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SUMMARY

The transport properties and growth-inhibitory potential of 37 classic
and novel antifolate compounds have been tested in vitro against
human and murine cell lines expressing different levels of the reduced
folate carrier (RFC), the membrane-associated folate binding protein
(mFBP), or both. The intracellular targets of these drugs were dihy-
drofolate reductase (DHFR), glycinamide ribonucieotide transform-
ylase (GARTF), folylpolyglutamate synthetase (FPGS), and thymidy-
late synthase (TS). Parameters that were investigated included the
affinity of both folate-transport systems for the antifolate drugs, their
gowm-wwbttaypotemalasaﬁncbonofoelua'RFC/mFBPex-
pression, andthepmtechveeffectofeltherFAorletmvomagalnst
growth inhibition. Methotrexate, aminopterin, N'°-propargyl-5,8-
dldeazafohcac.d(CBSﬂ?) ZD1694, 5,8-dideazaisofolic acid (AHQ),
5,10-di ic acid (DDATHF), and 5-deazafolic acid
(efﬁcuernwbsuateforFPGS)wereusedasmemlcstmcamsmme

substrate affinity for all analogues except CB3717, 2-NH,-ZD1694,

and giutamate side-chain-modified FPGS inhibitors. Substitutions at
1he2-posmon(eg 2-CH3)mpmvedtheRFCstbstratedﬁrityfor

-hemiphthaloyl-L-omithine),
10-ethyl-10-deazaaminopterin, and DDATHF. With respect to mFBP,
modifications at the N-3 and 4-oxo positions resulted in a substantial
loss of binding affinity. Modifications at other sites of the molecule
were well tolerated. Growth-inhibition studies identified a serles of
drugs that were preferentially via RFC (2,4-diamino struc-
tures) or mFBP (CB3717, 2-NH,-ZD1694, or 5,8-dideazaisofolic
acid), whereas other drugs were efficiently transported via both trans-
port pathways (e.g., DDATHF, ZD1694, BW1843U89, or LY231514).
Given the fact that for an increasing number of normal and
cellsmdhssues,dlffermte)qxesamlevelsofRFCaMmFBPaa
being , this folate relationship
canbeofvabeforpredtcthgmjgsensmnyandresmuoeofunor
celis or drug-related toxicity to normal celis and for the rational design
and development of novel antifolates.

For more than 40 years, the folate antagonist MTX has had
an established role in cancer chemotherapy, both as a single

agent and in combination regimens (1). Knowledge of the
factors that contribute to the preclinical and clinical activity

of MTX, i.e., membrane transport, intracellular retention,
and inhibition of the target enzyme DHFR, has provided a
solid basis for the design and synthesis of novel antifolates
that are either transported more efficiently, have a prolonged
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ABBREVIATIONS: RFC, reduced folate/methotrexate carrier; mFBP, membrane-associated folate binding protein; FCS, fetal calf serum; HBSS, HEPES
balanced salt solution; LV, L-leucovorin (L-5-formyitetrahydrofolate); 5-CH,-THF, S-methyttetrahydrofolate; DHFR, dihydrofolate reductase; FPGS,
folylpolyglutamate synthetase; GARTF, glycinamide ribonuclectide transformylase; TS, thymidylate synthase; FA, folic acid; PteGlu, pteroyl glutamate
(FA); MTX, methotrexate; 2-dMTX, 2-desamino-MTX; 2-CH,-MTX, 2-desamino-2-methyl-MTX; AMT, aminopterin; 2-dAMT, 2-desamino-AMT; 2-CH,-
AMT, 2-desamino-2-methyl-AMT; 10-EdAM, 10-ethyl-10-deazaaminopterin; PT523, N“<{4-amino-4-deo -(hemiphthaloyl)-L-omithine;
DDATHF, 5,10-dideaza-5,6,7,8-tetrahydrofolic acid; 5-d)H,PteGlu, 5-deaza-5,6,7,8-tetrahydroisofolic acid; N°-CH,-5-d()HPteGlu, N°P-methyl-5~
deaza-5,6,7,8-tetrahydroisofolic acid; 5-dPteHCysA, N°-(5-deazapteroyl)-L-homocysteic acid; 5-dPteAPBA, N*-(5-deazapteroyl)-oL-2-amino-4-phos-
phonobutanoic acid; 5-dPteOm, Ne°-(5-deazapteroyl)-L-omithine; 5-dH,PteHCysA, N*-(5-deaza-5,6,7,8-tetrahydropteroyl)-L-homocysteic acid;
5-dH,PteAPBA, N>-(5-deaza-5,6,7,8-tetrahydropteroyl)-bL-2-amino-4-phosphobutanoic acid; 5-dH,PteOm, N°(5-deaza-5,6,7,8-tetrahydropteroyl)-L-
omithine; CB3717, N'°-propargyi-5,8-dideazafolic acid; ICI-198,583, 2-desamino-2-methyl-N"'°-propargyl-5,8-dideazafolic acid; 4-H-ICI-198,583, 4-de-

oxy-1Cl-198,583; 4-OCH,-ICI-198,583, 4-methoxy-ICl-198,583; Glu—Val-iCI-198,583, valine-ICI-198,583; Glu— Sub-ICl-198,583, 2-amino-suberate-
ICI-198,583; 7-CH,-ICl-198,583, 7-methyl-iCl-198,583; ZD1694, N-[5(N-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-yl-methyllamino)2-thenyl)]-L-glutamic
acid; 2-NH,-ZD1694, 2-amino-ZD1694; BW1843U89, (S)-2-{5-{(1,2-Dihydro-3-methyi-1-oxobenzoffiquinazolin-9-yimethyllamino}- 1-oxo-2-iscindolinyl]-
glutaric acid; LY231514, N-(4-(2-(2-amino-4,7-dihydro-4-oxo->H-pyrrolof2,3-ojpyrimidin-5-yllethybenzoyl]-L-glutamic acid; IAHQ, 5,8-dideazaisofolic
acid; 2-d-IAHQ, 2-desamino-IAHQ; 2-CH,-dIAHQ, 2-desamino-2-methyl-IAHQ; 5-d([)PteGlu, 5-deazaisofolic acid; N°-CH,-5-d()PteGlu, N°-methyi-5-
deazaisofolic acid; N°-CHO-5-d()PteGlu, N°-formyl-5-deazaisofolic acid; AG337, 3,4-dihydro-2-amino-6-methyl-4-oxo-5-{4-pyridyithio)quinazoline;
AG377, 2,4-diamino-6-{N-(4-(phenyisulfonyl)benzylethyllamino]quinazoline.
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intracellular retention, or are more potent inhibitors of the
target enzyme (2-13). Other than DHFR, key enzymes in
folate metabolism, such as TS, GARTF, and FPGS, have been
recognized as potential targets for folate-based chemothera-
peutic agents (14-19).

