

US007592999B2

(12) United States Patent

Rosenberg et al.

(54) HAPTIC FEEDBACK FOR TOUCHPADS AND OTHER TOUCH CONTROLS

- (75) Inventors: Louis B. Rosenberg, San Jose, CA
 (US); James R. Riegel, Santa Clara, CA
 (US)
- (73) Assignee: Immersion Corporation, San Jose, CA (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 82 days.
- (21) Appl. No.: 11/405,811
- (22) Filed: Apr. 17, 2006
- (65) **Prior Publication Data**

US 2006/0187215 A1 Aug. 24, 2006

Related U.S. Application Data

- (63) Continuation of application No. 10/213,940, filed on Aug. 6, 2002, now Pat. No. 7,148,875, which is a continuation-in-part of application No. 09/487,737, filed on Jan. 19, 2000, now Pat. No. 6,429,846, which is a continuation-in-part of application No. 09/467, 309, filed on Dec. 17, 1999, now Pat. No. 6,563,487, and a continuation-in-part of application No. 09/253, 132, filed on Feb. 18, 1999, now Pat. No. 6,243,078, which is a continuation-in-part of application No. 09/156,802, filed on Sep. 17, 1998, now Pat. No. 6,184,868, and a continuation-in-part of application No. 09/103,281, filed on Jun. 23, 1998, now Pat. No. 6,088,019.
- (51) Int. Cl. *G09G 5/00*

(10) Patent No.: US 7,592,999 B2

(45) **Date of Patent:** Sep. 22, 2009

References Cited

U.S. PATENT DOCUMENTS

4,023,290 A 5/1977 Josephson

(Continued)

FOREIGN PATENT DOCUMENTS

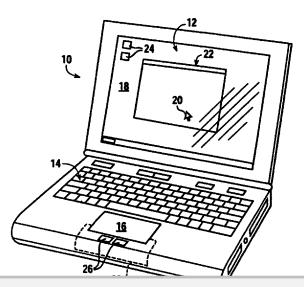
EP 0556999 B1 5/1998

(56)

(Continued)

OTHER PUBLICATIONS

Bliss, James C., "Optical-to-tactile Image Conversion for the Blind," IEEE Transactions on Man-Machine Systems, vol. MMS-11, No. 1, 1970, pp. 58-65.


(Continued)

Primary Examiner—Abbas I Abdulselam (74) Attorney, Agent, or Firm—Womble Carlyle Sandridge & Rice, PLLC

(57) **ABSTRACT**

A haptic feedback planar touch control used to provide input to a computer. A touch input device includes a planar touch surface that inputs a position signal to a processor of the computer based on a location of user contact on the touch surface. The computer can position a cursor in a displayed graphical environment based at least in part on the position signal, or perform a different function. At least one actuator is also coupled to the touch input device and outputs a force to provide a haptic sensation to the user contacting the touch surface. The touch input device can be a touchpad separate from the computer's display screen, or can be a touch screen. Output haptic sensations on the touch input device can include pulses, vibrations, and spatial textures. The touch input device can include multiple different regions to control different computer functions.

