
Apple Inc. v. Realtime Data, LLC d/b/a/ IXO
Cases IPR2016-01365, -01366

!1

Ex. 2013
Page 1 of 145

Table of Contents

“preloading the boot data into a cache memory” …………3

“preloading…prior to completion of initialization of  
the central processing unit” ……………………………..…68

‘963 Patent’s Claim 18 ……………………………………..89

“preloading boot data, in compressed form…from a  
boot device into a cache memory” ……………………….111

“a plurality of encoders are utilized to provide the
compressed boot data” ……………………………………121

!2

Ex. 2013
Page 2 of 145

“preloading the boot data into a cache
memory”

!3

Ex. 2013
Page 3 of 145

!4

Ex. 2013
Page 4 of 145

United States Patent

um um Patent No; US 7.181.608 HZ

Fallon et at. :45; Date of Patent; Feb. 20. 2007

r54, 8Y3? It‘d-'4 N‘vl) ‘III‘III()I).‘1 I'D" -i .‘tn:.TT' 3. ll 12ml \‘vulupu. u .:I
“(H liRATl‘ll) l‘)‘\[ll\(; ”I" ()I’I‘ZR {I l“; 4 {"4174 \ 7 I‘m; \Vulcrgwn cl at
SVSI’EMS AND ,\|'Pl.|('\l'l()\ PR1X£RAMS 4 “43‘" -“ z "”9“ ”M8 6' J'

'75' Invent-in lamci J Fullnn. .\nii-mk. NY (Hg); IL “mum“!
John Huck. ()L'L’Jlllsldg‘. N3 HIS): Paul lURl'IUN‘ l"\|l-N| IXX'I ’Mla‘s I'\
F. Pickcl. 1'!th 2c. NY UN): Sir hen _
J. Mclierlaln. ’13:“ Yer NY (is? ”P “3'5"“ "" 3"”:

It'i-nmmul)
17.1" Asmgncc Rultimc Dal: l.l.(. he“ \‘uxk. N\

”is, ()llll-R l’l'lll Ill-\lIUNS

I ’ ; Xuljci: Subiu‘l hum) ducluuucr. [lick-nu ul'lliin $224an “Us An" ”00‘ “h ' I)“ mi L "7“ 'D' W
phlz'nl IS umcmlnl of .iduixlcd llllilcr 5“
ll.\' (‘ IFJilu hj. 21'“ clay» I('ivnllnnoji

'3] “ \ppl No “OFF/0.267 I‘rmmri Ifmuunyr llwmas l ccLuixtum Iiiuminw Sun-sh K Sun‘uumisln

'3‘», l ilnj h.“ I. 200] 174) .“IUNIUI :lgml. or Ilrm I lbll S Nani: H' [Irl’Ul‘ ul
Rows & t-m)‘ l LP

”:5) Prlur Pnbllnxllun Data
157) ”15 TRAC]

LS Itlll'tltJh‘US-l ‘\l Jun. (L 2002

S) stun“ and mclhmdv. an: pn‘widcd tnv ucceluruiu’l lnruling
Rent“! ['5'- ‘PPHWHW "“8 nfupcnilmy “(mm and application [migraine upon wsium

int). l’nuvisinnal applicmmn Nu ‘JJ‘INHIJ, liltJnii l’L-h. b‘""_“r “PP““W’” WWW“ ‘1“ "HF IDWL'I- J lehtkl It”
I. 2““, prim-Ming .iu‘clemlhl lundlllg H! on ripe-mung :ysmm

lllCllldCS mmmuining u list iul' bunl L‘JL-J uscd fur hunting a
'5' , lm. “I. amipulcr syslcm. prelimdng 1hr: brim dam urxin iniliahm-

(ma; 9/34 (2006.4!) nun ul'ihc compmcr >}‘>Iclll. dlld wrwcmg ruqucm ll Ir bun!
”(l/,1.- rm”, 420mg,“ dam [mm the crvmplilcr {mun ming xhv prclmnw bum
6'06} ”/00 {NHRNH dam. Ilw hm! data may Culllpn'u'.‘ pnigmm mdu .hsncmlud

'52,, LS. (1' . ‘ . . 7”,” 7|1v'l‘ 7H4” will; an ”pg-ruling >_\ 51cm Ll llic mmpmcx sznluuL mi appli-
mm Held "f ('lnsfilflrutlun Sea-VII , ' 711,2. culii‘n pn'gmm. mid [I nrniimmihmi llwruul llw hum dam i»

7” l. NM; 7' l ‘ l'Ml. llK. ll 1 i'c1rlc\ul lrum .I himl'dm icc Jilin! nhllL‘d m ti cache munmy
her application lilu l'nr “”va scurth liislun dew-cc llic hnul (Lulu is .slnrcd in u cmnprmscd lnmml on [lu-hum deuce nnu Ihi: prclimlul hm: iluu i». iIccun‘iprmsL-d

i5!» References ('ited pin-i In uziiNinllnm lllL' pnlluxlcd knot Jam lu ihc n'quml-

H St P.\I'[~‘N'l ”(XTMlENI'S

'I‘IET'HK \ ll I‘JT'k Fwy! al

 DATA

COMPRESSlON n CACHE

ENGINE III
BUS INTERFACE

I.

 MAIN OH EXPANSlON COMPUTER BUS

mg _\'\h.‘1']\

‘l I‘lulnis. U "ranting .‘IIL‘L'ls

 I

l6

APPLE 1001

Ex. 2013

Page 4 of 145

!5

Ex. 2013
Page 5 of 145

US 7,181,608 B2

27
set of decoders, or a sequential set of decoders correspond-
ing to the extracted compression type descriptor. The decod—
ers D1 . . . Dn may include those lossless encoding tech-
niques currently well known within the art, including: run
length, Huffman, Lempel-Ziv Dictionary Compression,
arithmetic coding, data compaction, and data null suppres-
sion. Decoding techniques are selected based upon their
ability to elIectively decode the various dilIerent types of
encoded input data generated by the data compression
systems described above or originating from any other
desired source.

As with the data compression systems discussed in US.
Pat. No. 6,195,024, the decoder module 165 may include
multiple decoders of the same type applied in parallel so as
to reduce the data decoding time. An output data buffer or
cache 170 may be included for bulTering the decoded data
block output from the decoder module 165. The output
buffer 70 then provides data to the output data stream. It is
to be appreciated by those skilled in the art that the data
compression system 180 may also include an input data
counter and output data counter operatively coupled to the
input and output, respectively, ofthe decoder module 165. In
this manner, the compressed and corresponding decom—
pressed data block may be counted to ensure that suflicicnt
decompression is obtained for the input data block.

Again, it is to be understood that the embodiment of the
data decompression system 180 ofFlG. 10 is exemplary of
a preferred decompression system and method which may
be implemented in the present invention, and that other data
decompression systems and methods known to those skilled
in the art may be employed for providing accelerated data
retrieval in accordance with the teachings herein.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to
those precise embodiments, and that various other changes
and modifications may be afiected therein by one skilled in
the art without departing from the scope or spirit of the
invention. All such changes and modifications are intended
to be included within the scope of the invention as defined
by the appended claims.

What is claimed is:

1. A method for providing accelerated loading of an
operating system, comprising the steps of:

maintaining a list ofboot data used for booting a computer
system;

initializing a central processing unit of the computer
system;

preloading the boot data into a cache memory prior to
completion of initialization of the central processing
unit of the computer system, wherein preloading the
boot data comprises accessing compressed boot data
from a boot device; and

servicing requests for boot data from the computer system
using the preloaded boot data after completion of
initialization of the central processing unit of the com-
puter system, wherein servicing requests comprises
accessing compressed boot data from the cache and
decompressing the compressed boot data at a rate that
increases the effective access rate of the cache.

2. The method of claim 1, wherein the boot data com-
prises program code associated with one of an operating
system of the computer system, an application program, and
a combination thereof.

3. The method of claim 1, wherein the preloading is
performed by a data storage controller connected to the boot
device.

(1:

10

15

3O

40

50

6O

28
4. The method of claim 1, further comprising updating the

list of hoot data.

5. The method of claim 4, wherein the step of updating
comprises adding to the list any boot data requested by the
computer system not previously stored in the list.

6. The method of claim 4, wherein the step of updating
comprises removing from the list any boot data previously
stored in the list and not requested by the computer system.

7. A system for providing accelerated loading of an
operating system of a host system comprising:

a digital signal processor (DSl’) or controller;
a cache memory device; and
a non-volatile memory device, for storing logic code

associated with the D81’ or controller, wherein the logic
code comprises instructions executable by the DSP or
controller for maintaining a list of boot data used for
booting the host system, for preloading the compressed
boot data into the cache memory device prior to
completion of initialization of the central processing
unit of the 110st system, and for decompressing the
preloaded compressed boot data, at a rate that increases
the efi'ective access rate ofthe cache, to service requests
for boot data from the host system after completion of
initialization of the central processing unit of the host
system.

8. The system of claim 7, wherein the logic code in the
non-volatile memory device further comprises program
instructions executable by the DSP or controller for main-
taining a list of application data associated with an applica-
tion program; preloading the application data upon launch-
ing the application program. and servicing requests for the
application data from the host system using the preloaded
application data.

9. The method of claim 1, further comprising:
maintaining a list of application data associated with an

application program;
preloading the application data into the cache memory

prior to completion of initialization of the central
processing unit of the computer system, wherein pre-
loading the application data comprises accessing com-
pressed application data from a boot device; and

servicing requests for application data from the computer
system using the preloaded application data after
completion of initialization of the central processing
unit of the computer system, wherein servicing requests
comprises accessing compressed application data from
the cache and decompressing the compressed applica-
tion data.

10. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data and the data com-
pression engine provides the compressed boot data to the
boot device.

11. The method of claim 1, wherein the decompressing is
provided by a data compression engine.

12. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data, the data compression
engine provides the compressed boot data to the boot device,
and the decompressing is provided by the data compression
engine.

13. The method of claim 1, wherein the compressed boot
data is accessed via direct memory access.

14. The method of claim 1, wherein l—lufi'man encoding is
utilized to provide the compressed boot data.

15. The method of claim 1, wherein Lempel-Ziv encoding
is utilized to provide the compressed boot data.

30

Ex. 2013

Page 5 of 145

!6

Ex. 2013
Page 6 of 145

What is claimed is:

1. A method for providing accelerated loading of an

operating system; comprising the steps of:

maintaining a list ofboot data used for booting a computer 45

system;

initializing a central processing unit of the computer

system;

preloading the boot data into a cache memoQ prior to
completion of initialization of the central processing 50 I

unit of the computer system wherein preloading the .
boot data comprises accessing compressed boot data l

from a boot device; and l

servicing requests for boot data from the computer system

using the preloaded hoot data after completion of 55 1

initialization of the central processing unit of the com-
I ‘ .'II 11'... ‘I. I' ‘I " IIIII‘

Ex. 2013

Page 6 of 145

!7

Ex. 2013
Page 7 of 145

sression 7. A system for providing accelerated loading of an

y other 10 operating system of a host system comprising:

a digital signal processor (DSP) or controller;

in US. a cache memory device, and

include a non-volatile memofl device, for storing logic code
lel so as associated with the DSP or controller, wherein the logic

~ufier or 15 code comprises instructions executable by the DSP or

led data controller for maintaining a list of boot data used for

: output booting the host system, for preloading the compressed

1m. It is boot data into the cache memory device prior to

:he data Mn of initialization of the central processing

)ut data 20 unit of the host system, and for decompressing the

d to the preloaded compressed boot data, at a rate that increases

: 165. In the effective access rate of the cache, to service requests

decom- for boot data from the host system after completion of

ufficient initialization of the central processing unit of the host

25 system.
i i i t

I‘ . II‘ I I"

Ex. 2013

Page 7 of 145

!8

Ex. 2013
Page 8 of 145

(l2) United States Patent

Fallon et al.

U 500500093632

Hm Patent No;

r45) Date of Patent:

US 8.090.936 82

*Jan. 3. 2012

I133.)

161))

(5|)

lJI
J- ’l:H

lib)

SYS'I‘EMS AND METHODS FOR 1.491169” ‘1 I Wm RFD“ 1“ 3'
ACCELERATEDLOADINGOFOPERA'HXG 41121753 A 5 I‘m “mama

swnus \‘VD wm icmm PROGR-Wls‘ ““33”? " “ "’77 Wm‘ ' ‘ ‘ ‘ ‘ ‘ ' ‘ ‘ *1.0:-1.')3l A IU 19"? Janka-natal.

Inventors" James .I. Fallon Armonk. NY (US); “7’75” A '1 ””3 (‘g‘yvl “1
.lnltn Buck. Oceanside. NY (List. Paul 4'10”“ " H “’8’ “'dc'lm” ‘1 "‘
I". l’ickel. Bctltpagc. NY tUSt. Stephen (C'onlimlfii)

.l. McI-Lrlain. NewYurlx. NY (US) , ‘ ‘ I ’ . ‘ ..,
Amignue; Reultime Dina. l.It(T. Amtttnk. NY (US) H’kLK’N IAILNI m} “MIN l b
Noricc Subject to any dsclaimcr. the term nt'tltis m " ”75“ 3 "”3

patent is extaided or adjusted under ‘5 ((‘nnttnttctlt
U S.('. ISM?» b} 286 days

. (Y1 Hl'K l‘i tl‘ll l('.'\l'||’)NS
Hus patient 1.» Subtm lv u tcmttttul div
cluimcr Millmttn llnwnnt "Image and t ulcu compruxsinn".(ummtcmvnrltl.

\nl 1“. 15‘"an \, Inn IR, l'l'7‘) pp 7)}
_«\ppl. Nu.: Il/55l.204

(Continued)
Filt‘d‘ Oct. I9‘ 2006

I’rmmn‘ lit'umr'nw - Sumsh K Sitiyuwanshi
l’rlctr Puhllcutittn Data ('74) ,-umrm=t; 1:2an or I-Trm §tcmct Kc<<lcr, (iolcktcin

us 2017,!008374t-Al .w t:. 2007 8“ "*‘X I" ~' -C~

Rt-lated [1.5. .\ppl|t'atlttn llama ‘57) "Uh l K“ I

(luttiuualiuu 01‘ application NU 09,770‘2h1 filed “u Syslcnu and methods. are discltmcd Int pint tdmg uccelcrntml
H112. 2001. mm, Put. Nu 7.181.608. luudtugttt upcnittttg symctnatttd:tppltuntiun pmgmttts. Intuit:

_ > . aspect, a method 1hr prnvidtng :tccclcmtcd loading Ilr nn
l‘rm h‘ltmui application No. ntttlSO. l 1-1. 11ch! on I ah. “penning gyglcn) C(tntprisex the “cpsnff maintaining it 1mm"
1 2000 bmt data; [tn-loading the boot data upon initialization ot llic

. computer system: and scmcing rcqucsts for boot data t'mm
lnt.(I‘ the computer svstcm usim the preloaded boot data. In a
((06,: 9/00 (20"01’” preferred entbt'vdiment. the 17001 data is retrieved from a boot
((06,: W3" ‘2("'"_‘“”" device and stated in a nigh: mcuwr} device. In another
('06P ”/2” (2thth1) aspect. :1 method for accelerated loading of an operating
”'5' (‘l- ------------------------------- 7130-- 7l3'l- 7' 1"] '3 systum wntpriscs updating, the list 01‘ bout data durtng tltc
Fk'lll of('Iusulllcullun S'L-urvh , , . 713 '3 huul pmcg—gs. “hen-In updating, u‘rt‘npt‘iam; uddius tn the hut
3"“ “Pl‘lim‘lmn lilo fl" C‘““Fl‘-‘W “"1”“ 1‘15“"?- utly hunt data roqumtcd b} the cmuputcr system nut previ-

ULlai)‘ SlUl’L’d ll] 11): list .mdmr rcutm‘ing from [I]: list an) bowl
Reference» (Tiled dutu previuucdy tilfim‘d ut the list and um [\hluflztlgd by the

7 ‘ , ‘ cuittputcr system.
Il§.l’\H-N11)(XIY\1FNI‘S

,t 3‘}: 1‘31; :\ : 19ml" \Vctnttotl ct al. 24 t Iaints. Lt Drawtng Sheets

1.9.7.;_______..__ t

i 23 13»; .

i D1 ata .

' Comptession K Cache A | ‘0le
; Englne " n e ace

’ / x

: 11 . 1
3 t 'x/ 15 \ .2 \x
z < Busitnter-‘arce /
. _ __ -. - ,v- -

eeeeett / \

<., _M_att_1_Or_Expansion Computer Bus \/\1

APPLE 1001

Ex. 2013

Page 8 of 145

!9

Ex. 2013
Page 9 of 145

US 8,090,936 B2

27
such changes and modifications are intended to be included
within the scope of the invention as defined by the appended
claims.

What is claimed is:

l. A method comprising:
maintaining a list ofboot data used for booting a computer

system, wherein at least a portion of said boot data is
compressed by a data compression engine to provide
said at least a portion of said boot data in compressed
form, and stored in compressed form on a boot device;

initializing a central processing unit of said computer sys-
tem;

preloading said at lea st a portion of said boot data in corn-
pressed form from said boot device to a memory;

accessing and decompressing said at least a portion ofsaid
boot data in said compressed form from said memory;
and

utilizing said decompressed at least a portion of said boot
data to boot said computer system, wherein said at least
a portion of said boot data is decompressed by said data
compression engine.

2. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an operating system ofsaid computer system.

3. The method of claim 1; wherein said decompressed at
least a portion of said boot data comprises program code
associated with an application program of said computer
system.

4. The method of claim 1; wherein said decompressed at
least a portion of said boot data comprises program code
associated with an application program and an operating sys-
tem of said computer system.

5. The method of claim 1, wherein said preloading is per-
formed by a data storage controller connected to said boot
device.

6. The method ofclaim 1, further comprising updating the
list of boot data.

7. The method of claim 1; wherein Huffman encoding is
utilized to provide said at least a portion of said boot data in
said compressed form.

8. The method ofclaim 1, wherein Lempel-Ziv encoding is
utilized to provide said at least a portion of said boot data in
said compressed form.

9. The method of claim 1, wherein a plurality of encoders
are utilized to provide said at least a portion of compressed
data in compressed form.

10. The method ofclaim I, wherein a plurality ofencoders
in a parallel configuration are utilized to provide said at least
a portion of said data in compressed fonn.

l l. A system comprising:
a processor;
a memory; and
a non—volatile memory device for storing logic code asso-

ciated with the processor, wherein said logic code com-
prises instructions executable by the processor for main-
taining a list of boot data used for booting the host
system, at least a portion of said boot data is stored in
compressed form in said non—volatile memory device,
said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is
decompressed and utilized to boot said computer sys-
tem; 2md

10

15

20

25

40

45

i0

55

60

48

28
a data compression engine for providing said at least a

portion of said boot data in compressed form by com-
pressing said at least a portion of said boot data and
decompressing said at least a portion ofsaidboot data in
compressed form to provide said decompressed at least
a portion of boot data.

12. The system ofclaim 11. wherein said logic code further
comprises program instructions executable by said processor
for maintaining a list of application data associated with an
application program,

13. The system ofclaim 11, wherein said logic code further
comprises program instructions executable by said processor
for maintaining a list of application data associated with an
application program, and wherein said application data is
preloaded upon launching the application program and uti—
lized by said computer system.

14. The system of claim 11, wherein Huffman encoding is
utilized to provide said at least a portion of said boot data in
compressed form.

15. The system ofclaim 11, wherein Lempel—Ziv encoding
is utilized to provide said at least a portion of said boot data in
compressed form.

1 6. The system ofclaim 11; wherein a plurality ofencoders
are utilized to provide said at least a portion of said boot data
in compressed form.

17. The system ofclaim 11; wherein a plurality ofencoders
in a parallel configuration are utilized to provide said at least
a portion of said boot data in compressed form.

18. A method ofpreloading an operating system for boot-
ing a computer system comprising:

storing substantially all of the operating system in com-
pressed form on a boot device;

prcloading a first portion of the substantially all of the
operating system from said boot device to a memory;

accessing and decompressing the first portion from the
memory using a data compression engine;

utilizing the decompressed first portion to partially boot
said computer system;

responsive to a request, locating a second portion of the
substantially all of the operating system using a boot
data list and prcloading the second portion from the boot
device to the memory;

accessing and decompressing the second portion from the
memory using the data compression engine; and

utilizing the decompressed second portion to further par-
tially boot said computer system.

19. The method of claim 18, wherein the preloading is
performed by a data storage controller connected to the boot
device.

20. The method of claim 18; further comprising updating
the boot data list.

21. The method ofclaim 18, wherein Huffman encoding is
utilized to obtain the substantially all of the operating system
in compressed form.

22. The method ofclaim 18, wherein Lempel-Ziv encoding
is utilized to obtain the substantially all of the operating
system in compressed form.

23. The method of claim 18, wherein a plurality of encod—
ers are utilized to obtain the substantially all of the operating
system in compressed form.

24. The method of claim 18. wherein a plurality of encod—
ers in a parallel configuration are utilized to obtain the sub—
stantially all of the operating system in compressed form.

* * 5‘ * *

Ex. 2013

Page 9 of 145

!10

Ex. 2013
Page 10 of 145

111 El parallel CODllgUI'ElIIOD are Ullllze! l0 prov1!e $31! 8' leasl
:ngc3321 03;: a portion of said boot data in compressed form.

13 18. A method of preloading an operating system for boot-
in acom uters stem com risin :

ompressed at 30 g p y p g
storing substantially all of the operating system in com-

rogram code
pressed form on a boot device;

preloading a first portion of the substantially all of the
operating system from said boot device to a memory;

accessing and decompressing the first portion from the

memory using a data compression engine;

utilizing the decompressed first portion to partially boot

said computer system;

responsive to a request; locating a second portion of the

substantially all of the operating system using a boot

data list and preloading the second portion from the boot

device to the memory;

accessing and decompressing the second portion from the

memory using the data compression engine; and

utilizing the decompressed second portion to further par-

tially boot said computer system.

19. The method of claim 18; wherein the preloading is

.perating sys-

)ading is per-
,to said boot 35

; updating the

1 encoding is
lboot data in 40

v encoding is
1 boot data in

y of encoders 45

F compressed

Ex. 2013

Page 10 of 145

!11

Ex. 2013
Page 11 of 145

US. Patent Feb. 20. 2007 Sheet 8 of 13 US 7.l8|.608 Bz

BOOT PROCESS

COMPLETE

?

 YES

STORE LIST

FIG. 7a

H

Ex. 2013

Page 11 of 145

!12

Ex. 2013
Page 12 of 145

U.S. Patent Feb. 20, 2007 Shaw 9 or I3 US 7.181.608 B:

A
75

POWER-UP

0R SYSTEM

RESET
YES

76

77 RETRIEVE 8. READ LIST

PREFETCH DATA BLOCKS

8 SPECIFIED IN LIST

COMMENCE BOOT PROCESS

RECEIVE READ REQUEST

FOR BOOT DATA

7

79

REQUESTED
BOOT DATA

PRELOADED
l’

SERVICE REQUEST USING

PRELOADED BOOT DATA

- 84

N0

RETRIEVE REQUESTED BOOT

DATA FROM BOOT DEVICE

3 ouame BOOT
9

UPDATE LIST TO INCLUDE “03555
BOOT DATA NOT PREVIOUSLY

SPECIFIED IN LIST

UPDATE LIST TO EXCLUDE

BOOT DATA NOT PREVIOUSLY
SPECIFIED IN LIST

FIG. 7b

12

Ex. 2013

Page 12 of 145

!13

Ex. 2013
Page 13 of 145

‘ 'Ihen. u m each subs uent ower-mL/reset ('aflinnativeA
75 result in meg 75 L the data storage controller would retrieve

an reza t to stored list (step 76) and pureed to preload the

POWERUP NO bout data specified un the ltsl tie. the data associated with
OR SYSTEM the expected .(lalit requests) mtn the unhnard cache memory

(step 77). ll 15 IU be understood that the depending uu the

RESET rcsouu‘es of the given system (eg. memmy. etc). the
7 preloadiug process may be emltpleted prior to cmnmence-

76
ment of the boot pmcess. or mntinued after the boot process

beginzs (in which case booting and pneloading are performed
YES

77 RETRIEVE & READ UST simultaneously).
\

PREFETCH DATA BLOCKS

78 SPECIFIED |N LIST

COMMENCE BOOT PROCESS

79

RECEIVE READ REQUEST

FOR BOOT DATA -

!14

Ex. 2013
Page 14 of 145

A ‘ 'Ihen. upon each subsequent pcvwer—ou/reset ('aflinnative
75 result in step 75). the data storage controller would retrieve

and read the stored list tstL 76) and pn'tcccd to preload the

POWER’UP NO bout data specified un the list tie. the data associated with
on SYSTEM the expected .(L'Jlit requests) into the onhnard cache memory

(step 77). It 15 IL) be uuderaluud that the oJcpeudtug~ mt the

RESET rcsoumcs of the given system (eg. mcmmy. etc). the
7 preloadiug process may be cmttpleted prior to commence-

76
ment of the boot pmcess. or mntinued after the boot process

bcgims (in which case booting and pneloading are performed
YES

77 RETRIEVE & READ UST simuItanemtst).
\

PREFETCH DATA BLOCKS

78 SPECIFIED IN LIST

COMMENCE BOOT PROCESS

79

RECEIVE READ REQUEST

FOR BOOT DATA -

!15

Ex. 2013
Page 15 of 145

A ‘ 'Ihen. upon each subsequent pcvwer—ou/reset ('aflinnative
75 result in step 75). the data storage (:mttroflcr would retrieve

and read the stored list tstcp 76) and proceed to preload thc

POWER‘UP N0 bout data 5 Cthed an the 1151 tt.c.. the data associated Wllh
OR SYSTEM the ex ’cted .datzt rt. nests) into the onhnard cache memorv

gala-p 77). ll 15 IL) be uudcraluud tlmt tlw oJcpcudtug~ mt the
RESET rcsoumcs of the given system (cg. mcmmy. etc). the

7 preloudiug process may be cmttpleted prior to commence-
76

ment of the boot pmcess. or mntinued after the boot process

bcgims (in which case boating and pneloading are performed
YES

77 RETRIEVE & READ UST simultaneously).
\

PREFETCH DATA BLOCKS

78 SPECIFIED IN LIST

COMMENCE BOOT PROCESS

79

RECEIVE READ REQUEST

FOR BOOT DATA -

!16

Ex. 2013
Page 16 of 145

A -

75

POWERUP NO
OR SYSTEM

RESET

7
76

YES

RETRIEVE & READ LIST

7?

PREFETCH DATA BLOCKS

78 SPECIFIED lN LIST

COMMENCE BOOT PROCESS
79

RECEIVE READ REQUEST

FOR 3007 DATA -

When the boot pmcess begins t. step 78) tie. the storage

controller is initialized and the system bus reset is deas-

sertedt. the data storage mntmller will receive requests fur

boot data (step 79). If the host computer issues a request for

boot dutu that is pro-loaded in the local memory of the data

storage controller (alfirmative result in step 80). the request

is immediately serviced using the preloaded hoot dutu (step

8|). ll'the host computer issues a request for boot data that

is not preloaded in the local memory of the data storage.

controller (negative detennination in step 80). the controller

!17

Ex. 2013
Page 17 of 145

“ When the boot process bquns I step 78) l_1.e.. the stomgc

77 RETRIEVE 81 READ LIST controller is initialized and the system bus reset is deris-
\ serted). the dam grunge container will receive requests for

boot data (step 79). II' the llnst computer issues a guest lbr
boot data that is re-Iuadcd in the Inca] memurv of the data

PREFETCH DATA BLOTCKS Storage controller galfirmative result in step 80]. the re_q next
78 SPECIFIED IN LIS i3 immediutcl“ acn’iecd usiu the reloaded boot data file.

ALL. Il'thc lmst computer issues a rmuest for bout data that

is not preloaded in the local memory of the data storage

COMMENCE BOOT PROCESS controller (negative detenninatinn in step 80). the controller
79

RECEIVE READ REQUEST

FOR BOOT DATA

SERVICE REQUEST USING

PRELOADED BOOT DATA

//"‘

!18

Ex. 2013
Page 18 of 145

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

APPLE INC .,

Petitioner,

V .

REALTIME DATA LLC,

Patent Owner.

Case lPR2016-01365

Patent 7,181,608

PETITIONER’S REPLY TO PATENT OWNER’S RESPONSE
Ex. 2013

Page 18 of 145

!19

Ex. 2013
Page 19 of 145

Proceeding No.2 [PR2016-01365

Attomey Docket: 39521-0023lPl

anticipation” of anything, let alone “immediate or near-in-time use.” Because the

”608 Patent does not even use these terms to describe preloading, it would be

improper to import them into the term preloading under BRl.

2) Realtime’s Preloading Construction is Inconsistent with

Examples of Preloading in the ’608 Patent

Contrary to BRI, Realtime’s construction improperly excludes examples of

preloading in the ’608 Patent. POR, 3-7, 12-16, 16-26. Specifically, the claims

require preloading boot data prior to completion of initialization of the central

processing unit. The ’608 Patent describes several examples where preloading

occurs prior to completion of initialization because the preloading occurs prior to

system reset or boot. In these examples, the ’608 Patent simply states that preloading

occurs prior to system reset or boot; it does not qualify how far in advance of reset

or boot the preloading occurs. Thus, these examples align with the claim language,

but are not limited to preloading “in anticipation of immediate or near-in-time use,”

as advocated by Realtime.

For example, the ”608 Patent explains that “prior to host system reset, the data

storage controller can proceed to pre-Ioad the portions of the computer operating

system from the boot device (e.g., hard disk) into the on-board cache memory.”

”608, 21:45-65. In this example, “[s]ince the same portions ofthe operating system

must be loaded upon each boot process, it is advantageous for the boot device

Ex. 2013

Page 19 of 145

!20!20

Ex. 2013
Page 20 of 145

occurs prior to completion of initialization because the preloading occurs prior to

system reset or boot. In these examples, the ’608 Patent simply states that preloading

occurs prior to system reset or boot; it does not qualify how far in advance of reset

or boot the preloading occurs. Thus, these examples align with the claim language,

but are not limited to preloading “in anticipation of immediate or near-in-time use,”

as advocated by Realtime.

For example, the ’608 Patent explains that “prior to host system reset, the data

storage controller can proceed to pre-load the portions of the computer operating
system from the boot device (e.g., hard disk) into the on-board cache memory.”

’608, 2] :45-65. In this example, “[s]ince the same portions ofthe operating system

must be loaded upon each boot process, it is advantageous for the boot device

Ex. 2013

Page 20 of 145

!21

Ex. 2013
Page 21 of 145

US 7,181,608 B2

21

If orily the PCI Bus and DSP require SDRAM:

PCI Bus Interface t'A+B)/K
DSP Accesses (A+B)/K

If only the DSP and Disk require SDRAM:

DSP Accesses ZA/K
UlLraDMA Drsk Interface ZB/K

If only the PCI Bus and Disk require SDRAM:

PCI Bus Interface ZA/K
UltraDMA Drsk Interface 2B/K

It should be noted that the resultant ratios may all be scaled
by a constant in order to most effectively utilize the band-
widths of the internal busses and external interfaces. In

addition each ratio can be scale by an adjustment factor
based upon the time required to complete individual cycles.
For example if PCI Bus interface takes 20% longer than all
other cycles, the PCI time slice should be adjusted longer
accordingly.

