Apple Inc. v. Realtime Data, LLC d/bsa/ IXO

Cases IPR2016-01365, -01366

Table of Contents

“preloading the boot data into a cache memory”

“preloading...prior to completion of initialization of
the central processing unit”

‘963 Patent’s Claim 18

“preloading boot data, in compressed form...from a
boot device into a cache memory”

“a plurality of encoders are utilized to provide the
compressed boot data”

“‘preloading the boot data into a cache

memory”

Ex. 2013
Page 4 of 145

US 7,181,608 B2

27

set of decoders, or a sequential set of decoders correspond-
ing to the extracted compression type descriptor. The decod-
ers D1 . . . Dn may include those lossless encoding tech-
niques currently well known within the art, including: run
length, Huffman, Lempel-Ziv Dictionary Compression,
arithmetic coding, data compaction, and data null suppres-
sion. Decoding techniques are selected based upon their
ability to effectively decode the various different types of
encoded input data generated by the data compression
systems described above or originating from any other
desired source.

As with the data compression systems discussed in U.S.
Pat. No. 6,195,024, the decoder module 165 may include
multiple decoders of the same type applied in parallel so as
to reduce the data decoding time. An output data buffer or
cache 170 may be included for buffering the decoded data
block output from the decoder module 165. The output
buffer 70 then provides data to the output data stream. It is
to be appreciated by those skilled in the art that the data
compression system 180 may also include an input data
counter and output data counter operatively coupled to the
input and output, respectively, of the decoder module 165. In
this manner, the compressed and corresponding decom-
pressed data block may be counted to ensure that sufficient
decompression is obtained for the input data block.

Again, it is to be understood that the embodiment of the
data decompression system 180 of FIG. 10 is exemplary of
a preferred decompression system and method which may
be implemented in the present invention, and that other data
decompression systems and methods known to those skilled
in the art may be employed for providing accelerated data
retrieval in accordance with the teachings herein.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to
those precise embodiments, and that various other changes
and modifications may be affected therein by one skilled in
the art without departing from the scope or spirit of the
invention. All such changes and modifications are intended
to be included within the scope of the invention as defined
by the appended claims.

What is claimed is:

1. A method for providing accelerated loading of an
operating system, comprising the steps of:

maintaining a list of boot data used for booting a computer

system;

initializing a central processing unit of the computer

system,;

preloading the boot data into a cache memory prior to

completion of initialization of the central processing
unit of the computer system, wherein preloading the
boot data comprises accessing compressed boot data
from a boot device; and

servicing requests for boot data from the computer system

using the preloaded boot data after completion of
initialization of the central processing unit of the com-
puter system, wherein servicing requests comprises
accessing compressed boot data from the cache and
decompressing the compressed boot data at a rate that
increases the effective access rate of the cache.

2. The method of claim 1, wherein the boot data com-
prises program code associated with one of an operating
system of the computer system, an application program, and
a combination thereof.

3. The method of claim 1, wherein the preloading is
performed by a data storage controller connected to the boot
device.

0

w

w
=3

35

40

v
=]

w
(v

60

o
<

28

4. The method of claim 1, further comprising updating the
list of boot data.

5. The method of claim 4, wherein the step of updating
comprises adding to the list any boot data requested by the
computer system not previously stored in the list.

6. The method of claim 4, wherein the step of updating
comprises removing from the list any boot data previously
stored in the list and not requested by the computer system.

7. A system for providing accelerated loading of an
operating system of a host system comprising:

a digital signal processor (DSP) or controller;

a cache memory device; and

a non-volatile memory device, for storing logic code

associated with the DSP or controller, wherein the logic
code comprises instructions executable by the DSP or
controller for maintaining a list of boot data used for
booting the host system, for preloading the compressed
boot data into the cache memory device prior to
completion of initialization of the central processing
unit of the host system, and for decompressing the
preloaded compressed boot data, at a rate that increases
the effective access rate of the cache, to service requests
for boot data from the host system after completion of
initialization of the central processing unit of the host
system.

8. The system of claim 7, wherein the logic code in the
non-volatile memory device further comprises program
instructions executable by the DSP or controller for main-
taining a list of application data associated with an applica-
tion program; preloading the application data upon launch-
ing the application program, and servicing requests for the
application data from the host system using the preloaded
application data.

9. The method of claim 1, further comprising:

maintaining a list of application data associated with an

application program;
preloading the application data into the cache memory
prior to completion of initialization of the central
processing unit of the computer system, wherein pre-
loading the application data comprises accessing com-
pressed application data from a boot device; and

servicing requests for application data from the computer
system using the preloaded application data after
completion of initialization of the central processing
unit of the computer system, wherein servicing requests
comprises accessing compressed application data from
the cache and decompressing the compressed applica-
tion data.

10. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data and the data com-
pression engine provides the compressed boot data to the
boot device.

11. The method of claim 1, wherein the decompressing is

5 provided by a data compression engine.

12. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data, the data compression
engine provides the compressed boot data to the boot device,
and the decompressing is provided by the data compression
engine.

13. The method of claim 1, wherein the compressed boot
data is accessed via direct memory access.

14. The method of claim 1, wherein Huffman encoding is
utilized to provide the compressed boot data.

15. The method of claim 1, wherein Lempel-Ziv encoding
is utilized to provide the compressed boot data.

Ex. 2013
Page 5 of 145

What 1s claimed 1s:
1. A method for providing accelerated loading of an
operating system, comprising the steps of:

maintaining a list of boot data used for booting a computer 45
system;

initializing a central processing unit of the computer
system;

preloading the boot data into a cache memory prior to
completion of initialization of the central processing 50
unmt of the computer system, wherein preloading the ‘
boot data comprises accessing compressed boot data]
from a boot device; and W

servicing requests for boot data from the computer system
using the preloaded boot data after completion of 55 |
initialization of the central processing unit of the com-

L L]
] - wiil AT wiih (] L w@li= OITIDT]SE

Ex. 2013
Page 6 of 145

ression

7. A system for providing accelerated loading of an

y other 10 operating system of a host system comprising:

in U.S.
include
el so as
ufter or
led data
- output
m. It 1s
he data
yat data
d to the
»165. In
decom-
1thicient

15

20

25

a digital signal processor (DSP) or controller;

a cache memory device; and

a_non-volatile memory device, for storing logic code
associated with the DSP or controller, wherein the logic
code comprises instructions executable by the DSP or
controller for maintaining a list of boot data used for
booting the host system, for preloading the compressed
boot data into the cache memory device prior to

“completion of initialization of the central processing

unit of the host system, and for decompressing the
preloaded compressed boot data, at a rate that increases
the effective access rate of the cache, to service requests
for boot data from the host system after completion of
initialization of the central processing unit of the host
system.

L L L *
il= A aldls [il=

Ex. 2013
Page 7 of 145

Ex. 2013
Page 8 of 145

US 8,090,936 B2

27

such changes and modifications are intended to be included
within the scope of the invention as defined by the appended
claims.

What is claimed is:
1. A method comprising:
maintaining a list of boot data used for booting a computer
system, wherein at least a portion of said boot data is
compressed by a data compression engine to provide
said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device;

initializing a central processing unit of said computer sys-
tem,
preloading said at least a portion of said boot data in com-
pressed form from said boot device to a memory;

accessing and decompressing said at least a portion of said
boot data in said compressed form from said memory;
and

utilizing said decompressed at least a portion of said boot

data to boot said computer system, wherein said at least
a portion of said boot data is decompressed by said data
compression engine.

2. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an operating system of said computer system.

3. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an application program of said computer
system.

4. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an application program and an operating sys-
tem of said computer system.

5. The method of claim 1, wherein said preloading is per-
formed by a data storage controller connected to said boot
device.

6. The method of claim 1, further comprising updating the
list of boot data.

7. The method of claim 1, wherein Huffman encoding is
utilized to provide said at least a portion of said boot data in
said compressed form.

8. The method of claim 1, wherein Lempel-Ziv encoding is
utilized to provide said at least a portion of said boot data in
said compressed form.

9. The method of claim 1, wherein a plurality of encoders
are utilized to provide said at least a portion of compressed
data in compressed form.

10. The method of claim 1, wherein a plurality of encoders
in a parallel configuration are utilized to provide said at least
a portion of said data in compressed form.

11. A system comprising:

a processor;

a memory; and

a non-volatile memory device for storing logic code asso-

ciated with the processor, wherein said logic code com-
prises instructions executable by the processor for main-
taining a list of boot data used for booting the host
system, at least a portion of said boot data is stored in
compressed form in said non-volatile memory device,
said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is
decompressed and utilized to boot said computer sys-
tem; and

40

45

50

28

a data compression engine for providing said at least a
portion of said boot data in compressed form by com-
pressing said at least a portion of said boot data and
decompressing said at least a portion of said boot data in
compressed form to provide said decompressed at least
a portion of boot data.

12. The system of claim 11, wherein said logic code further
comprises program instructions executable by said processor
for maintaining a list of application data associated with an
application program.

13. The system of claim 11, wherein said logic code further
comprises program instructions executable by said processor
for maintaining a list of application data associated with an
application program, and wherein said application data is
preloaded upon launching the application program and uti-
lized by said computer system.

14. The system of claim 11, wherein Huffman encoding is
utilized to provide said at least a portion of said boot data in
compressed form.

15. The system of claim 11, wherein Lempel-Ziv encoding
is utilized to provide said at least a portion of said boot data in
compressed form.

16. The system of claim 11, wherein a plurality of encoders
are utilized to provide said at least a portion of said boot data
in compressed form.

17. The system of claim 11, wherein a plurality of encoders
in a parallel configuration are utilized to provide said at least
a portion of said boot data in compressed form.

18. A method of preloading an operating system for boot-
ing a computer system comprising:

storing substantially all of the operating system in com-
pressed form on a boot device;

preloading a first portion of the substantially all of the
operating system from said boot device to a memory;

accessing and decompressing the first portion from the
memory using a data compression engine;

utilizing the decompressed first portion to partially boot
said computer system;

responsive to a request, locating a second portion of the
substantially all of the operating system using a boot
data list and preloading the second portion from the boot
device to the memory;

accessing and decompressing the second portion from the
memory using the data compression engine; and

utilizing the decompressed second portion to further par-
tially boot said computer system.

19. The method of claim 18, wherein the preloading is
performed by a data storage controller connected to the boot
device.

20. The method of claim 18, further comprising updating
the boot data list.

21. The method of claim 18, wherein Huffman encoding is
utilized to obtain the substantially all of the operating system
in compressed form.

22.The method of claim 18, wherein Lempel-Ziv encoding
is utilized to obtain the substantially all of the operating
system in compressed form.

23. The method of claim 18, wherein a plurality of encod-
ers are utilized to obtain the substantially all of the operating
system in compressed form.

24. The method of claim 18, wherein a plurality of encod-
ers in a parallel configuration are utilized to obtain the sub-
stantially all of the operating system in compressed form.

* * * * *

Ex. 2013
Page 9 of 145

1ma para“e\ COIngUI’ElLOIl dre ULLZE! L‘r prow!e S&l! a\ \688\

:égz 8311;1 Cﬁ,i i a portion of said boot data in compressed form.
P 18. A method of preloading an operating system for boot-
smpressed at 30 ing a computer system comprising:

storing substantially all of the operating system in com-
rogram code

pressed form on a boot device;

preloading a first portion of the substantially all of the
operating system from said boot device to a memory;

accessing and decompressing the first portion from the
memory using a data compression engine:;

utilizing the decompressed first portion to partially boot
said computer system;

responsive to a request, locating a second portion of the
substantially all of the operating system using a boot
data list and preloading the second portion from the boot
device to the memory;

accessing and decompressing the second portion from the
memory using the data compression engine; and

utilizing the decompressed second portion to further par-
tially boot said computer system.

19. The method of claim 18, wherein the preloading is

T e A W - il) L) .- L L))

perating sys-

vading 1s per-
to said boot 35

updating the

1 encoding 1s
1 boot data in 40

v encoding 1s
1 boot data in

v of encoders 45
[compressed

Ex. 2013
Page 10 of 145

Ex. 2013
Page 11 of 145

Ex. 2013
Page 12 of 145

Ex. 2013
Page 13 of 145

Ex. 2013
Page 14 of 145

Ex. 2013
Page 15 of 145

Ex. 2013
Page 16 of 145

Ex. 2013
Page 17 of 145

Ex. 2013
Page 18 of 145

Ex. 2013
Page 19 of 145

Ex. 2013
Page 20 of 145

US 7,181,608 B2

21
If only the PCI Bus and DSP require SDRAM:

PCI Bus Interface (A+B)K
DSP Accesses (A+B)/K

If only the DSP and Disk require SDRAM:

DSP Accesses 2AK
UltraDMA Disk Interface 2B/K

If only the PCI Bus and Disk require SDRAM:

PCI Bus Interface 2A/K
UltraDMA Disk Interface 2B/K

It should be noted that the resultant ratios may all be scaled
by a constant in order to most effectively utilize the band-
widths of the internal busses and external interfaces. In
addition each ratio can be scale by an adjustment factor
based upon the time required to complete individual cycles.
For example if PCI Bus interface takes 20% longer than all
other cycles, the PCI time slice should be adjusted longer
accordingly.

V. Instant Boot Device for Operating System, Application
Program and Loading

Typically, with conventional boot device controllers, after
reset, the boot device controller will wait for a command

over the computer bus (such as PCI). Since the boot device 5

controller will typically be reset prior to bus reset and before
the computer bus starts sending commands, this wait period
is unproductive time. The initial bus commands inevitably
instruct the boot device controller to retrieve data from the
boot device (such as a disk) for the operating system. Since
most boot devices are relatively slow compared to the speed
of most computer busses, a long delay is seen by the
computer user. This is evident in the time it takes for a
typical computer to boot.

It is to be appreciated that a data storage controller
(having an architecture as described herein) may employ a
technique of data preloading to decrease the computer
system boot time. Upon host system power-up or reset, the
data storage controller will perform a self-diagnostic and

program the programmable logic device (as discussed s

above) prior to completion of the host system reset (e.g., PCI
bus reset) so that the logic device can accept PCI Bus
commands after system reset. Further, prior to host system
reset, the data storage controller can proceed to pre-load the
portions of the computer operating system from the boot
device (e.g., hard disk) into the on-board cache memory. The
data storage controller preloads the needed sectors of data in
the order in which they will be needed. Since the same
portions of the operating system must be loaded upon each
boot process, it is advantageous for the boot device control-
ler to preload such portions and not wait until it is com-
manded to load the operating system. Preferably, the data
storage controller employs a dedicated IO channel of the
DSP (with or without data compression) to pre-load com-
puter operating systems and applications.

Once the data is preloaded, when the computer system bus
issues its first read commands to the data storage controller

20

3

=3

45

65

22

seeking operating system data, the data will already be
available in the cache memory of the data storage controller.
The data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this
would be a frequently used application such as a word
processor and any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an
automatic process that requires no input from the user. With
this technique, the data storage controller maintain a list
comprising the data associated with the first series of data
requests received by the data storage controller by the host
system after a power-on/reset. In particular, referring to FIG.
7a, during the computer boot process, the data storage
controller will receive requests for the boot data (step 70). In
response, the data storage controller will retrieve the
requested boot data from the boot device (e.g., hard disk) in
the local cache memory (step 71). For each requested data
block, the data storage controller will record the requested
data block number in a list (step 72). The data storage
controller will record the data block number of each data
block requested by the host computer during the boot
process (repeat steps 70—72). When the boot process is
complete (affirmative determination in step 73), the data
storage controller will store the data list on the boot device
(or other storage device) (step 74).

Then, upon each subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with
the expected data requests) into the onboard cache memory
(step 77). It is to be understood that the depending on the
resources of the given system (e.g., memory, etc.), the
preloading process may be completed prior to commence-
ment of the boot process, or continued after the boot process
begins (in which case booting and preloading are performed
simultaneously).

When the boot process begins (step 78) (i.e., the storage
controller is initialized and the system bus reset is deas-
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request
is immediately serviced using the preloaded boot data (step
81). If the host computer issues a request for boot data that
is not preloaded in the local memory of the data storage
controller (negative determination in step 80), the controller
will retrieve the requested data from the boot device, store
the data in the local memory, and then deliver the requested
boot data to the computer bus (step 82). In addition, the data
storage controller would update the boot data list by record-
ing any changes in the actual data requests as compared to
the expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device con-

Ex. 2013
Page 21 of 145

L 1S 10 !e apprecmte! t!a‘[a !ata storage contro“er 45 (ste

(having an architecture as described herein) may employ a res
technique of data preloading to decrease the computer pre
system boot time. Upon host system power-up or reset, the me:
data storage controller will perform a self-diagnostic and beg
program the programmable logic device (as discussed 5o sim
above) prior to completion of the host system reset (e.g., PCI \

bus reset) so that the logic device can accept PCI Bus cor
commands after system reset. Further, prior to host system ser

reset, the data storage controller can proceed to pre-load the boc
portions of the computer operating system from the boot 55 boc
device (e.g., hard disk) into the on-board cache memory. The sto]

data storage controller preloads the needed sectors of data in is 1
the order in which they will be needed. Since the same 81)
portions of the operating system must be loaded upon each is 1

boot process, 1t 1s advantageous for the boot device control- 60 con

Ex. 2013
Page 22 of 145

storage controller employs a dedicated 10O channel of the b
DSP (with or without data compression) to pre-load com- ST
puter operating systems and applications. 65 I

Once the data 1s preloaded, when the computer system bus tl
1ssues 1ts first read commands to the data storage controller T

22
seeking operating system data, the data will already be

available 1n the cache memory of the data storage controller.
The data storage controller will then be able to instantly start
transmitting the data to the system bus. Belore transmission
to the bus, 1f the data was stored 1n compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data

Ex. 2013
Page 23 of 145

Ex. 2013
Page 24 of 145

Ex. 2013
Page 25 of 145

Ex. 2013
Page 26 of 145

US 7,181,608 B2

21
If only the PCI Bus and DSP require SDRAM:

PCI Bus Interface (A+B)YK
DSP Accesses (A+B)YK

If only the DSP and Disk require SDRAM:

DSP Accesses 2A/K
UltraDMA Disk Interface 2B/K

If only the PCI Bus and Disk require SDRAM:

PCI Bus Interface 2A/K
UltraDMA Disk Interface 2B/K

It should be noted that the resultant ratios may all be scaled
by a constant in order to most effectively utilize the band-
widths of the internal busses and external interfaces. In
addition each ratio can be scale by an adjustment factor
based upon the time required to complete individual cycles.
For example if PCI Bus interface takes 20% longer than all
other cycles, the PCI time slice should be adjusted longer
accordingly.

V. Instant Boot Device for Operating System, Application
Program and Loading

Typically, with conventional boot device controllers, after
reset, the boot device controller will wait for a command
over the computer bus (such as PCI). Since the boot device
controller will typically be reset prior to bus reset and before
the computer bus starts sending commands, this wait period
is unproductive time. The initial bus commands inevitably
instruct the boot device controller to retrieve data from the
boot device (such as a disk) for the operating system. Since
most boot devices are relatively slow compared to the speed
of most computer busses, a long delay is seen by the
computer user. This is evident in the time it takes for a
typical computer to boot.

