US006145069A

United States Patent [(11] Patent Number: 6,145,069
Dye [45] Date of Patent: Nov. 7, 2000
[54] PARALLEL DECOMPRESSION AND 5,371,499 12/1994 Graybill et al. .

COMPRESSION SYSTEM AND METHOD 5379,036 1/1995 Storer .

FOR IMPROVING STORAGE DENSITY AND 5,396,343 3/1995 Hanselman 358/426

ACCESS SPEED FOR NON-VOLATILE 5.406,278 4/1995 Graybill et al. .

MEMORY AND EMBEDDED MEMORY 5,406,279 4/1995 Anderson et al. .

DEVICES 5,412,429 5/1995 Glover .

5,414,425 5/1995 Whiting et al. .

[75]

(73]

[21]
[22

[63]

[51]
(52]

(58]

Inventor: Thomas A. Dye, Austin, Tex.
(List continued on next page.)
Assignee: Interactive Silicon, Inc., Austin, Tex.
Appl. No.: 09/299,966 Primary Examiner—Eddic P. Chan
. Assistant Examiner—Hong Kim
Filed: Apr. 26, 1999 Attorney, Agent, or Firm—Conley, Rose & Tayon PC;
Jeffrey C. Hood
Related U.S. Application Data
[57] ABSTRACT
Continuation-in-part of application No. 09/239,659, Jan. 29,
1999, A flash memory controller and/or embedded memory con-
Int. CL7 GO6F 12/00 troller including MemorylF/X Technology that uses data
US. Cl 711170 711/103: 710/68: compression and decompression for improved system cost
S 382/233: 345/521: 345/501 and performance. The Compression Enhanced Flash
A B e oy Memory Controller (CEFMC) of the present invention pref-
Bkl ot Se:'; {31%8 2141763, 764 709 ,Zi.? 1_?;.; ;};?;2, erably uses parallel lossless compression and decompression
T f’?"§3? ,345’,5,?1 f;m’ -SU:;‘_ "5'0"9’ engines embedded into the flash memory controller unit for
PR R R S 2 improved memory density and data bandwidth. In addition,
Relervincas Clisd the invention includes a Compression Enhanced Memory
eferences Cit Controller (CEMC) where the parallel compression and
U.S. PATENT DOCUMENTS decompression engines are introduced into the memory
o controller of the microprocessor unit. The Compression
4,008,460 2/1977 Bryant et al. ..coiiininiinn. 395/463 Enhanced Memory Controller (CEMC) invention improves
4,688,108 8/1987 Cotton et al.covereenenenene. 358/261.1 system wide memory density and data bandwidth. The
4.-8?6,541_ 10{1232 Storer . oy disclosure also indicates preferred methods for specific
i’%;;{’; 1;}:931 x;ntg """ T — 34T ypplications such as usage of the invention for solid-state
5016000 51001 thlzﬁg zl :I‘ : disks, embedded memory and Systems on Chip (SOC)
5126739 6/1992 Whiling otal environments. The disclosure also indicates a novel memory
5:[46:221 9/1992 Whiting et al. . control method for the execute in place (XIP) architectural
5,155,484 10/1992 Chambers, IV . model. The integrated parallel data compression and decom-
5,237,460 8/1993 Miller et al. ...ccoeeerreecrvencrnnnen. 395/888 pression capabilities of the CEFMC and CEMC inventions
5,237,675 8/1993 Hannon, Jr. 710/68 remove system bottle-necks and increase performance
5,247,638 9/1993 O’Brien el al. ... - 710/68 matching the data access speeds of the memory subsystem
231764’2 9/ 1293 Q¥teut k. o ;"",95“;}888 to that of the microprocessor. Thus, the invention allows
;Mrgf} ?;i ;[)3: S;MITH ;;illis?: lower cost systems due to smaller data storage, reduced
5353024 10/1994 (irc:zy;ifl """"""""""""""""""" .) bandwidth requirements, reduced power and noise.
5;353,425 10/1994 Malamy et al. .ovverernnrnnene. 711/144
5.357,614 10/1994 Pattisam et al. ...cooovermrinicnninnns 710/68 39 Claims, 24 Drawing Sheets
?Mjm IV —
SRAM or
DRAM
Decompression 1 o | MPU;E(QBMW
1 Engine _’_ P Y—T
| J’ 2o | off 4
TEENEE) L i o |
112, | ECCIEDC . S | [—> —
—> & ! s]
106 | Ware Z‘:tauss 1 Cache *."B”u:‘& C | Processing
120 ™08 | Leveling il 160 |130. ~ Unit
Logic T = A 400
oy 220 Compression | <
i L == | Engine = |
._‘ [y @ 1
"pbcioc 102 Comm] |I | »l
1Converter ! % SRAM
190 i . = or
—_— Compression Control Unit & Data Directory : Maif:mory
SEES Lo — b]

APPLE 1008

6,145,069

Page 2
U.S. PATENT DOCUMENTS 5,563,595 10/1996 SOhACKEr ..ovvvvveereeereineseees 341/106

- " 5,568,423 10/1996 Jou et al. ...
SA14.850 . S/1995 Whiting. 5,572,206 11/1996 Miller et al. .
5,420_.69? 5;’19?5 \?’egeng etal, oo 358/468 5577.248 11/1996 Chambers, IV .
5,426,779 6/1995 Chambers, IV . 5,584,008 12/1996 Shimada et al. w.ovoocrroevnerren 711/114
5,448,577 9/1995 Wells et al. .ooocccerrsvvcriennerronns 714/767 z S Z
2 o e, _ 5,606,428 2/1997 L 1an 358/404
5,455,577 1071995 Slivka et al. ..oovevvenriviereeresnennnns 341/51 5621403 4/1997 Reznik
5,455,943 10/1995 Chambers, IV . i S
5,459,850 10/1995 Clay el al. .oooooocrrocccrccierren 711/171 5,640,529 6/1997 Hasbul w.occovosevemsvssimsisesees 711/103
5,463,300 10/1995 whillﬂg etal. . 5,696,912 12/1997 Bicevskis et al.oovvninnnnen. 395/308
5,465,338 11/1995 CIAY woovorvvvvvvecoisrsrenssnessssssssnnnns 710/130 5,729,228~ 3/1998 Franaszek et al. .
5.477.264 12/1995 Sarbadhikari et al. .. 348/231 5.798,718 8/1998 Hadady .
5,479,638 12/1995 Assar et al. .oocoveereeurenierirerionns 711/103 5812817 9/1998 Hovis et al. .orvevrnnnene. 395/497.04
5,485,526 1/1996 Tobin . 5,828,877 10/1998 Pearce el al. ..ccvnvcvrnnirenienns 395/670
5,504,842 4/1996 GENLle vovveresrveesieeneesresseeinees 358/1.15 5,874,008 2/1999 Craft .
5,506,580 4/1996 Whiting et al. . 5877711 3/1999 Craft .
5,526,363 6/1996 Weiss et al. . 5,883,588 3/1999 Okamura .
5,532,693 7/1996 Winters et al. . 5,933,104 8/1999 Kimura .
5,532,694 7/1996 Mayers et al. . 5,936,560 81999 Higuchi .
5,548,742 8/1996 Wang el al. .oooooorvvrvvvennree 711/128 5,945,933 8/1999 Kalkstein .
5,553,261 9/1996 Hasbun et al. . 711/103 5,956,372 9/1999 Vaman et al. .
5,559,978 9/1996 SPilo coorrrreeveeoeeeeeeeeeeeeeeeeerneen 711/203 5,973,630 10/1999 Heath .

6,145,069

Sheet 1 of 24

Nov. 7, 2000

U.S. Patent

(v J011d) —
. S 061
) b4 0Z1 —» auop
WOY 0a/0d
ssalppy oclL
X 091 L 01607
Ll jojjuon orl SIENA
<) P NdN > 3
ELEI oa3d 0oL
[s3){¥le]g) 081 %00|D 903 Aely
—_—>
6L1L 4/1sng + + oSt Aiowapy
P |0JJUOD) P! ysel4
ﬁ ﬁ ysej4
snq ejeq <
S) 0 >
Lo oo
Jayng eleq _

6,145,069

Sheet 2 of 24

Nov. 7, 2000

U.S. Patent

ovv
Aowsw urep
Wvdd
io

WYYS

00¥
Hun
Buisseooid
OIOIN

SSaIppY

LL)

|o3u0D

6L

v

0cy
Aowaw NN
WvHd
10 NVHS

snq ejeq

8Ll

08l
/1 sng

(1y Joud)
z 'bi4
061
‘AUOD)
2a/0a
0L 0zl .
WOH 003/0d3 00l
- Reiy
* % ﬂ oSt Aiowsy
|ouo) ysel
I | e
\ 4
Syl >
L

6,145,069

Sheet 3 of 24

Nov. 7, 2000

¢ "B
__ > —
aoEww:vc_mE Ad_l v 00¢€ SSOIpPY MOY ABIY - POl
: - Aiojoaaig ejeq % Jiun |104u0) uoissaldwo) .
1725 [a I 5 < .
15 5 | 06l |
WVYHS 4‘ . | 18UBAUOD
7 T Jeanozon 9arna |
092
—Pp sulbug o A r V
— uoissaidwon 022 mﬂv
0¥ v o 91607 "
wun o | owm_e 09l v burens1 | 80L1| Bzp N
Buisseooid 0 Lm.v sng €| 180 @ p omw SIep 90L | xnp e >o9
OJOIN AYYS ssedAg k4 44— 219 : euy
<> 0a3/003 | ¢k | g Ok ™| Kiowspy
A/ useld
S wa
&q %o ﬁo 082 H
AN gLl <+ aulbug
ocy _ uoissaidwods(
Aowsw NdW :
WvHa | OW439 - 002
10 AVYS . s - _

U.S. Patent

welsAs Aiowsw ysejd - 006

6,145,069

Sheet 4 of 24

Nov. 7, 2000

U.S. Patent

p b4

Nd Pappaquig
026

00€

AoyaaQq eyeQq 9 101u09 uoissaidwon

0¥
aun
Buissasolid
OJDIN

gy
ayoen
uoissalidwo)

by

5
—>
oav

092
aulbug
uoissaidwon

l_lvg

Butwi
3

oayv

082
auibug
uoissaidwoosag

aoepuau|
Aowa

ovy

Aowaw ulepy

AVYYHd
10

NWYHS

oav

OW3D 016

006
Wwa)sAs
Aowsy

ysel4

6,145,069

Sheet 5 of 24

Nov. 7, 2000

U.S. Patent

G by
EoEww:vc_ms_ v £ (0[0]5 g SSeIppy MOY ABllY pQl
; 0}o8ll e o
WYHQa _ ¥ 103117 Bjeq g Hun [o)uo uoissaldwo) — s
10 0 06}
AWYdS In_ "AUOD)
|00 oa/oda
, v y V
|...I|' y
g v o ove 801
i — 091 ssedhg [€P -
uISS920.1d Amv 3/l g eleq gZe XN\ 001
O snd o 003/003 [€—P{ g Reiry
> 08¢ 4N Aioway
y e 4 ysel
uoissaidwoda(WO
R
— 8Ll
0Z¥ 081
Aowsw NdN
Avdd ———er
10 NVHS OW430 - 002

R T RS Eoum\awboz..m:.. ySoLt 506

6,145,069

Sheet 6 of 24

Nov. 7, 2000

U.S. Patent

9 ‘bi4
SSSIPpPY MOY ¢ ST 0€e
0tz |0huo) ssed-Ag < jopooep [€
$SaIppyY
00} WaW yse|] < 0se 2 < |01JU09 sng
[onuo) > S0BUSW| 6L
0¢L/02c /1 WsN/QD] < /] Way [043U0D)
’® 003/003
0.¢ <
L Jajjonuo) —
091 Hun 8aydeH ejeq < fousiayon - N W _oL_EwN% - <
8 8yoeD o%m uonejesdisiu) [
il UBLIWO
092/082 O dwodap/duio) < > jonuo) P 2
— uoissaidwooseq
O@Dm & _w
21bo7 uoissaidwo) | ssai obe ¢ eje
0zL wun /1 Kowsp «¢ s ‘ PPy ehed oLe 8Ll d
. 601 16peoH <+ szis yooig SSaIppy
3 uonejsues; [€ R
Aioyaug < 7aV |[onuo) Al0joalig pue JepesH MO|BAQ
uoissaidwon
00€

6,145,069

Sheet 7 of 24

Nov. 7, 2000

U.S. Patent

L B4

4
A

¢}001g YSe|4 yiim suoq

0zZe

u

0ElE (ouog 5

A

Usel4 0} %90{q gns S}

0128

0CIE @depaju| sng o} Indino Sjupm

_ 4

)

Eiep 0Q3/003 sjessusy

0028

L1E Jayng indino o} |ajleed
salhq ssaidwoos(

A

L)

61¢ Jopeay uoissaldwiod
Ppe pue sjelaus)

00LE Jepeay uoissaidwiod pue
00d3/003 ssav0ld

A

%)

081¢ (@18idwoa
8zIS ¥20|q uoissaiduwio))

0RDE AeLe yse|q J08|as pue
Ssalppe MOy YSe|4 aAua(

A

A

0/1¢ fMowaw Jayng

090€ sselppe ¥00|q passaidwiod
JO dNy00| S8|]E} UOlE|SUBY] SS832Y

ul

ul 210} pue ssasdwon A4 To0e
A 0GOE ¢pealysip 'S'S e uopelado s £8U0(I|..|Vm
091€ A i
L — ¥
EJEp Jndul jxau Yoje OF0E ¢48Ung VS Ul kpeaie N 0J0% Joung
A $S8Ippe 3400|q UO|SSRIdWOD §| WOL/0] ¥90|q Jayng alim/pesy
0GIE eaue %00|q yse|4 u +
PRIERID }X0u pul 0E0E ¢ pueLwon uolansy|
A
00¢€ — 0C0E ©p0oIap SsaIppy
SpUBWIWOY 01 8bueyo sjes 1o apow ix
5500014 41 [ewsajul 0} uonauny Yoddns S—
JO UONoNJISUl $88201d 10E ¢9MIQ 'S'S 109]9S
A MOjf SS832Y YSIJ 9)8)S PIjOS
.‘ﬁ

6,145,069

Sheet 8 of 24

Nov. 7, 2000

U.S. Patent

g ‘b4

02S€ NYW/NYT 8yoeD aepdn

&,

00G¢ ¢P3aydeay Ssalppy JO pu3
10
£,9U0p X20|q Jo uoissaidwooseq

%

0£GE paisenbal ssaippe a1Aq 1e
Indino pue ayoe?) 0} eyep SN

%

06¢€ uoissaidwosaq

%

08¢ 901607 Da3/003

*

0/.Pc Aeily yse|4 wol) peay 10}
uole|No[B) SSaIPPY MOY

A

0eve ¢suoQ

%

0cyE Ssaippe 1xaN

%

0ZVE 9le)s ayoe)
NYW/NYT 81epdn

*

OLPS ssaippe
}senbai) ayoen

ul elep allIAA 10 peay

i

09vE ¢3H 8yoe)d

3

0oge
SPUBWIWOD o |
$5900.1d

ovLe obueyo sielS
1O Spow jeuJajul 0} uoljouny
poddns Jo uononisul $$820.d

0SPE PpuUBWWOD/UCIIONIISU|

%

0G¥c ©poda(ssalppy

»

OppPEe SSe20y Alows|y yse|d 198198

<

»
=

uojsseiduwo) 1jos 1epoy dixX

10

6,145,069

Sheet 9 of 24

Nov. 7, 2000

U.S. Patent

D
l;m.
L

0oee
spuewwo)

