-values are three-valued logic operands. There are three possible values:

BC00032423

A REFEREE Module

Input API

- an action name
- additional arguments

Policy

Interpreter A

Interpreter B

Output API

- a tri-value
- a list of statements

	10- 	►

Execution Environment 31

Figure 14 Required interface for every REFEREE module

Each REFEREE module has the same API as REFEREE itself. The input is an action
name with additional arguments. The arguments provide additional information about
the action, which are unconditionally trusted by the module. If a module deals with
content selection, the input arguments may contain the URL of interest, or the public keys
of the trusted raters to make assertions about the URL. The output is a tri-value answer
with a list of statements as justification. All REFEREE modules must adhere to the same
API to ensure interoperability among them.

Internally, a REFEREE module consists of a policy and zero or more interpreters. The
policy is a code fragment written in a high-level policy language, and the interpreters are
executable programs for interpreting the policy or other interpreters. The set of
interpreters in a REFEREE module is hierarchical; the module policy is interpreted by the
highest-level interpreter, which is in turn interpreted by a lower-level interpreter, and so
on. The lowest-level interpreter is interpretable by the underlying REFEREE execution
environment. In Figure 14, the module policy runs on top of interpreter A, which runs on
top of interpreter B, which runs on top of REFEREE.

The separation of policies and interpreters has many advantages. First of all, the same
interpreter can run different user policies, as long as they are written in the same policy
language. Conversely, the same policy language can be ported to different REFEREE-
enabled applications using different interpreters. Moreover, from the security point of
view, policies are generally easier to prove correct than interpreters because of the
complexity of language constructs. Therefore mutually untrusted parties are more willing
to exchange and interpret other's policy preferences using high-level policy languages
such as Profiles-0.92 languages (see Chapter 4) than low-level programming languages
such as Java. And fmally, the REFEREE architecture can accommodate policies written
in both high-level languages (for average users) and low-level languages (for
sophisticated users) in the same execution environment. I will discuss more on this
aspect in Chapter 4.

3.4 REFEREE Primitive Data Types

REFEREE has three primitive data types. They are explained in this section.

3.4.1 Tri-Value

Tri-values are three-valued logic operands. There are three possible values:

BC00032423

Blue Coat Systems - Exhibit 1014
0028

32 Chapter Three

• true
• false
• unknown

Notions of true and false are familiar from Boolean logic. The additional unknown value
reflects the fact that some trust decisions are neither true nor false. For example, when
asking about authorization of a particular action, such as "should the following purchase
order be approved'?", there are typically three possible outcomes:

• true, meaning "yes, the action may be taken because sufficient credentials exist
for the action to be approved."

• false, meaning "no, the action may not be taken because sufficient credentials
exist to deny the action."

• unknown, meaning "REFEREE was unable to fmd sufficient credentials either to
approve or to deny the requested action."

In the third case, the unknown value returned by REFEREE forces the host application to
decide what action (if any) should be taken. If the requested action is a purchase order
approval, the host application can inform relevant parties for further considerations
instead of granting or denying the order.

3.4.2 Statement and Statement-List

Statements are information acquired during the execution of modules. They are the
common information interchange container among different modules. All statements are
two-element s-expressions. The first element conveys the context of the statement and
the second element provides the content of the statement. For example, if a delegation
REFEREE module wants to make a statement that "Bob is not trustworthy", it can be
expressed in the following statement:

("delegation-program") ("Bob" (trustworthiness 0)))

If the content of a statement expresses an authorization, the context indicates the source
of authority. The host application or other REFEREE modules can make more intelligent
trust decisions based on not only "what does the statement say" but also "who says it".
The use of statements facilitates a dynamic REFEREE execution environment;
REFEREE modules can delegate trust evaluations to other modules in REFEREE and
know who make the statements, just as applications can delegate trust to third parties on
the network and know who make the assertions.

A statement list is an ordered list of statements. It generally acts as a transcript of
statements that a REFEREE module makes.

3.4.3 Module Databases

A Module database binds action names to REFEREE modules, making it possible to call
a module by an action name, as is common in almost all programming languages. A
module database consists of entries. Each entry is a triplet, identifier, code-fragment, and
language name. Identifier is a string that uniquely identifies the entry in its local name

BC00032424

32 Chapter Three

• true
• false
• unknown

Notions of true and false are familiar from Boolean logic. The additional unknown value
reflects the fact that some trust decisions are neither true nor false. For example, when
asking about authorization of a particular action, such as "should the following purchase
order be approved'?", there are typically three possible outcomes:

• true, meaning "yes, the action may be taken because sufficient credentials exist
for the action to be approved."

• false, meaning "no, the action may not be taken because sufficient credentials
exist to deny the action."

• unknown, meaning "REFEREE was unable to fmd sufficient credentials either to
approve or to deny the requested action."

In the third case, the unknown value returned by REFEREE forces the host application to
decide what action (if any) should be taken. If the requested action is a purchase order
approval, the host application can inform relevant parties for further considerations
instead of granting or denying the order.

3.4.2 Statement and Statement-List

Statements are information acquired during the execution of modules. They are the
common information interchange container among different modules. All statements are
two-element s-expressions. The first element conveys the context of the statement and
the second element provides the content of the statement. For example, if a delegation
REFEREE module wants to make a statement that "Bob is not trustworthy", it can be
expressed in the following statement:

("delegation-program") ("Bob" (trustworthiness 0)))

If the content of a statement expresses an authorization, the context indicates the source
of authority. The host application or other REFEREE modules can make more intelligent
trust decisions based on not only "what does the statement say" but also "who says it".
The use of statements facilitates a dynamic REFEREE execution environment;
REFEREE modules can delegate trust evaluations to other modules in REFEREE and
know who make the statements, just as applications can delegate trust to third parties on
the network and know who make the assertions.

A statement list is an ordered list of statements. It generally acts as a transcript of
statements that a REFEREE module makes.

3.4.3 Module Databases

A Module database binds action names to REFEREE modules, making it possible to call
a module by an action name, as is common in almost all programming languages. A
module database consists of entries. Each entry is a triplet, identifier, code-fragment, and
language name. Identifier is a string that uniquely identifies the entry in its local name

BC00032424

Blue Coat Systems - Exhibit 1014
0029

Execution Environment 33

space. Code fragment is the actual policy statements or interpreter codes. Language
name is a string to identify the language the code-fragment is written in and how to
interpreter it. An example of a module database is as follows:

identifier code-fragment language name
download-applets <download-policy> http://www.javasoft.com

/jdk1.1/
view-URL <view-URL-policy> http://www.w3.org/PICS/

Profiles092/
http://www.w3.org/P
ICS/Profiles092/

<Profiles-0.92
interpreters>

http://www.javasoft.com
/jdk1.1/

Table 1 A Sample Module Database

To get a policy and interpreter pair from the database, the caller supplies an action name
and a list of language names supported by REFEREE. The module database first finds
the module policy by matching the action name with the entry identifier. If the match
fails, the database returns an error message. If it succeeds, it checks whether the
language name is in the list of language names supported by REFEREE itself. If it is, the
entry is returned as the policy with no interpreter necessary. If it isn't, the database
iteratively searches for lower-level interpreters that can interpret the language, until the
lowest-level interpreter is written in a language interpretable by REFEREE itself. Then
the policy and a list of interpreters are returned.

For example in Table 1, if the requested action name is "view-URL", then the policy is
the code-fragment identified by "view-URL". The associated interpreter is the code-
fragment identified by "http://www.w3.org/pub/WWW/PICS/Profiles092", assuming
REFEREE supports Java JDK1.1. If the requested action name is "download-applets",
then the policy is the code-fragment identified by "download-applets". There is no
associated interpreter, since the code-fragment is written in Java JDK1.1.

A module database can selectively install or uninstall bindings to control the availability
of the modules, by adding and removing bindings in the database. There is no security
mechanism in the module database itself to determine which modules can install,
uninstall, or query the database. Rather the module database is passed around as an
object, and a caller module can exercise access control by removing certain module
database bindings before passing it to a callee module.

The use of module databases in REFEREE facilitates a constrainable execution
environment to the granularity of each individual REFEREE module invocation. If a
caller does not trust a callee module entirely, a caller module can remove bindings of
certain dangerous actions from a callee's module database, such as network access,
filesystem access, and user interface access. The callee is therefore unable to perform
these dangerous actions in the lifetime of its execution.

3.5 Bootstrapping REFEREE

There are two stages in a lifetime of REFEREE: the bootstrap stage, followed by the
query stage. During the bootstrap stage, the host application provides REFEREE enough
information to be aware of itself. After the bootstrap stage, REFEREE enters the query
stage where the requests are accepted and processed.

BC00032425

Execution Environment 33

space. Code fragment is the actual policy statements or interpreter codes. Language
name is a string to identify the language the code-fragment is written in and how to
interpreter it. An example of a module database is as follows:

identifier code-fragment language name
download-applets <download-policy> http://www.javasoft.com

/jdk1.1/
view-URL <view-URL-policy> http://www.w3.org/PICS/

Profiles092/
http://www.w3.org/P
ICS/Profiles092/

<Profiles-0.92
interpreters>

http://www.javasoft.com
/jdk1.1/

Table 1 A Sample Module Database

To get a policy and interpreter pair from the database, the caller supplies an action name
and a list of language names supported by REFEREE. The module database first finds
the module policy by matching the action name with the entry identifier. If the match
fails, the database returns an error message. If it succeeds, it checks whether the
language name is in the list of language names supported by REFEREE itself. If it is, the
entry is returned as the policy with no interpreter necessary. If it isn't, the database
iteratively searches for lower-level interpreters that can interpret the language, until the
lowest-level interpreter is written in a language interpretable by REFEREE itself. Then
the policy and a list of interpreters are returned.

For example in Table 1, if the requested action name is "view-URL", then the policy is
the code-fragment identified by "view-URL". The associated interpreter is the code-
fragment identified by "http://www.w3.org/pub/WWW/PICS/Profiles092", assuming
REFEREE supports Java JDK1.1. If the requested action name is "download-applets",
then the policy is the code-fragment identified by "download-applets". There is no
associated interpreter, since the code-fragment is written in Java JDK1.1.

A module database can selectively install or uninstall bindings to control the availability
of the modules, by adding and removing bindings in the database. There is no security
mechanism in the module database itself to determine which modules can install,
uninstall, or query the database. Rather the module database is passed around as an
object, and a caller module can exercise access control by removing certain module
database bindings before passing it to a callee module.

The use of module databases in REFEREE facilitates a constrainable execution
environment to the granularity of each individual REFEREE module invocation. If a
caller does not trust a callee module entirely, a caller module can remove bindings of
certain dangerous actions from a callee's module database, such as network access,
filesystem access, and user interface access. The callee is therefore unable to perform
these dangerous actions in the lifetime of its execution.

3.5 Bootstrapping REFEREE

There are two stages in a lifetime of REFEREE: the bootstrap stage, followed by the
query stage. During the bootstrap stage, the host application provides REFEREE enough
information to be aware of itself. After the bootstrap stage, REFEREE enters the query
stage where the requests are accepted and processed.

BC00032425

Blue Coat Systems - Exhibit 1014
0030

Actions (Network I/O)

34 Chanter Three

There are two pieces of information supplied by the host application during the bootstrap
stage:

• trusted assertions
• module database

All bootstrapping information is unconditionally trusted. The trusted assertions are key
assertions frequently used by REFEREE operations, such as the root public key, cached
credentials and certificates. The module database contains a minimum set of bindings
that the host application is expected to use.

3.6 Querying REFEREE

Once REFEREE finishes bootstrapping, it is ready to process queries for its host
application. The figure below shows the steps for processing a query with three software
modules:

Dispatcher

Figure 15 Sample REFEREE Implementation

First, the dispatcher in the host makes a query to REFEREE, which composes an action
name with a list of arguments (step 1). When REFEREE receives the query, it grabs the
appropriate REFEREE module (module 1) from the module database (step 2), which
consists of a policy and an interpreter pair. REFEREE invokes the interpreter with the
policy and the list of input arguments. During policy interpretation, the module may
invoke other modules (step 3 and step 5), which may in turn call the host-specific actions
provided by the host application (step 4). When module 1 finishes the interpretation,
REFEREE returns back to the dispatcher with the returned values from module 1.

BC00032426

Actions (Network I/O)

34 Chanter Three

There are two pieces of information supplied by the host application during the bootstrap
stage:

• trusted assertions
• module database

All bootstrapping information is unconditionally trusted. The trusted assertions are key
assertions frequently used by REFEREE operations, such as the root public key, cached
credentials and certificates. The module database contains a minimum set of bindings
that the host application is expected to use.

3.6 Querying REFEREE

Once REFEREE finishes bootstrapping, it is ready to process queries for its host
application. The figure below shows the steps for processing a query with three software
modules:

Dispatcher

Figure 15 Sample REFEREE Implementation

First, the dispatcher in the host makes a query to REFEREE, which composes an action
name with a list of arguments (step 1). When REFEREE receives the query, it grabs the
appropriate REFEREE module (module 1) from the module database (step 2), which
consists of a policy and an interpreter pair. REFEREE invokes the interpreter with the
policy and the list of input arguments. During policy interpretation, the module may
invoke other modules (step 3 and step 5), which may in turn call the host-specific actions
provided by the host application (step 4). When module 1 finishes the interpretation,
REFEREE returns back to the dispatcher with the returned values from module 1.

BC00032426

Blue Coat Systems - Exhibit 1014
0031

4 Policy Language

Chapter three shows how the REFEREE execution environment processes queries,
interprets trust policies and runs trust protocols in a generic, application-independent
way. To prove that REFEREE is indeed a general-purpose execution environment, I
implemented two different policy language interpreters as REFEREE modules, namely
PicsRULZ and Profiles-0.92.

Both PicsRULZ and Profiles-0.92 describe trust policies based on PICS labels. While
PicsRULZ is considerably simpler and easier to use and implement, Profiles-0.92 is more
general and expressive. Section one identifies the design goal of a policy language.
Sections two and three describe PicsRULZ and Profiles-0.92 in turn. Section four
provides four sample policy scenarios and their respective PicsRULZ and Profiles-0.92
translations.

4.1 Design Goals

A policy language describes user policy in a machine-readable format. Despite its simple
goal, the design of a good policy language may be more than an engineering task. The
more complex the language is, the more expressive the policies can be, at the cost of
being more difficult to implement, prove correctness, or build a user interface on top.
This section sets asides these engineering tradeoffs, and focuses on the desired properties
of a policy language.

Safe
The policy written by a policy language should not cause any undesirable side
effect to its host application. That is, assuming the underlying policy interpretation
is correct, there should be no way to write a valid policy that crashes the host
computer.

Transferable
A profile should be transferable among different applications and platforms. This
property allows not only a company to specify a profile for its employees to use on
different applications and platforms, but also a user to carry his or her profile to
other locations without reconfiguration.

Simple
A policy language should not be a general-purpose programming language (in the
sense of Turing-complete), but a simple policy language designed specifically to
describe trust policies. However, the language should have an extension
mechanism to leave room for future expansion. This property comes hand in hand
with the safety and the transferability of a policy language; a simpler language is
easier to prove safety and more likely to be executed by an untrusted party when a
policy is being transferred.

35

BC00032427

4 Policy Language

Chapter three shows how the REFEREE execution environment processes queries,
interprets trust policies and runs trust protocols in a generic, application-independent
way. To prove that REFEREE is indeed a general-purpose execution environment, I
implemented two different policy language interpreters as REFEREE modules, namely
PicsRULZ and Profiles-0.92.

Both PicsRULZ and Profiles-0.92 describe trust policies based on PICS labels. While
PicsRULZ is considerably simpler and easier to use and implement, Profiles-0.92 is more
general and expressive. Section one identifies the design goal of a policy language.
Sections two and three describe PicsRULZ and Profiles-0.92 in turn. Section four
provides four sample policy scenarios and their respective PicsRULZ and Profiles-0.92
translations.

4.1 Design Goals

A policy language describes user policy in a machine-readable format. Despite its simple
goal, the design of a good policy language may be more than an engineering task. The
more complex the language is, the more expressive the policies can be, at the cost of
being more difficult to implement, prove correctness, or build a user interface on top.
This section sets asides these engineering tradeoffs, and focuses on the desired properties
of a policy language.

