
APPLE 10091

US007190234B1

C

(12; Umted States Patent am Patent No.: US 7,190,284 B1
Dye et al. (45) Date of Patent: Mar. 13, 2007

(54) SELECTIVE LOSSLESS, LOSSY, OR NO 4.881.025 A ll.-‘I989 Wang 341.-“S7
CTOMPRESSION OF DATA BASED ON 4.903.317-" A " 231990 Nishihztra el al. . 358.-1.9

A])[)R[4jss RAN(:[1j, |)A'1‘A '|'Yp14j, AN|),r()|{ 4.987.541 A * 1.-Z1991 Leveritc ct al. T0].-"35

:~2‘::333: ::i:z3: t!.:::::::::::~
(76) Inventors: Thomas A. Dye, 6621 Candle Ridge 5'l26'739 A 6:199; Whnlng CH1‘. . 5.136.289 A 8-1992 Yoshtda et a].

LOVe, A1lSt1l'1_. TX Manuel A el Ell‘
J. Alvarez, II. 8800 Pepper Rock l)r.. 5'l50‘430 A g,-1992 (1...
Austin. TX (US) 78717: Peter Geigelfi 5.155.484 A 10.-"I992 Chambers. [V
10407 Treasure Island Dr._. Austin. TX 5.237.460 A 8-"1993 Miller ct al. 395.-‘"888

(US) 78730 «Q gagntln. Jr... . . ’ non ct .1. I

(“] Notice: Stlhjccl-10 ally disclaimer. the term oflhis 2: * E;-'»)1:I'11lI'Il1 01 «'l1-
patent is extended or E:lC1_]llS1.CC1 under 35 ;;'32S'fi9? A * 631994 Bird - _”5{S‘_mI I I 5 I _.. .. .- .
USC 1 4(1)) by Odays 5.337.275 A 8-‘"1994 Garner 365-"189.U1

_ 5.353.024 A 10-"1994 Graybill
(211 Al’p1‘N“" "9’239°659 5.353.425 A 10.41994 Malmny el al. 711.444

. 5.357.614 A 10.-‘"1994 Pattisam ct .11. 395.6250

(223 F‘l"d' J3“-211999 5.371.499 A 12.-1994 Graybill ctal.5.379.036 A 1.91995 St

Related U-S- A1JP“I==Ifi0n Data 5.339.922 A 2.-1995 seizfiissi el :11.
(63) Continuation—in—part of application No. 081916.464. 5'39("343 A 3,1995 ”a“5°l'm“ 358426) . 5.406.278 A 431995 Grayblll el al.

filed o11Aug. 8. 1997. now 1 at. No. 6.173.381. Wl]lC11 _.) 406 279 A 4..m9_.) Andaman cl :1]
is a continuation-in-palll of applicalioll No. (187465. [1429 A 1995 Glovcli. 1
106. filed on Jan. 5, 1925, now abandoned. winch IS 5'414_435 A 5.1995 Whiting CH1‘
a cont1nuat1on—1n—part of application No. 081340.667. 5.414.850 A 5.-' I995 Whiting
filed on Nov. 16, 1994. now Pat. No. 6.002.411. 5.420.696 A 5.-"1995 Wegcng et al. 358.-'468

5.426.729 A 6.-“I995 Chambc1"s.IV

(51) Int, C], 5.455.577 A 1071995 Slivka el al. 341-"51

H0334’ 7/30 (200601) 5.455.943 A 10.91995 C1'I£I:ll:'l1'J8fS.1\"'

Sow/av <2oo6~on 27:39:22 5:: 5
(52) U.S.(.‘l. 34];‘5];34lf87:7l()i’68: :.'4.I9‘,m A . 15.199" C " h . _. 3.8.. U

7111470; 3821232; 382E233-,382f244 5'435'525 A “.992 .-.2212: cl 7"" " ’ ‘
(58) Field of Classification Search 3827232. 5_493_.593 A 4 231995 suzukic-(31. 370.-"230

382a"2?-3.244; 710.168; 7097247; 341151. 5.506.580 A 4.91996 Whiting elal.
341187; 7l].u"l70 5.510.840 A 4.-"1996 Yonemilstl elal.

Sec application 1111:: for complete SL“dDCl'l history. 5-535-.932 A 5-11995 Chfiflg 01 5|]-5.526.363 A 6.91996 Weiss el :11.

(56) References Cited 5.532.693 A 7..-‘I996 Winters et al.
5.532.694 A 7".-"1996 Mayors et al.

U-3' PATENT DOCUMENT5 5.539.865 A 5 "L-"1996 Gentile 358.-"L16
_ _ 5.548.742 A 8.-"1996 Wang el al. 711.5128

4.008.450 :'\ 319?? Bryant {:1 31. 395.5463 5 553 [60 A an ()__.-lggfi Dawson 353|l.'426‘02
4.688.108 A 8.71987 Cotton et al. 358."261.1 5__559_973 A 9.91995 spno 711,.-Q03
4.876.541 A 10.’1989 Storer 5.563.595 A 10.31996 Strohacker 341.5106

1 APPLE 1009

2

US 7,190,284 B1
Page 2

5.572.206 A 1151996 Miller et al.
5.577.248 A 1151996 Charrlbers. IV
5,584.008 A 12.51996 Shimadaet a.l. 711.5114
5,590,047 A * 1251996 Uehara 700.5214
5.602.976 A "‘ 251997 Cooper :31 al. 35851.15
5.606.428 A 2.51997 l'1a.nselI11a.n 3585404
5,621,403 A 4.51997 Reznik
5.625.712 A * 4.51997 Schocnzcit ct al. 375.-5240.05
5,627,995 A 551997 Miller et :11.
5,652,878 A 7.51997 Craft
5.696.912 A 1251997 Bicevskis et al. 3955308
5,724,582 A ’° 351998 Pelanek et a1. 3825232
5,729.228 A 3.51998 Franaszek et al.
5.771.011 A 6.51998 Mascnas
5.778.255 A 7.51998 Clark el al.
5,793,937 A ’“ 8.51998 Chara et a1. 35851.16
5.798.718 A 851998 lladady
5.812,817 A 951998 llovisctal. 395-"497.04
5,828,877 A 10.51998 Pearce et :11. 395.5670
5.836.003 A 11.51998 Sarleh

5.838,334 A 11.51998 Dye
5,847,762 A * 12.51998 Canfield et al. 3755240.15
5.852.742 A "‘ 12.51998 \5bru1r:1net:t1. 71051
5.874,908 A 251999 Craft
5.877.711 A 3.51999 Craft
5,883,588 A 3.51999 Ukamura
5.933.104 A 8.51999 Kimura

5.936.560 A 8.51999 Iliguchi
5.945.933 A 8.51999 Kalkstein
5.956.372 A 951999 Va.I1'Ian el :11.

5.961,617 A * 1051999 Tsang 710.5100
5.973.630 A 1051999 lleath
6.002.411 A 1251999 Dye 3455521
6,002,814 A * 1251999 Chadez 358.5l.l5
6.067.098 A 552000 Dye
6,145,069 A 1152000 Dye
6.l70,047 B1 152001 Dye
6.173.381 131 1.52001 Dye
6,198.850 B1‘ 352001 Banlon 358542602
6.208.273 B1 352001 Dye
6.292.194 131* 9.52001 Powell. 111 236.592 B
6.333.745 B1 1252001 Shimomura et al.

200450017483 A1‘ 152004 Kitsugi el al. 348520799

l5ORl'€l(}N PA'l‘l'lN'l‘ I)O('_‘.UMl"lN'l‘S

EP 0 702 457 351996
JP 05204747 A ’“ 8.51993
W0 95.5 19662 7.51995

OTHER PUBLICATIONS

Brenza. “Synonym Avoidance Cache.“ IBM Technical Disclosure
Bulletin. vol. 34. No. 1. Jun. 1991. pp. 377-381.
International Search Report tor Application No. PC'T5US 00.502355.
mailed Jun. 16. 2000.
U.S.App1. No. 08.5463.106. filed Jun. 5. 1995. Dye.

U.S. Appl. No. 605144.125. filed Jul. 16. 1999. Dye.
US. Appl. No. 095491343. filed Jan. 26. 2000, Dye.
U.S, Appl. No. 095818283. filed Mar. 27, 2001, Dye.
Yabe ct al., Compression5Dccompression DRAM for Unified
Memory Systems: A 16 M11. 200l\-'11-1'/.. 90°/o to 50% Graphics-
Ba.ndwidl.h Reduction Prototype. IEEE 1998 So1id—Sla.le Circuits
Conference, Feb. 1998. pp. 342-343.
Kjclso ct al.. Design and Performance of a Main Memory Hardware
Data Compressor. Etlrohdiero 96 Conference. lEF,F.. %p. 1996. pp.
423-430.

” cited by examiner

Primary Exam5rzer—H0ng Kiln

(57) ABS'1"RAC’1‘

An integrated memory controller (IMC) including Memo-
ryF5X Technology which includes data compression and
decompression engines for improved performance. The
memory controller (IMC) oftlie present invention preferably
selectively uses a combination of losslcss, lossy, and no
compression modes. Data transfers to and from tl1e inte-
grated memory controller of the present invention can thus
be in a plurality of formats, these being compressed or
normal [non-compressed), compressed lossy or lossless, or
compressed with a combination of lossy and lossless. The
invention also indicates preferred methods for specific C0111-
pression and decompression of particular data formats such
as digital video, 31) textures and image data using a com-
bination of novel lossy and lossless compression algorithms
in block or span addressable formats. To improve latency
and reduce perfomtance degradations normally associated
with compression and decompression techniques. the
Memorylifx Technology encompasses multiple novel tech-
niques such as: 1) parallel lossless comp1'ession5deI:ompres-
sion; 2) selectable compression modes such as lossless.
lossy or no compression; 3) priority compression mode; 4)
data cache teclmiques; 5) variable compression block sizes;
6) compression reordering; and 7) unique address transla-
tion. attribute, and address caches. The parallel compression
and decompression algorithm allows high-speed parallel
compression and high speed parallel decompression opera-
tion. The IMC also preferably uses a special memory
allocation and directory technique for reduction oftable size
and low latency operation. The integrated data compression
and decompression capabilities of the IMC remove system
bottle—necks and increase performance. This allows lower
cost systems due to smaller data storage, reduced bandwidth
requirements. reduced power and noise.

16 Claims, 34 Drawing Sheets

3

m

43%6.2%m.90.,F.l
w.1,S

U|IIImagQIaso<oo__§<$302uaofimxo:EaEm_.__m__eEooEmimgm0:

BF
gmn_w<.._on_

Sheet 1 of 34

Q3.<m%_.m5522o:.aoEm_2Emfiam

.v_._.roam:Exammemi

Mar 13, 2007

«o..rasamE33%E2284. i3

U.S. Patent

4

Nmm

m:.asO:

<0

mass._u._mo§mx

US 7,190,284 B1

.3EaEm:

M

M<o
7.H

5HI
.|< MI:N3E6982>9:L

7.2;H,o<n_o_u=<o:gems.E2m>m
mM

«ll..we3:3320E280< E§

U.S. Patent

5

U.S. Patent Mar. 13, 2007 Sheet 3 of 34 Us 7,190,284 B1

 m,atM...JQwH2\m_0m__:o_m._m>:ouv_uo_mfimfismz£5,QE."582>_£_m_oE58won82>_m__2Eooroams."3aoemz
amEmaxflzm5252wo__5<

Q__mEm:m_EEma2___."3$356_8o._

meam_m.oo._

o:roam:E226

6

Vat

US 7,190,284 B]

o:

M.m.4.H

m_|fi
o_mo._momtmE_7.boEmEQm280983

m
mMU.S. Patent

.—dm.:5:o_mmoaE8mn_M...coammaeoo_m__Ema

HE:_2=_8:o_m.o,maEoo

_.___IIIIIIIII_IIIIIIIIIII_.N_8EooE.mmm=.wmm
Qua

7

284 B1

mama-m.,25-3.m59.3-._anmm._.-H
SUM..m,-5.whS

Q
WH:9.E,_2<mn_

mMU.S. Patent

%B__2Eoo255

%c eoo mcacmcoammaeoo$8..Bmsmcmco_m8aEo8n_

S

I@!__

mat

8

U.S. Patent Mar. 13, 2007 Sheet 6 of 34 Us 7,190,284 B]

ogem

omamEma=a:_

9

U.S. Patent Mar. 13, 200? Sheet '.+' of 34

Parallel Compression

Maintain a history table
comprising entries

&

Maintain a current count of prior
matches for each entry in the

history table
M

Receive Uncompressed data

fl

Compare a plurality of symbols with
each entry in the history table

fl

Determine match information for each

of the plurality of symbols based on
the current count and compare results

an

 Output compressed data in response

to the match! finformation:4_

Fig. 7

US 7,190,234 B1

10

U.S. Patent Mar. 13, 2007 Sheet 3 of 34 Us 7,190,284 B1

=ozm:ma__:owmm.So§__m.:mmWl Esonm._m__m_3:__..._mEB+_mn_9:.
5.225E38_B.§m38$22.2550swamo._:_3.8uommeaeoo

m8_$.n_32:0

 ma..flmaens28Q o_oaEmE22:gems.m:o_>$n_m:_u=_oc_3.3.585so_§ms:moma.:um_mmmm$2.222§o__§n_

mm;

flummmmaE8_.5_3§m.330

mm.....:2mE93=_m_on_..§m

3%m_on_ExwEn3._m._.5oommmQu:_

I———————---------___________..----.,______________j

me,

mm33.cam2£5m=...n_uwmmmaeoum§:_._oo=438¢m=o_.§n_53:0

mmu$$._n_E85_3e_,m53.330

am

Qcm.,___o_..._.__z...Ema£__.__._3E.$_=&_Emam._mn_Eoo

aouc__am&v.2m_I2macaw:iou:§flu_m_I2gsému$8ae8.52.42a_$am=_=_m=._mm%_.__n_..._2_E..w$335,0052.4

10

11

m4

x.mQat
anSU

E8033:0v_mm_239:0

M.m9WWm
u

M8_...m_EE2

2E29208285008

U.S. Patent

gco__m_8_mogammama._mE=ooDbEm_

 m:_m>swam
2mm

EEm_m8_>....:n:5
8

$8

mamam28QEm.

o38_.2.3m28m28
Em

11

12

U.S. Patent

m4

fl.0.%9.._u.
mm,EmmzmEma52:0

Uxmm_>_mmmaeooc _Em.vans.mwmteooumcfieoo
vim:mmmaeooo .Em

M

mExmmzwEzoo:Emw_o§m:m_wo_mo_u:lm.=oHmmEmgm5soxm_E_E80>2;.m=M_v¢oxmmzw:58NEm
E:w:58_ %E

mV_m§_w:80oE
m

mxmmzwEsau: .EmMmNommxouc_E30052onQm
o..=._o2828$8>_w,.:mEL_=Wm2o.._mms_wE80NEm

yams..822__m>33¢

yam:wE80_Em.
:o=m__§mofl_=mmm_o._.v_mmS_M.E200OEm

12

13

Mar. 13, 200? Sheet 11 of 34 US 7,190,284 B1

13

U.S. Patent

FF.m.iF.FFFFF_§8OF.FFFF.2FFF85FFoaoF.FoFFFF...:$ooFooF.2:FF822.,NFFaovFFoFF85%ooF.FF.F.0SFF__..eamFFoFoFFFFFo3%ooFFoF80FF8,8mFFFF.mFFFoF:_§$occoFm2SF$8.5mFFooFmFoFoFF+_§$ooFoFN02.2F+8>mmNFFF.FNFFSFN+8>mmoooFFNoF8FN+8>mmFFF.FFFF82?§$ooFFFo88FF:Ram2.9%FFFFm=_a>F322.256033>Fommm55:053:0Ecaoo>62....EoFas_=35

14

U.S. Patent Mar. 13, 2007 Sheet 12 of 34 US 7,190,284 B1

Send out

compressed block
ZZE

Adjust max count
to 4 or less

E

 Yes
No Max

Mask = 10000?

E

Send out

compressed block
731

No Yes

Sendon
733

No Yes
Send LZ12

N0 compressed block
Efi

Send out data 0

Z41

No

 Send out data 0

M “'0 CCM(0) = 1? “*5
EB

Send out data 0

E

Done

14

15

U.S. Patent Mar. 13, 2007 Sheet 13 of 34 Us 7,190,284 B1

Entry 012345s7a9101112131415

SWODM Eflflflflflflflflflflflflflflfl

Gm EEEEEEEEEEEEEEEE

|nputD3:U

WWMEEEEEEEEEEEEEEEE

mmtflflflfiflflflflflflflflflflfifl

Output

Sm'Dw flflflflflflflflflflflflflflflfl

Cm EEEEEEEEEEEEEEEE

Input 03:0

WWWEEEEEEEEEEEEEEEE

mmtflflflflflflflflflflflflflflfl

1 Output
SW20“ EHEEEHHHHHHHHEEH

Cm EEEHEEEEEEEEEEEE

Input 03:0

wwmmmmmmm@m@@@@mm@m

mmtflflflflflflfiflflflflflflflflfl

Output

SW30“ EEEEEHEEEHEHHHEH

Cm EEEEEEEEEEEEEEEE

Input D310
WWWEEEEEEEEEEEEEEEE

Wmtflflflflflflflflflflflflflflflfl

Output [9,2)E2(6,1)

State‘ Data
CW E@@@E@@I@@E@EE@Emmwm

Final Output

13 Attemate Output

15

16

17

2at

US 7,190,284 B1

Ema

43.m.

mcozemcmo523
w

h.
SMm

Bemqeooemneooemaeoo235828500m__Nn_EoomisN35NisNB;NisNEsNMIII
L‘L

in!

U.S. Patent

17

18

U.S. Patent Mar. 13, 2007 Sheet 16 of 34 Us 7,190,284 B]

t.m.i
wIIIIll

._______..—._____.......__—---______---—.____—----------..__________________________________gl

 lllllIIi!OO!IIIIIIIIIIIllIIIIIIII|lIIIIIIIIIIllIIIIIIllllllllllllIIIIIIIOIIllllIllaIOIII00!IOIIIOCIIIIIIIOIOOIIIIIII
J

‘I

ma:o_m._m;_._ooO2>

>3.cmE>333

9%ummmeqeoo

—..-.-_._...-.---..-..--.__..--_.

W3mc_m_m_:o_mmmaEoomn_.38..

IIIIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIIUllIIIIIIIIIltllllllIlaItillIlllliIOloICIIIIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIQQmama5mr__..m..Vw_:..mmm>22mzém
839E8

___----___-_-_---_-----L-----------____- -------_--_____--

NE.>B0._o:$Eoumusow

mom

Q235cemmmasoo.$mo._

L--_-__--_----------__-------___-----________ __--_---___--

 uuuuuuuuuuuuuuuunuununuuunnnnnnnunnunuennnnuaunuuuunnuuuanus:nunanununuuuaucan:nun:nun:unnlnnuunnnnunauusuununuuuuuLu
18

19

US 7,190,284 B1U.S. Patent Mar. 13, 2007 Sheet 17 of 34

2mi

mi...

 %%mfi..§%|||

 mmmeaaégglgégggga55>H.E;I£3.£2;a_£_eEmEEgéégg-EE§ 25>H.as»Ila£3;2_£em__££3_...L_£%§§__¥||Elma:%Eagmfiwgggfi___efi:aEElg22:25%5%wasgag.E4:IIElégéagxmemEgg___§..u:a.&EIII23;.25.23mmfimmfiglll3m3Ilglulggggg"Ea8H.___._aH:22EuaulllaéemEEEEE&5£___s_Ea§EIIIII2.:was£3gillgfilllllalgxmemEEIEEI8s:_§u.a_.& ggllEgg52>u_.62»Emilfig_.__E>u..35»gel

19

20

manuummuaeoo

US 7,190,284 B1

EmanmmmmaeoomoA...

amosmcm5323.88_m__m_mn_mmm._.mmo._

M3foncmom:o_mmmaE8on_.$mo._
w.nS—........002H,

r.aM

.[imlauoI|

nas...wummmmaeooIIIIIIIuIw:_m:m_commmaeooa_m__Emn_m$._.mmo._
D1

.mamboEms_
SU

8_mmmaE8ma..............__._o_mmmaE8ma2m_umE_mE_:o__mmmaE8.cmE.:n_|I-

gm5%:

20

21

o

oncan

canownohmcom%afiohmE,___%_§,%__.§HWOQ».39._n_->n_5-8._n_-n_mm§xw._.fiflfifl;/flyfiohmEm9%Q88

US 7,190,234 B1

3.at

Sheet 19 of 34

1
/
it

 a_.mM~_g_Eo2mn_858mo5

8

U.S. Patent

22

U.S. Patent Mar. 13, 2007 Sheet 20 of 34 Us 7,190,284 B1

Compression of received data

Receive uncompressed data
£10.21

Determine a compression mode
of the data

§€L4.

 Selectively compress the
uncompressed data according to the

compression mode
§_0_§

 Store the data in the memory; store

compression mode information with
the data

.E_50_8

Fig. 22

22

23

U.S. Patent Mar. 13, 2007 Sheet 21 of 34 US 7,190,284 B1

Access compressed data

Receive a request for the data
.&1_2

Access the data from the memory
QM.

Determine a compression mode
for the data

§l§

Selectively decompress the data
according to the compression mode

flfi

Provide the data in response

to the request
§Z0.