$59001d

4 A A A
025€ NHN/NYT 8yoe) arepdn
— A4
065¢ Aeny ysej4 0LGE SS90y peoy
0} N BlM ! %
1 00GE ¢PaYoRSY SSBIPPY JO PuT
08G¢ eiep ssaidwo) m 10
+ ¢3U0p X20[q Jo uoissaldwooa
— s s
04S¢ SsaJppe 3o0|q AT
USely paleap XeU 199 0£G€ pajsenbai ssaippe 81Aq je 0SvE zauog
Indjno pue ayoses 0} Elep ALUAA u
A4 X A
- 09G€ ¢éyse|q o} s
y | PeIoIs 8q 0 mvmmc“_nm._ PIO O6E Uamsaidiiosy Hhpe T PICReN
s @ — 1
055¢ oe}s auoeo 08ve 921607 9Q3/903 Ocve. SIEis elReg
4 0Zve Aeuy yse|4 woy peay EER
0¥Ge ayoen ul 10} uole|Noje) SSaIPPY MOY 0LYE ssaippe jsenbai jy
500|q PASSBIPPE 5 ayoe) ul ejep AN 10 peay
ol ejep ajlum abispy 09vC I ouoen A
t >
Ople ebueyo ajess 10 spow 7 0spe puEtilioguojangsu)
<— [|eusiul 0] uoljoun) poddns AI_| +
10 UoNONIISUI $S820.1d ——
0S¥ ©podeq ssaippy
s

OvPE SS820y Alowa J09j8s

A
|‘._

Nd9 ul peppaqui3 Tapo dixX

11

6,145,069

Sheet 10 of 24

Nov. 7, 2000

U.S. Patent

(MY MaN)
g0l "bi4
- d I £ 09g
A3 e— QT A e— &T Au3 le— Aug le—— ejeqindy
Z-u) 9 7 03k
Aug [€— WW‘I g [“WT A3y [Ayug (¢ EleQ Indy|
g-u g g 1 0 3g
Kz [¢— “Tl. Az (¢ WTII Au3 [$— Az (¢ eeqgindul
pU v p 0 0 9g
A3 (¢ RT Ajug [WTII Aju3 [Ayug (¢ eegindy|
(My Joud)
Vol b4
)-u a v | 0 0 a1kg
Az [)€ Az €— “T| Ajug [« A3 [ejeqindul

12

6,145,069

Sheet 11 of 24

Nov. 7, 2000

U.S. Patent

1453
UOHEULIOJUI Yjew ay) o}
asuodsal ul
ejep passaidwod IndinQ

0 L1 614

synsa. asedwod pue JUNod JUaLNg 8y} UC paseq S|OqLIAS
10 Ayjeinid 8y} JO YoBS 10j UONBWIOJUI Yojew auluLd}ag

*

807
8|qe} Aojsly 8y
ur Ajua yoes yjim s|oquiAs
jo Ayjend e aledwo?)

ﬁ

907
Elep passaldwoaun
BNI903Y

1
o7

Wweay)s ejep Juasaid ayj Joj saydjew
Joud JO JUNo2 Jualnd B UlejuR

a
aov

saujua buisudwios s|qe}
Aojsy e ulejuiely

%

uoissasdwo?) [a|eled

13

6,145,069

Sheet 12 of 24

Nov. 7, 2000

U.S. Patent

! UONeJISN||l 40 asea Joj oF
i Ajleuas umoys ‘|ajjesed uj pauLiops

L hlEl us ‘el | pauLiopad YOIEI Ul JUNO?) [0quiAS
” JO Xep\ 0} Jajuno?) 18say
m oA

, = 99y

) 897 ¢ |OGUIAS Jse]

" N ojuf Bleq ay) apnjoul Yolep

” passaldwos) Indino siy} s8oQ

I

W

! ion,

| yor (9%

I FUaep Auy ui

i ¢—{ passaidwooun apnIoul 10alA

“ loquiAg ndino R RS

;

1

1

1

Z) 'big

— ey
8ty oju] ejeq passaiduwion
0137 0} sbey juno) snoiald indinQ
Iy 1958y Aoy
i o
%7 /sayojew
passaJdwooun Snoield
loquiAS yoe3 Jnding dois
08y
cly sayajejy snoiraid
MOPUIA AIOISIH 0) Buluieway ysni4
sjoquAg passaidwooun ppy

_

ON
25y
¢SOYJE
snoinald

£Uojew auo Ul sjoquiAg

1747
¢SOYdBY
Auy

9G¥
oju| eJeq passaldwo)
snoiald Inding

*

¥S¥
yolep snoimaid Buipnjou

Yojej ysable josjes

SOA

80v
Aju3 mopuIpd Yyoea ym [oquiAs
ndur yoes aredwo)

SO

90
Zeeq indu

vy
S|OQUWIAS JO #
Aq uno)
yojew asealny|

(2%
MOPUIA AUOISIH 0} S|OGLUIAS
passaldwooun ppy

14

6,145,069

Sheet 13 of 24

Nov. 7, 2000

U.S. Patent

¢l 'big
- NSE PaUIqLIOD
- | ev
wnod INdiINO ¢——— — B
909 cd
Nse INdINO g¢——— uoneojen [(Kjug snoiraig) 19
s)nsay]
i VMH oejeq
H uvn| Lejed
$09 wnl cereq
eld
anjeA Xep u[“l cereq
809 0L9
sauug 1q <
J9ge 20 < 209
0} sindino alAg ejeQ
ajedwony €0 < a Anu3

15

6,145,069

Sheet 14 of 24

Nov. 7, 2000

U.S. Patent

p1 B4

wealns eyeq ndino

» _ ySeWw ssaidwon pauiquio) \

\ o [ysep pessaidwo) u Ajug
919 .

< 3SeW passaidwo) o Anug
- < _
819 <+ TUNos Xel SSE g JUnoD U Ajug
10jeJauan) < =y -
weans D R 21607 g
nano [4——— AIPHLENRO B 1 ke SIS 1000 ¢ A3
aleial SSep g Junod | Ajug
1 b H ﬁ f 3SeW B unodH u Aiug
<
xepu| 2171 ¥SEN g JUN0D 0 Anu3
€ Z b 0 |E€ejed Xapu| Juno) xepy 719 .
ejeq|ereq|eeq| ereq| reid 2 .
JunoD Xep sl —
T junop YSEW ¥ Wuno) z Ajug
ASENXEW | inwixepy 14
SUoNENo[e) SHNSSY O g— . ¥SEW B Juno | Aug
SBAdeSSd 4 —seW 3 1unop 0 Anu3

16

6,145,069

Sheet 15 of 24

Nov. 7, 2000

U.S. Patent

Gl b4

17 LLLLL paAeS 0 0 0 0 0
17 OLLEL panes | l 0 0 0
y LOLLL panes 0 0) 0 0
¥y 00LE1 panes ¢ } l 0 0
14 LLOLL paAeg 0 0 0 b 0
14 0L0LL PaAES) l 0 b 0
} LLELO PaAES 0 0 b b 0
1 00041 paneg £ } b l 0
¢ LLLOL | +paAes 0 0 0 0 }
€ 01101 |+panes l } 0 0 |
£ 1010} |+PaAeg 0 0 b 0 |
£ 0010} | +Panes ¢ b } 0 l
¢ 1100} ¢+panres 0 0 0 } b
VA 01001 +paneg l A 0 } b
L 10001 €+panes 0 0 } l b
0 00001 P+ POAES y+PaAeS } } } }

anfep NseW 123uno) anjep eV A2 10 0a

1989y ndino ndino Jajuno) maN Sayojepy ndu)

17

U.S. Patent

Send out
Compressed

Nov. 7, 2000
Prev Cnt= 07
721
Block 723
v
Adjust Max Count
to 4 or Less
725

Sheet 16 of 24

Block 731

‘ Send out Compressed

Send out
Data 0 741

6,145,069

Send LZ12
Compressed
Block 743

CCM(1) =1 Yes
735/
Send out l
Data 0 747 No
v_
Send out _
Data 0 751 1
Fig. 16

18

Done

U.S. Patent Nov. 7, 2000 Sheet 17 of 24 6,145,069

w0 ©
m I~

Alternate Output

Final OQutput| (7,1) |
[_F3]
Alternate Output

m
)
F3] [©2)E259)

Output[(8.2)E 26,1

2ike] PEZEP PHEIEF PEHZEP PEZERP
igle] PlEdEel FEdER PESkE PESER
2Ble] Pl [IE Y gl Pls &Rl PR
“Eel PE R Pl EPR PR OER P EP
N EEE [_E P el BlE el PlE (@l
°Ee PE Ee PE ®E PE B PE EP
> 2°] 2l PE Eo PE Eel PE EP
*@°] Pl EF El E PlE B Pl [EP]
~Ele] Pl Bl PlE ERR Pl B Pl [RE
ofglel Ple] &= [l PiEl B FE EP
okle] Pl [Ee] [Pl IE AN EREEREE
el PE =Pl Pl Bl PE ER Bl (8]
el Pl ER CPE Bl P e Pl (EE
el Pl B Ple R Pl Pl Pl B
-~ EE Bl PE EE Pl B Pl &Pl
°lglel Pl [Be]_ElE e[l [B8lF] Pl (2
G < |55 2 @ls5 5 2|l s 5 @ =W s s © =
338 S| 38 5 3 8 B33 K=y
Olg = Lig = o 3= LG = L
»n a n 2 % a n 35 &
c = £ g

19

U.S. Patent Nov. 7, 2000 Sheet 18 of 24 6,145,069

20

6,145,069

Sheet 19 of 24

Nov. 7, 2000

U.S. Patent

. Jo9jes
61 b1 :
uoljelsuass)
18|88
A A
an an
a/g o/
an o
aledwo) aiedwo) ajedwo) aledwo) aledwo) aledwon
Kep 2 Rem 2 kem 2 Rep g Kep\ z Aepp 2
a A a + » A A A A .ﬁ a A
I _
a A3 0 Az g A3 v Ajug

21

6,145,069

Sheet 20 of 24

Nov. 7, 2000

U.S. Patent

1z b1
414 - qcl a9 LLLLLLL bi<
€l - - Q9 OLLLLLL L
€l 5 7 a9 LOLLLLL 1]
€l - - a9 00LLLLL 6
€l - - a9 LIOLLLL 8
€l g = a9 0LOVLLL L
€l - - a9 L00LEEL 9
€l = - a9 000LLLE S
0L " - a9 OLLl 14
0l - - qag 1011 €
oL = e a9 00L1 4
8 = : 49 0l |
6 a8 - - 0 0
pasn sig eleq Juno9 xapu| be|4 passaidwo)
sajhg
0z b4

d | X 0 b X | X

3, X } X 0) X

g 0 X | X X 0 |

v X 0 b X X 0

Jndyno | @/g | oV | via | a;o | o8| anv

22

6,145,069

Sheet 21 of 24

Nov. 7, 2000

U.S. Patent

2z b
¢ - gl /.T 8
LLLLLEE L
MOPUIA AJOISIH %ﬂ ! 3%§:n
uonosjes ejeq 'y sbejs
A A A
T8 ™8 8 8
P LU
[(sl gz} 19isibay adid |
A A A A
™ ™
LLLCLELLLLLY
‘g \g b goopspuy °
$)0819S |eul4 ajenoje’) ¢ abeig
A A
T8 Ng
L LLLLEETLLT
[(s1a yp|] BIsBay adid |
h A
8 8
ARNERRNANRR
T8 N8 wgstowwocmwsmﬁm_ﬁtm%
SMOJLBAQ pUB $}08|8S [eniu| alejnaje) 'z obels
r y h A A h
T8 8 h ™9 NS TS
L LI L
[[s11g 891) Ja1sibay adid |
A ? Y 7'y
T8 NG 8 8 T9 N TS S
L LI L
I 7 PIER 7 0 < 0
salfg eleq Eleq xapu| Xapu| Junon Yeis

18juno) slAg pue Jojoajag nduj eniy) ;| sbejg

4

SolAg g eleq Induj

£166¢

}166¢

605G¢

L0§5¢

6055¢

£066¢

10652

23

6,145,069

Sheet 22 of 24

Nov. 7, 2000

U.S. Patent

§Japooag

[SIA
e 3 +7

2vd
G2

T4 114

¢z ‘b4

§jUNGH TeiS
F 9
aikg Xepu] EIEq
o_.
| 11
ol
[13p0daq {05
563 | 653 mh {7 alfg ¥epu] BB
TN EE 03

XA

11

{1apooaq

0d

24

6,145,069

Sheet 23 of 24

Nov. 7, 2000

U.S. Patent

Juno)
snoiAaid

AR
no
& 109[8S _ m
m =
Juno)
pue xapu| A |
M S IENET) u
< eleq > T
Sg eea y ¢ z 0 1
woayd |[sosup |[08ud |[w8ud || %08yd
all< a11-G vz al g0
(elossse S AKX pAA o A Ak ¢
9:00 9:00 £:00 1:00 0a
vEZLO
pIleA
oeu)
£55G¢
1G5GC
alAw

109j83

¥¢d:0d
ejeq nduj

19985
SnoiAalg

25

6,145,069

Sheet 24 of 24

Nov. 7, 2000

U.S. Patent

qsz b4
X Od+¥ea:ela G+0d+9a:¥Q ¢+0d+£0:2a 1+0d 1+0d unoy
X z71a:.a z1a:.a aR7e X /azd xapuj
X X X X 80'1d X a)Ag ejeq
00 10 20 0 80 0l _ I
BGZ ‘Bi 4 00 00 00 00 00 80 08=al AW
) 00 00 Ob 3 3L T ov=al AW
00 00 3L I 3FL 3T 02=al AW
00 31 4l 41 4 4l 0L=al AW
00 31 4 4L 4L 4l 80=al AW
00 4L 4 4L 4L 4 ¥0=al AW
00 4 4L 4L 4L 4l 20=al AW
00 4 4L 41 4L 4l 10=al AW
EEIER
00 0 20 0 80 0l snolAald

26

6,145,069

1

PARALLEL DECOMPRESSION AND
COMPRESSION SYSTEM AND METHOD
FOR IMPROVING STORAGE DENSITY AND
ACCESS SPEED FOR NON-VOLATILE
MEMORY AND EMBEDDED MEMORY
DEVICES

CONTINUATION DATA

This is a continuation-in-part (CIP) of U.S. patent appli-
cation Ser. No. 09/239,659 titled “Bandwidth Reducing
Memory Controller Including Scalable Embedded Parallel
Data Compression and Decompression Engines” and filed
Jan. 29, 1999 (5143-01700).

FIELD OF THE INVENTION
The present invention relates to computer system

architectures, and more particularly to a Non-volatile
“Flash” memory and embedded memory controllers, which

includes embedded data Decompression and/or Compres- ,

sion engines for increased effective memory density and
improved bandwidth.