Safe
The policy written by a policy language should not cause any undesirable side
effect to its host application. That is, assuming the underlying policy interpretation
is correct, there should be no way to write a valid policy that crashes the host
computer.

Transferable
A profile should be transferable among different applications and platforms. This
property allows not only a company to specify a profile for its employees to use on
different applications and platforms, but also a user to carry his or her profile to
other locations without reconfiguration.

Simple
A policy language should not be a general-purpose programming language (in the
sense of Turing-complete), but a simple policy language designed specifically to
describe trust policies. However, the language should have an extension
mechanism to leave room for future expansion. This property comes hand in hand
with the safety and the transferability of a policy language; a simpler language is
easier to prove safety and more likely to be executed by an untrusted party when a
policy is being transferred.

35

BC00032427

Blue Coat Systems - Exhibit 1014
0032

36 Chapter Four

Well-defined
A policy written in a policy language should be unambiguous irrespective of its
specific implementation. It is as if writing a book of law, where the citizens know
exactly what is legal and not legal.

Expressive
The language construct should be expressive enough to accommodate realistic
policies different users want to specify under different circumstances. The level of
expressiveness may depend on programming ability of the people creating the
policy, or the complexity of the user interface.

4.2 PicsRULZ

PicsRULZ, by its name, is a rule-based policy language. There are language constructs
to write filtering rules based on a requested URL or its associated PICS label attributes
retrieved from the author or trusted third parties. It is a simple and concise policy
language designed to work with the PICS protocol and metadata format.

PicsRULZ is the result of the PICS Profiles Language Working Group in the World Wide
Web Consortium. The language specification is not finalized when the thesis is written.
The description of PicsRULZ is based on the draft version presented in a PICS Interests
Group Meeting on April 10 in Santa Clara, CA [PICS97c].

PicsRULZ language is organized into clauses. There are seven types of clauses. Some
clauses may appear multiple times in a PicsRULZ rule. Although PicsRULZ is a rule-
based language, partial evaluation order is enforced to prevent ambiguity. Fai1URL
clause takes the highest precedence, followed by passURL clause. Filter clause is always
evaluated last, and other clauses are evaluated arbitrarily between passURL and filter
clauses. By default, if a clause does not specify a returned value, it is assumed that the
evaluation continues. All symbols in PicsRULZ are case insensitive, and all quoted
strings are case sensitive.

Each of the seven clauses in PicsRULZ is explained below. A complete BNF syntax is in
Appendix A.

failURL
Fai1URL clause is a method to express a list of URL prefixes which are explicitly
blocked. If the requested URL matches one of failURL list, the evaluation
terminates immediately and outputs a block answer. For example, the clause

failURL ("http://www.harvard.edu" "http://www.caltech.edu")

blocks all URLs from Harvard and Caltech Web servers.

Fai1URL clause takes the highest precedence in the evaluation order. It may appear
more than once in a PicsRULZ rule, but it is recommended that they be combined
into a single failURL list.

passURL
PassURL has the same syntax as failURL but opposite in semantics. It means if the
requested URL matches one of passURL list, the evaluation terminates and outputs

BC00032428

36 Chapter Four

Well-defined
A policy written in a policy language should be unambiguous irrespective of its
specific implementation. It is as if writing a book of law, where the citizens know
exactly what is legal and not legal.

Expressive
The language construct should be expressive enough to accommodate realistic
policies different users want to specify under different circumstances. The level of
expressiveness may depend on programming ability of the people creating the
policy, or the complexity of the user interface.

4.2 PicsRULZ

PicsRULZ, by its name, is a rule-based policy language. There are language constructs
to write filtering rules based on a requested URL or its associated PICS label attributes
retrieved from the author or trusted third parties. It is a simple and concise policy
language designed to work with the PICS protocol and metadata format.

PicsRULZ is the result of the PICS Profiles Language Working Group in the World Wide
Web Consortium. The language specification is not finalized when the thesis is written.
The description of PicsRULZ is based on the draft version presented in a PICS Interests
Group Meeting on April 10 in Santa Clara, CA [PICS97c].

PicsRULZ language is organized into clauses. There are seven types of clauses. Some
clauses may appear multiple times in a PicsRULZ rule. Although PicsRULZ is a rule-
based language, partial evaluation order is enforced to prevent ambiguity. Fai1URL
clause takes the highest precedence, followed by passURL clause. Filter clause is always
evaluated last, and other clauses are evaluated arbitrarily between passURL and filter
clauses. By default, if a clause does not specify a returned value, it is assumed that the
evaluation continues. All symbols in PicsRULZ are case insensitive, and all quoted
strings are case sensitive.

Each of the seven clauses in PicsRULZ is explained below. A complete BNF syntax is in
Appendix A.

failURL
Fai1URL clause is a method to express a list of URL prefixes which are explicitly
blocked. If the requested URL matches one of failURL list, the evaluation
terminates immediately and outputs a block answer. For example, the clause

failURL ("http://www.harvard.edu" "http://www.caltech.edu")

blocks all URLs from Harvard and Caltech Web servers.

Fai1URL clause takes the highest precedence in the evaluation order. It may appear
more than once in a PicsRULZ rule, but it is recommended that they be combined
into a single failURL list.

passURL
PassURL has the same syntax as failURL but opposite in semantics. It means if the
requested URL matches one of passURL list, the evaluation terminates and outputs

BC00032428

Blue Coat Systems - Exhibit 1014
0033

Policy Language 37

a pass answer. Pass URL takes the second precedence in the evaluation, after
failURL. As with failURL, passURL may appear more than once but a single list is
preferred. The following clause

passURL ("http://www.wellesley.edu")

explicitly allows all URLs with "http://www.wellesley.edu" prefix.

serviceinfo
Serviceinfo specifies information about a rating service. There are five attributes in
a serviceinfo clause: name, shortname, bureau URL, raOle and bureau Unavailable.
Name attribute is the URL of the rating service. Shortname binds a local variable to
a rating service. Bureau URL specifies the location of a label bureau to retrieve
PICS labels from. RaOle contains either the URL or the actual text of the machine-
readable rating description file. Bureau Unavailable is an exception mechanism to
specify what to do when the named label bureau cannot be contacted. Since users
may want to utilize more than one rating service for a given URL, multiple
serviceinfo clauses are allowed in PicsRULZ. All clauses must be evaluated before
the filter clause because the filter clause may use the local name defined in the
clause. In the following example,

serviceinfo (name "http://6001.mit.edu/ratings/midterm.html"

shortname "6001"

bureauURL "http://6001.mit.edu"

bureauUnavailable true)

the clause retrieves PICS labels rated by "midterm" rating system from
"6.001.mit.edu" label bureau. If the label bureau is unavailable, the evaluation
terminates and returns true (allow).

filter
Filter clause operates on the PICS labels acquired from serviceinfo clauses. The
clause is divided into two sub-expressions, pass-expression and block-expression,
linked by an explicit and logic. That is, a URL passes the filter only if the pass-
expression is true and the block-expression is false. The default value of the pass-
expression is true, and the default value of the block-expression is false. Pass-
expression and block-expression are composed of simple-expressions. A simple-
expression compares an attribute of a PICS label with a constant (6 . 001 . grade >=
5 . 0), returning a Boolean value (true/ false). Simple-expressions can be
combined with and and or operators to create arbitrary-depth pass-expressions and
block-expressions. "Not" operator is explicitly omitted for clarity reasons. In the
following example,

filter (Pass "(6001.grade = 5.0 or 6001.grade < 2.0)"

Block "(6001.by = jmiller@w3.org)")

the clause returns true (allow) only if the midterm grade is A (to brag about it), or is
below D- (to drop the class), and the label does not come from the instructor Jim
Miller (he likes to "spam" poor freshmen with fake grades, if students are not
confused enough by his lectures).

BC00032429

Policy Language 37

a pass answer. Pass URL takes the second precedence in the evaluation, after
failURL. As with failURL, passURL may appear more than once but a single list is
preferred. The following clause

passURL ("http://www.wellesley.edu")

explicitly allows all URLs with "http://www.wellesley.edu" prefix.

serviceinfo
Serviceinfo specifies information about a rating service. There are five attributes in
a serviceinfo clause: name, shortname, bureau URL, raOle and bureau Unavailable.
Name attribute is the URL of the rating service. Shortname binds a local variable to
a rating service. Bureau URL specifies the location of a label bureau to retrieve
PICS labels from. RaOle contains either the URL or the actual text of the machine-
readable rating description file. Bureau Unavailable is an exception mechanism to
specify what to do when the named label bureau cannot be contacted. Since users
may want to utilize more than one rating service for a given URL, multiple
serviceinfo clauses are allowed in PicsRULZ. All clauses must be evaluated before
the filter clause because the filter clause may use the local name defined in the
clause. In the following example,

serviceinfo (name "http://6001.mit.edu/ratings/midterm.html"

shortname "6001"

bureauURL "http://6001.mit.edu"

bureauUnavailable true)

the clause retrieves PICS labels rated by "midterm" rating system from
"6.001.mit.edu" label bureau. If the label bureau is unavailable, the evaluation
terminates and returns true (allow).

filter
Filter clause operates on the PICS labels acquired from serviceinfo clauses. The
clause is divided into two sub-expressions, pass-expression and block-expression,
linked by an explicit and logic. That is, a URL passes the filter only if the pass-
expression is true and the block-expression is false. The default value of the pass-
expression is true, and the default value of the block-expression is false. Pass-
expression and block-expression are composed of simple-expressions. A simple-
expression compares an attribute of a PICS label with a constant (6 . 001 . grade >=
5 . 0), returning a Boolean value (true/ false). Simple-expressions can be
combined with and and or operators to create arbitrary-depth pass-expressions and
block-expressions. "Not" operator is explicitly omitted for clarity reasons. In the
following example,

filter (Pass "(6001.grade = 5.0 or 6001.grade < 2.0)"

Block "(6001.by = jmiller@w3.org)")

the clause returns true (allow) only if the midterm grade is A (to brag about it), or is
below D- (to drop the class), and the label does not come from the instructor Jim
Miller (he likes to "spam" poor freshmen with fake grades, if students are not
confused enough by his lectures).

BC00032429

Blue Coat Systems - Exhibit 1014
0034

38 Chapter Four

extension
Extension provides a way to extend the functionality of PicsRULZ. As in PICS-1.1
extension, there are required (mandatory) and optional extensions. If the extension
is required, the rule evaluator must understand and evaluate the extension. Optional
extensions need not be evaluated; they are intended for documentation purpose.

In the following example,
reqextension ("http://www.w3.org/DSig/RSA-MD5.html")

filter (Block "(6001.by = jmiller@w3.org)"

Check-signature true)

the content of the "RSA-MD5" extension presumably defines a new attribute-value
pair (check-signature <Boolean>) within a filter clause. Now filter clause
returns true only if the PICS label contains a valid signature (a true value in the
attribute) and the signature is not of Jim Miller's. In this case, the use of this
extension prevents Jim to fake as another person to bypass the filtering rules.

name
Name clause provides local information about the rule, intended to facilitate the
construction of a user interface. There are two attributes, namely rulename and
description. Rulename attribute binds the rule to a local name. Description
attribute is a more detailed description of the rule. For example,

name (rulename "6.001-Rule")

description "Viewing rule for the graded 6.001 midterm")

source
Source provides information about where the rule comes from. There are four
fields in the clause. SourceURL field uniquely identifies the rule. Interested parties
can also go to this location to fmd more information about the rule. CreationTool
field identifies how the rule is constructed. Author field gives an identity (generally
an e-mail address) of who creates the rule. LastModified gives the date and time
that the rule was last modified. An example looks like the following:

source (sourceURL "http://web.mit.edu/bendiddle/6001.htm1"

creationTool "PicsRULZ-EDITOR/1.0"

author "bendiddleemit.edu"

lastModified "1997.05.06:12.34-0500")

Examples of PicsRULZ are in Section 4.4.

4.3 Profiles-0.92

The Profiles-0.92 language [BCKLMRS] was developed in conjunction with the
REFEREE trust management system. Profiles-0.92 is a flexible and modular policy
language aiming to exploit and demonstrate important features in the REFEREE trust
management system.

BC00032430

38 Chapter Four

extension
Extension provides a way to extend the functionality of PicsRULZ. As in PICS-1.1
extension, there are required (mandatory) and optional extensions. If the extension
is required, the rule evaluator must understand and evaluate the extension. Optional
extensions need not be evaluated; they are intended for documentation purpose.

In the following example,
reqextension ("http://www.w3.org/DSig/RSA-MD5.html")

filter (Block "(6001.by = jmiller@w3.org)"

Check-signature true)

the content of the "RSA-MD5" extension presumably defines a new attribute-value
pair (check-signature <Boolean>) within a filter clause. Now filter clause
returns true only if the PICS label contains a valid signature (a true value in the
attribute) and the signature is not of Jim Miller's. In this case, the use of this
extension prevents Jim to fake as another person to bypass the filtering rules.

name
Name clause provides local information about the rule, intended to facilitate the
construction of a user interface. There are two attributes, namely rulename and
description. Rulename attribute binds the rule to a local name. Description
attribute is a more detailed description of the rule. For example,

name (rulename "6.001-Rule")

description "Viewing rule for the graded 6.001 midterm")

source
Source provides information about where the rule comes from. There are four
fields in the clause. SourceURL field uniquely identifies the rule. Interested parties
can also go to this location to fmd more information about the rule. CreationTool
field identifies how the rule is constructed. Author field gives an identity (generally
an e-mail address) of who creates the rule. LastModified gives the date and time
that the rule was last modified. An example looks like the following:

source (sourceURL "http://web.mit.edu/bendiddle/6001.htm1"

creationTool "PicsRULZ-EDITOR/1.0"

author "bendiddleemit.edu"

lastModified "1997.05.06:12.34-0500")

Examples of PicsRULZ are in Section 4.4.

4.3 Profiles-0.92

The Profiles-0.92 language [BCKLMRS] was developed in conjunction with the
REFEREE trust management system. Profiles-0.92 is a flexible and modular policy
language aiming to exploit and demonstrate important features in the REFEREE trust
management system.

BC00032430

Blue Coat Systems - Exhibit 1014
0035

Policy Language 39

An instance of a Profiles-0.92 language is a policy. A policy consists of an ordered
sequence of rules. Each rule is represented as an s-expression, in which the first token is
an operator, and the rest of the tokens are operands. The evaluation of a policy is top-
down. The returned value of the last rule is the returned value of the policy itself. To be
easily ported to REFEREE, the returned value of a rule is the same as REFEREE itself,
and is the same as REFEREE modules: a tri-value answer with a statement list as
justifications.

Profiles-0.92 is rich in expressiveness compared with PicsRULZ. This section highlights
six important rule syntax and semantics. Readers should refer to [BCKLMRS] for more
detail. A snapshot of the complete language syntax in the modified BNF form is
provided in Appendix B.

URL Prefix Matching
(url-match URL (<URL-prefix>+) [<prefix-match?>])

This function provides a means of explicitly returning a tri-value based on substring
matches against particular URLs. The first argument is the symbol URL. The
second argument is a list of strings to be matched against the given URL. The third
argument is a Boolean value which determines whether the string matching should
be exact or prefix. If this argument is true then URL must exactly match one of the
strings for the resulting value to be true. If false, one of the strings must be a prefix
of URL in order for the resulting value to be true. The <prefix-match?> argument
is optional; if it is not present it is assumed to be false and prefix matching is
performed.

For example, the function
(url-match URL ("http://web.mit.edu"

"http://www.wellesley.edu"))

returns true if the requested URL has any of the listed URLs as a prefix, and
otherwise it returns false. It is not possible for url-match to return an unknown tri-
value.

The statement-list returned by URL prefix match consists of statements of the form
(url-match <URL-prefix>+) for each relevant URL prefix. In the above example,
if "http://web.mit.edu/benbiddle" was requested then the function returns

((url-match "http://web.mit.edu"))

as the content of the returned statement.

Pattern Matching
(match <pattern> <statement-list>)

The pattern matching function matches the s-expression <pattern> against
statements in <statement-list>. A match happens when a pattern and a
statement are syntactically and structurally equivalent.

