

US008155012B2

(12) United States Patent

Austermann, III et al.

(54) SYSTEM AND METHOD FOR ADAPTING A PIECE OF TERMINAL EQUIPMENT

(75) Inventors: **John F. Austermann, III**, Huntington Woods, MI (US); **Marshall B.**

Cummings, Troy, MI (US)

(73) Assignee: ChriMar Systems, Inc., Farmington

Hills, MI (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 331 days.

(21) Appl. No.: 12/239,001

(22) Filed: Sep. 26, 2008

(65) **Prior Publication Data**

US 2009/0022057 A1 Jan. 22, 2009

Related U.S. Application Data

- (63) Continuation of application No. 10/668,708, filed on Sep. 23, 2003, now Pat. No. 7,457,250, which is a continuation of application No. 09/370,430, filed on Aug. 9, 1999, now Pat. No. 6,650,622, which is a continuation-in-part of application No. PCT/US99/07846, filed on Apr. 8, 1999.
- (60) Provisional application No. 60/081,279, filed on Apr. 10, 1998.
- (51) Int. Cl. H04L 12/12 (2006.01) G08B 13/14 (2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

202,495 A 4/1878 Watson (Continued) (45) **Date of Patent:**

(10) **Patent No.:**

DE

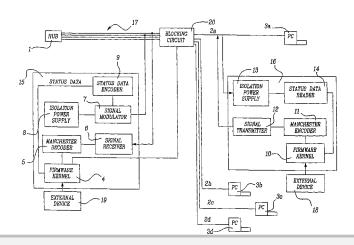
US 8,155,012 B2 Apr. 10, 2012

FOREIGN PATENT DOCUMENTS 3907652 A1 9/1990

(Continued)

OTHER PUBLICATIONS

Entertainment Services and Technology Association (ESTA)—Recommended Practice for Ethernet Cabling Systems in Entertainment Lighting Applications [44 pages] (1996).


(Continued)

Primary Examiner — Chi Pham Assistant Examiner — Soon-Dong Hyun (74) Attorney, Agent, or Firm — Harness, Dickey & Pierce, P.L.C.

(57) ABSTRACT

In accordance with the teachings of the present invention, a communication system (17) is provided for generating and monitoring data over pre-existing conductors (2A-2D) between associated pieces of networked computer equipment (3A-3D). The system includes a communication device (16) attached to the electronic equipment that transmits information to a central module (15) by impressing a low frequency signal on the pre-existing data lines of the remotely located equipment. A receiver (6) in the central module (15) monitors the low frequency data on the data lines to determine the transmitted information of the electronic equipment. The communication device may also be powered by a low current power signal from the central module (15). The power signal to the communication device may also be fluctuated to provide useful information, such as status information, to the communication device. Relocation of the electronic equipment with attached communication device to another location on the network is detected immediately and may be used to update a database. This invention is particularly adapted to be used with an existing Ethernet communications link or equivalents thereof.