It is to be appreciated that a data storage controller
(having an architecture as described herein) may employ a
technique of data preloading to decrease the computer
system boot time. Upon host system power-up or reset, the
data storage controller will perform a self-diagnostic and

program the programmable logic device (as discussed :

above) prior to completion of the host system reset (e.g., PCI
bus reset) so that the logic device can accept PCI Bus
commands after system reset. Further, prior to host system
reset, the data storage controller can proceed to pre-load the
portions of the computer operating system from the boot
device (e.g., hard disk) into the on-board cache memory. The
data storage controller preloads the needed sectors of data in
the order in which they will be needed. Since the same
portions of the operating system must be loaded upon each
boot process, it is advantageous for the boot device control-
ler to preload such portions and not wait until it is com-
manded to load the operating system. Preferably, the data
storage controller employs a dedicated 10 channel of the
DSP (with or without data compression) to pre-load com-
puter operating systems and applications.

Once the data is preloaded, when the computer system bus
issues its first read commands to the data storage controller

10

20

30

40

45

22

seeking operating system data, the data will already be
available in the cache memory of the data storage controller.
The data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this
would be a frequently used application such as a word
processor and any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an
automatic process that requires no input from the user. With
this technique, the data storage controller maintain a list
comprising the data associated with the first series of data
requests received by the data storage controller by the host
system after a power-on/reset. In particular, referring to FIG.
7a, during the computer boot process, the data storage
controller will receive requests for the boot data (step 70). In
response, the data storage controller will retrieve the
requested boot data from the boot device (e.g., hard disk) in
the local cache memory (step 71). For each requested data
block, the data storage controller will record the requested
data block number in a list (step 72). The data storage
controller will record the data block number of each data

5 block requested by the host computer during the boot

process (repeat steps 70-72). When the boot process is
complete (affirmative determination in step 73), the data
storage controller will store the data list on the boot device
(or other storage device) (step 74).

Then, upon each subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with
the expected data requests) into the onboard cache memory
(step 77). It is to be understood that the depending on the
resources of the given system (e.g., memory, etc.), the
preloading process may be completed prior to commence-
ment of the boot process, or continued after the boot process
begins (in which case booting and preloading are performed
simultaneously).

When the boot process begins (step 78) (i.e., the storage
controller is initialized and the system bus reset is deas-
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request
is immediately serviced using the preloaded boot data (step
81). If the host computer issues a request for boot data that
is not preloaded in the local memory of the data storage
controller (negative determination in step 80), the controller
will retrieve the requested data from the boot device, store
the data in the local memory, and then deliver the requested
boot data to the computer bus (step 82). In addition, the data
storage controller would update the boot data list by record-

5 ing any changes in the actual data requests as compared to

the expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device con-

Ex. 2013
Page 27 of 145

1C (or other storage device) (step 74).
€ 40 Then, upon each subsequent power-on/reset (aflirmative

e
d result in step 75), the data storage controller would retrieve
1C and read the stored list (step 76) and proceed to preload the

a boot data specified on the list (1.e., the data associated with
the expected data requests) into the onboard cache memory
> 45 (step 77). It 1s to be understood that the depending on the

a resources of the given system (e.g., memory, etc.), the
=4 preloading process may be completed prior to commence-
1€ ment of the boot process, or continued after the boot process
d begins (in which case booting and preloading are performed
d 5o simultaneously).

’1 When the boot process begins (step 78) (1.e., the storage
1S controller 1s initialized and the system bus reset 1s deas-
n serted), the data storage controller will receive requests for
1€ boot data (step 79). If the host computer 1ssues a request for

Ex. 2013
Page 28 of 145

Ex. 2013
Page 29 of 145

Ex. 2013
Page 30 of 145

Ex. 2013
Page 31 of 145

Ex. 2013
Page 32 of 145

Ex. 2013
Page 33 of 145

Ex. 2013
Page 34 of 145

Ex. 2013
Page 35 of 145

Ex. 2013
Page 36 of 145

Ex. 2013
Page 37 of 145

Ex. 2013
Page 38 of 145

Ex. 2013
Page 39 of 145

Ex. 2013
Page 40 of 145

Ex. 2013
Page 41 of 145

Ex. 2013
Page 42 of 145

Ex. 2013
Page 43 of 145

Ex. 2013
Page 44 of 145

Ex. 2013
Page 45 of 145

Ex. 2013
Page 46 of 145

Ex. 2013
Page 47 of 145

Ex. 2013
Page 48 of 145

Ex. 2013
Page 49 of 145

Ex. 2013
Page 50 of 145

Ex. 2013
Page 51 of 145

4

(75)

(73)

(*)

1)
(22)

QY
(>2)

(>8)

(56)

SYSTEM AND METHOD FOR REDUCING
THE FOOTPRINT OF PRELOADED
CLASSES

Inventors: Hideya Kawahara, Mountain View, CA
(US); Nedim Fresko, San Francisco,
CA (US)

Assignee: Sun Microsystems, Inc., Santa Clara,
CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/045,508

Filed: Mar. 20, 1998
Int. C1.7 GOG6F 9/00
US.Cl . 709/332; 717/166; 717/159
Field of Searchcc...... 709/332, 331,
717/151-167
References Cited
U.S. PATENT DOCUMENTS

5,734,822 A * 3/1998 Houha et al. 709/216
5,815,718 A * 9/1998 TOCK ..ooevveevrenvvniinnnnnns 709/331
5,966,542 A * 10/1999 ToCK ..oeeveveeeeeceeeeeenannnnne 713/1
5,966,702 A * 10/1999 Fresko et al e 707/1
6,052,778 A * 4/2000 Hagy et al. 709/331
6,061,520 A * 5/2000 Yellin et al. ... 703/22
6,223,346 Bl * 4/2001 TOCK ..cocvvrvvrvnirnienreeaeenns 713/1
6,324,637 B1 * 11/2001 Hamilton 711/216
6,339,841 B1 * 1/2002 Merrick et al. 707/103 R
6,349,344 B1 * 2/2002 Sauntry et al. 709/1

6,363,436 B1 * 3/2002 Hagy et al.
* 4/2002 Taivalsaari et al. 707/1

6,366,898 B2

6,526,565 B1 * 2/2003 Nallyccovveniivinnnnnns 717/108

6,530,080 B2 * 3/2003 Fresko et al. 717/166
FOREIGN PATENT DOCUMENTS

EP 943989 A2 * 9/1999 ... GO6F/9/44

OTHER PUBLICATIONS

Sun Microsystems. “PersonalJava 1.1 Memory Usage Tech-
nical Note.” 1998.*

“The Java™ Virtual Machine Specification”, Tim Lindholm,
Frank Yellin, 475 pages, ©1997, ISBN 0201-63452-X.

* cited by examiner

Primary Examiner—John Follansbee
Assistant Examiner—_ewis A. Bullock, Jr.
(74) Attorney, Agent, or Firm—Pennie & Edmonds LLP

(57) ABSTRACT

A method and system that reduces the space allocated for
internal data structures by a runtime engine. The internal
data structures store member information for preloaded
classes used by applications executed by the runtime engine.
The system determines the different types of internal data
structures represented in the classes and identifies thee
possible values of each type’s members. The system next
determines the amount of space required to store the values
for each type in a respective value table and the number of
bits needed to index each entry of that table. The system
determines based on the stored information whether occur-
rences of a member are optimally represented as a set of
value table indices and a value table or, in the conventional
manner, as a general variable that stores the member’s value
for each occurrence. The system then emits appropriate
information for the member and its parent data structure.

44 Claims, 12 Drawing Sheets

each value.

1104
For each data structure:
Identify all member types 1108
For each member 3
Determine number of ~T~—_1108
occurrences of member.
Identify all values. T~—1110

Determine memory space —~~—
required to store each value 2
Determine memory space
required to store an index fo 1114

Determine size of conventional —~__ 1116
representation of member.

1118

For each member type:

Compute memory space 1120
req'd by conventional rep (LHS).
Compute memory space reqd by —
indices and table (RHS).

™~—1122

1126

l Represent member as value table and indices.

1128

Represent member conventionally.

1130

For each data structure

Determine opt. ordering of members. T~~__1132
Generate member values and header
info according to the optimal ordering.

| ™—1134

Ex. 2013
Page 52 of 145

(21)
(22)
(51)

(52)
(58)

(56)

U.S.C. 154(b) by 0 days.

Appl. No.: 09/045,508
Filed: Mar. 20, 1998

Int. CL7 oo GO6F 9/00
US.Cl ... 709/332; 717/166; 717/159
Field of Search 709/332, 331;

717/151-167

References Cited

U.S. PATENT DOCUMENTS

cited by examiner

Primary Examiner—John Follansbee
Assistant Examiner— .ewis A. Bullock, Jr.
(74) Attorney, Agent, or Firm—Pennie & Edmonds LLP

(57) ABSTRACT

A method and system that reduces the space allocated for
internal data structures by a runtime engine. The internal
data structures store member information for preloaded
classes used by applications executed by the runtime engine.
The system determines the different types of internal data
structures represented in the classes and identifies thee
possible values of each type’s members. The system next
determines the amount of space required to store the values

5734822 A * 3/1998 Houhaetal. 709/216 . .
5815718 A * 9/1998 Tock ..ooeveverereereenene. 700/331 for each type in a respective value table and the number of
5066542 A * 10/1999 TOCK ooeveeeeeierereereen, 713/1 bits needed to index each entry of that table. The system
5,966,702 A * 10/1999 Fresko et al.ceveunue... 707/1 determines based on the stored information whether occur-
6,052,778 A * 4/2000 Hagy et al. 709/331 rences of a member are optimally represented as a set of
6,061,520 A * 5/2000 Yellin etal. 703/22 value table indices and a value table or, in the conventional
0,223,346 BL * 42001 Tock rovovvicoriniricn 7131 manner, as a general variable that stores the member’s value
6,324,637 B1 * 11/2001 Hamiltoncc...... 711216 for cach occurrence. The sysiem then emils appropriate
6,339,841 Bl * 1/2002 Merrick etal. 707/103 R information for the member and its parent data structure
6,349,344 B1 * 2/2002 Sauntry et al. 709/1 P ’
6,363,436 B1 * 3/2002 Hagyetal 709/331
6,366,898 B2 * 4/2002 Taivalsaari et al. 707/1 44 Claims, 12 Drawing Sheets
1104
For each data structure:
'Identify all member types 1108
Far each member type:;
Determine number of ~T~—_1108
occurrencas of member.
Identify‘a! uaues. —1110

Ex. 2013
Page 53 of 145

US 6,658,492 Bl

1

SYSTEM AND METHOD FOR REDUCING
THE FOOTPRINT OF PRELOADED
CLASSES

The present invention relates generally to a class pre-
loader and, particularly, to a system and method for reducing
the size in read only memory of preloaded Java classes.

BACKGROUND OF THE INVENTION

A Java program comprises a number of small software
components called classes. Each class contains code and
data and is defined by information in a respective class file.
Each class file is organized according to the same platform-
independent “class file format”. Referring to FIG. 1, there is
shown a block diagram of the class file format, according to
which each class file 400 includes header information 402,
a constant pool 404, a methods table 406 and a fields table
408. The header information 402 identifies the class file
format, the size of the constant pool, the number of methods
in the methods table 406 and the number of fields in the
fields table 408. The constant pool 404 is a table of structures
representing various string constants, class names, field
names and other constants that are referred to within the
class file structure and its sub-structures. The methods table
406 includes one or more method structures, each of which
gives a complete description of and Java code for a method
explicitly declared by the class. The fields table 408 includes
one or more field structures, each of which gives a complete
description of a field declared by the class. An example of
the fields table 408 is now described in reference to FIG. 1B.

A Java program is executed on a computer containing a
program called a virtual machine (VM), which is respon-
sible for executing the code in Java classes. It is customary
for the classes of a Java program to be loaded as late in the
program’s execution as possible: they are loaded on demand
from a network server or from a local file system when first
referenced during the program’s execution. The VM locates
and loads each class, parses the class file format, allocates
internal data structures for its various components, and links
it in with other already loaded classes. This process makes
the method code in the class readily executable by the VM.

For small and embedded systems for which facilities,
required for class loading, such as a network connection, a
local file system or other permanent storage, are unavailable,
it is desirable to preload the classes into read only memory
(ROM). One preloading scheme is described in U.S. patent
application Ser. No. 08/655,474 (“AMethod and System for
Loading Classes in Read-Only Memory”), which is entirely
incorporated herein by reference. In this method and system,
the VM data structures representing classes, fields and
methods in memory are generated offline by a class pre-
loader. The preloader output is then linked in a system that
includes a VM and placed in read-only memory. This
eliminates the need for storing class files and doing dynamic
class loading.

Referring to FIG. 2A, there is shown a more detailed
block diagram of the VM data structures 1200.generated by
the class preloader. The data structures 1200 include a class
block 1202, a plurality of method blocks 1204, a plurality of
field blocks 1214 and a constant pool 1224.

The class block 1202 is a fixed-size data structure that can
include the following information:

the class name 1230,

a pointer 1232 to the class block of the current class’s

immediate superclass;

a pointer 1234 to the method blocks 1204

55

2
a pointer 1236 to the field blocks 1214; and

a pointer 1238 to the class’ constant pool;

The elements of a class block data structure are referred
to herein as class block members.

A method block 1204 is a fixed-sized data structure that
represents one of the class’s methods. The elements of a
method block data structure are referred to herein as method
block members. A field block 1214 is a fixed-size data
structure that represents one of the class’s instance variables.
The elements of a field block data structure are referred to
herein as field block members.

Each type of VM data structure, including the class block
1202, method blocks 1204, field blocks 1214 and constant
pool 1224, has a format defined by a corresponding data
structure declaration. For example, a single method block
declaration defines the format of all method blocks 1204.
The data structure declarations also define accessor func-
tions (or macros) that are used by the VM to access data
structure members. These data structure declarations are
internal to the VM and are not used by class components.
The prior art data structure declarations are now described in
reference to FIG. 2B.

Referring to FIG. 2B, there is shown a depiction of data
structure declarations 1230 that define the format of all data
structure types employed by a particular VM. Each decla-
ration 1230 includes a set of member declarations 1232 and
accessor functions 1234 for accessing respective members.
The member declarations 1232 and accessor functions 1234
are defined conventionally, according to the syntax of the
language used in the implementation of the VM. For
example, assuming the C language is used in the data
structure declarations 1230, a generic field data structure
1230.N (shown in FIG. 2B) could be defined as a structure
T with five members of the following types with respective
accessor functions:

member name member type accessor functions

memberl mtypel mem1 of (T) T->memberl
member2 mtype2 mem?2 of (T) T->member2
member3 mtype3 mem3 of (T) T->member3
member4 mtype4 mem4 of (T) T->member4
member5 mtype5 memS5 of (T) T->member5

In this example, the member types can be any type defined
by the relevant computer language, including user defined
types or language types, such as integer, float, char or
double. The accessor functions are macros used by the VM
to access the fields without needing to access directly the
structure containing the field. For example, instead of
employing the expression “T—memberl” to access field1 in
structure type T, the VM need only employ the expression
“meml of (T)”. Accessor functions are well known in
programming languages, such as C, that provide sophisti-
cated data structure capabilities.

The internal data structures used to store “class meta data”
(i.c., the class, method and field blocks 1202, 1204, 1214)
require large, fixed amounts of space in read-only memory.
In fact, measurements indicate that this sort of class meta
data often takes up much more space than the bytecodes for
the class methods themselves. These internal data structures
are therefore often unsuitable for use in small, resource-
constrained devices in which class preloading is desirable

5 and/or necessary.

Moreover, if the internal data structures were individually
modified to save memory space, the VM code would need to

Ex. 2013
Page 54 of 145

55 programming languages, such as C, that provide sophisti-
cated data structure capabilities.

iziﬂid The 1nternal data structures used to store “class meta data”
1 y (i.e., the class, method and field blocks 1202, 1204, 1214)
1 Class require large, fixed amounts of space 1n read-only memory.
lity of 60 In fact, measurements indicate that this sort of class meta
t data often takes up much more space than the bytecodes for
1at can

the class methods themselves. These internal data structures
are therefore often unsuitable for use in small, resource-
constrained devices in which class preloading 1s desirable
class’s 65 and/or necessary.

Moreover, if the internal data structures were individually
modified to save memory space, the VM code would need to

Ex. 2013
Page 55 of 145

United States Patent [
Tock

US005815718A
(111 Patent Number: 5,815,718
451 Date of Patent: Sep. 29, 1998

[54] METHOD AND SYSTEM FOR LOADING
CLASSES IN READ-ONLY MEMORY

[75] Inventor: Theron D. Tock, Sunnyvale, Calif.

[73] Assignee: Sun Microsystems, Inc., Mountain

View, Calif.

[21] Appl. No.: 655,474
[22] Filed: May 30, 1996
[51] Int. CLE oo GOG6F 9/45
[52] US.CL 395/705; 395/710; 395/685
[58] Field of Search ..o 395/701, 702,

395/710, 651, 652, 685, 705, 708
[56] References Cited

U.S. PATENT DOCUMENTS

5,051,893 9/1991 Tenny et al.
5,303,380 4/1994 Tenny et al. ..
5,369,766 11/1994 Nakano et al.
5,594,903 1/1997 Bunnell et al.
5,613,120 3/1997 Palay et al.
5,664,128 9/1997 Bauer
5,671,413 9/1997 Shipman et al. ..

364/200
... 395/700
... 395/700
.. 395/712
... 395/710
... 345/334
.. 395/700

FOREIGN PATENT DOCUMENTS
2242293 9/1991 United Kingdom .

OTHER PUBLICATIONS

“Java Intermediate Bytecodes”; J. Gosling; 1995 ACM
SIGPLAN Workshop on Intermediate Representations; pp.
111-118.

Primary Examiner—Emanuel Todd Voeltz

Assistant Examiner—Kakali Chaki

Attorney, Agent, or Firm—Gary S. Williams; Flehr Hohbach
Test Albritton & Herbert LLP

[57] ABSTRACT

A method and system for providing an executable module
having an address space for storing program data that is to
reside in a read-only storage medium and an address space
for storing program data that is to reside in a random access
memory is herein described. The executable module repre-
sents Java classes that are structured for dynamic class
loading. A static class loader is used to modify the class
structure to accommodate static loading. The static class
loader also identifies methods that contain unresolved sym-
bolic references and data that varies during the execution of
the module. These methods and data are identified in order
to place them in the address space that resides in the random
access memory. The static loader is beneficial in a distrib-
uted computing environment having a client computer that
has little or no secondary storage thereby requiring appli-
cations to run entirely in random access memory. By utiliz-
ing a read-only memory to store statically loadable classes,
the random access memory is left available for other uses.

20 Claims, 12 Drawing Sheets

Per Class

300 Fmmmmmmmmm o me TS
! :
: L
I il
1 1
1 1
| . 1
' |
] 1
1 1
1
: Class File 180
I
e I i

128
Class File
Class Libraries 131
r 180

Hash Offline Class
Table Loader

ROM portion
RAM portion

}\ 132
Updated Class File and
Constant Pool

302

Preloadable executable module

Ex. 2013
Page 56 of 145

View, Calif.

Appl. No.: 655,474

Filed: May 30, 1996

Int. CLC oo, GO6F 9/45

US.CL ..., 395/705; 395/710; 395/685

Field of Searchcc..coocvvvvivenenn. 395/701, 702,

395/710, 651, 652, 685, 705, 708
References Cited
U.S. PATENT DOCUMENTS
5,051,893 9/1991 Tenny et al.cccccverevvenrecnncens 364/200
5,303,380 4/1994 Tenny el al.ccceevevvevnnnnnnn. 395/700
5,369,766 11/1994 Nakano et al.ccceevvvvnennennn. 395/700
5,594,903 1/1997 Bunnell et al.ooeveeeennnnnnnnn.. 395/712
5,613,120 3/1997 Palay et al.cccoevvvievnnnnnnn 395/710
5,664,128 9/1997 BaUET ...ccvvvvvviierererieenienereeeianinns 345/334
5,671,413 9/1997 Shipman et al.c.ccccecveeneeens 395/700
FOREIGN PATENT DOCUMENTS

2242293 9/1991 United Kingdom .