In the simplest form, a parenthesis in the pattern matches a parenthesis and a literal
element matches a literal element. In addition, there are four special pattern-
matching elements:

BC00032431

Policy Language 39

An instance of a Profiles-0.92 language is a policy. A policy consists of an ordered
sequence of rules. Each rule is represented as an s-expression, in which the first token is
an operator, and the rest of the tokens are operands. The evaluation of a policy is top-
down. The returned value of the last rule is the returned value of the policy itself. To be
easily ported to REFEREE, the returned value of a rule is the same as REFEREE itself,
and is the same as REFEREE modules: a tri-value answer with a statement list as
justifications.

Profiles-0.92 is rich in expressiveness compared with PicsRULZ. This section highlights
six important rule syntax and semantics. Readers should refer to [BCKLMRS] for more
detail. A snapshot of the complete language syntax in the modified BNF form is
provided in Appendix B.

URL Prefix Matching
(url-match URL (<URL-prefix>+) [<prefix-match?>])

This function provides a means of explicitly returning a tri-value based on substring
matches against particular URLs. The first argument is the symbol URL. The
second argument is a list of strings to be matched against the given URL. The third
argument is a Boolean value which determines whether the string matching should
be exact or prefix. If this argument is true then URL must exactly match one of the
strings for the resulting value to be true. If false, one of the strings must be a prefix
of URL in order for the resulting value to be true. The <prefix-match?> argument
is optional; if it is not present it is assumed to be false and prefix matching is
performed.

For example, the function
(url-match URL ("http://web.mit.edu"

"http://www.wellesley.edu"))

returns true if the requested URL has any of the listed URLs as a prefix, and
otherwise it returns false. It is not possible for url-match to return an unknown tri-
value.

The statement-list returned by URL prefix match consists of statements of the form
(url-match <URL-prefix>+) for each relevant URL prefix. In the above example,
if "http://web.mit.edu/benbiddle" was requested then the function returns

((url-match "http://web.mit.edu"))

as the content of the returned statement.

Pattern Matching
(match <pattern> <statement-list>)

The pattern matching function matches the s-expression <pattern> against
statements in <statement-list>. A match happens when a pattern and a
statement are syntactically and structurally equivalent.

In the simplest form, a parenthesis in the pattern matches a parenthesis and a literal
element matches a literal element. In addition, there are four special pattern-
matching elements:

BC00032431

Blue Coat Systems - Exhibit 1014
0036

40 Chapter Four

. zero or one literal or parenthesized
s-expression

* zero or more literals and
parenthesized s-expressions

+ matches one or more literals and
parenthesized s-expressions

(RESTRICT operator
literal value)

matches some s-expressions of the form
(literal value)

Thus, (* 3 *) matches (3) and (2 3 4) , but not (2 4 5). Similarly, (. (sha-
1 +) *) matches ((foo)(sha-1 3)), but not ((foo) bar (sha-1 3)).
Quoted strings are matched on a case-sensitive basis; all other elements are matched
insensitive to case.

RESTRICT pattern-matching elements allow arithmetic comparison on numbers in
an s-expression. This is important in the PICS environment, in which a policy may
want to test whether the value associated with a transmit-name is less than some
threshold value. Arithmetic comparison operator can be one of <, >, =, <=, >=, <>,
where <> represents "not equal". Literal is a symbol (transmit-name in PICS)
that identifies the value. A comparison operation happens only if both the pattern
and the matching statement have the same literal field. For example, (RESTRICT <

n 3) matches (n 2), and (* (RESTRICT < n 3) *) matches (foo bar baz (n

2) quux) , but does not match (foo bar baz (n 3) quux) .

If no statements syntactically match the pattern, the returned tri-value is unknown.
If some statements match and no restrictions are included, the returned tri-value is
true. If statements match and there are restrictions, the returned tri-value is true or
false depending on predicates in the restrictions. Each comparison operator exists
in both normal and "<operator>! " form. The presence of an "!" does not modify
the matching operation but does change the way the overall match construct
computes the returned tri-value. For operators ending in "!", match returns true
only if every statement that syntactically matches the restriction satisfies the
predicate. For non-"!" operators, match returns "true" if any syntactically-matching
statement satisfies the predicate. If more than one restriction is present, their tri-
values are implicitly anded together. If any restriction is false the match returns
false. For example, if the statement-list ((n 4) (n 2)) and the pattern is
(RESTRICT < n 3), the match would return true, because the second statement (n
2) matches the pattern. But if the pattern changes to (RESTRICT <! n 3) , the
match would return false because not all statements in the matched statement list
match the pattern.

The backslash \ character has special meaning within patterns; it is used to quote
pattern elements that would normally have special semantics. That is, to match the
character + as opposed to one or more s-expressions, use \+ is used in the pattern.
Similarly, the reserved word RESTRICT can be escaped with \RESTRICT to match
the actual symbol instead of the special restrict pattern matcher.

Combinations
(and <rule>+)

(or <rule>+)

BC00032432

40 Chapter Four

. zero or one literal or parenthesized
s-expression

* zero or more literals and
parenthesized s-expressions

+ matches one or more literals and
parenthesized s-expressions

(RESTRICT operator
literal value)

matches some s-expressions of the form
(literal value)

Thus, (* 3 *) matches (3) and (2 3 4) , but not (2 4 5). Similarly, (. (sha-
1 +) *) matches ((foo)(sha-1 3)), but not ((foo) bar (sha-1 3)).
Quoted strings are matched on a case-sensitive basis; all other elements are matched
insensitive to case.

RESTRICT pattern-matching elements allow arithmetic comparison on numbers in
an s-expression. This is important in the PICS environment, in which a policy may
want to test whether the value associated with a transmit-name is less than some
threshold value. Arithmetic comparison operator can be one of <, >, =, <=, >=, <>,
where <> represents "not equal". Literal is a symbol (transmit-name in PICS)
that identifies the value. A comparison operation happens only if both the pattern
and the matching statement have the same literal field. For example, (RESTRICT <

n 3) matches (n 2), and (* (RESTRICT < n 3) *) matches (foo bar baz (n

2) quux) , but does not match (foo bar baz (n 3) quux) .

If no statements syntactically match the pattern, the returned tri-value is unknown.
If some statements match and no restrictions are included, the returned tri-value is
true. If statements match and there are restrictions, the returned tri-value is true or
false depending on predicates in the restrictions. Each comparison operator exists
in both normal and "<operator>! " form. The presence of an "!" does not modify
the matching operation but does change the way the overall match construct
computes the returned tri-value. For operators ending in "!", match returns true
only if every statement that syntactically matches the restriction satisfies the
predicate. For non-"!" operators, match returns "true" if any syntactically-matching
statement satisfies the predicate. If more than one restriction is present, their tri-
values are implicitly anded together. If any restriction is false the match returns
false. For example, if the statement-list ((n 4) (n 2)) and the pattern is
(RESTRICT < n 3), the match would return true, because the second statement (n
2) matches the pattern. But if the pattern changes to (RESTRICT <! n 3) , the
match would return false because not all statements in the matched statement list
match the pattern.

The backslash \ character has special meaning within patterns; it is used to quote
pattern elements that would normally have special semantics. That is, to match the
character + as opposed to one or more s-expressions, use \+ is used in the pattern.
Similarly, the reserved word RESTRICT can be escaped with \RESTRICT to match
the actual symbol instead of the special restrict pattern matcher.

Combinations
(and <rule>+)

(or <rule>+)

BC00032432

Blue Coat Systems - Exhibit 1014
0037

Policy Language 41

(threshold-and <num> <rule>+)

(not <rule>)

(true-if-unknown <rule>)

(false-if-unknown <rule>)

Profiles-0.92 provides six tri-value operators. The operators and, or and threshold-
and are multi-argument operators and not, true-if-unknown and false-if-unknown are
unary operators. Each multi-argument operator takes zero (one for threshold-and)
or more rules as input. The output tri-value is computed based on the input tri-
values, and the output of the statement-list is a concatenation of the input statement-
lists. Unary operators work the same way, except that the output of the statement-
list is inherited directly from the input. The truth tables for the six operators are
provided below.

The and operator

The and operator is the three-valued version of the Boolean and operator. Table 2
describes the operation of and when it is given two arguments. The first row
represent the truth value for the first argument, the first column represent the truth
value for the second argument, and the rest of the cells represent the result of an and
operation.

rulel \ rule2 true unknown false
true true unknown false

unknown Unknown unknown false
false False false false

Table 2 Truth table for the and operator

The and operator can take any number of arguments. For more than two
arguments, and operator recursively reduces itself one argument at a time:

(and argl arg2 ••• argn) = (and (••• (and argl arg2) ••• argn)

The and of a single argument is that argument itself. The and of no argument is
true by definition. If one of the arguments return false, the and rule terminates and
the rule returns a false, because further evaluations will not change the outcome of a
false.

The or operator

The or operator is the three-valued version of Boolean or operator. Table 3
describes the operation of or when it is given two arguments:

rulel \ rule2 true unknown False
true true true True

unknown true unknown Unknown
false true unknown False

Table 3 Truth Table for the or operator

As and operator, or operator can take any number of arguments, and they are
recursively reduced if more than two arguments are present. The or of a single
argument is that argument itself. The or of no arguments is false by definition. If

BC00032433

Policy Language 41

(threshold-and <num> <rule>+)

(not <rule>)

(true-if-unknown <rule>)

(false-if-unknown <rule>)

Profiles-0.92 provides six tri-value operators. The operators and, or and threshold-
and are multi-argument operators and not, true-if-unknown and false-if-unknown are
unary operators. Each multi-argument operator takes zero (one for threshold-and)
or more rules as input. The output tri-value is computed based on the input tri-
values, and the output of the statement-list is a concatenation of the input statement-
lists. Unary operators work the same way, except that the output of the statement-
list is inherited directly from the input. The truth tables for the six operators are
provided below.

The and operator

The and operator is the three-valued version of the Boolean and operator. Table 2
describes the operation of and when it is given two arguments. The first row
represent the truth value for the first argument, the first column represent the truth
value for the second argument, and the rest of the cells represent the result of an and
operation.

rulel \ rule2 true unknown false
true true unknown false

unknown Unknown unknown false
false False false false

Table 2 Truth table for the and operator

The and operator can take any number of arguments. For more than two
arguments, and operator recursively reduces itself one argument at a time:

(and argl arg2 ••• argn) = (and (••• (and argl arg2) ••• argn)

The and of a single argument is that argument itself. The and of no argument is
true by definition. If one of the arguments return false, the and rule terminates and
the rule returns a false, because further evaluations will not change the outcome of a
false.

The or operator

The or operator is the three-valued version of Boolean or operator. Table 3
describes the operation of or when it is given two arguments:

rulel \ rule2 true unknown False
true true true True

unknown true unknown Unknown
false true unknown False

Table 3 Truth Table for the or operator

As and operator, or operator can take any number of arguments, and they are
recursively reduced if more than two arguments are present. The or of a single
argument is that argument itself. The or of no arguments is false by definition. If

BC00032433

Blue Coat Systems - Exhibit 1014
0038

42 Chapter Four

one of the arguments is evaluated to be true, the or terminates and returns a true,
because further evaluation does not change the outcome of a true.

The not operator

The not operator is the three-valued version of Boolean not operator. It takes
exactly one argument. Table 4 describes the operation of the not operator:

output
true false

unknown Unknown
false true

Table 4 Truth Table for the not operator

The true-if-unknown operator

The true-if-unknown operator is a projection function from three-valued logic to
Boolean logic. It takes exactly one argument:

output
true true

unknown true
false false

Table 5 Truth Table for the true-if-unknown operator

The false-if-unknown operator

The false-if-unknown operator is also a projection function from three-valued logic
to Boolean logic. It takes exactly one argument:

Output
true true

unknown false
false false

Table 6 Truth Table for the false-if-unknown operator

The threshold-and operator

The threshold-and operator implements "any m of n" semantics on a list of three-
valued arguments. The threshold-and operator takes at least one argument, the
threshold value as a non-negative integer. A call to threshold-and looks as follows:

(threshold-and threshold argl arg2 arg3 	argn)

Let nT, nF and nu be, respectively, the number of arguments to threshold-and
argl•••argrthat evaluate to true, false, and unknown. We have 0 <= nT,nF,nu, <= n,
and further nT + nF + nu = n. Then the value of threshold-and is computed as
follows:

• if nT >. threshold, return true.

• else if nT < threshold and nT + nu >= threshold, return unknown.

• else if nT + nu < threshold, return false.

• by definition, (threshold-and 0) evaluates to true.

BC00032434

42 Chapter Four

one of the arguments is evaluated to be true, the or terminates and returns a true,
because further evaluation does not change the outcome of a true.

The not operator

The not operator is the three-valued version of Boolean not operator. It takes
exactly one argument. Table 4 describes the operation of the not operator:

output
true false

unknown Unknown
false true

Table 4 Truth Table for the not operator

The true-if-unknown operator

The true-if-unknown operator is a projection function from three-valued logic to
Boolean logic. It takes exactly one argument:

output
true true

unknown true
false false

Table 5 Truth Table for the true-if-unknown operator

The false-if-unknown operator

The false-if-unknown operator is also a projection function from three-valued logic
to Boolean logic. It takes exactly one argument:

Output
true true

unknown false
false false

Table 6 Truth Table for the false-if-unknown operator

The threshold-and operator

The threshold-and operator implements "any m of n" semantics on a list of three-
valued arguments. The threshold-and operator takes at least one argument, the
threshold value as a non-negative integer. A call to threshold-and looks as follows:

(threshold-and threshold argl arg2 arg3 	argn)

Let nT, nF and nu be, respectively, the number of arguments to threshold-and
argl•••argrthat evaluate to true, false, and unknown. We have 0 <= nT,nF,nu, <= n,
and further nT + nF + nu = n. Then the value of threshold-and is computed as
follows:

• if nT >. threshold, return true.

• else if nT < threshold and nT + nu >= threshold, return unknown.

• else if nT + nu < threshold, return false.

• by definition, (threshold-and 0) evaluates to true.

BC00032434

Blue Coat Systems - Exhibit 1014
0039

Policy Language 43

Invocations
(invoke <policy-name> <statement-list> <additional-args>*)

Invoke calls the policy named <policy-name> with a copy of the <statement-

list> and possibly some other additional arguments. When the called policy
returns, its returned value is a pair consisting of a tri-value and a statement-list. By
convention, the caller module appends the returned statement-list of the callee to its
internal statement-list. For every statement in the returned statement-list, Profiles-
0.92 prepends the name of the called policy to the context of the statement, and
appends the statement to the original statement-list that was referenced in the call to
invoke. The returned value of the (invoke .. .) construct is a pair of the tri-value
returned by the called policy and the tagged statements appended to the statement-
list.

Installations
(install-policy <statement-list>)

(install-interpreter <statement-list>)

Recall that in Profiles-0.92, there are two types of entries in a REFEREE module
database: policy and interpreter. Install-policy creates policy bindings in the
module database and install-interpreter creates interpreter bindings in the module
database. In both cases, the information required to make these bindings are passed
within a statement-list containing a single statement, and they are of the form:

((<context>) (<identifier> <code-fragment> <language-name>))

Local Variable Binding
(let (<binding>+) <rule>+)

Let creates a new sub-environment of the current execution environment and creates
in the sub-environment new variable-value bindings. The created local bindings are
listed in the list of bindings <binding>+. Each <binding> is a list of the form:
(<var> <expression>) . The variable <var> is bound to the result of evaluating
<expression>. Each <expression> may optionally be null, in which case the
variable is defined but its value is unassigned. The bindings remain in effect for the
scope of the let rule.

A Profiles-0.92 policy is invoked with a list of argument. Each argument is bound to a
local name at the beginning of the evaluation. The first two arguments are mandatory in
Profiles-0.92, and are bound to the local name STATEMENT-LIST and URL,
respectively. Optional statements are bound to the local names ARG3, ARG4, and so
on.

4.4 Sample Policies

This section presents four sample policies with varying complexities. The policies are
first explained in English, then translated to PicsRULZ and Profiles-0.92 languages. The
section also presents certain variations of the policies expressible only by Profiles-0.92.

