
APPLE 10151

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. I’I‘—23, No. 3, MAY 1977 337

A Universal Algorithm for Sequential Data Compression

JACOB ZIV, FELLOW, IEEE, AND ABRAHAM LEMPEL, MEMBER, IEEE

Abstract—A universal algorithm for sequential data compres-
sion is presented. Its performance is investigated with respect to
a nonprobabilistie model of constrained sources. The compression
ratio achieved by the proposed universal code uniformly ap-
proaches the lower bounds on the compression ratios attainable by
block-to-variable codes and variable-to-block codes designed to
match a completely specified source.

I. INTRODUCTION

N MANY situations arising in digital com-

munications and data processing, the encountered

strings of data display various structural regularities or are

otherwise subject to certain constraints, thereby allowing

for storage and time—saving techniques of data compres-

sion. Given a discrete data source, the problem of data
compression is first to identify the limitations of the source,

and second to devise a coding scheme which, subject to

certain performance criteria, will best compress the given
source.

Once the relevant source parameters have been identi-

fied, the problem reduces to one of minimum—redundancy
coding. This phase of the problem has received extensive

treatment in the literature [1]—[7].

When no a priori knowledge of the source characteristics

is available, and if statistical tests are either impossible or

unreliable, the problem of data compression becomes

considerably more complicated. In order to overcome these

difficulties one must resort to universal coding schemes

whereby the coding process is interlaced with a learning

process for the varying source characteristics [8], Such

coding schemes inevitably require a larger working mem-
ory space and generally employ performance criteria that

are appropriate for a wide variety of sources.

In this paper, we describe a universal coding scheme

which can be applied to any discrete source and whose

performance is comparable to certain optimal fixed code

book schemes designed for completely specified sources.

For lack of adequate criteria, we do not attempt to rank the
proposed scheme with respect to other possible universal
coding schemes. Instead, for the broad class of sources

defined in Section III, we derive upper bounds on the

compression efficiency attainable with full a priori

knowledge of the source by fixed code book schemes, and

Manuscript received June 23, 1975; revised July 6, 1976. Paper pre-
viously presented at the IEEE International Symposium on Information
Theory, Ronneby, Sweden, June 21-24, 1976.

J. Ziv was with the Department of Electrical Engineering, Technionv
Israel Institute of Technology, Haifa, Israel. He is now with the Bell
Telephone Laboratories, Murray Hill, NJ 07974.

A. Lempel was with the Department of Electrical Engineering, Tech-
nion—Israel Institute of Technology, Haifa, Israel. He is now with the
Sperry Research Center, Sudbury, MA 01776.

then show that the efficiency of our universal code with no

a priori knowledge of the source approaches those
bounds.

The proposed compression algorithm is an adaptation

of a simple copying procedure discussed recently [10] in

a study on the complexity of finite sequences. Basically,

we employ the concept of encoding future segments of the
source—output via maximum—length copying from a buffer

containing the recent past output. The transmitted

codeword consists of the buffer address and the length of

the copied segment. With a predetermined initial load of

the buffer and the information contained in the codewords,

the source data can readily be reconstructed at the de-

coding end of the process. .

The main drawback of the proposed algorithm is its

susceptibility to error propagation in the event of a channel
error.

11. THE COMPRESSION ALGORITHM

The proposed compression algorithm consists of a rule

for parsing strings of symbols from a finite alphabet A into

substrings, or words, whose lengths do not exceed a pre-

scribed integer Ls, and a coding scheme which maps these

substrings sequentially into uniquely, decipherable code-
words of fixed length LC over the same alphabet A.

The word—length bounds L, and LC allow for bounded-
delay encoding and decoding, and they are related by

Le = 1+ l10g (n - Ls)l + I108 Lsl: (1)

where [x] is the least integer nothsmialler than x, the log-
arithm base is the cardinality oz of the alphabet A, and n

is the length of a buffer, employed at the encoding end of

the process, which stores the latest n symbols emitted by

the source. The exact relationship between n and L3 is

discussed in Section III. Typically, it 2 L30/‘Ls, where 0
< h < 1. For on—line decoding, a buffer of similar length has

to be employed at the decoding end also.
To describe the exact mechanics of the parsing and

coding procedures, we need some preparation by way of
notation and definitions.