Source Code

Assistant Examiner—XKakali Chaki
Artorney, Agent, or Firm—Gary S. Williams; Flehr Hohbach
Test Albritton & Herbert LLP

157] ABSTRACT

A method and system for providing an executable module
having an address space for storing program data that is to
reside in a read-only storage medium and an address space
for storing program data that is to reside in a random access
memory is herein described. The executable module repre-
sents Java classes that are structured for dynamic class
loading. A static class loader is used to modify the class
structure to accommodate static loading. The static class
loader also identifies methods that contain unresolved sym-
bolic references and data that varies during the execution of
the module. These methods and data are identified in order
to place them in the address space that resides in the random
access memory. The static loader is beneficial in a distrib-
uted computing environment having a client computer that
has little or no secondary storage thereby requiring appli-
cations to run entirely in random access memory. By utiliz-
ing a read-only memory to store statically loadable classes,
the random access memory is left available for other uses.

20 Claims, 12 Drawing Sheets

Per Class

Ex. 2013
Page 57 of 145

5,815,718

1

METHOD AND SYSTEM FOR LOADING
CLASSES IN READ-ONLY MEMORY

The present invention relates generally to object-oriented
computer systems having classes that are dynamically
loaded at runtime, and particularly to a system and method
for preloading a subset of the classes in a read-only memory.

BACKGROUND OF THE INVENTION

A current trend in object-oriented programming lan-
guages is to extend the functionality of the language to
accommodate the distribution of dynamic content in a
distributed computing environment. In one such language,
this is accomplished by dynamically loading classes at
runtime. A class is a collection of variables and methods that
model the behavior of an object. By dynamically loading
classes at runtime, existing applications can add function-
ality by linking in new classes that reside on any computer
system within the distributed computing environment.

In such languages, symbolic references are used to refer
to the class members (i.e., the class’ methods and variables).
When a class is invoked, the dynamic loader determines the
storage schema for the class and resolves the symbolic
reference. Such a loading scheme is beneficial when access-
ing classes that are updated often. However, a limitation of
such a loading scheme is its dependency on a read/write
memory device such as a random access memory (RAM). In
a computing environment that has little or no secondary
storage (e.g., non-volatile magnetic disk storage), dynamic
loading of the classes in this manner can quickly use up the
storage capacity of the RAM. As the capacity of the RAM
is limited, it is desirable to minimize the amount of RAM
that is used by an application. Accordingly, there exists a
need to limit the amount of RAM that is utilized to execute

object-oriented program code having dynamically loadable :

classes.

It would be beneficial to provide a method and system
which overcomes the deficiencies of the prior art.

SUMMARY OF THE INVENTION

In summary, this disclosure pertains to an offline class
loader that is used to produce an executable module whose
classes are preloaded into memory without requiring runt-
ime dynamic loading. The executable module, nevertheless,
contains a class structure that is tailored for runtime dynamic
loading. Thus, the offline class loader modifies the existing
class structures to accommodate static loading. However,
the class structure allows for varying data and methods that
contain unresolved references. The offline class loader tags

these methods and data specifying that they are to be stored -

in a random access memory. All other data is stored in a
read-only memory. At the completion of the static loading
process, a preloadable executable module is generated that
contains two addresses spaces. A first address space that
contains methods having unresolved references and data that
varies during the execution of the module is loaded in a
random access memory. The second address space contains
methods having static loaded classes and constant data
which is loaded into a read-only memory.

A preloadable executable module of this fashion is advan-
tageous in a distributed computer system having client
computers with little or no secondary storage. Such client
computers require applications to run entirely in random
access memory which quickly turns into a limited resource.
By utilizing the offline class loader to partition an applica-
tion into two address spaces, the amount of RAM utilized by
the preloadable module is minimized.

40

2

In an embodiment, a client computer having minimal
secondary storage utilizes an offline class loader to preload
a browser in the client’s read-only memory. The browser is
partitioned into the aforementioned two address spaces. At
system initialization or power up, the random access
memory portion of the browser is loaded from read-only
memory into the random access memory. By executing a
large portion of the browser from read-only memory, the
browser has additional RAM storage to store information-
content and executable modules that it can obtain from other
server computers that the client is in communication with.

BRIEF DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will be
more readily apparent from the following detailed descrip-
tion and appended claims when taken in conjunction with
the drawings, in which:

FIG. 1 is a block diagram of a distributed computer
system.

FIG. 2 is a block diagram of a client computer in the
distributed computer system of FIG. 1.

FIG. 3 is a flow diagram illustrating the processing
components used to produce the preloadable executable
module.

FIG. 4 illustrates the file layout for a class file.

FIG. § illustrates the file layout for a constant pool.

FIG. 6 illustrates the class block data structures.

FIG. 7 illustrates an instruction bytecode stream.

FIG. 8, which is a combination of FIGS. 8A and 8B,
represents a flow chart of the method used by the offline
class loader.

FIG. 9 is a flow chart of the method for building the class
block data structures.

FIG. 10 is a flow chart of the method for eliminating
duplicate constants.

FIG. 11 is a flow chart of the method for converting a
non-quick instruction format into a quick instruction format.

FIG. 12 is a block diagram showing the mapping of a
preloaded application into read-only memory and random-
access memory and indicating the loading of the portion of
the methods and data mapped into random-access memory
by a static class initializer.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The method and system described herein utilizes a dis-
tributed computing environment having a communication
link that connects at least one server computer and a number
of client computers. Some of the client computers have little
or no secondary storage (e.g., non-volatile magnetic disk
storage) thereby requiring applications to be run entirely
from random access memory. An application developed in
the Java programming language is executed on such a client
computer. Preferably, the application is a browser that is
used to import Java content, such as Java applets, from one
or more server computers. Typically, the browser is an
interpreted program module that retrieves Web documents
utilizing a HyperText Transfer Protocol (HTTP) to access
one or more Web pages formatted as HyperText Markup
Language (HTML) documents from a server acting as a Web
site. The HTML documents are interpreted and presented to
the user associated with the client computer. Often, the
HTML documents embed applets. An applet is a executable
module represented as a Java class. The browser loads in the
applet and its associated classes in order to execute the
applet.

Ex. 2013
Page 58 of 145

5,815,718
1

METHOD AND SYSTEM FOR LOADING In
CLASSES IN READ-ONLY MEMORY SECO

a bre

The present invention relates generally to object-oriented parti
computer systems having classes that are dynamically 5 syst
loaded at runtime, and particularly to a system and method men
for preloading a subset of the classes 1n a read-only memory. mern
BACKGROUND OF THE INVENTION e

A current trend in object-oriented programming lan- 10 cont
guages 1s to extend the functionality of the language to SEerv
accommodate the distribution of dynamic content in a
distributed computing environment. In one such language,
this 1s accomplished by dynamically loading classes at A
runtime. A class 1s a collection of variables and methods that 15 mor

Ex. 2013
Page 59 of 145

a2 United States Patent

Teoman et al.

US006463509B1
10) Patent No.: US 6,463,509 B1
“5) Date of Patent: Oct. 8, 2002

(54) PRELOADING DATA IN A CACHE MEMORY
ACCORDING TO USER-SPECIFIED
PRELOAD CRITERIA

(75) Inventors: Deniz Teoman, San Mateo; John M.
Neil, San Francisco, both of CA (US)

(73) Assignee: Motive Power, Inc., San Mateo, CA
(US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/238,656
(22) Filed: Jan. 26, 1999

(51) Int.ClL ..
(52) US.CL ...

GO6F 12/00
711/137; 711/118; 711/141;
711/152; 711/113

(58) Field of Searchc.cccccoevene 711/118, 137,
7117138, 129, 113, 141, 152, 3, 125; 710/52;

713/400; 714/5

(56) References Cited
U.S. PATENT DOCUMENTS

5,287,457
5,291,584

2/1994 Arimilli et al.
3/1994 Challa et al.

3,609,665 A 9/1971 Kronies
3,806,888 A /1974 Brickman et al.
4,020,466 A 4/1977 Cordi et al.
4,215,400 A 7/1980 Denko
4,295,205 A 10/1981 Kunstadt
4,342,079 A /1982 Stewart et al.
4435775 A 3/1984 Brantingham et al.
4,500,954 A * 2/1985 Duke et al. ..ocoevvvrennne 711/138
4,637,024 A * 1/1987 Dixon et al. 714/819
5,128,810 A 7/1992 Halford
5,131,089 A /1992 Cole
5,146,576 A 9/1992 Beardsley
5,218,689 A 6/1993 Hotle
5,226,168 A 7/1993 Kobayashi et al.
5,263,142 A 11/1993 Watkins et al.
A
A

MEMORY

PROCESSING|
UNIT
10

\. “

EXPANSION
BUS BRIDGE

1

EXPANSION
BUS 18

CONTROLLER |
7

[oEvice
bRIvERs| 32

5,293,622 A 3/1994 Nicholson et al.

5,359,713 A * 10/1994 Moran et al.c......... 710/52
5,396,596 A 3/1995 Hashemi et al.

5,420,998 A 5/1995 Horning

5,437,018 A 7/1995 Kobayashi et al.

5,448,719 A * 9/1995 Schullz et al. 714/5

(List continued on next page.)
OTHER PUBLICATIONS

International Search Report in connection with International
Application No. PCT/US00/02156 (6 pages).

“The I/O System”, Inside Windows NT Second Edition,
Microsoft Press, David A. Solomon, pp. v—xiv, 325-393,
1998.

“Filter Drivers”, Windows NT File System Internals A
Developer’s Guide, Rajeev Nagar, O’Rielly & Associates,
Inc., pp. vii—x, 615-667, 1997.

Primary Examiner—David Hudspeth

Assistant Examiner—Fred F. Tzeng

(74) Antorney, Agent, or Firm—3Blakely, Sokoloft, Taylor &
Zafman LLP

7 ABSTRACT

An apparatus and method for caching data in a storage
device of a computer system. A relatively high-speed,
intermediate-volume storage device is operated as a user-
configurable cache. Requests to access a mass storage device
such as a disk or tape are intercepted by a device driver that
compares the access request against a directory of the
contents of the user-configurable cache. If the user-
configurable cache contains the data sought to be accessed,
the access request is carried out in the user-configurable
cache instead of being forwarded to the device driver for the
target mass storage device. Because the user-cache is imple-
mented using memory having a dramatically shorter access
time than most mechanical mass storage devices, the access
request is fulfilled much more quickly than if the originally
intended mass storage device was accessed. Data is pre-
loaded and responsively cached in the user-configurable
cache memory based on user preferences.

26 Claims, 12 Drawing Sheets

SYSTEM MEMORY
0s

08 CACHE

T
16

; 1

DISK DRIVE
CONTROLLER

DISKDRIVE [DISK
CONTROLLER | CAGHE|

20”0

3

NETWORK ‘ USER

ACCESS DEVICE! CACHE
24

|
|
L
25
——
LANWAN
NETWORK

27

NETWORK| ~29A |NETWORK | 298
SERVER SERVER

Ex. 2013
Page 60 of 145

US 6,463,509 B1

15

the user cache. One user-configurable memory management
policy is whether to reserve storage space in the user cache
for storing a system page file. The system page file is the
portion of allocated virtual memory not mapped to system
RAM. Ordinarily the system page file is mapped to a disk
drive or other mass storage device. By reserving capacity for
the system page file in the user-cache, the system page file
can be swapped between the user cache and system RAM
much more quickly than if the disk drive or other mass
storage device was used to hold the page file. Another user
configurable memory management policy is the maximum
preloadable file size. As shown in FIG. 10, for example, the
user may specify that files larger than a user entered thresh-
old are not to be preloaded.

In the context of reserving capacity in the user cache, it
should be noted that a significant benefit of the user cache is
that storage space is provided for both preloading and
responsive caching operations without having to specifically
dedicate respective regions of the user cache storage space
for those operations. In an alternate embodiment, however,
the user cache may be partitioned into respective dedicated
storage regions for the preloading and responsive caching
operations.

Examples of preloading policies include, but are not
limited to, preloading complete files in response to file
segment access, preloading all files within the directory or
folder of a launched application, preloading all files in a
directory or folder if a threshold number of files from the
directory or folder have already been accessed, preloading

files in the system directory or folder, preloading files having 3

a particular file type identifier if a threshold number of files
having the file type identifier have been accessed, and so
forth. The file type identifier may be a filename extension
such as “.doc” or “.psd”, as used in many operating systems,

or the file type identifier may be a file attribute that does not 3

appear in the file name. Also, as indicated in FIG. 10, the
threshold number of files that have a particular file type
identifier and the threshold number of files that are from a
directory or folder are specified by the user. In many cases,
the preloading policies translate directly into criteria for
triggered preloading. For example, a policy to preload all
files in a directory or folder if a threshold number of the files
have been accessed sets up a preload trigger. The user cache
manager periodically inspects the access table maintained by
the observer to determine if the trigger criteria is met (e.g.,
whether the threshold number of files from the indicated
directory have been accessed). Other preload policies give
rise to commanded preload operations. For example, a
policy to preload the system directory causes the user cache
manager to begin commanded preloads of the directory
contents.

FIG. 11 is an exemplary user interface 127 generated by
the user cache manager to allow the user to specify com-
manded preloads. According to one embodiment, a user
enters a commanded preload in the interface of FIG. 11 by
clicking the add button on the user interface 127. The user
cache manager responds by generating a view of the file
storage within the computer system. The user may then
double click selected logical drives, directories or filenames
to indicate that files meeting the specified criteria are to be
preloaded. For example, the user may select the file
“C:\Program Files\Netscape\netscape.exe” to indicate that
the netscape.exe file is to be preloaded into the user cache
from the specified logical drive and directory (likewise for
pshop.exe, FirstBirthday.mov and Business Plan.wrd).
Similarly, the user may select the directory “C:\Program
Files\AutoCAD\” to indicate that all the files in the drive C:

[

20

25

40

45

16

subdirectory “\Program Files\AutoCAD\” are to be pre-
loaded. The user may also select the drive E:\ to indicate that
all the files in drive E are to be preloaded. The user may also
enter wildcards within filenames to indicate that files having
filenames that match the wildcard are to be preloaded. For
example, to load all files having the extension “.doc” from
the logical drive and directory, “C:\Program
Files\Winword\”, the user would select the indicated logical
drive and directory and enter “*.doc” (i.e., “C:\Program
Files\Winword*.doc”). After entering file parameters in the
interface of FIG. 11, the user may click the apply button to
initiate commanded preloading.

The user may also indicate, via the user interface 127 of
FIG. 11, to lock down selected files in the user cache. In one

° embodiment, for example, selected files are locked down in

the user cache in response to the user clicking in the left most
column of the interface adjacent a commanded preload
entry. A lock symbol is displayed to indicate that the files
covered by the commanded preload entry will be locked
down in the user cache. The lock down indication can be
removed by clicking on the lock symbol.

The column to the right of the lock down column is an
exclude column and can be used to exclude certain files from
the user cache. For example, by clicking in the exclude
column adjacent the preload entry “D:\Video
Benchmark\Disk Test\speed.exe™, the executable file spee-
d.exe is prevented from being loaded into the user cache,
either by preloading or by responsive caching.

FIG. 12 is an exemplary user interface 129 generated by
the user cache manager to permit the user to generate a
report of the user cache contents, test the memory in the user
cache, flush the user cache or backup the contents of the user
cache to a mass storage such as a tape backup or a disk drive.
Other operations may be prompted in the user interface 129
of FIG. 12 including, but not limited to, a battery test, an age
report indicating the relative order in which files have been
loaded into the user cache and so forth.

In the foregoing specification, the invention has been
described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various modifica-
tions and changes may be made to the specific exemplary
embodiments without departing from the broader spirit and
scope of the invention as set forth in the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method of pre-loading data into a storage array
operating as a user cache for a computer system, the method
comprising:

causing data to be retrieved from a mass storage device in
accordance with pre-load criteria, the pre-load criteria
identifying data that is to be pre-loaded into the storage
array prior to receiving a command on the data;

storing the data in the storage army for subsequent access
by commands on the data;

inspecting a request for data from a process; causing the
requested data to be retrieved from a mass storage
device if the requested data is not in the storage array;
and p1 storing the requested data in the storage array in
accordance with exclusion criteria that specifies data
excluded from storage in the storage array using a file
identifier.

2. The method of claim 1 further comprising:

obtaining the pre-load criteria from a user of the computer
system.

Ex. 2013
Page 61 of 145

. a 1. A method of pre-loading data into a storage array
>he operating as a user cache for a computer system, the method

Iy 50 COmprising:

causing data to be retrieved from a mass storage device 1n

by accordance with pre-load criteria, the pre-load criteria
m- 1dentifying data that is to be pre-loaded into the storage
s;:r array prior to receiving a command on the data;

se}li > storing the data in the storage army for subsequent access
file by commands on the data;

en inspecting a request for data from a process; causing the
1es requested data to be retrieved from a mass storage
be 60 device 1f the requested data is not 1n the storage arrays;
file and pl storing the requested data 1in the storage array in
hat accordance with exclusion criteria that specifies data
-he excluded from storage in the storage array using a file
for identifier.

d). 65 2. The method of claim 1 further comprising;:

Ex. 2013
Page 62 of 145

United States Patent [

Sukegawa

111 Patent Number: 5,860,083
145] Date of Patent: Jan. 12, 1999

[54] DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

[75] Inventor: Hiroshi Sukegawa, Tokyo, Japan

[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki,
Japan
[21] Appl. No.: 818,983
[22] Filed: Mar. 14, 1997
[30] Foreign Application Priority Data
Nov. 26, 1996 [IP] Japan

[51] Int. CLS oo GOG6F 12/08
[52] US.CL .. 711/103; 711/117; 711/171;
711/173

[58] Field of Searchccccoocveiinnnnnee. 711/103, 113,
711/117, 170, 171, 173

8-314850

[56] References Cited
U.S. PATENT DOCUMENTS

5,175,842 12/1992 Totanieecevevivenivcvneninnnn 711/161
5,371,876 12/1994 Ewertz et al. 711/159
5,437,018 7/1995 Kobayashi et al. ... 395/652
5,535,357 7/1996 Moran et al. 711/103

5,778,418 7/1998 Auclair et al.cooorevirrrnnnns 711/101
FOREIGN PATENT DOCUMENTS

0706 135 4/1996 European Pat. Off. .
5-11933 1/1993 Japan .
8-63395 3/1996 Japan .

8-115241 5/1996 Japan .

Primary Examiner—Tod R. Swann

Assistant Examiner—Conley B. King, Jr.

Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, L.L.P.

[57] ABSTRACT

In a data storage system using a flash memory unit and an
HDD, the storage area of the flash memory unit is logically
divided into a permanent storage area, a non-volatile cache
area, which are used as cache memory areas of the HDD,
and a high-speed access area. These divided areas are
individually managed. The permanent storage area stores
data which is used frequently for a relatively long time
period. The non-volatile cache area is used as an ordinary
cache memory area in which data, which is updated rela-
tively frequently, is stored. The high-speed access area is a
storage area to be used by, e.g. an operating system (OS) of
a host system. For example, a swap file, which needs to be
accessed at high speed, is shifted into the high-speed access
area.