Fig. 23
23

24

U.S. Patent Mar. 13, 2007 Sheet 22 of 34 US 7,190,284 B1

Eats;mew:asm:o=mEmEm_n_E_$5.mmeuumm_mc_m.9u2_=3_E:tko
H902

VN.m.E23ummmwasoumo
ma§_§mmean.5230

am

Emaummmmaeoo

fixed
 mmzacmcoammaeoumo

oltm.v_8_aBmmmaeoocg

an

cowm._O.._m.._oo_aummmmaEooEmfl_umwmm;QEDD
m=_=_mE2__m25:8V_8_m_roams

me<.....oEm>o 3%goesuommmaeooca58.2£83Emmeneoo25m_.__mEoo.o_.mmcommmaeooE=E._xm_2.3nmu___,_omum02$.roses.2mua=__m=cm_,..._8_m555.8.3=o__m8__<_m=_=_

E3.tflw

3

xm_._._§_._mmmmmace__coEmEummmmaeoo.8.98FE5.3238E5an25EE9032$223,..a__§oE5...._n_E.a_a_2m:$25.Bamaes
 as:E2

3..Em§%<

24

25

U.S. Patent Mar. 13, 2007 Sheet 23 of 34 Us 7,190,284 B]

m
N

mm

as8+8<_E

.Hasas8.42___mmEsm.3ea25223%%_4m_loosE:2:Has9<226m____arm,..__mu_m.Enm.....o=2v_8_n_:8:m;._.s§%_s_masH!Scams..6nm=_m>
=o_E_.umon_Etna:3o=._m>o_.c=_m.5,05mos.zofimsoasc_<EmtoHmm_xoosca:9:.«mi.so_to5m_.=_.__4ago_mm._£83am:9:._a§2,_3_m53HI

=o_..__.o3n_53¢:_a=_:_was25552;;o;.___g_IJ0:2.“%_aEu=m>.Eo$2:0.._.,..o:62._8_m:32._n__,§_§o:5.E5@3240.m__.,_£322.439.35EcamE.Saga5.mum___m_a_§omE.aegom5Ilél
a_2_smVaa___.Q$§._z.mova___n§e2.<mo.‘

QwasAm__§gs.“53E!_§.2_.E_2.._:=Em._E_._&_3o.35§..t<u_min...:o_§m=E._.wm...:_._u<naaaeoo
mu_u_.._=o_fiuo__4boEa_...._

25

26

U.S. Patent Mar. 13, 200? Sheet 24 of 34

@Memory Allocation
(lnitialized CATT)

2709

Allocate CATT Ent

271 1

Arrange entry order

(if required based on istarllend add ress)271

Set the compression type
271 5

Al|ocate% of the requested memory

(Based on block sizg a1nd compression type)7 7

Set the data pointer to start at the initial block
in the CATT

2?19

 Allocate Overflow Address memory (OAM)

(Set by IMC driver or BIOS)

Typically 118th ogginal data size2? 1

Initialize the OAT pointer in the GATT
2723

Initialize allocated memory headers to zero
2725

Initialize OAT entries, set overflow

pointer in OAT
2727

Fig. 26

26

US 7,190,234 B1

27

U.S. Patent Mar. 13, 2007 Sheet 25 of 34 US 7,190,284 B1

 @Compressed
Memory Store (Addr N)

2749

Check

Cache for Hit

While searching CATT
E

No

Yes

Calculate Initial Address I. continue to

compress data (Validate present entry)
2733

H = Header

from Address I

2759

Remaining (391 Next

Compressed block Address (U:f(H))
>Block SIZE? 2799

Store block of Compressed data at Store block of Compressed data at
address 1 with headeI=LAST address I with header(U) Set |=U

2737 2739

Q H2=Header from Address H Set
header of H to UNUSED Set H=f(H2)

2745

Yes

Store uncompressed block and header
at Add N in cache and set most

recently modified bit for cache
as

Done

Fig. 27

27

28

U.S. Patent Mar. 13, 2007 Sheet 26 of 34 Us 7,190,284 B1

@Memory Fetch
(address N)

2?59

 Search -

cache Directory HIT? Yes Deliver daI2t%Ig£0m cache
2751 1

No

Solve for initial address (I) = (Matching
CATT start address - N)t')((X is based on data type)

2}’53

Fetch from memory
compressed block I

2755

Strip the Header bits, and decompress
the remaining data from I

2757

Fetch the overflow block using the
LAST Block? No overflow pointer as base and the

2?61 header as offset

Mi

Yes

Read oompressed overflow blocks
2756

Send decompressed data to
requesting agent

2765

Update Cache, invalidate LRU_ mark
new block as MRU

2769

Completed compressed

read operation Fig 28

28

29

U.S. Patent Mar. 13, 2007 Sheet 27 of 34 US 7,190,284 B1

an3%3...35...&__§_"Em$._3m:83.so=._m...ogm:2....._3_mu

map“E25..E.353:5:2am

 mam\..2.~.§.__ammeuum:3.35._..__5E5552.5;m_.___=_._m9esm.coEmE__soEmsohozoosam:2m8__¢ mackgem.u~_m.30.“.+mu§:_8mmeuumuazm~_wV_uo_m+m_um

mm%__m____$:__3.....o_to>o

wR.__.E22:ESEsaw;

HMx@.33;Eeeo32.

mm-n_.___._.:556._azRm:m_ 8»
as

BEEmmannmfiozca...m_w_=u_mo%Bo._m55

29

30

U.S. Patent Mar. 13, 2007 Sheet 28 of 34 Us 7,190,284 B1

8mm

mu._n_.:oz:._x.m2>m8:3"6.5.B2.5:o_.moo__<ofim35._8_mEm._8_mSumo:Erma:_u=_.__nsooans.__sa_tm>o_~_._=_

30

31

U.S. Patent Mar. 13, 2007 Sheet 29 of 34 Us 7,190,284 B]

Eatboeme2gownxoosummmmaeoo25$6c@as._E_%_,..2_5243EEO3so:83mmmaeoo-mm3..was.._5.as8_=8n_2%3BUSEmum._9mmoaE8moAN>_oEmEE9:v.83ummmmaeooomom2
can\\

ans.5som:_.mo._u:__m_2Emumm“swam:2, IIHIHHIEHHEumm.%@moo$20_mc_m__oc_m:_._3__E__o_m_22:mm.38¢:.
can.\

$225E9:62
$2.3Emsmwmv_8Wm%_Bs§____m_hMmwenmmwxoo_ncommaE00

2m~.\..

32

U.S. Patent Mar. 13, 2007 Sheet 30 of 34 Us 7,190,284 B1

'1" V— v— 1— 1— 1* "l— 1.— C\|

(NI
'0

32

 BitsUsed Fig.32

Count

Index

Flag 1100 1101 1110 1111000 1111001 1111010

Bytes Compressed

33

U.S. Patent Mar. 13, 2007 Sheet 31 of 34 US 7,190,284 B1

Input Data 8 Bytes

25501 -\

Stage 1: Initial input Seiector and Byte Counter

Start Count Index Index Data Data Bytes
0 7 0 7 Valid Vaiid 0 7

Pie R ister 168 bits

25505 '\
Stage 2: Calculate Initial Selects and Overftows

Partial Selects and Overfiows ‘
0 15

Pie Reister 144 bits

Stage 3: Calculate Final Selects

Final Selects :

D 15

Pie Reister 128 bits

25513 ‘X
Stage 4: Data Selection

0 “ta ”‘ 15 flfifis History Window

Fig. 33

33

34

U.S. Patent Mar. 13, 2007 Sheet 32 of 34 US 7,190,284 B1

Input Data
D0:D63

25521

D0: D3: D9: D10: D13: D25:
D24 D63 D63 D6 D63 D63

I—
E0:
E55

E9: E13: E25:
E55 E55 E55

—
F0:

F47 25525

Data Index F9: F10: F13: F25:

Byle F4? F4?’ F47 F47

Index

Count

4 —ec0der2
Count G0,

G39 25527

Data Index G9: G10: G13: G25:

Byte G3 G39 G39 G39
4

H0:
H31

coum 25529
H9: H10: H13:
H31 H31 H31

—
J0:

J23 25531

J9: J10: J13:
J23 J23 J23

—
K0:

K15 25533

Data Index

Byte

Start Counts Data Index Data Index
Byte By1e

25535

Fig. 34

34

35

mmat

E300Emx85

US 7,190,284 B1

5%eemfio23

43fl033w_..HS7...002m
r.aM

E_$m=o__..2n_

U.S. Patent

35

36

IonBN3X2

B

m£5asmfi
%

m,xo._+_,.ao”:om+o.$8”§~+om+m98_+o._sx295295SHExUxxxx88585838

m0m

«M«anoasmmmm8888888uB§m889EEE85832n88EEEE8u8§M8EEEEE8uB»28EEEEE8uQ§t8EEEEESana»:w8EEEEESHQHTAEM8EEEEESnagP..83%858888m.:._.;_,.:._
uflflfimvmacawin5.5Ema

36

37

US ?,l90,284 B1

1

Slill.l4l(I'I‘lVE L()SSLESS, l.()SSY., OR NO
COMPRESSION OF DATA BASED ON

ADDRESS RANGE, DATA TYPE, AND.-‘OR
REQUESTING AGENT

(T()NTINUATI()N DATA

This application is a continuation—in—part (CIP) ofSer. No.
08i’9l6,464, filed Aug. 8, 1997. and now U.S. Pat. No.
6,173,381, isstted on Jan. 9. 2001'.

which is a continuation-in-part (CIP) of Ser. No. 08.I’463.
106, filed Jun. 5, 1995, now abandoned;

which is a continuation—in—part (CIP) of Ser. No. 08:840.
667. filed on Nov. 16, 1994. which is now U.S. Pat. No.
6.(l{)2,4ll, issued on Dec. 14. I999.

l-'IIiI,l) OF TIIl.i IN\r’l_iN'l"I()N

The present invention relates to computer system archi-
tectures. and more particularly to a memory controller which
includes an embedded data compression and decompression
engine for the reduction of system bandwidth and improved
efliciency.

DI€S(IRlP'l‘I()N ()l"' Tlll-5 RI.£I..A'l'IilJ ART

Since their introduction in I98]. the architectttre of pe -
sonal computer systems has remained substantially
unchanged. The current state of the art in cotnputer system
architectures includes a central processing unit (CPU) which
couples to a memory controller interface that in turn couples
to system memory. The computer system also includes a
separate graphical interface for coupling to the video dis-
play. In addition, the computer system includes inputfoutput
(IEO) control logic for various U0 devices. including a
keyboard. mouse. floppy drive, hard drive, etc.

I11 general. the operation of tnodern computer architecture
is as follows. Programs and data are read from a respective
IEO device such as a floppy disk or hard drive by the
operating syste1n._ and the programs and data are temporarily
stored in systetn memory. Once a user program has been
transferred into the system memory. the CPU begins execu-
tion of the program by reading code and data from the
system memory through the memory controller. The appli-
cation code and data are presumed to produce a specified
result when manipulated by the system CPU. "lhe (TPU
processes the code and data. and data is provided to one or
tnore of the various output devices. The computer system
may include several output devices, including a video dis-
play. audio (speakers). primer. etc. In most systems. the
video display is the primary output device.

Graphical output data generated by the CPU is written to
a graphical interface device for presentation on the display
monitor. The graphical interface device may simply be a
video g;I'aphics array (VCIAJ card. or the system may inchtde
a dedicated video processor or video acceleration card
including separate video RAM (\r"RAM]. 111 a computer
system including a separate, dedicated video processor, the
video processor includes graphics capabilities to reduce the
workload of the lnain CPU. Modern prior an personal
computer systems typically inclttde a local btts video system
based on the Peripheral Component Interconnect (PCI) bus,
the Advanced Graphics Port (AGP), or perhaps another local
bus standard. The video subsystem is generally positioned
on the local bus near the CPU to provide increased perfor-]T]£:ll'lCC.

IU

15

20

25

30

40

50

60

2

Therefore, in summary. program code and data are first
read from the hard disk to the system memory. The program
code and data are then read by the CPU frotn system
memory. the data is processed by the CPU, and graphical
data is written to the video RAM in the graphical interface

device for presentation on the display monitor.

The system memory interface to the memory controller

requires data bandwidth proportional to the application and
system requirements. Thus. to achieve increased system
performance, either wider data buses or higher speed spe-
cialty metnory devices are required. These solutions force
additional side-effects such as increased system cost. power
and noise. I"I('"r. 1 illustrates the data transfer paths iii a

typical computer memory controller and system memory
using prior art technology.

The CPU typically reads data from system memory across
the local bus in a normal or non—compressed format. and
then writes the processed data or graphical data back to the
[E0 bus or local bus where the graphical interface device is
situated. The graphical interface device in turn generates the
appropriate video signals to drive the display monitor. It is
noted that prior art computer architectures and operation
typically do not perform data compression andfor decom-
pression during the transfer between system memory and the
CPU or between the system memory and the local [I0 bus.
Prior art oomputer architecture also does nothing to reduce
the size of system memory required to run the required user
applications or software operating system. In addition. soft-
ware controlled compression and decompression algorithms
typically controlled by the CPU fiir non-volatile memory
redttction techniques can not he applied to real time appli-
cations that require high data rates such as audio, video, and
graphics applications. Further. CPU software controlled
compression and decompression algorithms put additional
loads on the CPU and CPU cache subsystems.

Certain prior art systems utilize multiple DRAM devices
to gain improved memory bandwidth. These additional
DRAM devices may cost the manufacturer more due to the
abundance of memory that is not fully utilimd or required.
The multiple DRAM devices are in many instances included
primarily for added bandwidth. and when only the added
bandwidth is needed, additional cost is incurred due to the
multiple DRAM packages. For example, ifa specific com-
puter system or consumer computing appliance such as a
Digital TV set-top box uses l)Rl')RAM memory and requires
more than 1.6 Gbytesfsec of bandwidth. then the tninimum
amount of memory for this bandwidth requirement will be
16 Mbytes. In such a case the manufacture pays for 16
Mbytes even if the set-top box only requires 8 Mbytes.

Computer systems are being called upon to perform larger
and more complex tasks that reqttire increased computing
power. In addition, tnodern software applications require

_ computer systems with increased graphics capabilities.
Modern software applications include graphical user inter-
faces (Gills) which place increased burdens on the graphics
capabilities of the computer system. I-iurther. the increased
prevalence of multimedia applications also demands com-
puter systems with more powerzfiil graphics capabilities.
Therefore, a new system and method is desired to redttce the
bandwidth requirements required by the computer system
application and operating software. A new system and
method is desired which provides increased system per:lor—

_ mance without specialty high speed memory devices or
wider data IEO buses required in prior art computer system
architectures.

37

38

US ?,l90,284 B1

3
SUMMARY OI" 'l‘[Ili lNV[iNTI(JN

The present invention comprises a memory controller.
also referred to as the integrated memory controller (IMC),
which provides improved data efliciency and bandwidth.
The memory controller includes a compressionJ'dccompres-
sion engine, preferably parallel data compression and
decompression slices, that are embedded into the memory
control logic ofthe memory controller. I’L1r1l1er, the present
invention does not require specialty memory devices or
system software changes for operation. The rnelnory con-
troller logic of the present invention preferably interfaces to
the system CPU either extemal or internal to the memory
controller. Fur1her, the memory controller interfaces to the
main system r11ernory and other interface buses such as a
l1igl1—speed system peripheral bus, e.g., the PCI bus or the
AGP. Additionally the IMC may contain graphics, video
andfor audio control functions. The IMC includes one or

more symmetric memory ports for connecting to system
memory. The IMC also may include video outputs to
directly drive the display device, as well as an audio
interface for digital audio delivery to an external stereo
digital-to-analog conver1er (DAC).

'Il're IMC includes an embedded Technology termed
“Memoryl7r"X” desigred for the reduction ofdata bandwidth
between the main or system memory and the memory
controller. The MemoryFJ'X Technology reduces the band-
width requirements while increasing the memory efliciency
for almost all data types within the computer system. Thus.
conventional standard (JDEC) memory devices can achieve
higher bandwidth with less system power and noise than
when used in conventional systems without the MemoryF:'X
Technology.

Tl're IMC transfers data between the local bus, the embed-
ded MemoryFr'X Technology and system memory. In addi-
tion, the IMC also transfers data between the system
memory and the display output. Therefore, the MemoryF:'X
technology of the present invention typically resides
between the CPU local bus, peripheral interconnect buses.
and the rrrain system memory.

The MemoryFJ'X Technology is designed to embed into
memory control circuits and has a novel architecture to
compress and decompress parallel data streams within the
computing system. In addition, the Men1oryI'U"X Technology
has a “scalable” architecture designed to function in a
plurality of memory configurations or compression modes
with a plurality of performance requirements.

The lV[emoryl"fX Technology's system level architecture
reduces data bandwidth requirements and thus irrrproves
memory efliciency. Eflicierrcy is improved by the reduction
of device L"O pins between the main memory bank and the
memory controller. Compared to conventional systems, the
Me1r1oryl*'r"X Technology obtains equivalent bandwidth to
conventional architectures that use wider buses, specialty
memory devices, andfor rrrore attached memory devices.
Both power and noise are reduced, improving system elli-
ciency. Thus, systems that are sensitive to the cost of
multiple memory devices, size, power and noise can reduce
costs and improve system efliciency.

Systems that require a minimum of DRAM memory but
also require high bandwidth do not need to use multiple
memory devices or specialty DRAM devices in a wider
configuration to achieve the required bandwidth when the
MemoryFr'X technology is utilized. Thus, minimum
memory configurations can be purchased that will still
achieve the bandwidth required by high-end applications
such as video and graphics.

S

10

15

20

25

30

40

50

60

4

As mentioned above, according to the present invention
the MemoryFJ'X Technology embedded within the IMC
includes one or more compression and decompression
engines for compressing and decompressing data within the
system. ln the preferred embodiment the Mernoryl7r"X Tech-
nology comprises separate oompression and decompression
engines. In an alternate embodiment, a single combined
compressionfdecompression engine can be implemented.
The IMC preferably. primarily uses a lossless data compres-
sion and decompression scheme. |.)ata transfers to and from
the integrated memory controller of the present invention
can thus be in either two formats, these being compressed or
normal (non—compressed). The IMC may also include one or
more lossy compression schemes for audiofvideolgraphics
data.

Thus compressed data from system L"O peripherals such
as the non—volatile memory_. floppy drive, or local area
network (LAN) are decompressed in the IMC and stored
into system memory or saved in the system memory in
compressed fomrat. Thus, data can be saved in either a
normal or compressed format, retrieved from the system
memory for CPU usage in a normal or compressed format.
or‘ transmitted and stored on a medium in a nomial or

colnpressed format.
To improve latency and reduce performance degradations

normally associated with conrpressiorr and decompression
techniques, the MemoryFr'X Technology encompasses rnul—
tiple novel techniques such as: 1) parallel lossless compres-
sionfdecompression: 2) selectable compression modes strch
as lossless, lossy or no conrpression: 3) priority compression
mode; 4) data cache teclmiques; 5) variable compression
block sizes; 6) compression reordering; and 7") unique
address translation, attribute, and address caches.

The |\«1emoryI"r"X Technology preferably includes novel
parallel compression and decompression engines designed
to process stream data at more than a single byte or symbol
(character) at one time. These parallel compression and
decompression engines modify the single stream dictionary
based [or history table based) data colnpression method
described by Lernpel and Ziv to provide a scalable, high
bandwidth compression and decompression operation. The
parallel compression method examines a plurality of sym-
bols in parallel. thus providing greatly increased compres-
sion performance.

The MemoryF:'X Technology can selectively use difl'erent
corrrpression modes, such as lossless, lossy or no compres-
sion. '[hus_. in addition to lossless compressioni’decompres-
sion. the [MC also can include one or lnore specific lossy
compression and decompression modes for particular data
formats such as image data. texture maps, digital video and
digital audio. The MemoryFr’X techirology may selectively
apply different compressionfdecompression algorithms
depending on one or more of the type of the data, the
requesting agent, or a memory address range. In one
embodiment, internal memory mapping allows for format
definition spaces (compression mode attributes) which
define the compression mode or format of the data to be read
or‘ written.

The MemoryFr'X Technology may use a priority compres-
sion and decompression mode which is designed for low
latency operation. 111 the priority compression format,
memory address blocks assigned by the operating system for
uncompressed data are used to store the compressed data.
Hence data—patlr address translation is not necessary, which
optimizes bandwidth during data transfers. This also allows
use of the Memor'yl"r'X Technology with minimal or no
changes to the computer operating system. Thus. for priority

38

39

US ?,l90,284 B1

5

memory transfers, memory size is equivalent to that of data
storage for non-compressed formats. The excess memory
space resulting from the compression is preferably allocated
as overflow storage or otherwise is not used. Thus the
priority mode optimizes data transfer bandwidth_. and may
not attelnpt to reduce utilized memory.

The compressionfdecompression engine in the Me1no—
ryFi’X Technology uses multiple data and address caching
techniques to optimize data throughput and reduce latency.
The MemtiryI"}"X Teclmology includes a data cache. referred
to as the I3 data cache, which preferably stores most
recently used data in an uncompressed format. Thus cache
hits result in lower latency than accesses ofdata compressed
in the system memory. The l.,3 data cache can also be
configured to store real time data. regardless of most
recently used status, for reduced latency of this data.

The MemoryF2'X Technology preferably dynamically (or
statically) allocates variable block sizes based on one or
more of data type, address range andfor requesting agent for
reduced latency. In general. a smaller block size results in
less latency than a larger block size, at the possible expense
of" lower compression ratios andfor reduced bandwidth. The
memory controller preferably allocates smaller block sizes
to data with faster access requirements, such as real time or
time sensitive data. As noted above. the memory cont'roller
may also designate certain data with a “no compression”
mode for optimum speed and minimal latency.

The Meiilorylfltx Technology also includes a compression
reordering algoritlun to optimally reorder compressed data
based on predicted future accesses. This allows for faster
access of compressed data blocks. During decompression,
the longest latency to recover a compressed portion of data
in a compressed block will be the last symbol in the portion
of the data being accessed from l.he compressed block. As
mentioned above, larger compression block sizes will
increase latency time when the symbol to be accessed is
towards the end of the compressed data stream. This method
of latency reduction separates a compression block at inter-
mediate valttes and reorders these intennediale values so

that the portions most likely to be accessed in the future are
located at the front of the compressed block. Thus the block
is reordered so that the segmentfs) n1ost likely to be accessed
in the future, e.g. most recently used. are placed in the front
of the block. Thus these segments can be decompressed
more quickly. This method of" latency reduction is especially
effective for program code loops and branch entry points and
the restore of context between application subroutines. This
out of order compression is used to reduce read latency on
subsequent reads from the same compressed block address.

The MemoryF2'X Technology in an alternate embodiment
reduces latency further by use of multiple history windows
to context switch between decompression operations of
different requesting agents or address ranges. A priority can
be applied such that compression and decompression opera-
tions are suspended in one window while higher priority
data is transferred into one of a number of compression!’
decompression stages i11 an altemate window. Thus, reduc-
tion of latency and improved efficiency can be achieved at
the cost of additional parallel history window buffers and
comparison logic for a plurality of compressionfdecompres—
sio11 stages.

The Memor'yI-‘IX Technology includes an address trans-
lation mode for reduction of memory size. This reduction of
memory size is accomplished at the cost of higher latency
transfers than the priority compression mode, due to the
address translation required. An address translation cache
may be utilized for the address translation for reduced

10

IS

20

25

30

40

50

60

6

latency. An internal switch allows for selection of priority
mode compression. nonnal mode compression. or no com-
pression transfers. An attribute or tag field. which i11—turn
may be controlled by address ranges on a memory page
boundary. preferably controls the switch.