Traditionally, the biological activity of novel antifolates is
evaluated with in vitro model systems (usually leukemia cell
lines) that express the RFC as the major transport route for
natural reduced folate cofactors (e.g., LV and 5-CH,-THF)
and classical antifolate compounds (6, 20-22). Although the
role of the RFC in antifolate transport is undisputed, an
increasing number of reports suggest that at least one other
folate transport protein, an mFBP, may have an additional
role in antifolate uptake (23-28). A functional role of mFBP
in folate uptake has been demonstrated in a number of in
vitro (28-32) and in vivo (33) studies in which mFBP-medi-
ated transport of natural reduced folate cofactors supported
cellular growth at nanomolar extracellular concentrations.
Other reports have demonstrated mFBP-mediated transport
of antifolates, particularly if the mFBP exhibits a high bind-
ing affinity for these drugs (23, 34-36). Because the mFBPs
appear to be expressed in a range of normal and neoplastic
cells and tissues (37—-42), further analysis of the potential
role of this protein in antifolate drug uptake is warranted.

The RFC and mFBP are structurally and functionally un-
related proteins. The RFC is an integral membrane protein
with a molecular weight ranging from 43-48 kDa in rodent
cells (43, 44) to 80-120 kDa in human cells (42, 45, 46). The
mFBP is a 38-40-kDa protein that is linked to the plasma
membrane via a glycosylphosphatidylinositol anchor (47, 48).
The mechanism of RFC-mediated folate and antifolate up-
take has been the subject of extensive studies, which have
demonstrated the uptake process is both temperature and
energy dependent and able to be inhibited by structurally
unrelated anions (6, 49-52). These observations support the
hypothesis that an anion exchange mechanism may be in-
volved in carrier-mediated antifolate uptake (6). At least two
mechanisms have been described for mFBP-mediated folate
uptake: one by the classic receptor-mediated endocytosis
pathway (53) and the other, most extensively studied in
monkey kidney MA-104 cells, via a novel mechanism called
potocytosis. Potocytosis (27) comprises a series of events that
involve clustering of folate-bound mFBP molecules in mem-
brane invaginations (caveolae), followed by transient closure
of caveolae from the extracellular medium and acidification
of their lumen, after which the folate molecule is dissociated
from the mFBP and translocated across the plasma mem-
brane via a specific carrier protein (27, 54). Whether the
latter protein is the RFC is not clear.

The kinetic properties of the RFC and mFBP for transport
also differ significantly. The RFC exhibits a high affinity (K,,,,
1-10 uMm) for natural reduced folate cofactors and antifolates
such as MTX (6), which can be internalized at a maximal rate
of 10-20 molecules per minute per transport molecule (20). A
characteristic feature of the RFC is its poor affinity for FA
(K., 200—400 pM), which is in contrast to that of mFBP.
mFBP has a high affinity (K;, 1-10 nM) for FA and reduced
folate cofactors, which may favor uptake at a physiological
folate concentration of 5-50 nM (26). On the other hand, the
recycling rate of mFBP is much slower than that for the RFC:
from ~30 min in MA104 cells (27, 55) to 5 hr in L1210 cells
(56, 57).

We report on a comprehensive study of the functional as-
pects of both the RFC and mFBP in antifolate drug transport,
which allowed us to directly compare the efficiency of these
transport proteins. As models, three CCRF-CEM human leu-
kemia cell lines were used, which are characterized by nor-
mal, upregulated, or defective RFC transport (22, 58). For
comparison, three (variant) L1210 murine leukemia cells
were included that express the RFC (50), coexpress the
mFBP and the RFC (569), or lack functional RFC activity
while retaining mFBP (60). In the present study, we used a
series of folate-based inhibitors of DHFR (MTX and AMT)
(61), GARTF (DDATHF and 5-d(i)H PteGlu) (15, 62), FPGS
(glutamate side chain-modified 5-deazafolic, 5-deazatetrahy-
drofolic acid structures) (63), and TS (CB3717, ZD1694, and
IAHQ) (64—-66). These compounds and their analogues with
structural alterations in the pteridine/quinazoline ring (sub-
stitutions at C-2, C-7, N-3, and C-4), p-aminobenzoate ring
(thiophene for benzoyl), the C°-N° bridge, and the glutamate
side chain (replacement by 2-aminosuberate, valine, and or-
nithine) were used in the study. All of these compounds were
evaluated for changes in the substrate specificity for the RFC
and mFBP; the growth-inhibitory effects against cell lines
with different expression levels of the RFC, mFBP, or both;
and the protective effect of LV, FA, or both.

The structure-activity relationships described in the
present study for antifolate transport via the RFC, mFBP, or
both may be of predictive value in assessing the preclinical
and clinical activity of antifolate drugs and can also be used
for the rational future design of new antifolates.

Experimental Procedures

Materials. RPMI 1640, with and without FA, and FCS, dialysed
and nondialysed, were obtained from GIBCO (Grand Island, NY). FA
and DL-5-CHg-THF were purchased from Sigma Chemical Co. (St.
Louis, MO). LV (L-stereoisomer) was a gift from Lederle (Pearl River,
NY). [3',6',7,9-°H]FA (35 Ci/mmol), [3",5',7-*HIMTX (20 Ci/mmol),
and ([3,4-°H]glutamic acid (56.6 Ci/mmol) were obtained from
Moravek Biochemicals (Brea, CA). [*HIFA and [*HIMTX were puri-
fied as described previously (20, 59, 60). All other chemicals were of
the highest purity available.

Drugs. The chemical structures of the antifolate compounds de-
scribed in the study are depicted in Fig. 1. The inhibitory potential of
these compounds against their target enzyme, as well as their sub-
strate affinity for FPGS, are described in Tables 1 (DHFR, GARTF,
and FPGS inhibitors) and 2 (TS inhibitors). It should be noted that
these data were taken from the indicated references and that the
experimental conditions were not identical. Nevertheless, these data
were included to explain possible growth-inhibitory effects on the
basis of poor enzyme inhibition or substrate affinity for FPGS. Fur-
ther details regarding chemical synthesis of the drugs are given in
references as indicated in Tables 1 and 2.

DHFR inhibitors. MTX was a gift from Pharmachemie (Haar-
lem, The Netherlands). AMT was purchased from Sigma Chemical
Co. 2-dMTX, 2-CH,-MTX, 2-dAMT, and 2-CH3-AMT were synthe-
sized as previously described (61). 10-EdAM was a gift from CIBA-
GEIGY (Basel, Switzerland). PT523 (67, 68) was a gift from Dr. W. T
McCulloch (Sparta Pharmaceuticals, Research Triangle Park, NC).

GARTF inhibitors. The synthesis of 5-d(i)H PteGlu and N°-CH,-
5-d(i)H PteGlu has been described previously (62). DDATHF was a
gift from the late Dr. G. B. Grindey (Lilly Research Labs., Indianap-
olis, IN).

- FPGS inhibitors. The 5-deazafolate analogues 5-dPteHCysA,
5-dPteAPBA, 5-dPteOrn, 5-dH PteHCysA, 5-dH,PteAPBA, and
5-dH,PteOrn were synthesized by Rosowsky et al. (63).
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Fig. 1. Molecular structure of folate-based inhibitors of DHFR, GARTF, FPGS, and TS.