V. Instant Boot Device for Operating System, Application
Program and Loading

Typically. with conventional boot device controllers, after
reset, the boot device controller will wait for a command
over the computer bus (such as PCI). Since the boot device
controller will typically be reset prior to bus reset and before
the computer bus starts sending commands, this wait period
is unproductive time. The initial bus commands inevitably
instruct the boot device controller to retrieve data from the

boot device (such as a disk) for the operating system. Since
most boot devices are relatively slow compared to the speed
of most computer busses, a long delay is seen by the
computer user. This is evident in the time it takes for a
typical computer to boot.

It is to be appreciated that a data storage controller
(having an architecture as described herein) may employ a
technique of data preloading to decrease the computer
system boot time. Upon host system power-up or reset, the
data storage controller will perform a self—diagnostic and
program the progranmrable logic device (as discussed
above) prior to completion ofthe host system reset (e.g., PCI
bus reset) so that the logic device can accept PCI Bus
commands after system reset. Further, prior to host system
reset, the data storage controller can proceed to pre-load the
portions of the computer operating system from the boot
device (eg, hard disk) into the on—board cache memory. The
data storage controller preloads the needed sectors of data in
the order in which they will be needed. Since the same
portions of the operating system must be loaded upon each
boot process, it is advantageous for the boot device control—
ler to preload such portions and not wait until it is com-
manded to load the operating system. Preferably, the data
storage controller employs a dedicated IO channel of the
DSP (with or without data compression) to pre-load com-
puter operating systems and applications.

Once the data is preloaded, when the computer system bus
issues its first read commands to the data storage controller

10

15

25

30

35

40

45

50

55

(:0

65

22

seeking operating system data, the data will already be
available in the cache memory of the data storage controller.
The data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be decompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at star‘tup. An example of this
would be a frequently used application such as a word
processor and any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 7b) that may be employed comprises an
automatic process that requires no input from the user. With
this technique. the data storage controller maintain a list
comprising the data associated with the first series of data
requests received by the data storage controller by the host
system after a power-on’reset. In particular, referring to FIG.
7a, during the computer boot process, the data storage
controller will receive requests for the boot data (step 70). In
response, the data storage controller will retrieve the
requested boot data from the boot device (e.g., hard disk) in
the local cache memory (step 71). For each requested data
block, the data storage controller will record the requested
data block number in a list (step 72). The data storage
controller will record the data block number of each data

block requested by the host computer during the boot
process (repeat steps 70772). When the boot process is
complete (affirmative determination in step 73), the data
storage controller will store the data list on the boot device
(or other storage device) (step 74).

Then, upon each subsequent power-on/reset (affirmative
result in step 75:), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated with
the expected data requests) into the onboard cache memory
(step 77). It is to be understood that the depending 011 the
resources of the given system (e.g., memory, etc.), the
preloading process may be completed prior to commence-
ment of the boot process, or continued after the boot process
begins (in which case booting and preloading are performed
simultaneously).

“When the boot process begins (step 78) (i.e., the storage
controller is initialized and the system bus reset is deas-
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre—loaded in the local memory of the data
storage controller (aflirmative result in step 80), the request
is immediately serviced using the preloaded boot data (step
81:). If the host computer issues a request for boot data that
is not preloaded in the local memory of the data storage
controller (negative determination in step 80), the controller
will retrieve the requested data from the boot device, store
the data in the local memory, and then deliver the requested
boot data to the computer bus (step 82). In addition, the data
storage controller would update the boot data list by record—
ing any changes in the actual data requests as compared to
the expected data requests already stored in the list (step 83).
Then. upon the next boot sequence, the boot device con-

27

Ex. 2013

Page 21 of 145

!22

Ex. 2013
Page 22 of 145

It 1s to !e apprec1ate! t!at a !ata storage controller 45 (ste
(having an architecture as described herein) may employ a res:

technique of data preloading to decrease the computer pre

system boot time. Upon host system power-up or reset, the me;
data storage controller will perform a self-diagnostic and beg
program the programmable logic device (as discussed 50 sim

above) prior to completion ofthe host system reset (e.g., PCI ‘5.

bus reset! so that the logic device can accept PCI Bus con
commands after system reset. Further, prior to host system serl
reset, the data storage controller can proceed to pre-load the boc

portions of the computer operating system from the boot 55 boc

device ge.g., hard disk ! into the on-board cache memor_y. The stoJ
data storage controller preloads the needed sectors of data in is i;

the order in which they will be needed. Since the same 31)
portions of the operating system must be loaded upon each is 1

boot process, it is advantageous for the boot device control- 50 con

Ex. 2013

Page 22 of 145

!23

Ex. 2013
Page 23 of 145

storage controller employs a dedicated 10 channel of the b

DSP (with or without data compression) to pre-load com- s1

puter operating systems and applications. 55 i1

Once the data is preloaded, when the computer system bus tl

issues its first read commands to the data storage controller T

22

seeking operating system data, the data will already be
available in the cache memory of the data storage controller.

The data storage controller will then be able to instantly start

transmitting the data to the system bus. Before transmission

5 to the bus, if the data was stored in compressed format on the

boot device, the data will be decompressed. The process of

preloading required (compressed) portions of the operating

system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data

Ex. 2013

Page 23 of 145

!24

Ex. 2013
Page 24 of 145

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

APPLE INC .,

Petitioner,

V .

REALTIME DATA LLC,

Patent Owner.

Case lPR2016-01365

Patent 7,181,608

PETITIONER’S REPLY TO PATENT OWNER’S RESPONSE
Ex. 2013

Page 24 of 145

!25

Ex. 2013
Page 25 of 145

Proceeding No.: lPR2016-01365

Attomey Docket: 39521-00231P1

controller to preload such portions and not wait until it is commanded to load the

operating system.” 1d.

This example makes explicit that, contrary to Realtime’s arguments,

preloading occurs “prior to host system reset” (i.e., prior to boot'). Indeed, the ’608

Patent deems such an approach “advantageous.” ’608, 21:45-65.

The ’608 Patent provides further confirmation that preloading may occur prior

to a subsequent boot process through discussion of two alternative examples. In a

first example, preloading is completed prior to boot and, in a second, altemative

example, booting and preloading are performed simultaneously. ’608, 22:20-50.

Specifically, the ’608 Patent explains that:

It is to be understood that the depending on the resources of the given

system (e.g., memory, etc.), the preloading process may be completed

prior to commencement ofthe bootprocess, or continued after the boot

process begins (in which case booting and preloading are performed

simultaneously).

‘608, 22:40-50.

This passage demonstrates that, in a system equipped with appropriate

resources (e.g., non-volatile cache memory), preloading in the ”608 Patent is

' The ”608 Patent explains, at 11:26—30, that “the boot process begins when the

CPU of the host system is released from external reset”

Ex. 2013

Page 25 of 145

!26!26

Ex. 2013
Page 26 of 145

to a subsequent boot process through discussion oftwo alternative examples. In a

first example. preloading is completed prior to boot and. in a second. altemative

example. booting and preloading are performed simultanet‘msly. ”608. 22:20-50.

Specifically. the ”608 Patent explains that:

It is to be understood that the depending on the resources 0 l‘ the given

system (e.g.. memory, etc.). the prelomling process may be completed

prior to conzmencemem 0f the boatprocess. or continued a her the boot

process begins (in which case booting and preloading are performed

simultaneousb).

‘608, 22:40-50.

This passage demonstrates that. in a system equipped with appropriate

resources (e 1.. non-volatile cache memory), preloading in the ”608 Patent iso
b'

Ex. 2013

Page 26 of 145

!27

Ex. 2013
Page 27 of 145

US 7,181,608 32

21

If only the PCI Bus and DSP require SDRAM:

PCI Bus Interface (A+B)/K
DSP Accesses (A+B)/K

If only the DSP and Disk require SDRAM:

DSP Accesses ZA/K
UanDMA Disk Interface ZB/K

If only the PCI Bus and Disk require SDRAM:

PCI Bus Interface ZA/K
UltraDMA Disk Interface ZB/K

It should be noted that the resultant ratios may all be scaled
by a constant in order to most effectively utilize the band-
widths of the internal busses and external interfaces. In

addition each ratio can be scale by an adjustment factor
based upon the time required to complete individual cycles.
For example if PCI Bus interface takes 20% longer than all
other cycles, the PCI time slice should be adjusted longer
accordingly.

V Instant Boot Device for Operating System, Application
Program and Loading

Typically, with conventional boot device controllers, after
reset, the boot device controller will wait for a command
over the computer bus (such as PCI). Since the boot device
controller will typically be reset prior to bus reset and before
the computer bus starts sending commands, this wait period
is unproductive time. The initial bus commands inevitably
instruct the boot device controller to retrieve data from the

boot device (such as a disk) for the operating system. Since
most boot devices are relatively slow compared to the speed
of most computer busses, a long delay is seen by the
computer user. This is evident in the time it takes for a
typical computer to boot.

It is to be appreciated that a data storage controller
(having an architecture as described herein) may employ a
technique of data preloading to decrease the computer
system boot time. Upon host system power-up or reset. the
data storage controller will perform a self-diagnostic and
program the programmable logic device (as discussed
above) prior to completion ofthe host system reset (e.g.. PCI
bus reset) so that the logic device can accept PCI Bus
commands after system reset. Further, prior to host system
reset. the data storage controller can proceed to pre-load the
portions of the computer operating system from the boot
device (e.g., hard disk) into the on-board cache memory. The
data storage controller preloads the needed sectors of data in
the order in which they will be needed. Since the same
portions of the operating system must be loaded upon each
boot process, it is advantageous for the boot device control-
ler to preload such portions and not wait until it is com-
manded to load the operating system. Preferably, the data
storage controller employs a dedicated IO charmel of the
DSP (with or without data compression) to pre—load com—
puter operating systems and applications.

Once the data is preloaded, when the computer system bus
issues its first read commands to the data storage controller

10

15

20

30

35

40

45

5 0

55

60

65

22

seeking operating system data, the data will already be
available in the cache memory ofthe data storage controller.
The data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the data was stored in compressed format on the
boot device, the data will be deeompressed. The process of
preloading required (compressed) portions of the operating
system significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this
would be a frequently used application such as a word
processor and any number of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 71)) that may be employed comprises an
automatic process that requires no input from the user. With
this technique, the data storage controller maintain a list
comprising the data associated with the first series of data
requests received by the data storage controller by the host
system after a power-on/reset. In particular. referring to FIG.
7a, during the computer boot process, the data storage
controller will receive requests for the boot data (step 70). In
response, the data storage controller will retrieve the
requested boot data from the boot device (e.g., hard disk) in
he local cache memory (step 71). For each requested data
lock, the data storage controller will record the requested

data block number in a list (step 72). The data storage
controller will record the data block number of each data

lock requested by the host computer during the boot
process (repeat steps 70772). When the boot process is
complete (affirmative determination in step 73), the data
storage controller will store the data list on the boot device
or other storage device) (step 74).

Then, upon each subsequent power-on/reset (aflirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
noot data specified on the list (i.e., the data associated with
he expected data requests) into the onboard cache memory
step 77). It is to be understood that the depending on the

resources of the given system (e.g., memory, etc), the
preloading process may be completed prior to commence-
ment ofthe boot process, or continued after the boot process
vegins (in which case bootng and preloading are performed
simultaneously).

When the boot process begins (step 78) (i.e., the storage
controller is initialized and the system bus reset is deas-
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre—loaded in the local memory of the data
storage controller (affirmative result in step 80), the request
is immediately serviced using the preloaded boot data (step
81). If the host computer issues a request for boot data that
is not preloaded in the local memory of the data storage
controller (negative determination in step 80), the controller
will retrieve the requested data from the boot device, store
the data in the local memory. and then deliver the requested
boot data to the computer bus (step 82). In addition, the data
storage controller would update the boot data list by record-
ing any changes in the actual data requests as compared to
the expected data requests already stored in the list (step 83).
Then. upon the next boot sequence. the boot device eon-

Ex. 2013

Page 27 of 145

!28

Ex. 2013
Page 28 of 145

13 (or other storage device) (step 74).

:3 40 Then, upon each subsequent power-on/reset (affirmative

id result in step 75 g, the data storage controller would retrieve
1‘3 and read the stored list t step 76 g and proceed to preload the
a boot data specified on the list (i.e.,, the data associated with

the expected data requests) into the onboard cache memory

31' 45 (step 77). It is to be understood that the depending on the

3 resources of the given system geg.2 memopyz etc.)2 the
31‘ preloading process may be completed prior to commence-

1e ment of the boot process, or continued after the boot process
ld begins (in which case booting and preloading are performed

3d 50 simultaneously).
:1 When the boot process begins (step 78) (i.e., the storage

IS controller is initialized and the system bus reset is deas-

ffl serted), the data storage controller will receive requests for

16 boot data (step 79). If the host computer issues a request for

Ex. 2013

Page 28 of 145

!29

Ex. 2013
Page 29 of 145

, ' Application No. Applicantls)

- 09/776,267 FALLON ET AL

Office Action Summary amine, A" Uni,

Smash Kr Survmnshi --
-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address ~

Period tor Reply

A SHORTENED STATUTORY PERIOD FOR REPLY lS SET TO EXPIRE g MONTH(S) FROM
THE MAILING DATE OF THIS COMMUNICATION.

Eldenslons chime may be available under tile pawl-ions pl 3’ CFR 1.138“) in no event, however. my I reply be timely filed
liter 51X (5) MONTHS [tom the Militia date at this communication.

, l the print tor rlply specified noon in less than lhirty (30) days, I reply within the statutory minimum d may (30) day: will be considered timely
I No period tor reply is spedt'led above. the “film." statutory period will apply and will upire 511(6) MONTHS from the main dale owl): communication

- Fill." to reply within It- not or extended period tor reply will, by stall“. cause Illa application to become ABANDONED (35 U S C. 9 133)
Any reply received by In Office Ill-r men Wu mom after the mailing am of this communication. even i timely filed, may reduce any
corned pet-n1 term “Went See 37 CFR 1.70101)

Status

OE Responsive to communication(s) filed on 02 May 2005.

23“] This action is FINAL. 2mg This action is non-final.

3)): Since this application is in condition for allowance except for formal matters. prosecution as to the merits is

closed in accordance with the practice under Ex parte Quayle, 1935 CD, 11. 453 0.6. 213.

Disposition of Claims

MIX] Claim(s) 1 2 +7 9 1o 12 13,15 and 17 is/are pending In the application.

43) Of the above daimts) is/are withdrawn from consideration,

5)U Claim(s) islare allowed.

em Claim(s) 1,2 432,9,10 1; 13,15 and Wis/are rejected.

7)l:] Claim(s) Islare objected to.

8)l:] Claim(s) are subject to restriction and/or election requirement

Application Papers

9)Cl The specification is objected to by the Examiner.

10m The drawing(s) filed on 02 thzglagy 2001 is/are: ail] accepted or DMZ objected to by the Examiner.
Applicanl may not request that any objection to the drawingts) be held in abeyance. See 37 CFR 185(a).

Replacement drawmg sheel(s) including the correction is required if the drawing(5) is objected to. See 37 CFR 1 121(d)

1 0D The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12)D Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a)[j All b)i:] Some ' CD None of:

1C] Certified copies of the priority documents have been received.

2.1:] certit‘ied copies of the priority documents have been received in Application No. _.

3C] Copies of the certified copies of the priority documents have been received in this National Stage
application from the International Bureau (PCT Rule 17.2(a)).

‘ See the attached detailed Office action for a list of the certified copies not received.

Attochrnonlis)

1) E Notice of Reierences Cited (PTO-892) d) D lntuvlew Summary(PTO-413)
2) [3 Notice of Dransperson's Palent Drawlnp Review (PTO-948) Pave? N°(SVMI|| DIM _-
3) E] information Dlsclosurl Slat-month) (PTO-1449 or 970133103) 5) D Notice 0' Informal Patent Application (PTO! 52)

Paper No(s)lMell Data . 6) C] Other. .
U.S Potent W "Idem-d1 om

PTOL326 (Rev. 1-06) Oflice Action Summary Pm a! Pma NoJMdl Date 3 M

14 7

Ex. 2013

Page 29 of 145

!30

Ex. 2013
Page 30 of 145

Application/Control Number; 09/776,267 Page 3
Art Unit: 2] l5

Claim Rejections - 35 USC § I03

4 The following is a quotation of 35 USC. 103(3) which fonm the basis for all

obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the inventton is not identically disclosed or described as set forth in
section It): ot'this title. if the differences between the subject matter sought to be patented and the prior art are
such that the subject matter as a whole would have been obvtous at the time the irwcntion was made to a person
having ordinary skill in the an to which sent subject malter pertains. Patentability shall not be negatived by the
manner in which the tnvcntion was made

5 Claims l-2, 4-7, 9-10, 12-13 and 15 are rejected under 35 USC. |03(a) as being

unpatentable over Krockcr et a! (US Patent no 6,073,232) in View of Esfahani et al (US Patent no

6,434,695 Bl)

6 As per claim I, Krocker el al teach

maintaining a list of boot data used for booting a computer system [col 2. lines 30-47.

col. 5. lines l-7', a prcfctch table containing a listing of the disk locations and length of data

records that were requested by the host computer in the immediately previous power-on/reqet],

preloading the boot data upon initialization of the computer system [col 2, lines 36-41,

col. 3. lines 30-39. col. 5, lines I7-21; data is preloaded into the RAM cache according to the

prefctch table]; and

semetng requests for boot data from the computer system using the preloaded boot data

[col 2. lines 4| —47; col 3, lines 30-39; data is communicated from the cache to the host

computer].

181

Ex. 2013

Page 30 of 145

!31

Ex. 2013
Page 31 of 145

5, Claims 1-2, 4-7, 9-10, 12-13 and 15 are rejected under 35 USC. I03(a) as being

unpatentable over Krocker et al (US Patent no 6,073,232) in view of Esfabani et al (US Patent no

6,434,695 Bl)

6. As per claim I, Krocker et a] teach

maintaining a list of boot data used for booting a computer system [co]. 2, lines 30-47.

col. 5. lines l-7', a prefetch table containing a listing of the disk locations and length of data

records that were requested by the host computer in the immediately previous power-on/reset],

preloading the boot data upon initialization of the computer system [col 2, lines 36-41,

col. 3. lines 30-39; col. 5, lines l7-21; data is greloaded into the RAM cache according to the

prefetch table], and

Ex. 2013

Page 31 of 145

!32

Ex. 2013
Page 32 of 145

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

APPLE. INC,

Petitioner

V .

REALTIME DATA LLC.

Patent Owner

Case [PR2016-01365

Patent 7,181,608

EXPERT DECLARATION OF DR. GODMAR BACK IN SUPPORT OF

THE PATENT OWN ER’S RESPONSE

Ex. 2003

Page 1 of 52

Ex. 2013

Page 32 of 145

!33

Ex. 2013
Page 33 of 145

boot device.24 And specification also explains that the data is preloaded from a

boot device into the onboard cache memory of an exemplary data storage

controller.25

5]. Based on the disclosures of the ’608 Patent, a POSITA would have

understood that this movement of data from storage into memory is performed in

anticipation of immediate or near-in-time use. Again, this is the manner in which

the ‘608 Patent uses “preloading.” For example, the ’608 Patent discloses that the

invention is designed to “provide[] accelerated loading of operating system and

application programs upon system boot or application launch.”26 To this end,

certain claims recite that boot or application data is preloaded to service requests

for that data.27 And in certain embodiments of the ”608 Patent, the specification

describes “preloading” as loading data because it will be needed, or is likely to be

needed, for use by the system.28

52. In addition, the ’608 Patent indicates that “preloading” is similar to

“prefetching,” which refers to the process of retrieving data before it is needed.

2“ Ex. 1001, ’608 Patent at 3:60-61.

25 Ex. 1001, ’608 Patent at 21:50-54, 22:4145.

2“ Ex. 1001, ”608 Patent at 1:15-21; see also ’608 Patent at Abs., 3:34-40.

27 Ex. 1001, ’608 Patent at claims 1, 7—9, 22, 27.

23 Ex. 1001, ”608 Patent at Abs., 21 :56-62, 22949, 23:13-38; Figs. 7b, 8b.

20

Ex. 2003

Page 23 of 52

Ex. 2013

Page 33 of 145

!34

Ex. 2013
Page 34 of 145

51. Based on the disclosures of the ’608 Patent, a POSITA would have

understood that this movement of data from storage into memory is performed in

anticipation of immediate or near-in-time use. Again, this is the manner in which

the ’608 Patent uses “preloading.” For example, the ’608 Patent discloses that the

invention is designed to “provide[] accelerated loading of operating system and

application programs upon system boot or application launch.”26 To this end,

certain claims recite that boot or application data is preloaded to service requests

for that data.27 And in certain embodiments of the ’608 Patent, the specification

describes “preloading” as loading data because it will be needed, or is likely to be

needed, for use by the system.28

52. In addition, the ’608 Patent indicates that “preloading” is similar to

“prefetching,” which refers to the process of retrieving data before it is needed.

Ex. 2013

Page 34 of 145

!35

Ex. 2013
Page 35 of 145

Specifically, in one embodiment, boot data is preloaded into the onboard cache

memory of an exemplary data storage controller in step 77 of Figure 7b.29 As

shown below, Figure 7b describes step 77 as “Prefetch Data Blocks Specified in

POM“
0R SYSTEM

REgET

Listsa,30

RECEIVE READ REQUEST

FOR BOOT DATA I

53. Figure 7b therefore indicates that “preloading” has a meaning similar

to “prefetching.” And “prefetching” refers to the process of retrieving data before it

29 Ex. 1001, ’608 Patent at 22:40-45; see also ’608 Patent at 22:20-39.

30 Ex. 1001, ’608 Patent at Fig. 7b.

2]

EX. 2003
Dana: 94 A! R?

Ex. 2013

Page 35 of 145

!36

Ex. 2013
Page 36 of 145

53. Figure 7b therefore indicates that “preloading” has a meaning similar

to “prefetching.” And “prefetching” refers to the process of retrieving data before it

is needed,“ which further supports my interpretation of how a POSITA would

have understood “preloading” at the time of invention.

54. This interpretation is also consistent with the file history of the ’608

Patent. For example, during prosecution, the Patent Examiner initially rejected the

3' Ex. 201 1, The Design and Implementation ofthe 4.4BSD Operating System at

535 (defining “prefetching” as “[t]he retrieval of data before they are needed.

Many machines prefetch machine instructions so they can overlap the time spent

fetching instructions from memory with the time spent decoding instructions”);

Ex. 2013

Page 36 of 145

!37

Ex. 2013
Page 37 of 145

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

APPLE INC .,

Petitioner,

V .

REALTIME DATA LLC,

Patent Owner.

Case lPR2016-01365

Patent 7,181,608

PETITIONER’S REPLY TO PATENT OWNER’S RESPONSE
Ex. 2013

Page 37 of 145

!38

Ex. 2013
Page 38 of 145

Proceeding N0.: lPR2016-01365

Attorney Docket: 39521-0023IP1

completed before a boot process commences. Indeed, and as the passage makes

clear by its alternative example, preloading during the boot process is only necessary

in systems lacking appropriate resources.

Along these lines, the ’608 Patent explains, and Dr. Back confirmsz, that the

cache memory device in which preloaded boot data is stored “may comprise. . .non-

volatile memory” in which data is persistently stored across boot cycles. ’608, 6:60-

63. Indeed, Dr. Back explained that, “if boot data were stored in the cache memory

and if a form of non-volatile memory were used, then this data stored in the cache

would be available after subsequent power on.” APPLE- 1017 42, 76. Dr. Back

added, “[t]hat’s what non-volatile means.” Id., 76.

By describing examples of preloading prior to boot, including examples of

preloading into non-volatile memory, the intrinsic record of the ’608 Patent runs

contrary to Realtime’s attempt to narrow the term preloading. lndeed, Realtime‘s

“preloading” construction is improper because it excludes examples within the ’608

Patent specification and is inconsistent with the testimony of Realtime’s own expert,

Dr. Back.

2 In his deposition on June 20, 2017, Dr. Back was asked whether the claimed cache

memory “could be either volatile or non-volatile,” and he concluded that yes, “it

could be either way.” APPLE-1017, 29-30.

Ex. 2013

Page 38 of 145

!39!39

Ex. 2013
Page 39 of 145

in systems lacking appropriate resources.

Along these lines, the ’608 Patent explains, and Dr. Back confirmsz, that the

cache memory device in which preloaded boot data is stored “may comprise. . .non-

volatile memorz” in which data is persistently stored across boot cycles. ’608, 6:60-

63. Indeed, Dr. Back explained that, “if boot data were stored in the cache memory

and if a form of non-volatile memory were used, then this data stored in the cache

would be available after subsequent power on.” APPLE-1017 42, 76. Dr. Back

added, “[t]hat’s what non-volatile means.” Id., 76.

By describing examples of preloading prior to boot, including examples of

preloading into non-volatile memory, the intrinsic record of the ’608 Patent runs

Ex. 2013

Page 39 of 145

!39!39

Ex. 2013
Page 40 of 145

d I I !' ,
“preloading” construction is improper because it excludes examples within the ’608

Patent specification and is inconsistent with the testimony ofRealtime’s own expert,

Dr. Back.

2 In his deposition on June 20, 2017, Dr. Back was asked whether the claimed cache

memory “could be either volatile or non-volatile,” and he concluded that yes, “it

could be either way.” APPLE- 1017, 29-30.

Ex. 2013

Page 40 of 145

!40

Ex. 2013
Page 41 of 145

O‘U‘l-DL-JNH
\l

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

GODNDMiBACK

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

APPLE, INC.,

Petitioners,

REALTIME DATA LLC,

Patent Owner.

Case IPR2016-01365

Patent 7,181,60882

APPLE, INC.,

Petitioners,

REALTIME DATA LLC,

Patent Owner.

Case IPR2016-01366

Patent 8,090,93682

VIDEOTAPED DEPOSITION OF DR. GODMAR BACK

11:18 a.m. to 2:28

Job No. 2634898

June 20, 2017

Blacksburg, Virg

REPORTED BY: Rhonda D. Tuck, RPR,

p.m.

inia

CRR

Page 1

VerflexthgalSolufions
866 299—5l27

1
ApMev.Redfime

Proceeding No. IPR2016-01365
APPLE1017

Ex. 2013

Page 41 of 145

!41

Ex. 2013
Page 42 of 145

 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

GODMARBACK

device in the context of the specification.

Q. In your opinion, can the Data Controller

10 which is shown in Figure 1 and described

elsewhere in the patent, can that function as

described in the '936 Patent if Cache 13 is a

nonvolatile memory?

MR. EDELL: Objection. Form.

THE WITNESS: I would say no. No. The

-- well, let me qualify this.

The —- most of the, if not all, of the

specification of both the '608 and the '936

Patents focus on how this particular controller

would operate if the cache memory is a volatile

memory. But if it weren't a volatile memory,

then the cache controller could -- would operate

in a way that actually does not benefit from the

nonvolatility of the memory.

BY MS. VIDAL:

Q. So nonvolatility of the memory would just

be an added feature?

MR. EDELL: Objection to form.

THE WITNESS: In this hypothetical setup

that you are proposing, the nonvolatility of the

memory would be superfluous, and it would not be

needed.

Page 27

Vcritcxt Legal Solutions
866 299—5127

27

Ex. 2013

Page 42 of 145

!42

Ex. 2013
Page 43 of 145

Q. In your Opinion, can the Data Controller

10 which is shown in Figure 1 and described

elsewhere in the patent, can that function as

described in the '936 Patent if Cache 13 is a

nonvolatile memory?

MR. EDELL: Objection. Form.

THE WITNESS: I would say no. No. The

—- well, let me qualify this.

2

3

4

5

6

7

8

9

0l The -- most of the, if not all, of the

H H specification of both the '608 and the '936

H N Patents focus on how this particular controller

H (A) would operate if the cache memory is a volatile

H .5 memory. But if it weren't a volatile memory,

l-" U1 then the cache controller could —— would operate

H 0‘ in a way that actually does not benefit from the

g...- \I nonvolatility of the memory.

Ex. 2013

Page 43 of 145

!42

Ex. 2013
Page 44 of 145

memory. But if it weren't a volatile memory,

then the cache controller could -— would operate

in a way that actually does not benefit from the

nonvolatility of the memory.

BY MS. VIDAL:

Q. So nonvolatility of the memory would just

be an added feature?

MR. EDELL: Objection to form.

THE WITNESS: In this hypothetical setup

that you are proposing, the nonvolatility of the

memory would be superfluous, and it would not be

needed.

Veritcxt Legal Solutions

866 299-5127

27

Ex. 2013

Page 44 of 145

!43

Ex. 2013
Page 45 of 145

GODMA R BACK

THE WITNESS: The earlier question, my

understanding is that you asked whether Disk 11

is an example of the boot device that is

referenced in Claim 1 of the '936 Patent.

BY MS. VIDAL:

Q. Correct. Would it be the same for the

'608?

A. Let us double check if the '608 refers to

the boot device.

Q. Thank you.

A. It does and, it would be the same.

Q. Thank you. In your opinion, can the

claimed cache memory of both the '608 and the '936

Patents be nonvolatile memory?

MR. EDELL: Objection to form.

THE WITNESS: The Cache Memory 13 in both

the '608 and the '936 Patent could be either

volatile or nonvolatile memory. As I explained,

if it were nonvolatile memory, there would not

be any benefit derived from the fact that it is

nonvolatile.

BY MS. VIDAL:

Q. And the same is true for the claimed

cache memory? That could be either volatile or

nonvolatile?

VcrnclecgalSOMHions

wwzw+5n7

29

Ex. 2013

Page 45 of 145

!44

Ex. 2013
Page 46 of 145

A. It does and, it would be the same.

Q. Thank you. In your opinion, can the

claimed cache memory of both the '608 and the '936

Patents be nonvolatile memory?

MR. EDELL: Objection to form.

THE WITNESS: The Cache Memory 13 in both

the '608 and the '936 Patent could be either

volatile or nonvolatile memory. As I exElained,

if it were nonvolatile memory, there would not

be any benefit derived from the fact that it is

nonvolatile.

BY MS . VIDAL:

Q. And the same is true for the claimed

Ex. 2013

Page 46 of 145

!45

Ex. 2013
Page 47 of 145

 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

GODNUU{BACK

MR. EDELL: Objection to form.

THE WITNESS: By "the claimed," you mean

the claimed cache memory in the claim of the

patent?

BY MS. VIDAL:

Q. That's correct.

A. For claims, we apply a broader

interpretation than for the specification.

Q. So then your answer would be yes to that?

A. The answer would be yes to whether it

could be either volatile or nonvolatile memory? I

think it could be either way.

Q. I'd like to turn to Paragraph 46 of the

'936 declaration. That would be Exhibit 3.

A. Yes. Page 17?

Q. That's correct. In this paragraph, you

state that "the term 'preloading' as used in Claims

1, 18 and 19 of the '936 Patent, means transferring

data from storage to memory in anticipation of

immediate or near-in-time use." Do you see that?