In one embodiment, the operating system, memory con-
troller driver or BIOS boot software allocates memory
blocks using a selected compression ratio. Thus the allocated
memory block size is based on a compression ratio, such as
2:1 or 4:1. Ilence the allocated block size assumes the data

will always compress to at least the smaller block size.
The MemoryF;'X Technology also accounts for overflow

conditions during compression. Overflow occurs when the
data being compressed actually compresses to a larger ST7)C
than the original data size, or when the data compresses to
a smaller size than the original data. but to a larger size than
the allocated block size. The MemoryFfX Technology
handles the overflow case by first determining whether a
block will overflow, and second storing an overflow indi-
cator and overflow information with the data. The memory
controller preferably generates a header stored with the data
that includes the overflow indicator and overflow informa-

tion. Thus the directory information is stored with the data,
rather than in separate tables. Compression mode infonna-
tion may also be stored in the header with the data. The
MemoryF:'X Technology thus operates to embed directory
structures directly within the compressed data stream.

The MemoryF!X Technology also includes a combined
compression technique for lossy compression. The coin-
bincd compression technique performs lossless and lossy
compression on data in parallel. and selects either the
lossless or lossy compressed result depending on the degree
of error in the lossy compressed result.

The integrated data compression and decompression
capabilities of the Meii1oryl".IX Technology remove system
bottlenecks and increase performance. This allows lower
cost systems due to smaller data storage requirements and
reduced bandwidth requirements. This also increases system
bandwidth ai1d hence increases system performance. Thus
the lM(.‘ of the present invention is a significant advance
over the operation of" current memory controllers.

BRII-"it: I)l"lSCRlP'l'l()N OF 'l'IIl.i I)RAWlN(:iS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

I’ IG. 1 illustrates a prior an computer system architecture;
FIG. 2 illustrates a computer system including an inte-

grated memory controller (IMC) according to the present
invention;

FIG. 3 illustrates the internal architecture of the IMC

according to the preferred embodiment;

l"-‘IG. 4 is a block diagram illustrating the internal archi-
tecture of the Memory Controller unit of the IMC;

FIG. 5 is a more detailed block diagram illustrating the
compressionfdecompression loge comprised in the IMC‘
140;

FIG. 6A illustrates the sequential compression technique
of the prior art dictionary-based I .1’. serial compression
algorithm;

FIG. 6B illustrates the parallel compression algorithm
according to the present invention;

l"'I(i. 7 is a high level flowchart diagram illustrating
operation of the parallel compression:

39

40

US ?,l90,284 B1

7

FIG. 8 is a more detailed flowchart diagram illustrating
operation of the parallel compression:

FIG. 9 illustrates the entry data history and input data
compare and results calculation for the parallel compression
and decompression ttnit;

FIG. III shows the parallel selection and output generation
block diagram;

FIG. 11 shows the operation of the counter values. output
cottnter and output mask ttsed for output selection during the
parallel compression operation of the present invention:

FIG. 12 illustrates the Output Generator Flow diagram;
FIG. 13 illustrates an example of the parallel compression

operation indicating the data flow through multiple cycles;
FIG. 14 illustrates a high speed parallel comparison

circuit used to find the largest count of matching entries to
the history table;

FIG. 15 further illustrates the select generation logic and
entry compare logic designed for high data clocking rates;

FIG. 16 illustrates the logic table for the high speed
parallel comparison;

FIG. 17 illustrates the lossy compression and deco1npres—
sion engines:

FIG. 18 is a table which shows the lossy compression
output fomlat for image data that does i1ot include alpha
values:

FIG. 19 is a table which shows the lossy compression
output format for image data that includes alpha values;

FIG. 2|} is a block diagram of the combination lossy and
lossless compression and decompression operation;

FIG. 21 illustrates a plurality of compression formats for
source and destination data as used by the IMC for com-
pression and decompression memory efliciency:

FIGS. 22 and 23 are flowchart d.iagrams illttstrating
operation of melnory accesses using the compression mode
features of the present invention:

FIG. 24 illustrates the flow for compression address
translation, dictionary and overflow block address transla-
tioli:

FIG. 25 is a table illustrating the n1en1ory allocation fields
for the compression allocation table and the Overflow table.
compression memory area and the overflow memory area;

FIG. 26 illustrates the initialization process flow for the
compression address translation table;

FIG. 27 illustrates the store transaction process flow for
the compression and decompression unit:

FIG. 28 illustrates the memory fetch process flow;
FIG. 29 illustrates the next address generation process

flow;
FIG. 30 is a table illustrating the memory allocation space

and compression ratios according to one implementation of
the present invention;

FIG. 31 illustrates the compression re-ordering algorithm
use to redttce read data latency of subsequent memory read
cycles by requesting system agents;

FIG. 32 is a table illustrating the header information
presented to the lossless decompression engine;

FIG. 33 illustrates the four stages used for the parallel
lossless decompression algorithm;

FIG. 34 illustrates the eight decoder stages required to
generate the start counts used for the parallel decompression
p[l()CCS1-I;

FIG. 35 illustrates a single decoder block used by the
stage 1 input selector and byte counter ofFIG. 33;

FIG. 36a is a table indicating the check valid results table
of" the decode block; and

FIG. 36:’) is a table describing the Data Generate outpttts
based on the Data Input and the Byte Check Select logic.

S

IU

15

20

25

30

40

50

55

60

8
l)l‘.ETAlI..l'£I) DliS('IRIP’l‘l()N OF TIIIE

PREFERRED EMBODIMENT

This application is a continuation—in—part (CIP) of'Ser. No.
08.I"9l6,464. liled Aug. 8. I997. titled “Memory Controller
Including limbedded Data Compression And Decompres-
sion Engines,” whose inventor is Thomas A. Dye, and now
U.S. Pat. No. 6,17"?-.38l_. issued on Jan. 9. 2001.

which is a continuation—in—part (CIP) of Ser. No. 08r'463,
I06, filed Jun. 5, 1995, titled “Memory Controlled Including
limbedded Data Compression And Decompression
Engines." whose inventor is Thomas A, Dye, now aban-
cloned;

which is a continuation—in—part (CIP) of Ser. No. 08840,
667, liled on Nov. 16, 1994, titled “Integrated Video And
Memory Controller With Data Processing And Graphical
Processing Capabilities,” whose inventor is Thomas A. Dye,
and is now US. Pat. No. 6,002,411, issued on Dec. 14, 1999.

Prior Art Computer System Architecture
FIG. 1 illustrates a block diagram of a prior art computer

system architecture. As shown, prior art computer architec-
tures typically include a CPU 102 coupled to a cache system
104. The CPU 102 couples to the cache system 104 a11d
couples to a local bus 106. A memory controller 108.
referred to as North Bridge 108, is coupled to the local bus
106. and the memory controller 108 in turn couples to
system memory 110. The graphics adapter 112 is typically
coupled to a separate local expansion bus such as the
peripheral component interface (PC1) bus or the Accelerated
Graphics Port (AGP) bus. Thus the north—bridge memory
controller 108 is coupled between the CPU 102 and the main
system memory]ll} wherein the north-bridge logic also
couples to the local expansion bus where the graphics
adapter 112 is situated. The wphics adapter 112 couples to
frame buffer memory 114 which stores the video data. also
referred to as pixel data, that is actually displayed on the
display monitor. Modern prior art computer systems typi-
cally include between 1 to 8 Megabytes of" video memory.
An U0 subsystem controller 116 is shown coupled to the
local bus]06. In computer systems which include a PCI bus.
the II''() subsystem controller 116 typically is coupled to the
PCI bus. The LIO subsystem controller I16 couples to a
secondary inputfoutput (IEO) bus 118. Various peripheral U0
devices are generally coupled to the HO bus 18, including a
non-volatile memory. hard disk I20. keyboard 122.
mouse 124. and audio digital-to-analog converter (I)/\C)
238.

Prior art computer system architectures generally operate
as follows. First, programs and data are generally stored on
the hard disk 120. If a software compression application is
being used, data may be stored on the hard disk I20 in
compressed format. At the direction of the CPU 102. the
programs and data are transferred from the hard disk 120
through the U0 subsystem controller 116 to system memory
lltl via t.he memory controller 108. If the data being read
from the hard disk I20 is stored i11 compressed format, the
data is decompressed by software executing on the CPU 102
prior to being transferred to system memory 110. Thus
software compression applications require the compressed
data to be transferred from the hard disk 120 to the (TI-‘U l2tI

prior to storage in the system memory Ill}.
The CPU 102 accesses programs and data stored in the

system memory 110 through the memory controller 108 and
the local bus 106. In processing the program code and data,
the CPU 102 generates instructions a11d data that are then
provided over the local bus N16 and generally the PCI bus

40

41

US ?,l90,284 B1

9

or AGP bus to tl1e graphics adapter 112. The graphics
adapter 112 receives graphical instructions or pixel data
from the CPU 102 and generates pixel data that is stored in
the frame buffer memory 114. The graphics adapter 112
generates the necessary video signals to drive the video
display device (not shown] to display tl1e pixel data that is
stored in the frame buffer n1e1nory 114. When a window on
the screen is updated or changed. the above process repeats
whereby the CPU 102 reads data across the local bus 106
from the system memory H0 and then transfers data back
across the local btts 106 and local expansion bus to the
graphics adapter 112 and frame bufl'er memory 114.

When the computer system desires to store data on the
hard disk 120 in a compressed .format, the data is read by the
CPU 102 and compressed by the software compression
application. The compressed data is then stored on the hard
disk 120. Ifcompressed data is stored in system memory 110
which must be decompressed, the CPU 102 is required to
read the compressed data. decompress the data and write the
dccompressed data back to system memory 110.

However. it is noted that in modem computer systems or
computing appliances, the system memory controller does
not contain compression and decompression technology to
optimize bandwidth efficiency for the main system memory.
Specialty technology such as RAMHUS can be used both in
the memory device and memory control unit to supply high
bandwidth at low pin count. For more information on the
RAMBUS memory architecture. please see “RAMHUS
Architectural Overview,” version 2.0, published July I993
by RAMIBIJS, lnc.. and “Applying RAMBUS Technology to
Desktop Computer Main Memory Subsystems,” version 1.0.
published March 1992 by RAMBUS. I11c.. which are both
hereby incorporated by reference. While the RAMHUS
technology achieves higher bandwidth with lower memory
chip count. making concessions for the ultra high frequency
transmission eflects of the RAMBUS chamiel can cause

power and noise as well as cost problems. In addition, to
achieve higher bandwidth the transmission channel requires
additional logic in both the memory controller and the
memory itself. again causing higher power and additional
cost

Main memory DRAM devices at the 64—Mbit levels and
higher continue to increase the package sizes and number of
address and data pins. The increased pin count due to this
trend eliminates the ability to “bank” DRAMS tor higher
effective bandwidth as i11 smaller DRAM architectures ofthe

past. In addition, to lower eifective bandwidth the “wide"
DRAM devices cost more to manufacture dtte to increased

package cost, test equipment, and testing time. In order to
increase bandwidth the system memory controller must be
designed with additional IEO data pins to compensate for
wider DRAM devices. Thus higher power and noise results.

For computer appliances that require minimum main
memory conliguration and also require high bandwidth. the
current choices are currently limited to specialty high speed
memory devices such as RAMBUS or DDRDRAM which
cost more. consulne more power and generate more noise, or
multiple smaller DRAM packages that typically require
more PC board real-estate.

Computer Architecttlre of the Preferred lhnbodiment

FIG. 2 is a block diagram illustrating one embodiment of
the architecture ofa system incorporating the present inven-
tion. FIG. 2 is an example ofone embodi1nent_. and it is noted
that the technology described herein may be included in any
of various systems or architectures. l"or example, the tech-
nology of the present invention may be included in a

10

IS

20

25

30

40

50

60

41

10

computer system. a television system (such as IIl'JTV'), a set
top box, Internet appliance, PDA (Personal Digital Assis-
tant), or other systems which include memory for storing
data. The technology of the present invention is described
below with reference to a computer system architecture.
which is one example of the use of the present invention.
Elements in FIG. 2 that are similar or identical to those in
FIG. 1 include the same reference numerals for convenience.

As shown. the computer system ofthe present invention
includes a CPU 102 preferably coupled to a cache system
104. The CPU 102 may include an internal first level cache
system and the cache 104 may comprise a second level
cache. Alternatively. the cache system 104 may be a first
level cache system or may be omitted as desired. The CPU
I02 and cache system 104 are coupled to a Local bus 106.
The CPU 102 and cache system 104 are directly coupled
through the Local bus 106 to an integrated memory con-
troller (IMC) 140 according to the present invention.

The integrated lnelnory controller (IMC) 140 perfomis
memory control functions and includes a compressionf
decompression engine for greatly increasing the perfor-
mance of the computer system. It is noted that the IMC 140
ca11 be used as the controller for 1nai11 system memory 110
or can be used to control other memory subsystems as
desired. The IMC I40 couples to system memory 110.
wherein the system memory 110 comprises one or more
banks of DRAM memory and may comprise a plurality of
different type memory devices. The IMC 140 includes a
memory controller core, also referred to as the Memoryl"'/X
Technology core at present invention. The MemoryFi"X
Technology core is preferably embedded in the IMC 140,
but alternately may be external to the IMC or may be
comprised in the CPU 102. The entire IMC 140 may also be
integrated with the CPU 102. The Men1oryI'U"X Technology

_ core in the preferred embodiment performs memory com-
pression and decompression, system memory control, com-
pression format. cache directory. data cache control and data
multiplexing to improve the effective data bandwidth and
eiliciency of system memory data transfers.

The IMC 140 of the present invention may couple to any
of various types of memory. as desired. In the preferred
embodiment, the IMC 140 couples to the system memory
110 through a RAMBUS implementation. For more infor-
mation on the RAMBUS memory arch.itecture, please see
the RAMBUS references mentioned above. which were

incorporated by reference. In an alternate embodiment, the
system memory 110 comprises SGRAM or single in-line
memory modules (SlMMs). As noted above, the IMC 140 of
the present invention may couple to any of various types of
memory. as desired.

In the preferred embodiment, the IMC 140 also generates
appropriate video signals for driving video display device
142. The IMC 140 preferably generates red, green, blue
(RGB) signals as well as vertical and horizontal synchroni-
zation signals for generating images on the video display
I42. Therefore. the integrated memory controller 140 ofthe
present invention integrates memory controller and video
and graphics controller capabilities into a single logical tuiit.
This greatly reduces bus traflic and increases system per-
formance. In one embodiment. the IMC 140 also generates
appropriate data signals that are provided to Audio DAC 238
for audio presentation. Alternatively, the IMC 140 integrates
audio processing and audio DAC capabilities and provides
audio signal outputs that are provided directly to speakers.

The IMC 140 of the present invention is preferably
situated either on the main CPU bus or a high speed system
peripheral bus. The IMC 140 may also be closely or directly

42

US ?,l90,284 B1

11

integrated with the CPU 102, eg.. comprised on the satne
chip as the CPU 102. In the preferred embodiment, as shown
in FIGS. 2 and 3. the IMC 140 is coupled directly to the
Local bus 106 or CPU bus, wherein in the preferred e1nbodi—
ment the IMC 140 interfaces through a [,2 cache system I04
to the CPU 102. In an alternate embodiment. tl1e I,2 cache

and controller 104 may be integrated into the CPU 102 or
into the IMC 140. or not used.

An U0 subsystem controller 116 is coupled to tl1e Local
bus I015. The U0 subsystem controller I16 in tum is coupled
to an optional U0 bus 118. Various IEO devices are coupled
to the U0 bus including a 11on—volatile memory. e.g., hard
disk 120. keyboard 122. and mouse 124, as shown. In one
embodiment the IEO bus is the PCI bus, and the IEO
subsystem Controller I16 is coupled to the PCI bus.

Typical computer promms require more Local bus band-
width for the transfer ofapplication data than the transfer of
program code executed by the CPU. Examples of applica-
tion data include a bit mapped image. font tables for text
otltptlt. infomiation defined as constants. such as table or
initialization information, etc. Graphical andfor video data,
for example, is processed by the CPU 102 for display before
the video data is written to the graphical output device.
Therefore. in most cases, the actual program code executed
by the Cl-’U 102 which manipulates the application data
consumes considerably less system memory 110 for storage
than the application data itself.

The IMC 140 includes a novel system architecture which
helps to eliminate system bandwidth bottlenecks and
removes extra operations required by the CPU 102 to move
and manipulate application data andfor program code.
According to the present invention. the IMC 140 includes a
data compressionildecompression engine which allows
application data and./or program oode, i.e., ally data iii the
system, to move about the system in a compressed format.
The operation of the conipressionfdeconipression engine in
the IMC 140 is discussed in greater detail below.

The IMC 140 also includes a high level protocol for the
graphical manipulation ofgraphical data or video data which
greatly reduces the amount of bus traflic required for video
operations and thus greatly increases system performance.
This high level protocol includes a display list based video
refresh system and method whereby the movement of
objects displayed on the video display device 142 does not
necessarily require movement of pixel data in the system
memory 110, btit rather only requires the manipulation of
display address pointers in a Display Refresh List. thus
greatly increasing the perfonnance of pixel bit block trans-
fers. animation, and manipulation of 2D a11d 3D objects. For
more information on the videolgraphics operation of the
IMC 140, please see U.S. Pat. No. 5,838,334. The IMC 140
also includes an improved system and method for re11dering
and displaying 3|.) objects.

FIG. 2 illustrates an example of the data transfer path of
data within a computer system including the IMC 140
according to the present invention. As mentioned above, in
typical computer systems, the program code and data is
initially stored on the non—volatile memory 120. First. the
IMC 140 reads program code and data stored on the non-
volatile memory 120 using a direct memory access (DMA)
method and.r’or burst control method. where the IMC 140

may act as a master on the local btls 106. The program code
and data are read from the non—volatile memory 120 by the
IMC 140 and stored in the system memory 110. I11 an
alternative embodiment, the program code and data are
transferred from the non—volatile memory 120 to the IMC
140 under CPU control. The data is transferred from the

IU

15

20

25

30

35

40

50

60

12

non-volatile memory 120 to the system memory 110 pref-
erably in a compressed format. and thus the data requires
less disk storage and reduced Local bus bandwidth. As the
data is transferred from the non—volatile memory 120 to the
IMC 140, the data is preferably decompressed by the decom-
pression engine within the IMC 140 and stored in the system
memory bank 110 in an uncompressed format. In general.
magnetic media (hard disk) IEO transfer rates are sufliciently
slow to allow decompression and storage of the data as the
compressed data is received from the disk I20. AItema-
tively, the data is stored in the system memory in a com-
pressed format. The data may also be stored in a cache in an
uncompressed format.

The (II-’U I02 begins program execution by reading the
recently decompressed program code from the system
memory Ill} from the cache. Altematively, the decompres-
sion engine within the IMC 140 provides the uncompressed
data to the CPU 102 in parallel with storing the 11ncom—
pressed data in the system memory I] II. In another alternate
embodiment. where the data is stored in the memory in a
compressed format, a CPU access of the data results in the
data being deooinpressed and provided to the CPU 102.

Portions of the program code contain information neces-
sary to write data andfor instructions back to the IMC 140
using a special graphical protocol to direct the IMC 140 to
control the display output on the video display 142. In many
cases. the graphical data correctly stored in the system
memory H0 is not required to leave the system memory IN!
and is not required to move to another location in system
memory Ill}, but rather the display list-based operation and
high level graphical protocol of the IMC 140 of the present
invention enables the CPU 102 to instruct the IMC 104 how

window and other graphical data is presented on the screen.
This provides a tremendous improvement over prior art
systems.

FIG. 3- IMC Block Diagram
I"‘I("r. 3 is a block diagram illustrating the internal coin-

ponents comprising the IMC 140 in the preferred embodi-
ment. The IMC 140 preferably incorporates the MemoryFi"X
Technolog according to the present invention. As shown.
the present invention integrates a data compressiom'decom-
pression engine and cont.rol functions into the memory
controller unit 220 ofthe IMC 140. This reduces the amount

of non—volatile (disk) storage or archive storage require-
ments and reduces the amotuit of bandwidth required to
move data in the system. and thus reduces overall system
costs. This also reduces the required amount of system
memory because. when data is compressed for storage. more
non—reoently—used or ofi-screen data can be stored ir1 system
memory Ill}.

It is noted that the present invention may be incorporated
into any of various types of computer systems or devices
having various system architectures. In alternate embodi-
ments of the present invention, the data compressionfde—
compression engine can be integrated into any device that
connecl.s to memory. In some embodiments the present
invention improves bandwidth and efiziciency without
increase in cost to the system or increased U0 bus require-
ments.

The memory controller may operate in different compres-
sion modes. One mode, referred to as normal compression
mode. reduces the amount of memory used by translating
addresses allocated by the operating system into new

_ addresses which minimize the memory usage according to
the compression that is performed. While this embodiment
may reduce the amount of memory used. an alternate mode.

42

43

US ?,l90,284 B1

13

referred to as priority compression mode. does not make use
of memory size savings a11d instead trades off the additional
saved memory for higher bandwidth and lower overall
latency. In the priority compression mode, no changes to the
software or operating system software are necessary (other
than initiali'/..ation code) to implement the compression!’
decompression improvements. The normal and priority
compression modes are discussed below.

It is noted that various of the elements in FIG. 3 are

interconnected with each other, wherein many of the various
interconnections are not illustrated in FIG. 3 for simplicity.

.As shown, the IMC 140 includes bus interface logic 202
for coupling to the host computer system, for coupling to the
Local bus 106. In the preferred embodiment, the Local bus
106 is the (71-’U bus or host bus. Alternatively. t.he I..ocal bus
106 is the PCI bus. and the bus interface logic 202 couples
to the PCI bus. Instruction storagefdecode logic (not shown)
may be coupled to the bus interface logic 202.

The bus interface logic 202 couples to the memory control
unit 220. The Memt)ryl'YX technology preferably resides
internal to the memory controller block 220. A control bus
20] connects all units to the local CPU interface 202. An

execution engine 210 is coupled through the control bus 201
to the local CPU interface 202 and t.l1e memory interface 22]
and the execution engine 210 also couples to the memory
controller. Local bus 106 data and commands are routed

through the local CPU interface to the control bus 201 which
in turn is coupled to the execution engine 210, the memory
interface 221. the graphics engine 212, the Peripheral IEO
bus interface 234, the \r’I)RI . engine 240. a video input and
format conversion unit 235 and finally the audio & modem
subsystem 236. In addition the execution engine 210 is
coupled to the main system memory 110 through the
memory controller 220 and the memory interface 221.

T110 graphics engine 212 is also coupled to the main
system memory 110 through the memory controller 220 and
the memory interface 221. Thus, data is read and written for
rasterization and pixel draw output by t.he graphics engine
212 with assistance for data transfer and efliciency by the
memory controller 220. In addition, the other blocks are
coupled under similar circumstances through the memory
controller 220 and memory interface 221 to the system
melnory Ill}.

As shown in FIG. 3 the memory controller 220 transfers
data between the system memory 110 and the requesting
units. The requesting units include the execution engine 210,
local CPU or RISC interface 202, audio a11d modem sub-

system 236. Video IIO interface 235, VDRI, engine 240.
peripheral bus interface 234 zmd graphics engine 212. The
requesting units will request the memory controller 220 for
data transfer operations to the system memory 110 through
the system memory interface 221. Each requesting unit may
represent or utilize a different compression format, allowing
higher memory efliciency. Thus, there are pluralities of data
compression formats wider control of the requesting units
and supported by the memory controller block 220.