The following examples use code-signing as the target trust management problem. The
request is "should I download the active content at this URL". The policy returns true (or

B000032435

Policy Language 43

Invocations
(invoke <policy-name> <statement-list> <additional-args>*)

Invoke calls the policy named <policy-name> with a copy of the <statement-

list> and possibly some other additional arguments. When the called policy
returns, its returned value is a pair consisting of a tri-value and a statement-list. By
convention, the caller module appends the returned statement-list of the callee to its
internal statement-list. For every statement in the returned statement-list, Profiles-
0.92 prepends the name of the called policy to the context of the statement, and
appends the statement to the original statement-list that was referenced in the call to
invoke. The returned value of the (invoke .. .) construct is a pair of the tri-value
returned by the called policy and the tagged statements appended to the statement-
list.

Installations
(install-policy <statement-list>)

(install-interpreter <statement-list>)

Recall that in Profiles-0.92, there are two types of entries in a REFEREE module
database: policy and interpreter. Install-policy creates policy bindings in the
module database and install-interpreter creates interpreter bindings in the module
database. In both cases, the information required to make these bindings are passed
within a statement-list containing a single statement, and they are of the form:

((<context>) (<identifier> <code-fragment> <language-name>))

Local Variable Binding
(let (<binding>+) <rule>+)

Let creates a new sub-environment of the current execution environment and creates
in the sub-environment new variable-value bindings. The created local bindings are
listed in the list of bindings <binding>+. Each <binding> is a list of the form:
(<var> <expression>) . The variable <var> is bound to the result of evaluating
<expression>. Each <expression> may optionally be null, in which case the
variable is defined but its value is unassigned. The bindings remain in effect for the
scope of the let rule.

A Profiles-0.92 policy is invoked with a list of argument. Each argument is bound to a
local name at the beginning of the evaluation. The first two arguments are mandatory in
Profiles-0.92, and are bound to the local name STATEMENT-LIST and URL,
respectively. Optional statements are bound to the local names ARG3, ARG4, and so
on.

4.4 Sample Policies

This section presents four sample policies with varying complexities. The policies are
first explained in English, then translated to PicsRULZ and Profiles-0.92 languages. The
section also presents certain variations of the policies expressible only by Profiles-0.92.

The following examples use code-signing as the target trust management problem. The
request is "should I download the active content at this URL". The policy returns true (or

B000032435

Blue Coat Systems - Exhibit 1014
0040

44 Chapter Four

allow) meaning "yes, go ahead and download", false (or fail) meaning "no, don't
download", or unknown (in Profiles-0.92 only) meaning "prompt me for my attention".
Most examples use a hypothetical PICS rating service called CodeSafety, with two
dimensions, "stability" and "virus", and values from 0 to 10 along each dimension.
Higher value designates more stable and less possibility of virus in the described active
code. Other examples use "Endorse" and "Multimedia", whose dimensions and values
are explained as needed.

4.4.1 Sample policy 1: determine Access Based on the URL

This policy determines access based on requested URL. Such policy is useful if the
application knows a priori a list of sites or directories it should not download codes from.

Policy in English
Do not download the code if the URL is served from Harvard or CalTech
Web servers.

PicsRULZ
(PicsRule -1.0

(failURL ("http://www.harvard.edu" "http://www.caltech.edu")
filter (pass "Unless-Prohibited")))

Profiles-0.92
(not (url -match URL ("http://www.harvard.edu"

"http://www.caltech.edu")))

This kind of policy can be very effective in practice. Firewall vendors can compile a
blacklist of Web sites that serve potentially dangerous active codes, and place the list in
clients' firewalls.

Profiles-0.92 is capable of taking the policy a step further by returning unknown if the
requested URL is neither in the blacklist nor in the whitelist (sites know to be
trustworthy):

Policy in English
Do not download the code if the URL is served from Harvard or CalTech
Web servers. Download it automatically if served from MIT. Prompt me
for my attention otherwise.

Profiles-0.92
(theshold-and

2
(not (url-match URL ("http://www.harvard.edu"

"http://www.caltech.edu")))
(url-match URL ("http://web.mit.edu"))
unknown)

The blacklist and whitelist ensure good automation of the trust decision process if the
lists are reasonably complete. User intervention is needed only when the given URL is in
neither the blacklist nor the whitelist.

4.4.2 Sample policy 2: determine access based on PICS labels

This policy requests PICS labels from trusted sources and processes the labels based on
the attributes of the received labels.

BC00032436

44 Chapter Four

allow) meaning "yes, go ahead and download", false (or fail) meaning "no, don't
download", or unknown (in Profiles-0.92 only) meaning "prompt me for my attention".
Most examples use a hypothetical PICS rating service called CodeSafety, with two
dimensions, "stability" and "virus", and values from 0 to 10 along each dimension.
Higher value designates more stable and less possibility of virus in the described active
code. Other examples use "Endorse" and "Multimedia", whose dimensions and values
are explained as needed.

4.4.1 Sample policy 1: determine Access Based on the URL

This policy determines access based on requested URL. Such policy is useful if the
application knows a priori a list of sites or directories it should not download codes from.

Policy in English
Do not download the code if the URL is served from Harvard or CalTech
Web servers.

PicsRULZ
(PicsRule -1.0

(failURL ("http://www.harvard.edu" "http://www.caltech.edu")
filter (pass "Unless-Prohibited")))

Profiles-0.92
(not (url -match URL ("http://www.harvard.edu"

"http://www.caltech.edu")))

This kind of policy can be very effective in practice. Firewall vendors can compile a
blacklist of Web sites that serve potentially dangerous active codes, and place the list in
clients' firewalls.

Profiles-0.92 is capable of taking the policy a step further by returning unknown if the
requested URL is neither in the blacklist nor in the whitelist (sites know to be
trustworthy):

Policy in English
Do not download the code if the URL is served from Harvard or CalTech
Web servers. Download it automatically if served from MIT. Prompt me
for my attention otherwise.

Profiles-0.92
(theshold-and

2
(not (url-match URL ("http://www.harvard.edu"

"http://www.caltech.edu")))
(url-match URL ("http://web.mit.edu"))
unknown)

The blacklist and whitelist ensure good automation of the trust decision process if the
lists are reasonably complete. User intervention is needed only when the given URL is in
neither the blacklist nor the whitelist.

4.4.2 Sample policy 2: determine access based on PICS labels

This policy requests PICS labels from trusted sources and processes the labels based on
the attributes of the received labels.

BC00032436

Blue Coat Systems - Exhibit 1014
0041

Policy Language 45

Policy in English
Get PICS labels from MIT and CMU label bureaus. Download the code if
any of the received PICS labels says the virus is checked with good
confidence.

PicsRULZ
(PicsRule-1.0

(serviceinfo (name "http://web.mit.edu/ratings/CodeSafety.html"
shortname "Safety"
bureauURL "(http://bureau.mit.edu

http://bureau.cmu.edu)"
filter (Pass "(Safety.virus > 8)")))

Profiles-0.92
(invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.mit.edu" "http://bureau.cmu.edu"))

(match (("load-label")
(((version "PICS-1.1") *

(service "http://web.mit.edu/ratings/CodeSafety.html") *
(ratings (RESTRICT > virus 8)))))

STATEMENT-LIST)

These two policy descriptions have the same semantics, but Profiles-0.92 looks a bit
more complex, especially in its pattern-matching language. This is again the classical
trade-off between expressiveness versus elegance in language design.

The expressiveness in Profiles-0.92 comes in handy when the policy requires both labels
from both sources to make acceptable assertions about virus. A Profiles-0.92 policy
simply changes the match operator from ">" to ">!".

Profiles-0.92
(invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.mit.edu" "http://bureau.cmu.edu"))

(match (("load-label")
(((version "PICS-1.1") *

(service "http://web.mit.edu/ratings/CodeSafety.html") *
(ratings (RESTRICT ›! virus 8)))))

STATEMENT-LIST)

Another useful policy is to have equally trustworthy but potentially conflicting assertions
to "vote" among themselves. The policy below creates a "majority wins" among three
PICS labels from three different sources, by using threshold-and operator in Profiles-0.92
pattern matching language.

BC00032437

Policy Language 45

Policy in English
Get PICS labels from MIT and CMU label bureaus. Download the code if
any of the received PICS labels says the virus is checked with good
confidence.

PicsRULZ
(PicsRule-1.0

(serviceinfo (name "http://web.mit.edu/ratings/CodeSafety.html"
shortname "Safety"
bureauURL "(http://bureau.mit.edu

http://bureau.cmu.edu)"
filter (Pass "(Safety.virus > 8)")))

Profiles-0.92
(invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.mit.edu" "http://bureau.cmu.edu"))

(match (("load-label")
(((version "PICS-1.1") *

(service "http://web.mit.edu/ratings/CodeSafety.html") *
(ratings (RESTRICT > virus 8)))))

STATEMENT-LIST)

These two policy descriptions have the same semantics, but Profiles-0.92 looks a bit
more complex, especially in its pattern-matching language. This is again the classical
trade-off between expressiveness versus elegance in language design.

The expressiveness in Profiles-0.92 comes in handy when the policy requires both labels
from both sources to make acceptable assertions about virus. A Profiles-0.92 policy
simply changes the match operator from ">" to ">!".

Profiles-0.92
(invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.mit.edu" "http://bureau.cmu.edu"))

(match (("load-label")
(((version "PICS-1.1") *

(service "http://web.mit.edu/ratings/CodeSafety.html") *
(ratings (RESTRICT ›! virus 8)))))

STATEMENT-LIST)

Another useful policy is to have equally trustworthy but potentially conflicting assertions
to "vote" among themselves. The policy below creates a "majority wins" among three
PICS labels from three different sources, by using threshold-and operator in Profiles-0.92
pattern matching language.

BC00032437

Blue Coat Systems - Exhibit 1014
0042

46 Chapter Four

Profiles-0.92
(let (LabelA (invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.mit.edu"))

LabelB (invoke "load-label" STATEMENT-LIST URL
"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.cmu.edu"))

LabelC (invoke "load-label" STATEMENT-LIST URL
"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.wellesley.edu"))

(threshold-and 2
(match (("load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/CodeSafety.html")
(ratings (RESTRICT > virus 8)))))

LabelA))
(match (("load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/CodeSafety.html")
(ratings (RESTRICT > virus 8)))))

LabelB))
(match (("load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/CodeSafety.html")
(ratings (RESTRICT > virus 8)))))

LabelC))))

4.4.3 Sample Policy 3: Determine Access Based on Multiple PIGS Labels and
Sources

This sample policy combines the previous two sample policies to create a more complex,
but more realistic policy. It specifies which URL prefixes are unconditionally allowed
and blocked. For the unspecified URL prefixes, the policy determines access based on
PICS labels from various sources with various ratings schemas.

Policy in English
Do not download the code if the requested URL comes from Harvard Web
site or from Bendiddle's directory at MIT. Any other content served at
MIT Web site can be downloaded. For all other Web sites, you must get
PICS labels from MIT label bureau with MIT safety rating and from
Wellesley label bureau with PCWorld Multimedia rating. Download the
code if the labels assert good virus check (v > 8) and have cool sound
and video (s >= 5, v >=5).

PicsRULZ
(PicsRule-1.0

(failURL ("http://www.harvard.edu" "http://web.mit.edu/bendiddle")
passURL ("http://web.mit.edu")
name (rulename "Download-Code"

description "This rule is created for thesis illustration •••")
source (sourceURL "http://www.w3.org/PICS/TrustMgt/Rules/Code.html")
serviceinfo (name "http://web.mit.edu/ratings/CodeSafety.html"

shortname "Safety"
bureauURL "http://web.mit.edu")

serviceinfo (name "http://pcweek.com/ratings/MUltimedia.html"
shortname "Multimedia"
bureauURL "http://www.wellesley.edu")

filter (pass "(Safety.virus > 8)"
block "((Multimedia.sound < 5) or

(Multimedia.video < 5))")))

BC00032438

46 Chapter Four

Profiles-0.92
(let (LabelA (invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.mit.edu"))

LabelB (invoke "load-label" STATEMENT-LIST URL
"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.cmu.edu"))

LabelC (invoke "load-label" STATEMENT-LIST URL
"http://web.mit.edu/ratings/CodeSafety.html"
("http://bureau.wellesley.edu"))

(threshold-and 2
(match (("load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/CodeSafety.html")
(ratings (RESTRICT > virus 8)))))

LabelA))
(match (("load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/CodeSafety.html")
(ratings (RESTRICT > virus 8)))))

LabelB))
(match (("load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/CodeSafety.html")
(ratings (RESTRICT > virus 8)))))

LabelC))))

4.4.3 Sample Policy 3: Determine Access Based on Multiple PIGS Labels and
Sources

This sample policy combines the previous two sample policies to create a more complex,
but more realistic policy. It specifies which URL prefixes are unconditionally allowed
and blocked. For the unspecified URL prefixes, the policy determines access based on
PICS labels from various sources with various ratings schemas.

Policy in English
Do not download the code if the requested URL comes from Harvard Web
site or from Bendiddle's directory at MIT. Any other content served at
MIT Web site can be downloaded. For all other Web sites, you must get
PICS labels from MIT label bureau with MIT safety rating and from
Wellesley label bureau with PCWorld Multimedia rating. Download the
code if the labels assert good virus check (v > 8) and have cool sound
and video (s >= 5, v >=5).

PicsRULZ
(PicsRule-1.0

(failURL ("http://www.harvard.edu" "http://web.mit.edu/bendiddle")
passURL ("http://web.mit.edu")
name (rulename "Download-Code"

description "This rule is created for thesis illustration •••")
source (sourceURL "http://www.w3.org/PICS/TrustMgt/Rules/Code.html")
serviceinfo (name "http://web.mit.edu/ratings/CodeSafety.html"

shortname "Safety"
bureauURL "http://web.mit.edu")

serviceinfo (name "http://pcweek.com/ratings/MUltimedia.html"
shortname "Multimedia"
bureauURL "http://www.wellesley.edu")

filter (pass "(Safety.virus > 8)"
block "((Multimedia.sound < 5) or

(Multimedia.video < 5))")))

BC00032438

Blue Coat Systems - Exhibit 1014
0043

Policy Language 47

Profiles-0.92
(and (not (url-match URL ("http://www.harvard.edu"

"http://web.mit.edu/bendiddle")))
(or (url-match URL ("http://web.mit.edu"))

(let (SafetyLabel
(invoke "load-label" STATEMENT-LIST

"http://web.mit.edu/ratings/CodeSafety.html"
URL ("http:// http://web.mit.edu")))

(MultimediaLabel
(invoke "load-label" STATEMENT-LIST

"http://pcweek.com/ratings/Mtltimedia.html"
URL ("http://www.wellesley.edu"))))

(and
(match

(("load-label")
(((version "PICS-1.1") *

(service "http://web.mit.edu/ratings/CodeSafety.html")
* (ratings (RESTRICT > virus 8))))) SafetyLabel)

(match
(("load-label")
(((version "PICS-1.1") *
(service "http://pcweek com/ratings/Mtltimedia.html")
* (ratings (RESTRICT >= video 5))))) MultimediaLabel)

(match
(("load-label")
(((version "PICS-1.1") *

(service "http://pcweek. com/ratings/MUltimedia.html")
* (ratings (RESTRICT >= sound 5))))) MultimediaLabel)))

PicsRULZ has a more elegant policy over Profiles-0.92 due to its implicit and and or
operations in some clauses. More specifically, failURL clause has an implicit and with
the rest of the clauses in the rule, passURL has an implicit or with the rest of the clauses
except failURL, and filter has an implicit and for the subexpressions in both pass and
block expressions. These implicit operators become visible when written in Profiles-0.92
language.

4.4.4 Sample Policy 4: Defer Trust Using Extension Mechanism

Sample policy 4 adds a level of sophistication by setting "who is trusted" to make an
assertion about the active code. The "who", in PICS term, is the author of the label and
the rater of the code. In real life, an application may not know all the raters. A more
likely situation is that an application would trust a small number of auditors and accept
only labels from raters endorsed by the auditors. In this example, the policy authorizes
MIT to endorse raters who show good judgements in rating active contents, and both the
rater's label and the endorsement label must be properly signed.

Policy in English
Download the code from this URL only if a rater says it is virus free
(virus = 10), and that rater is endorsed by MIT as being an above-
average active code reviewer (CodeJudgement > 8). Both the endorsement
and the code safety label must be digitally signed.