A. I do not see that. I don't state that.

No. The paragraph reads that it is my opinion that

a person of ordinary skill would have understood the

term "preloading" as used in Claims 1, 18 and 19 to

mean transferring data from storage to memory in

Page 30

VcnwmlxngONHmm
8662995l27

m

Ex. 2013

Page 47 of 145

!46

Ex. 2013
Page 48 of 145

11

12

13

14

15

16

17

18

A. For claims, we apply a broader

interpretation than for the specification.

Q. So then your answer would be yes to that?

A. The answer would be yes to whether it

could be either volatile or nonvolatile memory? I

think it could be either way.

Q. I'd like to turn to Paragraph 46 of the

'936 declaration. That would be Exhibit 3.

A. Yes. Page 17?

Q. That's correct. In this paragraph, you

state that "the term 'preloading' as used in Claims

1, 18 and 19 of the '936 Patent, means transferring

Ex. 2013

Page 48 of 145

!47

Ex. 2013
Page 49 of 145

u The DGSigfl and . ‘-
.OWER.up Implementatlon .OR SYSTEM

REgET7‘5 YES 0f the

77— BSD
o

8

- —

.Operaung System

RECEIVE READ REQUEST

FOR 3007 DATA

: .

aflfifl SERVICE REQUEST USING
magma PRELOADED BOOT DATA

84

A

7

79

!48

Ex. 2013
Page 50 of 145

("tlmxary

-. inlo main memory

1nnry nhcn they are
Ito reside m \‘lllttal

‘exnlc tn main man

- needed.

the kernel. 4 JHSI)

1;th repairing any
in. qec i||\ll rum/t

.‘I'lJL'L'\\ ax .t rc>lllt III

h an nptmnal \lash

.itetl hy \lztx‘hcx. and
is \th a alaxh. It ls

II» at the wet direc-

'lmutm'. and the path

)t‘uceys. A \lmlt h}

I the current working

low on rt etinnet'lnin

hm the send \iitttltm

txtantlmg. li no mn-

s prohe ts. ~.eut.

:h the _\ stem maps a

to ak the [tutu/I <trut
on and aeceks tal‘lcs

yinanagemenr hard»

:cess rtglttx. in addi-

tx the unidirectional

atream-nricntetL reli»

with the .' symbol.
rtn a to the standard

. l h".

[put at one prmes~ I\

)xtem in place pages

(eli(‘|\,\ill'\‘ 535

polling [/0 ’l'he nnrmal mnde lot a dc‘u‘llplm nherehy the \nytem \I'ill llltk'h il' .l

read request has no data available (Ir a write request has no buffering il\';lll‘

ahle A pmee“ can determine u. hether an M) operation will black by pulling

the kernel umng the what system call The what \‘yxtetn call can he

tertttested to return immediately with the inl'nrtnatinn or to block until at least

nne of the requested l/O npetatium can he completed Se ' aim north/ticking
I/t'): si‘L'tttt/u‘rit'm I/U.

POSIX l'lte xtandardx group tor I’IlXH. the portable operating—water" tnterlaces

c~tahh<hed by the llil:l;. lts hrxt exttrblrxhed \tandard \\ as the kemcl interline.
HM}. IV which wax t'atilied in I‘JHH

prel'ctching The retrieval nt' data before they are needed Many machinex

ptel’elch machine inxu'uctinns w thin they van overlap the time \pent fetching

inhlnlt‘llttllH from memory \\ ith the time spent decoding inatruetmnx.

prepaging The pteletching ol pagw l'i uretutIty. l’tepagtng is a technique Used

by Virtual—Inernury ~y>tenrs to reduce the number Ul page laults,

probing The operation «It chm-king; to we whether a hardware tiC\ tee Ix prewnt

on n machine. Fach different type nt‘ hardware deuce llHllflll)’ requirex ll\

own technique tor pmhing

process In operating systems. a task tI: thread of C\CCUllUll. In UNIX. met pro

cesses are created with the [ml \) \tein call.

process control block (I'L'llt A data structure u~ed to hold prucess contut 'l'he

hardware-dctinod I’t‘H contatnx the hardware portion til this context The

mltware l‘L‘H contains‘ the software portion. and is lncaled in nietnnry imme-

diately alter the hardware PCH

process group .\ collection nl' prucexscx on a HIltglL’ tnaehine Ihat all have the

xame tttrice~\-;_'rtItiti idenliliet The kernel uxe~ tlux grouping to arbitrate

among multiple Jul». contending lt'l the urine terminal.

process-group identifier .\ p-Mtne integer med lt' ldL‘lllll) uniquely each acme

prncexx group in the R) \ll'lll l’rncexs-eroup identtliers are typically (lelined tn

he the HI) of the procesx group leader l’rnees‘s-grnup identifiers are used by

command interpreters in implementing job control, when the eninmand inter-

preter i~ broadcasting signalx “uh the It'll/pg ayxtetn call. and when the mm

rnand interpreter is altering the urtheduling priority 01' all processex in a prrr
cew. group “till the \cl/t/‘it'l'ilt s) stem call.

proces‘fi-group leader [he procew in a pruccw group whnsc Pll) t~ Lhcd as the

pft)CL‘\\'-;{l’|tllp nlenttlier lhh process. u typically the hrst pron-e“ tn .I

pipeline

process identifir-rtl’lm A nonnegaurc integer used in identity uniquely each

ilLllVL’ procew tn the xylem.

process open-tile table See tlt‘.l(rum» tub/e.

prot‘es‘unr priority level A prinrity that the kernel ll\('\ in control the delhcry ot'

interruptx to the t'l'l‘. \lmt machines x'uppnn multiple priority levcl~ at

\ihich the prucexxnr may ciL'L'lllC, Similarly. interrupts aim occur at multiple

Ex. 2011

Page 3 of 3

Ex. 2013

Page 50 of 145

!49

Ex. 2013
Page 51 of 145

I e. “erne using I e I'II m't IIstenI ea I III III IIIII system ea can e

requested In return immedIateII mm the inl'nrmatinn III‘ III hItIek until at least

(Inc (If the requested l/O operations ean he ennIpIeIed See aIsII mIn/I/ut'king

I/t'}: ”gnu/driven I/O.

POSIX The standards group IUI I’IIXB. the pIIrIabII: uperating-systent Interfaces

established I‘\' the lIilili. Its first esIIIbIIshed standard was the kernel interface.

IIIII3I. thIh vIasIatIIIIIIInIIJHIII ‘ < _

 Man) machines

preIeteh IIIaeIIiIIe instiuetitms so that IIIIII' 'Iln IIIIIrlap the time spent fetching

instnIIIiIIns IrIIIn IIIetIIIIrI II iIII the time spt. III decoding InIIIuItIIIns

pretetching The retrieIaI III data hefnre IIIeII .IrI needed

prepaging The [)KILILIIIIIL III pages UI IIICIIIIIIV I’II.epauuig is a technique used
by VITIU‘ItI-IIICHIUF)’ IIIsteIIIs III reduIc the number UI page laults.

prnbing The nperatiun IIf checking III see whether a hardware deIIee Is present

on a machine. Each different type Hf hurdwuft' deu‘ee Usually requires II\

DWI] technique for pt'nhing

process III IIperating systems. a task In tIIIead III eweutmn. In UNIX. user pm-

eesses are created with the/wk system can.

process control block (PCB) A data structure used [0 hold prueess I'IIIItext. The

hardware-denned I’(‘H contains the hardware ‘II'IIUI‘I Of this context. The

Ex. 2013

Page 51 of 145

!50

Ex. 2013
Page 52 of 145

(54) SYSTEM AND METHOD FOR REDUCING 6,526,565 B1 * 2/2003 Nally 717/108
THE FOOTPRINT ()1: PRELOADED 6,530,080 B2 * 3/2003 Fresko et a1. 717/166

CLASSES FOREIGN PATENT DOCUMENTS

(75) Inventors: Hideya Kawahara, Mountain View, CA EP 943989 A2 * 9/1999 GO6F/9/44
(US); Nedim Fresko, San Francisco,
CA (US) OTHER PUBLICATIONS

. . . Sun Microsystems. “PersonalJava 1.1 Memory Usage Tech-
(73) Assrgnee. Sun Mlcrosystems, Inc., Santa Clara, nical Note.” 1998.*

CA (US) “The JavaTM Virtual Machine Specification”, Tim Lindholm,
(*) Notice: Subject to any disclaimer, the term Of this Frank YellIn, 475 pages, ©1997’ ISBN 0201—63452_X’

patent is extended or adjusted under 35 =1: citcd by cxamincr
U.S.C. 154(b) by 0 days.

Primary Examiner—John Follansbee

(21) Appl. No.: 09/045,508 Assistant Examiner—Lewis A. Bullock, Jr.
(74) Attorney, Agent, or Firm—Pennie & Edmonds LLP

(22) Filed: Mar. 20, 1998
(57) ABSTRACT

(51) Int. Cl.7 G06F 9/00
(52) US. Cl. 709/332; 717/166; 717/159 A method and system that reduces the space allocated for
(58) Field of Search 709/332, 331; internal data structures by a runtime engine. The internal

717/151—167 data structures store member Informatlon for preloaded
classes used by applications executed by the runtime engine.

(56) References Cited The system determines the different types of internal data
structures represented in the classes and identifies thee

U~S~ PATENT DOCUMENTS possible values of each type’s members. The system next

5 734 822 A , 3/1998 Houha et a1. 709/216 determines the amount of space required to store the values
5:815:718 A x 9/1998 Took 709/331 for each type in a respective value table and the number of
5,966,542 A 2 10/1999 Tock 713/1 bits needed to index each entry of that table. The system
5,966,702 A = 10/1999 Frcsko ct a1. .. . 707/1 determines based on the stored information Whether occur-
6,052,778 A * 4/2000 Hagy et a1. . . 709/331 rences of a member are optimally represented as a set of
6,061,520 A * 5/2000 Yellin et al. -- 703/22 value table indices and a value table or, in the conventional

6223346 B1 3‘ 4/2001 T0Ck_ ~~~~~~~~~~ 713/1 manner, as a general variable that stores the member’s value
673247637 B1 = 11/2001 Hamlllon 711/216 for each occurrence. The system then emits appropriate

22:32:: 31 : 3388; $3115: :tt 3’ 707/17(3)}: information for the member and its parent data structure.7 7 / -

6,363,436 B1 * 3/2002 Hagy et al. . 709/331
6,366,898 B2 = 4/2002 Taivalsaari et a]. 707/1 44 Claims, 12 Drawing Sheets

—1104
For each data structure.

Identity all member types ‘\1106
For each member txpe:

Determine numberof “k1103occurrences of member
Identify all values. ‘k1110
Determine memory space —\‘ ,
required to store each value. 1 12Determine memory space
required to store an index to —\1.‘14each value.
Determine sze of conventional 7k1 116representation of member.

, A 1113
For each member type:

Compute memory space ~\
' req'd by conventional rep (LHS). 1120Compute memory space req’d by —\

indices and table (RHS). T1122

N 1124RHS < LHS?

Y 1126
Represent member as value table and indices.
'—/1128

Represent member conventionally.
1 124

one with membersfr>

1130
For each data structure

Determine opt. ordering of members. *\1132
Generate member values and header L115”info according to the optimal ordering

Ex. 2013

Page 52 Of 145

!50

Ex. 2013
Page 53 of 145

(21)

(22)

(51)

(52)

(58)

(56)

U.S.C. 154(b) by 0 days.

Appl. No.: 09/045,508

Filed: Mar. 20, 1998

Int. Cl.7 .. G06F 9/00

US. Cl. 709/332; 717/166; 717/159

Field of Search 709/332, 331;

717/151—167

References Cited

U.S. PATENT DOCUMENTS

5,734,822 A * 3/1998 Houha et al. 709/216

5,815,718 A * 9/1998 Took 709/331

5,966,542 A * 10/1999 Tock 713/1

5,966,702 A * 10/1999 Fresko et al. 707/1

6,052,778 A * 4/2000 Hagy et al. 709/331

6,061,520 A * 5/2000 Yellin et al. 703/22

6,223,346 B1 * 4/2001 Took 713/1

6,324,637 B1 * 11/2001 Hamilton 711/216

6,339,841 B1 * 1/2002 Merrick et al. 707/103 R

6,349,344 B1 * 2/2002 Sauntry et al. 709/1

6,363,436 B1 * 3/2002 Hagy et al. 709/331

6,366,898 B2 * 4/2002 Taivalsaari et al. 707/1

For each data structure:

Identify all member types
For each member .e;

Determine number of 1103
occurrences of member.

Identify all values.

c1te y examiner

Primary Examiner—John Follansbee

Assistant Examiner—Lewis A. Bullock, Jr.

(74) Attorney, Agent, or Firm—Pennie & Edmonds LLP

(57) ABSTRACT

A method and system that reduces the space allocated for

internal data structures by a runtime engine. The internal

data structures store member information for preloaded

classes used by applications executed by the runtime engine.

The system determines the different types of internal data

structures represented in the classes and identifies thee

possible values of each type’s members. The system next

determines the amount of space required to store the values

for each type in a respective value table and the number of

bits needed to index each entry of that table. The system
determines based on the stored information Whether occur-

rences of a member are optimally represented as a set of

value table indices and a value table or, in the conventional

manner, as a general variable that stores the member’s value

for each occurrence. The system then emits appropriate

information for the member and its parent data structure.

44 Claims, 12 Drawing Sheets

1106

Ex. 2013

Page 53 of 145

!51

Ex. 2013
Page 54 of 145

US 6,658,492 B1

1
SYSTEM AND METHOD FOR REDUCING

THE FOOTPRINT 0F PRELOADED
CLASSES

The present invention relates generally to a class pre-
loader and, particularly, to a system and method for reducing
the size in read only memory of preloaded Java classes.

BACKGROUND OF THE INVENTION

A Java program comprises a number of small software
components called classes. Each class contains code and
data and is defined by information in a respective class file.
Each class file is organized according to the same platform-
independent “class file format”. Referring to FIG, 1, there is
shown a block diagram of the class file format, according to
which each class file 400 includes header information 402,
a constant pool 404, a methods table 406 and a fields table
408. The header information 402 identifies the class file

format, the size of the constant pool, the number of methods
in the methods table 406 and the number of fields in the

fields table 408. The constant pool 404 is a table of structures
representing various string constants, class names, field
names and other constants that are referred to within the
class file structure and its sub-structures. The methods table
406 includes one or more method structures, each of which
gives a complete description of and Java code for a method
explicitly declared by the class. The fields table 408 includes
one or more field structures, each of which gives a complete
description of a field declared by the class. An example of
the fields table 408 is now described in reference to FIG. 1B.

A Java program is executed on a computer containing a
program called a virtual machine (VM), which is respon-
sible for executing the code in Java classes. It is customary
for the classes of a Java program to be loaded as late in the
program’s execution as possible: they are loaded on demand
from a network server or from a local file system when first
referenced during the program’s execution. The VM locates
and loads each class, parses the class file format, allocates
internal data structures for its various components, and links
it in with other already loaded classes. This process makes
the method code in the class readily executable by the VM.

For small and embedded systems for which facilities,
required for class loading, such as a network connection, a
local file system or other permanent storage, are unavailable,
it is desirable to preload the classes into read only memory
(ROM). One preloading scheme is described in U.S. patent
application Ser. No. 08/655,474 (“A Method and System for
Loading Classes in Read-Only Memory”), which is entirely
incorporated herein by reference. In this method and system,
the VM data structures representing classes, fields and
methods in memory are generated offline by a class pre-
loader. The preloader output is then linked in a system that
includes a VM and placed in read-only memory. This
eliminates the need for storing class files and doing dynamic
class loading.

Referring to FIG. 2A, there is shown a more detailed
block diagram of the VM data structures 1200.generated by
the class preloader. The data structures 1200 include a class
block 1202, a plurality of method blocks 1204, a plurality of
field blocks 1214 and a constant pool 1224.

The class block 1202 is a fixed—size data structure that can

include the following information:
the class name 1230;
a pointer 1232 to the class block of the current class’s

immediate superclass;
a pointer 1234 to the method blocks 1204;

10

15

25

40

45

60

65

14

2

a pointer 1236 to the field blocks 1214; and
a pointer 1238 to the class' constant pool;
The elements of a class block data structure are referred

to herein as class block members.
A method block 1204 is a fixed-sized data structure that

represents one of the class’s methods. The elements of a
method block data structure are referred to herein as method
block members. A field block 1214 is a fixed-size data

structure that represents one of the class’s instance variables.
The elements of a field block data structure are referred to
herein as field block members.

Each type of VM data structure, including the class block
1202, method blocks 1204, field blocks 1214 and constant
pool 1224, has a format defined by a corresponding data
structure declaration. For example, a single method block
declaration defines the format of all method blocks 1204.
The data structure declarations also define accessor func—

tions (or macros) that are used by the VM to access datastructure members. These data structure declarations are

internal to the VM and are not used by class components,
The prior art data structure declarations are now described in
reference to FIG. 2B.

Referring to FIG. 2B, there is shown a depiction of data
structure declarations 1230 that define the format of all data

structure types employed by a particular VM. Each decla-
ration 1230 includes a set of member declarations 1232 and

accessor functions 1234 for accessing respective members.
The member declarations 1232 and accessor functions 1234

are defined conventionally, according to the syntax of the
language used in the implementation of the VM. For
example, assuming the C language is used in the data
structure declarations 1230, a generic field data structure
1230.N (shown in FIG. 2B) could be defined as a structure
T with five members of the following types with respective
accessor functions:

member name member type accessor functions

memberl mtypel meml of (T) T—>member1
memberZ mtype? memZ of (T) T7>memher2
member3 mtype3 mem3 of (T) T7>member3
member4 mtype4 mem4 of (T) T—>member4
memberS mtypeS niemS of (I) ‘l'—>niember5

In this example, the member types can be any type defined
by the relevant computer language, including user defined
types or language types, such as integer, float, char or
double. The accessor functions are macros used by the VM
to access the fields without needing to access directly the
structure containing the field. For example, instead of
employing the expression “'l‘amemberl“ to access fieldl in
structure type '1', the VM need only employ the expression
“meml of ('1)“.Accessor functions are well known in
programming languages, such as C, that provide sophisti-
cated data structure capabilities.

The internal data structures used to store “class meta data”

(i.e., the class, method and field blocks 1202, 1204, 1214)
require large, fixed amounts of space in read-only memory.
In fact, measurements indicate that this sort of class meta
data often takes up much more space than the bytecodes for
the class methods themselves. These internal data structures

are therefore often unsuitable for use in small, resource-
constrained devices in which class preloading is desirable
and/or necessary.

Moreover, if the internal data structures were individually
modified to save memory space, the VM code would need to

Ex. 2013

Page 54 of 145

!52

Ex. 2013
Page 55 of 145

55 programming languages, such as C, that provide sophisti-

cated data structure capabilities.

itglgd The internal data structures used to store “class meta data”
e 1 y (i.e., the class, method and field blocks 1202, 1204, 1214)

BESS: require large, fixed amounts of space in read-only memory.L

60 In fact, measurements indicate that this sort of class meta

data often takes up much more space than the bytecodes for
the class methods themselves. These internal data structures

are therefore often unsuitable for use in small2 resource-

constrained devices in which class preloading is desirable
3135535 65 and/or necessary.

Moreover, if the internal data structures were individually

modified to save memory space, the VM code would need to

latcan

Ex. 2013

Page 55 of 145

!53

Ex. 2013
Page 56 of 145

United States Patent [19]

U50058l5718A

[11] Patent Number: 5,815,718

Toek [45] Date of Patent: Sep. 29, 1998

[54 METHOD AND SYSTEM FOR LOADING OTHER PUBLICATIONS

CLASSES IN READ—ONLY MEMORY “Java Intermediate Bytecodes”; J. Gosling; 1995 ACM

[75 Inventor: Theron I). Tuck, Sunnyvale, Calif. SEEPlIIQN Workshop on Intermediate Representations; pp.
[73 Assignee: Sun Microsystems, Inc., Mountain Primary Examiner—Emanuel Todd Vocltz

View, Calif. Assistant Examiner—Kakali Chaki
Attorney, Agent, or Firm4ary S, Williams; Flehr I-Iohbach

[21 Appl No , 655 474 Test Albritton & Herbert LLI’
. .. ,

57 ABSTRACT
[22 Filed: May 30, I996]

, , A method and system [or providing an executable module6 V

[51 Int. (’1' """" GOOF 9445 1aving an address space for storing program data that is to
[52 U-S- Cl- --------------- - 395/705; 395/710; 395/985 reside in a read-only storage medium and an address space
58 Field of Search 395/701, 702, or storin r0 ram data that is to reside in a random accessgP g

395/710, 651, 652, 685, 705, 708 memory is herein described. The executable module repre-
sents Java classes that are structured for dynamic class

[56 References Cited oading. A static class loader is used to modify the class

U.S. PATENT DOCUMENTS

5,051,893 9/1991 Tenny et al.
5,303,380 4/1994 Tenny et al. H
5,369,766 11/1994 Nakano et al.
5,594,903 1/1997 Bunnell et all.
5,613,120 3/1997 Palay et al.
5,664,128 9/1997 Bauer
5,671,413 9/1997 Shipman e a. ..

....... 364/200
395/700
395/700
395/712
395/710
345/334

....... 395/700

FOREIGN PATENT DOCUMENTS

2 242 293 9/1991 United Kingdom .

structure to accommodate static loading. The static class
oader also identifies methods that contain unresolved sym-

3011C references and data that varies during the execution of
he module. These methods and data are identified in order

0 place them in the address space that resides in the random
access memory, The static loader is beneficial in a distrib-
uted computing environment having a client computer that
This little or no secondary storage thereby requiring appli—
cations to run entirely in random access memory. By utiliz-
ing a read-only memory to store statically loadable classes,
he random access memory is left available for other uses.

20 Claims, 12 Drawing Sheets

Per Class
300 .— ------------------- 'I| l

W I \ 126 ‘
: Source Code :| I
l I

l I Il _ I

i Compiler \ 122 i| lI l
I |I |
1 Class File lr
L ___________________ r

Class File

Class Libraries tr 131
180

Hash Ottline Class 132Table Loader V

 Constant Pool
Updated Class File and N 302

134

ROM portion

304

 RAM portion
Preloadable executable module

Apple vi Realtime
Proceeding No. IPR2016—O1365

APPLE 1019

Ex. 2013

Page 56 of 145

!53

Ex. 2013
Page 57 of 145

[0Ntor—t

U]toflflflflr—I U'lU'l OO1—1 HHHHH
[56]

View, Calif.

Appl. No.: 655,474

Filed: May 30, 1996

Int. Cl.6 .. G06F 9/45

US. Cl. 395/705; 395/710; 395/685

Field of Search 395/701, 702,

395/710, 651, 652, 685, 705, 708

References Cited

U.S. PATENT DOCUMENTS

5,051,893 9/1991 Tenny et al. 364/200

5,303,380 4/1994 Tenny et al. 395/700

5,369,766 11/1994 Nakano et al. 395/700

5,594,903 1/1997 Bunnell et a1. 395/712

5,613,120 3/1997 Palay et al. 395/710

5,664,128 9/1997 Bauer 345/334

5,671,413 9/1997 Shipman et a1. 395/700

FOREIGN PATENT DOCUMENTS

2 242 293 9/1991 United Kingdom .

Assistant Examiner—Kakali Chaki

Attorney, Agent, or Firm—Gary S. Williams; Flehr Hohbach
Test Albritton & Herbert LLP

[57] ABSTRACT

A method and system for providing an executable module

having an address space for storing program data that is to

reside in a read-only storage medium and an address space

for storing program data that is to reside in a random access

memory is herein described. The executable module repre-

sents Java classes that are structured for dynamic class

loading. A static class loader is used to modify the class

structure to accommodate static loading. The static class

loader also identifies methods that contain unresolved sym-

bolic references and data that varies during the execution of
the module. These methods and data are identified in order

to place them in the address space that resides in the random

access memory. The static loader is beneficial in a distrib-

uted computing environment having a client computer that

has little or no secondary storage thereby requiring appli-

cations to run entirely in random access memory. By utiliz-

ing a read-only memory to store statically loadable classes,

the random access memory is left available for other uses.

20 Claims, 12 Drawing Sheets

Per Class

300 .- --------------

Ex. 2013

Page 57 of 145

!54

Ex. 2013
Page 58 of 145

5,815,718

1
METHOD AND SYSTEM FOR LOADING

CLASSES IN READ-ONLY MEMORY

The present invention relates generally to object-oriented
computer systems having classes that are dynamically
loaded at runtime, and particularly to a system and method
for preloading a subset oft 1e classes in a read—only memory.

BACKGROUND OF THE INVENTION

A current trend in object-oriented programming lan-
guages is to extend the unctionality of the language to
accommodate the distribution of dynamic content in a
distributed computing environment. In one such language,
this is accomplished by dynamically loading classes at
runtime. A class is a collec ion of variables and methods that

model the behavior of an object. By dynamically loading
classes at runtime, existing applications can add function-
ality by linking in new classes that reside on any computer
system within the distribu ed computing environment.

In such languages, symbolic references are used to refer
to the class members (i.e., he class” methods and variables).
When a class is invoked, the dynamic loader determines the
storage schema for the class and resolves the symbolic
reference. Such a loading scheme is beneficial when access-
ing classes that are updated often. However, a limitation of
such a loading scheme is its dependency on a read/write
memory device such as a random access memory (RAM). In
a computing environment that has little or no secondary
storage (e.g., non-volatile magnetic disk storage), dynamic
loading of the classes in this manner can quickly use up the
storage capacity of the RAM. As the capacity of the RAM
is limited, it is desirable to minimize the amount of RAM
that is used by an application. Accordingly, there exists a
need to limit the amount of RAM that is utilized to execute

object-oriented program code having dynamically loadable
classes.

It would be beneficial to provide a method and system
which overcomes the deficiencies of the prior art.

SUMMARY OF THE INVENTION

In summary, this disclosure pertains to an offline class
loacer that is used to produce an executable module whose
classes are preloaded into memory Without requiring runt—
ime dynamic loading. The executable module, nevertheless,
con ains a class structure that is tailored for runtime dynamic
loacing. Thus, the offline class loader modifies the existing
class structures to accommodate static loading. However,
the class structure allows for varying data and methods that
con ain unresolved references. The olIline class loader tags
these methods and data specifying that they are to be stored
in a random access memory. All other data is stored in a
reac-only memory. At the completion of the static loading
process, a preloadable executable module is generated that
con ains two addresses spaces. A first address space that
con ains methods having unresolved references and data that
varies during the execution of the module is loaded in a
random access memory. The second address space contains
met aods having static loaded classes and constant data
which is loaded into a read—only memory.

Apreloadable executable module of this fashion is advan-

tageous in a distributed computer system having client
computers with little or no secondary storage. Such client
computers require applications to run entirely in random
access memory which quickly turns into a limited resource.
By utilizing the offline class loader to partition an applica—
tion into two address spaces, the amount of RAM utilized by
the preloadable module is minimized.

‘ltl

N (Jr

312‘

40

50

60

14

2

In an embodiment, a client computer having minimal
secondary storage utilizes an offline class loader to preload
a browser in the client‘s read-only memory. The browser is
partitioned into the aforementioned two address spaces. At
system initialization or power up, the random access
memory portion of the browser is loaded from read-only
memory into the random access memory. By executing a
large portion of the browser from read-only memory, the
browser has additional RAM storage to store information—
content and executable modules that it can obtain from other

server computers that the client is in communication with.
BRILI' DESCRIPTION OF THE DRAWINGS

Additional objects and features of the invention will be
more readily apparent from the following detailed descrip-
tion and appended claims when taken in conjunction with
the drawings, in which:

FIG. 1 is a block diagram of a distributed computer
system.

FIG. 2 is a block diagram of a client computer in the
distributed computer system of FIG. 1.

FIG. 3 is a flow diagram illustrating the processing
components used to produce the preloadable executable
module.

FIG. 4 illustrates the file layout for a class file.
FIG. 5 illustrates the file layout for a constant pool.
FIG. 6 illustrates the class block data structures.

FIG. 7 illustrates an instruction bytecode stream.
FIG. 8, which is a combination of FIGS. SA and 8”,

represents a flow chart of the method used by the 0 line
class loader.

FIG. 9 is a flow chart of the method for building the class
block data structures.

FIG. 10 is a flow chart of the method for eliminating
duplicate constants.

FIG. 11 is a flow chart of the method for converting a
non-quick instruction format into a quick instruction format.

FIG. 12 is a block diagram showing the mapping of a
preloaded application into read-only memory and random—
access memory and indicating the loading of the portion of
the methods and data mapped into random-access memory
by a static class initializer.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The method and system described herein utilizes a dis-
tributed computing environment having a communication
link that connects at least one server computer and a number
of client computers. Some of the client computers have little
or no secondary storage (e.g., non-volatile magnetic disk
storage) thereby requiring applications to be run entirely
from random access memory. An application developed in
the Java programming language is executed on such a client
computer. Preferably, the application is a browser that is
used to import Java content, such as Java applets, from one
or more server computers. Typically, the browser is an
interpreted program module that retrieves Web documents
utilizing a HyperText Transfer Protocol (HTTP) to access
one or more Web pages formatted as HyperText Markup
Language (HTML) documents from a server acting as a Web
site. The HTML documents are interpreted and presented to
the user associated with the client computer. Often, the
HTML documents embed applets. An applet is a executable
module represented as a Java class. The browser loads in the
applet and its associated classes in order to execute the
applet.

Ex. 2013

Page 58 of 145

!55

Ex. 2013
Page 59 of 145

5,815,718

1

METHOD AND SYSTEM FOR LOADING II]

CLASSES IN READ-ONLY MEMORY seco

a brt

The present invention relates generally to obj ect-oriented parti

computer systems having classes that are dynamically 5 SySti

loaded at runtime, and particularly to a system and method 111611

for preloading a subset of the classes in a read-only memory. 111611

largt
BACKGROUND OF THE INVENTION brov

A current trend in object-oriented programming lan- 10 cont

guages is to extend the functionality of the language to serv:

accommodate the distribution of dynamic content in a

distributed computing environment. In one such language,

this is accomplished by dynamically loading classes at A
runtime. A class is a collection of variables and methods that 15 11101“

Ex. 2013

Page 59 of 145

!56

Ex. 2013
Page 60 of 145

U8006463509B1

(12) United States Patent (10) Patent N0.: US 6,463,509 B1
Teoman et al. (45) Date of Patent: ()et. 8, 2002

(54) PRELOADING DATA IN A CACHE MEMORY 5,293,522 A 3/1994 Nicholson et a].
ACCORDING TO USER—SPECIFIED 5,359,713 A * 10/1994 Moran et al. 710/52
PRELOAD CRITERIA 5,390,590 A 3/1995 Hasliemi et al.

5,420,998 A 5/1995 Homing
5,437,018 A 7/1995 Kobayashi et al.75 I t ,: Deniz Teonian S Mt ' ohn M.

() “V6“ 0“ ’ a" “O’J 5,443,719 A * 9/1995 Schultz et a1. 714/5Neil, San Francisco, both of CA (US)
, (List continued on next page.)
(73) Assignee: Motive Power, Inc., San Mateo, CA

(US) OTHER PUBLICATIONS

* , . , , , International Search Report in connection with International
() Notice: SubJect. to any disclaimer, the term of this Application No. PCT/USOO/02156 (6 pages).

patent is extended or {“1115th under 35 “The I/O System”, Inside Windows NT Second Edition,
U‘S‘C‘ 154(1))1’y0 days. Microsoft Press, David A, Solomon, pp. vixiv 3257393,1998.