FIG. 4—Memory Controller Unit
FIG. 4 illustrates the memory controller block 220. In the

preferred embodiment the memory controller 220 includes a
parallel compression and decompression engine 251. In an
alternate embodiment the memory controller 220 includes a
single or serial compression engine and a single or serial
decompression engine. Also, in the preferred embodiment_.
the parallel compression and decompression unit 251
includes a separate lossy compression and decompression
engine (discussed later in this disclosure) which also may be

10

IS

20

25

30

40

50

60

14

designed as separate or unified units. Additional alternate
embodiments may apply individual compression andior
decompression units located in multiple areas of the IMC
140 for optimal eflziciency of compression or decompression.

The memory controller block 220 may include one or
more parallel or serial compressionfdeoompression engines,
including one or more parallel andfor serial lossless com-
pressionfdecompression engines andfor one or more parallel
andfor serial lossy compressionfdecompression engines. The
term "compression.I"decompression engine" as used herein is
intended to include all such combinations of one or lnore

parallel, serial, lossless andfor lossy con1pressionfdecom—
pression engines. whether they be integrated or separate
blocks, and whether they be comprised in or external to the
memory controller, or comprised in another unit, such as the
CPU 102.

Support blocks for the preferred embodiment of the
memory controller 220 preferably include the switch logic
261, compression oontrol unit 281, compressed data direc-
tory 271, [.3 data cache memory 29]. and the memory
interface logic 221. Main system memory 110 in FIG. 4 is
preferably external to the memory controller block 220 and
is shown only for reference. In addition, the [.3 data cache
291 may also be standard memory [SRAM or limbedded
DRAM) in absence of external memory and may be coli-
figured other than as cache type memory. Input signals to the
memory controller 220 preferably comprises a request bus
and control bus 211. and a plurality ofaddress buses 215 and
data buses 216 from each requesting unit in the IMC]4ll as
indicated in FIG. 4. Altematively. each of the requesting
agents may share conunon addressfdata buses. The memory
controller 220 generates output signals which interface to
the main system memory 110. These output signals comprise
a plurality control signals required to drive multiple DRAM

_ memory devices as previously indicated.
Again referring to FIG. 4, the switch logic 261 preferably

interfaces to all the requesting unit’s address and data buses,
including control buses and Strobes necessary to indicate
valid data and address cycles presented to the memory
controller 220. The switch logic 261 also includes the
necessary ports to drive address and data to the other units
within the memory controller 220. The switch logic 261
controls read and write data to and from the parallel coin-
pression and decompression unit 25] and the compression

_ control unit 281. In addition. for data that is not to be
compressed or decompressed (normal or bypass data), the
switch logic 261 controls an interface directly to the memory
interface logic 221. In order to properly control the switch-
ing direction of the address and data for diflerent data
compression formats, the switch logic 261 receives control
inputs from the compression control unit 281 and the
Request bus 211. The switch logic 261 also interacts with the
parallel compression and decompression unit 251 as
described in detail later. Thus. the switch logic 261 arbitrates

_ the incoming requests for memory control and data transfer
operations. ranking requests in a priority scheme and filter-
ing the requests for nonnal or compressed memory trans-
actions.

Again referring to FIG. 4, the compression control unit
281 receives memory transaction requests from the request
and control bus 211 and receives addresses from the switch

unit 261 for control of each memory transaction. The
compression control unit 281 directs the switch logic 261,
the compression data directory 271, the local data cache

_ memo ata cac 1e . t e memo 1nte ace o 1cryL3d l)29lh ry‘ rf lg"
22]. and the parallel compression and decompression tmit
251 for proper operation and set-up for each memory

43

44

US ?,l90,284 B1

1 5

transaction request. The compression control unit 281 inte -
faces to the compressed data directory 271. The compressed
data directory 2'71 is used for look up of the address block
start location for either the L3 data cache 291, the SRAM
buffers (located in the Parallel Compression and Decont-
pression unit 251] or the system memory 110. Thus, the
compression control unit 281 receives requests from other
units in the IMC 140, translates the location by address.
determines the compression block size. and controls the
sub-units of the memory controller 220 fitr the proper
address and data transactions as required to read or write
data to and from the main system memory 110.

The data cache 291 shown in FIG. 4 is used to minimize

tl1e latency of operation by returning requested data that has
been recently used. The data cache 291 is an [.3 data cache
where the CPU 102 or system includes Ll and 1,2 caches.
The cache 291 may also operate as an L2 or L1 cache for the
CPU 102. as desired. The cache 291 is referred to as an L3

cache in this description.
The [.3 data cache size will detemline the average number

ofclocks required to retum data to the requesting units of the
IMC 140. In the present embodiment, most recently used
data is stored in a non—compressed format in the L3 data
cache 291. For data that resides in the 13 data cache 291, no

compression or decompression action is required by the
parallel compression and decompression unit 251. Thus. a
transaction request with an L3 data cache hit can return data
with less latency than a transaction request that requires a
main memory 110 transaction. The L3 data cache 291
typically contains only uncompressed data, alt.hough in
alternate embodiments the L3 cache 291 may store most
recently used data in a compressed format. or in a co1nbi—
nation ofcompressed and non-compressed fomtats. Thus the
[.3 data cache 291 located iii the memory controller 210 can
return most recently used data without the normal latency
delay associated with conventional memory controllers.

In one embodiment where the parallel compression and
decompression engine 251 does not contain SRAM buffer
storage, the L3 data cache 291 can double for such SRAM
buffers used to store write blocks for future compression and
read blocks for future decompression. Thus the L3 data
cache 290 may be used to store compressed blocks which
await future decompression for either read or write opera-
tions. For example, the 13 data cache 291 may be used to
store LRU pages that are waiting to be compressed and
transferred to the non—volatile memory. Thus the L3 data
cache 291 and associated cache control logic 281 bu [fer the
transactions to improve memory access latency lbr both read
and write operations of both compressed.I"decompressed
transactions or transactions which require uncompressed
operation (no compression or decompression).

Again referring to l"'l(i. 4. the memory interface logic 221
receives control signals form the compression control unit,
receives address and data from either the switch logic 261
(non-compressed transactions), or the compression data
directory 271 and controls the timing and delivery voltage
levels to the main memory 110 depending on the DRAM
device type. Thus the lnemory interface logic 221 is used to
interface to the main system memory 110 matching the
memory configuration and device type.

The Parallel compression and decompression unit 251 is
described in detail in the following sections.

FIG. 5—Compression.tDecompression Engine
As shown in FIG. 5. the parallel compression a11d decom-

pression 251 block preferably includes compression engines
57t|f575 and decompression engines 550E555. As noted

10

15

20

25

30

40

50

60

16

above, the parallel compression and decompression unit 25]
may contain a single lossless parallel compression and
decompression engine andfor a single lossy compression and
decompression engine, or a combination of lossless andfor
lossy engines.

The parallel compression and decompression unit 25]
performs high speed parallel compression and decompres-
sion using a parallel symbol data stream. instead of a serial
symbol data stream as in conventional implementations. The
parallel operation of the compression and decompression
u11it 251 is optimized for bandwidth reduction a11d reduced
latency. Thus the parallel compression and decompression
engines allows a higher speed decompression and compres-
sion rate, which substantially increases bandwidth and
reduces latency of that over prior an compression and
decompression engines. The algorithm for the parallel com-
pression invention is further described in detail below.

FIG. 5 also illustrates the internal diagram of the switch
logic 215] . The switch 261 perfonrts data fonnat mid address
conversion as well as the arbitration of multiple requests
from a plurality of other units in the IMC 140. The switch
logic 261 includes a crossbar switch 502 that performs the
selection of the current lnelnory transaction request. This
selection is perfomied by one of a plurality of arbitration
methods with the intention to deliver data first to units that

must operate real time memory transactions. In the preferred
embodiment. the order of priority for such requesting units
is first the display refresh requests from the Vl.)Rl.. engine
240. followed by the Video [IO unit 235. the Audio and
Modern 236. the Local CPUERISC interface 202. the Grapl1—
ics engine 212 and execution engine 210, followed by the
Peripheral IEO bus interface 234. The priority order, block
51710, and request latency is software programmable by the
interface driver software for the IMC 140. Thus, the system

_ performance and memory transaction efliciency andfor
response ca11 be adjusted dynamically by software control
executed by the interface drivers. Such interface software is
preferably executed on the CPU I02 but alternatively can be
executed by the execution engine 210.

The switch logic 261 preferably contains specific data
selection units separating nomtal tutcompressed reads and
writes from compressed reads and writes. Decompression
switch 512 determines a block read operation by sending
command. address, block tags, data type and length infor-
mation to the decompression engine 550 and 555. In addi-
tion the decompression switch 5l2 receives decompressed
data and transaction tag information from the decompression
engine 550 andfor 555. The decompression switch 512 is
preferably pipelined for a plurality of system memory read
requests at the same time. The tag field allows multiple
outstanding requests to be issued to the decompression
engines 550 andfor 555 in parallel.

Similarly, the switch logic 261 contains a normal memory
switch 514 for read and write transactions that require no

_ compression or decompression operation. In the preferred
embodiment, some data address ranges or requests fro111
specific request units may 11ot need or want to have com-
pression operations. Thus the memory switch 514 generates
block transfer, address generation, data tags, length and
command information for interface to the memory interface
u11it Still.

The switch logic 261 includes compress switch 516 which
performs command, address. tag. length and data type
preparation for the compression engine 570 andfor 575. Data

_ written to the memory controller 220 by a plurality of
requesting units 211 are received by the compress switch
516 and will be either compressed and written to main

44

45

US ?,l90,284 B1

1 7

memory 110 or, if itt the valid address range of the 13 data
cache 291, will be written to the L3 data cache 291 under

control of the memory switch 514.
Thus, the compression cache control unit 281 along with

tl1e switch unit 261 determine tlte transaction type. priority
and control required to complete tl1e transaction by either the
L3 data cache 291, the parallel compression and deco1n—
pression ttnit 251 or the main memory interface 560. As
indicated in FIG. 5, tlte preferred embodiment shows trans-
action sizes of l6 data bytes. In alternate embodiments the
transaction sizes can be any number of data bytes.

As discussed above in FIG. 4, the L3 data cache 291
interacts with the cache control unit 281. For transactions

that have address ranges with associated data located within
the L3 data cache 291, the decompression engine 550,
memory interface 560. and compression engine 570. are not
used, and data is read or written directly into the L3 data
cache 291. Thus, for L3 data cache 291 hits. data bypasses
the parallel compression and decompression unit 251 a11d is
read or written directly 10ffrom the 1.3 data cache 291 in a
non—oompressed fomiat.

111 addition, again referring to FIG. 5, the parallel com-
pression and decompression ttnit 251 includes data and
command transfer multiplexers 522 and write data multi-
plexers 590. The connnand transfer multiplexers 522 per-
form data, command address, tag, length switching and
interfacing to the decompression engine 550.3555, memory
interface 560, and compression engines 5701575. Alternate
embodiments may include the transfer multiplexers 522 in
the switclt logic 261 in a single rather than multiple btts
design. The write data multiplexers 590 perform the selec-
tion between nomial (uncompressed) data writes and com-
pressed data writes to the main memory 110.

'lhe memory interface ttnit 221 interfaces to the decom-
pression engines 550 andfor 555 for status, tags and read
data, interfaces to the memory interface 560 for both read,
write control, address and tags, and interfaces to the com-
pression engines 570 andtor 575 for write data. The memory
interface tt11it 221 includes a DRAM controller 592 and a

DRAM lift) interface 594. The DRAM controller 592 per-
forms the timing of the control signals and address to the
DRAM U0 interface 594 to control the main memory bank
110. In the preferred entbodintent the control of RDRAM
memory is controlled by the high speed analog RAC located
within the DRAM li‘() interface 594. In alternate embodi-

ments other memory types such as SDRAM, DRDRAM,
SLDRAM, or VMC require additional logic i11 the DRAM
IEO interface 594. Thus, the memory interface logic 221 is
i11ternal to the memory controller 220 and interfaces to the
compression control unit 281 for control signals, the switch
logic 261 for address, tags, control and data signals. the
parallel compression and decompression unit 251 for
address, control and data transactions. In addition the
memory interface logic 221 perfomts the memory interface
and signal conditioning for interfacing to the tnain system
memory 110.

Parallel Lossless Compression and Decompression
The parallel compressiontdecompression unit or engine

251, which performs parallel compression and deco1npres—
sion functions, is now discussed. The engine 25] is prefe -
ably a dedicated codec hardware engine, e.g., the engine is
comprised of logic circuitry. In one embodiment, the codec
engine 251 comprises a proyannnable DSI’ or CPU core, or
programmable cotnpressionfdecompression processor, with
one or tttore R()Ms or RAMs which store different sets of

microcode for certain functions. such as compression.

IU

15

20

25

30

40

50

60

18

decompression, special types of graphical compression and
decompression, and bit blit operations, as desired. In this
embodiment, the codec engine 251 dynamically shifts
between the different sets of microcode in the one or more

memories, depending on the function being performed. The
compression.I"deeompressiun engine may also be imple-
mented using reconfigurable or programmable logic, e.g.,
one or more FPGAS.

As shown in FIG. 5, in one embodiment, the engine 25]
preferably includes an embedded lossless parallel data com-
pression engine 570 and parallel decompression engine 550
designed to compress and decompress data as data is trans-
ferred toffrom system memory 110. The compression engine
570 and decompression engine 550 may be constructed
using any of the techniques described with reference to the
engine 251, including hardware engines comprised of logic
circuitry, progranmtable CPUs, DSPs. a dedicated compres-
sionfdecompression processor, or reconfigurable or pro-
grammable logic, to perform the parallel colnpression a11d
decompression method of the present invention. Various
other implementations may be used to embed a compres-
sionfdecompression within the memory controller according
to the present invention. In the preferred embodiment, the
colnpression engine 570 and decolnpression engine 550
comprise hardware engines in the IMC 140, or alternatively
use pieces of the same engine for compression and decom-
pression. In the following description, the parallel compres-
sion and decompression unit is described as having separate
colnpression and decolnpression engines 570 and 550.

For a general overview of the benefits and methods for
using compression and decompression engines in the main
system memory controller, refer to US patent disclosure
titled “Memory (Tontroller Including Iitnhedded Data (Zom-
pression and Decompression lingines", filed Jun. 5, 1995,
Ser. No. 08.’-4163.106, whose inventor is Thomas A. Dye.

Thus, the IMC 140 includes two data formats referred to
as “compressed” data and “non—compressed” data. The
compressed data format requires less storage and thtts is less
expensive. The compressed fomtat also requires less system
bandwidth to transfer data between system memory 110 and
IE0 subsystems. The decompression from compressed data
format to nonnal data format results it1 a small performzutce
penalty. However, the compression of non-compressed data
format to compressed data format does not have an associ-

_ ated penalty, although there may be an added latency which
would nonnally be hidden. However, if the data doesn’t
compress well, and there is a long series of stores which
need compressed, the bus could be backed up causing read
and snoop delays to the processor. In one embodiment, the
compression engine 570 is implemented in software by the
CPU 102.

In the preferred embodiment, the compression engine 570
and decompression engine 55t| in the IMC 14!} comprise one
or more hardware engines that perform a novel parallel
lossless compression method. preferably a “parallel” dictio-
nary based eompression and decompression algorithm. The
parallel algorithm may be based on a serial dictionary based
algorithm. such as the 12277 (preferably IJSS) dictionary
based compression and decompression algorithm. The par-
allel algorithm may be based on any variation of conven-
tional serial L§r'.'. compression, including 1177, 1.2518, LZW
andfor I.}’.RWl, among others.

The parallel algorithm could also be based on Run Length
Encoding, Predictive Encoding, Huflinan, Aritlnnetic, or

_ any other lossless compression algorithm. However, the
parallelizing of these is less preferred due to their lower
compression capabilities andfor higher hardware costs.

45

46

US 7,190,284 B1

19

As a base teclmology. a11y of various lossless compression
methods may be used as desired. As noted above. a parallel
implementation of LZSS compression is preferably used.
although other lossless compression methods may allow for
fast parallel compression and decompression specifically
designed for the purpose of improved memory bandwidth
and efficiency.

For more infonnation on a data compression and deco1n—
pression system using serial 1,)’. cotnpression. please see
U.S. Pat. No. 4.464.650 which is hereby incorporated by
reference. The above patent presents implementations of die
L277 data compression method described by Lempel and
Ziv in “Compression of Individual Sequences Via Variable-
Rate Coding.” Ilil-iii Transactions on Information Theory.
IT-5. September I977. pages 530 -537. and “A Universal
Algorithm for Sequential Data Compression,” IEEE Trans-
actions on Infonnation Theory. Volume 23. No. 3 (IT—23—3).
May 1977. pages 337-343. wherein the above two articles
are both hereby incorporated by reference. U.S. Pat. No.
4.70 l .745. titled “Data Compression System." which issued
Oct. 20, 1987, describes a variant of LZ77 called LZRWI.
and this patent is hereby incorporated by reference in its
entirety. A modified version of the [Z78 algorithm is
referred to as l.,ZW and is described in U.S. Pat. No.

4.558.302. Another variant of I,i/_W compression is
described in U.S. Pat. No. 4.814.746.

111 an alternate embodiment. the data compression and
decompression engines 570 and 550 utilize parallel data
compressionfdecompression processor hardware based on
the technology disclosed in US. Pat. No. 5.410.671. titled
“Data Compression;’Decompression Processor." which
issued Apr. 25, 1995 and which is hereby incorporated by
reference in its entirety.

The IMC I40 may also utilize parallel data compression!
decompression teclmiques of the present invention based on
the serial techniques described in U.S. Pat. No. 5,406,279
titled “General Purpose. Hash—Based Technique for Single
Pass I,ossless Data Compression.'’: U.S. Pat. No. 5.406.278
titled “Method a11d Apparatus for Data Compression Ilaving
an Improved Matching Algorithm which Utilizes a Parallel
Hashing Technique_.”; and U.S. Pat. No. 5.396,595 titled
“Method and System for Compression and Decompression
of Data." In alternate embodiments. other types of parallel or
serial data compression.I’decompression methods may be
used.

The compressionfdecompression engine 251 of the
present invention may include specialized compression!’
decompression engines 5757555 for image data. The pre-
ferred embodiment of the lossy coinpressionfdecompression
engine is described with reference to FIGS. 17-20. and a
parallel version is described with reference to FIGS. 32-36.

Other embodiment may utilize image compression and
decompression techniques shown and described in U.S. Pat.
No. 5.046.119 titled “Method and Apparatus for Compress-
ing and Decompressing Color Video Data with an Anti-
Aliasing Mode." this patent being hereby incorporated by
reference in its entirety. For related in'formation on com-
pression and decompression engines for video applications.
please see U.S. Pat. No. 5.379.356 titled “Decompression
Processor for Video Applications.” U.S. Pat. No. 5.398.066
titled “Method and Apparatus for Compression and Decom-
pression of Digital Color images.” U .35. Pat. No. 5.402.146
titled “System and Method for Video Compression with
Artifact Disbursement Control." and U.S. Pat. No. 5,379.
351 titled “Video Compressio1v'Decon1pression Processing
and Processors,” all of which are hereby incorporated by
reference in their entirety.

S

10

IS

20

25

30

40

50

60

20
l"I('"r. 6A Prior Art

Prior art l1as made use of the LE compression algorithm
for design of computer hardware. but the bandwidth of the
data stream has been limited due to the need to serially
review the incoming data to properly generate the com-
pressed output stream. l"'I("r. 6/\ depicts the prior art normal
history table implementation.

The LZ compression algorithm attempts to reduce the
number of bits required to store data by searching that data
fiir repeated symbols or groups of symbols. A hardware
implementation of all I 177 algorithm would make use of a
history table to remember the last n symbols ofa data stream
so that they could be compared with the incoming data.
When a match is found between the incoming stream and the
history table. the matching symbols from the stream are
replaced by a compressed symbol, which describes how to
recover the symbols from the history table.

FIG. 6B—Parallel Algorithm
The preferred embodiment of the present invention pro-

vides a parallel implementation of dictionary based (or
history table based] compressionfdecompression. By
designing a parallel history table, and the associated com-
pare logic. the bandwidth of the compression algoritlnn can
be increased many times. This specification describes the
implementation of a 4 symbol parallel algorithm which
resttlts in a 4 times improvement iii the bandwidth of the
implementation with no reduction in the compression ratio
of the data. In alternate embodiments. the number of sym-
bols and parallel history table can be increased and scaled
beyond four for improved parallel operation and bandwidth.
or reduced to ease the hardware cirettit requirements. In
general. the parallel compression algorithm can be a 2
symbol parallel algorithm or greater, and is preferably a
multiple of2. e.g., 2. 4. 8. 16, 32. etc. The parallel algorithm
is described below with reference to a 4 symbol parallel
algorithm for illustrative purposes.

The parallel algorithm comprises paralleling three parts of
the serial algorithm: the history table (or history window).
analysis of symbols and compressed stream selection. and
the output generation. in the preferred embodiment the
data-flow through the history table becomes a 4 symbol
parallel flow instead of a single symbol history table. Also.
4 symbols are analyzed in parallel, and multiple compressed
outputs may also be provided in parallel. Other alternate
embodiments may contain a plurality of compression win-
dows for decompression of multiple streams. allowing a
context switch between decompression of individual data
blocks. Such alternate embodiments may increase the cost
and gate counts with the advantage of suspending current
block decompression in favor of other block decompression
to reduce latency during fetch operations. For ease of
discussion, this disclosure will assume a symbol to be a byte
of data. Symbols can be any reasonable size as required by
the implementation. FIG. 6B shows the data-How for the
parallel history table.

l"'l('i. 7 Iligl1 I/eve] lilowchart of the Parallel Compression
Algorithm

FIG. 7 is a high level flowchart diagram illustrating
operation of the parallel compression algorithm in the pre-
ferred embodiment. Steps in the flowchart may occur con-
currently or in different orders.

In step 402 the method maintains a history table (also
called a history window) comprising entries, wherein each

_ entry may comprise one symbol. The history table is pref-
erably a sliding window which stores the last n symbols of
the data stream.

46

47

US ?,l90,284 B1

21

In step 404 tlte tttethod maintaitts a cument count of prior
matches which occurred when previous symbols were com-
pared with entries in the history table. A count is maintained
for each entry in the history table.

It is noted that maintenance of the history table and the
current cottnts are perfonned throughout the algorithm based
on previously received symbols, preferably starting when
the first plurality of symbols are received for compression.