148 Claims, 13 Drawing Sheets

US 8,155,012 B2

Page 2

Т	EE	PATENT	DOCUMENTS	4,484,028	Α	11/1984	Kelley et al.
				4,487,836		12/1984	Takayanagi et al 436/2
406,567 2,846,509		7/1889 8/1958	Dubuar 379/340	4,494,541			Archibald 606/35
3,359,379			Pullum et al.	4,495,494			McCune
3,407,400		10/1968		4,507,568 4,524,349		3/1985 6/1985	Ziegler et al 307/112
3,408,643		10/1968		4,527,216			Stammely
3,423,521			Friesen et al 725/84	4,528,667			Fruhauf 714/809
3,425,050			Tellerman et al.	4,532,626		7/1985	Flores et al 370/438
3,500,132 3,535,472			Garrett	4,535,401			Penn 700/3
3,537,095		10/1970		4,551,671			Annunziata et al.
3,593,274			Krugler, Jr 340/458	4,564,726 4,578,539		3/1986	Ibata
3,597,549	A	8/1971	Farmer et al.	4,593,389		6/1986	Wurzburg et al.
3,618,065			Trip et al 340/568.3	4,602,364			Herman et al.
3,634,845		1/1972 4/1972	Colman 340/508	4,617,656			Kobayashi et al.
3,659,277 3,696,378		10/1972		4,622,541			Stockdale 340/566
3,697,984			Atkinson et al.	4,631,367			Coviello et al.
3,731,012			Shaffer 379/380	4,633,217 4,636,771		12/1986 1/1987	
3,758,728			Le Roch et al 379/4	4,639,714			
3,768,084			Haynes	4,647,721			Busam et al.
3,781,481 3,794,989			Shaffer et al	4,647,912			Bates et al.
3,818,179			Mase	4,649,548		3/1987	
3,828,139			Chambers, Jr 379/401	4,654,640			Carll et al. Noyes 379/102.04
3,832,521			Niendorf 219/130.32	4,656,318 4,658,242		4/1987	
3,836,901			Matto et al.	4,661,797			Schmall 340/561
3,848,179			Kayama 323/280	4,670,902			Naiwirt
3,863,036			McCrudden Bolton et al 340/455.2	4,674,084		6/1987	Suzuki et al.
3,868,484 3,886,419			Omura et al	4,685,129			Gavrilovich
3,932,857			Way et al.	4,686,514			Liptak et al 340/571
3,983,338			Mathauser 379/30	4,691,344 4,692,761			Brown et al. Robinton 340/825.01
4,024,359	A		De Marco et al.	4,701.630			Annunziata et al.
4,024,360			Biraghi et al.	4,701,946			Oliva et al.
4,063,220			Metcalfe et al. Cote	4,712,233	Α	12/1987	Kuo 379/386
4,064,431 4,101,878		7/1978	Shimizu et al 307/140	4,717,896			Graham
4,121,201			Weathers	4,719,616		1/1988	
4,128,804			Russell 324/424	4,723,267 4,728,948		3/1988	Jones et al 379/93.05
4,131,767			Weinstein 379/406.06	4,731,810			Watkins 379/33
4,156,799		5/1979		4,731,829			Bonnet et al.
4,160,884 . 4,161,719 .			Bishop	4,733,223		3/1988	
4,173,714			Bloch et al.	4,733,389			Puvogel
4,179,688			Romnet 340/815.83	4,736,195			McMurtry et al. Ito et al.
4,186,339		1/1980	Finger 324/142	4,737,787 4,751,498		6/1988	Shalvi et al 340/524
4,191,971			Dischert et al 348/211.11	4,755,792			Pezzolo et al 340/538
4,230,912			Lee et al.	4,755,922			Puvogel
4,232,199 4,254,305		3/1981	Boatwright et al	4,758,823			Berruyer et al.
4,260,882			Barnes 250/205	4,760,382			Faulkner
4,268,723			Taylor 379/395.01	4,766,386 4,779,153			Oliver et al
4,273,955	A		Armstrong	4,782,322			Tsubota
4,277,740			Parks	4,782,355		11/1988	Sakai et al 396/72
4,282,407			Stiefel 379/377 Chow 340/538	4,785,812		11/1988	Pihl et al 607/8
4,290,056 4,293,948			Soderblom 340/338	4,799,211			Felker et al 370/252
4,303,073			Archibald 606/35	4,813,066			Holtz et al.
4,313,081			Smith 323/209	4,815,106		3/1989	Propp et al
4,315,107			Ciesielka et al 379/400	4,817,106 4,821,319		4/1989	Middleton et al 379/167.13
4,322,677			Wright 324/531	4,823,600		4/1989	Biegel et al.
4,340,788		7/1982		4,825,349		4/1989	Marcel 363/50
4,348,661 4,349,703			Lucchesi Chea, Jr 379/382	4,839,886		6/1989	Wu 370/463
4,367,455			Fried	4,862,158		8/1989	
4,383,315		5/1983		4,864,598 4,866,768		9/1989 9/1989	Lynch et al. Sinberg
4,388,667	A	6/1983	Saurenman 361/231	4,875,223		10/1989	Curtis
4,397,020			Howson 350/510	4,882,728		11/1989	
4,398,066		8/1983		4,884,263		11/1989	
4,410,982 4,413,250			Fleischfresser et al 370/384 Porter et al.	4,884,287		11/1989	Jones et al 375/377
4,413,230		6/1984		4,885,563		12/1989	Johnson et al 375/259
4,463,352			Forbes et al 370/424	4,896,315			Felker et al.
4,464,658	A	8/1984	Thelen	4,901,003		2/1990	
4,467,314			Weikel et al 700/295	4,901,217			Wilson
4,475,079	A	10/1984	Gale 324/533	4,903,006	А	2/1990	Boomgaard 307/3