TS inhibitors. CB3717 (64, 69) and ICI-198,583 (70) served as
basic structures for the following analogues: 3-deaza-ICI-198,583,
4-H-ICI-198,583, 4-OCH,-ICI-198,583, Glu—Val-ICI-198,583 (71,
72), T-CH;-ICI-198,583 (73, 74), Glu—Sub-1CI-198,583 (72), ZD1694
(65), and 2-NH,-ZD1694 (75, 76). The isofolic analogues IAHQ, 2-des-
amino-JAHQ, and 2-desamino-2-methyl-IAHQ and the 5-deazaisofo-
lates 5-d(i)PteGlu, N°-CH;-5-d(i)PteGlu, and N?-CHO-5d(i)PteGlu
were synthesized as described previously (62, 66, 77, 78). LY231514
(79) was a gift from the late Dr. G. B. Grindey. BW1843U89 (80) was

provided by R. Ferone (Burroughs Wellcome Co., Research Triangle
Park, NC). AG337 (81, 82) and AG377 (83) were gifts from Agouron
Pharmaceuticals, Inc. (San Diego, CA).

Cell culture. The cell lines used in the present study include
RFC-expressing CCRF-CEM human leukemic lymphoblasts (20-22);
a variant of this line, CEM/MTX, lacking functional RFC (58); and
another variant (CEM-7A), characterized by a 30-fold overexpression
of the RFC compared with CCRF-CEM cells (22). In addition, the
following murine cell lines were used: wild-type RFC expressing
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TABLE 1

Characteristics of folate-based inhibitors of DHFR, GARTF, and FPGS with respect to enzyme inhibition and substrate activity for

FPGS*

Kigo
Compound Main target FPGS substrate activity® Ref.
DHFR s GARTF
M
MTX DHFR 0.024 + 61,110
2-dMTX 6 NR 61
2-CH4-MTX >20 NR 61
AMT 0.025 +++ 61, 87
2-dAMT 19 NR 61
2-CH,-AMT >50 29 >10 NR 12, 61
10-EdAM 23pM +++ in
PT523 0.052 NS 68
DDATHF GARTF >100 >100 0.12 +++ 112,113
5-d(i)H,PteGlu >1000 >100 5.3 ++ 62
N9-CH,-5-d(i))H,PteGlu >1000 >100 26 +++ 62
K/,w M

5-dPteHCysA FPGS 0.4 55 570 63
5-dPteAPBA 47 300 9.0 63
5-dPteOm 8.3 5.7 63
5-dH,PteHCysA 12 2100 0.19 22 63
5-dH,PteAPBA 220 4200 0.047 32 63
5-dH,PteOm 3.7 0.027 63

* The data in this table are obtained from the indicated references. Please note that K|

determinations of enzyme inhibition and substrate activity determination

for FPGS may not have been carried out under identical conditions with respect to substréle, inhibitor, and cofactor concentration. For experimental details, see the

indicated references.
® FPGS substrate activity (K,,) Is defined as follows: K,,, 525 um: (+++); K,,, 256-100 pm: (++); K, > 100 pm: (+). NR, not reported; NS, nonsubstrate.
TABLE 2
Characteristics of folate-based inhibitors of TS with respect to enzyme inhibition and substrate activity for FPGS*
Koo
Compound Main target FPGS substrate activity” Ref.
DHFR TS GARTF
uM
MTX DHFR 0.024 + 110
CB3717 TS 0.91 0.02 ++ 70, 110
iCI-198,583 5.5 0.046 >17 ++ 69, 70
3-deaza-ICl-198,583 6.3 + 72
4-H-ICI-198,583 7.9 114
4-OCH,-ICI-198,583 6.0 114
Glu—Val-ICI-198,583 0.042 71
Glu—Sub-ICI-198,583 0.018 72
7-CH,-ICI1-198,583 0.028 NS 73
2D1694 12 0.65 +4+++ 65
2-NH,-ZD1694 0.44 76
BwW1843U89 0.00009 ++++ 80
LY231514 0.44 ++++ 79
IAHQ 0.11 1.3 +++ 78
2-dIAHQ 0.32 25 +++ 78
2-CH;-IAHQ 3.1 17 +++ 78
5-d(i)PteGlu 0.21 71 85.9 + 62
N®-CH,-5-d())PteGiu 0.25 0.48 >100 ++ 62
NP-CHO-5-d())PteGlu 1.95 28.8 >100 + 62
AG337 0.011 NS 81
AG377 0.033 NS 83

* The data in this table are depicted from the indicated references. Please note that K,
for FPGS may not have been carried out under identical conditions with respect to sul

determinations of enzyme inhibition and substrate activity determination
e, inhibitor, and cofactor concentration. For experimental details, see the

indicated references. Moreover, it should be noted that the K; for the compounds listed may not reflect the increased potency of inhibiting TS when polyglutamate

derivatives are formed.

5 FPGS substrate activity (K,,) is defined as follows: K, < 5 pm: (++++); K,,, 5-25 um: (+++); K, 25-100 pm: (++); K, > 100 pm: (+). NS, nonsubstrate.

L1210 leukemia cells, one variant (L.1210-B73) expressing both the
RFC and mFBP (59), and another variant (L1210-FBP) in' which
mFBP is the only functional transport protein (60). (This cell line
was erroneously reported to be derived from CEM/MTX cells, but on
karyotype and restriction polymorphism analysis it appeared to be a
subline of L1210-B73 cells lacking functional RFC activity (60a).
Parental cells (CCRF-CEM and L1210) and CEM/MTX cells were

grown in RPMI-1640 medium containing 2 uM FA supplemented
with 10% FCS, 2 mM L-glutamine, and 100 units/ml each of penicillin
and streptomycin. CEM-7A, L1210-FBP, and L1210-B73 cells were
grown in folate-free RPMI 1640 supplemented with 10% dialysed
FCS, antibiotics, and glutamine as described. LV was added as folate
source at final concentrations of 0.2, 1.0, and 1.0 nM, respectively
(unless otherwise indicated). The cell cultures of L1210, L1210-FBP,
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and L1210-B73 cells also contained 50 uM B-mercaptoethanol. Cells
were kept at 37° in a humidified atmosphere with 5% CO,.

DHFR and FPGS levels in cell lines. The DHFR concentration
of the cell lines used in the present study as assessed by [*HIMTX-
binding (84) was comparable in CEM, CEM/MTX, and CEM-7A cells
(1.3 pmol/mg protein). Likewise, DHFR levels in L1210 cells and
L1210-FBP cells were similar (2.6 pmol/mg protein). The enzyme
level in L1210-B73 cells was 2.8-fold higher (7 pmol/mg) than in
L1210 cells. FPGS activity was measured in all cell lines as described
by Jansen et al. (85) with 250 uMm MTX as a substrate. Enzyme
activities expressed as picomoles of MTX-[*H]glutamate formed per
hour per milligram of protein were as follows: 402 (L.1210-FBP), 618
(L1210-B73), 829 (CEM), 992 (CEM-7A), 1168 (L1210), and 1200
(CEM/MTX) (results not shown).).