DESCRIPTION OF THE RELATED ART

Non-volatile storage devices such as EPROMS (Erasable
Programmable Read Only Memories), and EEPROMS
(Electrically Erasable Programmable Read Only Memories)
have stored computer instruction code and data since their
introduction. The architecture of non-volatile semiconductor
devices has remained substantially unchanged over recent
years. Flash memory semiconductors have recently surfaced
as the more modem non-volatile storage device allowing fast
in circuit re-programmability. Flash memory devices are
becoming more popular because of fast read and write
response, low cost and higher density. Still, the cost per
storage bit of Flash memory exceeds that of volatile DRAM
(Dynamic Random Access Memory) or SRAM (Static Ran-
dom Access Memory) devices. Flash memory devices cur-
rently are sold into two major marketplaces, the “solid-state
disk™ and “embedded systems” for program and data stor-
age. Additionally, system on a chip (SOC) shows promise
for embedded flash memory coupled to embedded MPU,
(Micro Processor Unit) SRAM, DRAM, and analog circuits
for execution of programs stored in such non-volitile flash
memory circuits, While solid-state disks are used widely for
“rugged” non-mechanical, non-volatile storage and lower
power, embedded systems use flash memory for program
and data storage typically for software field upgrades that
reduce the cost of support and maintenance. Some embed-
ded flash systems use the XIP (execute in place) architecture.
Here, the instructions and data are read directly from the
Flash memory device by the embedded Central Processing
Unit (CPU) or MPU for direct execution. In prior art, the top
end frequency of operation was slaved to the bandwidth

(instruction and data read rate) of the flash memory sub- 53

system. Thus, higher speed embedded processors, in order to
read from the flash direetly (XIP model), had to lower their
clocking rate due to slow read and write timing from the
Flash Memory Array 100. To avoid low frequency operation
some systems will copy flash data for execution to DRAM
or SRAM allowing for faster execution at increased cost due
to additional subsystem memory devices. The current state
of the art of Flash memory devices include a central pro-
cessing unit (CPU) coupled to optional error correction
controller (ECC), Flash Memory Array 100 for storage, and
charge-pumps for program voltage derivation. Non-
monolithic Flash memory devices typically comprise two or

wn

15

30

35

40

45

50

60

65

27

2

three devices, such as the Flash Memory Array, the Flash
controller, and DC to DC converter and supply voltage
generator. These Flash controllers typically couple to a bus
interface such as PCMCIA (Personal Computer Memory
Card International Association), ISA (Industry Standard
Architecture) or a proprietary CPU bus, and also to the Flash
memory storage array with an address, data, and control bus
interface. For monolithic or non-monolithic, devices the
purpose of the Flash memory controller is for orchestration
of read and write transfers of data between the main CPU
and the memory subsystem. Typically the program running
on the embedded CPU, in prior art flash memory controller
circuits, includes control functions (Sleep, Wake, Seck,
Compare, load and store) for proper Flash memory pro-
gramming and “wear” balancing. Wear balancing is due to
the limit of writes that flash can handle before faults begin
to occur. Thus, for solid-state disks where data is written
more often, a “wear balancing” program running on the
embedded CPU will optimally write data to areas that have
less access, thus prolonging the effective life of the flash
device.

Certain prior art systems utilize multiple Flash memory
devices with parallel combined data output pins to gain
improved memory bandwidth. The multiple Flash devices
are in many instances included primarily for added
bandwidth, and when only the added bandwidth is needed,
additional cost is incurred due to the multiple Flash memory
packages required. Additionally, prior art Flash memory
systems have proven too expensive (cost per bit storage) for
high density mass market applications and thus have not
sold in substantial volumes to warrant dramatic cost reduc-
tions. Therefore, a new system and method is desired 1o
increase the effective read bandwidth requirements required
by the Execute In Place model and the solid state disk
market for embedded applications and operaling system
software, while reducing the cost per bit of non-volatile
Flash memory storage, thus establishing a new price per bit
and read access performance for non-volatile Flash memory
data and program storage.

SUMMARY OF THE INVENTION

The present invention comprises a Flash Memory Con-
troller with embedded parallel compression and/or decom-
pression capability, also referred to as the Compression
Enhanced Flash Memory Controller (CEFMC), which pro-
vides improved data density, efficiency and bandwidth. To
enhance the XIP performance of the CEFMC, the present
invention uses a decompression engine coupled to an SRAM
memory buffer, optionally configured as a data cache which
is coupled to an interface bus such as the ISA, PCMCIA,
PCl, Card-Bus or MPU proprietary bus. The memory con-
troller also couples either directly, or through a temporary
data latch, to the Flash Memory Array. In the preferred
embodiment the parallel decompression engine couples
through a data latch to a wide row of the Flash Memory
preferably embedded on the same silicon device. The wide
Flash Memory Array is typically the row-width of the
normal memory array such as 256 or 512 data bits. This
array is preferably coupled through a storage latch, which
preferably allows the next read address to pre-fetch data
from the Flash Memory Array prior to completion of the
decompression stage. Further, in one embodiment of the
present invention, data has been pre-compressed by a soft-
ware compiler tool prior to the write of such data into the
Flash Memory Array. Alternatively, for systems that require
dynamic write capability to the Flash Array, as in file system
or solid state disk operation, a compression engine is added

6,145,069

3

“in-line” with data also preferably located within the Flash
memory control circuit

The CEFMC is designed for the reduction of data band-
width and is located between the main memory and/or
system memory and the flash memory controller. The
CEFMC Technology reduces the bandwidth requirements
while increasing the memory efficiency for almost all data
types within the computer system. Thus, conventional stan-
dard Flash Memory cells can achieve higher bandwidth,
more effective density, with less system power and noise
than when used in conventional systems without the
CEFMC technology.

The CEFMC transfers data between the Flash Memory
Array and the system MPU and its optional execution and
data memories. Therefore, the CEFMC technology of the
present invention typically resides between the MPU, main
memory and the Flash Memory Array. In an alternate
embodiment, the compression and/or decompression
engines may reside in the MPU memory control unit, thus all
memory data including flash memory can make use of lower

pin-out interconnect buses, more effective memory 2

performance, and increased effective memory density for all
types of memory coupled to the MPU device.

The CEFMC technology is designed to embed into prior
art flash memory control circuits. Thus, the current
invention, using the novel parallel architecture to compress
and decompress data streams, substantially improves band-
width and effective storage density within the computing
system. In addition, the CEFMC Technology has a “scal-
able” architecture designed to function in a plurality of
memory configurations or compression modes with a plu-
rality of performance requirements as indicated in U.S.
patent application Ser. No. 09/239,659 titled “Bandwidth
Reducing Memory Controller Including Scalable Embedded
Parallel Data Compression and Decompression Engines”
and filed Jan. 29, 1999 (5143-01700). Scalability allows for
a non-symmelric compression rate as compared o the
decompression rate. Write data can match the effective write
speed of the Flash Memory Array, using fewer input sym-
bols in parallel during compression, thus reducing gate
count and size. Read data can be decompressed with a
different number ol input symbols per clock or access, thus
allowing the read data to be decompressed at an alternate
rate. Thus, the non-symmetric nature of the invention during
reads and writes allows tuning of the memory access time
vs. gale count to greatly improve performance and cost.

When configured for “execute in place” (XIP model),
compressed data is programmed in to the flash memory for
execution by the system MPU. The CEFMC invention
decompresses the data as it is read by the MPU from the
flash memory. In an alternate embodiment a DMA device
can also be used to read data in a parallel fashion from the
flash memory device. In the preferred embodiment, data
presented at the output bus of the Flash Memory system is
retrieved when the “ready”™ output (ready is a control signal

associated with the MPU and Flash controller interface) s

transitions stale during a read data request. The “ready”
output indicates that the data has been successfully read
from the Flash Memory Array and decompressed for con-
sumption by the MPU. Any form of ready output indication
can be used, as the “wait” is due to the decompression of a
new block of data not previously stored in the SRAM buffer
or cache. Alternatively, the timing specifications can include
delay time specification indicating a “maximum delay” such
that the MPU of system device waits for some period of time
in order lo process the decompressed requested data.

The CEFMC technology allows data to be stored in
multiple compression formats and blocks sizes, as indicated

15

30

35

40

45

50

60

65

28

4

in U.S. patent application Ser. No. 09/239,659 titled “Band-
width Reducing Memory Controller Including Scalable
Embedded Parallel Data Compression and Decompression
Engines”, referenced above. Thus, data can be saved in
cither a normal or compressed format, retrieved from the
Flash Memory Array for MPU execution in a normal or
compressed format, or transmitted and stored on a medium
in a normal or compressed format.

To improve latency and reduce performance degradations
normally associated with compression and decompression
techniques the CEFMC encompasses multiple novel tech-
niques such as: 1) Compiler directives for data types and
block sizes for optimal compression and access speeds; 2)
parallel lossless compression/decompression; selectable
compression modes such as lossless, lossy or no compres-
sion; 3) data caching techniques; 4) unique address
translation, attribute, and address directory structures, as
illustrated in U.S. patent application Ser. No. 09/239,659,
referenced above.

The CEFMC Technology preferably includes novel par-
allel compression and decompression engines designed to
process stream data at more than a single byte or symbol
(character) at one time. These parallel compression and
decompression engines modify the single stream dictionary
based (or history table based) data compression method
described by Lempel and Ziv to provide a scalable, high
bandwidth compression and decompression operation. The
paralle]l compression method examines a plurality of sym-
bols in parallel, thus providing greatly increased compres-
sion performance. The CEFMC technology, in an alternate
embodiment, reduces latency further by use of multiple
compiler hooks to distinguish program data space from table
look-up data. Thus, if indicated, a bypass of the decompres-
sion engine will send data directly to the output interface bus
without delay. A priority scheme can be applied such that
compression and decompression operations are suspended
as higher priority non-compressed data is transferred. Thus,
reduction of latency and improved efficiency can be
achieved at the cost of additional parallel buffers and com-
parison logic. Compiler directives interpreted by the decom-
pression controller, can be embedded within the compiled
XIP code for notification of compression/decompression
bypass.

In summary, the integrated data compression and decom-
pression capabilities of the present invention removes sys-
tem bottlenecks allowing a higher frequency MPU clock by
de-coupling the Flash Memory access time from MPU clock
frequency. In addition, the present invention reduces the data
storage size allowing more storage per Flash Memory Array.
This lower cost system is due to reduced data storage
requirements and improved bandwidth results. This also
increases system bandwidth and hence increases system
performance. Thus the compression based Flash Memory
Controller of the present invention is a significant advance
over the operation of current memory controllers.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained when the following detailed description of the
preferred embodiment is considered in conjunction with the
following drawings, in which:

FIG. 1 illustrates a typical embodiment for the prior art
Flash Memory Controller architecture without Compression
Enhancement for the solid-state disk;

FIG. 2 illustrates a typical embodiment for the prior art
Flash Memory Controller without Compression Enhance-
ment for the execute in place (XIP) model;

6,145,069

5

FIG. 3 illustrates the Flash Memory Controller with
embedded parallel Compression and Decompression
engines;

FIG. 4 illustrates the embedded parallel Compression and
Decompression Engines embedded into the MPU for the
system memory control interface;

FIG. § illustrates the preferred embodiment for the
execute in place (XIP) model when only real-time data
decompression is necessary;

FIG. 6 is a detailed block diagram illustrating the internal
architecture of the control logic embedded within the Com-
pression Enhanced Flash Memory Controller (CEFMC)
invention;

FIG. 7 shows the compression block read and write
process flow for the solid state disk embodiment of the
Compression Enhanced Flash Memory Controller invention;

FIG. 8 illustrates the process flow for Execute In Place
(XIP) mode of operation for the Compression Enhanced
Flash Memory Controller invention;

FIG. 9 is the process flow diagram for the Compression
Enhanced Memory Controller (CEMC) invention when
embedded into the MPU as the system memory controller.

FIG. 10A illustrates the sequential compression technique
of the prior art dictionary-based LZ serial compression
algorithm;

FIG. 10B illustrates the parallel compression algorithm
according to the present invention;

FIG. 11 is a high-level flowchart diagram illustrating
operation of the parallel compression;

FIG. 12 is a more detailed flowchart diagram illustrating
operation of the parallel compression;

FIG. 13 illusiraies the entry data history and input data
compare and results calculation for the parallel compression
and decompression unit;

FIG. 14 shows the parallel selection and output generation
block diagram;

FIG. 15 shows the operation of the counter values, output
counter and output mask used for output selection during the
parallel compression operation of the present invention;

FIG. 16 illustrates the Output Generator Flow diagram;

FIG. 17 illustrates an example of the parallel compression
operation indicating the data flow through multiple cycles;

FIG. 18 illustrates a high speed parallel comparison
circuit used to find the largest count of matching entries to
the history table;

FIG. 19 further illustrates the select generation logic and
entry compare logic designed for high data clocking rates;

FIG. 20 illustrates the logic table for the high speed
parallel comparison;

FIG. 21 is a table illustrating the header information
presented to the lossless decompression engine;

FIG. 22 illustrates the four stages used for the parallel
lossless decompression algorithm;

FIG. 23 illustrates the eight decoder stages required to
generate the start counts used for the parallel decompression
process according to one embodiment of the invention;

FIG. 24 illustrates a single decoder block used by the
stage 1 input selector and byte counter of FIG. 22;

FIG. 254 is a table indicating the check valid results table
of the decode block; and

FIG. 25b is a table describing the Data Generate outputs
based on the Data Input and the Byte Check Select logic.

15

30

35

40

45

50

60

65

29

6

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Incorporation by Reference

U.S. patent application Ser. No. 09/239,659 titled “Band-
width Reducing Memory Controller Including Scalable
Embedded Parallel Data Compression and Decompression
Engines”, which was filed on Jan. 29, 1999 (5143-01700), is
hereby incorporated by reference in its entirety as though
fully and completely set forth herein.
Prior Art Computer System Architecture

FIG. 1 illustrates a block diagram of a prior art Flash
Memory Controller architecture. Prior art flash memory
systems are often too expensive on a “per-bit” basis as
compared to hard disk drive devices for data storage. The
higher cost is offset by both lower power and harsh envi-
ronment operation where disk substitutes must be chosen.
Prior art Flash memory controllers typically include an MPU
140 or hard wired instruction A interpreter (not shown),
coupled to logic for error correction and detection and flash
ware logic (120), coupled to the main Flash Memory Array
interface logic 150. The MPU 140 is used to regulate the
Flash memory access cycles and control operation to mimic
standard disk drive protocol. The MPU 140 is typically
coupled to an internal address/data bus 145 which couples to
the bus I/F 180, the Control logic block 150, the Error
detection and Correction block 120 and finally to the Flash
Memory Array 100. Also, for data that requires a plurality of
writes o the same address range, load leveling logic or
“wear logic” 120 is employed to spread the write cycles to
alternate Flash Memory Array blocks. This action increases
the life expectance of a particular area of the flash array by
write block distribution. Thus, an address and data bus 145
is the main connection between the logic blocks for trans-
mission of address and data within the Flash Memory
Controller system. Data from the external interface is con-
nected to the internal Bus Interface logic 180 which also
couples to the main address and data bus 145 and the Flash
Memory Controller Reset and Control block 160. Reset and
control is needed to power on and “ready” the Flash Memory
Array 100, the MPU 140 and initialize the Error Correction
and Detection block 120. The data buffer 160 is used in two
ways during read and write cycles. During read cycles from
the Flash Memory Array 100, and under control of the Bus
Interface 180, the data buffer 160 acts as a depository for
flash data that is read from the Flash Memory Array 100
under request of the system bus control 119 and system bus
address 117. During write cycle requests {rom the bus
interface unit 180, the data buffer 160 acts as a write posting
buffer for large blocks of data to be written into the Flash
Memory Array 100. Due to the long write access time and
block clear functions of the flash array 100, the data buffer
160 can de-couple the system write speed from the slow
Flash Memory Array 100 write speed. Typically the write
speed is % the read time due to the nature of the Flash
Memory Array 100. In addition, a Flash Memory Control
block 150, coupled to the main control logic block 160,
controls the strobes for data access or deposit into the Flash
Memory Array 100. Illustrated in FIG. 1 is also an embedded
ROM 170. This ROM is necessary to initialize and reset the
MPU 140 for proper operation and execution of commands.
A DC to DC converter 190 is coupled to the Flash Memory
Array 100 for generation of the proper operation voltages.
Currently prior art systems for solid state disk control such
as the one of FIG. 1 are used primarily for code storage and
execution by an external CPU device, with a functional
operation similar to a mechanical system disk.