US 8,155,012 B2

Page 3

4,918,688 A		Krause et al.	5,249,183 A		Wong et al.
4,922,503 A 4,926,158 A	5/1990	Zeigler 370/294	5,255,962 A 5,257,287 A		Neuhnus et al 303/188 Blumenthal et al.
4,935,926 A		Herman 370/294	5,260,664 A		Graham
4,935,959 A		Markovic et al.	5,264,777 A	11/1993	
4,937,811 A		Harris 370/200	5,267,238 A		Yano et al 370/452
4,937,851 A		Lynch et al.	5,270,896 A		McDonald
4,942,604 A	7/1990	Smith et al.	5,275,172 A		Ives
4,951,309 A 4,953,055 A		Gross et al 379/102.04 Douhet et al.	5,278,888 A 5,280,251 A		Myllymaki Strangio
4,958,371 A		Damoci et al.	5,285,477 A		Leonowich
4,961,222 A		Johansson et al.	5,289,359 A		Ziermann
4,969,179 A		Kanare et al 379/33	5,289,458 A	2/1994	Taha
4,973,954 A		Schwartz 370/475	5,289,461 A		de Nijs
4,980,913 A 4,991,123 A	12/1990	Skret Casamassima	5,297,141 A * 5,301,246 A		Marum 370/402 Archibald et al.
4,991,123 A 4,992,774 A		McCullough 345/204	5,301,240 A 5,302,889 A		Marsh
4,998,275 A		Braunstein et al.	5,306,956 A		Ikeda et al 307/125
4,998,850 A		Crowell 406/48	5,311,114 A	5/1994	
5,003,457 A		Ikei et al 700/4	5,311,518 A		Takato et al.
5,003,579 A	3/1991		5,313,642 A		Seigel
5,007,858 A		Daly et al 439/498 Gardiner	5,315,237 A		Iwakura et al
5,020,100 A 5,020,773 A		Tuft et al	5,321,372 A 5,323,461 A		Rosenbaum et al 379/399.01
5,021,779 A		Bisak 340/825.69	5,333,177 A		Braitberg et al 455/559
5,029,201 A	7/1991	Bindels 379/93.25	5,333,192 A		McGinn
5,032,819 A	7/1991	Sakuragi et al.	5,345,422 A		Redwine 365/189.09
5,032,833 A	7/1991	Laporte	5,345,592 A		Woodmas 725/130
5,033,112 A		Bowling et al 398/110 Maman	5,347,225 A		Graham
5,034,723 A 5,034,738 A		Ishihara et al.	5,351,272 A 5,353,009 A		Marsh
5,034,978 A		Nguyen et al.	5,365,515 A		Graham
5,038,782 A		Gevins et al 600/383	5,368,041 A		Shambroom 600/544
5,051,723 A	9/1991	Long et al.	5,379,441 A		Watanabe et al 710/317
5,055,827 A	10/1991		5,381,804 A		Shambroom 600/544
5,056,131 A		Kanare et al	5,384,429 A		Bulson et al
5,059,782 A 5,059,948 A		Fukuyama	5,389,882 A 5,396,555 A		1'Anson 324/522 Shibata
5,063,563 A		Ikeda et al.	5,406,260 A		Cummings et al.
5,063,585 A		Shapiro 379/30	5,408,669 A		Stewart et al 713/300
5,066,939 A		Mansfield, Jr 455/402	5,414,708 A		Webber et al 370/445
5,066,942 A		Matsuo 340/568.2	5,414,709 A	5/1995	
5,076,763 A		Anastos	5,422,519 A 5,424,710 A		Russell 307/104 Baumann
5,077,526 A RE33,807 E		Vokey et al 324/541 Abel et al.	5,438,606 A		Cerulli
5,089,974 A		Demeyer et al.	5,440,335 A		Beveridge 725/106
5,093,828 A		Braun et al 370/451	5,441,520 A		Olsen et al 607/6
RE33,900 E		Howson 370/105	5,444,184 A		Hassel 174/113 R
5,119,398 A		Webber, Jr.	5,450,486 A		Maas et al.
5,119,402 A		Ginzburg et al	5,452,344 A		Larson
5,121,482 A 5,121,500 A		Arlington et al 713/330	5,455,467 A 5,457,629 A		Miller et al 701/1
5,124,982 A	6/1992		5,459,283 A	10/1995	Birdwell, Jr.
5,131,033 A	7/1992	Reum 379/413	5,461,671 A	10/1995	Sakuragi et al 379/400
5,133,005 A	7/1992	Kelly et al.	5,467,384 A	11/1995	Skinner, Sr 455/402
5,136,580 A		Videlock et al.	5,469,437 A		Runaldue
5,142,269 A 5,144,544 A		Mueller Jenneve et al.	5,477,091 A 5,483,574 A		Fiorina et al. Yuyama
5,148,144 A		Sutterlin et al.	5,483,656 A		Oprescu et al 713/320
5,164,960 A		Winch et al.	5,485,488 A		Van Brunt et al.
5,168,170 A	12/1992	Hartig	5,488,306 A	1/1996	Bonaccio
5,179,291 A		Nishikawa et al.	5,491,463 A		Sargeant et al.
5,179,710 A		Coschieri 713/300	5,493,684 A		Gephardt et al 713/322
5,181,240 A		Sakuragi Okuno 340/825.57	5,497,460 A	3/1996	Bossler 307/10.1
5,189,409 A 5,192,231 A		Dolin, Jr	5,498,911 A 5,513,370 A		Paul
5,195,183 A *	3/1993	Miller et al	5,514,859 A	5/1996	
5,199,049 A		Wilson 375/351	5,515,303 A		Cargin, Jr. et al 361/683
5,200,743 A		St. Martin et al.	5,517,172 A	5/1996	Chiu 340/5.7
5,200,877 A		Betton et al 361/92	5,519,882 A		Asano et al 710/10
5,216,704 A		Williams et al.	5,528,248 A		Steiner et al
5,222,164 A		Bass, Sr. et al	5,528,661 A		Siu et al
5,223,806 A		Curtis et al 333/12 Brown et al.	5,532,898 A		Price
5,226,120 A 5,231,375 A		Sanders et al.	5,537,468 A 5,540,235 A		Wilson 600/554
5,235,599 A		Nishimura et al 714/4	5,541,957 A		Lau
5,237,606 A		Ziermann	5,548,466 A		Smith