RFC substrate specificity. CEM-7A cells (3 X 10°) in the loga-
rithmic phase of growth were washed with 10 ml HBSS buffer (107
mM NaCl, 20 mM HEPES, 26.2 mM NaHCOj,, 5.3 mM KCl, 1.9 mM
CaCl,, 1.0 mm MgCl,, and 7.0 mM D-glucose adjusted to pH 7.4 with
NaOH), centrifuged, and suspended in 1 ml HBSS-buffer at 37°.
Influx of [PHJMTX (0.5 Ci/mmol) was measured over a period of 1.5
min at 37° at an extracellular concentration of 5 uM in the absence or
presence of increasing concentrations of unlabeled folate or antifo-
late compound. Uptake was terminated by the addition of 9 ml of
ice-cold HBSS buffer, centrifugation at 800 X g for 5 min at 4°, and
a second wash with 10 ml ice-cold buffer. Cell pellets were resus-
pended in water and analyzed for radioactivity with Ultima-Gold
scintillation fluid and a scintillation counter (both from Packard,
Brussels, Belgium) with a counting efficiency for [3H] of approxi-
mately 55%. The drug concentration required to inhibited [*HIMTX
influx by 50% of control values (221 pmol/min/107 cells) was taken to
be a measure of relative affinity for the RFC.

mFBP substrate specificity. An intact cell binding assay for
competitive binding of PH]FA was performed as described previously
(86). Briefly, L1210-FBP cells were washed twice with ice-cold HBSS
buffer. One milliliter of L1210-FBP cell suspension (3 X 10° cells)
was incubated with 100 pmol {(*HIFA (specific activity, 0.5 Ci/mmol)
in the presence or absence of increasing concentrations of unlabeled
folate or antifolate compound. After 10 min, the cells were collected
by centrifugation (for 5 min at 800 X g at 4°), after which the
supernatant was removed. Pellets were resuspended in water and
analyzed for radioactivity as described. Relative affinities are de-
fined as the inverse molar ratio of compound required to displace
50% of [PHIFA from mFBP on L1210-FBP cells. The relative affinity
of mFBP for FA is set at 1.

Growth-inhibition studies. All cell lines were plated at an
initial density of 7.5 X 10* cells/ml in individual wells of a 24-well
tissue culture plate. The growth medium for CCRF-CEM, CEM/
MTX, and L1210-cells was RPMI 1640 with 10% FCS, supplemented
as described. CEM-7A cells were grown in folate-free RPMI 1640
with 10% dialysed FCS and 1.0 nM LV as the sole folate source;
L1210-FBP and L1210-B73 cells were grown in the same medium
but with 1 nM LV, 20 nM LV, or 20 nM FA as folate source. Drugs were
added at the time of plating. After 72 hr of exposure, cell counts and
viability were determined with a hemocytometer by trypan blue
exclusion. ICg, values are given as the concentration of drug at which
the growth is inhibited by 50% compared with controls.

Results

RFC substrate specificity. The affinity of the RFC for
the series of antifolate drugs, expressed as the drug concen-
tration required to inhibit [PHIMTX influx by 50%, is shown
in Fig. 2. MTX (represented by a black bar and vertical line)
was used as a reference compound. Compounds on the left
side of this line were better substrates for the RFC than
MTX, whereas compounds on the right side were poorer
substrates. All DHFR inhibitors included in the study ap-
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peared to be better substrates by RFC than MTX. Replace-
ment of the 2-amino group by 2-methyl in MTX and AMT led
to an enhanced affinity. For example, 2-CH,-dAMT was a
10-fold better substrate for RFC than MTX.

In the series of GARTF inhibitors, only DDATHF is a more
efficient substrate for RFC than MTX. The group of FPGS
inhibitors [5-deazatetrahydrofolic acid analogues with the
glutamate side chain replaced by other charged residues
(homocysteic acid, 2-amino-4-phosphonobutanoic acid, and
ornithine)] are very poor substrates for RFC-mediated trans-
port.

Within the group of TS inhibitors, the 2-amino-based struc-
tures CB3717, 2-NH,-ZD1694, and IAHQ are low affinity
substrates for the RFC. However, their 2-methyl analogues
(ICI-198,583, ZD1694, and 2-CH;-IAHQ) are excellent sub-
strates for the RFC. Modification at the 4-oxo position of
ICI-198,583 did not alter the substrate affinity for the RFC.
A modification at the N-3 position led to a 2-fold better
affinity for the RFC. Replacement of the glutamate side chain
by valine and 2-aminosuberate or a 7-CH; substitution re-
sulted in a 4-5-fold and a 3-fold lower affinity for the RFC
than for ICI-198,583, respectively. The RFC had the highest
affinity for BW1843U89. LY231514 was a 2-fold better sub-
strate for the RFC than MTX. The affinity of the RFC for
5-d(i)PteGlu and its N®-substituted analogues was more than
10-fold lower compared with MTX. As might be expected, the
lipophilic antifolates AG337 and AG377 were poor substrates
for the RFC.

mFBP substrate specificity. Relative affinities of the
mFBP for the series of antifolate drugs are presented in Fig.
3. FA (represented by the black bar and vertical line), for
which mFBP has a binding affinity constant (K,) of 0.5—1 nM
(not shown), was used as the reference compound. Compared
with FA, the mFBP had a lower affinity for all of the DHFR,
GARTF, and FPGS inhibitors, especially the 4-amino-based
compounds, e.g., MTX, AMT, and their 2-desamino/2-methyl
analogues 10-EdAM and PT523. Modifications at sites other
than the pteridine ring, such as the C®-N*° bridge and the
glutamate side chain, were better tolerated with respect to
efficient binding by mFBP. For example, mFBP demon-
strated good binding affinity for DDATHF and 5-dPteHCysA.
In contrast to 5-dPteHCysA, the tetrahydrofolate forms of
5-dPteAPBA and 5-dPteOrn were better substrates for
mFBP than were their nonreduced counterparts.

From the group of TS inhibitors, four compounds were
identified for which mFBP has a higher affinity than for FA:
LY213514, CB3717, IAHQ, and 2-NH,-ZD1694. Unlike ob-
servations for the RFC, the 2-methyl analogues of the latter
three compounds are characterized by significantly de-
creased binding affinity to mFBP. Most dramatic in terms of
abrogation of binding affinity are modifications at the N-3
position (3-deaza-ICI-198,583) and structural alterations at
the 4-oxo position (4-deoxy-ICI-198,583), although the 4-
methoxy analogue of ICI-198,583 retained the same binding
affinity as the parent compound. Modifications at other sites
of the molecule (the quinazoline ring [substitution at the
7-position], the C?-N*° bridge, the p-aminobenzoyl, and the
glutamate side chain) did not dramatically influence the
binding affinity with respect to binding by mFBP. mFBP
exhibits a moderately high binding affinity for BW1843U89.
Similar to the RFC, the mFBP has a poor affinity for the
lipophilic drugs AG337 and AG377.
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RFC