5,644,539 7/1997 Yamagami et al. .. 365/200
5,701,492 12/1997 Wadsworth et al.cccoevene.e. 395/712
5,745,418 4/1998 Ma et al. ccocevvrencucrnncnne 365/185.33 28 Claims, 10 Drawing Sheets
HOST "
SYSTEM
5 et 3 3A
j ¥ 4 S S
CACHE MANAGEMENT
ggY&EE SYSTEM fe--+| INFORMATION
CONTROLLER TABLE
3
é Y y
{ | FLASH MEMORY UNIT 1 HOD f~2
{ | [PERMANENT | 10n
; STORAGE AREA [™]
: HIGH-SPEED R
1”1 ACCESS AREA [-T"10B
NON-VOLATILE | |
CACHE AREA [~]10C

Ex. 2013
Page 63 of 145

HOST
SYSTEM

o S * 3A
§ % G
CACHE MANAGEMENT
gEY&EE SYSTEM --» |NFORMAT | ON
CONTROLLER TABLE
¥
| FLasH weworY uniT |1 HDD |2

PERMANENT R
STORAGE AREA l*’ 10A

H1GH-SPEED N
ACCESS AREA [M1UB

NON-VOLATILE | |
CACHE AREA [~1710C

e
Ex. 2013
Page 64 of 145

5,860,083

1

DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

BACKGROUND OF THE INVENTION

The present invention relates to a data storage system
which is applied to a computer system and has a flash
memory unit (also known as “semiconductor disk unit”) and
a disk drive.

In a conventional computer system, a hard disk drive
(HDD) is used as an external memory device wherein a disk
is used as a storage medium. The HDD can be used as a
large-capacity file apparatus. However, as compared to a
main memory comprising a semiconductor memory (e.g. a
DRAM), the access speed of the HDD is lower. A cache
system for the HDD has been known as means for increasing
the access speed of the HDD.

In the cache system, in particular, frequently used data
is-stored in a storage medium having a higher access speed
than the HDD, thereby compensating the low access speed
of the HDD. In a specific system, a part of the storage area
of the main memory (volatile IC memory) comprising a
DRAM is used as a cache area of the HDD (this system
being called “smartdrive”). In this system, however, the
main memory is cleared when the power to the system is
switched off. Thus, the cache system does not function when
the power is switched on. Accordingly, after the power is
switched on, the HDD is accessed to enable the cache
system to function effectively, thereby achieving a learning
effect. The learning effect will now be described. When a
request for access to the HDD occurs, this request first fails
since no data is stored in the cache memory (a part of the
main memory in this case). Then, the data associated with
the access request is read out from the HDD and stored in the
cache memory. Thus, if the next access request occurs, the
data stored in the cache memory is quickly read out from the
cache memory in place of the cache memory. This effect of
achieving the cache function is called “leaning effect.”

The cache system using the above-described main
memory does not effectively function when the first access
request for the HDD occurs at the time of turning-on of
power. Consequently, when the computer system is started
up, the cache system cannot be utilized to run the operating
system (OS) or frequently used application programs (AP).
The OA and AP are thus started up by using the low
access-speed HDD. With an increase in the scale of the OS
and AP, the low access speed of the HDD elongates the time
needed to start up the OS and AP. This is considered a
serious problem.

To solve this problem, there has been proposed a cache
system for an HDD, which uses a flash memory unit
comprising a flash EEPROM (electrically erasable program-
mable read-only memory). The flash memory, unlike the
main memory, is a non-volatile storage medium and has a
higher access speed than the HDD. Accordingly, in the cache
system using the flash memory, the data stored in the flash
memory functioning as cache memory can be retained even
if the power is switched off, and the cache function is
effectively performed at the time of turning on power.
Moreover, the flash memory having a higher access speed
than the HDD can perform a high-speed buffer function.

As described above, the cache system using the cache
memory as flash memory can effectively perform the cache
function for the HDD even when the power is turned on.
Therefore, the cache system as combined with the HDD can
constitute a high-speed, large-capacity external storage sys-
tem.

20

25

2

In other words, the data storage system comprising the
combination of the large-capacity HDD and high-speed,
non-volatile flash memory can achieve not only the above-
described function but also a function which will influence
the performance of the computer system by the effective use
of the respective memory units. Specifically, the storage area
of the flash. memory is set in accordance with the contents
of data to be stored, or the cooperative function of the flash
memory and the HDD is set, thereby to effectively use the
data storage system, as will be described below.

For example, when information (or control information in
the present invention) necessary for starting up the OS or a
frequently used AP is to be stored in the storage area in the
flash memory, it is desirable that the OS and AP are
permanently stored in the flash memory since the frequency
of use of both programs is high. On the other hand, for
example, when a word search utility program is run for a
number of files and the HDD is accessed, it is not important,
in general, to permanently store the file accessed from the
HDD in the cache memory area of the flash memory. Since
such an accessed file is frequently updated, there is no need
to permanently store it.

Besides, when the computer system performs a swapping
operation, it is possible to store a swap file in the flash
memory in place of the HDD. Since the file size of the swap
file produced in the swapping operation is variable, the size
of the storage area set in the flash memory needs to be
variable accordingly. However, since the storage area of the
flash memory is limited, it is desirable to perform a coop-
erative function with the HDD, for example, to use the
storage area in the HDD in accordance with the increase in
file size of the swap file.

BRIEF SUMMARY OF THE INVENTION

The object of the present invention is to provide a data
storage system having a disk drive and a flash memory unit,
wherein the storage area of the flash memory unit as well as
a cache system is efficiently used, and cooperative functions
of the flash memory and an HDD are achieved, whereby the
data storage system can be efficiently used.

A data storage system according to the present invention
comprises a disk drive, flash memory means, and control
means. The flash memory means uses a non-volatile flash
memory as a data storage medium, and has an entire storage
area logically sorted into a plurality of storage areas
assigned to predetermined functions. The control means
controls data input/output of the disk drive and the flash
memory means and stores all data or specified data stored in
the disk of the disk drive into that one of the logically sorted
storage areas in the flash memory means, which has the
associated function.

The flash memory means has the entire storage area
logically sorted into a first storage area for permanently
storing data, a second storage area which can be associated
with the host system and is used for high-speed access, and
a third storage area for use as a non-volatile cache memory
area. When the control means accesses the flash memory
means according to an instruction from the host system, the
control means individually manages the first storage area,
second storage area and third storage area. The data stored
in the disk drive is read out and stored in the first and third
storage areas, and the data transferred from the host system
is stored in the second storage area.

According to this system, for example, control informa-
tion necessary for starting an application program (AP) and
an OS, which are frequently used, is stored in the first

Ex. 2013
Page 65 of 145

- 10 data storage system, as will be described below.

For example, when information (or control information in
the present 1mnvention) necessary for starting up the OS or a

flash memory, it 1s desirab!

frequently used AP 1s to be stored in the storage area in the

e that the OS and AP are

| 15 permanently stored in the flash memory since the frequency
of use of both programs 1s high. On the other hand, for

example, when a word searcl

1 utility program 1s run for a

number of files and the HDD 1is accessed, 1t 1s not important,
1n genera_ to permanently store the file accessed from the
- 20 HDD in the cache memory area of the flash memory. Since
| such an accessed file is frequently updated, there 1s no need

to permanently store 1it.

Besides, when the computer system performs a swapping

25 Nemao i nlace of the HDD

operation, 1t 1s possible to store a swap file 1n the flash

L] L]
Iideminivmiils (] [A 1]

Ex. 2013
Page 66 of 145

5,860,083

5

In the present invention, it is assumed that the entire
storage area of the flash memory unit 1 is logically divided
into permanent storage area 10A, high-speed access area
10B and non-volatile cache area 10C and the divided areas
are managed. The controller 3 manages the storage areas
10A to 10C of the flash memory unit 1 by using a manage-
ment information table 3A. The management information
table 3A is stored, for example, in the non-volatile cache
area 10C of flash memory unit 1.

The first embodiment relates to a system wherein the
permanent storage area 10A of flash memory unit 1 is used
as a cache memory area. In this embodiment, it is supposed
that the user desires to start a frequently used application
program (AP) at high speed at all times.

The user starts a data storage utility program of the cache
system controller 3 via a user interface provided in the host
system 4 (step S1). The data storage utility program reads
specified data from the HDD 2 and stores the read data in a
specified storage area in the flash memory unit 1. In this
case, it is assumed that the user sets the permanent storage
area 10A in the flash memory unit 1 as the data storage area,
at the time of instructing the start of the data storage utility
program (step S2).

Then, the user instructs the host system 4 to start the AP
(step S3). The host system 4, upon receiving the AP start
instruction, issues a read command to the controller 3 in
order to read control information necessary for the start of
the AP from the HDD 2.

The controller 3 controls the HDD 2, reads out the control
information necessary for the start of the AP and transfers
the read-out control information to the host system 4 (step
S4). At this time, according to the started-up data storage
utility program, the controller 3 stores the AP control infor-
mation read out from the HDD 2 in the permanent storage
area 10A of flash memory unit 1 (step S5). When the AP has
been prepared to start, the data storage utility program is
stopped by the instruction from the user (“YES” in step S6;
step S7). Through these operations, the control information
necessary for starting the AP is stored in the permanent
storage area 10A in the flash memory unit 1.

In this case, the control information is stored in the
permanent storage area 10A in flash memory unit 1 under the
file name designated by the user. Information for correlating
the file name and the AP and information of other comment
is recorded on the management information table 3A by the
data storage utility program. The user inputs the file name to
the controller 3 via the user interface, thereby referring to the
file (the control information of the AP in this case) stored in
the permanent storage area 10A. The user can delete the file,
if unnecessary. In other words, the control information
necessary for starting the AP is permanently stored in the
permanent storage area 10A in the flash memory unit 1 as
one file, until the user instructs the deletion of the file.

If the user instructs the start of the same AP via the user
interface, the host system 4 issues the read command, as
described above, to read from the HDD 2 the control
information necessary for starting the AP (“YES” in step
S8). Upon receiving the read command, the controller 3
determines whether the control information to be accessed is
stored in the flash memory unit 1 by using the management
information table 3A. Since the AP control information is
stored in the permanent storage area 10A, the cache memory
area is successfully accessed. Accordingly, the controller 3
reads out the AP control information from the permanent
storage area 10A of flash memory unit 1, without accessing
the HDD 2, and transfers the read-out control information to
the host system 4 (step S9). The host system 4 starts the AP

25

40

45

w
<

6

designated by the user on the basis of the transferred AP
control information (step S10).

By the above-described cache system, the control infor-
mation of the frequently used AP designated by the user is
read out from the HDD 2 and stored in the permanent
storage area 10A in the flash memory unit 1 used as the
cache memory area. Accordingly, when the AP is to be
started next time, the AP control information can be read out
quickly from the permanent storage area 10A used as cache
memory area, and not from the HDD 2. Thereby, the host
system 4 can quickly acquire the control information at the
time of starting the AP. As a result, the AP can be quickly
started. Since the AP control information is permanently
stored in the permanent storage area 10A until the user
instructs the deletion of the control information, as described
above, the frequently used AP can be started quickly at all
times.

(First Modification of the First Embodiment)

FIG. 4 is a flow chart illustrating a first modification of the
first embodiment. This modification relates to a system
having a mode (data storage mode) for storing the control
information necessary for starting the OS in the permanent
storage area 10A of flash memory unit 1, for example, when
the OS of the host system 4 is started in a series of operations
from the turn-on of power to the completion of the starting
operation.

When the system is switched on and the user sets the data
storage mode via the user interface, the controller 3 stores
the information representing the data storage mode in the
permanent storage area 10A in flash memory unit 1 (steps
S11 to S13).

After the power is turned off and then turned on again, the
controller 3 starts the above-mentioned data storage utility
program on the basis of the information of the set data
storage mode (“YES” in step S14; step S15). According to
the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting
the OS, is read out and stored in the permanent storage area
10A (steps S16 and S17). The controller 3 transfers to the
host system 4 the control information necessary for starting
the OS read out from the HDD 2. Based on the control
information, the host system 4 starts the OS. After the
preparation for starting the OS is completed, the data storage
utility program is stopped (“YES” in step S18; step S19).

According to this system, when the OS is automatically
started by the control information read out from the HDD 2
at the time of turning-on of power, the control information
is stored in the permanent storage area 10A used as the cache
memory area for the HDD 2. Accordingly, when the OS is
started at the time of the next turning-on of power, the
control information necessary for starting the OS is read out
not from the HDD 2 but from the permanent storage area
10A or cache memory area, and the read-out control infor-
mation is transferred to the host system 4. Thus, the control
information can be accessed from the permanent storage
area 10A in the flash memory unit 1 having a higher access
speed than the HDD 2. As a result, the OS can be started at
higher speed.

Like the AP control information, the OS control informa-
tion may be stored as one file in the permanent storage area
10A. Thereby, the user can refer to, or delete, the OS control
information on an as-needed basis. For example, at the time
of shipment of the personal computer, if the OS is pre-
installed in the flash memory unit 1 functioning as cache
memory area, the user can delete the OS control information
based on the user’s judgment. Specifically, the OS control
information may be deleted by a user who is used to starting

Ex. 2013
Page 67 of 145

mng preparation !or starting t!e !!! 1S comthe!, t!e !ata storage

ent utility program is stopped (“YES” in step S18; step S19).
the 45 According to this system, when the OS is automatically

> to started by the control information read out from the HDD 2
the at the time of turning-on of power, the control information
11in 1s stored 1n the permanent storage area 10A used as the cache

-~

1le, memory area for the HDD 2. Accordingly, when the OS 1s

ion 50 started at the time of the next turning-on of power, the
the control information necessary for starting the OS 1s read out

_as not from the HDD 2 but from the permanent storage area
10A or cache memory area, and the read-out control infor-

ISeT mation 1s transferred to the host system 4. Thus, the control
~as 55 1nformation can be accessed from the permanent storage
trol arca 10A 1n the flash memory unit 1 having a higher access

tep speed than the HDD 2. As a result, the OS can be started at
r 3 higher speed.

")) .
e 3 ¢ A

Ex. 2013
Page 68 of 145

Ex. 2013
Page 69 of 145

Ex. 2013
Page 70 of 145

Ex. 2013
Page 71 of 145

“‘preloading...prior to completion of
initialization of the central processing

unit”

Ex. 2013
Page 73 of 145

US 7,181,608 B2

27

set of decoders, or a sequential set of decoders correspond-
ing to the extracted compression type descriptor. The decod-
ers D1 . . . Dn may include those lossless encoding tech-
niques currently well known within the art, including: run
length, Huffman, Lempel-Ziv Dictionary Compression,
arithmetic coding, data compaction, and data null suppres-
sion. Decoding techniques are selected based upon their
ability to effectively decode the various different types of
encoded input data generated by the data compression
systems described above or originating from any other
desired source.

As with the data compression systems discussed in U.S.
Pat. No. 6,195,024, the decoder module 165 may include
multiple decoders of the same type applied in parallel so as
to reduce the data decoding time. An output data buffer or
cache 170 may be included for buffering the decoded data
block output from the decoder module 165. The output
buffer 70 then provides data to the output data stream. It is
to be appreciated by those skilled in the art that the data
compression system 180 may also include an input data
counter and output data counter operatively coupled to the
input and output, respectively, of the decoder module 165. In
this manner, the compressed and corresponding decom-
pressed data block may be counted to ensure that sufficient
decompression is obtained for the input data block.

Again, it is to be understood that the embodiment of the
data decompression system 180 of FIG. 10 is exemplary of
a preferred decompression system and method which may
be implemented in the present invention, and that other data
decompression systems and methods known to those skilled
in the art may be employed for providing accelerated data
retrieval in accordance with the teachings herein.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to
those precise embodiments, and that various other changes
and modifications may be affected therein by one skilled in
the art without departing from the scope or spirit of the
invention. All such changes and modifications are intended
to be included within the scope of the invention as defined
by the appended claims.

What is claimed is:

1. A method for providing accelerated loading of an
operating system, comprising the steps of:

maintaining a list of boot data used for booting a computer

system;

initializing a central processing unit of the computer

system,;

preloading the boot data into a cache memory prior to

completion of initialization of the central processing
unit of the computer system, wherein preloading the
boot data comprises accessing compressed boot data
from a boot device; and

servicing requests for boot data from the computer system

using the preloaded boot data after completion of
initialization of the central processing unit of the com-
puter system, wherein servicing requests comprises
accessing compressed boot data from the cache and
decompressing the compressed boot data at a rate that
increases the effective access rate of the cache.

2. The method of claim 1, wherein the boot data com-
prises program code associated with one of an operating
system of the computer system, an application program, and
a combination thereof.

3. The method of claim 1, wherein the preloading is
performed by a data storage controller connected to the boot
device.

0

w

w
=3

35

40

v
=]

w
(v

60

o
<

28

4. The method of claim 1, further comprising updating the
list of boot data.

5. The method of claim 4, wherein the step of updating
comprises adding to the list any boot data requested by the
computer system not previously stored in the list.

6. The method of claim 4, wherein the step of updating
comprises removing from the list any boot data previously
stored in the list and not requested by the computer system.

7. A system for providing accelerated loading of an
operating system of a host system comprising:

a digital signal processor (DSP) or controller;

a cache memory device; and

a non-volatile memory device, for storing logic code

associated with the DSP or controller, wherein the logic
code comprises instructions executable by the DSP or
controller for maintaining a list of boot data used for
booting the host system, for preloading the compressed
boot data into the cache memory device prior to
completion of initialization of the central processing
unit of the host system, and for decompressing the
preloaded compressed boot data, at a rate that increases
the effective access rate of the cache, to service requests
for boot data from the host system after completion of
initialization of the central processing unit of the host
system.

8. The system of claim 7, wherein the logic code in the
non-volatile memory device further comprises program
instructions executable by the DSP or controller for main-
taining a list of application data associated with an applica-
tion program; preloading the application data upon launch-
ing the application program, and servicing requests for the
application data from the host system using the preloaded
application data.

9. The method of claim 1, further comprising:

maintaining a list of application data associated with an

application program;
preloading the application data into the cache memory
prior to completion of initialization of the central
processing unit of the computer system, wherein pre-
loading the application data comprises accessing com-
pressed application data from a boot device; and

servicing requests for application data from the computer
system using the preloaded application data after
completion of initialization of the central processing
unit of the computer system, wherein servicing requests
comprises accessing compressed application data from
the cache and decompressing the compressed applica-
tion data.

10. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data and the data com-
pression engine provides the compressed boot data to the
boot device.

11. The method of claim 1, wherein the decompressing is

5 provided by a data compression engine.

12. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data, the data compression
engine provides the compressed boot data to the boot device,
and the decompressing is provided by the data compression
engine.

13. The method of claim 1, wherein the compressed boot
data is accessed via direct memory access.

14. The method of claim 1, wherein Huffman encoding is
utilized to provide the compressed boot data.

15. The method of claim 1, wherein Lempel-Ziv encoding
is utilized to provide the compressed boot data.

Ex. 2013
Page 74 of 145

dl 15 Clalmeda 1S:

1._A method for providing accelerated loading of an

operating system, comprising the steps of:
maintaining a list of boot data used for booting a computer 45

system;
initializing a central Erocessing unit of the computer
system;

preloading the boot data into a cache memory prior to
completion of inmitialization of the central processing 50
unit of the computer system, wherein preloading the
boot data comprises accessing compressed boot data
from a boot device; and

servicing requests for boot data from the computer system
using the preloaded boot data after completion of 55
initialization of the central processing unit of the com-
puter system, wherein servicing requests comprises
accessing compressed boot data from the cache and
decompressing the compressed boot data at a rate that
increases the effective access rate of the cache. 60

2. The method of claim 1, wherein the boot data com-

SCIVICIN

syste
comg
unit ¢
comg
the c.
tion ¢
10. The
compressi
Ing provic
pression ¢
boot devic
11. The
provided 1
12. The
compressi
ing provid
engine prc
and the de
engine.