US 8,155,012 B2

Page 4

5,563,489 A	10/1996	Murry 318/778	5,854,839 A	12/1998	Chen et al 379/413
5,570,002 A		Castleman 323/283	5,859,584 A	1/1999	Counsell et al 340/538
5,572,182 A		De Pinho Filho 340/855.4	5,859,596 A	1/1999	McRae 340/870.02
5,574,748 A		Vander Mey et al 375/139	5,884,086 A	3/1999	Amoni et al 713/300
5,578,991 A		Scholder	5,915,002 A	6/1999	Shimosako
5,581,772 A		Nanno et al 713/340	5,918,016 A	6/1999	
5,594,332 A		Harman et al 324/127	5,920,253 A		Laine
5,596,637 A		Pasetti et al	5,923,363 A	7/1999	Elberbaum 348/156
' '				7/1999	Ricq et al
5,608,545 A		Kagawa	5,929,624 A		
5,608,792 A		Laider	5,929,778 A	7/1999	
5,617,418 A		Shirani et al	5,933,073 A	8/1999	Shuey 375/258
5,623,184 A		Rector 315/102	5,933,590 A	8/1999	Allen 714/4
5,630,058 A		Mosley et al 726/35	5,937,033 A	8/1999	Bellows 379/29.01
5,631,570 A		King 324/718	5,939,801 A	8/1999	Bouffard 307/65
5,635,896 A		Tinsley et al 340/310.15	5,944,659 A	8/1999	Flach et al 600/300
5,642,248 A		Campolo et al 361/42	5,944,824 A	8/1999	He 726/6
5,649,001 A		Thomas et al 379/93.07	5,944,831 A		Pate et al 713/324
5,652,479 A		LoCascio et al 315/225	5,946,180 A	8/1999	Simpson 361/93.3
5,652,575 A		Pryor et al 379/29.11	5,948,077 A	9/1999	Choi et al.
5,652,893 A	7/1997	Ben-Meir et al 713/310	5,949,806 A	9/1999	Ness et al 372/38.07
5,652,895 A	7/1997	Poisner 713/322	5,953,314 A *	9/1999	Ganmukhi et al 370/220
5,655,077 A	8/1997	Johnes et al 726/8	5,960,208 A	9/1999	Obata et al 713/330
5,659,542 A	8/1997	Bell et al 370/496	5,963,557 A	10/1999	Eng
5,664,002 A	9/1997	Skinner, Sr 379/56.2	5,991,311 A	11/1999	Long et al.
5,670,937 A	9/1997	Right et al 340/506	5,991,885 A	11/1999	Chang et al.
5,671,354 A		Ito et al 726/3	5,994,998 A		Fisher et al.
5,675,321 A		McBride	5,995,348 A	11/1999	
5,675,371 A		Barringer 725/148	5,995,353 A	11/1999	
5,675,811 A		Broedner 713/323	6,000,003 A	12/1999	Allen
5,675,813 A		Holmdahl 713/310	6,005,760 A		Holce et al 361/93.6
5,678,547 A		Faupel et al 600/409	6,011,680 A	1/2000	Solleder et al 361/90
5,678,559 A		Drakulic	6,011,794 A	1/2000	Mordowitz
5,679,987 A		Ogawa 307/147	6,011,910 A		Chau et al 709/229
5,684,826 A		Ratner 375/222	6,016,519 A	1/2000	
5,684,950 A		Dare et al	6,018,452 A		Meyerhoefer 361/111
		Kurtz et al			Cromer et al.
5,686,826 A			6,021,493 A		
5,689,230 A		Merwin et al 340/310.11	6,021,496 A		Dutcher et al
5,692,917 A		Rieb et al.	6,031,368 A		Klippel et al