(21) APPL N05 09/238,656 “Filter Drivers“, Windows NT File System Internals A

(22) Filed: Jan. 26, 1999 Developer’s Guide, Rajeev Nagar, O’Rielly & Associates,Inc, pp. vii—X, 615—667, 1997.
(51) Int. Cl.7
(52) US. Cl.

""""/ G961? 12/09 Primary Examiner—David Hudspeth
""" 711/137) 711'1185'711/141’ Assistant Examiner—Fred F. Tzeng

711/15” 711/113 (74) Attorney, Agent, or Firm—Blakely, Sokoloi‘f, Taylor &

(58) Field of Search 711/118, 137, Zafman LLP
711/138, 129, 113, 141, 152, 3, 125; 710/52;

713/400; 714/5 (57) ABSTRACT

. An apparatus and method for caching data in a storage
(56) References Cited device of a computer system. A relatively high—speed,

U.S. PATENT DOCUMENTS intermediate—volume storage device is operated as a iiser—
configurable cache. Requests to access a mass storage device

$232212: ‘2 9:: 2;: Efiifiln et “L such as a disk or tape are intercepted by a device driver that
4:020:466 A / 977 Cordi et a1. compares the access request against a directory of the
4215300 A 7/ 980 Dem“, contents of the user-configurable cache. If the user—
4,295,205 A 10/ 981 Kunstadt configurable cache contains the data sought to be accessed,
4,342,079 A 7/ 982 Stewart et al. the access request is carried out in the user—configurable
4,435,775 A / 984 Brantingham et a1. cache instead of being forwarded to the device driver for the
4500954 A * / 985 DUke el 31- ~- ~~~~~ 711/138 target mass storage device. Because the user-cache is imple-
‘ffi377024 A * 1/ 987 Dixon el “1‘ ~~~~~~~~~ 714/810 merited using memory having a dramatically shorter access
33128’810 A 7/ 992 Wilford time than most mechanical mass storage devices, the access3,131,089 A 7/ 992 (ole . 4 , v
5,146,576 A / 992 Beardsley request is tulfilled much more quickly than it the originally
5,218.689 A / 993 Hotle intended mass storage dev1ce was accessed. Data is pre-
5,226,168 A 7/ 993 Kobayashi et a1. loaded and respons1vely cached in the user-configurable
5,263,142 A 11/ 993 Watkins et al. cache memory basee on user preferences.
5,287,457 A / 994 Arimilli ct al.
5,291,584 A / 994 Challa et a1. 26 Claims, 12 Drawing Sheets

SYSTEM MEMCRV
.C , uruoav ——l\V430 36PROC:«S”\G, CONTROLLER , . 0'1 / 3: a,

,0 WI T / J APPS\ ExrANsteii ‘ 05 CACHE
“ BUS BRIDGE DEV CE ,3212 _ IJHIVEHS ,

14

iii

EXPANSION
BJS 13

t t t 3
015K DRVE ‘1 SK DTSK DRlVE NETWORK USE":CONTRDLLER CACriE COI‘JHOLLEH ACCESS QEVTCE ‘ CALM:i

 T . S
711 t 22 " 24 ' (,,

r:4‘ ‘ 23 ,z—(“If
LAN/WAN _

x \—/ NETWDwK Pi”

3‘“ J DTSK) \
05‘.“ DHVE \

28 NEIWDRN rZQA NETWORK _/‘?HHSERVER SERVER

Apple v. Reattima
1 Piooeeding No. lPR2016—01365

APPLE 1020

Ex. 2013

Page 60 of 145

!57

Ex. 2013
Page 61 of 145

US 6,463,509 B1

15
the user cache. One user-configurable memory management
policy is whether to reserve storage space in the user cache
[or storing a system page file. The system page file is the
portion of allocated virtual memory not mapped to system
RAM. Ordinarily the system page file is mapped to a disk
drive or other mass storage device. By reserving capacity for
the system page file in the user—cache, the system page file
can be swapped between the user cache and system RAM
much more quickly than if the disk drive or other mass
storage device was used to hold the page file. Another user
configurable memory management policy is the maximum
preloadable file size. As shown in FIG. 10, for example, the
user may specify that files larger than a user entered thresh-
old are not to be preloaded.

In the context of reserving capacity in the user cache, it
should be noted that a significant benefit of the user cache is
that storage space is provided for both preloading and
responsive caching operations without having to specifically
dedicate respective regions of the user cache storage space
for those operations. In an alternate embodiment, however,
the user cache may be partitioned into respective dedicated
storage regions for the preloading and responsive caching
operations.

Examples of preloading policies include, but are not
limited to, preloading complete files in response to file
segment access, preloading all files within the directory or
folder of a launched application, preloading all files in a
directory or folder if a threshold number of files from the
directory or folder have already been accessed, preloading
files in the system directory or folder, preloading files having
a particular file type identifier if a threshold number of files
having the file type identifier have been accessed, and so
forth. The file type identifier may be a filename extension
such as “.doc” or “.psd”, as used in many operating systems,
or the file type identifier may be a file attribute that does not
appear in the file name. Also, as indicated in FIG. 10, the
hreshold number of files that have a particular file type

identifier and the threshold number of files that are from a

directory or folder are specified by the user. In many cases,
he preloading policies translate directly into criteria for
riggered preloading. For example, a policy to preload all

files in a directory or folder if a threshold number of the files
aave been accessed sets up a preload trigger. The user cache
manager periodically inspects the access table maintained by
he observer to determine if the trigger criteria is met (e.g.,

whether the threshold number of files from the indicated

directory have been accessed). Other preload policies give
rise to commanded preload operations. For example, a
nolicy to preload the system directory causes the user cache
manager to begin commanded preloads of the directory
contents.

FIG. 11 is an exemplary user interface 127 generated by
he user cache manager to allow the user to specify corn-
manded preloads. According to one embodiment, a user
enters a commanded preload in the interface of FIG. 11 by
clicking the add button on the user interface 127. The user
cache manager responds by generating a view of the file
storage within the computer system. The user may then
double click selected logical drives, directories or filenames
to indicate that files meeting the specified criteria are to be
preloaded. For example, the user may select the file
“C:\Pr0gram Files\Netscape\netscape.exe” to indicate that
the netscape.exe file is to be preloaded into the user cache
from the specified logical drive and directory (likewise for
pshop.exe, FirstBirthday.mov and Business Plan.wrd).
Similarly, the user may select the directory “C:\Program
Files\AutoCAD\” to indicate that all the files in the drive C:

10

N U\

30

m U]

40

50

55

60

16
subdirectory “\l’rogram Files\AutoCAD\“ are to be pre-
loaded. The user may also select the drive E:\ to indicate that
all the files in drive E are to be preloaded. The user may also
enter wildcards within filenames to indicate that files having
filenames that match the wildcard are to be preloaded. For
example, to load all files having the extension “.doc” from
the logical drive and directory, “C:\Program
Files\Winword_”, the user would select the indicated logical
drive and directory and enter “*doc” (i.e., “C:\Program
Files\Winword*.doc”). After entering file parameters in the
interface of FIG. 11, the user may click the apply button to
initiate commanded preloading.

The user may also indicate, via the user interface 127 of
FIG. 11, to lock down selected files in the user cache. In one
embodiment, for example, selected files are locked down in
118 user cache in response to the user clicking in the left most
column of the interface adjacent a commanded preload
entry. A lock symbol is displayed to indicate that the files
covered by the commanded preload entry will be locked
(,UWII in the user cache. The lock down indication can be

removed by clicking on the lock symbol.
The column to the right of the lock down column is an

exclude column and can be used to exclude certain files from

t1e user cache. For example, by clicking in the exclude
column adjacent the preload entry “D:\Video
Benchmark‘\Disk Test'\speed.exe”, the executable file spee—
c.exe is prevented from being loaded into the user cache,
either by preloading or by responsive caching.

FIG. 12 is an exemplary user interface 129 generated by
tic user cache manager to permit the user to generate a
report of the user cache contents, test the memory in the user
cache, flush the user cache or backup the contents of the user
cache to a mass storage such as a tape backup or a disk drive.
Other operations may be prompted in the user interface 129
of FIG. 12 including, but not limited to, a battery test, an age
report indicating the relative order in which files have been
loaded into the user cache and so forth.

In the foregoing specification, the invention has been

described with reference to specific exemplary embodiments
thereof. It will, however, be evident that various rnodifica—
tions and changes may be made to the specific exemplary
embodiments without departing from the broader spirit and
scope of the invention as set forth in the appended claims.
Accordingly, the specification and drawings are to be
regarded in an illustrative rather than a restrictive sense.

What is claimed is:

1. A method of pre-loading data into a storage array
operating as a user cache for a computer system, the method
comprising:

causing data to be retrieved from a mass storage device in
accordance With pre-load criteria, the pre-load criteria
identifying data that is to be pre-loaded into the storage
array prior to receiving a command on the data;

storing the data in the storage army for subsequent access
by commands on the data;

inspecting a request for data from a process; causing the
requested data to be retrieved from a mass storage
device if the requested data is not in the storage array;
and p1 storing the requested data in the storage array in
accordance with exclusion criteria that specifies data
excluded from storage in the storage array using a file
identifier.

2. The method of claim 1 further comprising:
obtaining the pre-load criteria from a user of the computer

system.

Ex. 2013

Page 61 of 145

!58

Ex. 2013
Page 62 of 145

a a 1. A method of pre-loading data into a storage array
:he operating as a user cache for a computer system, the method

jry 50 comprising:

causing data to be retrieved from a mass storage device in

by accordance with pre-load criteria, the pre-load criteria
'm' identifying data that is to be pre-loaded into the storage

”Sir array prior to receiving a command on the data;
.5631: 55 storing the data in the storage army for subsequent access
file by commands on the data;
1en inspecting a request for data from a process; causing the

nes requested data to be retrieved from a mass storage

be 60 device if the requested data is not in the storage array;

file and p1 storing the requested data in the storage array in

hat accordance with exclusion criteria that specifies data

:he excluded from storage in the storage array using a file

for identifier.

'd _ 65 2. The method of claim 1 further comprising:

Ex. 2013

Page 62 of 145

!59

Ex. 2013
Page 63 of 145

United States Patent [19]

Sukegawa

[11] Patent Number: 5,860,083

[45 J Date of Patent: Jan. 12, 1999

[54] DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

[75] Inventor: Hiroshi Sukegawa, Tokyo, Japan

[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki,
Japan

[21] Appl. N0.: 818,983

[22] Filed: Mar. 14, 1997

[30] Foreign Application Priority Data

Nov. 26, 1996 [JP] Japan

[51] Int. Cl.6 G06F 12/08
[52] US. Cl. 711/103; 711/117; 711/171;

711/173

[58] Field of Search 711/103, 113,
711/117, 170, 171, 173

..... 8-314850

[56] References Cited
US. PATENT DOCUMENTS

5,175,842 12/1992 Totani 711/161
5,371,876 12/1994 Ewertz et al. 711/159
5,437,018 7/1995 Kobayashi et al. 395/652
5,535,357 7/1996 Moran et a1. 711/103

.. 365/200

 5,644,539 7/1997 Yamagami et al. .. .
5.701,492 12/1997 Wadsworth et al. . 395/712
5,745,418 4/1998 Ma et a1. 365/18533

5,778,418 7/1998 Auclair et al. 711/101

FOREIGN PATENT DOCUMENTS

0 706 135 4/1996 European Pat. Off. .
5—11933 1/1993 Japan .
8—63395 3/1996 Japan .

8-115241 5/1996 Japan .

Primary Examiner—Tod R. Swarm
Assistant Examiner—Conley D. King, Jr.
Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, LLP.

57] ABSTRACT

In a data storage system using a flash memory unit and an
HDD, the storage area of the flash memory unit is logically
divided into a permanent storage area, a non-volatile cache
area, Which are used as cache memory areas of the HDD,
and a high—speed access area. These divided areas are
individually managed. The permanent storage area stores
data which is used frequently for a relatively long time
period. The non-volatile cache area is used as an ordinary
cache memory area in which data, which is updated rela-
tively frequently, is stored. The high-speed access area is a
storage area to be used by, eg, an operating system (OS) of
a host system, For example, a swap file, which needs to be
accessed at high speed, is shifted into the high-speed accessarea.

28 Claims, 10 Drawing Sheets

DEVICE

DRl VER

PERMANENT

STORAGE AREA

H I GH-SPEED

ACCESS AREA

NON—VOLAT | LE

CACHE AREA

HOST

SYSTEM

CACHE
SYSTEM

CONTROLLER

MANAGEMENT

I NFORMAT | ON

TABLE

10C

APPLE 1005

Ex. 2013

Page 63 of 145

!60

Ex. 2013
Page 64 of 145

HOST

SYSTEM

5 r _____________¥ 3

CACHE

SYSTEM

CONTROLLER

MANAGEMENT

INFORMATION

TABLE

PERMANENT

STORAGE AREA

HIGH-SPEEDACCESS AREA i

NON-VOLATILE

CACHE AREA

Ex. 2013

Page 64 of 145

!61

Ex. 2013
Page 65 of 145

5,860,083

1
DATA STORAGE SYSTEM HAVING FLASH

MEMORY AND DISK DRIVE

BACKGROUND OF THE INVENTION

The present invention relates to a data storage system
which is applied to a computer system and has a flash
memory unit (also known as “semiconductor disk unit”) and
a disk drive.

In a conventional computer system, a hard disk drive
(HDD) is used as an external memory device wherein a disk
is used as a storage medium. The HDD can be used as a
large—capacity file apparatus. However, as compared to a
main memory comprising a semiconductor memory (e.g. a
DRAM), the access speed of the HDD is lower. A cache
system for the HDD has been known as means for increasing
the access speed of the HDD.

In the cache system, in particular, frequently used data
is-stored in a storage medium having a higher access speed
than the HDD, thereby compensating the low access speed
of the HDD. In a specific system, a part of the storage area
of the main memory (volatile IC memory) comprising a
DRAM is used as a cache area of the HDD (this system
being called “smartdrive”). In this system, however, the
main memory is cleared when the power to the system is
switched off. Thus, the cache system does not function when
the power is switched on. Accordingly, after the power is
switched on, the HDD is accessed to enable the cache
system to function effectively, thereby achieving a learning
ell‘ect. The learning ell‘ect will now be described. When a
request for access to the HDD occurs, this request first fails
since no data is stored in the cache memory (a part of the
main memory in this case). Then, the data associated with
the access request is read out from the HDD and stored in the
cache memory. Thus, if the next access request occurs, the
data stored in the cache memory is quickly read out from the
cache memory in place of the cache memory, This elIect of
achieving the cache function is called “leaning effect.”

The cache system using the above-described main
memory does not effectively function when the first access
request for the HDD occurs at the time of turning—on of
power. Consequently, when the computer system is started
up, the cache system cannot be utilized to run the operating
system (OS) or frequently used application programs (AP).
The OA and AP are thus started up by using the low
access-speed IIDD. With an increase in the scale of the OS
and AP, the low access speed of the HDD elongates the time
needed to start up the ()S and AP. This is considered a
serious problem.

To solve this problem, there has been proposed a cache
system for an HDD, which uses a flash memory unit
comprising a flash EEPROM (electrically erasable program—
mable read-only memory). The flash memory, unlike the
main memory, is a non-volatile storage medium and has a
higher access speed than the HDD. Accordingly, in the cache
system using the flash memory, the data stored in the flash
memory functioning as cache memory can be retained even
if the power is switched off, and the cache function is
eifectively performed at the time of turning on power.
Moreover, the flash memory having a higher access speed
than the HDD can perform a high-speed buffer function.

As described above, the cache system using the cache
memory as flash memory can elfectively perform the cache
function for the HDD even when the power is turned on.
Therefore, the cache system as combined with the HDD can
constitute a high—speed, large-capacity external storage sys—
tem.

5

10

15

35

40

45

Ln 0

()0

65

12

2

In other words, the data storage system comprising the
combination of the large—capacity HDD and high—speed,
non-volatile flash memory can achieve not only the above-
described function but also a function which will influence

the performance of the computer system by the effective use
of the respective memory units. Specifically, the storage area
of the flash. memory is set in accordance with the contents
of data to be stored, or the cooperative function of the flash
memory and the HDD is set, thereby to effectively use the
data storage system, as will be described below.

For example, when information (or control information in
the present invention) necessary for starting up the ()S or a
frequently used AP is to be stored in the storage area in the
flash memory, it is desirable that the OS and AP are
permanently stored in the flash memory since the frequency
of use of both programs is high. On the other hand, for
example, when a word search utility program is run for a
number of files and the HDD is accessed, it is not important,
in general, to permanently store the file accessed from the
IIDD in the cache memory area of the flash memory. Since
such an accessed file is frequently updated, there is no need
to permanently store it.

Besides, when the computer system performs a swapping
operation, it is possible to store a swap file in the flash
memory in place of the HDD. Since the file si/e of the swap
file produced in the swapping operation is variable, the size
of the storage area set in the flash memory needs to be
variable accordingly. However, since the storage area of the
flash memory is limited, it is desirable to perform a coop-
erative function with the HDD, for example, to use the
storage area in the HDD in accordance with the increase in
file size of the swap file.

BRIEF SUMMARY OF THE INVENTION

The object of the present invention is to provide a data
storage system having a disk drive and a flash memory unit,
wherein the storage area of the flash memory unit as well as
a cache system is efliciently used, and cooperative functions
of the flash memory and an HDI) are achieved, whereby the
data storage system can be efliciently used.

A data storage system according to the present invention
comprises a disk drive, flash memory means, and control
means. The flash memory means uses a non—volatile flash
memory as a data storage medium, and has an entire storage
area logically sorted into a plurality of storage areas
assigned to predetermined functions. The control means
controls data input/output of the disk drive and the flash
memory means and stores all data or specified data stored in
the disk of the disk drive into that one of the logically sorted
storage areas in the flash memory means, which has the
associated function.

The flash memory means has the entire storage area
logically sorted into a first storage area for permanently
storing data, a second storage area which can be associated
with the host system and is used for high-speed access, and
a third storage area for use as a non-volatile cache memory
area. When the control means accesses the flash memory
means according to an instnlction from the host system, the
control means individually manages the first storage area,
second storage area and third storage area. The data stored
in the disk drive is read out and stored in the first and third

storage areas, and the data transferred from the host system
is stored in the second storage area.

According to this system, for example, control informa-
tion necessary for starting an application program (AP) and
an OS, which are frequently used, is stored in the first

Ex. 2013

Page 65 of 145

!62

Ex. 2013
Page 66 of 145

. 10 data storage system, as will be described below.

For example, when information {or control information in
the present invention! necessary for starting up the OS or a

freguently used AP is to be stored in the storage area in the

flash memory, it is desirable that the OS and AP are

L 15 permanently stored in the flash memory since the freguency
of use of both programs is high. On the other hand, for

example, when a word search utility program is run for a

number of files and the HDD is accessed, it is not important,

in general, to permanently store the file accessed from the

i 20 HDD in the cache memory area of the flash memory. Since
such an accessed file is frequently updated, there is no need

to permanently store it.

Besides, when the computer system performs a swapping

operation, it is possible to store a swap file in the fiash
‘ i .

II‘III Ilu‘l I'III I'I‘I' ‘I I‘ ...I
'25

Ex. 2013

Page 66 of 145

!63

Ex. 2013
Page 67 of 145

5,860,083

5

In the present invention, it is assumed that the entire
storage area of the flash memory unit 1 is logically divided
into permanent storage area 10A, high—speed access area
10B and non—volatile cache area 10C and the divided areas

are managed. The controller 3 manages the storage areas
10A to 10C of the flash memory unit 1 by using a manage-
ment information table 3A. The management information
table 3A is stored, for example, in the non-volatile cache
area 10C of flash memory unit 1.

The first embodiment relates to a system wherein the
permanent storage area 10A of flash memory unit 1 is used
as a cache memory area. In this embodiment, it is supposed
that the user desires to start a frequently used application
program (AP) at high speed at all times.

The user starts a data storage utility program of the cache
system controller 3 via a user interface provided in the host
system 4 (step S1). The data storage utility prograln reads
specified data from the HDD 2 and stores the read data in a
specified storage area in the flash memory unit 1. In this
case, it is assumed that the user sets the permanent storage
area 10A in the flash memory unit 1 as the data storage area,
at the time of instructing the start of the data storage utility
program (step 52).

Then, the user instructs the host system 4 to start the AP
(step S3). The host system 4, upon receiving the AP start
instruction, issues a read command to the controller 3 in
order to read control information necessary for the start of
the AP from the HDD 2.

The controller 3 controls the IIDD 2, reads out the control
information necessary for the start of the AP and transfers
the read—out control information to the host system 4 (step
S4). At this time, according to the started-up data storage
utility program, the controller 3 stores the AP control infor-
mation read out from the HDD 2 in the permanent storage
area 10A of flash memory unit 1 (step SS). When the AP has
been prepared to start, the data storage utility program is
stopped by the instruction from the user (“YES” in step 36;
step S7). Through these operations, the control information
necessary for starting the AP is stored in the permanent
storage area 10A in the flash memory unit 1.

In this case, the control information is stored in the
permanent storage area 10A in flash memory unit 1 under the
file name designated by the user. Information for correlating
the file name and the AP and information of other comment

is recorded on the management information table 3A by the
data storage utility program. The user inputs the file name to
the controller 3 Via the user interface, thereby referring to the
file (the control information of the AP in this case) stored in
the permanent storage area 10A. The user can delete the file,
if unnecessary. In other words, the control information
necessary for starting the AP is permanently stored in the
permanent storage area 10A in the flash memory unit 1 as
one file, until the user instructs the deletion of the file.

If the user instructs the start of the same AP Via the user

interface, the host system 4 issues the read command, as
described above, to read from the HDD 2 the control
information necessary for starting the AP (“‘YES” in step
S8). Upon receiving the read command, the controller 3
determines whether the control information to be accessed is

stored in the flash memory unit 1 by using the management
information table 3A. Since the AP control information is

stored in the permanent storage area 10A, the cache memory
area is successfully accessed. Accordingly, the controller 3
reads out the AP control information from the permanent
storage area 10A of flash memory unit 1, without accessing
the HDD 2, and transfers the read-out control information to
the host system 4 (step S9). The host system 4 starts the AP

10

15

25

30

m an

40

Ln an

60

14

6

designated by the user on the basis of the transferred AP
control information (step S10).

By the above-described cache system, the control infor—
mation of the frequently used AP designated by the user is
read out from the HDD 2 and stored in the permanent
storage area 10A in the flash memory unit 1 used as the
cache memory area. Accordingly, when the AP is to he
started next time, the AP control information can be read out
quickly from the permanent storage area 10A used as cache
memory area, and not from the HDD 2. Thereby, the host
system 4 can quickly acquire the control information at the
time of starting the AP. As a result, the AP can be quickly
started. Since the AP control information is permanently
stored in the permanent storage area 10A until the user
instructs the deletion of the control information, as described
above, the fiequently used AP can be started quickly at all
times.

(First Modification of the First Embodiment)
FIG. 4 is a flow chart illustrating a first modification of the

first embodiment. This modification relates to a system
having a mode (data storage mode) for storing the control
information necessary for starting the OS in the permanent
storage area 10A of flash memory unit 1, for example, when
the ()S of the host system 4 is started in a series ofoperations
from the turn-on of power to the completion of the starting
operation.

When the system is switched on and the user sets the data
storage mode via the user interface, the controller 3 stores
the information representing the data storage mode in the
permanent storage area 10A in flash memory unit 1 (steps
$11 to $13).

After the power is turned off and then turned on again, the
controller 3 starts the above-mentioned data storage utility
program on the basis of the information of the set data
storage mode (“YES” in step 514; step 815). According to
the data storage utility program, the control information,
which is pre—stored in the HDD 2 and necessary for starting
the OS, is read out and stored in the permanent storage area
10A (steps 516 and S17). The controller 3 transfers to the
host system 4 the control information necessary for starting
the OS read out from the HDD 2. Based on the control

information, the host system 4 starts the OS. After the
preparation for starting the OS is completed, the data storage
utility program is stopped (“YES” in step 818; step 819).

According to this system, when the OS is automatically
started by the control information read out from the IIDD 2
at the time of tuming-on of power, the control information
is stored in the permanent storage area 10Aused as the cache
memory area for the HDD 2. Accordingly, when the OS is
started at the time of the next turning-on of power, the
control information necessary for starting the ()S is read out
not from the HDD 2 but from the permanent storage area
10A or cache memory area, and the read-out control infor-
mation is transferred to the host system 4. Thus, the control
information can be accessed from the permanent storage
area 10A in the flash memory unit 1 having a higher access
speed than the HDD 2. As a result, the OS can be started at
higher speed.

Like the AP control information, the OS control informa-
tion may be stored as one file in the permanent storage area
10A. Thereby, the user can refer to, or delete, the OS control
information on an as-needed basis. For example, at the time
of shipment of the personal computer, if the OS is pre-
installed in the flash memory unit 1 functionng as cache
memory area, the user can delete the OS control information
based on the user’s judgment. Specifically, the OS control
information may be deleted by a user who is used to starting

Ex. 2013

Page 67 of 145

!64

Ex. 2013
Page 68 of 145

.1ng preparat1on lor start1ng t!e I! 1s complete! , t!e !ata storage
ent utility program is stopped (“YES” in step S18; step S19).

the 45 According to this system, when the OS is automatically

2: to started by the control information read out from the HDD 2

the at the time of turning-on of power, the control information

1 in is stored in the permanent storage area 10A used as the cache

ile, memory area for the HDD 2. Accordingly, when the OS is

ion 50 started at the time of the next turning-on of power2 the

the control information necessary for starting the OS is read out

, as not from the HDD 2 but from the permanent storage area

10A or cache memory area, and the read-out control infor-

Lser mation is transferred to the host system 4. Thus, the control

. as 55 information can be accessed from the permanent storage

trol area 10A in the flash memory unit 1 having a higher access

Ltep speed than the HDD 2. As a result, the OS can be started at

r 3 higher speed.

I :

Ex. 2013

Page 68 of 145

!65

Ex. 2013
Page 69 of 145

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

APPLE. INC,

Petitioner

V .

REALTIME DATA LLC.

Patent Owner

Case [PR2016-01365

Patent 7,181,608

EXPERT DECLARATION OF DR. GODMAR BACK IN SUPPORT OF

THE PATENT OWN ER’S RESPONSE

Ex. 2003

Page 1 of 52

Ex. 2013

Page 69 of 145

!66

Ex. 2013
Page 70 of 145

user input.42 Regardless, like the first technique, data is saved to non-volatile cache

area 10C.43

62. As such, Dr. Neuhauser alleges that the one-time act of “storing” or

“permanently storing” data in a particular location corresponds to the “preloading”

claimed by the ’608 Patent. This interpretation of “preloading,” however, is

unreasonably broad and contrary to the ‘608 Patent and its file history. As

explained in detail below, the ’608 Patent discloses that “preloading” may be

performed in volatile memory devices, which is expressly foreclosed by

Sukegawa, which requires storage in non-volatile flash memory to retain the data

even when the system is turned off.

63. As described above in Section Vl.B., “preloading” means

“transferring data from storage to memory in anticipation of immediate or near-in-

time use.” Thus, a POSITA would have understood that “storing” data in a

particular location, as Sukegawa does, cannot comprise “preloading.” The ’608

Patent explains that “storing” is different from “loading,” and “storing” is different

from “preloading” (which is one form of “loading”). As one example, the

specification explains that “[m]ass storage devices (such as a ‘hard disk’) typically

42 See Ex. 1003, Neuhauser Dec. at 111] 110, 114-115; Petition at 3 1-32. See also Ex.

1005, Sukegawa, 7:28-55.

43 See Petition at 31-32; Ex. 1005, Sukegawa at 7:17-65.

26

Ex. 2003

Page 29 of 52

Ex. 2013

Page 70 of 145

!67

Ex. 2013
Page 71 of 145

area 10C .43

62. As such, Dr. Neuhauser alleges that the one-time act of “storing” or

“permanently storing” data in a particular location corresponds to the “preloading”

claimed by the ’608 Patent. This interpretation of “preloading,” however, is

unreasonably broad and contrary to the ’608 Patent and its file history. As

explained in detail below, the ’608 Patent discloses that “preloading” may be

performed in volatile memory devices, which is expressly foreclosed by

Sukegawa, which requires storage in non-volatile flash memory to retain the data

even when the system is tumed off.

63. As described above in Section Vl.B., “preloading” means

“transferring data from storage to memory in anticipation of immediate or near-in-

Ex. 2013

Page 71 of 145

“preloading…prior to completion of
initialization of the central processing

unit”

!68

Ex. 2013
Page 72 of 145

!69

Ex. 2013
Page 73 of 145

United States Patent

um um Patent No; US 7.181.608 HZ

Fallon et at. :45; Date of Patent; Feb. 20. 2007

r54, 8Y3? It‘d-'4 N‘vl) ‘III‘III()I).‘1 I'D" -i .‘tn:.TT' 3. ll 12ml \‘vulupu. u .:I
“(H liRATl‘ll) l‘)‘\[ll\(; ”I" ()I’I‘ZR {I l“; 4 {"4174 \ 7 I‘m; \Vulcrgwn cl at
SVSI’EMS AND ,\|'Pl.|('\l'l()\ PR1X£RAMS 4 “43‘" -“ z "”9“ ”M8 6' J'

'75' Invent-in lamci J Fullnn. .\nii-mk. NY (Hg); IL “mum“!
John Huck. ()L'L’Jlllsldg‘. N3 HIS): Paul lURl'IUN‘ l"\|l-N| IXX'I ’Mla‘s I'\
F. Pickcl. 1'!th 2c. NY UN): Sir hen _
J. Mclierlaln. ’13:“ Yer NY (is? ”P “3'5"“ "" 3"”:

It'i-nmmul)
17.1" Asmgncc Rultimc Dal: l.l.(. he“ \‘uxk. N\

”is, ()llll-R l’l'lll Ill-\lIUNS

I ’ ; Xuljci: Subiu‘l hum) ducluuucr. [lick-nu ul'lliin $224an “Us An" ”00‘ “h ' I)“ mi L "7“ 'D' W
phlz'nl IS umcmlnl of .iduixlcd llllilcr 5“
ll.\' (‘ IFJilu hj. 21'“ clay» I('ivnllnnoji

'3] “ \ppl No “OFF/0.267 I‘rmmri Ifmuunyr llwmas l ccLuixtum Iiiuminw Sun-sh K Sun‘uumisln

'3‘», l ilnj h.“ I. 200] 174) .“IUNIUI :lgml. or Ilrm I lbll S Nani: H' [Irl’Ul‘ ul
Rows & t-m)‘ l LP

”:5) Prlur Pnbllnxllun Data
157) ”15 TRAC]

LS Itlll'tltJh‘US-l ‘\l Jun. (L 2002

S) stun“ and mclhmdv. an: pn‘widcd tnv ucceluruiu’l lnruling
Rent“! ['5'- ‘PPHWHW "“8 nfupcnilmy “(mm and application [migraine upon wsium

int). l’nuvisinnal applicmmn Nu ‘JJ‘INHIJ, liltJnii l’L-h. b‘""_“r “PP““W’” WWW“ ‘1“ "HF IDWL'I- J lehtkl It”
I. 2““, prim-Ming .iu‘clemlhl lundlllg H! on ripe-mung :ysmm

lllCllldCS mmmuining u list iul' bunl L‘JL-J uscd fur hunting a
'5' , lm. “I. amipulcr syslcm. prelimdng 1hr: brim dam urxin iniliahm-

(ma; 9/34 (2006.4!) nun ul'ihc compmcr >}‘>Iclll. dlld wrwcmg ruqucm ll Ir bun!
”(l/,1.- rm”, 420mg,“ dam [mm the crvmplilcr {mun ming xhv prclmnw bum
6'06} ”/00 {NHRNH dam. Ilw hm! data may Culllpn'u'.‘ pnigmm mdu .hsncmlud

'52,, LS. (1' . ‘ . . 7”,” 7|1v'l‘ 7H4” will; an ”pg-ruling >_\ 51cm Ll llic mmpmcx sznluuL mi appli-
mm Held "f ('lnsfilflrutlun Sea-VII , ' 711,2. culii‘n pn'gmm. mid [I nrniimmihmi llwruul llw hum dam i»

7” l. NM; 7' l ‘ l'Ml. llK. ll 1 i'c1rlc\ul lrum .I himl'dm icc Jilin! nhllL‘d m ti cache munmy
her application lilu l'nr “”va scurth liislun dew-cc llic hnul (Lulu is .slnrcd in u cmnprmscd lnmml on [lu-hum deuce nnu Ihi: prclimlul hm: iluu i». iIccun‘iprmsL-d

i5!» References ('ited pin-i In uziiNinllnm lllL' pnlluxlcd knot Jam lu ihc n'quml-

H St P.\I'[~‘N'l ”(XTMlENI'S

'I‘IET'HK \ ll I‘JT'k Fwy! al

 DATA

COMPRESSlON n CACHE

ENGINE III
BUS INTERFACE

I.