Ex. 2013
Page 75 of 145

US 7,181,608 B2

3

quently compared. This tends to decrease data bandwidth
from even that of a single comparable disk drive. In systems
that offer hot swap capability, the failed drive is removed and
a replacement drive is inserted. The data on the failed drive
is then copied in the background while the entire system
continues to operate in a performance degraded but fully
operational mode. Once the data rebuild is complete, normal
operation resumes. Hence, another problem with RAID
systems is the high cost of increased reliability and associ-
ated decrease in performance.

RAID Level 5 employs disk data striping and parity error
detection to increase both data bandwidth and reliability
simultaneously. A minimum of three disk drives is required
for this technique. In the event of a single disk drive failure,
that drive may be rebuilt from parity and other data encoded
on disk remaining disk drives. In systems that offer hot swap
capability, the failed drive is removed and a replacement
drive is inserted. The data on the failed drive is then rebuilt

in the background while the entire system continues to ,,

operate in a performance degraded but fully operational
mode. Once the data rebuild is complete, normal operation
resumes.

Thus another problem with redundant modem mass stor-
age devices is the degradation of data bandwidth when a
storage device fails. Additional problems with bandwidth
limitations and reliability similarly occur within the art by
all other forms of sequential, pseudo-random, and random
access mass storage devices. These and other limitations
within the current art are addressed by the present invention.

SUMMARY OF THE INVENTION

The present invention is directed to systems and methods
for providing accelerated loading of operating system and
application programs upon system boot or application
launch and, more particularly, to data storage controllers
employing lossless and/or lossy data compression and
decompression to provide accelerated loading of operating
systems and application programs.

In one aspect of the present invention, a method for
providing accelerated loading of an operating system com-
prises the steps of: maintaining a list of boot data used for
booting a computer system; preloading the boot data upon
initialization of the computer system; and servicing requests
for boot data from the computer system using the preloaded
boot data. The boot data may comprise program code
associated with an operating system of the computer system,
an application program, and a combination thereof. In a
preferred embodiment, the boot data is retrieved from a boot
device and stored in a cache memory device.

In another aspect, the method for accelerated loading of
an operating system comprises updating the list of boot data
during the boot process. The step of updating comprises
adding to the list any boot data requested by the computer
system not previously stored in the list and/or removing
from the list any boot data previously stored in the list and
not requested by the computer system.

In yet another aspect, the boot data is stored in a com-
pressed format on the boot device and the preloaded boot
data is decompressed prior to transmitting the preloaded
boot data to the requesting system.

In another aspect, a method for providing accelerated
launching of an application program comprises the steps of:
maintaining a list of application data associated with an
application program; preloading the application data upon

10

40

4
launching the application program; and servicing requests
for application data from a computer system using the
preloaded application data.

In yet another aspect, a boot device controller for provid-
ing accelerated loading of an operating system of a host
system comprises: a digital signal processor (DSP); a pro-
grammable logic device, wherein the programmable logic
device is programmed by the digital signal processor to (i)
instantiate a first interface for operatively interfacing the
boot device controller to a boot device and to (ii) instantiate
asecond interface for operatively interfacing the boot device
controller to the host system; and a non-volatile memory
device, for storing logic code associated with the DSP, the
first interface and the second interface, wherein the logic
code comprises instructions executable by the DSP for
maintaining a list of boot data used for booting the host
system, preloading the boot data upon initialization of the
host system, and servicing requests for boot data from the
host system using the preloaded boot data. The boot device
controller further includes a cache memory device for stor-
ing the preloaded boot data.

The present invention is realized due to recent improve-
ments in processing speed, inclusive of dedicated analog and
digital hardware circuits, central processing units, (and any
hybrid combinations thereof), that, coupled with advanced
data compression and decompression algorithms are
enabling of ultra high bandwidth data compression and
decompression methods that enable improved data storage
and retrieval bandwidth

These and other aspects, features and advantages, of the
present invention will become apparent from the following
detailed description of preferred embodiments that is to be
read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data storage controller
according to one embodiment of the present invention;

FIG. 2 is a block diagram of a data storage controller
according to another embodiment of the present invention;

FIG. 3 is a block diagram of a data storage controller
according to another embodiment of the present invention;

FIG. 4 is a block diagram of a data storage controller
according to another embodiment of the present invention;

FIG. 5 is a block diagram of a data storage controller
according to another embodiment of the present invention;

FIGS. 6a and 65 comprise a flow diagram of a method for
initializing a data storage controller according to one aspect
of the present invention;

FIGS. 7a and 7b comprise a flow diagram of a method for
providing accelerated loading of an operating system and/or
application programs upon system boot, according to one
aspect of the present invention;

FIGS. 8a and 85 comprise a flow diagram of a method for
providing accelerated loading of application programs
according to one aspect of the present invention;

FIG. 9 is a diagram of an exemplary data compression
system that may be employed in a data storage controller
according to the present invention; and

FIG. 10 is a diagram of an exemplary data decompression
system that may be employed in a data storage controller
according to the present invention.

Ex. 2013
Page 76 of 145

JCCOILIIDPIC DI O PIOVIUC ¢ 1T ALCU 1O AULT D1 OPCI¢ 2

systems and application programs. 40

In one aspect of the present invention, a method for
providing accelerated loading of an operating system com-
prises the steps of: maintaining a list of boot data used for
booting a computer system; preloading the boot data upon
initialization of the computer system; and servicing requests
tfor boot data from the computer system using the preloaded
boot data. The boot data may comprise program code
associated with an operating system of the computer system,
an application program, and a combination thereof. In a
preferred embodiment, the boot data 1s retrieved from a boot
device and stored 1n a cache memory device.

45

50

In another aspect, the method for accelerated loading of
an operating system comprises updating the list of boot data

Ex. 2013
Page 77 of 145

0

20

evice 1S programmed by the digital signal processor 1o (1
instantiate a first interface for operatively interfacing the
boot device controller to a boot device and to (11) instantiate
a second 1nterface for operatively intertacing the boot device
controller to the host system; and a non-volatile memory
device, for storing logic code associated with the DSP, the
first 1nterface and the second interface, wherein the logic
code comprises 1nstructions executable by the DSP {for
maintaining a list of boot data used for booting the host
system, preloading the boot data upon initialization of the
host system, and servicing requests for boot data from the

host system using the preloaded boot data. The boot device

controller further includes a cache memory device for stor-
ing the preloaded boot data.

Ex. 2013
Page 78 of 145

Ex. 2013
Page 79 of 145

Ex. 2013
Page 80 of 145

Ex. 2013
Page 81 of 145

Ex. 2013
Page 82 of 145

Ex. 2013
Page 83 of 145

Ex. 2013
Page 84 of 145

Ex. 2013
Page 85 of 145

United States Patent [

Sukegawa

111 Patent Number: 5,860,083
145] Date of Patent: Jan. 12, 1999

[54] DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

[75] Inventor: Hiroshi Sukegawa, Tokyo, Japan

[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki,
Japan
[21] Appl. No.: 818,983
[22] Filed: Mar. 14, 1997
[30] Foreign Application Priority Data
Nov. 26, 1996 [IP] Japan

[51] Int. CLS oo GOG6F 12/08
[52] US.CL .. 711/103; 711/117; 711/171;
711/173

[58] Field of Searchccccoocveiinnnnnee. 711/103, 113,
711/117, 170, 171, 173

8-314850

[56] References Cited
U.S. PATENT DOCUMENTS

5,175,842 12/1992 Totanieecevevivenivcvneninnnn 711/161
5,371,876 12/1994 Ewertz et al. 711/159
5,437,018 7/1995 Kobayashi et al. ... 395/652
5,535,357 7/1996 Moran et al. 711/103

5,778,418 7/1998 Auclair et al.cooorevirrrnnnns 711/101
FOREIGN PATENT DOCUMENTS

0706 135 4/1996 European Pat. Off. .
5-11933 1/1993 Japan .
8-63395 3/1996 Japan .

8-115241 5/1996 Japan .

Primary Examiner—Tod R. Swann

Assistant Examiner—Conley B. King, Jr.

Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, L.L.P.

[57] ABSTRACT

In a data storage system using a flash memory unit and an
HDD, the storage area of the flash memory unit is logically
divided into a permanent storage area, a non-volatile cache
area, which are used as cache memory areas of the HDD,
and a high-speed access area. These divided areas are
individually managed. The permanent storage area stores
data which is used frequently for a relatively long time
period. The non-volatile cache area is used as an ordinary
cache memory area in which data, which is updated rela-
tively frequently, is stored. The high-speed access area is a
storage area to be used by, e.g. an operating system (OS) of
a host system. For example, a swap file, which needs to be
accessed at high speed, is shifted into the high-speed access
area.

5,644,539 7/1997 Yamagami et al. .. 365/200
5,701,492 12/1997 Wadsworth et al.cccoevene.e. 395/712
5,745,418 4/1998 Ma et al. ccocevvrencucrnncnne 365/185.33 28 Claims, 10 Drawing Sheets
HOST "
SYSTEM
5 et 3 3A
j ¥ 4 S S
CACHE MANAGEMENT
ggY&EE SYSTEM fe--+| INFORMATION
CONTROLLER TABLE
3
é Y y
{ | FLASH MEMORY UNIT 1 HOD f~2
{ | [PERMANENT | 10n
; STORAGE AREA [™]
: HIGH-SPEED R
1”1 ACCESS AREA [-T"10B
NON-VOLATILE | |
CACHE AREA [~]10C

Ex. 2013
Page 86 of 145

5,860,083

5

In the present invention, it is assumed that the entire
storage area of the flash memory unit 1 is logically divided
into permanent storage area 10A, high-speed access area
10B and non-volatile cache area 10C and the divided areas
are managed. The controller 3 manages the storage areas
10A to 10C of the flash memory unit 1 by using a manage-
ment information table 3A. The management information
table 3A is stored, for example, in the non-volatile cache
area 10C of flash memory unit 1.

The first embodiment relates to a system wherein the
permanent storage area 10A of flash memory unit 1 is used
as a cache memory area. In this embodiment, it is supposed
that the user desires to start a frequently used application
program (AP) at high speed at all times.

The user starts a data storage utility program of the cache
system controller 3 via a user interface provided in the host
system 4 (step S1). The data storage utility program reads
specified data from the HDD 2 and stores the read data in a
specified storage area in the flash memory unit 1. In this
case, it is assumed that the user sets the permanent storage
area 10A in the flash memory unit 1 as the data storage area,
at the time of instructing the start of the data storage utility
program (step S2).

Then, the user instructs the host system 4 to start the AP
(step S3). The host system 4, upon receiving the AP start
instruction, issues a read command to the controller 3 in
order to read control information necessary for the start of
the AP from the HDD 2.

The controller 3 controls the HDD 2, reads out the control
information necessary for the start of the AP and transfers
the read-out control information to the host system 4 (step
S4). At this time, according to the started-up data storage
utility program, the controller 3 stores the AP control infor-
mation read out from the HDD 2 in the permanent storage
area 10A of flash memory unit 1 (step S5). When the AP has
been prepared to start, the data storage utility program is
stopped by the instruction from the user (“YES” in step S6;
step S7). Through these operations, the control information
necessary for starting the AP is stored in the permanent
storage area 10A in the flash memory unit 1.

In this case, the control information is stored in the
permanent storage area 10A in flash memory unit 1 under the
file name designated by the user. Information for correlating
the file name and the AP and information of other comment
is recorded on the management information table 3A by the
data storage utility program. The user inputs the file name to
the controller 3 via the user interface, thereby referring to the
file (the control information of the AP in this case) stored in
the permanent storage area 10A. The user can delete the file,
if unnecessary. In other words, the control information
necessary for starting the AP is permanently stored in the
permanent storage area 10A in the flash memory unit 1 as
one file, until the user instructs the deletion of the file.

If the user instructs the start of the same AP via the user
interface, the host system 4 issues the read command, as
described above, to read from the HDD 2 the control
information necessary for starting the AP (“YES” in step
S8). Upon receiving the read command, the controller 3
determines whether the control information to be accessed is
stored in the flash memory unit 1 by using the management
information table 3A. Since the AP control information is
stored in the permanent storage area 10A, the cache memory
area is successfully accessed. Accordingly, the controller 3
reads out the AP control information from the permanent
storage area 10A of flash memory unit 1, without accessing
the HDD 2, and transfers the read-out control information to
the host system 4 (step S9). The host system 4 starts the AP

25

40

45

w
<

6

designated by the user on the basis of the transferred AP
control information (step S10).

By the above-described cache system, the control infor-
mation of the frequently used AP designated by the user is
read out from the HDD 2 and stored in the permanent
storage area 10A in the flash memory unit 1 used as the
cache memory area. Accordingly, when the AP is to be
started next time, the AP control information can be read out
quickly from the permanent storage area 10A used as cache
memory area, and not from the HDD 2. Thereby, the host
system 4 can quickly acquire the control information at the
time of starting the AP. As a result, the AP can be quickly
started. Since the AP control information is permanently
stored in the permanent storage area 10A until the user
instructs the deletion of the control information, as described
above, the frequently used AP can be started quickly at all
times.

(First Modification of the First Embodiment)

FIG. 4 is a flow chart illustrating a first modification of the
first embodiment. This modification relates to a system
having a mode (data storage mode) for storing the control
information necessary for starting the OS in the permanent
storage area 10A of flash memory unit 1, for example, when
the OS of the host system 4 is started in a series of operations
from the turn-on of power to the completion of the starting
operation.

When the system is switched on and the user sets the data
storage mode via the user interface, the controller 3 stores
the information representing the data storage mode in the
permanent storage area 10A in flash memory unit 1 (steps
S11 to S13).

After the power is turned off and then turned on again, the
controller 3 starts the above-mentioned data storage utility
program on the basis of the information of the set data
storage mode (“YES” in step S14; step S15). According to
the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting
the OS, is read out and stored in the permanent storage area
10A (steps S16 and S17). The controller 3 transfers to the
host system 4 the control information necessary for starting
the OS read out from the HDD 2. Based on the control
information, the host system 4 starts the OS. After the
preparation for starting the OS is completed, the data storage
utility program is stopped (“YES” in step S18; step S19).

According to this system, when the OS is automatically
started by the control information read out from the HDD 2
at the time of turning-on of power, the control information
is stored in the permanent storage area 10A used as the cache
memory area for the HDD 2. Accordingly, when the OS is
started at the time of the next turning-on of power, the
control information necessary for starting the OS is read out
not from the HDD 2 but from the permanent storage area
10A or cache memory area, and the read-out control infor-
mation is transferred to the host system 4. Thus, the control
information can be accessed from the permanent storage
area 10A in the flash memory unit 1 having a higher access
speed than the HDD 2. As a result, the OS can be started at
higher speed.

Like the AP control information, the OS control informa-
tion may be stored as one file in the permanent storage area
10A. Thereby, the user can refer to, or delete, the OS control
information on an as-needed basis. For example, at the time
of shipment of the personal computer, if the OS is pre-
installed in the flash memory unit 1 functioning as cache
memory area, the user can delete the OS control information
based on the user’s judgment. Specifically, the OS control
information may be deleted by a user who is used to starting

Ex. 2013
Page 87 of 145

mng preparation !or starting t!e !!! 1S comthe!, t!e !ata storage

ent utility program is stopped (“YES” in step S18; step S19).
the 45 According to this system, when the OS is automatically

> to started by the control information read out from the HDD 2
the at the time of turning-on of power, the control information
11in 1s stored 1n the permanent storage area 10A used as the cache

-~

1le, memory area for the HDD 2. Accordingly, when the OS 1s

ion 50 started at the time of the next turning-on of power, the
the control information necessary for starting the OS 1s read out

_as not from the HDD 2 but from the permanent storage area
10A or cache memory area, and the read-out control infor-

ISeT mation 1s transferred to the host system 4. Thus, the control
~as 55 1nformation can be accessed from the permanent storage
trol arca 10A 1n the flash memory unit 1 having a higher access

tep speed than the HDD 2. As a result, the OS can be started at
r 3 higher speed.

")) .
e 3 ¢ A

Ex. 2013
Page 88 of 145

Ex. 2013
Page 89 of 145

Ex. 2013
Page 90 of 145

Ex. 2013
Page 91 of 145

Ex. 2013
Page 92 of 145

‘036 Patent’s Claim 18

Ex. 2013
Page 94 of 145

Ex. 2013
Page 95 of 145

US 8,090,936 B2

21

V. Instant Boot Device for Operation System, Application
Program and Loading

Typically, with conventional boot device controllers, after
reset, the boot device controller will wait for a command over
the computer bus (such as PCI). Since the boot device con-
troller will typically be reset prior to bus reset and before the
computer bus starts sending commands, this wait period is
unproductive time. The initial bus commands inevitably
instruct the boot device controller to retrieve data from the
boot device (such as a disk) for the operating system. Since
most boot devices are relatively slow compared to the speed
of most computer busses, a long delay is seen by the computer
user. This is evident in the time it takes for a typical computer
to boot.

It is to be appreciated that a data storage controller (having
an architecture as described herein) may employ a technique
of data preloading to decrease the computer system boot time.
Upon host system power-up or reset, the data storage control-
ler will perform a self-diagnostic and program the program-
mable logic device (as discussed above) prior to completion
of the host system reset (e.g., PCI bus reset) so that the logic
device can accept PCI Bus commands after system reset.
Further, prior to host system reset, the data storage controller
can proceed to pre-load the portions of the computer operat-
ing system from the boot device (e.g., hard disk) into the
on-board cache memory. The data storage controller preloads
the needed sectors of data in the order in which they will be
needed. Since the same portions of the operating system must
be loaded upon each boot process, it is advantageous for the
boot device controller to preload such portions and not wait
until it is commanded to load the operating system. Prefer-
ably, the data storage controller employs a dedicated 10 chan-
nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.

Once the data is preloaded, when the computer system bus
issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail-
able in the cache memory of the data storage controller. The
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the was stored in compressed format on the boot
device, the data will be decompressed. The process of pre-
loading required (compressed) portions of the operating sys-
tem significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application such as a word processor and
any number of document files.

There are several techniques that may be employed in :

accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an auto-
matic process that requires no input from the user. With this
technique, the data storage controller maintain a list compris-
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power-on/reset. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data

—
w

[
=1

N
O

40

45

55

o

5

22

storage controller will record the requested data block num-
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70-72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
bootdata specified on the list (i.e., the data associated with the
expected data requests) into the onboard cache memory (step
77).Itis to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro-
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).

When the boot process begins (step 78) (i.e., the storage
controller is initialized and the system bus reset is deas-
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre-load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre-loaded into the
local memory of'the data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf-
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.

VI. Quick Launch for Operating System, Application Pro-
gram, and Loading

It is to be appreciated that the data storage controller (hav-
ing an architecture as described herein) may employ a tech-
nique of data preloading to decrease the time to load applica-
tion programs (referred to as “quick launch”).
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion of the loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be configured to always load a company spread-
sheet each time the program is started. In addition, the com-
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember” what data is
typically loaded following the launch of the spreadsheet pro-
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec-
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for-

Ex. 2013
Page 96 of 145

to boot.

It 1s to be appreciated that a data storage controller (having
an architecture as described herein) may employ a technique
of data preloading to decrease the computer system boot time.
Upon host system power-up or reset, the data storage control-
ler will perform a self-diagnostic and program the program-
mable logic device (as discussed above) prior to completion
of the host system reset (e.g., PCI bus reset) so that the logic
device can accept PCI Bus commands after system reset.
Further, prior to host system reset, the data storage controller

can Eroceed to Ere-load the Eortions of the computer operat-
ing system from the boot device (e.g., hard disk) into the

on-board cache memory. The data storage controller preloads
the needed sectors of data in the order in which they will be

needed. Since the same portions of the operating system must
be loaded upon each boot process, it 1s advantageous for the
boot device controller to preload such portions and not wait
until 1t 1s commanded to load the operating system. Prefer-
ably, the data storage controller employs a dedicated IO chan-
nel of the DSP (with or without data compression) to pre-load
computer operating systems and applications.