The system of FIG. 2 shows the prior art used to store
instructions and data used by an external CPU 400, external

6,145,069

7

CPU dedicated memory 420, or external system memory
440 all supporting the execute in place (XIP) mode of
operation. In some prior art systems the external CPU,
dedicated memory 420, and system memory 440 may be
integrated into the same device or into separate non-
monolithic devices. The XIP model allows the system CPU
400 to run with direct instruction access from the Flash
Memory Array 100. In the prior art of FIG. 2, a bus interface
180 may be coupled to an external or embedded CPU 400,
and memory 440 by the Data bus 118, the Control bus 119
and the address bus 117. The internal address and data bus
145 is coupled between the bus interface unit 180 and the
Flash controller logic 150. In addition, the address and data
bus 145 couples to an internal Error Correction and Error
Detection unit 120, and to the internal boot ROM 170 which
also couples to the Flash controller 150 and the Bus interface
logic 180. The internal control bus 147 also couples to the
Bus Interface 180, the Boot ROM 170, the EDC/ECC logic
block 120 and the Flash Memory Controller unit 150 used to

control the read and write operation as indicated by the 2

external or embedded CPU connected to the other side of the
Bus Interface unit 180. A DC to DC converter 190 is used
to generate the necessary program and clear voltages needed
to run the Flash Memory Array 100.

The XIP prior art model illustrated in FIG. 2 is often too
slow to run instruction and data cycles directly to the CPU
interface without either slowing down the CPU 400 clock to
maltch the access times of the Flash Memory Array 100 or
inserting wait states in data access cycles from the Flash
Memory Array 100. This is due to the relatively slow access
speed from the Flash Memory Array 100. Thus, a system to
increase both the storage density and the read access band-
width is desired as outlined in the present invention.
Computer Architecture of the Preferred Embodiment

The embodiment of the present invention teaches a
method of using fast parallel compression and decompres-
sion technology as outlined in patent application Ser. No.
09/239,659 titled “Bandwidth Reducing Memory Controller
Including Scalable Embedded Parallel Data Compression
and Decompression Engines” and filed Jan. 29, 1999 (5143-
01700), to increase the effective density and read access time
of non-volatile storage devices such as flash memory inte-
grated circuits. As flash memory is used more on high speed
buses, multiple flash devices must be used in parallel to
obtain the bandwidth of the higher speed buses. This
increase in devices or array row size in embedded flash
becomes more costly to implement as the data path grows in
width. By merit of the present invention, Flash Memory
Array data is decompressed 1o a higher delivery bandwidth,
thus, the need for multiple parallel devices or wide row
interfaces for embedded flash is not necessary. Increased
bandwidth rates are complemented by the additional flash
data and program storage space of the present invention. In
the preferred embodiment of the present invention the

invention may be integrated onto the flash memory control- 53

ler IC, which also preferably can be integrated directly onto
the flash memory storage cell array to form a single mono-
lithic IC for non-volatile data and program storage.

FIG. 3 illustrates the preferred embodiment for the flash
memory device when used for non-volatile storage in a
computer or computing appliance. Typically the embodi-
ment of FIG. 3 is used for file system software control
similar to the operation of a mechanical hard disk. In fact,
solid-state Disk systems will follow the exact protocol
standards as mechanical hard drives use. As system buses
increase in speed and drive interface specifications are
adopted to higher speed drive interfaces, such as 66 Mhz

15

30

35

40

45

50

60

65

30

8

PCL, a higher speed compression technology is required to
service application specific markets such as the solid state
disk market as disclosed in this invention. In order to read
and write compressed data, FIG. 3 illustrates both the
parallel compression and parallel decompression engines
260 and 270. This disclosure focuses on the use of flash
memory devices with compression and decompression for
file system storage and retrieval (as in solid state disks
applications) and the execute in place model (XIP in embed-
ded applications). In the preferred embodiment both com-
pression and decompression engines are present for data and
program storage and retrieval. Alternate embodiments may
use only the parallel decompression engine, as compression
is used only for write data when writes to the Flash Memory
Array 100 are seldom. Thus, write data in this alternate
embodiment may be compressed by a software routine
running in the main CPU 400 such that there is no need for
the parallel hardware compression unit. Again, referring to
FIG. 3, the preferred embodiment for the solid state disk
system 900 is illustrated. The Compression Enhanced Flash
Memory Controller (CEFMC) 200 is comprised of the
System Bus Interface unit 180, a Buffer SRAM 160, which
alternately could be configured as a cache memory structure,
the compression engine 260, decompression engine 280, the
bypass logic 240, Error Correction and Detection including
flash block address generation for wear control 220, the DC
to DC Converter 190 and finally the Flash Memory Array
byte multiplexes and memory control interface 120.

The CEFMC 200 Flash Memory Controller is preferably
coupled to the System Bus 118 and the Flash Memory Array
100. While prior art systems may contain ECC/EDC 220 and
DC/DC converters 190, the present invention has novel
blocks for fast access of compressed and decompressed data
transfers. The System Bus Interface logic 180 couples to the
System Bus 118 and to the Flash Controllers SRAM Buffer
160. The purpose of the interface logic is to present Address
117, Data 118, and Control 119 according to the System Bus
Interface standard. Such interfaces may be PCI, Card-Bus,
PCMCIA, Local CPU 400 bus, etc. The Bus interface unit
180 performs the necessary timing of address and data as
well as control strobes during access of the System Bus 118.
The Flash memory controller of the present invention also
may use an optional SRAM Buffer 160. The Storage Buffer
160 may be configured as a cache memory for alternate
embodiments. The SRAM cache memory 160 of the present
invention de-couples the bus timing and control require-
ments from the Flash Memory Array and compression/
decompression process. The SRAM Buffer 160 may be
coupled to the Decompression Engine 280, the Bypass
Logic 240 and the Compression Engine 260, as well as the
Compression Control Unit 300, and the Bus Interface Unit
180. The compression block size and the amount of SRAM
buffer storage may be related. For solid-state Disk applica-
tions of the preferred embodiment, the size of the buffer only
need be large enough to effectively keep data in a “streaming
manner” from the Flash Memory Array 100 to the System
Bus Interface 180. Thus, because the parallel compression
and decompression process is fast enough, it can process the
data in a streaming manner with the compression or decom-
pression process “in-line” between the System Bus 118 and
the Flash Memory Array 100. In the XIP embodiment, this
buffer becomes more substantial in size and becomes a
caching memory where preferably the cache block size is
equal to the compression block size and the overall cache
size is preferably at least 4X the compression block size. The
SRAM Buffer 160 is controlled by the Compression Control
Unit and Data Directory 300 as data traverses between the

6,145,069

9
System Bus 118 and the Flash Memory Array 100. The
Compression Control Unit 300 is responsible for load and
unload of data to and from the SRAM Buffer 160. In
addition, the SRAM Buffer 160 may be multi-ported or
single-ported depending on the application requirements.

As indicated in FIG. 3 the ECC/EDC and Ware Leveling
Logic 220 are preferably coupled to the Decompression
Engine 280, the Bypass laiches 240, the Compression
Engine 260, and the Flash Memory Interface and Byte
Multiplexing Logic 120. The purpose of the ECC/EDC and
ware leveling logic are no different than in prior art solid
state disk controllers. Error Correction/Detection is used to
correct data that has different data between the write and the
read of such data. Aware leveling process is used to keep the
data written to the non-volatile memory distributed across
the entire Flash Memory Array 100 in order to keep the
device from premature data retention failure. Typically in
the XIP model, these units are not required but may be used
for added data quality.

The parallel Decompression Engine 280 is coupled to the
SRAM buffer 160. The Decompression engine 280 reads
data from the ECC/EDC control unit 220 or in alternate
embodiments directly from the Flash Memory Array inter-
face logic and Multiplexer 120, or may interface directly
from the Flash Memory Array 100. The Decompression
engine 280 is also coupled to the Compression Control Unit
300. The purpose of the Decompression Engine is to expand
compressed data that is read from the Flash Memory Array
100, thus increasing the effective density of the Flash
Memory Array 100 and increasing the effective data band-
width and transfer rate onto the output System Bus 118. The
decompression engine 280 receives control and directory
information from the Compression Control unit 300 for
instructions during the decompression process of the data.
Included within this 15[] control is the initialization of
new compression blocks and block sizes. In addition, the
decompression engine 280 informs the Compression Con-
trol unit 300 about data fetch requirements to keep the
decompression pipe-line full.

A Bypass Unit 240, coupled to the SRAM Buffer 160, the
ECC/EDC 220, or in alternate embodiments directly to the
flash memory interface 120, does nothing to the data during
transfer operations. Instead, the Bypass Unit 240 is coupled
to the Compression Control Unit 300 for the process of
passing data without compression or decompression opera-
tion. The Bypass Unit 240 is preferably a set of
bi-directional multiplexors for such purpose. Also in the
preferred embodiment, the bypass unit 240 is instructed by
the Compression Control unit 300 when data is to be
compressed, decompressed or bypass compression alto-
gether. Instructions to the Compression Control unit 300 to
“bypass” compression may come from embedded directives
compiled into code which runs on the CPU 400 or directly
from the Compression Control Unit 300 based on Bus
Control signals 119 from the System Bus 118 which indicate
block sequential or singular read/wrile operation. As an
example, in the XIP model, look up table information which
typically is random reads on small or single values would
not benefit from the block compression of the present
invention. These lookup tables may be flagged by the
compiler (or programmer) as data ficlds that should not be
compressed. Thus, data of this type may be read without
additional latency caused by the decompression operation.

In addition in the preferred embodiment is a compression
engine 260 which is also coupled to the SRAM Buffer 160,
the ECC/EDC Unit 220 or alternatively directly to the flash
memory interface 120, and to the Compression Control unit

15

20

30

35

40

45

50

55

60

65

31

10

300. Compression engine 260 of the present invention is
only necessary if real time, high speed compression is
necessary on write data to the Flash Memory System 900. In
alternate embodiments, such as the XIP model, the com-
pression engine 260 is not necessary as either the Main CPU
400, or the compiler can compress the instructions and data
values in non-real-time as a preoperation to actual execution
of the instructions or usage of the data. In the preferred
embodiment, for computer system file storage these writes
are necessary and are a regular component of the flash
system 900. In this environment it is necessary to compress
data for file system storage and thus a parallel compression
engine 260 is desirable.

Again in reference to FIG. 3, the Compression Control
unit and Data Directory 300 performs all control of the logic
blocks indicated and performs address translation for the
compression directory services. As indicated in FIG. 3 the
Compression Control unit 300 has a data bus 109 that
couples to the memory interface 120. In the preferred
embodiment “header-data” is multiplexed into the com-
pressed data stream for storage along with the compressed
data into the Flash Memory Array 100. The Compression
Control unit contains a translation unit that converts the
input request address 117 into compressed block address

25 used to access compressed blocks from the Flash Memory

Array during decompression. The Compression Control
block 300 may couple to the Bus Interface Unit 180, the
SRAM Buffer 160, the Compression Engine 260, the Bypass
Unit 240, the Decompression Engine 280, the ECC/EDC
unit 220, the flash memory interface unit 120 the DC/DC
Converter 190 and finally the Flash Memory Array 100.
Control of all the internal blocks is preformed by the
Compression Control Unit 300. Thus, in the preferred
embodiment, the Compression Control unit 300 is the main
control unit for the CEFMC 200.

The Flash Memory Array 100 comprises non-volatile
flash memory storage cells with standard array row address
and control for reads, writes, and programming of the cells
in the array. In addition the Flash Memory Array 100
couples to a DC/DC Converter 190 in-order to clear flash
memory blocks within the Flash Memory Array 100. The
Compression Control unit 300 also may couple to the Flash
Memory Array 300 for additional control during program,
reads, and writes of the array. The Flash Memory Data Bus
110 may be of varying widths as necessary for the process
of the array or for specific application environments. In the
preferred embodiment, the array 100 is monolithic with the
CEFMC 200 and the data bus 110 from the array is 128 bits
or wider. This width is also dependent on the final data
transfer rate of the preferred invention and is documented
later in this disclosure.

In alternate embodiments, the same benefit of compres-
sion and decompression can be achieved by use of the
compression and decompression engines at the Micropro-
cessor 400 memory control interface. As illustrated in FIG.
4, the Compression Enhanced Memory Controller (CEMC)
910 of the present invention may be implemented as an
external or embedded unit in the MPU 400 device. Thus, the
entire system can benefit from the parallel compression and
decompression procedure of the present invention. FIG. 4
shows the preferred embodiment of the MPU unit 400, the
dedicated Compression Cache 425, the decompression
engine 280, Compression Engine 260, Compression Control
and data directory unit 300, and the Memory Interface and
Bus Timing unit 185. MPU unit 400 may also include bypass
logic (not shown). The Compression Enhanced Memory

Controller (CEMC) unit 910 is coupled to the Micro Pro-

6,145,069

11

cessing Unit 400 which preferably in combination forms the
embedded MPU unit 920. The embedded MPU Unit 920 is
coupled to the Flash Memory System 900 (which in this
alternate embodiment does not require the present inven-
tions CEMFC 200, and may be implemented with the prior
art system of FIG. 1 or FIG. 2). The embedded MPU 400 is
preferably coupled to the Flash Memory System 900 and to
the main memory bank 440 of the system. In this
embodiment, all units may be configured as a system on chip
(SOC) or as individual components in a non-monolithic
environment. Thus, Embedded Memory 440, typically ori-
entated in arrays, represent on-chip data storage area for
volatile containment of instructions and data. Embedded
memory typically is of Static Random Access Memory
(SRAM) or Dynamic Random Access Memory (DRAM)
form. In the present embodiment of the CEMC 910, Com-
pression Cache memory 425 is coupled to the Micro Pro-
cessor Unit 400, the Decompression engine 280, the com-
pression engine 260, the bypass logic 240 and the

Compression Control unit 300. The Memory interface and 2

timing unit 185 is coupled to the System Interface Bus 118
and performs the proper timing, address, data, and control
interface to the Bus 118 according to the system bus protocol
specifications. The memory interface 185 also couples to the
Compression Control unit 300, Decompression Engine 280,
Bypass Logic 240 and the Compression Engine 260. The
memory interface and timing unit 185 performs the data
transfer functions between the compression and decompres-
sion engines and the system interface 118. In addition, the
memory interface and timing unit 185 controls the data
transfer between the Flash Memory System 900 and the
main memory bank 440.

Operation of the CEMC 910, as illustrated in FIG. 4, is to
compress data and assign directory information to the com-
pressed data transferred between the Cache Memory unit
425 and external system memory such as the Flash Memory
Array 900 and/or the main memory 440. Control of com-
pression operation address locations and compression block
size is under software or firmware control. Software or
firmware instructions for such controls located in embedded
or external ROM, the Flash Memory System 900, or in Main
Memory 440. In addition, the MPU 400 may read decom-
pressed data from the Compression Cache 425, the Flash
Memory System 900, the Main Memory 440 or other
external memory systems not shown in FIG. 4. Data that has
been stored compressed in the Flash Memory System 900 or
System Memory 440, is decompressed and either executed
directly from the Decompression Engine 280, or
decompressed, stored in the Compression Cache 425 for
execution by the MPU 400. The Compression Cache Control
unit 300 preferably performs the cache control functions by
looking at the address from the MPU 400 and making the
determination for compression, decompression, bypass, or
cache hit operations.