5,696,660 A		Price	6,033,101 A		Reddick et al 700/286
5,706,287 A		Leimkoetter 370/410	6,038,457 A		Barkat 455/556.1
5,715,174 A		Cotichini et al.	6,047,376 A		Hosoe 726/5
5,729,204 A		Fackler et al 340/2.4	6,049,139 A		Nagaura 307/10.1
5,742,514 A		Bonola 700/286	6,049,881 A	4/2000	
5,742,833 A		Dea et al 713/323	6,057,670 A	5/2000	
5,758,101 A		Pemberton 710/302	6,064,305 A		Lockyer
5,761,084 A	6/1998	Edwards 700/293	6,092,131 A	7/2000	Caldwell et al 710/100
5,764,647 A	6/1998		6,092,196 A		Reiche 726/6
5,766,133 A	6/1998	Faisandier 600/509	6,095,867 A	8/2000	Brandt et al 439/620.09
5,779,196 A	7/1998	Timar 244/209	6,097,761 A	8/2000	Buhring et al 375/257
5,781,015 A	7/1998	Duffin et al 324/508	6,100,471 A	8/2000	Fouache 174/72 C
5,783,999 A	7/1998	Price et al 340/644	6,101,459 A	8/2000	Tavallaie 702/152
5,784,441 A	7/1998	Davis et al 379/106.01	6,111,936 A	8/2000	Bremer
5,790,363 A	8/1998	Chaudhry 361/119	6,115,468 A	9/2000	De Nicolo
5,793,764 A *		Bartoldus et al 370/390	6,121,778 A	9/2000	Moore 324/619
5,796,185 A		Takata et al 307/140	6,125,448 A	9/2000	Schwan et al.
5,796,965 A		Choi et al 713/300	6,130,894 A	10/2000	Ojard et al.
5,799,040 A		Lau 375/258	6,134,666 A	10/2000	De Nicolo 713/300
5,799,194 A	8/1998	Allen	6,140,911 A	10/2000	Fisher et al.
5,799,196 A		Flannery 713/320	6,141,763 A	10/2000	Smith et al 713/300
5,802,042 A		Natarajan et al 370/255	6,144,722 A	11/2000	Anderson et al 379/27.01
5,802,305 A		McKaughan et al 709/227	6,147,601 A	11/2000	
5,805,597 A		Edem	6,147,603 A	11/2000	
5,805,904 A		Jung	6,147,963 A		Walker et al.
5,808,846 A		Holce et al 361/93.6	6,169,475 B1		Browning
5,810,606 A		Ballast et al 439/15	6,172,606 B1		Lockyer
5,814,900 A		Esser et al	6,175,556 B1		Allen, Jr. et al 370/293
5,814,900 A 5,815,665 A		Teper et al	6,178,458 B1		Wang 709/232
5,821,868 A		Kuhling	6,178,514 B1	1/2001	
5,828,293 A		Rickard	6,181,140 B1	1/2001	,
5,834,942 A		De Angelis	6,205,137 B1 *	3/2001	Ariga 370/360
5,835,005 A		Furukawa et al 370/400	6,218,930 B1		Katzenberg et al.
5,836,785 A		Lee 439/505	6,219,216 B1	4/2001	Holce et al 361/94
5,841,203 A	11/1998	Chanbers et al 307/10.8	6,233,689 B1	5/2001	
5,841,360 A	11/1998	Binder	6,236,625 B1	5/2001	Schell et al 369/13.22
5,842,955 A	12/1998	Wilkinson 482/52	6,243,394 B1	6/2001	
5,845,150 A		Henion 710/19	6,243,818 B1		Schwan et al 713/300
5,845,190 A		Bushue et al 725/130	6,246,748 B1	6/2001	
-,0,2-0 11			.,2.0,. 10 D1		