BC00032439

Policy Language 47

Profiles-0.92
(and (not (url-match URL ("http://www.harvard.edu"

"http://web.mit.edu/bendiddle")))
(or (url-match URL ("http://web.mit.edu"))

(let (SafetyLabel
(invoke "load-label" STATEMENT-LIST

"http://web.mit.edu/ratings/CodeSafety.html"
URL ("http:// http://web.mit.edu")))

(MultimediaLabel
(invoke "load-label" STATEMENT-LIST

"http://pcweek.com/ratings/Mtltimedia.html"
URL ("http://www.wellesley.edu"))))

(and
(match

(("load-label")
(((version "PICS-1.1") *

(service "http://web.mit.edu/ratings/CodeSafety.html")
* (ratings (RESTRICT > virus 8))))) SafetyLabel)

(match
(("load-label")
(((version "PICS-1.1") *
(service "http://pcweek com/ratings/Mtltimedia.html")
* (ratings (RESTRICT >= video 5))))) MultimediaLabel)

(match
(("load-label")
(((version "PICS-1.1") *

(service "http://pcweek. com/ratings/MUltimedia.html")
* (ratings (RESTRICT >= sound 5))))) MultimediaLabel)))

PicsRULZ has a more elegant policy over Profiles-0.92 due to its implicit and and or
operations in some clauses. More specifically, failURL clause has an implicit and with
the rest of the clauses in the rule, passURL has an implicit or with the rest of the clauses
except failURL, and filter has an implicit and for the subexpressions in both pass and
block expressions. These implicit operators become visible when written in Profiles-0.92
language.

4.4.4 Sample Policy 4: Defer Trust Using Extension Mechanism

Sample policy 4 adds a level of sophistication by setting "who is trusted" to make an
assertion about the active code. The "who", in PICS term, is the author of the label and
the rater of the code. In real life, an application may not know all the raters. A more
likely situation is that an application would trust a small number of auditors and accept
only labels from raters endorsed by the auditors. In this example, the policy authorizes
MIT to endorse raters who show good judgements in rating active contents, and both the
rater's label and the endorsement label must be properly signed.

Policy in English
Download the code from this URL only if a rater says it is virus free
(virus = 10), and that rater is endorsed by MIT as being an above-
average active code reviewer (CodeJudgement > 8). Both the endorsement
and the code safety label must be digitally signed.

BC00032439

Blue Coat Systems - Exhibit 1014
0044

48 Chapter Four

PicsRULZ
(PicsRule-1.0
(reqextension ("http://www.w3.org/Dsig/PicsEndorsement.html")
reqextension ("http://www.w3.org/Dsig/PicsSignature.html")
serviceinfo (name "http://web.mit.edu/ratings/CodeSafety.html"

shortname "Safety")
serviceinfo (name "http://web.mit.edu/ratings/endorsement.html"

shortname "Endorse"
bureauURL "http://web.mit.edu"
endorses "Safety")

filter (check-signature "(Applet Endorse)"
Pass "((Safety.virus = 10) and

(Endorse.by "mailto:endorsement(imit.edu")
(Endorse.CodeJudgement > 8))")

Profiles-0.92
(and
(let
(SafetyLabel (invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
(ALONG-WITH)))

(invoke "check-signature" SafetyLabel)
(match (("load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/CodeSafety.html")
* (ratings (RESTRICT = virus 10)))))

STATEMENT-LIST)))
(let
(EndorsedLabel (invoke "endorse-label" STATEMENT-LIST

"mailto:endorsementamit.edu"
"http://web.mit.edu/ratings/endorsement.html"
("http://web.mit.edu/)))

(invoke "check-signature" EndorsedLabel)
(match (("check-signature" "load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/endorsement.html")
* (by "mailto:endorsement@mit.edu")
(ratings (RESTRICT > CodeJudgement 8)))))

STATEMENT-LIST))))

PicsRULZ uses two mandatory extensions, PicsEndorsement and PicsSignature. The
PicsEndorsement extension defmes a new attribute endorses in serviceinfo, which
contacts the label bureau and requests a PICS label voucher for the author specified in the
endorses field. PicsSignature extension defmes a new attribute check-signature in filter
clause, which returns true if all the PICS labels specified in its argument have valid
signatures. The exact policy for validating a signature is specified in the PicsSignature
extension.

Profiles-0.92 works in a similar fashion. The policy uses two more REFEREE modules
endorse-label and check-signature. Endorse-label takes an auditor, a label bureau, and a
rating service as arguments and contacts the label bureau to request labels from the
specified rater that vouch for the author of each of the statements on STATEMENT-
LIST. Check-signature takes a statement-list and validates each PICS label in the
statement-list. If a signature is good, it puts its module identifier of the PICS label and
returns it. The pattern matcher can verify whether a label is signed by matching "check-
signature" in the statement context.

BC00032440

48 Chapter Four

PicsRULZ
(PicsRule-1.0
(reqextension ("http://www.w3.org/Dsig/PicsEndorsement.html")
reqextension ("http://www.w3.org/Dsig/PicsSignature.html")
serviceinfo (name "http://web.mit.edu/ratings/CodeSafety.html"

shortname "Safety")
serviceinfo (name "http://web.mit.edu/ratings/endorsement.html"

shortname "Endorse"
bureauURL "http://web.mit.edu"
endorses "Safety")

filter (check-signature "(Applet Endorse)"
Pass "((Safety.virus = 10) and

(Endorse.by "mailto:endorsement(imit.edu")
(Endorse.CodeJudgement > 8))")

Profiles-0.92
(and
(let
(SafetyLabel (invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
(ALONG-WITH)))

(invoke "check-signature" SafetyLabel)
(match (("load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/CodeSafety.html")
* (ratings (RESTRICT = virus 10)))))

STATEMENT-LIST)))
(let
(EndorsedLabel (invoke "endorse-label" STATEMENT-LIST

"mailto:endorsementamit.edu"
"http://web.mit.edu/ratings/endorsement.html"
("http://web.mit.edu/)))

(invoke "check-signature" EndorsedLabel)
(match (("check-signature" "load-label")

(((version "PICS-1.1") *
(service "http://web.mit.edu/ratings/endorsement.html")
* (by "mailto:endorsement@mit.edu")
(ratings (RESTRICT > CodeJudgement 8)))))

STATEMENT-LIST))))

PicsRULZ uses two mandatory extensions, PicsEndorsement and PicsSignature. The
PicsEndorsement extension defmes a new attribute endorses in serviceinfo, which
contacts the label bureau and requests a PICS label voucher for the author specified in the
endorses field. PicsSignature extension defmes a new attribute check-signature in filter
clause, which returns true if all the PICS labels specified in its argument have valid
signatures. The exact policy for validating a signature is specified in the PicsSignature
extension.

Profiles-0.92 works in a similar fashion. The policy uses two more REFEREE modules
endorse-label and check-signature. Endorse-label takes an auditor, a label bureau, and a
rating service as arguments and contacts the label bureau to request labels from the
specified rater that vouch for the author of each of the statements on STATEMENT-
LIST. Check-signature takes a statement-list and validates each PICS label in the
statement-list. If a signature is good, it puts its module identifier of the PICS label and
returns it. The pattern matcher can verify whether a label is signed by matching "check-
signature" in the statement context.

BC00032440

Blue Coat Systems - Exhibit 1014
0045

5 REFEREE Reference Implementation

To verify the REFEREE design as described in the thesis, I produced a working
REFEREE reference implementation as part of my thesis. I chose Java as my REFEREE
underlying execution environment. The implementation work included the core
REFEREE primitive data types, REFEREE API, PicsRULZ and Profiles-0.92
interpreters, and a user interface for demonstration purpose. REFEREE was ported to
Jigsaw proxy as its host application.

The implementation work turned out to be a simple task. It was a two-month effort with
30 hour input per week. The ease of implementation comes from the simple and elegant
design of REFEREE. REFEREE is also efficient; depending on the complexity of the
policy, a REFEREE request takes between a quarter of second to half a second to
evaluate, excluding the network time to fetch PICS labels. The efficiency shows that
Web applications can do trust management without too much of a speed penalty.

Section one introduces the architecture of the Jigsaw proxy, the host application of my
reference implementation. Section two describes how REFEREE fits in the Jigsaw
proxy. Section three explains the pieces of REFEREE being implemented. Section four
provides an execution trace of a sample REFEREE query. Section five discusses several
insights and lessons learned from the experience of this implementation.

5.1 Jigsaw Proxy: the Host Application

Jigsaw was originally designed as a Web server, whose purpose was to provide a basis
for experimenting new server-side features. Recently Jigsaw introduced a Client API,
which manages requests and performs filtering on behalf of a client. The Jigsaw proxy
extracts pieces from both the Jigsaw Server and the Client API. The proxy front end,
responsible for accepting network requests and managing them as a pool of threads, is
taken from the Jigsaw Server front end. The proxy back end, responsible for redirecting
requests to Web servers, is taken from the Jigsaw Client API. This section focuses on the
Jigsaw proxy back end, in which REFEREE is embedded.

The Jigsaw Client API is very simple: it takes in a request (generally a URL) and returns
a reply (the content of the URL). The API aims to replace the Java standard
java.net .URLConnect class, with the advantages of being more robust and modular. A
simplified architectural figure is shown below.

49

BC00032441

5 REFEREE Reference Implementation

To verify the REFEREE design as described in the thesis, I produced a working
REFEREE reference implementation as part of my thesis. I chose Java as my REFEREE
underlying execution environment. The implementation work included the core
REFEREE primitive data types, REFEREE API, PicsRULZ and Profiles-0.92
interpreters, and a user interface for demonstration purpose. REFEREE was ported to
Jigsaw proxy as its host application.

The implementation work turned out to be a simple task. It was a two-month effort with
30 hour input per week. The ease of implementation comes from the simple and elegant
design of REFEREE. REFEREE is also efficient; depending on the complexity of the
policy, a REFEREE request takes between a quarter of second to half a second to
evaluate, excluding the network time to fetch PICS labels. The efficiency shows that
Web applications can do trust management without too much of a speed penalty.

Section one introduces the architecture of the Jigsaw proxy, the host application of my
reference implementation. Section two describes how REFEREE fits in the Jigsaw
proxy. Section three explains the pieces of REFEREE being implemented. Section four
provides an execution trace of a sample REFEREE query. Section five discusses several
insights and lessons learned from the experience of this implementation.

5.1 Jigsaw Proxy: the Host Application

Jigsaw was originally designed as a Web server, whose purpose was to provide a basis
for experimenting new server-side features. Recently Jigsaw introduced a Client API,
which manages requests and performs filtering on behalf of a client. The Jigsaw proxy
extracts pieces from both the Jigsaw Server and the Client API. The proxy front end,
responsible for accepting network requests and managing them as a pool of threads, is
taken from the Jigsaw Server front end. The proxy back end, responsible for redirecting
requests to Web servers, is taken from the Jigsaw Client API. This section focuses on the
Jigsaw proxy back end, in which REFEREE is embedded.

The Jigsaw Client API is very simple: it takes in a request (generally a URL) and returns
a reply (the content of the URL). The API aims to replace the Java standard
java.net .URLConnect class, with the advantages of being more robust and modular. A
simplified architectural figure is shown below.

49

BC00032441

Blue Coat Systems - Exhibit 1014
0046

Figure 16 Jigsaw Proxy Architecture

The proxy front end listens to and receives requests from the network. It packages
requests from the network and forwards them to the back end, the Client API. Internally,
the Client API processes a request object through three boxes in sequence, namely
ingoing filters, H7TP engine, and outgoing filters, before a reply object is generated and
returned back to the proxy front end.

Ingoing filters
are a set of filters running sequentially. Each ingoing filter takes a request as input,
and outputs a reply. If the reply is null, the request is handed to the next ingoing
filter. If not, the Client API simply returns the reply without further processing.
For example, caching can be implemented as an ingoing filter. A cache filter
manages a database of cached documents, indexed by URLs. When a request flows
into a cache filter, it searches the database with the requested URL. If there is a
cache hit, the filter generates a reply object from the database and the Client API
terminates and returns that reply object. If there is a cache miss, the filter returns a
null reply and the Client API continues to the next filter.

HTTP engine
is the engine that fetches information from the network. It makes queries to the
appropriate Web server through a network protocol and generates a reply object
based on the information received from the network.

Outgoing filters
take both a request and a reply as input, and outputs another reply. If an outgoing
filter outputs a null, the Client API continues to the next filter. If not, the Client
API returns the reply object without further processing. For example,
authentication can be implemented in an outgoing filter. If the input reply is
"authentication required", the filter can query the host for password and run the
request again, by invoking the Client API with the password.

BC00032442

Figure 16 Jigsaw Proxy Architecture

The proxy front end listens to and receives requests from the network. It packages
requests from the network and forwards them to the back end, the Client API. Internally,
the Client API processes a request object through three boxes in sequence, namely
ingoing filters, H7TP engine, and outgoing filters, before a reply object is generated and
returned back to the proxy front end.

Ingoing filters
are a set of filters running sequentially. Each ingoing filter takes a request as input,
and outputs a reply. If the reply is null, the request is handed to the next ingoing
filter. If not, the Client API simply returns the reply without further processing.
For example, caching can be implemented as an ingoing filter. A cache filter
manages a database of cached documents, indexed by URLs. When a request flows
into a cache filter, it searches the database with the requested URL. If there is a
cache hit, the filter generates a reply object from the database and the Client API
terminates and returns that reply object. If there is a cache miss, the filter returns a
null reply and the Client API continues to the next filter.

HTTP engine
is the engine that fetches information from the network. It makes queries to the
appropriate Web server through a network protocol and generates a reply object
based on the information received from the network.

Outgoing filters
take both a request and a reply as input, and outputs another reply. If an outgoing
filter outputs a null, the Client API continues to the next filter. If not, the Client
API returns the reply object without further processing. For example,
authentication can be implemented in an outgoing filter. If the input reply is
"authentication required", the filter can query the host for password and run the
request again, by invoking the Client API with the password.

BC00032442

Blue Coat Systems - Exhibit 1014
0047

REFEREE Reference Implementation 51

5.2 REFEREE in the Jigsaw Proxy

REFEREE is implemented as an ingoing filter in the Jigsaw proxy. When a request is
received, the REFEREE filter constructs an equivalent REFEREE request object, which
includes an action name and the URL of interest. The request object is then sent to the
REFEREE execution environment for evaluation. If the output of the evaluation is true,
the filter returns null, allowing the request to flow through without interruption. If the
output is unknown or false, the filter returns a default HTML document expressing the
request is blocked, along with the justifications returned by REFEREE.

One observation here is that my implementation of the Jigsaw filter has a self-regulating
"policy" to respond to the outcome the REFEREE evaluation. That policy is application
specific; it is neither controlled nor evaluated by REFEREE, but by the application itself
This observation reinforces the fact that REFEREE is recommendation-based; the burden
to enforce the trust management decision is on the application itself. I will discuss more
on this aspect in Section 5.5.

Recall from Chapter 3, there are two stages in REFEREE. The bootstrap stage
corresponds to the initialization of the REFEREE filter. The query stage corresponds to
the invocation of the REFEREE filter. In addition, Jigsaw provides a method (callback)
to fetch information from the network. The fetch callback is implemented as the Jigsaw
Client API itself, except it does not have the REFEREE filter installed.

5.3 The Scope of the REFEREE Implementation

There are several pieces to the implementation:

REFEREE filter
is a Jigsaw filter that interfaces REFEREE with the Jigsaw proxy. It traps requests
in a proxy and hands over to the REFEREE execution environment for evaluation.

REFEREE core module API
is a set of functions calls to initialize and invoke a REFEREE module. The same
API is used by the REFEREE filter to invoke the first REFEREE module, and by
REFEREE modules to invoke subordinate REFEREE modules.

REFEREE primitive data types
are a set of Java classes shared among REFEREE modules. The primitive data
types include tri-values, statement-lists, and module-databases. As in any Java
classes, the classes implementing these primitive data types have a set of
constructors and a set of methods. For example, tri-value class has a set of
constructors to create true, false, and unknown objects, and a set of methods to
perform and, or, not, false-if-unknown, and true-if-unknown operations. The
threshold-and in Profiles-0.92 language is a special operator implemented in the
Profiles-0.92 interpreter only.