Another possible embodiment of the XIP model is shown s:

in FIG. 5. Here the CEFMC is illustrated without the
Compression Engine 260 shown in the CEFMC of FIG. 3.
FIG. 5 shows the Main Memory 440 and the MPU 400
coupled to the System Bus 118, which is coupled to both the
Bus Interfacel 80 and the Compression Control Directory
300. The Data Buffer 160 is coupled to the Bus Interface 180
and to both the Decompression Engine 280 and the bypass
logic 240. The Error Correction and Error Detection Con-
troller 225 is coupled to both the Decompression Engine 280
and the Bypass Logic 240, and to the Flash Memory
Interface and byte multiplexes 120. As indicated, the ECC/
EDC unit of the current embodiment does not require the

15

30

35

40

45

50

60

65

32

12

“ware logic” as in the solid state disk environment. This is
due to the fact that writes to the flash array in the current
embodiment are very seldom done; usually only for field
upgrades of firmware. The Flash Memory Interface 120 is
coupled to the Flash Memory Array 100. The Compression
Control Unit 300 connects to the System Bus 118, the Bus
Interface Unit 180, the Data Buffer 160, the Decompression
Engine 280, the Bypass Logic 240, the ECC/EDC unit 225,
the flash memory interface 120 and the Flash Memory Array
100. In this present embodiment of FIG. 5, the compression
is either preformed by the compiler software prior to run-
time execution or by the firmware or software running on
cither the embedded MPU 400 of FIG. 1, or the external or
ecmbedded MPU 400 of FIG. 2 or FIG. 3. In addition, the
embodiment of FIG. § operates similar to the internal units
as illustrated and documented in FIG. 3 without the need for
hardware compression. The directory and compression
directives are embedded by the user software at compilation
time. The Compression Control Block 300 is simplified and
is now only required to perform the control for the decom-
pression and/or bypass operation as previously defined.
The compression control unit 300 controls the operation
of the compression, decompression, bypass and memory
control functions of the present invention. FIG. 6 indicates
a control block that can be used for any of the embodiments
disclosed. Note that in some cases elements of the compres-
sion controller 300 are not needed. The address, data, and
control interface may enter into multiple internal logic units
in compression controller 300. The compression overflow
and translation unit 310 performs the allocation of compres-
sion addresses and overflow memory allocation. This unit
couples to the Directory and Header Generation Logic 360
which generates header and packet information for the Flash
Memory Interface Unit 120. The Compression Overflow and
Translation Address unit 310 also determines the compres-
sion block size and the memory page address. The Com-
pression block size information is coupled to the Compres-
sion and Decompression Control logic 340 for eventual
control of the compression and decompression engine opera-
tion. Also, the Command Interpretation and Control unit 320
interfaces to the System Bus 118. This unit traps instructions
from the embedded MPU 140 or external MPU 400 when
indicated by either a specific address or by conditions on the
Bus Control 119 inputs from the System Bus 118. Instruc-
tions are decoded by the Command Interpreter 320 for
control and process flows indicated in FIGS. 7 & 8. The
Command Interpretation and Control unit 320 couples to the
Compression and Decompression Control logic unit 340, the
Control Interface Address Decoder 330 and the ECC/EDC
Memory control unit 350. Commands are sent to ecach of
these units to control other units within the CEFMC 200
and/or CEMC 910 of the present invention. Additionally, the
Control Interface Address Decoder Unit 330 also may
couple to the System Bus 118 to decode address ranges for
proper command, operation and control. This unit couples to
the Compression Translation Address logic 310, the Com-
mand Interpretation unit 320, and the Bypass Logic 240, and
performs the Row address 104 calculation for the Flash
Memory Array 100. The Control Interface unit 330 receives
the page address from the Translation Table unit in the
Compression Overflow and Translation Address generator
310 to determine the correct address required in the Flash
Memory Array 100. Error Correction and Memory Control
unit 350 performs the required control for both the ECC/
EDC byte multiplexer 220 and the Flash Memory Interface
Unit 120 and may include some control information for the
Flash Memory Array 100. The Directory and Header Gen-

6,145,069

13

eration logic 360 couples to the Compression Overflow and
Address Translation unit 310 and the Compression/
Decompression Control logic 340 and performs the genera-
tion of the header data and controls the insertion by the
header data into the compressed data stream at the Memory
Interface unit 120 via Control Bus 109. Header data is
defined as the information needed to describe to the decom-
pression engine specific information during the decompres-
sion process 1o decompress the data of the present compres-
sion block. In the embodiment where Compression Cache
425 memory is used for data storage buffers for de-coupling
of decompression data from the system interface 118, the
Cache and Coherency Controller 370 may be required. The
Cache and Coherency Controller 370 couples to the
compression/decompression Control logic 340, the com-
pression overflow unit 310, and the Compression Cache
Memory 160 for generation and notification for Compres-
sion Cache control. This unit 370 may contain tag address
tables for cache hit/miss information and may also contain
other logic necessary to control the system coherency.
The access flow diagram for the solid-state disk embodi-
ment 10 illustrated in FIG. 7. This flow-chart describes the
CEFMC operation of the preferred embodiment 10 illus-
trated in FIGS. 3 and 6. FIG. 7 shows the process for read
access and write access, 1o/from the Flash Memory System
900. The flow diagram of FIG. 7 is for data that resides either
in the SRAM Buffer 160 or in the Flash Memory Array 100.
In the first step of FIG. 7, access to the solid state disk drive
900 must be established as indicated in block 3010. If the
correct System Bus 118 address and control are present, the
initial decoder indicates the initiation of an access cycle.
After selection, an address decode is performed in block
3020. If not, the fash disk system 900 continues to wait for
the next select cycle indicated on the System Bus 118. After
the address for the flash disk system 900 is decoded, it is
possible to determine if the disk access request is a “control
instruction” or “command” indicated in step 3030. If the
address decode step 3020 indicates a “command” then the
process proceeds to block 3140 where the command is
interpreted and written to the appropriate control register for
exccution. If not a command or instruction, the flow pro-
ceeds with step 3040 to determine if the requested address
has already been decompressed with the access data cur-
rently valid and stored in the Data Buffer 160. If the
requested access address indicates a valid “hit” in the data
buffer the process proceeds with step 3070. Step 3070
determines if the operation is a read or a write to/from the
Data Buffer 160. In step 3070 any cache or buffer mainte-
nance o indicate the last transaction is also performed. As
indicated in 3080, this process continues until the entire
requested operation is completed. If at any time the trans-
action address does not represent data in the range of the
Data Buffer 160, then the flow continues with step 3050,
where a determination of flash memory access vs. flash
memory storage is required. Assuming the general case in
3050 which is a read access of the Flash Memory Array 100,
the flow continues with step 3060. The CEFMC Compres-
sion Control unit 300 now determines the access translation
address by translating the System Bus 118 address into the
compression block address. The flow continues with the
derivation of the Flash Memory Array 100 row address and
compressed data access indicated in step 3090. Accessed
data from the Flash Memory Array 100 is then transferred to
the ECC/EDC block 220 by the Flash Memory Interface
Unit 120. The process of step 3100 is to error correct and/or
error detect the incoming compressed dala stream. Also in
step 3100 is the compression header extraction operation to

20

30

35

4(

45

50

55

60

65

33

14

determine the proper control states for the decompression
engine 280. In the header extraction process, the Flash
Memory Interface 120 passes the compressed data header to
the Compression Control unit 300, and the Compression
Control unit 300 then extracts information from the header
for use in the following decompression process. In Step 3110
the Decompression Engine 280 decompresses the error
corrected compressed data under control of the Compression
Control unit 300. Once the data is in decompressed format,
it is written to the Data Buffer 160 and on to the System Bus
Interface unit 180 for timing and synchronization to the
System Bus 118 protocol requirements. A check is made in
step 15; 3130 to see if additional blocks are required to
complete the entire read transaction. If so, the process
proceeds with step 3060 to begin the address translation for
the next compressed block read. If the entire access transi-
tion is complete, the process idles in step 3010 awaiting the
next transaction request from the System Bus 118.
Referring to step 3050 again, if the transaction is a solid
state disk write request, the process continues in step 3150.
It is assumed that data must be compressed into the Flash
Memory Array 100. Step 3150 must determine if any blocks
of the Flash Memory Array 100 are cleared and ready for the
write data. Not shown in this flow diagram is the process for

25 clearing Flash Memory Array 100 blocks for storage of data

pages onto the Flash Disk System 900. After identification
of the open flash block, a reallocation of the block address,
and if necessary, a de-allocation of the old block address, the
CEFMC 200 is ready to proceed to step 3160. It is assumed
that the input write data is latched into the Compression
Engine 260 under control of the Compression Control unit
300. Step 3170 then starts the compression process as the
Compression Control unit 300 develops the compression
header and assigns a translation address for storage of the
compressed block into the Flash Memory Array 100.
Typically, multiple compression blocks make up one data
page of storage. In step 3180 the Compression Control unit
300 continues to latch data and compress data (steps 3160 &
3170) until the compression block has been completed. Step
3180 determines il a new compression block needs o be
started, and, if so, continues to step 3190 where the com-
pression block header is built with specific information
about the compression block. In step 3200 the ECC data is
calculated and combined with the compressed data and sent
along with the compression block header data to be merged
in the Flash Memory Interface and byte multiplex unit 120.
The final compressed block with header and error correction
information is then written to the Flash Memory Array 100
in step 3210. This process continues in step 3220 until all the
entire page of data from the System Bus 118 has been
compressed and stored into the Flash Memory Array 100.
The flow of FIG. 7 assumes that only page transfer read and
writes are performed. Not indicated is the operation for
partial block access or specific partial block writes. This
operation is discussed in some detail in the XIP flow of FIG.
8.

The preferred read transaction flow for the CEFMC 200
is shown in FIG. 8. FIG. 8 indicates the preferred process
flow for the embodiment as indicated in FIG. 5 of the present
invention. This XIP model assumes that software compres-
sion of the data is preformed at compilation time, and a
compressed image is written into Flash Memory Array 100
prior fo run-time operation. In this “mostly read-only”
model instructions and data are read directly from the Flash
System 900, and any data modification is kept during
operation in either the Main Memory 440 or dedicated MPU
Memory 420. Starting with the access selection from the

6,145,069

15

System Bus 118 to the CEFMC 200 in step 3440, the flash
controller stays in idle until the proper state of the System
Bus 118 indicates a transaction to the Flash Memory Array
100. If selected, an address decode process in step 3450
determines the type of operation required by the System Bus
118 or system MPU 400. Step 3450 determines if the
transaction is an instruction or command to the CEFMC 200
for internal control. If a command, the process continues
with step 3140 to process the command or control operation.
If not a command, the process continues with a determina-
tion if the address for transaction has data that is currently
valid in the Compression Cache 425, thus in step 3460 a
cache hit or miss is determined. If a Compression Cache hit
is determined by the Compression Control unit 300, the
process continues with step 3410 where a read or write of the
cache block or sub-block address is completed. Step 3410
completes the read or wrile transaction while step 3420
updates the state of the cache controller. A determination is
then made to see if more data is required to be read or written
during the transaction in step 3420. If the transaction is
complete and requires no access of the Flash Memory Array
100, then the process continues to idle in step 3440 waiting
on the next transaction. If more data is required to complete
the fransaction request, then a new cache hit status must
again be determined in step 3460.

Assuming a cache miss in step 3460, and the bypass mode
is not selected, the Flash Memory Array 100 must be
accessed for both read and write data. Step 3470, under
control by the Compression Control unit 300, performs the
address translation and header block extraction to start the
flow of compressed data from the Flash Memory Array 100.
As compressed data is read from the Flash Memory Array
100, by the Flash Memory Interface 120 under control by the
Compression Control Block 300, the Error Correction and
Detection unit 225 in step 3480 processes the compressed
data for ECC and EDC. The process continues with the
Decompression Engine 280 decompressing the data from the
ECC/EDC unit 225 as indicated in step 3490. In step 3530,
the decomopressed data is written to the Cache 160 and
output to the requested byte address. The process loop of
steps 3460 to 3500 continues until a complete compressed
block has been decompressed from the Flash Memory Array
100. In step 3500 the Compression Control unit 300 deter-
mines il more data to complete the compression block
decompression process needs to be read from the Flash
Memory Array 100 or if the end of the burst address has been
reached. If more data is required the process continues at
step 3460 where the cache hit/miss is again determined. If
the compression block has been completely decompressed to
cache memory and no more blocks are required the process
continues by updating the cache LRU/MRU state in step
3520. Once completed this process begins again at step 3440
waiting for the next read access.

Referring to FIG. 9, the preferred embodiment for the
process of the embedded implementation of the present
invention is illustrated. This embodiment is illustrated in
FIG. 4 wherein the present invention is embedded and serves
as the Memory Controller (CEMC) 910 of the MPU 400.
The improvement of this embodiment is to allow system
data, other than just flash memory, the opportunity to use
compression. System data is defined as any data hat is
transferred on the System Bus 118 between any of the
internal or external components. Again, the high speed low
latency parallel compression operation allows the present
invention to fit “in-line” with the data flow to and from the
Main Memory 440 located on the System Bus 118. In the
present embodiment of FIG. 4, the Compression Cache 425

20

30

35

4(

45

50

55

60

65

34

16

contains uncompressed data and may be similar to prior art
cache memory design. The difference between the present
embodiment of FIG. 4, and other embodiments is when
writing data smaller than the compression block that has
been flagged as cache miss data. In such a case data must
first be read from Main Memory 440 or Flash Memory
System 900, decompressed and merged with the write data.
The output write data is stored in cache for use and is
re-compressed then written back to memory for storage.
This process flow is outlined in FIG. 9 of the present
invention. Starting with the access selection from the Sys-
tem Bus 118 to the CEMC 910 in step 3440, the memory
controller 910 stays in idle until the proper state of the
System Bus 118 indicates a transaction to the Flash Memory
Array 100, If selected, an address decode process in step
3450 determines the type of operation required by the
System Bus 118 or system MPU 400. Step 3450 determines
if the transaction is an instruction on command to the
CEFMC 200 for internal control. If the transaction is an
instruction or command, the process continues with step
3140 to process the command or control operation. If not an
instruction or command, the process continues by determin-
ing if the address for transaction has data that is currently
valid in the Compression Cache 425. Thus in step 3460 a
cache hit or miss is determined. If a Compression Cache 420
hit is determined by the Compression Control unit 300, the
process continues with step 3410 where a read or write of the
cache block or sub-block address is completed. Step 3410
completes the read or write transaction while step 3420
updates the state of the cache controller. A determination is
then made to see if more data is required to be read or written
during the transaction in step 3420. If the transaction is
complete and requires no access of the Flash Memory Array
100, then the process continues to idle in step 3440 waiting
on the next transaction. If more data is required to complete
the transaction request, then a new cache hit status must
again be determined in step 3460. Assuming a cache miss in
step 3460, and the bypass mode is not selected, the Flash
Memory Array must be accessed for both read and write
data. Step 3470, under control of the Compression Control
unit 300, performs the address translation, and header block
extraction to start the flow of compressed data from the
Flash Memory Array 100. As compressed data is read from
the Flash Memory Array 100 of the Flash memory interface
120 under control by the compression control block 300, the
Error Correction and Detection unit 225 in step 3480 pro-
cesses the compressed data for ECC and EDC. The process
continues with the Decompression Engine 280 decompress-
ing the data from the ECC/EDC unit 225 as indicated in step
3490. The process loop of steps 3460 to 3500 continues until
a complete compressed block has been decompressed from
the Flash Memory Array 100. In step 3500 the Compression
Control unit 300 determines if more data is needed to
complete the compression block decompression process. If
so, more data is read from the Flash Memory Array 100. If
not, then the end of the burst address has been reached. If
more data is required the process continues at step 3460
where the cache hit/miss is again determined. If the com-
pression block has been completely decompressed to cache
memory 425 and no more blocks are required the process
continues by updating the cache LRU/MRU state in step
3520. Once completed this process begins again at step 3440
waiting for the next read access. If after the end of block
address is reached in step 3500, then in step 3510, if the
process is a write, the write data must be merged with read
data from the same compression block area. In step 3540 the
write data is merged with the previously decompressed read

6,145,069

17

data in the Cache Memory 425. Once the write data is
merged, step 3550 updates the LRU/MRU cache state and
proceeds to complete the write cycle. In step 3560 if the
latest write block forces a write back of the LRU block, then
the process continues with step 3570. If not, and open cache
blocks were available then the process returns into the idle
state of step 3440 and waits for the next transaction request.
If LRU data is retired to the Flash Memory System 900, the
Flash Memory Controller 200 embedded within the Flash
Memory System 900 must return the address of a cleared
block of flash memory for write back of the compressed
LLRU as indicated in step 3570. The retired LRU data may be
compressed as indicated in step 3580 and then written back
into the Flash Memory Array 100 shown in step 3590. Thus,
for increased system performance and lower costs the
embedded compression and decompression architecture of
the present invention is a substantial improvement from
prior art Flash memeory controllers.

