
cql – A Flat File Database Query Language
Glenn Fowler

gsf@research.att.com

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

Abstract

cql is a UNIX system tool that applies C style query expressions to flat file databases. In some respects it is
yet another addition to the toolbox of programmable file filters: grep [Hume88], sh [Bour78][BK89], awk
[AKW88], and perl [Wall]. However, by restricting its problem domain, cql takes advantage of optimizations
not available to these more general purpose tools.

This paper describes the cql data description and query language, query optimizations, and provides comparisons
with other tools.

1 Introduction

Flat file databases are common in UNIX system environments. They consist of newline terminated records with
a single character that delimits fields within each record. Well known examples are /etc/passwd and /etc/group,
and more recently the sablime [CF88] MR databases and cia [Chen89] abstraction databases.

There are two basic flat file database operations:

update – delete, add or modify records

query – scan for records based on field selection function

For the most part UNIX system tools make a clear distinction between these operations. Update is usually done
by special purpose tools to avoid problems that arise from concurrency. Some of these tools are admittedly low-
tech: vipw write locks the /etc/passwd file and runs the vi editor on it; any other user running vipw concurrently
will be locked out. On the other hand query tools usually assume that the input files are readonly or that they at
least will not change during query access. cql falls into this category: it is strictly for queries and supports no
update operations. Despite this restriction cql adequately fills the gap between awk and full featured database
management systems.

In the simplest case a flat file database query is a pattern match that is applied to one or more fields in each
record. The output is normally a list of all matched records. grep , sh , awk , and perl are well suited for such
queries on small databases. These commands scan the database from the top, one record at a time, and apply the
match expression to each record. Unfortunately, as the number of records and queries increases, the repeated
linear scans required by these tools soon become an intolerable bottleneck. The bottleneck can be diminished by
examining the queries to limit the number of records that must be scanned, but this requires some modifications,
either to the database or to the scanning tools.

Some applications, such as sablime , ease the bottleneck by partitioning the database into several flat files based
on one or more of the record fields. This speeds up queries that key on the partitioned fields, but hinders queries
that must span the partition. Besides complicating the application query implementation, partitioning also
imposes complexity on database updates and backup.

The perl solution (actually, one of the perl solutions – perl is the UNIX system swiss army knife) is to base the
queries on dbm [BSD86] hashed files rather than flat files. Linear scans are then avoided by accessing the dbm
files as associative arrays. A problem with this is that a dbm file contains the hashed field name and record data
for each database record, so its file size is always larger than the original flat file. This method also generates a
separate dbm file for each hashed field, making it unacceptable for use with large databases.

Blue Coat Systems - Exhibit 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- 2 -

Other applications, such as cia , preprocess the database by generating B-tree or hash index files [Park91] for
quick random access. Specialized scanning tools are then used to process the queries. The advantage here is that
no database changes are required to speed up the queries. In addition, hash index files only store pointers into
the database, so their size is usually smaller than the original database. The speedup, though, is not without cost.
Some of the tools may be so specialized as to work for only a small class of possible queries; new query classes
may require new tools.

Along with sufficient access speed, another challenge is to provide reasonable syntax and semantics for query
expressions. For maximal transparency and portability the database fields should be accessed by name rather
than number or position. Otherwise queries would become outdated as the database changes.

cql addresses these issues by providing a fast, interpreted symbolic interface at the user level, with automatic
record hash indexing and query optimization at the implementation level. Query expressions are modeled on C,
including a struct construct for defining database record schemas.

2 Background

As opposed to the UNIX system database tools like unity [Felt82], cql traces its roots to the C language and the
grep and awk tools. As such cql is limited to readonly database access.

An example will clarify the differences between the various tools. The example database is /etc/passwd with the
record schema:

name:passwd:uid:gid:info:home:shell

where : is the field delimiter, uid and gid are numeric fields, and the remaining fields are strings. The
example query selects all records with uid less than 10 and no passwd.

Example solutions may not be optimal for each tool, but they are a fair representation of what can be derived
from the manuals and documentation. The author has a few years experience with grep and sh , some exposure
to awk , but had to resort to a netnews request for perl .

2.1 grep

grep ’^[^:]*::[0-9]:’ /etc/passwd

grep associates records with lines and has no implicit field support, so the select expression must explicitly list
all fields. As it turns out the expression uid<10 can be matched by a regular expression; more complicated
expressions would require extra tool plumbing, possibly using the cut and expr commands. grep differs from the
other tools in that a single regular expression pattern describes both the schema and query. This works fine at
the implementation level but is cumbersome as a general purpose user interface.

2.2 awk

awk ’
BEGIN { FS = ":" }
{ if ($3 < 10 && $2 == "") print }

’ /etc/passwd

Lines are the default awk record and FS specifies the field separator character. Numeric expressions are as in C
and string comparison may also use the == and != operators. Unfortunately the fields are named by number
(starting at 1). If the database format changes then all references to $number must be changed accordingly. An
advantage over grep is that fields are accessed as separate entities rather than being a part of the matching
pattern.