Once the data 1s preloaded, when the computer system bus

15

20

25

30

35

of the given syst
cess may be con
process, or conti
case booting and
When the boc
controller 1s ini1
serted), the data
boot data (step 7
boot data that 1s
storage controlle
immediately ser
If the host compr
preloaded in the
(negative detern
retrieve the reque
in the local mem
to the computer
controller would
changes in the
expected data re
Then, upon the n
would pre-load t

1ssues 1ts first read commands to the data storage controller with the other bc
|

Ex. 2013
Page 97 of 145

Ex. 2013
Page 98 of 145

US 8,090,936 B2

27

such changes and modifications are intended to be included
within the scope of the invention as defined by the appended
claims.

What is claimed is:
1. A method comprising:
maintaining a list of boot data used for booting a computer
system, wherein at least a portion of said boot data is
compressed by a data compression engine to provide
said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device;

initializing a central processing unit of said computer sys-
tem;
preloading said at least a portion of said boot data in com-
pressed form from said boot device to a memory;

accessing and decompressing said at least a portion of said
boot data in said compressed form from said memory;
and

utilizing said decompressed at least a portion of said boot

data to boot said computer system, wherein said at least
a portion of said boot data is decompressed by said data
compression engine.

2. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an operating system of said computer system.

3. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an application program of said computer
system.

4. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an application program and an operating sys-
tem of said computer system.

5. The method of claim 1, wherein said preloading is per-
formed by a data storage controller connected to said boot
device.

6. The method of claim 1, further comprising updating the
list of boot data.

7. The method of claim 1, wherein Huffman encoding is
utilized to provide said at least a portion of said boot data in
said compressed form.

8. The method of claim 1, wherein Lempel-Ziv encoding is
utilized to provide said at least a portion of said boot data in
said compressed form.

9. The method of claim 1, wherein a plurality of encoders
are utilized to provide said at least a portion of compressed
data in compressed form.

10. The method of claim 1, wherein a plurality of encoders
in a parallel configuration are utilized to provide said at least
a portion of said data in compressed form.

11. A system comprising:

a processor;

a memory; and

a non-volatile memory device for storing logic code asso-

ciated with the processor, wherein said logic code com- 3

prises instructions executable by the processor for main-
taining a list of boot data used for booting the host
system, at least a portion of said boot data is stored in
compressed form in said non-volatile memory device,
said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is
decompressed and utilized to boot said computer sys-
tem; and

15

40

45

50

w
<

28

a data compression engine for providing said at least a
portion of said boot data in compressed form by com-
pressing said at least a portion of said boot data and
decompressing said at least a portion of said boot data in
compressed form to provide said decompressed at least
a portion of boot data.

12. The system of claim 11, wherein said logic code further
comprises program instructions executable by said processor
for maintaining a list of application data associated with an
application program.

13. The system of claim 11, wherein said logic code further
comprises program instructions executable by said processor
for maintaining a list of application data associated with an
application program, and wherein said application data is
preloaded upon launching the application program and uti-
lized by said computer system.

14. The system of claim 11, wherein Huffman encoding is
utilized to provide said at least a portion of said boot data in
compressed form.

15. The system of claim 11, wherein Lempel-Ziv encoding
is utilized to provide said at least a portion of said boot data in
compressed form.

16. The system of claim 11, wherein a plurality of encoders
are utilized to provide said at least a portion of said boot data
in compressed form.

17. The system of claim 11, wherein a plurality of encoders
in a parallel configuration are utilized to provide said at least
a portion of said boot data in compressed form.

18. A method of preloading an operating system for boot-
ing a computer system comprising:

storing substantially all of the operating system in com-
pressed form on a boot device;

preloading a first portion of the substantially all of the
operating system from said boot device to a memory;

accessing and decompressing the first portion from the
memory using a data compression engine;

utilizing the decompressed first portion to partially boot
said computer system;

responsive to a request, locating a second portion of the
substantially all of the operating system using a boot
data list and preloading the second portion from the boot
device to the memory;

accessing and decompressing the second portion from the
memory using the data compression engine; and

utilizing the decompressed second portion to further par-
tially boot said computer system.

19. The method of claim 18, wherein the preloading is
performed by a data storage controller connected to the boot
device.

20. The method of claim 18, further comprising updating
the boot data list.

21. The method of claim 18, wherein Huffman encoding is
utilized to obtain the substantially all of the operating system
in compressed form.

22. The method of claim 18, wherein Lempel-Ziv encoding
is utilized to obtain the substantially all of the operating
system in compressed form.

23. The method of claim 18, wherein a plurality of encod-
ers are utilized to obtain the substantially all of the operating
system in compressed form.

24. The method of claim 18, wherein a plurality of encod-
ers in a parallel configuration are utilized to obtain the sub-
stantially all of the operating system in compressed form.

0w ok ® k

Ex. 2013
Page 99 of 145

1 d PATALIC OIIEUTALTOL dI'C U CU LO PIOVIUC SAd1A ¢ CdS
a portion of said boot data in compressed form.
18. A method of preloading an operating system for boot-
Ing a computer system comprising:
storing substantially all of the operating system in com-
pressed form on a boot device;

preloading a first portion of the substantially all of the
L operating system from said boot device to a memory;
rading 1s per-

; accessing and decompressing the first portion from the
to said boot 35 :) :
memory using a data compression engine;

utilizing the decompressed first portion to partially boot
said computer system;

responsive to a request, locating a second portion of the
substantially all of the operating system using a boot
data list and preloading the second portion from the boot
device to the memory:;

accessing and decompressing the second portion from the
memory using the data compression engine; and

utilizing the decompressed second portion to further par-
tially boot said computer system.

19. The method of claim 18, wherein the preloading 1s

rogram code
ud computer

ympressed at 30

rogram code
perating sys-

updating the

| encoding 1s
| boot data in 40

v encoding is
| boot data 1n

7 of encoders 45
~ compressed

Ex. 2013
Page 100 of 145

United States Patent [

Sukegawa

111 Patent Number: 5,860,083
145] Date of Patent: Jan. 12, 1999

[54] DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

[75] Inventor: Hiroshi Sukegawa, Tokyo, Japan

[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki,
Japan
[21] Appl. No.: 818,983
[22] Filed: Mar. 14, 1997
[30] Foreign Application Priority Data
Nov. 26, 1996 [IP] Japan

[51] Int. CLS oo GOG6F 12/08
[52] US.CL .. 711/103; 711/117; 711/171;
711/173

[58] Field of Searchccccoocveiinnnnnee. 711/103, 113,
711/117, 170, 171, 173

8-314850

[56] References Cited
U.S. PATENT DOCUMENTS

5,175,842 12/1992 Totanieecevevivenivcvneninnnn 711/161
5,371,876 12/1994 Ewertz et al. 711/159
5,437,018 7/1995 Kobayashi et al. ... 395/652
5,535,357 7/1996 Moran et al. 711/103

5,778,418 7/1998 Auclair et al.cooorevirrrnnnns 711/101
FOREIGN PATENT DOCUMENTS

0706 135 4/1996 European Pat. Off. .
5-11933 1/1993 Japan .
8-63395 3/1996 Japan .

8-115241 5/1996 Japan .

Primary Examiner—Tod R. Swann

Assistant Examiner—Conley B. King, Jr.

Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, L.L.P.

[57] ABSTRACT

In a data storage system using a flash memory unit and an
HDD, the storage area of the flash memory unit is logically
divided into a permanent storage area, a non-volatile cache
area, which are used as cache memory areas of the HDD,
and a high-speed access area. These divided areas are
individually managed. The permanent storage area stores
data which is used frequently for a relatively long time
period. The non-volatile cache area is used as an ordinary
cache memory area in which data, which is updated rela-
tively frequently, is stored. The high-speed access area is a
storage area to be used by, e.g. an operating system (OS) of
a host system. For example, a swap file, which needs to be
accessed at high speed, is shifted into the high-speed access
area.

5,644,539 7/1997 Yamagami et al. .. 365/200
5,701,492 12/1997 Wadsworth et al.cccoevene.e. 395/712
5,745,418 4/1998 Ma et al. ccocevvrencucrnncnne 365/185.33 28 Claims, 10 Drawing Sheets
HOST "
SYSTEM
5 et 3 3A
j ¥ 4 S S
CACHE MANAGEMENT
ggY&EE SYSTEM fe--+| INFORMATION
CONTROLLER TABLE
3
é Y y
{ | FLASH MEMORY UNIT 1 HOD f~2
{ | [PERMANENT | 10n
; STORAGE AREA [™]
: HIGH-SPEED R
1”1 ACCESS AREA [-T"10B
NON-VOLATILE | |
CACHE AREA [~]10C

Ex. 2013
Page 101 of 145

5,535,357 7/1996 Moran et al.oovviciiiinninnne 711/103 -0 ’ -7

5,644,539 7/1997 Yamagami et al. ..coooovoreonee... 365200 O
5,701,492 12/1997 Wadsworth et al. 395/712
5,745,418 4/1998 Ma ct al. ..ccoceevevrerrrreeinnnen 365/185.33 28 Claims, 10 Drawing Sheets
HOST 4
SYSTEM
9 3A
S g
CACHE MANAGEMENT
gmgg SYSTEM --»| INFORMAT I ON
CONTROLLER TABLE
¥]
| FLASH MEMORY UNIT Pt HDD 2

* | [PERMANENT R
5 STORAGE AREA L 10A

H1GH-SPEED R
ACCESS AREA [-110B

NON-VOLATILE | | .
CACHE AREA [0

97

Ex. 2013
Page 102 of 145

5,860,083

5

In the present invention, it is assumed that the entire
storage area of the flash memory unit 1 is logically divided
into permanent storage area 10A, high-speed access area
10B and non-volatile cache area 10C and the divided areas
are managed. The controller 3 manages the storage areas
10A to 10C of the flash memory unit 1 by using a manage-
ment information table 3A. The management information
table 3A is stored, for example, in the non-volatile cache
area 10C of flash memory unit 1.

The first embodiment relates to a system wherein the
permanent storage area 10A of flash memory unit 1 is used
as a cache memory area. In this embodiment, it is supposed
that the user desires to start a frequently used application
program (AP) at high speed at all times.

The user starts a data storage utility program of the cache
system controller 3 via a user interface provided in the host
system 4 (step S1). The data storage utility program reads
specified data from the HDD 2 and stores the read data in a
specified storage area in the flash memory unit 1. In this
case, it is assumed that the user sets the permanent storage
area 10A in the flash memory unit 1 as the data storage area,
at the time of instructing the start of the data storage utility
program (step S2).

Then, the user instructs the host system 4 to start the AP
(step S3). The host system 4, upon receiving the AP start
instruction, issues a read command to the controller 3 in
order to read control information necessary for the start of
the AP from the HDD 2.

The controller 3 controls the HDD 2, reads out the control
information necessary for the start of the AP and transfers
the read-out control information to the host system 4 (step
S4). At this time, according to the started-up data storage
utility program, the controller 3 stores the AP control infor-
mation read out from the HDD 2 in the permanent storage
area 10A of flash memory unit 1 (step S5). When the AP has
been prepared to start, the data storage utility program is
stopped by the instruction from the user (“YES” in step S6;
step S7). Through these operations, the control information
necessary for starting the AP is stored in the permanent
storage area 10A in the flash memory unit 1.

In this case, the control information is stored in the
permanent storage area 10A in flash memory unit 1 under the
file name designated by the user. Information for correlating
the file name and the AP and information of other comment
is recorded on the management information table 3A by the
data storage utility program. The user inputs the file name to
the controller 3 via the user interface, thereby referring to the
file (the control information of the AP in this case) stored in
the permanent storage area 10A. The user can delete the file,
if unnecessary. In other words, the control information
necessary for starting the AP is permanently stored in the
permanent storage area 10A in the flash memory unit 1 as
one file, until the user instructs the deletion of the file.

If the user instructs the start of the same AP via the user
interface, the host system 4 issues the read command, as
described above, to read from the HDD 2 the control
information necessary for starting the AP (“YES” in step
S8). Upon receiving the read command, the controller 3
determines whether the control information to be accessed is
stored in the flash memory unit 1 by using the management
information table 3A. Since the AP control information is
stored in the permanent storage area 10A, the cache memory
area is successfully accessed. Accordingly, the controller 3
reads out the AP control information from the permanent
storage area 10A of flash memory unit 1, without accessing
the HDD 2, and transfers the read-out control information to
the host system 4 (step S9). The host system 4 starts the AP

25

40

45

w
<

6

designated by the user on the basis of the transferred AP
control information (step S10).

By the above-described cache system, the control infor-
mation of the frequently used AP designated by the user is
read out from the HDD 2 and stored in the permanent
storage area 10A in the flash memory unit 1 used as the
cache memory area. Accordingly, when the AP is to be
started next time, the AP control information can be read out
quickly from the permanent storage area 10A used as cache
memory area, and not from the HDD 2. Thereby, the host
system 4 can quickly acquire the control information at the
time of starting the AP. As a result, the AP can be quickly
started. Since the AP control information is permanently
stored in the permanent storage area 10A until the user
instructs the deletion of the control information, as described
above, the frequently used AP can be started quickly at all
times.

(First Modification of the First Embodiment)

FIG. 4 is a flow chart illustrating a first modification of the
first embodiment. This modification relates to a system
having a mode (data storage mode) for storing the control
information necessary for starting the OS in the permanent
storage area 10A of flash memory unit 1, for example, when
the OS of the host system 4 is started in a series of operations
from the turn-on of power to the completion of the starting
operation.

When the system is switched on and the user sets the data
storage mode via the user interface, the controller 3 stores
the information representing the data storage mode in the
permanent storage area 10A in flash memory unit 1 (steps
S11 to S13).

After the power is turned off and then turned on again, the
controller 3 starts the above-mentioned data storage utility
program on the basis of the information of the set data
storage mode (“YES” in step S14; step S15). According to
the data storage utility program, the control information,
which is pre-stored in the HDD 2 and necessary for starting
the OS, is read out and stored in the permanent storage area
10A (steps S16 and S17). The controller 3 transfers to the
host system 4 the control information necessary for starting
the OS read out from the HDD 2. Based on the control
information, the host system 4 starts the OS. After the
preparation for starting the OS is completed, the data storage
utility program is stopped (“YES” in step S18; step S19).

According to this system, when the OS is automatically
started by the control information read out from the HDD 2
at the time of turning-on of power, the control information
is stored in the permanent storage area 10A used as the cache
memory area for the HDD 2. Accordingly, when the OS is
started at the time of the next turning-on of power, the
control information necessary for starting the OS is read out
not from the HDD 2 but from the permanent storage area
10A or cache memory area, and the read-out control infor-
mation is transferred to the host system 4. Thus, the control
information can be accessed from the permanent storage
area 10A in the flash memory unit 1 having a higher access
speed than the HDD 2. As a result, the OS can be started at
higher speed.

Like the AP control information, the OS control informa-
tion may be stored as one file in the permanent storage area
10A. Thereby, the user can refer to, or delete, the OS control
information on an as-needed basis. For example, at the time
of shipment of the personal computer, if the OS is pre-
installed in the flash memory unit 1 functioning as cache
memory area, the user can delete the OS control information
based on the user’s judgment. Specifically, the OS control
information may be deleted by a user who is used to starting

Ex. 2013
Page 103 of 145

the controller 3 via the user interface, thereby referring to the
file (the control information of the AP in this case) stored in
the permanent storage area 10A. The user can delete the file,
if unnecessary. In other words, the control information 50

necessary for Starting the AP 1s Eermanentlz stored 1n the
permanent storage area 10A 1n the flash MEemory unit 1 as

one file, until the user 1nstructs the deletion of the file.

If the user instructs the start of the same AP via the user
interface, the host system 4 issues the read command, as 55
described above, to read from the HDD 2 the control
information necessary for starting the AP (“YES” in step
S8). Upon receiving the read command, the controller 3
determines whether the control information to be accessed 1s
stored 1n the flash memory unit 1 by using the management 60
imnformation table 3A. Since the AP control information is

stored 1n the permanent storage arca 10A, the cache memory

at th
1S Ste
mem
starte
conti
not {
10A
matic
infor
area
Speel
highe

L1
tion
10A.

infor

arca 1S successfully accessed. Accordingly, the controller 3 of st
*

Ex. 2013

Page 104 of 145

rol arca 10A in the flash memory unit 1 having a higher access
tep speed than the HDD 2. As a result, the OS can be started at
r 3 higher speed.

11s Like the AP control information, the OS control informa-

ent 60 tion may be stored as one file 1n the permanent storage area
| 1S 10A. Thereby, the user can refer to, or delete, the OS control

Ty information on an as-needed basis. For example, at the time
r3 of shipment of the personal computer, 1f the OS 1s pre-
ent installed in the flash memory unit 1 functioning as cache

Ing 65 memory area, the user can delete the OS control information
| tO based on the user’s judgment. Specifically, the OS control
AP information may be deleted by a user who 1s used to starting

100

Ex. 2013
Page 105 of 145

ng preparation !or starting t!e OS1s comp\ete!, t!e !ata storage

ent utility program is stopped (“YES” in step S18; step S19).
the 45 According to this system, when the OS 1s automatically

> to started by the control information read out from the HDD 2
the at the time of turning-on of power, the control information
l1n 1s stored 1n the permanent storage area 10A used as the cache

ile, memory area for the HDD 2. Accordingly, when the OS 1s
jon 50 started at the time of the next turning-on of power, the

the control information necessary for starting the OS 1s read out

- as not from the HDD 2 but from the permanent storage arca
10A or cache memory area, and the read-out control infor-

ser mation 1s transferred to the host system 4. Thus, the control
as 55 information can be accessed from the permanent storage
rol arca 10A 1n the flash memory unit 1 having a higher access

tep speed than the HDD 2. As a result, the OS can be started at
r 3 higher speed.
d1s Like the AP control information, the OS control informa-

101

Ex. 2013
Page 106 of 145

CACHE MANAGEMENT
SYSTEM I NFORMAT | ON
CONTROLLER TABLE

PERMANENT
STORAGE AREA

H1GH-SPEED

ACCESS AREA '
NON-VOLATILE
CACHE AREA

Ex. 2013
Page 107 of 145

HOST 4
SYSTEM
R H 3 3A storage area 10A or non-volatile cache area 10C, which is
S 4 y 9 S the cache memory area (or whether the cache memory area
DEVICE C¢C¥EM L TQEA%METTN is “hit”) (steps S20 and S21), as shown in FIGS. 5. If the data
DRIVER | [SFS DRMATIONE 0 b d is “hit”, the controller 3 reads the data I
CONTROLLER TABLE o be accessed is “hit”, the controller 3 reads the data from
X the permanent storage area 10A or non-volatile cache area
oot ! 10C and transfers the read-out data to the host system 4
, ! ¥ (“YES” in step S21; step S25).
' | FLASH MEMORY UNIT A~ 1 HOD b2 On the other hand, if the cache memory area is not “hit”,
: the controller 3 accesses the , reads out the data to be
] PERMANENT | 110A accessed and translers the read-out data to the hOSt system
STORAGE AREA F. In this case, as described above, 11 the data to be accessed
i |, HIGH-SPEED | 1 408 1s the permanent data designated by the user, the controller
ACCESS AREA 3 stores it in the permanent storage area 10A (“NO” in step
NON-VOLATILE | |
CACHE AREA [-]710C

FI1G. 1

Ex. 2013
Page 108 of 145

RO) R 00

a2 United States Patent

Settsu et al.