 MAIN OH EXPANSlON COMPUTER BUS

mg _\'\h.‘1']\

‘l I‘lulnis. U "ranting .‘IIL‘L'ls

 I

l6

APPLE 1001

Ex. 2013

Page 73 of 145

!70

Ex. 2013
Page 74 of 145

US 7,181,608 B2

27
set of decoders, or a sequential set of decoders correspond-
ing to the extracted compression type descriptor. The decod—
ers D1 . . . Dn may include those lossless encoding tech-
niques currently well known within the art, including: run
length, Huffman, Lempel-Ziv Dictionary Compression,
arithmetic coding, data compaction, and data null suppres-
sion. Decoding techniques are selected based upon their
ability to elIectively decode the various dilIerent types of
encoded input data generated by the data compression
systems described above or originating from any other
desired source.

As with the data compression systems discussed in US.
Pat. No. 6,195,024, the decoder module 165 may include
multiple decoders of the same type applied in parallel so as
to reduce the data decoding time. An output data buffer or
cache 170 may be included for bulTering the decoded data
block output from the decoder module 165. The output
buffer 70 then provides data to the output data stream. It is
to be appreciated by those skilled in the art that the data
compression system 180 may also include an input data
counter and output data counter operatively coupled to the
input and output, respectively, ofthe decoder module 165. In
this manner, the compressed and corresponding decom—
pressed data block may be counted to ensure that suflicicnt
decompression is obtained for the input data block.

Again, it is to be understood that the embodiment of the
data decompression system 180 ofFlG. 10 is exemplary of
a preferred decompression system and method which may
be implemented in the present invention, and that other data
decompression systems and methods known to those skilled
in the art may be employed for providing accelerated data
retrieval in accordance with the teachings herein.

Although illustrative embodiments have been described
herein with reference to the accompanying drawings, it is to
be understood that the present invention is not limited to
those precise embodiments, and that various other changes
and modifications may be afiected therein by one skilled in
the art without departing from the scope or spirit of the
invention. All such changes and modifications are intended
to be included within the scope of the invention as defined
by the appended claims.

What is claimed is:

1. A method for providing accelerated loading of an
operating system, comprising the steps of:

maintaining a list ofboot data used for booting a computer
system;

initializing a central processing unit of the computer
system;

preloading the boot data into a cache memory prior to
completion of initialization of the central processing
unit of the computer system, wherein preloading the
boot data comprises accessing compressed boot data
from a boot device; and

servicing requests for boot data from the computer system
using the preloaded boot data after completion of
initialization of the central processing unit of the com-
puter system, wherein servicing requests comprises
accessing compressed boot data from the cache and
decompressing the compressed boot data at a rate that
increases the effective access rate of the cache.

2. The method of claim 1, wherein the boot data com-
prises program code associated with one of an operating
system of the computer system, an application program, and
a combination thereof.

3. The method of claim 1, wherein the preloading is
performed by a data storage controller connected to the boot
device.

(1:

10

15

3O

40

50

6O

28
4. The method of claim 1, further comprising updating the

list of hoot data.

5. The method of claim 4, wherein the step of updating
comprises adding to the list any boot data requested by the
computer system not previously stored in the list.

6. The method of claim 4, wherein the step of updating
comprises removing from the list any boot data previously
stored in the list and not requested by the computer system.

7. A system for providing accelerated loading of an
operating system of a host system comprising:

a digital signal processor (DSl’) or controller;
a cache memory device; and
a non-volatile memory device, for storing logic code

associated with the D81’ or controller, wherein the logic
code comprises instructions executable by the DSP or
controller for maintaining a list of boot data used for
booting the host system, for preloading the compressed
boot data into the cache memory device prior to
completion of initialization of the central processing
unit of the 110st system, and for decompressing the
preloaded compressed boot data, at a rate that increases
the efi'ective access rate ofthe cache, to service requests
for boot data from the host system after completion of
initialization of the central processing unit of the host
system.

8. The system of claim 7, wherein the logic code in the
non-volatile memory device further comprises program
instructions executable by the DSP or controller for main-
taining a list of application data associated with an applica-
tion program; preloading the application data upon launch-
ing the application program. and servicing requests for the
application data from the host system using the preloaded
application data.

9. The method of claim 1, further comprising:
maintaining a list of application data associated with an

application program;
preloading the application data into the cache memory

prior to completion of initialization of the central
processing unit of the computer system, wherein pre-
loading the application data comprises accessing com-
pressed application data from a boot device; and

servicing requests for application data from the computer
system using the preloaded application data after
completion of initialization of the central processing
unit of the computer system, wherein servicing requests
comprises accessing compressed application data from
the cache and decompressing the compressed applica-
tion data.

10. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data and the data com-
pression engine provides the compressed boot data to the
boot device.

11. The method of claim 1, wherein the decompressing is
provided by a data compression engine.

12. The method of claim 1, further comprising a data
compression engine for compressing, wherein the compress-
ing provides the compressed boot data, the data compression
engine provides the compressed boot data to the boot device,
and the decompressing is provided by the data compression
engine.

13. The method of claim 1, wherein the compressed boot
data is accessed via direct memory access.

14. The method of claim 1, wherein l—lufi'man encoding is
utilized to provide the compressed boot data.

15. The method of claim 1, wherein Lempel-Ziv encoding
is utilized to provide the compressed boot data.

30

Ex. 2013

Page 74 of 145

!71

Ex. 2013
Page 75 of 145

a 1s c a1me 1s: serv1c1n

1. A method for providing accelerated loading of an syste:

operating system2 comprising the steps of: com}:
maintaining a list ofboot data used for booting a computer 45 unit c

system; com}:

initializing a central processing unit of the computer the c;
system; tion (

preloading the boot data into a cache memory prior to 10. The

completion of initialization of the central processing 50 compressi

u_nit of the computer system wherein preloading the ing provic
b—oot data comprises accessing compressed boot data pression e
from a boot device; and boot devic

servicing requests for boot data from the computer system 11. The

using the preloaded boot data after completion of 55 providedl

initialization of the central processing unit of the com- 12. The

puter system; wherein servicing requests comprises compressi

accessing compressed boot data from the cache and ing provid

decompressing the compressed boot data at a rate that engine prc
increases the effective access rate of the cache. 60 and the de

2. The method of claim 1; wherein the boot data com- engine.

Ex. 2013

Page 75 of 145

!72

Ex. 2013
Page 76 of 145

US 7,181,608 B2

3
quently compared. This tends to decrease data bandwidth
from even that of a single comparable disk drive. In systems
that oJTer hot swap capability, the failed drive is removed and
a replacement drive is inserted. The data on the failed drive
is then copied in the background while the entire system
continues to operate in a performance degraded but fully
operational mode. Once the data rebuild is complete, normal
operation resumes. Hence, another problem with RAID
systems is the high cost of increased reliability and associ—
ated decrease in performance.

RAID Level 5 employs disk data striping and parity error
detection to increase both data bandwidth and reliability
simultaneously. A minimum of three disk drives is required
for this technique. In the event of a single disk drive failure,
that drive may be rebuilt from parity and other data encoded
on disk remaining disk drives. In systems that offer hot swap
capability, the failed drive is removed and a replacement
drive is inserted. The data on the failed drive is then rebuilt

in the background while the entire system continues to
operate in a performance degraded but fully operational
mode. Once the data rebuild is complete, normal operationresumes.

Thus another problem with redundant modem mass stor-
age devices is the degradation of data bandwidth when a
storage device fails, Additional problems with bandwidth
limitations and reliability similarly occur within the art by
all other forms of sequential, pseudo-random, and random
access mass storage devices. These and other limitations
within the current art are addressed by the present invention.

SUMMARY OF THE TNVENTION

The present invention is directed to systems and methods
for providing accelerated loading of operating system and
application programs upon system boot or application
launch and, more particularly, to data storage controllers
employing lossless and/or lossy data compression and
decompression to provide accelerated loading of operating
systems and application programs.

In one aspect of the present invention, a method for
providing accelerated loading of an operating system com—
prises the steps of: maintaining, a list of boot data used for
booting a computer system; preloading the boot data upon
initialization of the computer system; and servicing requests
for boot data from the computer system using the preloaded
boot data. The boot data may comprise program code
associated with an operating system ofthe computer system,
am application program, and a combination thereof. In a
preferred embodiment, the boot data is retrieved from a boot
device and stored in a cache memory device.

In another aspect, the method for accelerated loading of
am operating system comprises updating the list of boot data
during the boot process. The step of updating comprises
adding to the list any boot data requested by the computer
system not previously stored in the list and/or removing
from the list any boot data previously stored in the list and
not requested by the computer system.

In yet another aspect, the boot data is stored in a com-
pressed format on the boot device and the preloaded boot
data is decompressed prior to transmitting the preloaded
boot data to the requesting system.

In another aspect, a method for providing accelerated
launching of an application program comprises the steps of:
maintaining a list of application data associated with an
application program; preloading the application data upon

10

15

30

35

40

45

50

55

60

4

launching the application progrzun; and servicing requests
for application data from a computer system using the
preloaded application data.

In yet another aspect, a boot device controller for provid—
ing accelerated loading of an operating system of a host
system comprises: a digital signal processor (DSP); a pro—
granmiable logic device, wherein the programmable logic
device is programmed by the digital signal processor to (i)
instantiate a first interface for operatively interfacing the
boot device controller to a boot device and to (ii) instantiate
a second interface for operatively interfacing the boot device
controller to the host system; and a non—volatile memory
device, for storing logic code associated with the DSP, the
first interface and the second interface, wherein the logic
code comprises instructions executable by the DSP for
maintaining a list of boot data used for booting the host
system, preloading the boot data upon initialization of the
host system, and servicing requests for boot data from the
host system using the preloaded boot data, The boot device
controller further includes a cache memory device for stor—
ing the preloaded boot data.

The present invention is realized due to recent improve—
ments in processing speed, inclusive of dedicated analog and
digital hardware circuits, central processing units, (and any
hybrid combinations thereof). that. coupled with advanced
data compression and decompression algorithms are
enabling of ultra high bandwidth data compression and
decompression methods that enable improved data storage
and retrieval bandwidth

These and other aspects, features and advantages, of the
present invention will become apparent from the following
detailed description of preferred embodiments that is to be
read in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

‘ G. 1 is a block diagram of a data storage controller
according to one embodiment of the present invention;

‘ G. 2 is a block diagram of a data storage controller
according to another embodiment of the present invention;

* G. 3 is a block diagram of a data storage controller
according to another embodiment of the present invention;

i G. 4 is a block diagram of a data storage controller
according to another embodiment of the present invention;

i G. 5 is a block diagram of a data storage controller
according to another embodiment of the present invention;

4' GS. Ga and 6b comprise a flow diagram of a method for
ini ializing a data storage controller according to one aspect
of the present invention;

: GS. 7a and 7b comprise a flow diagram of a method for
providing accelerated loading of an operating system and/or
application programs upon system boot, according to one
aspect of the present invention;

* GS. 8a and 8b comprise a flow diagram of a method for
providing accelerated loading of application programs
according to one aspect of the present invention;

i G. 9 is a diagram of an exemplary data compression
system that may be employed in a data storage controller
according to the present invention: and

4' G. 10 is a diagram of an exemplary data decompression
system that may be employed in a data storage controller
according to the present invention.

18

Ex. 2013

Page 76 of 145

!73

Ex. 2013
Page 77 of 145

 I" I"'I"' I' II'I'I‘I ""u ‘I III'LI II": 1.

systems and application programs. 40

In one aspect of the present invention, a method for

providing accelerated loading of an operating system com-

prises the steps of: maintaining a list of boot data used for

booting a computer system; preloading the boot data upon

initialization of the computer system; and servicing requests

for boot data from the computer system using the preloaded

boot data. The boot data may comprise program code

associated with an operating system ofthe computer system,

an application program, and a combination thereof. In a

preferred embodiment, the boot data is retrieved from a boot

device and stored in a cache memory device.

45

50

In another aspect, the method for accelerated loading of

an operating system comprises updating the list of boot data

Ex. 2013

Page 77 of 145

!74

Ex. 2013
Page 78 of 145

 ev1ce 1s programme yt e 1g1ta s1gna processor to 1

instantiate a first interface for operatively interfacing the

boot device controller to a boot device and to (ii) instantiate

a second interface for operatively interfacing the boot device

controller to the host system; and a non-volatile memory

device, for storing logic code associated with the DSP, the

_5 first interface and the second interface, wherein the logic

code comprises instructions executable by the DSP for

maintaining a list of boot data used for booting the host

system, preloading the boot data upon initialization of the

host system, and servicing requests for boot data from the

30 host system using the preloaded boot data. The boot device

controller further includes a cache memory device for stor-

ing the preloaded boot data.

.0

Ex. 2013

Page 78 of 145

!75

Ex. 2013
Page 79 of 145

U.S. Patent Feb. 20, 2007 Shaw 9 or I3 US 7.181.608 B:

A
75

POWER-UP

0R SYSTEM

RESET
YES

76

77 RETRIEVE 8. READ LIST

PREFETCH DATA BLOCKS

8 SPECIFIED IN LIST

COMMENCE BOOT PROCESS

RECEIVE READ REQUEST

FOR BOOT DATA

7

79

REQUESTED
BOOT DATA

PRELOADED
l’

SERVICE REQUEST USING

PRELOADED BOOT DATA

- 84

N0

RETRIEVE REQUESTED BOOT

DATA FROM BOOT DEVICE

3 ouame BOOT
9

UPDATE LIST TO INCLUDE “03555
BOOT DATA NOT PREVIOUSLY

SPECIFIED IN LIST

UPDATE LIST TO EXCLUDE

BOOT DATA NOT PREVIOUSLY
SPECIFIED IN LIST

FIG. 7b

12

Ex. 2013

Page 79 of 145

!76

Ex. 2013
Page 80 of 145

Then. up_on each subsgqucnl Eower—mflreset ('atlinnative

result in step 75). the data storage (:mtthcr would rctricvc

3113 rcaa the stored list (step 76) and proceed to preload the
bout data 5 cilied un the lisl (i.c.. the data associated with

76 YES

the ex Jcled data rt. nests) into the onhnard cache memory

77 RETRIEVE & READ L‘ST gala-p 77). II is IL) c uudcraluud llml 11w depending nu the
rcsoumcs of the given system (cg. mcmmy. cm). the

preloudiug process may be cmnpleted prior [0 commence-

PREFETCH DATA BLOCKS ment ot‘thc boot pmcess. or mnfinued after the boot process

SPEC|F|ED 'N LIST bcgims (in which case boating and pneloading are performed
78 simultaneously).

COMMENCE BOOT PROCESS

79

RECEIVE READ REQUEST

FOR BOOT DATA

!77

Ex. 2013
Page 81 of 145

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

APPLE. INC,

Petitioner

V .

REALTIME DATA LLC.

Patent Owner

Case [PR2016-01365

Patent 7,181,608

EXPERT DECLARATION OF DR. GODMAR BACK IN SUPPORT OF

THE PATENT OWN ER’S RESPONSE

Ex. 2003

Page 1 of 52

Ex. 2013

Page 81 of 145

!78

Ex. 2013
Page 82 of 145

volt levels, converging platform clocks. and other tests. Specifically, claims I and

22 show that the “initializing" and “preloading prior to completion of initialization

of the central processing unit" elements must be performed during the same

initialization. A POSITA would have understood that the use of the definite article

”the" in the term “the central processing unit" indicates that the term has an

antecedent basis. The antecedent basis for “the central processing unit" can be

found in “initializing a central processing unit of the computer system." As such,

a POSITA would have understood that “preloading prior to completion of

initialization of the central processing unit” finds its antecedent basis in the step

“initializing a central processing unit." Therefore. “preloading prior to completion

of initialization of the central processing unit" and “initializing a central processing

unit“ must occur during the same initialization process—not two or more separate

processes.

77. Moreover. the “initialization“ process referred to in “prior to

completion of initialization of the central processing unit of the computer system"

must be part of the same “initializing" process referred to in “initializing a central

processing unit of the computer system“ when read in the context of the claims.

The only reasonable interpretation from the perspective of a POSlTA is that the

plain language of the "initializing" and “preloading...prior to completion of

initialization" steps is that these steps must occur during the same initialization.

37

Ex. 2003
Dana An n‘ :9

Ex. 2013

Page 82 of 145

!79

Ex. 2013
Page 83 of 145

77. Moreover, the “initialization” process referred to in "prior to

completion of initialization of the central processing unit of the computer system”

must be part of the same “initializing" process referred to in “initializing a central

processing unit of the computer system" when read in the context of the claims.

The only reasonable interpretation from the perspective of a POSITA is that the

plain language of the “initializing” and “preloading...prior to completion of

initialization” steps is that these steps must occur during the same initialization.

This is confirmed by the claims. which discuss only a single initialization

identified in the claims.

78. This requirement is also confirmed by the specification of the '608

Ex. 2013

Page 83 of 145

!80

Ex. 2013
Page 84 of 145

in one “turning-on of power of the host system 4." Then, when addressing

Sukegawa’s disclosure of “prior to completion of initialization of the central

processing unit of the computer system," Dr. Neuhauser points to an initialization

of the CPU in the “next tum-on of power and initialization of the CPU."75

83. A POSITA would have understood that each power-on cycle is

associated with a different initialization. For example, Sukegawa would have an

initialization that occurs every time the system is powered on. Dr. Neuhauser

confirms this fact when explaining that a “POST” or “Power On Self Test" is

performed as part of the initialization process.76 Therefore, the initialization that

occurs in the first “turning-on of power" when “preloading," (which is simply

storage as explained in Section VllA.) cannot be the same initialization that occurs

in a subsequent “turning—on of power" for the claimed “completion of

initialization."

84. Further, Dr. Neuhauser‘s interpretation of the “preloading...prior to

completion of initialization of the central processing unit" element effectively

stn'ps all meaning out of the phrase “completion of." As explained above, Dr.

Neuhauser alleges that Sukegawa teaches preloading “prior to completion of

initialization" because in Sukegawa, storing of control information “has been

75 Ex. 1003, Neuhauser Dec. atfl l 15; see also Neuhauser Dec. at 111] 225, 238.

76 Ex. 1003, Neuhauser Dec. at 1] 106.

40

Ex. 2003

Page 43 of 52

Ex. 2013

Page 84 of 145

!81

Ex. 2013
Page 85 of 145

of the CPU in the “next tum-on of power and initialization of the CPU.”75

83. A POSITA would have understood that each power-on cycle is

associated with a different initialization. For example, Sukegawa would have an

initialization that occurs every time the system is powered on. Dr. Neuhauser

confirms this fact when explaining that a “POST” or “Power On Self Test” is

performed as part of the initialization process.76 Therefore, the initialization that

occurs in the first “turning-on of power” when “preloading,” (which is simply

storage as explained in Section VIIA.) cannot be the same initialization that occurs

in a subsequent “tuming-on of power” for the claimed “completion of

initialization.”

Ex. 2013

Page 85 of 145

!82

Ex. 2013
Page 86 of 145

United States Patent [19]

Sukegawa

[11] Patent Number: 5,860,083

[45 J Date of Patent: Jan. 12, 1999

[54] DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

[75] Inventor: Hiroshi Sukegawa, Tokyo, Japan

[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki,
Japan

[21] Appl. N0.: 818,983

[22] Filed: Mar. 14, 1997

[30] Foreign Application Priority Data

Nov. 26, 1996 [JP] Japan

[51] Int. Cl.6 G06F 12/08
[52] US. Cl. 711/103; 711/117; 711/171;

711/173

[58] Field of Search 711/103, 113,
711/117, 170, 171, 173

..... 8-314850

[56] References Cited
US. PATENT DOCUMENTS

5,175,842 12/1992 Totani 711/161
5,371,876 12/1994 Ewertz et al. 711/159
5,437,018 7/1995 Kobayashi et al. 395/652
5,535,357 7/1996 Moran et a1. 711/103

.. 365/200

 5,644,539 7/1997 Yamagami et al. .. .
5.701,492 12/1997 Wadsworth et al. . 395/712
5,745,418 4/1998 Ma et a1. 365/18533

5,778,418 7/1998 Auclair et al. 711/101

FOREIGN PATENT DOCUMENTS

0 706 135 4/1996 European Pat. Off. .
5—11933 1/1993 Japan .
8—63395 3/1996 Japan .

8-115241 5/1996 Japan .

Primary Examiner—Tod R. Swarm
Assistant Examiner—Conley D. King, Jr.
Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, LLP.

57] ABSTRACT

In a data storage system using a flash memory unit and an
HDD, the storage area of the flash memory unit is logically
divided into a permanent storage area, a non-volatile cache
area, Which are used as cache memory areas of the HDD,
and a high—speed access area. These divided areas are
individually managed. The permanent storage area stores
data which is used frequently for a relatively long time
period. The non-volatile cache area is used as an ordinary
cache memory area in which data, which is updated rela-
tively frequently, is stored. The high-speed access area is a
storage area to be used by, eg, an operating system (OS) of
a host system, For example, a swap file, which needs to be
accessed at high speed, is shifted into the high-speed accessarea.

28 Claims, 10 Drawing Sheets

DEVICE

DRl VER

PERMANENT

STORAGE AREA

H I GH-SPEED

ACCESS AREA

NON—VOLAT | LE

CACHE AREA

HOST

SYSTEM

CACHE
SYSTEM

CONTROLLER

MANAGEMENT

I NFORMAT | ON

TABLE

10C

APPLE 1005

Ex. 2013

Page 86 of 145

!83

Ex. 2013
Page 87 of 145

5,860,083

5

In the present invention, it is assumed that the entire
storage area of the flash memory unit 1 is logically divided
into permanent storage area 10A, high—speed access area
10B and non—volatile cache area 10C and the divided areas

are managed. The controller 3 manages the storage areas
10A to 10C of the flash memory unit 1 by using a manage-
ment information table 3A. The management information
table 3A is stored, for example, in the non-volatile cache
area 10C of flash memory unit 1.

The first embodiment relates to a system wherein the
permanent storage area 10A of flash memory unit 1 is used
as a cache memory area. In this embodiment, it is supposed
that the user desires to start a frequently used application
program (AP) at high speed at all times.

The user starts a data storage utility program of the cache
system controller 3 via a user interface provided in the host
system 4 (step S1). The data storage utility prograln reads
specified data from the HDD 2 and stores the read data in a
specified storage area in the flash memory unit 1. In this
case, it is assumed that the user sets the permanent storage
area 10A in the flash memory unit 1 as the data storage area,
at the time of instructing the start of the data storage utility
program (step 52).

Then, the user instructs the host system 4 to start the AP
(step S3). The host system 4, upon receiving the AP start
instruction, issues a read command to the controller 3 in
order to read control information necessary for the start of
the AP from the HDD 2.

The controller 3 controls the IIDD 2, reads out the control
information necessary for the start of the AP and transfers
the read—out control information to the host system 4 (step
S4). At this time, according to the started-up data storage
utility program, the controller 3 stores the AP control infor-
mation read out from the HDD 2 in the permanent storage
area 10A of flash memory unit 1 (step SS). When the AP has
been prepared to start, the data storage utility program is
stopped by the instruction from the user (“YES” in step 36;
step S7). Through these operations, the control information
necessary for starting the AP is stored in the permanent
storage area 10A in the flash memory unit 1.

In this case, the control information is stored in the
permanent storage area 10A in flash memory unit 1 under the
file name designated by the user. Information for correlating
the file name and the AP and information of other comment

is recorded on the management information table 3A by the
data storage utility program. The user inputs the file name to
the controller 3 Via the user interface, thereby referring to the
file (the control information of the AP in this case) stored in
the permanent storage area 10A. The user can delete the file,
if unnecessary. In other words, the control information
necessary for starting the AP is permanently stored in the
permanent storage area 10A in the flash memory unit 1 as
one file, until the user instructs the deletion of the file.

If the user instructs the start of the same AP Via the user

interface, the host system 4 issues the read command, as
described above, to read from the HDD 2 the control
information necessary for starting the AP (“‘YES” in step
S8). Upon receiving the read command, the controller 3
determines whether the control information to be accessed is

stored in the flash memory unit 1 by using the management
information table 3A. Since the AP control information is

stored in the permanent storage area 10A, the cache memory
area is successfully accessed. Accordingly, the controller 3
reads out the AP control information from the permanent
storage area 10A of flash memory unit 1, without accessing
the HDD 2, and transfers the read-out control information to
the host system 4 (step S9). The host system 4 starts the AP

10

15

25

30

m an

40

Ln an

60

14

6

designated by the user on the basis of the transferred AP
control information (step S10).

By the above-described cache system, the control infor—
mation of the frequently used AP designated by the user is
read out from the HDD 2 and stored in the permanent
storage area 10A in the flash memory unit 1 used as the
cache memory area. Accordingly, when the AP is to he
started next time, the AP control information can be read out
quickly from the permanent storage area 10A used as cache
memory area, and not from the HDD 2. Thereby, the host
system 4 can quickly acquire the control information at the
time of starting the AP. As a result, the AP can be quickly
started. Since the AP control information is permanently
stored in the permanent storage area 10A until the user
instructs the deletion of the control information, as described
above, the fiequently used AP can be started quickly at all
times.

(First Modification of the First Embodiment)
FIG. 4 is a flow chart illustrating a first modification of the

first embodiment. This modification relates to a system
having a mode (data storage mode) for storing the control
information necessary for starting the OS in the permanent
storage area 10A of flash memory unit 1, for example, when
the ()S of the host system 4 is started in a series ofoperations
from the turn-on of power to the completion of the starting
operation.

When the system is switched on and the user sets the data
storage mode via the user interface, the controller 3 stores
the information representing the data storage mode in the
permanent storage area 10A in flash memory unit 1 (steps
$11 to $13).

After the power is turned off and then turned on again, the
controller 3 starts the above-mentioned data storage utility
program on the basis of the information of the set data
storage mode (“YES” in step 514; step 815). According to
the data storage utility program, the control information,
which is pre—stored in the HDD 2 and necessary for starting
the OS, is read out and stored in the permanent storage area
10A (steps 516 and S17). The controller 3 transfers to the
host system 4 the control information necessary for starting
the OS read out from the HDD 2. Based on the control

information, the host system 4 starts the OS. After the
preparation for starting the OS is completed, the data storage
utility program is stopped (“YES” in step 818; step 819).

According to this system, when the OS is automatically
started by the control information read out from the IIDD 2
at the time of tuming-on of power, the control information
is stored in the permanent storage area 10Aused as the cache
memory area for the HDD 2. Accordingly, when the OS is
started at the time of the next turning-on of power, the
control information necessary for starting the ()S is read out
not from the HDD 2 but from the permanent storage area
10A or cache memory area, and the read-out control infor-
mation is transferred to the host system 4. Thus, the control
information can be accessed from the permanent storage
area 10A in the flash memory unit 1 having a higher access
speed than the HDD 2. As a result, the OS can be started at
higher speed.

Like the AP control information, the OS control informa-
tion may be stored as one file in the permanent storage area
10A. Thereby, the user can refer to, or delete, the OS control
information on an as-needed basis. For example, at the time
of shipment of the personal computer, if the OS is pre-
installed in the flash memory unit 1 functionng as cache
memory area, the user can delete the OS control information
based on the user’s judgment. Specifically, the OS control
information may be deleted by a user who is used to starting

Ex. 2013

Page 87 of 145

!84

Ex. 2013
Page 88 of 145

.1ng preparat1on lor start1ng t!e I! 1s complete! , t!e !ata storage
ent utility program is stopped (“YES” in step S18; step S19).

the 45 According to this system, when the OS is automatically

2: to started by the control information read out from the HDD 2

the at the time of turning-on of power, the control information

1 in is stored in the permanent storage area 10A used as the cache

ile, memory area for the HDD 2. Accordingly, when the OS is

ion 50 started at the time of the next turning-on of power, E

the control information necessary for starting the OS is read out

, as not from the HDD 2 but from the permanent storage area

10A or cache memory area, and the read-out control infor-

Lser mation is transferred to the host system 4. Thus, the control

. as 55 information can be accessed from the permanent storage

trol area 10A in the flash memory unit 1 having a higher access

Ltep speed than the HDD 2. As a result, the OS can be started at

r 3 higher speed.

I :

Ex. 2013

Page 88 of 145

!85

Ex. 2013
Page 89 of 145

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent of: James]. Fallon, et al.

US. Patent No.: 7,181,608 Attorney Docket No.: 39521-00231Pl

Issue Date: February 20, 2007 Control No. IPR2016-01365

Appl. Serial No.1 09/776,267

Filing Date: February 2, 200]
Title: SYSTEMS AND METHODS FOR ACCELERATED LOADING

OF OPERATING SYSTEMS AND APPLICATION PROGRAMS

Mail Stop Patent Boa rd

Patent Trial and Appeal Board
US. Patent and Trademark Office

PO. Box 1450

Alexandria, VA 22313-1450

PETITION FOR INTER PAR TES REVIEW OF UNITED STATES PATENT

NO. 7181608 PURSUANT TO 35 U.S.C. 311—319 37 C.F.R. 42
Ex. 2013

Page 89 of 145

!86

Ex. 2013
Page 90 of 145

Attorney Docket No. 39521-0023IP1

lPR ofU.S. Patent No. 7,181,608

OS based on control information that is transferred to it “from the permanent stor-

age area 10A.” Id, 6: 19-58. A POSITA would have understood that, for the host

computer system to start the OS using this transferred control information, its CPU

would first have to be initialized. Dec., HIOO, 106-107 (Mg Collins, 6:24-35,

6:47-52, 6:61—7: 19, 7:56-65, 8:60-65). Thus, Sukegawa renders obvious initializa-

tion of the host computer system‘s CPU. Dec., 11107.