17 Claims, 5 Drawing Sheets

DOCKEI A L A R M Find authenticated co

U.S. PATENT DOCUMENTS

	0.5.1	AIDNI	DOCUMENTS
4,101,884	Α	7/1978	Benton, Jr.
4,108,164	Α	8/1978	Hall, Sr.
4,127,752	Α	11/1978	Lowthorp
4,242,823	Α	1/1981	Bruno
4,414,537	Α	11/1983	Grimes
4,414,984	Α	11/1983	Zarudiansky
4,550,221	Α	10/1985	Mabusth
4,557,275	Α	12/1985	Dempsey, Jr.
4,581,491	Α	4/1986	Boothroyd
4,584,625	Α	4/1986	Kellogg
4,692,756	Α	9/1987	Clark
4,715,235	Α	12/1987	Fukui et al.
4,757,453	Α	7/1988	Nasiff
4,758,165	Α	7/1988	Tieman et al.
4,772,205	Α	9/1988	Chlumsky et al.
4,791,416	Α	12/1988	Adler
4,821,030	Α	4/1989	Batson et al.
4,871,992	Α	10/1989	Peterson
4,885,565	Α	12/1989	Embach
4,926,879	Α	5/1990	Sevrain et al.
5,035,242	Α	7/1991	Franklin et al.
5,121,091	Α	6/1992	Fujiyama
5,143,505	Α	9/1992	Burdea et al.
5,159,159	Α	10/1992	Asher
5,165,897	Α	11/1992	Johnson
5,212,473	Α	5/1993	Louis
5,223,658	Α	6/1993	Suzuki
5,237,327	Α	8/1993	Saitoh et al.
5,262,777	Α	11/1993	Low et al.
5,316,017	Α	5/1994	Edwards et al.
5,355,148	Α	10/1994	Anderson
5,376,948	Α	12/1994	Roberts
5,389,849	Α	2/1995	Asano et al.
5,437,607	Α	8/1995	Taylor
5,451,924	Α	9/1995	Massimino et al.
5,521,336	Α	5/1996	Buchanan et al.
5,562,707	Α	10/1996	Prochazka et al.
5,580,251	Α	12/1996	Gilkes et al.
5,638,060	Α	6/1997	Kataoka et al.
5,670,755	Α	9/1997	Kwon
5,714,978	Α	2/1998	Yamanaka et al.
5,719,561	Α	2/1998	Gonzales
5,729,249	Α	3/1998	Yasutake
5,734,373	Α	3/1998	Rosenberg et al.
5,767,457	Α	6/1998	Gerpheide et al.
5,790,108	Α	8/1998	Salcudean et al.
5,828,197	Α	10/1998	Martin et al.
5,828,364	Α	10/1998	Siddiqui
5,835,080	Α	11/1998	Beeteson et al.
5,887,995	Α	3/1999	Holehan
5,889,236	Α	3/1999	Gillespie et al.
5,914,708	Α	6/1999	LaGrange et al.
5,917,906	Α	6/1999	Thornton
5,942,733	Α	8/1999	Allen et al.
5,943,044	Α	8/1999	Martinelli et al.
5,959,613	Α	9/1999	Rosenberg et al.
5,977,867	А	11/1999	Blouin
5,982,304	Α	11/1999	Selker et al.
5,986,643	А	11/1999	Harvill et al.
5,988,902	Α	11/1999	Holehan
5,999,168	А	12/1999	Rosenberg et al.
6,004,134	А	12/1999	Marcus et al.
6,008,800	А	12/1999	Pryor
6,118,435	Α	9/2000	Fujita et al.

DOCKE.

6,4	29,846	B2 *	8/2002	Rosenberg et al 345/156
6,6	80,729	B1	1/2004	Shahoian et al.
2003/01	22779	A1	7/2003	Martin et al.
2004/00	75676	A1	4/2004	Rosenberg et al.

FOREIGN PATENT DOCUMENTS

JP	6-18341	1/1994
JP	11-299305	11/1999
WO	WO 92/00559 A1	1/1992
WO	WO 95/20788 A1	8/1995
WO	WO 97/18546	5/1997

OTHER PUBLICATIONS

Bolanowski, S.J. et al., "Four Channels Mediate the Mechanical Aspects of Touch," J. Acoust. Soc. Am. 84 vol. 84 (5), Nov. 1988, pp. 1680-1694.

Durlach, Nathaniel I. et al., "Virtual Reality: Scientific and Technological Challenges," National Academy Press, Washington, D. C. 1995, pp. 160-205.

Eberhardt, Silvio P. et al., "OMAR—A Haptic Display for Speech Perception by Deaf and Deaf-Blind Individuals," IEEE 1993, pp. 195-201.

Eberhardt, Silvio P. et al., "Inducing Dynamic Haptic Perception by the Hand: System Description and Some Results," Proceedings of ASME Dynamic Systems and Control, vol. DSC-55-1, No. 1, 1994, pp. 345-351.

Frisken-Gibson, Sarah F. et al, "A 64-Solenoid, Four-Level Fingertip Search Display for the Blind," IEEE Transactions on Biomedical Engineering, vol. BME-34, No. 12, Dec. 1987, pp. 963-965.

Goldstein, Moise H. et al., "Tactile Aids for the Profoundly Deaf Child," 77 J. Acoust. Soc. Am 77 (1), Jan. 1985, pp. 258-265.

Jackson, K. M., "Linearity of Radio-Frequency Transducers," Medical and Biological Engineering and Computer, Jul. 1977, pp. 446-449.

Johnson, David A., "Shape-Memory Alloy Tactical Feedback Actuator," Tini Allow Company, Inc., Aug. 1990, 2 pages, pp. i-33.

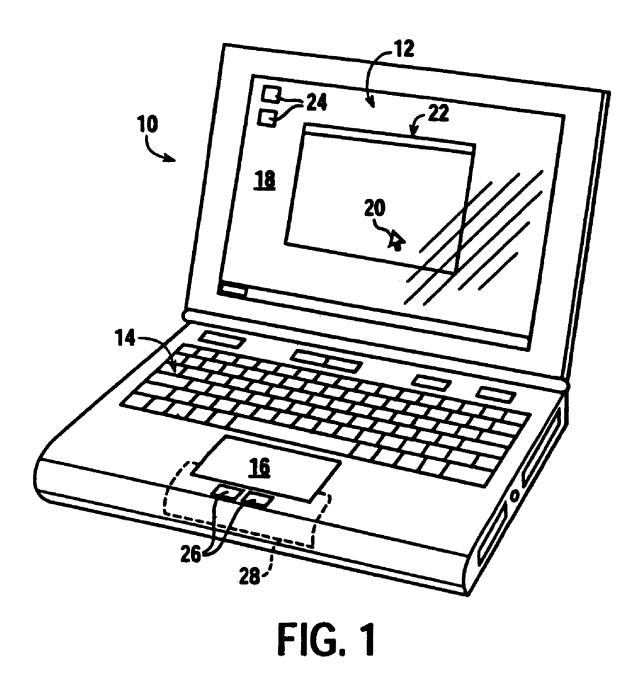
Kaczmarek, Kurt A. et al, "Electrotactile and Vibrotactile Displays for Sensory Substitution Systems", IEEE Transactions on Biomedical Engineering, vol. 38, No. 1, Jan. 1991, pp. 1-16.