Folic acid
Leucovorin
6-CH,-THF
MTX
2-dMTX
2-CH,-MTX
AMT
2-dAMT
2-CH,-AMT
10-EdAM
PT523
Fig. 2. Concentrations for 50%
DDATHF inhibition of RFC-mediated influx
5-d(i)H PteGlu of PHJMTX. Values represent the
N°-CH,-5-d(ilH,PteGlu concentrations of folate or anti-
. folate compound necessary to
5-dPteHCysA ) inhibit RFC-mediated [FHIMTX
5-dPteAPEBA I b) influx in CEM-7A cells by 50% at
5-dPteOm c) 5 um extracellular concentration.
5-dH PteHCysA Vertical line and black bar, con-
5-dH, PteAPBA centration of unlabeled MTX
5-dH,PteOm d) necessary to inhibit PHIMTX up-
I take by 50%. Fo furher detals,
CB3717 see Experimental Procedures.
IC1-198,583 I Bars labeled with a through g,
3-deaza-iC1-198,583 actual value exceeds the indi-
4-HC1-198.583 cated value. Residual uptake val-
4CI-1 98'583 ues as percentage of control at
GIII-OVJ-ICI-198.583 the indicated drug concentration
Glu-Sub-C1-198.583 were as follows: a, 57% at 100
7-CH,-C1-198,683 uM; b, >80% at 100 uM; c,
ZD1'694 >90% at 100 um; d, 57% at 100
2-NH,-ZD1694 um; @, >90% at 200 um; f, >90%
BW1843U89 at 50 pM; g, >90% at 50 pM.
LY231514
1AHQ =
2-dlIAHQ
2CH,4AHO NN |
5-d(PtoGiu [
N°-CH,-5-d{i/PteGls NN
N*-CHO-5-d(I)PteGiu )
AG337 D]
AG377 9)
b IS Wi WY |
0.1 1 10 100 600
uM

Growth-inhibition studies. The role of the RFC in drug
transport and growth inhibition was analyzed by using three
cell lines that differ in RFC expression and MTX transport
(22) (Tables 3 and 4): CEM-7A cells are characterized by a
30-fold overexpression of RFC compared with parental
CCRF-CEM cells, whereas CEM/MTX cells exhibit a MTX
transport defect. In general, compounds that are good sub-
strates for the RFC (e.g., MTX and AMT with their 2-des-
amino and 2-methyl analogues ICI-198,583, ZD1694,
LY231514, BW1843U89, and DDATHF) were potent growth
inhibitors provided that the compounds were efficiently poly-
glutamated, are potent inhibitors of their target enzymes, or
both (Tables 1 and 2). For example, drugs like 2-dMTX,
2-CH,-dAMT, 3-deaza-IC1-198,583, and 4-H-ICI-198,583 ap-
peared to be efficient substrates for the RFC, but because

they are poor inhibitors of both DHFR and TS, their growth-
inhibitory activity was low. Nevertheless, the role of the RFC
in transport of these compounds and of most of the TS inhib-
itors is illustrated by the fact that RFC-overproducing
CEM-"A cells are more sensitive than parental cells, whereas
MTX transport-defective CEM/MTX cells are cross-resistant
to these drugs. In this respect, it is of interest to note that
cross-registant factors for DDATHF and PT523 were signifi-
cantly lower than for MTX, AMT, and 10-EdAM. Poor growth
inhibition associated with inefficient RFC transport was ob-
served for CB3717, 2-NH,-ZD1694, IAHQ, and the series of
glutamate side chain-modified FPGS inhibitors. In addition,
for 5-deazaisofolic acid, 5-deazatetrahydroisofolic acid and
their N®-substituted analogues, the poor growth-inhibitory
effect correlates with a low transport efficiency and target
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Folic acid

Leucovorin
5-CH,-THF

MTX | 0.008
2-dMTX | 0.003
2-CH,-MTX } 0.005

AMT } 0.008
0.002
0.011
0.009
0.009

2-dAMT
2-CH,-AMT
10-EdAM
PT523

DDATHF
5-d{i}H, PteGlu
N°®-CH,-5-d(i)H ,PteGlu

5-dPteHCysA
5-dPteAPBA
5-gPteOm
5-dH, PteHCysA
5-0H,PtsAPBA
5-dH,PteOm

CB3717
IC1-198,583
3-deazs-iC1-198,583 |0.0009
4-H-1C1-198,583 R o0.019
4-0CH,-IC1-198,583
Ghu~Val-CI-198,583
Ghu-+Sub-IC1-198,583
7-CH,-IC1-198.583
ZD169%4
2-NH,-ZD1694

EW1BA3UE) I—

LY231514

IAHQ

2-dIAHQ
2-CH,4AHQ
5-d(i)PteGlu
N°-CH,-6-d{i}PteGiu
N°-CHO-B-d{iiPtaGlu
AG337

AG37?

0.028
0.033

Fig. 3. Relative affinity of
mFBP for folate and antifolate
compounds. Values indicate
relative affinities defined as the
inverse molar ratio of com-
pound required to displace
50% of PH]FA from mFBP in
L1210-FBP cells. Relative af-
finity of FA is set at 1 (black bar
and vertical line).

0.00 0.25 0.50 0.75

1.00 1.25 1.50

Relative affinity

enzyme inhibition. The lack of correlation between RFC ex-
pression and growth-inhibitory effect of the lipophilic drugs
AG337 and AG377 is indicative of an RFC-independent pro-
cess of drug uptake.

The drug sensitivity profiles of human CCRF-CEM cells
(Tables 3 and 4) and murine L1210 cells (Tables 5 and 6)
were in large part similar. Nevertheless, absolute IC;, values
for the individual drugs were most often lower for L1210 cells
than for CCRF-CEM cells, which may be consistent with a
3-fold higher level of RFC expression in L1210 cells versus
CCRF-CEM cells, whereas other transport kinetics proper-
ties are similar (20). The one exception is the uptake of
BW1843U89 (80), which is a 17-fold poorer substrate for the
murine RFC (X, 14 uM) compared with human RFC (K, 0.8

uM; see Fig. 2). This difference in transport characteristics is
reflected in a 10-fold lower growth-inhibitory activity of
BW1843U89 against L1210 versus CCRF-CEM cells (80).
In addition to binding of antifolates, the results given in
Tables 7 and 8 support a functional role for mFBP in the
uptake process of antifolates. In the absence of competing
folate cofactors in the growth medium, most of the com-
pounds tested demonstrated a growth-inhibitory effect
against (RFC—/mFBP+++) L1210-FBP cells, provided they
were efficiently polyglutamated or were potent inhibitors of
their target enzyme (Tables 1 and 2). Compounds for which
the RFC has poor affinity (e.g., CB3717, IAHQ, and 2-NH,-
ZD1694) appeared to be good growth inhibitors, consistent
with the high binding affinity of mFBP for these compounds.
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TABLE 3

Growth-inhibitory effects (IC,, values in nm®) of antifolate
compounds against human CEM celis with upregulated and
downregulated RFC-mediated transport (RFC expression in