I11 step 406 the method receives uncompressed data,
wherein the uncompressed data comprises a plurality of
symbols. Thus the parallel compression algorithm operates
on a plurality of symbols at a time. This is diiferent than
conventional prior art serial algorithms, which operate in a
serial manrter on only one symbol at a time. The plurality of
symbols comprises 2 or more symbols. preferably a power
of 2. In the preferred embodiment. the parallel compression
algorithm operates on 4 symbols at a titne. However. in1ple—
mentations using 8. I6, 32 or more symbols. as well as other
non-power of 2 numbers, rttay be readily aceotnplished
using the algorithm described herein.

In step 408 the method compares the plurality of symbols
with each entry in the history table in a parallel fashion. This
compariso11 produces contpare results. liiach entry in the
history table preferably compares with each ofthe plurality
of symbols concurrently. i.e., in a parallel fashion. [or
improved speed.

I11 step 410 the method determines match information for
each of the plurality of symbols based on the current count
and the cotnpare results. Step 410 of determining match
information includes determining zero or more matches of
the plurality of symbols with each entry in the history table.
More specifically, step 410 may include determining a
longest contiguous match based on the current count and the
compare results, attd then determining if the longest con-
tiguous match has stopped matching. If the longest contigt1—
ous match has stopped matching, then the method resets or
updates the current counts.

As noted above, step 410 also includes resetting the
counts for all entries if the contpare results indicate a
contiguous match did not match one of the plurality of
symbols. The counts for all entries are preferably reset based
on the number of the plurality of symbols that did not match
in the contiguous match. In the preferred embodiment, the
method generates a reset value for all entries based on the
compare results for a contiguous match. The reset value
indicates a number of the plurality of symbols that did not
match in the contiguous match as indicated in the compare
results. The method then updates the current counts accord-
ing to the compare results and the reset value.

111 step 412 the method outputs compressed data infor-
mation in response to the match information. Step 412 may
involve outputting a plurality of sets of compressed data
inforntation in parallel. e.g., for dilferent matches andfor for
non—matching symbols. Step 412 includes outputting com-
pressed data information corresponding to the longest con-
tiguous lnatch which stopped matching, if any. The cotttigu-
ous match may involve a match from a prior plurality of
symbols. Step 412 may also include outputting compressed
data information solely from a prior match. Step 412 also
includes, for non—matching symbols which do not match any
entry in the history table, outputting the non-matching
symbols in an uncompressed format.

For a contiguous match, the compressed data infonnation
includes a count value and an entry pointer. The entry
pointer points to the entry in the history table which pro-
duced the contiguous match. and the count value indicates a
number of matching symbols ill the contiguous match. I11

15

20

25

30

40

50

60

22

one embodiment, an encoded value is output as the count
value, wherein more ofien occurring counts are encoded
with fewer bits than less oiten occttrring counts.

Steps 402-412 are repeated one or more times until no
more data is available. When no more data is available, then.
it’ any current cottnts are non-zero. the method outputs
compressed data for the longest remaining match in the
history table.

Since the method performs parallel compression, operat-
ing on a plurality ofsymbols at a time. the method preferably
accounts for symbol matches comprised entirely within a
given plurality of symbols. referred to as the “special case”.
Here presume that the plurality of symbols includes a first
symbol. a last symbol, and one or more middle symbols.
Step 410 of detemtining match information includes detect-
ing ifat least one contiguous match occurs with one or more
respective contiguous middle symbols, and the one or more
respective contiguous middle symbols are not involved in a
match with either the symbol before or after the respective
contiguous middle symbols. If this condition is detected,
then the method selects the one or more largest non-
overlapping contiguous matches involving the middle sy1n—
bols. In this instance, step 412 includes outputting corn-
pressed data lbr each of the selected matches involving the
middle symbols.

FIG. 8 Detailed I"lowchar1 of the Parallel Compression
Algorithm

FIG. 8 is a r11ore detailed flowchart diamn illustrating
operation of the parallel compression algorithm in the pre-
ferred embodiment. Steps which are similar or identical to
steps in FIG. 7 have the sante reference numerals for
convenience.

In the flowchart of FIG. 8. it is presumed that the method
maintains a history table comprising entries, wherein each
entry comprises one symbol. The history table is preferably
a sliding window which stores the last it symbols ofthe data
stream. It is also presumed that the method maintains a
current count of prior matches which occurred when previ-
ous symbols were compared with entries in the history table.
A count is maintained for each entry in the history table. As
noted above, the maintenance of the history table and the
current cotnits are performed throughout the algorithm,
preferably starting when the first plurality of symbols are
received for compression.

In step 406 the method receives uncompressed input data.
wherein the uncompressed data colnprises a plurality (of
group) of symbols. Thus the parallel compression algorithm
operates on a plurality of symbols at a time. This is diflerent
than conventional prior art algorithms, which operate in a
serial mattner on only one symbol at a time. The plurality of
symbols comprises 2 or lnore symbols, preferably 4 sym-
bols. As noted above, the parallel compression algorithm can
operate on any number of symbols at a time. The input data
may be the first group of symbols front a data stream or a
group of symbols from the middle or end of the data stream.

Itt step 408 the method compares the plurality of symbols
with each entry in the history table in a parallel fashion. This
comparison produces compare results. Each entry in the
history table preferably compares with each of the plurality
of symbols concurrently. i.e., in a parallel fashion_. for
improved speed.

In step 422 the method determines zero or more matches
of the plurality of symbols with each entry in the history
table. In other words, in step 422 the method determines. for
each entry. whether the entry matched any of the plurality of
symbols. This detemtirtation is based on the contpare results.

47

48

US 7,190,284 B1

23

If no matches are detected for the plurality of symbols in
step 422, then in step 432 the method determines if any
previous tnatches existed. In other words. step 432 deter-
mines if one or more ending symbols from the prior group
of symbols matched entries in the history table, and com-
pressed information was not yet output for these symbols
since the method was waiting for the new plurality of
symbols to possibly determine a longer contiguous match. If
one or more previous 111atcl1es existed as determined in step
432. then in step 434 the method outputs the previous
compressed data information. In this case. since the prior
matches ti'om the prior group of symbols are not contiguous
with any symbols in the current group, the previous com-
pressed data information is output. Alter step 434. operation
proceeds to step 436.

If no previous matches existed as determined in step 432,
or after step 434, then in step 436 the method outputs each
symbol of" the plurality of" symbols as uncompressed sytn—
bols. Since eacl1 of tlie plurality of symbols does not match
any entry in the history table, then each of the plurality of
symbols are output in an uncompressed format. After step
436. in step 438 all counters are reset to 0. In step 472 the
uncompressed symbols are added to the history window. and
operation returns to step 406 to receive more input data. i.e.,
more input symbols.

If one or tnore matches are detected for the plurality of
symbols in step 422. then in step 442 the method determines
ifall of the plurality o I’ symbols are comprised in one match.
lfso, then in step 444 the method increases the count for the
respective entry by the number of matching symbols, e.g., 4
symbols. In step 474 the uncompressed symbols are added
to the history window, and operation returns to step 406 to
receive more input data. i.e., tnore input symbols. In this
case, the method defers providing any output information in
order to wait and determine if" any symbols in the next group
contiguously match with the current matching symbols.

Ifall of the plurality of" symbols are not comprised in one
match as determined in step 442, then i11 step 452 the method
determines if any previous matches existed. The detem1ina-

IS

20

25

30

35

tion in step 452 is similar to the detennination in step 432. 40
and involves determining if" one or more ending symbols
from the prior group of symbols matched entries in the
history table, and compressed information was not yet
output for these symbols since the method was waiting for
the new plurality of symbols to possibly determine a longer 45
contiguous match.

If one or more previous matches existed as determined in
step 452, then in step 454 the method selects the laigest
contiguous match including the previous match. In step 456
the method outputs compressed data infonnation regarding
the largest contiguous match. This compressed data infor-
mation will include previous compressed data infomtation.
since it at least partly involves a previous match from the
previous group of symbols. If the first symbol in the current
plurality of" symbols is not a contiguous match with the
previous match, then the compressed data information will
comprise only the previous compressed data infomtation.
After step 456, operation proceeds to step 462.

Steps 462-470 are performed for each input symbol in a
parallel fashion. 111 other words. steps 462-470 are per-
formed concurrently for each input symbol. Steps 462 470
are shown in a serial fomiat for ease of illustration.

111 step 462 the method determines if the respective
symbol is included in any match. If not, then in step 464 the
method outputs the uncompressed symbol. In this case, the
respective symbol does not tnatch any entry in the history
table. and thus the symbol is output uncompressed.

50

55

60

65

24

If the respective symbol is included in a match as deter-
mined in step 462, then in step 466 the method determines
if‘ tl1e match includes the last symbol. Ifnot, then in step 468
the method outputs compressed data information for the
match. It is noted that this may involve a “special case”
involving a match comprising only one or more middle
symbols.

If the match does include the last symbol as determined in
step 466, then in step 470 the method resets counters to the
maximum of the symbol count in the match. I11 this case,
compressed information is not outpttt for these symbols
since the method waits for the new plurality of symbols to
possibly determine a longer contiguous match.

Once steps 462 470 are performed for each input symbol
in parallel, then in step 472 the uncompressed symbols are
added to the history window. Operation then retttms to step
406 to receive more input data, i.e., a new plurality or group
of input symbols. If no more input data is available or is
received, then in step 480 the method flushes the remaining
previous matches, i.e., provides compressed information for
any remaining previous matches.

The method of FIG. 8 also accounts for matches within

the middle symbols as described above.

FIGS. 9 and 10—Operation of" the Parallel Compression
Algorithm

FIGS. 9 a11d 10 are hardware diagrams illustrating opera-
tion ofthe parallel compression algorithm. As with the prior
art I..?'. serial algorithm, each entry of the history table
contains a symbol (byte) ofdata. which is compared with the
input stream of data 610. The input stream 610 comprises
l')ata0, Datal, l)ata2 and l)ata3. l"l('"r. 9 illustrates an entry of
the history table, referred to as entry I) 602. As shown entry
D 602 is compared with each symbol of the input stream
610. FIG. 9 illustrates Entry D 602 of" the parallel imple-
mentation, and its inputs and outputs. Comparators 608
compare each data byte entry with the 4 bytes from the input
stream 610, and generate 4 compare signals (labeled D0
through D3 for entry D). Compare signal D0 is used in entry
D. The cotnpare signal D1 will be used by the next entry E
in the history table. compare signal D2 will be used by entry
I", and compare signal D3 will be used by entry G. Accord-
ingly, entry [) uses compare signal 3 frotn entry A, 2 from
compare signal entry B and code 1 from entry C. These can
be seen as inputs to the results calculation block 606 in FIG.
9. The results of this compare are held in a counter 604 that
is part of the entry logic. The counter values are sent to the
compressed stream selection logic 6] 2i’6l4i"616 ([5 {C}. 10) to
determine if‘ the input data is being compressed or not. This
information is forwarded to the output generation logic 618
which sends either the uncompressed data to the output, or
the compressed stream data.

The generation of the Output Mask and Output count
from the results calculation block 606, along with the Entry
Counter update value, is described in the table of FIG. 11.
The New (7ourtter Value is calculated by counting the
number of matches that occur begimiing with A3 a11d
continuing to D0. For example, anA3 and B2 match without
a C 1 match sets the counter to 2. The special case ofall four
compares matching adds 4 to the present counter value.

Generation of the counter output is similar, comprising
the Saved counter (counter value prior to the setting of the
new counter value) plus the count of matches starting with
D0 and continuing to A3. The output mask is generated by
inverting the 4- match signals and adding a 5"’ signal which
is l for all cases except for a special case of a C1 and I32
match without a D0 or at1A3 match. This special case allows

48

49

US 7,190,284 B1

25

tl1e compression ofthe two bytes centered in tl1e input word.
The Reset Value will be generated by the selection logic 612
from the mask value. The reset value is included in this
disclosure as indicated in the table of FIG. 11 for ease of

description only.

Compressed Stream Selection Logic

FIG. ll) shows a block diagram of the selection logic
612/614E616 and the otttpttt stream generation logic 618.
The compressed stream selection logic 612.r'614f616 collects
the output counters and the output masks from each of the
entries from the results calculation block 606. and generates
indices and cotmts for the output stream generator 618.
along with the Reset Value which is sei1t back to each entry.
The indices point to the entries that generated the selected
counts. The t11ain function of the Selection Logic 612t‘6l4.r‘
616 is to find the largest blocks to be compressed out of the
input stream, i.e.. the largest contiguous match. This is
accotnplished by finding the largest output count from any
entry. Because of the parallel con1pression_. i.e._. because a
plurality of symbols are operated on in parallel. there could
be multiple compressed blocks that need to be sent to the
output. Because of this, in the 4 symbol parallel embodi-
ment. two counts and three indices are provided to the output
logic 618. These are referred to as the Previous Count and
Index, the Max Count and Index. and the L-Z12 index.

Selecting the largest count with a Mask of 11111 gener-
ates the Previous Count and Index. This indicates a com-

pressed block that ended with the first data input of this cycle
(i.e. the first data input or first symbol could not be com-
pressed with this block). The Index is simply the entry
number that contained the selected cottrlt. Selecting the
largest count with a mask that is not lllll generates the
Max Count and Index. This indicates a compressed block
that includes one or more of the 4 symbols received on this
cycle. The mask from this entry is also forwarded to the
output generator 618. The I.J?.'.l2 index points to any block
that returned a mask of 01 l I 1, which is the “special case”.
The special case includes a contiguous match of one or more
middle symbols as described above. A combined compress
mask block 616 generates a combined compress mask
comprising a logical AND of all of the masks. and forwards
this to the Output Generator 618.

Finally, the selected Max Mask and the Reset Value
column in the table of FIG. 11 are used in generating a Reset
Value. This reset value is distributed back to all entries. and
the entries will reset their counters to the rninimum of this

value. or their present value.

FIG. 12—Output Stream Generator Flowchart

The output stream generator 618 logic (FIG. 10) generates
the output stream according to the Ilowchart shown in FIG.
12. The term “CCM” in this flowchart refers to the Com-

bined Compress Mask, and CCM(0) is the least significant
bit as used in the table of FIG. 11. The output generator 618
sends ottt either uncompressed data. which includes the
proper [lags to indicate that it is not compressed. or a
compressed block which includes a flag to indicate this is a
compressed block. along with an encoded count and index
that is used by the decompression logic to regenerate the
original input.

As shown. in step 721 the method determines if previous
count equals zero. If no, then the method sends out the
compressed block in step 723 and adjusts the max count to
4 or less in step 725. Operation then advances to step 727.
If previous count is determined to equal zero in step 721.
then operation proceeds directly to step 727.

IU

15

20

25

30

40

50

60

65

26

In step 727 the method determines ifMax ("Int equals Zero.
If not. then the method detemtines in step 729 if Max Mask
equals 10000. If not, then the method sends out the com-
pressed block in step 731. Operation then advances to step
735. If Max (int is detennined to equal zero in step 727 or
if Max Mask is detennined to equal l(l'I)I)0 in step 729, then
operation proceeds directly to step 735.

In step 735 the method determines if CCM (3) equals
zero. Ifnot. then the method sends out data zero in step 733.
Operation then advances to step 737. If CCM (3) is deter-
mined to equal zero in step 735. then operation proceeds
directly to step 737.

In step 737 the method determines if CCM (4_.2.l) cqttzlls
01 I. If not, then in step 739 the method detennines if(7CM

(2) equals 1. If not. then in step 741 the method sends out
data zero, and operation proceeds to step 745. If CCM (2) is
determined to equal 1 in step 739, then operation proceeds
directly to step 745. In step 745 the method detennines if
CCM (1) equals 1. lfnot, then in step 747 the method sends
out data zero. Operation then proceeds to step 749. II‘ CCM
(1) is determined to equal 1 in step 745. then operation
proceeds directly to step 749.

If CCM (4,2,l) is determined to equal 011 in step 737,
then in step 743, the method sends an 1.212 compressed
block. Operation then proceeds to step 749.

In step 749 the method determines if(_'CM (0) equals 1.
If not. then the method sends out data zero in step 751.
Operation then completes. IfCCM (0) is determined to equal
1 in step 749, then operation completes.

ll‘ single byte compression is being performed by this
logic, i.e., if individual symbols are being compressed,
additional i11dices for each of the byte matches should be
generated by the Selection Logic to allow the Output Gen-
erator to compress these. Otherwise, the output generation
logic should also handle the cases where outputs of a
compressed stream result in a single byte non-compressed
output and adjust the flags accordingly. Previous Data3 may
also be required by the output generator 618 in the case that
the previous match is a count of one. Preferably, one method
ofhandling single byte matches would be to adjust the table
of HG. 11 to not allow generation of single byte compare
masks because single byte compares normally force the
compressed stream to increase in size. For example. in the
l0xx rows, if the saved count is 0. count out should be 0
along with a mask of llxx to prevent the generation of a
compressed block for the IN) single byte match.

I-'lG. 13- Parallel Algorithm lrlxample

FIG. 13 illustrates a parallel algorithm example. Assume
a window (history table length) of 16 entries, that has been
initialized to the following values: Entry 0 F0, Entry
1 Fl . . . Entry 15' FF. Also assume that all of the entry
counters are 0. The below sequence shows state changes for
the 4 indicated inputs.

1n state 0. the input data, ill the order received, is l"'9, I38,
1'7, (_‘0. The input data is shown in the arrival order front
right to left in FIG. 13, i.e._. the input data D3:D0 C0_.F7.
F8_.F9. In state 0, the input finds a match of the first 3
symbols in entry 9. This results in those three symbols being
replaced in the output stream by compressed data indicating
a count of 3 and an index of 9. The output mask value “18”
prevents these uncompressed symbols from being included
hi the output stream, since the compressed data is being
output to represent these symbols. Also in state 0. the symbol
C5 is determined to not match any entry in the history table.

49

50

US ?,190,284 B1

27

Thus the symbol (T5 is provided in tlie output stream in
uncompressed torm. Thus the output in state 0, from right to
left. is: C0, (9,3).

In state 1, the input data, in the order received, is B5, F2,
F]. I‘'(). The symbol B5 does not match any entry in the
history table. Thus the symbol 135 is provided in tl1e output
stream in uncompressed form. .Also in state 1 three input
symbols match 3 symbols in entry 7". Note tl1at the matches
are in previous entries, but tl1e results calculation for this
match occurs in entry 7. In other words, the actual matching
entries are entries 6, 5, and 4. However, this match is
detected by entry 7. since entry 7 compares the 4 input
symbols with entries 7, 6, 5, and 4. Compressed data is not
generated for this match i11 state I because the entry does not
know if the match will continue with the next set of input
symbols, and thus the output count is 0. The mask value for
entry 7 prevents the matching data front being included in
the output stream. Thus the output in state] is BS. The count
value for entry 7 is updated to 3, as shown in state 2. to
indicate the 3 matches in state 1.

In state 2, the input data, m the order received, is F9, F8,
F7. B5. The matching in entry 7" continues for 3 more
symbols, and then ends. Thus entry 7 outputs a count of 6
and a mask [or the new matching symbols. In addition, entry
6 matches with the symbol 135.

Thus entry 6 updates its count to 1 in state 3. However,
since symbol B5 is the last symbol in this group of input
symbols, the entry does not know ifthe match will continue
with the next set of input sytnbols. Tl1us for entry 6 the
output count is 0 and the mask value will prevent that
symbol from being output. Thus the output in state 2 is (7,6)

111 state 3, no further contiguous matches exist for the
symbol B5 from state 2. Thus, for entry 6, the output count
is I from entry 6 for the 135 input after stage 2. Also, no
match is detected for input symbol E2. and thus E2 is output
as an uncompressed symbol. In state 3 a match is detected
with respect to the middle symbols C0 and B5. This match
comprising solely middle symbols is detected by e11try 9,
and thus the ()1 " Mask is output from entry 9. This mask is
the special case mask that indicates the two symbols cen-
tered in the input (BSCO in this example) can be compressed
out. The actual compressed output data or block will include
a flag, a cotmt of2 and the index 9. Thus the output from
state 3, from right to left, is (9,2), IE2, (6,1). In an embodi-
ment where individual symbols are not compressed, the
output is (9,2), E2, B5, as shown in the alternate output box.

The final state in this example. state 4, has a 1 ill the count
for entry 7 as a result of a match of F3 with entry 4 in state
3. The mask from this match prevented the sending ofthe F3
to the output stream in state 3. If this were the end of the
input stream, the window is flushed, resulting in the single
symbol compression block for this match. The output would
show a match of l at index 7. Thus, assuming that the input
in state 3 is the final data received, then the final output for
the stream is (7,1). .Alternately, the single symbol match
could be sent uncompressed as symbol l"3, as shown in the
alternate output box.

Compare 1. .ogic
The compare logic 612 and 614 (FIG. 10) in stage three,

which is used to find the largest count may be specially
designed to be able to complete in one cycle. The counts are
especially critical because stage 2 must first choose to send
0. count. count+1, count+2 or count+3. The count from all

entries are then compared to find the largest.
.As shown in FIG. 14, straightforward greater—than com-

pare of 2 multi-bit numbers requires 3 levels plus a selector.
lf the number is 6 bits, this compare will require around 30

IU

15

20

25

30

40

50

60

28

gates, and the selector will require an additional 18 for the
selector for 48 gates per 2-way compare. A stacked compare
(64 to 32, 32 to 16, 16 to 8. 8 to 4, 4 to 2, 2 to]) would
require 655 levels of logic, and 48*63-3 Kgates.

With standard 0.25 um process technology the time
through the compare should be about 1.25 nS (0.25 ns per
XOR. 0.5 ns 6wayAnda’Or). The selector would take an
additional 0.3 n8 for 1.55 nS per compare. This stacked
colnpare would then require 1.55 nS“‘6=9.3 1125. This doesn't
include the selection and distribution of these counts from

the source. For operation above 100 M11’/. clocking the
timing is too limiting for proper operation.

In order to increase the speed, a novel 4 way parallel
colnpare can be used. as shown in FIG. 15. This embodiment
only requires 3 levels ofcompares (64 to 16, 16 to 4. 4 to I).
however, more two—way compares are required (6 per 4 way
compare) and an additional And."Or is required before the
selector. This design would then require 126 compares and
21 selectors for 126“‘30+2l*33-4.5 Kgates. But the result-
ing delay would be {l.55+0.3 ns)*3 I..evels=5.55 nS. This
timing allows for high speed parallel compression of the
input data stream. The table of FIG. 16 describes the Select
(ieneration I..ogic.

Lossy Compression Algorithm
As indicated in US patent disclosure entitled “Memory

Controller Including [Embedded Data Compression a11d
Decompression lingines”, filed Jun. 5, 1995, Ser. No.
08M-63,106, whose inventor is Thomas A. Dye, it is also
desirable to implement some of the compression formats as
“lossy”. The term “l.ossy" implies a compression.r'decom-
pression operation where data is altered and is represented
by an approximation of the original data after decompres-
sion.