6,272,219 B1 8/2001	De Bruycker et al.	JP 1998013576 A 1/1998
	Melvin et al.	WO WO 92/17968 10/1992
6,275,498 B1 * 8/2001	Bisceglia et al 370/438	WO 93/02510 2/1993
6,278,357 B1 8/2001	Croushore et al 375/259	WO PCT/IB96/00223 1/1996
6,278,665 B1 8/2001	Schell et al 369/13.22	WO WO 96/23377 8/1996
	Luke et al 710/64	WO WO 96/29638 9/1996
6,292,901 B1 9/2001	Lys et al 713/300	WO WO 97/09667 3/1997
6,295,356 B1 9/2001	De Nicolo	WO WO 98/57248 12/1998
	Shimura et al 710/305	WO WO 99/34591 7/1999
6,301,527 B1 10/2001	Butland et al 700/286	OTHER DURY IS ATTIONS
	Czerwiec et al.	OTHER PUBLICATIONS
	Stolzl et al 701/76	M-1-1505 Chia Taranziana Calamatia (2 arana) (Iran 27, 1088)
	Reid 324/117 H	Model 505 Chip Transceiver Schematic [3 pages] (Jun. 27, 1988).
	Ulrich et al.	Network World Article: "SynOptics touts FDDI products afford-
	Cole et al.	ability" [2 pages] (Sep. 2, 1991).
	Lewis et al 710/300	Communication Week Article: "FDDI Spec Consortium" [2 pages]
	Karapetkov et al 455/466	(May 27, 1991).
	Dyke et al.	Network World Article: "DEC to show new FDDI, E-mail wares" [2
	Liu et al	pages] (Jan. 28, 1991).
	Hopkins et al 340/650	Network World Article: "Proposed groups eye alternate FDDI media"
	Dadario Ykema 700/286	
		[3 pages] (Nov. 12, 1990).
	Hayden Liu 75/219	H4000 Ethernet Transceiver Technical Manual [67 pages] (1982).
	Eichert et al 709/223	Worldwide History of Telecommunications by Anton A. Huurdeman
	Hughes et al	[38 pages] (No date).
	Binder 340/538.15	IBM Token-Ring Network Technology, # GA27-3832-0 [146 pages]
	Buysse et al 606/34	(1986).
	Mastrototaro et al 600/316	IBM—Technical Reference—Personal Computer Hardware Refer-
	Lamb et al 379/93.36	ence Library, # 69X7862 [476 pages] (Jun. 1986).
	Itoi	
	Potega 307/149	Token-Ring Network—Architecture Reference, # SC30-3374-02
	Lehr et al.	[485 pages] (Sep. 1989).
	Binder 370/502	Using the IBM Cabling System with Communication Products, #
	Weiss et al	GA27-3620-1 [355 pages] (Apr. 1986).
	Atkins et al.	Network World Article: "Token-ring sales take off" [3 pages] (Aug.
	Armistead et al.	17, 1987).
	Ishikawa et al 713/340	Closeup Article—The LAN Inner Circle [15 pages] (Mar. 25, 1985).
	Townsend et al 340/505	Perspective Computer Systems News Article—Making Sure the
	McCormack et al 713/310	Pieces Fit [7 pages] (Mar. 1988).
6,546,494 B1 4/2003	Jackson et al 713/300	Data Communications—McGraw-Hill's Technology Magazine for
6,587,454 B1 7/2003	Lamb 370/352	