Profiles-0.92 interpreter
is a trust policy language interpreter implemented as a REFEREE module. It
accepts two mandatory arguments, the URL of interests and a list of unconditionally

B000032443

REFEREE Reference Implementation 51

5.2 REFEREE in the Jigsaw Proxy

REFEREE is implemented as an ingoing filter in the Jigsaw proxy. When a request is
received, the REFEREE filter constructs an equivalent REFEREE request object, which
includes an action name and the URL of interest. The request object is then sent to the
REFEREE execution environment for evaluation. If the output of the evaluation is true,
the filter returns null, allowing the request to flow through without interruption. If the
output is unknown or false, the filter returns a default HTML document expressing the
request is blocked, along with the justifications returned by REFEREE.

One observation here is that my implementation of the Jigsaw filter has a self-regulating
"policy" to respond to the outcome the REFEREE evaluation. That policy is application
specific; it is neither controlled nor evaluated by REFEREE, but by the application itself
This observation reinforces the fact that REFEREE is recommendation-based; the burden
to enforce the trust management decision is on the application itself. I will discuss more
on this aspect in Section 5.5.

Recall from Chapter 3, there are two stages in REFEREE. The bootstrap stage
corresponds to the initialization of the REFEREE filter. The query stage corresponds to
the invocation of the REFEREE filter. In addition, Jigsaw provides a method (callback)
to fetch information from the network. The fetch callback is implemented as the Jigsaw
Client API itself, except it does not have the REFEREE filter installed.

5.3 The Scope of the REFEREE Implementation

There are several pieces to the implementation:

REFEREE filter
is a Jigsaw filter that interfaces REFEREE with the Jigsaw proxy. It traps requests
in a proxy and hands over to the REFEREE execution environment for evaluation.

REFEREE core module API
is a set of functions calls to initialize and invoke a REFEREE module. The same
API is used by the REFEREE filter to invoke the first REFEREE module, and by
REFEREE modules to invoke subordinate REFEREE modules.

REFEREE primitive data types
are a set of Java classes shared among REFEREE modules. The primitive data
types include tri-values, statement-lists, and module-databases. As in any Java
classes, the classes implementing these primitive data types have a set of
constructors and a set of methods. For example, tri-value class has a set of
constructors to create true, false, and unknown objects, and a set of methods to
perform and, or, not, false-if-unknown, and true-if-unknown operations. The
threshold-and in Profiles-0.92 language is a special operator implemented in the
Profiles-0.92 interpreter only.

Profiles-0.92 interpreter
is a trust policy language interpreter implemented as a REFEREE module. It
accepts two mandatory arguments, the URL of interests and a list of unconditionally

B000032443

Blue Coat Systems - Exhibit 1014
0048

52 Chapter Five

trusted statements. It also accepts a list of optional arguments. The returned tri-
value and statement-list is bound to the returned values of the last policy statement
evaluation.

PicsRULZ interpreter
is a trust policy language interpreter implemented as a REFEREE module. It
accepts one required input argument, the URL of interest, and no optional
arguments. The returned tri-value is either a true or a false, because PicsRULZ
operates on Boolean logic. The returned statement-list is null, because PicsRULZ
does not return a justification with an answer. Internally, the PicsRULZ interpreter
translates the PicsRULZ policy to Profiles-0.92 policy first and then invokes the
Profiles-0.92 interpreter with the translated policy.

Label Loader
is a PICS trust protocol implemented as a REFEREE module. There are four
required input arguments, a statement-list, a URL of interest, a rating service URL,
and a list of label sources. The input statement-list contains a set of cached PICS
labels. When there is a cache hit, Label Loader returns the label without fetching it
from the network. The URL of interest and the rating service URL specify what
PICS labels to fetch. A list of places to fmd labels includes embedded in a
document (by the keyword "EMBEDDED"), via the HTTP header stream (by the
keyword "ALONG-WITH"), or from a list of label bureaus.

The returned value is true if any label is found, unknown if all label bureaus cannot
be contact, or false if label bureaus can be contacted but no label is returned. The
returned statements are parsed PICS labels, which are restructured in a way that are
easy for pattern matching and other operations. The exact syntax is in Appendix C.
An example is illustrated below, assuming a Profiles-0.92 policy calls Label Loader
(local name "load-label") in the following line:

(invoke "load-label" STATEMENT-LIST URL

"http://www.musac.org/v1.0"

(EMBEDDED "http://www.bureau.com")

if Label Loader fmds only an embedded PICS label, the returned tri-value is true,
and the returned statement-list looks like the following:

(("load-label")

(("load-label" "http://www.w3.org/Overview.html" EMBEDDED)
((version "PICS-1.1")
(service "http://www.musac.org/v1.0")
(by "mailtomstrauss@research.att.com")
(original (PICS-1.1 "http://www.musac.org/v1.0"

labels by "mailto:mstrauss@research att.com"

ratings (s 1 v 0))
(ratings (s 1) (v 0)))))

As the thesis is written, the implementation of the Load Label module does not have
a running PICS protocol. Instead the input of the raw PICS labels are provided by
an input stream from the REFEREE filter. The implementation does parse PICS
labels and turn them into REFEREE statements.

BC00032444

52 Chapter Five

trusted statements. It also accepts a list of optional arguments. The returned tri-
value and statement-list is bound to the returned values of the last policy statement
evaluation.

PicsRULZ interpreter
is a trust policy language interpreter implemented as a REFEREE module. It
accepts one required input argument, the URL of interest, and no optional
arguments. The returned tri-value is either a true or a false, because PicsRULZ
operates on Boolean logic. The returned statement-list is null, because PicsRULZ
does not return a justification with an answer. Internally, the PicsRULZ interpreter
translates the PicsRULZ policy to Profiles-0.92 policy first and then invokes the
Profiles-0.92 interpreter with the translated policy.

Label Loader
is a PICS trust protocol implemented as a REFEREE module. There are four
required input arguments, a statement-list, a URL of interest, a rating service URL,
and a list of label sources. The input statement-list contains a set of cached PICS
labels. When there is a cache hit, Label Loader returns the label without fetching it
from the network. The URL of interest and the rating service URL specify what
PICS labels to fetch. A list of places to fmd labels includes embedded in a
document (by the keyword "EMBEDDED"), via the HTTP header stream (by the
keyword "ALONG-WITH"), or from a list of label bureaus.

The returned value is true if any label is found, unknown if all label bureaus cannot
be contact, or false if label bureaus can be contacted but no label is returned. The
returned statements are parsed PICS labels, which are restructured in a way that are
easy for pattern matching and other operations. The exact syntax is in Appendix C.
An example is illustrated below, assuming a Profiles-0.92 policy calls Label Loader
(local name "load-label") in the following line:

(invoke "load-label" STATEMENT-LIST URL

"http://www.musac.org/v1.0"

(EMBEDDED "http://www.bureau.com")

if Label Loader fmds only an embedded PICS label, the returned tri-value is true,
and the returned statement-list looks like the following:

(("load-label")

(("load-label" "http://www.w3.org/Overview.html" EMBEDDED)
((version "PICS-1.1")
(service "http://www.musac.org/v1.0")
(by "mailtomstrauss@research.att.com")
(original (PICS-1.1 "http://www.musac.org/v1.0"

labels by "mailto:mstrauss@research att.com"

ratings (s 1 v 0))
(ratings (s 1) (v 0)))))

As the thesis is written, the implementation of the Load Label module does not have
a running PICS protocol. Instead the input of the raw PICS labels are provided by
an input stream from the REFEREE filter. The implementation does parse PICS
labels and turn them into REFEREE statements.

BC00032444

Blue Coat Systems - Exhibit 1014
0049

REFEREE Reference Implementation 53

Label endorser
is a REFEREE module that handles requests for deferral of trust. The module takes
three arguments, the name of the auditor, a list of label bureaus, and a statement-list
to be endorsed. For each label (represented as a statement) in the statement-list, the
module requests additional labels to vouch for the label author (rater) by the name
auditor. This module is useful if an application does not know all the raters on the
Internet, and instead trust a single auditor who endorses trustworthy raters.

The returned tri-value is true if any label in a statement-list is endorsed, unknown if
the input statement-list contains no PICS label to be endorsed, and false if all labels
in the statement-list fail to be endorsed. The returned statements simply adds the
Label Endorser module's identifier in the statement context and the auditor's name
in the statement content on top of the endorsed statement. For example, if an
auditor "GoodMouseClicking@w3.org" endorses the rater
"mstrauss@research.att.corn" from the above statement, the new statement becomes

(("endorse-label" "load-label")

("mailto:GoodMouseClicking@w3.org"

("load-label" "http://www.w3.org/Overview.html" EMBEDDED)
((version "PICS-1.1")
(service "http://www.musac.org/v1.0")
(by "mailto:mstrauss@research.att.com")
(original

(PICS-1.1 "http://www.musac.org/v1.0"

labels

by "mailto:mstrauss@research.att.com"

ratings (s 1 v 0))
(ratings (s 1) (v 0)))))

As the time the thesis is written, this module is a stub; the REFEREE filter provides
an input stream in which a list of trusted auditors are provided explicitly.

5.4 An Execution Trace

This section presents a detail execution trace from my reference REFEREE
implementation in the Jigsaw proxy. The REFEREE execution environment is provided
with the following bootstrapping information:

identifier code-fragment language name
download-applet <policy to download Java

applets>
http://www.w3.org/PIC
S/Profiles092/

http://www.w3.org/
PICS/Profiles092/

<Profiles-0.92 interpreters
written in Java>

http://www.javasoft.c
om/jdk1.1/

load-label <PICS Label Loader written
in Java>

http://www.javasoft.c
om/jdkl.1/

endorse-label <Label Endorsement written
in Java>

http://www.javasoft.c
om/jdkl.1/

The bootstrapping statement-list is null, meaning no trusted assertions are
unconditionally trusted. Download-applet binds to the following Profiles-0.92 policy:

BC00032445

REFEREE Reference Implementation 53

Label endorser
is a REFEREE module that handles requests for deferral of trust. The module takes
three arguments, the name of the auditor, a list of label bureaus, and a statement-list
to be endorsed. For each label (represented as a statement) in the statement-list, the
module requests additional labels to vouch for the label author (rater) by the name
auditor. This module is useful if an application does not know all the raters on the
Internet, and instead trust a single auditor who endorses trustworthy raters.

The returned tri-value is true if any label in a statement-list is endorsed, unknown if
the input statement-list contains no PICS label to be endorsed, and false if all labels
in the statement-list fail to be endorsed. The returned statements simply adds the
Label Endorser module's identifier in the statement context and the auditor's name
in the statement content on top of the endorsed statement. For example, if an
auditor "GoodMouseClicking@w3.org" endorses the rater
"mstrauss@research.att.corn" from the above statement, the new statement becomes

(("endorse-label" "load-label")

("mailto:GoodMouseClicking@w3.org"

("load-label" "http://www.w3.org/Overview.html" EMBEDDED)
((version "PICS-1.1")
(service "http://www.musac.org/v1.0")
(by "mailto:mstrauss@research.att.com")
(original

(PICS-1.1 "http://www.musac.org/v1.0"

labels

by "mailto:mstrauss@research.att.com"

ratings (s 1 v 0))
(ratings (s 1) (v 0)))))

As the time the thesis is written, this module is a stub; the REFEREE filter provides
an input stream in which a list of trusted auditors are provided explicitly.

5.4 An Execution Trace

This section presents a detail execution trace from my reference REFEREE
implementation in the Jigsaw proxy. The REFEREE execution environment is provided
with the following bootstrapping information:

identifier code-fragment language name
download-applet <policy to download Java

applets>
http://www.w3.org/PIC
S/Profiles092/

http://www.w3.org/
PICS/Profiles092/

<Profiles-0.92 interpreters
written in Java>

http://www.javasoft.c
om/jdk1.1/

load-label <PICS Label Loader written
in Java>

http://www.javasoft.c
om/jdkl.1/

endorse-label <Label Endorsement written
in Java>

http://www.javasoft.c
om/jdkl.1/

The bootstrapping statement-list is null, meaning no trusted assertions are
unconditionally trusted. Download-applet binds to the following Profiles-0.92 policy:

BC00032445

Blue Coat Systems - Exhibit 1014
0050

54 Chapter Five

Policy in English
Download the code from this URL only if a label from either the HTTP
header stream or from the bureau "bureau.pcworld.com" says it is virus
free (v > 8) according to MIT Code Safety rating, and that rater of the
label is endorsed by the MIT auditor.

Profiles-0.92
(invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
(ALONG-WITH, "http://bureau.pcworld.com"))

(invoke "endorse-label" STATEMENT-LIST
"mailto:auditor@mit.edu" ("http://bureau.mit.edu/"))

(false-if-unknown
(match (("endorse-label" *)

("mailto:auditorOmit.edu
((version PICS-1.1) *
(service "http://web.mit.edu/ratings/CodeSafety.html")
(ratings * (RESTRICT > v 8) *))))
STATEMENT-LIST))

There are three modules used here, download-applet (interpreted by the Profiles-0.92
interpreter), load-label, and endorse-label. Download-apples module is the top-level
module called by the REFEREE filter to interpret the policy shown above. Load-label
module fetches labels from the network. Endorse-label module vouches for labels with
raters endorsed by a named auditor. The exact behaviors of the three modules are
explained in Section 5.3. Figure 17 shows the order in which the REFEREE modules are
invoked.

Figure 17 Sample REFEREE Implementation

After the REFEREE filter bootstraps the REFEREE execution environment (step 1), the
REFEREE filter is ready to trap requests from the Jigsaw proxy and make queries to the
execution environment. When the filter invokes REFEREE with the action name
download-applet (step 2), REFEREE queries its module database and gets the module
containing the pair download-applet policy and the Profiles-0.92 interpreter (step 3).

BC00032446

54 Chapter Five

Policy in English
Download the code from this URL only if a label from either the HTTP
header stream or from the bureau "bureau.pcworld.com" says it is virus
free (v > 8) according to MIT Code Safety rating, and that rater of the
label is endorsed by the MIT auditor.

Profiles-0.92
(invoke "load-label" STATEMENT-LIST URL

"http://web.mit.edu/ratings/CodeSafety.html"
(ALONG-WITH, "http://bureau.pcworld.com"))

(invoke "endorse-label" STATEMENT-LIST
"mailto:auditor@mit.edu" ("http://bureau.mit.edu/"))

(false-if-unknown
(match (("endorse-label" *)

("mailto:auditorOmit.edu
((version PICS-1.1) *
(service "http://web.mit.edu/ratings/CodeSafety.html")
(ratings * (RESTRICT > v 8) *))))
STATEMENT-LIST))

There are three modules used here, download-applet (interpreted by the Profiles-0.92
interpreter), load-label, and endorse-label. Download-apples module is the top-level
module called by the REFEREE filter to interpret the policy shown above. Load-label
module fetches labels from the network. Endorse-label module vouches for labels with
raters endorsed by a named auditor. The exact behaviors of the three modules are
explained in Section 5.3. Figure 17 shows the order in which the REFEREE modules are
invoked.

Figure 17 Sample REFEREE Implementation

After the REFEREE filter bootstraps the REFEREE execution environment (step 1), the
REFEREE filter is ready to trap requests from the Jigsaw proxy and make queries to the
execution environment. When the filter invokes REFEREE with the action name
download-applet (step 2), REFEREE queries its module database and gets the module
containing the pair download-applet policy and the Profiles-0.92 interpreter (step 3).

BC00032446

Blue Coat Systems - Exhibit 1014
0051

REFEREE Reference Implementation 55

The first line of the download-applet policy invokes load-label (step 4). Now assume
load-label actually gets one label from the label bureau "http://www.pcworld.com" (step
5) and returns the following to download-applet:

tri-value = true
statement-list = ((()

((version "PICS-1.1")
(service "http://web.mit.edu/ratings/CodeSafety.html")
(by "mailto:mstrauss@research.att.com")
(original (PICS-1.1 ...))
(ratings (s 7) (v 9)))))

Load-label returns true, because a label is found. The statement-list contains a single
statement describing the PICS label. The context of the statement is empty, because it is
produced by the load-label module itself. The caller download-applet records this
statement by prepending the name of the called module, "load-label," onto the context of
the statement:

statement-list = ((("load-label")
((version "PICS-1.1")
(service "http://web.mit.edu/ratings/CodeSafety.html")
(by "mailtomstrauss@research.att.com")
(original (PICS-1.1 ...))
(ratings (s 7) (v 9)))))

onto its local copy of the statement-list.