1.3: preloading the boot data into a cache memory prior to completion ofini-

tialization of the central processing unit of the computer system

As explained in Section lV.B., Sukegawa’s system features a flash memory

unit I, a hard disk drive (“HDD”) 2, and a controller 3 that “perfomts data in-

put/output control (including cache operation control) for the flash memory unit 1

and HDD.” Sukegawa, 411-21, 5:1-6: l7, 6: 18-722. The Sukegawa controller 3

performs “a cache function” by “using the flash memory unit I as a cache

memory.” ld., 427-10; Dec., 11109.

Also, as explained in Section lV.B., Sukegawa describes two techniques for

preloading boot data into this cache memory: (1) user selection ofdata to preload,

and (2) automatic selection ofdata to preload. SE Sukegawa, 5:14—6:17, 6:19-58,

7:28-55.

30

Ex. 2013

Page 90 of 145

!87

Ex. 2013
Page 91 of 145

Attorney Docket No. 39521-00231P1

IPR ofUS. Patent No. 7,181,608

For the first preloading technique, Sukegawa explains that a “data storage

utility program of the cache system controller 3” reads user-specified control infor-

mation (boot data as described at 1.1) out ofHDD2 and preloads it “in the perma-

nent storage area 10A” of flash memory unit 1, which has “a higher access speed

than the HDD 2.” Id., 5:10-40, 6:19-58.

For the second preloading technique, Sukegawa describes automated pre-

loading ofcontrol information in flash memory unit 1 ’s non-volatile cache area

10C, which is “used independently by controller 3,” rather than being “used by the

user’s intent.” ld., 7:28-55. lfcontroller 3 determines, in response to a read com—

mand issued by the host system 4 to HDD2, that the data to be accessed is not al-

ready present in areas 10A or 10C, and is not data designated by the user, “the con-

troller 3 stores the data in the non-volatile cache area 10C” Id., 7:40-55. By

preloading control information into areas 10A and 10C of flash memory unit 1,

Sukegawa discloses preloading boot data into a cache memory. Dec., 111]] 1 1-1 14.

This preloading of boot data into flash memory unit 1’s areas 10A and 10C

occurs prior to the next turning-on of power of the host system 4 and, therefore,

prior to an initialization ofthe host computer system’s CPU. Sukegawa, 5:10-12,

6: 19-26, 6:45-54; Dec.,1Hl11 1-114.

For the preloading of control information into area 10A, “the [host com-

puter] system is switched on and the user sets the data storage mode via the user

31

Ex. 2013

Page 91 of 145

!88

Ex. 2013
Page 92 of 145

preloading control information into areas 10A and 10C ol‘llash memory unit 1,

Sukegawa discloses preloading boot data into a cache memory. Dee, “HI 1 1-1 l4.

This preloading ol‘boot data into flash memory unit is areas [GA and 10C

: occurs prior to the next turning-on of power 0 l‘ the host system 4 and. therefore.

prior to an initialization ofthe host computer system‘s CPU. Sukegaxx'a, 5'10-12.
4.,9-6-12 111. _- _ A 3

For the preloading of control information into area 10A. “the [host com-

puter] system is switched on and the user sets the data storage mode via the user

Ex. 2013

Page 92 of 145

!89

‘936 Patent’s Claim 18

Ex. 2013
Page 93 of 145

‘936 Patent’s Claim 18

!90

Ex. 2013
Page 94 of 145

(l2) United States Patent

Fallon et al.

U 500500093632

Hm Patent No;

r45) Date of Patent:

US 8.090.936 82

*Jan. 3. 2012

I133.)

161))

(5|)

lJI
J- ’l:H

lib)

SYS'I‘EMS AND METHODS FOR 1.491169” ‘1 I Wm RFD“ 1“ 3'
ACCELERATEDLOADINGOFOPERA'HXG 41121753 A 5 I‘m “mama

swnus \‘VD wm icmm PROGR-Wls‘ ““33”? " “ "’77 Wm‘ ' ‘ ‘ ‘ ‘ ‘ ' ‘ ‘ *1.0:-1.')3l A IU 19"? Janka-natal.

Inventors" James .I. Fallon Armonk. NY (US); “7’75” A '1 ””3 (‘g‘yvl “1
.lnltn Buck. Oceanside. NY (List. Paul 4'10”“ " H “’8’ “'dc'lm” ‘1 "‘
I". l’ickel. Bctltpagc. NY tUSt. Stephen (C'onlimlfii)

.l. McI-Lrlain. NewYurlx. NY (US) , ‘ ‘ I ’ . ‘ ..,
Amignue; Reultime Dina. l.It(T. Amtttnk. NY (US) H’kLK’N IAILNI m} “MIN l b
Noricc Subject to any dsclaimcr. the term nt'tltis m " ”75“ 3 "”3

patent is extaided or adjusted under ‘5 ((‘nnttnttctlt
U S.('. ISM?» b} 286 days

. (Y1 Hl'K l‘i tl‘ll l('.'\l'||’)NS
Hus patient 1.» Subtm lv u tcmttttul div
cluimcr Millmttn llnwnnt "Image and t ulcu compruxsinn".(ummtcmvnrltl.

\nl 1“. 15‘"an \, Inn IR, l'l'7‘) pp 7)}
_«\ppl. Nu.: Il/55l.204

(Continued)
Filt‘d‘ Oct. I9‘ 2006

I’rmmn‘ lit'umr'nw - Sumsh K Sitiyuwanshi
l’rlctr Puhllcutittn Data ('74) ,-umrm=t; 1:2an or I-Trm §tcmct Kc<<lcr, (iolcktcin

us 2017,!008374t-Al .w t:. 2007 8“ "*‘X I" ~' -C~

Rt-lated [1.5. .\ppl|t'atlttn llama ‘57) "Uh l K“ I

(luttiuualiuu 01‘ application NU 09,770‘2h1 filed “u Syslcnu and methods. are discltmcd Int pint tdmg uccelcrntml
H112. 2001. mm, Put. Nu 7.181.608. luudtugttt upcnittttg symctnatttd:tppltuntiun pmgmttts. Intuit:

_ > . aspect, a method 1hr prnvidtng :tccclcmtcd loading Ilr nn
l‘rm h‘ltmui application No. ntttlSO. l 1-1. 11ch! on I ah. “penning gyglcn) C(tntprisex the “cpsnff maintaining it 1mm"
1 2000 bmt data; [tn-loading the boot data upon initialization ot llic

. computer system: and scmcing rcqucsts for boot data t'mm
lnt.(I‘ the computer svstcm usim the preloaded boot data. In a
((06,: 9/00 (20"01’” preferred entbt'vdiment. the 17001 data is retrieved from a boot
((06,: W3" ‘2("'"_‘“”" device and stated in a nigh: mcuwr} device. In another
('06P ”/2” (2thth1) aspect. :1 method for accelerated loading of an operating
”'5' (‘l- ------------------------------- 7130-- 7l3'l- 7' 1"] '3 systum wntpriscs updating, the list 01‘ bout data durtng tltc
Fk'lll of('Iusulllcullun S'L-urvh , , . 713 '3 huul pmcg—gs. “hen-In updating, u‘rt‘npt‘iam; uddius tn the hut
3"“ “Pl‘lim‘lmn lilo fl" C‘““Fl‘-‘W “"1”“ 1‘15“"?- utly hunt data roqumtcd b} the cmuputcr system nut previ-

ULlai)‘ SlUl’L’d ll] 11): list .mdmr rcutm‘ing from [I]: list an) bowl
Reference» (Tiled dutu previuucdy tilfim‘d ut the list and um [\hluflztlgd by the

7 ‘ , ‘ cuittputcr system.
Il§.l’\H-N11)(XIY\1FNI‘S

,t 3‘}: 1‘31; :\ : 19ml" \Vctnttotl ct al. 24 t Iaints. Lt Drawtng Sheets

1.9.7.;_______..__ t

i 23 13»; .

i D1 ata .

' Comptession K Cache A | ‘0le
; Englne " n e ace

’ / x

: 11 . 1
3 t 'x/ 15 \ .2 \x
z < Busitnter-‘arce /
. _ __ -. - ,v- -

eeeeett / \

<., _M_att_1_Or_Expansion Computer Bus \/\1

APPLE 1001

Ex. 2013

Page 94 of 145

!91

Ex. 2013
Page 95 of 145

.C
20 S”

"D

21

23 21 g
27 F,

_ 03W mProcessor

24 3'
F

ROM/Flash Or Other Local 3*

Non—Volatile Memory — Bus Q 3
E s

28 g 26
Computer Reset 8x 5 m
Power-up Circuits _ 8 g

E
B

P bl 14
rogramma e .

Logic Device Disk Interface

15 B us Interface 5
oo

16 .8
Main or Expansion Bus 9

x:

8:

FIG. 2 E

91

!92

Ex. 2013
Page 96 of 145

US 8,090,936 B2

21

V. Instant Boot Device for Operation System, Application
Program and Loading

Typically, with conventional boot device controllers, after
reset, the boot device controller will wait for a command over
the computer bus (such as PCI). Since the boot device con-
troller will typically be reset prior to bus reset and before the
computer bus starts sending commands, this wait period is
unproductive time. The initial bus commands inevitably
instruct the boot device controller to retrieve data from the

boot device (such as a disk) for the operating system. Since
most boot devices are relatively slow compared to the speed
ofmo st computer busses, a long delay is seen by the computer
user. This is evident in the time it takes for a typical computer
to boot.

It is to be appreciated that a data storage controller (having
an architecture as described herein) may employ a technique
ofdata preloading to decrease the computer system boot time.
Upon host system power-up or reset, the data storage control-
ler will perform a self-diagnostic and program the program-
mable logic device (as discussed above) prior to completion
ofthe host system reset (e.g., PCI bus reset) so that the logic
device can accept PCI Bus commands after system reset.
Further, prior to host system reset, the data storage controller
can proceed to pre—load the portions of the computer operat-
ing system from the boot device (cg, hard disk) into the
on-board cache memory. The data storage controller preloads
the needed sectors of data in the order in which they will be
needed. Since the same portions 0 l‘ the operating system must
be loaded upon each boot process, it is advantageous for the
boot device controller to preload such portions and not wait
until it is commanded to load the operating system. Prefer-
ably, the data storage controller employs a dedicated IO chan-
nel ofthe DSP (with or without data compression) to pre-load
computer operating systems and applications.

Once the data is preloaded, when the computer system bus
issues its first read commands to the data storage controller
seeking operating system data, the data will already be avail-
able in the cache memory o f the data storage controller. 'l'he
data storage controller will then be able to instantly start
transmitting the data to the system bus. Before transmission
to the bus, if the was stored in compressed format on the boot
device, the data will be decompressed. The process of pre-
loading required (compressed) portions of the operating sys-
teln significantly reduces the computer boot process time.

In addition to preloading operating system data, the data
storage controller could also preload other data that the user
would likely want to use at startup. An example of this would
be a frequently used application such as a wordprocessor and
any munber of document files.

There are several techniques that may be employed in
accordance with the present invention that would allow the
data storage controller to know what data to preload from the
boot device. One technique utilizes a custom utility program
that would allow the user to specify what applications/data
should be preloaded.

Another technique (illustrated by the flow diagram of
FIGS. 7a and 717) that may be employed comprises an auto-
matic process that requires no input from the user. With this
technique, the data storage controllermaintain a list compris-
ing the data associated with the first series of data requests
received by the data storage controller by the host system
after a power—on/resel. In particular, referring to FIG. 7a,
during the computer boot process, the data storage controller
will receive requests for the boot data (step 70). In response,
the data storage controller will retrieve the requested boot
data from the boot device (e.g., hard disk) in the local cache
memory (step 71). For each requested data block, the data

10

m Ln

30

35

40

45

50

55

60

65

22

storage controller will record the requested data block num-
ber in a list (step 72). The data storage controller will record
the data block number of each data block requested by the
host computer during the boot process (repeat steps 70—72).
When the boot process is complete (affirmative determination
in step 73), the data storage controller will store the data list
on the boot device (or other storage device) (step 74).

Then, upon each subsequent power-on/reset (affirmative
result in step 75), the data storage controller would retrieve
and read the stored list (step 76) and proceed to preload the
boot data specified on the list (i.e., the data associated withthe
expected data requests) into the onboard cache memory (step
77). It is to be understood that the depending on the resources
of the given system (e.g., memory, etc.), the preloading pro—
cess may be completed prior to commencement of the boot
process, or continued after the boot process begins (in which
case booting and preloading are performed simultaneously).

When the boot process begins (step 78) (i.e., the storage
controller is initialized and the system bus reset is deas-
serted), the data storage controller will receive requests for
boot data (step 79). If the host computer issues a request for
boot data that is pre-loaded in the local memory of the data
storage controller (affirmative result in step 80), the request is
immediately serviced using the preloaded boot data (step 81).
If the host computer issues a request for boot data that is not
preloaded in the local memory of the data storage controller
(negative determination in step 80), the controller will
retrieve the requested data from the boot device, store the data
in the local memory, and then deliver the requested boot data
to the computer bus (step 82). In addition, the data storage
controller would update the boot data list by recording any
changes in the actual data requests as compared to the
expected data requests already stored in the list (step 83).
Then, upon the next boot sequence, the boot device controller
would pre—load that data into the local cache memory along
with the other boot data previously on the list.

Further, during the boot process, if no request is made by
the host computer for a data block that was pre—loaded into the
local memory ofthe data storage controller (affirmative result
in step 84), then the boot data list will be updated by removing
the non-requested data block from the list (step 85). Thereaf—
ter, upon the next boot sequence, the data storage controller
will not pre-load that data into local memory.
VI. Quick Launch for Operating System, Application Pro—
gram, and Loading

It is to be appreciated that the data storage controller (hav-
ing an architecture as described herein) may employ a tech-
nique ofdata preloading to decrease the time to load applica—
tion programs (referred to as “quick launch”).
Conventionally, when a user launches an application, the file
system reads the first few blocks of the file off the disk, and
then the portion ofthe loaded software will request via the file
system what additional data it needs from the disk. For
example, a user may open a spreadsheet program, and the
program may be con ligured to always loada company spread—
sheet each time the program is started. In addition, the com-
pany spreadsheet may require data from other spreadsheet
files.

In accordance with the present invention, the data storage
controller may be configured to “remember” what data is
typically loaded following the launch of the spreadsheet pro-
gram, for example. The data storage controller may then
proceed to preload the company spreadsheet and all the nec-
essary data in the order is which such data is needed. Once this
is accomplished, the data storage controller can service read
commands using the preloaded data. Before transmission to
the bus, if the preloaded data was stored in compressed for-

45

Ex. 2013

Page 96 of 145

!93

Ex. 2013
Page 97 of 145

to boot.

It is to be appreciated that a data storage controller (having 15

an architecture as described herein) may employ a technique

ofdata preloading to decrease the computer system boot time.

Upon host system power-up or reset, the data storage control-

ler will perform a self-diagnostic and program the program-

mable logic device (as discussed above) prior to completion 20

of the host system reset (e.g., PCI bus reset) so that the logic

device can accept PCI Bus commands after system reset.

Further, prior to host system reset, the data stora e controller

can proceed to pre-load the portions of the computer opera -

ing system from the boot device (e.g., hard disk) into the 25
on-board cache memory. The data storage controller preloads

the needed sectors of data in the order in which they will be
needed. Since the same portions ofthe operating system must

be loaded upon each boot process, it is advantageous for the

boot device controller to preload such portions and not wait 30
until it is commanded to load the operating system. Prefer-

ably, the data storage controller employs a dedicated IO chan-

nel ofthe DSP (with or without data compression) to pre-load

computer operating systems and applications.

Once the data is preloaded, when the computer system bus 35

of the given syst:

cess may be con

process, or COIltil

case booting and
When the boo

controller is init

serted), the data

boot data (step 7
boot data that is

storage controlle

immediately sen

If the host comp1

preloaded in the

(negative detern

rctricvc thc rcquc
in the local meml

to the computer
controller would

changes in the

expected data re

Then, upon the 11:

would pre-load t

issues its first read commands to the data stora _e controller with the other bc

—
Ex. 2013

Page 97 of 145

!94

Ex. 2013
Page 98 of 145

Power-up or

System Reset
?

Retrieve & Read List

Commence Boot

Process

Requested
Boot Data

Preloaded

?

Then. u on each sub uem wer-om’reset (affirmative

result in step 75). the ta storage comm er would retrieve

and mad the stored hat (5qu 76) and groceed lo nrelond the
hunt data speci lied on the IN (i.e.. the data assocralai With the

cXpectcd data mqucsts) intc the onboard cache memory (step

77.). It is m be undemmd that the dep_endmg on the resources
ulthc ivcu s 'stcm (e. .. memo cm). the rchmdin

cess may be completed prior to cmnmcncctncnt t‘tl‘the hum
mocaa. nr cuntinuo. u lcrt

case hunting and prclmtlmg arc pcrlnnncd smtultaumusly).

Service Request Using
Preloaded Boot Datal

84 \~
IS

Any Boot Data

Not Requested
During Boot

Process
'12

 No

!95

Ex. 2013
Page 99 of 145

US 8,090,936 B2

27

such changes and modifications are intended to be included
within the scope of the invention as defined by the appended
claims.

What is claimed is:

1. A method comprising:
maintaining a list ofboot data used for booting a computer

system, wherein at least a portion of said boot data is
compressed by a data compression engine to provide
said at least a portion of said boot data in compressed
Form, and stored in compressed form on a boot device;

initializing a central processing unit 0 1‘ said computer sys-
tem;

preloading said at least a portion of said boot data in com-
pressed form from said boot device to a memory;

accessing and decompressing said at least a portion of said
boot data in said compressed form from said memory;
and

utilizing said decompressed at least a portion of said boot
(_ ata to boot said computer system, wherein said at least
a portion o 1‘ said boot data is decompressed by said data
compression engine

2. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an operating system of said computer system.

3. The method of claim 1, wherein said decompressed at
least a portion of said boot data comprises program code
associated with an application program of said computer
system.

4. ' 'he method ofclaim 1, wherein said decompressed at
lea st a portion of said boot data comprises program code
associated with an application program and an operating sys-
tem of said computer system.

S. The method of claim 1, wherein said preloading is per-
formed by a data storage controller connected to said boot
device.

6. The method ofclaim 1, further comprising updating the
list of boot data.

7. The method of claim 1, wherein Huffman encoding is
utilized to provide said at least a portion of said boot data in
said compressed form.

8. The method ofclaim 1, wherein Lempel-Ziv encoding is
utilized to provide said at least a portion of said boot data in
said compressed form.

9. The method of claim 1, wherein a plurality of encoders
are utilized to provide said at least a portion of compressed
data in compressed form.

10. The method ol'claim 1, wherein a plurality o l'encoders
in a parallel configuration are utilized to provide said at least
a portion of said data in compressed form.

11. A system comprising:
a processor;
a memory; and
a non-volatile memory device for storing logic code asso-

ciated with the processor, wherein said logic code corri-
prises instructions executable by the processor for main-
taining a list 0 1‘ boot data used For booting the host
system, at least a portion of said boot data is stored in
compressed form in said non-volatile memory device,
said at least a portion of said boot data in compressed
form is preloaded into said memory, and said preloaded
at least a portion of boot data in compressed form is
decompressed and utilized to boot said computer sys-
tem; and

10

15

30

35

40

45

55

60

48

28

a data compression engine for providing said at least a
portion of said boot data in compressed form by com-
pressing said at least a portion of said boot data and
decompressing said at least a portion ofsaidboot data in
compressed form to provide said decompressed at least
a portion of boot data.

12. The system o [claim 11, wherein said logic code further
comprises program instructions executable by said processor
for maintaining a list of application data associated with an
application program.

13. The system ofclaim 11, wherein said logic code further
comprises program instructions executable by said processor
for maintaining a list of application data associated with an
application program, and wherein said application data is
preloaded upon launching the application program and uti-
lized by said computer system.

14. The system of claim 1], wherein Hulean encoding is
utilized to provide said at least a portion of said boot data in
compressed form,

15. The system ofclaim 11, wherein Lempel-Ziv encoding
is utilized to provide said at least a portion of said boot data in
compressed form.

1 6. The system ofclaim 11, wherein a plurality ofencoders
are utilized to provide said at least a portion of said boot data
in compressed form.

l7.' 'he system o [claim 11, wherein a plurality ol‘encoders
in a parallel configuration are utilized to provide said at least
a portion of said boot data in compressed form.

18. A method ofpreloading an operating system for boot-
ing a computer system comprising:

storing substantially all of the operating system in com-
pressed fonn on a boot device;

preloading a first portion of the substantially all of the
operating system from said boot device to a memory;

accessing and decompressing the first portion from the
memory 11 sing a data compression engine;

utilizing the decompressed first portion to partially boot
said computer system;

responsive to a request, locating a second portion of the
substantially all of the operating system using a boot
data list and preloading the second portion from the boot
device to the memory;

accessing and decompressing the second portion from the
memory using the data compression engine; and

utilizing the decompressed second portion to further par—
tially boot said computer system.

19. The method of claim 18, wherein the preloading is
performed by a data storage controller connected to the boot
device.

20. The method of claim 18, further comprising updating
the boot data list.

21. The method ofclaim 18, wherein Huffman encoding is
utilized to obtain the substantially all 0 1‘ the operating system
in compressed form.

22. The method ofclaim 18. wherein Lempel-Ziv encoding
is utilized to obtain the substantially all of the operating
system in compressed form.

23. The method of claim 18, wherein a plurality of encod-
ers are utilized to obtain the substantially all of the operating
system in compressed form.

24. The method of claim 18, wherein a plurality ol‘encod—
ers in a parallel configuration are utilized to obtain the sub—
stantially all of the operating system in compressed form.

>:<>:<>:<

Ex. 2013

Page 99 of 145

!96

Ex. 2013
Page 100 of 145

 'a'la'a " I' :II'a I'a"l ‘I II'I'I‘ I!" ‘a

a portion of said boot data in compressed form.

18. A method ofpreloading an operating system for boot-

ing a computer system comprising:

storing substantially all of the operating system in com-

pressed form on a boot device;

preloading a first portion of the substantially all of the

. . operating system from said boot device to a memofl;
wading IS per-

. accessing and decompressing the first portion from the
to sa1d boot 35 . . .

memory us1ng a data compress1on engme;

utilizing the decompressed first portion to partially boot

said computer system;

. . responsive to a reguest2 locating a second portion of the
1 encodmg 1s
lboot data in 40 substantiall all of the o eratin s stem usin a boot

data list and reloadin the second ortion from the boot

. . device to the memopy;
v encod1ng1s

accessing and decompressing the second portion from the

memory using the data compression engine; and

utilizing the decompressed second portion to further par-
; of encoders 45 . .

3. com ressed t1ally boot sa1d computer system.
“ p 19. The method of claim 18; wherein the preloading is

togram code

lid computer

Jmpressed at 30

rogram code

perating sys-

updating the

1 boot data in

!97

Ex. 2013
Page 101 of 145

United States Patent [19]

Sukegawa

[11] Patent Number: 5,860,083

[45 J Date of Patent: Jan. 12, 1999

[54] DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

[75] Inventor: Hiroshi Sukegawa, Tokyo, Japan

[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki,
Japan

[21] Appl. N0.: 818,983

[22] Filed: Mar. 14, 1997

[30] Foreign Application Priority Data

Nov. 26, 1996 [JP] Japan

[51] Int. Cl.6 G06F 12/08
[52] US. Cl. 711/103; 711/117; 711/171;

711/173

[58] Field of Search 711/103, 113,
711/117, 170, 171, 173

..... 8-314850

[56] References Cited
US. PATENT DOCUMENTS

5,175,842 12/1992 Totani 711/161
5,371,876 12/1994 Ewertz et al. 711/159
5,437,018 7/1995 Kobayashi et al. 395/652
5,535,357 7/1996 Moran et a1. 711/103

.. 365/200

 5,644,539 7/1997 Yamagami et al. .. .
5.701,492 12/1997 Wadsworth et al. . 395/712
5,745,418 4/1998 Ma et a1. 365/18533

5,778,418 7/1998 Auclair et al. 711/101

FOREIGN PATENT DOCUMENTS

0 706 135 4/1996 European Pat. Off. .
5—11933 1/1993 Japan .
8—63395 3/1996 Japan .

8-115241 5/1996 Japan .

Primary Examiner—Tod R. Swarm
Assistant Examiner—Conley D. King, Jr.
Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, LLP.

57] ABSTRACT

In a data storage system using a flash memory unit and an
HDD, the storage area of the flash memory unit is logically
divided into a permanent storage area, a non-volatile cache
area, Which are used as cache memory areas of the HDD,
and a high—speed access area. These divided areas are
individually managed. The permanent storage area stores
data which is used frequently for a relatively long time
period. The non-volatile cache area is used as an ordinary
cache memory area in which data, which is updated rela-
tively frequently, is stored. The high-speed access area is a
storage area to be used by, eg, an operating system (OS) of
a host system, For example, a swap file, which needs to be
accessed at high speed, is shifted into the high-speed accessarea.

28 Claims, 10 Drawing Sheets

DEVICE

DRl VER

PERMANENT

STORAGE AREA

H I GH-SPEED

ACCESS AREA

NON—VOLAT | LE

CACHE AREA

HOST

SYSTEM

CACHE
SYSTEM

CONTROLLER

MANAGEMENT

I NFORMAT | ON

TABLE

10C

APPLE 1005

Ex. 2013

Page 101 of 145

!97

Ex. 2013
Page 102 of 145

5,535,357 7/1996 Moran et a1. 711/103 "’ ‘ ' "’ ‘

5,644,539 7/1997 Yamagami et a1. 365/200 area"
5,701,492 12/1997 Wadsworth et a1. 395/712

5,745,418 4/1998 Ma et a1. 365/185.33 28 Claims, 10 Drawing Sheets

CACHE

SYSTEM

CONTROLLER

MANAGEMENT

l NFDRMAT | ON

TABLE

PERMANENT

STORAGE AREA

H | GH-SPEEDACCESS AREA i

NON—VOLATI LE

CACHE AREA

97

!98

Ex. 2013
Page 103 of 145

5,860,083

5

In the present invention, it is assumed that the entire
storage area of the flash memory unit 1 is logically divided
into permanent storage area 10A, high—speed access area
10B and non—volatile cache area 10C and the divided areas

are managed. The controller 3 manages the storage areas
10A to 10C of the flash memory unit 1 by using a manage-
ment information table 3A. The management information
table 3A is stored, for example, in the non-volatile cache
area 10C of flash memory unit 1.

The first embodiment relates to a system wherein the
permanent storage area 10A of flash memory unit 1 is used
as a cache memory area. In this embodiment, it is supposed
that the user desires to start a frequently used application
program (AP) at high speed at all times.

The user starts a data storage utility program of the cache
system controller 3 via a user interface provided in the host
system 4 (step S1). The data storage utility prograln reads
specified data from the HDD 2 and stores the read data in a
specified storage area in the flash memory unit 1. In this
case, it is assumed that the user sets the permanent storage
area 10A in the flash memory unit 1 as the data storage area,
at the time of instructing the start of the data storage utility
program (step 52).

Then, the user instructs the host system 4 to start the AP
(step S3). The host system 4, upon receiving the AP start
instruction, issues a read command to the controller 3 in
order to read control information necessary for the start of
the AP from the HDD 2.

The controller 3 controls the IIDD 2, reads out the control
information necessary for the start of the AP and transfers
the read—out control information to the host system 4 (step
S4). At this time, according to the started-up data storage
utility program, the controller 3 stores the AP control infor-
mation read out from the HDD 2 in the permanent storage
area 10A of flash memory unit 1 (step SS). When the AP has
been prepared to start, the data storage utility program is
stopped by the instruction from the user (“YES” in step 36;
step S7). Through these operations, the control information
necessary for starting the AP is stored in the permanent
storage area 10A in the flash memory unit 1.

In this case, the control information is stored in the
permanent storage area 10A in flash memory unit 1 under the
file name designated by the user. Information for correlating
the file name and the AP and information of other comment

is recorded on the management information table 3A by the
data storage utility program. The user inputs the file name to
the controller 3 Via the user interface, thereby referring to the
file (the control information of the AP in this case) stored in
the permanent storage area 10A. The user can delete the file,
if unnecessary. In other words, the control information
necessary for starting the AP is permanently stored in the
permanent storage area 10A in the flash memory unit 1 as
one file, until the user instructs the deletion of the file.

If the user instructs the start of the same AP Via the user

interface, the host system 4 issues the read command, as
described above, to read from the HDD 2 the control
information necessary for starting the AP (“‘YES” in step
S8). Upon receiving the read command, the controller 3
determines whether the control information to be accessed is

stored in the flash memory unit 1 by using the management
information table 3A. Since the AP control information is

stored in the permanent storage area 10A, the cache memory
area is successfully accessed. Accordingly, the controller 3
reads out the AP control information from the permanent
storage area 10A of flash memory unit 1, without accessing
the HDD 2, and transfers the read-out control information to
the host system 4 (step S9). The host system 4 starts the AP

10

15

25

30

m an

40

Ln an

60

14

6

designated by the user on the basis of the transferred AP
control information (step S10).

By the above-described cache system, the control infor—
mation of the frequently used AP designated by the user is
read out from the HDD 2 and stored in the permanent
storage area 10A in the flash memory unit 1 used as the
cache memory area. Accordingly, when the AP is to he
started next time, the AP control information can be read out
quickly from the permanent storage area 10A used as cache
memory area, and not from the HDD 2. Thereby, the host
system 4 can quickly acquire the control information at the
time of starting the AP. As a result, the AP can be quickly
started. Since the AP control information is permanently
stored in the permanent storage area 10A until the user
instructs the deletion of the control information, as described
above, the fiequently used AP can be started quickly at all
times.

(First Modification of the First Embodiment)
FIG. 4 is a flow chart illustrating a first modification of the

first embodiment. This modification relates to a system
having a mode (data storage mode) for storing the control
information necessary for starting the OS in the permanent
storage area 10A of flash memory unit 1, for example, when
the ()S of the host system 4 is started in a series ofoperations
from the turn-on of power to the completion of the starting
operation.

When the system is switched on and the user sets the data
storage mode via the user interface, the controller 3 stores
the information representing the data storage mode in the
permanent storage area 10A in flash memory unit 1 (steps
$11 to $13).

After the power is turned off and then turned on again, the
controller 3 starts the above-mentioned data storage utility
program on the basis of the information of the set data
storage mode (“YES” in step 514; step 815). According to
the data storage utility program, the control information,
which is pre—stored in the HDD 2 and necessary for starting
the OS, is read out and stored in the permanent storage area
10A (steps 516 and S17). The controller 3 transfers to the
host system 4 the control information necessary for starting
the OS read out from the HDD 2. Based on the control

information, the host system 4 starts the OS. After the
preparation for starting the OS is completed, the data storage
utility program is stopped (“YES” in step 818; step 819).