TABLE 5

Growth-inhibitory effects (IC4, values in nm®) of antifolate
compounds against murine L1210~ (RFC+)® and L1210-B73
(RFC+/mFBP+++)” celis grown in different folate

parentheses) concentrations in the medium
Cell line (RFC expression)® L1210 L1210-B73
Eompound CCRF-CEM CEMMTX CEM-7A Compound TomlV  20mwlV 20 mwFA +
(+) (-) (++++) 1MLV
MTX 8.1 1,950 1.2 MTX 22 34 15 10
2-dMTX 1,870 40,000 49 2-dMTX 169 1,095 20,300 2,460
2-CH;-MTX 837 41,300 31 2-CH,-MTX 119 622 14,800 2,600
AMT 2.0 1,010 0.70 AMT 2.8 3.7 21 5.0
2-dAMT 500 12,600 14.6 2-dAMT 91.5 612 33,500 1,670
2-CH,-AMT 1,157 10,000 42 2-CH;-AMT 97 578 16,300 1,750
10-EdAM 1.3 533 0.3 10-EdAM 1.6 29 1 43
PT523 1.1 33 0.7 PT523 0.7 2.7 4.5 3.0
DDATHF 1" 80 2.2 DDATHF 9.2 4.1 42 88
5-d()H,PteGlu 37,020 36,025 164 5-d())H,PteGlu 4,490 24 4,200 473
N®-CH,-5-d()H,PteGlu 42,670 >100,000 1,740 N®-CH,-5- 24,300 34 6,635 2,735
5-dPteHCysA >25,000 >50,000 4,500 d()H,PteGlu
5-dPteAPBA >25,000 >50,000 >25,000 5-dPteHCysA 27,000 20,000 >25,000 >25,000
5-dPteOm >50,000 >50,000 31,000 5-dPteAPBA >50,000 19,000 >25,000 >25,000
5-dH,PteHCysA >25,000 >50,000 13,000 5-dPteOm >50,000 >25,000 >25,000 >25,000
5-dH,PteAPBA 6,100 >50,000 1,400 5-dH,PteHCysA 30,000 9,400 >25,000 23,000
5-dH,PteOm >50,000 >50,000 3,200 5-dH,PteAPBA 3,300 1,600 8,300 4,200
5-dH,PteOm 16,500 9,600 >25,000 21,000

* ICso values are given as the concentration of drug at which growth is inhibited
by 50% compared with controls. Values are the mean of at least four separate
experiments (SD =< 15%).

® RFC expression levels: CCRF-CEM, CEM-MTX, and CEM-7A-cells, 0.23,
<0.02, and 8.1 pmol/mg protein, respectively (22).

TABLE 4
Growth-inhibitory effects (IC,, values in nm®) of antifolate
compounds against human CEM cells with upregulated and

downregulated RFC-mediated transport (RFC expression in
parentheses)

Cell line (RFC expression)®

oM CCRF-CEM CEMMTX CEM-7A
(+) -) (++++)
MTX 8.1 1,850 12
CB3717 705 7.750 36
ICI-198,583 17 605 3.2
3-deaza-ICI-198,583 >100,000  >100,000 1,940
4-H-ICI-198,583 680 80,000 74
4-OCH,-ICI-198,583 46 3,300 32
Glu—Val-ICI-198,583 4,400 35,000 380
Glu—>Sub-IC!-198,583 910 48,800 220
7-CH,-ICi-198,583 243 6,480 82
ZD1694 35 444 0.65
2-NH,-ZD1684 115 4,000 48
BW1843U89 24 520 1.1
LY231514 23 470 52
IAHQ 1,090 17,075 71
2-dIAHQ 690 19,865 23
2-CH,-IAHQ 41 1.680 34
5-d()PteGlu 17465  >100,000 1,540
N®-CH-5-d()PteGlu 72,340  >100,000  7.450
NP-CHO-5-d()PteGlu >100,000  >100,000 69,750
AG337 1,800 1590  1.640
AG377 28 10 10.7

* ICs, values are given as the concentration of drug at which growth is inhibited
by 50% compared with controls. Vaiues are the mean of at least four separate
experiments (SD = 159%).

® RFC expression levels; CCRF-CEM, CEM-MTX, and CEM-7A-cells, 0.23,
<0.02, and 8.1 pmol/mg protein, respectively (22).

The possible role of mFBP-mediated transport in the
growth inhibition of antifolates was also studied in L1210-
B73 cells (Tables 5 and 6), which coexpress mFBP (to the

*# ICso values are given as the concentration of drug at which growth is inhibited
by 50% compared with controls. Values are the mean of at least four separate
experiments (SD = 15%).

b RFC expression levels: L1210 and L1210-B73, 0.9 and 0.8 pmol/107 cells;
mFBP expression level L1210-B73, 50-100 pmol/107 cells (59).

TABLE 6

Growth-inhibitory effects (IC,, values in nM) of antifolate
compounds against murine L1210- (RFC+)® and L1210-B73
(RFC+/mFBP+++)° cells grown in different folate

concentrations in the medium
L1210 L1210-B73
Gompolitd Tomlve  20MLV 20 nMFA +
1LV

MTX 2.2 3.4 15 10
CcB3717 395 2.8 4.0 29
ICI-198,583 9.1 0.2 59 57
3-deaza-ICI-198,583 1,917 16,300 >50,000 >50,000
4-H-1CI-198,583 357 29 443 2,117
4-OCH,-ICI-198,583 41 3 31 57
Glu—Val-ICI-198,583 1,740 1,080 6,733 7,730
Glu—Sub-ICI-198,583 660 45 308 537
7-CH,-iCI-198,583 105 6.0 41 115
ZD1694 3 0.5 21 23
2-NH,-ZD169%4 190 1.2 3.2 14
BW1843U89 23 1.9 28 12
LY231514 14 4 15 16
IAHQ 705 2.1 6.6 30
2-desamino-IAHQ 271 3.1 562 1,745
2-CH;-IAHQ 32 1.6 158 246
5-d()PteGlu 9,365 52 15,935 4,335
N®-CH,-5-d()PteGlu 60,700 19,500  >100,000 43,000
N®-CHO-5-d()PteGlu 85,665 11,325  >100,000 55,000
AG337 737 1,470 3,500 1,890
AG377 6 26 204 43

# |Cy, values are given as the concentration of drug at which growth is inhibited
by 50% compared with controls. Values are the mean of at least four separate
experiments (SD = 15%).

® RFC expression levels: L1210 and L1210-B73, 0.9 and 0.8 pmol/107 cells;
mFBP expression level L1210-873, 50-100 pmol/107 cells (59).

same level as L1210-FBP cells) and the RFC (to approxi-
mately the same level as parental 1.1210) (86). Data given in
Tables 5 and 6 show that drugs that were growth inhibitory
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TABLE 7

Growth-inhibitory effects (IC,, values in nm®) of antifolate
compounds against L1210-FBP cells grown in different folate
concentrations in the medium

11210-FBP (RFC—/mFBP++ +)°

Compound

iV 20 M LV 20 nm FA +
1MLV
MTX 194 67 1,400
2-dMTX 1,880 14,700 13,500
2-CH3-MTX 717 12,500 >50,000
AMT 8.1 49 1,497
2-dAMT 1,320 10,100 19,500
2-CH,-AMT 638 6,300 >25,000
10-EdAM 24.5 208 703
PT523 54 118 2,504
DDATHF 1.6 5.1 93
5-d(i)H,PteGlu 12 367 6,735
N®-CH,-5-d())H,PteGlu 27 433 42,000
5-dPteHCysA 12 30 555
5-dPteAPBA Al 210 3,400
5-dPteOm 325 2,900 >50,000
5-dH,PteHCysA 26 170 >25,000
5-dH,PteAPBA 1 44 11,600
5-dH,PteOm 370 2,400 >50,000
#|Cg,o values are given as the concentration of drug at which growth is inhibited
by 50% compared with controls. Values are the mean of at least four separate

experiments (SD < 15%).
© mFBP expression level: 50-100 pmol/mg protein (60).
TABLE 8
Qrowth-Inhibitory effects (IC,, values in nu”) of antifolate

compounds against L1210-FBP cells grown in different folate
concentrations in the medium