74353B1

(10) Patent No.: US 6,374,353 B1
5) Date of Patent: Apr. 16, 2002

(549) INFORMATION PROCESSING APPARATUS
METHOD OF BOOTING INFORMATION
PROCESSING APPARATUS AT A HIGH
SPEED

(75) Inventors: Atsushi Settsu; Noriyuki Baba; Naoto
Sugai, all of Tokyo (JP)

(73) Assignee: Mitsubishi Denki Kabushiki Kaisha,
Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/261,255

(22) Filed: Mar. 3, 1999

(30) Foreign Application Priority Data

Mar. 16, 1998 (JP) oovviiiiiiiiiin i 10-065957
(51) Int. CL7 oo GOG6F 9/445
(52) US. Cl it 713/2
(58) Field of Searchc.cccccccciiiinnnne 71372
(56) References Cited

U.S. PATENT DOCUMENTS
5,307,497 A 4/1994 Feigenbaum et al.

5,355,498 A 10/1994 Provino et al.

5,918,048 A * 6/1999 Mealey et al. 713/2
5,933,631 A * 8/1999 Mealey et al. ... 713/2
6,052,778 A * 4/2000 Hagy et al.cccceeeennnes 713/2

OTHER PUBLICATIONS

M. M. Mckusick et al. Maruzen Co., Ltd., Jun. 30, 1991 pp.
413-433.

* cited by examiner

Primary Examiner—Thomas M. Heckler
67 ABSTRACT

A method of booting up an information processing apparatus
is provided. An operating system is divided into a mini
operating system (OS) module having a function of boot-
strap and an OS main body module having functions other
than the function of bootstrap. The mini OS module can be
located in a boot block of a boot device, whereas the OS
main body module can be located in a file system of the boot
device. A firmware or F/W code module stored in a ROM
loads the mini OS module into memory when booting up the
information processing apparatus. The mini OS module then
loads the OS main body module into memory and then
initializes the OS main body module.

12 Claims, 26 Drawing Sheets

1 2 ?
: S T BLOCK
o BOO C
6 71y MmNt os
F/W MODULE
CODE 3
MODULE
5 | FiLE SYSTEM
DOVICE
MEMORY D

OS MAIN
BODY
MODULE

104

Ex. 2013
Page 109 of 145

4
)

1 2
) S
ROM
'
CODE
MODULE
\.
MEMORY

BOOT BLOCK

MINI OS
MODULE

FILE SYSTEM

OS MAIN
BODY
MODULE

f—"

<l
S —

D

BOOT

N

DEVICE

i

Ex. 2013
Page 110 of 145

Ex. 2013
Page 111 of 145

Ex. 2013
Page 112 of 145

Ex. 2013
Page 113 of 145

Ex. 2013
Page 114 of 145

Ex. 2013
Page 115 of 145

Ex. 2013
Page 116 of 145

“preloading boot data, in compressed
form...from a boot device into a cache

memory”

United States Patent [

Sukegawa

111 Patent Number: 5,860,083
145] Date of Patent: Jan. 12, 1999

[54] DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

[75] Inventor: Hiroshi Sukegawa, Tokyo, Japan

[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki,
Japan
[21] Appl. No.: 818,983
[22] Filed: Mar. 14, 1997
[30] Foreign Application Priority Data
Nov. 26, 1996 [IP] Japan

[51] Int. CLS oo GOG6F 12/08
[52] US.CL .. 711/103; 711/117; 711/171;
711/173

[58] Field of Searchccccoocveiinnnnnee. 711/103, 113,
711/117, 170, 171, 173

8-314850

[56] References Cited
U.S. PATENT DOCUMENTS

5,175,842 12/1992 Totanieecevevivenivcvneninnnn 711/161
5,371,876 12/1994 Ewertz et al. 711/159
5,437,018 7/1995 Kobayashi et al. ... 395/652
5,535,357 7/1996 Moran et al. 711/103

5,778,418 7/1998 Auclair et al.cooorevirrrnnnns 711/101
FOREIGN PATENT DOCUMENTS

0706 135 4/1996 European Pat. Off. .
5-11933 1/1993 Japan .
8-63395 3/1996 Japan .

8-115241 5/1996 Japan .

Primary Examiner—Tod R. Swann

Assistant Examiner—Conley B. King, Jr.

Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, L.L.P.

[57] ABSTRACT

In a data storage system using a flash memory unit and an
HDD, the storage area of the flash memory unit is logically
divided into a permanent storage area, a non-volatile cache
area, which are used as cache memory areas of the HDD,
and a high-speed access area. These divided areas are
individually managed. The permanent storage area stores
data which is used frequently for a relatively long time
period. The non-volatile cache area is used as an ordinary
cache memory area in which data, which is updated rela-
tively frequently, is stored. The high-speed access area is a
storage area to be used by, e.g. an operating system (OS) of
a host system. For example, a swap file, which needs to be
accessed at high speed, is shifted into the high-speed access
area.

5,644,539 7/1997 Yamagami et al. .. 365/200
5,701,492 12/1997 Wadsworth et al.cccoevene.e. 395/712
5,745,418 4/1998 Ma et al. ccocevvrencucrnncnne 365/185.33 28 Claims, 10 Drawing Sheets
HOST "
SYSTEM
5 et 3 3A
j ¥ 4 S S
CACHE MANAGEMENT
ggY&EE SYSTEM fe--+| INFORMATION
CONTROLLER TABLE
3
é Y y
{ | FLASH MEMORY UNIT 1 HOD f~2
{ | [PERMANENT | 10n
; STORAGE AREA [™]
: HIGH-SPEED R
1”1 ACCESS AREA [-T"10B
NON-VOLATILE | |
CACHE AREA [~]10C

112

Ex. 2013
Page 118 of 145

HostT],
SYSTEM
o . * ‘3 3A
Sy Q Q
CACHE MANAGEMENT
BEY¢EE SYSTEM --» |NFORMAT I ON
CONTROLLER TABLE
¥

| FLASH MEMORY UNIT [HOD |2
| [PERMANENT R
| | STORAGE AREA l‘f 10A

H1GH-SPEED R
ACCESS AREA [-110B

NON-VOLATILE | £
CACHE AREA 1710

113

Ex. 2013
Page 119 of 145

United States Patent [

USUU6145069A

6,145,069

(111 Patent Number:

Dye 451 Date of Patent: Nov. 7, 2000
[54] PARALLEL DECOMPRESSION AND 5,371,499 12/1994 Graybill et al. .

COMPRESSION SYSTEM AND METHOD 5,379,036 1/1995 Storer .

FOR IMPROVING STORAGE DENSITY AND 5,396,343 3/1995 Hanselmancccoccsverrnnnn. 358/426

[63]

[51]
[52]

[58]

[56]

ACCESS SPEED FOR NON-VOLATILE
MEMORY AND EMBEDDED MEMORY

Thomas A. Dye, Austin, Tex.

Assignee: Interactive Silicon, Inc., Austin, Tex.

Apr. 26, 1999

Related U.S. Application Data

Continuation-in-part of application No. 09/239,659, Jan. 29,

... GOGF 12/00
.. 711/170; 711/103; 710/68;

382/233; 345/521; 345/501
cevemennns T11/103, 170;

710/68; 714/763, 764; 709/247; 382/232,

233; 345/521, 501, 507, 509

References Cited

U.S. PATENT DOCUMENTS

Bryant et al. ... 395/463
Cotton et al. 358/261.1
Storer .

Weng ..o, 341/87

Whiting et al. .
Whiting et al. .
Whiting et al. .
Whiting et al. .
Chambers, IV .
Miller et al. .
Hannon, Jr.
O’Brien et al.

DEVICES

Inventor:

Appl. No.: 09/299,966

Filed:

1999.

Int. CL7 ...

UsS. Cl. ..

Field of Search
4,008,460 2/1977
4,688,108 8/1987
4,876,541 10/1989
4,881,075 11/1989
5,003,307 3/1991
5,016,009 5/1991
5,126,739 6/1992
5,146,221 9/1992
5,155,484 10/1992
5237460 8/1993
5,237,675 8/1993
5,247,638 9/1993
5,247,646 9/1993

Osterlund et al.

5,406,278 4/1995 Graybill et al. .
5,406,279 4/1995 Anderson et al. .
5,412,429 /1995 Glover .
5,414,425 5/1995 Whiting et al. .

(List continued on next page.)

Primary Examiner—Eddie P. Chan

Assistant Examiner—Hong Kim

Attorney, Agent, or Firm—Conley, Rose & Tayon PC;
Jeffrey C. Hood

[57] ABSTRACT

A flash memory controller and/or embedded memory con-
troller including MemoryF/X Technology that uses data
compression and decompression for improved system cost
and performance. The Compression Enhanced Flash
Memory Controller (CEFMC) of the present invention pref-
erably uses parallel lossless compression and decompression
engines embedded into the flash memory controller unit for
improved memory density and data bandwidth. In addition,
the invention includes a Compression Enhanced Memory
Controller (CEMC) where the parallel compression and
decompression engines are introduced into the memory
controller of the microprocessor unit. The Compression
Enhanced Memory Controller (CEMC) invention improves
system wide memory density and data bandwidth. The
disclosure also indicates preferred methods for specific
applications such as usage of the invention for solid-state
disks, embedded memory and Systems on Chip (SOC)
environments. The disclosure also indicates a novel memory
control method for the execute in place (XIP) architectural
model. The integrated parallel data compression and decom-
pression capabilities of the CEFMC and CEMC inventions
remove system bottle-necks and increase performance
matching the data access speeds of the memory subsystem
to that of the microprocessor. Thus, the invention allows

5,337,275 8/1994 Garner ...

5341330 8/1994 Wells .. T 365/185.11 towzr cd(;t systems dl:e todsmadller \S]ata stlorag.e, reduced
5.353,024 10/1994 Graybill . andwidth requirements, reduced power and noise.

5,353,425 10/1994 Malamy et al. 711/144
5,357,614 10/1994 Pattisam et al. 710/68 39 Claims, 24 Drawing Sheets
900 - Flash memory System
SRAM or
200 - CEFMC DRAM
MPU memory
Decompression 420
Engine - 118 —
m 4ot A
Flash
Memory ECC/EDC
Aray |40 & Bypass SRAM Bus Micro
100 Ware <_|'> 240 Cache [P Processing
Leveling 160 Unit
Logic 400
220 Compression
= — | Engine (= |
7y T 260
DC/DC 102 Control
Converter|# T [—» SRAM
190 or
‘ Comp 1 Control Unit & Data Directory Mai?t{:er\ory

104 Array Row Address 300 —>

114

Ex. 2013
Page 120 of 145

800 - Flash memory System

Flash
Memory
Array
100

200 - CEFMC

' 110 >

Mem.
l/F

Byte
Mux
120

| DC/DC
—Converter
: 190

Leveling
Logic
220

ECC/EDC ||
P &
6 Ware

Decompression
Engine
280

Bypass
240

f

L

T 102 Control f

Compression
Engine
260

SRAM
Cache
160

Bus
I/F
180

-

300

Compression Control Unit & Data Directory

118

104 Arréx Row Address

SRAM or
DRAM

MPU memory
420

4ot A

Micro
Processing
Unit
400

SRAM
or
DRAM

> Main memory

449

115

Ex. 2013
Page 121 of 145

Ex. 2013
Page 122 of 145

Ex. 2013
Page 123 of 145

Ex. 2013
Page 124 of 145

Ex. 2013
Page 125 of 145

Ex. 2013
Page 126 of 145

Ex. 2013
Page 127 of 145

“a plurality of encoders are utilized to

provide the compressed boot data”

a2 United States Patent

Fallon et al.

a0y Patent No.: US 7,181,608 B2
45) Date of Patent: Feb. 20, 2007

(54) SYSTEMS AND METHODS FOR
ACCELERATED LOADING OF OPERATING
SYSTEMS AND APPLICATION PROGRAMS

(75) Inventors: James J. Fallon, Armonk, NY (US);
John Buck, Oceanside, NY (US); Paul
F. Pickel, Bethpage, NY (US); Stephen
J. McEerlain, New York, NY (US)

(73) Assignee: Realtime Data LLC, New York, NY
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 223 days.

(21) Appl. No.: 09/776,267

(22) Filed: Feb. 2, 2001

(65) Prior Publication Data
US 2002/0069354 A1 Jun. 6, 2002

Related U.S. Application Data
(60) Provisional application No. 60/180,114, filed on Feb.

3, 2000.
(51) Inmt. CL

GO6F 9/24 (2006.01)

GO6F 9/00 (2006.01)

GO6F 13/00 (2006.01)
(52) US.CL ..o, 713/2;713/1; 711/113
(58) Field of Classification Search 713/2,

713/1, 100; 711/170, 118,113
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
4,127,518 A 11/1978 Coy et al.

4,302,775 A 11/1981 Widergren et al.
4,394,774 A 7/1983 Widergren et al.
4,574,351 A 3/1986 Dang et al.

(Continued)
FOREIGN PATENT DOCUMENTS
DE 4127518 Al 2/1992
(Continued)
OTHER PUBLICATIONS

IBM, Fast Dos Soft Boot, Feb. 1, 1994, vol. 37, Issue 2B, pp.
185-186.*

(Continued)

Primary Examiner—Thomas Lee

Assistant Examiner—Suresh K Suryawanshi

(74) Attorney, Agent, or Firm—Fish & Neave IP Group of
Ropes & Gray LLP

(57 ABSTRACT

Systems and methods are provided for accelerated loading
of operating system and application programs upon system
boot or application launch. In one aspect, a method for
providing accelerated loading of an operating system
includes maintaining a list of boot data used for booting a
computer system, preloading the boot data upon initializa-
tion of the computer system, and servicing requests for boot
data from the computer system using the preloaded boot
data. The boot data may comprise program code associated
with an operating system of the computer system, an appli-
cation program, and a combination thereof. The boot data is
retrieved from a boot device and stored in a cache memory
device. The boot data is stored in a compressed format on the
boot device and the preloaded boot data is decompressed
prior to transmitting the preloaded boot data to the request-
ing system.

31 Claims, 13 Drawing Sheets

DATA DISK HARD
COMPRESSION CACHE INTERFACE DISK
ENGINE

BUS INTERFACE

T. 1

MAIN OR EXPANSION COMPUTER BUS

16

122

Ex. 2013
Page 129 of 145

Ex. 2013
Page 130 of 145

Ex. 2013
Page 131 of 145

Ex. 2013
Page 132 of 145

Ex. 2013
Page 133 of 145

Ex. 2013
Page 134 of 145

Ex. 2013
Page 135 of 145

Ex. 2013
Page 136 of 145

US006145069A
United States Patent i [11] Patent Number: 6,145,069
Dye 45] Date of Patent: Nov. 7, 2000
[54] PARALLEL DECOMPRESSION AND 5,371,499 12/1994 Graybil t al. .

[63]

[51]
[52]

[58]

[56]

COMPRESSION SYSTEM AND METHOD
FOR IMPROVING STORAGE DENSITY AND
ACCESS SPEED FOR NON-VOLATILE
MEMORY AND EMBEDDED MEMORY
DEVICES

Inventor: Thomas A. Dye, Austin, Tex.

Assignee: Interactive Silicon, Inc., Austin, Tex.

Appl. No.: 09/299,966
Filed: Apr. 26, 1999

Related U.S. Application Data

Continuation-in-part of application No. 09/239,659, Jan. 29,

1999.

Int. CL7 oo, GOGF 12/00

US. Cl ... T11/170; 711/103; 710/68;
382/233; 345/521; 345/501

Field of Searchccccooevviieinnn. 711/103, 170,

710/68; 714/763, T64; 709/247; 382/232,
233; 345/521, 501, 507, 509

References Cited
U.S. PATENT DOCUMENTS
4,008,460 2/1977 Bryant et al. ... oo 395/463
4,688,108 8/1987 Cotton et al. 358/261.1

4,876,541 10/1989 Storer .

4,881,075 11/1980 Weng ooooooococeooreresssssereenrssn. 341/87
5,003,307 3/1991 Whiting et al. .

5,016,009 5/1991 Whiting et al. .

5,126,739 6/1992 Whiting et al. .

5,146,221 9/1992 Whiting et al. .

5,155,484 10/1992 Chambers, IV .

5,237,460 8/1993 Miller et al. . .. 395/888
5,237,675 8/1993 Hannon, Jr. .. o 710/68
5,247,638 9/1993 O’Brien et al. e T10/68

5,247,646 9/1993 Osterlund et al.
5,337,275 8/1994 Garner
5,341,339 8/1994 Wells
5,353,024 10/1994 Graybill .

5,353,425 10/1994 Malamy et al. ...
5,357,614 10/1994 Pattisam et al.

.. 395/888
. 365/189.01
.. 365/185.11

. 711/144
... 710/68

5,379,036 1/1995 Storer .

5,396,343 3/1995 Hanselmancccecouererueuernecee 358/426
5,406,278 4/1995 Graybill et al. .

5,406,279 4/1995 Anderson et al. .

5,412,429 5/1995 Glover .

5,414,425 5/1995 Whiting et al. .

(List continued on next page.)

Primary Examiner—Eddie P. Chan

Assistant Examiner—Hong Kim

Attorney, Agent, or Firm—Conley, Rose & Tayon PC;
Jeffrey C. Hood

[57] ABSTRACT

A flash memory controller and/or embedded memory con-
troller including MemoryF/X Technology that uses data
compression and decompression for improved system cost
and performance. The Compression Enhanced Flash
Memory Controller (CEFMC) of the present invention pref-
erably uses parallel lossless compression and decompression
engines embedded into the flash memory controller unit for
improved memory density and data bandwidth. In addition,
the invention includes a Compression Enhanced Memory
Controller (CEMC) where the parallel compression and
decompression engines are introduced into the memory
controller of the microprocessor unit. The Compression
Enhanced Memory Controller (CEMC) invention improves
system wide memory density and data bandwidth. The
disclosure also indicates preferred methods for specific
applications such as usage of the invention for solid-state
disks, embedded memory and Systems on Chip (SOC)
environments. The disclosure also indicates a novel memory
control method for the execute in place (XIP) architectural
model. The integrated parallel data compression and decom-
pression capabilities of the CEFMC and CEMC inventions
remove system bottle-necks and increase performance
matching the data access speeds of the memory subsystem
to that of the microprocessor. Thus, the invention allows
lower cost systems due to smaller data storage, reduced
bandwidth requirements, reduced power and noise.

39 Claims, 24 Drawing Sheets

900 - Flash memory System
SRAM or
200 - CEFMC DRAM
MPU memory
Decompression — 420
Engine 118 —.
2% [[oy c| A
Flash 5
Memory 110 ECC/EDC [—>|
Ay (@ > & Bypass SRAM Bus| D, Micro
100 < Ware 4.[’ 240 Cache 4P g PR Processing
Leveling 160 180 N > Unit
Logic — A 400
220 Compression le——
7y —_ Engine (= [
J N T 260
DC/DC 102 Control o
— Converter|«{ D l—> SRAM
190 c or
|) ; Cyl——> DRAM
C 1 Control Unit & Data Directory A Main memo:
I ddres: 300 ——> Y
— «—2 440

130

Ex. 2013
Page 137 of 145

Ex. 2013
Page 138 of 145

Ex. 2013
Page 139 of 145

6,145,069

3

“in-line” with data also preferably located within the Flash
memory control circuit

The CEFMC is designed for the reduction of data band-
width and is located between the main memory and/or
system memory and the flash memory controller. The
CEFMC Technology reduces the bandwidth requirements
while increasing the memory efficiency for almost all data
types within the computer system. Thus, conventional stan-
dard Flash Memory cells can achieve higher bandwidth,
more effective density, with less system power and noise
than when used in conventional systems without the
CEFMC technology.