According to this system, when the OS is automatically
started by the control information read out from the IIDD 2
at the time of tuming-on of power, the control information
is stored in the permanent storage area 10Aused as the cache
memory area for the HDD 2. Accordingly, when the OS is
started at the time of the next turning-on of power, the
control information necessary for starting the ()S is read out
not from the HDD 2 but from the permanent storage area
10A or cache memory area, and the read-out control infor-
mation is transferred to the host system 4. Thus, the control
information can be accessed from the permanent storage
area 10A in the flash memory unit 1 having a higher access
speed than the HDD 2. As a result, the OS can be started at
higher speed.

Like the AP control information, the OS control informa-
tion may be stored as one file in the permanent storage area
10A. Thereby, the user can refer to, or delete, the OS control
information on an as-needed basis. For example, at the time
of shipment of the personal computer, if the OS is pre-
installed in the flash memory unit 1 functionng as cache
memory area, the user can delete the OS control information
based on the user’s judgment. Specifically, the OS control
information may be deleted by a user who is used to starting

Ex. 2013

Page 103 of 145

!99

Ex. 2013
Page 104 of 145

 the controller 3 Via the user interface, thereby referring to the

file (the control information of the AP in this case) stored in

the permanent storage area 10A. The user can delete the file,

if unnecessary. In other words, the control information

necessary for starting the AP is permanently stored in the
permanent storage area 10A in the flash memory unit 1 as
one file, until the user instructs the deletion of the file.

If the user instructs the start of the same AP Via the user

interface, the host system 4 issues the read command, as

described above, to read from the HDD 2 the control

information necessary for starting the AP (“YES” in step

SS). Upon receiving the read command, the controller 3
determines whether the control information to be accessed is

stored in the flash memory unit 1 by using the management
information table 3A. Since the AP control information is

stored in the permanent storage area 10A, the cache memory

50

55

60

at ll]:

is stc

mem

startt

contI

not f

10A

matir

infor

area

speet

high:
Li

tion 1

10A.

infor

area is successfulli accessed. Accordinili, the controller 3 of sl
EX. 2013

Page 104 of 145

!100

Ex. 2013
Page 105 of 145

.rol area 10A in the flash memory unit 1 having a higher access

tep speed than the HDD 2. As a result, the OS can be started at

r 3 higher speed.

i is Like the AP control information, the OS control informa-

ent 60 tion may be stored as one file in the permanent storage area
1 is 10A. Thereby, the user can refer to, or delete, the OS control

)ry information on an as-needed basis. For example, at the time

r 3 of shipment of the personal computer, if the OS is pre-

ent installed in the flash memory unit 1 functioning as cache

ing 65 memory area, the user can delete the OS control information

[to based on the user’s judgment. Specifically, the OS control

AP information may be deleted by a user who is used to starting

Ex. 2013

Page 105 of 145

!101

Ex. 2013
Page 106 of 145

1ng preparation !or start1ng t!e OS 1s compiete!, t!e gata storage
,ent utility program is stopped (“YES” in step S18; step S19).

the 45 According to this system, when the OS is automatically

3: to started by the control information read out from the HDD 2

the at the time of turning-on of power, the control information

1 in is stored in the permanent storage area 10A used as the cache

1le, memory area for the HDD 2. Accordingly, when the OS is

ion 50 started at the time of the next turning-on of power, the
the control information necessary for starting the OS is read out

_ as not from the HDD 2 but from the permanent storage area

10A or cache memory area, and the read-out control infor-
tser mation is transferred to the host system 4. Thus, the control

as 55 information can be accessed from the permanent storage

trol area 10A in the flash memory unit 1 having a higher access

_tep speed than the HDD 2. As a result, the OS can be started at

r 3 higher speed.

d is Like the AP control information, the OS control informa-

Ex. 2013

Page 106 of 145

!102

Ex. 2013
Page 107 of 145

US. Patent Jan. 12. 1999 Sheet 1 of 10 5,860,083

CACHE MANAGEMENT
SYSTEM INFORMATION

CONTROLLER TABLE

DEVICE

DRIVER

PERMANENT

STORAGE AREA

HIGH-SPEEDACCESS AREA i

NON—VOLATILE

CACHE AREA

 CARD CONTROLLER

........... II ___________________

i FLASH I
: 11511on :
: CARD .25

Ex.2013

Page 107 of 145

!103!103

Ex. 2013
Page 108 of 145

storage area 10A or non-volatile cache area 10C, which is
the cache memory area (or Whether the cache memory area

is “hit”) (steps $20 and $21), as shown in FIGS. 5. If the data

to be accessed is “hit”, the controller 3 reads the data from

the permanent storage area 10A or non-volatile cache area
10C and transfers the read-out data to the host system 4

l“YES” in step 821; step S25).

CACHE

SYSTEM

CONTROLLER

MANAGEMENT

INFORMATION

TABLE DEVICE

DRlVER

l' ————————

On the other hand, if the cache memory area is not “hit”,

the contro er accesses t e , rea s outt e ata to e

accessed and transfers the read-out data to the host system
ET. In lElS case, as descr15ed a50ve, 1f the data to Be accessed

is the permanent data designated by the user, the controller

3 stores it in the permanent storage area 10A (“NO” in step

FLASH MEMORY UNIT

PERMANENT

STORAGE AREA

HIGH-SPEED

ACCESS AREA

NONHVOLATILE

CACHE AREA

!104

Ex. 2013
Page 109 of 145

(12) United States Patent

Settsu et al.

USOO6374353B1

(10) Patent N0.: US 6,374,353 B1

(45) Date of Patent: Apr. 16, 2002

(54) INFORMATION PROCESSING APPARATUS
METHOD OF BOOTING INFORMATION
PROCESSING APPARATUS AT A HIGH
SPEED

(75) Inventors: Atsushi Settsu; Noriyuki Baba; Naoto
Sugai, all of Tokyo (JP)

(73) Assignee: Mitsubishi Denki Kabushiki Kaisha,
Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. N0.: 09/261,255

(22) Filed: Mar. 3, 1999

(30) Foreign Application Priority Data

Mar. 16, 1998 (JP) ... 10-065957

(51) Int. Cl.7 .. G06F 9/445
(52) US. Cl. ... 713/2
(58) Field of Search .. 713/2

(56) References Cited
US. PATENT DOCUMENTS

5,307,497 A 4/1994 Teigenbaum el al.

1 2

6 7

PM
CODE
MODULE

5

MEMORY

5,355,498 A 10/1994 Provino et al.

5,918,048 A * 6/1999 Mealey et al. 713/2
5,933,631 A * 8/1999 Mealey et al. ’; '
6,052,778 A * 4/2000 Hagy et al. 713/2

OTHER PUBLICMIONS

M. M. Mekusiek et al. Maruzen Co., Ltd., Jun. 30, 1991 pp.
413—433.

* cited by examiner

Primary Iz'xaminer—'lh0111as M. Heckler

(57) ABSTRACT

Amethod of booting up an information processing apparatus
is provided. An operating system is divided into a mini
operating system (OS) module having a function of boot—
strap and an OS [main body module having functions other
than the function of bootstrap. The mini OS module can be
located in a boot block of a boot device, whereas the OS
main body module can be located in a file system of the boot
device. A firmware or FNV code module stored in a ROM
loads the mini OS module into memory when booting up the
information processing apparatus. The mini OS module then
loads the OS main body module into memory and then
initializes the OS main body module.

12 Claims, 26 Drawing Sheets

BOOT BLOCK

MINI OS
MODULE

OS MAIN
BODY
MODULE

APPLE 1006

Ex. 2013

Page 109 of 145

!104

Ex. 2013
Page 110 of 145

1 2

6

FNV

CODE

MODULE

5

MEMORY

8

BOOT BLOCK

 08 MAIN

BODY

MODULE

Ex. 2013

Page 110 of 145

!105

Ex. 2013
Page 111 of 145

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent of: James J. Fallon, et al.

US. Patent No.: 8,090,936 Attorney DocketNo.: 39521-0024IP1

Issue Date: January 3, 2012 Control No. IPR2016-Ol366

Appl. Serial No.: l l/551,204

Filing Date: October 19, 2006
Title: SYSTEMS AND METHODS FOR ACCELERATED

LOADING OF OPERATING SYSTEMS AND APPLICA-

TION PROGRAMS

Mail Stop Patent Board

Patent Trial and Appeal Board
US. Patent and Trademark Oflice

PO. Box I450

Alexandria, VA 22313-1450

PETITION FOR INTER PARTES REVIEW OF UNITED STATES PATENT

NO. 8 090 936 PURSUANT TO 35 U.S.C. ' ‘ 3| l—3l9 37 C.F.R. ' 42
Ex. 2013

Page 111 of 145

!106

Ex. 2013
Page 112 of 145

Attorney Docket No. 39521-0024IP1

[PR of US. Patent No. 8,090,936

POSITA additional motivation for incorporating compression/decompression (such

as Dye’s compression/decompression engine) into Sukegawa. Thus, Petitioner

proposes, as Grounds 2—4, a combination of Sukegawa with Dye as well as Settsu

and/or Burrows.

In the combinations, Sukegawa and Dye are applied in a similar manner to

that discussed above in Section Vl.A. Indeed, all of the analysis and citations to

Sukegawa and Dye presented in Section Vl.A. apply equally to Grounds 2-4.

Grounds 2-4 simply rely on Settsu and/or Burrows for additional motivation and

guidance to arrive at the combination of Sukegawa and Dye presented in Ground 1.

Examples of additional motivation and guidance, including discussion of how

Settsu and Burrows reinforce the use of compression/decompression in Sukegawa,

are provided above in Section IV.D. and below for claim elements 1.2, 1.5, 7.0,

8.0, and l8.l-l8.7. As shown by the mappings in the table that follows the analy-

sis of Settsu and Burrows, these examples of additional disclosure apply to all

claim elements in Grounds 2-4 where Section Vl.A. references claim elements 1.2,

1.5, 7.0, 8.0, and 18.1-18.7. The remaining claim elements are addressed fully by

the analysis and citations to Sukegawa and Dye presented in Section VIA.

Thus, as discussed in Sections IV.D., Vl.A., and below, claims 1-24 are ob-

vious over Sukegawa and Dye in view of Settsu and/or Burrows.

59

Ex. 2013

Page 112 of 145

!107

Ex. 2013
Page 113 of 145

In the combinations, Sukegawa and Dye are applied in a similar manner to

that discussed above in Section VLA. Indeed, all of the analysis and citations to

Sukegawa and Dye presentedm Section VI.A. apply equally to Grounds 2-4.

1 Grounds-7-4 simply rely onSettsu and/or Burrows tor additional motivation and

guidance to arrive at the combination of Sukegawa and Dye presented in Ground 1.

1 Examples of additional motivation and guidance, including discussion of how

1‘, Settsu and Burrows reinforce the use of compression/decompression in Sukegawa,

are provided above in SectionIVD. and belo' for claim elements 1.2, 1.5, 7.0,

8.0, and 18.1- 18.7. As shown by the mappings in the table that follows the analy-

sis of Settsu and Burrows, these examples of additional disclosure apply to all

claim elements in Grounds 2-4 where Section VLA. references claim elements 1.2,

l.5, 7.0, 8.0, and 18.1-18.7. The remaining claim elements are addressed fully by

Ex. 2013

Page 113 of 145

!108

Ex. 2013
Page 114 of 145

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

APPLE. INC.

Petitioner

V.

REAL'I‘IME DA'I‘A LLC.

Patent Owner

Case IPR21)16-1)1366

Patent 8,090,936

EXPERT DECLARA’I‘ION ()F DR. (SODMAR BACK IN SlII’I’UR’I‘ ()I’

TIIE PATENT OWNER‘S RESPONSE

Ex. 2003

Pace 1 of 53

Ex. 2013

Page 114 of 145

!109

Ex. 2013
Page 115 of 145

understood as being storing “substantially all” of the OS in compressed form. Dr.

Neuhauser equates Settsu’s disclosure of “storing the mini OS module 7 and the

OS main body module 8 as a plurality of compressed files in boot device 3’95 to

disclosing storing substantially all of the OS in compressed form but does not point

to any support in Settsu. Settsu only discloses compressing the OS kernel, which a

POSITA would have understood to be only a small portion of the “operating

system.” A POSITA therefore would not have interpreted Settsu’s teachings as

“storing substantially all of the [OS] in compressed form,” as required by claim IS.

85. Based on these differences between the ’936 Patent and Sukegawa,

Sukegawa, Dye, and Settsu fail to disclose or render obvious “preloading” a “first

portion” “to partially boot” the system” and “preloading” a “second portion” “to

further partially boot” the system, as recited in claim 18. Moreover, Sukegawa,

Dye, and Settsu do not teach “storing substantially all of the operating system in

compressed form on a boot device.”

C. Dye Does Not Disclose Storing Compressed Boot Data in a
Hard Disk Drive.

86. Independent claims I, 11, and 18 of the ’936 Patent each recite storing

“compressed” boot data on either a “boot device” or a “non-volatile memory

95 Ex. 1003, Neuhauser Dec. at 1] 284.

42

Ex. 2003

Page 45 of 53

Ex. 2013

Page 115 of 145

!110

Ex. 2013
Page 116 of 145

OS main body module 8 as a plurality of compressed files in boot device 3”” to

disclosing storing substantially all of the OS in compressed form but does not point

to any support in Settsu. Settsu only discloses compressing the OS kernel, which a

POSITA would have understood to be only a small mrtion of the “operating

system.” A POSITA therefore would not have interpreted Settsu’s teachings as

“storing substantially all of the [OS] in compressed form,” as required by claim 18.

85. Based on these differences between the ’936 Patent and Sukegawa,

Sukegawa, Dye, and Settsu fail to disclose or render obvious “preloading” a “fust

9’

portion “to partially boot” the system” and “preloading” a “second portion” “to

further partially boot” the system, as recited in claim 18. Moreover, Sukegawa,

Ex. 2013

Page 116 of 145

“preloading boot data, in compressed
form…from a boot device into a cache

memory”

!111

Ex. 2013
Page 117 of 145

!112

Ex. 2013
Page 118 of 145

United States Patent [19]

Sukegawa

[11] Patent Number: 5,860,083

[45 J Date of Patent: Jan. 12, 1999

[54] DATA STORAGE SYSTEM HAVING FLASH
MEMORY AND DISK DRIVE

[75] Inventor: Hiroshi Sukegawa, Tokyo, Japan

[73] Assignee: Kabushiki Kaisha Toshiba, Kawasaki,
Japan

[21] Appl. N0.: 818,983

[22] Filed: Mar. 14, 1997

[30] Foreign Application Priority Data

Nov. 26, 1996 [JP] Japan

[51] Int. Cl.6 G06F 12/08
[52] US. Cl. 711/103; 711/117; 711/171;

711/173

[58] Field of Search 711/103, 113,
711/117, 170, 171, 173

..... 8-314850

[56] References Cited
US. PATENT DOCUMENTS

5,175,842 12/1992 Totani 711/161
5,371,876 12/1994 Ewertz et al. 711/159
5,437,018 7/1995 Kobayashi et al. 395/652
5,535,357 7/1996 Moran et a1. 711/103

.. 365/200

 5,644,539 7/1997 Yamagami et al. .. .
5.701,492 12/1997 Wadsworth et al. . 395/712
5,745,418 4/1998 Ma et a1. 365/18533

5,778,418 7/1998 Auclair et al. 711/101

FOREIGN PATENT DOCUMENTS

0 706 135 4/1996 European Pat. Off. .
5—11933 1/1993 Japan .
8—63395 3/1996 Japan .

8-115241 5/1996 Japan .

Primary Examiner—Tod R. Swarm
Assistant Examiner—Conley D. King, Jr.
Attorney, Agent, or Firm—Finnegan, Henderson, Farabow,
Garrett & Dunner, LLP.

57] ABSTRACT

In a data storage system using a flash memory unit and an
HDD, the storage area of the flash memory unit is logically
divided into a permanent storage area, a non-volatile cache
area, Which are used as cache memory areas of the HDD,
and a high—speed access area. These divided areas are
individually managed. The permanent storage area stores
data which is used frequently for a relatively long time
period. The non-volatile cache area is used as an ordinary
cache memory area in which data, which is updated rela-
tively frequently, is stored. The high-speed access area is a
storage area to be used by, eg, an operating system (OS) of
a host system, For example, a swap file, which needs to be
accessed at high speed, is shifted into the high-speed accessarea.

28 Claims, 10 Drawing Sheets

DEVICE

DRl VER

PERMANENT

STORAGE AREA

H I GH-SPEED

ACCESS AREA

NON—VOLAT | LE

CACHE AREA

HOST

SYSTEM

CACHE
SYSTEM

CONTROLLER

MANAGEMENT

I NFORMAT | ON

TABLE

10C

APPLE 1005

Ex. 2013

Page 118 of 145

!113

Ex. 2013
Page 119 of 145

HOST

SYSTEM

r _____________¥ 3

CACHE

SYSTEM

CONTROLLER

5

MANAGEMENT

INFORMATION

TABLE

PERMANENT

STORAGE AREA

HIGH-SPEEDACCESS AREA i
NON—VOLATILE

CACHE AREA

Ex. 2013

Page 119 of 145

!114

Ex. 2013
Page 120 of 145

United States Patent [19]

Dye

11500014500914

[11] Patent Number: 6,145,069

[45] Date of Patent: Nov. 7, 2000

[54] PARALLEL DECOMPRESSION AND
COMPRESSION SYSTEM AND METHOD
FOR IMPROVING STORAGE DENSITY AND
ACCESS SPEED FOR NON-VOLATILE
MEMORY AND EMBEDDED MEMORY
DEVICES

[75] Inventor: Thomas A. Dye, Austin, Tex.

[73] Assignee: Interactive Silicon, Inc., Austin, Tex.

[21] Appl. No.: 09/299,966

[22] Filed: Apr. 26, 1999

Related US. Application Data

[63] Continuation-in-part of application No. 09/239,659, Jan. 29,1999.

[51] Int. Cl.”
[52]

G06F 12/00
711/170; 711/103; 710/68;

382/233; 345/521; 345/501
[58] Field of Search 7l l/l03, 170;

710/68; 714/763, 764; 709/247; 382/232,
233; 345/521, 501, 507, 509

[56] References Cited

U.S. PATENT DOCUMENTS

4,008,460 2/1977 Bryant et a1.
4,688,108 8/1987 Cotton et al.
4,876,541 10/1989 Storer .
4,881,075 11/1989 Weng 341/87
5,003,307 3/1991 Whiting et a1. .
5,016,009 5/1991 Whiting et a]. .
5,126,739 6/1992 Whiting et a1. .
5,146,221 9/1992 Whiting ct a]. .
5,155,484 10/1992 Chambers, IV .

...... 395/463
.. 358/2611

 5,237,460 8/1993 Miller cl a1. . .. 395/888

5,237,675 8/1993 Hannon,Jr. 710/68
5,247,638 9/1993 O’Brien et a1. 710/68

5,247,646 9/1993 Osterlund et al.
5,337,275 8/1994 Garner
5,341,339 8/1994 Wells
5,353,024 10/1994 Graybill .
5,353,425 10/1994 Malamy et a],
5,357,614 10/1994 Pattisam et al.

.. 395/888
. 365/18901

., 365/185,“

.. 711/144

900 ~ Flash memory System

5,371,499 12/1994 Graybill et a1. .
5,379,036 1/1995 Storer .
5,396,343 3/1995 I-Iallselnlan 358/426
5,406,278 4/1995 Graybill et al. .
5,406,279 4/1995 Anderson et al. .
5,412,429 /1995 Glover.
5,414,425 5/1995 Whiting et a1,

(List continued on next page)

Primary Examiner—Eddie P. Chan
Assistant Examiner—Hong Kim
Attorney, Agent, or Firm%onley, Rose & Tayon PC,
Jeffrey C. Hood

[57] ABSTRACT

A flash memory controller and/or embedded memory con—
troller including MemoryF/X Technology that uses data
compression and decompression for improved system cost
and performance. The Compression Enhanced Flash
Memory Controller (CEFMC) of the present invention pref—
erably llses parallel lossless compression and decompression
engines embedded into the flash memory controller unit for
improved memory density and data bandwidth. In addition,
the invention includes a Compression Enhanced Memory
Controller (CEMC) where the parallel compression and
decompression engines are introduced into the memory
controller of the microprocessor unit. The Compression
Enhanced Memory Controller (CEMC) invention improves
system wide memory density and data bandwidth. The
disclosure also indicates preferred methods [or specific
applications such as usage of the invention for solid-state
disks, embedded memory and Systems on Chip (SOC)
environments. The disclosure also indicates a novel memory
control method for the execute in place (XIP) architectural
model The integrated parallel data compression and decom—
pression capabilities of the CEFMC and CEMC inventions
remove system bottle—necks and increase performance
matching the data access speeds of the memory subsystem
to that of the microprocessor. Thus, the invention allows
lower cost systems due to smaller data storage, reduced
bandwidth requirements, reduced power and noise.

39 Claims, 24 Drawing Sheets

SRAM or

200 - CEFMC DRAM
MPU memurv

Decampress or 420
Engine , 118 7

Mem. @ C AFlash ”F
Memory 11o & 112 ECO/EDCArray 4—D Byte H a. Bypass SRAM Mlcm

100 ‘ Mux {106 Ware 240 Cache 0 Processingm we Leveling 4 @ Um!
I 109 Logic M220 Compression

A ‘ i Engine
@

1 2 C ‘DC/DC 0 untrolConverter 4- SRAM
190 or

4" DRAM
Compresslon Control Unit 81 Data Dlreetory -

104 Arra Row Address 300 Malnggmo'y

APPLE 1008

Ex. 2013

Page 120 of 145

!115

Ex. 2013
Page 121 of 145

900 - Flash memory System

Flash

Memory

Array

104

200 - CEFMC

110 ECCIEDC
8:

Were

Leyefing

Logic

DCIDC

Converter

2 E

Arré Row Address

Decompression

Engine

@

2

Compression

Engine

s92

Compression Control Unit 8: Date Directory

113

SRAM or

DRAM

MPU memory

E

D

Micro

C Processing

Unit

A @

D SRAM

C or
DRAM

A Main memory

519

Ex. 2013

Page 121 of 145

!116

Ex. 2013
Page 122 of 145

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent of: James J. Fallon, et al.

US. Patent N0.: 7,181,608 Attorney Docket N0.: 39521-0023IP1

Issue Date: February 20, 2007 Control No. IPR2016-01365

Appl. Serial N0.: 09/776,267

Filing Date: February 2, 200]
Title: SYSTEMS AND METHODS FOR ACCELERATED LOADING

OF OPERATING SYSTEMS AND APPLICATION PROGRAMS

Mail Stop Patent Board

Patent Trial and Appeal Board
US. Patent and Trademark Office

PO. Box 1450

Alexandria, VA 22313-1450

PETITION FOR INTER PARTES REVIEW OF UNITED STATES PATENT

NO. 7181608 PURSUANT TO 35 U.S.C. 311—319 37 C.F.R. 42
Ex. 2013

Page 122 of 145

!117

Ex. 2013
Page 123 of 145

Attorney Docket No. 39521-00231P1

lPR ofU.S. Patent No. 7.18],6()8

and decompressing the compressed data at a rate that increases flash memory unit

1’s effective access rate. ld., ‘|‘]67, 120.

t_llUSl—‘
SYSIEI—~w—-‘

..............' 3A

INMGEIENT
- - I IFORIAT I 0“

IABLE

42:- Host svstem.J-A '

Host system bus.
NE

ONTROLLER

!'i"!
 Controller.

Data compressron decompression engine

(per Dye).

PERIMIEIT Hard (“5“

SYORAGE “ER (storing compressed boot data).
H l Gll- SPEED
ACCESS AREA Cad"

NOW VOLAT | LE _CACHE AREA

Sukegawa FIG. 1 and Dye FIG. 3

(combined excerpts, annotated).

With the increase in data access rates and data storage capacity. a POSITA

would have understood that preloading compressed control information would fur-

ther speed Sukegawa‘s boot process and. thus, further improve on Sukegawa's

stated desire to increase boot speed. Q, '1‘161-71 . With these modifications.

Sukegawa’s modified system operates similarly to the ‘608 Patent. And, as ex-

plained below in Ground 1, Sukegawa and Dye render obvious all of the Chal-

lenged Claims.

I). Settsu and Burrows Further Confirm that Compression
Was Well-Known and Would Have Been Obvious to Add to

Sukegawa

(storing preloaded compressed boot data),
Ex. 2013

Page 123 of 145

!118

Ex. 2013
Page 124 of 145

'I ’4— Host s_\'
SYSTEI

DPMC'BSW s' 3 3A
Engme ~‘, ' “é— Host 53'

CHE IANAGEIENT

33mg: vsm -- I momm n on
ONTROLLER TABLE

_ Control

’—fim _.Q
‘ iiiii— Data co

3 -' (per DY

COH‘DIBSSDOH PERMNE'T Hard d1

Lngme STORAGE AREA " (storing

HIGH SPEED .
ACCESS AREA Cache

NON VOLAHLE (storing
CACHE AREA

Sukegawa FIG- 1 and Dye FIG- 3

(combined excerpts, annotated).

!118

Ex. 2013
Page 125 of 145

4

Doxm‘cwssao't _ -. 3A
Engme <. ' *—Host 53'

IMAGEIENT

-- INFORIATION

Control

Data co

(per DY

COH‘DIBSSDOH PERMNE'T Hard (11

that”: srome AREA (storing
HIGH SPEED

ACCESS AREA Cache

NON VOLAHLE (stormg
CACHE AREA

Sukegawa FIG- 1 and Dye FIG- 3

(combined excerpts, annotated).

!119

Ex. 2013
Page 126 of 145

Attorney Docket No. 39521-00231P1

lPR ofUS. Patent No. 7,181,608

31.0: a plurality of encoders in a parallel configuration are utilized by the

data compression engine to compress the additional boot data.

E Sections 1V.C., 10.0, 17.0; Dec., 1389.

B. GROUNDS 2-4 — Claims 1-31 are obvious over Sukegawa

and Dye in view of Settsu and/or Burrows

As discussed in Section V1.A., claims 1-31 are obvious over Sukegawa and

Dye. As explained in Section 1V.D., Settsu and’or Burrows would have provided a

POSITA additional motivation for incorporating compression/decompression (such

as that disclosed by Dye) into Sukegawa. Thus, Petitioner proposes, as Grounds 2-

4, combinations ofSukegawa with Dye as well as Settsu and/or Burrows.

In the combinations, Sukegawa and Dye are applied in a similar manner to

that discussed above in Section V1.A. lndeed, all ofthe analysis and citations to

Sukegawa and Dye presented in Section VLA. apply equally to Grounds 2-4.

Grounds 2-4 simply rely on Settsu and/or Burrows for additional motivation and

guidance to arrive at the combination ofSukegawa and Dye presented in Ground 1.

Examples of additional motivation and guidance, including discussion ofhow

Settsu and Burrows reinforce the use ofcompression/decompression in Sukegawa,

are provided above in Section ND. and below for claim elements 1.4, 10.0, 14.0,

and 15.0. As shown by the mappings in the table that follows the analysis of

Settsu and Burrows, these examples of additional disclosure apply to all claim ele-

ments in Grounds 2-4 where Section V1.A. references claim elements 1.4, 10.0,

67

Ex. 2013

Page 126 of 145

!120

Ex. 2013
Page 127 of 145

B. GROUNDS 2-4 — Claims l-3l are obvious over Sukegawa

and Dye in view of Settsu and/or Burrows

As discussed in Section Vl.A., claims 1-31 are obvious over Sukegawa and

Dye. As explained in Section lV.D., Settsu and/or Burrows would have provided a

POSlTA additional motivation for incorporating compression/decompression (such

as that disclosed by Dye) into Sukegawa. Thus, Petitioner proposes, as Grounds 2-

4, combinations ofSukegawa with Dye as well as Settsu and/0r Burrows.

In the combinations, Sukegawa and Dye are applied in a similar manner to

that discussed above in Section VLA. Indeed, all of the analysis and citations to

Sukegawa and Dye presented in Section VLA. apply equally to Grounds 2-4.

* ' Grmidsn 24 simpl" mm is ettunos'Ad/rl3urrows _adtinuotiaio and S

i guidance to arrive at the combination ofSukegawa and Dye presented in Ground 1. I.
Ex. 2013

Page 127 of 145

“a plurality of encoders are utilized to
provide the compressed boot data”

!121

Ex. 2013
Page 128 of 145

!122

Ex. 2013
Page 129 of 145

(12) United States Patent

Fallon et al.
(10) Patent N0.: US 7,181,608 El

(45) Date of Patent: Feb. 20, 2007

(54) SYSTEMS AND METHODS FOR
ACCELERATED LOADING OF OPERATING
SYSTEMS AND APPLICATION PROGRAMS

(75) Inventors: James J. Fallon, Armonk, NY (US);
John Buck, Oceanside, NY (US); Paul
F. Pickel, Bethpage, NY (US); Stephen
J. MeEerlain, New York, NY (US)

(73) Assignee: Realtime Data LLC, New York, NY
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 223 days.

(21) App]. N0.: 09/776,267

(22) Filed: Feb. 2, 2001

(65) Prior Publication Data

US 2002/0069354 Al Jun. 6, 2002

Related U.S. Application Data

(60) Provisional application No. 60/180,114, filed on Feb.
3, 2000.

(51) Int. Cl.
G06F 9/24 (2006.01)
G06F 9/00 (2006.01)
G06F 13/00 (2006.01)

(52) U.S. Cl. 713/2; 713/1; 711/113
(58) Field of Classification Search 713/2

713/1,100; 711/170, 118,113
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,127,518 A 11/1978 Coy ct al.

DATA
COMPRESSION

ENGINE

4,302,775 A 11/1981 Widergren et a1.
4,394,774 A 7/1983 Widergren et al.
4,574,351 A 3/1986 Dang et al.

(Continued)
FOREIGN PATENT DOCUMENTS

DE 4127518 A1 2/1992

(Continued)
OTHER PUBLICATIONS

IBM, Fast Dos Soft Boot, Feb. 1, 1994, vol. 37, Issue 2B, pp.
185-186.*

(Continued)

Primary ExamineriThomas Lee
Assistant ExamineriSuresh K Suryawanshi
(74) Attorney, Agent, or Firm Fish & Neave IP Group of
Ropes & Gray LLP

(57) ABSTRACT

Systems and methods are provided for accelerated loading
of operating system and application programs upon system
boot or application launch. In one aspect, a method for
providing accelerated loading of an operating system
includes maintaining a list of boot data used for booting a
computer system, preloading the boot data upon initializa-
tion of the computer system, and servicing requests for boot
data from the computer system using the preloaded boot
data. The boot data may comprise program code associated
with an operating system of the computer system, an appli-
cation program, and a combination thereof. The boot data is
retrieved from a boot device and stored in a cache memory
device. The boot data is stored in a compressed format on the
boot device and the preloaded boot data is decompressed
prior to transmitting the preloaded boot data to the request—
ing system,

31 Claims, 13 Drawing Sheets

APPLE 1001

Ex. 2013

Page 129 of 145

!123

Ex. 2013
Page 130 of 145

mama'90
I

!

!