L1210-FBP (RFC—/mFBP+++)°

L 1omLy 20 nw LV 20 nw FA +
1tV

MTX 19.4 67 1,400
CB3717 1.1 1.9 24
IC1-198,583 0.28 16 74
3-deaza-ICI-198,583 39,000 >50,000 >50,000
4-H-ICI-198,583 42 128 7.700
4-OCH,-ICI-198,583 16 117 660
Glu—»Val-ICI-198,583 435 3,020 25,000
Glu— Sub-ICI-198,583 38 72 5,050
7-CH,-ICI-198,583 3.8 8.2 1,865
ZD1694 024 25 117
2-NH,-ZD1694 1.2 2.9 17.4
BW1843U89 0.8 1.0 12.3
LY231514 16 56 162
IAHQ 0.94 3.4 39
2-dIAHQ 24 226 9,760
2-CHg-IAHQ 12 109 10,100
5-d()PteGlu 35 613 12,660
N®-CH,-5-d()PteGlu 8,475 46,340 78,670
N°-CHO-5-d(j)PteGlu 2.100 45670  >100,000
AG337 350 777 775
AGS77 14.2 66 9.9

# |Cqo values are given as the concentration of drug at which growth is inhibited
by 50% compared with controls. Values are the mean of at least four separate
experiments (SD = 15%).

® mFBP expression level: 50-100 pmol/mg protein (80).

to L1210 cells were also effective growth inhibitors against
L1210-B73 cells grown in 1 nM LV as the sole folate source
(Tables 5 and 6, second column), suggesting that the RFC is
the main transport route for these drugs in L1210-B73 cells.
On the other hand, growth inhibition by drugs for which
mFBP has a high affinity (e.g., CB3717, ICI-198,583, 2-NH,-
ZD1694, IAHQ, and 5-d(i)PteGlu) was markedly enhanced in
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L1210-B73 cells compared with L1210 cells. In addition,
mFBP appears to contribute in the uptake of BW1843U89,
which is poorly transported via murine RFC. In contrast to
RFC-mediated transport, transport of this drug via mFBP
does not appear to be species dependent. In contrast to the
L1210-FBP cells, L1210-B73 cells were relatively resistant to
growth inhibition by the series of FPGS inhibitors. Their
sensitivity profile for these drugs was comparable with that
of L1210 cells.

Protection of cytotoxicity by LV and FA. The growth-
inhibition studies were extended to conditions in which 20 nm
FA or 20 nM LV was added to the medium (Tables 3—8). These
conditions may be more representative of physiological levels
of the predominant serum folate 5-CH,-THF (5-50 nM).
Based on the relative affinities for the RFC and mFBP (Figs.
2 and 3), it can be anticipated that LV will compete for
RFC-mediated drug uptake, whereas FA will be more effec-
tive in competing for mFBP binding and drug uptake. The
relative affinity of mFBP for LV is 3-fold lower than that for
5-CH,-THF, whereas the affinity for FA is 3-fold higher than
that for 5-CHg-THF (Fig. 3). Consistent with the difference in
relative affinity of mFBP for FA and LV, FA provided much
better protection against mFBP-mediated drug uptake and
growth inhibition in L1210-FBP cells than did LV. In these
cells, the protective effect of FA was most pronounced against
antifolate drugs for which mFBP has a low affinity (e.g.,
MTX, AMT, 10-EdAM, PT523, 2-d-IAHQ, and 2-CH;-IAHQ).
The correlation between the affinity of mFBP and the degree
of protection by FA was further illustrated by the fact that in
the presence of 20 nM FA, compounds with high affinity such
as CB3717, ZD1694, 2-NH,-ZD1694, IAHQ, LY231514, and
BW1843U89 retained a considerable growth-inhibitory effect
against L1210-FBP cells. It should be noted that for com-
pounds for which mFBP has a moderately high affinity (e.g.,
5-dH,PteAPBA, 2-d-IAHQ, and 2-CH3-IAHQ), FA provided a
protective effect that was substantially higher (1000-, 4000-,
and 8000-fold, respectively) than could be predicted from the
difference in relative affinity alone. This suggests that other
factors (e.g., polyglutamylation) may have an additional role
in this process. For L1210-B73 cells (Tables 5 and 6), LV was
a more effective protective agent than FA against growth
inhibition by the group of DHFR inhibitors. This demon-
strates that despite a 100-fold higher absolute expression
level of mFBP over the RFC, transport of these compounds
proceeds more efficiently via the RFC than mFBP. For each
of the GARTF and FPGS inhibitors, it was difficult to assess
the exact relative contribution of mFBP- or RFC-mediated
uptake in L1210-B73 cells on the basis of LV/FA protection
studies. For DDATHF only, which has good substrate affinity
for both the RFC and mFBP, a protective effect from growth
inhibition by LV as well as FA suggests that both transport-
ers are active in drug uptake in L1210-B73 cells.

For the TS inhibitors, we observed that in L.1210-B73 cells
(Table 6), FA and LV can act as protective agents against
growth inhibition. Due to the multiplicity of entry routes
(RFC and mFBP), the level of protection will depend on how
efficiently the TS inhibitor uses either one or both transport
systems at different extracellular concentrations. As with
L1210-FBP cells, the transport of compounds characterized
by a high binding affinity for mFBP and a poor substrate
affinity for the RFC (e.g.,, CB3717, 2-NH,-ZD1694, and
JIAHQ) appeared to be mediated mainly via mFBP, as illus-
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trated by significant protection by FA and less protection by
LV. On the other hand, for compounds that can also use the
RFC (e.g., ZD1694, 4-H-ICI-198,583, Glu—>Sub-ICI-198,583,
LY231514, and 2-CH,-IAHQ), the substantial protection by
LV indicates that part of the uptake of these compounds is
mediated by the RFC.

Discussion

In the present study, we demonstrated the differential role
of RFC- and mFBP-mediated transport of a series of antifo-
lates targeted to the folate-dependent enzymes DHFR,
GARTF, FPGS, and TS. Correlates were established between
growth-inhibitory effects and parameters such as affinity of
the RFC and mFBP for the antifolate drugs, the levels of
expression of the RFC and mFBP, and the protective effects
of concentrations of natural folates that mimic physiological
concentrations. Along with the functional aspects of the RFC
and mFBP individually, the effects of RFC and mFBP coex-
pressed in the same cell were studied.