Now referring to the increased performance aspects of the
present invention, the advantages of using compression and
decompression within the embedded system are shown. For
the present embodiment a good example of the performance
and cost advantages can be illustrated using the execute in
place application of FIG. 5. Data is clocked out of the Flash
Memory Array 100 on a 32-bit bus at 40 ns for every four
bytes. This is considered the flash memory “source”™ rate.
The “sink” rate is the maximum System Bus 118 bandwidth
running at 66 MHZ, which is equivalent to four bytes every
16 ns. If the average compression ratio for the parallel
compression algorithm is 2.5:1 then the output rate of the
Flash Memory Array 100 after decompression will be 40/2.5
ns per four bytes read, or 16 ns/Byte thus matching the 66
MHZ maximum bus speed requirements. In addition the
effective density of the flash memory is now 2.5 times larger
than without the use of the present invention. Thus the use
of the present invention can greatly increase the system
performance while decreasing the per-bit effective cost of
storage.

Paralle]l Lossless Compression and Decompression

The parallel compression/decompression units or engines
260 and 280, in combination referred to as codec engine
260,280, which perform parallel compression and decom-
pression functions, are now discussed. The codec engine
2601280 is preferably a dedicated codec hardware engine,
c.g., the engine is comprised of logic circuitry. In one
embodiment, the codec engine 260/280 comprises a pro-
grammable DSP or CPU core, or programmable
compression/decompression processor, with one or more
ROMs or RAMs which store different sets of microcode for
certain functions, such as compression, decompression, spe-
cial types of graphical compression and decompression, and
bit blit operations, as desired. In another embodiment, the
codec engine 260/280 dynamically shifts between the dif-
ferent sets of microcode in the one or more memories,
depending on the function being performed. The
compression/decompression engine may also be imple-
mented using reconfigurable or programmable logic, ¢.g.,
one or more FPGAs.

As shown in FIGS. 3 and 4, in some embodiments, the
engine 260/280 preferably includes a lossless parallel data
compression engine 260 and parallel decompression engine
280 designed to compress and decompress data as data is
transferred to/from flash memory. Other embodiments, as
illustrated in FIG. 5, may be implemented with only a
decompression engine 280. The compression engine 260
and decompression engine 280 may be constructed using
any of the techniques described with reference to the engine

15

20

30

35

40

45

50

55

60

65

35

18

260/280, including hardware engines comprised of logic
circuitry, programmable CPUs, DSPs, a dedicated
compression/decompression processor, or reconfigurable or
programmable logic, to perform the parallel compression
and decompression method of the present invention. Various
other implementations may be used to embed a
compression/decompression within the flash memory con-
troller according to the present invention. In one
embodiment, the compression engine 260 and decompres-
sion engine 280 comprise hardware engines in the CEFMC
200 as shown in FIG. 3. In another embodiment, the
compression engine 260 and decompression engine 280
comprise hardware engines in the CEMC 910 as shown in
FIG. 4. In yet another embodiment, the decompression
engine 280 comprises a hardware engine in the CEFMC 200
as shown in FIG. 5, In the following description, the parallel
compression and decompression unit is described as having
separate compression and decompression engines 260 and
280.

In the various embodiments, the compression engine 260
and decompression engine 280 comprise one or more hard-
ware engines that perform a novel parallel lossless compres-
sion method, preferably a “parallel” dictionary based com-
pression and decompression algorithm. The parallel

25 algorithm may be based on a serial dictionary based

algorithm, such as the LZ77 (preferably LZSS) dictionary
based compression and decompression algorithm. The par-
allel algorithm may be based on any variation of conven-
tional serial LZ compression, including LZ77, LZ78, LZW
and/or LZRW1, among others,

The parallel algorithm could also be based on Run length
Encoding, Predictive Encoding, Huffman, Arithmetic, or
any other lossless compression algorithm. However, the
paralleling of these is less preferred due to their lower
compression capabilities and/or higher hardware costs.

As a base technology, any of various lossless compression
methods may be used as desired. As noted above, a parallel
implementation of LZSS compression is preferably used,
although other lossless compression methods may allow for
fast parallel compression and decompression specifically
designed for the purpose of improved memory bandwidth
and efficiency.

FIG. 10A—Prior Art, Serial LZ Compression

Prior art has made use of the LZ compression algorithm
for design of computer hardware, but the bandwidth of the
data stream has been limited due to the need to serially
review the incoming data to properly generate the com-
pressed output stream. FIG. 10A depicts the prior art normal
history table implementation.

The LZ compression algorithm attempts to reduce the
number of bits required to store data by scarching that data
for repeated symbols or groups of symbols. A hardware
implementation of an LZ77 algorithm would make use of a
history table to remember the last n symbols of a data stream
so that they could be compared with the incoming data.
When a match is found between the incoming stream and the
history table, the matching symbols from the stream are
replaced by a compressed symbol, which describes how to
recover the symbols from the history table.

FIG. 10B—Parallel Algorithm

The preferred embodiment of the present invention pro-
vides a parallel implementation of dictionary based (or
history table based) compression/decompression. By
designing a parallel history table, and the associated com-
pare logic, the bandwidth of the compression algorithm can
be increased many times. This specification describes the
implementation of a 4 symbol parallel algorithm which

6,145,069

19

results in a 4 times improvement in the bandwidth of the
implementation with no reduction in the compression ratio
of the data. In alternate embodiments, the number of sym-
bols and parallel history table can be increased and scaled
beyond four for improved parallel operation and bandwidth,
or reduced to ease the hardware circuil requirements. In
general, the parallel compression algorithm can be a 2
symbol parallel algorithm or greater, and is prelerably a
multiple of 2, e.g., 2,4, 8, 16, 32, etc. The parallel algorithm
is described below with reference to a 4 symbol parallel
algorithm for illustrative purposes.

The parallel algorithm comprises paralleling three parts of
the serial algorithm: the history table (or history window),
analysis of symbols and compressed stream selection, and
the output generation. In the preferred embodiment the
data-flow through the history table becomes a 4 symbol
parallel flow instead of a single symbol history table. Also,
4 symbols are analyzed in parallel, and multiple compressed
outputs may also be provided in parallel. Other alternate
embodiments may contain a plurality of compression win-
dows for decompression of multiple streams, allowing a
context switch between decompression of individual data
blocks. Such alternate embodiments may increase the cost
and gate counts with the advantage of suspending current

block decompression in favor of other block decompression 2

to reduce latency during fetch operations. For case of
discussion, this disclosure will assume a symbol to be a byte
of data. Symbols can be any reasonable size as required by
the implementation. FIG. 10B shows the data-flow for the
parallel history table.

FIG. 11—High Level Flowchart of the Parallel Compres-
sion Algorithm

FIG. 11 is a high-level flowchart diagram illustrating
operation of the parallel compression algorithm in the pre-
ferred embodiment. Steps in the flowchart may occur con-
currently or in different orders.

In step 402 the method maintains a history table (also
called a history window) comprising entries, wherein each
entry may comprise one symbol. The history table is pref-
erably a sliding window which stores the last n symbols of
the data stream.

In step 404 the method maintains a current count of prior
matches which occurred when previous symbols were com-
pared with entries in the history table, A count is maintained
for each entry in the history table.

It is noted that maintenance of the history table and the
current counts are performed throughout the algorithm based
on previously received symbols, preferably starting when
the first plurality of symbols are received for compression.

In step 406 the method receives uncompressed data,
wherein the uncompressed data comprises a plurality of
symbols. Thus the parallel compression algorithm operates
on a plurality of symbols at a time. This is different than
conventional prior art serial algorithms, which operate in a
serial manner on only one symbol at a time. The plurality of
symbols comprises 2 or more symbols, preferably a power
of 2. In the preferred embodiment, the parallel compression
algorithm operates on 4 symbols at a time. However, imple-
mentations using 8, 16, 32 or more symbols, as well as other
non-power of 2 numbers, may be readily accomplished
using the algorithm described herein.

In step 408 the method compares the plurality of symbols
with each entry in the history table in a parallel fashion. This
comparison produces compare results. Each entry in the
history table preferably compares with each of the plurality
of symbols concurrently, ie., in a parallel fashion, for
improved speed.

15

20

30

35

40

45

50

55

60

65

36

20

In step 410 the method determines match information for
each of the plurality of symbols based on the current count
and the compare results. Step 410 of determining match
information includes determining zero or more matches of
the plurality of symbols with each entry in the history table.
More specifically, step 410 may include determining a
longest contiguous match based on the current count and the
compare results, and then determining if the longest con-
tiguous maltch has stopped matching. If the longest contigu-
ous match has stopped matching, then the method resets or
updates the current counts.

As noted above, stop 410 also includes resetting the
counts for all entries if the compare results indicate a
contiguous match did not maich one of the plurality of
symbols. The counts for all entries are preferably reset based
on the number of the plurality of symbols that did not match
in the contiguous match. In the preferred embodiment, the
method generates a reset value for all entries based on the
compare results for a contiguous match. The reset value
indicates a number of the plurality of symbols that did not
match in the contiguous match as indicated in the compare
results. The method then updates the current counts accord-
ing to the compare results and the reset value.

In step 412 the method outputs compressed data infor-
mation in response lo the match information. Step 412 may
involve outputting a plurality of sets or compressed data
information in parallel, e.g., for different matches and/or for
non-matching symbols. Step 412 includes outpuiting com-
pressed data information corresponding to the longest con-
tiguous match that stopped matching, if any. The contiguous
match may involve a match from a prior plurality of sym-
bols. Step 412 may also include outputting compressed data
information solely from a prior match. Step 412 also
includes, for non-matching symbols that do not match any
entry in the history table, outputting the non-matching
symbols in an uncompressed format.

For a contiguous match, the compressed data information
includes a count value and an entry pointer. The entry
pointer points to the entry in the history table that produced
the contiguous match, and the count value indicates a
number of matching symbols in the contiguous match. In
one embodiment, an encoded value is output as the count
value, wherein more often occurring counts are encoded
with fewer bits than less often occurring counts.

Steps 402-412 are repeated one or more times until no
more data is available. When no more data is available, then,
if any current counts air, non-zero, the method outputs
compressed data for the longest remaining match in the
history table.

Since the method performs parallel compression, operat-
ing on a plurality of symbols at a time, the method preferably
accounts for symbol snatches comprised entirely within a
given plurality of symbols, referred to as the “special case”.
Here presume that the plurality of symbols includes a first
symbol, a last symbol, and one or more middle symbols.
Step 410 of determining match information includes detect-
ing if at least one contiguous match occurs with one or more
respective contiguous middle symbols, and the one or more
respective contiguous middle symbols are not involved in a
match with either the symbol before or after the respective
contiguous middle symbols. If this condition is detected,
then the method selects the one or more largest non-
overlapping contiguous matches involving the middle sym-
bols. In this instance, step 412 includes outputting com-
pressed data for each of the selected matches involving the
middle symbols.

6,145,069

21

FIG. 12—Detailed Flowchart of the Parallel Compression
Algorithm

FIG. 12 is a more detailed flowchart diagram illustrating
operation of the parallel compression algorithm in the pre-
ferred embodiment. Steps which are similar or identical to
steps in FIG. 11 have the same reference numerals for
convenience.

In the flowchart of FIG. 12, it is presumed that the method
maintains a history table comprising entries, wherein each
entry comprises one symbol. The history table is preferably
a sliding window which stores the last n symbols of the data
stream. It is also presumed that the method maintains a
current count of prior matches that occurred when previous
symbols were compared with entries in the history table. A
count is maintained for each entry in the history table. As
noted above, the maintenance of the history table arid the
current counts are performed throughout the algorithm,
preferably stating when the first plurality or symbols are
received for compression.

In step 406 the method receives uncompressed input data,
wherein the uncompressed data comprises a plurality (or
group) of symbols. Thus the parallel compression algorithm
operates on a plurality of symbols at a time. This is different
than conventional prior art algorithms, which operate in a
serial manner on only one symbol at a time. The plurality of
symbols comprises 2 or more symbols, preferably 4 sym-
bols. As noted above, the parallel compression algorithm can
operate on any number of symbols at a time. The input data
may be the first group of symbols from a data stream or a
group of symbols from the middle or end of the data stream.

In step 408 the method compares the plurality of symbols
with each entry in the history table in a parallel fashion. This
comparison produces compare results. Each entry in the
history table preferably compares with each of the plurality
of symbols concurrently, ie., in a parallel fashion, for
improved speed.

In step 422 the method determines zero or more matches
or the plurality of symbols with each entry in the history
table. In other words, in step 422 the method determines, for
cach entry, whether the entry matched any of the plurality of
symbols. This determination is based on the compare resulls.

If no matches are detected for the plurality of symbols in
step 422, then in step 432 the method determines if any
previous matches existed. In other words, step 432 deter-
mines if one or more ending symbols form the prior group
of symbols matched entries in the history table, and com-
pressed information was not yet output for these symbols
since the method was waiting for the new plurality of
symbols to possibly determine a longer contiguous match. If
one or more previous maltches existed as determined in step
432, then in step 434 the method outputs the previous
compressed data information. In this case, since the prior
matches from the prior group of symbols are not contiguous
with any symbols in the current group, the previous com-
pressed data information is output. After step 434, operation
proceeds to step 436.

If no previous matches existed as determined in step 432,
or after step 434, then in step 436 the method outputs each
symbol of the plurality of symbols as uncompressed sym-
bols. Since each of the plurality of symbols does not match
any entry in the history table, then each of the plurality of
symbols are output in an uncompressed format. After step
436, in step 438 all counters are reset to 0. In step 472 the
uncompressed symbols are added to the history window, and
operation returns to step 406 to receive more input data, i.e.,
more input symbols.

If one or more matches are detected for the plurality of
symbols in step 422, then in step 442 the method determines

15

20

30

35

40

45

50

60

65

37

22

if all of the plurality of symbols are comprised in one match.
If so, then in step 444 the method increases the count for the
respective entry by the number of matching symbols, e.g., 4
symbols. In step 474 the uncompressed symbols are added
to the history window, and operation returns to step 406 to
receive more input data, i.e., more input symbols. In this
case, the method defers providing any output information in
order to wait and determine if any symbols in the next group
contiguously match with the current matching symbols.

If all or the plurality of symbols are not comprised in one
match as determined in step 442, then in step 452 the method
determines if any previous matches existed. The determina-
tion in step 452 is similar to the determination in step 432,
and involves determining if one or more ending symbols
from the prior group of symbols matched entries in the
history table, and compressed information was not yet
output for these symbols since the method was waiting for
the new plurality of symbols to possibly determine a longer
contiguous match.

If one or more previous matches existed as determined in
step 452, then in step 454 the method selects the largest
contiguous maltch including the previous match. In step 456
the method outputs compressed data information regarding
the largest contiguous match. This compressed data infor-

25 mation will include previous compressed data information,

since it at least partly involves a previous maltch from the
previous group of symbols. If the first symbol in the current
plurality of symbols is not a contiguous match with the
previous match, then the compressed data information will
comprise only the previous compressed data information.
After step 456, operation proceeds (o step 462,

Steps 462—470 are performed for each input symbol in a
parallel fashion, In other words, steps 462—470 ale per-
formed concurrently for each input symbol, Steps 462-470
arc shown in a serial format for ease of illustration.