! ENCODEDDAIA
I STREAM wz

CCMPRESSION RATIO COMPRE8310N' DESCHlPTOR

DETEHMINATIW 0 TYPE

LOOZ‘01'qad
COMPARISON ESCRIPTION !

El10ZImus

Z8809‘181'LSF]
Ex. 2013

Page 130 of 145

!124

Ex. 2013
Page 131 of 145

138 , ENCODED OAIA
DATA i I STREAM WI

OOMPIIESSIOII IIIIIIo COMPRESSION ' DESCRIPTOH
UNLOCK OEIEIIIIIIIAIIOIII TYPE .

COUNTER COMPARISON DESCRIPTION I

Ex. 2013

Page 131 of 145

!125

Ex. 2013
Page 132 of 145

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent of: James J. Fallon, et al.

US. Patent N0.: 7,181,608 Attorney Docket N0.: 39521-0023IP1

Issue Date: February 20, 2007 Control No. IPR2016-01365

Appl. Serial N0.: 09/776,267

Filing Date: February 2, 200]
Title: SYSTEMS AND METHODS FOR ACCELERATED LOADING

OF OPERATING SYSTEMS AND APPLICATION PROGRAMS

Mail Stop Patent Board

Patent Trial and Appeal Board
US. Patent and Trademark Office

PO. Box 1450

Alexandria, VA 22313-1450

PETITION FOR INTER PARTES REVIEW OF UNITED STATES PATENT

NO. 7181608 PURSUANT TO 35 U.S.C. 311—319 37 C.F.R. 42
Ex. 2013

Page 132 of 145

!126

Ex. 2013
Page 133 of 145

Attorney Docket No. 39521-00231P1

IPR ofU.S. Patent No. 7,181,608

16.0: a plurality of encoders are utilized to provide the compressed boot

data.

As explained in Sections lV.C., 1.4-1.7, and 10.0, a POSlTA would have

modified Sukegawa’s controller 3 to include Dye’s compression/decompression

engine to provide compressed boot data. Dec., 11245.

Dye’s compression/decompression engine uses a “parallel lossless compres-

sion/decompression" “designed to process stream data at more than a single byte or

symbol (character) at one time.” Dye, 419-30. As shown in the annotated versions

of FIGS. 10A and IOB reproduced below, Dye’s compression algorithm analyzes

multiple symbols in parallel, and provides “multiple compressed outputs” in paral-

lel. Dye, 18:43-19:30, 22:66-23:24, FIG. 13 (depicting a hardware encoder used in

parallel with others ofthe same type); Dye ”284 12:61-1327, 13:52-56, 14:49-50,

29: 13-1 4. Thus, Dye describes using a plurality of encoders to provide com-

pressed data. Dec.,1111274-288 (citing Ziv, 337-343; Storer, 928-951).

60

Ex. 2013

Page 133 of 145

!127

Ex. 2013
Page 134 of 145

16.0: a plurality of encoders are utilized to provide the compressed boot

data.

As explained in Sections lV.C., 1.4-1.7, and 10.0, a POSlTA would have

modified Sukegawa‘s controller 3 to include Dye’s compression/decompression

engine to provide compressed boot data. Dec., $1245.

Dye’s compression/decompression engine uses a “parallel lossless compres-

sion/decompression” “designed to process stream data at more than a single byte or

symbol (character) at one time.” Dye, 4:9-30. As shown in the annotated versions

of FIGS. 10A and 108 reproduced below, Dye’s compression algorithm analyzes

multiple symbols in parallel, and provides “multiple compressed outputs” in paral-

lel. Dye, 18143-1 9:30, 22:66-23:24, FIG. 13 (depicting a hardware encoder used in

parallel with others ofthe same type); Dye ’284 12:61-13:7, 13:52-56, 14:49-50,

29:13-14. Thus, Dye describes using a plurality of encoders to provide com-

pressed data. Dec., “274-288 (citing Ziv, 337-343; Storer, 928-951).

Ex. 2013

Page 134 of 145

!128

Ex. 2013
Page 135 of 145

Attorney Docket No. 39521-00231P1

IPR ofU.S. Patent No. 7,181,608

Prior Art algorithm, using a "W Dam Entry Entry ‘ ,, Em m
single encoder to provide 3"“ ° .55 fl}; L"_'Ll

compressed data. F' 10Alg.
(Prior Alt)

Dye’s algorithm, using a

plurality of encoders in

parallel configuration to

provide compressed data.
Dye FIGS. 10A and 10B (annotated)

17.0: a plurality of encoders in a parallel configuration are utilized to pro-

vide the compressed boot data.

As explained in 16.0, Sukegawa and Dye render obvious using a plurality of

encoders to provide the compressed control information. Dec., {1288. Dye’s en-

coders analyze multiple symbols in parallel. and provide “multiple compressed

outputs" in parallel. Dye. 18:43-19:30. Thus. Sukegawa and Dye render obvious

the plurality of encoders in a parallel configuration. Dec., “1289-290.

18.0: Huffman encoding is utilized to provide the compressed boot data.

SE Sections 1V.C., 14.0; Dec., 1111291-295.

19.0: Lempel-Ziv encoding is utilized to provide the compressed boot data.

Si Sections 1V.C., 15.0; Dec., {[fl296-300.

61

Ex. 2013

Page 135 of 145

!129

Ex. 2013
Page 136 of 145

Attorney Docket No. 39521-0023IP1

IPR ofU.S. Patent No. 7,181,608

Prior Art algorithm, using a

single encoder to provide

compressed data.

Dye’s algorithm, using a

plurality of encoders in

parallel configuration to

provide compressed data.
Dye FIGS. 10A and 10B (annotated)

l7.0: a plurality of encoders in a parallel configuration are utilized to pro-

Ex. 2013

Page 136 of 145

!130

Ex. 2013
Page 137 of 145

United States Patent [191

Dye

U8006145069A

[11] Patent Number: 6,145,069

[45] Date of Patent: Nov. 7, 2000

[54] PARALLEL DECOMPRESSION AND
COMPRESSION SYSTEM AND METHOD
FOR IMPROVING STORAGE DENSITY AND
ACCESS SPEED FOR NON-VOLATH5E
MEMORY AND EMBEDDED MEMORY
DEVICES

Inventor: Thomas A. Dye, Austin, Tex.

[73 Assignee: Interactive Silicon, Inc., Austin, Tex.

[21 Appl. No.: 09/299,966

[22 Filed: Apr. 26,1999

Related US. Application Data

[63 Continiiationeinepart of application No. 00/230,650, Jan. 20,1999.

[51 Int. Cl.7 G06F 12/00
[52 US. Cl. 711/170; 711/103; 710/68;

382/233; 345/521; 345/501
[58 Field of Search 71 1/103, 170;

710/68; 714/763, 764; 709/247, 382/232,
233; 345/521, 501, 507, 509

[56 References Cited

U.S. PATENT DOCUMENTS

5,371,499 12/1994 Graybill et a1. .
5,379,036 1/1995 StoreI .
5,396,343 3/1995 Hanselman 358/426
5,406,278 4/1995 Graybill et a1. .
5,406,279 4/1995 Anderson ct a1. .
5,412,429 5/1995 Glover.
5,414,425 5/1995 Whiting et a1. .

(List continued on next page.)

Primary Examiner—Eddie P. Chan
Assistant Examiner—Hong Kim
Attorney, Agent, or FirmgConley, Rose & Tayon PC;
Jeffrey C. Hood

[57] ABSTRACT

A flash memory controller and/or embedded memory con-
troller including MemoryF/X Technology that uses data
compression and decompression [or improved system cost
and performance. The Compression Enhanced Flash
Memory Controller (CEFMC) of the present invention pref—
erably uses parallel lossless compression and decompression
engines embedded into the flash memory controller unit for
improved memory density and data bandwidth. In addition,
the invention includes a Compression Enhanced Memory
Controller (CEMC) where the parallel compression and
decompression engines are introduced into the memory
controller of the microprocessor unit. The Compression

4,008,460 2/ 977 Bryant et al. 395/463 Enhanced Memory Controller (CEMC) invention improves
4,683,108 8/ 937 90110110144 -- 338/2611 system wide memory density and data bandwidth. The
4,870.54! 10‘; :8?) 519m - / disclosure also indicates preferred methods for specific
4’881‘073 1,11 ’8“, Wong 341/87 applications such as usage of the invention for solid-state
5,003,307 3/ 991 Whiting et a1. . d‘ ks b dd (1 cl S y Ch. SOC
5016.000 5/ 991 Whiting e161. 15 .’ m C C mfmory an ”Poms on 1p ()
5:126,739 6/ 992 Whiting et a]. . envnonments. The disclosure also indicates a novel memory
5,146,221 9/ 992 Whiting et 01. , control method for the execute in place (XIP) architectural
5,155,484 10/ 992 Chambers, IV , model. The integrated parallel data compreSSion and decom-
5,237,460 8/ 993 Miller et al. . .. 395/888 pression capabilities of the CEFMC and CEMC inventions
5,237,675 8/ 993 Hannon, Jr. .. 710/68 remove system bottle-necks and increase performance
5,247,038 9/ 993 073%" El al~ 7EU/08 matching the data access speeds of the memory subsystem

5,247.64? 9.; 993 Osmflund 0131' ~ 393/888 to that of the microprocessor. Thus, the invention allows
59375273 8‘ 994 Game‘ ””” ’ 362318901 lower cost svstems due to smaller data storage, reduced
5,341,330 8/ 004 Wells 365/18511 b d "dth ‘ . t d d 7 d 7.
5,353,024 10/ 994 Graybill. an vsi requiremen 5, re uce Lower an noise.
5,353,425 10/ 994 Malamy el al. .. 711/144
5,357,614 10/ 994 Pattisam et a1. 710/68 39 Claims, 24 Drawing Sheets

, goo~FIash menial System
, SRAM or

200 - CEFMC DRAM
MPU memory

[)smrrpvessmn 118 gEngme _> r__
Mem @ ‘ D: CT ATFlash ”F A

Memory 110 Bite 112 ECC/EDC — SRAM M‘
4—p H 1 m

3'0? Mux {103 wire lay/317:5 0 Cache “Bus ' Processlng120 ' 160 ‘ Um!

* #3:, “122139 :C_ i mom ressmn

@ I ESQ/"e <— ,,@

DC/DC 102 Control ‘—Converter<— SRAM

M DgrAM

Compression Contrgténit & Data Dtreotory Mainflgmo'v

APPLE 1008

Ex. 2013

Page 137 of 145

!131

Ex. 2013
Page 138 of 145

C‘.

{’1

"U
:a

D3 Compare 3

Outputs to 5’.
D2 Later

D1 Entries
610 608

2

Max Value .3
Fla 5)

E2: é

IE‘IIi’
Results 5;

C1 Previous Ent Calculation Output Mask ,3
82 6M 9..

A3 Output Count .4:

Combined Mask

Fig. 13

I690‘sr1‘9
11

Ex. 2013

Page 138 of 145

!132

Ex. 2013
Page 139 of 145

Inut Matches New Counter Output

mil-“E Value Counter
1 Saved+4 Saved +4

Saved+3

Saved+2

Saved+2

Saved+1

Saved+1

Saved+1

Saved+1

Saved

Saved

Saved

Saved

Saved

Saved

Saved

Saved

”919d'S'Il

r:.10$1musCAD—soacaOAO-so—so-s AbAAJAJ—x—wawwwrQN-A
1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

OOQOOOOQAA—L‘AAAA COCOA—séécoocddd
690’51’1‘9

Ex.2013

Page1390f145

!133

Ex. 2013
Page 140 of 145

6,145,069

3

“in-line” with data also preferably located within the Flash
memory control circuit

The CEFMC is designed for the reduction of data band-
width and is located between the main memory and/or
system memory and the flash memory controller. The
CEFMC Technology reduces the bandwidth requirements
while increasing the memory efficiency for almost all data
types within the computer system. Thus, conventional stan—
dard Flash Memory cells can achieve higher bandwidth,
more effective density, with less system power and noise
than when used in conventional systems without the
CEFMC technology.

The CEFMC transfers data between the Flash Memory
Array and the system MPU and its optional execution and
data memories. Therefore, the CEFMC technology of the
present invention typically resides between the MPU, main
memory and the Flash Memory Array. In an alternate
embodiment, the compression and/or decompression
engines may reside in the MPU memory control unit, thus all
memory data including flash memory can make use of lower
pin-out interconnect buses, more effective memory
performance, and increased effective memory density for all
types of memory coupled to the MPU device.

The CEFMC technology is designed to embed into prior
art flash memory control circuits Thus, the current
invention, using the novel parallel architecture to compress
and decompress data streams, substantially improves band—
width and effective storage density within the computing
system. In addition, the CEFMC Technology has a “seal-
able” architecture designed to function in a plurality of
memory configurations or compression modes with a plu-
rality of performance requirements as indicated in US.
patent application Ser. No. 09/239,659 titled “Bandwidth
Reducing Memory Controller Including Scalable Embedded
Parallel Data Compression and Decompression Engines”
and filed Jan. 29, 1999 (5143—01700). Scalability allows for
a non-symmetric compression rate as compared to the
decompression rate. Write data can match the effective write
speed of the Flash Memory Array, using fewer input sym-
bols in parallel during compression, thus reducing gate
count and size. Read data can be decompressed with a
different number of input symbols per clock or access, thus
allowing the read data to be decompressed at an alternate
rate. Thus, the non-symmetric nature of the invention during
reads and writes allows tuning of the memory access time
vs. gate count to greatly improve performance and cost.

When configured for “execute in place” (XIP model),
compressed data is programmed in to the flash memory for
execution by the system MPU. The CEFMC invention
decompresses the data as it is read by the MPU from the
flash memory. In an alternate embodiment a DMA device
can also be used to read data in a parallel fashion from the
flash memory device. In the preferred embodiment, data
presented at the output bus of the Flash Memory system is
retrieved when the “ready” output (ready is a control signal
associated with the MPU and Flash controller interface)
transitions state during a read data request. The “ready”
output indicates that the data has been successfully read
from the Flash Memory Array and decompressed for con—
sumption by the MPU. Any form of ready output indication
can be used, as the “wait” is due to the decompression o a
new block of data not previously stored in the SRAM bu er
or cache. Alternatively, the timing specifications can include
delay time specification indicating a “maximum delay” such
that the MPU of system device waits for some period of time
in order to process the decompressed requested data.

The CEFMC technology allows data to be stored in
multiple compression formats and blocks sizes, as indicated

LA

10

20

30

40

45

50

60

65

28

4

in US. patent application Ser. No. 09/239,659 titled “Band-
width Reducing Memory Controller Including Scalable
Embedded Parallel Data Compression and Decompression
Engines”, referenced above. Thus, data can be saved in
either a normal or compressed format, retrieved from the
Flash Memory Array for MPU execution in a normal or
compressed format, or transmitted and stored on a medium
in a normal or compressed format.

To improve latency and reduce performance degradations
normally associated with compression and decompression
techniques the CEFMC encompasses multiple novel tech—
niques such as: 1) Compiler directives for data types and
block sizes for optimal compression and access speeds; 2)
parallel lossless compression/decompression; selectable
compression modes such as lossless, lossy or no compres-
sion; 3) data caching techniques; 4) unique address
translation, attribute, and address directory structures, as
illustrated in US. patent application Ser. No. 09/239,659,
referenced above.

The CEFMC Technology preferably includes novel par-
allel compression and decompression engines designed to
process stream data at more than a single byte or symbol
(character) at one time. These parallel compression and
decompression engines modify the single stream dictionary
based (or history table based) data compression method
described by Lempel and Ziv to provide a scalable, high
bandwidth compression and decompression operation. The
parallel compression method examines a plurality of sym-
bols in parallel, thus providing greatly increased compres-
sion performance. The CEFMC technology, in an alternate
embodiment, reduces latency further by use of multiple
compiler hooks to distinguish program data space from table
look-up data. Thus, if indicated, a bypass of the decompres-
sion engine will send data directly to the output interface bus
without delay. A priority scheme can be applied such that
compression and decompression operations are suspended
as higher priority non-compressed data is transferred. Thus,
reduction of latency and improved efficiency can be
achieved at the cost of additional parallel bulTers and com-
parison logic. Compiler directives interpreted by the decom-
pression controller, can be embedded within the compiled
XIP code for notification of compression/dccompression
bypass.

In summary, the integrated data compression and decom—
pression capabilities of the present invention removes sys-
tem bottlenecks allowing a higher frequency MPU clock by
de-coupling the Flash Memory access time from MPU clock
frequency. In addition, the present invention reduces the data
storage size allowing more storage per Flash Memory Array.
This lower cost system is due to reduced data storage
requirements and improved bandwidth results. This also
increases system bandwidth and hence increases system
performance. Thus the compression based Flash Memory
Controller of the present invention is a significant advance
over the operation of current memory controllers.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1 illustrates a typical embodiment for the prior art
Flash Memory Controller architecture without Compression
Enhancement for the solid-state disk;

FIG. 2 illustrates a typical embodiment for the prior art
Flash Memory Controller without Compression Enhance-
ment for the execute in place (XIP) model;

Ex. 2013

Page 140 of 145

!134

Ex. 2013
Page 141 of 145

3:; 20 The CEFMC Technology preferably includes novel par-
r all allel compression and decompression engines designed to

process stream data at more than a single byte or symbol

lI'iOI' (character) at one time. These parallel compression and

rent decompression engines modify the single stream dictionary

ress 25 based (or history table based) data compression method

1nd- described by Lempel and Ziv to provide a scalable, high

ting bandwidth compression and decompression operation. T_he

LCEtl- parallel compression method examines a plurality of sym-
r’ 0f bols in parallel, thus providing greatly increased compres-
plu- 3o sion performance. The CEFMC technology, in an alternate
US. embodiment, reduces latency further by use of multiple
idth compiler hooks to distinguish program data space from table
lded look-up data. Thus, if indicated, a bypass of the decompres-
165” sion engine will send data directly to the output interface bus
if“ 35 without delay. A priority scheme can be applied such that

the compression and decompression operations are suspended
r’l'lte as hi_her riorit non-comressed data is transferred. Thus

Ex. 2013

Page 141 of 145

!135

Ex. 2013
Page 142 of 145

6,145,069

17

data in the Cache Memory 425. Once the write data is
merged, step 3550 updates the LRU/MRU cache state and
proceeds to complete the write cycle. In step 3560 if the
latest write block forces a write back of the LRU block, then
the process continues with step 3570. If not, and open cache
blocks were available then the process returns into the idle
state of step 3440 and waits for the next transaction request.
If LRU data is retired to the Flash Memory System 900, the
Flash Memory Controller 200 embedded within the Flash
Memory System 900 must return the address of a cleared
block of flash memory [or write back of the compressed
LRU as indicated in step 3570. The retired LRU data may be
compressed as indicated in step 3580 and then written back
into the Flash Memory Array 100 shown in step 3590. Thus,
for increased system performance and lower costs the
embedded compression and decompression architecture of
the present invention is a substantial improvement from
prior art Flash memory controllers.

Now referring to the increased performance aspects of the
present invention, the advantages of using compression and '
decompression within the embedded system are shown. For
the present embodiment a good example of the performance
and cost advantages can be illustrated using the execute in
place application of FIG. 5. Data is clocked out of the Flash
Memory Array 100 on a 32-bit bus at 40 us for every four
bytes. This is considered the flash memory “source” rate.
The “sink” rate is the maximum System Bus 118 bandwidth
running at 66 MHZ, which is equivalent to four bytes every
16 ns. If the average compression ratio for the parallel
compression algorithm is 2.521 then the output rate of the
Flash Memory Array 100 after decompression will be 40/25
ns per four bytes read, or 16 ns/Byte thus matching the 66
MHZ maximum bus speed requirements. In addition the
effective density of the flash memory is now 2.5 times larger
than without the use of the present invention. Thus the use
of the present invention can greatly increase the system
performance while decreasing the per-bit effective cost of
storage.
Parallel Lossless Compression and Decompression

The parallel compression/decompression units or engines
260 and 280, in combination referred to as codec engine
260/280, which perform parallel compression and decom-
pression functions, are now discussed. The codec engine
2601280 is preferably a dedicated codec hardware engine,
e.g., the engine is comprised of logic circuitry. In one
embodiment, the codec engine 260/280 comprises a pro-
grammable DSP or CPU core, or programmable
compression/decompression processor, with one or more
ROMs or RAMs which store different sets of microcode for

certain functions, such as compression, decompression, spe-
cial types of graphical compression and decompression, and
bit blit operations, as desired. In another embodiment, the
codec engine 260/280 dynamically shifts between the dif-
ferent sets of microcode in the one or more memories,
depending on the function being performed. The
compression/decompression engine may also be imple-
mented using reconfigurable or programmable logic, e.g.,
one or more FPGAs.

As shown in FIGS, 3 and 4, in some embodiments, the
engine 260/280 preferably includes a lossless parallel data
compression engine 260 and parallel decompression engine
280 designed to compress and decompress data as data is
transferred to/from flash memory. Other embodiments, as
illustrated in FIG. 5, may be implemented with only a
decompression engine 280. The compression engine 260
and decompression engine 280 may be constructed using
any of the techniques described with reference to the engine

10

to U‘

30

35

40

60

35

18

260/280, including hardware engines comprised of logic
circuitry, programmable CPUs, DSPs, a dedicated
compression/decompression processor, or reconfigurable or
programmable logic, to perform the parallel compression
and decompression method of the present invention. Various
other implementations may be used to embed a
compression/decompression within the flash memory con—
troller according to the present invention. In one
embodiment, the compression engine 260 and decompres-
sion engine 280 comprise hardware engines in the CEFMC
200 as shown in FIG. 3. In another embodiment, the
compression engine 260 and decompression engine 280
comprise hardware engines in the CEMC 910 as shown in
FIG. 4. In yet another embodiment, the decompression
engine 280 comprises a hardware engine in the CEFMC 200
as shown in FIG. 5, In the following description, the parallel
compression and decompression unit is described as having
separate compression and decompression engines 260 and
280,

In the various embodiments, the compression engine 260
and decompression engine 280 comprise one or more hard-
ware engines that perform a novel parallel lossless compres-
sion method, preferably a “parallel” dictionary based com—
pression and decompression algorithm. The parallel
algorithm may be based on a serial dictionary based
algorithm, such as the LZ77 (preferably LZSS) dictionary
based compression and decompression algorithm. The par-
allel algorithm may be based on any variation of conven-
tional serial I.Z compression, including I277, I278, IZW
and/or LZRVVI, among others,

The parallel algorithm could also be based on Run length
Encoding, Predictive Encoding, Huffman, Arithmetic, or
any other lossless compression algorithm. However, the
paralleling of these is less preferred due to their lower
compression capabilities and/or higher hardware costs.

As a base technology, any of various lossless compression
methods may be used as desired. As noted above, a parallel
implementation of IZSS compression is preferably used,
although other lossless compression methods may allow for
fast parallel compression and decompression specifically
designed for the purpose of improved memory bandwidth
and efliciency.
FIG. l0A—Prior Art, Serial LZ Compression

Prior art has made use of the LZ compression algorithm
for design of computer hardware, but the bandwidth of the
data stream has been limited due to the need to serially
review the incoming data to properly generate the com-
pressed output stream. FIG. 10A depicts the prior art normal
history table implementation.

The L2 compression algorithm attempts to reduce the
number of bits required to store data by searching that data
for repeated symbols or groups of symbols. A hardware
implementation of an LZ77 algorithm would make use of a
history table to remember the last [1 symbols of a data stream
so that they could be compared with the incoming data.
When a match is found between the incoming stream and the
history table, the matching symbols from the stream are
replaced by a compressed symbol, which describes how to
recover the symbols from the history table.
FIG. 10B7Parallel Algorithm

The preferred embodiment of the present invention pro-
vides a parallel implementation of dictionary based (or
history table based) compression/decompression. By
designing a parallel history table, and the associated c0111-
pare logic, the bandwidth of the compression algorithm can
be increased many times. This specification describes the
implementation of a 4 symbol parallel algorithm which

Ex. 2013

Page 142 of 145

!136

Ex. 2013
Page 143 of 145

- When a match is found between the incoming stream and the

, history table, the matching symbols from the stream are

replaced by a compressed symbol which describes how to

recoverthe s mbols theuh1story table

{ i The preferredembod1ment'of the present invention pro-

a

s Vides a parallel implementation of dictionary based (or

3 history table based) compression/decompression. By
a

J

designing a parallel history table, and the associated com-

65 pare logic, the bandwidth of the compression algorithm can

be increased many times. This specification describes the

e implementation of a 4 symbol parallel algorithm which

1136'
Ex. 2013

Page 143 of 145

!137

Ex. 2013
Page 144 of 145

6,145,069

19

results in a 4 times improvement in the bandwidth of the
implementation with no reduction in the compression ratio
of the data. In alternate embodiments, the number of sym—
bols and parallel history table can be increased and scaled
beyond four for improved parallel operation and bandwidth,
or reduced to ease the hardware circuit requirements. In
general, the parallel compression algorithm can be a 2
symbol parallel algorithm or greater, and is preferably a
multiple of 2, e.g., 2, 4, 8, 16, 32, etc. The parallel algorithm
is described below with reference to a 4 symbol parallel
algorithm for illustrative purposes.

The parallel algorithm comprises paralleling three parts of
the serial algorithm: the history table (or history window),
analysis of symbols and compressed stream selection, and
the output generation. In the preferred embodiment the
data-flow through the history table becomes a 4 symbol
parallel flow instead of a single symbol history table. Also,
4 symbols are analyzed in parallel, and multiple compressed
outputs may also be provided in parallel. Other alternate
embodiments may contain a plurality of compression win-
dows for decompression of multiple streams, allowing a
context switch between decompression of individual data
blocks. Such alternate embodiments may increase the cost
and gate counts with the advantage of suspending current
block decompression in favor of other block decompression
to reduce latency during fetch operations. For ease of
discussion, this disclosure will assume a symbol to be a byte
of data. Symbols can be any reasonable size as required by
the implementation. FIG. 10B shows the data-flow for the
parallel history table.

FIG. ll—I—Iigh I.evel Flowchart of the Parallel Compres-
sion Algorithm

FIG. 11 is a high-level flowchart diagram illustrating
operation of the parallel compression algorithm in the pre-
ferred embodiment. Steps in the flowchart may occur con-
currently or in different orders.

In step 402 the method maintains a history table (also
called a history window) comprising entries, wherein each
entry may comprise one symbol. The history table is pref-
erably a sliding window which stores the last n symbols of
the data stream.

In step 404 the method maintains a current count of prior
matches which occurred when previous symbols were com-
pared with entries iu the history table, Acount is maintained
for each entry in the history table.

It is noted that maintenance of the history table and the
current counts are performed throughout the algorithm based
on previously received symbols, preferably starting when
the first plurality of symbols are received for compression.

In step 406 the method receives uncompressed data,
wherein the uncompressed data comprises a plurality of
symbols. Thus the parallel compression algorithm operates
on a plurality of symbols at a time. This is different than
conventional prior art serial algorithms, which operate in a
serial manner on only one symbol at a time. The plurality of
symbols comprises 2 or more symbols, preferably a power
of 2. In the preferred embodiment, the parallel compression
algorithm operates on 4 symbols at a time. However, imple-
mentations using 8, 16, 32 or more symbols, as well as other
non-power of 2 numbers, may be readily accomplished
using the algorithm described herein.

In step 408 the method compares the plurality of symbols
with each entry in the history table in a parallel fashion. This
comparison produces compare results. Each entry in the
history table preferably compares with each of the plurality
of symbols concurrently, i.e., in a parallel fashion, for
improved speed.

10

15

Lu 0

Lu LA

40

45

60

65

36

20

In step 410 the method determines match information for
each of the plurality of symbols based on the current count
and the compare results. Step 410 of determining match
information includes determining zero or more matches of
the plurality of symbols with each entry in the history table.
More specifically, step 410 may include determining a
longest contiguous match based on the current count and the
compare results, and then determining if the longest con—
tiguous match has stopped matching. If the longest contigu-
ous match has stopped matching, then the method resets or
updates the current counts.

As noted above, stop 410 also includes resetting the
counts for all entries if the compare results indicate a
contiguous match did not match one of the plurality of
symbols. The counts for all entries are preferably reset based
on the number of the plurality of symbols that did not match
in the contiguous match. In the preferred embodiment, the
method generates a reset value for all entries based on the
compare results for a contiguous match. The reset value
indicates a number of the plurality of symbols that did not
match in the contiguous match as indicated in the compare
results. The method then updates the current counts accord-
ing to the compare results and the reset value.

In step 412 the method outputs compressed data infor-
mation in response to the match information. Step 412 may
involve outputting a plurality of sets or compressed data
information in parallel, e. g., for difierent matches and/or for
non-matching symbols. Step 412 includes outputting com-
pressed data information corresponding to the longest con-
tiguous match that stopped matching, if any. The contiguous
match may involve a match from a prior plurality of sym-
bols. Step 412 may also include outputting compressed data
information solely from a prior match. Step 412 also
includes, for non—matching symbols that do not match any
entry in the history table, outputting the non—matching
symbols in an uncompressed format.

For a contiguous match, the compressed data information
includes a count value and an entry pointer. The entry
pointer points to the entry in the history table that produced
the contiguous match, and the count value indicates a
number of matching symbols in the contiguous match. In
one embodiment, an encoded value is output as the count
value, wherein more often occurring counts are encoded
with fewer bits than less often occurring counts.

Steps 402—412 are repeated one or more times until no
more data is available. When no more data is available, then,
if any current counts air, non—zero, the method outputs
compressed data for the longest remaining match in the
history table.

Since the method performs parallel compression, operat-
ing on a plurality of symbols at a time, the method preferably
accounts for symbol snatches comprised entirely within a
given plurality of symbols, referred to as the “special case”.
Here presume that the plurality of symbols includes a first
symbol, a last symbol, and one or more middle symbols.
Step 410 of determining match information includes detect—
ing if at least one contiguous match occurs with one or more
respective contiguous middle symbols, and the one or more
respective contiguous middle symbols are not involved in a
match with either the symbol before or after the respective
contiguous middle symbols. If this condition is detected,
then the method selects the one or more largest non-
overlapping contiguous matches involving the middle sym-
bols. In this instance, step 412 includes outputting com-
pressed data for each of the selected matches involving the
middle symbols.

Ex. 2013

Page 144 of 145

!138

Ex. 2013
Page 145 of 145

3

is described below with reference to a 4 symbol parallel 10

algorithm for illustrative purposes.

The parallel algorithm comprises paralleling three parts of
the serial algorithm: the history table [or history window!2

analysis of symbols and compressed stream selection2 and

the output generation. In the preferred embodiment the 15

data-flow through the history table becomes a 4 symbol

parallel flow instead of a single symbol history table. Also,

4 symbols are analyzed in parallel, and multiple compressed

outputs may also be provided in parallel. Other alternate

embodiments may contain a plurality of compression win- 20

dows for decompression of multiple streams, allowing a

context switch between decompression of individual data

blocks. Such alternate embodiments may increase the cost

and gate counts with the advantage of suspending current

block decompression in favor of other block decompression 25

'3 3 3 3 3 3

ous

upd:

as

couI

cont

syn:

ont]

in‘d

met]

com

lfldit

matr

resu

ing ‘

II:

mati

/138'

Ex. 2013

Page 145 of 145