Referring to FIG. 21, some compression conversion for-
mats preferably use lossy compression while others use
lossless compression. In the preferred embodiment, texture
302, image data (Compressed block 380). video data (Com-
pressed Block 380), and display data 300, and in some cases
“Z" or depth data, are compressed with the lossy algorithm.
Alternate embodiments include any of these formats or
additional formats to be compressed with the lossless coin-
pression algorithm. Control data, programs, VDRL, or 3D
parameter data, or any other data required to be deco1n—
pressed without loss from the original content is compressed
using the lossless parallel compression process according to
the present invention.

FIG. 17 Lossy Compression and Decompression lingines
FIG. 17 illustrates the preferred embodiment of the lossy

compression engine 575 and the lossy decompression engine
555. These two engines preferably are located within the
parallel compression and decompression Lttlil 251.

The lossy compression engine 575 and the lossy decom-
pression engine 555 may be separate blocks or integrated as

_ a single unit. The engines 575 and 555 may be implemented
in any of various manners, including discrete logic, a
programmable CPU, USP, or microcontroller, or reconfig-
urable logic such as at1 I'll-‘GA, among others. Preferably. the
lossy compression engine 575 performs the lossy compres-
sion algorithm for image, texture, video. and depth data.

Data in either RG13 or YUV color fomlat is presented to
the lossy compression engine 575 by the switch logic 261 of
the memory controller 220. If such data is in the RGB
format, a source converter 762 is used to encode the RGB to

_ a luminance (Y) value (encoded to YRB). This conversion
process operation is standard for those who are knowledge-
able in the art. The reason for this conversion is to improve

50

51

US ?,l90,284 B1

29

color replication across the compression a11d subsequent
decompression procedure. Note that the YUV data is not
convened by block 762. but rather is treated by the com-
pression algorithm the same as the YRB data previously
conver1ed by the source converter 762.

The data is selected by mux 764 for storage as normal data
by SRAM store 770 and for min & max calculation by 768
and 766 respectively as described further. The data that
resides in SRAM store Till} is selected for values according
to the tables of I’ [GS. 18 and 19. The YRBIYUV values are

interpolated by select switch 772 t1i1der the control signals
generated by control logic located within the Max Y 766 and
Min Y 768 units. The lossy data encoder 774 performs the
control bit insertion into the selected values that are output
by the YRI3 select switch 772. I..ossy compressed data from
the lossy compression Engine 575 is output to the memory
interface logic 221 for storage in the main system memory
110.

Likewise the lossy decompression engine 555 receives the
compressed data from the memory interface logic 221 to
perform the lossy decompression operation. Data is first
processed by the compressed stream separator 776 which
strips off the header for process control infonnation and
sends appropriate signals to the lossy data decoder 778 and
the pixel replicate logic 780. The lossy data decoder 778
controls the replication process performed in the pixel
replicate unit 780. Data Min and Max Y values with the
associated Red and Blue (or U and V) can be positioned back
preferably into a 4x4 array of output pixels. The final step
performed by the Y to G converter 782 is to convert the
YRBIYUV data format back to the original RGB format as
indicated by the header that accompanied the block of
compressed data. For decompression of YUV data, the Y to
G conversion process is skipped and the data is output
directly from the Y to G converter 782. In alternate embodi-
ments other color source formats can be used, as the
compression method operates with a luminance value to
determine the minimum and maximum intensity within the
group or block of data under compression.

In the preferred embodiment the lossy compression algo-
rithm starts with a 4x4 block ofpixels in RGB format and
compresses them to various size blocks depending on the
attributes of that 4x4 block. Alternate elnbodiinents may use
other initial source data block sizes with simple extension to
the following process. Also in the preferred embodiment
each block could be encoded to a diiferent size, and its size

is encoded with the data so the decompression engine can
ftmcticn properly. Altematively. some applications such as
consumer appliances and embedded DRAM require a
“fixed” compression ratio in order to accommodate a fixed
size memory environment. Fixed compression ratio allows
the software to allocate memory in a known size and also
compensates for overflow of data past the physical limit of
the memory size. In this alternate embodiment. where a
fixed compression ratio is required. the lossy algorithm is
easily changed to eliminate special cases, which in the
preferred embodiment allow a better compression ratio.

Also. in ai1 alternate embodiment the CPU 102 may
perform the compression andfor decompression in software
according to the present invention. In another embodiment.
the decompression process can be perfomied by logic while
the compression ca11 be perfomied by software executing on
the CPU 102.

Data input may originate in the YUV format (typically
video) or the RGB format (typically graphics) and may also
be combined with alpha for transparency effect. In the
preferred embodiment, if the data to be Oompressed is in

10

15

20

25

30

40

50

60

51

30

Red, Green and Blue formal, data is converted to the proper
data format ofY (luminance). Red and Blue or is left in YUV

format ifthat is the original source format. During the source
read process the data format is converted to the preferred
format and a number of compare steps are performed on
each block as indicated. The Y values of the block of 4x4

pixels during load are compared to the previous values for
the maximum and minimum Y values of two pixels. Once
found the associated R and G values are stored correspond-
ing to such minimum and maximum Y values. Thus the
maximtlm Y and 1nini1nu1n Y are detennined for each block.

As the data for each pixel is read the maximum and
minimtun Y are located. the associated R, l3 and Alpha
values for the minimum and maximum Y pixels are also
stored 770.

For compression operation without alpha components,
FIG. 18 indicates the algorithm used to output a block.
Likewise, for the lossy compression operation with alpha,
values in FIG. 19 are used. Now with reference to the tables

of FIGS.]8 and 19. P bits accompany the compressed data
such that during the decompression stage output pixel loca-
tions can be determined. If 16 P bits are required, then each
pixel is compared with the two colors found in the block. and
a 0 indicates that pixel is the Min color (Y,,,,-,,, R,,,,-,,. l3,_,,.,,,

A,,,,.,,) or a 1 indicates that pixel is the Max color. When
greater than two colors or alphas are present as determined
by minimum 768 and maximum 766 Y logic, 32 bits are
used. When 32 P bits are used the compression unit calcu-
lates intemlediate Y values at '/6"’, V2, and 5/5”’ between the
Max and Min Y values. The Y value of each pixel is then
compared with these values. and if less than or equal to the

1x‘5"’ value, 00 is used for this pixel. 1f greater than the '/ts”
value, but less than or equal to the ‘/2 value, a 01 is used for

this pixel. Likewise, for 10 (between 1./2 value and 5x’5"" value)
and 1 l (greater than 5/b"“ value). The decompression engine
will calculate the '/’Ia""l a11d 223” values between Y,,m_ and
Y,,,,-,,, and if the value for the pixel is 00. Y,,,,—,, will be used.
If 01, the '/§"“' value is used, 10 uses the 31'3"’ value, and 11
uses the Ym, value. During the decompression process, the
Y, R, B color format is reconverted into the original data
format R, G, l}, or Y, U. V. For application or system
requirements where a fixed compression ratio is required.
the default algorithm can use the last entries referenced in
FIGS. 18 and 19 for each 16 and 32 bit data input fomiats.
Alternate embodiments could use a larger or fewer bits for
each pixel’s P bits, or P bits based on individual colors for
the pixel. In addition, alternate embodiments and variations

of the lossy compression may yield less compression but
higher image quality and fixed compression ratios.

l"l('"r. 20

Due to the nature of the compression requirements the
preferred embodiment introduces a new method to achieve
high quality lixed or variable image and video compression
ratios using a combination of both the lossy and lossless
engines. The [MC 140 compresses multiple data types and
formats as discussed previously in this disclosure. When
image data is compressed with only a lossy algorithm, image
data with high detail can be blurred or washed out. Prior art
performs lossy compression on image data with discrete
cosine transfomis by conversion into the frequency domain.
These practices are expensive due to the high bandwidth
requirements of the real time trans fiirmation liar video and
graphics froi11 the time domain to the frequency domain.

Combined Compression

52

US ?,l90,284 B1

31

In order to solve these issues, a combination ofboth lossy
and lossless engines 575 and 570 rumiing in parallel is
performed, and outputs from one of the engines is selected
based on a criteria.

As shown in FIG. 20, the original source data [20, e.g._.
from disk. subsystem, or CPU 102, is transmitted into Lhe
input switch 261 across the input bus, where the bus may be
an embedded local data or CPU bus or be a proprietary
internal design bus. The input switch 261 performs the
determination ofaddress and qualification for block size and
compression operation. The data then is sent to both the
parallel lossless compression engine 570 and the lossy
compression engine 575, which performs the proper com-
pression before storing into the SRAM store memory 581
and 582, respectively.

The source data is thus read into both the parallel lossless
compression engine 570 and the lossy compression engine
575 in parallel. Both engines compress data of equivalent
input block sizes, while compressed output sizes from each
engine may vary.

In the preferred embodiment of FIG. 20, an error term
determines the selection of either the lossy or the lossless
compression results for insertion into the compressed
stream. The lossy compression engine 575 may generate the
error tenn during the compression of the incoming data
stream. More specifically, an array compare unit 584 gen-
erates the error signal in response to output from the lossy
compression engine 575. The error signal is preferably
generated based on dilference between the Min Y and Max
Y values. Alternatively. during the lossy compression pro-
cess, the original data is subtracted from the encoded or
lossy compressed data to produce the error term. This error
then determines if the block to insert in the compressed
stream is either lossy compressed or lossless compressed
form. The error signal is provided to an output format switch
or multiplexer 586, which selects the compressed data from
either the lossless engine 570 or the lossy engine 575. As
shown, the outputs of the lossless engine 570 and the lossy
engine 575 are temporarily stored in SRAM stores 581 and
582 prior to being provided to the output format switch 586.
If the error signal is below a certain threshold, indicating a
low error in the compression output of the lossy compres-
sion engine 575. then the output of the lossy compression
engine 575 is used. If the error signal is above the threshold.
then the error in the compressed output from the lossy
engine is deemed unacceptably high, and the output from the
lossless engine 570 is selected.

Thus, for areas that show a high error due to the magni-
tude of the difference in luminance, the lossless parallel
compression data is used. For data that shows a minimal
threshold of error, the lossy compressed data is used. The
advantage of this technique is that blocks of image to be
compressed with noise will compress better with the lossy
engine. Likewise, blocks that have repetitive detail, high
frequency imagery or detailed repetitive data will compress
more eifectively with the lossless parallel compression.

During the write of compressed blocks, the header
includes a tag hit used as an indication of the type of
compression used. This tag bit is used during decompression
to apply the proper decompression procedure to the data.

The error term selection can also he a dynamic function
to assure a fixed compression ratio. In this embodiment, ifa
fixed compression ratio is desired, the dynamic threshold
can be adjusted to vary the magnitude of the error deemed
acceptable for lossy compression. A running tally of the
current compression ratio is used to dynamically adjust‘ the
threshold value, which determines where the lossless com-

10

15

20

25

30

40

50

60

32

pression blocks are used instead of Lhe lossy compressed
blocks. This operates to degrade the image, if necessary, by
selection of additional lossy compression blocks in lieu of
lossless compression blocks. If the run rate of the current
block is at the required compression ratio, then the threshold
is set to the default value. If the current run rate is over-

allocated, the error threshold value will increase such that
output selection is from the lossy compression engine 575.
Thus, a dynamic compression error threshold determines
how to adjust the ratio of lossy to lossless data in order to
achieve a guaranteed compression ratio.

During decompression, preferably the output format
switch 588 first strips the header for determination of
decompression engine output selection. In one embodiment,
the compressed data is decompressed in parallel by both
engines 555 and 550. In this embodiment, during decom-
pression, the header of each block determines, preferably
afier completion of the decompression operation, whether
the destination pixel is selected from the lossy decompres-
sion engine 555 or tile lossless decompression engine 550.
The output format switch 588 performs the selection of
decompression engine output.

In another embodiment, only the selected decompression
engine. either 555 or 550, is applied to the data. In this
embodiment, the compressed data is elliciently allocated to
the proper decompression engine, depending on the 111ode of
compression as determined by the header.

I-'I('t. 21 Compression Formats
As shown in FIG. 21, the preferred embodiment of the

present invention allows faster memory access time using a
plurality of compressed storage formats. The system may he
designed to optimize the compression and decompression
ratios based on l.l1e type of system data. Data that is used for
programs or used to control the processing of other data is
compressed and stored in a lossless forrnat (lossless com-
pression]. Likewise. data that can be compressed with loss
during recovery or de-compression is compressed in a lossy
format. Thus, each format has a specific address and
memory orientation for best decompression rate and storage
size. In addition, each specific compression and decompres-
sion lhrmat scales in bandwidth performance based on the
amount of cache memory used to store uncompressed
memory during the compression and decompression pro-cess.

Referring to FIG. 21, in addition to the lossless format and
lossy formats. the IMC 140 preferably contains further
multiple compression and decompression formats for elli-
ciency a11d optimization of bandwidth within the memory
controller device. Data Source blocks 310, 320. 330, 340.
and 350 represent the compression fomiat ofdata that is read
from system memory 1] I}, written from the CPU 102, read
from the non-volatile melnory 120. read from t.he U0 system
controller 116, or read trom the internal graphics blocks
within the IMC 140 device, or alternatively as in prior art
l*'I("r. 1, read from the PCI orAGI-’ buses I07 to the IM(.' 140.
Destination blocks 360, 37{|_. 380, 390, 396, 300 represent
the compression format of data that is written to system
memory 110, or read by the CPU 102 (transferred to the
CPU 102 in response to a CPU read), written to the
non-volatile memory 120. written to the IEO system control-
ler 116, written to internal graphics blocks within the IMC
140 device, or alternatively as in prior art FIG. 1, written to
the PCI or AGP buses 107 from the IMC 140. Therefore,
blocks 310. 320, 330. 340, 350 are considered the data
source formats where data llows into or is generated within
the IMC. Blocks 360, 370, 380, 390. 396, and 300 are

52

53

US ?,l90,284 B1

33
destination fomtats where data flows out of the lM(.'. [t is
noted that destination formats become source formats on

subsequent accesses by the IMC 140. Thus a compression
format may be referred to as source formatidestination
format.

Blocks 302, 304, 306, 308 and 309 represent the data type
of the data. These data types include texture data 302.
31)-l.)l.. 304, 2|)-Di, 306. UV-l.)l., 308 and \/DR] . 309. These

data types are discussed briefly below.

VDRL. Indirect Compressed l.ines

One form of data in the preferred embodiment is video
display refresh list (VDRL) data as described in U.S. Pat.
No. 5,838,334, referenced above. VDRL data comprises
commands andfor data for referencing pixelfvideo data on a
span line basis, typically frclm various non-contiguous
memory areas, for refresh of the display. VDRL compressed
data is expected to be a long stream ofstart and stop pointers
including various slopes and integer data. Such data must be
compressed with the lossless compression and decompres-
sion process according to the present invention. The follow-
ing Vl)Rl.. context register fields in the graphics engine can
be programmed to cause screen data to be written back to
system memory as lossless compressed screen lines 390(or
sub-lines) dtrring VDRI, exectltion:

DestEn

lJest'l'ype. = {I.inca.r, XY. or I,iI1eColIIprL-s.sud}
pDest'"opLinePLr if Pointer to compressed pointer list
pDest'"opLine Pointer to screen data
IJt:stMu(ie = {|)r:1w&:Refrcsl1 I l)mw()I1ly}DestPixFIut
Destl-’itelI

When enabled, each screen line (or span line) that is
rendered or displayed (based on processing one or more
VDRL segments) is compressed independently (for each
screen line, a new compression stream is started and closed)
and written back to memory at the ctu'rent byte o ffset into
pDestTopLine. In addition, the graphics engine writes back
a pointer to the compressed screen line at the current pointer
offset into pDestTopLinePtr. The current offsets into pDest—
Toplvine and pl)est'l"opl..ine[-’tr are managed by the graphics
engine. The compressed screen data 300 and corresponding
pointer list can be referenced as a compressed window by a
subsequent VDRL 309. Preferably the workspace associated
with the compressed window includes the following fields
used by the graphics engine to indirectly access the coin-
pressed screen data:

pTopLine

pTopLinePtr

SrcType- ' { LinearlXY|LineC‘ompressed}
PixFmt

Pitch

Since screen lines are compressed on a lir1e 390 (or
sub—line) basis, the subsequent VDRL 309 only has to
reference those lines that are needed for the current screen

being refreshed.
Note: 3])-l.)[.. 304 and DV"-l')l. 308 can also render indirect

compressed screen lines 396 in a similar manner. However,
the resulting indirect compressed screen lines are to be
consumed by subsequent VDRL 309.

Note: DV-l)I.. 308 is fundamentally based on processing
and drawing blocks. For implementations that do not have

10

15

20

25

30

40

50

60

34

enough storage blocks to cover the width ofthe screen being
drawn, screen lines 390, 300 are compressed back to
memory on a sub—line basis.

Static Data

For each independent triangle. the 3D-triangle setup
engine generates two lossless compressed static data blocks
using standard linear compression 360: an execution static
data block, and a graphics engine static data block. For a
given 3i.) window or object, all static data is written starting
at a particular base address {pTopStatic). liach static data
block is compressed independently (for each static data
block. a new compression stream is started and closed) and
written back to memory at the current compressed block
oifset ir1to pTopStatic. in addition, the 3D triangle setup
engine writes back a pointer to the compressed static data
block (pStatic) in the appropriate static pointer line bucket.

The format ofpStatic comprises the following fields: static
data block pointer ofiset, static format (indicating whether
the data is compressed or not), the number of compressed
blocks associated with the execution static data block. and

the number of compressed blocks associated with the graph-
ics engine static data block. Note that the number of coin-
pressed blocks for each static data block type is used to
instruct the decompression engine 550 how 111uch data to
decompress.

3D-DI,

A 3])-DI. comprises a 3-dimensional draw list for ren-
dering a 3-D image into memory, or onto the display. For
each 3D window line (or sub—line). the 3D execution engine
generates a lossless compressed stream of a 3D—DL 304.
liiach 3|)-DI, line is compressed independently for each
3l)l)[. line, a new compression stream is started and closed)

and the resulting compressed 3[)-I)I . line 390 is written hack
to memory 110. It is not necessary for consecutive lines of
3D—DL to be contiguous in memory. In addition. the 3D
execution engine of the IMC 140 may write back a 3D—DL
pointer to the compressed 3])-|.)I, line 390 at the current

pointer olfset into the 313-131.. pointer list [p3l)l)I.l-’tr). The
resulting compressed 3D—DL lines 390 and corresponding
3D—DL pointer list 304 is parsed and constnned by the 3D
graphics engine 212. The graphics engine 212 uses the
following 3|‘)-l')[. context register fields:

p3i)1)1.

p3|)l')l..Ptr

The context register fields operate to provide context infor-
mation to the [MC 140 during execution of a 31)-[)I,.

Note: Since 3D-I')I. is compressed o11 a line 390 [or
sub-line) basis, only the visible por1ion of a 3]) window
(based on feedback from VDRL window priority resolution)

. may need to be drawn.

Textures

Texture data 302 for 3D rendering is also compressed and
decompression according to the present invention. The lossy
algorithm preferably compresses images. In an alternate
embodiment, the parallel combination of lossy and lossless
algorithms can be used for improved image and texture map
quality without added time delay. Texture data 302 is typi-
cally compressed and decompressed in a block compression
format 380 of the present invention. The logical format of a
lossy (gir lossless) compressed texture table for a given scene
with 'l‘ textures, is as follows:

53

54

US ?,l90,284 B1

35

pTopTex —>
o}:-Text! —>
pLod0l3Ik0 —> 3x8 compressed texture sub-I:-locks 5
pLodUl3Ik{_Iast} -3
pI;u(i(|:IsI}B|k('|asI) —>
opTex1 ->
pI,(xiUBlk[J ->
op'1'ex['I'-—| J -3. . .

Ifl

pTopTex is the base pointer to a compressed texture table.
pTopTex is loaded into the graphics engine 212 on a per 3D
window basis. opTex is an offset into pTopTex that provides
the graphics engine 212 with a pointer to the first Com-
pressed texture sub-block (i.e.. l.()l)0. sub-block 0) associ-
ated with the targeted texture. opTex is a field located in a
group attribute data block, RenderState. Re11derState con-
tains attributes shared by groups of triangles. The group
attribute data block pointer, pI{enderState, is contained in
each 3D-DI , 304 segment. Using pTop'l'ex. opTex. and all of
the texture attributes and modifiers. one of the graphics
engine’s texture address generation engines detemiine
which critical texture sub-blocks 380 (pl .od}3lk) to prefetch.

'llte size of a texture sub-block 380 in the preferred
embodiment will be 8x8 texels. The compressed texture
sub—blocks are read into the compressed texture cache Note
that the pLodBlk pointers point to 8x8 compressed texture
sub-blocks 380.

DV—DL Video

The DV’-l)l_. format comprises a digital video draw list for
rendering digital video into memory or onto the display. The
block compression format 380 can also be used for video
and video motion estimation data. In addition_. Display data
300 is also preferably stored in compressed format accord-
ing to the present invention. The display data 300 is expected
to be sequentially accessed RG13 or YUV data in scan line
blocks typically greater than 2 K bytes. The preferred
method for compression of display data 300 is to line 40
compress 390 the entire span line preferably in the parallel
lossless format.

Video input data is also contpressed preferably iii any of
the formats. lossless. lossy. or a combination of lossy and
lossless according to the present invention. Video data is
typically and preferably compressed and decompressed in
two dimensional blocks 380 addressed in linear or XKY
format.

Each data type has a unique addressing scheme to fit the
most eflective natural data format of the incoming source
format.

For special graphics, video. and audio data types 306. 308
and 310 the data types can be associated with a respective
compression format to achieve optimal compression ratios
for the system.

Blocks 310 and 360 represent a lossless or lossy coin-
pression and decompression format of linear addressed
cotnpressed or decompressed data blocks as specified by the
CPU 102 and system software. Data block size and data
compression type are dependent on the bandwidth and cost
requirements of the application and system respectively.
Source data applied to block 3l0. if coming from the system
memory, will be decompressed and written to the destination
as normal (uncompressed) data or data which has some loss
associated with the decompression process. The input band— 6.
width of compressed data provided to block 310 is equal to
the bandwidth required by nomtal non-compressed data

15

20

25

30

50

60

J1

36

divided by the difference of the compression ratio. The
compression ratio is a function of multiple constraints.
including compression block size, data type. and data for-
mat. Further, the bandwidth ofthe uncompressed destination
data is equal to the original uncompressed source data
bandwidth. In addition, source data can be uncompressed
“normal” data that is compressed and written to the desti-
nation in one of many compression formats as indicated by
blocks 360, 380, 390, and 396.