Consider a finite alphabet A of a symbols, say A =

{0,1, - - - ,a — 1}. A string, or word, S of length Z(S) = k over

A is an ordered k—tuple S = s1s2 - - - 3;, of symbols from A.

To indicate a substring of S which starts at position i and

ends at position j, we write S(i,j). When i S j, S(i,j) =

s,~s,-+1 - - - S,-, but when i > j, we take S(i,j) = A, the null
string of length zero.

The concatenation of strings Q and R forms a new string

S = QR; if£’(Q) = k and €(R) = m, then €(S) = I2 + m, Q

= S(1,k), and R = S(k + 1, k + m). For eachj, 0 Sj .<_

APPLE 1015
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

2

338

€(S), S(1,j) is called aprefix ofS; S(1,j) is a proper prefix
ofSifj<€(S). C
, Given a proper prefix S (1,j) of a string S and a positive
integer i such that i _<_ j, let L(i) denote the largest non-

negative integer € § 3 (S) — j such that

S(i,i+ Z - 1) = S(j+ 1,j+ Z),

and let p be a position of S (1,j) for which

L(p) = max {L(i)}.
1SiSj

The substring S(j + 1,j + L(p)) of S is called the repro-
ducible extension of S(1,j) into S, and the integer p is

called the pointer of the reproduction. For example, if S
= 00101011 andj = 3,thenL(1) = 1 since $0 + 1,j + 1) =

S(1,1) but S0 + 1,j + 2) 75 S(1,2). Similarly,L(2) = 4 and
L(3) = 0. Hence, S(3 +»1,8 + 4) = 0101 is the reproducible

extension of S(1,3) = 001 into S with pointer p = 2.
Now, to describe the encoding process, let S = 8182 - - -

denote the string of symbols emitted by the source. The

sequential encoding of S entails parsing S into successive
source words, S = S1S2 - - - , and assigning a codeword C,
for each S,. For bounded-delay encoding, the length Z, of

each,S,_ is at most equal to a predetermined parameter L,,
while each C, is of fixed length L, as given by (1).

To initiate the encoding process, we assume that the

output S of the source was preceded by a string Z of n —
LS zeros, and we store the string B1 = ZS(1,L_,) in the

buffer. If S (1,j) is the reproducible extension of Z into
ZS(1,L,. — 1),then S1 = S(1,j + 1) and £’1=j+ 1. To de-

termine the next source word, we shift out the first 3,

symbols from the buffer and feed into it the next 61 sym-2

bols of S to obtain the string B2 = B1(€1 + 1,n)S(L_, + 1,

L, + [1). Now we look for the reproducible extension E of
B2(1,n - Ls) into B2(1,n - 1), and set S2 = Es, where sis

the symbol next to E in B 2. In general, if B, denotes the

string of n source symbols stored in the buffer when we are
ready to determine the ith source word S,, the successive

encoding steps can be formally described as follows.
1) Initially, set B1 = 0”‘L~S(1,L_,), i.e., the all-zero

string of length n — Ls followed by the first LS symbols of
S. A .

2) Having determined B,, i Z 1, set

S," = B,(n ‘LS + 1,n ‘L3 + 3,‘),

where the prefix of length Z, - 1 of S, is the reproducible

extension ofB,(1,n - Ls) into B,(1,n — 1).
3) If p, is the reproduction pointer used to determine

S,, then the codeword C, for S, is given by A

Ci = Cz1Cg2Ci3,

where C,1 is the radix—oz representation of p, — 1 with

t’ (C,1) = [log (n — L,)], C,g is the radix—a representation

of Z, - 1 with £’(C,2) = [log LS], and C,3 is the last symbol

of S,, i.e., the symbol occupying position n - L_,. +' K, of B,.
The total length of C, is given by

€(C,) = [log (n — Ls)] + [log Ls] + 1

in accordance with (1).

IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 1977

4) To update the contents of the buffer, shift out the

symbols occupying the first 3, positions of the buffer while

feeding in the next Z, symbols from the source to obtain

Bi+1 = Bi(€i + 1,n)S(hi + 1,hi+ 4,‘),

where h, is the position of S occupied by the last symbol

Of Bi. 1

This completes the description of the encoding process.

It is easy to verify that the parsing rule defined by (2)

guarantees a bounded, positive source word length in each

iteration; in fact, 1 S 6, 5 L3 for each i thus allowing for

a radix-a representation of Z, — 1 with [log Ls] symbols
from A. Also, since 1 S p, S n — L, for each i, it is possible

to represent p, - 1 with [log (n — L_,)] symbols from A.
Decoding can be performed simply by reversing the

encoding process. Here we employ a buffer of length n —

L, to store the latest decoded source symbols. Initially, the
buffer is loaded with n — L, zeros. IflD, = d1d2 - - - d,,_Ls

denotes the contents of the buffer after C,_1 has been de-

coded into S,_1, then X

S.--1= D.-(n — L. — e.«.; + Ln — Ls):

where €,_1 = €(S,_1), and where D,+1 can be obtained

from D, and C, as follows.

Determine p, - 1 and 4’, — 1 from the first [log (n -— L,.)'|

and the next [log L,.'| symbols of C,. Then, apply 4’, — 1

shifts while feeding the contents of stage p, into stage n -
L3. The first of these shifts will change the buffer contents

from D, to

Dg1>= d2d3 . . . dn_L_‘_dp,. = d<11>d;>...dgg1,
.5’

Similarly, ifj 5 Z, — 1, the jth shift will transform D9”)

= d‘,/'“d9‘” - - - d‘,{:Bs into DE“ = d§"‘1’d§,/1"“ - --
d<,,f:1;d§,f;1> = d§1’d§” - . . d‘,,/1,5. After these 2, — 1
shifts are completed, shift Once more, while feeding the last

symbol of C, into stage n — L, of the buffer. It is easy to

verify that the resulting load of the buffer contains S, in

its last 5, = Z (S,) positions.

The following example will serve to illustrate the me-
chanics of the algorithm. Consider the ternary (oz = 3)

input string

S = 001010210210212021021200 - - - ,

and an encoder with parameters L3 = 9 and n = 18. (These

parameters were chosen to simplify the illustration; they
do not reflect the design considerations to be discussed in

Section III.) According to (1), the corresponding codeword

length is given by

Lc=1+log3(18—9)+log39=5.

Initially, the buffer is loaded with n — L, = 9 zeros, fol-

lowed by the first L3 = 9 digits of S, namely,

B1=00O000000 001010210.\j-\/§/\.j-\/-§_/

n-L_,=9 Ls=9

To determine the first source word S1, we have to find the
longest prefix B1(1Q,9 + £1 - 1) of

2 B1(10,1'7)=00101021
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

3

ZIV AND LEMPEL: SEQUENTIAL DATA COMPRESSION

which matches a substring of B1 that starts in position pl

5 9 and then set S1 = B1(10,9 + 61). It is easily seen that

the longest match in this case is B1(10,11) = 00, and hence

S1 = 001 and £1 = 3. The pointer p1 for this step can be any

integer between one and nine; we choose to set p1 = 9. The

two—digit radix—3 representation of p1 — 1 is C11 = 22, and
that of £1 - 1 is C12 = 02. Since C53 is always equal to the

last symbol of S,~, the codeword for S1 is given by C1 =
22021.

To obtain the buffer load B2 for the second step, we shift

out the first £1 = 3 digits of B 1 and feed in the next 3 digits

S (10,12) = 210 of the input string S. The details of steps

2, 3, and 4 are tabulated below, where pointer positions are

indicated by arrows and where the source words S, are

indicated by the italic substring of the corresponding
buffer load B,-

l

B2=00OO0O00101021O210, C2=211O2

l

B3=000010102102102I20, C3=2O212

l

B4=210210212021021200, C4=0222O.

III. COMPRESSION or CONSTRAINED SOURCES

In this section, we investigate the performance of the

proposed compression algorithm with respect to a non-

probabilistic model of constrained information sources.