Kaczmarek, K. A. et al. "Tactile Displays," in: Virtual Environments and Advanced Interface Design, New York: Oxford University Press, 1995, pp. 349-414.

Peine, W.J., "Tactile Shape Displays for Small Scale Shape Feedback," http://www.hrl.harvard.edu/~peine/display.html, 1998, pp. 1-2.

Rabinowitz, W.M. et al., "Multidimensional Tactile Displays: Identification of Vibratory Intensity, Frequency, and Contactor Area," J. Acoust. Soc. Am. 82 (4), Oct. 1987, pp. 1243-1252.

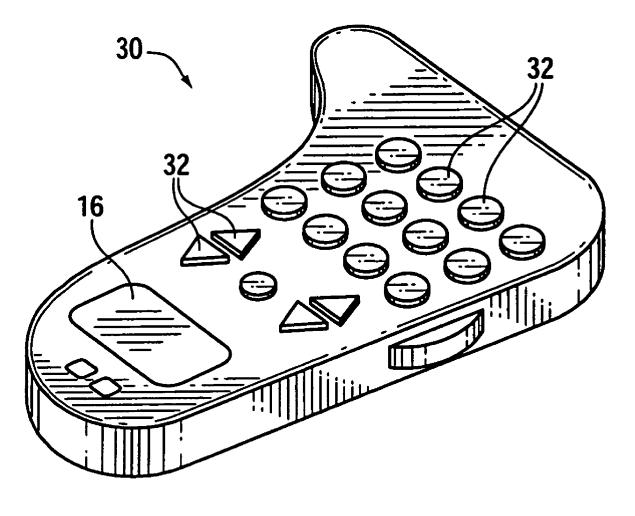
Ramstein, Christophe, "Combining Haptic and Braille Technologies: Design Issues and Pilot Study," Assets '96, 2nd Annual ACM Conference on Assistive Technologies, ACM Sigraph, Apr. 1996, pp. 37-44.


Wiker, Steven F., "Teletouch Display Development: Phase 1 Report," Naval Ocean Systems Center, Technical Report 1230, Jul. 1988, 66 pages.

Wiker, Steven F. et al., "Development of Tactile Mice for Blind Access to Computers: Importance of Stimulation Locus, Object Size, and Vibrotactile Display Resolution," Proceedings of the Human Factors Society 35th Annual Meeting, 1991, pp. 708-712.

International Preliminary Report on Patentability, Application No. PCT/US2005/036861, dated Apr. 11, 2007.

International Search Report, Application No. PCT/US2005/036861, dated Feb. 23, 2006.

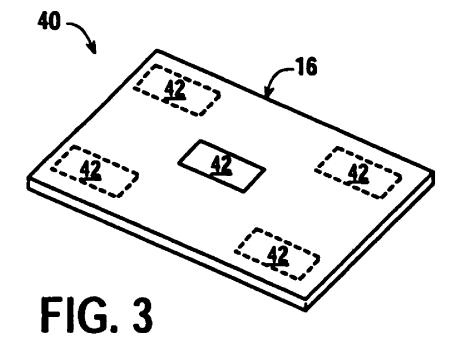

* cited by examiner

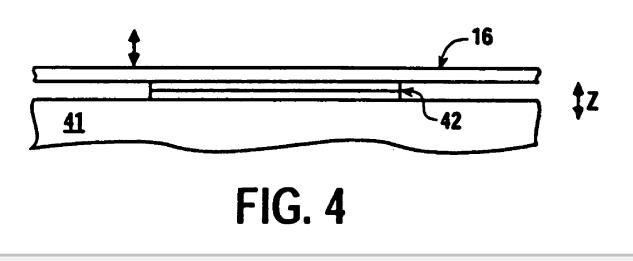
OCKET D RM Α Α Find authenticated court documents without watermarks at <u>docketalarm.com</u>.

D

Α

FIG. 2


CKET LARM Find authenticated court documents without watermarks at <u>docketalarm.com</u>.


DOCKET

Δ

RM

Δ

Find authenticated court documents without watermarks at docketalarm.com.

DOCKET A L A R M

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time alerts** and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.