In stop 462 the method determines if the respective
symbol is included in any match. If not, then in step 464 the
method outputs the uncompressed symbol. In this case, the
respective symbol does not match any entry in the history
table, and thus the symbol is output uncompressed.

If the respective symbol is included in a match as deter-
mined in step 462, then in step 466 the method determines
if the match includes the last symbol. If not, then in step 468
the method outputs compressed data information for the
match. It is noted that this may involve a “special case”
involving a match comprising only one or more middle
symbols.

I the match does include the last symbol as determined in
step 466, then in step 470 the method resets counters to the
maximum of the symbol count in the match. In this case,
compressed information is not output for these symbols
since the method waits for the new plurality of symbols to
possibly determine a longer contiguous match.

Once steps 462—470 are performed for each input symbol
in parallel, then in step 472 the uncompressed symbols are
added to the history window. Operation then returns to step
406 to receive more input data, i.e., a new plurality or group
of input symbols. If no more input data is available or is
received, then in stop 480 the method flushes the remaining
previous matches, i.e., provides compressed information for
any remaining previous matches.

The method of FIG. 12 also accounts for matches within
the middle symbols as described above.

FIGS. 13 and 14—Operation of the Parallel Compression
Algorithm

FIGS. 13 and 14 are hardware diagrams illustrating opera-

tion of the parallel compression algorithm. As with the prior

6,145,069

23

art LZ serial algorithm, each entry of the history table
contains a symbol (byte) of data, which is compared with the
input stream of data 610. The input stream 610 comprises
Data0, Datal, Data2 and Data3. FIG. 13 illustrates an entry
of the history table, referred to as entry D 602. As shown
entry D 602 is compared with each symbol of the input
stream 610. FIG. 13 illustrates Entry D 602 of the parallel
implementation, and its inputs and outputs. Comparators
608 compare each data byte entry with the 4 bytes from the
input stream 610, and generate 4 compare signals (labeled
DO through D3 for entry D). Compare signal DO is used in
entry D. The compare signal D1 will be used by the next
entry E in the history table, compare signal D2 will be used
by entry F, and compare signal D3 will be used by entry G.
Accordingly, entry D uses compare signal 3 from entry A, 2
from compare signal entry B and code 1 from entry C. These
can be seen as inputs to the results calculation block 606 in
FIG. 13. The results of this compare are held in a counter
604 that is part of the entry logic. The counter values are sent
to the compressed stream selection logic 612/614/616 (FIG.
14) to determine if the input data is being compressed or not.
This information is forwarded to the output generation logic
618 which sends cither the uncompressed data to the output,
or the compressed stream data.

The generation of the Output Mask and Output count
from the results calculation block 606, along with the Entry
Counter update value, is described in the table of FIG. 15.
The New Counter Value is calculated by counting the
number of matches that occur beginning with A3 and
continuing to DO. For example, an A3 and B2 match without
a C1 match sets the counter to 2. The special case of all four
compares matching adds 4 to the present counter value.

Generation of the counter output is similar, comprising
the Saved counter (counter value prior to the setting of the
new counter value) plus the count of matches starting with
DO and continuing to A3. The output mask is generated by
inverting the 4 maich signals and adding a 5 signal which
is 1 for all cases except for a special case of a C1 and B2
FI1G. match without a DO or an A3 match. This special case
allows the compression of the two bytes centered in the input
word. The Reset Value will be generated by the selection
logic 612 from the mask value. The reset value is included
in this disclosure as indicated in the table of FIG. 15 for case
of description only.

Compressed Stream Selection Logic

FIG. 14 shows a block diagram of the selection logic
612/614/616 and the outputl stream generation logic 618.
The compressed stream selection logic 612/614/616 collects
the output counters and the output masks from each of the
entries from the results calculation block 606, and generates
indices and counts for the output stream generator 618,
along with the Reset Value which is sent back to each entry.
The indices point to the entries that generated the selected
counts. The main function of the Selection Logic 612/614/

616 is to find the largest blocks to be compressed out of the 53

input stream, ie., the largest contiguous match. This is
accomplished by finding the largest output count from any
entry. Because of the parallel compression, i.e., because a
plurality of symbols are operated on in parallel, there could
be multiple compressed blocks that need to be sent to the
output. Because of this, in the 4 symbol parallel
embodiment, two counts and three indices are provided to
the output logic 618. These are referred to as the Previous
Count and Index, the Max Count and Index, and the L.Z12
index.

Selecting the largest count with a Mask of 11111 gener-
ates the Previous Count and Index. This indicates a com-

15

30

35

40

45

50

60

65

38

24

pressed block that ended with the first data input of this cycle
(ie. the first data input or first symbol could not be com-
pressed with this block). The Index is simply the entry
number that contained the selected count. Selecting the
largest count with a mask that is not 11111 genecrates the
Max Count and Index. This indicates a compressed block
that includes one or more of the 4 symbols received on this
cycle. The mask from this entry is also forwarded to the
output generator 618. The LZ12 index points to any block
that returned a mask of 01111, which is the “special case”.
The special case includes a contiguous match of one or more
middle symbols as described above. A combined compress
mask block 616 generates a combined compress mask
comprising a logical AND of all of the masks, and forwards
this to the Output Generator 618.

Finally, the selected Max Mask and the Reset Value
column in the table of FIG. 15 are used in generating a Reset
Value. This reset value is distributed back to all entries, and
the entries will reset their counters to the minimum of this
value, or their present value.

FIG. 16—Output Stream Generator Flowchart

The output stream generator 618 logic (FIG. 14) generates
the output stream according to the flowchart shown in FIG.
16. The term “CCM” in this Howchart refers to the Com-
bined Compress Mask, and CCM(0) is the least significant
bit as used in the table of FIG. 15. The output generator 618
sends out either uncompressed data, which includes the
proper flags to indicate that it is not compressed, or a
compressed block which includes a flag to indicate this is a
compressed block along with an encoded count and index
that is used by the decompression logic to regenerate the
original input.

As shown, in step 721 the method determines if previous
count equals zero. If no, then the method sends out the
compressed block in step 723 and adjusts the max count to
4 or less in step 725. Operation then advances to step 727.
If previous count is determined to equal zero in step 721,
then operation proceeds directly to step 727.

In step 727 the method determines if Max Count equals
zero, 1f not, then the method determines in step 729 if Max
Mask equals 10000. If not, then the method sends out the
compressed block in step 731. Operation then advances to
step 735, If Max Cnt is determined to equal zero in step 727
or if Max Mask is determined to equal 10000 in step 729,
then operation proceeds directly to step 735.

In step 735 the method determines if CCM (3) equals
zero. il not, then the method sends out data zero in step 733.
Operation then advances to step 737. If CCM (3) is deter-
mined to equal zero in step 735, then operation proceeds
directly to step 737.

In step 737 the method determines if CCM (4,2,1) equals
011. If not, then in step 739 the method determines if CCM
(2) equals 1. If not, then in step 741 the method sends out
data zero, and operation proceeds to step 745, If CCM (2) is
determined to equal 1 in step 739, then operation proceeds
directly 1o step 745, In step 745 the method determines if
CCM (1) equals 1. If not, then in step 747 the method sends
out data zero. Operation then proceeds to step 749. If CCM
(1) is determined to equal 1 in step 745, then operation
proceeds directly to step 749.

If CCM (4,2,1) is determined to equal 011 in step 737,
then in step 743, the method sends an LZ12 compressed
block. Operation then proceeds to step 749.

In step 749 the method determines if CCM (0) equals 1.
If not, then the method sends out data zero in step 751.
Operation then completes. If CCM (0) is determined to equal
1 in step 749, then operation completes.

6,145,069

25

If single byte compression is being performed by this
logic, i.e., if individual symbols are being compressed,
additional indices for each of the byte matches should be
generated by the Selection Logic to allow the Output Gen-
erator to compress these. Otherwise, the output generation
logic should also handle the cases where outputs of a
compressed stream result in a single byte non-compressed
output and adjust the flags accordingly. Previous Data3 may
also be required by the output generator 618 in the case that
the previous match is a count of one. Preferably, one method
of handling single byte matches would be to adjust the table
of FIG. 15 to not allow generation of single byte compare
masks because single byte compares normally force the
compressed stream to increase in size. For example, in the
10xx rows, if the saved count is 0, count out should be 0
along with a mask of 11xx to prevent the generation of a
compressed block lor the DO single byte match.

FIG. 17—Parallel Algorithm Example

FIG. 17 illustrates a parallel algorithm example. Assume
a window (history table length) of 16 entries, that has been
initialized to the following values: Entry 0=F0, Entry 1=F1
... Entry 15=FF. Also assume that all of the entry counters
are 0. The below sequence shows state changes for the 4
indicated inputs.

In state 0, the input data, in the order received, is FO, F8,
F7, CO. The input data is shown in the arrival order from
right to left in FIG. 17, ie., the input data D3:D0=C0,F7,
F8,I9. In state 0, the input finds a match of the first 3
symbols in entry 9. This results in those three symbols being
replaced in the output stream by compressed data indicating
a count of 3 and an index of 9. The output mask value “18”
prevents these uncompressed symbols from being included
in the output stream, since the compressed data is being
output to represent these symbols. Also in state 0, the symbol
(5 is determined to not match any entry in the history table.
Thus the symbol C5 is provided in the output steam in
uncompressed form. Thus the output in state 0, from right to
left, is: CO, (9,3).

In state 1, the input data, in the order received, is B5, F2,
F1, FO. The symbol B5 does not match any entry in the
history table. Thus the symbol B5 is provided in the output
stream in uncompressed form. Also in state 1 three input
symbols match 3 symbols in entry 7. Note that the matches
are in previous entries, but the results calculation for this
maltch occurs in entry 7. In other words, the actual matching
entries are entries 6, 5, and 4. However, this match is
detected by entry 7, since entry 7 compares the 4 input
symbols with entries 7, 6, 5, and 4. Compressed data is not
generated for this match in state 1 because the entry does not
know if the match will continue with the next set of input
symbols, and thus the output count is 0. The mask value for
entry 7 prevents the matching data from being included in
the output stream. Thus the output in state 1 is B5. The count
value for entry 7 is updated to 3, as shown in state 2, to
indicate the 3 matches in state 1.

In state 2, the input data, in the order received, is F9, F8, 53

F7. B5, The matching in entry 7 continues for 3 more
symbols, and then ends. Thus entry 7 outputs a count of 6
and a mask for the new matching symbols. In addition, entry
6 matches with the symbol B5. Thus entry 6 updates its
count to 1 in state 3. However, since symbol B5 is the last
symbol in this group of input symbols, the entry does not
know if the match will continue with the next set of input
symbols. Thus for entry 6 the output count is 0 and the mask
value will prevent that symbol from being output. Thus the
output in state 2 is (7,6)

In state 3, no further contiguous matches exist for the
symbol B5 from state 2. Thus, for entry 6, the output count

15

30

35

40

45

50

60

65

39

26

is 1 from entry 6 for the B5 input after stage 2, Also, no
match is detected [or input symbol E2, and thus E2 is output
as an uncompressed symbol. In state 3 a match is detected
with respect to the middle symbols CO and B5. This match
comprising solely middle symbols is detected by entry 9,
and thus the OF Mask is output from entry 9. This mask is
the special case mask that indicates the two symbols cen-
tered in the input (B5CO in this example) can be compressed
oul. The actual compressed output data or block will include
a flag, a count of 2 and the index 9. Thus the output from
state 3, from right to left, is (9,2), E2, (6,1), In an embodi-
ment where individual symbols are not compressed, the
output is (9,2), E2, B5, as shown in the alternate output box.

The final state in this example, state 4, has a 1 in the count
for entry 7 as a result of a match of F3 with entry 4 in state
3. The mask from this match prevented the sending of the F3
to the output stream in state 3. If this were the end of the
input stream, the window is flushed, resulting in the single
symbol compression block for this match. The output would
show a match of 1 at index 7. Thus, assuming that the input
in state 3 is the final data received, then the final output for
the stream is (7,1). Alternately, the single symbol match
could be sent uncompressed as symbol F3, as shown in the
alternate output box.

Compare Logic

The compare logic 612 and 614 (FIG. 14) in stage three,
which is used to find the largest count may be specially
designed to be able to complete in one cycle. The counts are
especially critical because stage 2 must first choose to send
0, count, count+1, count+2 or count+3. The counts from all
entries are then compared to find the largest.

As shown in FIG. 18, straightforward greater-than com-
pare of 2 multi-bit numbers requires 3 levels plus a selector.
If the number is 6 bits, this compare will require around 30
gates, and the selector will require an additional 18 for the
selector for 48 gates per 2-way compare. A stacked compare
(64 to 32,32 to 16, 16 10 8, 8 to 4, 4 to 2, 2 to 1) would
require 6*5 levels of logic, and 48%63~3Kgales.

With standard 0.25 um process technology the time
through the compare should be about 1.25nS (0.25ns per
XOR, 0.5ns 6wayAnd/Or). The selector would take an
additional 0.3nS for 1.550S per compare. This stacked
compare would then require 1.55n5%6=9.3nS. This doesn’t
include the selection and distribution of these counts from
the source. For operation above 100Mhz clocking the timing
is too limiting for proper operation.

In order to increase the speed, a novel 4 way parallel
compare can be used, as shown in FIG. 19. This embodiment
only requires 3 levels of compares (64 to 16, 16 1o 4,4 1o 1),
however, more two-way compares are required (6 per 4 way
compare) and an additional And/Or is required before the
selector. This design would then require 126 compares and
21 selectors for 126%30+21*33~4.5Kgates. But the resulting
delay would be (1.55+0.3ns)*3Levels=5.55nS. This timing
allows for high-speed parallel compression of the input data
stream. The table of FIG. 20 describes the Select Generation
Logic.

Loss Less Decompression

A discussion of the parallel decompression 280 for the
lossless decompression of parallel compressed data is now
disclosed. According to the present invention, decompres-
sion of the parallel compressed data can be done serially as
well as in parallel. Because the data is designed to be
identical to the serial compression algorithm, either serial or
parallel decompression engines will result in the same data
In the preferred embodiment, it is desirable to be able to
decompress at least as fast as the compression operation or

6,145,069

27

faster. Also, in alternate embodiments, decompression
engines 280/555 may be placed in a plurality of locations
within the system or circuit. Multiple decompression
engines allow for a custom operation of the decompression
process and a custom bandwidth of throughput may be
designed depending on the number of stages used in the
decompression engine. Therefore, below is a decompression
algorithm for the decompression engine 280 that yields
higher bandwidth than prior art serial algorithms.
According to the present invention the pipelined design is
expected to require 4 stages to run at 100MHz using a 0.25u
CMOS technology. The stages of the decompression engine
are illustrated in FIG. 22. These stages are preferably
divided up, or alternatively combined, as the silicon process
technology requires. Only the last stage in this pipeline
25513 uses the history window, and that final stage contains
minimum logic. Based on this, this function could be
extended to many more than 4 stages if a significantly faster
clock was available, Thus in alternate embodiments as

process improves and clock rates increase the stages of the 2

decompression engine can increase to increase the decom-
pression rate with the same input compression stream.
However, for the preferred embodiment the four stages
shown are the logical divisions of the function. To under-
stand this novel decompression the table of FIG. 21 illus-
trates the compression mask and index coding algorithm for
a sample code. In alternate embodiment other codes could
alter the design of the decompression unit.

With the preferred embodiment of codes is shown in the
table of FIG. 21, the following decompression trees allows
decoding of 8 bytes of the input in one cycle. The smallest
encoded data is 8 bits, so the minimum number of decoders
(25521-25535), indicated in FIG. 23, for 8 bytes is 8, Each
of these decoders could see one of many data inputs depend-
ing on the prior compressed stream.