After defining the source model, we derive lower bounds

on the compression ratios attainable by block—to-variable
and variable—to—block codes under full knowledge of the

source, and then show that the compression ratio achieved

by our universal code approaches these bounds.

A. Definition of the Source Model

Let A = {0,1, - - - ,oz — 1} be the given a—symbol alphabet,
and let A * denote the set of all finite strings over A. Given

a string S E A* and a positive integer m S 3 (S), let Slm}

denote the set of all substrings of length m contained in S,

and let S(m) denote the cardinality of S {In}. That is,

3(3)-In

S{m}= S(i+ 1,i+m)

and

S(m) = |S{m}|-

Given a subset 0 ofA*, let

aim} = {S E oI£’(S) = m},

and let a(m) denote the cardinality of o{m}.

A subset a of A * is called a source if the following three

properties hold:

1) A C a (i.e., 0 contains all the unit length strings),

2) S E 0’ implies SS E a,

3) S E 0 implies S{m} C a{m}. 3

339

Typically, such a source a is defined by specifying a fi-

nite set of strings over A which are forbidden to appear as;

substrings of elements belonging to a, and therefore a(m)

< am for all m exceeding some mo.

With every source 0, we associate a sequence h(1),

h(2), - - - of parameters, called the h-parameters of a,
' wherel

h(m) = i log a(m), m = 1,2, - - -. (2)m

It is clear that 0 S h(m) S 1 for all m and, by 2) it is also

clear that mh(m) is a nondecreasing function of m. The _

sequence of h—parameters, however, is usually nonin~
creasing in m. To avoid any possible confusion in the se—£
quel, we postulate this property as an additional defining
property of a source. Namely, we require

4) h(m) = 1/m log o(m) is a nonincreasing function of
m.

B. Some Lower Bounds on the Compression Ratio

Consider a compression coding scheme for a source a

which employs a block—to-variable (B V) code book of M

pairs (X,-,Y,-) of words over A, with £’(X,) = L for i =

1,2, - - - ,M. The encoding of an infinitely long string 8 E‘

0 by such a code is carried out by first parsing S into blocks

of length L, and then replacing each block Xi by the cor-

responding codeword Y,-. It is assumed, of course, that the

code book is exhaustive with respect to 0 and uniquely

decipherable [2}. Hence, we must have

{Xi iii = UlL}

01'

M = = aLh(L),

and

max l€(Y,-)} Z l0gM = Lh(L). (4)1SiSM

The compression ratio pg associated with the ith word»

pair of the code is given by

£’(Yi)

L .

The BV compression ratio, pm/(o,M), of the source a,

is defined as the minimax value of p,-, where the maximi—

zation is over all word—pairs of a given code, and the min-

imization is over the set C3‘/(a,M) of all BV code books"

consisting of M word—pairs. Thus,

Pi

p3V(a,M)= min max {gum}Cm/(a,M)1sisM L

logM Lh(L) h_ = —-—' = L . ,> L L ()

1 Throughout this paper, log x means the base—a logarithm of x.
f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

4

340

For later reference, we record this result in the following
lemma.

Lemma 1:

pBv(U,M) Z h(L),

where

Lh(L) = log M.

Now, consider a compression scheme which employs a

Variable-to—block (VB) code book of M word—pairs (X,-,Y,-),

with £’(Y,) = L for all i = 1,2, - - - ,M. In this case, the

compression ratio associated with the ith word—pair is

given by

__ L

5 (Xi),

and similarly, the VB compression ratio pV3(o,M) of a is
defined as the minimax value of p,~ over all word—pairs and

over the set CVB(o,M) of VB code books with M word-

pairs.
Lemma 2:

Pi

pvB(<r,M) Z h(LM)

where

LM = max {KIM Z a(€)}.

Proof: We may assume, without loss of generality, that
in every code under consideration

£’(X1).<. £’(X2) S S £’(XM),

and hence for each C E C V};(¢7,M),

L(C)
,- C = . 5maxp() “X9 ()

Since C is exhaustive with respect to a, we have

M Z rr(€1), (6)

where £1 = 6 (X 1); and since C is uniquely decipherable,
we have

L(C) ZlogM. (7)

From the definition of LM, inequality (6), and the nonde-

creasing property of 0(3), we obtain

(8)£1 SLM.