Source data block 320 represents incoming data that has
not been altered by compression. In this case data which
represents a texture type can be written in the compressed
block format 380 for optimal use of 3D texture memory
space. Likewise, 3!)-Draw (3[)-I)l)I.) type data can be
received as source data in a11 uncompressed format 320 and
can be processed and formatted for output in either uncom-
pressed 370 or line compressed 390 destination fomiats.
Similar operation can occur when the source is already in
Compressed block fonnat 330.

Compressed line 340E390 for example may be generated
from VDRI. 309 instructions and stored in partial colit-
pressed line segments 3401390 for later usage by another
requesting agent. These compressed line segments are
addressed in standard linear addressing format.

Inter'mediate compressed line segments 3503396 are a
special case of conversion from compressed blocks 330F380
to compressed intermediate lines 3501396. Compressed
intermediate lines are used as a conversion technique
between compressed block 33013380 and the digital video
draw list (l)V’-|)l.) 308.

Display data 300 can also be compressed and is typically
compressed in a lossless format that is linear complete span
lines. During the refresh of video to the display, the display
colnpressed span lilies 300 which have not been modified by
the 3f) graphics engine 212 are decompressed for display on
the respective display device span line.

Video and Texture data 302. for example. are preferably
in uncompressed 320870 or compressed block 3301380
formats. Block formats 3301380 are typically 8><8 blocks that
ltave representation of XFY address but are referenced in
system memory as linear 64 bytes with a pitch of 8 bytes. In
the compressed block format 3301380. decompression
results in 32x32 texture blocks also addressed in XIY
format.

Instruction lists, such as VDRI. (video display refresh list)
309, DV-I)l.. (digital video draw list 308, 3].)-DI . (3-I) draw
list) 304 preferably are stored in a lossless compressed
format with linear addressing. CPU data is also preferably
stored in a lossless compressed format with Ii11ear address-
ing. These instruction lists are executable to render pixel
data into memory i11 response to geometry lists or to access
videotpixel data from memory for display on the display
device. The draw results of these also have formats as

indicated in FIG. 21. l"or example, uncompressed linear
addressed data 320 as a source may be manipulated and read
by the 3D-DI , 304 instruction list, and stored compressed in
compressed line 390 format or Uncompressed 370 data
format. Each operator indicated in FIG. 21 has a preferred
format for data transition and storage.

Data which is type 21)-Draw list 306 is received as source
data itt uncompressed 320 format or block compressed 330
format. For 2D—DL data type 306, the output data can be in
uncompressed 370 or Intermediate line compressed 396
formats.

I-‘or digital video draw lists (UV-I)[.,) 308, the source data
of the DV-DI. 308 is received in uncompressed 320 format

54

55

US ?,l90,284 B1

37

or block compressed 330 format which is output to the
destination in intermediate line compressed 396 format.

Source data of the VDRL data type is received in either
uncompressed 320, Compressed line 340, or intermediate
compressed line 350 formats, and is output to the destination
address as compressed line 390 or directly to the display
device 300.

Lastly, data of the Display format type 300 is typically
normal or lossless compressed with a linear span addressing
format.

As indicated in U.S. Pat. No. 5,838,334, “workspace
areas" are located in memory to define the windows or
object types. In one embodiment, the relationship between
such workspace regions and the compression and deco1n—
pression operation of tlie present invention is as follows.
I Each “workspace” contains a data area which indicates the
compression type and quality (if lossy compression) for
reproduction of the window or object on the display. The
Application Software (API), Grapllical User Interface (GUI)
software or Operating System (OS) software can determine
the type and memory allocation requirements and proce-
dures to optimize the cost, performance and efliciency ofthe
present invention. Wfindows or objects that have been altered
from the original content or that have been resimd can be
represented with a plurality of quality levels for filial rep-
resentation on the display as indicated in the window
workspace areas of the main system memory. In addition,
3D objects or textures can contain the compression quality
attributes as well. Thus. by assignment of compression type,
address format, and quality of representation in the indi-
vidual window or object workspace area. the system can be
optimized for cost and performance by the elimination of
memory size and bandwidth requirements.

Data types textttre data 302. 3|)-draw lists 304. 2D-draw
lists 306, Digital video draw lists 303, and Virtual (video)
Display Refresh List 309 all represent the audio, video and
graphics media formats ofthe IMC as referenced in U.S. Pat.
No. 5,838,334.

The core compression block formats allow multiple data
types from various sources as inputs. The compression and
decompression formats attempt to compress the data into the
smallest possible storage units for highest eificiency, depen-
dent upon the data type ofthe data received. To achieve this.
the memory controller 210 understands the data types that it
may receive.

Therefore, the IMC 140 of the present invention reduces
the amount of data required to be moved within the system
by specific formats designed for CPU 102, Disk]20, system
memory llll, and video display. thus redttcing the overall
cost while improving the performance of the computer
system. According to the present invention, the CPU 102
spends much less time moving data between the various
subsystems. This frees up the CPU 102 and allows the CPU
102 greater time to work o11 the application program.

As discussed further below. data from the CPU may be
compressed and stored in linear address memory with vari-
able block sizes. This data from the CPU may be unrelated
to the graphics data, and may result from invalidation of
cache lines or least recently used pages (LRU), or requested
memory from a CPU—based application. In this embodiment
the driver requesting compression will handle the memory
allocation and directory function for both the compressed
and tmcompressed data.

Latency and lilliciency
'lhe memory Controller 220 minimizes latency of read

operations by a plurality of novel methods. [iach method is

S

10

IS

20

25

30

40

50

60

38

discussed further in reference to the preferred embodiment.
Most of the control fimctions for latency reduction are
located in the switch logic 261, and further located in the
compression switch logic 516, the decompression switch
512 and the nomial memory switch 514. I.ocality of data
addresses to compression blocks and [.3 data cache blocks
also play a major role in latency reduction. The various
latency reduction and efficiency methods include: Parallel
colnpression.—"decompression {described above): Selectable
compression modes_: Priority compression mode: Variable
compression block size; Lhe 1.3 Data Cache; a11d Compres-
sion Reordering.

FIGS. 22 and 23 Selection of CompressionJ'|)ecomprcs-
sion Mode Based on Criteria

The parallel compression and decompression unit 251 can
selectively perform a compressiolifdecoiiipression mode or
type (compression mode] based on one or more of: request-
ing agent. address range, or data type and format, again as
indicated in U.S. patent application Ser. No. 08.’463,l06.
Examples of the conipressionfdeconipression modes (com-
pression modes] include lossless compression, lossy coin-
pression. no compression, and the various compression
formats shown in FIG. 21. The compression modes may also
include varying levels of lossy compression for video!
graphical objects or windows which are displayed on the
display. Thus the IMC 140 can selectively perform lossless
compression for first data, lossy compression for second
data, and no compression for third data.

FIGS. 22 and 23 are flowcharts illustrating selective use
ofcompression and decompression schemes. The method of
FIGS. 22 and 23 is preferably performed by the memory
controller comprising the compression.I"decompression
engine. The memory controller is preferably a system
memory controller for controlling system memory, wherein
the system memory stores application code and data
executed by the (PU.

As shown. the method in step 802 first receives uncom-
pressed data. The data may be CPU application data, oper-
ating system data, graphicsr‘video data, or other types of
data. 'lhe data may originate from any of the various
requesting agents.

In step 804 the method determines a compression mode
for the data. The compression mode preferably comprises
one of lossless compression, lossy compression, or no
compression. Other compression modes include either the
lossless or lossy types above in combination with one ofthe
compression types shown in FIG. 21, e.g.. either compressed
linear. compressed block, compressed line. or I—co1npressed
line.

The compression mode is preferably determined in
response to one or more of: an address range where the data
is to be stored: a requesting agent which provides the data;
andfor a data type of the data.

Where the address range is used to determine the com-
pression mode, the method analy'/Jes the destination address
received with the data to determine the compression mode,
wherein the destination addresses indicating a storage des-
tination for the data in the memory. For example, assume a
first address range is designated with a lossless compression
format, a second address range is designated with a lossy
compression format, zmd a third address range is designated
with a no compression format. In this case, step 804 of
determining the compression mode comprises analyzing the
destination address(es) to determine if the address(es) reside
in the first address range. the second address range, or the
third address range.

55

56

US ?,l90,284 B1

39

Where the requesting agent is used to determine the
compression mode, the method determines who is the
requesting agent and then determines the compression mode
based on the requesting agent. For example, if tl1e requesting
agent is a CPU application or associated driver. then a
lossless compression should be applied. If or the requesting
agent is a videolgraphics driver. then lossy compression may
be applied.

Where tl1e data type is used to determine the compression
mode. the method examines the data type of the data and
determines the compression mode based on the data type of
the data. Using the example above, if the data comprises
application data. the compression mode is determined to be
lossless compression. If the data comprises videofgraphics
data, then the compression mode n1ay be lossy compression.
I11 the preferred embodiment, the determination of the com-
pression mode is preferably inherently based on data type of
the data. and the use of address range or requesting agent in
determining compression mode may be implicitly based on
the data type being stored in the address range or originating
from the requesting agent.

Further, the compression modes may comprise varying
levels of lossy compression for videofgrapllical objects or
windows which are displayed on the display. Thus a lossy
compression with a greater compression ratio may be
applied for objects which are in the background of the
display. whereas lossy compression with a lesser compres-
sion ratio may be applied for objects which are ill the
forcground of the display. As noted above, for graphical!
image data, in step 804 the compression mode may be
determined on a per-object basis, e.g._. based on whether the
object is in the foreground or background. or based on a11
attribute of the graphical object. For example, 2, 4. 8, or I6
varying levels of lossy compression may be applied to
graphicalfimage data. depending on attributes of the object.

In step 806 the method selectively compresses the uncom-
pressed data based on or in response to the compression
mode for the data. In step 806, the data is compressed using
a lossless compression format if the compression mode
indicates lossless compression for the data, the data is
compressed using a lossy compression format if the com-
pression mode indicates lossy compression for the data. and
the data is not compressed if the compression mode indi-
catcs no compression for the data.

In step 808 the method stores the data in the memory. In
step 808, the data is stored in the memory in a lossless
compression format if the compression mode indicates loss-
less compression for the data, the data is stored in the
memory in a lossy compression fomlat if the compression
mode indicates lossy compression for the data. and the data
is stored in the memory in a11 uncompressed format if the
compression mode indicates no compression for the data.

In the preferred embodiment, storing the data in the
memory includes storing compression mode iniomiation in
the memory with the data. The compression mode informa-
tion indicates a decompression procedure for decompression
of the compressed data. Tl1e compression mode information
is stored in a non-compressed format regardless of the
compression mode of the data.

The compression mode information is preferably embed-
ded in the data. i.e.. is not stored in a separate table or
directory. In the preferred embodiment. a header is created
which includes compression mode information indicating
the compression mode of the first data. As described below,
the header is also used to store other information. such as an
overflow indicator and overflow information. The header is

preferably located at the top of the data. ie, is stored at the

IU

15

20

25

30

40

50

60

40

beginning address. followed by the data, but may also be
located at the bottom of the data or at designated points in
the data.

In an alternate embodiment, the IMC 140 reserves space
fiir an overflow tag and overflow table entry number in
memory within the IMC 140. Thus, in this embodiment, the
IMC 140 includes a separate overflow cache, entry table and
control logic. In an alternate embodiment. the overflow
indication can be processed by the same control and trans-
lation cache logic blocks used [or a normal compression
operation.

Referring now to FIG. 23. decompression of the stored
data is shown. In step 812 the method receives a request for
the data.

In step 814 the method accesses the data from the memory
in response to the request.

In step 816 the method determines a compression mode
for the data in response to receiving the request. In the
preferred embodiment, the compression mode is comprised
in the stored data. preferably within a header comprised
within the stored data. Thus the data is first accessed in step
814 before the compression mode is determined in step 816.

In step 818 the method selectively decompresses the data.
Tl1e type or mode ofdecompression is selected based on the
compression mode for the data. In the selective decompres-
sion of step 818, the data is decompressed using lossless
decompression if the compression mode indicates lossless
compression for the data, the data is decompressed using
lossy decompression if the compression mode indicates
lossy compression for the data. and the data is not decom-
pressed if the compression mode indicates no compression
for the data.

In step 820, after decompression, the method provides the
data i11 response to the request.

Thus, to further reduce latency. certain selected data can
be storedfretrieved with nonnal operation using no com-
pression or with a selected compression mode such as
lossless or lossy. This is preferably accomplished by address
range comparison for Memory management unit UVIMU)
blocks that contain special flags for “no—compression” indi-
cation. It is assumed that for power—on configuration, these
non-compression address ranges may be set to the supervi-
sor mode code and data blocks used by the operating system.

The MMU in the memory controller 210 can determine
(e.g._. 4096 byte range] what form of compression. if any, is
used. In the preferred embodiment, this determination is
based on compression fields located within the MMU trans-
lation table on a memory page boundary. In alternate
embodiments, the compression type flags may be located on
a plurality of boundary ranges. The method of using address
range look—up to determine memory compression data types
is further doctunented in patent disclosure titled “Memory
Controller Including linlbedded Data Compression and
Decompression Engines", filed Jun. 5. 1995. Ser. No.
08.*'463_.106. whose inventor is Thomas A. Dye.

Memory Allocation for Compressed Data—Priority and
Normal Compression Modes

1. Priority Mode Compression
The IMC 140 includes two diiferent compression modes

for fast and efficient memory allocation and data retrieval.
These two modes are referred to as “priority compression
mode” and “norn1al compression mode”. The “priority
mode" architecture is a non—intrusive memory allocation
scheme. Priority mode provides the ability to incorporate the
Men1oryl"fX Technology, including the compressionJ'decon1-
pression capabilities, for faster effective bandwidth, without

56

57

US 7,190,284 B1

41

requiring operating system software changes. In this case
(without OS changes) the memory controller 210 ofthe IMC
140 is more tailored to bandwidth improvements than to
memory size conservation. The compression and decom-
pression operations increase the effective bandwidth of the
system. 'lhe memory allocation and compression operations
uses the additional memory freed up by the compression
algorithm for the overflow space. The overflow space is used
in cases where the lossless compression results i11 more data
than the original data size befiire compression. The “priority
mode” feattlre is used for systems that require faster data
transfers and have no need for memory conservation.

In the case of priority mode operation, the overflow
addresses are asstllned to be in memory blocks previously
reduced by the compression operation. Thus in priority
mode system software reallocation is not required to com-
pensate tor memory allocation and size.

Any second level overflow or overflow that does not fit
into the allocated overflow area provided by the memory
allocation of the present invention is handled by a system
level driver interrupt. In such cases where a real time event
can not handle the second level interrupt delay, a fixed
compression ratio of a required size can be used under the
alternate embodiment previously disclosed.

The priority mode is used for compressing data and
storing the compressed data in a memory in a computer
system, wherein portions of the computer system are not
required to account for the compression. In the priority mode
method. the computer system. e.g.. the operating system.
first allocates a memory block for uncompressed data. The
memory block is allocated on the assumption that the data
stored there will be uncompressed data.

The operating system is not required to account for the
compression operation and may be unaware of the compres-
sion operation.

The memory controller may later receive uncompressed
data and one or more corresponding destination addresses
indicating a storage destination of the first data in the
allocated memory block. In response. the memory controller
compresses the uncompressed data to pnodtlce compressed
data. The memory controller then stores the compressed first
data in the allocated memory block at the one or more
destination addresses. This store operation preferably does
11ot perform address translation of the one or more destina-
tion addresses for reduced latency. Thus the priority mode
compression does not attempt to perfomi memory minimi-
zation. Also, as noted above. overflow storage may be
allocated in the allocated memory block, as needed.

When this compressed data is later requested by a request-
ing agent. the destination addresses are used to access the
compressed data from the memory, decompress the com-
pressed data. and provide the uncompressed data in response
to the request.

1. Normal Mode Compression
In the normal compression mode [non-priority mode). the

IMC 140 uses a novel memory directory for fast and ellicient
data retrieval during the decompression process. The novel
directory procedure allows for minimum memory consu111p—
tion to hold memory allocation and directory tables, and a
fixed area allocation to assist the operating system software
for use i11 the computer main-system memory bank 110.

Memory allocation and directory maintenance is per-
formed under control of the compression control unit 281
and the compressed data directory 271 located in the IMC
140 memory controller 220 (FIG. 4). 'lhe initial address
ranges and compression block sizes are set during initial-

10

IS

20

25

30

40

50

60

42

ization and configuration by the BIOS or boot software. Tl1e
address range selection is only necessary when the system
uses a plurality of requesting units with difl'erent compres-
sion formats and requirements. In a closed system where
only a single client uses the memory system. a majority of
this initialization can be hard wired i11to the standard opera-
tion. The address range and block selection flexibility gives
the system more performance as required by the special
needs of the requesting agents. In the PC environment for
example. the PC] and AGP address ranges require separate
entries in the compressed address translation table 2710. Tl1e
present invention allows for multiple compressed address
translation table 2710 entries for CPU to memory transac-
tions.

In an alternate embodiment the address translation table

2710 entries can be allocated not by the operating system
software but by a separate statistical gathering unit (not
shown in the preferred embodiment). The statistical gather-
ing unit monitors sequential addresses, requesting agents,
and the associated block sizes and then automatically and
dynamically programs entries into the compressed address
translation table 2710.

In addition. if the compression operation is not required
for a plurality of requesting agents or block sizes. such as
graphics frame buffer or depth and texture compression. the
compression address translation table 2710 is not required in
the alternate embodiment.

FIG. 24—Memory Allocation
FIG. 24 illustrates the preferred procedure for memory

allocation within the compression and decompression sys-
tem environment of the [MC 140 or altemate embodiments

ofthe present invention. The full address bus is presented to
the compressed address translation table (CATT) 2710 for
address start selection, data pointer, and overflow table
pointer information. The initial allocation area 274ll is a
portion of system memory which has previously been allo-
cated to a fixed size by the system or user soflware. The
initial allocation area 2740 receives a portion of the trans-
lated address that preferably has been translated by a simple
subtraction and shift operation for look up of die first block.
The initial allocation area 2740 contains one block of the

compressed data for each tuicompressed block in a fixed
memory allocated range. Once the address for the com-
pressed block is located. the header for the block is decoded
by t.he compressed data header logic 2750 for determination
of further decompression. The compression block header
2750 located at the front of the compressed data block
determines if the block compressed to a size larger than the
allocated compressed block size. If so, the overflow address
translation pointer is used along with the information from
the compressed header data 2750 through the select logic
276!) to select the correct overflow area pointer to read the
overflow block from the overflow area 277l}. The overflow

area resides in the remaining portion of system memory
unused by the initial allocation area. The resulting overflow
block header 2790 contains information along with the
original header information 2750 used by the decompression
engines 550 and 555 to complete the decompression pro-
cess. The output of the decompression unit is used by the
output format switch 588 for selection of block information
and final output as decompressed data.

FIG. 26—Memory Allocation and Initialization
Referring to the flowchart of FIG. 26 and in reference to

FIG. 24 and the table of FIG. 25. the preferred embodiment
for the memory allocation and initialization is outlined. It
should be noted that in FIG. 24 the most recently used CATI‘

57

58

US 7,190,284 B1

43

and OAT entries could be cached by the compression
controller for faster access in a system with many separately
compressed memory ranges. The number of entries in the
CATT is variable. and allows overflow into the 1ne1nory. For
faster lookup, the CATI‘ in memory will have its entries
ordered. The OAT entries are numbered so no ordering is
required.

The preferred initialization 2709 is shown in l"'l('i. 26.
First, in step 2711 the method allocates a compressed
address translation table entry. If required in step 2713. a
reorder of entry data for the start and end compression block
addresses is performed. In step 2715 the set method of the
compression type for this memory range based on the
allocate command of" the initialization or operating system
software. In the preferred embodiment pages are on 4096
byte boundaries which follow the current PC architecture for
address translation performed by the (II-’U or G/\l{T. In
alternate embodiments other page sizes may be used. In
addition, in other alternate embodiments the CATT may not
be necessary if memory allocation is to fixed memory types
such as frame buffers, or embedded appliances where a
single (IATT entry could describe the entire memory.

In step 2717 the lnethod allocates a percentage of the
requested memory, based on the block size and the com-
pression type. During the allocation command sequence of
step 2717 |.he requested compression block size and the type
of compression operation performed will determine the
maximum amount of" allocated memory. The data (DAT)
pointer is initialized in step 2719 to start at the initial block
in the CATT 2710.

The overflow memory allocation and initialization in step
272] is perfomied by either the initialization logic, software
drivers, BIOS or operating system software. With the loss-
less compression algorithm used by the preferred embodi-
ment. the maximum overflow allocation is 12.5%. Typical
allocation of the overflow area in step 2770 is a portion of
the original data size. For the preferred embodiment, ‘x’s”’ the
original data size is the typical choice. The overflow address
table 2780 is then initialized in steps 2723, 2725 and 2727
if required. These steps initialize the headers to zero and
initialize the overflow address table 2780 entries to point at
the overflow address area 2770. Thus the memory allocation
procedure 2709 performs the initialization of" the CATT
2710 and O.AT 2780. and in addition allocates the initial
allocation area 2740 and the overflow area 2770.

FIG. 27—Compressed Memory Writes

FIG. 27 illustrates the procedure for performing com-
pressed memory writes. A write operation first involves a
cache look-up to (.l(.‘1t:l'[1'li]'lt-.‘ if the write data resides in the
cache 291 in an uncompressed format. If so, the write data
overwrites the current data in the cache 291, and this entry
is marked as most recently used. In a write-back implemen-
tation. the write data is not actually written back to the
system memory 110, but rather is stored only in the cache
291. In a write-through implementation. the write data is
written back to the system memory 110. preferably in a
compressed format. as well as being stored in the cache 291
in an uncompressed format.

Ifthe write data does not reside in the cache 29] , then an
I..RU block may be flushed back to the system memory.
preferably in a compressed fomiat, to free up a line in the
cache 291, and the new write data is stored in the cache 291

in an uncompressed format in the freed up line. Again. this
write data is not actually written back to the system memory
110 in a write-back implementation, b11t is written back to

IU

15

20

25

30

40

50

60

44

the system memory]] ll, preferably in a compressed format,
in a write through implementation.

The operation of the cache 291 may also involve analysis
of status bits, such as invalid and modified bits, for lines in
the cache. Where the cache 291 is an L2 or L1 cache, the
operation of the cache 29] may also involve analysis of
status bits, such as invalid, shared, exclusive, and modified
bits, for lines in the cache.

Referring to FIG. 27, as write data enters the memory
controller 220, a look up by the CATT 2710 is performed in
step 273] for determination of an intemal cache hit. The
internal compression cache 291 preferably contains normal
non~compressed data. Ifa cache hit occurs as determined in
step 2731, no compression or memory fetch of compressed
block is required, and the data is retired to the cache
immediately in step 2743. Tl1e tmcompressed write data is
preferably stored in the cache. and a most recently modified
flag is set for this cache entry. In alternate embodiments the
compression cache memory may be internal or external to
the IMC 140 or may contain compressed data in addition to
normal non-compressed data.