6,643,566 B1 11/2003	Lehr et al.	Network Managers: "Multivendor token ring networks coming of
6,658,108 B1 12/2003	Bissell et al.	age" [5 pages] (Nov. 21, 1989).
6,681,013 B1 1/2004	Miyamoto 379/413	Understanding Token Ring Protocols and Standards by James T.
6,701,443 B1 3/2004	Bell 713/300	Carlo, Robert D. Love, Michael S. Siegel and Kenneth T. Wilson—
6,744,888 B1 6/2004	El-Kik et al 379/412	Artech House [4 pages] (1998).
6,889,095 B1 5/2005	Eidson et al 700/12	IBM Token-Ring Network Operates on Telephone Twisted-Pair
PODELGIA DI SE	NEED OF DESIGNATION	Media (Marketing Announcement) by IBM [4 pages] (Oct. 15, 1985).
FOREIGN PATE	NT DOCUMENTS	Design of a Twisted Pair Cable for a Token Passing Local Area
E 42 03 304 A1	8/1992	Network (Intl. Wire & Cable Symposium Proceedings) by Paul
E 41 38 065 A1	5/1993	Abramson—IBM Corporation [3 pages] (1983).
0 357 482 A2	3/1990	IBM Cabling System Planning and Installation Guide, # GA27-
0 357 482 B1	3/1990	3361-07 [344 pages] (Oct. 1987).
0386659	9/1990	Local Area Network Station Connector (IBM Technical Disclosure
0 415 312 A1	3/1991	Bulletin, vol. 27 No. 2) by E.J. Annunziata and T.E. Stammely [5
0 357 482 B1	7/1993	pages] (Jul. 1984).
0 639 916 A2	6/1994	Product and Price Schedule (SynOptics, Inc.—p. 18 of 25) [1 page]
0 584 447 B1	6/1997	(Aug. 1, 1991).
0 852 018 B1	5/2003	Technical Report—"The Effect of Ethernet Behavior on Networks
2 682 843 A1	10/1991	using High-performance Workstations and Servers" by Rich Seifert
3 2 249 919 A	5/1992	(Networks and Communications Consulting) [25 pages] (Mar. 3,
60-164289	8/1985	
63-018741	1/1988	1995).
63-059144	3/1988	Technical Report—"Issues in LAN Switching and Migration from a
64-16053	1/1989	Shared LAN Environment" by Rich Seifert (Networks and Commu-
01-160198	6/1989	nications Consulting) [28 pages] (Nov. 1995).
1160198	6/1989	IBM Token-Ring Network—Introduction and Planning Guide, #
02-087762	3/1990	GA27-3677-03 [241 pages] (Sep. 1990).
2087762	3/1990	IBM—"International Technical Support Organization High-Speed
4-20192 4-180430	1/1992 6/1992	Networking Technology: An Introductory Survey", #GG24-3816-02
4-180430 5-150854	6/1992 6/1993	[480 pages] (Jun. 1995).
06-075652	3/1994	IBM—"Local Area Network Concepts and Products: LAN Architec-
6-75652	3/1994	ture", # SG24-4753-00 [262 pages] (May 1996).
H6-244893	9/1994	IBM—"Local Area Network Concepts and Products: Adapters, Hubs
H8-204782	8/1996	and ATM", # SG24-4754-00 [326 pages] (May 1996).

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