Now download-applet proceeds to the second line, invoking the module endorse-label to
check for an endorsement (step 6). Assuming the endorsing label is found, endorse-label
returns a statement-list that gets "endorse-label" prepended to the context, resulting in the
following:

tri-value = true
statement-list = ((("endorse-label" "load-label")

(("mailto:auditor@mit.edu")
((version "PICS-1.1")
(service "http://web.mit.edu/ratings/CodeSafety.html")
(by "mailto:mstrauss@research.att.com")
(original (PICS-1.1 ...))
(ratings (s 7) (v 9))))))

Again, the string "endorse-label" is added to the context of this statement to indicate that
the rater "mailto:mstraussOresearch.att.com" is approved by endorse-label policy. The
passed content is wrapped in an expression containing "mailto:auditor@mit.edu", the
name of the auditor.

Finally, download-applet proceeds to the last line to check ratings. The match looks for a
context with "endorse-label' if it is missing, the match fails. Because the match
succeeds, download-applet returns to the application a tri-value of true and a statement-
list of the statements produced by the matcher:

tri-value = true
statement-list = ((("endorse-label" "load-label")

Wmailto:auditorsamit.edu")
((version "PICS-1.1")
(service "http://web.mit.edu/ratings/CodeSafety.html")
(by "mailto:mstrauss@research.att.com")
(original (PICS-1.1 ...))
(ratings (s 7) (v 9))))))

BC00032447

REFEREE Reference Implementation 55

The first line of the download-applet policy invokes load-label (step 4). Now assume
load-label actually gets one label from the label bureau "http://www.pcworld.com" (step
5) and returns the following to download-applet:

tri-value = true
statement-list = ((()

((version "PICS-1.1")
(service "http://web.mit.edu/ratings/CodeSafety.html")
(by "mailto:mstrauss@research.att.com")
(original (PICS-1.1 ...))
(ratings (s 7) (v 9)))))

Load-label returns true, because a label is found. The statement-list contains a single
statement describing the PICS label. The context of the statement is empty, because it is
produced by the load-label module itself. The caller download-applet records this
statement by prepending the name of the called module, "load-label," onto the context of
the statement:

statement-list = ((("load-label")
((version "PICS-1.1")
(service "http://web.mit.edu/ratings/CodeSafety.html")
(by "mailtomstrauss@research.att.com")
(original (PICS-1.1 ...))
(ratings (s 7) (v 9)))))

onto its local copy of the statement-list.

Now download-applet proceeds to the second line, invoking the module endorse-label to
check for an endorsement (step 6). Assuming the endorsing label is found, endorse-label
returns a statement-list that gets "endorse-label" prepended to the context, resulting in the
following:

tri-value = true
statement-list = ((("endorse-label" "load-label")

(("mailto:auditor@mit.edu")
((version "PICS-1.1")
(service "http://web.mit.edu/ratings/CodeSafety.html")
(by "mailto:mstrauss@research.att.com")
(original (PICS-1.1 ...))
(ratings (s 7) (v 9))))))

Again, the string "endorse-label" is added to the context of this statement to indicate that
the rater "mailto:mstraussOresearch.att.com" is approved by endorse-label policy. The
passed content is wrapped in an expression containing "mailto:auditor@mit.edu", the
name of the auditor.

Finally, download-applet proceeds to the last line to check ratings. The match looks for a
context with "endorse-label' if it is missing, the match fails. Because the match
succeeds, download-applet returns to the application a tri-value of true and a statement-
list of the statements produced by the matcher:

tri-value = true
statement-list = ((("endorse-label" "load-label")

Wmailto:auditorsamit.edu")
((version "PICS-1.1")
(service "http://web.mit.edu/ratings/CodeSafety.html")
(by "mailto:mstrauss@research.att.com")
(original (PICS-1.1 ...))
(ratings (s 7) (v 9))))))

BC00032447

Blue Coat Systems - Exhibit 1014
0052

56 Chapter Five

The returned values say the download-applet action should be taken (tri-value is true),
and it is justified by the endorsed PICS label in the statement-list. They are returned to
the REFEREE filter (step 7), and the filter returns a null reply object to the proxy Client
API. The null reply allows the request to resume processing in the Jigsaw proxy.

5.5 Discussions

The REFEREE implementation in the Jigsaw proxy provides many insights on how a
trust management system should work in a real-world application. This section attempts
to address some of the concerns raised during the implementation, and explain how my
particular implementation deals with them.

The first concern is the order in which REFEREE is placed with respect to other tasks in
a host application that are concurrently affecting the behavior of the application. Caching
is such a conservative task in the Jigsaw proxy, where the order to do trust management
and caching matters. I place the REFEREE filter in the highest precedence, so it always
gets evaluated. It is considered the most conservative approach, because it would
accurately observe time-dependent trust elements, such as expired or revoked certificates,
and make correct trust decisions based on them. However, if performance is more critical
than accuracy, an application should place the caching filter in front of the REFEREE
filter. Determining how the trust management task interacts with other processes in a
host application is in a way another "trust policy", and it is outside the scope in which
REFEREE can evaluate.

The second concern is whether actions issued during the evaluation of trust management
are subject to the same trust management evaluation. For example in the Jigsaw proxy,
download-applet requires Label Loader to call the Jigsaw Client API and fetch PICS
labels from the network. The act of fetching PICS labels itself may be considered as a
trust management problem and be subjected to a label-fetching trust management policy.
My current implementation does not invoke another level of trust management during a
trust management evaluation. I reject this idea for two reasons. First, it may introduce
deadlock if the label-fetching policy in turn requests the same labels before the label can
be fetched. The same Label Loader would be called recursively without making any
progress. Second, I treat the action of fetching PICS labels as a trust protocol that is safe,
secure, without any judgement of trust, therefore the action needs not be subjected to a
trust management decision.

The third concern is whether REFEREE should introduce an explicit caching mechanism
for performance reason. Currently REFEREE does not have one, and my implementation
has no mechanism explicitly for caching purpose. However, my implementation
transparently inherits the benefit of Jigsaw's internal caching mechanism (caching filter).
When Label Loader needs to fetch labels from the network, it calls the Jigsaw Client
API, where the cache filter is activated. The subsequent call to get the same label will be
caught by the caching filter, and hence Label Loader gets caching for free. The
observation implies that caching is supposed to be transparent from the rest of the
processes in the application, and REFEREE needs not implement an explicit caching
mechanism.

BC00032448

56 Chapter Five

The returned values say the download-applet action should be taken (tri-value is true),
and it is justified by the endorsed PICS label in the statement-list. They are returned to
the REFEREE filter (step 7), and the filter returns a null reply object to the proxy Client
API. The null reply allows the request to resume processing in the Jigsaw proxy.

5.5 Discussions

The REFEREE implementation in the Jigsaw proxy provides many insights on how a
trust management system should work in a real-world application. This section attempts
to address some of the concerns raised during the implementation, and explain how my
particular implementation deals with them.

The first concern is the order in which REFEREE is placed with respect to other tasks in
a host application that are concurrently affecting the behavior of the application. Caching
is such a conservative task in the Jigsaw proxy, where the order to do trust management
and caching matters. I place the REFEREE filter in the highest precedence, so it always
gets evaluated. It is considered the most conservative approach, because it would
accurately observe time-dependent trust elements, such as expired or revoked certificates,
and make correct trust decisions based on them. However, if performance is more critical
than accuracy, an application should place the caching filter in front of the REFEREE
filter. Determining how the trust management task interacts with other processes in a
host application is in a way another "trust policy", and it is outside the scope in which
REFEREE can evaluate.

The second concern is whether actions issued during the evaluation of trust management
are subject to the same trust management evaluation. For example in the Jigsaw proxy,
download-applet requires Label Loader to call the Jigsaw Client API and fetch PICS
labels from the network. The act of fetching PICS labels itself may be considered as a
trust management problem and be subjected to a label-fetching trust management policy.
My current implementation does not invoke another level of trust management during a
trust management evaluation. I reject this idea for two reasons. First, it may introduce
deadlock if the label-fetching policy in turn requests the same labels before the label can
be fetched. The same Label Loader would be called recursively without making any
progress. Second, I treat the action of fetching PICS labels as a trust protocol that is safe,
secure, without any judgement of trust, therefore the action needs not be subjected to a
trust management decision.

The third concern is whether REFEREE should introduce an explicit caching mechanism
for performance reason. Currently REFEREE does not have one, and my implementation
has no mechanism explicitly for caching purpose. However, my implementation
transparently inherits the benefit of Jigsaw's internal caching mechanism (caching filter).
When Label Loader needs to fetch labels from the network, it calls the Jigsaw Client
API, where the cache filter is activated. The subsequent call to get the same label will be
caught by the caching filter, and hence Label Loader gets caching for free. The
observation implies that caching is supposed to be transparent from the rest of the
processes in the application, and REFEREE needs not implement an explicit caching
mechanism.

BC00032448

Blue Coat Systems - Exhibit 1014
0053

REFEREE Reference Implementation 57

The fourth concern is whether REFEREE can be application independent as promised.
As demonstrated in this implementation, the only two pieces that are "Jigsaw-centric" are
the Jigsaw filter and the network fetcher. The Jigsaw filter traps requests from its host
and bootstraps REFEREE. The network fetcher fetches information from the network,
which are already in place for most network applications. Both of them are considered
minimal for an application to do trust management. The rest of the code can be ported to
other applications without any modification.

The fifth concern is whether REFEREE introduces disastrous performance hit for doing
trust management. My implementation takes less than half a second to evaluate of the
sample policy in Section 5.4, excluding any network time (my implementation supplies
all the network information through a fixed input stream). This observation implies that
the bottleneck to do trust management will not be the invocation of REFEREE modules,
or evaluation of trust policies. Rather, the bottleneck will be the use of network, where
fetching labels from the Web may incur long delays, or the use of cryptography, where
validating digital signatures may take large CPU cycles. They are however, the
unavoidable steps to make any trust decisions, but the overhead of REFEREE is minimal.

BC00032449

REFEREE Reference Implementation 57

The fourth concern is whether REFEREE can be application independent as promised.
As demonstrated in this implementation, the only two pieces that are "Jigsaw-centric" are
the Jigsaw filter and the network fetcher. The Jigsaw filter traps requests from its host
and bootstraps REFEREE. The network fetcher fetches information from the network,
which are already in place for most network applications. Both of them are considered
minimal for an application to do trust management. The rest of the code can be ported to
other applications without any modification.

The fifth concern is whether REFEREE introduces disastrous performance hit for doing
trust management. My implementation takes less than half a second to evaluate of the
sample policy in Section 5.4, excluding any network time (my implementation supplies
all the network information through a fixed input stream). This observation implies that
the bottleneck to do trust management will not be the invocation of REFEREE modules,
or evaluation of trust policies. Rather, the bottleneck will be the use of network, where
fetching labels from the Web may incur long delays, or the use of cryptography, where
validating digital signatures may take large CPU cycles. They are however, the
unavoidable steps to make any trust decisions, but the overhead of REFEREE is minimal.

BC00032449

Blue Coat Systems - Exhibit 1014
0054

6 Conclusion

My thesis identifies the trust management problems in the context of the World Wide
Web and provides a two-part solution: REFEREE as the general-purpose execution
environment and PicsRULZ and Profiles-0.92 as the policy languages. They utilize the
existing trust protocols and metadata formats, and together, they form a complete trust
management infrastructure in which trust is exchanged and established among mutually
untrusting parties in an untrusted information infrastructure.

My thesis has four contributions to the area of trust management:
• identify the concept of the trust management infrastructure, with the four basic

building blocks in the infrastructure.
• study current protocols and systems involving trust and identify their strengths

and weaknesses.
• propose a two-part solution: REFEREE as a generic execution environment, and

Profiles-0.92 as a flexible trust policy language.
• implement reference versions of REFEREE and Profiles-0.92 and prove that the

concept of a generic trust management infrastructure is a realistic goal.
I do not claim the work on REFEREE and trust management is definitive or conclusive in
its current state, but rather that it is a step forward in the understanding of the intricacies
of trust. Of course, more work is needed. In particular, we need network experts to build
robust and yet more efficient metadata formats and trust protocols. We need language
experts to define simple and yet expressive trust policy languages. We need system
experts to structure secure and yet dynamic execution environment. We also need user
interface experts to deliver a user-friendly and yet feature-rich user interface to take
advantage of a sophisticated trust management infrastructure beneath.

More challenges are ahead of us. Chin up!

58

BC00032450

6 Conclusion

My thesis identifies the trust management problems in the context of the World Wide
Web and provides a two-part solution: REFEREE as the general-purpose execution
environment and PicsRULZ and Profiles-0.92 as the policy languages. They utilize the
existing trust protocols and metadata formats, and together, they form a complete trust
management infrastructure in which trust is exchanged and established among mutually
untrusting parties in an untrusted information infrastructure.

My thesis has four contributions to the area of trust management:
• identify the concept of the trust management infrastructure, with the four basic

building blocks in the infrastructure.
• study current protocols and systems involving trust and identify their strengths

and weaknesses.
• propose a two-part solution: REFEREE as a generic execution environment, and

Profiles-0.92 as a flexible trust policy language.
• implement reference versions of REFEREE and Profiles-0.92 and prove that the

concept of a generic trust management infrastructure is a realistic goal.
I do not claim the work on REFEREE and trust management is definitive or conclusive in
its current state, but rather that it is a step forward in the understanding of the intricacies
of trust. Of course, more work is needed. In particular, we need network experts to build
robust and yet more efficient metadata formats and trust protocols. We need language
experts to define simple and yet expressive trust policy languages. We need system
experts to structure secure and yet dynamic execution environment. We also need user
interface experts to deliver a user-friendly and yet feature-rich user interface to take
advantage of a sophisticated trust management infrastructure beneath.

More challenges are ahead of us. Chin up!

58

BC00032450

Blue Coat Systems - Exhibit 1014
0055

Appendices

Appendix A. Modified BNF for PicsRULZ Policy Language

rule 	 '("PicsRule-' verMajor ' 	verMinor rule-body ')'
verMajor 	:: integer
verMinor 	:: integer
rule-body 	'(' rule-clauses ')'
rule-clauses 	:: rule-clause+
rule-clause 	:: filter-clause I fail-clause I pass-clause

name-clause I source-clause I service-clause 1
opt-ext-clause 1 req-ext-clause I
extension-clause

filter-clause :: 'Filter"(' attrvalpair+ ')'
fail-clause 	'failURL"(' attrvalpair+ ')'
url-list 	 quotedURL+
pass-clause 	'passURL"(' attrvalpair+ ')'
name-clause 	'name"(' attrvalpair+ ')'
source-clause :: 'source"(' attrvalpair+ ')'
service-clause :: 'serviceinfo"(' attrvalpair+ ')'
opt-ext-clause 	'optextension"(' attrvalpair+ ')'
req-ext-clause 	'reqextension"(' attrvalpair+ ')'
ext-clause 	:: extension-clause-name '(' attrvalpair+ ')'
attrvalpair 	:: attribute whitespace value 1 primaryvalue
attribute 	alphanumstr
value 	 quotedstring I '(' attrvalpair '(' whitespace

attrvalpair)* ')'
primaryvalue 	quotedstring+ I '(' attrvalpair+ ')'
quotedstring 	('"' notquotechars '"') I ("'" notquotechars " ,n)
alphanumchar 	alphanum+
whitespace 	 ' I '\t' I '\r' 1 '\n'
alphanum 	: : '0' - 	'A' - 'Z' 	'a' - fz,

notquotechars :: any ASCII characters between 32-127 except ' and '
comment 	 '{' comment-text* '}'
comment-text 	:: any octets except '1'
PermissionExp :: "Unless-Prohibited" 1 expression
ProhibitionExp :: expression
expression 	:: simple-expression I or-expression I and-expression
simple-exp 	'(' service '.' category op constant ')'
service 	:: any shortname defined in a serviceinfo clause

within this rule
category 	:: any transmit-name for a category defined by

the rating-system referred to by the matching system
op 	 : : 	I '<' 	'!'' 	I '>=' 	'=>' 	'<=' 	'=<' 	I

'all-equal' 1 'none-equal' 1 'includes'
constant 	:: [sign] alphanumchar ['.' alphanumchar]
or-expression :: '(' expression or expression [or expression]+ ')'
or 	 ;: 'or' I 	I
and-expression 	'(' expression and expression [and expression]+ ')'
and 	 : : 'and' 1 '&&'
sign