The write data is assembled into a decompressed block.
and in the preferred embodiment, the block is stored uncom-
pressed in the data cache. In alternate embodiments without
the compression data cache, the block can be written back to
the system memory 110. In the alternate embodiment, or in
the case of a castout of this data from the cache, the same

compressed blocks that were previously used for this
uncompressed data will be reused.

If" the resulting lookup of step 273] is a cache miss. and
the cache does not contain an unused line for this write data,
the I,RU line is selected .for write back. The initial address

for the write back is calculated i11 step 2733 using a simple
subtract and shifl to write the first compressed block to main
memory 110. The header is read and processed, to determine
if additional blocks were previously allocated for this block
of data in steps 2759 and 2735 while the write back data is
compressed by the compression engine 570 or 575.

Once the compression of" the data is complete. the com-
pressed data is tested for overflow of the initial allocation
block 2740 as indicated in step 2735. If larger than the initial
block size. the next address allocation. step 2799 shown in
l"I('"r. 29, is performed. A compressed block is stored in the
block returned by the next address allocation. and the header
from the next block is retrieved 2759. This loop continues
until the complete compressed data is stored. If the com-
pressed data fits without overflow it is stored in this block
with an overflow indicator in the header indicating I..ast
Block. and the test for last block of step 2741 is perfonned.
If this block was the last one allocated previously. the store
is complete. Otherwise, the header of the next block is
fetched and re-written as Unused 2745. The newly fetched
header is then checked for Unused, a11d this loop (2741,
2745) continues until all previously allocated blocks are
marked unused In step 2745. The newly fetched header is
then checked for Unused. and this loop steps [274] & 2745)
continues until all previously allocated blocks are marked
Unused.

l"l('"r. 28- Memory l"'etch

I’ {C}. 28 illustrates the process for memory fetch 2759. As
shown. in step 2751 the method determines if the data is
resident in cache. If" a cache hit occurs, i.e.. the data resides
in the cache, then data is read directly from the cache in step
2752. The cache flags are undated in step 2769 and the most
recent block is lnarked n step 2769.

58

59

US 7,190,284 B1

45

If the compressed block is not located within the cache as
determined in step 275], the initial compressed block
address is calculated in step 2753. From this address the
initial block is read from the system memory 110 in step
2755. In step 2757 the header instructs the memory control-
ler 210 for the decompression process. More specifically, the
method strips the header bits to detennine the type of
decompression. and the data is decompressed using the
appropriate decompression method. I11 step 2761 the initial
block header is tested for a last block indication to determine
if the last block of the fetch has been accessed and if so

marked, the process finishes with a cache invalidation of the
LRU and a store of the block as MRU as in step 2769.

Thus the LRU data in the cache is removed or invalidated

to make room for the newly read data, which is stored in the
cache and marked as most recently used. If the header
indicates additional blocks in step 276], a fetch of" the
overflow block from the overflow area 2770 is required in
step 2754. Based on t.he calculation of the overflow block
pointer in step 2754 the block is read and decompressed in
step 2756. In order to reduce latency. the data is sent back
to the requesting agent in step 2765 and the process is ended
ifthe last block was reached in step 276]. The book—keeping
then updates the operation, setting the new cache block as
MRU with a possible compression mid n1et11ory write of the
LRU block in cache as shown in step 2769. Thus the
memory fetch operation and process of" 2759 reads com-
pressed blocks from system memory 110 decompresses
these blocks and manages such cache and overflow address
calculations.

FIG. 29

The next address generation shown in FIG. 29 performs
the calculation for the 11ext compression block address.
During step 2791 the header is examined for indications of
block completion. The lastfunused flag [overflow indicator)
located in the header indicates completion. If the last block
is not reached, the process continues with step 2702 for
calculation of the next block address pointer. Once complete
the next address is returned for further process. Ifduring step
2791 the initial header indicates last block, then the process
proceeds with step 2793 where the overflow process must
determine a new overflow address for the overflow header

build. If the DAT 2780 is not full operation continues with
step 2705. If the O.AT 2780 entry is full a new overflow
pointer must be assigned in step 2795. .A check for valid
overflow pointer is made in step 2797 and this pointer is
used if it is valid. If the overflow pointer is not valid.
operation continues with the allocation of the new overflow
memory block and O.AT 2780 entry, step 2701. The new
overflow address table 2780 pointer is set to the address of
the newly allocated entry 2703. The process continues with
step 2705 where the new overflow block address is calcu-
lated. Once the new block address is presented, step 2707
reads the new overflow header and based on this header step
2704 detemlines if the overflow block is ttnused. If unused

is indicated in step 2704 the next sequential block’s address
is stored in the next address pointer in step 270613. If a
unused in not indicated in step 2704 then the address for the
next sequential block is calculated. and a return to step 2707
checks that block for unused. A reasonable implementation
of the present invention for the parallel compression and
decompression address allocation and data directory are
shown in Table 6. The memory allocation table. from lefl to
right indicates the uncompressed block size. the type nun1—
ber entry. the initial allocation area block size. the overflow
area block size, the maximum compression ratio. the initial

Next Address Generation

10

15

20

25

30

35

40

50

60

46

allocation percentage of the uncompressed data. the header
size without overflow, the maximum header size with over-

flow and sequential blocks. the maximum header size with
fragmentation and non—sequential blocks, compression and
fragmented data. For an average uncompressed block size of
512 bytes, the total directory size is less than 1% of the
compressed data size. Thus the embedded compressed next
address and overflow algorithm significantly enhances the
redttction of directory information required for compression
and decompression process as indicated by the present
invention.

L3 Data Cache

The structured use ofL3 data cache 291, which contains
pre—f'etched decompressed data. reduces latency by using
pipelined addresses and a most recently least recently used
cache address scheme. Thus, in the preferred embodiment an
L3 data cache is used to store most recently used memory
pages which are read from the main memory 110. The pages
are preferably decompressed by the parallel compression
a11d decompression unit 25] and stored ill the [.3 cache in a
decoinpressed fomiat for rapid access and reduced latency.
The L3 cache was discussed in detail above.

Compression Reordering
To reduce latency even further, the IMC can also operate

to reorder compressed blocks for faster access of com-
pressed data blocks. In the preferred embodiment. an
optional address tag is stored in the compressed data to
indicate a new byte order from the original or last byte order
of the input data stream. During decompression the longest
latency to recover a compressed portion of data on a
compressed first block will be the last byte in the por1ion of
the compressed block. Larger colnpression block sizes will
increase latency time. This method of latency reduction
separates a compression block at intermediate values and
reorders these intermediate values to be located at the front

of the compression block. The block is reordered so that the
segment most likely to be accessed in the future, e.g. most
recently used, is placed in the front of'the block. The tag field
indicates to the decompression engine how to reorder the
bytes in the intermediate segments for placement into the L3
data cache. When the block (currently stored in the I3 data
cache) becomes the least recently used block. and before it
is written back to main memory 110. it will be compressed
with the most recently used intermediate segment at the
front of the compressed block before storage back into the
main memory 110. This method of latency reduction is
especially effective for program code loops and branch entry
points and the restore of context between application sub-
routines. In an alternate embodi1nent_. a tag field could be
present for each intemiediate block such that the new
compression order of intermediate segments track the N
most recent intennediate blocks in the order in which they
were accessed over time. In the preferred embodiment only
the block header will indicate which intermediate block

segment is first in the recompression and restore process, the
order will then follow the nature of the original data stream.

1’ IG. 3] illustrates how out of order compression is used
to reduce read latency on subsequent reads from the same
compressed block address. The original compressed block
2510 is stored in main memory 110 in the order written by
the requesting agent. As a new request is issued by the
requesting agent. the steps indicated in sequence 2530 are
prefomied. At the time compressed block 2510 is ready to be
re—compressed for storage into the mai11 memory 110. an out
oforder flag is attached to the header field indicating that the
intermediate blocks are out oforder from the original written

59

60

US ?,l90,284 B1

47

order. The new compressed out of order block 2520 is
written back to main memory 110.

Variable Compression Block Sim
I.Il the preferred embodiment, the compression block size,

representing the input data block before compression. is
dynamic and can be adjusted it1 size to reduce latency of
operation. For example. tl1e local bus interface 106 may
compress with input blocks of 32 or 64 by1es while video
235 or graphics engine 212 may compress with input blocks
of 256 or 512 bytes. In the preferred embodiment the
power-on software will set default block sizes and compres-
sion data formats for each of the requesting 11nits and for
specific address ranges. Also, the preferred embodiment
includes software control registers (not shown) that allow
interface software drivers to dynamically adjust the com-
pression block sizes for a plurality of system memory
performance levels. Thus. by dynamically adjusting the
compression block sizes based on one or more of the
requesting agent, address range, or data type and format.
latency can be minimi'/ed and overall elliciency improved.

Dynamically Gather Statistics to Adjust Block Si‘/11')
In one embodiment. the [MC 140 may gather statistics to

dynamically adjust block size. The IMC gathers statistics on
sequentiality of addresses and locality of addresses. In this
embodiment. the IMC 140 includes a statistical unit which

analyzes, for example. address blocks. localities of requests
to the satne page or block. and the sequentiality of the
addresses being accessed.

Loss Less Decompression
A discussion of the parallel decompression 550 for the

lossless decompression of parallel compressed data is now
disclosed. According to the present invention. deco1npres-
sion of the parallel compressed data can be done serially as
well as in parallel. Because the data is designed to be
identical to the serial compression algorithm. either serial or
parallel decompression engines will result in the same data.
In the preferred embodiment. it is desirable to be able to
decompress at least as fast as l.l1e compression operation or
faster. Also. in alternate embodiments, decompression
engines 550E555 may be placed in a plurality of locations
within the system or circuit. Multiple decompression
engines allow for a custom operation of the decompression
process and a custom bandwidth of throughput may be
desiyed depending on the number of stages used in the
decompression engine. Therefore, below is a decompression
algorithm for the decompression engine 550 that yields
higher bandwidth than prior an serial algorithms.

According to the present invention the pipelined design is
expected to require 4 stages to run at 100 MHZ using a 0.25;;
CMOS technology. The stages of the decompression engine
are illustrated in l"'l(:'r. 33. These stages are preferably
divided up. or alternatively combined. as the silicon process
technology requires. Only the last stage in this pipeline
25513 uses the history window, and that final stage contains
minimum logic. Based on this, this function could be
extended to many more than 4 stages ifa significantly faster
clock was available. Thus in altemate etnbodiments as

process improves and clock rates increase the stages of" the
decompression engine can increase to increase the decom-
pression rate with the same input compression stream.
However. for the preferred embodiment the tour stages
shown are the logical divisions of the function. To under-
stand this novel decompression the table of FIG. 32 illus-
trates the compression mask and index coding algorithm for
a sample code. In altemate embodiment other codes could
alter the design of the decompression unit.

S

10

IS

20

25

30

40

50

60

48

With the preferred embodiment of codes is shown in the
table of FIG. 32, the following decompression trees allows
decoding of 8 bytes of the input in one cycle. The smallest
encoded data is 8 bits, so the minimum number of decoders
[2552] 25535), indicated in FIG. 34, fiir 8 bytes is 8. [Each
of these decoders could see one of many data inputs depend-
ing on the prior compressed stream.

The decompression tree. shown in FIG. 34. requires very
fast decoding at each stage to determine the proper data for
the next stage. The Window Index. Start Count and Data
Byte output (l"l('i. 32) should be latched for the next stage of
the decode pipeline of FIG. 33. This decode pipeline
requires the assembly of the output data. More detail of the
preferred Decode block ca11 be seen in FIG. 35.

The Check Valid block 25553 verifies that enough bits are
available tor the checker 25555(a—e). The tables for these
blocks are illustrated in the tables of FIGS. 36a and 36!). In

the preferred embodiment, the longest path through Check
Valid 25553 should be 3 gates. and the l3yte Check 25555
(.51 :3) will only add one gate because the check is an output
enable. The outputs from the Check Valid logic 25553, and
the Byte Check logic 25555 in FIG. 35 show 0 as the most
significant bit. and 6 as the least significant bit.

The data generate logic 25557 is simply a mux of the
input data based on the check select 25555 input. At most.
one Byte Check should be active for valid data. In addition
an alternate embodiment may include a checker which is
added to t.his decoder to verify that one byte check is active
for valid data. The table of FIG. 36b describes the Data

Generate outputs based on the Data Input and the Byte
Check Select.

The second stage 25505 of the decompression begins
calculating pointers to the appropriate bytes from the history
window for compressed data which have been latched in the
168-bit pipe register 25503. Stage two receives eight copies
ofthe index & Count or Data Byte from each decoder. along
with a pair of valid bits for these sets of signals. With
minimal logic. a preliminary select can be calculated for
each of the I6 output bytes that are latchcd in the I44-bit
pipe register 2550?. Each select latched ir1to 35507 is a 7 bit
encode (for a 64—entry window) with a single bit overflow.
These signals are latched 35507 and used by the next unit
25509 i11 stage 3. The selects will have the values of0 63 if
a window value is to be used for this output byte, 64 71 if

_ one of the eight data bytes is to be used for this output byte.
and an overflow if the data for this output byte is a result of
one of the other parallel decodes occurring with this data.
The third stage 25509 checks each ofthe overflows from the
previous stage 25505. If inactive. the 7" bit select is passed
on unchanged. If active. the select from the correct stage 2
decoder 25505 is replicated on the select lines tor this output
byte.

The final stage of the decompression, stage 4 25513,
selects the data from the window or the data bytes passed
from the 1” stage to build the output data. The output bytes
that are assembled are then added to the window for the next

cycles decode.
Because the maximum output of this design is 16 bytes

per cycle, it is required that the 1" stage select its next input
data based on the number ofbytes that will be used to decode
16 bytes. This is calculated during the 1" stage in 255[|l.
Additionally. the last stage 25513 includes data valid bits so
that the proper output data assembly can occur if fewer than
16 bytes can be decoded for any one cycle. According to the

_ preferred embodiment of present invention. the minimum
number ofbytes that could be decoded any cycle is 7 ifthere
was no compression of the input data.

60

61

US ?,l90,284 B1

49

l')ecompression Timing
Each stage in this design has been timed to achieve 100

MHZ with 0.25].l technology and low power standard cell
design library. Alternate embodiments may use custom
data-paths or custom cells to achieve higher clock rates or
fewer stages. Stage 1 25501 has proven to he the most
critical at 9.1 nS in standard cell design. Stage 2 25505.
required only 3.8 nS. with stages 3 25509 and 4 25513 at
8.23 HS and 1.5 115 respectively. There will be some addi-
tional powering logic delay in stage 4 not accounted for in
these calculations, which are not a probleln due to the timing
margin of stage 4 25513.

Scalable (Tompressionfl)eeompression
The IMC 140 also includes scalable compression.r‘decom—

pression, wherein one or more of the parallel compression}
decompression slices can be selectively applied for different
data streams. depending on the desired priorities of the data
streams.

(Toneurrency
The [MC 14!} also allows concun'cncy of operations by

allocation of multiple data requests from a plurality of
requesting agents or from multiple data requests input from
a single requesting agent. On average. when the compres-
sion and decompression tmit 251 is used_. the requested data
block is retired sooner than without use of the current

invention. When multiple data requests are queued irom
concurrent sources, the pending transactions can complete
with less latency than in prior art systems. As the input block
size grows and the number of pending conct1rTent data
requests increase. the present invention becomes i11creas—
ingly attractive for reduction of latency and increased eflec—
tive bandwidth

Although the system and method of the present invention
has been described in connection with the preferred embodi-
1nent_. it is not intended to be limited to the specific form set
forth herein. but on the contrary. it is intended to cover such
alternatives, modifications, and equivalents, as can be rea-
sonably included within the spirit zutd scope of the invention
as defined by the appended claims.

The invention claimed is:

]. A method for storing data in a memory in a computer
system the method comprising:

receiving uncompressed data;
determining a compression mode for the data. wherein the

compression mode comprises one of lossless con1pres—
sion. lossy compression, or no compression;

selectively compressing the uncompressed data. wherein
said compressing is selectively performed i11 response
to the compression mode for the data;

storing the data in the memory;
creating a header after said determining the compression

mode for the data, wherein the header includes com-
pression mode information indicating the compression
mode of the first data. wherein the compression mode
information indicates a decompression procedure for
decolnpression of the compressed first data: and

wherein said storing the data in the memory includes
storing the header in the memory with the data.

2. The method of claim 1, further comprising:
receiving a request for the data;
accessing the data from the memory in response to the

request;

analyzing the header to determine a compression mode
for the data in response to receiving the request:

S

10

15

20

25

30

40

50

60

61

50

selectively decompressing the data, wherein said decom-
pressing is selectively performed in response to the
compression mode for the data: and

providing the data in response to the request.
3. A method for compressing data and storing the coni-

pressed data in a memory in a computer system. the method
comprising:

receiving uncompressed first data:
compressing l.he uncompressed first data to produce com-

pressed first data. wherein said compressed first data
has a lirst size:

detennining if the first size of the compressed first data is
greater than an allocated memory block size of a first
allocated memory block;

creating a header. wherein the header includes an over-
flow indicator indicating whether the first size of the
compressed first data is greater than the allocated
memory block size: and

storing the compressed first data and the header in the
]TlC]Tl0l'y.

4. The method of claim 3, wherein said deten'nirn'ng
determines that the first size of the compressed first data is
less than or equal to the allocated memory block size:

wherein the overflow indicator indicates that the first

allocated memory block stores all of the compressed
first data.

5. The method of claim 4. wherein said overflow indicator

indicates that the last symbol of the compressed first data is
stored in the first allocated memory block.

6. The method of claim 3. wherein said determining
determines that the first size of the compressed first data is
greater than the allocated memory block size;

wherein the overflow indicator indicates that the first

allocated memory block does not store all of the
compressed first data;

the method further comprising:
allocating a first overflow memory block;
storing overflow information in the header. wherein the

overflow information includes an overflow address

pointer which points to the first overflow memory
block;

wherein said storing comprises:
storing a first portion of the compressed first data and the

header in the first allocated memory block; and

storing an overflow portion of die compressed first data in
the first overflow memory block.

7. The method of claim 6, wherein the flrst overflow
memory block has a fixed size.

8. The method of claim 6, further comprising:

determining whether the overflow portion has a size
greater than |.l1e first overflow memory block;

creating an overflow header, wherein the overflow header
includes an overflow indicator indicating whether the
overflow portion has a size greater than the first over-
flow memory block‘.

wherein said storing the overflow portion includes stor'ing
the overflow portion and the overflow header in the first
overflow memory block.

9. The method of claim 8. further comprising:

wherein said determining determines that die overflow
por1ion of the compressed first data has a si'I.ie greater
than the first overflow memory block;

wherein the overflow indicator in the overflow header

indicates that the first overflow memory block does not
store all of the overflow portion;

the method further comprising:

62

US ?,l90,284 B1

51

allocating a second overflow memory block in response to
determining that the overflow portion of the com-
pressed first data is greater than the first overflow
memory block;

storing overflow in fomiation in the first overflow header,
wherein the overflow infonnation includes an overflow

address pointer which points to the second overflow
memory block:

wherein said storing comprises:
storing a first portion of the compressed first data and the

header in the first allocated memory block;
storing a first overflow portion of the compressed first

data in the first overflow memory block: and
storing a second overflow portion of the compressed first

data in the second overflow memory block.
10. The method of claim 3, wherein said determining

determines that the first size of the compressed first data is
greater than the allocated memory block size:

wherein the overflow indicator indicates that the first

allocated memory block does not store all of the
compressed first data;

the method further comprising:
allocating a plurality of overflow memory blocks. includ-

ing a first overflow memory block and a last overflow
memory block;

storing overflow infonnation in the header. wherein the
overflow iniomiation includes an overflow address

pointer which points to a first overflow memory block;
wherein said storing comprises:
storing a first portion of the compressed first data and the

header in the first allocated memory block; and
for each of the overflow memory blocks except the last

overflow memory block. storing, in the respective
overflow memory block, an overflow portion of the
compressed first data and a header pointing to a sub-
sequent overflow memory block.

11. The method of claim 3 wherein said detemiining
determines that the first sire ofthe compressed first data is
greater than the allocated memory block size;

wherein the overflow indicator indicates that the first

allocated memory block does not store all of the
compressed first data;

the method further comprising:
allocating one or more overflow memory blocks. wherein

the first allocated memory block and the one or more
overflow memory blocks are insuflzicient to store the
compressed first data;

generating an interrupt to a driver in response to the first
allocated memory block and the one or more overflow
memory blocks being insuflicient to store the com-
pressed first data;

the driver allocating additional overflow memory blocks
in response to the interrupt.

12. The method of claim 3, wherein said determining
determines if the first size of the compressed first data and
a maximum header size are greater than the allocated
memory block sire.

1U

52

13. The method of claim 3, further comprising:
allocating the first allocated memory block in response to

receiving the uncompressed first data. wherein the first
allocated memory block is allocated according to a
pre-determined compression ratio.

14. The method of claim 3, wherein the computer system
includes an operating system, the method flirther compris-
ing:

the operating system allocating the first allocated memory
block in response to receiving the uncompressed first
data.

15. A computer system including a memory controller
having an embedded compressionfdecompression engine;
the computer system comprising:15

20

25

30

a CPU:

system memory which stores data used by said CPU for
executing one or more applications:

a memory controller coupled to said system memory and
said CPU, wherein said memory controller perfonns
memory control functions for said system memory,
wherein said memory controller includes said compres-
sionfdecompression engine comprised in said memory
controller for compressing and decompressing data
transferred to or from said system memory;

wherein said memory controller is operable to:
receive tmcompressed first data:
selectively compress the uncompressed first data to pro-

duce compressed first data according to a compression
mode;

create a header, wherein the header includes compression
mode in fonnation indicating the compression mode of
the first data; wherein the compression mode infonna—
tion indicates a decompression procedure for decom-
pression of the compressed first data; and store the
compressed first data and the header in the memory.

16. A method for compressing data and storing the coin-
pressed data in a memory in a computer system, the method
comprising:

40

50

62

allocating a memory block, wherein the memory block is
allocated according to a pre-detennined compression
ratio:

receiving uncompressed first data having a first size;
receiving one or more destination addresses indicating a

storage destination of the first data in the allocated
memory block: compressing the uncompressed first
data to produce compressed first data having a second
smaller size;

storing the compressed first data in the allocated memory
block at the one or more destination addresses;

determining if the compressed first data fits within the
allocated memory block; and

allocating an overflow memory block if the compressed
first data does not fit within the allocated memory
block.