_ From (5), (7), and (8), we have

logM_

LM ’
max p,'(C) Z

and since

M Z 0(LM) = aLMh(LM),

it follows that for each C E CVB(a,M),

max p,-(C) Z h(LM).

Q.E.D.

IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 1977

Remarks

1) Since the value of L in the context of Lemma 1

satisfies the definition of LM as given in Lemma 2, it fol-

lows that the bounds of both lemmas are essentially the

same, despite the basic difference between the respective

coding schemes. E
2) By 2), the second defining property of a source, the

per—word bounds derived above apply to indefinitely long

messages as well, since the whole message may consist of

repeated appearances of the same worst case word.

3) By 4), the nonincreasing property of the h—pa-

rameters, the form of the derived bounds confirms the

intuitive expectation that an increase in the size M of the

employed code book causes a decrease in the lower bound

on the attainable compression ratio.

C. Performance of the Proposed Algorithm

We proceed now to derive an upper bound on the com-
pression ratio attainable by the algorithm of Section II. To

this end, we consider the worst case source message of

length n — Ls, where n is the prospective buffer length and

L, is the maximal word—length. The bound obtained for

this case will obviously apply to all messages of length n

— L, or greater.

First, we assume that only the h-parameters of the

source under consideration are known to the designer of

the encoder. Later, when we discuss the universal perfor-

mance of the proposed algorithm, we will show that even

this restricted a priori knowledge of the source is actually
unessential.

We begin by choosing the buffer length n to be an inte-

ger of the form
x z

n = 21 mam + _Z)\+1 + (6 + 1)(Ng+1 + 1),

(9)

where

x e

Ng+1= Z1(Z — m)a’" + Z (Z — m)a(€), (10)m= m=>\+1

A = [£’h(€)j, the integer part of log a(€) = £’h(€), and

Z = Ls - 1. (11)

The specific value of the parameter L3 is left for later

determination (see the first remark following the proof

of Theorem 1). The reasoning that motivates the given

form of n will become clear from subsequent deriva-
tions.

Consider a string S E rrln — Ls}, and let N(S) denote the

number of words into which S is parsed by the algorithm

during the encoding process. Recalling that each of these

words is mapped into a codeword of fixed length LC (see

(1)), it follows that the compression ratio p(S) associated

with the string S is given by

Le

n — L,
‘p(S') = N(S)-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

5

ZIV AND LEMPEL: SEQUENTIAL DATA COMPRESSION

Hence, the compression ratio p attainable by the algorithm

for a given source 0 is

N, (12)

where

N= max N(S).
se.;:n—L,}

Let Q E afn — L3} be such that N(Q) = N, and suppose

that the algorithm parses Q into Q = Q1Q2 - - - QN. From

step 2) of the encoding cycle it follows that if €(Q,-) = Z (Qj)

< Ls, for some i <j < N, then Q, 75 Q]; (Note that when

Qj is being determined at the jth cycle of the encoding
process, all of Q, is still stored in the buffer, and since €(Q,-)

< L, , the longest substring in the buffer that precedes Q,-

and is a prefix of Q, must be of length €(Q,~) - 1.)
Denoting by Km the number of Q,-, 1 S i S N — 1, of

length m, 1 S m S Ls, we have
Ls

N = 1 + 2 K,,,.m= 1

By the above argument, and by property 3) of the source,
we have

K,,,Sa(m), for1SmS€=L,—-1.