2.3 shell

Blue Coat Systems - Exhibit 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- 3 -

ifs=$IFS
IFS=:
while read name passwd uid gid info home shell junk
do if (($uid < 10)) && [[$passwd == ""]]

then IFS=$ifs
print "$name:$passwd:$uid:$gid:$info:$home:$shell"
IFS=:

fi
done < /etc/passwd

The shell (ksh[BK89]) version uses the field splitting effects of IFS and read to blast the input records. A nice
side effect is that read also names the fields. If the database changes then only the field name arguments to
read must change. Notice, however, that the shell has different syntax for numeric and string comparisons.
Also, older shells [Bour78] have no built-in expressions and would require a separate program like expr to do the
record selection.

2.4 perl

perl -e ’
open (PASSWD, "< /etc/passwd") || die "cannot open /etc/passwd: $!";
while (<PASSWD>) {

($name, $passwd, $uid, $gid, $info, $home, $shell) = split(":");
if ($uid < 10 && $passwd eq "") {

print "$name:$passwd:$uid:$info:$home:$shell";
}

}
’

The perl example [Chri92] is similar to shell , except that shell combines the record read and field split operations
into a single read operation. As with shell string equality requires special syntax and $ must prefix expression
identifiers.

2.5 cql

cql -d "
passwd {

char* name;
char* passwd;
int uid, gid;
char* info;
char* home, shell;

}
passwd.delimiter = ’:’;

" -e "uid < 10 && passwd == ’’" /etc/passwd

cql queries are split into two parts. The declaration section (–d) describes the record schema and the expression
section (–e) provides the matching query. Using cql for this query is overkill, but it provides a basis for the
more complex examples that follow.

Blue Coat Systems - Exhibit 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- 4 -

2.6 Performance

Figure 1 shows the timing in user+sys seconds for the above examples, ordered from best to worst. The times
were averaged over 5 runs on a lightly loaded 20 mip workstation with 2 cpus on an input file consisting of
19,847 records (1,525,549 bytes) in a local file system. cat is included as a lower bound.

cat 0.31
grep 1.77
cql 3.29
awkcc 3.37
awk 7.73
perl 9.09
ksh 19.98

Figure 1. Example timings

Although the compiled awkcc example runs more than twice as fast as the awk script it suffers by having a fixed
select expression. Any change in the expression would force recompilation of the awk script to make a new
executable. The timings also show that performance for the example query seems to be inversely proportional to
tool functionality.

3 Optimization

Queries that check fields for equality are candidates for optimization. For example, most /etc/passwd queries are
lookups for a particular name, uid or gid. As mentioned before, perl supports an associative array interface to
dbm hash files, but converting to use this would require more than four times the file space of /etc/passwd itself
and the query syntax would need to change to use the array notation. cql offers an alternative that only changes
the schema declaration:

passwd {
register char* name;
char* passwd;
register int uid, gid;
char* info;
char* home, shell;

}

As with C the register keyword is a hint that marks variables that may be frequently accessed. For cql register
marks fields that may be frequently checked for equality. cql generates a hash index file for each register field
during the first database query. Subsequent queries use the index files to prune the scan to only those records
with the same hash value as the register fields in the query expression. The index files are connected to a
particular database; if the database file changes then the index files are regenerated by doing a full database scan.
Because of index file generation the first query on schemas with register fields is always slower than subsequent
queries.

The hash index file algorithm is due to David Korn and has been implemented as a library (hix) by the author.
A hix file stores only hash codes and database file offsets, and its size ranges from 10% to 50% of the original
database. The /etc/passwd example above has one record with the name bozo. The timings for the query
name=="bozo" are listed in Figure 2.

Blue Coat Systems - Exhibit 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

- 5 -

no register fields 2.95
first register query 6.52
subsequent register queries 0.54
grep 1.64
awk 7.13
perl 7.56

Figure 2. Register query timings

The hix file generation slowed the first query by over 2 times but the subsequent queries were about 10 times
faster. Even with hix file generation cql is still slightly faster than awk and perl . For the example /etc/passwd
file size of 1,525,644 bytes the 3 hix files were a total of 788,952 bytes, or approximately 50% of the original
database size.

4 Sub-schemas

Fields often contain data that can be viewed as another database record. cql supports this by allowing schema
fields within schemas. The sub-schema fields are then accessed using the familiar C ‘.’ notation. Our local
/etc/passwd file formats the info field as:

info {
char* name, address, office, home;

}
info.delimiter = ",";

where the info sub-schema delimiter is ‘,’. An important difference with C declaration syntax is that the cql
char* is a basic type. This means that all of the fields in this example have type char*, whereas in C only
the first field would be char*.

Adding a second schema declaration introduces an ambiguity as to which schema applies to the main database
file. By default the main schema is first schema from the top. schema=schema-name; can be used to
override the default. The complete declaration now becomes:

passwd {
register char* name;
char* passwd;
register int uid, gid;
info info;
char* home, shell;

}
info {

char* name, address, office, home;
}
passwd.delimiter = ":";
info.delimiter = ",";
schema = passwd;

and the following queries are possible:

info.name=="Bozo T. Clown"
info.address=="* MH *"

where the second query illustrates ksh pattern matching on the address field.

Fields that refer to sub-schema data in different files are also possible. In this case the sub-schema field data is
actually a key that corresponds to a field (usually the first) in the sub-schema data file. cia uses this format for

Blue Coat Systems - Exhibit 1013f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
	� Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

	� Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
	� With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

	� Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
	� Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

	� Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