59

BC00032451

Appendices

Appendix A. Modified BNF for PicsRULZ Policy Language

rule 	 '("PicsRule-' verMajor ' 	verMinor rule-body ')'
verMajor 	:: integer
verMinor 	:: integer
rule-body 	'(' rule-clauses ')'
rule-clauses 	:: rule-clause+
rule-clause 	:: filter-clause I fail-clause I pass-clause

name-clause I source-clause I service-clause 1
opt-ext-clause 1 req-ext-clause I
extension-clause

filter-clause :: 'Filter"(' attrvalpair+ ')'
fail-clause 	'failURL"(' attrvalpair+ ')'
url-list 	 quotedURL+
pass-clause 	'passURL"(' attrvalpair+ ')'
name-clause 	'name"(' attrvalpair+ ')'
source-clause :: 'source"(' attrvalpair+ ')'
service-clause :: 'serviceinfo"(' attrvalpair+ ')'
opt-ext-clause 	'optextension"(' attrvalpair+ ')'
req-ext-clause 	'reqextension"(' attrvalpair+ ')'
ext-clause 	:: extension-clause-name '(' attrvalpair+ ')'
attrvalpair 	:: attribute whitespace value 1 primaryvalue
attribute 	alphanumstr
value 	 quotedstring I '(' attrvalpair '(' whitespace

attrvalpair)* ')'
primaryvalue 	quotedstring+ I '(' attrvalpair+ ')'
quotedstring 	('"' notquotechars '"') I ("'" notquotechars " ,n)
alphanumchar 	alphanum+
whitespace 	 ' I '\t' I '\r' 1 '\n'
alphanum 	: : '0' - 	'A' - 'Z' 	'a' - fz,

notquotechars :: any ASCII characters between 32-127 except ' and '
comment 	 '{' comment-text* '}'
comment-text 	:: any octets except '1'
PermissionExp :: "Unless-Prohibited" 1 expression
ProhibitionExp :: expression
expression 	:: simple-expression I or-expression I and-expression
simple-exp 	'(' service '.' category op constant ')'
service 	:: any shortname defined in a serviceinfo clause

within this rule
category 	:: any transmit-name for a category defined by

the rating-system referred to by the matching system
op 	 : : 	I '<' 	'!'' 	I '>=' 	'=>' 	'<=' 	'=<' 	I

'all-equal' 1 'none-equal' 1 'includes'
constant 	:: [sign] alphanumchar ['.' alphanumchar]
or-expression :: '(' expression or expression [or expression]+ ')'
or 	 ;: 'or' I 	I
and-expression 	'(' expression and expression [and expression]+ ')'
and 	 : : 'and' 1 '&&'
sign

59

BC00032451

Blue Coat Systems - Exhibit 1014
0056

* I

60 Appendices

Appendix B. Modified BNF for Profiles-0.92 Policy Language

policy
rule

let-rule
let-binding
variable-name
let-expr
combine-rule
unary-rule
unary-op
multi-rule
multi-op
threshold-rule
threshold-val
invoke-rule

policy-name
statement-list
statement
context
content
optional-arg
install-rule
install-policy
install-interp
project-rule

match-rule
pattern

restriction

restriction-op

transmit-name
url-match-rule

rule+
let-rule 1 combine-rule I invoke-rule 1
install-rule I project-rule I match-rule
url-match-rule
'("let"(' let-binding+ ')' rule+ ')'
'(' variable-name let-expr ')'
symbol
rule I
unary-rule I multi-rule I threshold-rule
'(' unary-op rule ')'
'not' I 'true-if-unknown' I 'false-if-unknown'
'(' multi-op rule* ')'
'and' 	'or'
'("threshold-and' threshold-val rule* ')'
number
'("invoke' policy-name statement-list
optional-arg* ')'
quoted-name
'(' statement* ')'
'(' context content ') '
s-expression
s-expression
s-expression
install-policy 1 install-interp

'install-policy statement-list ')
'install-interpreter' statement-list
'tri-value' rule ')' I
'statement-list' rule ')'
'match' pattern rule ')'
I '+' I '.' 1 string-literal 1 symbol-literal I

restriction I '(' pattern* ')' 1 `\' string-literal
string-literal

'("RESTRICT' restriction-op transmit-name
value ')'

'<' 1>' 1= 1 i<= 1 	'>=' 	'<>i 	1
,<!, 	I ,>!' I 	'=1' I 	,<=!, 	I 	r >=! , 	I 	,<>!,

as defined in [PICS97a]
'("url-match' variable-name string-literal+ ') '

BC00032452

* I

60 Appendices

Appendix B. Modified BNF for Profiles-0.92 Policy Language

policy
rule

let-rule
let-binding
variable-name
let-expr
combine-rule
unary-rule
unary-op
multi-rule
multi-op
threshold-rule
threshold-val
invoke-rule

policy-name
statement-list
statement
context
content
optional-arg
install-rule
install-policy
install-interp
project-rule

match-rule
pattern

restriction

restriction-op

transmit-name
url-match-rule

rule+
let-rule 1 combine-rule I invoke-rule 1
install-rule I project-rule I match-rule
url-match-rule
'("let"(' let-binding+ ')' rule+ ')'
'(' variable-name let-expr ')'
symbol
rule I
unary-rule I multi-rule I threshold-rule
'(' unary-op rule ')'
'not' I 'true-if-unknown' I 'false-if-unknown'
'(' multi-op rule* ')'
'and' 	'or'
'("threshold-and' threshold-val rule* ')'
number
'("invoke' policy-name statement-list
optional-arg* ')'
quoted-name
'(' statement* ')'
'(' context content ') '
s-expression
s-expression
s-expression
install-policy 1 install-interp

'install-policy statement-list ')
'install-interpreter' statement-list
'tri-value' rule ')' I
'statement-list' rule ')'
'match' pattern rule ')'
I '+' I '.' 1 string-literal 1 symbol-literal I

restriction I '(' pattern* ')' 1 `\' string-literal
string-literal

'("RESTRICT' restriction-op transmit-name
value ')'

'<' 1>' 1= 1 i<= 1 	'>=' 	'<>i 	1
,<!, 	I ,>!' I 	'=1' I 	,<=!, 	I 	r >=! , 	I 	,<>!,

as defined in [PICS97a]
'("url-match' variable-name string-literal+ ') '

BC00032452

Blue Coat Systems - Exhibit 1014
0057

Appendices 61

Appendix C. Modified BNF for the Returned Statement-List of Label Loader

returned-stmt
content
header
label-source
bureau
version
service
poption
option

'(' content* ')'
'(' header version service poption* ratings ')'
'(""label-loader"' quotedURL label-source ')'
bureau 1 'EMBEDDED' I 'ALONG-WITH'
quotedURL
'("version""PICS-1.1"")'
'("service' quotedURL ')'
'(' option ')'
'by' quotedname 	'gen' Boolean 1
'for' quotedURL 	'on' quoted-ISO-date
'signature-rsa-md5' base64-string I
'exp' quoted-ISO-date 1 	'at' quoted-ISO-date
'md5' base64-string 1 	'comment' 	quotedname 1
'full' 	quotedURL I 	'original' 	quotedname 1
'extension"(' mand/opt quotedURL data* ')'

ratings '("ratings' rating* ')'
rating '(' 	transmit-name number ')' 	I

'(' 	transmit-name '(' multi-value* ')")'
transmit-name as defined in [PICS97a]
alphanumpm 'A' 'Z' 'a' I 	'z'

urlchar alphanumpm 1 	'.' I 	'$' 1 	',' 	I 	;' 	I 	I I
= 	I 	'?' 	I 	'V 	I 	I 	I 	'V 	I 	'0' 	I 1

'%' hex hex

BC00032453

Appendices 61

Appendix C. Modified BNF for the Returned Statement-List of Label Loader

returned-stmt
content
header
label-source
bureau
version
service
poption
option

'(' content* ')'
'(' header version service poption* ratings ')'
'(""label-loader"' quotedURL label-source ')'
bureau 1 'EMBEDDED' I 'ALONG-WITH'
quotedURL
'("version""PICS-1.1"")'
'("service' quotedURL ')'
'(' option ')'
'by' quotedname 	'gen' Boolean 1
'for' quotedURL 	'on' quoted-ISO-date
'signature-rsa-md5' base64-string I
'exp' quoted-ISO-date 1 	'at' quoted-ISO-date
'md5' base64-string 1 	'comment' 	quotedname 1
'full' 	quotedURL I 	'original' 	quotedname 1
'extension"(' mand/opt quotedURL data* ')'

ratings '("ratings' rating* ')'
rating '(' 	transmit-name number ')' 	I

'(' 	transmit-name '(' multi-value* ')")'
transmit-name as defined in [PICS97a]
alphanumpm 'A' 'Z' 'a' I 	'z'

urlchar alphanumpm 1 	'.' I 	'$' 1 	',' 	I 	;' 	I 	I I
= 	I 	'?' 	I 	'V 	I 	I 	I 	'V 	I 	'0' 	I 1

'%' hex hex

BC00032453

Blue Coat Systems - Exhibit 1014
0058

References

[BCKLMRS] Brezin, J., Chu, Y., Khare R., LaMacchia, B., Miller, J., Resnick, P.,
Strauss, M. (1996), "REFEREE Version 1.4d: Rule-controlled
Environment for Evaluation of Rules, and Everything Else," Working
draft.

[BFL96]
Management," Proceedings of the 17th Symposium on Security and
Blaze, M., Feigenbaum, J., and Lacy, J. (1996), "Decentralized Trust

Privacy, IEEE Computer Society, Los Alamitos, 1996, pp. 164-173.

[BFRS97]
	

Blaze, M., Feigenbaum, J., Resnick, P., and Strauss, M. (1997),
"Managing Trust in an Information-Labeling System," to appear in
European Transactions on Telecommunications. (Special issue of
selected papers from the 1996 Amalfi Conference on Secure
Communication in Networks.)

[CCITT88a]

[CCITT88b]

[CFLRS96]

CCITT (1988), Recommendation X.500 (ISO 9594): The Directory—
Overview of Concepts, Models and Services.

CCITT (1988), Recommendation X.509: The Directory--Authentication
Framework.

Chu, Y., Feigenbaum, J., LaMacchia, B., Resnick, P., and Strauss, M.
(1997), "REFEREE: Trust Management for Web Application,"
Proceedings of the 6th International World Wide Web Conference
Proceedings, International World Wide Web Conference Committee,
1997, pp. 227-238.

[DLLC97]
	

DesAutels, P., Lipp, P., LaMacchia, B., and Chu, Y. (1997), "DSig 1.0
Signature Labels - Using PICS 1.1 Labels for Digital Signature,'W3C
Working Draft, June 5, 1997.

[EFRT97]
	

Ellison, C., Frantz, B., Rivest., and Thomas, B. (1997) "SPKI— Simple
Public Key Certificate," Internet Draft, April 6, 1997.

[FL97]
	

Feigenbaum, J., and Lee, P. (1997), "Trust Management and Proof-
Carrying Code in Secure Mobile-Code Applications," PDARPA Workshop
on Foundations for Secure Mobile Code, March 26-28, 1997.

[MS96]
	

Microsoft Corporation (1996), "Proposal for Authenticating Code Via the
Internet." Revision 1.1, available from
http://www.microsoft.com/workshop/prog/security/authcode/authcode.htm

62

BC00032454

References

[BCKLMRS] Brezin, J., Chu, Y., Khare R., LaMacchia, B., Miller, J., Resnick, P.,
Strauss, M. (1996), "REFEREE Version 1.4d: Rule-controlled
Environment for Evaluation of Rules, and Everything Else," Working
draft.

[BFL96]
Management," Proceedings of the 17th Symposium on Security and
Blaze, M., Feigenbaum, J., and Lacy, J. (1996), "Decentralized Trust

Privacy, IEEE Computer Society, Los Alamitos, 1996, pp. 164-173.

[BFRS97]
	

Blaze, M., Feigenbaum, J., Resnick, P., and Strauss, M. (1997),
"Managing Trust in an Information-Labeling System," to appear in
European Transactions on Telecommunications. (Special issue of
selected papers from the 1996 Amalfi Conference on Secure
Communication in Networks.)

[CCITT88a]

[CCITT88b]

[CFLRS96]

CCITT (1988), Recommendation X.500 (ISO 9594): The Directory—
Overview of Concepts, Models and Services.

CCITT (1988), Recommendation X.509: The Directory--Authentication
Framework.

Chu, Y., Feigenbaum, J., LaMacchia, B., Resnick, P., and Strauss, M.
(1997), "REFEREE: Trust Management for Web Application,"
Proceedings of the 6th International World Wide Web Conference
Proceedings, International World Wide Web Conference Committee,
1997, pp. 227-238.

[DLLC97]
	

DesAutels, P., Lipp, P., LaMacchia, B., and Chu, Y. (1997), "DSig 1.0
Signature Labels - Using PICS 1.1 Labels for Digital Signature,'W3C
Working Draft, June 5, 1997.

[EFRT97]
	

Ellison, C., Frantz, B., Rivest., and Thomas, B. (1997) "SPKI— Simple
Public Key Certificate," Internet Draft, April 6, 1997.

[FL97]
	

Feigenbaum, J., and Lee, P. (1997), "Trust Management and Proof-
Carrying Code in Secure Mobile-Code Applications," PDARPA Workshop
on Foundations for Secure Mobile Code, March 26-28, 1997.

[MS96]
	

Microsoft Corporation (1996), "Proposal for Authenticating Code Via the
Internet." Revision 1.1, available from
http://www.microsoft.com/workshop/prog/security/authcode/authcode.htm

62

BC00032454

Blue Coat Systems - Exhibit 1014
0059

References 63

[NCSA95] 	National Security Computer Association (1995), "Microsoft Word
Document Macro Virus," Hard-Copy, Journal of the Chicago Computer
Society, Volume 11, Number 10, October 1995, pp. 39-40, available from
http://www.ccs.org/hc/9510/ncsa.html.

[Necula97] Necula, G. (1997), "Proof-Carrying Code," to appear in Proceedings of the
1997 ACM Symposium on Principle of Programming Languages.

[PICS97a] 	"Rating Services and Rating Systems and Their Machine-Readable
Descriptions Version 1.1," W3C Recommendation.

[PICS97b] 	"PICS Label Distribution Label Syntax and Communication Protocols
Version 1.1," W3C Recommendation.

[PICS97c] 	"PICS Profile Language Working Group - PicsRULZ,'W3C PICS
Working Group draft, available from
http://wwwl.raleigh.ibm.com/pics/ProfilesWG.html.

[RL96] 	Rivest, R. and Lampson, B. (1996), "SDSI—a Simple Distributed Security
Infrastructure Version 1.1," draft, available from
http://theory.ks.mitedu/-cis/sdsi.html.

[RSA97] 	RSA Laboratories (1997), "PKCS #7: Cryptographic Message Syntax
Standard Version 1.6," RSA Standards.

BC00032455

References 63

[NCSA95] 	National Security Computer Association (1995), "Microsoft Word
Document Macro Virus," Hard-Copy, Journal of the Chicago Computer
Society, Volume 11, Number 10, October 1995, pp. 39-40, available from
http://www.ccs.org/hc/9510/ncsa.html.

[Necula97] Necula, G. (1997), "Proof-Carrying Code," to appear in Proceedings of the
1997 ACM Symposium on Principle of Programming Languages.

[PICS97a] 	"Rating Services and Rating Systems and Their Machine-Readable
Descriptions Version 1.1," W3C Recommendation.

[PICS97b] 	"PICS Label Distribution Label Syntax and Communication Protocols
Version 1.1," W3C Recommendation.

[PICS97c] 	"PICS Profile Language Working Group - PicsRULZ,'W3C PICS
Working Group draft, available from
http://wwwl.raleigh.ibm.com/pics/ProfilesWG.html.

[RL96] 	Rivest, R. and Lampson, B. (1996), "SDSI—a Simple Distributed Security
Infrastructure Version 1.1," draft, available from
http://theory.ks.mitedu/-cis/sdsi.html.

[RSA97] 	RSA Laboratories (1997), "PKCS #7: Cryptographic Message Syntax
Standard Version 1.6," RSA Standards.

BC00032455

Blue Coat Systems - Exhibit 1014
0060