The CEFMC transfers data between the Flash Memory
Array and the system MPU and its optional execution and
data memories. Therefore, the CEFMC technology of the
present invention typically resides between the MPU, main
memory and the Flash Memory Array. In an alternate
embodiment, the compression and/or decompression
engines may reside in the MPU memory control unit, thus all
memory data including flash memory can make use of lower
pin-out interconnect buses, more effective memory
performance, and increased effective memory density for all
types of memory coupled to the MPU device.

The CEFMC technology is designed to embed into prior
art flash memory control circuits. Thus, the current
invention, using the novel parallel architecture to compress
and decompress data streams, substantially improves band-
width and effective storage density within the computing
system. In addition, the CEFMC Technology has a “scal-
able” architecture designed to function in a plurality of
memory configurations or compression modes with a plu-
rality of performance requirements as indicated in U.S.
patent application Ser. No. 09/239,659 titled “Bandwidth
Reducing Memory Controller Including Scalable Embedded
Parallel Data Compression and Decompression Engines”
and filed Jan. 29, 1999 (5143-01700). Scalability allows for
a non-symmetric compression rate as compared to the
decompression rate. Write data can match the effective write
speed of the Flash Memory Array, using fewer input sym-
bols in parallel during compression, thus reducing gate
count and size. Read data can be decompressed with a
different number of input symbols per clock or access, thus
allowing the read data to be decompressed at an alternate
rate. Thus, the non-symmetric nature of the invention during
reads and writes allows tuning of the memory access time
vs. gate count to greatly improve performance and cost.

When configured for “execute in place” (XIP model),
compressed data is programmed in to the flash memory for
execution by the system MPU. The CEFMC invention
decompresses the data as it is read by the MPU from the
flash memory. In an alternate embodiment a DMA device
can also be used to read data in a parallel fashion from the
flash memory device. In the preferred embodiment, data
presented at the output bus of the Flash Memory system is
retrieved when the “ready” output (ready is a control signal
associated with the MPU and Flash controller interface)
transitions state during a read data request. The “ready”
output indicates that the data has been successfully read
from the Flash Memory Array and decompressed for con-
sumption by the MPU. Any form of ready output indication
can be used, as the “wait” is due to the decompression of a
new block of data not previously stored in the SRAM buffer
or cache. Alternatively, the timing specifications can include
delay time specification indicating a “maximum delay” such
that the MPU of system device waits for some period of time
in order to process the decompressed requested data.

The CEFMC technology allows data to be stored in
multiple compression formats and blocks sizes, as indicated

20

30

40

45

50

60

65

4

in U.S. patent application Ser. No. 09/239,659 titled “Band-
width Reducing Memory Controller Including Scalable
Embedded Parallel Data Compression and Decompression
Engines”, referenced above. Thus, data can be saved in
either a normal or compressed format, retrieved from the
Flash Memory Array for MPU execution in a normal or
compressed format, or transmitted and stored on a medium
in a normal or compressed format.

To improve latency and reduce performance degradations
normally associated with compression and decompression
techniques the CEFMC encompasses multiple novel tech-
niques such as: 1) Compiler directives for data types and
block sizes for optimal compression and access speeds; 2)
parallel lossless compression/decompression; selectable
compression modes such as lossless, lossy or no compres-
sion; 3) data caching techniques; 4) unique address
translation, attribute, and address directory structures, as
illustrated in U.S. patent application Ser. No. 09/239,659,
referenced above.

The CEFMC Technology preferably includes novel par-
allel compression and decompression engines designed to
process stream data at more than a single byte or symbol
(character) at one time. These parallel compression and
decompression engines modify the single stream dictionary
based (or history table based) data compression method
described by Lempel and Ziv to provide a scalable, high
bandwidth compression and decompression operation. The
parallel compression method examines a plurality of sym-
bols in parallel, thus providing greatly increased compres-
sion performance. The CEFMC technology, in an alternate
embodiment, reduces latency further by use of multiple
compiler hooks to distinguish program data space from table
look-up data. Thus, if indicated, a bypass of the decompres-
sion engine will send data directly to the output interface bus
without delay. A priority scheme can be applied such that
compression and decompression operations are suspended
as higher priority non-compressed data is transferred. Thus,
reduction of latency and improved efficiency can be
achieved at the cost of additional parallel buffers and com-
parison logic. Compiler directives interpreted by the decom-
pression controller, can be embedded within the compiled
XIP code for notification of compression/decompression
bypass.

In summary, the integrated data compression and decom-
pression capabilities of the present invention removes sys-
tem bottlenecks allowing a higher frequency MPU clock by
de-coupling the Flash Memory access time from MPU clock
frequency. In addition, the present invention reduces the data
storage size allowing more storage per Flash Memory Array.
This lower cost system is due to reduced data storage
requirements and improved bandwidth results. This also
increases system bandwidth and hence increases system
performance. Thus the compression based Flash Memory
Controller of the present invention is a significant advance
over the operation of current memory controllers.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1 illustrates a typical embodiment for the prior art
Flash Memory Controller architecture without Compression
Enhancement for the solid-state disk;

FIG. 2 illustrates a typical embodiment for the prior art
Flash Memory Controller without Compression Enhance-
ment for the execute in place (XIP) model;

133

Ex. 2013
Page 140 of 145

ory 20 The CEFMC Technology preferably includes novel par-

r all allel compression and decompression engines designed to

process stream data at more than a single byte or symbol
rior (character) at one time. These parallel compression and
rent decompression engines modify the single stream dictionary

ress 25 based (or history table based) data compression method
ind- described by Lempel and Ziv to provide a scalable, high
ting bandwidth compression and decompression operation. The

cal- Earallel comgression method examines a Eluralitx of Sym-

7 of bols in parallel, thus providing greatly increased compres-
plu- 3p sion performance. The CEFMC technology, in an alternate

J.S. embodiment, reduces latency further by use of multiple
1dth compiler hooks to distinguish program data space from table
lded look-up data. Thus, if indicated, a bypass of the decompres-
168”7 sion engine will send data directly to the output interface bus
 for 35 without delay. A priority scheme can be applied such that

the compression and decompression operations are suspended

T1ie as higher priority non-compressed data 1s transferred. Thus

Ex. 2013
Page 141 of 145

6,145,069

17

data in the Cache Memory 425. Once the write data is
merged, step 3550 updates the LRU/MRU cache state and
proceeds to complete the write cycle. In step 3560 if the
latest write block forces a write back of the LRU block, then
the process continues with step 3570. If not, and open cache
blocks were available then the process returns into the idle
state of step 3440 and waits for the next transaction request.
If LRU data is retired to the Flash Memory System 900, the
Flash Memory Controller 200 embedded within the Flash
Memory System 900 must return the address of a cleared
block of flash memory for write back of the compressed
LRU as indicated in step 3570. The retired LRU data may be
compressed as indicated in step 3580 and then written back
into the Flash Memory Array 100 shown in step 3590. Thus,
for increased system performance and lower costs the
embedded compression and decompression architecture of
the present invention is a substantial improvement from
prior art Flash memory controllers.

Now referring to the increased performance aspects of the
present invention, the advantages of using compression and
decompression within the embedded system are shown. For
the present embodiment a good example of the performance
and cost advantages can be illustrated using the execute in
place application of FIG. 5. Data is clocked out of the Flash
Memory Array 100 on a 32-bit bus at 40 ns for every four
bytes. This is considered the flash memory “source” rate.
The “sink” rate is the maximum System Bus 118 bandwidth
running at 66 MHZ, which is equivalent to four bytes every
16 ps. If the average compression ratio for the parallel
compression algorithm is 2.5:1 then the output rate of the
Flash Memory Array 100 after decompression will be 40/2.5
ns per four bytes read, or 16 ns/Byte thus matching the 66
MHZ maximum bus speed requirements. In addition the
effective density of the flash memory is now 2.5 times larger
than without the use of the present invention. Thus the use
of the present invention can greatly increase the system
performance while decreasing the per-bit effective cost of
storage.

Parallel Lossless Compression and Decompression

The parallel compression/decompression units or engines
260 and 280, in combination referred to as codec engine
260/280, which perform parallel compression and decom-
pression functions, are now discussed. The codec engine
2601280 is preferably a dedicated codec hardware engine,
e.g., the engine is comprised of logic circuitry. In one
embodiment, the codec engine 260/280 comprises a pro-
grammable DSP or CPU core, or programmable
compression/decompression processor, with one or more
ROMSs or RAMs which store different sets of microcode for

certain functions, such as compression, decompression, spe- 5

cial types of graphical compression and decompression, and
bit blit operations, as desired. In another embodiment, the
codec engine 260/280 dynamically shifts between the dif-
ferent sets of microcode in the one or more memories,
depending on the function being performed. The
compression/decompression engine may also be imple-
mented using reconfigurable or programmable logic, e.g.,
one or more FPGAs.

As shown in FIGS. 3 and 4, in some embodiments, the
engine 260/280 preferably includes a lossless parallel data
compression engine 260 and parallel decompression engine
280 designed to compress and decompress data as data is
transferred to/from flash memory. Other embodiments, as
illustrated in FIG. 5, may be implemented with only a
decompression engine 280. The compression engine 260
and decompression engine 280 may be constructed using
any of the techniques described with reference to the engine

[
wn

[
o

25

40

45

65

18

260/280, including hardware engines comprised of logic
circuitry, programmable CPUs, DSPs, a dedicated
compression/decompression processor, or reconfigurable or
programmable logic, to perform the parallel compression
and decompression method of the present invention. Various
other implementations may be used to embed a
compression/decompression within the flash memory con-
troller according to the present invention. In one
embodiment, the compression engine 260 and decompres-
sion engine 280 comprise hardware engines in the CEFMC
200 as shown in FIG. 3. In another embodiment, the
compression engine 260 and decompression engine 280
comprise hardware engines in the CEMC 910 as shown in
FIG. 4. In yet another embodiment, the decompression
engine 280 comprises a hardware engine in the CEFMC 200
as shown in FIG. 5, In the following description, the parallel
compression and decompression unit is described as having
separate compression and decompression engines 260 and
280.

In the various embodiments, the compression engine 260
and decompression engine 280 comprise one or more hard-
ware engines that perform a novel parallel lossless compres-
sion method, preferably a “parallel” dictionary based com-
pression and decompression algorithm. The parallel
algorithm may be based on a serial dictionary based
algorithm, such as the LZ77 (preferably LZSS) dictionary
based compression and decompression algorithm. The par-
allel algorithm may be based on any variation of conven-
tional serial LZ compression, including LZ77, LZ78, LZW
and/or LZRW1, among others,

The parallel algorithm could also be based on Run length
Encoding, Predictive Encoding, Huffman, Arithmetic, or
any other lossless compression algorithm. However, the
paralleling of these is less preferred due to their lower
compression capabilities and/or higher hardware costs.

As a base technology, any of various lossless compression
methods may be used as desired. As noted above, a parallel
implementation of LZSS compression is preferably used,
although other lossless compression methods may allow for
fast parallel compression and decompression specifically
designed for the purpose of improved memory bandwidth
and efficiency.

FIG. 10A—Prior Art, Serial LZ Compression

Prior art has made use of the LZ compression algorithm
for design of computer hardware, but the bandwidth of the
data stream has been limited due to the need to serially
review the incoming data to properly generate the com-
pressed output stream. FIG. 10A depicts the prior art normal
history table implementation.

The LZ compression algorithm attempts to reduce the
number of bits required to store data by scarching that data
for repeated symbols or groups of symbols. A hardware
implementation of an L.Z77 algorithm would make use of a
history table to remember the last n symbols of a data stream
so that they could be compared with the incoming data.
‘When a match is found between the incoming stream and the
history table, the matching symbols from the stream are
replaced by a compressed symbol, which describes how to
recover the symbols from the history table.

FIG. 10B—Parallel Algorithm

The preferred embodiment of the present invention pro-
vides a parallel implementation of dictionary based (or
history table based) compression/decompression. By
designing a parallel history table, and the associated com-
pare logic, the bandwidth of the compression algorithm can
be increased many times. This specification describes the
implementation of a 4 symbol parallel algorithm which

135

Ex. 2013
Page 142 of 145

- When a match 1s found between the incoming stream and the
: history table, the matching symbols from the stream are
replaced by a compressed symbol, which describes how to
recover the symbols from the hlstory table.

60 |

Thepreferrec‘embodlment of the present mnvention pro-
vides a parallel implementation of dictionary based (or
history table based) compression/decompression. By
designing a parallel history table, and the associated com-

65 pare logic, the bandwidth of the compression algorithm can
be 1ncreased many times. This specification describes the
implementation of a 4 symbol parallel algorithm which

Ut e’ = 1 2 LD (U

L

, 136

Ex. 2013
Page 143 of 145

6,145,069

19

results in a 4 times improvement in the bandwidth of the
implementation with no reduction in the compression ratio
of the data. In alternate embodiments, the number of sym-
bols and parallel history table can be increased and scaled
beyond four for improved parallel operation and bandwidth,
or reduced to ease the hardware circuit requirements. In
general, the parallel compression algorithm can be a 2
symbol parallel algorithm or greater, and is preferably a
multiple of 2, e.g., 2, 4, 8, 16, 32, etc. The parallel algorithm
is described below with reference to a 4 symbol parallel
algorithm for illustrative purposes.

The parallel algorithm comprises paralleling three parts of
the serial algorithm: the history table (or history window),
analysis of symbols and compressed stream selection, and
the output generation. In the preferred embodiment the
data-flow through the history table becomes a 4 symbol
parallel flow instead of a single symbol history table. Also,
4 symbols are analyzed in parallel, and multiple compressed
outputs may also be provided in parallel. Other alternate
embodiments may contain a plurality of compression win-
dows for decompression of multiple streams, allowing a
context switch between decompression of individual data
blocks. Such alternate embodiments may increase the cost
and gate counts with the advantage of suspending current
block decompression in favor of other block decompression
to reduce latency during fetch operations. For case of
discussion, this disclosure will assume a symbol to be a byte
of data. Symbols can be any reasonable size as required by
the implementation. FIG. 10B shows the data-flow for the
parallel history table.

FIG. 11—High Level Flowchart of the Parallel Compres-
sion Algorithm

FIG. 11 is a high-level flowchart diagram illustrating
operation of the parallel compression algorithm in the pre-
ferred embodiment. Steps in the flowchart may occur con-
currently or in different orders.

In step 402 the method maintains a history table (also
called a history window) comprising entries, wherein each
entry may comprise one symbol. The history table is pref-
erably a sliding window which stores the last n symbols of
the data stream.

In step 404 the method maintains a current count of prior
matches which occurred when previous symbols were com-
pared with entries in the history table, A count is maintained
for each entry in the history table.

It is noted that maintenance of the history table and the
current counts are performed throughout the algorithm based
on previously received symbols, preferably starting when
the first plurality of symbols are received for compression.

In step 406 the method receives uncompressed data,
wherein the uncompressed data comprises a plurality of
symbols. Thus the parallel compression algorithm operates
on a plurality of symbols at a time. This is different than
conventional prior art serial algorithms, which operate in a
serial manner on only one symbol at a time. The plurality of
symbols comprises 2 or more symbols, preferably a power
of 2. In the preferred embodiment, the parallel compression
algorithm operates on 4 symbols at a time. However, imple-
mentations using 8, 16, 32 or more symbols, as well as other
non-power of 2 numbers, may be readily accomplished
using the algorithm described herein.

In step 408 the method compares the plurality of symbols
with each entry in the history table in a parallel fashion. This
comparison produces compare results. Each entry in the
history table preferably compares with each of the plurality
of symbols concurrently, i.e., in a parallel fashion, for
improved speed.

20

30

35

40

45

50

55

60

65

20

In step 410 the method determines match information for
each of the plurality of symbols based on the current count
and the compare results. Step 410 of determining match
information includes determining zero or more matches of
the plurality of symbols with each entry in the history table.
More specifically, step 410 may include determining a
longest contiguous match based on the current count and the
compare results, and then determining if the longest con-
tiguous match has stopped matching. If the longest contigu-
ous match has stopped matching, then the method resets or
updates the current counts.

As noted above, stop 410 also includes resetting the
counts for all entries if the compare results indicate a
contiguous match did not match one of the plurality of

5 symbols. The counts for all entries are preferably reset based

on the number of the plurality of symbols that did not match
in the contiguous match. In the preferred embodiment, the
method generates a reset value for all entries based on the
compare results for a contiguous match. The reset value
indicates a number of the plurality of symbols that did not
match in the contiguous match as indicated in the compare
results. The method then updates the current counts accord-
ing to the compare results and the reset value.

In step 412 the method outputs compressed data infor-
mation in response to the match information. Step 412 may
involve outputting a plurality of sets or compressed data
information in parallel, e.g., for different matches and/or for
non-matching symbols. Step 412 includes outputting com-
pressed data information corresponding to the longest con-
tiguous match that stopped matching, if any. The contiguous
match may involve a match from a prior plurality of sym-
bols. Step 412 may also include outputting compressed data
information solely from a prior match. Step 412 also
includes, for non-matching symbols that do not match any
entry in the history table, outputting the non-matching
symbols in an uncompressed format.

For a contiguous match, the compressed data information
includes a count value and an entry pointer. The entry
pointer points to the entry in the history table that produced
the contiguous match, and the count value indicates a
number of matching symbols in the contiguous match. In
one embodiment, an encoded value is output as the count
value, wherein more often occurring counts are encoded
with fewer bits than less often occurring counts.

Steps 402412 are repeated one or more times until no
more data is available. When no more data is available, then,
if any current counts air, non-zero, the method outputs
compressed data for the longest remaining match in the
history table.

Since the method performs parallel compression, operat-
ing on a plurality of symbols at a time, the method preferably
accounts for symbol snatches comprised entirely within a
given plurality of symbols, referred to as the “special case”.
Here presume that the plurality of symbols includes a first
symbol, a last symbol, and one or more middle symbols.
Step 410 of determining match information includes detect-
ing if at least one contiguous match occurs with one or more
respective contiguous middle symbols, and the one or more
respective contiguous middle symbols are not involved in a
match with either the symbol before or after the respective
contiguous middle symbols. If this condition is detected,
then the method selects the one or more largest non-
overlapping contiguous matches involving the middle sym-
bols. In this instance, step 412 includes outputting com-
pressed data for each of the selected matches involving the
middle symbols.

137

Ex. 2013
Page 144 of 145

2

1s described below with reference to a 4 symbol parallel 10
algorithm for illustrative purposes.

The Earallel algorithm comprises Earalleling three parts of
the serial algorithm: the history table (or history window),

analysis of symbols and compressed stream selection, and
the output generation. In the preferred embodiment the 15
data-flow through the history table becomes a 4 symbol

parallel flow 1instead of a single symbol history table. Also,

4 symbols are analyzed 1n parallel, and multiple compressed
outputs may also be provided in parallel. Other alternate
embodiments may contain a plurality of compression win- 20
dows for decompression of multiple streams, allowing a
context switch between decompression of individual data
blocks. Such alternate embodiments may increase the cost
and gate counts with the advantage of suspending current
block decompression in favor of other block decompression 25

*2 2 2 2 2 2

ous
upd:

A
Coul
cont
Sym
on t
1n tt
metl
com
mndi
mari
resu
mg

It
mat

, 138

Ex. 2013
Page 145 of 145