Although the majority of compounds included in the study
have been previously evaluated for their growth-inhibitory
activity against RFC-expressing cell lines (22, 61-63, 65, 70,
78, 87-90), the present study enabled us to correlate these
results with the affinity of the RFC for the antifolate com-
pound. For example, the poor growth-inhibitory effects of two
potent folate-based inhibitors of TS, CB3717 (64, 69) and
IAHQ (66, 77), can now be ascribed to their poor substrate
affinity for the RFC (Fig. 2). Also, for other compounds,
especially the series of glutamate side chain-modified ana-
logues of 5-dPte(H,)Glu, inefficient transport via the RFC
probably accounts for their weak growth-inhibitory effect (17,
63, 91, 92). On the other hand, modifications of the glutamate
side chain should not necessarily lead to loss of substrate
affinity for the RFC. This is illustrated by the data from
compounds in which replacement of the glutamate moiety in
ICI-198,583 by valine or 2-aminosuberate does not signifi-
cantly alter transport efficiency via the RFC. In overview,
structural features that may be relevant to the affinity of the
RFC for an antifolate include the following: (a) poor affinity
for the RFC is noted for 2-NH,/4-oxo-oxidized structures
(CB3717, IAHQ, 5-d(i)PteGlu, and 2NH,-ZD1694) and ana-
logues with major modifications in the glutamate side chain
(5-dPteCysA, 5-dPteAPBA, and 5-dPteOrn); (b) replacement
of 2-NH,, for 2-CH; in ring A of the pteridine/quinazoline
(Fig. 1) markedly improves the affinity for the RFC, as was
shown for five parent compounds (MTX, AMT, CB3717,
IAHQ, and 2-NH,-ZD1694); (c) other modifications in ring A
do not dramatically influence the affinity for the RFC, except
for the 3-deaza modification of ICI-198,583, which enhanced
the affinity by 2-fold; (d) modifications in the B-ring, e.g.,
5-deaza, 5,8-dideaza, 7-CH; addition (7-CH3-ICI-198,583)
and LY231514 (pyrrolopyrimidine), are well tolerated; and
(e) modifications and/or substitutions at the C®-N'° bridge,
benzoyl ring, and glutamate side chain do not cause a signif-
icant loss or improvement of affinity for the RFC. It should be
realized that all of these considerations do not take into
account whether the antifolate compounds can be polygluta-
mated or are good inhibitors of their target enzyme (Tables 1
and 2). For example, even though 2-CH;-dAMT, 3-deaza-ICI-
198,583, and 7-CH;-ICI-198,583 are good substrates for the
RFC, their diminished inhibition of DHFR (2-CH,-dAMT) or

TS (3-deaza-ICI-198,583) and impaired polyglutamylation (7-
CH,-ICI-198,583) greatly reduced their growth-inhibitory
activity.

For mFBP as well, a number of structural features can be
identified that determine its binding affinity for folate ana-
logues: (a) a high binding affinity is seen for 2-NH,/4-oxo0-
oxidized strutures (e.g., FA, CB3717, 2-NH,-ZD1694, and
IAHQ), whereas (b) a poor affinity is observed for 2,4-diamino
structures (e.g., MTX, AMT, 10-EdAM, and PT523), suggest-
ing that modifications at the 4-oxo position result in a sub-
stantial loss of binding affinity. Also, (c) 3-deaza and 4-deoxy
modifications result in substantial abrogation of binding af-
finity, and (d) modifications at the C®-N'° bridge, p-amino-
benzoyl ring, or glutamate side chain have only minor effects
on binding affinity. These results suggest that the N-3 and
the 4-oxo parts of the pteridine/quinazoline ring are most
important for high binding affinity to the binding protein and
may be important in H-bond interactions.

Growth-inhibition studies were designed to obtain infor-
mation about the effectiveness of antifolates as a function of
their RFC- and mFBP-mediated transport, the expression
levels of the RFC and mFBP, and the folate concentrations in
the extracellular medium. These parameters will also be
relevant in determining the successful application of these
antifolates in a clinical setting. Based on the binding affinity,
in combination with effective polyglutamylation and target
enzyme inhibition, a number of drugs were identified that
preferentially use either the RFC (2,4-diaminofolates) or
mFBP (5-dPteHCysA, CB3717, 2-NH,-ZD1694, and IAHQ)
or can efficiently use both transporters (DDATHF, ZD1694,
BW1843U89, and LY231514). The latter group of compounds
demonstrated a potent growth-inhibitory effect against RFC
or mFBP cell lines, both under low folate (1 nM LV) conditions
and in folate-conditioned medium (20 nM FA/LV).

To put these in vitro results into a possible in vivo perspec-
tive, it is imperative to recognize that there may be differ-
ences in the expression levels of RFC and mFBP in neoplastic
cells and normal tissues compared with the leukemia cell
lines used as model systems in the present study. The avail-
ability of molecular and immunological probes for the RFC
and mFBP has recently enabled researchers to determine the
tissue distribution of these proteins (37-42, 93, 94). mFBP
expression is constitutively high in ovarian carcinoma (95,
96), where expression levels may approximate those in
L1210-FBP or L1210-B73 cells (50-100 pmol/107 cells) (59,
60). Variable mFBP expression levels were measured in
other neoplastic and normal cells but in general were signif-
icantly lower than for the leukemia cell lines used in the
present study. On the other hand, RFC expression in CCRF-
CEM, L1210, and L1210-B73 cells may be more representa-
tive for expression levels identified in neoplastic cells or
normal cells (6, 42, 97-99).

Rather than considering one antifolate transport system
(either the RFC or mFBP) in malignant and nonmalignant
cells, it may be reasonable to speculate that the two transport
systems may be coexpressed in one cell. This phenomenon
was described initially for L1210 cells adapted to grow under
low folate conditions (56, 59, 86, 100) but was recently also
described for KB human nasopharyngeal carcinoma cells,
monkey kidney MA-104 cells, and IGROV-1 ovarian carci-
noma cells (101, 102). In the case of L1210-B73 cells, we
demonstrated that RFC and mFBP appear to function inde-
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pendent of each other and follow independent kinetics (86),
which was confirmed in a recent study by Spinella et al. (57).
In the present study, an interesting observation suggests
that RFC expression may influence mFBP transport activity.
This is indicated by the fact that the group of FPGS inhibi-
tors inhibited the growth of (RFC—~/mFBP+ ++) L1210-FBP
cells (Table 7) but not that of (RFC+/mFBP+ ++) L1210-B73
cells (Table 5). Whether this observation points to a coupling
of folate and antifolate transport and polyglutamylation
(103) is unknown.

A number of the folate antagonists included in the present
study (DDATHF, ZD1694, BW1843U89, and LY231514) are
being evaluted in phase I through III clinical trials (104—
106). Given the fact that these drugs may be efficiently trans-
ported not only via the RFC but also potentially via mFBP, it
is possible that mFBP-mediated drug uptake can contribute
to their antitumor toxicity or toxic effects, depending on
mFBP expression levels in neoplastic and normal cells, re-
spectively. To avoid possible mFBP-associated drug-related
toxicity, alternative strategies may have to be applied that
include FA rather than LV to competitively inhibit binding to
mFBP. Recent reports (107, 108) that FA was effective in
preventing delayed toxicities by DDATHF and BW1843U89
may be compatible with this concept.

In summary, we have demonstrated the relative impor-
tance of the RFC- and mFBP-mediated membrane transport
for a large series of antifolate drugs. This information is
of potential relevance in assessing the preclinical activity of
these drugs and should lead to a more rational design of
novel antifolates in the future. Possible clinical implications
of the present study can be put into a proper perspective only
after detailed analyses are made of the tissue distribution of
the RFC and mFBP. These analyses are now possible due to
the availability of immunological and molecular probes for
both proteins (38-40, 42, 93, 109).
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