The decompression tree, shown in FIG. 23, requires very
fast decoding at each stage to determine the proper data for
the next stage. The Window Index, Start Count and Data
Byte output (FIG. 21) should be latched for the next stage of
the decode pipeline of FIG. 22. This decode pipeline
requires the assembly of the output data. More detail of the
preferred Decode block can be seen in FIG. 24.

The Check Valid block 25553 verifies that enough bits are
available for the checker 25555(a—e). The tables for these
blocks are illustrated in the tables of FIGS. 254 and 25b. In
the preferred embodiment, the longest path through Check
Valid 25553 should be 3 gates, and the Byte Check 25555
(a—c) will only add one gate because the check is an output
enable. The outputs from the Check Valid logic 25553, and
the Byte Check logic 25555 in FIG. 24 show 0 as the most
significant bit, and 6 as the least significant bit.

The data generate logic 25557 is simply a mux of the
input data based on the check select 25555 input. Al most,
one Byte Check should be active for valid data. In addition

an alternate embodiment may include a checker which is 53

added to this decoder to verify that one byte check is active
for valid data. The table of FIG. 25b describes the Data
Generate outputs based on the Data Input and the Byte
Check Select.

The second stage 22805 of the decompression begins
calculating pointers to the appropriate bytes from the history
window for compressed data which have been latched in the
168-bit pipe register 22803, Stage two receives eight copies
of the Index & Count or Data Byte from each decoder, along
with a pair of valid bits for these sets of signals, With
minimal logic, a preliminary select can be calculated for
cach of the 16 output bytes that are latched in the 144-bit

15

30

35

40

45

50

60

65

40

28

pipe register 22807. Each select latched into 32807 is a 7 bit
encode (for a 64-entry window) with a single bit overflow.
These signals are latched 32807 and used by the next unit
22809 in stage 3. The selects will have the values of 0-63 if
a window value is to be used for this output byte, 64-71 if
one of the eight data bytes is to be used for this output byte,
and an overflow if the data for this output byte is a result of
one of the other parallel decodes occurring with this data.
The third stage 22809 checks each of the overflows from the
previous stage 22805. If inactive, the 7 bit select is passed
on unchanged. If active, the select from the correct stage 2
decoder 22805 is replicated on the select lines for this output
byte.

The final stage of the decompression, stage 4 25513,
selects the data from the window or the data bytes passed
from the 1 stage to build the output data. The output bytes
that are assembled are then added to the window for the next
cycles decode.

Because the maximum output of this design is 16 bytes
per cycle, it is required that the 1° stage select its next input
data based on the number of bytes that will be used to decode
16 bytes. This is calculated during the 1% stage in 22801.
Additionally, the last stage 25513 includes data valid bits so
that the proper output data assembly can occur if fewer than
16 bytes can be decoded for any one cycle. According to the
preferred embodiment of present invention, the minimum
number of bytes that could be decoded any cycle is 7 if there
was no compression of the input data.

Decompression Timing

Each stage in this design has been timed to achieve
100MHz with 0.25 u technology and low power standard
cell design library Alternate embodiments may use custom
data-paths or custom cells to achieve higher clock rates or
fewer stages. Stage 1 22801 has proven to be the most
critical at 9.1nS in standard cell design, Stage 2 22805,
required only 3.8nS, with stages 3 22809 and 4 25513 at
8.230S and 1.5n3 respectively. There will be some addi-
tional powering logic delay in stage 4 not accounted for in
these calculations, which are not a problem due to the timing
margin of stage 4 25513.

Scalable Compression/Decompression

The IMC 140 also includes scalable compression/
decompression, wherein one or more of the parallel
compression/decompression slices can be selectively
applied for different data streams, depending on the desired
priorities of the data streams.

Concurrency

The IMC 140 also allows concurrency of operations by
allocation of multiple data requests from a plurality of
requesting agents or from multiple data requests inpul from
a single requesting agent. On average, when the compres-
sion and decompression unit 260/280 is used, the requested
data block is retired sooner than without use of the current
invention. When multiple data requests are queued from
concurrent sources, the pending transactions can complete
with less latency than in prior art systems. As the input block
size grows and the number of pending concurrent data
requests increase, the present invention becomes increas-
ingly attractive for reduction of latency and increased effec-
tive bandwidth.

What is claimed is:

1. A method for managing solid state memory in a system
including a solid state memory and a solid state memory

6,145,069

29

controller coupled to the solid state memory, wherein the
solid state memory controller includes a decompression
engine, the method comprising:

storing compressed data on the solid state memory;

a device initiating a read of requested data from the solid
state memory, wherein the requested data comprises
compressed requested data stored on the solid state
memory in a compressed format;

the solid state memory controller reading the compressed
requested data from the solid state memory;
the solid state memory controller decompressing the
compressed requested data to produce uncompressed
requested data using parallel decompression, wherein
said decompressing comprises:
examining a plurality of codes from the compressed
requested data in parallel in a current decompression
cycle, wherein each of the plurality of codes
describes one or more symbols in the uncompressed
requested data;
generating a plurality of selects in parallel in response
to said examining the plurality of codes in parallel,
wherein each of the plurality of selects points to a
symbol in a combined history window; and
generaling the uncompressed requested data compris-
ing the plurality of symbols using the plurality of
selects; and
the solid state memory controller providing the uncom-
pressed requested data to the device.
2. The method of claim 1, further comprising:
storing the uncompressed plurality of symbols from the
current decompression cycle in the combined history
window.
3. The method of claim 2,

wherein, in the current decompression cycle prior to said
storing the uncompressed plurality of symbols, the
combined history window includes an uncompressed
plurality of symbols from any previous decompression
cycles and zero or more data bytes from the current
decompression cycle.

4. The method of claim 1, wherein said examining the
plurality or codes includes generating, for each code, size
and count information and at least one of a data byte or index
information; and

wherein said generating the plurality of selects in parallel

uses the size and count information and at least one of
the data byte or index information for each of the
plurality of codes.

5. The method of claim 4,

wherein a size for a code defines the number of bits

comprising the code;

wherein a count for a code defines the number of symbols

in the uncompressed data described by the code.

6. The method of claim 1,

wherein the combined history window includes one or
more data bytes from the current decompression cycle;
and

wherein one or more of the plurality of selects in the
current decompression cycle point to one or more of the
data bytes in the combined history window.

7. The method of claim 6, wherein said generating the
plurality of selects in parallel uses index information gen-
erated for one or more of the plurality of codes to generate
the one or more selects pointing to the one or more of the
data bytes in the combined history window.

15

30

35

40

45

50

60

65

41

30

8. The method of claim 1,

wherein the combined history window includes one or
more uncompressed symbols from one or more previ-
ous decompression cycles; and

wherein one or more of the plurality of selects in the
current decompression cycle point to one or more of the
uncompressed symbols in the combined history win-
dow from the one or more previous decompression
cycles.

9. The method of claim 8, wherein said generating the
plurality of selects in parallel uses index information gen-
erated for one or more of the plurality of codes to generate
the one or more selects pointing to the one or more of the
uncompressed symbols in the combined history window.

10. The method of claim 1, wherein the combined history
window includes an uncompressed plurality of symbols
from one or more previous decompression cycles and data
bytes from the current decompression cycle, wherein said
generating the plurality of selects in parallel comprises:

generating a first select to point to a data byte in the
combined history window in response to a first code
indicating that uncompressed data represented by the
first code is the data byte; and

generaling a second select to point to a first symbol in the
combined history window in response o a second code
indicating that uncompressed data represented by the
second code includes the first symbol in the combined
history window.

11. The method of claim 10, wherein the uncompressed
data represented by the second code includes one or more
symbols following the first symbol in the combined history
window, wherein selects are generated to point to each of the
one or more symbols in the combined history window
comprising the uncompressed data represented by the sec-
ond code.

12. The method of claim 1, wherein the combined history
window includes an uncompressed plurality of symbols
from one or more previous decompression cycles and data
bytes from the current decompression cycle, wherein said
generating the plurality of selects in parallel comprises:

generating a first select to point 1o a first symbol being

decompressed from a first code in the current decom-
pression cycle, wherein the first select is generated in
response 1o a second code indicating that uncompressed
data represented by the second code includes the first
symbol, and wherein the first symbol is not in the
combined history window.

13. The method of claim 12, further comprising resolving
the first select to point to one of a symbol in the current
combined history window or a data byte in the current
combined history window.

14. The method of claim 13, further comprising copying
a second select being generated for the first code to the first
select, wherein the second select points to one of a symbol
in the combined history window or a data byte in the
combined history window.

15. The method of claim 1, wherein the combined history
window includes an uncompressed plurality of symbols
from one or more previous decompression cycles, wherein
storing the uncompressed plurality of symbols from the
current decompression cyele in the combined history win-
dow includes removing from the combined history window
at least a portion of the uncompressed plurality of symbols
from the one or more previous decompression cycles.

6,145,069

31

16. The method of claim 1, wherein said examining the
plurality of codes in parallel comprises:

extracting a portion of the compressed data as an input

data, wherein the input data includes the plurality of
codes;

extracting one or more codes from the input data; and

generating, for each code, size and count information and

at least one of a data byte or index information.

17. The method or claim 16, wherein a plurality of
decoders are operable to examine the plurality of codes in
parallel in the current decompression cycle, wherein said
extracting the one or more codes comprises:

a) determining a next decoder in the plurality of decoders;

b) extracting a code from the input data to be a current

code in response o determining the next decoder;

¢) determining the number of uncompressed symbols to

be generated by the current code; and

d) assigning the current code to the net decoder.

18. The method of claim 16, wherein said extracting the
one or more codes further comprises determining a size of
cach of the one or more codes.

19. The method of claim 16, wherein said extracting the
one or more codes further comprises:

determining if a code in the input data is a complete code 2

or an incomplete code, wherein the code is extracted

from the input data to be the current code in response

to determining the code is a complete code.

20. The method of claim 1, wherein said receiving the
compressed data, said examining a plurality of codes, said
generating a plurality of selects, and said generating the
uncompressed data comprising the plurality of symbols are
performed substantially concurrently in a pipelined fashion.

21. The method of claim 1, further comprising:

the solid state memory controller reading a header for the
compressed requested data from the solid state memory
prior o said decompressing the compressed requested
data;

wherein the header includes information used in said
decompressing the compressed requested data.

22. The method of claim 1, wherein the solid state
memory controller further includes a compression engine,
the method further comprising:

a device initiating a write of uncompressed data to the
solid state memory, wherein the uncompressed data is
in an uncompressed format;

the solid state memory controller receiving the uncom-
pressed data from the device;

the solid state memory controller compressing the uncom-
pressed data to produce compressed data, wherein the
uncompressed data comprises a plurality of symbols,
wherein said compressing comprises:

a) comparing a plurality of symbols from the uncom-
pressed data with each entry in a history table in a
parallel fashion, wherein said comparing produces
compare results;

wherein the history table comprises entries, wherein each
entry comprises at least one symbol, and wherein the
method maintains a current count of prior matches
which occurred when previous symbols were compared
with entries in the history table;

b) determining match information for each of said
plurality of symbols based on the current count and
the compare results; and

¢) outputting compressed data in response to the match
information; and

15

20

30

35

40

45

50

55

60

65

42

32

the solid state memory controller storing the compressed

data on the solid state memory.

23. The method of claim 22, wherein said outputting
compressed data includes:

outputting a count value and an entry pointer for a

contiguous match, wherein the entry pointer points (o
the entry in the history table which produced the
contiguous match, wherein the count value indicates a
number of matching symbols in the contiguous match.

24. The method of claim 23, wherein said outputting the
count value includes encoding a value representing the count
value; wherein more often occurring counts are encoded
with fewer bits than less often occurring counts.

25. The method of claim 22, wherein said outputting
compressed data further includes:

for non-matching symbols which do not match any entry

in the history table, outputting the non-matching sym-
bols.

26. The method of claim 22, further comprising:

d) repeating steps a)—c) one or more times until no more

data is available; and

¢) when no more data is available, if the current count is

non-zero, outputting compressed data for the remaining
match in the history table.

27. The method of claim 26, wherein said determining
match information includes determining zero or more
matches of said plurality of symbols with each entry in the
history table.

28. The method of claim 22, wherein the method further
maintains a count flag for each entry in the history table;

wherein said determining determines match information

for each of said plurality of symbols based on the
current count, the count llags, and the compare results.

29. The method of claim 28, wherein said determining
match information includes:

resetting the count and count flags if the compare results

indicate a contiguous match did not match one of the
plurality of symbols.

30. The method of claim 28, wherein the count and count
flags for all entries are reset based on the number of the
plurality of symbols that did not match in the contiguous
match.

31. The method of claim 22, wherein said determining
match information includes:

updating the current count according to the compare

results.

32. The method of claim 22, wherein said determining
match information includes:

determining a contiguous match based on the current
count and the compare results;

determining if the contiguous match has stopped match-

ing;

if the contiguous match has stopped matching, then:

updating the current count according to the compare
results; and

wherein said outputting compressed data includes out-
putting compressed data corresponding to the con-
tiguous match.

33. The method of claim 32, wherein said outputting
compressed data corresponding to the contiguous match
comprises oufputting a count value and an entry pointer,
wherein the entry pointer points to the entry in the history
table which produced the contiguous match, wherein the
count value indicates a number of matching symbols in the
contiguous match.

6,145,069

33

34. The method of claim 22, wherein the plurality of

symbols includes a first symbol, a last symbol, and one or
more middle symbols;

wherein said determining match information includes:

if at least one contiguous match occurs with one or more
respective contiguous middle symbols, and the one or
more respective contiguous middle symbols are not
involved in a match with either the symbol before or
after the respective contiguous middle symbols, then:
selecting the one or more largest non-overlapping con-
tiguous matches involving the middle symbols;
wherein said outputting compressed data includes out-
putting compressed data for each of the selected
matches involving the middle symbols.
35. The method of claim 22,
wherein the method further maintains a count flag for
each entry in the history table;
wherein said determining determines match information
for each of said plurality of symbols based on the
current count, the count flags, and the compare results;
wherein said determining match information and said
outputting compressed data in response to the match
information comprises:

determining zero or more matches of said plurality of 2

symbols with each entry in the history table;

examining the compare results for each entry;

for non-matching symbols which do not match any
entry in the history table, outputting the non-
matching symbols;

if any entry stopped matching, examining the current
count, the count flags, and the compare results for
every entry;

determining the contiguous match based on the current
count and the compare results;

determining if the contiguous match has stopped
matching;

if the contiguous match has stopped matching, then:
outputting a count value and an entry pointer,

wherein the entry pointer points to the entry in the

15

20

taa
o=

35

43

34

history table which produced the contiguous
match, wherein the count value indicates a number
of matching symbols in the contiguous match; and
updating the current count according to the compare
results; the method further comprising:
¢) repeating steps a)-c) one or more times until
no more data is available; and
f) when no more data is available, if the current
count is non-zero, outpulting a count value and
an entry pointer for the remaining match in the
history table.
36. The method of claim 35, wherein the plurality of

symbols includes a first symbol, a last symbol, and one or
more middle symbols;

wherein, if the contiguous match has stopped matching,
then the method further comprises:

at least one contiguous match occurs with one or more

respective contiguous middle symbols, and the one or

more respective contiguous middle symbols are not

involved in a match with either the symbol before or

after the respective contiguous middle symbols, then:

selecting the largest non-overlapping contiguous
matches involving the middle symbols;

outputting a count value and an entry pointer for each
of the selected matches involving the middle sym-
bols.

37. The method of claim 22, wherein the plurality of

L]

i

symbols comprise a power of 2 number of symbols.

38. The method of claim 22, wherein the plurality of

symbols comprise four symbols.

39. The method of claim 22, further comprising:
generating a header for the compressed data; and
storing the header on the solid state memory;

wherein the header includes information for decompress-
ing the compressed dala.

¥ # E I

