ULSI Technology

EDITED BY

C. Y. Chang

Chair Professor, College of Electrical Engineering and Computer Science National Chiao Tung University Director, National Nano Device Laboratories Hsinchu, Taiwan, ROC

S. M. Sze

DOCKE.

Δ

R

Δ

UMC Chair Professor Department of Electronics Engineering Director, Microelectronics and Information Systems Research Center National Chiao Tung University Hsinchu, Taiwan, ROC

THE MCGRAW-HILL COMPANIES, INC.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

McGraw-Hill

A Division of The McGraw-Hill Companies

ULSI TECHNOLOGY

Copyright ©1996 by The McGraw-Hill Companies, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher.

Acknowledgments begin on page 724 and appear on this page by reference.

This book is printed on acid-free paper.

234567890 DOC DOC 909876

ISBN 0-07-063062-3

DOCKE

This book was set in Times Roman by Publication Services, Inc. The editors were Lynn Cox and John M. Morriss; the production supervisor was Denise L. Puryear. The cover was designed by Farenga Design Group. Project supervision was done by Publication Services, Inc. R. R. Donnelley & Sons Company was printer and binder.

Cover photo: Electron micrograph of contact holes filled with CVD tungsten plugs (see Chapter 8). The diameter is 0.25 micron. *Courtesy of the National Nano Device Laboratories, National Science Council, R.O.C.*

Library of Congress Catalog Card Number: 95-81366

CONTENTS

	List	of Contributors	xiii
	Prefa	ace	xv
	Intro	xvii	
1	Cleanroom Technology		1
	H. P. Tseng and R. Jansen		
	1.1	Introduction	1
	1.2	Cleanroom Classification	4
	1.3	Cleanroom Design Concept	8
	1.4	Cleanroom Installation	24
	1.5	Cleanroom Operations	32
	1.6	Automation	34
	1.7	Related Facility Systems	38
	1.8	Summary and Future Trends	54
		References	55
		Problems	58
2	Wafer-Cleaning Technology		60
	C. Y. Chang and T. S. Chao		
	2.1	Introduction	60
	2.2	Basic Concepts of Wafer Cleaning	60
	2.3	Wet-Cleaning Technology	92
	2.4	Dry-Cleaning Technology	93
	2.5	Summary and Future Trends	100
		References	101
		Problems	104
3	Epitaxy		105
	P. V	Vang	
	3.1	Introduction	105
	3.2	Fundamental Aspects of Epitaxy	107
	3.3	Conventional Si Epitaxy	115
	3.4	Low-Temperature Epitaxy of Si	125
	3.5	Selective Epitaxial Growth of Si	131
			vii

	3.6	Characterization of Epitaxial Films	135	
	3.7	Summary and Future Trends	138	
		References	139	
		Problems	143	
4	Cor	ventional and Rapid Thermal Processes	144	
	R. B. Fair			
	4.1	Introduction	144	
	4.2	Requirements for Thermal Processes	151	
	4.3	Rapid Thermal Processing	159	
	4.4	Summary and Future Trends	196	
		References	198	
		Problems	203	
5	Dielectric and Polysilicon Film Deposition		205	
	H. C. Cheng			
	5.1	Introduction	205	
	5.2	Deposition Processes	205	
	5.3	Atmospheric-Pressure Chemical-Vapor-Deposited (APCVD) and Low-Pressure Chemical-Vapor-Deposited	215	
	- 4	(LPCVD) Silicon Oxides	215	
	5.4	LPCVD Shicon Nurides	225	
	5.5	LPCVD Polysilicon Films	226	
	5.6	Plasma-Assisted Depositions	240	
	5.7	Other Deposition Methods	247	
	5.8	and Silicon Nitride Films	257	
	5.9	Summary and Future Trends	262	
		References	264	
		Problems	268	
6	Lit	hography	270	
	K. Nakamura			
	6.1	Introduction	270	
	6.2	Optical Lithography	272	
	6.3	Electron Lithography	295	
	6.4	X-Ray Lithography	312	
	6.5	Ion Lithography	320	

		to in	
	6.6 Summary and Future Trends	323	
	References	324	
	Problems	327	
7	Etching	320	
1		545	
	7.1 Introduction	329	
	7.2. Low-Pressure Gas Discharge	330	
	7.3 Etch Mechanisms. Selectivity, and Profile Control	334	
	7.4 Reactive Plasma Etching Techniques and Equipment	343	
	7.5 Plasma Processing Processes	353	
	7.6 Diagnostics End Point Control, and Damage	362	
	7.7 Wet Chemical Etching	364	
	7.8 Summary and Future Trends	366	
	References	367	
	Problems	369	
8	Metallization	371	
	R. Liu		
	8.1 Introduction	371	
	8.2 Metal Deposition Techniques	379	
	8.3 Silicide Process	395	
	8.4 CVD Tungsten Plug and Other Plug Processes	406	
	8.5 Multilevel Metallization	412	
	8.6 Metallization Reliability	448	
	8.7 Summary and Future Trends	451	
	References	457	
	Problems	468	
9	Process Integration	472	
	C. Y. Lu and W. Y. Lee		
	9.1 Introduction	472	
	9.2 Basic Process Modules and Device Considerations for	473	
	9.3 CMOS Technology	489	
	94 Binolar Technology	495	
	95 BiCMOS Technology	502	
	9.6 MOS Memory Technology	510	

DOCKET

Explore Litigation Insights

Docket Alarm provides insights to develop a more informed litigation strategy and the peace of mind of knowing you're on top of things.

Real-Time Litigation Alerts

Keep your litigation team up-to-date with **real-time** alerts and advanced team management tools built for the enterprise, all while greatly reducing PACER spend.

Our comprehensive service means we can handle Federal, State, and Administrative courts across the country.

Advanced Docket Research

With over 230 million records, Docket Alarm's cloud-native docket research platform finds what other services can't. Coverage includes Federal, State, plus PTAB, TTAB, ITC and NLRB decisions, all in one place.

Identify arguments that have been successful in the past with full text, pinpoint searching. Link to case law cited within any court document via Fastcase.

Analytics At Your Fingertips

Learn what happened the last time a particular judge, opposing counsel or company faced cases similar to yours.

Advanced out-of-the-box PTAB and TTAB analytics are always at your fingertips.

API

Docket Alarm offers a powerful API (application programming interface) to developers that want to integrate case filings into their apps.

LAW FIRMS

Build custom dashboards for your attorneys and clients with live data direct from the court.

Automate many repetitive legal tasks like conflict checks, document management, and marketing.

FINANCIAL INSTITUTIONS

Litigation and bankruptcy checks for companies and debtors.

E-DISCOVERY AND LEGAL VENDORS

Sync your system to PACER to automate legal marketing.