Since

[+1

n _Ls = €(Q1v)+ Z mKm,m=1

and n and L, are both fixed, it is clear that by overesti-

mating the values of Km for 1 S m _<_ E at the expense of

K5+1, we can only overestimate the value of N. Therefore,

since a(m) S a(m + 1) and a(m) = amhlml S am, we ob-
tain

/ 6 /
N_<_K[+1+ Z Km=N/,m=1

where

K,m={a’”, for1SmS}\=L€h(£’)j (14)0(€), for>\<m SE

and

, 1 5’ ,

Kg+1= ;1mK,,,)_l.
From (14), (15), and (9), we obtain K241 5 Ng+1, and

(7

01'" + Z1 m=>\+1

x

N/=NZ+1+ Z; 0(3)

which, together with (9) and (10), yields

(2

n—L,—€N’= i ma’"+ Z ma(£’)m=1 m=}x+1

x e

+Ne+1‘-€[Z oz’”+ Z a(€)]=0,m=1 m=>\+1

341

or

— L n — L
NsM=n 3: fl

Z L, — 1 (16)
Hence, from (12) and (16), we have

£2 _ Le
”Se_L,—r a”

Note that despite the rater rudimentary overestimation

of N by N’, the upper bound of (17) is quite tight, since the

fact that no source word is longer than L, immediately
implies p Z LC/Ls.

We can state now the following result.

Theorem 1: If the buffer length n for a source with

known h—parameters is chosen according to (9), then

p S h(Ls - 1) + e(Ls),

where

an) <3+3mgam—1)+mg%§.=a—1

Proof: From (1) we have

LC = 1 + [log LS] + [log (n — Ls)]

S 3 + log (L, — 1) + log (n — L_,).

From (9) and (10) we obtain

n—L.,=e[i<e—m>am+ i (Z-m)a(€)771:1 m=>\+1

A 6’

+ ; oz’”+ 2 0(3)],1 m=>\+1

and since 01'” S a(Z), for 1 S m S A, we have

3 ' 1

n —Ls 5 30(5) 2 (Z - m+ 1) =§€2(€ + 1)a(€),m=1

or

£’+1

2log (n — L3) 5 2 log 3 + log + L’h(€).

Since 3 = L, — 1, we obtain

LC 5 3 + 3log (L, — 1) +log%+ (L, — 1)h(L_, — 1),
01'

LC 5 (Ls — 1)[h(Ls — 1) + 6(Ls)l-

Substituting this result into (17), we obtain the bound of
Theorem 1.

Q.E.D.

Remarks

1) The value of e(L,) decreases with L_, and, conse-

quently, the compression ratio p approaches the value of

h(L, — 1), the h—parameter associated with the second

largest word—length processed by the encoder. Given any

6 > 0, one can always find the least integer Z, such that

p - h(€, — 1) S 6. The magnitude of the acceptable de-

f

Find authenticated court documents without watermarks at docketalarm.com.

https://www.docketalarm.com/

Real-Time Litigation Alerts
 Keep your litigation team up-to-date with real-time

alerts and advanced team management tools built for
the enterprise, all while greatly reducing PACER spend.

 Our comprehensive service means we can handle Federal,
State, and Administrative courts across the country.

Advanced Docket Research
 With over 230 million records, Docket Alarm’s cloud-native

docket research platform finds what other services can’t.
Coverage includes Federal, State, plus PTAB, TTAB, ITC
and NLRB decisions, all in one place.

 Identify arguments that have been successful in the past
with full text, pinpoint searching. Link to case law cited
within any court document via Fastcase.

Analytics At Your Fingertips
 Learn what happened the last time a particular judge,

opposing counsel or company faced cases similar to yours.

 Advanced out-of-the-box PTAB and TTAB analytics are
always at your fingertips.

Docket Alarm provides insights to develop a more

informed litigation strategy and the peace of mind of

knowing you’re on top of things.

Explore Litigation
Insights

®

WHAT WILL YOU BUILD? | sales@docketalarm.com | 1-866-77-FASTCASE

API
Docket Alarm offers a powerful API
(application programming inter-
face) to developers that want to
integrate case filings into their apps.

LAW FIRMS
Build custom dashboards for your
attorneys and clients with live data
direct from the court.

Automate many repetitive legal
tasks like conflict checks, document
management, and marketing.

FINANCIAL INSTITUTIONS
Litigation and bankruptcy checks
for companies and debtors.

E-DISCOVERY AND
LEGAL VENDORS
Sync your system to PACER to
automate legal marketing.

